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ABSTRACT 

 

Bleaching is a topsoil discolouration phenomenon recognised at family level within certain soil forms 

in the South African soil classification system. These topsoil horizons derive their name from the pale 

greyish colouration they exhibit in the dry state which is the result of the loss of pigmentation agents, 

specifically Fe oxides and organic material, from the upper part of the soil profile. In recent years, 

discrepancies regarding both the occurrence of bleached topsoils as part of weakly structured soil 

profiles in the South African soil landscape, and the description of this phenomenon in the national 

soil classification system, have become apparent.  This has accentuated the clear lack of understanding 

which exists regarding the genesis of bleached topsoil horizons under weakly structured subsoil 

conditions in South Africa.  

Based on the land-use and classification significance of this soil feature, this study aimed to provide 

clarity on the characteristics of bleached topsoils and some of the weakly structured subsoil horizons 

they overlie to determine by which mechanism these bleached topsoils develop and if the pedogenetic 

mechanisms are similar across two regions of South Africa. Due to soil colour’s obvious importance as 

the only feature with which to recognise topsoil bleaching, an investigation into the measurement and 

expression of soil colour was also deemed to be important.  

A total of 26 soil profiles were sampled throughout the Western Cape (WC) and Mpumalanga 

provinces. Colour was visually determined in the field using a Munsell soil colour chart and also by 

means of a spectrophotometer in the laboratory. A wide variety of soil chemical and physical 

properties were also determined for each sampled horizon.  For comparison’s sake, the selected soil 

profiles needed to represent profiles that could potentially qualify as having red/yellow-brown apedal 

B (ferralsols) or red/yellow neocutanic B horizons (cambisols), either with or without a perceived 

bleached topsoil (achromic). During sampling on the Highveld, bleaching was observed to be 

landscape related with bleached orthic A horizons only occurring on yellow-brown apedal B subsoil 

horizons at lower positions along the plinthic catenas. As a result, sampling on the Mpumalanga 

Highveld was conducted along catenal transects. In the WC, bleached profiles did not follow a 

noticeable landscape pattern and subsoils comprising both red and yellow weakly structured horizons 

were recorded. 

Soil colour investigations proved Fe oxides to be the main pigmentation agents responsible for the 

expression of red- and yellow colours in the sampled soils, with soil samples also becoming redder 

with an increase in the Fe oxide content. Discrepancies were detected in the way soil colour was 

registered through human perception and spectrophotometer measurements. In general, the eye 
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perceived the soils to be brighter and more chromatic and therefore was less sensitive towards 

detecting bleached horizon colours.  

The majority of the determined chemical and physical soil properties did not differ between the 

Western Cape and Highveld soils and did not show any relation to the bleaching phenomenon in either 

of the locations. In the Western Cape, profiles tended to have a greater water dispersible clay (WDC) 

phase, with the bleached Western Cape profiles proving to be even more unstable than the non-

bleached variants. Iron oxide characterisation indicated proportionally similar amounts of crystalline 

and poorly-crystalline Fe oxides were present at both locations although in general bleached topsoils 

tended to have greater poorly-crystalline Fe contents. This trend was more pronounced in the 

Highveld profiles and was deemed to be indicative of a wetter soil moisture regime and alternating 

cycles of Fe reduction and oxide precipitation at this location.  

The reported poorly-crystalline nature of the Fe oxides together with the observed landscape 

influences, suggest Fe reduction to be the pedogenetic process responsible for bleached topsoil 

horizons overlying weakly structured subsoils on the Mpumalanga Highveld. The strong association 

between bleaching and clay dispersibility in similar profiles of the Western Cape suggest clay 

eluviation to be a common pedogenetic process in these soils. The presented data is this study did not 

provide an explanation for how clay eluviation results in bleached soil colours and no evidence was 

obtained to enable conclusive statements regarding the role of Fe reduction and clay eluviation as 

independent or complementary processes responsible for bleaching in the Western Cape soils. 

For the purpose of soil classification in South Africa, the inclusion of bleached orthic A horizons as 

family criteria in wetter variants of the yellow-brown apedal profiles is suggested. Based on the 

instability of the clay phase in the Western Cape profiles, it is proposed that these red or yellow weakly 

structured subsoils would be better classified as neocutanic B horizons and that bleached topsoils can 

in some instances be indicative of a more dispersive profile. 
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OPSOMMING 

 

Verbleiking is ‘n bogrondverskynsel wat erken word op familievlak in die Suid-Afrikaanse 

grondklassifikasiestelsel. Die benaming van hierdie verskynsel spruit voort uit die vaalgrys kleure wat 

hierdie bogrondhorisonte openbaar in die droëgrondtoestand, as gevolg van die verlies van 

grondpigmente soos Fe oksiedes en organiese materiaal uit die boonste gedeeltes van die 

grondprofiel. ‘n Aantal teenstrydighede aangaande beide die voorkoms van gebleikte bogronde as 

deel van swak gestruktureerde grondprofiele in Suid-Afrika, sowel as die beskrywing van hierdie 

verskynsel in die  nasionale grondklassifikasiestelsel, het oor die afgelope paar jaar te voorskyn gekom. 

Hierdie teenstrydighede beklemtoon die beperkte kennis wat daar bestaan aangaande die 

pedogenetiese oorsprong van gebleikte bogronde op swak gestruktureerde ondergronde in Suid-

Afrika. 

Weens die implikasies van hierdie bogrondverskynsel vir gebruiks- en grondklassifikasie doeleindes, 

beoog hierdie studie om die eienskappe van gebleikte bogronde en sommige van die swak 

gestruktureerde ondergronde wat hul oorlê, te bepaal, om sodoende die genetiese oorsprong van 

hierdie gronde onder sulke toestande te probeer verklaar. As gevolg van grondkleur se belangrikheid 

as die enigste eienskap wat gebruik kan word om gebleikte bogronde te identifiseer, is aspekte 

aangaande die meting en uitdrukking van hierdie verskynsel ook as belangrik geag. 

Altesaam 26 grondprofiele, verspreid oor die Wes-Kaap Provinsie en die Mpumalanga Hoëveld, is 

versamel. Grondkleur is eers visueel bepaal tydens veldwerk deur gebruik te maak van die Munsell 

grondkleurkaarte en later ook deur middel van n spektrofotometer in die laboratorium. ‘n 

Verskeidenheid grondchemiese en –fisiese eienskappe is ook bepaal vir elk van die versamelde 

horisonte. Die gekose profiele moes van so ‘n aard wees dat beide rooi/geelbruin apedale B of 

rooi/geel neokutaniese B horisonte ‘n klassifikasiemoontlikheid kon wees. Profiele met en sonder 

gebleikte bogronde is ingesluit. Tydens die versameling van grondmonsters is dit waargeneem dat 

verbleiking op die Hoëveld landskap-gedrewe is, met gebleikte ortiese A horisonte wat slegs voorkom 

op geelbruin apedale ondergronde in die laer hellingsposisies van hierdie landskap. As ‘n gevolg van 

hierdie waarneming, is grondversameling op die Hoëveld uitgevoer langs katena-transekte af. In die 

Wes-Kaap was daar geen merkbare verhouding tussen verbleiking en landskapposisie nie en die 

ondergronde van gebleikte profiele het bestaan uit beide rooi en geel swak gestruktureerde horisonte. 

Die ondersoeke na grondkleur het bewys dat Fe oksiedes die hoof grondpigment is in die rooi en geel 

gronde wat versamel is en dat gronde geneig was om rooier te raak soos wat die Fe inhoud van die 

monster toegeneem het. Verskille ten opsigte van die wyse waarop hierdie uitgedrukte kleure 
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geregistreer word, is tussen die visuele en spektrofotometriese bepalings waargeneem. Oor die 

algemeen het die oog die grondkleure as helderder en meer chromaties waargeneem en gevolglik was 

visuele kleurbepaling minder sensitief ten opsigte van gebleikte grondkleure. 

Die meerderheid van die chemiese en fisiese grondeienskappe wat bepaal is, het nie verskil tussen die 

Wes-Kaapse en Hoëveld profiele nie en het ook geen verwantskap met verbleiking getoon in enige 

van die twee areas nie. Die Wes-Kaapse profiele het egter n groter waterdispergeerbare kleifraksie 

(WDC) getoon, met die gebleikte profiele in die area wat as nog meer onstabiel as die nie-gebleikte 

variante bewys is. Die grond Fe inhoud in beide die Wes-Kaap en die Hoëveld het proporsioneel 

dieselfde vlakke van kristallyne en swak-kristallyne Fe oksiedes bevat, met die gebleikte profiele in 

geheel wat meer swak-kristallyne Fe oksiedes besit het. Hierdie tendens was meer prominent in die 

Hoëveld bogronde en is toegeskryf aan natter grondtoestande wat variërende fases van Fe reduksie 

en oksidasie tot gevolg gehad het. 

Die swak-kristallyne Fe oksiedes tesame met waarnemings in die veld aangaande landskap en 

grondverhoudings, dui daarop dat Fe reduksie die meganisme is waardeur gebleikte bogronde op 

swak gestruktureerde ondergronde in die Hoëveld ontstaan. Die sterk verwantskap tussen verbleiking 

en WDC in soortgelyke profiele in die Wes-Kaap dui daarop dat klei-eluviasie 'n groot rolspeler in 

hierdie grondprofiele is. Daar kon egter in hierdie studie geen bewyse gevind word wat aandui hoe 

klei-eluviasie gebleikte grondkleure veroorsaak nie. Verder kon Fe reduksie se bydrae tot verbleiking 

in die Wes-Kaap gronde nie uitgesluit of vasgestel word nie. 

Vir grondklassifikasiedoeleindes word daar voorgestel dat gebleikte ortiese A horisonte as n familie-

kriterium in die natter weergawes van die geelbruin apedale profiele ingesluit word. Verder, gegrond 

op die onstabiele klei fraksie in die Wes-Kaap profiele, stel ons voor dat hierdie swak gestruktureerde 

rooi en geel ondergronde as neokutaniese B horisonte geklassifiseer word en dat in somige gevalle, ‘n 

gebleikte bogrond ‘n aanduiding kan wees van ‘n meer onstabiele grondprofiel. 
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“Wees sterk, staan vas, begin die werk!  

Moenie bang wees nie en moenie besorg wees nie, 

want God die Here, my God, is by jou.  

Hy sal jou nie aan jouself oorlaat of jou verlaat nie,  

sodat jy al die werk vir die diens in sy huis kan afhandel.” 

 

*** 

 

1 Kronieke 28:20 
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“...only rarely have we stood back  

and celebrated our soils as something beautiful and perhaps even mysterious.  

For what other natural body, worldwide in its distribution, has so many interesting secrets  

to reveal to the patient observer” 

 

-Les Molloy, Soils in the New Zealand Landscape: the Living Mantle, 1988
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INTRODUCTION 

 

In many systems of soil classification, the underlying principle is to group soils of similar genesis 

(Schaetzl & Anderson 2005). The recognised relationship between pedogenetic processes and 

expressed chemical and morphological features in the soil has meant that within global soil 

classification systems a variety of measureable and observable profile criteria have been specified 

which infer specific pedogenetic pathways and therefore also serve to group and categorise different 

soil types (Buol et al. 2011). Amongst the most basic of all soil morphological features used in soil 

classification and probably the characteristic that is most noticeable to all, irrespective of one being 

an earth scientist or layperson, is soil colour and the variations with which it can be expressed (Bigham 

& Ciolkosz 1993). 

Within the South African soil classification system a number of diagnostic top- and subsoil horizons as 

well as some soil family varieties are recognised based on their colour characteristics (Soil classification 

working group 1991). In relation to other systems of soil classification, South Africa makes use of very 

specific and strictly defined colour criteria for horizon delineation. The five diagnostic horizons with 

specified Munsell colour ranges are the red and yellow-brown apedal B, the red structured B, the 

diagnostic E and the melanic A horizon. In addition, recognition is also given to another colour-related 

soil feature termed bleaching. Bleaching refers to a topsoil discolouration phenomenon that was first 

described and termed by Northcote (1979) in Australia. Under South African conditions bleaching is 

recognised in diagnostic orthic A topsoil horizons and is a feature distinguished at family level within 

certain soil forms (Soil classification working group 1991). Bleached horizons derive their name from 

the pale greyish colouration they exhibit in the dry state (Munsell colours as defined for the diagnostic 

E horizon) which is the result of the loss of pigmentation agents, specifically iron oxides and organic 

material, from the upper part of the soil profile.  

The accepted and most widely documented mechanism proposed for the genesis of bleached topsoils 

is related to water saturation, Fe reduction and the consequent stripping of Fe oxides from the soil 

mineral particles (Soil classification working group 1991; Fritsch & Fitzpatrick 1994; Cox et al. 1996; 

Peterschmitt et al. 1996). In soils where such a pedogenetic process is active, the most important 

component besides an oxidizable carbon source and a sufficient quantity of Fe oxide minerals, is the 

anaerobic conditions brought about by water saturation. Under these conditions, the microbial-driven 

mineralisation of organic matter makes use of ferric Fe as an alternative electron acceptor, which is 

reduced to mobile ferrous Fe. The ferrous Fe phase is washed out of the profile with subsequent 

rainfall events and a bleached horizon colour is perceived in the zone of removal (Peterschmitt et al. 
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1996). Currently, Fe reduction and to a lesser extent podsolization, are the only recognised modes of 

origin for these pale-coloured topsoils in the literature (Soil classification working group 1991). As a 

result, bleaching is predominantly deemed to be a hydromorphic soil feature. No specific recognition 

of this characteristic under such soil conditions is given in the South African soil classification system 

(e.g. bleached orthic A overlying a diagnostic E or G horizon).  

Although the well-known relationship between soil hydrology and landscape morphology is most 

commonly used to explain soil drainage conditions (van Tol et al. 2011), soil characteristics such as 

textural and structural contrasts between the top- and subsoil horizons have also been shown to result 

in saturated conditions (Chittleborough 1992; Cox & McFarlane 1995; Cox et al. 1996). It is therefore 

not surprising to note that it was on texture-contrasted duplex soils that Northcote first made record 

of topsoil bleaching. This phenomenon is also acknowledged in the current South African classification 

system where bleached topsoils are recognised in certain soil forms containing diagnostic 

prismacutanic and pedocutanic B horizons. Although these horizons by definition have not undergone 

marked reduction (Van der Waals 2013), such duplex profiles consisting of subsoil horizons with 

enriched clay contents and stronger structure tends to restrict water infiltration which can promote 

saturation and Fe reduction (Tennant et al. 1992). A similar mechanism of bleaching is also conceivable 

in profiles containing lithocutanic B horizons where weathered saprolitic material can impose a 

restriction to water infiltration. Considering the apedal structure of the neocutanic B diagnostic 

horizon, the definition and specified characteristics of these subsoil horizons propose no plausible 

explanation for how water saturation and Fe reduction can occur in the upper parts of such profiles. 

The fact is that within the South African soil classification system (Soil classification working group 

1991), bleaching is recognised in profiles containing diagnostic subsoil horizons that have not 

undergone marked reduction but no explanations are provided as to how bleaching would originate 

under these conditions.  Van der Waals (2013) hypothesises that for some profiles comprised of such 

subsoil horizons, topsoil bleaching was probably included in the current national classification system 

to accommodate lighter coloured horizons that developed as a result of clay eluviation. 

The reported occurrence of bleached topsoils on red/yellow-brown apedal subsoil horizons (Van der 

Waals 2013) is equally difficult to explain. Taking into consideration the poor structural development 

and uniform colouration of the red and yellow-brown apedal B diagnostic horizons it is presumed that 

these subsoils represent a well-drained soil condition that provide little or no restriction to water 

infiltration (Soil classification working group 1991; Fey 2010). This implies that no temporary 

waterlogged conditions resulting in Fe reduction and loss is presumed to occur and therefore 

bleaching as a result of this mechanism is not expected in topsoils overlying these apedal subsoil 

horizons. Observations made by Van der Waals (2013) on the Mpumalanga Highveld recorded orthic 
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A horizons, showing a bleaching tendency, overlying yellow-brown apedal B subsoils. Similarly, Nell & 

Dreyer (2006) documented the same phenomenon in parts of the Lowveld. Of course such a horizon 

sequence is not included in South Africa’s soil classification system simply because it is in stark contrast 

to the current understanding of these well-drained subsoil horizons. 

The constraints imposed by a misinterpretation of soil features, such as topsoil bleaching, on soil 

classification and effective land-use is unavoidable. From a land-use perspective, bleached topsoil 

horizons are deemed inferior to their non-bleached counterparts. This is a result of their tendency to 

exhibit signs of physical instability and crusting, as recorded by Ellis (1988) on soils studied in the 

Karoo. In addition, physical instability is also proposed to make these soils more prone to erosion and 

therefore less suitable for sustainable long-term cultivation. This was elucidated to by Tennant et al 

(1992), who described bleached topsoils as having a more fragile structure and consequently an 

increased sensitivity to destruction through cultivation or even raindrop impact. The overall 

widespread nature of bleached topsoils in South Africa and their part as essential components of 

hillslope hydrology (Van der Waals 2013) necessitates the importance of the correct identification and 

classification of such horizons. This is not only for efficient agricultural land-use but also for accurate 

hydrological modelling along soil toposequences and resourceful catchment management. Due to the 

fact that bleaching is not holistically accounted for in the SA classification system, soils showing this 

phenomenon are classified in a variable manner, something that is not only scientifically inappropriate 

but more importantly, can result in the mismanagement of soil resources. 

