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ABSTRACT   

In 1998, the signing of the white paper on Energy Policy pushed South Africa to invest 

in the development of renewable energy.  Following the introduction of the Renewable 

Energy Independent Power Producer Procurement Programme (REIPPPP), the country 

saw a sharp increase in the production of renewable energy investments.  As a result, 

targets have been set to generate 15 GW out of a total of 74 GW renewable electricity 

by 2027.  Similarly, according to the Department of Energy, by 2050 wind and solar 

PV are expected to produce more than 50 GW, which is more than 60 % of the projected 

national demand.  These targets are highly ambitious given that by the end of 2018, the 

renewable energy contribution to the grid was less than 3 % nationally. 

Despite its present success with renewable energy, South Africa still lags behind 

countries such as Germany with regards to relative renewable energy penetration on 

the electricity grid.   Although studies by the Council for Scientific and Industrial 

Research (CSIR) in South Africa show optimal cost for more than 70 % renewable 

generation by 2017, the current regulations in South Africa limit the renewable capacity 

to be added per year.  With the aim of demonstrating the impact that renewable 

generation has on the electricity system, simulations were carried out in DigSilent’s 

Power Factory.  This is an analysis software program used for dynamic performance 

simulation and monitoring of power systems.  Furthermore, comparisons were made to 

determine strategies used to match renewable energy at high penetration levels to the 

electrical grid in Germany, and how these can be adopted in South Africa. 

The simulation results validated some of the requirements in the existing grid code 

document and that it is vital for renewable power plants to comply with its 

requirements.  In addition, results in this study reveal that governmental policies play 

a pivotal role in encouraging connection of renewable technologies.  Furthermore, the 

research reveals that South Africa’s centralization of power supply is the main 

constraint in matching renewables to the grid.  The research also  shows that the feed-

in tariff system used in Germany has been successful because it offers investors a more 

stable system for long term investment. 

The main implications of the results are that in South Africa, there is a need to revise 

the regulations affecting the renewable electricity generation and engage the public in 

the process.  Therefore, this research showed that opening the IRP draft for public 

consultation and releasing the IRP 2018 for public comment in 2018 is a vital step 

towards matching renewable energy to South Africa’s electricity system. 
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UITTREKSEL 

Die 1998 ondertekening van die witskrif rakende die energiebeleid het daartoe gelei 

dat Suid-Afrika al hoe meer in die ontwikkeling van hernubare energie belê het. Na 

aanleiding van die bekendstelling van die Renewable Energy Independent Power 

Producer Procurement Program (REIPPPP) het die land 'n skerp toename van 

beleggings in die opwekking van hernubare energie beleef.  As gevolg hiervan was die 

teikens gestel om 15 GW hernubare krag opwekking van ŉ totaal van 74 GW teen 2027 

te bereik. Net so, volgens die Departement van Energie, sal wind en fotovoltaïse 

sonkrag na verwagting meer as 50 GW produseer teen 2050, wat dan meer as 60 % van 

die nasionale behoefte sal wees.  Hierdie teikens is baie ambisieus gegewe dat by die 

einde van 2018 die hernubare krag bydra tot netwerk minder as 3 % was. 

 

Ten spyte van die huidige sukses met hernubare energie volg Suid-Afrika steeds lande 

soos Duitsland agterna met betrekking tot die relatiewe hernubare energie penetrasie 

binne die elektrisiteitsnetwerk. Alhoewel studies deur die Wetenskap- en Nywerheid 

Navorsingsraad (WNNR) wys dat optimale kostes bereik kon word by meer as 70 % 

hernubare energie opwekking teen 2017, beperk huidige regulasies in Suid-Afrika die 

jaarlikse toevoeging van hernubare energie kapasiteit.    

 

In hierdie navorsing is simulasies in DigSilent’s PowerFactory uitgevoer om die impak 

van hernubare energie opwekking op die Suid-Afrikaanse elektrisiteitsnetwerk te 

demonstreer.  Dit is ŉ analise programmatuur vir dinamiese gedragssimulasies en 

monitering van krag stelsels.  Vergelykings tussen die Suid-Afrikaanse en Duitse 

gevalle word gemaak om strategiëe wat gebruik word om hernubare energie teen hoë 

penetrasie vlakke in Duitsland toe te pas, te ondersoek en te bepaal hoe en of dit in 

Suid-Afrika toegepas kan word. 

 

Die simulasie resultate bevestig sommige van die vereistes in die bestaande 

netwerkkode en dat dit noodsaaklik is vir hernubare kragsentrales om aan sy vereistes 

te voldoen. Verdere resultate in hierdie studie dui daarop dat regeringsbeleid 'n 

deurslaggewende rol speel ter ondersteuning tot die toevoeging van hernubare 

tegnologieë tot die netwerk. Die navorsing toon ook dat die sentralisering van 

elektrisiteitsvoorsiening in Suid-Afrika die grootste beperking is wat die toevoeging 

van volhoubare kragbronne aan die netwerk teenstaan. Nog ‘n bevinding is dat die 

invoer tarief in Duitsland suksesvol was in die opsig dat dit beleggers 'n meer stabiele 

stelsel vir 'n lang termyn belegging bied.  

 

Die belangrikste implikasies van hierdie resultate is dat dit nodig is om die regulasies 

rakende die opwekking van hernubare elektrisiteit in Suid-Afrika te hersien en die 

publiek in die proses te betrek. In hierdie opsig kan die opening van die IRP konsep 
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ontwerp vir openbare konsultasie en die vrystelling van die IRP 2018 vir openbare 

kommentaar gedurende 2018, as belangrike stappe beaam word om hernubare energie 

te versoen met die kragstelsel van Suid-Afrika.  
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CHAPTER 1 

1.    INTRODUCTION 

1.1. Background to Study 

In 1998, South Africa began its journey to provide access to affordable energy for all 

its citizens (Portfolio Committee on Energy, 2018).  This was accomplished through 

the signing of the white paper on Energy Policy that also pushed the government to 

prioritise renewable energy projects (Banks & Scaffler, 2006).  As a result, in 

comparison to the existing 3.2 GW of variable generation, South Africa set ambitious 

targets to achieve high penetration of approximately 15 GW by 2027 as shown in 

Figure 1.1.    

 

 
Figure 1.1:   Electricity  supply mix target for 2027 in gigawatts (Govender, 2017)   

 

Apart from reducing reliance on fossil fuels and consequently reducing greenhouse gas 

emissions, these targets were set to increase the national electricity generation capacity.  

The main motivation behind high renewable penetration in the energy mix in Figure 

1.1 was to ensure that by 2050, non-electrical energy loads such as the transport 

industry may also be supplied from energy from renewable sources.  By 2050 the aim 

is to generate 18 GW from solar photovoltaic (PV) and 37 GW from wind (Department 
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of Energy, 2016a).  For the ten years between 1998 and 2008, investments in renewable 

energy sources were slow and very little was accomplished.  However, between 2008 

and 2012, government policy interventions converged with market forces to drive the 

country towards the deployment of renewable energy technologies at a large scale.   

 

After 2011, the country showed a sharp increase in the production of renewable energy 

after the request of proposals by South Africa’s Renewable Energy Independent Power 

Producer Procurement Programme (REIPPPP).  The REIPPPP encourages contractors 

from the private sector to supply the national grid with electrical energy generated from 

renewable sources.  Within four years, the REIPPPP had escalated the country into the 

top ten of countries with the fastest growing renewable energy investments and 

development (Department of Energy, 2015). 

 

1.2. Challenges of Renewable Energy Integration 

 The current electricity transmission and distribution system was designed for a 

centralized system where coal was the major energy source.  This implies that the 

transmission network was constructed around the coal concentrated areas.  Due to the 

outdated nature of this electrical network infrastructure, integration of new generation 

capacity raises many technical challenges.  For example, , despite the fact that studies 

by Wright et al. (2017) show the lowest cost for more than 70 % renewable penetration 

by 2017, the restrictions on the infrastructure have resulted in limits on the amount of 

renewable energy which can be added to the electrical network per year (Department 

of Energy, 2016a; Thopil et al., 2018).   

In addition, the grid connection code for renewable power plants connected to the 

electricity transmission or distribution system (grid code), has been developed to 

outline the technical requirements for connections to the grid (Eskom, 2012).  The grid 

code requirements are in relation to the strength of the power network.  Unfortunately, 

renewable resources such as solar and wind are more dispersed across the country (Kost 

et al., 2017).  Therefore, to optimize the integration of renewable energy, the existing 

electrical network infrastructure will need to be altered significantly to cater for the 

renewable power plants (World Wildlife Fund, 2014). 

The technical risks associated with the integration of renewable generation to support 

Eskom, South Africa’s power utility, is currently under heavy debate (Wright et al., 

2017).  In South Africa, while the integration of RE technologies, mostly photovoltaic 

(PV) and wind may be growing, the inherently intermittent nature of these sources 

poses a threat on the reliability of electricity generation.  At present, assuming no 

occurrence of unusual cloud cover, only concentrating solar power (CSP) with storage 
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can manage dispatchability, whenever electricity is needed within a 24-hour charge and 

discharge cycle. 

Moreover, because electrical network infrastructure will vary with regions, matching 

renewable energy with Eskom’s electricity network is necessary to ensure that not only 

is demand met but also, the new power plants will be integrated to the grid at the correct  

frequency and voltage. 

 

1.3. Research Objectives  

The main aim of this study is to show how renewable energy generation can be 

incorporated without compromising the integrity of the South African electricity grid.  

Given enough financial investments, according to GreenCape (2017), 70 % renewable 

energy penetration is realizable within the next few years.  However, this research will 

focus on the technical feasibility of increasing the integration of mainly wind, CSP and 

solar PV power plants to the electrical grid.  The research will also aim to achieve the 

following: 

1. Demonstrate the impact on an electricity network, of integrating renewable 

energy technologies such as solar PV, CSP,  and wind into an electricity system.  

The aim will be to show how network performance can be affected by these 

technologies. 

2. Conduct simulations in PowerFactory (DigSilent, 2017) using existing wind 

and solar  generator models.  By characterizing renewable energy matching 

strategies, the simulations will validate the impacts uncovered in literature. 

3. Determine strategies used to match renewable energy generation to the 

electricity supply in a selected country with high renewable energy penetration.  

Hence, investigate if any of these strategies can applied to the South African 

electricity system to increase grid support and penetration of renewable energy.  
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1.4. Report Structure 

Chapter 1 includes a background to the challenges facing renewable energy 

integration in South Africa.  The work includes an introduction to the research 

objectives and the South African power supply network.  Finally, this chapter also 

includes the scope of the project and the expected result of the project. 

Chapter 2 covers the relevant literature around the scope of this research.  It provides 

a framework for South African electricity grid.  The discussion centres mainly on the 

existing network infrastructure, availability of resources and potential for using 

renewable energy generation in South Africa. 

Chapter 3 presents a case study on Germany, a country with 100 % renewable energy 

penetration in some areas.   The aim here is to identify the technical challenges faced 

in matching the renewable energy to the respective electricity supply system and how 

they were resolved.   A list of some requirements for integration of renewable 

technologies is then derived. 

Chapter 4 will consider the information presented in chapters 2 and 3 and compare the 

two systems.  Based on this, recommendations will be made on how to match 

renewables to the current South African system more effectively. 

Chapter 5 gives a brief description of the South African grid code laws to which 

renewable power plants are required to comply before they can be connected to the 

electricity network.  Furthermore, an analysis of grid codes from Germany, United 

States of America and China is carried out to create a framework for the simulations to 

be carried out in chapter 6.  

Chapter 6 involves the simulation of a simplified model of an electricity network, in 

PowerFactory (DigSilent, 2017).  By applying some of the theories discussed in 

chapters 2 to 4.  Comparisons are made to determine how the integration of renewable 

energy generators affect the electricity system. 

Chapter 7 concludes the research findings.   The level to which the research objectives 

have been met is also validated. 

Appendix A provides extracts of some technical documents for PowerFactory and 

appendix B gives a summary of some regulations which influence renewable energy in 

Germany and in South Africa.  Finally, appendix C provides some of the data used for 

the simulation model. 
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CHAPTER 2 

2.    SOUTH AFRICA’S ELECTRICITY SYSTEM DESIGN  

2.1. Power Generation Overview 

2.1.1.  Electricity network topology 

High renewable energy penetration has been said to result in grid instability unless the 

grid infrastructure is upgraded.  The main challenge faced by the utility is constantly 

refurbishing the existing electrical network infrastructure and ensuring that the 

incorporated generators and loads match the acceptable power quality levels (Ramdhin, 

2014).  Where there is evidence that the integrity of the grid will not be compromised, 

the independent power producer, (IPP) can choose to decommission or build new 

sections of the electrical network as required (Barday, 2016).  While the constraints 

around instability may be disapproved or corrected using various control technologies, 

the current grid infrastructure in South Africa will require significant modification to 

enable connection of the projected capacity for 2050 (Department of Energy, 2016a).  

In general, the electricity network chain in South Africa will typically consist of 

Transmission Networks which are used to transport electricity over long distances and 

Distribution Networks which are designed to deliver electricity to the consumers.  

The transmission and distribution networks consist of sections, each operating at a 

specific nominal voltage and separated by transformers.  Table 2.1.  shows the lengths 

and operational voltages of the electrical networks in South Africa 

Table 2.1:  Operational voltages in South Africa 

Electricity system Voltage Level Network Length (km) 

Transmission 33 kV – 765 kV 27 770 

Distribution < 33 kV  325 000 

 

From the daunting lengths of networks shown in Table 2.1 above, it can be observed 

that the modification costs of the grid to accommodate renewables is likely prohibitive.  

In South Africa, renewable energy technologies are connected to either the distribution 

or transmission networks.  This report focuses on transmission network connected 

power plants. 
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2.1.2.  Limitations in the connection of distributed generation  

In Europe, the main motivation for construction of transmission lines until 2050 is to 

enable access to areas where the wind and solar resource are abundant.  These areas 

are often located far from the load centres, where the outputs from the power stations 

are dispatched depending on demand (Fursch et al., 2013).  While the construction of 

a wind or Concentrated Solar Sower (CSP), plant will take approximately two to three 

years, upgrading the electrical network will take a period of seven to ten years (World 

Wildlife Fund, 2014). 

In general, due to the relatively short private industry driven installation times required 

for renewable technologies, a rapid increase in the deployment of this distributed 

generation can be expected.  However, this could then result in integration challenges 

on the existing, slow developing infrastructure (De Sisternes, 2014).  Before approval 

of a new connection to the grid, network studies are carried out using specialized 

computer software packages.  The main objective of the network studies, carried out 

prior to the approval of new connections, is to evaluate the new connection’s impact 

on the network and to determine whether there are any network planning criteria 

exceeded.  The network criteria with which new power plants will need to be compliant 

in South Africa, are explained in more detail in Chapter 3.  

Studies carried out by Mushwana (2014) determined the available capacity by 

considering various power system conditions.  The study considered both transient and 

steady state power system conditions.  The result was that, further transmission and 

distribution network upgrades will be necessary to accommodate addition of renewable 

plants to the network.  In 2017, approximately 500 MW CSP, 3 300 MW wind and 2 

400 MW solar photovoltaic (PV) had been approved by the Department of Energy for 

independent power producers.  According to World Wildlife Fund (2015), the bid 

windows 1 to 4 in REIPPPP had used up most of the extra grid capacity, although more 

than 30 000 MVA or 6799 km of new transmission lines had been constructed since 

2005.  This reinforces the need for further construction of transmissions lines, 

protection systems and transformer substations (Govender, 2017).   

Historically, the South African Electricity grid was constructed to get power from 

Mpumalanga, a coal rich area to other areas (Thopil et al., 2018).   Figure 2.1 shows 

most of the transmission network routing is around the coal power plants. 
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Figure 2.1:  South Africa: Eskom main transmission system (World Wildlife Fund, 

2014) 

 

The transmission network shows that coal deposits are concentrated to a specific area.  

Meanwhile, renewable resources for example, wind and solar are more dispersed across 

the country.  Given that most of solar and wind power plants would be best located in 

the eastern, northern and western Cape provinces, the existing infrastructure would 

need significant modification to cater for the renewable power plants (World Wildlife 

Fund, 2014). 

The electrical system’s ability to match the demand by controlling the generation units 

is dependent on the system frequency.  While other international electrical systems run 

at 60 Hz, the nominal frequency of the electrical network in South Africa is 50 Hz.  The 

grid standard frequency is used as an indication of demand.  This means that if the 

frequency drops, the power generators must supply more and vice versa. 
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Eskom transmits alternating current which constantly changes direction.  Frequency is 

a measure of how often the generator rotor and hence  the current changes direction, 

between positive and negative, in a second.   

Therefore, 50 Hz means the generator rotor turns 50 cycles per second.  The allowable 

deviation from the standard frequency on the South African electricity grid is 0.5 Hz.  

Equation 2.1 and equation 2.2 are the governing formulae for synchronous speed (n) 

and horsepower (HP) of a three-phase motor or generator respectively. 

𝑛 (𝑟𝑝𝑚) =  
120 ×𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)

𝑝
   ……………………………………… Equation 2.1 

𝑃 (𝑤𝑎𝑡𝑡𝑠)  =  
n ×𝑡𝑜𝑟𝑞𝑢𝑒

9.54
 ………………………………………… Equation 2.2 

Where p represents the number of poles on a motor or generator and 5252 is the number 

of radians per second.  Given that motors are constant torque machines, by applying 

the equation for horsepower, it can be observed that running for example 50 Hz rated 

machine at 60 Hz would produce 20 % more horsepower.  To produce rated torque at  

a different frequency, the supply voltage would also need to be adjusted because the 

voltage to frequency ratio needs to remain constant.  Hence the frequency tolerance 

needs to be adhered to. 

Furthermore, grid frequency variations result in reduced system efficiency when 

generators are run outside their rated rotational frequency.  When the frequency 

increases, because the generators assume demand has reduced and therefore, reduce 

their supply to meet the reduced demand.  In this case the capacitances are reduced, 

and the inductances of the transmission electrical equipment  increase.  Therefore, if 

frequency is too low there is an increase in system losses.  Consequently, reducing  the 

efficiency transmission lines.  According to Eskom Generation Communication (2017) 

in South Africa, if the frequency falls below a certain level, automatic load shedding 

will occur.  Frequency is therefore, a vital consideration in the connection of power 

plants from intermittent sources to the grid as these technologies may result in 

variations in the system frequency.  

