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ABSTRACT 

The South African department of energy forecasts generation capacity to reach 89.5GW by 

2030, and the objective is to have 8.4GW generated from solar Photovoltaic (PV) renewable 

energy plants. The department created an enabling environment for the private sector to invest 

through the Renewable Energy Independent Power Producer Procurement Program 

(REIPPPP). The REIPPPP has been hailed as one of the best renewable energy programs 

world-wide and has stimulated investment in this sector in South Africa. The questions 

considered in this research were: how is project viability of PV utility power plants assessed? 

Are conventional capital budgeting and project financial evaluation parameters sufficient to 

perform a preliminary analysis? How should investors account for risk associated with PV 

plants in South Africa? And finally, how should the risk be calculated or what tools and or 

techniques should be considered applicable?  The aim of this research was to propose and 

develop an investment framework and model that private investors could use during the 

preliminary phase of utility scale solar photovoltaic projects. The first focus of the study was 

the development of a financial model which employs the conventional capital budgeting 

parameters such as the net present value (NPV), the rate of return (IRR), the return on 

investment (ROI), and the Debt Service Coverage Ratio (DSCR). @Risk® simulation package 

was used to simulate financial uncertainty through varying some of the inputs randomly, to see 

the effect on required financial output and probability of viability. The second phase of the study 

expands on the NPV values that were calculated, through the use of real options analysis. The 

significance of real options is the fact that, the volatility factor which is incorporated in the 

formulae, best represents all risks which are not catered for in most project financial formulas. 

Real options analysis provides the decision makers of a project with the flexibility to actively 

evaluate the project’s financial viability and undertake the risk based on all available 

information. The study uses project data obtained from REIPPPP window two PV project to 

evaluate the investment feasibility using conventional project finance evaluation 

parameters, an @Risk® analysis is performed and then expanded upon to do a real options 

analysis.  A real options analysis (ROA) active mapping framework is adopted to map and 

analyse the viability of the project. This dynamic study of project financial evaluation in the form 

of the ROA of the case study, provided volatility and NPV ratios that yielded a ‘maybe invest 

now’ decision.  The project used as a case study is already constructed and the volatility used 

in this study was based on risks experienced during the construction phase. The results 

support the decision made to invest in this project, as a good investment opportunity 

undertaken three years ago. The research objective proposing that three techniques; 

conventional capital budgeting methods, risk analysis and real option analysis should be 

combined in financial analysis of renewable energy utility scale PV projects was confirmed 
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through this study. The advantage of combining the three techniques is that the financial due 

diligence now incorporates the risks associated with such projects which conventional capital 

budgeting methods does not account for.  
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OPSOMMING 

Die Suid Afrikaanse Departement van Energie voorspel dat Suid Afrika se 

opwekkingskapasiteit 89.5GW sal bereik teen 2030, met die doelwit om 8.4 GW hiervan met 

sonkrag photovoltaise (PV) energie projekte op te wek. Die departement het ‘n finansierings 

vriendelike omgewing geskep waarin die privaat sektor kan investeer deur die Hernubare 

Energie Onafhanklike Kragvoorsiener-program (REIPPPP). Die REIPPPP word wyd geloof as 

een van die beste hernubare energie programme ter wêreld en het aansienlike investering in 

Suid Afrika teweeggebring. Die vrae wat in hierdie navorsingstuk ondersoek is was: hoe word 

die projek lewensvatbaarheid van grootskaalse PV projekte geassesseer? Is konvensionele 

kapitale begrotings en projek finansiële evaluasie parameters voldoende om 'n voorlopige 

analise uit te voer? Hoe behoort beleggers voorsiening te maak vir die risikos wat met PV 

projekte in Suid Africa geassosieer word? En laastens hoe behoort die risiko bereken te word 

en watter tegnieke moet oorweeg word ten einde ŉ ingeligte besluit te kan neem? Die doel van 

hierdie navorsing was om 'n finansiële model te ontwikkel en voor te stel wat privaat beleggers 

kan gebruik om die lewensvatbaarheid van grootskaalse PV projekte tydens die ontwikkeling 

fase te bepaal. Die eerste fase van die model het die tradisionele finansiële parameters in ag 

geneem, onder andere die netto huidige waarde (NPV), interne opbrengkoers (IRR), opbrengs 

op belegging (ROI) en die skuld vereffenings dekking verhouding (DSCR). Die @Risk® 

simulasie pakket is gebruik om die finansiële onsekerheid te simuleer deur die inset 

parameters lukraak te wysig en sodoende die effek op finansiële uitsette en die 

waarskynlikheid van lewensvatbaarheid te bepaal. Die tweede fase van die projek brei uit op 

die NPV waardes wat bereken is, deur die gebruik van die reële opsies benadering (ROA). Die 

waarde van reële opsies is die feit dat die formule 'n wisselvalligheids faktor bevat wat alle 

risikos assesseer, iets wat nie deur die meeste projek finansiële formules in ag geneem word 

nie. Reële opsies benaderings voorsien aan die besluitnemers van projekte die buigsaamheid 

om aktief die projek se lewensvatbaarheid te analiseer en die riskio te ontleed met alle 

moontlike informasie tot hulle beskikking. Projek data wat ingesamel is van 'n projek uit die 

tweede rondte van die REIPPPP is in 'n gevallestudie gebruik om die finansiële 

lewensvatbaarheid van die projek te bepaal. Dit is gedoen deur die gebruik van konvensionele 

projek finansierings evaluasie parameters. ‘n @Risk® analise is uitgevoer en daarna uitgebrei 

om die reële opsies benadering toe te pas. 'n Reële opsies benadering aktiewe kartering 

raamwerk is gebruik om die lewensvatbaarheid van die projek uit te beeld en te analiseer. 

Hierdie dinamiese studie van die projek se finansiële evaluasie deur middel van 'n ROA van 

die gevallestudie, het wisselvalligheid en NPV verhoudings opgelewer wat 'n 

"investeer moontlik nou" besluit teweeg gebring het.  Konstruksie is reeds voltooi op die projek 

wat as gevallestudie gebruik is en die wisselvalligheid wat in hierdie studie gebruik is is 
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gebaseer  op risikos en kwessies wat tydens die konstruksie fase ervaar is, en nie risikos wat 

bekend was tydens die ontwikkelings fase nie.  Die resultate bevestig die besluit wat 3 jaar 

gelede gemaak is om in hierdie projek te belê as 'n goeie beleggingsgeleentheid. Die 

navorsings doelwit wat aanbeveel dat die drie tegnieke; die konvensionele kapitale begrotings 

metode, risiko analise en die reële opsies benadering metode gekombineer moet word tydens 

die finansiële analise van grootskaalse hernubare energie PV projekte is deur hierdie studie 

bevestig.  Die voordeel teweeggebring  deur die kombinering van hierdie drie tegnieke is dat 

die finansiële omsigtigheidsondersoek nou die risikos insluit wat met hierdie projekte 

geassosieer word, waar konvensionele kapitale begrotings metodes nie hierdie risikos in ag 

neem nie. 
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1 CHAPTER ONE:  
INTRODUCTION 

1.1 INTRODUCTION 

A 2009 Department of Energy (DoE) publication (Subramoney, et al., 2009), stated that the 

government was determined to reduce the country’s reliance on high-carbon power generation 

sources. From years past up to 2015, the country’s electricity generation is still over 90% coal-

based, with the rest taken up mainly by nuclear, gas and hydro-scheme generation plants. 

The DoE issued an Integrated Resource Plan (IRP) in 2011, which documented a roadmap for 

adding new capacity to the country’s system of electricity power generation for the next 20 

years. According to the IRP, the target for renewable energy generation is to reach a maximum 

of 42% of the entire new fleet of generation capacity built between 2010 and 2030. The forecast 

is that by 2030, overall generation capacity will be at 89.5GW, and of that, 17.8GW will be from 

renewable energy sources, with 8.4GW each from solar and wind energy (South Africa. 

Department of Energy, 2011). 

The DoE, together with National Treasury, crafted and implemented a private investor friendly 

renewable energy policy which culminate in the Renewable Energy Independent Power 

Producers Procurement Program (REIPPPP) (Winkler, 2005). The government backed policy 

had the goal of stimulating private sector investment through public private partnership models 

and thereby created an enabling investor environment. The REIPPPP is a bidding process, 

through which, independent power producers that are able to propose technically sound 

projects to meet local economic content and local development requirements at the best-

proposed tariff, are awarded projects by the DoE (Papapetrou, 2014). The bidding process is 

phased into what is referred to as bid windows, with each bidding window, there is a number 

of allocated MW per renewable energy technology type to be awarded based on specified 

criteria. 

The private industry’s appetite to enter any unexplored territory is solely driven by its potential 

profitability and associated risk.  

“When we consider investing in a renewable energy project, we focus on two key factors. 

First, we only pursue investments that we believe make financial sense. South Africa’s 

strong resources and supportive policies for renewable energy make it an attractive place 

to invest—which is why it had the highest growth in clean energy investment in the world 

last year. Second, we look for projects that have transformative potential—that is, projects 
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that will bolster the growth of the renewable energy industry and move the world closer to 

a clean energy future.” (Needham 2013). 

This statement was made by Google’s director of Energy and Sustainability. It concisely 

captured the potential and lucrativeness of the market, as seen by prospective investors. 

However, with the renewable energy industry being in its infancy in South Africa, no academic 

research was found that relates to the techno-economic viability of investing in large-scale grid-

connected photovoltaic systems. Some of the literature reviewed (Chidi, et al., 2012) presents 

models and a techno-economic evaluation of similar technologies in different parts of the world 

(Chowdhury, et al., 2010). One relevant study looked at the economic viability of solar PV 

electricity generation as compared to conventional energy sources in order to estimate when 

grid parity would be reached in South Africa (Minaar, 2011). 

1.2 THE PROBLEM STATEMENT 

South Africa’s REIPPPP has been ranked in the top three globally, due to the achievements 

of the program over the last three years. The programme has been regarded as excellently 

regulated and implemented and has attracted investors from different sectors both locally and 

internationally. In addition to the goal of addressing the need for incorporating more renewable 

energy sources in SA’s energy mix, it was equally important to develop a programme that 

would stimulate a market for this technology whilst driving the tariff to levels that could be at 

parity with conventional power generation technologies. By observing the tariffs from REIPPPP 

projects in 2011 to current, it is clear that the competitive nature of the programme has pushed 

the tariffs down. For the private equity investors or shareholders, the question regarding the 

profitability of the REIPPPP has gained stronger emphasis due to the dramatic decrease in 

tariffs in short period of time. The complementary problem related to the question of profitability 

is the aspect of risk associated with the renewable energy projects and industry within South 

Africa. Given the infancy of the industry in South Africa, there was no research work done for 

large scale renewable energy photovoltaic projects. The problem being investigated is how to 

development techno-economic model to evaluate profitability of PV projects in South Africa 

from a private equity investor perspective. The second and most critical problem is how 

conventional capital budgeting framework addresses project risk and its impact on project 

viability. Furthering this object is the use of @Risk® simulation to analyse probabilities of 

profitability and then lastly incorporating real options analysis in the study to evaluate viability 

of projects in lieu of associated risk. 
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1.3 AIMS AND OBJECTIVES 

The aim of this research was to propose and develop a financial model that investors could 

use during the feasibility evaluation phase of utility scale photovoltaic projects. The first phase 

of the model considered the traditional financial parameters such as the net present value 

(NPV), the internal rate of return (IRR), the return on investment (ROI), and the debt service 

coverage ratio (DSCR). Recent developments that have led to further drastic decreases in 

tariffs for projects awarded under the REIPPPP due to how companies structure the financing 

of their large renewable energy projects. Therefore, the question on the profitability and 

sustainability of the programme for private investors has come to the surface as tariffs went 

down. This research and model developed is for projects under project financing structure 

funding. A technology learning curve model was also used to evaluate what could be expected 

in South Africa, and an attempt to incorporate the learning curve in the sensitivity analysis of 

the NPV, IRR, ROI and DSCR. @Risk® statistical simulation is performed with the specific 

focus of varying only three key inputs: energy output, inflation and loan interest. This simulation 

evaluation enhances the sensitivity analysis by randomly varying key input data.  

The second phase of the project expanded on the NPV values that were calculated, through 

the real options analysis theory. A framework established by Luehrman (1998) and developed 

further by Campher (2012), called the real options analysis active mapping tool, was developed 

to conduct analyses on projects. Real options analysis (ROA) provides the decision makers of 

a project with the flexibility to actively evaluate the financial viability with risk volatility factored 

into the calculation. When the project risk is considered objectively, the decision could 

ultimately be to defer, abandon, or execute the project.  

The use of real options analysis (ROA) for the current renewable energy programme was of 

particular interest because the procurement program  have shown an increase in the number 

of projects submitted, while far fewer projects are awarded. Therefore, adopting a financial 

evaluation model that considers the project risk is critical for investors especially as the 

competition for winning the bid is high. The objective of this research was to show that the use 

of capital budgeting model should be enhanced through incorporation of project risks in order 

to realistically assess financial feasibility of renewable energy utility-scale PV projects. 

1.4 RESEARCH QUESTIONS 

The following research questions were posed in order to achieve the aim set out for the 

research project: 

1. What factors influence the financial viability of renewable energy PV projects? 
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2. Is capital budgeting project financial evaluation sufficient to evaluate profitability in the 

South African renewable energy PV industry, given the current tariffs and economic 

climate? 

3. How can risk in renewable energy projects be contemplated by investors? 

4. Could the @Risk® tool provide required risk analysis complimentary enough to real 

options? 

5. Could real options be considered for the evaluation of renewable energy PV projects? 

6. How should the implementation of real options be considered for PV projects? 

7. What value does real option analysis add to the traditional valuation of project economic 

feasibility in the renewable energy PV market? 

1.5 METHOD OF RESEARCH  

Literature was reviewed to understand the tools, techniques and models that have been 

developed to date and an assessment was made concerning their relevancy in the South 

African context. A technical and financial analysis of the requirements to develop a grid-

connected PV system was performed. A financial spreadsheet model was developed, which 

had the following as inputs: capital expenditure to construct the plant, energy output of the 

plant, financial factors such as interest rates for loan repayment, tax rates, tariffs, inflation rate, 

loan tenure, and debt vs equity ratio. The model calculates the traditional discounted cash 

flows of the project, providing information regarding the net present value, rate of return, and 

return on investment and equity. The model was then expanded further by incorporating the 

real options analysis model, and the results of this were also mapped onto the active mapping 

tool. 

To validate the relationship between the technical parameters and the economic yield of a 

theoretical project, a case study was evaluated. The case study was based on one of the 

projects that were selected under the REIPPPP preferred bidder window 2, and window 3 

tariffs were also used in the model to measure the difference between the two bidding windows. 

The reason for the use of the phase 3 tariff was to demonstrate as under scenario analysis the 

financial viability of such low tariffs.  

It was expected that the results obtained would match, or be very close to the figures obtained 

by the case study project developers during the bidding phase of the project. It was also 

expected that this model would confirm that, under the current South Africa DoE policy, these 

projects would be viable and profitable for independent power producers. 
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1.6 CHAPTER LAYOUT 

This chapter has laid the general background as an introduction to the study, further raising 

the questions that will be answered as well as highlighting the study objective. Chapter Two 

discusses the literature surveyed for the study, and covers the theory and technical parameters 

that typically influence the energy generation of large-scale photovoltaic systems. A 

background on the South African Renewable Energy Independent Power Producer 

Procurement Program is also introduced and expounded upon. The third chapter gives a brief 

overview of project finance and the financial evaluation of projects. The theory of real options 

analysis is also discussed against the backdrop of discounted cash flows. Chapter Four 

discusses how the model was developed, the different parameters that were included and the 

assumptions that were made. The fifth chapter investigates the case study within the 

framework of the model that was developed, and it presents the results for the discussion of 

the thesis. The conclusions of the study are finally drawn in Chapter Six. 

1.7 SUMMARY 

In this chapter, the REIPPPP was introduced, which is a bidding process, through which 

independent power producers that are able to propose technically sound projects at the best-

proposed tariffs, are awarded projects by the DoE. The aim of this research was introduced, 

along with the research questions and method of research. The chapter ended with the layout 

of the dissertation.  

The next chapter presents a comprehensive literature review of the thesis, which includes a 

technical review of PV systems as well as a brief review of the renewable energy independent 

power producer program process. 
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2 CHAPTER TWO:  
PV TECHNICAL LITERATURE REVIEW  

 

2.1 INTRODUCTION 

This chapter provides a literature review on photovoltaics (PV). It begins with a discussion on 

the potential for solar energy, globally, and contemplates the amount of available solar energy 

in certain parts of the world, with a focus on the amount of electricity that could be generated 

from PV technology. The chapter then turns towards solar technologies by discussing the 

primary technologies that are available for generating electricity from solar radiation. It focuses 

on photovoltaic technology systems directly, the different types of PV technology, and how 

these systems are manufactured.  

Balance of system (BOS) or balance of plant (BOP) components are then discussed, such 

as inverters, with a deliberation on central inverters and string inverters. The applications of 

PV systems are then presented, with each of the systems of off-grid or standalone, grid-

connected distributed and grid-connected centralised being reviewed in detail.  

The chapter explores the models and methodologies for determining the potential energy yield 

of a PV installation, and considers aspects such as irradiation on the PV module’s plane, and 

other important site-specific characteristics. Concepts such as PV panel performance are also 

presented as factors that are important for discerning the potential energy yield, and therefore 

the financial feasibility of a PV project.  

The chapter provides a brief introduction and discussion on South Africa’s renewable energy 

policies, implementation status, as well as the Renewable Energy Feed-In Tariffs (REFIT) and 

Renewable Energy Independent Power Producer Procurement Program (REIPPPP). 

2.2 THE SOLAR POTENTIAL 

Researchers have sufficient statistical data on solar irradiation and energy availability collected 

globally to show that there is more than enough solar energy to supply the world’s energy 

consumption (GreenPeace & EPIA, 2011).  The US National Solar Radiation database has 30 

years’ worth of solar irradiation and meteorological data from 237 sites in the USA 

(GreenPeace & EPIA, 2011). The European Joint Research Centre (JRC) also collects and 

publishes solar irradiation data from 566 sites around Europe (GreenPeace & EPIA, 2011). 

Green Peace & EPIA reported that about 60% of the total energy emitted by the sun (towards 

the Earth) reaches the earth’s surface. Furthermore, the total solar energy that reaches the 
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earth’s surface could meet existing global energy demand more ten-thousand times, as shown 

in Figure 2.1 (GreenPeace & EPIA, 2011). In the year 2000, Jackson and Oliver (cited in 

Audenaert et al., 2010) stated that if all solar irradiation could be converted into a useful form 

of energy with an average efficiency of 5%, only 3% of land in the United Kingdom would be 

sufficient to supply its total electricity demand. Even if only 0.1% of the sun’s available energy 

could be converted to usable energy, at an efficiency of 10%, it would be four times larger than 

the world’s total electricity generating capacity of about 5,000 GW (GreenPeace & EPIA, 

2011).  