The anomaly regarding the occurrence of bleached topsoils as part of weakly structured soil profiles 

has meant that soil surveyors have been allowed to subjectively prioritise certain soil characteristics 

within the confines of South Africa’s soil classification system. More specifically, classification can 

follow one of two routes: a red or yellow-brown apedal B horizon is recognised based on the apedal 

characteristics of the subsoil horizon with disregard for the bleached topsoil, or the bleaching 

phenomenon in the topsoil is proposed to be a result of an unstable clay phase thereby directing 

subsoil classification towards more dispersive neocutanic B horizons upon which these discoloured 

topsoils are recognised as a family variation in the current classification system. In the Western Cape 

one of the hypothesis is that due to the mature age of the landscape and its soils (Hendey 1983), the 

present Fe oxides are extremely crystalline and therefore less reactive and capable of stabilising the 

clay phase (Bech et al. 1997; Duiker et al. 2003). As a result, it is suggested that bleached topsoil 

colours develop due to clay migration down the profile. The fact is however that this has never been 

proven and no information exists to indicate if such tendencies are also present in other parts of the 

country where bleached topsoils have been recorded.   
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Nonetheless, the fundamental issue remains that similar soil entities are given different names and 

are observably under- or over valued by different soil scientists as a result of the deliberate omission 

of certain profile characteristics. Van der Waals (2013) emphasizes the negative implications of 

classification based on topsoil morphology particularly pertaining to the use of colour satellite images 

or aerial photographs in soil group delineations. Such actions predominantly make use of topsoil 

colour for soil classification meaning that in scenarios where bleached topsoils overlie certain 

agriculturally-suited apedal subsoil horizons, classification based on the bleaching of the topsoil will 

result in soil entities with underestimated land-use value simply because the national soil classification 

system does not recognise such a sequence of horizons. 

Aims and objectives 

A clear lack of understanding exists regarding the genesis of bleached topsoil horizons in South Africa. 

This is accentuated by i) the recorded occurrence of bleached topsoils overlying perceptually well-

drained, weakly structured subsoil horizons on the Highveld, and ii) the unexplained inclusion of the 

bleached family criteria in profiles that have not undergone marked reduction in the national soil 

classification system. In addition, the existence of different hypothesis with regards to the 

pedogenetic origin of these pale coloured topsoils in different parts of the country, and the above-

mentioned land-use and soil classification significance of this feature, have all provided the rationale 

for commencing with this study. Thus the overall aim of this study was to establish the pedogenetic 

processes responsible for the bleaching of topsoils occurring on weakly structured subsoils of the 

Western Cape and Mpumalanga Highveld in order to make recommendations for the classification of 

such soils. To realise this central aim the following research objectives were set:  

i. Establish the factors effecting colour measurement, in particular the difference between 

visually perceived and spectrophotometrically measured colour as well as the effect of 

wetness on colour observation 

ii. Establish how colour correlates to physical and chemical properties of red and yellow-brown 

soils 

iii. Determine the chemical and physical differences in bleached and non-bleached profiles from 

the Western Cape and Mpumalanga Highveld in order to make inferences on the mechanisms 

involved in topsoil bleaching in these two regions 

iv. Based on the findings of the above objectives make recommendations on the classification of 

weakly structured profiles exhibiting bleached topsoil colours 
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Thesis layout 

This study is divided into five chapters. The first chapter is a general literature review on the different 

aspects of soil colour and will only provide a review of the general science behind colour, its 

applications in soil science and the relevance thereof as a morphological property. The different 

mechanisms for soil colour description, measurement and quantification recognised in the literature 

will also be discussed. Chapter 2 describes the sample collection and analyses procedures used in the 

study. Chapter 3 focusses on the first two objectives set for this study, consequently dealing with soil 

colour expression and measurement. The fourth chapter comprises the investigation into the 

mechanisms of bleaching and satisfies the third study objective. The fifth and final chapter provides 

the general conclusions of the study, the possibilities for future research and recommendations for 

soil classification in South Africa and is therefore structured around the last objective (iv).   
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CHAPTER 1: THE COLOUR OF SOIL 

 

1.1. Introduction 

The colour of a soil is one of its most apparent morphological features and one that, according to 

Bigham & Ciolkosz (1993), is often among the first properties recorded by earth scientists in the field 

and commonly also the only characteristic that would be of any significance to a layperson. In a literal 

sense, soil colour has little worth. It is the relationship that exists between expressed soil colours and 

certain profile characteristics, some of which are important for soil interpretation and classification, 

that accentuate the importance of recognising this soil feature (Melville & Atkinson 1985; Post et al. 

1993).  In all the major soil classification systems soil colour is used as diagnostic criteria for horizon 

identification with colour serving as a tool extensively used by soil scientists for the rapid 

approximation of soil properties, function and condition (Viscarra Rossel et al. 2006). The widely 

recognised reality however remains that the colour of a soil and human perception thereof is 

somewhat arbitrary (Melville & Atkinson 1985; Post et al. 1993; Sánchez-Marañón et al. 2011). This, 

in part, is the result of the methods used for soil colour determination and the need that exists for 

these methods to be practical and suited for in-field application.  Regardless, soil colour constitutes a 

very useful soil property that is without a doubt complex, but also one that soil scientists cannot afford 

to overlook.  

In South Africa, where the local soil classification system makes use of very strictly defined colour 

criteria for many of the diagnostic horizons (Soil classification working group 1991), recognising and 

understanding the challenges associated with soil colour is vital. This chapter is therefore aimed at 

providing some insight into the general science behind colour, its applications in soil science and the 

relevance thereof as a morphological property, to equip the reader with a better understanding of 

what soil colour represents and how it should be dealt with. The different mechanisms for soil colour 

description, measurement and quantification recognised in the literature will also be discussed. 

1.2. Colour fundamentals 

Light is generated by means of three-dimensional oscillations that move outward from a source. These 

oscillations represent waves which in simple terms can be defined as a transmission of energy from 

one source to another. Light waves are electromagnetic (EM) of nature which means the oscillations 

are of the movement of electric-magnetic fields. These EM waves can be quantified by a frequency, 

wavelength, speed, and phase and based on the differences in the wavelengths of these EM waves, a 

range referred to as the electromagnetic spectrum is defined (Fortner & Meyer 1997). 
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Visible light constitutes a small portion of the overall EM spectrum and is represented by EM waves 

with wavelengths of between approximately 400 nm to 700 nm (usually with a frequency of about 

1015 Hz). Quantum mechanics dictates that light can be described as either a wave or a particle. When 

referring to light as particles, the term photons are used. A photon is defined by Fortner & Meyer 

(1997) as a tiny, massless particle of light that has a definite wavelength, frequency, speed and energy. 

The frequency of a photon will determine the amount of energy it carries. Colour is a term synonymous 

to light which refers to the particular frequency of such a wave/particle phenomenon. In pure 

theoretical terms, colour is a description of the wavelength, frequency and correlated energy capacity 

of light photons. This definition, although scientifically correct, omits an essential component of colour 

that is significant to everyday life and probably the most important to all interested in understanding 

and objectively quantifying this phenomenon. For any observer colour is a perception and how it is 

perceived is influenced by a number of factors. The definition by Ball (2009) encapsulates this aspect 

through describing colour as the fundamental perception of different wavelength-light intensities by 

the human eye.  

To comprehend why referring to colour as a perception is so important one has to understand how 

colour is processed by the eye-brain system.  Fortner & Theodore (1997) explains the process very 

simplistically based on the morphology of the human eye and the functionality of its components. The 

three parts of the eye that is most important for sight include: 1) the cornea – which is the lens of the 

eye, 2) the retina – which contains millions of photosensors that are responsible for the detection of 

light energy and 3) the iris – which controls the amount of light energy which will enter the eye. The 

photosensors in the retina are activated when a chemical known as a photopigment absorbs a photon, 

this in return generates an electrical nerve impulse signal to the brain and colour is perceived. The 

registered colour therefore depends on the wavelength distributions of the energy entering the eye 

and the response of the eye-brain system to this energy (Edwards 1975). In colour science it is, 

however, well known that the response of the retina can differ from one person to the next resulting 

in colour being perceived differently by different observers (Edwards 1975).   

Melville & Atkinson (1985) state that in addition to the individual response of the human eye to 

variable spectral characteristics, the perceived colour of an object is also influenced by the spectral 

characteristics of the light source illuminating the object and the reflectance properties of the surface 

of the object.  

1.3. The colour of soils 

Objects do not emit colour but rather absorb or reflect light of different wavelengths in varying 

amounts. This reflectance off the surface of an object dictates what wavelength distributions of energy 
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reaches the retina and what colour will be perceived (Ball 2009). Soil consists of a combination of 

chemical and mineralogical components each affecting what wavelengths of light are absorbed or 

reflected from the surface of the soil particles (Rabenhorst & Parikh 2000; Sánchez-Marañón et al. 

2004). As a light beam enters into the soil mass it undergoes multiple stages of reflection and 

diffraction, with the reflected or scattered light that returns from the surface of the soil mass 

determining the particular colour that is recognised by the human eye (Torrent & Barron 1993). 

Sánchez-Marañón et al. (2004) summarizes the main pigmentation agents responsible for soil colour 

as i) organic matter (black), ii) Fe oxides and hydroxides (red to yellow) and iii) silicate and carbonate 

minerals (white to grey). According to Barron & Torrent (1986) the soil matrix, which usually consists 

of minerals such as quartz, feldspars and different clay fractions, is predominantly white and 

considered to be a single pigment, whilst the various natural organic or chemical pigments within the 

soil range from yellow to red to dark brown or black and can either occur with the mineral grains or 

as coatings upon the mineral surfaces (Rabenhorst & Parikh 2000). In addition to organic matter and 

Fe oxides, other pigmenting agents such as manganese oxides also exist and can be present as dark 

brown or black coatings, nodules or concretions but are generally found in such small amounts that 

they make less of a contribution to soil colour in general (Rabenhorst & Parikh 2000).  Accordingly, it 

can be concluded that the baseline colour for any soil with no added organic or chemical pigmentation 

agents will be white to grey based on its constituent minerals, with any addition of Fe and/or organic 

matter in variable combinations resulting in a deviation from this standard colour condition (e.g. 

Torrent et al. 1983). The colouration effect of the main soil pigmentation agents is to a large extent 

determined by the strength of their pigmenting influence (Torrent et al. 1983), the size of their surface 

area (Sánchez-Marañón et al. 2004), their position in the profile (Viscarra Rossel et al. 2006) and of 

course their relative abundance within the solum (Baumgardner et al. 1985; Rabenhorst & Parikh 

2000).  

In addition to these specific pigmenting substances, various authors have also recognised other soil 

characteristics that influence spectral reflectance and therefore perceived soil colour. Bowers & Hanks 

(1965), Baumgardner et al. (1985), and Torrent & Barron (1993) all concluded that particle size and 

soil moisture can significantly alter how light is reflected from the soil surface and therefore how 

colour is perceived by an observer. According to these authors the presence of water molecules results 

in a liquid layer around individual soil particles which decreases soil reflectance and results in an 

observable darkening effect (Post et al. 2000; Viscarra Rossel et al. 2006). Soil moisture content is 

therefore widely recognised as a determinant of soil colour (Wheeler et al. 1999) with the addition of 

water resulting in a deviation from the dry soil colour condition.  
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The physical nature of soil particles is recognised as another factor influencing soil colour (Sánchez-

Marañón et al. 2004). Soil particle size and aggregation are amongst the physical parameters that are 

most significant. Bowers & Hanks (1965), Baumgardner et al. (1985), Torrent & Barron (1993), 

Sánchez-Marañón et al. (1997), and Sánchez-Marañón et al. (2004) all reported that in the absence of 

any confounding pigmenting agents on the soil particle surfaces, a soil tends to become lighter with 

decreasing particle size.  This is explained by Baumgardner et al. (1985) and supported by the findings 

of Bowers & Hanks (1965) as being a function of surface roughness. Finer particles will fill a volume in 

a more uniform manner forming a more even surface which will limit internal light absorption and 

enhance light reflection by the soil body. Noticeably, an accumulation of quartz in the coarse 

fragments of soil (>2 mm) can however cause an opposite effect as shown by Post et al. (1994) where 

recorded colours were actually darker in the quartz-free fine soil fraction (<2 mm). In the presence of 

pigmenting agents such as organic matter, carbonates and Fe oxides, Sánchez-Marañón et al. (2004) 

hypothesised and tested whether smaller soil particles with greater surface area will have a greater 

influence on soil colour than more coarser fragments. This was based to some extent on the findings 

of Scheinost et al. (1999) who concluded that Mie scattering (a scattering phenomenon where the 

wavelength of the scattered light is small in comparison to the size of the object) is responsible for the 

reddening and darkening of low-reflectance soils following a decrease in particle size. Results 

indicated that the fine sand and clay fraction made the most significant contributions to the colour of 

the soils under investigation, verifying the author’s hypothesis. Based on the size of the reactive 

surface of smaller particles, it is expected that a larger area exists for pigments to coat and 

consequently the influence of smaller particle sizes towards soil colouration to be more significant. 

Where pigmenting agents occur as coatings on soil particles, particle size can therefore have a 

contrasting colouration effect as initially reported. Instead of causing lighter colourations, smaller 

particles can adsorb more of a pigmenting substance onto their surface area which can result in a 

more pronounced expression of colour. In addition Sánchez-Marañón et al. (2004) also aimed to study 

the effect of aggregation on soil colour. Following soil disruption through dry sieving, immersion 

wetting and ultrasonic energy, soils showed a strong tendency to become lighter. The authors 

concluded that aggregation resulted in darker soil colours which becomes progressively lighter as 

aggregates are destroyed. 

An interaction of all the above mentioned influences mean that the variations of colour expressed in 

a soil cannot be explained by only considering a single one of these factors. Sánchez-Marañón et al. 

(2004) state that the interactions between the features responsible for the colouring of soils are too 

complex to allow for any definitive model to be established. Following the scientific approach of these 

authors, it would seem that the only way to essentially determine what factors are responsible for the 
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colouration in specific soils, confounding variables need to be dealt with and all processes that can 

have a potential influence on the colouring condition need to be individually accounted for.  

A first step in this regard would be to inspect the processes dictating the condition in which 

pigmentation agents are present in the soil and that are essentially responsible for the expression of 

colour via these pigmentation agents. The complexity of these processes will differ, but this has no 

effect on their significance seeing that a better understanding of pigmentation processes might help 

to explain the expressed soil colours more effectively. The nature of organic matter deposition is a 

good example. Organic matter is the main cause of darker soil colours but due to the predominant 

accumulation of organic matter in surface horizons, subsoil colour in general is less affected by organic 

matter in comparison to topsoil horizons (Rabenhorst & Parikh 2000). In subsoil horizons, Fe oxides 

are generally regarded to be the most prominent colouring agent (Torrent et al. 1983).  

Soil hydrology also has a well-documented influence on soil colour through one of two pathways, 

depending on the state of saturation. Under unsaturated conditions, water stored in the soil pores is 

referred to as soil moisture (Seneviratne et al. 2010) and its influence on soil colouration has been 

previously discussed. Under more saturated conditions, water can induce chemical processes such as 

redoximorphism which serves to establish colouration patterns associated with zones of Fe oxide 

accumulation and depletion (Wheeler et al. 1999; Rabenhorst & Parikh 2000).  

Redoximorphism is the result of the periodic water saturation of a soil which generates anaerobic soil 

conditions (Rabenhorst & Parikh 2000). Insolubale ferric Fe serves as the electron acceptor and is 

reduced to soluble ferrous Fe, which can easily be translocated to other positions within the soil 

profile. This mobilization of Fe causes zones of Fe depletion and Fe accumulation to develop within 

soils, each with an identifiable colour. The removal of Fe will result in low chroma, white to grey 

colours typical of uncoated mineral grains developing in the depleted zones whereas the transported 

Fe will, following the subsidence of water saturation, be oxidized to form masses or coatings of redder 

or browner Fe oxides in the zones where they have been deposited (Vepraskas 1992). Rabenhorst & 

Parikh (2000) found, however, that these colour changes and the tendency of red soils to form such 

low chroma redoximorphic features can vary between different soils and the conditions under which 

they formed or occur.  