Similarly, the control of system voltage levels has a significant role in maintaining the 

quality and security of supply.   The aim is to maintain the system voltage as close as 

possible to the nominal values.  Power fed in from distributed generation (DG) directly 

connected to the grid tends to increase voltage levels in a region. 
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2.1.3.  Summary 

The transmission network in South Africa was originally designed for a centralized 

electricity sector.  However, to encourage efficient use of resources, where extra 

capacity is available connection of distributed generation must be encouraged.  

Network planning around the integration of new renewable generation capacity must 

be designed not only to increase the grid power supply but also to promote upgrade of 

infrastructure. 

The electricity network infrastructure can be extended or reinforced to cater for the 

changes in demand and generation.  To appropriate the existing network to the 

increasing demand and generation, network planning will often involve upgrading, 

refurbishment and decommission of some parts of the infrastructure.  This report will 

investigate some of the current changes being made in the infrastructure through the 

Transmission Development Plan (TDP). 

 

2.2. Demand-Supply Matching Strategies 

In recent years, the Integrated Resource Plan (IRP), a long-term guide to the expansion 

of the electricity supply, has gained significance in the South African context.  This is 

a result of its goals to improve security of energy supply and to prevent the 

continuously increasing carbon emissions and prices of fuel.   The IRP 2010-30 is being 

revised by the Department of Energy, DOE in a move towards a more diverse 

electricity supply mix and reduced carbon emissions by introducing new power plant.  

In South Africa, demand has exceeded supply since 2008.  Generation from renewable 

energy sources has been promoted through a competitive auction called the Renewable 

Independent Power Producers Procurement Programme (REIPPPP).    

In the REIPPPP program, contractors from the private sector are invited to supply the 

national grid with electrical energy generated from renewable sources.  This has 

resulted in South Africa getting renewable energy at  some of the lowest tariffs in the 

world since the announcement of the first bid window in December 2011.  The average 

tariff requested across all the technologies was 2.52 R/kWh initially.  This had reduced 

significantly by the fourth bid window to 0.86 R/kWh by April 2016 ( Department of 

Energy, 2016b; Portfolio Committee on Energy, 2018).  Other countries, for example 

Germany, have recently also switched to a similar competitive bidding process (Federal 

Ministry for Economic Affairs and Energy, 2018). 

According to World Wildlife Fund (2015), the bid windows 1 to 4 in REIPPPP have 

used up most of the extra grid capacity.  In an effort to accommodate the increasing 

demand and new power plants being constructed across the country, approximately 5 
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000 km of transmission lines have been installed since 2005.  This translates to about 

24 000 MVA extra supply capacity to meet the ever-increasing electricity demand and 

consequently, accommodate Eskom’s new power plants.  Some of the newly built 

power plants by Eskom in the recent years are summarized in Table 2.2. 

Table 2.2:  New build projects ( Eskom Generation Communication Department, 2013) 

Project Number of 

units 

Fully synchronized 

commission target  

Medupi (full commission 2020) 6 4 764 MW 

Kusile  (full commission 2022) 6 4 800 MW 

Drakensberg pumped storage 4 1 000 MW 

Ingula (full commission 2017) 4 1 332 MW 

 

Since the commissioning of some of the units in Table 2.2, an improvement has been 

seen in the ability of South Africa’s power generation to meet the demand.  Figure 2.2 

shows 33 % contribution expected from renewables compared to 29 % of new coal 

power plants. 

 

 

Figure 2.2:  New builds in the diversified energy mix (Department of Energy, 2016b) 
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It can be observed from Figure 2.2 that a relatively high contribution to the energy mix 

is expected to be from nuclear.  However, renewable energy was still expected to be 

the main contributor to the New Build Program for electricity supply by 2016.  9 600 

MW new build for nuclear was approved in December 2015 (Prins, 2018).  However, 

besides having minimal effect on the environment, technologies such as solar and wind 

are relatively favourable because they require a shorter construction period and the 

power plant designs can be more modular.  According to Department of Energy 

(2016a), a diversified energy mix is one of the strategic objectives have been put in 

place to ensure energy security.  The other objectives include increasing competition 

between IPPs in the energy sector and review and planning to expand electrical 

infrastructure. 

It should be noted that the amount of solar and wind capacity allowed to be added in 

each year is limited (Department of Energy, 2016a).  It is therefore, vital to uncover 

the reasons for these limits, whether they are economical or technical.  This research 

focuses mainly on disclosing the technical hurdles, which may hinder the increase in 

penetration of renewable generation as part of the South African Electricity system. 

 

2.3. Integration of Renewable Energy Systems 

The main objective for the REIPPPP is to secure energy from the private sector.  

Therefore, alleviating the shortfall in electrical energy supply.  The retail electricity 

market has been open to the private sector since 2009 to increase security of supply.  

On the supply side, plans have been put in place to procure additional renewable energy 

capacity and the decommission of the  existing plants (Department of Energy, 2016b).  

However, for this report the discussion around the power plants that will be 

decommissioned or phased out was neglected.  In the determining the new capacity for 

renewable energy power plants, it is vital to consider both the increasing demand and 

the decommissioning of the existing plants.  The integrated resource plan will contain 

schedules for the decommissioning and  commissioning of projects (Wright et al., 

2017).  According to the IRP 2018 the wind capacity procured under the first bid 

window of REIPPPP will be decommissioned by 2015 and approximately 1 GW of 

solar PV by 2040 (Department of Energy, 2018). 

While an unlimited capacity for renewable energy generation would be attractive for 

the increasing the renewable energy penetration in the electrical energy mix, it is more 

cost optimal for the increase to be a gradual process.  When there is too much 

generation from solar and wind, there is a risk of running into curtailment.  In such 

cases, storage becomes a plausible solution in integration of renewables to the 

electricity system.   
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A good example is CSP technology, which can be adapted to deliver dispatchable 

electricity when needed.  It should be noted that CSP is comparable to base load power 

plants such as  coal  and nuclear fired plants provided spatial distribution and stable 

climate conditions are favourable to such deployment.  CSP is a mature technology, 

however, South Africa its deployment is not yet fully established (Gauche, 2016; 

Hilton and Marquard, 2011).  

During a fault condition, generators connected to the grid are required to support the 

grid and not disconnect (Eskom, 2012). Unfortunately, due to its intermittent nature, 

there is a high risk that generation from non-dispatchable renewable resource may not 

be able to support the grid in this way (Troester, 2009).  Although the frequency of the 

electrical grid is controlled by balancing supply and demand, sudden changes in 

generation or demand can result in frequency fluctuations.  During a frequency 

fluctuation event, the system frequency will initially change at a rate of change of 

frequency (ROCOF) which depends on the electrical grid’s inertia.  Inertia is a 

combined property of the spinning generation and load on the grid which limits these 

frequency fluctuations (Gonzalez-Longatt et al., 2013).  

Spinning generators have a strong coupling between their rotational speed and 

electrical frequency.  As a result, their kinetic energy (inertia) dampens the ROCOF. 

On the other hand, both wind and solar PV are interconnected with the grid through a 

power electronic interface. This interface electrically decouples the generator motion 

from grid frequency.  Therefore, wind and solar PV do not have inherent inertia.  

Therefore, according to Wright et al. (2017) and Gonzalez-Longatt et al. (2013) grid 

integration, at high penetration levels, of solar PV or wind generation results in the 

displacement of conventional synchronous or spinning generators and consequently, 

reduces system inertia. 

 This means that adding a more diversified power system complicates the network 

control and management system.  As a result, a new approach is required to network 

planning before the additional renewable plants can be connected.  
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2.4. Potential of Renewable Energy 

2.4.1.  Overview of the renewable energy resource 

South Africa has high levels of the solar resource.  Global horizontal irradiance (GHI) 

is the component required for solar photovoltaic (PV) projects, and direct normal 

irradiance (DNI) component is required for CSP.  The north-western part of South 

Africa has an annual DNI level of approximately 3 000 kWh/m2 while most of the 

country has values of more than 2 000 kWh/m2.  The wind resource in South Africa is 

dispersed geographically with high wind speeds around the western and eastern coastal 

areas.  Wind speed variations are seasonal.  

Based on the available resource, a study carried out by World Wildlife Fund (2015) 

determined some possible locations and limitations of utility scale renewable energy 

power plants in South Africa.  The selection of areas shown in Figure 2.3 below was 

influenced mainly by abundance of renewable resource.

 

Figure 2.3:  Solar and wind potentially suitable locations (World Wildlife Fund, 2015)  
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It can be observed in Figure 2.3 that the areas selected for most CSP and solar PV 

plants are between Upington and Bloemfontein, where the solar resource is more 

abundant in South Africa.  Similarly, suitable areas for the wind plants are mostly on 

the coastal areas, around Cape Town and Port Elizabeth where it is relatively windy.  

Apart from the abundance of the renewable energy resource, potential locations were 

chosen near existing transmission lines close to existing Eskom substations.  The main 

motivation for construction of a power plant near a transmission line is to reduce the 

costs of connecting the power plant to the grid (World Wildlife Fund, 2015) .  Although 

the selected areas in Figure 2.3 are located close to existing Eskom substations, new 

capacity will still require additional substations and transmission lines. 

 

2.4.2.  Contribution of concentrated solar power to grid stability 

Fluctuations in renewable resource due to events such as cloud movements or wind 

gusts can cause fluctuations in the local grid network.  This can cause instantaneous 

mismatches between demand and generation.  These issues can be resolved by either 

adjusting the design of the local transmission or distribution infrastructure or the design 

of the power plant.  A carefully selected storage system, such as CSP thermal storage 

system, can also be used to correct the challenge of variability and intermittency.  

Concentrated solar power technology provides a flexible and fast response to energy 

demand (Boie et al., 2016; Shultz, 2018). 

CSP technology first converts solar energy to thermal energy and then finally to 

electrical energy.  The inclusion of thermal storage enables this solar generation to be 

dispatch-capable instead of intermittent.  Without thermal storage, a CSP generator has 

very little thermal inertia which lasts only several minutes (Gauche et al., 2012; World 

Wildlife Fund, 2015).  In this case it should be noted that storage is the major distinction 

there between photovoltaic and CSP.  The main motivation for integrating storage 

would be for the production electricity on demand.  Some studies also show that storage 

could resolve the challenge of reverse power flow from distributed generation 

(Crossland, 2014).   

Although still in its early deployment stages, CSP is being implemented in South Africa 

with some projects designed by Eskom, for example the 100 MW plant in Upington, 

in the Northern Cape Province (Hilton and Marquad, 2011).  

 

The use of a spinning synchronous generator turbine in CSP power plants adds inertia 

to the grid.  This means, the utility is better able to manage system voltages and 

frequencies because CSP energy is dispatchable (Shultz, 2018).  However, the 
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dispatchability of CSP is relatively short term since it depends on thermal storage.  

Figure 2.4 shows results from tests carried out on a concentrated solar power plant in 

located Spain.  The blue bar graph shows the planned output while the green bar graph 

shows the plant’s actual output.  

 
 

Figure 2.4:  Dispatchability results for concentrated solar plant (Dinter and Mayorga, 

2014) 

 

It can be observed from Figure 2.4 that the actual power matches the planned power 

very closely.  This can be attributed to the high responsiveness of CSP technology 

(Gauche et al., 2012; Onwunta, 2014).  During this test, ramp rates of approximately 6 

MW/ min were observed. It was also observed that during daytime, up to approximately 

6pm, the plant to operate on the DNI only without the use of storage (Dinter and 

Mayorga, 2014). 

 

In South Africa, the REIPPPP was set up to give priority on to generation from 

renewable power plants.   To project the potential benefits of CSP, the South African 

electricity system was modelled such that the electrical energy from renewable power 

systems is subtracted from the estimated demand value first.   In this scenario, the aim 

is for the conventional power plants to then provide the balance of the required supply.   

Figure 2.5 show simulations carried out to show the effect on a conventional peaking 

plant of giving generation priority to wind, solar PV and CSP systems (Auret, 2015).       
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Figure 2.5:  Effect on peaking plant using annual averaged demand curves by hour 

(Auret, 2015) 

From Figure 2.5, it can be observed that by including the projected renewable capacity, 

on a priority basis, into the power supply composition, there is a large contribution 

from renewables between 3 pm and 10 pm.   Between 9 pm and 12 am, the demand 

falls significantly as shown by the steep gradient.  It can be observed that the CSP 

output ramps down very fast in a short period to match the supply to the demand.  As 

a result, the requirements on conventional peaking power plants, to ramp up or ramp 

down output, are reduced by a significant amount.  

In addition, giving priority to renewable power plants also results in conventional base 

load power plants running at a lower capacity factor.  Generation from fossil fuels can 

therefore be used for matching demand to supply (Boie et al., 2016).  Therefore, from 

the perspective of the electricity network, the main benefits of CSP with storage are the 

following (Dinter and Mayorga, 2014): 

• The supply challenge of intermittent generation is eliminated by the inclusion 

storage. 

• Power generation can be shifted from periods of low demand to periods of peak 

demand. 

• Power quality support is made possible using synchronous generators. 

• Just like the typical fossil fuel generators, CSP plants can provide grid support 

for voltage or frequency by providing reactive power or reducing active power 

supply. 

 

Stellenbosch University  https://scholar.sun.ac.za



17 
 

2.4.3.  Benefits of wind and solar aggregation 

In South Africa, solar and wind are the renewable energy sources with the largest 

potential.  However, the intermittent nature of these sources may cause difficulties in 

the delivery of reliable electricity generation.  

In the connection of wind generators into the electricity system, their power output 

affects the existing electrical network.  As a result, before any new connection, 

advanced wind forecasting tools are necessary to determine the quality of the wind.  

Therefore, the location of wind power plant has potent influence on the power grid 

(Kolhe, 2017; Olakunle, 2018).  

Aggregation of the outputs from distributed generation throughout the country will 

result a smooth output to the utility.  It can be seen in Figure 2.6. below that increasing 

the number of wind farms installed (aggregation level), reduces short-term fluctuations.  

Hence, a more reliable output from these sources. 

       
Figure 2.6:  Smoothing effect from aggregation of wind farms (Bofinger et al., 2016) 

 

The smoothing effect as a result aggregation is demonstrated at aggregation levels 1 

and 2 in Figure 2.6.  With only one wind power plant, the output fluctuates with 

availability of wind such that there is no power output between 5 am and 10 am.  At 

aggregation level 1, with 10 wind farms installed, the resultant output is smoother and 

there is supply throughout the day.  When the wind pixel is increased to 100, as shown 

on the graph with an aggregation level of 2, the fluctuations in the output are almost 

eliminated.  This is a direct result of the geographical dispersion of several wind farms 

across the country.  As a result, the net power on the grid will have minimal 

fluctuations. 
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Literature shows that the issue of seasonal variability of renewable energy sources can 

be addressed by geographical dispersion of several solar PV and wind farms across 

South Africa.  Both solar PV and wind have very low seasonality in South Africa 

(Bofinger et al., 2016; Calitz et al., 2018).  The climatic conditions are very diverse 

such that north-western part has a Desert climate, the south-western part a 

Mediterranean climate, while the northeast experiences a subtropical climatic 

condition.  

 

2.4.4.  Technical considerations for integrated resource plan 2018 

The integrated resource plan 2010 to 2030 (IRP 2010-30) aimed to achieve a 

sustainable, affordable future energy supply with renewable comprising 18.8 GW of 

the new capacity.   A common scheme which has been used internationally to attract 

the private sector is through Feed-in-tariffs, (FIT).  FITs provide a warranty that that 

the utility will purchase the electricity at a guaranteed price (Boie, 2016; Department 

of Energy, 2016b; Oniemola, 2014).  As a result of the IRP 2010-30, in a period of less 

than 2 years, the solar PV share of South Africa went up from 0 % to 2 % which is a 

faster pace than the United States of America -0.2 % to 0.4 %.  Until recently the IRP 

2010-30 remained the official plan for new generation capacity until its replacement 

by an updated plan which was released for public comment in August 2018. 

The Integrated Energy Plan (IEP) shows that the potential to generate electricity from 

renewable energy is much greater than was initially planned.  Although the IRP 2010-

30 did not consider transmission network costs, the updated IRP aims to increase 

investment in the energy infrastructure (Department of Energy, 2018).  This includes 

investments in new capacity and improvements in existing infrastructure.  More 

specifically, the transmission network costs considered  include transmission 

substations, collector stations and transmission lines connecting to the substations. 

Having an abundant renewable energy resource in South Africa, great strides have been 

taken to encourage growth in renewable energy penetration into the power grid.  

According to the IRP 2018, in the plan up until 2030, there will be an increase in 

renewable energy generation.  More specifically, wind will contribute 15 %, solar PV 

will make up 10 % and CSP will contribute 1 % (Department of Energy, 2018).   

The IRP 2018 presents a least cost scenario with no limits on wind, solar PV and gas.  

Fortunately, regardless of the electrical grid in question, this means more renewable 

generation can be accommodated.  According to Department of Energy (2018), the IRP 

2018 neither considers the impact on transmission infrastructure for varying 

penetration levels per technology, nor the costs required for the system stability.  

However, the strength of the electrical infrastructure is of vital importance in an 
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electrical system.  While certain measures may be required to be taken for weaker grids 

to mitigate the negative impacts of intermittent generation on the electrical grids, the 

integration of wind and solar into stronger networks was found to improve the power 

quality of the network (Givaki, 2017; Matlokotsi, 2017).   

A common wind turbine system is the doubly fed-induction generator (DFIG) wind 

turbine (Muhammad and Nasimullah, 2017).    In a doubly-fed electrical turbine, the 

stator and rotor sides are separately connected to the grid as shown in Figure 2.7. 