 

Figure 2.1 Comparison of available green energy sources compared to the global 
energy needs 

Source: (GreenPeace & EPIA, 2011) 

On average, each square metre of land on earth is exposed to enough sunlight to generate 

1,700 kWh of energy every year using currently available technology (GreenPeace & EPIA, 

2011). Where there is more sun, more power can be generated. The sub-tropical areas of the 

world offer some of the best locations for solar power generation. The average energy received 

in Europe is about 1,200 kWh/m2 whereas the Middle East experiences between 1,800 and 

2,300 kWh/m2 per year (GreenPeace & EPIA, 2011). South Africa’s annual solar irradiation is 
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between 1600 and 2400 kWh/m2 (South Africa. Department of Energy, 2011). The country is 

therefore well positioned to harness the energy from the sun. 

There is enormous untapped potential, and vast areas such as roofs, building surfaces, fallow 

land and deserts could be used to support solar power generation. For example, the European 

Photovoltaic Industry Association (EPIA) has calculated that Europe’s entire electricity 

consumption could be met if just 0.34% of the European land mass were covered with 

photovoltaic (PV) modules (an area equivalent to the Netherlands) (GreenPeace & EPIA, 

2011). Furthermore, at least 40% of the European Union’s total electricity demand could be 

met if all suitable roofs and facades were covered with solar panels (GreenPeace & EPIA, 

2011). International Energy Agency (IEA) calculations show that if four percent of the world’s 

very dry desert areas were used for PV installations, the world’s total primary energy demand 

could be met (IRENA, 2012). 

2.3 SOLAR TECHNOLOGIES 

The use of solar energy is growing rapidly around the world, in part due to the fast-declining 

solar panel manufacturing costs. For instance, between 2008 and 2011, PV capacity increased 

in the United States from 1,168 MW to 5,171 MW, and in Germany from 5,877 MW to 25,039 

MW (World Energy Council, 2013).  

There are two main technologies for producing electricity from solar radiation that have gained 

traction around the world: concentrated solar power (CSP), also known as solar thermal 

energy; and solar photovoltaic (PV) technology (Bosatra, et al., 2010).  

There are four different CSP technologies in use: the parabolic mirror trough, the linear 

Fresnel, the Dish Stirling and the Solar Tower (Dinter & van Niekerk, 2014). In these systems, 

mirrors are used to concentrate the thermal energy of the sun to heat a transfer fluid. The heat 

energy of the fluid is then used to produce steam, and electricity is generated when this steam 

is used to drive conventional turbines.  

In contrast, PV technology uses silicon-based photovoltaics to convert the energy from solar 

radiation directly into electricity. PV technologies that have become commercialised are PV 

thin film and PV crystalline (Candelise, 2009). Another form of PV technology also available 

commercially, is concentrating photovoltaic (CPV) technology, which is based on the reflection 

of concentrated sunlight onto highly efficient photovoltaic cells, such as copper indium gallium 

diselinide (CIGS) and thin film amorphous silicon. Nowadays, CPV technology is used only in 

smaller or prototype PV installations and has not yet been considered as a viable alternative 

to other technologies for bigger utility-scale PV plant installations (Baker, et al., 2013).  
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2.3.1 Introduction to photovoltaic (PV) technology systems  

A PV system is an integrated assembly of modules and other components designed to convert 

solar energy into electricity. The main component of a PV system is the photovoltaic panel, 

which contain cells that convert sunlight into electricity. A PV system does not need bright 

sunlight in order to operate. It can also generate electricity on cloudy and rainy days from 

reflected sunlight (Candelise, 2009). The basic element of photovoltaic panels, the cell, is 

comprised of layers of a semi-conducting material, and light falling on these cells generates 

an electric field across the layers, which causes electricity to flow. The intensity of the light 

determines the amount of electrical power that each cell generates (Candelise, 2009). 

Each cell of a PV panel consists of a junction of two thin layers of dissimilar semiconducting 

material (see Figure 2.2): a positive ‘p-type’ semiconductor and a negative ‘n-type’ 

semiconductor, which creates an electric field in the region of the junction where negative and 

positive charges move in opposite directions (Markvart & Castaner, 2003). 

As stated by Candelise (2009): 

“Semiconductors have weakly bonded electrons occupying a band of energy called the 

valence band. Photons whose energy is greater than the band gap energy can excite 

electrons and make them free to move into the so-called conduction band where they can 

conduct electricity through the material. When an electron is stimulated by a photon to jump 

into the conduction band, it leaves behind a hole in the valence band. Therefore, two charge 

carriers are generated, one positive and one negative. The flow of electrons is by definition 

an electric current. If there is an external circuit for the current to flow through (e.g. the 

metallic contacts on top of the cell) the moving electrons will eventually flow out of the 

semiconductor”. 

PV solar electricity generating systems produce direct current (DC). Most appliances, however, 

utilise alternating current (AC); therefore, an inverter is one of the key required components of 

a PV system. All other additional components needed to construct a PV system are called 

Balance of Plant (BOP) components (Candelise, 2009). Usually, the BOP refers to all of the 

PV system components and cost elements aside from the modules. It thus includes the cables 

and wiring, metering (for grid-connected applications) and the installation, design and 

commissioning costs (Baker, et al., 2013). 
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Figure 2.2 Diagram of the mechanism of electricity generation from a PV panel 

Source: (Markvart & Castaner, 2003) 

2.3.2 Types of PV technologies and their manufacture 

It is important to have an appreciation of how PV modules are produced. There are various 

types of PV technologies, as shown in Figure 2.3, including crystalline silicone, thin film 

modules and third-generation technologies (Luckhurst, 2014).  

 

Figure 2.3: Different types of PV module technologies 

Source: (Luckhurst, 2014) 
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Below is a summary of the processes of manufacture of each of these. 

2.3.2.1 Crystalline silicone technology 

Crystalline silicone module technology is the most widely used technology, whereby about 

86% of current global photovoltaic production uses wafer based crystalline silicon technology 

(Photon International, 2009). This technology has reportedly been around for decades, since 

the 1970's, and was mainly used on electronic equipment and spacecraft (Candelise, 2009). 

As a result, it has matured as a technology, and currently produces highly reliable modules 

that are now guaranteed for 20-year lifespans (Candelise, 2009). Over the last two decades, 

following the need to consider more renewable energy resources, focused research and 

development (R&D), and support for this technology, the energy conversion efficiency has 

progressively improved, as shown in Figure 2.4 (Luckhurst, 2014).  

Quartz sand is mined to produce silica, which is further processed in “super-high-heat 

furnaces” to melt the sand into silicon; and thereafter it is purified to required specifications. As 

shown in Figure 2.5, the silicon is then crystallised under carefully controlled conditions into 

large blocks of crystalline material, or ingots, which are then treated and cut into very thin 

slabs, or wafers. Silica can be processed into either monocrystalline or multi-crystalline 

variants, whereby the monocrystalline form is a more purified grade and therefore has better 

conversion efficiency than that the multi-crystalline form.  

Multi-crystalline silicon is less energy intensive in the production process, and is therefore 

cheaper (Alsema & Nieuwlaar, 2000). The complete production line can also be bought, 

installed and prepared for production within a relatively short timeframe, making it an appealing 

and low-risk investment. This has historically been a significant advantage of multi-crystalline 

technologies, allowing a large number of new companies to enter the market in recent years, 

to meet the increasing demand for PV products (Candelise, 2009, p. 53). 
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Figure 2.4 PV cell efficiencies between 1975 and 2014 

Source: (Luckhurst, 2014) 

 

 Figure 2.5: Crystalline silicone manufacturing process  

Source: (Luckhurst, 2014) 

National Renewable Energy Laboratory (NREL) research shows that in laboratory tests, 

crystalline technology is “pushing the limits”, with a goal to reach the mid- to upper-twenty 

percentage efficiency range (Luckhurst, 2014). 

Some of the thin film technologies are also reaching the early-twenty-percent range of 

efficiency. First Solar Cadmium Telluride (CdTe) technology has reached this target and is 

going into production already (Luckhurst, 2014). This level of efficiency is approaching the 

efficiencies of some of the more well-established crystalline technologies. 
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2.3.2.2 Thin film technology 

Thin film technologies date back to the 1980s, but it is only recently that this technology has 

attracted significant interest in the PV sector, due to the increasing market and industry focus 

on cost reductions (Baker, et al., 2013).  

Thin film modules are made by depositing thin (0.5 to 10 micrometre) layers of semiconductor 

material onto glass plates, or substrates. The depositing of semiconductor material onto a 

substrate can be done by various techniques: chemical vapour deposition, evaporation, 

electrolytic deposition and chemical bath deposition (Alsema & Nieuwlaar, 2000). The solar 

cells are created through a subsequent layer deposition process and are ‘defined’ by removing 

some of the previously deposited material. Contact layers are also deposited using similar 

techniques. When the final processing is done, the module is encapsulated and sealed off with 

a glass plate or polymer film (Alsema & Nieuwlaar, 2000). 

Due to the boom in the silicon market (as a result of the demand for PV modules and other 

such technologies), there has been a shortage of silicon in recent years. This, together with 

the increasing need to reduce PV module cost, has resulted in a renewed interest to invest in 

thin film technologies (Candelise, 2009). Thin film is reportedly gaining market share, with 

reports noting an almost doubling in market share between 2005 and 2008 (First Solar, 2009). 

2.3.2.3 Third generation technology 

The third generation category of PV technologies incorporates various of the PV technologies, 

and while it is mostly still in R&D stage, it is seen by many as “the bright future for PV”, because 

it is likely to provide the breakthroughs that are needed to achieve cost reductions and an 

increased diversity of applications (Candelise, 2009). 

2.4 INVERTERS 

As discussed previously, PV solar panels produce DC electricity; however, grid electricity is 

based on AC, as are most electrical appliances and equipment that are available for 

commercial, industrial and residential use (Candelise, 2009). Therefore, there is a need to 

install a DC to AC converter, or inverter, to render the electricity usable for general applications. 

Inverters also perform a variety of other critical functions (Huang & Pai, 2001): 

• Due to the variability and intermittency of energy produced by the sun, in cases where 

there may be clouds or other factors affecting power production, inverters optimise 

voltages by ensuring a ‘maximum power point’ at all times, so that maximum available 

power is delivered at all times. 
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• Inverters have the controlling function of switching off the power production where 

certain regulatory limits are not met, or in the case of faults, issue instructions to other 

items of the system to isolate the faulty section of the array. 

Inverter efficiency is a measure of the losses experienced during the conversion of DC to AC 

power. Conversion efficiency is the ratio of the fundamental component of the inverter’s AC 

power output, to its DC power input, as shown in Figure 2.6 (Miller & Lumby, 2012). 

 

Figure 2.6 Efficiency curves of low, medium and high efficiency inverters 

Source: (Miller & Lumby, 2012) 

The conversion efficiency of an inverter is ultimately dependent on the DC input power, which 

in turn depends on the operating voltage, and this is related to the weather conditions, such 

as ambient temperature and irradiance. Changes in ambient temperature and irradiance lead 

to changes in the ‘maximum power point’ of the PV system; therefore, the output power from 

a PV array varies based on these factors (Miller & Lumby, 2012). 

Two types of inverters exist: central and string inverters 
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2.4.1 Central inverters 

Central inverters are used on large-scale PV plants. They offer a high level of reliability and 

are simple to install. They are designed for three-phase current, and incorporate both a 

frequency and voltage transformer (Miller & Lumby, 2012). 

2.4.2 String inverters 

String inverters consist of multiple inverters that are used for a number of ‘strings’ of modules. 

They can cover a wide power range and are cheaper to manufacture compared to central 

inverters (Zhang, et al., 2006). They are very useful in cases where PV module specifications 

are different, or where array orientations differ. They work well for small power plants, but are 

not preferred for utility scale installations because of the many logistical requirements 

necessary for their implementation (Miller & Lumby, 2012). 

2.5 APPLICATIONS OF PV SYSTEMS 

PV systems can have different applications, which may be divided into the following categories: 

off-grid or standalone, grid-connected distributed, and grid-connected centralised. 

2.5.1 Off-grid or standalone  

Off-grid or standalone PV systems operate independently of any grid network and are mainly 

used for remote power applications. Off-grid industrial systems provide a cost-effective way of 

bringing power to areas that are very remote from existing grids. The main implementation of 

this type of system is in the rural areas of developing countries, where people use the system 

for electricity supply to their own dwellings (Preiser, 2003). Non-domestic uses of such systems 

also include a wide range of commercial applications, in particular for telecommunications — 

such as repeater stations for mobile phones, marine navigational aids, remote lighting, 

highway signs, water pumps, and so forth — where small amounts of electricity can have high 

costs (Candelise, 2009). This makes PV relatively cost competitive with other small power-

generating sources, while the high costs of constructing high-voltage power lines also makes 

the construction of off-grid solar power systems an economical alternative (Candelise, 2009). 

In most cases, off-grid systems require storage batteries to be installed as part of the system, 

to cater for periods of low or no irradiation.  

2.5.2 Grid-connected distributed  

Grid-connected distributed PV systems produce electricity using standard PV modules that are 

installed on homes and businesses in developed areas for their own use, as shown in Figure 
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2.7, but are connected to the public electricity grid via a suitable inverter to convert DC to AC 

(Preiser, 2003). By connecting to the local electricity network, normally on a low voltage 

network, and not on a large scale, the system installers can sell any excess power that is 

generated (and therefore not consumed by the installer) back to the electricity grid. When there 

is bad solar irradiation and the PV system cannot produce enough electricity, electricity can 

instead be drawn from the grid. These types of systems can be installed on the tops of roofs 

(in private, public or commercial premises), integrated into premises’ façades as Building 

Integrated PVs (BIPV), or simply located in the built environment; for example, ground 

mounted in areas close to premises or on motorway sound barriers (Assi, et al., 2009).  

 

Figure 2.7 Diagram representing a grid-connected distributed PV system 

Source: (GreenPeace & EPIA, 2011) 

2.5.3 Grid-connected centralised:  

A grid-connected centralised type of PV system is constructed on a large scale to perform the 

functions of a centralised power station. This type of PV system is referred to as either utility-

scale grid-tied, or grid-connected (Candelise, 2009). The power produced by the system is not 

associated with a particular electricity customer and is simply supplied to the regional or 

national grid network as bulk power. Such systems are typically ground-mounted and vary in 

capacity and size, as shown in Figure 2.8 (Bakke, 2011). 

Utility-scale PV systems are relatively new, and growing in popularity at a very fast pace. In 

2009, some of the largest plants in the world produced between 40 and 60 MW, while to date, 

there are plants being built with capacities of hundreds of megawatts (Edkins, et al., 2010).  
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Figure 2.8 Diagram representing a grid-connected centralised PV system 

Source: (Bakke, 2011)  

In a grid-connected centralised type of PV system, the PV modules are electrically connected 

together in series and parallel, and connected by DC cabling to centralised inverters that 

convert the DC electricity into AC electricity. The inverters are then connected together, on the 

AC side, to a medium-voltage network, which in turn is delivered to a high-voltage (HV) or 

extra-high-voltage (EHV) grid by means of one or more step-up transformers (Bosatra, et al., 

2010). 

PV modules are installed on fixed metallic support structures that are arranged in long, 

adequately spaced rows, at an appropriate tilt. When installing a fixed PV array, the ‘rule-of-

thumb’ is to select a tilt angle of approximately 15 degrees plus the sites’ degree of latitude, 

with a bias factored for the change of season (Lakeou, et al., 2006). In the Northern 

Hemisphere, the PV array should be positioned to face true south and vice versa for locations 

in the Southern Hemisphere. As discussed next, PV systems may also be deployed on tracking 

devices to follow the sun.  

2.5.3.1 Solar tracking systems 

A solar tracking system is designed to follow the sun throughout the day and to adjust the 

angle of the solar panels in relation to the sun, thereby ensuring maximum irradiation 

catchment by the panels’ area. More energy is collected by controlling the solar panel to follow 
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the sun like a sunflower, and research has shown that up to 30% more solar energy can be 

harvested by use of solar tracker systems, or between 20% and 50% increase in harvest 

efficiency, when compared to fixed-position systems (Guo, et al., 2013). However, the cost of 

a PV tracking system is also usually greater than a fixed PV system. 

According to Guo et al. (2013),  

"The efficiency of the PV system depends on climatic conditions of the solar radiation, 

ambient temperature and wind speed, matching of the system with load, and appropriate 

placement of solar panels." 

A solar tracking system must have the following essential features: 

1. Azimuth tracking for adjusting the tilt angle of the surface of the PV array during 

changing seasons; and 

2. Daily solar tracking for maximum solar radiation incidence to the PV array. 

The tilt angle (theta) of a PV array, which is required to follow the sun’s path throughout the 

year, is a function of the sun's seasonal altitude, as shown in the following equation and in 

Figure 2.9 (Lakeou, et al., 2006): 

�����	��	�
	�� = ��° − 	∅     [2.1 ] 
 

For a simple single-tracking system, motors and gears rotate the array about the y-axis with 

equally angular steps per set time, depending on the season and hours of sunshine per day. 

A Programmable Logic Controller (PLC) is designed and built into the motor control system, 

and seasonal data is stored in the PLC to drive the tracker to the correct position at any given 

time of the day, month or year (Lakeou, et al., 2006). 
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Figure 2.9 Tilt angle θ of a PV array 

Source: (Lakeou, et al., 2006) 

2.5.3.2 Grid integration 

In order for a PV power plant to export electricity onto a grid and receive income, the plant 

must be appropriately connected to the grid. Critical to grid connection are three factors: 

capacity, availability and proximity to the grid. To determine grid capacity, a technical analysis 

of the overhead lines, cables and transformers must be performed (Papapetrou, 2014). Should 

the required capacity not be available, the option to upgrade the existing infrastructure may be 

needed. A major cost influence of the grid connection infrastructure is the distance from which 

a power plant is to be connected, including the length of the line and cable. Additionally, higher 

connection voltages require higher infrastructure costs. 

2.6 ENERGY YIELD ANALYSIS 

A critical step for assessing a project’s feasibility, and therefore objectively assessing the 

possibility of attracting finance, is predicting the expected energy yield from a project. Based 

on the expected energy yield, modelling can be done. As can be expected, the estimated 

energy yield that is calculated by the model depends on the stage of the project’s development. 

In the initial phase, the available solar resource data and equipment specification data can be 

used in a simplified model. As the project development advances, other more sophisticated 

simulation tools must be used for improved accuracy (Miller & Lumby, 2012). 

The procedure for predicting PV plant energy yield using time-step simulation is as follows 

(Bizzarri, et al., 2013): 
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1. Obtain environmental data, including irradiance, wind speed, and average 

temperatures from land-based measuring stations; 

2. Calculate incident irradiation on a tilted plane for certain time steps; 

3. Model the plant performance with respect to varying irradiance and temperatures, to 

calculate energy yield in each time-step; 

4. Apply losses by using specific equipment efficiencies; 

5. Apply a statistical analysis of data to assess any uncertainty in input values, and 

evaluate its impact on the prediction of final energy yields. 

2.6.1 Irradiation on a module plane 

The financial revenue of PV project assumes a certain level of irradiation expected over the 

life of the plant. This energy output can only be estimated through the use of forecasting 

techniques in order to predict solar resource at a specific site over the lifetime of a project. This 

in turn relies on accessibility or availability of and analysis of historical data for that site. This 

data is typically given for a horizontal plane (Lorenzo, 2003). The assumption is that the future 

solar resource will follow the same pattern as the historical values, which is in and of itself a 

risk. This historic data may be obtained from land-based meteorological stations or satellite 

based measurements and imagery (Lorenzo, 2003). 