The two most abundant secondary Fe oxides present within soil that are responsible for soil 

colouration are goethite and hematite (Torrent et al. 1983; Schwertmann & Taylor 1989). The 

presence of goethite within soils is usually indicated by yellower colours (10YR to 2.5Y Munsell hue) 

(Munsell color company 1975), whilst hematite is responsible for the more redder colours (7.5YR and 

redder) (Davey et al. 1975; Bigham et al. 1978; Torrent et al. 1983). Various studies have proven 
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hematite to be a much stronger pigmenting agent than goethite, with red colours often masking the 

yellow colours of goethite or only small quantities of hematite being required to give soil a 

predominantly reddish appearance (Childs et al. 1979; Torrent et al. 1983; Barron & Torrent 1986). 

Bigham et al. (1978) in addition concluded that the concentration, crystallinity and particle size of Fe 

oxides can also affect the contribution of these minerals to soil colour. 

Using the Sánchez-Marañón et al. (2004) study as an example it can be seen that in order to explain 

the colour of a soil and the contribution of each factor to that what is being perceived, the interaction 

of different pigmenting features needs to be accounted for. These authors were interested in the 

contribution of different soil particle sizes to colour but recognised beforehand that in order to come 

to a conclusion, they needed to minimise the influence of organic matter, carbonates and free Fe 

oxides as pigmenting agents. Only after this step was taken could a definitive statement about the 

contribution of particle size fractions to soil colour be made. In conclusion it seems that to be able to 

methodically explain the colouration patterns within a soil, potential processes responsible for 

different soil colours must be identified, additional variables that might cause colour deviations in this 

regard must be recognised and the interactions of all these factors must be accounted for. This of 

course is what makes the study of soil colour such a complex subject within field of soil science. 

1.4. The relevance of soil colour 

Following the declaration of what mechanisms and main pigmentation agents are influential to soil 

colour and what approach should be taken in explaining colouration patterns, the obvious next 

questions will be what does soil colour mean and what is the relevance thereof within the soil system?  

The first important distinction to make is that soil colour is of no direct agricultural significance (Young 

1976). The value of colour in soils is based purely on its strong correlation with particular soil 

properties and processes that are in most instances applicable to land-use (e.g. van Huyssteen & Ellis 

1997).  

Viscarra Rossel et al. (2006) lists soil colour as a good indicator of soil drainage, aeration, organic 

matter content and fertility. Darker surface soils for instance, which as previously mentioned are 

predominantly indicative of high organic matter contents, are shown to be more fertile and 

accordingly more suitable for plant growth (Schulze et al. 1993). It is, however, colour’s relation to 

drainage (and to some extent topography) that has probably enjoyed the most research attention. 

Soil colour indices have been developed in numerous studies to assign drainage classes to specific soils 

and particularly in soils rich in Fe minerals because distinctive colour variations can be observed as a 

result of differences in drainage conditions (Van Huyssteen & Ellis 1997; Rabenhorst & Parikh 2000; 

Van Huyssteen et al. 2010). Various authors including Torrent et al. (1983), Barron & Torrent (1986) 
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and Gobin et al. (2000) were also able to use colour to differentiate and quantify iron oxide content 

in soils. From these studies it is implied that in Fe rich soils, information regarding the pedological 

processes and properties applicable to a particular profile can be obtained by interpreting the colour 

features of the different soil horizons.  

The presence and duration of waterlogging and its link to soil colour has been the focus of many 

studies. This is due to waterlogging’s recognisable influence on soil colour as a result of the induced 

cycles of Fe reduction and oxidation related to oxygen availability (Wheeler et al. 1999; Rabenhorst & 

Parikh 2000) as well as other processes such as clay eluviation or nutrient leaching within the soil. 

Blavet et al. (2000) found that the perceived redness of a soil is strongly correlated to the mean annual 

rate of soil waterlogging. Megonigal et al. (1993) and Thompson & Bell (1996) have used colour to 

quantify and assign particular drainage classes to certain soils. Jien et al. (2004) studied the 

relationship between measurable soil colour intensity and soil wetness, and also found significant 

correlations in undisturbed horizons. Van Huyssteen et al. (2010) correlated long-term water duration 

with colour and a range of other soil morphological features. These authors, in agreement with the 

results recorded by van Huyssteen et al. (1997), concluded that the strict colour criteria that exist for 

various diagnostic horizons in the South African soil classification system are accurate in indicating the 

typical duration of water saturation that would be expected in such profiles or horizons. A number of 

other examples demonstrating the existence of a relationship between colour and water saturation 

also exist as cited by Blavet et al. (2000) and include studies by Franzmeier et al. (1983), Evans & 

Franzmeier (1986), Mokma & Cremeens (1991) and Mokma & Sprecher (1994). Many authors have 

also recorded similar colour variations along hill slope toposequences, indicating similar aeration and 

drainage conditions at particular positions (Van Huyssteen et al. 2010; Blavet et al. 2000).  The 

prescribed practice however, still remains that soil colour, rather than generalisations based on 

topographical positions must be used to infer waterlogging conditions (Blavet et al. 2000).  From the 

literature it seems possible to state that categorical colour distribution patterns are the sole 

morphological indicator of soil drainage conditions. 

The significance of using soil colour as an indication of drainage conditions is related to the influence 

of water saturation on the soil system. Van Huyssteen & Ellis (1997) postulated that an increase in 

water saturation causes an increase in the degree of weathering of the soil clay fraction which can 

have adverse consequences on for instance the exchange capacity of the soil. In addition, the 

tolerance of certain crops to soil wetness implies that by interpreting colour characteristics, a soil’s 

suitability for the cultivation of particular crop types can also be determined (Van Huyssteen & Ellis 

1997). Uniform red or yellow colours are indicative of iron oxides and develop in the soil solum under 
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well-drained conditions. These oxides are known to increase clay stability, thereby limiting erosion 

and clay eluviation, both of which are undesirable in most land-use applications.  

It is evident that colour, due to its representation of soil properties and processes related to drainage, 

fertility and organic matter content, is an extremely useful tool in soil classification. According to 

Blavet et al. (2000), it is the ease with which soil colour can be measured and the stability of colour 

over time that collectively contributes to its inclusion as a diagnostic feature in many soil classification 

systems. However, colour measurement is not trivial and Melville & Atkinson (1985) state that ‘it is 

true that a designation of soil colour can be obtained very easily, but such a designation can be 

inaccurate and imprecise if the colour is determined carelessly’. The different factors applicable to soil 

colour means that the determination and quantification thereof is anything but straight forward. 

Despite these difficulties the fact remains that colour can be a soil morphological feature extremely 

relevant to land-use decision-making if interpreted correctly. 

1.5. The description and measurement of soil colour 

Soil colour is most commonly and conveniently measured by means of comparison with colour charts. 

The most popular and frequently used is the Munsell soil colour chart (Munsell Color Company 1975), 

an extract from the complete Munsell Book of Color (Munsell Color Company 1980). The system 

comprises of nine charts which collectively display 322 different colour chips organised in such a 

manner that a range of perceived colours is expressed along adjacent positions within the chart. This 

arrangement of the chips and the particular position of a colour within the chart are described by 

means of a three-dimensional notation that comprises of Munsell hue, value and chroma. In 

combination, all three of these parameters represent the Munsell colour space, which is simplistically 

described as a cylinder consisting of a central vertical axis. The vertical axis represents Munsell value, 

which is a measure of the lightness of a colour and which ranges from 1 at the bottom (darkest) to 9 

at the top (lightest). Munsell hue refers to the qualities by which we differentiate between different 

colours and represents an indication of a colour’s relation to red, yellow, green, blue or purple. In the 

Munsell colour space, hue constitutes the outer margins of the cylinder, with different colours being 

represented by means of an angular displacement from an arbitrary position on the central axis. The 

final parameter, Munsell chroma, is an indication of the strength or intensity of a colour. It is portrayed 

as the distance from the central axis.  
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Figure 1.1. The Munsell colour space model (source: http://commons.wikimedia.org/wiki/File:Munsell-system.svg) 

Within the Munsell soil colour book itself, each one of the pages comprises of colour chips of the same 

hue. These hues represent different combinations of red (R), yellow (Y), blue (B) and green (G) and 

include 10R, 2.5YR, 5YR, 7.5YR, 10YR, 2.5Y, 5Y as well as two pages for gleyed soil colours (5Y, 5GY, 

5G, 5BG and 5B).  On every page the colour chips are arranged so that value increases from the bottom 

to the top and chroma increases from left to right. By matching the colour of a soil with a particular 

colour chip, the soil’s colour can be described in terms of a hue, value and chroma unit which are 

collectively referred to as a Munsell notation.  

The relative simplicity and ease with which colour can be measured using the Munsell system has 

meant that various colour observers across different industries and sciences, including soil science, 

have adopted it as the standard method for interpreting colour (Torrent & Barron 1993). However, for 

soil colour description, various authors have identified a range of disadvantages to this system. 

Although the Munsell system allows us to describe a colour in three dimensions, these measurements 

are subjective. Colour under these circumstances represent a sensory perception and the accuracy 

with which it can be measured can be influenced by a variety of factors such as those summarised by 

Edwards (1975). Spatial factors including colour constancy, contrast and spreading as well as temporal 

factors such as after images, flickering effects and colour blindness are amongst the issues discussed 

by this author. Torrent & Barron (1993) similarly state that because Munsell colour measurements are 

based on visual perceptions, various psychophysical and physical factors can cause substantial errors 

and therefore subjective results. Melville & Atkinson (1985) list a number of features that can 

influence what colour an object is perceived to be: 1) the incident angle of the light source relative to 

the viewing angle of the object, 2) The glossiness of the object’s surface 3) the size, shape and distance 

of the object, and 4) colour contrasts between the object and its surroundings.  In a study by Shields 
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et al. (1966) the authors concluded that soil colours can rarely be perfectly matched to Munsell colour 

chips and that if soil colour is to continue to serve as diagnostic criteria in soil classification, a more 

precise method of colour measurement must be adopted. Barrett (2002) states that “limitations of 

visual measurement techniques result in poor correlation between soil color and many soil 

properties”, which is particularly relevant to the objectives of this study. Therefore even minor errors 

in colour determination can result in the misidentification of soil horizons and incorrect conclusions 

about soil properties. Melville & Atkinson (1985) stated that the methods and conditions used for soil 

colour measurement must as a result be specified to ensure greater precision and accuracy. These 

authors recognised the marvel of the Munsell system and stipulated that associated problems are 

more related to measurement errors than system faults. In short, the recommendations by Melville & 

Atkinson (1985) for optimal soil colour measurements using the Munsell colour charts entail: 1) use 

more than one colour observer, 2) prepare all comparative samples in a standardised manner, 3) apply 

standardised illuminating conditions preferably approximating illuminant D65, 4) use Munsell colour 

charts together with the appropriate viewing masks, and 5) adequately report the details of the colour 

measurement procedures that were followed.  

An important component listed in the above mentioned recommendations, and probably one of the 

main focusses of the Melville and Atkinson paper is that of the lighting conditions under which colours, 

by means of visual comparison with colour charts, are measured. Based on the fact that different light 

sources will differ in terms of the relative power or luminosity radiated at each wavelength within the 

visible spectrum, the spectral power distribution for light sources used in measuring colour has been 

described and specified by an organisation known as the CIE (International Commission on 

Illumination - Commission Internationale de l’Eclairage) (Melville & Atkinson 1985). According to the 

CIE, the standard illuminant D65 should be used for Munsell soil colour interpretations seeing that it 

is a close approximation of standard daylight conditions (CIE 1971). To explain why the illuminating 

source is so important one must first be reminded that different coloured objects will have different 

spectral reflectance characteristics. This also applies to soils and the particular colour chips they are 

compared to. The eye-brain system is able to achieve an approximate match between the soil and the 

colour chip regardless of the differences in their reflectance characteristics under specific lighting 

conditions. With a change in the illuminating source the colour of objects may no longer match due 

to a difference in luminosity of the light source. This phenomenon is termed metamerism (Melville & 

Atkinson 1985; Torrent & Barron 1993) or paramerism (Sánchez-Marañón et al. 2011)  and is probably 

the mayor cause of inaccurate Munsell colour descriptions. A study conducted by Sánchez-Marañón 

et al. (2011) concluded that colour measurements in field under variable daylight conditions are 
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seldom accurate and that different Munsell notations will therefore be recorded for the same soil 

sample under different daylight conditions.   

When contrasting all of the above mentioned recommendations and results with the relatively 

uncomplicated manner in which we view and use the Munsell colour system as soil scientists, it 

becomes clear that soil colour measurements require compromise either on the side of in-field 

practicality or scientific precision. Following the recommendations for scientifically optimal colour 

measurements by means of the Munsell colour chart by Melville & Atkinson (1985), critique can be 

given against almost each of the required components in terms of their practicality. Torrent & Barron 

(1993) for instance stated that using more than one observer for more accurate visual colour 

estimation is both impractical and very time-consuming. Similar in that regard is the use of viewing 

masks. Although the efficiency of using such apparatuses is known, most soil scientists do not even 

have them much less use them. Lastly, and probably the most influential factor is that of lighting 

conditions. Following the illuminant specifications developed by the CIE and mentioned by Melville & 

Atkinson (1985) it becomes apparent that soil colour cannot be optimally determined in the field. In 

order for colour measurement under D65 lighting conditions to occur, samples would have to be taken 

back to the laboratory. This of course is close to impossible under most circumstances, even more so 

in South Africa, where the soil classification system makes use of very strictly defined colour criteria 

for horizon identification (Soil classification working group 1991) and detailed mapping is sometimes 

done over extensive areas of land.  

To enhance the in-field practicality of colour measurement by means of visual comparison against 

Munsell colour chips, the above mentioned recommendations need to be combined with what is 

practical and feasible for the soil scientist in the field. The most serious problem to overcome is lighting 

conditions and although no recommendations can be made to enhance accuracy, precision can 

potentially be improved by standardising colour measurement procedures. Melville & Atkinson (1985)  

list a number of illuminant conditions that a colour observer must be aware of and try to avoid. Firstly, 

accurate colour measurements cannot be made if the observer is shading the viewed object or the 

colour chips with his/her body. Secondly, dappled sunlight as would be found under trees is similarly 

inappropriate. These authors propose that direct sunlight will allow for the most accurate 

measurements in comparison to the two preceding conditions. Taking this feature into account, it is 

proposed that a methodology for colour measurement be used that reflects how a soil scientist would 

describe colour in the field because that is predominantly where classification (and classification 

errors) take place. This is by no means an attempt to undermine the science behind colour 

interpretation, but rather an attempt to satisfy both sides of the spectrum – the proposed guidelines 

for accurate scientific interpretation of soil colour and the practical in-field plausibility of the 
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prescribed measurement method. In conclusion, using more than one person (minimum of 3) for 

colour interpretation, standardising the preparation of the soil for colour measurement (both 

undisturbed clods and crushed soil in a dry and moist state), utilising the appropriate and specified 

Munsell viewing masks and aiming for colour measurement under direct sunlight conditions are the 

standardised method proposed to measure soil colour in the field by means of the Munsell soil colour 

book.  

Regardless of the accuracy or precision of determining soil colour using the Munsell soil colour charts, 

Viscarra Rossel et al. (2006; 2009) makes an important observation in stating that due to the nature 

of the Munsell system and the resulting notation it generates, it is more appropriate for categorical 

qualifications of colour and less suitable for statistical or numerical analyses. This of course is a 

universal problem across many industries focussed on colour and therefore other ways in which to 

express the colour of an object more suitable to these needs has been developed and applied.  

Quantifying the different wavelengths of light that are absorbed or reflected from the surface of an 

object and therefore making use of its reflectance properties is common practice. On a level more 

complex than what can be measured simply using vision, the reflectance properties of a soil can be 

described by spectrophotometric curves which quantify spectral reflectance (%) for each wavelength 

of light. This is primarily measured using spectrophotometers. A number of studies making use of 

these instruments for soil colour determination has proven them to be both accurate and precise in 

this regard (Shields et al. 1966; Torrent et al. 1983; Post et al. 1993). Although variations in the 

accuracy, precision and data output properties of different types of these instruments exists (Torrent 

& Barron 1993), recent attention has been given to portable spectrophotometers particularly due to 

their mobile application. Barrett (2002) measured in situ soil colour in well-drained sandy soils by 

means of a handheld spectrophotometer and found a moderately strong correlation between 

instrument and visual measurements although the spectrophotometer proved to provide a higher 

degree of precision. Viscarra Rossel et al. (2009) used a portable near-visible infrared (vis-NIS) 

spectrophotometer and found these instruments generate estimates of soil colour that was also in 

fair agreement with what was visually measured. The attractiveness of using these 

spectrophotometers is that, unlike human interpretation, they are standardised instruments that 

consistently provide objective measurements of soil colour. Unfortunately, the present cost of 

attaining these instruments make in-field soil colour interpretation using handheld 

spectrophotometers by the average soil scientist an unlikely ideal to strive for in any classification 

system. 