 
Figure 2.7:  Schematic of a doubly-fed wind turbine system (Muhammad and 

Nasimullah, 2017)  

The DFIG technology encompasses speed control which enables maximum wind 

energy capture and to better frequency control relative to solar PV.  Figure 2.8 shows 

voltage magnitude improvement after connecting solar PV and DFIG wind turbine. 
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Figure 2.8:  Voltage profiles on a bus after integration of solar and wind generators 

(Matlokotsi, 2017)  

 

It can be observed from Figure 2.8, that the base voltage on the bus was improve by 

the integration of solar PV and DFIG-based wind turbine.  Although solar PV improved 

the voltage magnitude by 3.95 %, and the wind turbine by 4.91 %, the results show that 

for the case study investigated by Matlokotsi (2017), integration of wind and solar 

improved the power quality on the bus.  Therefore, in cases where there is reasonable 

extra capacity on the electricity network, renewable energy can be utilized to improve 

the quality of supply (Crossland, 2014).   

 

2.5. Summary 

In 2016, approximately 95 % electricity consumed in South Africa was generated from 

coal and gas (Calitz, 2017).  Furthermore, according to the IRP 2018, coal will still 

contribute at least 65 % until the year 2013 (Department of Energy, 2018).  The current 

procured and installed renewable energy capacity is just over 6 000 MW with a surplus 

peak of about 5 000 MW in the supply.  In the recent past renewable energy is making 

major contributions to the electricity supply system with solar PV and wind being the 

most dominant RE technologies (Department of Energy, 2016b).   
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The extra available capacity on the current electrical network plan is being taken up by 

the new power plants builds through the REIPPPP.  Therefore, to increase the 

penetration of renewable energy onto the national grid, investments should be made to 

build more substations and transmission lines (World Wildlife Fund, 2015). 

While wind and solar have the greatest potential for addressing the challenges for 

electricity system, the intermittent nature of these sources needs to be addressed to 

ensure a reliable electricity supply.  However, wind and solar can be used to improve 

the power quality of an electrical grid. 

The work presented in this research will attempt to uncover the limitations in the further 

connection of renewables in South Africa and provide solutions on how these 

challenges can be overcome to ensure the 18 GW of solar PV and 37 GW of wind 2050 

target can be met.   
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CHAPTER 3 

3.    THE CASE STUDY – GERMANY  

3.1. The Electrical System – Germany 

 

Germany has a decentralized electricity system which is both publicly and privately 

owned.  The main energy regulator manages the overall grid connection access (Pinter, 

2014). The electrical network in Germany comprises mostly of the low voltage lines.  

Table 3.1 summarizes the grid structure in Germany (Taylor, 2015).  

 

Table 3.1:  Operational voltages in Germany 

Electricity system Voltage Level Network Length (km) 

Transmission 220 kV – 380 kV 34 979 

 

Distribution 

 

110 kV  96 308 

10 -30 kV 509 866 

<400V 1 156 785 

 

With a grid length of approximately 1.8 million kilometres, Germany has the most 

reliable electrical grid infrastructure in Europe (German-Swedish Chamber of 

Commerce, 2018).  Network operators are under obligation to modify and reinforce 

their networks, bearing all costs, to accommodate new renewable energy builds.    

Unlike South Africa where the utility has the burden of managing the entire centralised 

electricity network,  in Germany, network operators can afford to upgrade the electrical 

infrastructure as required through private investment.  Network operators are under 

obligation to modify and reinforce their networks, bearing all costs to accommodate 

new renewable energy builds. 

 

Germany offers financial incentives by simple credit checks (Oniemola, 

2014).  According to Boie (2016) the independent power producers, (IPPs), therefore 

only pay the cost for metering and for connecting to the closest grid connection point.  

On the other hand, in South Africa uses a different funding mechanism. When it is in 

the interest of both the utility and the IPP, the IPPs desiring to connect to a weak grid 

are approved for self-build for the required modification.  Being a centralised system, 

the assets are then later handed over to the utility (Barday, 2016; Oniemola, 2014).  
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Over the years, by encouraging new builds for renewable energy and decommissioning 

the nuclear fleet, Germany’s energy mix has evolved significantly (Kolhe, 

2017).   Figure 3.1 shows generation data captured on selected days in 2011 and 2012. 

  

 

                     
 

Figure 3.1:  Germany energy mix: solar-yellow, wind-green and coal-grey (Simpson, 

2012)   

It can be observed from Figure 3.1 that because the utility no longer controls the power 

system in Germany, the energy regulators are able to adjust the energy supply mix to 

match the demand (Simpson, 2012).  The flexibility of such a decentralised system 

enables renewable generation to be prioritized.  Figure 3.2 shows that in 2017, 

renewable energy produced 33 % of the total generation. 
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Figure 3.2:  Share of energy sources in Germany power production in 2017 (Clean 

Energy Wire, 2018) 

 Evidently as observed from Figure 3.2, renewable energy electricity production in 

2017 constituted more than 30 % compared to 2.9% in South Africa for the same period 

(Calitz et al., 2018). 

 

 

3.2. Strategies to Match Renewables to the Electricity System 

 

3.2.1.  Infrastructure development 

 

Having realised at an early stage the need to decentralise the network, an investigation 

carried out showed 1 855 km additional length required to be built on the extra-high 

voltage line in Germany.   The Energiewende is a plan that was put in place in Germany 

with the aim to reduce Germany’s carbon footprint and to phase out nuclear generation 

(Clean Energy Wire, 2018).  Figure 3.3 summarises the results of this plan in the recent 

years. 
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Figure 3.3:  Share of energy sources (Clean Energy Wire, 2018) 

 

It is evident from Figure 3.3  that the most recent object on Germany’s energy plan is 

to expand the electrical grid and improve its management.  The main reasons for this 

infrastructure development are to incorporate the decentralized electricity produced by 

PV.  This extra length will not only enable Germany to harness more wind power from 

the north but also the additional capacity from the household photovoltaic in the south.  

 

Earlier, in 2013, the distribution network also needed expansion measures mainly due 

to end of lifetime decommissioning of grid infrastructure.  Figure 3.4 shows the 

planned extensions. The green indicates lines the project parts realized by early 2013, 

while the other colours show lines in various stages of planning (Justus, 2005; Merkel, 

2014).  The grid extensions were planned to be completed by 2022 with the 

decommissioning of the last nuclear plants. 
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Figure 3.4:  Grid extension power lines to achieve 2022 renewable energy target 

(Taylor, 2015) 

 

Unfortunately, in recent years, there was public resistance to the electricity system 

expansion.  As a result, progress has been delayed and only approximately 10 % of the 

target have been built (Agora Energiewende, 2018).   Agora Energiewende (2018) 

recommends that in order to reach the planned targets, the revision of network 

expansion should be planned for 2050 rather than planning every two years. 

 

Figure 3.5 shows part of the energy plan with overhead and underground electrical 

power lines planned for 2025.  According to Agora Energiewende (2018), the network 

development plan for 2050 is already decided, but it eliminates new overhead lines. 
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Figure 3.5:  Existing grid 2018, and planned expansion by 2025 (Agora Energiewende, 

2018) 

The main aim of expanding grid infrastructure is to enable more renewable plants to 

be connected to the grid. However, smarter grids result in minimum upgrade 

requirements and consequently save on costs and reduce downtime (Agora 

Energiewende, 2018).  As a result, research has been carried out which shows that by 

adjusting active power fed in by generating systems, the extent to which the grid needs 

to be reinforced can be reduced.  Systems such as photovoltaic, (PV), with inductive 

reactive power consumption have potential to reduce voltage at the point of common 

coupling, (PCC).  Figure 3.6 shows an example of a PV system with inductive power 

consumption. 

 

 
Figure 3.6:  Simplified grid model connected with a photovoltaic system (Perera, 2013) 
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In Figure 3.6, 𝑋𝑓 represents the PV system’s inductive voltage controller, 𝑋𝑡 is the 

transformer impedance, 𝑋1 is the line impedance, 𝑅1 is the line resistance.  The active 

power supplied by the PV system is represented by P and the reactive power by Q.  

Finally, 𝑣𝑔 is the voltage at the PCC due to the voltage controller of the PV system.  

According to Perera (2013), the resulting change in grid voltage is given by equation 

3.1 . 

 ∆ 𝑉 =  
𝑃 𝑅1 +𝑄 ( 𝑋𝑡+ 𝑋1)

𝑣𝑔
…………………………………………………  Equation 3.1 

It is apparent that by increasing 𝑣𝑔 at the PCC, the voltage rises on the grid are reduced, 

vice versa.  Similarly, by reducing the active power, P injected at the PCC, voltage rises 

can be minimised.  In Germany, active and reactive power control strategies such as 

the one illustrated in Figure 3.3 are used to limit the increase in voltage caused by PV.  

Various other methods are under research and in some cases, being implemented (Stetz 

et al., 2013).  Such control systems imply that less upgrades will be required on the 

transmission and distributions line and substations. 

 

3.2.2.  Managing intermittent sources  

The decentralisation of the network in Germany has resulted in low-cost renewable 

energy.  This is because a highly distributed network allows dispatching of electricity 

on an intermittent basis.  To resolve the issues associated with the intermittency of 

renewable generation, Germany uses baseload renewable sources.  These include hydro 

power and biomass power plants whose net power generation in 2017 was 3.8 % and 

8.6 % respectively (Burger, 2018). 

 

 

3.2.3.  Evolution of grid intelligence 

Modern solutions are being implemented in Germany to transform the electrical 

infrastructure.  At present, German utilities no longer control the electrical distribution 

and supply. Instead, it is managed by the grid operators.  This market-based approach 

influences the times conventional generation capacities are switched on.  On sunny and 

windy days, for example, the conventional power plants may be kept idling.   

 

According to Agora Energiewende (2018), modern technologies have  enabled the 

electricity system to coordinate demand and supply in real time. As a result, further 

digitalisation is one of the 2030 targets to enables a smarter and  more integrated energy 

system in Germany (Agora Energiewende, 2018).  Moreover, demand side 

management through artificial intelligence is expected to emerge in several countries 

to manage generation from intermittent sources (Olakunle, 2018).  Appendix B 
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summarises the main regulations currently influencing Germany’s electricity system.  

Figure 3.7 shows the evolution in the energy mix between 1990 and 2012. 

 

 

Figure 3.7:  Germany’s distributed power producers (Simpson, 2012)   

It is observed that, the decentralisation of the electrical network has attracted a variety 

of new renewable energy technology investments on the grid (Dallinger et al., 2012).  

This has a major benefit of reducing peak demand and consequently peak pricing. 

 

 

3.3. Electricity Product Flow  

 

Most conventional power plants in Germany are owned by combinations of several 

companies. According to Taylor (2015), these companies, among others include EON, 

RWE and Vattenfall.  While these companies are responsible for operating the power 

plants, four Transmission System Operators, (TSO) are responsible for operating the 

grid. As a result, it is the responsibility of the power plant operators to plan the 

utilization schedule of the plant and announce the schedule a day before the delivery 

day.  Based on this, up to an hour before delivery, the local TSO is responsible for 
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correcting imbalances in the network by trading electricity with other system operators 

(Simpson, 2012; Taylor, 2015). 

 

Furthermore, renewable energy generators get priority to supply power to the grid over 

conventional power sources.  As a result, by 2016, Germany had an installed capacity 

of approximately 40 GW for solar PV and 50 GW for wind as indicated in Figure 3.8 

(Burger, 2018).   

 
Figure 3.8:  Germany installed capacity wind and solar (Burger, 2018).   

Figure 3.8 shows that the generation from renewable energy under Feed-in Tariff, (FIT) 

was approximately 15 % higher in 2017 that the previous year.  Carbon tax and the FIT 

are popular mechanisms in the European Union which have encouraged a shift from 

fossil fuel to renewable energy generation (Kang, 2016).  Having instituted the initial 

steps of replacing a large percentage of its energy supply, the Germany government 

had to find ways to strengthen the growth of renewable energy production.  According 

to Ferroni and Hopkirk (2016) this was achieved through favourable policy tools, such 

as the FIT.   

The generation-based legislation for FIT gives priority for grid access to renewables to 

be the first to be fed into the electrical system (Boie, 2016; Oniemola, 

2014).   According to this tariff, anyone generating electricity from renewable sources 
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such as wind, solar, biomass or hydro is entitled to fixed payment for every kilowatt-

hour of electricity generated.  This entitlement is guaranteed for twenty years, and 

utilities are required to connect wind generators and photovoltaic panels at no cost to 

the power producer.   

However, for plant installations more than 750 kW wind and solar photovoltaic, the 

new Renewable Energies Act revision replaces the FIT mechanism (Federal Ministry 

for Economic Affairs and Energy, 2018).  This implies that competitive prices 

determined by auctions now replace the fixed FIT previously set by the government.  

The main reason for introducing auctions was to give stakeholders a fair chance and 

encourage a more cost-efficient renewable energy system (Federal Ministry for 

Economic Affairs and Energy, 2018).  

In the recent years, Germany’s surplus power generation has continued to increase. 

Export surplus in 2017 was 53 TWh of which was exported 94% of the year.  The 

electrical network is interconnected with countries such Switzerland, Sweden, Demark, 

France Poland and Austria.  Depending on cross-border transfer capacities, to generate 

extra revenues, export of electricity is carried out when the market price of a 

neighbouring country is more expensive than in Germany (Boie, 2016b).  According 

to Burger (2018), the average import cost in 2017 was € 38.31 / MWh,  export cost was 

€ 35.57 / MWh and the revenue generated from power trading was € 1.81 billion. 

 

3.4. Summary 

 

The case study acknowledges the challenges associated with high penetration of 

intermittent generating units into centralised grids.  The study also provides strategies 

to overcome the technical and operational issues associated with the grid integration of 

renewables.  However, it does not cover the economic performance of such electrical 

systems which vary depending on factors such as national policies, geographical 

location and weather 

 

The following observations during the integration of renewable technologies to the grid 

emerge from the above case study: 

• Extension of the electrical grid infrastructure are prerequisites to achieving high 

renewable energy integration. 

• Instead of rebuilding the electrical grid to accommodate renewable 

technologies, the grid can be maintained smarter.  This is because an electricity 

grid is a complicated and aging system which requires constant maintenance 

and would need many years to be rebuilt.  
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• Required grid modification and upgrades can be minimised by controlling the 

active power fed in to the grid at the connection point of the power plant. As a 

result, the potential number of connections to the grid can be increased.  

• Advanced, intelligent technologies are available to enable power plants to 

interact with other power sources in the network.  This enables plants to be run 

only when needed.  Therefore, there is no need for power plants to run 

continuously. 

• Intermittency issues of renewable technologies can be resolved by combining 

intermittent renewables technologies with flexible power plants such as 

concentrated solar power plants or energy storage plants.  According to Ralon 

et al. (2017) German had approximately 150 MW of battery storage and 6 GW 

pumped hydro storage by mid-year in 2017. 

• Grid access policies and requirements will vary for each region.  Therefore, this 

imposes additional costs on the electrical generation technology because the 

technologies must be adapted to comply with local policies.  

• Software simulation tool are available to model and investigate the strength of 

the electrical grid infrastructure.  Weather prediction tools are also available to 

assist in the management of intermittent power sources. 

When compared to static tariffs, competitive auctions promote a more cost-efficient 

renewable energy system because it enables power producers, as stakeholders, to 

contribute the economic structure of the power system. 

  

Stellenbosch University  https://scholar.sun.ac.za



33 
 

CHAPTER 4 

4.    COMPARISON – GERMANY VS. SOUTH AFRICA’S ELECTRICITY 

SYSTEM  

4.1. Electrical Infrastructure: Germany vs.  South Africa 

According to both German-Swedish Chamber of Commerce (2018) and Allianz 

Climate Solutions (2017), Germany has one of the world’s most resilient electrical grid 

infrastructure.  On the contrary,  South Africa’s ranks second highest among G20 

countries in terms of requiring investment in  electrical infrastructure (Allianz Climate 

Solutions, 2017).  South Africa’s development challenges may give the impression that 

the country is far from achieving the level of infrastructural advancement similar to 

Germany.  However, the benefits of the experience in Germany has driven countries 

like South Africa to take strides towards the unconventional energy path (Tyler, 2012).  

This is evident in the IRP 2018 which now considers the cost of the transmission 

network, where previously the IRP 2010-30 did not explicitly include such factors 

(Department of Energy, 2018). 

 

 

4.1.1.  Decentralized vs. centralized 

 

According to Heal (2016), the Germany’s electric generation is also highly 

decentralized.  The German government has also ensured that transmission system 

operators are able to expand their grids more quickly by creating the Electricity Grid 

Development Plan.  The country is in the process of installing an ultra-high voltage 

grid that will be more efficient and smarter.  This involves the use of super conductors 

for electricity transmission and incorporation of information technology to coordinate 

electricity grids, electricity generation and consumption (Sinn, 2017).  In 2016, 

Germany started a Schaufenster intelligente Energie – Digitale Agenda für die 

Energiewende (SINTEG).  The main focuses of SINTEG are the grid integration wind 

power projects in the north and solar power generation in the south (German-Swedish 

Chamber of Commerce, 2018).  The project was planned over five years and consists 

of five sub-projects as summarized in Figure 4.1. 
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1. Interconnected, regional 

energy systems with cellular 

structure and focus on PV 

integration that balance each other 

2. Decentralized renewable 

power supplied flexibly to urban 

and industrial load centres 

3. Stabilizing the grid by 

improved measurement and data 

analysis coupled with new market 

mechanisms 

4. Maximizing the efficient 

use of regional wind power 

overproduction by flexible demand 

response and inter-regional trade in 

electricity 

5. Sectors electricity, heat, 

and mobility are integrated to 

flexibly accommodate fluctuating 

regional wind power 

 

Figure 4.1:  Smart energy program 2016 – 2020 (German-Swedish Chamber of 

Commerce, 2018)  

 

On the other hand, the South African grid differs from the German one in that it is still 

largely centralized.  Electric production is still mainly the purview of the government, 

through Eskom.  The biggest hurdles that face South Africa’s renewable energy, (RE) 

production are the current government regulations that govern the generation licensing 

(Department of Energy, 2015). 

 

 

4.1.2.  Local vs. import technology 

 

Another difference is that while Germany can manufacture its own RE technology 

components, South Africa currently produces a small percentage of these components 

and must rely on imports.  Research and development of RE is still low in the country.  