2.6.2 Modelling 

Appropriate simulation software can be used to predict the performance of a PV plant, based 

on available solar resource data. Typically, these simulations are detailed and evaluate the 

efficiency of a solar plant and its associated losses.  

A system’s energy efficiency and performance is based on a thorough accounting of its input 

and output energies. A utility PV energy plant’s output is dependent on the following 

parameters: PV module efficiency and module design parameters, location irradiation, cable 

losses, inverter efficiencies, and transformer efficiencies. In practical applications, the 

efficiency of a system is affected by the system’s losses, which are composed of equipment 

losses as well as the degradation of the equipment (Assi, et al., 2009). In the case of PV 

technology, PV module research shows that between 0.31% and 0.51% degradation is the 

accepted standard, per annum (Alsema & Nieuwlaar, 2000). 

The total solar radiation reaching an inclined PV module is the sum of the direct normal 

radiation (DNI), diffused radiation and reflected radiation components, as shown in Figure 2.10 

(Bouabdallah, et al., 2013). 

Stellenbosch University  https://scholar.sun.ac.za



21 
 

 

Figure 2.10: Components of solar radiation 

Source: (Bouabdallah, et al., 2013) 

The total solar radiation reaching an inclined PV module may be presented in the following 

equation: 

 
���� =	���� + ���� + ��
�     [2.2 ] 

Where, ����	��	�� !"	�!#�! ��$, �&'(��	)�*+, 	�!#�! ��$, �&'-	��	)�../�+#	�!#�! ��$, and 

�(0-	��	*+."+, +#	�!#�! ��$ 

The output of solar tracked arrays (as discussed in Section 2.5.3.1) rises to its maximum 

potential power quicker, and maintains this output for longer during production hours, than on 

fixed array systems (Jeong, et al., 2013). Energy production is calculated as follows: 

123 =	423�5���     [2.3 ] 
Where: 

Ppv is the power output of the panel; 

ηpv is the efficiency of the PV panel; 

A is the surface area of the PV panel; and 

Gtot is the overall solar radiation. 

The efficiency of the PV module is dependent on the temperature of the PV cells (Tc), as 

defined below (Bouabdallah, et al., 2013): 

423 =	467�8�79�8�
49:[< − =���9 − �>?@��]    [2.4 ] 
 

�9 = �7 + [�>?@� − �BCD + B��] 5���
5>?@�     [2.5 ] 

Where: 
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ηmanufacturer is the panel efficiency as provided by the manufacturer; 

ηch is the efficiency of the photovoltaic conversion chain with maximum power point 

tracking from the DC to AC converter; 

ẞt is the temperature coefficient, as provided by the panel’s manufacturer;  

Tnoct is the cell temperature under normal operating conditions; and  

Ta is the ambient temperature. 

The efficiency of modules also differs from manufacturer to manufacturer, and this has an 

effect on the cost of the module and the overall project cost. The higher the efficiency the more 

expensive the module. Therefore, the project developer has to consider the type of PV module 

upfront with his design. 

2.6.3 PV Array performance 

A recent comprehensive study identified seven factors influencing the annual performance of 

PV modules (Bruckman, et al., 2013). These factors are: 

• Cumulative solar irradiance: Long-term irradiance profiles depend on surface 

orientation and possible tracking. This factor depends on the location of the panel, and 

varies between a 25% reduction in irradiance for vertical surfaces — as compared to 

latitude-tilt fixed systems — to an over 30% increase in irradiance in the case of two-

axis tracking systems (Meyer & van Dyk, 2004).  

• Module power rating at standard test conditions: research on several PV technologies 

has shown that for the same power rating, all technologies’ expected annual energy 

production is very much similar within a 5% error margin. 

• Operating temperature: Operating module temperature can reduce annual energy 

production by a factor of between 2% and 10%, depending on the module design, wind 

speed, mounting technique and ambient temperature (Miller & Lumby, 2012). 

• Maximum power point voltage dependence on irradiance level: A-Si and CdTe modules 

tend to have a larger maximum power point voltage value at lower irradiance levels than 

the standard ‘1-sun’ conditions. This can result in an additional 10% increase in annual 

energy production. 

• Soiling: Soiling may account for an up-to-10% reduction in annual energy production 

(Meyer & van Dyk, 2004). 

• Variation in solar spectrum: It has been found that the effects of hourly variation on the 

solar spectrum almost cancel out on a yearly basis. Amorphous silicon technology has 

the highest sensitivity to this effect, but the observed changes usually remain below 

3%. 
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Optical losses when the sun is at a high angle of incidence (AOI): Optical losses occur 

due to an increased reflectance of the cover glass of PV modules for AOI’s greater than 

approximately 60 degrees. However, the effect on a long-term basis is relatively small 

(typically less than 5%) although it may have a larger effect on a seasonal basis (closer 

to 10% for a vertical inclination) (Meyer & van Dyk, 2004). 

Most of the PV system design and simulation software tools require input parameters that are 

specific to the site for the project.  

Table 2.1, below, provides a table of loss factors that influence the total plant yield. These 

should be considered for each plant design in order to arrive at a realistic yield (Miller & Lumby, 

2012). 
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Table 2.1 Table of plant losses 

Loss Description 
Module quality PV modules do not exactly match their manufacturer’s nominal 

specifications. Modules are sold with a nominal peak power and 
a guarantee of actual power, within a given tolerance range. 
The module quality loss quantifies the impact on the energy 
yield due to divergences in the actual module characteristics 
from their specifications. 

Module 
mismatch 

Losses due to ‘mismatch’ occur when modules in a string do not 
all present exactly the same current or voltage profiles and 
statistical variations between them give rise to power losses. 

DC cable 
resistance 

Every type of conductor has electrical resistance which results 
in what is termed “ohmic losses” and the conductor heats up. 
The DC cable between the module, combiner box and the input 
terminals of an inverter will give rise to ‘ohmic losses’ (I2R). If 
the cable is correctly sized, the loss could be less than 3% 
annually. 

Inverter 
performance 

Inverters convert DC power to AC power with an efficiency that 
varies with the inverter load. 

AC losses This includes transformer performance and ‘ohm losses’ in the 
cable leading to the substation. 

Downtime Downtime is a period when the plant does not generate power, 
due to equipment failure. The downtime periods depend on the 
quality of the plant’s components and its design, environmental 
conditions, and diagnostic and repair response times. 

Grid availability 
and disruption 

Once generated PV power has to be evacuated to where it is 
required and for that the availability of capacity or proximity of 
the distribution or transmission network comes to play. 
Typically, the owner of a PV power plant will not own the 
distribution network, but instead will rely on the distribution 
network operator to maintain service at high levels of 
availability. Unless detailed information is available, this loss is 
typically based on an assumption that the local grid will not be 
operational for a given number of hours or days in any one 
year, and that this lack of operation will occur during periods of 
average production. 

Degradation The performance of a PV module decreases with time. If no 
independent testing has been conducted on the modules being 
used, then a generic degradation rate — depending on the 
module technology — may be assumed. Alternatively, a 
maximum degradation rate that conforms to the module’s 
performance warranty may be considered. 
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MPP tracking Inverters constantly seek the maximum power point (MPP) 
of their array by shifting the inverter voltage to the MPP 
voltage. Different inverters do this with varying efficiency. 

Curtailment of 
tracking 

Yield loss due to high winds enforces the ‘stow mode’ of 
tracking systems. 

Auxiliary power Power is required for auxiliary electrical equipment on the 
plant. This may include security systems, tracking motors, 
monitoring equipment, and lighting. It is usually 
recommended to meter this auxiliary power requirement 
separately. 

Grid compliance 
loss 

This parameter is included to draw attention to the risk of a 
PV power plant losing energy through complying with grid 
code requirements.  

Soiling losses Dust and bird droppings accumulate on the glass substrate 
of the modules, thus obstructing some of the irradiation and 
causing loss of solar energy conversion. The operations and 
maintenance strategy for cleaning panels’ deals with this, 
however, if not properly implemented, losses of up to 4% 
could be expected. Rain does help, though, with washing off 
some dust (Endecon Engineering, 2001). 

Module efficiency 
at low irradiance 
levels 

Energy conversion efficiency reduces at lower light 
intensities. This loss depends on the module design 
characteristics and the irradiation intensity. 

Losses at 
temperatures 
about 25 degrees 
Celsius 

Module efficiency characteristics are designed for standard 
temperature conditions of 25 degrees Celsius. When 
temperatures exceed this set standard, the efficiency 
performance of the modules reduces, whereby a one degree 
Celsius difference leads to about 0.5% drop in performance. 
Areas with high ambient temperature and strong irradiance 
cause increased module temperatures, which reduce PV 
module efficiencies. Wind can provide some cooling effects 
and should be factored into any models when accurate 
energy yield calculations are required.  

Shading losses – 
(inter-row, 
horizontal) 

Any structure or object that is in the way of the sun can lead 
to shade to be cast on the panel. This leads to parts of the 
panel cells either partially or incompletely producing 
electricity, thereby reducing the efficiency of the panels. 
Therefore, designs should consider the distance of the array 
rows from each other, especially at sunrise and sunset. 

Source: (Miller & Lumby, 2012) 
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Losses are dependent on specific site characteristics as well as the plant design, and could 

come from any of the factors presented in the losses table above (Miller & Lumby, 2012). 

The PV system designer has to consider all these factors during development phase of the 

project as they can affect the overall energy yield and therefore impact on financial ratios.  

2.7 SOUTH AFRICAN ENERGY BACKGROUND 

South Africa is blessed with rich deposits of minerals and fossil fuels in the form of coal, and 

is ranked among the top ten countries in the world, in terms of coal reserves. It has also been 

ranked the sixth largest coal producer in the world with total production estimated at 4% of 

world production (South Africa. Department of Minerals and Energy, 2007). The country’s 

historic economic development was founded upon the extraction and processing of these 

mineral resources, of which coal inevitably emerged as the major source of primary energy. 

The abundant coal reserves and dominance of coal fired power stations contributed 

significantly towards an economic environment wherein the unit price of electricity is among 

the cheapest in the world (South Africa. Department of Energy, 2011). 

A 2009 department of energy publication (South Africa. Department of Energy, 2011) stated 

that the government was determined to reduce the country’s reliance on high-carbon power 

generation sources; however, in 2015 the country’s electricity generation is still 91.7% coal-

based, with the rest produced mainly by nuclear, gas and hydro-scheme generation plants.  

The Department of Energy (DoE) issued an updated Integrated Resource Plan (IRP) in 2011, 

which documented a roadmap for adding new capacity to the country’s system of electricity 

power generation for the next 20 years. According to the IRP, the target for renewable energy 

generation is to reach a maximum of 42% of the new generation capacity built between 2010 

and 2030. The forecast is that by 2030, overall generation capacity will be at 89.5GW, and of 

that, 17.8GW will be from renewable energy sources, with 8.4GW from both solar PV and wind 

energy; the rest being concentrated solar power. The IRP provided the contribution detail plan 

per technology as presented in Figure 2.11 below (South Africa. Department of Energy, 2011). 
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Figure 2.11 Initial total capacity estimates by 2030 

Source: (South Africa. Department of Energy, 2011) 

The DoE has resolved to reduce the high contribution of coal energy with the new generation 

capacity making up only 16.3% of capacity to be added by 2030 as shown in Figure 2.12. The 

renewable energy sources content, however, could increase by double the figure that was 

initially planned (South Africa. Department of Energy, 2011). 

 

Figure 2.12 New Capacity as per IRP 2011 

Source: (South Africa. Department of Energy, 2011) 

Prior to the IRP of 2011, the white paper on renewable energy of 2003 by the Department of 

Minerals and Energy (South Africa. Department of Minerals & Energy, 2003) had set its target 

at 10,000 GWh of renewable energy contribution towards the total final energy consumption 
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by 2013. This paper’s approach in tackling the implementation of integrating renewable 

technology in South Africa’s energy mix was broader than just utility scale renewable energy 

power plants.  

2.7.1 Renewable energy policy 

The renewable energy policy had a target of 10,000GWh by 2013 (South Africa. Department 

of Minerals & Energy, 2003), which was not achieved due to numerous issues; one of which 

was the lack of clarity regarding how it was to be measured (McDaid & Wood, 2013). Despite 

attempts to clarify the targets, there was little achieved by 2013. Eberhard et al. (2014) state 

that while the renewable energy policy did little to effect the required implementation of 

renewable energy (RE) strategies, the climate change policies had a profound impact in 

pushing the country forward, despite the fact that South Africa did not have any punitive 

commitments to reducing greenhouse emissions. At the 2009 Copenhagen Conference of 

Parties, South Africa made commitments to reduce carbon emissions by 34% by 2020 with the 

goal to reach 42% by 2025 (South Africa. Department of Energy, 2011). In order to achieve 

this, South Africa called on the developed world to support it with funding, technology 

development, deployment, and the required technology transfer. This emissions reduction 

policy informed the development of the IRP. Furthermore, at the 2011 COP17 meeting in 

Durban, there was further commitment to achieve the government's goal of creating 300,000 

new jobs in the ‘green economy’ by 2020 (Eberhard, et al., 2014).  

The challenge up to 2010 was that even though South Africa had plans in its white papers on 

renewable energy and policies to implement renewable energy, there were still obstacles. 

Eskom had been the main producer, transmitter and distributor of electricity, with the exception 

of a few municipalities and smaller private producers. Therefore, Eskom would have to 

purchase any electricity generated from private renewable energy plants; however, at what 

cost? Given that most of Eskom’s generation fleet was very old and had already paid off their 

loans, their cost of generation compared to renewable energies, was low (Eberhard, et al., 

2014). Therefore, purchasing electricity at exorbitant costs, at the time, did not make sense to 

Eskom. Furthermore, the National Energy Regulator needed to issue licenses to prospective 

producers, and there was no policy or regulatory framework to guide the National Energy 

Regulator or Eskom on how to deal with independent power producers on a large scale 

(Eberhard, et al., 2014).  

2.7.2 Renewable energy status 

The integration of renewable energy power plants into the electricity generation mix has 

become highly prevalent around the globe; the driving force behind this being the realisation 
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that the renewable energy technology industry must be stimulated, while addressing the 

carbon emissions that result from conventional coal-based power generation. Many countries 

around the globe have implemented a ‘feed-in-tariff’ incentive as a support mechanism to 

accelerate private investment into the industry. This has worked well in stimulating technology 

development, particularly in Europe (Eberhard, et al., 2014).  

2.7.3 Private investment 

The developed world started their renewable energy industries up to two decades ahead of 

South Africa. This has advantaged South Africa, because the technologies had been 

established and matured somewhat by the time South Africa began its RE advancements. 

Furthermore, the developed world's market growth had reached a plateau, due to oversupply 

and increased competition. With the 2008 economic challenges, some of the Western 

countries' markets were declining, and as a result, developers and investors were looking 

towards the new emerging markets (Eberhard, et al., 2014). 

Investments in private public infrastructure projects such as roads, energy, water, and so forth, 

require a clearly laid out regulatory framework that is fully supported by the government. 

Private investors want to have some certainty regarding the sovereign’s support and 

commitment to such investment. Therefore, the government’s commitment by setting a proper 

regulatory framework and policy eliminates the first and critical risk to investment, by creating 

political stability. (JP Morgan Asset Management, n.d.).  

The private industry’s appetite to enter any unexplored territory is solely driven by its potential 

profitability and associated risk. This is exemplified by a statement made by Needham (2013), 

Google’s director of energy and sustainability that they only pursue investments that make 

financial sense. The statement concisely captured the potential and lucrativeness of the 

market, as seen by prospective investors. However, with the renewable energy industry being 

in its infancy in South Africa, no academic research was found that relates to the techno-

economic viability of investing in large-scale grid-connected photovoltaic systems. Some of the 

literature reviewed (Chidi, et al., 2012) presents models and a techno-economic evaluation of 

similar technologies in different parts of the world, but in 2015 no academic literature could be 

found that dealt with this topic within the South African context.  

2.8 FROM REFIT TO REIPPPP 

The Renewable Energy Feed-In Tariffs (REFIT) policy for South Africa was approved in 2009 

by the National Energy Regulator of South Africa (NERSA), but there was no clarity regarding 

the nature of procurement by the DoE or Eskom. At the time, Eskom was neither ready, nor 
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prepared to deal with numerous private power producers, and had not clarified the internal 

standards and processes related to power purchase and grid connection agreements (McDaid 

& Wood, 2013). Further to this, NERSA called for a change to the original REFIT tariff, which 

confused any interested investors. Following on from that, the DoE and National Treasury 

issued a statement that REFIT was contravening the government's pubic finance and 

procurement regulations because it was a non-competitive procurement policy. Therefore, the 

National Treasury led the development of a renewable energy independent power producer 

procurement program by consulting local and international experts from relevant engineering, 

technical, legal, and financial backgrounds (South Africa. National Treasury, 2001). The 

program was officially announced in 2011 and REFIT was abandoned (Eberhard, et al., 2014). 

The Renewable Energy Independent Power Producer Procurement Program (REIPPPP) was 

designed for the procurement of a maximum of 3,625 MW, in a program lasting five tendering 

phases. This capacity included the main solar technologies (PV and CSP), as well as wind, 

biomass, biogas, landfill and hydro technologies (South Africa. Department of Energy, 2011). 

The rationale for the five tendering phases was to facilitate the introduction of these 

technologies, while increasing tariff competition. A 100 MW allocation of capacity was reserved 

for small IPP program projects, which covered projects of less-than-five MW capacity. Large 

IPP capacity for PV was 75 MW; CSP 100 MW; and Wind 140 MW. The bid submission pack 

was supposed to consist of the project structure, legal documentation, land acquisition 

documents, environmental requirements, financial information, plant technical information and 

economic development documents — all indicating how the project was to meet the set criteria. 

The project selection criteria were 30% based on economic development and 70% on the 

tariffs presented (Eberhard, et al., 2014).  

The REIPPPP, has already had four bid windows which has included additional awards in the 

window 4, called 4b and a further expedited allocation, 4c of which bids were submitted on 11 

November 2015. The intention of the South African government to stimulate a price competitive 

renewable energy market has surely been achieved in these first three windows, since prices 

have dropped significantly since the first round, with solar PV tariffs decreasing by 68% and 

wind tariffs down by 42% (Eberhard, et al., 2014). This has further strengthened with bid 

window 4 prices falling even further. The question remains to be answered whether the prices 

are sustainable in the long term, and what type of investors or financing structures would be 

attracted to the market at such prices. 
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2.8.1 REIPPPP bid outcomes 

The first bid window had 53 projects totalling 2,128 MW of generation capacity being submitted, 

as shown in Table 2.2. Out of these, only 28 projects were awarded ‘preferred bidder’ status, 

with a total capacity of 1,416 MW. 18 were based on PV technology, with 632 MW capacity, 

two were CSP technology with a total of 150 MW capacity, and eight were wind technology 

projects with a total capacity of 634 MW (Eberhard, et al., 2014). 
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Table 2.2 REIPPPP outcomes of windows 1, 2 and 3 

 

Source: (Eberhard, et al., 2014) 

Bid window two was initiated in November 2011, with only 1,275 MW to be procured. The 

number of bids received was one and a half times that of window one, totalling about 3,233 

MW. Out of the 79 submissions received, only 19 projects were allocated ‘preferred bidder’ 

status (Eberhard, et al., 2014). The wind and PV technology prices, however, fell by 20% and 
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40% respectively, as shown in Table 2.3. Furthermore, the local content under economic 

development rose from 38.4% to 53.4% for PV and from 27.4% to 48.1% for wind technology. 