Other instruments that are also used to measure soil colour and reflectance include 

spectroradiometers (Baumgardner et al. 1985) and photoelectric tristimulus colorimeters (Torrent & 
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Barron 1993). The study by Rabenhorst & Parikh (2000) is an example of a study were a digital 

colorimeter was used for colour determination, whilst a spectroradiometer was used by Sánchez-

Marañón et al. (2004)  for the same purpose.  Tristimulus colorimeters generate tristimulus values as 

defined by the Commission Internationale de I’Eclairage (CIE), a concept that will be dealt with later 

under soil colour quantification. However, these instruments are deemed to be precise and user-

friendly but can be less accurate as shown by Torrent & Barron (1993) who recorded differences in 

tristimulus values generated by the instrument itself and those obtained from spectral reflectance 

data conversions. Spectroradiometers measure spectral radiance or irradiance across various spectral 

ranges and therefore are used to characterise the reflectance characteristics of an object. For more 

precise descriptions of the functionality and application of these individual instruments, 

spectroradiometers are discussed in more detail by Baumgardner et al. (1985) whilst information on 

spectrophotometers and colorimeters are obtained in Torrent & Barron (1993). These three main 

instrument types used for colour or spectral reflectance measurements are also described by Barrett 

(2002).  Baumgardner et al. (1985), however, makes users aware that various instrumentation systems 

exist with which reflectance measurements can be made but to be able to utilise and compare 

measurements from these different systems, a clear understanding of the conditions under which the 

measurements were made need to exist. 

In addition to instruments mentioned above, other methods that have been proposed and tested with 

the aim of enhancing the objectivity with which soil colour can be measured include colour 

interpretations of digital soil photographs (Van Huyssteen et al. 2006a, 2006b; Viscarra Rossel et al. 

2009). Although results have been promising, further research is needed in this field to improve the 

accuracy of this method (Van Huyssteen et al. 2006a). 

1.6. The quantification of soil colour 

In order to relate soil colour to any measurable physical, chemical or mineralogical characteristic, 

colour has to be expressed in numerical units suitable for statistical analysis. A number of colour space 

models have been defined each quantifying colour using a specified unit. The application of these 

models for soil colour quantification differs however. A summary of all the colour space models 

applicable to soil colour as well as the methods for the transformation between the different models 

are given by Melville & Atkinson (1985) and Viscarra Rossel et al. (2006). The functionality of these 

colour space models is that they allow for individual soil colours to be represented in specified 

positions within a defined colour space. In addition to the Munsell soil colour system, the RGB, CIE 

XYZ, CIE Yxy, CIELUV and CIELAB systems are described by these authors. Based on their summaries, a 

short simplistic description of each follows: 
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 RGB: The RGB system is based on variations in the spectra of the three primary colours. 

Numeric tristimulus R G B values are generated that range from 0 to 255 for each primary 

colour - red (R), green (G) and blue (B). The defined colour space is represented by a three-

dimensional cube, where individual colours can appear as points on or in the cube space. 

 CIE XYZ: This system is generally the basis from which other colour specifications are made. 

Based on a standardised methodology defined by the CIE incorporating the spectral power 

distribution of a standard illuminating light source and the spectral response characteristics 

of the human eye, all colours can be described in terms of three variables X, Y and Z, known 

as the CIE XYZ tristimulus values (CIE 1931). Y represents the brightness of a colour, whilst X 

and Z are not physically realisable components. As a result of the nature of particularly the 

last two variables, it is difficult to visually represent single colours within this space model.   

 CIE Yxy: To make visual representation easier, the CIE defined the CIE Yxy colour space (CIE 

1931). This system makes use of the conversion of the XYZ tristimulus values to chromaticity 

coordinates x and y. Independent of Y, x represents a colour variation ranging from blue to 

red whilst y ranges from blue to green. As a result a colour can be represented through the 

combination of the x and y coordinates with the Y value within a two dimensional chromaticity 

diagram (Melville & Atkinson 1985). Unfortunately, as with the XYZ system, there are some 

discrepancies in the representation of perceived colour differences seeing that both these 

systems are non-linear. 

 CIELUV & CIELAB (Figure 1.2): To better describe colour in a uniform colour space and with 

appropriate representation of perceived colour differences, the CIE developed the CIELu*v* 

and CIELa*b* systems (CIE 1978). CIELUV makes use of the transformation of the x and y 

chromaticity coordinates to a more uniform scale. The CIELAB values are generated through 

non-linear transformations of XYZ. In both systems, L represents luminance or brightness and 

ranges from black (0) to white (100); a* and u* represents a red (+)/green (-) scale; and b* 

and v* represents a yellow (+)/blue (-) scale. The representable model consists of a central y 

axis (Y) and two horizontal x and z axes (+a*/u* to –a*/u* & +b*/v* to –b*/v*) that are 

perpendicular to each other. 

As mentioned, the functionality of these colour space models is that individual soil colours can be 1) 

visually represented in a defined space and 2) be transformed between the different units used in 

each following specified equations (Viscarra Rossel et al. 2006). Therefore, if the various instruments 

provide colour readings in different units, equations allow us to transform these units into other 

desirable colour spaces. This is probably most applicable where tristimulus values are generated by 
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the applied instrument and the resulting values can be transposed to Munsell hue, value and chroma 

(e.g. Torrent & Barron 1993 and Post et al. 1993) used in most soil classification systems. 

  

Figure 1.2. A graphical representation of the CIE Lab colour space. Included with permission from colorcodehex.com 
(https://www.colorcodehex.com/color-model.html). 

What is noticeable, however, is that through point representation in a visually defined space the above 

mentioned models allow mostly for comparisons between the individual colours themselves (Melville 

& Atkinson, 1985). For the purpose of soil colour interpretation where the colour of a soil in its own 

sense has little significance, the main interest would be correlating soil colour to an additional colour-

related variable indicative of a specific soil property or process. To put this in context, the main 

objective of this overall study can be used as an example. Topsoil bleaching is a discolouration 

phenomenon, for which not all the processes responsible for this morphological feature are known. 

Investigating all possible factors influencing this expression of colour requires a method with which 

soil colour can be related to soil properties or processes. The most simplistic solution to this 

predicament would be to use a single index value representative of soil colour that can be calculated 

from colour measurements and plotted against the numerical values of additional measurable soil 

properties in order to determine if a relationship exists. This concept has been applied in a number of 

studies were colour indices have been developed for soils with different colour characteristics. 

Examples of this include chroma or value indices (based on measurable Munsell chroma and value) 

used on soils displaying redoximorphic colour features (Rabenhorst & Parikh 2000) and anthraquic 

soils (Jien et al. 2004).  Van Huyssteen et al. (1997) used indices incorporating dry soil colour hue, 

chroma and value to predict the duration of water saturation in a soil with reasonable accuracy.  
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In oxidic soils displaying diagnostic red colours, the development, application and adaptation of 

redness indices have been commonly used (Gobin et al. 2000). A variety of these redness indices, 

known as redness ratings (RR), were recorded and tested by Barron & Torrent (1986). The initial RR 

was proposed by Hurst (1977) and later modified by Torrent et al. (1980). It makes use of Munsell 

colour notation conversions. Both Munsell chroma (C) and value (V) as well as the variable H, which is 

the figure preceding the capitol letters (e.g. YR) in the Munsell hue, are used.  A second RR (defined 

as RI), making use of CIE chromaticity coordinates (Yxy) (Torrent et al. 1983), was also applied together 

with a third redness index based on the L, a* and b* values of the CIELAB colour system (Barron & 

Torrent 1986). Essentially these authors found that all the tested redness indices correlated well with 

the hematite content in the soil although saturation effects were recorded. Unfortunately, due to the 

dominant pigmenting effect of hematite, these indices do not allow for the accurate estimation of 

goethite in soil (Duiker et al. 2003). 

From the above mentioned studies it can be concluded that the type of index that is used must be 

applicable to the colour characteristics and the processes responsible to the expression of colour in 

the particular soil. This implies that some knowledge needs to exist about the colour generating 

process as well as the dominant pigmenting influences in the soil. When there is variation in either or 

both of these factors, a single value index seems to be unsuccessful in describing the colour variations. 

For instance, when describing colour using a single index value for soils ranging from grey/bleached 

to red to yellow-brown in a sample set of 1440 soils, Carstens (2015, Thesis submitted) found that 

applying the Munsell based RR developed by Torrent et al. (1980) yielded unreliable results. As 

mentioned by Duiker et al. (2003), in the yellow-brown goethite dominated soils this index returned 

zero values which made comparisons between the soils impossible. It would seem that the different 

Fe oxide constituents and the variability in the degree to which they are expressed, makes the use of 

a single value index based on Munsell notation unfeasible under such circumstances. 

The results from these colour index studies highlight the fact that colour is a complex feature and its 

complexity can in some part be attributed to its different dimensions. For example, a colour can be 

red or yellow but it can also be rich or dull or light and dark. The logical conclusion would then be that 

to be able to relate a single soil characteristic to a single numerical value, representative of soil colour, 

the dimension in which the soil property or process will cause the most colour variation should be the 

central component of such an index. This unfortunately is not as straight forward as it would seem, 

seeing that colour variation occurs across more than one dimension and to variable degrees, and is 

the result of a combined effect of the different soil pigmenting processes. Therefore, to actually be 

able to accurately quantify colour and relate it back to a specific soil property or process, one would 
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need to measure it in all its dimensions and rather not try to oversimplify this phenomenon. Especially 

in a scenario where no certainty exists about what factor is driving soil colour variation.  

Although an emphasis has been put on soil colour quantification and the importance thereof for 

correlations to soil properties, the fundamental issue remains colour measurement. Although the 

Munsell system, which is most commonly applied in Soil Science, allows us to describe a colour in 

three dimensions, numerous problems associated with this mode of colour measurement have been 

described. The central issue, however, is that colour under these circumstances represent a sensory 

perception that varies under different circumstances. Nonetheless and as previously mentioned, it is 

the in-field application of the Munsell system as well as the relative simplicity with which colour can 

be measured in more than one dimensions that justifies its use. The problem therefore is how can soil 

properties be related to soil colour in a scientifically acceptable manner if visual measurement of 

colour is not standardised?  

For fields of science that use sensory information, such as taste or colour, as measureable parameters, 

objective data collection and analysis is an important issue. Interpretation of sensory data is often 

used in food sciences (Bower 2006) where taste or smell needs to be assigned to a particular chemical 

component. Determining the physical and chemical properties of soils that influence soil colour have 

many parallels to the sensory studies of food science and a number of statistical tools used in food 

science are applicable to soil colour data analysis. In food science studies, expert tasting panels, 

trained in detecting certain characteristics, are used together with advanced statistical tools (e.g. PCA) 

in order to arrive at scientifically acceptable conclusions. An example of the use of Principal 

Component Analysis (PCA) in this context is provided in the study by Chapman et al. (2001). A summary 

of other applicable statistical methods are given by MacFie & Hedderley (1993).  

1.7. Conclusions 

The colour of an object is probably the feature most commonly emphasized in its description although 

the spontaneous nature with which the human eye-brain system is able to register colour has meant 

that little attention is given to the recognition of this feature in everyday life. It is only after a more 

meticulous investigation into the science behind colour and a realisation of the numerous dimensions 

in which colour can vary, that the complexity of this phenomenon is comprehended. Within the field 

of soil science, colour as soil morphological feature has received considerable research attention. 

Beside the records of the various soil pigmenting agents responsible for the expression of colour in 

the solum, soil colour is of particular significance due to its relationship with soil properties, function 

and condition. It is also this relationship that provides the basis for soil colour’s inclusion as diagnostic 

criterion in most soil classification systems of the world. Understanding and explaining the dynamics 

Stellenbosch University  https://scholar.sun.ac.za



23 
 

of this association between colour and soil condition has been at the centre of most colour-related 

soil research. An essential component in all of these investigations is soil colour measurement and 

quantification. To be able to relate specific soil characteristics to the expression of a particular colour 

in a scientifically applicable manner, it is crucial that colour is objectively measured and appropriately 

quantified. Numerous colour space models, providing appropriate units with which soil colour 

variation can be quantified and described, have been developed and tested.  Unfortunately, the need 

for a more practically applicable colour measuring protocol in the discipline of soil science has meant 

that colour measurement by means of visual estimation has been adopted as the standard. The 

sensory nature of colour detection through visual means results in subjective colour measurement. 

Therefore, even before colour is transposed into different units or colour space models, the 

fundamental colour-related issue in soil science remains colour measurement. If initial colour 

measurements are not standardised and accurate at least to some extent, wrongful conclusions about 

soil properties and function will result. In a study where colour is the only soil property indicative of 

an unknown pedogenetic process, it is undeniable that if soil colour is wrongfully determined no 

substantial relationship between soil function and colour will be observed, and when working with a 

small data set, this effect would be even more pronounced.  
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CHAPTER 2: SAMPLE COLLECTION AND ANALYSIS 

 

2.1. INTRODUCTION 

Weakly structured, red and yellow soils are widely distributed across South Africa (Fey 2010). By 

implication, the widespread nature of these soils mean that they are present in climatic and 

geologically diverse parts of the country, a prime example being both the Western Cape and 

Mpumalanga Highveld. An investigation into the geomorphologic history of the Western Cape and the 

Mpumalanga Highveld, and the resulting similarities in the expressed morphology of some of the soils 

found in these two regions mean that soil from these locations provide the ideal substrate for 

comparative studies. Consequently, the bleaching of topsoils reported by Van der Waals (2013) on 

some of the weakly structured red and yellow subsoils of the Mpumalanga Highveld, together with 

the occurrence of similar soils exhibiting the same features in parts of the Western Cape, provided the 

rationale for using these two locations to study the bleaching of topsoils on weakly structured red and 

yellow subsoil horizons in South Africa. 

2.1.1. Geology and geomorphology  

On the Mpumalanga Highveld, weakly structured oxidic soils dominate the landscape and form part 

of a red-yellow-grey catenal sequence that is commonly observed from Bronkhorstspruit west 

towards Belfast (Soil and Irrigation Research Institute 1987; Fey 2010). The geology of this region is 

diverse and comprises of shale, sandstone and occasional dolerite dikes primarily from the Transvaal 

and Karoo supergroups (Norman & Whitfield 2006). The landscape is extremely old and represents a 

lowered remnant of the African surface (approximate age: 65 million years) (Partridge et al., 

Unpublished paper). As a result of the warm and seasonally humid climatic conditions prevalent in this 

region, advanced chemical weathering of the existent parent materials has resulted in the 

development of deep, mature red and yellow apedal soils that are highly leached and also acidic.  

In the Western Cape and particularly in and around Stellenbosch, weakly structured red and yellow 

soils are also present and represent some of the oldest soil materials in South Africa (Hendey 1983). 

In this region, these soils are mostly colluvial in nature and are predominantly found at the footslopes 

of the surrounding mountain ranges. Areas do however exist where these soils are present at higher 

altitudes where limited movement of soil materials has taken place. Distribution maps of these red 

and yellow soils indicate that their presence is restricted to an approximate altitude range of between 

150 and 300 meters above sea level (Schloms et al. 1983). Compared to the rest of the soils in this 

region, these weakly structured red and yellow soils are observably different. To explain this apparent 

anomaly within the Western Cape soil landscape the unique geomorphological history of the area 
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provides the answers. According to Lambrechts (1983) many of the soils in the Western Cape are not 

in phase with their present environment. This implies that parent material, climate, topography and 

biotic factors have changed over the course of time, altering the soil forming processes with each such 

event. Lambrechts (1983) explains that the uniformly red- or yellow-coloured, dystrophic and apedal 

soils of this region originated as a result of weathering and soil formation in the early Cenozoic era. 

The warm humid climate that prevailed at this time was similar to tropical and subtropical conditions. 

This, together with the well-drained nature of the coastal forelands resulted in rapid chemical 

breakdown of primary silicates and consequently an abundance of koalinitic clay and residual iron and 

aluminium oxides and hydroxides in the soil environment. Internal drainage and leaching further 

resulted in the almost complete loss of basic cations.  

2.2. SAMPLING METHODS 

2.2.1. Site and profile selection 

A total of 26 soil profiles were sampled across 9 different sites throughout the Western Cape and 

Mpumalanga provinces of South Africa. Fourteen profiles were selected in the Western Cape, the sites 

including areas in and around Stellenbosch (Papegaaiberg, Old Helshoogte pass and Welgevallen 

experimental farm), Ceres and Malmesbury (Figures 2.1 & 2.3). The climatic conditions in this part of 

the country is characterised by dry summers and wet winters, typical of a Mediterranean climate. The 

average rainfall in these regions is variable but for the largest part exceeds 500 mm per year 

(Oberholzer & Schloms 2010). The mean annual maximum and minimum temperatures are also 

regionally different, although Malmesbury, Stellenbosch and Ceres reach daily maximum 

temperatures easily surpassing 30°C in the dry summer months, with the latter two locations also 

frequently experiencing snow on the nearby mountain ranges during winter.  

The soil profiles chosen for this study in the Western Cape needed to represent profiles that could 

potentially qualify as having red/yellow-brown apedal B horizons or red/yellow neocutanic B horizons. 