For example, exploring opportunities such as the use of superconductors is still in its 

infancy.  
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4.1.3.  Community engagement 

 

Several companies and individuals are producing the majority of their own electricity 

consumption through rooftop solar and consequently influencing the electricity system 

(Department of Energy, 2018).  The IRP 2018 states that the electricity demand 

projected in the IRP 2010-30 for South Africa was not realised due to changes on the 

demand side (Department of Energy, 2018).  Similarly, due to resistance from the 

citizens, Germany has managed to build only 850 km of additional transmission and 

distribution lines out of the 2025 target of 7 700 km (Agora Energiewende, 2018). 

 

According to Agora Energiewende (2018) an energy transition requires major 

infrastructural changes which affect many people’s lives.  For example, new 

transmission lines, wind turbines in agricultural land and solar farms create more 

interaction between people and the electrical system infrastructure.  As a result, 

‘democracy’ is one of the targets for shaping the energy system, outlined in the 2018 

Germany Energiewende (Agora Energiewende, 2018). 

 

On the contrary, an issue that was identified by Department of Energy (2015) is that 

South Africa has not yet managed to engage most of its citizens in the planning in the 

energy development and transition plan.  This results in inaccurate projections and 

therefore, an inability to reach the energy targets.  However, steps are being taken in 

South Africa to encourage citizens contributions as was seen with the update process 

for IRP 2018 which included a release for public comment (Department of Energy, 

2018).   

 

 

4.2. Renewable Electricity Generation: Germany vs. South Africa  

 

4.2.1.  Energiewende 2030 vs integrated resource plan 2018 

 

The Energiewende 2030 outlines Germany’s energy and emissions targets to be 

achieved by 2030 and proposes strategies to integrate various energy systems.  The 

integrated resource plan (IRP 2018) is similar to the Energiewende in that it uses 

analytical calculated models to determine energy supply targets at minimal cost and 

reduced emissions (Agora Energiewende, 2018).  Of relevance to this research is the 

fact that both policies do not include additional nuclear capacity but consider wind and 

solar as the least expensive and the primary renewable technologies for the future 

targets (Agora Energiewende, 2018; Department of Energy, 2018). 

 

According to Agora Energiewende (2018), the greatest challenge will be the 

transformation of the electricity system being used up due to the increase in the 

integration of renewables.  The IRP 2018 also acknowledges that the required electrical 
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infrastructure, which includes power plants and power lines, is expensive and requires 

a long time to build (Department of energy, 2018).  As a result, South Africa’s IRP 

2018 is comparable to Germany’s Energiewende. 

 

4.2.2.  Fixed feed-in tariff vs. competitive auction 

 

Although recently Germany has introduced competitive auctions for selected 

technologies with capacity more than 750 kW, Germany predominantly uses the feed-

in tariffs (FIT) mechanism.  FIT is a mechanism which provides economic incentives 

to promote generation of electricity from renewable sources (Burger, 2018; Trainer, 

2014).  FIT is a mature strategy which has been used in the renewable industry for 

many years.  Under FIT, a tariff is set for a generation technology and is maintained 

for several years.  The main advantage of FIT is that it is a long-term plan with no batch 

allocations and no limit to how much renewable energy can be connected to the grid.  

Therefore, FIT attracts investors (Boie 2016).  However, the main shortfall of FIT is 

that it does not drive towards meeting renewable energy targets (Winkler, 2005).   

 

South Africa uses a competitive bidding process which not only provides economic 

incentive but is also focused on meeting the renewable energy targets.  According to 

Allianz Climate Solutions (2017), in the recent past, South Africa has had one of the 

fastest growing renewable energy industries.  The successful projects from foreign and 

local independent entities allow power producers to supply electricity to Eskom under 

a power purchase agreement valid for twenty years (World Wildlife Fund, 2017).  As 

a result, according to World Wildlife Fund (2017), the systems suffer a setback because 

Eskom as the utility then controls more than one stage in the bidding process.  Unlike 

the FIT system used in Germany, South Africa’s bidding process, both the tariff and 

the quantity of integrated renewable electricity are ministerial decisions by Department 

of Energy. 

 

 

 

4.2.3.  38 % vs. 2.9 % renewable electricity production 

 

According to Burger (2018), in 2017, approximately 38.4 TWh of electricity from 

photovoltaic arrays was fed into the German electric grid.  The monthly electric 

production of solar photovoltaic, (PV), system  was 5.8 TWh which was higher than 

the 4.7 TWh produced by hard coal power plants.  Wind energy in the country produced 

approximately 104 TWh in the same year.  This was a 32 % increase in energy 

production from 2016.  Onshore wind farms produced about 85 TWh, while offshore 

wind farms produced 17.4 TWh during this year.  Both wind and solar power plants 

contributed 142 TWh of energy higher that the amount produced by nuclear plants, 
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brown coal and hard coal.  Hydropower in the country produced 20.5 TWh and 

Biomass producing 47.5 TWh in the same period.  The total amount of electricity 

produced from renewable sources in Germany in 2017 was 210 TWh.  According to 

Burger (2018), renewables made up 38 % of the total public net power supply in 

Germany in 2017. 

 

In South Africa on the other hand, Calitz (2017) notes that at the end of 2016, solar PV 

produced a total of 2.6 TWh to the total electric grid comprising 1.6 % of the total 

energy produced.  Concentrated Solar Power (CSP) in the same period was 0.5 TWh 

for the whole year.  Wind energy contributed 3.7 TWh to the total grid, about 1.65 of 

the total electricity produced by the country.  In 2016, the total renewable energy, wind, 

solar PV and CSP, produced in South Africa was 6.9 TWh, supplying 2.9 % of the 

countries system load. 

 

 

4.3. Germany’s Dependence on Renewables and South Africa’s Dependence on 

Coal  

 

The objective of this section is to highlight the extent to which South Africa is lagging 

when compared to strides taken in Germany.   In 2015, two rural states in Germany 

Mecklenburg-Vorpommern and Schleswig-Holstein generated at 130 % and 100 % net 

electricity from renewables (Marks, 2016).  With Germany in some instances like 

having achieved 100 % renewable electricity generation in some states, South Africa 

is still largely dependent on coal for electricity generation.  In a study carried out by 

Sinn (2017), the green energy revolution was found to have been going on for the past 

two decades.  It was, however, in the time following the Fukushima accident in 2011 

that Germany accelerated its energy revolution and decided to decommission all its 

nuclear power stations.  By the end of 2015, nine nuclear power stations had been 

already decommissioned, with a phase-out of the rest being scheduled for 2022.  After 

replacing nuclear plants, the country began investigating the possibility of eliminating 

electric power generation from fossil fuels and non-renewable fossil waste.  These 

systems combined to 58 % of the country’s electric power generation.  

 

Trainer (2014) also studied the steps taken by Germany to improve RE production and 

reports that during this same period, Germany installed buffers to smooth out the 

volatility issues of both wind and solar power production.  For example, during periods 

where the solar radiation and wind are minimal, a biomass gas electricity plant of equal 

capacity is used to supply the electricity shortfall from the wind and solar plants.  

Germany also engages its citizens in setting up policies and systems to improve RE 

production.  Policies were set-up to reduce the cost of solar panels and to ensure that 

individual dwellings could contribute any excess energy to the national grid (Federal 

Ministries of Economic Affairs and Energy, 2015).  According to Ralon et al. (2017), 
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policy support for distributed, behind-the-meter, battery storage was the main reason 

approximately 68 MW small-scale battery storage systems were deployed in 2017. 

 

In South Africa, several factors hinder RE production.  According to Amigun and Brent 

(2011) barriers to production can be grouped into several categories: infrastructural, 

research and development, human resources, economic and financial factor, and 

regulatory.  Renewable energy capital return on investment is relatively unpredictable.  

As a result, this often limits the financial investments for the renewable electricity 

technologies (Pegels, 2010).  In Germany for example the FIT requires utilities to 

purchase electricity from independent power producers.  This provides investors a 

guaranteed return on investment for the renewable power plants (Winkler, 2005).  

 

 In South Africa, the low tariffs available for renewable electricity make it difficult to 

justify such investment from a financial perspective (GreenCape, 2017).  According to 

SAWEA (2018), the reason Eskom was unable to sign the power purchase agreements 

which were due in April 2016 was due to risk of being unable to recover financially.  

The main uncertainty was as a result of the regulated tariffs at which they can sell 

electricity. 

 

Edkins et al. (2010) also found out that there are too many agencies involved in RE 

integration process in the country.  The regulatory requirements from these agencies 

are usually contradictory thus creating several hurdles to developers willing to generate 

RE.  Apart from Eskom, Table 4.1 shows the departments which each have a role in 

the process (World Wildlife Fund, 2017).  

  

Stellenbosch University  https://scholar.sun.ac.za



39 
 

 

Table 4.1:  Main contributors to the renewable integration process (World Wildlife 

Fund, 2017) 

Governmental 

Institution 

Responsibility 

Department of 

Economic 

Development 

Focuses on the socio-economic policies for the power 

producers 

Department of Energy 

(DoE) 

Planning for the energy industry which inclusive of 

renewable energy generation 

National Energy 

Regulator of South 

Africa (NERSA) 

Mainly processes the licensing of new power plant and 

grid installations 

Department of 

Environmental Affairs 

(DEA) 

Grants authorisations relating to sustainable development 

and the integrity of the environment 

National Treasury Manages the government procurement of projects and 

investments 

Department of Trade 

and Industry (DTI) 

Promotes local manufacture and development of the 

required technologies buy attracting foreign investment 

Department of Public 

Enterprises (DPE) 

Plays a main role in the power purchasing contracts 

Provincial governance Regulate distributed generation by enforcing the relevant 

policies.  This includes generation from renewable 

sources 

 

While South Africa has plans to increase renewable energy penetration on the electrical 

grid, the country still lacks sufficient infrastructure, manpower and research and 

development tools to be on par with countries such as Germany.  According to 

GreenCape (2017) RE technologies continue to fall in prices thus creating a huge 

opportunity for advancement of renewable energy production in the country at utility 

scale. 

 

 

4.4. Lessons Learnt from Germany 

 

The intent here is to determine strategies which have been applied in Germany which 

can be adopted into the South African electricity system.  From the studies in this 

research so far, the following are the actions South Africa needs to adopt from 

Germany’s way of doing things: 
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• Adopting favourable governmental policies that encourage RE power 

generation.  At present, South Africa has no approved regulations to govern 

small scale, grid connected renewable generation (NERSA, 2015).  

Unfortunately, this means RE policies such as the grid code currently do not 

distinguish between utility scale and small scale grid connected RE. 

•  Germany’s feed-in policy would be particularly effective in the country 

because it does not limit the amount of renewable energy that can be procured.  

A competitive auction will only be more successful if policies are set in place 

to ensure there are no delays or changes made in the process once bidding has 

started.  Such delays were experienced in South Africa when it took 

approximately two years for power purchase agreements, from bid windows 3.5 

and 4, to be signed (SAWEA, 2018). 

• Decentralization of power supply.  This will allow private companies to set up 

alternatives for both RE and non-RE generation facilities which can later be 

integrated into the national grid. 

• Increase in penetration of renewable energy does not need to be preceded 

installation storage.  Power trading and demand side management are cost 

effective alternatives to storage systems (Ralon et al., 2017).  

• Engaging the public.  This will prevent unnecessary delays such as the protests 

experienced in Germany over power line expansions (Agora Energiewende, 

2018).  Moreover, including the citizens in the decision making process will 

allow for a democratic decision making system.   Engaging the public will also 

encourage interest in the field of renewable energy ultimately adding skilled 

professionals into the market.  Finally, this also encourages private  investment 

in the field allowing the government more flexibility to use its budget to tackle 

other state problems. 

 

 

 

4.5. Summary 

 

South Africa is on the right track with regards to planning for renewable electricity 

integration.  Although the country has only focused on this field in the last 10 years, it 

is still ranked among the top ten countries in the world with ideal renewable energy 

investment conditions (Allianz Climate Solutions, 2017).   

 

 The main problem facing the country’s efforts is that government policies are still 

lagging the drive to achieve high RE penetration to produce electricity.  Looking at the 

strides taken by Germany, South Africa seemingly still has a long way to go in 

establishing adequate RE policies as shown in Figure 4.2.   
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Figure 4.2:  Renewable electricity production policy-adequacy (Allianz Climate 

Solutions, 2017).  

 

Figure 4.2 shows that Germany’s policies which support electricity generation from 

renewable are about 70 % effective in the long-term transition for the electricity system.  

However, South Africa shows a policy adequacy of 41 %.  This is because South Africa 

is one of the countries with policies in place but their long-term measures to eliminate 

fossil fuels from the grid are not apparent (Allianz Climate Solutions, 2017). 

 

However, policies are currently being revised, for example the integrated resource plan 

(IRP) (Wright et al., 2017).  Appendix B summarizes some of the other regulatory 

policies which are in place for renewable generation integration in South Africa.  
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CHAPTER 5 

5.    THE GRID CODE 

5.1. Overview of South Africa’s Grid Code 

 

Operational strategies are necessary to promote the successful connection of renewable 

energy technologies to the national grid.  Wind farms for example can have either fixed 

speed or variable speed wind turbine generator systems.  However, the dependence of 

fixed speed generators on reactive power increases the risk on grid stability should this 

technology be integrated to the electrical network.  As a result, the acceptable power 

system performance of renewable technologies has been defined, and before any 

physical connections can be authorized, rigorous testing and simulations are carried out 

on the generation technology design. 

The grid code is the set of laws, which serve as a technical guideline to supply and 

demand matching for Renewable Power Plants (RPP).  In South Africa, RPPs are 

grouped into the three categories summarized in Table 5.1. 

Table 5.1:  Categories of renewable power plants in South Africa (Craib, 2013; Eskom, 

2012) 

Unit Type Categories Connection 

Voltage 

Plant capacity 

All RPPs (solar,  wind, 

hydro,  biogas, biomass, 

landfill gas) 

A1 LV (<1 kV) 0 < X ≤ 13.8 kVA 

A2 13.8 kVA < X < 100 

kVA 

A3 100 kVA ≤ X < 1 

MVA 

B MV (1 kV- 44 

kV) 

0 < X < 1 MVA 

B n/a 1 MVA ≤ X < 20 

MVA 

C ≥20 MVA 

    

 

It can be observed from Table 5.1 that the power plant categories are dependent on the 

plants rated capacity, and where indicated, the acceptable voltage at the point of 

connection (POC).  In this case, connection refers to the physical interface between the 

power plant and the national electricity grid as illustrated in Figure 5.1. 
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Figure 5.1:  Layout of electrical network to explain some terms used (Craib, 2013) 

 

Figure 5.1 shows the difference between the point of common coupling (PCC) and the 

POC.  In general, PCC refers to the point where the multiple power plants and 

customers connect to the grid.  This point is required to be accessible to the utility, the 

RPP and the customer (Craib, 2013).  POC refers to the physical point where a power 

plant or individual generator injects into the grid.  It should be noted that the point of 

utility connection (PUC) which contains the main protection and disconnection system 

between the utility and the RPP can be located near the PUC.  Alternatively, as shown 

in Figure 5.1, the PUC can be connected within the RPP between the POC and the 

generator point of connection. 

The major technical requirements for Grid Connection of Renewable Power Plant, 

RPPs are summarized below: 
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• Synchronization: Allowed only after a certain minimum time i.e. 60 seconds 

for category A and 3 seconds for categories B and C. 

• Voltage range: RPPs can operate at a voltage in the range -15 % to +10 % 

around nominal voltage. Specifically, category A RPPs can operate within the 

voltage range of -15 % to +10 %, while categories B and C must operate 

between -10 % to 10 % on the nominal voltage 

• Frequency range: Allowed frequency is within the range of 49.0 Hz and 50.2 

Hz to the utility. 

• Frequency control: Requires high frequencies exceeding 50.5 Hz to be 

controlled by reducing active power as a function of the change in frequency.  

Disconnecting of RPP is required once either the frequency is more than 52Hz 

for a minimum specified time 4 seconds or the frequency is less than 47 Hz for 

more than 200 ms. 

• Frequency variation: The requirement is that the RPP must remain connected 

rate of change of frequency (ROCOF) of magnitudes not more than 1.5 Hz per 

second, if the network frequency is still within the desired range. 

• Power quality:  Voltage jumps, phase jumps and harmonics are required to be 

maintained within the desired range.   As a result, the RPP must be able to 

withstand sudden phase jumps of up to 40° at the POC without disconnecting 

or reducing its output. After conditions at the POC have reverted to normal, the 

maximum allowed settling period to resume normal operation is 5 seconds. 

• Voltage ride through:  The requirements for category A3 RPPs and larger is 

that in the event of a voltage drop to zero, the connection must be maintained 

for at least 0.15 seconds. For voltage jumps up to 120 % of the nominal voltage, 

the RPP should stay on line for a period of at least 2 seconds. 

• Active or reactive power control: Requires categories A and C RPPs to 

supply rated power between power factor 0.95 leading and 0.95 lagging.  For 

category B RPPs this the requirement differs slightly in that rated power should 

be maintained between 0.975 leading and 0.975 lagging. 

• Power factor control: This function controls the ratio between active and 

reactive power.  If a power factor set point is changed by the network service 

provider or the utility, the RPP is required to respond to the new set point within 

30 seconds and remain with ± 0.02 of the set point. 

 

5.2. Constraints on Renewable Energy Technologies for Grid Connection  

As penetration of renewable energy power increases, it becomes vital to monitor the 

power quality issues of RPPs to ensure they meet the grid code standards.  The 

intermittence of most renewable sources such as wind and solar implies that there may 

be supply surges on the grid and the conventional coal generators will need to start and 

stop frequently.  The requirement in the event of major network disturbances is that the 
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RPP must disconnect itself.  Alternatively, the RPP must assist in the restoration of the 

nominal conditions in the minimum possible times.  This has resulted in several 

technologies and in some cases, integration of technologies being implemented to 

achieve this (Muyeen et al., 2010).   

Other renewable technologies such as CSP make use of thermal storage systems to 

counter any disturbances due to the intermittence of the solar resource.  Therefore, 

power quality management and control are no longer a constraint in the matching 

renewable energy to the South African Electricity supply.  However, the greatest 

challenge is the high cost of such control technologies and storage.   