Bid window three allocations took place in August 2013, and out of the 6,023 MW submitted, 

only 1,456 MW was allocated to 17 ‘preferred bidders’. Prices dropped from an average of 

R1.65/kWh to an average of R0.99/kWh for PV and from R0.90/kWh to R0.74/kWh for wind 

technology (Eberhard, et al., 2014). 

Bid window four submissions were made in August 2014, and the allocation announcements 

were made in April 2015. The estimated balance still to be allocated is set at 2,808 MW, which 

will consist of 1,041 MW from solar PV; 1,336 MW from wind; 200 MW from solar CSP; and 

2,310 MW from the other technologies (Eberhard, et al., 2014). 

Table 2.3 REIPPP average bid tariff awarded 

 

Source: (Eberhard, et al., 2014) 

Considering the number of developers and the amount of potential projects submitted with 

each bid, it is acceptable to conclude that competition was a key driver in pushing the bidding 

prices down. A decline in renewable energy equipment costs due to manufacturing capacity 

increases, as well as technology advancement were also considered to have contributed to 

this decline in prices. Furthermore, familiarity with the REIPPPP requirements and 

specifications by lenders, project sponsors and other stakeholders also contributed to this 

decline (McDaid & Wood, 2013). 
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2.8.2 Economic development requirements 

Globalisation and the increasing size of international trade have made developing countries 

more vulnerable to difficulties than their counterparts in the developed world (Padayachee & 

Morgan, 2013). For this reason, developing countries have established economic development 

policies as a measure to protect and drive economic developments. Thus, the REIPPPP has 

economic development obligations forming part of the bid submission process (South Africa. 

Department of Energy, 2011). The economic development requirements are designed to 

incentivise the participating companies to promote job creation; industry development; 

ownership by local communities; and enterprise and socio-economic development. Economic 

development obligations (EDO) are the ‘non-price’ criteria that account for 30% of the total bid 

score, while the rest is based on price. The EDO forms part of the documents to be submitted 

at the bidding stage (South Africa. Department of Energy, 2011).  

The REIPPPP EDO target the creation of jobs, local content benefits through the procurement 

of local goods and services, and local community development. The intention is to stimulate 

local manufacturing and local enterprise participation in completely underdeveloped sectors of 

the country and in regions, and thereby promote economic development in areas that are far 

from the big cities, and where most of the renewable energy potential is densely distributed 

(Eberhard, et al., 2014).  

While all of the potential economic development elements are important, critical elements 

include enterprise development and socio-economic development because a certain 

percentage of the revenue from operations is to be allocated to these elements. The first three 

bid windows have shown that little emphasis has been placed on these elements during 

construction phase, but they have been ‘overloaded’ for the operation phase (Eberhard, et al., 

2014). 

Therefore, bidders are required to submit different types of documentation to substantiate their 

economic development commitments. Some of the documents to be submitted are (Eberhard, 

et al., 2014):  

• An economic development scorecard that shows the bidders' performance against 

government targets;  

• Documents confirming their compliance;  

• An economic development plan identifying the socio-economic needs of local 

communities and a strategy by the project to meet those needs; and  
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• A reporting plan indicating how the project will be reported on a quarterly basis for 

monitoring purposes. 

The DoE's Implementation Agreement explains how, on a quarterly basis, calculation of 

performance should be evaluated, any rewards provided and penalties effected. 

2.9  SUMMARY 

This chapter discussed the solar potential of South Africa, PV technology, applications of PV 

systems, and factors for conducting a thorough energy yield analysis from the PV plant. The 

total area of high radiation in South Africa is estimated to be close to 194,000 km2. Considering 

how Europe has harnessed its solar energy to power their grid with so little available sun, it 

can be said that South Africa is well positioned for solar energy wealth. The potential of solar 

energy to contribute towards South Africa’s future energy needs is huge. This still requires 

meticulous planning and large investments in relevant solar power plant technologies and 

transmission lines from the areas of high radiation to integrate into the national grid. 

This chapter also explored government policy and its relevance. The Department of Energy 

(DoE) has issued an Integrated Resource Plan for adding new capacity to the country’s system 

of electricity power generation for the next 20 years. The Renewable Energy Independent 

Power Producer Procurement Program (REIPPPP) was designed for the phased procurement 

of a large supply of renewable energy, and economic development targets were included for 

the creation of jobs, local content benefits through the procurement of local goods and 

services, and local community development. 

Aspects relating to the techno-economic viability of large-scale grid-connected PV systems in 

South Africa are discussed in the following chapter. 
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3 CHAPTER THREE  
DEVELOPING A MODEL FOR ASSESSING THE TECHNO-

ECONOMIC VIABILITY OF LARGE-SCALE GRID-
CONNECTED PV SYSTEMS IN SOUTH AFRICA 

3.1 INTRODUCTION 

The aim of this second chapter of the literature study is to evaluate and consider current 

academic resources that can or should be used to perform a techno-economic feasibility 

assessment on utility-scale solar photovoltaic systems in South Africa. Aspects relating to the 

techno-economic viability of large-scale grid-connected PV systems in South Africa, and the 

efforts by the government for their implementation are also discussed in this chapter. 

The chapter discusses the concept of financing a project. To do so, the types of project 

financing structures, financial feasibility assessment models, and financial feasibility criteria 

are all deliberated along with the financial profitability and debt ratios that would be needed to 

assess a project’s viability. The chapter also explores the concept of real options analysis, 

which provides decision-makers with a framework for making financial choices in uncertain 

conditions.  

3.2 PROJECT FINANCING  

Project financing is a method of providing loan funding to a feasible project on the basis of 

future cash inflows expected from the project (Harvard Business School, 1999). This method 

is usually employed in capital-intensive projects as they require high leverage. The cash flows 

of a project are ring-fenced through the creation of a special purpose entity, created to separate 

the project funds from those of its sponsors.  

This method of financing has the advantage of reducing risk of exposure to the sponsor’s other 

business interest. Through the creation of a distinct legal project entity, its projected cash flows 

are used for motivation of the project’s viability (Bjornsdottir, 2010). Furthermore, it 

necessitates that project-related contracts be concluded and signed off early on, thereby 

eliminating some of the major risks upfront. The major advantage for sponsors is that their debt 

capacity is expanded and they are able to explore more projects to invest in, due to the limited 

recourse (Groobey, et al., 2010).  

The financing structure and terms are often different from project to project and among other 

things they also depend on the type of sector, market sentiment, the level of risk, government 

policy, and the credit rating of the project owner.  
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Figure 3.1 shows a typical project finance structure. Fabozzi and Peterson (2003) states that 

project finance structuring is a very important managerial decision, since the methods of 

financing a project obligate the project in many ways. 

 

Figure 3.1 Typical project finance structure 

Source: (United Nations, 2000) 

The DoE, together with National Treasury, created an enabling environment welcoming and 

simulative to private sector investment in the energy sector through the REIPPPP. As 

discussed in Section 2.8, the REIPPPP is a bidding process, through which, private power 

producers that are able to propose technically sound projects to meet local economic content 

and local development requirements at the best-proposed tariff, are awarded projects by the 

DoE. Through the REIPPPP, key contracts are established enabling the independent power 

producers to have some security regarding revenue on any electricity generated. The following 

types of contracts are signed with key stakeholders (Papapetrou, 2014): 

• Power Purchase Agreement (PPA): The PPA contract is signed between the 

Independent Power Producer (IPP) and Eskom. It is an agreement that the IPP is the 

seller, and Eskom the buyer of electricity. It captures the terms of construction and 

operation of the power plant, which both parties must abide by. 

• Implementation Agreement (IA): The IA is signed by the DoE and the IPP. It is a contract 

capturing the terms and obligations upon which the IPP, as the seller, is required to 

uphold, it also captures Eskom’s obligations.  
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• Eskom Distribution Connection and Use of System Agreement (DCUOSA): The 

DCUOSA is signed between Eskom and the seller, as the terms upon which the seller 

must comply, in order to use the Eskom electricity system. This is often because at 

times (such as when the renewable energy source is not available), the power plant 

must import power from Eskom’s system for use by the facility. 

3.2.1 Types of project financing structures 

Different project financing strategies may be applied to fund private or public infrastructure 

projects, which are listed below (Kashani, 2012):  

• Build, own and operate (BOO): The investor raises finance to build and operate a 

facility. The asset ownership belongs to that investor open-endedly; 

• Build, operate and transfer (BOT): The investor raises finance, builds and operates a 

facility for an agreed duration. At the end of the agreed period, the asset ownership is 

transferred to the relevant authority;; 

• Build, own, operate and transfer (BOOT): The investor raises finance, builds, owns and 

operates the facility. At the end of an agreed period the asset ownership get transferred 

to the relevant authority; 

• Build, own, operate and sell (BOOS): The investor raises finance, builds, owns and 

operates a facility. At the end of an agreed period, the asset ownership get transferred 

to the relevant authority in exchange for the asset’s residual value (Buljevich & Park, 

1999).  

The REIPPPP program is a BOO-strategy program with a twenty-year PPA agreement. There 

is no clarity, though, whether or not the government will extend the PPA after that period. 

The ultimate objective of project financing is to strategically structure debt or loan finance, to 

the benefit of the sponsor’s interest whilst also not affecting the sponsor’s credit rating and 

balance sheet (Buljevich & Park, 1999). Buljevich and Park states: 

“The key to a successful project financing is structuring the financing of a project with as 

little recourse as possible to the sponsor while at the same time providing sufficient credit 

support though guarantees or undertakings of a sponsor or third party, so that lenders will 

be satisfied with the credit risk.”  

Projects from the first two REIPPPP bid windows were all financed through project finance, 

and according to Eberhard et al. (2014), a third of the phase three projects were done the 

same way.  
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3.3 FINANCIAL FEASIBILITY ASSESSMENT MODEL 

3.3.1 Conceptual framework 

An analysis and evaluation of capital investment feasibility of a project involves the study of a 

number of different financial parameters. In order to study these parameters, normally a 

financial assessment model is developed. The usual parameters studied are static and 

therefore require a model to be built in such a way that many different scenarios can be studied 

(Bjornsdottir, 2010). It is necessary to make the model as dynamic as possible so that changes 

in assumptions and project conditions can be implemented with ease. Using a model saves 

time and money, and reduces errors (Bjornsdottir, 2010).  

Bjornsdottir (2010) stresses the importance of ensuring that a developer has a thorough 

understanding of the user’s requirements. The objective of building a model is for it to meet 

the set criteria of those that wanted in the first place, and therefore the model developer must 

have this objective from design to implementation. Furthermore, assumptions should be 

factored into the model appropriately.  

Mun (2002) proposes setting basic rules of engagement during the model building process, in 

order to make the model as user friendly as possible. Simple examples of some things that 

could be done are the colour coding of input parameters and creating separate sheets for 

inputs and outputs so that later on when conditions have changed, the model can still be used 

with ease (Mun, 2002). Protection against tampering is a must and changes to the model 

should be tracked formally (Bjornsdottir, 2010). 

Clearly defined objectives makes the model development and implementation more 

streamlined. The model should be easily understood by the user. The calculations should be 

accurate and reliable so that the user can confidently use the results in the decision-making 

process (Sengupta, 2004). 

Financial investment analysis models can be developed and built in many different ways using 

many different coding techniques, depending on the developer and on how dynamic or 

sophisticated one may require the model to be. When developing a model of any sort, there is 

a general rule to the architecture: that it will have four components to it, which are assumptions, 

inputs, calculations or algorithms and outputs. It also makes sense to modularise each 

component so that any changes — whether in data, calculations or formulae — can be easily 

made, and errors easily traced (Bjornsdottir, 2010).  
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In 2010 Groobey found out that most financial investment models were custom made, as there 

were no standard model solutions on the market. The main reason for this, was that investment 

projects are very different from one sector to another, and as a result the model would differ 

from one sector to another. Therefore it is very complex or near impossible to develop a model 

that can accurately estimate the financial feasibility of every project type (Groobey, et al., 

2010). 

3.3.2 Model building 

A financial model is a mathematical representation of the relationship between the input and 

output variables of the problem being addressed. Depending of the problem or investment, 

some of the variables represents money, some could even be technical input an outputs of 

another model that becomes an input to the main model. A model should be able to be used 

to analyse different scenarios and make projections. A model should clearly and accurately 

quantify as much of the interdependencies of variables as possible. The model structure and 

setup should make it easy to vary input values in order to analyse how these changes affect 

key output metrics (Sengupta, 2004). 

Investment feasibility evaluation is critical in making right an accurate decisions. In most cases 

investment feasibility analysis is done upfront in the decision-making process as a screening 

method, however, the analysis should be carried out throughout the project life and be updated 

when changes occur (Sengupta, 2004).  

If the analysis results indicates that the proposed project does not meet set criteria of the 

investor, the business idea should be discarded. (Bjornsdottir, 2010). This could be easier said 

than done, though, because what happens if some of the assumption changes occur after the 

project has already begun? It is important, therefore, to have a type of model that at least 

incorporates some sensitivity analysis so that worst-case scenarios can be considered before 

they occur. Thus, even if they cannot be changed, the investment decision can be made with 

some foresight. 

At feasibility analysis stage, a base case financial plan should be modelled and then a 

sensitivity assessment performed on the profitability of a project. Computer modelling is critical 

for analysing profitability for the investor’s equity, sensitivity analysis is simpler through the use 

of a model to analyse effect of fluctuating inputs; changes in operating and maintenance cost; 

the effects of cost overruns and delays in completion; interruptions of project operations; and 

other significant factors (The African Development Bank, 2006).  
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At the beginning of an investment feasibility study, the analyst must make sure that all 

assumptions, whether technical, economic, financial or otherwise are clearly stated. As the 

project moves from conceptual to execution, the assumptions become more accurate and 

reliable, as does the investment analysis. Any assumption that could make the project change 

from successful to unsuccessful, should be considered as a key element requiring careful 

consideration. Facts should be clearly distinguished from assumptions, and the sources of the 

facts and rationale for the key assumptions noted (Bjornsdottir, 2010). 

A proper due-diligence is critical as the first analysis step to eliminate projects that are not 

worth investing in. Different organisations have different approaches to how much effort, time 

and money should be invested in the early stage of a project. However, time that is invested 

early on in the feasibility analysis can save future effort and money (Helfert, 2001). Helfert 

emphasises that investment feasibility study shouldn’t be undertaken until the following is 

considered: 

• project characteristics and scope; 

• key variables and relationships beneficial in the study; 

• reliability and certainty of the available data; 

• input data type and format (cash flow or accounting); 

• limitations of applied tools and their effects on results; 

• qualitative judgments  or risks relevant to the project;  

• use of results’ estimates to determine critical data and steps; and 

• Verifying accuracy during the analysis. 

Helfert’s argument is that by reviewing these will lead to the analyst having better 

understanding and knowledge of the area of study. This should contribute to well thought out 

and strategic approach to ensure that the model achieves its objectives.  Therefore effort can 

be directed to areas where the most payoffs can be achieved  (Helfert, 2001). 

The output of an investment feasibility study can only be as reliable as the input data, assuming 

that the mathematical formulae are correct. Data can be collected from the similar projects, 

research institutions and specialists in the relevant fields.  Often specialist researchers assist 

with relevant realistic estimates and forecasts required to achieve accurate assessment. The 

input data accuracy depends on the project circumstances as well as experience of the team, 

therefore, it is recommended that error margins are factored into the expected outcomes 

(Helfert, 2001). 
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3.4 CONVENTIONAL CAPITAL BUDGETING CRITERIA 

The traditional capital budget methods used in most, if not all project feasibility analyses are 

based on the calculation of the cash flows’ input and output. The cash flows are then used to 

model the payback period or discounted payback period, the rate of return on the investment, 

the net present value (NPV), the profitability index, and the rate of return (IRR). 

3.4.1 Net present value 

The net present value is the sum of all the cash inflows minus the sum of all the cash outflows. 

It is regarded as the amount of money an investment is worth over the lifetime of the project, 

and takes into account expenses or capital outlay and revenues — calculated in present value 

terms, as shown in the following equation (European Commission, 2008): 

>1E = @F�
�< + ��° +	 @F<

�< + ��< + ⋯+	 @F>
�< + �� 

	
= ∑ @F�

�<I���
>�J�         [3.1] 

where: 

CFn is the net cash flow at the end of period n; 

I is the internal rate of return or discount rate; and 

N is the service life of the project. 

Values for NPV should be treated as follows: 

If NPV>0, accept the investment; 

If NPV = 0, remain indifferent to the investment; 

If NPV < 0, reject the investment. 

3.4.2 Profitability index 

The profitability index is calculated by dividing the net present value of cash inflows by the 

capital investment amount.  

3.4.3 Internal rate of return 

The IRR is the discount rate at which the net present value of the project is zero. It thus serves 

as the benchmark rate, whereby any rate less than this is not good for the project because the 

NPV will be negative, therefore implying a bad investment (Sengupta, 2004). This can be 

observed by the equation (European Commission, 2008): 
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 >1E =	∑ @F�
�<+���

>�=� = �      [3.2] 

 

3.4.4 Payback period 

The payback method measures the number of years taken to pay back the capital investment 

amount. It is therefore the period of time required to recover the investment without considering 

the time value of money (Firer, et al., 2008). 

3.4.5 Deliberation on the financial feasibility criteria 

While the financial feasibility methods have been accepted and are used widely in business, 

they have many shortcomings. For example, uncertainty and risk are not considered in the 

NPV model. Ward and Gittinger (1997) conclude that traditional tools for project evaluation, 

like IRR or NPV are thus inadequate for dealing with the uncertainties and risks that are 

prevalent in projects. This is true for rapidly changing industries, where shortly after calculating 

the models the set assumptions would have changed; thereby questioning whether or not the 

project would still be viable. 

Bjornsdottir (2010) also argues that the traditional discounted cash flow (DCF) methods 

disregard uncertainty and risk in investment projects. This therefore underestimates the option 

value that is attached to growing profitability of the business. Conventional capital budgeting 

disregards investments that do not show a positive NPV in the short term and by so doing fails 

to recognise future growth opportunities. 

Audenaert et al. (2010) argue that the classical evaluation techniques do not sufficiently 

capture the real value of PV installations because they do not account for externalities, financial 

risks, portfolio costs, and strategic and managerial options. Rather, these methods focus 

exclusively on direct costs while ignoring the cost of quality. The above statement therefore 

goes on to justify that if the classical method indicates a project to be viable, then it certainly 

should be very viable (Audenaert, et al., 2010). The question remains, however, why other 

methods that consider the limitations mentioned above are not considered. 