Within the South African soil classification system these diagnostic horizons are all defined based on 

a poorly developed structure, with the distinguishing feature being the type and degree of colour 

expression in the soil matrix (Soil classification working group 1991). One of the profiles chosen, (W3, 

Welgevallen experimental farm, Stellenbosch) (Figure 2.3a) was the subject of much debate during 

the soil excursion at the 2009 Combined congress held at Stellenbosch University. At this profile many 

of the delegates argued that the profile should be classified as a Hutton (Orthic A - red apedal B - 

unspecified), whilst others preferred the profile to be classified as a red Oakleaf (Orthic A - neocutanic 

B - unspecified) due to the bleached topsoil. The controversy around this profile meant that W3 

represented the type of profile that had to be targeted in this study. Profiles similar to W3 having 

bleached and non-bleached topsoils were thus selected for the study. Samples were collected from 
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profile pits or well excavated road cuttings and most of the selected profiles had weakly structured 

red subsoils, with yellow variants being less common. All Western Cape profiles were undisturbed 

prior to sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. The sites and positions of the soil profiles sampled across the Western Cape. 

In Mpumalanga, a total of 12 profiles were selected across the eastern part of the Highveld (Figure 

2.2). In contrast to the selected sites around the Western Cape, the areas from which soils were 

sampled on the Highveld experiences summer rainfall although maximum temperatures similarly also 

exceed 30°C. The daily and seasonal fluctuation between maximum and minimum temperature is also 

more extreme in this region. The selected sites ranged from the University of Pretoria’s experimental 

farm near Bronkhorstspruit to cultivated lands around the Middelburg and Hendrina area (Figure 2.2). 

The Bronkhortspruit profiles were located on uncultivated land. However, it was not possible to find 

undisturbed sites with apedal soils around Middelburg and Hendrina thus these profiles were all 

sampled in maize fields during the fallow season (July 2014) prior to any seasonal ameliorants being 

added to the soil. Similar to the Western Cape however, the profiles also consisted of bleached and 

non-bleached orthic A horizons overlying either red apedal B, yellow-brown apedal B or neocutanic B 

subsoil horizons. Plinthic horizons also occur at depth in many of these soil profiles, which is 

characteristic of the area (Fey 2010). Typically, the soils of the Highveld region follows a catenal 

sequence which in its perfect form is represented by red soils on well-drained crests grading through 
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yellow soils on midslope positions towards gleyed colours in the poorly-drained footslopes and valley 

bottoms (Soil and Irrigation Research Institute 1987; Fey 2010). It is on these catenal sequences that 

bleaching tendencies were reported by van der Waals (2013), and thus soils were largely collected 

along catenal transects. The toposequences were initially identified by augering holes every 10 

meters. Profile pits were dug at representative positions along transects and samples were collected 

from these pits.  Additional auger samples of the top two horizons were collected in between the 

profiles pits in order to obtain a better understanding of soil colour variation along the Highveld 

catenas. A total of four catenas were sampled (Figures 2.4 – 2.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Middelburg, MP 

Emalahleni 

Hendrina 

Bronkhorstspruit 

Figure 2.2. The locations of the soil profiles and plinthic catenas sampled across the Mpumalanga Highveld. The catena 
numbers and sample names are indicated on the map. 
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Figure 2.3. Satellite images and photographs of the sites and some representative profiles sampled in the Stellenbosch (a), 
Malmesbury (b) and Ceres (c) regions of the Western Cape.  

(a) 

W3, Oa 2120  

(b) 

Mb 1, Oa 2120 

(c) 

Rk 1, Tu 2110 
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70 m 

Figure 2.4. Catena 1. Satellite imagery and a photograph of Catena 1 on the University of Pretoria’s experimental farm next 
to the N4 near Bronkhorstspruit. In the bottom left of the photograph the first profile pit can be observed, with the second 
being a mere 15 m away at the point indicated. 

80 m 

Figure 2.5. Catena 2. Satellite imagery and a photograph of Catena 2 on the farm Beestepan near Middelburg, MP. Auger 
samples were collected at each position along the catena. 
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80 m 

Figure 2.6. Catena 3. Satellite imagery and a photograph of Catena 3 on the farm Beestepan near Middelburg, MP. Auger 
samples were collected at each position along the catena. 

80 m 

Figure 2.7. Catena 4. Satellite imagery and a photograph of Catena 4 on the farm Uys near Hendrina, MP. Auger samples 
were collected at each position along the catena. 
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2.2.2. Soil sampling and preparation 

All soil profiles were photographed and described using the detailed procedure prescribed by the ARC-

institute for Soil, Climate and Water (Turner 1991). For every profile soil samples were collected from 

both A and B1 horizons by taking a representative sample of the entire horizon throughout its depth, 

placing it in a sample bag and labelling it. At some of the Mpumalanga sites, transition zones (A/B) 

were also sampled as additional horizons when it was deemed necessary.  

In addition to sampling profile pits on the Mpumalanga Highveld, auger samples were also collected 

along the catenal transects up to a depth of approximately 1 – 1.2 m at distances 10 to 20 m apart. An 

A and B1 horizons were collected as well as an A/B transition zone in some instances. The number of 

auger samples varied with each of the catenas, catena 1 having the least number of samples (2) and 

catena 2 having the most (13) (Figure 2.2). Samples collected from the auger holes were only analysed 

for colour and total Fe content. 

Sample preparation entailed the drying and sieving of the collected soil samples. Soils were spread 

out in a temperature-controlled room (set at approximately 25°C) and left for a two-day period. 

Following drying, the entire sample was weighed and sieved through a 2 mm sieve. The separated soil 

fraction (<2 mm) was transferred to labelled sample boxes and the non-soil fraction (>2 mm) was 

weighed to determine the coarse fragment percentage of the soil. Soil physical and chemical 

characteristics were determined on the dried and sieved soil samples.   

2.2.3. Soil colour determination 

In-field soil colour measurements were conducted using a Munsell soil colour chart (Munsell Color 

Company 1975) and entailed determining the colour of the soil in a dry and moist state in both the 

soil’s natural state of aggregation i.e. as clods and as fine sample. Lighting conditions were kept 

relatively constant by measuring the soil colours in direct sunlight and using the appropriate colour 

masks (as specified by the Munsell soil colour chart). More than one observer was also used to limit 

subjectivity. Notes were made whenever there were inconsistencies in the colour measuring 

conditions and these colours were re-measured back at the laboratory under simulated field 

conditions. Random samples were also selected from the collected soils following field work and their 

colours were re-measured in the lab to ensure accuracy.  

Following sample collection and in-field soil colour measurement, the sampled soils were taken back 

to the laboratory for colour measurement by means of a Konica Minolta CM-600d spectrophotometer 

(Minolta, Osaka, Japan). The spectrophotometer first had to be set up for this particular purpose. This 

entailed measuring each of the colour chips from a new Munsell soil colour chart in La*b* units 

(CIELAB colour space model, Figure 1.2) with the instrument and specifying ranges of these values as 
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target colours. This would allow for individual soil colours to be related back to reference Munsell 

target colours based on the La*b* values measured by the instrument.  Therefore, in addition to La*b* 

units, the instrument was set up to be able to assign every individual sample with a Munsell hue, value 

and chroma. No numerical conversions from La*b* to Munsell hue, value and chroma were used in 

this study. The tolerance settings for the upper and lower limit of target detection was 0.8 to -0.8 

respectively. The instrument was set on auto target selection mode and the selection range was 

specified at a defined euclidean distance (∆Eab) of six units. Standard D65 lighting conditions were 

selected and the observer settings was specified at 10 degrees. Measurements were taken with the 

SCI-setting (spectral component included) activated.  

After the instrumental setup was completed, the dry fine soils were individually spread out on a flat 

surface and covered with a pure light glass lens (Konica Minolta CM-A212 Calibration Glass Ǿ 45mm; 

A168-716). The spectrophotometer was then aligned over the surface of the glass lens and a reading 

was taken. The glass lens was removed and following measurements in the dry state, the sample was 

moistened with a fine spray water bottle and another spectrophotometer reading was made in the 

moist state. Following each measurement, the glass lens was cleaned with a fine-fibred cloth to 

prevent scratching or any form of damage that could influence the colour reading.  

The specified colour measurement protocol was applied to both the profile- and catena samples that 

were collected during the study.  

 

2.3. PHYSICAL AND CHEMICAL CHARACTERISATION METHODS 

2.3.1. Physical soil parameters 

2.3.1.1. Particle-size analysis 

For particle size analysis the samples were pre-treated by removing organic matter and Fe oxides using 

hydrogen peroxide and citrate-bicarbonate-dithionite, respectively, as specified by Gee & Bauder 

(1986).  Thereafter the treated samples were chemically dispersed by adding Calgon dispersing agent 

(Na-hexametaphosphate mixed with Na2CO3) and transferring the suspension to a dispersion cup 

where it was mixed with an electric mixer for 5 minutes (Soil classification working group 1991). The 

dispersed sample was then washed through a 270 mesh sieve (0.053 mm) to separate the silt and clay 

fraction from the sand fraction. The sand fraction was dried and transferred to a nest of sieves 

arranged in decreasing size from 1.0 mm, 0.5 mm, 0.25 mm, 0.106 mm and 0.053 mm, with a pan at 

the bottom to collect any additional silt and clay fractions. The sieves were shaken for 10 minutes on 

a sieve shaker to separate the individual sand fractions. The additional clay and silt fraction collected 

in the pan was added to the dispersed silt and clay and the suspension was transferred to plastic 
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bottles. A representative subsample from each of the suspended silt and clay volumes were analysed 

using a Micromeritics Saturn DigiSizer 5200 high definition digital particle size analyser (Micromeritics, 

USA) in order to identify both the fine and coarse silt and clay fractions. The size fractions for coarse 

silt (including medium silt, 0.02-0.05 mm), fine silt (0.002-0.020 mm), coarse clay (0.0002-0.002 mm) 

and fine clay (<0.0002 mm) defined by Gee & Bauder (1986) were used. All the soil fractions were 

expressed as mass percentages following the calculations specified by the Soil classification working 

group (1991). 

2.3.1.2. Bulk density 

The bulk density of each soil horizon was determined from undisturbed clods collected during profile 

sampling, following the standard clod method described by Blake & Hartge (1986). The water-

repellent substance used to cover the clods was a low melt-point paraffin wax (density: 0.9 g.cm-3). 

Bulk density was determined following the calculations specified in the method. 

2.3.1.3. Water dispersible clay 

Water dispersible clay was determined following the method proposed by Seta & Karathanasis (1996). 

Equipment restrictions meant that only 50 ml of liquid could be added to smaller soil samples of 2.5 g 

in 50 ml centrifuge tubes. In addition, all samples were centrifuged at 800 rpm for 3.5 minutes. As 

specified by the method, dispersible clay was first gravimetrically determined for each sample in 

deionized water (WDC) and thereafter using a sodium dispersing agent (SDC). Calgon dispersing agent 

(Na-hexametaphosphate mixed with Na2CO3, pH 9.0 - 9.5) was used and not pure Na2CO3 (pH 9.5) as 

described by these authors. Due to the small soil sample sizes, weights were determined using a five 

decimal scale and all extractions were done in duplicate. The determined weights were expressed as 

a fraction of the total clay content and based on the average of the duplicate measurements, both a 

water dispersible clay (WDC) and sodium dispersible clay (SDC) phase was determined for each 

sample. The WDC % was then calculated by expressing WDC as a percentage of SDC to estimate the 

dispersibility of the clay phase in water.  

2.3.2. Chemical soil parameters 

2.3.2.1. pH and Electrical conductivity (EC) 

Soil pH was measured in a 1:2.5 soil solution using both distilled water and 1 M KCl following the 

standard procedures prescribed by Rowell (1994). Samples were shaken on an industrial shaking 

machine for 15 minutes and measurements were taken with a Eutech pH 700 pH meter by inserting 

the electrode into the soil suspension and swirling the suspension over the electrode. The pH value 

was only recorded after the reading stabilised.  
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In addition, all the sampled profiles were also subject to pH measurements in 1 M NaF. The pHNaF was 

measured to detect any podzolic characteristics in the samples following the method used by Fieldes 

& Perrott (1966). A soil solution of 1:50 was used and pH was determined with a Eutech pH 700 pH 

meter after 60 minutes following intermittent shaking.  

Electrical conductivity (EC) was measured on the samples prepared for pH determination in water 

(1:2.5 soil to water ratio) with a Jenway 4510 conductivity meter. The findings of Sonmez et al. (2008) 

concluded that extracts of either 1:1, 1:2.5 and 1:5 soil to water ratios can be used to estimate 

electrical conductivity and the ion concentrations of soils. 

2.3.2.2. Exchangeable basic cations and exchangeable acidity 

Based on the recommendations of Isbell (2002) regarding the calculation of the exchangeable sodium 

percentage (ESP) in acidic soils (pH around 5.5), ECEC rather than the CEC at pH 7 was determined.  

The ammonium acetate method was used following the centrifuge procedure as described by Thomas 

(1982). All samples were centrifuged at 4000 rpm for 10 minutes. Even at a higher rpm than specified 

in the method, no clear decant could be obtained and the solution was passed through Whatman No 

2 filter paper in plastic funnels. The collected filtrate was then sent for cation determination using 

Atomic Absorption Spectroscopy (AAS).  

Exchangeable acidity was determined through means of titration using 1 M KCl as the replacing 

solution as specified by Thomas (1982). No Büchner funnels were used as prescribed by the method 

but rather a centrifuge procedure similar to the method described above for the determination of 

exchangeable basic cations. Soil (10 g) was placed into a 50 ml centrifuge tube and 6 increments of 25 

ml of 1 M KCl was added. After each addition of KCl the solution was shaken by hand and left to stand 

for 30 minutes. Thereafter the sample was centrifuged at 5000 rpm for 5 minutes and the decant was 

passed through plastic funnels fitted with Whatman No. 2 filter paper. This procedure was repeated 

without changing the soil in the centrifuge tube. Phenolphthalein was added to the filtrate, which was 

titrated with 1 M NaOH to the first permanent pink endpoint to determine KCl acidity. To estimate the 

amounts of Al3+ and H+, 10 ml of 1 M KF was added and the solution was titrated with 0.1 M HCl until 

the pink colour disappeared. Both the NaOH and HCl titer was recorded and the calculations specified 

in the method were used to determine both exchangeable acidity and exchangeable Al.  

Various standard cation ratios and percentages were calculated with the obtained data. Effective 

cation exchange capacity (ECEC) was determined as the sum of the exchangeable basic cations and 

exchangeable acidity, ESP was calculated by expressing the exchangeable Na+ as a percentage of the 

ECEC and a Ca:Mg ratio was also determined (Isbell 2002). 
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2.3.2.3. Citrate bicarbonate dithionite (CBD) extractable Fe and Al 

CBD extractable Fe and Al was determined following the standard procedure developed by Mehra & 

Jackson (1960). Soil samples were, however, not ground to pass a 100 mesh sieve as specified. A 

number of the soil profiles contained small (<2 mm) transported ferruginised shale fragments that are 

not pedogenically linked to the soil. It was assumed that milling would overestimate the crystalline Fe 

content of these soils. This was verified by taking a subsample of 5 soils across both locations and 

comparing the difference between extractable Fe in milled (ball mill, 3 minutes) and unmilled samples. 

Some replicates of the milled and unmilled samples were also included. The results indicated that 

milling increased the CDB extractable Fe in the soils containing ferruginised rock fragments, while 

milling had very little effect on the CBD Fe of the other soils (Appendix 2.1). Therefore, to minimise 

the influence of such fragments in the CBD Fe measurements, unground (<2 mm) soils were used for 

the extractions. Following the extraction process, Fe and Al content was determined using AAS and 

the detected concentrations were expressed as a mass percentage of the soil. 

2.3.2.4. Acid ammonium oxalate extractable Fe and Al 

Acid ammonium oxalate (AAO) extraction in darkness was used to extract poorly crystalline Fe and Al 

phases following the method prescribed by Loeppert & Inskeep (1996). The ferruginised rock 

fragments contained highly crystalline Fe therefore milling would have no influence on amorphous Fe 

extraction thus all samples were ball-milled for three minutes until ground to pass a 100 mesh sieve.  

The low quantities of poorly crystalline Fe and Al that generally occur in soils was the main motivation 

for milling samples in accordance to the standard method.  Following the extraction process, Fe and 

Al content was determined using AAS and the detected concentrations were expressed as a mass 

percentage of the soil.  

A Fe crystallinity index (CI) was calculated expressing AAO extractable Fe (poorly crystalline Fe) as a 

percentage of CBD extractable Fe (crystalline and poorly crystalline Fe). This was used to quantify the 

degree of crystallinity of the Fe phase. This was repeated for extracted Al.  