Currently, due to the high capital costs of importing the required technologies into 

South Africa, most renewable energy projects are not financially feasible at the tariffs 

available for grid connection (Matthews, 2010; De Jongh et al.,  2014).  As a result, 

justifying grid connection of more renewable technologies especially on a small scale 

is at present relatively difficult. 

 

5.3. Comparison of Grid Codes Worldwide 

The technical requirements and procedures which govern the integration of renewable  

power plants to the grid are adapted from one country to another.  Several countries 

worldwide, such as China, United States and Germany are increasingly transitioning 

towards renewable power as a sustainable and affordable energy solution.  By 

considering the total capacity installed, Table 5.2 summarises the rankings of the top 

countries by capacity and generation technology. 

Table 5.2:  Top countries by total capacity at the end of 2017 (REN21 Secretariat, 

2018) 

 

 1 2 3 4 

Renewable power (excluding 

hydro) 

China United States Germany India 

Solar PV capacity China United States Japan Germany 

Concentrated solar power 

(CSP) 

Spain United States South 

Africa 

India 

Wind capacity China United States Germany India 

 

The countries shown in Table 5.2 each have grid codes which have played a pivotal 

role in the successful integration of renewable energy (Ackermann et al., 2016).  The 

intention of a grid code is to define both the steady state and dynamic behavioural 
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requirements of power plants during fault conditions.  Dynamic requirements include 

grid support and fault ride-through events.  These requirements are commonly defined 

at the PCC, where the power plant connects to the grid.  However, for smaller systems, 

the requirements can be defined at the POC where a single generator or turbine 

connects to the grid.  

Table 5.3 shows a summary of some of the specifications in the various grid codes.  It 

should be noted that, a requirement that is not checked may still be considered by the 

country but there are no direct specifications available in the grid code. 

Table 5.3:  Comparison of most relevant specifications in grid codes (Arias, 2006) 

Requirement USA Germany Denmark South 

Africa 

Transmission system  

stability 

X X X X 

Grid fault backup protection  X X X 

Isolation X X X  

Frequency control X X X  

 High frequency response  X X X 

Harmonic distortion X    

Voltage control X X X  

Automatic voltage regulation    X 

  Criterion n-1  X X X 

Operational communication X X X  

 

For a successfully integrated electricity system, the technological, operational and 

regulatory requirements of the system need to be considered.  According to Ackermann 

et al. (2016), to enforce the technical requirements outlined in grid codes, it is necessary 

to establish verification methods which corroborate compliance.  Prior to the approval 

of a new connection to the grid by the national energy regulator of South Africa 

(NERSA) and Eskom or the local municipality, the independent power producer is 

required to conduct network studies or tests (NERSA, 2012).  The studies which are 

typically carried out using specialized computer software packages such as 

PowerFactory aim to evaluate possible changes to the network because of this new 

connection and to determine whether there are any network planning criteria exceeded.  

The acceptable power system performances of renewable technologies have been pre-

defined in the grid code, and before any physical connections can be authorized, 

rigorous testing and simulations must be demonstrated on the generation technology 
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design.  Where the construction of the plant has already commenced, examples of such 

verification methods include on-site inspection and certification systems. 

Europe has a network code which contains many common grid interconnection 

requirements for 35-member countries as can be seen in Table 5.2 for Germany and 

Denmark.  The detailed specifications are currently being implemented on a national 

level with an expected completion date of 2018.  Germany, for example has recently 

enforced a positive sequence grid voltage support (Addalla et al. 2015).  This involves 

injection of positive sequence reactive short-circuit current to grid support during 

unbalanced faults.  Among some of the recent changes are requirements for consecutive 

grid faults, fault ride-through and grid voltage support for both low voltage and high 

voltage ride-through  capabilities, i.e. LVRT and HVRT respectively.   

System protection requirements are enforced to prevent damage on the transmission 

system components due to faults.  For example, according to Arias (2006), frequency 

range is a requirement for continuous operation.  Each grid code defines a frequency 

range within which power generators should stay on line.  As a result, frequency is 

included in all the grid codes.  Allowable transmission voltage variations are typically 

10%.  However, Germany’s grid code is the only one where voltage variation is allowed 

up to 11% (Arias, 2006).  

China’s grid code developments typically follow those of Europe (ABB, 2016).  While 

the HVRT requirements are typically at power plant level, this is a requirement for 

individual turbines and generators in China.  Much the same as South Africa’s smaller 

category A1 and A2 power plants where the allowable peak voltage at the POC is 120 

% and the withstand time 0.16 seconds, the generating unit in China must stay 

connected if there is a temporary voltage surge up to 130 % for a minimum of 0.2 

seconds (Wenzhong et al., 2016).  

It is interesting to note that there is no grid code applicable to North America.  

However, in the rest of the United States, (USA), the specified requirements include 

low voltage ride-through, voltage regulation, dynamic reactive power control and 

reactive power requirements.  In both USA and South Africa, the local utility or 

network service provider may specify its own interconnection requirements.  Unlike 

South Africa, where new coal power plants are currently under construction, the recent 

trend in the United States has been to decommission coal-fired power plants and install 

more renewable generation like wind and solar.  According to DOE Act (2016) coal 

fired power plants made up 80% of the decommissioned electricity generation in 2015.  

Consequently, energy storage technologies are under evaluation to provide frequency 

regulation on the grid.  

Evidently, no two Grid Codes are exactly alike.  This is because national electrical 

networks and the type of generation technology may vary from one place to another.  
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In some cases, for example the United States the requirements include more indicators, 

such as frequency range and climate specific requirements.  In other cases, such as 

China’s requirements for voltage deviation and active power control, the standards are 

less demanding.  Therefore, grid codes must be complied with to ensure local stability 

and reliability of the electricity system stability and reliability (Wenzhong Gao et al., 

2016).   

The development of international grid codes and standards for the connection of RPPs 

has led to the advancement of renewable energy technologies.  These advancements 

make renewable technologies stable and safe for grid operation.  While it may be 

necessary to adjust the performance of a technology depending on location, it is evident 

that any technical challenges can be resolved using appropriate power system analysis 

tools such as DigSilent’s PowerFactory. 
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5.4. DigSILENT Power Factory 

 Digital Simulation and Electrical Network Power Factory (PowerFactory) is an 

analysis software program used for dynamic performance simulation and monitoring 

of power generation, transmission and distribution systems (DigSilent, 2018a).  This 

licensed software has been developed since 1985 by a private company called 

DigSilent GmbH located in Gomaringen in Germany.   

 PowerFactory provides modelling features for interconnected power systems and 

hence enables non-dispatchable generation to be accommodated in a reliable manner.  

This high-profile power systems analysis software has become a package of choice for 

most power utilities around the world including Eskom Distribution (DigSilent News, 

2003).  Figure 5.2 shows project examples, for diverse applications, available in 

PowerFactory. 

 

Figure 5.2:  Example projects available in PowerFactory (DigSilent, 2017)  

 

From Figure 5.2, there are wind farm examples available.  These examples evidently 

show that the complex functions required for simulating the connection of renewable 
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generation into the transmission and distribution networks are readily available in 

PowerFactory.  Figure A.1 and Figure A.2, in Appendix A, are extracts from the 

technical documentation outlining the main features available for wind and solar power 

systems. 

Some studies (Hansen et al., 2006) use the software to simulate the dynamic 

performance of wind power because PowerFactory includes models of wind gusts and 

turbulences for grid connection studies.  This is because PowerFactory not only enables 

modelling of the power system but also the influencing factors such as wind speed as 

shown in Figure 5.3. 

 

Figure 5.3:  Modelling a wind generator in PowerFactory 

Figure 5.3 shows how the required generator parameters and meteorological data can 

be set when modelling a wind power plant.  Other studies have used the PowerFactory 

to compare network performance in the case of no CSP power plant connection and 

cases with CSP integrated into the electrical grid at different points of connection 

(Addalla et al. 2015).  PowerFactory is therefore an ideal and flexible analysis package 

for electricity network systems.  It covers a diverse range of power system applications 

and enable simultaneous analysis of electrical network features. 
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CHAPTER 6 

6.    EFFECT OF RENEWABLES ON ELECTRICITY SYSTEM 

6.1. System Model Definition 

In this section, a generic simplified model representing the South African Electricity 

system was created with the purpose of illustrating how the electricity system responds 

to the generation connected to it.  Figure 6.1 shows a typical generation, transmission 

and distribution system. 

 
 

Figure 6.1:  The concept of an electricity generation and transmission system (Grigsby, 

2012) 

 

The power plant will include a step-up transformer which steps up the generator voltage 

to a voltage suitable for transmission. In Figure 6.1, the power plant transformer steps 

up to 400 kV which is transmitted through various substations until it reaches the 

customer at the correct voltage.  A substation links two transmission or distribution 

lines, typically by terminating the lines on busbars.  The substation also consists of an 
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electrical transformer, switch gear and protection system (Grigsby, 2012).  

Transmission and distribution substations are typically utility owned, and their main 

purpose is to convert between two voltage levels.  

The simulations carried out in section 6.2.1 were carried out to determine the effect on 

the electricity system when demand and generation are not matched.  Given that South 

Africa has a centralised electrical system, Figure 6.2 shows how new generation is 

typically introduced into such a system.  The broken connection lines indicate the new 

transmission or distribution lines often required to connect the new distributed power 

plants. 

 
 

Figure 6.2:  Integration of distributed generation in a centralised system (Wright et al., 

2017) 

 

From the illustration in Figure 6.2 the power plants are connected directly to substations 

in the electrical network. The aim of the simulations carried out section 6.2.2 was to 

validate the reason for physically connecting the generators or power plant to a 

substation instead of along a transmission or distributed line. 

 

In section 6.2.3 simulations were carried out to confirm that integration of renewable 

generators such as wind and solar photovoltaic (PV), influence power quality. 

Similarly, the simulations carried out in section 6.3 are to validate that concentrated 

solar power (CSP), can be used to balance the system power quality.  This is because 

CSP technology uses a steam turbine generator like the conventional coal fired power 

plants.  The CSP power plants are represented by the synchronous generators in Figure 

6.3.  These provide system stability through synchronous coupling of their physical 
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inertia to the grid which asynchronous and static machines like wind and solar PV are 

unable to provide (Gonzalez-Longatt et al., 2013). 

         

 
Figure 6.3:  Frequency control by using synchronous Generator (Wright et al., 2017) 

 

Figure 6.3 illustrates how CSP plants (blue) can be used to balance out power quality 

instabilities which may be a result of other renewable generators (green) connected to 

the electrical grid.  The PowerFactory version 2017 software package was used for the 

simulations (DigSilent, 2018a).  The wind and solar generators were represented by 

static generators.  Detailed models for both generators are also readily available in the 

simulation package as shown in Figure 6.4.   

 

     
 

Figure 6.4:  Selecting static generator model in PowerFactory 
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As shown in Figure 6.4, the solar or wind power plants can be characterised by 

selecting the relevant plant category.  The capacity values and connection voltages used 

for the simplified model were derived from the major power plants in the Western Cape 

Province.  The data used in the simulation model is shown in Table 6.1. 

 

  

Generation  Type Project name Capaci

ty 

(MW) 

Connection 

Voltage 

(kV) 

Nuclear Base load Koeberg 1860  400 

Gas, Pumped 

storage 

Peaking Acacia, Gourikwa, 

Ankerlig, Palmiet 

2643 400  

Wind Eskom 

Renewables 

Sere, Darling 105 132 

Wind Renewables 

* 

Dassiesklip, West Coast 1, 

Gouda, Hopefield 

316 132 

PV Renewables 

* 

SlimSun Swartland, 

Touwrivier Project, Aurora, 

Electra Capital 

125 132 

PV Renewables 

* 

Vrendal 9 66  

Main Grid   42 000 400 

*Commissioned under Renewable Energy Independent Power Producers 

Procurement Program REIPPPP 

 

 

The electricity demand on the network is represented by single customer load models 

connected at each of the three connection voltages shown in Table 6.1.  For the 

simulation model, the chosen maximum demand values used were 300 MW, 600 MW 

and 3 700 MW connected to 66 kV, 132 kV and 400 kV respectively.  These estimate 

values were derived from the load forecast for the Western Cape by Eskom (2017).  

The demand value was derived from the forecast shown in Figure C.1 in Appendix C.  

Table C.1 in Appendix C.  shows the generation profile used for the simulations.  The 

simulation model is shown in Figure 6.5.   

 

 

Stellenbosch University  https://scholar.sun.ac.za



55 
 

 
 

Figure 6.5:  Simplified grid model for South African electricity system 

 

From Figure 6.5, it can be observed that the renewable energy generators are linked to 

the grid by a transmission line.  This is because the POC, is typically nearest to the 

generator. The substations are represented by busbars and transformers.  The demand 

model assumed the electrical loads only requires active power.  The nominal frequency 

for the South African electricity system should always be kept at 50 Hz. 

 

Load flow analysis is a vital tool in the planning and designing of electricity systems.  

Based on load flow calculations, results such as line losses, transformer loading, line 

loading and allowable voltage ranges can be predicted.  The boundary conditions of 

the modelled generators are defined by setting the maximum output in the 

PowerFactory application.  To allow for the line limits to be determined, no generator 

boundary conditions are set for the transmission line.  

 

Since South Africa’s installed capacity already includes some renewable energy 

capacity to the grid, the initial simplified model already included wind and solar PV 

generators. The behaviour of the electrical network components in the electrical system 

was determined using load flow calculations.  Power system load flow calculations 

calculate the voltage magnitude, phase angles and power flow at an instant and assume 
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there are no faults at the period of observation.  Figure 6.6 shows a load flow simulation 

carried out at an instant when the wind and conventional generators are delivering 

maximum allowable capacity and the photovoltaic generators are only delivering a 

fraction of their rated capacities.  

 
 

Figure 6.6:  Load flow simulation of simplified grid model 

 

Figure 6.6 shows that some of the network components such as the 400 kV transmission 

line 3b, are already operating close their design limits, i.e. at 87.5 %.  Assuming the 

system was initially sized correctly with no renewable power integration, then the 

integration of wind and PV plants pushes the limits of an adequately sized system (De 

Sisternes, 2014).  This implies that, there is a limit to the amount of extra generation 

capacity or demand that can continue be added to this electricity network.  
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6.2. System Response  

 

6.2.1.  System response to variation in generation 

 

In this section simulations were carried out to determine how the electricity network 

responds at instances when there is more generation that demand or vice versa.  For the 

case in Figure 6.7 it was assumed that the excess generation output, i.e. the difference 

between the total generation and demand, will vary throughout the day as shown by the 

line graph.  In this case a generic 24-hour demand profile was used and varied as 

indicated in Appendix C, Table C.1.  The behaviour of the transmission line loading 

this simulation are shown by the bar graph. 

 

 

 

 

 

Figure 6.7:  Variation of 132 kV line loading with excess generation 

 

From Figure 6.7, it can be observed that the transmission line loading appears to be 

inversely related to the difference between generation and demand.  The line loading 

is high in the morning and evening peaks and around midnight when the demand is 

low, but generation is high.  For this simulation model, the average line loading is 

approximately 55 %.  This is an example of an adequately designed part of the electrical 

network which designed to carry more capacity than it currently handles.  Morocco is 

an example of such a transmission grid (Boie et al., 2016).  However, this is not the 

case with most countries, including South Africa.  This is evident from Figure 6.8 that 

30

50

70

-200

800

1800

2800

3800

00:00 04:48 09:36 14:24 19:12 00:00

A
ve

ra
ge

 L
in

e 
L

o
ad

in
g 

(%
)

Su
p

p
ly

 m
in

u
s 

D
em

an
d

 (
M

W
)

Time of Day

Average line loading on 
132 kV transmission line  

Surplus (or shortage) in 
generation i.e. Supply 

minus Demand  

Stellenbosch University  https://scholar.sun.ac.za



58 
 

in the year 2017 the projected demand for Mpumalanga province is approximately 21 

% higher that the grid capacity in the province. 

 

 
Figure 6.8:  Mpumalanga load forecast (Eskom, 2017) 

 

According to Eskom (2017), beyond the REIPPPP bid window 4B, most of the 

transmission and distribution loading will be exhausted as shown in Figure 6.8. 

However, to match the system to match the grid capacity and to the demand, a 

Transmission Development Plan (TDP 2017) has been put in place to modify the 

electrical grid in South Africa.     

 

From Figure 6.7, it was observed that  both the demand and generation will affect the 

loading on the electrical infrastructure.  Figure 6.9 shows a similar relationship between 

the line loading and the demand. The demand is shown by the line graph and the line 

loading by the bar graph.  As expected, the line loading is high during the peak times 

when there is increased power flow.   

 

Similarly, the loading is high after midnight when the wind generation is high, but 

demand is low.  This implies that the electrical network will experience the most strain 

where there is a general imbalance between supply and load. This is because an excess 

in demand results in a voltage drop on the grid which reduces power available for 

consumption by the loads.  As a result, the grid also tries to act as a backup electricity 

source to match the excessive demand.  Similarly, an excess in generation results in 

over-voltage which results in an overflow of power to the loads Therefore, the grid 

must absorb the excess generation (Thopil et al., 2018). 
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Figure 6.9:  Relationship between daily demand profile and line loading  

 

In general, it can be observed from Figures 6.7 and 6.9 that the loading on the network 

components responds both to variation in generation output and to changes in demand.  

However, it is evident that the line loading is higher when the generation capacity in 

increased and during times of relatively low load i.e. between 12 am and 4 am.  A study 

carried out by Ramdhin (2014) also confirms that component loadings increase more 

during low demand periods where the generators are operating at 100 % capacity.  The 

above simulations validate the fact that it is vital to determine optimal ways to integrate 

more renewable generation into the already strained South African grid.   

 

 

6.2.2.  System response to point of connection  

 

39

44

49

54

59

64

3500

3700

3900

4100

4300

4500

4700

4900

00:00 04:48 09:36 14:24 19:12 00:00

T
o
ta

l 
D

em
an

d
 (

M
W

)

Time of Day

Load or Demand Profile 
(MW) 

 

Average line loading on 
132 kV transmission line  

 

A
v
er

ag
e 

L
in

e 
L

o
ad

in
g
 (

%
) 

Stellenbosch University  https://scholar.sun.ac.za



60 
 

As previously discussed on integration of distributed generators in a centralized 

system, Eskom (2017) also states that developments by independent power producers 

tend to be near Eskom substations.  In this section, simulations were carried out to 

achieve a clearer understanding of how the connection point of the renewable 

generation is influenced by the local network in electricity system.   