3.5 FINANCIAL RATIOS 

Financial ratios can be divided into five categories: liquidity, asset turnover, profitability, market 

trend ratios, and debt management ratios (Bjornsdottir, 2010). The study focused only on those 

ratios considered relevant to private investor’s interest. That is be summarised as liquidity 

ratios, profitability ratios, market trend ratios, and debt management ratios; which will be 

defined further in this section.  
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3.5.1 Profitability ratios 

Profitability ratios are popularly considered financial metric as indicative of business capacity 

to earn more than its expenses through its operations. It considers the business’ profit margins, 

asset turnover and return on equity for a set operating period (ICAP Group SA, 2006). The 

metrics measure an entity’s capacity to generate profits based on its earnings, expenses, and 

debt obligations. Often higher ratios when compared to the same ratios from the previous year 

or to firms in the same industry, indicates good health. 

3.5.2 Return on investment 

The rate of return on investment (ROI) method calculates the net returns of a project, it takes 

the difference between the total gain from the investment and the initial capital outlay, and 

divided by the project cost. T  

The formula for the return on investment ratio is: 

�?K = LMNOPOQR	STUVNT	POWTNTRW	MOX	WMYTR
ZVWM[	\PMSP[PWPTR	MOX	R]MNT]V[XTNR	T^_PW`    [3.3 ] 

 

The ROI is a profitability ratio that, when taken over set period of time reflects efficiency of 

invested capital. It is a key investment indicator for decision making and can be used to 

compare performance of businesses across different economic sectors (Helfert, 2001). 

3.5.3 Return on equity 

ROE measures the rate of return of equity invested by the shareholders. The higher the ratio, 

the more efficient the use of the shareholders’ equity has been, and the more return has been 

given back to investors (Helfert, 2001). The formula for the return on equity ratio is (Firer, et 

al., 2008): 

�?a = >
�	2�����	7��
�	�7b
c
d:7�
:���
�ce
f8��g      [3.4] 

 

The ROE is a relevant and excellent performance indicator practice that summarizes efficient 

capital investment. However, it does not factor debt service, therefore this ratio should be 

viewed from a long term perspective approach (Bjornsdottir, 2010). 

3.5.4 Debt ratios 

Debt ratios are used as indicators of how a business employs debt financing, as well as the 

entity’s capacity to service its debt obligations. Debt ratios are mostly used by the loan 
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providers to amongst other things decide on relevant interest rate level for an entity or project 

(Bjornsdottir, 2010). 

The loan providers use debt service coverage ratio (DSCR) to measure the prospective 

borrower or project’s funds capacity to pay the debt. The indicator takes cash flow after 

operational expenses available to service loan debt (interest and principal repayments) 

compared to the debt service for the same period. The formula for the debt service coverage 

ratio is: 

hd@� = iMR]U[Vj	MUWTN	WMYTR
kTSW	lTNmPnT       [3.5] 

 

The higher the DSCR value, the easier it is for the entity to pay its debts and therefore the 

more likely for it to obtain loan (Mae, 2014). 

3.5.4.1 Loan Life Cover Ratio 

The loan life coverage ratio (LLCR) is commonly used debt ratios in project financing. The ratio 

is similar to the DSCR, but the difference being that it considers the full tenure duration of the 

loan. This ratio shows the number of times the cash flow can repay the outstanding loan debts, 

throughout the planning horizon. LLCR is formulated as: 

oo@� = pqr	[iMR]	s[Vj	tmMP[MS[T	UVN	kTSW	lTNmPnT]
?8�c�7����		2���9�27�     [6] 

 

The period used in the NPV calculations is from the calculation year till the time loan maturity 

and the discount rate is the cost of borrowing (Navigator Project Finance, 2009).  

The financial model, as discussed in section 3.3.2 will therefore consider and calculate a 

variety of the ratios, as summarised in Table 3.1 below. 
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Table 3.1 Financial feasibility ratios considered for financial modelling 

Description Formula Definition 
Profitability ratios 
ROE (before 
tax) 

= u0�	vwx�y0	z0-�(0	{|}0~	
��0(|�0	~�|(0���&0(	���'��  

Indicator of gain or loss on 
shareholder investment. 

ROI  = �(�-'�~	|-�0(	{|}0~I'w�0(0~�	
{��|�	vw�0~�y0w�   

Measures the efficiency of 
the capital investment as 
compared to the effect of its 
returns. (Loth, 2014). 

Operating 
Profit Margin 

= �(�-'�~	�0-�(0	{|}0~	|w&	vw�0(0~�
u0�	�|�0~/�0�0w�0   

Current operations 
profitability indicator without 
regard for interest charges 
due to capital investment. 

Leverage ratios 

Debt to 
Asset Ratio 

= {��|�	�0��
{��|�	�~~0�~  

Extend to which a company 
is in debt as compared to its 
assets (Loth, 2014). 

Debt Service 
Cover Ratio 

= ��0(|�'w�	�(�-'�I�0�(0x'|�'�wIvw�0(0~�
vw�0(0~�I�('wx'�|�	�y��w�  

= u0�	��0(|�'w�	'wx�y0
{��|�	�0��	�0(�'x0   

Ratio indicates the available 
cash flow to meet company 
or project’s debt 

Times 
Interest 
Cover Ratio 

= ��0(|�'w�	�(�-'�I�0�(0x'|�'�wIvw�0(0~�
vw�0(0~�I�('wx'�|�	�y��w�   

Ratio indicating whether a 
company or project is able to 
service its debt interest (Loth, 
2014). 

Net Present 
Value 

=	∑ ���
��I'��

uwJ�   
Sum of all the cash in and 
out flows discounted to 
present value. 

Internal Rate 
of Return 

=	∑ ���
��I'��

uwJ� = 0  
Rate of discount at which the 
sum of the cash inflows and 
outflows is zero. 

 

For a comprehensive financial evaluation model study to be carried out, it is therefore required 

that in addition to classical capital budgeting methods, other financial ratios has to be 

considered. More especially since these type of projects are funded through commercial loans, 

it becomes critical to prove to the banking institutions that the project company would meet 

required liquidity ratio targets and able to service its debt. For the equity investors they will be 

interested in the profitability of such an investment. 
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However, these type of financial evaluation parameters are fundamental and good, however, 

they do not necessarily address the aspect of risk on the investment. Hence the study includes 

the theory of real options analysis. 

3.6 REAL OPTIONS ANALYSIS 

Real options analysis (ROA) provide a framework for making decisions in uncertain conditions, 

thereby enhancing the value of an investment. The flexibility of real options is realised through 

the option or right to take specific action in the future at some cost, depending on how the 

original risks pan out. Options theory is used to appraise physical assets, as opposed to 

financial assets, stocks or bonds. 

Lack of knowledge and the complexity of real options have created obstacles in their uptake. 

Literature indicates that very few companies have considered using real options in evaluating 

projects. Over the years, research has been done to determine whether Fortune 1000 

companies use real options and what percentage use real options. The literature indicates that 

a range between nine percent and 14 percent of the Fortune 1000 companies use real options 

and that about 14 percent of these are highly specialised and technical industries in the 

technology space, such as utilities and energy enterprises (Janse van Rensburg, 2010). 

Luehrman (1998:1) argues that any capital investment opportunity is similar to a call option, 

based on the fact that enterprises have the right, but not the obligation, to invest in a new 

project or to expand their existing activities: "If we can find a call option sufficiently similar to 

the investment opportunity, the value of the option would tell us something about the value of 

the opportunity” Luehrman (1998:1). A correlation can be established between the project's 

specific investment parameter metrics and the variables that determine the value of a simple 

call option on a share of stock. 

A model that combines the investment opportunity or project’s characteristics with the structure 

of a call option can be developed by mapping the characteristics of that investment opportunity 

onto the template of a call option. The European call is considered the simplest of all the 

options because it is exercised on expiry date only. 

According to Campher (2012), the three main attributes incorporated from original concept of 

real options are as follows: 

1. Uncertainty of future cash flows; 

2. Investment irreversibility (once a project is started, recovery of the entire investment 

can only be through its future cash flow); and 
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3. Timing of project commencement. 

Real options analysis add value through their flexibility, as they allow critical decisions to be 

made throughout the life of a project. 

3.6.1 Basic options pricing 

Real options pricing theory is derived from financial option pricing theory. Therefore, to gain 

understanding of how real options add value, the fundamentals of financial option pricing 

theory must be understood. 

3.6.1.1 Call option 

A call option gives the right, but not the obligation, to purchase an associated asset at a fixed 

strike price any time before the option date expires. Therefore, a buyer pays a set price for that 

right. If, at expiration date, the value of the asset is less than the strike price, the option is not 

exercised and it expires worth nothing. However, should the value have exceeded the strike 

price, the option is executed putting the purchaser into profit. The purchaser buys the stock at 

the exercise price and the difference between the asset value and the exercise price consists 

of gross profit and unit price paid for the asset. Figure 3.2, below, indicates the relationships 

between time, value, and paid premium. 

 

 

Figure 3.2: Call option pay off diagram 

Source: (Campher, 2012) 

Noting the value on Figure 3.2, the net amount paid could be negative or equal to the initial 

call price paid, if the value of the asset is less than the strike price. Should the value of the 
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asset exceed the strike price, the gross amount paid is positive. Strike price is also referred to 

as exercise price. 

The premium paid for the call option gives the purchaser of the option the right, to buy the 

associated asset at strike price (X). The value of the associated asset (S) is the present value 

of the asset which could be susceptible to change and can increase or decrease in value over 

time. A premium is paid to enable the purchaser the option to buy the asset or not. If the value 

of the underlying asset appreciates, then the buyer makes a profit; should it drop, then the 

buyer loses money. 

3.6.1.2 Put option 

The put option functions in exactly the same way as the buy option, except that it is in the 

opposite direction. 

3.6.2 Real options in theory 

The term ‘real options’ was coined in 1977 by Stewart Myers. Real options analysis is applied 

in cases where the investment opportunity are tangible assets such as large infrastructure 

capital projects, as opposed to financial instrument investments. Real options analysis within 

capital budgeting include the option to invest or not to invest, the option to abandon or to 

continue a project, and the option to delay or to carry on with the investment. 

There has been a significant increase in interest in implementing real options analysis to 

appraise large capital investment. Real options analysis has the potential to provide more 

efficient ways to allocate capital and maximise shareholder value by leveraging uncertainty 

and limiting risk. This does not mean that they are flawless, but the mathematical formulation 

and option valuation tools provide a great deal more certainty in the calculation of project value 

(Janse van Rensburg, 2010). 

Campher (2012) notes that real options analysis can provide strategic insight by guiding 

executives with the following: 

• Identifying different investment decision paths that may require navigating when 

considering high uncertainty; 

• qualitative and quantitative project prioritisation; 

• strategic decision optimisation; 

• optimal times for effective execution of investments; 

• consideration and management of existing and new ‘options and 
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• strategic decision making for future opportunities. 

Real options factor in the risk as well as the uncertainty of the investment. Since real options 

analysis was founded upon financial option theory, parameters used to valuate physical assets 

are matched to such financial option valuation parameters. 

3.6.3 Real option analysis technique 

Two primary modelling approaches are used in performing real options analysis: discrete and 

continuous time approaches. The discrete time approach includes multinomial lattices such as 

binomial lattice and the adjusted decision tree approach. The continuous-time approach 

consists of closed form equations, stochastic differential equations and simulation approaches, 

as shown in Table 2.12 below. 

Table 3.2 Call modelling options 

Optional Calculator Advantages Disadvantages 
Discrete-Time Calculators 
Multinomial Lattice Intuitively appealing Cumbersome 

 Flexible Labour intensive 

 Easy implementation  

Continuous-Time Calculators 
Closed Form Simplified calculations Limiting assumptions 

 Straightforward Limited applicability 

Stochastic Differential 
Equations 

Model flexibility Approximate 
solutions 

 Mathematically 
‘accurate’ 

Complicated 

Simulation Adaptable Require special skills 

 Broad applicability Potential misuse 

Source: (Campher, 2012) 

3.6.3.1 Black-Scholes model 

According to Luehrman (1998), the literature discusses a number of different closed form 

equations developed for real options analysis (ROA). He further alludes to the fact that most 

of the other equations were formulated out of the Black-Scholes model. The argument is that 

Black-Scholes equations are simplified and provide straightforward calculations. Black-

Scholes equations can value options for growth, abandonment and also the suitability of 

delaying projects. 
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It is stated (Luehrman, 1998) that, when it is applied, the Black-Scholes model reflects an 

approximation to option value fundamentals in real options. It is therefore said to represent the 

closest best option value in real options analysis. 

Luehrman furthermore states how it has been shown that the discrete time method calculation 

converges to that of a continuous time model as the number of time steps becomes infinitely 

small. This, therefore, supports the claim that the Black-Scholes model is a fairly reliable 

method for performing real options analysis. 

Black-Scholes uses an option pricing formula. The Black-Scholes option pricing formula is 

considered fundamental in option pricing methodologies. This study therefore focused on this 

model, and the parameters used were based on the Black-Scholes option pricing formula.  

The Black-Scholes equation is as follows (Wang & de Neufville, 2005): 

Call option:     i = lp�X<� − �TNWp�XB�     [ 3.7 ] 
 

Where: 

�< = [O�d
��I��I�B

B ��
�√�      [ 3.8 ] 

�B = [O�d
��I����B/B��

�√� = �< − �√�   [ 3.9 ] 

 

And: 

N(x) is the cumulative probability distribution function for a variable that is normally 

distributed with a mean of zero and a standard deviation of one. 

The major assumptions underlying the Black-Scholes approach are: 

• Existence of a market that values assets; 

• The market is efficient, provides no riskless opportunities;  

• Selling securities short has no limitations;  

• transaction costs or taxes don’t exist;  

• All securities are perfectly divisible;  

• Security trading is continuous;  

• The risk-free rate of interest is constant and the same for all securities; and  

• The asset price follows Geometric Brownian Motion with µ and σ constant (Wang & de 

Neufville, 2005). 
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Generally speaking, most projects involve expenditure to acquire or construct some productive 

asset. Expecting to realise more value from an opportunity is similar to exercising an option. 

The money spent is like the option's exercise price (X); the present value of the asset built or 

acquired is like the stock price (S); and the length of time that the investment opportunity could 

be deferred without losing the opportunity is similar to the option's time to expiration (t). The 

uncertainty about the future value of the project's cash flows (that is, the riskiness of the project) 

corresponds to the standard deviation of returns on the stock (ρ), and the time value of money 

is like the risk-free rate of return (rf). By pricing an option using values for these variables, one 

can learn more about the value of the project than a simple discounted cash flow analysis 

would reveal (Luehrman, 1998). Parameters are defined based on financial option pricing 

terminology. 

3.6.3.2 Stock price (S) 

Stock price is considered the present value of future cash flows obtained from the investment 

of an option. Present value is cash flow discounted at a predetermined discount rate. This rate 

could be based on an industry standard. 

3.6.3.3 Risk & discount rate (rf) 

Financial options must use replicating portfolios consisting of either an underlying traded asset 

or a risk-free bond. This is used to hedge risks within an options value and is assumed to be 

a risk-free rate. An assumption, therefore, is that the underlying tradability of real option 

valuation should be treated like those of financial options. The risk-free rate should be used in 

all discounting calculations. In most cases, the risk-free rate comes from replicated portfolios 

with low risks, such as government bonds or savings plans. 

3.6.3.4 Volatility (σ) 

One of the major parameters affecting option value is volatility. Therefore, choosing or 

calculating volatility or standard deviation accurately is important. Calculating volatility or risk 

to a project or business can be very challenging. Volatility can be calculated with the use of 

historical data, educated guess work, and estimation or through some sophisticated simulation. 

The literature suggests the use of Monte Carlo simulation or closed form formulae. This metric 

also represents the uncertainty associated with an investment project. This study based its 

volatility the project risk analysis matrix provided as part of the project information. 
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3.6.3.5 Exercise price (X) 

The exercise price represents the cost due to executing the next phase of an investment, 

whatever action the next phase may entail. Real options analysis costs may be instalments 

spread over a period of time or in one lump sum pay out. Calculations using lump sums are 

less complicated. 

3.6.3.6 Exercise time (t) 

As the actual date becomes difficult to establish in real options analysis, educated timeline 

estimations can be used instead. The factors to be considered when mapping an investment 

onto a call option are listed in Figure 3.3 below. 

 

Figure 3.3 Mapping an investment onto a call option 

Source: (Luehrman, 1998) 

The advantages of deferring projects for industries such as real estate development are that 

they could lead to better material and building costs. The question then becomes how long 
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should the wait be? Real options analysis can determine the value to cost, as well as 

uncertainty attributes of market conditions, which can indicate the optimal waiting period. 

The financial tool most relied upon to estimate strategy value is normally discounted cash flow, 

which does not factor in project or business risks. An optimal approach should be for any 

valuation of an investment to factor in the uncertainty related to the investment opportunity and 

the active decision making required for the strategy a success. 

Real options analysis provides insight into the potential future impact of risk on an investment 

and thereby encourages active management of strategy, rather than a passive approach 

(Campher, 2012). 

3.6.3.7 Combining discounted cash flow and real options analysis 

The literature demonstrates that real options analysis can provide flexibility and greater future 

valuation. Discounted cash flow (DCF) techniques are foundational for any capital budgeting 

process. Therefore, instead of settling for one technique, the strengths of each method can be 

combined. Then they complement each other thereby enhancing effective decision making. 

The reality of all investment opportunities, especially any lucrative opportunity, is that there are 

a great deal of potential risks and uncertainties that affect markets or projects. These 
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uncertainties could lead to losses of returns, and this presents an opportunity to apply real 

options analysis. Below, Figure 3.34 illustrates the area of overlap between DCF and ROA. 

 

Figure 3.4 DCF and ROA complement area 

Source: (Campher, 2012) 

Campher (2012) explains the method of combining DCF and ROA as combining the sum of 

traditional NPV and the expected value of any future options made possible by the initial 

investment. He further claims that, in the majority of cases, ROA requires information obtained 

in DCF methods and calculations. Therefore, DCF calculations should be performed first and 

then expanded upon using real option analysis, thereby creating an overlap between 

discounted cash flow and real option analysis. The included options can then leverage 

strategic flexibility for project implementation, deferral or abandonment. If the real options 

analysis yields a favourable value, the investment can be implemented. If the value is not 

favourable, the project can be deferred, after which an analysis review can be performed and, 

if it becomes clear that the value and the uncertainty or risk is unavoidable, the investment can 
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then be abandoned. Figure 3.5 provides a visual depiction of the various quadrants used to 

calculate investment choices. 

 

Figure 3.5 Investment analysis according to quadrant classification 

Source: (Campher, 2012) 

"The higher the case of uncertainty, the more ROA decision criteria and technique impact the 

final decision". 

Companies that rely on conventional capital budgeting analysis alone often underestimate the 

value of their projects, and may fail to invest in high reward high risk opportunities. Far from 

being a replacement for DCF analysis, real options are an essential complement, and projects’ 

total values should encompass both. DCF captures a base estimation of value, while real 

options take into account the potential for gains (van Putten & Macmillan, 2004). 