2.3.2.5. Total carbon and nitrogen 

The carbon and nitrogen content of each sample was determined through the dry combustion method 

as discussed by Nelson & Sommers (1996) using an Eurovector elemental analyser. Soil samples were 

ground for three minutes using a ball-mill where after 2-5 mg of the milled sample was placed in a tin 

sample cup, crimped to confine it and introduced into the quartz reactor of the instrument. From the 

obtained results a C: N ratio was determined.   
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2.3.3. Additional soil parameters 

2.3.3.1. Total Fe (Catena samples) 

The auger samples collected along the catenal transects on the Mpumalanga Highveld were analysed 

for total Fe content by means of a handheld Thermo Scientific Niton XL3t GOLDD+ XRF instrument. 

Prior to the measurements, both the top- and subsoil auger samples were ball-milled to create a more 

uniform sample structure for x-rays to penetrate. Iron content was expressed as a mass percentage. 

2.3.3.2. Clay mineralogy 

Clay separation for XRD analysis was done based on the methods proposed by Harris & White (2008). 

Clay mineralogy was only determined for four of the sampled soils (Pb 3.1, Pb 3.2, Hh 4.1, Hh 4.2), but 

for each Mg- and K-saturated samples were prepared. Sample pre-treatment did not entail the 

removal of any cementing agents and the clay fraction was dispersed using Calgon. The dispersed clay 

fraction was decanted and flocculated through the addition of 1 M HCl. The flocculated clay fraction 

was split and cation saturation was accomplished by making up approximate solutions of 0.5 M MgCl2 

and 1 M KCl respectively using the clay suspensions. The K- and Mg- clay slurries were shaken by hand 

and centrifuged at 1000 rpm for 3.5 minutes to dewater the samples. Each sample was washed again 

using 0.5 M MgCl2 and KCl solutions and thereafter excess salt was removed by washing the samples 

with a 1:1 methanol-water solution.  The concentrated clay fraction was transferred to dialyses tubing 

and placed in a water bath until the water bath tested free of chlorides. The dialysed clay samples 

were air dried and ground by hand using a mortar and pestle. The prepared samples were sent to 

iThemba Laboratories in Cape Town for XRD analysis at angles ranging from 4 to 60 degrees. 
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CHAPTER 3: SOIL-COLOUR RELATIONSHIPS 

 

3.1 INTRODUCTION 

The inclusion of soil colour as horizon criteria in many soil classification systems (Soil classification 

working group 1991; IUSS working group WRB 2007; Soil survey staff 2010) is the result of its reported 

significance as a morphological feature indicative of soil properties, function and condition (Van 

Huyssteen & Ellis 1997; Rabenhorst & Parikh 2000; He et al. 2003; Sánchez-Marañón et al. 2004). 

Colour has been a central topic in many soil research ventures but despite its seemingly well-

researched nature, colour expression in the soil solum remains a somewhat complex phenomenon to 

which soil scientists are often complacent. From the literature reviewed in Chapter 1 it was concluded 

that the complexity of soil colour originates from the multiple dimensions in which colour can show 

variation, the continuous nature with which colour is expressed in the soil, and the contribution of 

different soil features and conditions towards displayed colour. To those interested in confining soil 

colour to any discrete measurement unit and to further investigate what soil properties are 

responsible for the specific expression of colour under certain conditions, these above mentioned 

aspects pose significant challenges.  

In the context of this study where the selected soils are all defined to some extent based on their 

expressed colour, and even more importantly, where bleaching as a discolouration phenomenon is 

assumed to be indicative of some or other pedogenetic process, being able to accurately measure 

colour whilst simultaneously being able to relate it back to specific soil properties are fundamental to 

the overall objectives of this research. Therefore, in order to investigate soil-colour relationships in 

this particular suite of soils, attention must be given to i) the applied colour measurement protocol 

and the generated colour variables in each, as well as ii) the influence of chemical and physical soil 

characteristics on colour expression. 

Melville & Atkinson (1985) warns that any error in soil colour measurement may result in wrongful 

conclusions about profile characteristics. Therefore it was deemed that an investigation into the 

methods of colour measurement in order to see how colour measurement procedures can potentially 

influence determined colour should precede any actions aimed at relating colour to specific soil 

properties.  As stipulated in Chapter 1, the measurement of soil colour can be objectively achieved 

using a calibrated instrument (Barrett 2002) although visual colour assessment is the procedure most 

commonly used by the soil scientist during soil classification in the field. As a result, visual colour 

measurement is essential to include in the current study as a prominent measurement technique.  

Furthermore, soil colour is measured using Munsell colour charts, thus comparisons need to be made 
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using this colour space model. The first aim of this chapter will be to determine how visual colour 

assessment compares with spectroscopic colour measurement in the Munsell colour space. The 

influence of the addition of moisture on soil colour using both these measurement techniques will 

also be assessed and colour measurements in the CIELAB colour space will also be carried out for 

comparison sake.  

Within the context of the overall study, bleaching as a colour-related soil phenomenon is investigated 

and the particular interest is what pedogenetic mechanism is causing this expression of colour in the 

soil. It seems inconceivable that such objectives will be reached without an adequate understanding 

of the relationship between soil properties and the ensuing colours expressed in the soil solum. 

Therefore, in addition to investigating the methods of soil colour measurements, the second and final 

aim of this chapter is to determine what soil properties are responsible for colour expression in the 

sampled weakly structured soils of the Western Cape and Mpumalanga Highveld. 

 

3.2 MATERIALS AND METHODS    

Soil sampling, colour measurement and physical and chemical soil characterisation was completed 

following the methods specified in Chapter 2.  

3.2.1 Statistical analyses 

For each soil sample, Munsell hue, value and chroma as well as L*, a* and b* values were recorded 

under dry and moist soil conditions. To investigate the relationship between the colours determined 

through visual perception (perceived) and spectrophotometer measurements (measured), Spearman-

r correlation coefficients were calculated for each colour variable between these two measurement 

conditions. The same technique was applied to dry and moist colour variables to determine whether 

i) the changes in colour brought about by the addition of moisture followed a consistent pattern, and 

ii) to see whether the values registered by the instrument and human vision in this regard were similar. 

Spearman-r correlation coefficients were reported throughout the study due to this coefficient’s 

ability to compensate for outliers. This implies that Spearman-r values provide an accurate 

representation of the correlation between variables in both normally and not-normally distributed 

datasets.  

To determine the nature and the magnitude of the colour change between visual perception and 

instrument measurements, the difference between perceived and measured colour variables were 

calculated. The same technique was also applied to dry and moist colour and a series of One-way 

ANOVAs were completed for each of the Munsell colour variables to determine if the extent of the 
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colour change brought about by the addition of moisture were similarly registered between measured 

and perceived means. Due to the nature of the Munsell hue variable being a combination of both a 

number and letters, a linear scale with substituted numerical values were used. The substituted values 

included 2.5YR = 2.5, 5YR = 5, 7.5YR = 7.5 and 10YR = 10. In the case of the L*, a* and b* values, no 

comparison could be made between perceived and measured colours and therefore only the influence 

of moisture could be investigated. For each of these CIELAB colour variables, One-way ANOVAs were 

completed to determine how and whether the values measured in the moist state differed from those 

of dry soil samples.     

A Multiple Factor Analysis (MFA) incorporating the determined soil parameters and the related colour 

variables was conducted to investigate the relationship that exists between the recorded soil 

properties and the expressed soil colours. A Spearman-r correlation matrix making use of these same 

variables was also generated to explain the findings. In addition, separate correlation matrices 

reporting on the relationships between the i) determined soil colour variables and also ii) the 

determined physical and chemical soil parameters were also completed. 

All statistical analyses was completed using Statistica 12 (StatSoft, Southern Africa).  

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Colour measurement condition: perceived vs measured colour 

Colour has different dimensions of variation. For example, a colour can be red or yellow but it can also 

be rich or dull or light and dark. Therefore, to be able to encapsulate and accurately quantify this 

phenomenon, colour space models with multiple dimensions have been developed (Viscarra Rossel et 

al. 2006). The Munsell colour space model for example describes a colour based on its primary hue 

(an indication of a colour’s relation to red, yellow, green, blue or purple), the richness of this hue 

(chroma) and the lightness of the overall colour (value) (Munsell Color Company 1980). As stipulated 

in Chapter 1, each of the developed colour space models makes use of different dimensions for colour 

quantification and therefore the colour variables generated in the Munsell and CIELAB colour space 

models will overlap to some extent, but will not be completely similar. Based on this premise, it was 

decided that to be able to evaluate colour measurement and colour description under different 

conditions, these different colour dimensions or variables would need to be individually assessed. In 

order to satisfy the first objective of this study, separate Spearman-r correlation matrices were 

generated for each variable in the Munsell colour space (Table 3.1) under different colour 

measurement and soil conditions to provide an indication of the variation caused by each of these 

factors.  
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Table 3.1. The generated Spearman-r correlation matrixes for each 
colour variable in the Munsell colour space model under different 
measurement and soil conditions. 

 

Hue 

(perceived, 
dry) 

Hue 

(perceived, 
moist) 

Hue 

(measured, 
dry) 

Hue 

(measured, 
moist) 

Hue 
(perceived, 

dry) 

1 0.86 0.54 0.37 

Hue 
(perceived, 
moist) 

 1 0.59 0.41 

Hue 
(measured, 

dry) 

  1 0.51 

Hue 
(measured, 
moist) 

   1 

 

Value 

(perceived, 
dry) 

Value 

(perceived, 
moist) 

Value 

(measured, 
dry) 

Value 

(measured, 
moist) 

Value 
(perceived, 

dry) 

1 0.44 0.60 0.10 

Value 

(perceived, 
moist) 

 1 0.43 -0.12 

Value 
(measured, 
dry) 

  1 -0.15 

Value 
(measured, 

moist) 

   1 

 

Chroma 
(Perceived, 

dry) 

Chroma 
(Perceived, 

moist) 

Chroma 
(measured, 

dry) 

Chroma 
(measured, 

moist) 

Chroma 
(Perceived, 
dry) 

1 0.70 0.49 -0.17 

Chroma 
(Perceived, 
moist) 

 1 -0.17 -0.11 

Chroma 
(measured, 
dry) 

  1 -0.09 

Chroma 
(measured, 
moist) 

   1 
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From the correlation coefficients provided in Table 3.1, it is apparent that visual (perceived) and 

spectroscopic colour (measured) determination registers changes in hue, value and chroma in a 

consistent manner when the soil is in a dry state. Perceived and measured Munsell value in particular 

revealed a significant positive correlation (r=0.60) whilst perceived and measured chroma proved to 

be the least correlated (r=0.49). Perceived and measured hue exhibited a correlation of r=0.54. 

Unfortunately, the results presented in Table 3.1 only provides information on the relationships which 

exist between measured and perceived (and dry and moist) colour variables without any reference of 

the magnitude of change under different measurement- and soil conditions and essentially to what 

extent the colour variables actually differed. Due to the variation in the colour of the soils sampled as 

part of this study (Chapter 2), the difference between each colour variable from one measurement 

technique and/or soil condition to the next was used in the subsequent statistical analysis rather than 

the absolute colour values of the soil samples. Therefore, the difference between the colour 

components measured under different conditions was calculated for each soil (e.g. perceived hue – 

measured hue) and the frequency of the residuals were graphically displayed in the form of histograms 

(Figure 3.1 a-c). Figure 3.1 indicates the percentage of the total number of observations per residual 

unit. For each soil the difference in hue (Figure 3.1a), value (Figure 3.1b) and chroma (Figure 3.1c) 

between perceived and measured values were determined and the frequency per delta unit was 

calculated and expressed as a percentage of the total number of observations. If the difference 

between perceived and measured colour variables equals zero this implies that no difference existed 

between visual and spectroscopic colour determination for that specific variable.    
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(a) 

 

(b) 

 

(c) 

Figure 3.1. The percentage of the total number of observations per unit difference between perceived and measured hue (a), 
value (b) and chroma (c). 
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In Figure 3.1a it can be observed that the majority of hues visually determined corresponded to those 

measured with the instrument (∆ hue 0 = 52%), although the higher percentage of observations for ∆ 

hue unit 2.5 (37%) indicate that the spectrophotometer tended to occasionally register lower and 

therefore slightly redder hues. Munsell value, however, was the colour variable that most frequently 

agreed between perceived and measured colours (∆ value 0 = 67%; Figure 3.1b). The most variability 

was reported in chroma where Figure 3.1c clearly show that perceived and measured chromas rarely 

matched (∆ chroma 0 = 4%), with the instrument consistently registering a lower chroma than what 

was visually perceived. Overall the eye perceived the soils to be brighter and more chromatic and was 

consequently less sensitive towards detecting bleached horizon colours. These reported discrepancies 

between measured and perceived colours allude to the fundamental issue with colour determination 

through visual comparison with reference colours, as would be provided, for example, by the colour 

chips in the Munsell soil colour charts - different physical and psychophysical conditions dictate the 

eye-brain system’s interpretation of the expressed colour (Melville & Atkinson 1985; Torrent & Barron 

1993). This implies that any colour registered at any point of time is a consequence of the conditions 

under which the colour was determined, and that colour essentially remains a perception.  

This conclusion allows one to predict that measured and perceived colour would never be exactly the 

same simply due to differences in the measurement conditions (Post et al. 1993). It is however 

encouraging to note that the results presented in Table 3.1 indicated that visual and spectroscopic 

colour determination of soils in a dry state both registered changes in the three applicable colour 

dimensions in a similar manner. The reported positive correlations imply that when the instrument 

recorded an increase in the hue, value and chroma of a soil, visual perception recognised a change in 

the same direction. The extent to which these perceived and measured colour variables can differ is 

nonetheless variable and reports thereof have been made by various authors. In the study done by 

Post et al. (1993) value was also found to be the colour variable most precisely and accurately 

determined by a panel of experienced soil scientists. These authors stipulated that chroma and hue 

were more difficult to evaluate compared to value due to the nature of the colour variation involved. 

The required colour sensitivity to accurately distinguish between particularly chroma is more complex 

than for value where a simple black to white scale is applicable. Although other studies have reported 

contrasting results where visual estimates of value tended to be higher and more irregular than the 

corresponding spectrophotometer readings (Barrett 2002; Viscarra Rossel et al. 2009), the colour 

discrimination thresholds of the human eye represented in Luo et al. (2001) provides some support to 

the explanation provided by Post et al. (1993). Luo et al. (2001) established that visual sensitivity to 

high chroma colours is low. This implies that the human eye has a limited ability to distinguish between 

highly saturated colours even if the colour differences are relatively great. In addition, although visual 
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colour discrimination thresholds are closer together at low chromas, they can still be influential. To 

complicate the matter even further, variability with regard to human ability to discern between 

colours of variable saturation appears to be hue related, with this phenomenon seemingly more 

intense towards the blue and green hue variables as opposed to red and yellow. This ability of hue to 

influence the recorded chroma and vice versa has been previously documented in a number of studies 

(e.g. Sánchez-Marañón et al. 2011). 

From the presented results, chroma seems to be the most challenging colour dimension to visually 

interpret and accurately quantify. The complexity of chroma measurement is also substantiated by 

the statements of Barrett (2002) who concluded that visual chromas are apt to be more extreme than 

corresponding spectrophotometer measurements. During this investigation hue also presented some 

related challenges. The instrument’s tendency to register lower chromas and redder hues is potentially 

a result of the enhanced sensitivity of the spectrophotometer in detecting changes in the reflectance 

characteristics of the soil brought about by different Fe oxide induced absorption bands in the 

different regions of the visible spectra (Bedidi et al. 1992). However, no certainty surrounding the 

extent of such influence on measured colours exist, and therefore in the light of the inconsistencies 

related to visual colour estimation (Melville & Atkinson 1985; Sánchez-Marañón et al. 2011), it would 

seem more appropriate to rather question why visual perception registered yellower hues and higher 

chromas. The proposed explanation is related to the perceptual colour space represented by the 

Munsell system and the consequent physical and psychophysical aspects that can influence the colour 

measurement outcomes in this model (Torrent et al. 1983). According to Barrett (2002), the extreme 

Munsell chromas reported in this author’s study is partially attributed to a psychological preference 

on the part of the colour observer to report more extreme numbers to better differentiate among 

similar colours. The possibility that the higher perceived chromas presented in this study is the result 

of similar bias is a strong probability. In addition, the results by Sánchez-Marañón et al. (2011) 

indicated some ferrallitic soil samples tend to redden whilst others yellowed under changing daylight 

conditions in the field. In-field lighting conditions could therefore have been responsible for the more 

yellow soil colours that were perceived. These authors suggest the nature of the particular soil sample 

will control the intensity of the shift in its colour caused by similar changes in (day) lighting conditions.  

Besides the psychological bias of the colour observer and the influence of lighting conditions, an 

additional psychophysical factor related to the book-format of the Munsell soil colour charts is also 

proposed to affect registered colour. Within the Munsell soil colour charts, every page represents a 

different hue with corresponding value and chroma scales. It is therefore proposed that perceived hue 

is essentially influenced by a ‘book effect’ where an observer rather tends to match a soil to a colour 

chip at a higher chroma than turn the page to compare it to a different hue. An observer is therefore 
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already tempted to assign a soil with a higher, richer chroma when a red or yellow soil is observed and 

only later consider changes to the soil hue. This phenomenon can aid in explaining both the higher 

perceived hues and chromas that were registered in this study. 