The main aim of this section was to determine which physical POC, imposes the least 

strain on the local electricity network.  According to Onwunta (2014) and Van der Walt 

(2016), given the correct power plant output rating, the distance of the POC will not 

affect the network voltage conditions significantly.  Based on this, the connection 

points were randomly selected for this simulation.    It is assumed that this system 

model has there are no constraints on costs.  At the maximum simulation load, the 

simulations were carried out for the following scenarios: 

Scenario 1 doubles the capacity of both the photovoltaic and the wind generation 

connected to the 132 kV transmission line. 

Scenario 2 is like Scenario 1 in that it includes doubled renewable energy capacity.  

However, the additional capacity is connected to the 132 kV substation/ busbar.  Figure 

6.10 shows that simulation for Scenario 2. 

Scenario 3 is simulated using the simplified system model described in Section 6.1.   

 

 
 

Figure 6.10:  Additional renewable generation capacity on 400 kV substation 
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The results from the simulation are shown in Table C.2 in Appendix C.  It was observed 

that connecting new generation capacity onto any point in the network will impact all 

the components in the entire grid to an extent.  This is a result of the grid compensating 

for excess demand or trying to absorb excess generation.  Moreover, the integration of 

distributed generators results in bidirectional power flow through the electrical 

network, which can also lead to technical complications on power quality (Thopil et 

al., 2018).  Figure 6.11 shows the combined percentage loading on the 132 kV 

transmission line. 

 

 

 

 

 
Figure 6.11:  Hourly variation of line loading at different connection points 

 

In scenario 2, the additional capacity is connected to directly to the 132 kV substation.  

As can be seen, majority of the time, the line loading in scenario 2 is lower that loading 

in scenario 1.  Based on Figure 6.11, Scenarios 1, which involves connecting additional 

generation capacity to existing transmission lines, will impose the most strain on the 

network.   
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Scenario 2 shows that connecting additional renewable generation capacity directly to 

the substation will have relatively less impact on the transmission line loading when 

compared to a direct connection to the transmission line.  This is because the ability of 

the network to accept more generation capacity reduces as the length of the incomer 

transmission line from the generator or power plant increases (Gill et al., 2014).  The 

correlation between distance of the POC from the substation and network strain is 

further explained in Figure 6.12. 

 

 In Figure 6.12 the loading on the network is measured by the capacity availability, i.e. 

the fraction of time when the electrical network can accept the rated capacity of the 

power plant (Gill et al., 2014).  A capacity availability of 1 means that the system can 

still accept 100 % of the average rated power plant capacity of 7 MW.  On the other 

hand, a capacity availability of value 0 means the network is already 100 % loaded and 

can no longer accept any extra generation. 

 
 

Figure 6.12:  Network capacity availability at five substations (Gill et al., 2014) 

 

Figure 6.12 shows the results of a particular power plant connected along the same line 

to several substations at distances ranging from 0.83 km to 18.03 km, relative to the 

plant’s location.  The capacity availability increases from left to right.  It can be 

observed from Figure 6.12 that substation which is closest to the power plant has a 

capacity availability of 1 for a larger capacity range.  This implies that substation A is 

able to accept 5 MW, majority of the time, which close to the rated capacity  of the 

power plant.   
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When considering overall effect on all components in the modelled system, the results 

are shown in Figure 6.13.  The simulation model used to determine the POC is shown 

in Figure C.2 in Appendix C 

 

 
 

Figure 6.13:  Effect of point of connection on local electricity network  

 

It can be seen from Figure 6.13 that any addition of extra capacity to the grid will 

increase the loading on the transmission lines.  However, neglecting the distances and 

costs involved, increasing penetration by connecting new renewable plants to directly 

a substation or via separate transmission lines may be ideal way to incorporate new 

renewable generation into the South African Electricity system. 

 

 

6.2.3.  System voltage response to variations in generation output 

 

In this section, voltage regulation and power control, as an operational requirement 

provided in the grid code for South Africa will be investigated.  Power plants connected 

to the South African electricity system are required to operate in the range of 85 % to 

110 % of the nominal voltage.  Figure 6.14 and Figure 6.15 show simulation results 

carried out for the simplified model.   
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Figure 6.14:  Voltage variation at photovoltaic plant point of connection 

 

 

 

 
 

Figure 6.15:  Voltage variation at wind plant point of connection 
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It can be observed from Figure 6.14 that the deviation in voltage at the POC of the 

photovoltaic plant is relatively higher when generation or demand are at their peaks.  

However, while the simulation model’s voltage remains within the required range of 

85 % to 110 %, both Figure 6.14 and Figure 6.15 show that grid intelligence is 

necessary to smooth the voltage at the POC of the renewable generators.  As is the case 

for the (TDP) in South Africa outlined in Eskom (2017), using transmission lines of a 

higher voltage rating will resolve the challenge of over-voltage or under-voltage on 

transmission or distribution lines with high RE penetration levels.  According to van 

der Walt (2016), decreasing the distance of the POC from the substation also results in 

a reduced voltage at the POC.  However, distance of the POC is beyond the scope of 

this research. 

 

Active damping of voltage fluctuations is another possible method to improve system 

stability (Givaki, 2017).  Moreover, as observed for countries with high renewable 

energy penetration, artificial intelligence through smart grid systems will also enable 

renewable power plants to interact not only with each other but also match power 

quality levels with the grid’s (Crossland, 2014; Stetz et al., 2013; Tonkoski et al., 

2010).  The advanced grid intelligence in Germany is evident from the following grid 

code requirements (German-Swedish Chamber of Commerce, 2018; Rangarajan et el., 

2018): 

 

• Voltage Range: In Germany, renewable power plants can operate at a voltage 

in the range -20 % to +15 %.  This is more liberal compared to South Africa’s 

range of -15 % to +10 %.  The implication in this case is that the control systems 

in the grid can handle large voltage variations to prevent them from overloading 

the infrastructure. 

• Frequency Control: For the same disconnection time requirements, renewable 

power plants in Germany must operate within a frequency range of range 47.5 

Hz and 50.2 Hz.  This is a relatively narrower range compared to South Africa’s 

47.0 Hz and 50.5 Hz.  Since frequency depends on the balance between supply 

and demand on the electrical grid, a narrow range means high-speed technology 

is available to manage generation and demand side. Hence, the frequency is 

expected to be 50 Hz virtually all the time. 

 

To introduce basic grid intelligence to the system model, inductive-capacitive shunt 

controllers (LC) were incorporated into the simulation model to regulate the system 

voltage.  Using the generation profile data as described for Figure 6.13 and Figure 6.14, 

the model with controllers is shown in Figure 6.16. 
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Figure 6.16:  Grid model with shunt filter 

 

The shunt filters in Figure 6.16 regulate the bus voltage by supplying or absorbing 

reactance power.  This principle of power quality control is largely acceptable in 

several countries including Germany, Denmark and South Africa for the suppression 

of electrical system disturbances at the grid end.  The control systems, however become 

more complicated in grid-connected photovoltaic systems which have non-linear loads 

(Mohamed et al., 2017; Onwunta, 2014).   The resulting voltage profile is shown in 

Figure 6.17. 

 

 

 

 
 

Figure 6.17:  Transmission line voltage improvement with LC shunt filter 
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It should be noted from Figure 6.17 that before including the LC filter, the system 

voltage was compliant with the requirements of the grid code as shown by the bottom 

line graph.  However, the improvement in the voltage towards the nominal value 

because of the filter shows that there are technologies available which can be used to 

match renewable generation to the electrical network.  The simulation results are given 

n in Table C.3 in Appendix C. 

 

 

6.3. Grid Support with Concentrated Solar Power  

 

From the simulations carried out in this report to this point, it is evident that depending 

on the physical point of connection, the sizing of the generation capacity and support 

from control technologies, renewable power does not have a negative impact on the 

electricity network.  More specifically, concentrated solar power plants, CSP have 

proven to be effective as merit-load or base load due to their dispatchability (Auret, 

2015).  In addition, studies have shown that in South Africa, this dispatchability is 

possible throughout the year (Onwunta, 2014).  In this section, simulations were carried 

out to validate that CSP can be used to improve grid power dispatchability without 

compromising power quality.  As explained in section 2.4.2 CSP power plants have 

impressive ramping rates on the output.  The studies carried out in this section aim to 

use the fast response rates of CSP technology to regulate voltage, and consequently 

power quality of the electricity system by controlling the active power injected from 

the CSP plant.  The simulation model used is shown in Figure 6.18. 
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Figure 6.18:  Concentrated solar plant connection 

 

The CSP plant is modelled using a synchronous generator model which is also readily 

available in PowerFactory.  As a result, when integrated to the grid, the characteristics 

of the power output are the same properties as a typical synchronous generator 

(Onwunta, 2014; Ntlahla, 2014).  Unlike wind power plants, the South African grid 

code does not give special requirements exclusive to CSP.  Therefore, CSP power 

plants are only required to comply to the same requirements applicable to all renewable 

power plants (Eskom, 2012).  

 

 The bar graphs in Figure 6.19 show the generation in the simulation model, while the 

line graph shows the demand.  The graph shows the case described in section 6.1 where 

the renewable contribution is from both wind and the photovoltaic plant connected to 

the 132 kV and 66 kV transmission lines.   
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Figure 6.19:  Simulation generation profiles using wind and photovoltaic to supply 

excess demand 

 

It can be observed from Figure 6.19 that the profile of renewable generation throughout 

the day does not match the demand.  The simulated data was designed to match the 

morning and evening peak demand.  However, the mis-match between demand and 

supply throughout the day enabled the observed results to show how the intermittent 

nature of solar and wind affect the results.  Even though there is a lot of wasted energy 

especially between 12 pm and 4 pm, the renewable energy is still unable to completely 

supply the required extra generation for the evening peak demand.  

 

It can be observed from Figure 6.19 that the availability of the wind and solar resources 

are extremely unpredictable.  Even when the capacity is over sized, their contributions 

cannot be guaranteed especially during peak times (De Sisternes, 2014).  By replacing 

the wind and PV power plant with a concentrated solar power, renewable generation 

can be shifted from periods of low demands to peak demand hours.  Figure 6.20 shows 

a case where the renewable contribution is from CSP only. 
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Figure 6.20:  Simulation generation profiles using concentrated solar power to supply 

excess demand 

 

CSP plants operate similar to other steam turbines which can all manifest some form 

of uncertainty sometimes.  Consequently, can be seen from Figure 6.20 that CSP can 

be used to match renewable generation to the demand more accurately than wind and 

solar PV.  

 

Using the similar data to Figure 6.16, the simulation model was modified to include 

CSP power output at the 132 kV substation, without a shunt controller on the bus.  

Given that high ramp up rates are possible, the CSP plant is set to provide power on 

demand at a power factor of 0.8.    During the period when there is no active power 

required from the CSP plant, the plant supplies constant reactive power.  Figure 6.21 

shows the deviation of the bus voltage from the nominal for simulations where CSP 

was the only renewable generation and where there was no CSP generation, i.e. only 

wind and photovoltaic for renewable contribution. 
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Figure 6.21:  Deviation from 66 kV bus voltage for a system with renewable 

generation  

 

 

The red line graph in Figure 6.21 shows the deviation of the voltage profile for the case 

with CSP.  It can be observed that during the morning and evening peak times, the CSP 

voltage profile is much closer to the nominal than the case for wind and solar.  This is 

because CSP plants dispatch on demand, therefore not overloading the system.  For the 

times when the is no generation required from CSP, for example between 12 am and 4 

am, CSP generators can be used to provide reactive power support to the electrical grid.  

However, for this simulation model, this was not necessary since the voltage is still 

with the acceptable range of – 15 % to + 10 %.  The simulation results are given n in 

Table C.4 in Appendix C. 

The simulation therefore, validates that the synchronous turbine generators and thermal 

storage enable CSP to contribute to grid stability.  Fundamentally, CSP power plants 

can be used to support renewable energy integration by offering reactive power, voltage 

and frequency control without requiring any spinning reserve in the electricity system, 

In Europe, the CSP system with thermal energy storage also generates income from the 

heat market.  Consequently, a study by Fursch et al., (2013) shows that in these 

combined heating and power systems such as CSP, the overall costs in the electricity 

system costs are reduced.  This is because there is less electricity demand from the heat 

market.  
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 This implies that if industries with high heating requirements could be located near 

CSP plants or vice versa, the loading on the electrical network could be reduced 

significantly.  This is because, processes which normally require electrical energy to 

produce heat will be able to acquire heat directly from the power plant.  Therefore, 

reducing the electrical energy demand on the grid. 

 

6.4. Summary 

Matching distributed generation to any electricity system can be realized only if 

technical feasibility studies are carried out on the grid.  While the demand and supply 

requirements for every electrical network is unique, the following strategies obtained 

from the simulations carried out in this report, can be useful for integrating more 

renewable generation to the South African electricity system. 

• The impact of the renewable energy generator on the electrical network is 

dependent on, among other factors, the penetration level and strength of the 

electrical infrastructure 

• Matching the output of the generators to demand is essential to minimise 

loading on the electrical network. 

• Relative to a direct connection to the transmission line, the physical point of 

connection points for new power plants to the grid will have the least strain on 

the transmission or distribution network components if located at the substation. 

• The hybrid structure of CSP plants, synchronous generators with thermal 

storage not only enables provision of active power on demand but also 

complements the grid by providing reactive power support during periods of 

reduced demand. 

• CSP power stations have potential to reduce loading on the electrical network 

by supplying heat directly to industries which normally use electrical energy 

for heating systems 
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CHAPTER 7 

7.    CONCLUSIONS  

7.1. Motivation for Research  

In the last years Germany achieved 100 % renewable electricity generation in some 

areas.  On the contrary, South Africa increased coal electricity generation because there 

was not enough electrical power generation to reliably support all Eskom’s customers 

in South Africa.  To promote renewable generation, the Renewable Independent Power 

Producers Procurement Program (REIPPPP) was setup with the purpose of increasing 

the generation capacity on the grid.  

 

Unfortunately, the inherently intermittent nature of these sources has resulted in some 

limiting regulatory requirements to protect the electrical grid infrastructure.  For 

example, because solar power is not guaranteed to be available during the evening 

demand peak when its most needed the grid code specifies the regulatory requirements 

to ensure that integrity of the grid is not compromised.  Therefore, indirectly 

encouraging fossil fuel electricity generation.  

 

On the other hand, the South African electricity grid was originally largely constructed 

around the coal mines.  The challenge here is that the renewable energy resource is 

more geographically  dispersed to regions where the electrical infrastructure is weak.   

Therefore, the amount of renewable generation which can be incorporated into the 

current electricity system is limited.   

 

The main motivation for this research was to determine how renewable energy can be 

incorporated reliably given the current South African electrical network infrastructure.  

Therefore,  by referring to countries with high renewable energy penetration, determine 

the best possible grid connection strategies to increase the penetration for wind and 

solar power plants. 

 

By considering strategies applied in a country with high renewable energy penetration, 

the aim was to recommend some of these strategies for the South African electricity 

system.  The aim of the simulations carried out was to validate some of the challenges, 

derived from literature, associated with the integration of renewable generation onto 

the electrical grid.   
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7.2. Key Findings  

The main significance of this project was to provide South Africans with a framework 

in which reliable electrical power while reducing the reliance on fossil fuels such as 

diesel and coal can be achieved.  The main research question was: 

‘How does renewable energy affect the electricity system?’ 

 

Power system analysis tools like PowerFactory make it possible to investigate such 

research questions.  By utilizing PowerFactory’s  highly flexible applications, different 

connection strategies under different penetration levels could be compared and the 

limitations of the electrical infrastructure illustrated.  Matching renewable energy with 

Eskom’s electricity transmission and distribution is necessary to ensure that the new 

power plants will be integrated to the electrical grid at the correct voltage and frequency 

and match the demand of electricity.   

 

This research was necessary to determine a solution for the areas where the existing 

electricity infrastructure has been detrimental to the increase in renewable energy 

penetration.  Based on the results, it was found that from a technical perspective, 

renewable energy can be matched to the electricity system by correctly calculating the 

points of connection and the sizes of the system.  However, although the socio-

economic factors were beyond the scope of this research, the study showed that  it was 

found that a decentralised system is more financially manageable for the utilities.  

Without too much modification to the current infrastructure or taking any customers 

off grid, decentralisation can help to better manage the grid stability and reliability.  

 

While the technical challenges associated with connecting renewables on to the grid 

are not unique to South Africa, South Africa unfortunately does not manufacture most 

of the associated technologies locally.   

 

The keys findings derived from this report are summarized below: 

• The generation connection capacity assessment which is made possible by 

PowerFactory is pivotal in understanding the available grid capacity to connect 

distributed generation.  However, only when this understanding is coupled 

with a more decentralized electricity system does the system encourage private 

entities and the public to contribute freely to the renewable energy integration. 

• The grid code is put in place to protect the electrical infrastructure and 

maintain the integrity of all electricity systems.  However, a decentralized 

electricity network offers more unprejudiced regulatory requirements. 

Therefore, renewable energy programs such as the REIPPPP may need to be 

revised as penetration levels increase and intelligent control and analysis 

systems become available. 

Stellenbosch University  https://scholar.sun.ac.za



75 
 

 

In addition, in matching renewables to the South African electricity system, the 

following steps which have already been taken, should be highlighted: 

• While the electricity supply system is still centralized, the independent power 

producer (IPP) programs have been established to attract investments from 

private companies. 

• In terms of adopting favourable government policies, a transmission 

development plan, (TDP) is updated annually and has been put in place to 

expand and maintain the electrical network.  The need for IPPs to connect to a 

substation in a centralized system means that new substations are required in 

regions where new power plants are being built.  The new power plants 

investments have been attracted by  the REIPPPP and the coal baseload IPP 

procurement program. 