Real options analysis facilitates value realisation through active managerial decision-making 

flexibility under uncertain conditions. ROA can, however, also lead to overvaluation of 

investments, especially in cases of high uncertainty and longer time spans. This can be 

combated through a combination of the traditionally trusted DCF method and the more flexible 

ROA technique. 
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3.6.3.8 Linking NPV and option value 

The traditional DCF method assesses investment opportunities by calculating net present 

values. In short, NPV stands for how much the operating assets are worth in relation to their 

actual costs: 

>1E	 = 	2�
c
��	37�8
	��	7cc
�c	 − 	�
f8��
�	972��7�	
b2
����8�
 [7 ] 	
 

A positive NPV means the project is worth investing in. A negative NPV, on the other hand, 

means the project will lose money, and therefore is not worth investing in. A project NPV and 

option value can only be the same when the project cannot be deferred any longer because, 

at that stage, the option has reached its expiration date. At that stage, either: 

 C = S - X or C = 0; thus NPV = S - X   [3.11] 
 

If an option value is similar to NPV, it may be negative, zero, or positive. An option value that 

is negative is the same as a negative NPV. An option value that is positive has the same effect 

as a positive NPV and the same applies if the option value is zero. 

This commonality between NPV and option value means that corporate financial spreadsheets 

set up to evaluate projects’ NPVs are relevant and can also be adjusted to consider option 

pricing. Any spreadsheet that computes NPV already has the required information to compute 

S and X. 

Luehrman (1998) states that NPV and option price diverge when the investment decision may 

be deferred. In actual fact, the deferral of a project can add value to the project: 

• By paying later rather than sooner, assuming that all factors stay the same, deferred 

expenditure can be invested to earn interest on a risk-free rate of return; and 

• Change could occur that affects the value of the operating assets to either go up or go 

down. If the value goes up, the decision to invest (exercise the option) can be made. 

However, should the value decline, that would also be good, because a poor decision 

would be avoided. 

These two examples illustrate the importance of real options analysis in project evaluation. 

The conventional NPV method, on the other hand, does not provide such insight into the 

opportunities of an investment. Therefore, to value an investment, new metrics must be 

developed to quantify the value of deferring an investment. 
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3.6.3.9 Quantifying extra value NPVq 

Assuming that, when deferring an investment, the required capital expenditure is put in an 

interest earning vehicle, thereby adding more value to the initial funds by not undertaking the 

investment opportunity, the invested initial capital expenditure (X) would then be discounted to 

present value employing the discount rate, PV(X) (Luehrman, 1998): 

1E��� = �
�<I����     [3.12] 

 

In order to include the extra value to the original NPV, the equation NPV = S - X is modified to 

the following (Luehrman, 1998): 

>1E6�����
� =  d −  1E(�)     [3.13] 
 

This modified NPV includes the earned interest during the deferral period of the investment, 

which is valuable information not provided by the conventional NPV method. This value can 

be negative, zero or positive. In order to gain more information from this new calculation, the 

relationship between the initial capital expenditure and the new present value cost of operating 

assets must be adjusted in such a way that the outcome value cannot be negative or zero 

(Luehrman 1998). Therefore, a new metric should be created by converting the difference 

between S and NPV(X) into a ratio. This changes the negative values into decimals between 

zero and one. This new metric is called NPVq, with q standing for quotient (Luehrman, 1998): 

>1Ef =  
d

1E(�)
      [3.14] 

 

When modified NPV is positive, NPVq will be greater than one. When modified NPV is zero, 

NPVq will be one, and when modified NPV is negative, NPVq will be less than one, as shown 

in Figure 3.6. 
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Figure 3.6 Substituting NPVq for NPV 

Source: (Luehrman, 1998) 

3.6.3.10 Quantifying extra value: Cumulative volatility 

The uncertainty of what might happen in the future to cause a change to the value of an asset 

is a significant concern when considering any project or investment opportunity. The challenge 

is to determine whether the asset value will change or not and what future value the asset may 

have if it changes. In order to estimate potential asset value change, an investment opportunity 

should be quantified for uncertainty. The only way to measure uncertainty is by assessing 

probabilities. 

The simplest approach to quantifying uncertainty is to consider the range of all possible values, 

from lowest to highest, and then take into account the likelihood of all those possibilities 

occurring. The most common probability measure of dispersion is the variance, which is the 

likelihood of having a value furthest from the average value within a sample. The higher the 

variance, the more likely it is that other values within the sample will be far from the average, 

either on the high or low side. 

Variance is a good measure of uncertainty; however, time also has to be considered. How long 

one can afford to wait while things change is a serious consideration. Markets and external 

factors can change remarkably over a two- to five-year period when compared to a two- to five-

month period. 

Uncertainty is variance per period multiplied by the number of periods, or σt. Cumulative 

variance, as it is called, is a good measure of business investment uncertainty; however, it has 
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to measure project returns instead of variance of project values. This make it possible to work 

with rates of returns in percentage gained, rather than in currency terms. Return is the future 

value as a percentage of the present value. Furthermore, it is easier to understand uncertainty 

as standard deviation rather than as variance. This makes it possible to account for uncertainty 

in the same units being measured, be they currencies or percentages. The symbol σ² denotes 

variance of returns per unit of time on the project, and the formula for cumulative variance is 

thus as follows (Luehrman, 1998): 

i_�_[MWPmT	mMNPMOnT = 	 ²W	    [ 3.15 ] 
 

The formula for cumulative volatility (Cv) is as follows: 

@3 = �√�     [ 3.16 ] 	
 

3.6.3.11 Valuing options 

The new metrics for using real options together with DCF are NPVq and Cv.	These metrics 

contain all the information required to value a project using European call option theory, based 

on Black-Scholes model (Luehrman, 1998).	

When mapping projects into options, five variables are defined, four of which are S, X, rf and t, 

which NPVq is comprised of; and cumulative volatility, Cv is the fifth. While all the variables are 

employed in the model, only two metrics are focussed on, thereby simplifying options analysis 

in project investment analysis. 

These two main metrics have natural business significance, which makes option analysis a 

great deal more comprehensible to non-finance professionals. Based on these metrics, 

Luehrman (1998) developed a two-dimensional space graph, on which calculated values could 

be positioned (see Figure 3.7). 

NPVq is on the horizontal axis, increasing from left to right, so that as NPVq rises, the value of 

the call option rises too. The higher the project present value (S), or lower capital expenditure 

(X), the higher the NPVq. On the vertical axis is the cumulative volatility, increasing from top to 

bottom. The higher the uncertainty of a project's future value and ability to defer the project, 

the higher its cumulative volatility. 

Stellenbosch University  https://scholar.sun.ac.za



61 
 

 

Figure 3.7 Option value in two-dimensional space 

Source: (Luehrman, 1998) 

3.6.3.12 Mapping the metrics on a two-dimensional space: 

Adopted from Campher’s (2012) study and active mapping tool method, linking NPV to an 

option value as one metric and then quantifying risk or uncertain conditions allows for option 

valuation of the investment. Campher expanded on Luehrman’s (1998) two-dimensional space 

mapping of the two metrics with a ‘visual active’ mapping tool (see Figure 3.8). The active map 

is based on a rectangle that is subdivided into four quadrants, of which the top two are further 

subdivided into two each, in order to capture the unique value associated with a relevant 

decision regarding the investment opportunity. The volatility metric is measured along the 

vertical axis and NPVq is measured along the horizontal. 

The active map tool takes the options analysis method as presented by Luehrman (1998) 

further, to make decision making easier. The NPVq is also referred to as value to cost, because 

it represents the value gained through earned interest during the deferred period. The capital 

expenditure would be invested in government bonds. Furthermore, the NPVq contains all the 

information that a conventional NPV analysis has as well. This value refers to the asset under 

scrutiny, and it is not the option on an investment.  

As previously discussed, if the NPVq value is between zero and one, then the investment is 

worth less than it costs. This is equivalent to the NPV being less than zero. A value above one 

indicates an investment that is worth more than its present value cost and is equivalent to an 

NPV above zero.  
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Figure 3.8 Active mapping tool with decisional criteria diagram 

Source: (Campher, 2012) 

The second metric, cumulative volatility, represents market risk conditions before the decision 

is taken and how those risk conditions would affect the performance of the investment. 

3.7 SUMMARY 

This concludes the literature review chapters. While the intention is to stimulate local 

manufacturing in completely underdeveloped sectors of the country, and thereby promote 

economic development in areas that are far from the large cities, considerable financial 

resources are needed for this undertaking. Analysing an investment feasibility of a project is 

an essential part of the decision-making process and investment framework.  

Classical evaluation techniques do not sufficiently capture the real value of PV installations 

because they do not account for externalities, financial risks, portfolio costs, and strategic and 

managerial options. Financial ratios are therefore necessary for calculating the value of 

prospective investments, and ratios from four categories have been considered in this study. 

Real options analysis provides a framework for making financial decisions in uncertain 

conditions. The next chapter provides the details of the framework for model development and 

its structure.  
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4 CHAPTER FOUR:  
MODEL DEVELOPMENT AND STRUCTURE 

4.1 INTRODUCTION 

This chapter presents the model development and structure of the study. It begins with a 

discussion of the objectives of the study, and the analysis framework upon which it was based. 

This includes a review of the study’s proposed investment analysis framework. Next in the 

chapter, the plan of development is deliberated, which includes the scope and limitations of 

the study.  

The chapter then discusses the methodology in detail, considering aspects such as the 

technical input, capital cost, operational input, main calculations, real options analysis, volatility 

and management of uncertainty. The chapter ends with a discussion of the key assumptions 

that were made for the study, including assumptions relating to the energy output, tariffs, 

revenues, expenses and financing. 

4.2 OBJECTIVES 

The objective of this thesis was to develop an investment analysis framework based on the 

conventional methods of NPV and ROI, among others, to evaluate the feasibility of any 

proposed PV generation plant. The proposed investment analysis framework consisted of 

seven functional components:  

1. The energy resource and finance input data; 

2. The DCF calculation model; 

3. The sensitivity simulation modelling;  

4. @Risk®  analysis; 

5. Real options analysis and 

6. The technology learning curve modelling; 
 

4.3 PLAN OF DEVELOPMENT 

The technical project cost and other main inputs were set up in a Microsoft Excel spreadsheet 

and used in the calculation of operating profit, depreciation, interest payments and corporate 

income tax, which was in turn used to determine the income statement, balance sheet and 

cash flow statement. The impact of the variation in inputs was then obtained from these original 

values and a sensitivity analysis of the key outputs was carried out. 
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A schematic diagram of the model algorithm representing the modelling approach used is 

shown in Figure 4.1. Each block in the figure represents a separate sub-model, which was 

developed on separate but interlinked sheets in MS Excel. 

 

 

Figure 4.1 Flow diagram of the developed model 
 

4.3.1 Scope and limitations 

Data from an existing project was used to provide information on the viability of investing in a 

theoretical project that would be of a similar nature. The valuation metrics used were the NPV, 

IRR, ROE and DSCR. In addition, inclusion of the energy industry-specific levelised cost of 

energy (LCOE) metric provided a range of indicators that would be expected to offer valuable 

information for investment decision-making on a proposed project, at a preliminary level. 

4.4 METHODOLOGY 

Figure 4.1 presents an overview of the combined capital investment and real option analysis 

framework for the theoretical utility scale PV project. An investment valuation model based on 

NPV, IRR, ROI, and DSCR was at the core of this framework. It received input from external 
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modelling components, which generated the input information that proper financial analysis of 

a theoretical energy retrofit solution would require. 

4.4.1 Technical input 

The first component was the energy output estimations based on the case study project. The 

model determines the energy output potential of the theoretical PV generation plant by the 

empirical energy forecast, factoring module efficiency, solar field area and the losses of the 

plant.  

 

Figure 4.2 Energy Output Model 

This project data and some of the information used is based on the REIPPPP window 2 project, 

solar Facility. The data used includes estimated and approved energy outputs for the site. The 

project site satellite data set drawn from www.soda-is.com was considered and analysed, 

however, due to uncertainty of this data it was decided to rather use data that was vetted by 

independent professional sources.  
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Table 4.1 Model Technical Inputs Interface 

 

The data is used to calculate energy output based on panel efficiency, and all required 

technical inputs which the model calculates as provided in chapter 2. It is practice to calculate 

the solar energy probabilities of exceedance, P50 and P90 for the proposed project site. The 

energy production is a critical determinant to the revenues that will be realized, it is therefore 

important to estimate a level of production that is most likely to be realized with probability of 

even exceeding such level, that is what is called the P50, meaning that there is 50% chance 

of exceeding. The other level which is also normally calculated is the P90, this by its nature 

implies, that if you want higher level of certain to achieve such energy production, it must be a 

bit more conservation in order to achieve. The project being analysed in this study will use 

P50, this element of the model could be dictated by the lenders. 

4.4.2 Capital cost 

The capital cost, which formed part of the input, was also based on the Solar Facility project 

data, as shown below.  

 

The assumption is that this cost was linked to a single axis tracker system consisting of direct 

costs to the plant and indirect costs such as project management fees, legal and administration 

management fees. Some of the direct costs as listed in Table 4.2 below, are for the PV 

modules, tracking system, inverter stations, and balance of plant items: DC and AC cables, 

trenching for cables, interconnection system including metering, monitoring and control 

systems, and associated labour component. 

 

  

PV Module Type JKM255PP JKM270PP JKM300PP JKM315PP

Module specific energy yield, EOm 356 373 427 641 kWh / annum

EOm 40.7 42.6 48.8 73.1 W

Module power capacity 15.9 15.8 16.3 23.2

Total system energy yield, EO 125.2 131.1 150.1 225.3 GWh / annum

P50 & P90

JKM255PP JKM315PP

P50 & P90 values represent the likelihood P50 125.2 GWh / annum P50 225.3 GWh / annum

of exceedence. 

P90 119.6 GWh / annum P90 215.1 GWh / annum

For example, the Jinko-JKM255PP module P90 value indicates that the energy yield is greater than 119.6 GWh /annum 90% of the time.

Total Project Cost (FCI) 2,062,333,568R          
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Table 4.2 Model Capital Cost Inputs 

 

This component was used to estimate the capital cost of the project and characterises the cost 

of a PV generation plant. The cost used in the model is as based on the case study project. 

4.4.3 Operational input 

The third component incorporated the assumptions about the project operations and 

maintenance (O&M) expenses, project duration, financing options, discount rate, inflation rate, 

and energy retail tariff. The data for the loan terms and related financial requirements by the 

banks were factored on this sheet.  

 

  

Direct Capital Costs

Modules 319600 units 0.255 kWdc/unit 81498 kWdc 7.73 R / Wdc R 630,089,957 38%

Inverters 237 units 333 kWac/unit 79053 kWac 2.08 R / Wac R 164,527,318 10%

Tracking system R 240,395,446 15%

String boxes, LV cables, MV cables R 70,086,771 4%

Total direct costs R 1,105,099,492 67%

Indirect Capital Costs

Electro-mechanical installation R 38,809,485 2% Miscellaneous ( spare parts, preliminary, logistics) R 35,908,878 2%

Grid interconnection R 73,842,077 4% Contingency R 95,106,362 6%

Civil works R 186,443,513 11% Construction management R 64,232,614 4%

Ancillary systems R 15,028,028 1% Legal and administrative R 0 0%

Project engineering services R 29,609,245 2%

Total indirect costs R 538,980,202 33%

Administrative and Research and Development Costs

EPC R 197,289,563 12% SPV Development & Admin R 220,964,311 12%
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Table 4.3 Model Operations Costs Inputs  

 

Above are the input operational costs based on the available project data. The operational 

costs of the plant are far minimal compared to the capital outlay of developing and constructing 

the plant. All these costs are annual with CPI related increases.  

Table 4.4 Model Financial Inputs 

 

For protection against inflation, regulated assets like electricity can count on periodic re-

adjustments or revisions to revenue figures, based mainly on the cost of maintaining the 

infrastructure itself and on making planned investments. For infrastructure assets once 

Operation and Maintenance Costs

First year cost Escalation rate (above inflation)

Fixed annual cost n/a R/yr n/a Model applies both inflation and escalation to the first

1 year cost to calculate out-year costs.

Fixed cost by capacity n/a R/kW-yr n/a

Variable cost by generation n/a R/MWh n/a

Subtitle

(% of revenue) (% of revenue)

O&M agreement R 43,884,690 10.42% SPV personnel R 3,345,951 0.79%

SPV insurance R 4,247,576 1.01% Project management fee R 1,422,997 0.34%

PPA charges / farm tax R 341,879 0.08% Other R 1,293,634 0.31%

Regulatory inspections R 216,818 0.05% SED & ED costs R 8,844,803 2.10%

Analysis Parameters

Infaltion rate 5.70% Analysis period 20 years

JIBAR 6.32% Corporate income tax rate 28%

The 20-year nominal discount rate taken to be the logarithmically extrapolated (speculation) risk-free RSA retail servings bond rates

(secure.rsaretailbonds.gov.za)

Power Purchase Agreement Tariff and Escalation

Specify PPA tariff PPA tariff R 1,712 R / MWh PPA tariff escalation rate 1.00% / annum

Inflation does not apply to the PPA tariff. Will have agreed upon PPA escalation.

Salvage Rate  and Value

Net salvage rate 0% of installed cost End of analysis period value R 0

Unsure how end of analysis period value is calculated?

Construction Term and Drawdown

Construction Period 1 Drawdown 12%

Drawdown - funds for the1 year of construction

Project Debt

Debt percent 75% Tenor / Loan term 20 years

Leverage / Debt-to-Equity ratio 3 Annual interest rate 6.32%

A combination of owner's equity and debt to finance operations. The leverage ratio (debt-to-equity ratio) assesses the project's 

ability to meet debt obligations. Ceteris paribus, projects with lower leverage considered safest. Debt-to-equity ratio above 2 indicates 

relatively risky scenario.
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belonging to the public but transferred to private ownership, rates are often indexed for inflation 

and intended to compensate for maintenance costs (JP Morgan Asset Management, n.d.). 

4.4.4 DCF calculations 

The proposed investment valuation framework model required inputs from a fourth component, 

energy tariff modelling, which showed future projected paths for the energy tariff. The financial 

benefit of the theoretical PV generation solution was calculated based on these energy tariff 

models. This model calculated all the discounted cash flows, NPV, IRR, ROI and DSCR. The 

calculations were done on a semi-annual basis rather than on a monthly basis to minimise the 

size of the spreadsheet.  

A full financial cash flow spreadsheet calculates the following: 

• Revenues: This is calculated when the energy output is multiplied by the tariff and the 

inflation indexation. 

• Expenses: the expenses are provided as consisting of 13% of the revenues. Additional 

contribution is from the economic development associated cost, which is 2.1% of the 

revenue dedicated towards the enterprise development and socio-economic 

development objectives. 

• Earnings: earnings are also calculated to reflect the profit before and after tax. 

• Debt calculations: These calculations are done, assuming a constant fixed rate over the 

life of the project. The debt service interest and principal amounts are also reflected 

together with the debt service cover ratio.  

4.4.5 Sensitivity analysis:  

This study analyses the impact of certain variations, to establish their impact on the outcomes 

and whether the risks are worth taking. The main inputs are tariff, discount rate, inflation rate, 

capex, energy output, and loan terms. The analysis is done to see how varying each of these 

factors affects the NPV and IRR.  