It is important to recognise that differences between perceived and measured colours can significantly 

influence soil classification and characterisation outcomes. Unfortunately, the data generated in this 

study makes it impossible to state which of these measurement techniques are more accurate than 

the other. What can be concluded, however, is that various physiological factors have the potential to 

influence visual colour estimation and this, coupled with the statements made by amongst others 

Melville & Atkinson (1985) and Post et al. (1993) on the nature of spectroscopic colour measurement, 

provides enough evidence to state that spectrophotometer colour measurements in the laboratory 

will be less subjective and more precise compared to visual colour determination in the field. This is 

not to say that visual colour determination has no role to play in soil colour measurement, but rather 

that in-field soil colour determination should serve as a preliminary approach (Sánchez-Marañón et 

al. 2011). The accuracy and precision of this method will suffice for broad scale soil classification and 

mapping but more accurate applications will require the use of instruments and more controlled 

colour measurement conditions.   

3.3.2 Colour measurement conditions: the addition of moisture 

Upon the addition of moisture to the soil sample, variable outcomes under measured and perceived 

conditions for each of the colour variables were registered. In Table 3.1 the presented results indicate 

that perceived hue changed in a consistent manner in dry and moist soil samples (r=0.86), whilst the 

same was true for measured hue, the only difference being a reported weaker positive correlation 

(r=0.51) (Table 3.1). However, the perceived value of the soils in a dry and a moist state did not seem 

to co-vary (r=0.44), whilst a weak negative correlation coefficient indicated that no consistent change 

in the measured values of dry and moist soil existed (r=-0.15). In the case of chroma, perceived values 

under moist and dry conditions revealed correlated changes (r=0.70) whilst measured chromas under 

these conditions proved to follow no consistent relationship (r=-0.09) (Table 3.1). Again these 

correlation coefficients provided no information on the magnitude of change in each colour variable 

under the different measurement conditions from a dry to moist soil state. Therefore, the perceived 

and measured changes in hue, value and chroma from a dry to moist soil state was expressed as the 

mean difference between the determined dry and moist values. From Figure 3.2 it can be observed 

that both perceived and measured hue tended to decrease (i.e. redden) upon wetting although this 

decrease was significantly higher for instrument-measured hues compared to those visually 

determined (p=0.04; F=4.28). In contrast, the addition of moisture proved to effect perceived value 

significantly more than measured value with perceived values of moist soils being significantly lower 
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(p=0.02; F=5.26) than those registered by the instrument. This implies that the average difference in 

value between wet and dry soil was greatest for visual measurements. Under both measurement 

conditions, however, value tended to decrease, implying a darkening of the soil as moisture was 

added. In the case of chroma, the addition of moisture also tended to result in lower values under 

both perceived and measured conditions but no significant difference was reported between the 

changes in chroma registered by the eye and instrument respectively from a dry to a moist soil state.  

 

Figure 3.2. The average difference of measured and perceived hue, value and chroma from a dry to a moist soil state (dry-
moist).  

As previously stated, perceived hue and chroma were positively correlated between dry and moist soil 

states implying that the eye registered consistent changes in these variables between moist and dry 

soil conditions. Measured hue also exhibited a similar tendency but the changes in perceived value 

and measured value and chroma were not consistent between dry and moist soil. This eludes to the 

fact that the extent and direction of the colour change registered by the instrument upon the addition 

of moisture to the soil sample, differed from that which was visually perceived. Furthermore, the 

addition of moisture resulted in both a perceived and measured reddening of the soil, with the 

recorded hues being significantly lower in the moist state. This effect of moisture on hue was 

significantly more pronounced in measured compared to perceived colour. Results also indicated a 

decrease in the purity and saturation of the hue in the presence of soil moisture, as indicated by a 

decrease in chroma. This was the case irrespective of the measurement technique applied. Munsell 

value furthermore decreased under moist soil conditions resulting in a darker soil colour, with the 

reported darkening effect being significantly greater in visually perceived colours compared to 

spectrophotometer measurements. Based on the variation in soil colour in all three these visually 
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perceptual colour dimensions, it can be stated that for the soils under investigation, the addition of 

moisture resulted in significant colour variations.  

According to Shields et al. (1966), the well-documented influence of moisture on soil colour relates to 

its substantial influence on soil reflectance properties. Bowers & Hanks (1965), Baumgardner et al. 

(1985), Post et al. (2000) and Barrett (2002) have all made reference to the darkening effect that 

moisture has on soil colour as a result of a decrease in the luminosity component, more specifically 

parameters such as Munsell value or CIELAB L*. According to these authors this is the result of a 

decrease in surface reflectance brought about by a thin liquid film that covers the soil mineral 

particles. Bedidi et al. (1992) studied colour variations in the presence of soil moisture in lateritic soils 

with very similar colour characteristics as those under investigation in this study and also found this 

decrease in value with the addition of moisture. More importantly however, these authors together 

with Post et al. (1993) recorded a shift in hue towards red colours at high moisture levels and also a 

systematic decrease in the chroma under such conditions. According to Bedidi et al. (1992) the 

changes in the soil spectral properties with the addition of moisture depends upon the soil’s mineral 

composition, where lateritic soils rich in Fe oxy-hydroxides exhibit more complex spectral behaviour 

in the presence of moisture due to this medium’s influence on the variable absorption bands produced 

by these minerals between 400 nm and 700 nm, that define the soils spectral reflectance 

characteristics.  

The explanation provided in the study by Bedidi et al. (1992) states that the total reflectance of a 

particulate medium can be dominated by either a specular (photons reflected at the surface of the 

medium) or volumetric (sum of all the reflected radiation passed through the particles) component. 

The dominance of either one of these components is the result of the optical and geometrical 

properties of the grains as well as optical properties of the medium surrounding the particles. 

Hematite and goethite covering soil grains have variable absorption intensities in the red, green and 

blue regions of the visible spectra. This is furthermore modified by refractive properties of the 

surrounding medium i.e. the addition of water will cause a change in the scattering properties of soil 

particles and the balance between absorption and scattering in the soil medium. In these Fe oxide 

dominated soils, the red region bands were found to be dominated by the volumetric component 

resulting in a decrease in total reflectance when moisture is added due to the low reflectance 

properties of water. The dominant wavelength however, increases in such soils under these conditions 

resulting in a redder appearance. Different combinations of these oxide minerals can furthermore 

influence the purity of the hue and this can explain the decrease in chroma values. In conclusion, the 

reflectance variations in Fe oxide dominated soils are in its own sense complex, with the addition of 

moisture further complicating spectral reflectance in these soils. Bedidi et al. (1992) state that any 
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material containing the same absorbent species in the different visible spectral regions should induce 

similar changes in reflectance when moistened.  

The greater sensitivity of the instrument in detecting changes in the reflectance properties of the soil 

sample as well as its ability to more precisely quantify the interaction of the soil medium with the 

added moisture was most probably the reason why the difference in Munsell hue between dry and 

moist samples was greater when determined with the spectrophotometer compared to visual means. 

The human eye would simply be unable to record what the influence of moisture would be in such 

detail. Similarly, based on the above discussed influence of moisture on soil reflectance properties as 

well as the sensitivity of the instrument to changes in spectral reflectance characteristics, it is not 

surprising that moist measured values (or any other colour variable in the moist state) are not similar 

to those determined through visual perception. According to Torrent & Barron (1993), the consistent 

preparation of moist samples poses a challenge, with the importance of the quantity of water added 

to the sample being that it can result in different spectral changes (Bedidi et al. 1992).  One would 

expect moisture quantity to have less of a significant influence on the coarse-scaled visual estimation 

but that instrumental measurements might record a more exact change. This is proposed to be a 

potential reason why unpredictable changes in the measured value and chroma of moist soils were 

recorded.   

What was interesting is the fact that Munsell value was visually perceived to decrease more drastically 

under moist conditions compared to what the instrument registered. This can be attributed to 

psychophysical bias on the part of the colour observer where the addition of moisture is known to 

result in a darkening of the soil and as a result the observer might unconsciously over-exaggerate the 

darkening effect. The previously discussed ‘book effect’ could similarly also be applicable to Munsell 

value in this regard. Essentially the colour observer tends compensate for colour variation in chroma 

or value rather than in hue. So unconsciously the observer registers a lower chroma or value whilst a 

change in hue might be required. Additional evidence in support of this theory can be seen in Figure 

3.2, where the effect of moisture is significantly greater in measured compared to perceived hues 

whilst perceived value is significantly greater than measured value. This suggests that the instrument 

accounts for some of the wetting-induced colour change in the hue dimension while, visually value is 

predominantly used to account for the colour change brought about by the addition of moisture.  

Despite the dissimilarities in the way moisture-induced colour changes are registered using these two 

techniques, moist soil samples seem to be perceptually more chromatic. The implications thereof for 

soil classification is significant. A prime example, is of course, the distinction between grey and yellow 

diagnostic E horizons in the South African soil classification system (Soil classification working group 
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1991). It is prescribed that yellow E horizons be identified in the moist state, with the rationale being 

that under these circumstances the pigmenting effect of the limited Fe oxides that are present in such 

soil horizons are enhanced. This is of course also pertinent to the bleaching phenomenon, where in 

many instances, bleached topsoils are overlooked due to the fact that a profile is moist. The results 

from this study indicate that moisture can induce some chromatic changes in the soils and that when 

dealing specifically with pale-coloured horizons, colour must be measured under both dry and moist 

conditions before any conclusions about soil condition can be reached.   

In addition to the Munsell colour space model, the spectrophotometer also measures colour in CIELAB 

tristimulus values thereby providing an additional colour space model within which the effect of 

moisture on soil colour could be investigated. From Figure 3.3a it can be observed that L* is 

significantly higher for soil samples in the dry state compared to when moisture was added (p ≤ 0.01; 

F=902.99). The same was also observed for a* (p ≤ 0.01; F=239.43) (Figure 3.3b) and b* (p ≤ 0.01; 

F=1018.7) (Figure 3.3c). Figure 3.3a furthermore shows that with the addition of moisture, L* 

decreased with an average of 10.4 units. Of all the CIELAB values, L* is the only component that has 

defined values ranging from 0 (black) to 100 (white) (CIE 1986) which enables us to conclude that the 

addition of moisture resulted in significant darkening of the soil sample.  

(a)    (b)             (c) 

Figure 3.3. The difference in the instrument-measured CIE L*(a), a* (b) and b* (c) values between dry and moist soil samples. 
Significance letters and standard error bars are indicated. 

Due to the lack of predefined value ranges for both a* and b* (CIE 1986; Hill et al. 1997), interpreting 

these values in a similar manner as L* would be inappropriate. According to Mahy et al. (1994), 

tristimulus colours can only be used to see if colours match but they cannot predict the visual 

difference if no match is obtained. If one is to determine whether a statistically defined difference in 

these colour variables would be of any practical significance i.e. visually detectable, these authors 

state that uniform colour spaces should be developed and individual colours should be represented 

within such spaces for comparison sake. Hill et al. (1997) similarly stated that to be able to represent 

and compare colours in a CIEL*a*b* colour space, axes ranges and limitations need to be specified.  

These authors developed an optimal CIELAB colour space arrayed within the limits 0 ≤ L* ≤ 100, -166 
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≤ a* ≤ 141 and -132 ≤ b* ≤ 147. Although these values provide little insight into scales of significant 

difference for these colour variables, they do provide some reference. However, Mahy et al. (1994) 

state that “there are quite a lot of uniform colour spaces that are optimized to predict certain 

experimental data, but there is no guarantee that such a space is also able to approximate other 

experimental data”. It would therefore seem more appropriate to interpret a* and b* colour 

components for a particular study based on the variation in values generated for each of these 

components within the confines of the individual study. From the provided results it is evident that 

statistically significant differences for both a* and b* values occur between the dry and moist soil 

states. The mean unit differences are 1.7 and 6.2 respectively. If these mean differences are compared 

to combined standard deviations of moist and dry a* and b* values respectively (a*=2.30; b*=4.26), it 

seems that the statistical significant difference recorded for a* is of less relevance than that for b*. It 

is however not possible to definitively state that visible colour differences along these colour 

components would be observed with these measured changes. Therefore, it is concluded that in 

theoretical terms these changes in a* and b*, brought about by the addition of moisture, would relate 

to a tendency towards greener colours along the a* axis (Figure 3.3b) and more blue colours along the 

b* axis (Figure 3.3c). Based on the nature of the colours dealt with in this study, it would be more 

appropriate to rather interpret these changes brought about by the addition of moisture to the soil as 

a decrease in the red colouration along the a* axis and a decrease in the yellow colouration along the 

b* axis.  

The reported decrease of the L* value and the theoretical darkening of the soil that it implies is in 

agreement to what was reported for Munsell value. The presented decrease in both a* and b* in the 

presence of soil moisture and therefore the theoretical decrease in the red colouration along the a* 

axis and a decrease in the yellow colouration along the b* axis, however, seems to be in contradiction 

to the colour change registered in the Munsell colour space. Upon the addition of moisture Munsell 

hue tended to decrease, signifying a reddening effect. To explain this apparent discrepancy it is 

important to note that this reddening phenomenon in the Munsell colour space refers to an increase 

in redder hues but at the expense of yellower hues. This is the consequence of linear hue scale applied 

in this study. In the CIELAB colour space the recorded decrease in red colour is accompanied by a 

simultaneous decrease in yellow. Therefore, these results clearly indicate that changes in the CIELAB 

colour space should not be regarded as perceptual colour changes as would be the case within the 

Munsell system and direct comparisons between the colour variations in these two colour space 

models are complex. Data from this study suggests that a relationship between a*, b*, hue and chroma 

exists. This implies that changes in a* or b* in the CIELAB colour system is shared between Munsell 

hue and chroma and vice versa. It is unfortunately not possible to state what numerical changes in 
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which CIELAB colour dimension is responsible for visible changes in the soil. The different dimensions 

of colour that are signified by each colour variable in the different colour space models will definitely 

overlap but can still be profoundly different, making direct comparisons quite impossible. 

Furthermore, the value ranges and scales of the individual colour variables in each colour space model 

will also differ complicating these comparisons even more. It must therefore simply be concluded that 

for future comparison to soil colours measured using the CIELAB colour space model, the addition of 

moisture resulted in lower L*, a* and b* values. 

3.3.3 Soil property-colour relationships 

The aim of this section is to determine which soil properties affect soil colour expression in which 

dimension of colour change. Although most of the work done on colour throughout this study was 

completed using the Munsell HVC colour space, an important comprehension regarding the nature of 

colour quantification using these colour dimensions needs to be made. The methods applied for 

measuring soil colour in this study entailed measuring each Munsell soil colour chip in the CIELAB 

colour space and using the generated L* , a* and b* value ranges for these chips to specify Munsell 

target colours. The colour of a soil would therefore be measured in L*, a* and b* values and 

automatically be transposed to a Munsell colour based on the correlation between the LAB values 

measured for the soil and that which has been specified for the target Munsell chips. This was 

necessary to be able to distinguish bleached soils from non-bleached variants in a precise and 

objective manner. However, this process resulted in the loss of information simply because the unit 

scales used in the CIELAB colour space are continuous whereas in the Munsell colour space these 

continuous LAB values were categorized into the coarser and more discrete Munsell HVC units. The 

problem is that when trying to detect which soil properties are responsible for soil colour, these 

discrete Munsell units are less sensitive to change because they are based on perceptual differences 

and not changes in spectral reflectance. Keeping this in mind, correlations and comparisons between 

soil properties and perceived and measured Munsell and CIELAB variables were nonetheless made.     

Separate Spearman-r correlation matrices were generated to investigate the relationships between i) 

the different colour variables (Appendix 3.2), and ii) the different physical and chemical soil 

parameters (Appendices 3.3). An inspection of these relationships were deemed necessary before any 

investigation into the relations between soil properties and expressed colour could be launched. The 

combined correlation matrix demonstrating the relationships between all the determined soil 

parameters and the corresponding soil colour variables are featured in Appendix 3.1. An extract of 

this matrix including some selected soil parameters and soil colour variables are included in Table 3.2 

and will be discussed in more detail. A Multiple Factor Analysis (MFA) was also conducted and the 

resulting MFA correlation circle is attached in Appendix 3.4. 
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From the generated correlation coefficients, positive correlations between measured and perceived 

Munsell value and instrument-measured L* were observed (r=0.86 & r=0.56, respectively) (Appendix 

3.2). This was anticipated seeing that both Munsell value and L* are measures of the lightness of a 

colour in the Munsell HVC and the CIELAB colour systems respectively (Viscarra Rossel et al. 2006).  In 

addition, measured and perceived Munsell chroma was found to be correlated with instrument-

measured a* (r=0.65 & r=0.78) whilst only measured chroma was related to b* (r=0.74) (Appendix 

3.2). Similar to chroma, measured and perceived Munsell hue was also significantly related to a* (r=-

0.50 & r=-0.67, respectively) but did not show any relation to b* (r=0.00 & r=-0.01) (Appendix 3.2). Per 

definition, chroma is a measure of the pureness of a colour or the saturation of the hue (Munsell Color 

Company 1980) whilst a* and b* respectively represent a red-to-green and blue-to-yellow scale 

(Melville & Atkinson 1985; Viscarra Rossel et al. 2006). A higher chroma would therefore imply a more 

wholesome colour whereas a change in a* or b* would signify a colour theoretically becoming more 

red/green or yellow/blue. The agreement between these colour variables is therefore also expected. 