• Engaging the public through for example, the new integrated resource plan, 

which was released for public comment in August 2018, has promoted local 

research on technologies and favourable strategies in the integration of 

renewable technologies to the electricity system. 
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7.3. Recommendations for Future Work  

The research presented in this report can be further expanded by investigating the 

socio-economic factors which affect the integration of renewables on to the electrical 

grid.  The main focus can be on other developing countries such as Zimbabwe, 

Mozambique and Nigeria which have an indisputable energy deficit but an abundance 

of renewable energy resource.  The future work can also be extended to other renewable 

energy sources apart from wind and solar.   

 

It is also necessary to analyse the policies which influence renewable power generation 

in South Africa.  Of particular interest would be an investigation of the total capacity 

of off-grid renewable projects (large scale and small scale) and the policies which have 

restrained these projects from being connected to the grid. 

  

Stellenbosch University  https://scholar.sun.ac.za



77 
 

REFERENCES 

ABB (2016). Standards and grid codes – the latest developments and trends.  ABB 

Conversations. Available at: https://www.abb-conversations.com/2016/10/ 

            standards-and-grid-codes-the-latest-developments-and-trends/. [Accessed 21  

            January 2019]. 

 

Ackermann, T., Martensen, N., Brown, T., Schierhorn, P., Boshell, F., Gafaro, F., 

Ayuso, M (2016).    Scaling up variable renewable power: The role of grid 

codes.  Abu Dhabi: International Renewable Energy Agency, IRENA. 

Agora Energiewende (2018).  Energiewende 2030:  The Big Picture.  Megatrends, 

targets, strategies and a 10-point agenda for the second phase of Germany’s 

energy transition.  Berlin, April 2018.  Germany: Agora Energiewende. 

Allianz Climate Solutions (2017).  Assessing the needs and attractiveness of low-

carbon investments in G20 countries.  Allianz climate and energy monitor 

2017.  Germany: Allianz Climate Solutions GmbH. 

Arias, I. M. I. (2006).  Grid codes comparison.  Masters in Electric Power Engineering.  

Sweden: Chalmers University of Technology. 

Addalla, O. H., Al-Badwawi, R., Al-Hadi, H., Al-Riyami, H., Al-Nadabi, A.  

   (2015). Steady-state and transient performances of Oman transmission system  

  with 200MW concentrated solar power plant.  Oman: Oman Electricity  

  Transmission Company. 

Amigun, B., Brent, A. (2011).  Sustainable electricity generation technologies in South 

Africa: Initiatives, challenges and policy implications.  Energy and 

Environmental Research, 1(2011), 124-138. 

 

Auret, C. (2015). Scenario modelling for short to long term rollout of concentrating 

solar power in South Africa.  Master of Engineering in Mechatronics.  South 

Africa: Stellenbosch University. 

Banks, D. I., Schäffler, B. (2006).  The potential contribution of renewable energy in 

South Africa, 2nd Ed. RAPS Consulting & Nano Energy, prepared for SECCP, 

Earthlife Africa Johannesburg. 

 

Barday, M. (2016).  Controlled Disclosure. Standard for MV/LV self-build customer 

projects in distribution, 240-99376650, Revision 1, South Africa: Eskom. 

Stellenbosch University  https://scholar.sun.ac.za



78 
 

Bofinger, S., Zimmermann, B., Gerlach, A., Bischof-Niemz, T., Mushwana, C. 

(2016). Wind and solar PV resource aggregation study for South Africa, South 

Africa: Fraunhofer IWES and CSIR. 

Boie, I, (2016). Determinants for the market diffusion of renewable energy 

technologies: An analysis of the framework conditions for non-residential 

photovoltaic and onshore wind energy deployment in Germany, Spain and the 

UK.  Doctor of Philosophy in Geography.  United Kingdom: University of 

Exeter. 

Boie, I., Kost, C., Bohn, S., Agsten, M., Bretschneider, P., Snigovyi, O., Pudlik, M., 

Ragwitz, Ma., Schlegl, T., Westermann, D. (2016b).  Renewable 

energy. Opportunities and challenges of high renewable energy deployment 

and electricity exchange for north Africa and Europe scenarios for power 

sector and transmission infrastructure in 2030 and 2050, 87 (2016), Pt.1, 130-

144. 

Burger, B. (2018).  Power Generation in Germany: Assessment of 2017.  Berlin: 

Fraunhofer Institute for Solar Energy Systems. 

 

Calitz, J. (2017).  Statistics of utility-scale solar PV, wind and CSP in South Africa in 

2016.  Available at: https://www.csir.co.za/sites/default/files/Documents/ 

Statistics%20of%20Wind%20and%20Solar%20PV%20in%20SA%20in%202

016%20-%20CSIR%20-%20PUBLISHED.pdf [Accessed  24 July 2018]. 

 

Calitz, J., Mushwana, C., Bischof-Niemz, T. (2018). Statistics of utility-scale solar PV, 

wind and CSP in South Africa in 2016.  1st ed. South Africa: CSIR Energy 

Centre. 

Clean Energy Wire (2018).  A reporter’s guide to the Energiewende, Volume 5,  

           2018, Germany: CLEW. 

Chovatia, C. M., Gupta, N. P., Gupta, P. N. (2018).  International journal of emerging 

technology and advanced engineering. Harmonic mitigation using shunt active 

filter at utility end in grid connected to renewable source of energy, Volume 2, 

Issue 8, August 2012, 230 - 235. 

Craib, A. (2013). Standard for the interconnection of embedded generation, 240-

61268576, Revision 1, South Africa: Eskom. 

 

 

Stellenbosch University  https://scholar.sun.ac.za

https://www.csir.co.za/sites/default/files/Documents/Statistics%20of%20Wind%20and%20Solar%20PV%20in%20SA%20in%202016%20-%20CSIR%20-%20PUBLISHED.pdf
https://www.csir.co.za/sites/default/files/Documents/Statistics%20of%20Wind%20and%20Solar%20PV%20in%20SA%20in%202016%20-%20CSIR%20-%20PUBLISHED.pdf
https://www.csir.co.za/sites/default/files/Documents/Statistics%20of%20Wind%20and%20Solar%20PV%20in%20SA%20in%202016%20-%20CSIR%20-%20PUBLISHED.pdf


79 
 

Crossland, A. F. (2014). Application of stochastic and evolutionary methods to plan 

for the installation of energy storage in voltage constrained LV networks.  

Doctor of Philosophy School of Engineering and Computer Science.  United 

Kingdom: Durham University.  

Dallinger D. Schubert G., Wietschel M. (2012).  Integration of intermittent power 

supply using grid-connected vehicles. A 2030 case study for California and 

Germany, Fraunhofer ISE: Working Paper Sustainability and Innovation, No. 

S 4/2012, 17 - 18. 

Department of Energy (2015).  State of renewable energy in South Africa.  South 

Africa: DOE. 

 

Department of Energy (2016a). Integrated resource plan update: assumptions, base  

  case results and observations, Revision 1, South Africa: DOE. 

Department of Energy (2016b). Independent power producer’s procurement program  

  (IPPP) –An Overview, South Africa: DOE. 

Department of Energy (2018).  Integrated resource 2018, Final Draft_22/8/2018 for  

  public input, South Africa: DOE. 

de Jongh, D., Ghoorah, D., Makina, A. (2014).  Journal of Energy in Southern  

  Africa. South African renewable energy investment barriers: An investor  

  perspective, Volume 25, Issue 2, pp. 15 - 27. 

de Sisternes, F. J. (2014).  Risk implications of the deployment of renewables for 

investments in electricity generation.  Doctor of Philosophy.  USA: 

Massachusetts Institute of Technology. 

DigSilent (2016). PowerFactory: Licensing & Software Editions.  Available at: 

 http://digsilent.ir/wp-

content/uploads/2016/08/PowerFactory_LicenceTypes_SoftwareEditions.pdf 

[Accessed 16 August 2018]. 

DigSilent (2017).  Digsilent Powerfactory 2017: User manual.  Version 2017.  

Germany: DigSILENT. 

DigSilent (2018a).  Integrated power system analysis software for transmission / 

distribution / industry / generation / integration of renewables.  Powerfactory 

2018.  Germany: DigSILENT. 

DigSilent (2018b).  Integrated power system analysis software.  Digsilent powerfactory 

for wind power applications.  Powerfactory 2018.  Germany: DigSILENT. 

Stellenbosch University  https://scholar.sun.ac.za

http://digsilent.ir/wp-content/uploads/2016/08/PowerFactory_LicenceTypes_SoftwareEditions.pdf
http://digsilent.ir/wp-content/uploads/2016/08/PowerFactory_LicenceTypes_SoftwareEditions.pdf


80 
 

DigSilent (2018c).  Integrated power system analysis software.  Digsilent powerfactory 

for solar power applications.  Powerfactory 2018.  Germany: DigSILENT. 

DigSilent News (2003).  Eskom distribution chooses Digsilent powerfactory.  

Available at:  http://80.156.202.82/index.php/company-news-detail/items 

/eskom-distribution-chooses-digsilents-powerfactory.html. [Accessed 16 

August 2018]. 

Dinter, F., Mayorga Gonzalez, D. (2014).  Operability, reliability and economic 

benefits of CSP with thermal energy storage: first year of operation of 

ANDASOL 3. In SolarPaces 2013.  USA, 17 - 20 September 2013.  Germany: 

Energy Procedia.  2472 – 2481. 

DOE Act (2016).  Grid resiliency pricing rule. Notice of proposed rulemaking.  

Department of Energy Organization Act: Docket Number RM17-3-000, 18 

CFR Part 35.  Available at: https://www.energy.gov/sites/prod/files/2017/09/f  

37/Notice%20of%20Proposed%20Rulemaking%20.pdf [Accessed 25 August 

2018]. 

Edkins, M. Marquard, A., Winkler, H. (2010).  Assessing the effectiveness of national 

solar and wind energy policies in South Africa.  Available at: 

https://www.erc.uct.ac.za/.../10Edkinesetal-Solar_and_wind_policies.pdf 

[Accessed 24 July 2018]. 

 

Eskom (2012). Grid connection code for renewable power plants (RPPs) connected to 

   the electricity transmission system (TS) or the distribution system (DS) in 

   South Africa, Version 2.6, South Africa: National Energy Regulator of South  

  Africa (NERSA). 

Eskom (2017). The Eskom Transmission Development Plan 2018 to 2027 (TDP 2017):  

  Public Forum. South Africa: Eskom.  

Eskom, Generation Communication Department (2013).  Eskom power stations,  

  February 2013.  

Eskom, Generation Communication Department (2017).  Fact sheet. The roles of  

  voltage and frequency in the transmission of electricity, November 2017.  

   TD 0004 Revision 6. 

Federal Ministries of Economic Affairs and Energy, (2015).  Making a success of the 

energy transition.  Germany: Federal Ministries of Economic Affairs and 

Energy. 

 

 

Stellenbosch University  https://scholar.sun.ac.za

http://80.156.202.82/index.php/company-news-detail/items/eskom-distribution-chooses-digsilents-powerfactory.html
http://80.156.202.82/index.php/company-news-detail/items/eskom-distribution-chooses-digsilents-powerfactory.html
https://www.energy.gov/sites/prod/files/2017/09/f%2037/Notice%20of%20Proposed%20Rulemaking%20.pdf
https://www.energy.gov/sites/prod/files/2017/09/f%2037/Notice%20of%20Proposed%20Rulemaking%20.pdf
https://www.erc.uct.ac.za/.../10Edkinesetal-Solar_and_wind_policies.pdf


81 
 

 

Federal Ministry for Economic Affairs and Energy, (2018).  2017 Revision of the 

renewable energy sources Act. Key points of the decision by the German 

Bundestag of 8 July 2016.  Available at: https://www.bmwi.de/Redaktion 

/EN/Downloads/2017-revision-of-the-renewable-energy.pdf?__blob= 

publicationFile&v=2 [Accessed 20 June 2018]. 

Ferroni, F., Hopkirk, R.J., (2016).  Energy return on energy invested (ERoEI) for 

photovoltaic solar systems in regions of moderate isolation.  Energy Policy, 

Volume 94, pp. 336–344 

 

Fursch, M., Hagspiel, S., Jagemann, C., Nagl, S., Lindenberger, D., Troster, E. (2013).  

Applied Energy. The role of grid extensions in a cost-efficient transformation 

of the European electricity system until 2050.  Volume: 104, Issue C, pp. 642-

652. 

Gauche, P. (2016). Spatial-temporal model to evaluate the system potential of 

concentrating solar power towers in South Africa.   Doctor of Philosophy in 

Engineering.   South Africa: Stellenbosch University. 

Gauche, P., Pfenniger, S., Meyer, A. J., von Backstrom, T. W., Brent, A. C. (2012).  

Modelling dispatchability potential of CSP in South Africa. In southern Africa, 

solar energy conference.  South Africa, 21-23 May 2012.  South Africa: 

SASEC.  Pp. 1 - 2. 

 

German-Swedish Chamber of Commerce, (2018).  Smart grid market analysis: 

Germany.  Sweden: Swedish smart grid. 

 

Gill, S., Plecas, M., Kockar, I. (2014). Distributed generation on 11kV voltage 

constrained feeders.  Report produced by University of Strathclyde for the 

Accelerating Renewables Connection Project.  United Kingdom: University of 

Strathclyde. 

 

Givaki, K. (2017). Integration of large wind farms to weak power grids.  Doctor of 

Philosophy.  United Kingdom: University of Strathclyde. 

Gonzalez-Longatt, F., Chikuni, E., Rashayi, E. (2013).  Effects of the Synthetic Inertia 

from Wind Power on the Total System Inertia after a Frequency 

Disturbance. 2013 IEEE International Conference on Industrial Technology 

(ICIT), 978-1-4673-4569-9, 826 - 832. 

Stellenbosch University  https://scholar.sun.ac.za

https://www.bmwi.de/Redaktion%20/EN/Downloads/2017-revision-of-the-renewable-energy.pdf?__blob=publicationFile&v=2
https://www.bmwi.de/Redaktion%20/EN/Downloads/2017-revision-of-the-renewable-energy.pdf?__blob=publicationFile&v=2
https://www.bmwi.de/Redaktion%20/EN/Downloads/2017-revision-of-the-renewable-energy.pdf?__blob=publicationFile&v=2


82 
 

Govender, T. (2017).  Transmission development plan 2018-2027 (TDP 2017), South  

  Africa: Eskom. 

GreenCape, (2017).  Utility-Scale Renewable Energy: 2017 Market Intelligence 

Report.  South Africa: GreenCape. 

 

Grigsby, L. L. (2012).  The electric power engineering handbook: Electric power 

generation, transmission and distribution.  3rd ed. USA: CRC Press, Taylor 

and Francis group. 

 

Hansen, A. D., Sorensen, P., Iov, F., Blaabjerg, F., 2006.  Renewable Energy (RENEW 

   ENERG). Centralised power control of wind farm with doubly fed induction 

            generators, Volume 31, Issue 7, pp. 935-951.   

Heal, G. (2016).  Notes on the economics of energy storage.  NBER Working Paper 

22752. 

 

Hilton, T., Marquard, A. (2011). Prospects for Renewable Energy in South Africa.  

South Africa: Heinrich Böll Stiftung. 

 

Justus, D. (2005). International energy technology collaboration and climate change 

mitigation.  Case Study 5: Wind power integration into electricity systems, 

France: Organization for Economic Co-operation and Development, OECD. 

Kang, H. (2016).  Establishing a new guideline for south Korea’s renewable portfolio 

standard.  Master of Science in Engineering and Management.  USA: 

Massachusetts Institute of Technology.   

Kolhe, P. T. (2017). TeleLab for decentralized hybrid power system with renewables.  

Doctor of Philosophy.  United Kingdom: University of Bolton. 

Kost, C., Friebertshäuser, C., Hartmann, N., Fluri, T., Nitz, P. (2017).  The role of CSP 

in the electricity system of South Africa – Technical operation, grid constraints, 

market structure and economics. In 22nd SolarPACES Conference.  United 

Arab Emirates, 11-14 October 2016.  Germany: Fraunhofer ISE.  pp. 6. 

Marks, J. (2016). Two German states that reached 100 % renewable electricity.  

Available at: https://inhabitat.com/two-german-states-reach-100-renewable-

electricity/.  [Accessed 23 August 2018]. 

Matlokotsi, T. (2017). Power quality enhancement in electricity networks using grid-

connected solar and wind based DGs.  Master of Science degree in Electrical 

Engineering.  South Africa: University of Cape Town. 

Stellenbosch University  https://scholar.sun.ac.za



83 
 

 

Mathews, J. A., Kidney, S., Mallon, K., Hughes, M. (2010).  Energy Policy. Mobilizing 

private finance to drive an energy industrial revolution, Volume 38. Issue 37, 

pp. 3263–3265. 

Merkel, M, (2014).  Integration of renewable energies into distribution grids – A case 

example from Germany. In Integration of renewable energies into distribution 

grids: Innovation and comparative views.  Germany, 27 March 2014.  

Germany: EWE NETZ GmbH. 

Muhammad, A., Nasimullah (2017).  Renewable Energy. Performance comparison of 

wind turbine based doubly fed induction generator system using fault tolerant 

fractional and integer order controllers,  Volume 116, 2018, pp. 244 - 264. 

Mohamed, J. M., Rasul, A., Khang, H. V., Kohle, M. (2017).  Harmonic mitigation of 

a grid-connected photovoltaic system using shunt active filter. In 2017 20th 

International Conference on Electrical Machines and Systems (ICEMS).  

Australia, 11-14 August 2017.  Australia: IEEE.  

Mushwana, C. (2014). Generation connection capacity assessment of the 2016  

  transmission network, Revision 2, South Africa: Eskom. 

Muyeen, S. M., Takahashi, R., Murata, T., Tamura, J., 2010.  IEEE transactions on 

   power systems. A variable speed wind turbine control strategy to meet wind  

  farm grid code requirements, Volume 25, Issue 1, pp. 331 - 340. 

NERSA (2015).  Consultation Paper.  Small-Scale Embedded Generation: Regulatory  

  Rules.  Available at:  http://www.nersa.org.za/Admin/Document/Editor/ 

  file/Consultation%20Paper%20on%20Small%20Scale%20Embedded% 

  20Generation.pdf [Accessed 26 August 2018]. 