4.4.6 @Risk ® simulation 

@Risk® is an excel add-on tool which performs Monte Carlo simulations based on set variable 

inputs used to evaluate financial outputs. This is performed as a way to best reflect the risk 
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that accompanies most projects and provides the project’s probability to attain set financial 

metrics. 

4.4.7 Technology learning curve 

In order to model the reduction in PV installation cost per kilowatt, the REIPPPP round one to 

round three capital costs, together with the related awarded project capacity per round, is used 

to calculate the estimated learning rate. Thereafter, this rate is also used in making 

assumptions regarding the reduction in installation costs for the sensitivity analysis.  

The definitions of the equations and formulae were covered under the literature review in 

Chapter 3. 

4.4.8 Real Options Analysis 

The study built on the already calculated discounted cash flows mentioned previously. The 

ROA expanded on the NPV that had been calculated to determine the NPVq, and then based 

on the project data, other variables were also determined in order to start mapping the project’s 

real options performance, such as on the active mapping tool developed by Campher (2012). 

The rest of the parameters and variables have already been expounded upon in the literature 

review, specifically Section 3.6.1.1, which related to the mapping of an investment onto a call 

option. For detailed case study definitions, the risk free rate table is listed below, in Table 4.5 

together with the related period for fixing the investment. Therefore, the rates used should be 

linked to the fixed period as the length of deferment for simplicity. 

Table 4.5 South African National Treasury risk free retail bond rate, considering 
current (2014) interest rates 

 

Source: (South African National Treasury, 2014) 

The data in Table 4.5 provides the option to link the investment to inflation plus a certain 

percentage for three to ten year periods. The calculations for this study model used fixed rates. 

4.5 VOLATILITY  

Economic analysis is concerned with the present and future consequences of investment 

alternatives. It is, however, not easy to perform and it is sometimes impossible to foresee and 

estimate the future consequences or benefits of a decision made in the present. The accuracy 

Stellenbosch University  https://scholar.sun.ac.za



71 
 

of such estimates is purely based on available data, and the accuracy of the model used 

(Adedeji, 2013). 

The impact of uncertain future events can be either positive or negative. This depends on the 

type of risk that occurs. ISO 31000 further defines risk as “the effect of uncertainty on 

objectives” (AIRMIC, Alarm & IRM, 2010). This definition links the risks to the objectives of an 

organisation or project.  

4.5.1 Management of uncertainty 

In risk management, the process is first to perform risk assessment, which involves identifying 

all the risks by listing them on a risk register. After identifying the risks, they are analysed by 

indicating the potential causes of the risks, their potential consequences and their probabilities 

of occurrence. Thereafter, the risks are evaluated and prioritised, and the last phase is 

introduced, which is the mitigation strategy and plan (AIRMIC, Alarm & IRM, 2010). 

Risk is a measure of the probability and consequence of an event on the defined organisational 

or project goals. When risk is considered, the consequence or damage associated with its 

occurrence must also be considered. Risk is not always easy to assess, since the probability 

of occurrence and the consequence of occurrence are usually not directly measurable 

parameters and must be estimated by statistical tools or other procedures (Kerzner, 2001). 

Risk has two primary components for any given event (van Heerden, 2013): 

• Probability of occurrence; and 

• Impact of occurrence. 

Therefore, risk can be mathematically defined as follows (Kerzner, 2001):  

Risk = f (likelihood/probability, impact/severity)   [ 8 ] 
 

As either the likelihood/probability and or impact/severity increases, so also risk increases 

(Kerzner, 2001). The notion of risk has in concept, the fact that one does not have the capability 

to know all that could happen. It has to do with not knowing, what one does not know could 

happen, referred to as uncertainty. While the project plan is known, and certain seasonal 

events or requirements might be known and planned for in the project schedule, there are still 

unknowns because humans do not know everything that could happen in life. The unknowns 

that pose an unfavourable outcome are called risks, and the unknowns that present a 

favourable outcome are called opportunities. 

Stellenbosch University  https://scholar.sun.ac.za



72 
 

According to a JP Morgan Asset Management report (JP Morgan Asset Management, n.d.), 

investments in infrastructure outside the countries of the Organisation for Economic Co-

operation and Development (OECD) are generally considered more risky for two principal 

reasons: 

• The legal, regulatory and political environment poses higher risks of uncertainty in 

dealing with authorities than in the OECD countries; 

• There is a greater difficulty in forecasting demand than in OECD countries because of 

surging economic and population growth in the emerging economies.  

Sources of risk or uncertainty in the renewable energy industry of South Africa can be identified 

under two categories: internal and external risk. These are further classified as shown in Figure 

4.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Sources of uncertainty in renewable energy projects 

Source: Adapted from (Janse van Rensburg, 2010) and (Ward & Gittinger, 1997)  
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The risks shown in Figure 4. can lead to events that could affect returns, and should be 

quantified into a metric that can be used in the calculation of volatility.  

Table 4.6 Risk prioritisation matrix 

Consequence Type Risk Rating 
Likelihood 1 Insignificant  2 Minor 3 Moderate 4 High Major 
5 Certain 11 16 20 23 25 

4 Likely 7 12 17 21 24 

3 Possible 4 8 13 18 22 

2 Unlikely 2 5 9 14 19 

1 Rare 1 3 6 10 15 

Source: (South African National Treasury, 2014) 

Generally accepted industry practice is to create a risk matrix in order to assess and prioritise 

the risks (van Heerden, 2013). Table 4.6 above shows the scores assigned to either the 

likelihood and the consequence or severity. In this study, a risk matrix from the case study 

project was used in an attempt to quantify the volatility of the project. A project register was 

created during the project life cycle, and was used in calculating the volatility of the project.  

Campher’s (2012) study put forward the notion that once a prioritisation score has been 

assigned to the risk matrix, the best way to link the risk to the financial impact would be through 

the generally accepted fact that the higher the risk the higher the option value. However, this 

relationship links the risk to the ultimate option value and not the quantified financial impact of 

the risk. In addition, the relationship between the risk event and the financial risk is an inversely 

proportional correlation. An example of this is that the safety risk impact is inversely 

proportional in relation to the financial risk of a project (or any operation). Therefore, it can be 

assumed that a physical risk event would be inversely proportional to the financial risk of a 

project (Campher, 2012). 

Therefore, if a risk is assigned a score of 40%, then its financial risk, according to options 

theory is as follows:  

σ = 100% - 40% = 60%    [ 4.2 ] 
 

In Table 4.7 below, risks were identified and evaluated in order to arrive at a risk levels in the 

case study project. This study takes this information further by using it to estimate the project 

volatility. 
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Table 4.7 Calculation of the volatility of the project 

 

The project risk level scores are averaged and then converted to standard deviation to be used 

in calculating the volatility of the project, as shown above. 

4.6 KEY ASSUMPTIONS 

The validation of the theoretical investment analysis framework was carried out by applying 

the framework to a valuation of the investment in a PV generation plant similar to an existing 

plant. The initial cost of the PV generation plant was considered to be R2.06 billion, as shown 

in section 4.4.2, including direct costs; indirect costs; engineering, procurement and 

construction (EPC); Special Purpose Vehicle (SPV) development; and administration. 

Project Category Identified Risk Consequence Probability Severity Risk Level
Material damage Delay COD 1 4 4
Foundations piling Delay COD 3 4 12
Industrial protest Delay COD 4 4 16
Local enterprise 
procurement

Delay COD 3 5 15

Safety / health 
incidents

Delay COD 3 4 12

Contractor 
Experience

Lack of experience Delay COD

Social Issues Theft Delay COD 5 3 15

Technology
Eskom testing and 
commissioning 
requirements

Delay COD 3 5 15

Permit expired COD delay 1 3 3
Unauthorised 
activity

COD delay 2 4 8

Plant performance
Plant 
Performance 
not optimal

1 4 4

Plant failure
Plant 
Performance 
not optimal

2 4 8

DoE Policy Change of policy 1 5 5

11.21
0.45
0.55

Average
Risk standard deviation σᵣ
Financial risk standard deviation σ = ( 100%-σᵣ)

Environmental 
Issues

Management / 
Operations team

Construction 
Schedule
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Figure 4.2 Total project cost breakdown of PV generation plant 
 

The following assumptions were made for the project: 

• Capex, TLC and plant life: It was supposed that the installed PV cost with a service life 

of 20 years would currently be R25,305 per kW and it was anticipated to decrease every 

year, due to the ‘experience curve effect’ (LR=20.0%). This means that when the 

cumulative production of the PV modules was doubled, the installed PV cost (R/kW) 

would be reduced by 62.2% of its 2012 cost.  

• Energy output: The PV generation plant was expected to generate 225,000 MWh per 

year. It was expected that the performance of the installed PV panels would decrease 

by a magnitude of 0.51% on an annual basis due to degradation. 

• PPA tariff: The initial energy tariff was assumed to be R1, 712 per MWh; however, this 

unit price would change over time with an expected annual inflation rate of 5.71% and 

a volatility of 50%, indicating a potential drop to R800 per MWh. These values were 

used to model the electricity tariff variations.  

• Revenue: Financial benefits of the PV plant were considered in terms of energy output 

sold under a PPA. 

• Expenses: The operational and maintenance costs of the plant were assumed to be 

13% of the annual revenues. 
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• Financing: The total capital required for the project was assumed to be provided at a 

debt-to-equity ratio of 25% from equity investment and 75% from debt, at an interest 

rate of 9.85% per year with a loan term of 20 years. 

Under these circumstances, the NPV, IRR, ROE and DSCR analysis was applied and the 

financial performance of the PV generation plant was evaluated under the investment analysis 

framework. 

Uncertainty about the electricity tariff, project cost, energy output, discount rate, and inflation 

rate along with any variation in the debt-equity leverage and loan term were evaluated using a 

sensitivity analysis methodology. 

4.7 SUMMARY 

This summarizes the discussion on the model development and structure of the study. The 

proposed investment analysis framework consisted of five functional components. Data from 

an existing project was used to provide information on the viability of a theoretical project that 

would be similar in nature, whereby the NPV, IRR, ROE, DSCR, and LCOE valuation metrics 

were used. 

In terms of the methodology, the data used and capital cost values for the analysis were from 

a case study on the Solar Facility in the Northern Cape. For the real options analysis, the study 

built on the already calculated discounted cash flows, and used fixed rates, based on the South 

African National Treasury risk free retail bond rate. 

In order to consider the volatility of the theoretical PV project in this study, a risk matrix from 

the case study project was used in an attempt to quantify the volatility of the project. Finally, 

the assumptions of the study supposed that the initial cost would be R2.06 billion; the installed 

PV cost would decrease every year, due to the ‘experience curve effect’; the performance of 

the installed PV panels would decrease by 0.51% on an annual basis due to degradation; and 

the tariff unit price would drop over time to R800 per MWh. Furthermore, the energy output 

would be sold through a 20 year PPA; operational and maintenance costs would be 13% of 

annual revenues; and the ratio of the capital invested for the project would be 25% equity and 

75% debt, at 12.4% interest per year over 20 years. 
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5 CHAPTER FIVE:  
MODEL RESULTS ANALYSIS 

5.1 INTRODUCTION 

This chapter covers the results analysis of the dissertation. It begins with a presentation of the 

results of the cash flow evaluation, followed by the results on the sensitivity analysis. Each of 

the results on the aspects of net present value (NPV), internal rate of return (IRR), and return 

on investment (ROI), return on equity (ROE), and debt service cover ratio (DSCR) are then 

each presented in turn. The @Risk® excel add-on package is used to analyse the probabilities 

of realizing good returns and ratios. The chapter continues with a depiction of the technology 

learning curve (TLC) analysis, and the real options analysis (ROA). The results of the real 

options analysis are also discussed. Finally, a validation is presented of the investment 

analysis frameworks.  

5.2 DISCOUNTED CASH FLOW VALUATION 

The attached model yields the results as per the technical input, project cost, input data and 

assumptions that were made, as stated in Chapter 4. The assumptions together with the 

project data provided the base case study that was analysed in relation to what was currently 

known. 

Table 5.1 Output metrics for PV generator plant investment valuation 

 

The results shown in Table 5.1 yielded all that face value analysis would be expected to 

provide. A good positive NPV was observed, along with a supporting IRR and an excellent 

ROE. For the funders of such a project, the debt service ratio would be even better at 

significantly above one. The above results should give the project investors the ‘green light’ to 

proceed with their investment. 

Metrics and Timeline

Timeline Metrics

Current Year 2014 NPV 5420 million R

Desired Operations Start Year 2015 IRR 12.54%

Number of  Years of Operations 20 ROI 13.14%

Loan Term 20 ROE 52.56%

LCOE 0.963 ZAR R / kWh Average EBITDA 581.97 million R

Average CFADS 296.77 million R

Minimum DSCR 3.24
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5.3 SENSITIVITY ANALYSIS 

The discounted cash flow analysis ensures that projected expenses and revenues from future 

time periods are assessed using their present values. Discounted cash flow (DCF) calculations 

incorporates the ‘opportunity cost’ of investing in a PV generation project using the inflation 

and discounted interest rates that counteract the risk of monetary depreciation over a 20-year 

power purchase agreement period.  

As discussed in the literature review, discounted cash flow does not consider other critical 

project risks. Sensitivity analysis of the base case is performed to add value to the deterministic 

DCF valuation. This tests the sensitivity of the expected profitability to any assumptions that 

are made about the key input factors.  

The seven factors that were found to have the largest impact on profitability of a PV generation 

project were utilised as input parameters to be varied in the sensitivity analysis of this study. 

These were:  

• Fixed Capital Investment (FCI) or Project Capital Expenditure (Capex); 

• PPA tariff; 

• Discount rate; 

• Inflation rate; 

• PV Plant Energy Output; 

• Debt-to-Equity leverage ratio; and 

• Loan term. 

The key profitability and valuation indicators whose sensitivity to the input parameters 

monitored were: 

• NPV; 

• IRR; 

• ROI; 

• ROE; 

• DSCR; and 

• LCOE. 

The results of this sensitivity analysis are presented and discussed in the following 

subsections. 
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5.3.1 Net present value (NPV) 

The sensitivity tests for the NPV are shown in Figure 5.1. In the worst case, the base case 

NPV of ZAR 5.43 billion was found to decrease to ZAR 0.82 billion due to a corresponding 

50% decrease in tariffs (ceteris paribus). It must be highlighted that this tariff was dropped to 

this level in order to evaluate the viability of this REIPPPP window 2 project at window 3 prices. 

This value was still above zero and according to the NPV investment criteria, the PV project 

would still be viable. 

 

Figure 5.1 Sensitivity of NPV to inputs 

In the best-case scenario, the base case NPV of ZAR 5.4 billion was found to increase to ZAR 

7.65 billion due to a corresponding 25% increase in tariffs (ceteris paribus). In conclusion, this 

value was still above zero and according to the NPV investment criteria, the PV project would 

still have been viable. However, in comparing the best and worst-case scenarios for the project, 

the highest NPV would be chosen. 

In Figure 5.1, the PV project NPV was shown to be most sensitive to energy output and the 

inflation rate, followed by Capex/FCI and the loan term. NPV was less sensitive to percentage-

debt or equity leverage and was insensitive to the discount rate. The reason for this is that the 

inflation was incorporated in the revenue calculation and it was not necessary to discount the 
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free cash flows again at the end. It must be noted that the discontinuity (steps) in the energy 

output sensitivity were due to the different Capex costs that are associated with solar energy, 

as the output moves out of the operating range of the specific technology (tracking system). 

For example, a 0% change in input (Figure 5.1) signified the maximum energy output capability 

of the fixed-axis PV system that was modelled, such that a further increase in energy output 

would have required a change in technology to the single axis modules, which would have 

been capable of this new energy output. The single-axis module technology would come with 

a corresponding change in Capex (ceteris paribus). 

5.3.2 Internal rate of return (IRR) 

While the NPV showed the PV project to be viable at all considered sensitivity scenarios, more 

insight into the value of the PV project was derived from the IRR sensitivity (see Figure 5.2). 

 

Figure 5.2 Sensitivity of IRR to inputs 

In the worst case scenario, the base case IRR of 12.5% was found to decrease to 2% due to 

a corresponding 50% decrease in tariffs (ceteris paribus), such that the IRR was now lower 

than the risk-free ‘two-year South African government retail savings bonds (7.25%)’. This 

indicated that the project ceased to be viable at this stage, once levelled against the two-year 

risk-free government bond. 
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In the best case scenario, the base case IRR of 12.3% was found to increase to 17.8% due to 

a corresponding 25% decrease in Capex or FCI. At this new value, the project would have 

remained viable. 

The IRR was seen to be most sensitive to the tariffs, Capex, and energy output, followed by 

the inflation rate as shown by Figure 5.2. However, the IRR was less sensitive to the debt 

leverage and loan term; and was also unaffected by the discount rate, as found with the NPV. 

The energy input-output representing the different technologies (fixed, single and multi-axis) 

at each step was seen to maintain the base case IRR somewhat, while all of the other variables 

remained the same. 

5.4 @RISK® ANALYSIS 

5.4.1 Inputs 

@Risk® requires certain inputs that would be varied based on a specific frequency distribution 

to be used for the calculation of required outputs. @Risk® would then perform random 

simulations given the inputs to calculate outputs and their probability of occurrence. A number 

of key inputs were used to model variation and impact of such variation to the profitability of 

the project. The mean value and standard deviation has to be defined for @Risk® to perform 

the calculations. For our model, Table 5.2 provides the input parameters. 

Table 5.2 Output metrics for PV generator plant investment valuation 

 

These inputs typically represent aspects of the project that remain uncertain over the life of the 

project which can affect the profitability significantly. 

5.4.2 Outputs 

The outputs of interest are the key financial parameters such as NPV, IRR, EBITDA and DSCR 

which is what private investors would be interested in evaluating on the project on.  

Varried Input Parameters

Distribution Mean Value Standard Deviation COV

Energy yield Normal 225.252 13.7404 0.06100

Interest rate Normal 0.09840 0.00500 0.05081

CPI Inflation Normal 0.05700 0.03320 0.58237
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5.4.2.1 Net Present Value (NPV) 

 

 Figure 5.3 NPV at risk Probability Analysis 

Based on the above it is clear that the probability of achieving an NPV ranging between R1, 

228 billion and R13, 250 billion is about 90%. The range of values lying within the 90% 

probability of occurrence will change due to the random @Risk® simulations. This analysis 

provides very good insight into the potential of the project whilst factoring the inherent risks. 

5.4.2.2 Internal rate of return (IRR) 

@Risk® simulation indicates very high profitability for an IRR between 3.9% and 34%. This IRR 

range has a probability of 90% as per Figure 5.4. An investor could streamline the analysis by 

setting a target IRR required and the probability thereof can be determined. Based on such 

probability, the investor can decide to invest or not to invest. 
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Figure 5.4 IRR @Risk® Probability Analysis 

5.4.2.3 Return on Investment (ROI) 

 
 Figure 5.5 ROI @Risk® Probability Analysis 

This specific simulation provides an 85% probability of realising an ROI between 3.9% and 
38.5%. An investor could set a required minimum target ROI as base line to compare to at 
risk analysis above. Then based on the probability thereof conclude whether it’s a worthwhile 
investment or not. 
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Figure 5.7 ROI @Risk®Sensitivity Analysis 

 
 
The sensitivity analysis also confirms the ranking analysis from @Risk®. To realise 
improvement in ROI, either increase inflation so that the revenues could increase or decrease 
the capital cost. What is interesting is the fact that, increase in annual solar irradiation does 
not lead to significant improvement in ROI. 
 

5.4.2.4 Debt service cover ratio (DSCR) 

In order to determine the change in debt servicing ability with varying input conditions, the 

minimum DSCR simulation, and results of this are presented in Error! Reference source not 

found.   

 

Figure 5.8 Average DSCR @Risk® Probability Analysis 
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The average DSCR was found to be mostly impacted by the capital costs and inflation rate 

above the other two main variable inputs to the simulation. The explanation thereof can be that 

this capital expenditure is the fundamental component to the debt principal and interest 

payable, therefore significant variation is compounded over 20 years.  

In this model inflation mainly affects the tariff directly, thereby the increase in the potential to 

payback debt. The model did not build in the impact of inflation on interest rates which could 

be an area of improvement. 

The average DSCR sensitivity analysis in Figure 5.10 below, further indicates how the project’s 

capacity to service its debt can be enhanced or affected by change in these four variable 

inputs. On the whole the average DSCR is well above 1 indicating that the project can service 

its debt fairly well. 

 

 Figure 5.10 Average DSCR @Risk ® Sensitivity Analysis 
 

5.5 TECHNOLOGY LEARNING CURVE (TLC) 

The concept of technology learning curve (TLC) describes how the marginal PV installed costs 

would decrease in relation to the cumulative installed production capacity over time. This 

correlation is generally characterised by empirically determined power laws such as those 
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presented by Ayompe et al. (2010) and Kobos et al. (2006), in equations [5.1] and [5.2] 

respectively (Ayompe, et al., 2010), (Kobos, et al., 2006): 

@�b�� = @�b�� �b�
b�

�¥
      [9 ] 

Where: xt is the cumulative installed PV module capacity at year t; b is the learning 

parameter or learning elasticity parameter; C (xt) PV module cost per KWp at year t; 

C(x0) the PV module cost at an arbitrary starting year; x0 the cumulative installed PV 

module capacity at an arbitrary starting point. 

 

@�c����@@�� = ¦�@@���7�    [5.2] 
 

Where: CCi = Cumulative Capacity of Technology I; Costti = Cost per unit; Yi = capital 

cost at initial levels of installed energy capacity and ai is an estimate for technology 

specific elasticity. 

 

 

Herein, the outcome of creating a TLC for the proposed PV generation plant in this research 

was detailed. The TLC was obtained by regression of the actual installation data that was 

reported (Eberhard, et al., 2014), in order to find the learning elasticity parameters, ai for the 

respective correlations or models applied.  

The progress ratio (PR) could thus be determined from the learning elasticity parameters and 

equation [5.3] below, while the learning rate (LR) was obtained from equation [5.4]. 

1�� = B�7�      [5.3]  
 

o�� = < − 1��     [10 ]  
 

In equation [5.3],−!�, from the Ayompe et al. (2010) model, is replaced by §, from the Kobos 

et al (2006) model. The learning rate is the relative cost reduction in percentage after doubling 

the cumulative production as defined in equation [5.4]. 

The results of the regression are reported in Table 5.3. 
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Table 5.3 Early stage South African Learning Rate and Progress Ratio from regression 
of historical bidding window data 

Model: Ayompe et al. (2010) Model 
Kobos et al. (2006) 
Model 

Learning Rate, LR 35.5 % 41.0 % 

Progress Ratio, PR 64.5 % 59.0 % 

Learning elasticity parameters § = -0.6320 −!� = 0.761 

   

   
 

The initial (2012 to 2014) bidding window data was inserted into each of the two models 

considered by Ayompe et al. (2010) and Kobos et al. (2006). These models were linearised by 

taking logarithms on each side of equations [5.1] and [5.2] and linear least squares fit was 

applied to determine the learning elasticity parameter for each model. 

After fitting a linear model using least squares regression (LSR) analysis, it was essential to 

determine how well each model fitted the data, thus the R-squared (R2) statistic was used in 

conjunction with the model’s residual plots. 
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Figure 5.11 The Technology Learning Curve (TLC) as estimated by the Ayompe et al. 
(2010) regression model of actual reported data 

Due to the few data points available for regression, patterns in the residual plots (rather than 

the randomness necessary to validate the fit) were more difficult to identify — if indeed they 

were present.  

At this early stage of PV technology adoption in South Africa, the more generalised (non-PV 

specific) Ayompe et al. (2006) model was found to produce a closer fit (R-square = 0.923) than 

the PV technology specialised Kobos et al. (2006) model (R-squared = 0.876). 

Figure 5.11 demonstrates that as the cumulative installed PV capacity was doubled, so the 

installed PV cost per unit would decrease. This decrease in installed PV costs is suggested to 

be as a result of factors, including the “process innovation, learning-by-doing, economies of 

scale, R&D expenditures, product innovation/redesign, input price declines, etc.” noted by 

Ashuri et al. (2011). 

Although modelling generally requires a large data set for definitive or more conclusive results, 

such data was not available for the South African case study. Thus, the few data points that 

were available were used tentatively to derive all the early stage indicators of the PV 

technology leaning rate in South Africa. 
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In addition, it must be noted that although this research forecasted that the learning elasticity 

parameters, −!� and §, would be constant, determining whether these parameters would 

actually remain constant or change over time was found to be difficult. Current research is 

focused on developments that would incorporate these uncertainties (Ashuri, et al., 2011).  

In such cases, and in the case of two differing models for the change in installed PV over time, 

“the best engineering judgment can be used to characterise the cost trend of [the] emerging 

technology” (Ashuri, et al., 2011). 

5.6 REAL OPTIONS ANALYSIS 

This section presents the results of valuing the flexibility of investment decisions in large-scale 

PV infrastructure projects using the real options analysis (ROA) approach. 

Changing market conditions over time could give rise to advancements that would result in 

improved technologies being adopted for PV plants in such a way that the project’s profitability 

would be affected to the point of changing the investment decision. Providing a right without 

an obligation to delay, abandon or invest in a PV generation project, depending on the actual 

market realisations, would provide potential investors with a real option flexibility that could 

increase the value of the entire project (Koo, 2013). Market realisations here, refers to 

conditions such as “the technology becomes available at a lower price, or stricter 

environmental regulations are put in place”, making renewable energy installations a necessity 

(Koo, 2013). 

The real options of the PV generation project were valued by drawing parallels with the 

European-type financial options, which could only be exercised on the date of expiration of 

these options. The Black-Scholes option pricing model was used as the typically model for 

pricing European-type options. Some details on the models are provided in chapter three and 

four of this report. 

5.6.1 Investment Valuation Modelling based on real options analysis 

This research focused on the expiration date of the real option, the potential change in tariffs, 

the TLC modelled change in exercise prices and the analysis to determine whether the different 

PV project scenarios considered should be delayed, abandoned or implemented when 

uncertainties in the projected revenues and capital expenses had changed (increased or 

decreased). The focus of the analysis in this section was to use real options to allow for 

decision-making flexibility, based on the changing market conditions in the years leading up to 

the expiration date of the real option. 
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The total number of real options scenarios determined was 45. A selection of representative 

scenarios are given in Table 5.4 and presented graphically in Figure 5.12. 

Table 5.4 Selection of Real Options Scenarios 

 

Results of the ROA were found to be somewhat sensitive to some of the parameters. In some 

cases, this resulted in a change to the investment decision. The ROA metrics, ¨� and NPVq 

were found to be sensitive to the tariff, exercise time and uncertainty or risk. The NPVq was 

primarily found to be sensitive to tariff, exercise time and its corresponding risk-free rate. In 

addition to exercise time, the ¨� was also found to be sensitive to changes in uncertainty,­. 

Figure 5.12 shows that higher rewards (a higher NPVq) would have been obtained at higher 

risks, which is consistent with the 'higher risk, higher potential reward, higher option value' 

trends observed for financial option valuation. 

Formulas used for Cv and NPVq analysis

NPVq Cv
Tariff

(R/kWh)
σ

t 
(years)

rf
 (%)

Basecase 3.172801 0.955363 1,712                  0.5516 3 7.75%
Case 1 3.172801 1.388375 1,712                  0.8016 3 7.75%
Case 2 3.769906 1.233368 1,712                  0.5516 5 8.25%
Case 3 0.694795 0.955363 880                      0.5516 3 7.75%
Case 4 0.694795 1.388375 880                      0.8016 3 7.75%
Case 5 0.825552 1.233368 880                      0.5516 5 8.25%
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Figure 5.12 Real Options Analysis (ROA) Scenarios  

In Figure 5.12 the base case scenario was in the ‘maybe now’ section, indicating that the 

investment was a potentially viable one. A change (case 2) in exercise time from the original 

three years (from valuation point) to the five year plan had the effect of increasing both the ¨� 

(from 0.955 to 1.233) and the ®¯°± (from 3.172 to 3.769), however, the investment decision 

did not change based on the criteria for ROA. 

The next scenario of note was the change in tariffs from the base case. In scenario case 3, the 

tariff was increased from the base case (ZAR 1 712 per MW) to ZAR 880 MW, as indicated by 

Table 5.3. While the risk, ¨�, remained the same (0.9553), the NPVq significantly decreased 

from 3.172 to 0.6947, thereby forcing the investment decision into the ‘maybe later’ section, 

suggesting that the investment should rather be delayed. 
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5.7 VALIDATION OF INVESTMENT ANALYSIS FRAMEWORK 

The validation of these calculations could not be validated with the project due to the project 

financial data and information being confidential. The deterministic model provided financial 

parameters that seem reasonable and perhaps more conservative. This could be attributed to 

the fact that the model used an average interest rate over a 20 year period as compared to 

varying interest rates over that same period as would be the case in real life. 

The @Risk® simulation excellently complement the deterministic model through incorporation 

of probabilistic variation in key input factors. The gap in @Risk® simulation is that, it only factors 

the risk within the direct inputs to the project costs, other project risk not factored in the costs 

are not necessarily included. This is where ROA provides an excellent opportunity and 

advantage in this analysis framework.   

The ROA on the base case scenario provided a potential support to invest, however it also 

indicated some high volatility associated with the project risk. Due to the fact that the volatility 

in this case could have changed over time, it was still a worthwhile investment and yielded a 

very high call option value. 

The results of the ROA seemed to support the pure DCF results for scenario S16 in the sense 

that at this tariff level (ceteris paribus), the returns would have been much lower and it may 

instead have made sense to defer the investment to a later date.  

5.8 SUMMARY 

The analysis provides insight into the need for more dynamic study when performing project 

financial evaluation. In this study, at risk performed some probabilistic analysis by incorporating 

random changes to key inputs in the model.  

The deterministic model provided a positive NPV, along with a supporting IRR and an excellent 

ROE, indicating that project investors should perceive a ‘green light’ to proceed with their 

investment of such a project. @Risk® took this further by providing insight into probability of 

being profitable and how the inputs could be varied to increase profitability.  

The average DSCR over the project life was determined to be at its minimum at a value of 1.92 

and averaging at 3.24, which are well above required ratio of 1:00. This implies that the project 

income would be more than enough to service its debt and operational expenses.  
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It was demonstrated that as the cumulative installed PV capacity was doubled, so the installed 

PV cost per unit would decreased confirming the view that the more a technology is accepted 

and adopted within an economy, the more affordable such technology will be. 

The ROA scenario analysis results were found to be somewhat sensitive to some of the 

parameters; in some cases, resulting in a change to the investment decision. The base case 

scenario was found to be in the ‘maybe now’ section, indicating that the investment was a 

potentially viable one. 

The ROA on the base case scenario provided a potential support to invest, however it also 

indicated some high volatility associated with the project risk. Due to the fact that the volatility 

in this case could have changed over time, it was still a worthwhile investment and yielded a 

very high call option value. The results of the ROA thus supported the pure DCF results in the 

sense that the returns may have been much lower, and it may instead have made sense to 

defer the investment to a later date.  

The analysis in this chapter confirms the importance of thorough risk analysis during the 

feasibility phase of projects. It can therefore be concluded @Risk® considers the project risks 

by randomly varying certain model input parameters over a set number of iterations. This 

simulation enhances the model analysis because it provides a probability range of realising 

some profitability or some other key output parameter metric. Despite this, ROA is still required 

because of the volatility factor which incorporates risks which may not be financial in nature, 

i.e. technology failure, contractor issues, engineering errors, schedule delay and labour issues. 
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6 CHAPTER SIX:  
CONCLUSION 

6.1 INTRODUCTION 

This final chapter of the dissertation presents the conclusions of the study. It begins with a 

deliberation of the findings from the previous chapter, and what the implications of the results 

are.  

The chapter concludes with the recommendations of the study, with an indication of future 

possible research that may be conducted to boost, or further support the findings of this study. 

The chapter continues, next, with the conclusions of the study.  

6.2 CONCLUSIONS OF THE STUDY 

The study’s goal was to develop a techno-economic model to evaluate the viability of 

renewable energy projects in the South African REIPPPP. A literature survey was carried out 

on PV technologies, which provided some insight into the technical aspects of the technology. 

A background to the REIPPPP was also presented in chapter two.  

Through the literature review, the critical factors that must be considered in large scale projects 

were observed to include the technology type and efficiency of the PV modules, which 

significantly impact the output of a plant as well as its capital costs. Other observations included 

whether a fixed or motion tracking system should be implemented, which can lead to significant 

revenue increases; the project site location, which is important since the different regions in 

South Africa have different climatic conditions and seasons; and the overall plant efficiency, 

which can lead to better output and therefore higher revenues. These items were noted to be 

the primary factors that dictate the financial outputs of a plant. Once these have been carefully 

considered, the secondary factors of importance are the tariffs and the financial terms and 

conditions of the project, as dictated or agreed upon with the capital lenders.  

The most critical financial factor affecting the NPV is the inflation increase since it affects the 

tariff thereby pushing the revenues higher, in reality this would not be the case due to impact 

of inflation on interest rates and everything else. Secondly, the capital cost affects the project 

NPV due to debt costs. The next important factor IRR is also affected by these two factors 

above any other, thereafter, interest rate hikes starts impacting the IRR.  

For the lenders, interests earned on their loans should increase, which affects the debt service 

cover ratio as well as the loan life cover ratio. However, the investors can often negotiate with 

the lenders to structure their loan servicing agreements such that the interest rates are 
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serviced, while the principal amount is paid off later. However, in the case study that was 

presented for this study, both the DSCR and LLCR indicated that sufficient revenues would be 

available to service the debt obligations. It was therefore concluded that the financial 

performance of a project would be dependent on the technical performance, geographic 

location and design specifications of any prospective plant. 

The third chapter provided an overview into the background of the structure of project 

financing, as well as an evaluation framework that included both the traditional capital 

budgeting as well the real options analysis platforms. The literature that was discussed 

supported the notion that, while discounted cash flow evaluation techniques provide a good 

indication of the potential of returns, the calculations are static and do not factor the dynamic 

nature of infrastructure project risks in projects. Hence, there is a need to consider the effect 

of risks on project returns and for that real options analysis (ROA) techniques were used. 

Chapter Four discussed how the model was developed, and considered all the technical plant 

energy outputs that would provide an input to the financial calculations. The capital cost as 

well as the operational financial data put into the calculations. The main calculation 

spreadsheet provided all the expected cash flows, returns on investment, and internal rates of 

return on the projects.  

As part of the main calculations, sensitivity analysis and @Risk® analysis was done to evaluate 

potential variation in some of the inputs and to evaluate their impact on the key outputs. 

@Risk® provides a dynamic simulation, however, it still mainly only considers risks of price 

movement within the financial input parameters. Other risks that are endogenic to the project, 

as listed in chapter 4, are not necessarily factored into this because of the nature of the risks 

not being financial, but mainly related to events which could happen during construction. 

The final evaluation was done using the ROA framework developed by Luehrman (1998) and 

which was further purported by other authors for consideration in physical assets financial 

evaluations. This dynamic study in the project financial evaluation in the form of the ROA of 

the case study — considered under chapter five — provided volatility and NPV ratios that 

yielded a ‘maybe invest now’ decision. This could be interpreted as good, since the result 

supports the decision to invest in the project. Real options structure and formulation provides 

for endogenous non-financial in nature, risks to be assessed and factored into the financial 

calculation. It therefore closes the gap not addressed by other methods of financial evaluation 

including @Risk®. It also supports the hypothesis from the first chapter that the two techniques 

should be combined in all financial analysis of renewable energy utility scale PV projects. 
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The results of the calculations as discussed in chapter five, confirmed the viability of the case 

study project when using traditional evaluation techniques. The ROA evaluation provided an 

interesting scenario, which indicated that the project could be viable depending on the overall 

risks. When mapping the base case results on the active mapping tool, the ROA indicated a 

very high volatility and an NPVq above three. The NPVq was acceptable; however, the volatility 

pushed it into the “maybe now” region. Considering that the base case scenario was already 

an accepted and executed project, the active mapping tool confirmed the profitability of the 

project. This therefore reaffirmed the results yielded by the conventional NPV and IRR as well 

as @Risk®. 

It can thus be concluded that the ROA active mapping tool is an excellent complementary 

technique to the traditional discounted cash flow evaluation techniques. Therefore, while the 

developed model results have not been matched to the actual financial figures that were 

approved by the case study project owner, due to issues of confidentiality, they do confirm the 

overall viability of the project. 

Conclusions drawn above further illustrate the importance of including ROA within the 

traditional capital budgeting financial evaluation techniques, as it incorporates the risk factor 

into the calculations. Risk is dynamic in nature and its quantification in project financial 

evaluations is critical in order to have a fair and realistic appraisal of the financial performance 

of risky or ground-breaking investments. 

It can further be concluded that, for projects to be profitable, the investor may have to: 

- Settle for higher than normal equity-to-debt ratio in order to make sure the debt is 

minimized. 

- Find alternative ways of driving the initial capital costs down 

- Negotiate very favourable interest rates and or even longer payback periods. 

The REIPPPP market in South Africa has driven the PV technology tariffs down and thereby 

making it a very competitive industry. South Africa has provided a stable renewable energy 

investment environment which is still appealing to especially investors.  

6.3 RECOMMENDATIONS FOR FUTURE STUDY 

In a future study, a scientific and more quantitative approach could be performed to generate 

an estimation of the physical risks that would be involved to undertake such PV projects.  
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6.4 CONCLUSION 

This concludes the final chapter of the dissertation. In the case study that was presented, both 

the DSCR and LLCR indicated that sufficient revenues would be available to service the debt 

obligations. It was therefore concluded that the financial performance of a project would be 

dependent on the technical performance, geographic location and design specifications of any 

prospective plant. 

Various financial evaluations were performed. The final evaluation was done using the ROA 

framework, which provided volatility and NPV ratios that yielded a ‘maybe invest now’ decision, 

which was good, since it supported the decision to invest in the project. The result also 

supported the hypothesis from the first chapter that the ROA techniques should be combined 

in all financial analysis of renewable energy utility scale PV projects. The results also confirmed 

the viability of the case study project when using traditional evaluation techniques. It could thus 

be confirmed that an ROA active mapping tool would be an excellent complementary technique 

to the traditional discounted cash flow evaluation techniques for project viability studies.  
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