 

Ntlahla, N, (2014).  Impact of large scale grid-connected concentrated solar power 

and photovoltaic power on small signal and transient stability of the power 

system.  Bachelor of Science in Electrical Engineering.  South Africa: 

University of Cape Town. 

Olakunle, A. O. (2018). Integration of renewable energy into Nigerian power systems.  

Doctor of Philosophy.  South Africa: University of Cape Town. 

Oniemola, P. K. (2014). Developing a legal framework for promoting investment in 

renewable energy in the Nigerian power sector: an analysis of the design and 

implementation challenges.  Doctor of Philosophy in law.  Scotland: University 

of Aberdeen. 

Stellenbosch University  https://scholar.sun.ac.za

http://www.nersa.org.za/Admin/Document/Editor/%20%09file/Consultation%20Paper%20on%20Small%20Scale%20Embedded%25%20%0920Generation.pdf
http://www.nersa.org.za/Admin/Document/Editor/%20%09file/Consultation%20Paper%20on%20Small%20Scale%20Embedded%25%20%0920Generation.pdf
http://www.nersa.org.za/Admin/Document/Editor/%20%09file/Consultation%20Paper%20on%20Small%20Scale%20Embedded%25%20%0920Generation.pdf


84 
 

Onwunta, O. E. K. (2014).  Modelling and simulation of the impacts of distributed 

generation integration into the smart grid.  Doctor of Technology in Electrical 

Engineering.  South Africa: Cape Peninsula University of Technology. 

Pegels, A. (2010).  Renewable energy in South Africa: Potentials, barriers, and options 

for support.  Energy Policy, Volume 38. pp. 4945 – 4954. 

 

Perera, B. K., Ciufo, P., Perera, S. (2013).  Point of common coupling (PCC) voltage 

control of a grid-connected solar photovoltaic (PV) system. In IECON 2013 - 

39th Annual Conference of the IEEE Industrial Electronics Society.  Vienna, 

10 -13 November 2013.  Austria: IEEE.   

 

Pinter, G, (2014). A comparative analysis of the electricity and telecommunications 

regulations of the UK and Germany - cross country and cross sectoral lessons.  

Doctor of Philosophy.  England: University of East Anglia. 

Portfolio Committee on Energy, (2018).  Presentation on the independent power 

producer procurement programme. Parliament, Cape Town.  Available 

at: https://sawea.org.za/wp-content/uploads/2018/04/Presentation-to-PCE-on-

IPP_06-March-2018.pdf  [Accessed 7 August 2018]. 

Prins, N. (2018). South Africa's nuclear new build program :The domestic 

requirements for nuclear energy procurement and public finance implications.  

South Africa: WWF South Africa. 

Ralon, P., Taylor, M., Ilas, A., Diaz-Bone, H.,  Kairies, K.,   (2017).  Electricity storage 

and renewables: costs and markets to 2030.  Abu Dhabi: International 

Renewable Energy Agency, IRENA. 

 

Ramdhin, A. (2014). Grid integration of distributed and renewable energy sources: A 

network planning perspective.  Master of Science degree in Electrical 

Engineering.  South Africa: University of Cape Town. 

Rangarajan, S. S., Collins, E. R., Fox, J. C., Kothari, D., P. (2018).  Journal of Energy 

Technology Research. Consolidated compendium of PV interconnection 

standards and guidelines across the globe in a smart grid, 2 (113).  

REN21 Secretariat (2018).  Renewables 2018 global status report.  In renewable 

energy policy network for the 21st century.  Paris: REN21.  24 -26. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



85 
 

SAWEA (2018).  Renewable energy power procurement: Why Eskom should finalise 

outstanding agreements.  Briefing note by South African Wind Energy 

Association, March 2018.  Available at: https://sawea.org.za/wp-

content/uploads/2018/03/SAWEA-Briefing-Note-on-Eskom-Agreements-

Mar-2018.pdf [Accessed 24 August 2018]. 

Shultz, A. (2018). Office of energy efficiency & renewable energy.  concentrating 

solar power could provide the flexibility and reliability the U.S. electric grid 

needs.  Available at: https://www.energy.gov/eere/articles/concentrating-solar-

power-could-provide-flexibility-and-reliability-us-electric-grid.  [Accessed 20 

June 2018]. 

Simpson, A. (2012).  National assembly for wales: Documents. Case study: Germany 

at the forefront.  Available 

at:  http://www.senedd.assembly.wales/documents/s34101/Paper%201.pdf  

[Accessed 20 June 2018]. 

Sinn, H-W. (2017).  Buffering volatility: A study on the limits of Germany’s energy 

revolution.  European Economic Review, Volume 99, 2017. pp.  130-150 

 

Stetz, T., Marten, F., Braun, M. (2013).  Improved low voltage grid-integration of 

photovoltaic systems in Germany. IEEE Transactions on Sustainable Energy, 

Volume 4. Issue 2. pp. 534 -542. 

Taylor, S. (2015). Germany’s wind and solar deployment 1991 – 2015: Facts and 

lessons learnt, Germany: EWI.  

Thopil, M. S., Bansala, R.C., Zhanga, L., Sharmab G. (2018).  Energy Strategy 

Reviews. A review of grid connected distributed generation using renewable 

energy sources in South Africa, Volume 21, 2018. pp. 88 -97.   

Tonkoski, R., Lopes, L. A. C., El-Fouly, T. H. M. (2010).  Coordinated active power 

curtailment of grid connected PV inverters for overvoltage prevention. In IEEE 

transactions on sustainable energy.  Canada, 10 December 2010.  Canada: 

IEEE.  pp. 139 - 147. 

Trainer, T. (2014).  Some inconvenient theses.  Energy Policy, Volume 64, January 

2014. pp. 168–174. 

 

Troester, E, (2009). New German grid codes for connecting PV systems to the medium 

voltage power grid. In 2nd international workshop on concentration 

photovoltaic power plants. Germany, 9 - 10 March 2009. 

 

Stellenbosch University  https://scholar.sun.ac.za

https://www.energy.gov/eere/articles/concentrating-solar-power-could-provide-flexibility-and-reliability-us-electric-grid
https://www.energy.gov/eere/articles/concentrating-solar-power-could-provide-flexibility-and-reliability-us-electric-grid
http://www.senedd.assembly.wales/documents/s34101/Paper%201.pdf


86 
 

Tyler, E. (2012).  Germany's Transition to Renewable Energy – A Model for South 

   Africa?  South Africa: Heinrich Böll Stiftung - Southern Africa. 
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APPENDIX A: 

A. DIGSILENT POWERFACTORY MODELS 

 

 
 

Figure A.1:  Extract of technical document for wind power applications (DigSilent, 

2018b) 
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Figure A.2:  Extract of technical document for solar power applications (DigSilent, 

2018c) 
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APPENDIX B:  

Key policies in South Africa’s renewable integration  

(World Wildlife Fund, 2017). 

 

In South Africa, the Integrated Resource Plan (IRP) is termed the ‘living plan” for 

the energy system nationally.  The following are the other key policies and legislation 

which influence the energy system.  

 

The National Development Plan (NDP) outlines the 2030 vision for South Africa’s 

energy sector and envisages a sector that will promote, inter alia, ‘economic growth 

and development through adequate investment in energy infrastructure and the 

provision of quality energy services. 

 

The Green Economy Accord is an agreement between government, business and 

labour sectors which focuses on the need to stimulate the green economy and the 

critical need to create employment through renewable energy. 

 

The Integrated Energy Plan (IEP) (2016), is more energy specific in that it provides 

a roadmap for the future energy landscape in South Africa and guides future energy 

infrastructure investments and policy development. 

 

The National Energy Act 34 of 2008, is energy-specific legislation which provides 

for energy planning (including appropriate upkeep and access to energy 

infrastructure), increased generation and consumption of renewable energies. The 

legislation empowers the Minister of Energy to determine, approve and procure new 

electricity generation capacity. A licence for generation capacity is subject to 

ministerial approval. 
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Summary of regulations influencing Germany’s renewable electricity system 

(German-Swedish Chamber of Commerce, 2018) 

 

In Germany, the most general law with regards to energy is the Energy Sector-Act 

(Energiewirtschaftsgesetz, EnWG).  The following are the more specific laws which 

are supposed to set the course for phase two of the energy transition.  

The Underground Cable-Act (Erdkabelgesetz), which gives priority to underground 

cables instead of electricity pylons for newly planned transmission paths.  This, 

however, prolongs the construction time.  

 

The Power Market-Act (Strommarktgesetz) which aims to increase renewable 

energy share and competition.  Furthermore, it provides regulations for a capacity 

reserve as a safety net for the new power markets being created.  

 

The Digitising the energy Transition-Act (Gesetz zur Digitalisierung der 

Energiewende) promotes smart grids, smart meters and smart homes in Germany.  

The most significant impact of this act is the rollout of smart meters with a pre-

defined pricing model. 

 

The Renewable Energy Sources-Act (Erneuerbare Energien Gesetz, EEG) which 

promotes renewable energy in a competitive and market oriented manner.  This also 

reduces the constant price increases for the end-user.  However, power plants with a 

capacity of less than 750 kW are not included in the tendering regulation.  
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APPENDIX C:  

C.  SIMULATION DATA 

 

C.1.  System Model Definition 

 

 
Figure C.1:  Western Cape load forecast (Eskom, 2017 
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Table C.1:  Demand and generation data used for simulation model  (Department of 

Energy, 2016b) 

 

Time 

66 kV 

Load 

(MW) 

132 kV 

Load 

(MW) 

400 kV  

Load 

(MW) 

66kV  PV  

(MW) 

132 kV 

PV (MW) 

Wind 

(MW) 

00:00 259.19 618.39 3096.72 0.00 0.00 133.67 

01:00 259.19 618.39 3096.72 0.00 0.00 116.94 

02:00 259.19 618.39 3096.72 0.00 0.00 277.00 

03:00 259.19 618.39 3096.72 0.00 0.00 195.39 

04:00 255.25 610.49 3048.03 0.00 0.00 316.73 

05:00 269.54 539.08 3224.32 0.00 0.00 373.49 

06:00 285.88 571.75 3425.79 0.64 8.93 403.90 

07:00 295.95 591.90 3550.03 1.93 26.78 492.86 

08:00 297.99 595.98 3575.22 5.50 72.48 341.31 

09:00 300.03 600.07 3600.40 6.57 87.35 244.31 

10:00 305.14 510.28 3663.36 7.07 98.18 303.84 

11:00 300.03 500.07 3600.40 7.93 110.08 320.70 

12:00 297.99 595.98 3575.22 8.57 119.00 400.88 

13:00 294.93 489.86 3537.44 9.00 124.95 330.43 

14:00 293.91 487.81 3524.85 9.00 124.95 420.92 

15:00 295.95 491.90 3550.03 5.36 114.38 354.51 

16:00 295.07 590.14 3539.19 5.28 112.50 359.70 

17:00 296.97 493.94 3562.63 4.00 104.65 620.92 

18:00 332.70 545.41 3903.35 3.71 98.80 690.88 

19:00 318.55 537.09 3828.74 3.07 88.88 545.56 

20:00 303.10 606.19 3638.18 1.43 29.95 470.88 

21:00 289.82 579.65 3474.48 0.00 0.00 394.19 

22:00 257.29 514.58 3273.21 0.00 0.00 294.19 

23:00 253.20 506.41 3222.84 0.00 0.00 193.98 
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Figure C.2:  Voltage increase with renewable energy penetration 
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C.2.  Simulation Results 

 

Table C.2:  Simulation results to determine the ideal point of connection 
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0:00 259.19 618.39 3096.72 0.00 0.00 133.67 24,5 43,2 42,3 

1:00 259.19 618.39 3096.72 0.00 0.00 116.94 30,7 45,4 45,3 

2:00 259.19 618.39 3096.72 0.00 0.00 277.00 3,9 28,0 28,0 

3:00 259.19 618.39 3096.72 0.00 0.00 195.39 7,9 26,1 25,9 

4:00 255.25 610.49 3048.03 0.00 0.00 316.73 36,8 11,0 11,9 

5:00 269.54 539.08 3224.32 0.00 0.00 373.49 23,6 19,3 19,3 

6:00 285.88 571.75 3425.79 0.64 8.93 403.90 17,4 41,8 41,9 

7:00 295.95 591.90 3550.03 1.93 26.78 492.86 17,8 43,3 43,4 

8:00 297.99 595.98 3575.22 5.50 72.48 341.31 22,3 45,7 45,8 

9:00 300.03 600.07 3600.40 6.57 87.35 244.31 18,4 44,0 44,0 

10:00 305.14 510.28 3663.36 7.07 98.18 303.84 20,2 23,4 24,3 

11:00 300.03 500.07 3600.40 7.93 110.08 320.70 29,8 19,8 19,8 

12:00 297.99 595.98 3575.22 8.57 119.00 400.88 50,7 9,0 9,0 

13:00 294.93 489.86 3537.44 9.00 124.95 330.43 36,5 15,8 15,8 

14:00 293.91 487.81 3524.85 9.00 124.95 420.92 56,6 5,1 5,1 

15:00 295.95 491.90 3550.03 5.36 114.38 354.51 39,5 14,4 14,3 

16:00 295.07 590.14 3539.19 5.28 112.50 359.70 37,4 15,3 15,4 

17:00 296.97 493.94 3562.63 4.00 104.65 620.92 49,9 9,3 9,4 

18:00 332.70 545.41 3903.35 3.71 98.80 690.88 34,7 21,2 21,2 

19:00 318.55 537.09 3828.74 3.07 88.88 545.56 38,4 17,6 17,7 

20:00 303.10 606.19 3638.18 1.43 29.95 470.88 25,5 24,0 24,2 

21:00 289.82 579.65 3474.48 0.00 0.00 394.19 23,6 21,7 21,7 

22:00 257.29 514.58 3273.21 0.00 0.00 294.19 31,1 14,1 14,1 

23:00 253.20 506.41 3222.84 0.00 0.00 193.98 9,1 24,7 13,1 
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Table C.3:  Simulation results to determine loading on 132 kV line 

 

  

No controller With shunt controller 

Loading on 132kV Line Loading on 132kV Line 

Time  L
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(%
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2
b
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%
) 

L
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e 
2
c 

(%
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0:00 42,3 68,8 59,9 40,9 66,6 58,1 

1:00 45,3 68,8 60 43,9 66,6 58,1 

2:00 28 68,7 59,9 27,1 66,5 58 

3:00 25,9 68,6 59,8 25 66,5 58 

4:00 11,9 67,6 58,8 10,6 65,3 57 

5:00 19,3 71,4 62,3 18,7 69,2 60,3 

6:00 41,9 74,9 66,3 40,4 72,5 64,2 

7:00 43,4 75,2 68,7 41,8 72,7 66,5 

8:00 45,8 71,1 69,2 44,3 68,8 67 

9:00 44 69,6 69,6 42,6 67,4 67,4 

10:00 24,3 68 70,6 23,5 65,9 68,4 

11:00 19,8 65,1 69,4 19,1 63 67,2 

12:00 9 63,3 68,9 8,8 61,3 66,7 

13:00 15,8 61,7 68,2 15,2 59,7 66 

14:00 5,1 61,4 67,9 4,9 59,4 65,8 

15:00 14,3 63,2 68,3 14 61,4 66,3 

16:00 15,4 63,8 68,2 14,8 61,7 66,1 

17:00 9,4 66,2 68,7 9 64,1 66,5 

18:00 21,2 77,4 77,2 20,5 74,9 74,7 

19:00 17,7 74,2 73,8 17,1 71,9 67,6 

20:00 24,2 80,8 73,9 19,7 73,3 67,1 

21:00 21,7 76,9 67,1 21 74,6 65 

22:00 14,1 68,1 59,4 13,6 66 57,5 

23:00 13,1 66,9 58,4 23,8 64,9 56,6 
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Table C.4:  Simulation results to determine voltage deviation on 132 kV line 

 

  No controller With shunt controller 

  Bus 66kV Voltage 132kV 
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 c
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) 

0:00 -4,91 94,14 97,06   1,15 100,26 100,23 100,53 

1:00 -4,93 94,13 97,03 97,34 1,14 100,25 100,2 100,5 

2:00 -4,84 94,21 97,2 97,51 1,22 100,34 100,37 100,67 

3:00 -4,83 94,22 97,22 97,53 1,23 100,36 100,39 100,89 

4:00 -4,75 94,32 97,38 97,68 1,32 100,45 100,55 100,95 

5:00 -4,86 94,16 97,22 97,54 1,21 100,28 100,39 100,7 

6:00 -5,06 93,86 96,9 97,23 1 100,02 100,07 100,4 

7:00 -5,12 93,8 96,83 97,17 0,94 99,92 100 100,33 

8:00 -5,14 93,7 96,82 97,14 0,92 99,9 99,9 100,3 

9:00 -5,14 93,77 96,83 97,14 0,91 99,9 100 100,31 

10:00 -5,07 93,83 97,01 97,31 0,99 99,96 100,18 100,47 

11:00 -5,02 93,91 97,09 97,38 1,04 100,04 100,26 100,54 

12:00 -4,96 93,96 97,21 97,49 1,1 100,11 100,37 100,65 

13:00 -4,97 93,96 97,17 97,45 1,09 100,11 100,34 100,61 

14:00 -4,92 94,03 97,27 97,56 1,14 100,16 100,71 100,44 

15:00 -4,98 93,96 97,17 96,45 1,08 100,08 100,33 100,61 

16:00 -4,97 93,95 97,16 97,45 1,09 100,01 100,33 100,61 

17:00 -5,23 93,95 97,19 97,49 1,01 100,09 100,36 100,65 

18:00 -5,13 93,55 98,84 97,19 0,83 99,69 100,01 100,35 

19:00 -5,16 93,7 96,96 97,3 0,93 99,84 100,13 100,45 

20:00 -4,98 93,67 96,87 97,23 0,99 101,22 101,42 101,75 

21:00 -4,77 93,95 97,06 97,41 1,08 100,08 100,23 100,57 

22:00 -4,75 94,29 97,34 97,65 1,32 100,42 100,51 100,81 

23:00 -4,74 94,33 97,38 97,68 1,27 100,41 100,44 100,73 
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