With regards to the determined soil parameters, no unexpected relationships between any of the 

physical or chemical soil characteristics were detected (Appendix 3.3). Positive correlations between 

the different extractable Fe and Al phases (Spearman-r: FeCBD vs FeAAO = 0.66; AlCBD vs AlAAO = 0.70; 

FeCBD vs AlCBD = 0.78; FeAAO vs AlAAO = 0.65) as well as between the individual particle size fractions 

existed. Based on these correlations, FeCBD was deemed to be a good representation of the total Fe 

content of the soil (Loeppert & Inskeep 1996).  
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Table 3.2. Spearman-r correlation coefficients indicating the relationships between some selected soil parameters and the determined soil colour variables. 
Correlations were deemed to be significant > 0.5 (bold). (Complete correlation matrix included in Appendix 3.1) 

 
FeCBD 
(%) 

FeAAO 
(%) 

AlCBD 

(%) 
AlAAO 

(%) 
Fe CI1 C (%) C:N ESP Ca:Mg 

Total 
Sand 
(%) 

Total 
Silt (%) 

Co 
Silt 
(%) 

Fi Silt 
(%) 

Total 
Clay 
(%) 

Co 
Clay 
(%) 

Fi 
Clay 
(%) 

WDC 
(%) 

Perceived 
Hue 

-0.56 -0.31 -0.23 -0.31 0.38 0.16 0.19 -0.03 0.08 0.27 -0.17 0.03 -0.22 -0.47 -0.43 -0.42 0.00 

Measured 
Hue 

-0.26 -0.14 -0.05 -0.10 0.13 0.14 0.15 -0.06 -0.13 0.02 -0.01 0.20 0.06 -0.24 -0.22 -0.28 0.04 

Perceived 
Value 

-0.20 -0.07 -0.02 -0.11 0.21 -0.12 0.16 0.18 -0.01 -0.08 0.10 0.17 0.08 -0.08 -0.05 -0.24 0.11 

Measured 
Value 

-0.04 0.16 0.16 -0.04 0.20 0.13 0.06 0.43 -0.17 -0.40 0.47 0.32 0.47 0.08 0.16 -0.39 0.45 

Perceived 
Chroma 0.54 0.34 0.49 0.50 -0.38 -0.34 -0.02 -0.01 0.02 -0.25 0.20 0.18 0.15 0.50 0.44 0.63 -0.14 

Measured 
Chroma 

0.47 0.57 0.57 0.40 -0.09 -0.07 -0.13 0.36 -0.43 -0.61 0.58 0.31 0.54 0.58 0.62 0.22 0.34 

L* 0.12 0.30 0.35 0.12 0.15 0.12 0.06 0.62 -0.36 -0.59 0.64 0.36 0.62 0.33 0.41 -0.22 0.54 

a* 0.75 0.58 0.59 0.59 -0.38 -0.28 -0.17 0.20 -0.26 -0.58 0.50 0.33 0.46 0.73 0.71 0.56 0.10 

b* 0.42 0.53 0.63 0.44 -0.05 -0.10 0.00 0.52 -0.41 -0.68 0.66 0.42 0.62 0.59 0.63 0.15 0.33 
1 Fe CI (crystallinity index) = FeAAO/FeCBD 
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Based on the premise that the expression of colour in a soil is a result of the interaction between 

different physical soil properties and the present chemical constituents, it was proposed that specific 

soil physical and/or chemical characteristics will be responsible for colour variation in a specific colour 

dimension, with the most influential properties essentially exhibiting the greatest correlation to a 

specific colour variable (Viscarra Rossel et al. 2006). Upon relating soil features to colour expression it 

was concluded that the majority of the determined soil parameters had no significant influence on soil 

colour (see Appendix 3.1). The soil’s Fe content, however, proved to be predominantly responsible for 

the variation in Munsell hue and chroma in the sampled soils, with hue and chroma respectively being 

negatively and positively correlated to FeCBD content (Table 3.2). Interestingly, in the case of hue, this 

relationship was only significant in perceived hues (r=-0.56) and not in instrument-measured hues (r=-

0.26). What is noticeable is that the relationship between hue and FeCBD is negative under both 

measurement conditions which is the result of the manner in which Munsell hue was arranged during 

statistical analysis. The negative relationship essentially entails that as the soil’s Fe content increased, 

a reddening of the soil occurred.  

The recorded positive correlation between chroma and FeCBD is in agreement with the results obtained 

by Soileau & McCracken (1967) and applied to both measured and perceived chromas although 

measured chromas exhibited a slightly poorer relationship to FeCBD content (r=0.54 & r=0.47, 

respectively) (Table 3.2). This positive correlation implies that with an increase in Fe, hue becomes 

more saturated and the soil colour more pure. In simple terms, more Fe resulted in a more 

pronounced and chromatic soil colour. 

These recorded results strengthen the opinion that Fe is one of the main pigmentation agents in the 

soil environment (Torrent et al. 1983; Barron & Torrent 1986; Sánchez-Marañón et al. 2004) and more 

importantly within the diagnostic soil horizons investigated within this study (Soil classification 

working group 1991; Fey 2010). One must however keep in mind that the soils under investigation 

ranged in colour from grey to yellow to red and that the recorded reddening of a soil according to the 

Munsell hue scale applied in this investigation represents a similar change from yellow to red. This 

reddening phenomenon as well as the increase in the strength of the colour that accompanied an 

increase in Fe content is a result of the nature of Fe oxide-related soil colour expression. The two most 

abundant secondary Fe oxides present within soils are goethite and hematite (Torrent et al. 1983; 

Schwertmann & Taylor 1989). The presence of goethite is usually indicated by yellower soil colours, 

whilst hematite is responsible for a more reddish appearance (Davey et al. 1975; Bigham et al. 1978; 

Torrent et al. 1983). The presence of either will essentially determine the hue of the soil sample in the 

absence of other soil pigmenting agents. The reddening phenomenon observed with an increase in Fe 

content can therefore be the result of an increase in the hematite content of the soil (Torrent & Barron 
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1993). In addition, an increase in the quantity of either goethite or hematite would also have an 

enhanced pigmenting effect and result in more pure red or yellow soil colours, although Barron & 

Torrent (1986) have reported that threshold saturation percentages (about 10% for hematite and 30% 

for goethite) above which higher Fe contents do not affect colour change do exist. The weak 

correlation that was observed between FeCBD and b* (r=0.42; Table 3.2) further implies that red Fe 

oxides and therefore hematite was most probably the dominant pigmentation agent in the sampled 

soils and that redder soil colours were more dominant than yellow variations. This also agrees to some 

extent with the reported redder hues that were registered by the instrument in the overall soil dataset. 

It is not however suggested that goethite was not present in significant quantities. Various studies 

have proven hematite to be a much stronger pigmenting agent than goethite, with red colours often 

masking the yellow colours of goethite or only small quantities of hematite being required to give soil 

a predominantly reddish appearance (Childs et al. 1979; Torrent et al. 1983; Barron & Torrent 1986).  

The expression of Fe oxide-induced colours, however, proved to be quite complex as discrepancies 

were reported between perceived and measured colour variables and the corresponding soil FeCBD 

content. Visual colour determination registered a reddening in soil colour with an increase in the soil 

Fe content as indicated by the presented negative relationship between perceived hue and FeCBD (r=-

0.56; Table 3.2). The absence of such a relationship between instrument-measured hues and FeCBD (r=-

0.26) was therefore somewhat confusing and initially interpreted to imply that the instrument was 

less sensitive to the pigmenting effect of increased levels of Fe oxides (e.g. hematite). However, the 

fact that a strong positive relationship (r = 0.75) exists between FeCBD and a* suggests that the 

instrument is sensitive to the reddening effect of increased Fe and that these discrepancies between 

perceived and measured hue and the soil FeCBD content is most likely a result of the colour data 

processing, as explained in the first paragraph of this discussion. Such complexities in relating soil 

spectral properties to Munsell notation have been recorded in the past (Escadafal et al. 1989). 

Within this study, the method used to translate LAB colours to Munsell notation resulted in a loss of 

information. The steps in this method entailed measuring colour in continuous LAB values which was 

then transposed to discrete Munsell HVC units that have been established to represent perceptual 

colour differences. Consequently, measuring colour in LAB units and transposing it to Munsell HVC is 

an oversimplification of the colour spectrum which, when correlating the transposed HVC values to 

soil properties will result in weak correlations between instrument-measured Munsell values and 

corresponding soil properties. In the case of Munsell hue, the entire red-yellow spectrum was 

essentially forced into only 4 hue targets (2.5YR; 5YR; 7.5YR and 10YR) and such a 

compartmentalisation of LAB values, whilst necessary for categorising soils into bleached and non-
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bleached groups, does not translate well for linear correlations with soil parameters. Nonetheless, 

even if measured Munsell hue presented no reddening effect with increasing Fe content, the 

reddening of the soil that was visually observed coupled with the reddening changes along the a* 

dimension of the CIELAB colour space implies that Fe had a reddening effect on soil colour and that in 

most instances the redder soils that were sampled as part of this study had the greatest FeCBD contents. 

Essentially, if Fe content is taken into consideration, visual perception exaggerated the pigmenting 

effect of the Fe oxides to suit the Munsell HVC scales whilst the instrument registered more gradual 

colour changes. Therefore, although soils reddened in the presence of increased Fe (hematite) as 

suggested in a*, the instrument did not register these changes on a scale where it would induce hue 

changes in the Munsell colour space model as was visually perceived. 

In addition, it must also be kept in mind that a redder hue within the context of this study implies a 

hue closer to the red end from an arbitrary position in the yellow hue spectrum along the general hue 

scale. Therefore, the change from a predominantly yellow soil (10YR) to a slightly lesser yellow soil 

(7.5YR) forms part of the reddening phenomenon described in this study. The fact is that such colour 

changes are not necessarily solely related to increases in hematite but can rather also just be the result 

of lower concentrations of goethite on the surfaces of the mineral surface particles or variability in 

the crystallinity of the goethite that was present. The sensitivity of the instrument in detecting such 

subtle changes can furthermore contribute to the lack of a relationship between measured hue and 

FeCBD simply because the hue scale applied in this study views red and yellow soil colour to be 

interchangeable, whilst in reality this is not the case. Noticeably, poorly crystalline Fe phases were not 

perceived to have specific colour influence, as illustrated by the absence of a relationship between 

perceived hue or chroma and poorly crystalline FeAAO (Table 3.2). No significant relationship was 

recorded between any of the visually determined colour variables and the degree of Fe crystallinity 

represented by the Fe CI (Table 3.2). The instrument however exhibited an enhanced sensitivity 

towards the influence of poorly crystalline Fe on Munsell chroma, a* and b* eluding to an ability of 

the instrument to detect spectral reflectance changes brought about by more amorphous, and 

presumably also more irregular surfaced, Fe oxides. The widely accepted notion is however that 

hematite and goethite are the Fe oxides predominantly responsible for red and yellow soil colours and 

that these oxides represent more crystalline Fe phases (Schwertmann & Murad 1983; Cornell et al. 

1987). 

From the above presented data it is clear that Munsell hue posed the greatest challenge in relating 

colour change to soil properties in this study. This is primarily due to the coarser nature of the hue 

scale compared to that of value and chroma. Both Munsell value and chroma follow more continuous 
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numerical scales which not only make linear correlations to soil parameters more suitable, but will 

most probably also be slightly more suited for transposing colours from LAB units to Munsell HVC 

using the method applied in this study. As an example, it was expected that a relationship between 

hue and chroma would exist based on their reported correlation to Fe-induced colour expression in 

the soil. It was found that only perceived hue and chroma presented a noteworthy negative correlation 

(r=-0.52), whilst no relationship existed between measured hue and chroma (r=-0.20) (Appendix 3.2). 

As previously reported, both hue and chroma did however correlate well to a* (Appendix 3.2). In the 

case of perceived hue, a negative correlation to a* was reported whilst measured hue exhibited a 

much weaker negative relationship. Both measured and perceived chroma on the other hand 

displayed strong positive correlations to a*. These results substantiate the statements regarding the 

colour measurement methods and the consequent loss of information by indicating that this effect 

was less pronounced for the Munsell variables that follow a more ‘continuous’ numerical scale such 

as chroma as opposed to Munsell hue. 

Munsell value and L* did not seem to be correlated to any of the known soil pigmenting agents in this 

study. This lack of a relationship between soil luminosity (value, L*) and the determined soil 

parameters can be explained by looking at the soil features most pertinently responsible for darker or 

lighter soil colouration. In the literature both organic material and soil moisture content are deemed 

to be responsible for a darkening effect and therefore a decrease in Munsell value and L* 

(Baumgardner et al. 1985; Post et al. 1993; Schulze et al. 1993; Rabenhorst & Parikh 2000; Sánchez-

Marañón et al. 2004). Although the organic C content of the sampled horizons were determined, 

organic matter was present in such low quantities in the soils under investigation, that it proved to 

have no significant influence on soil colour expression. In addition, the soil colour variables used for 

comparison with soil physical and chemical properties were all measured in the dry state. This was to 

avoid any inconsistencies associated with the soil moisture content at which colour is determined. In 

conclusion, no relationship between value and any of the included soil parameters were detected 

simply because the soil parameters that are known to be the most influential to colour change in this 

dimension either proved to be insignificant or was not investigated during this part of the study. What 

was interesting to note was the recorded relationships between the instrument measured L* values 

and the different particle size fractions, as well as the soil’s ESP (Table 3.2). 

In support of the results presented, Torrent et al. (1983) and Rabenhorst & Parikh (2000) state that Fe 

oxides are the most important pigmenting agent in soils that have a low organic matter content. 

Besides Fe oxides and organic matter, the soil’s state of aggregation and moisture content is the only 

additionally reported features known to effect the expressed soil colour (Sánchez-Marañón et al. 
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2004). The particle size distribution of the soil in some studies have also proved to influence the 

spectral reflectance characteristics of the soil medium thereby also theoretically altering soil colour 

(Bowers & Hanks 1965; Baumgardner et al. 1985; Sánchez-Marañón et al. 2004). Within this study, the 

different particle size distributions exhibited a definite relation to the recorded soil colours (Table 3.2). 

Whether the separate sand, silt and clay fractions play an active role in the colouring of the soil seems 

highly unlikely, but there is a strong correlation between the distribution of these size fractions and 

specifically instrument-determined Munsell chroma and the L*, a* and b* values. Measured chroma 

and b* was negatively correlated to the soil’s sand fraction (r=-0.68 & r=-0.61, respectively) and 

accordingly displayed a positive relationship with both the silt (r=0.58 & r=0.66) and clay (r=0.58 & 

r=0.59) fractions (Table 3.2). In contrast, perceived chroma was only related to the fine clay fraction 

(<0.0002 mm) (r=0.63). The measured L* values were negatively related to the sand fraction (r=-0.59), 

positively related to the silt fraction (r=0.64) and showed no relation to the clay fraction (r=0.33). The 

a* values were also negatively related to the sand fraction (r=-0.58) of the soils and accordingly 

displayed a strong positive correlation to the different clay fractions that were present (r=0.73). For 

all these colour variables the negative relationship that exists with the sand fraction implies that any 

increase in either of the Munsell dimensions or the CIELAB values are in actual fact related to increases 

in the silt and/or clay fraction of the soil. Therefore, the expressed colour variations recorded in the 

different colour dimensions are related to changes in the finer soil fractions. As can be expected, these 

finer soil fractions also show relatively strong positive correlations to the extractable Fe and Al phases 

(Appendix 3.3). This series of correlations are proposed to be the result of the larger surface area of 

the finer soil fractions and consequently the ability of the soil particles to adsorb more pigmenting Fe 

oxides. This would explain the positive correlation between chroma, a* and b* and the silt and clay 

fractions of the soil. What is interesting to note is the increase in L* as the silt fraction of the soil 

increases. Greater L* values alludes to lighter soil colours and potentially also the loss of pigmentation 

agents. Importantly, the influence of particle size could almost exclusively be observed with measured 

soil colour variables therefore one must not neglect to account for the variation in the spectral 

reflective properties of the individual soil particles and their influence on what soil colours are 

registered (Bowers & Hanks 1965; Baumgardner et al. 1985; Sánchez-Marañón et al. 2004). In most of 

the research that has been done, a decrease in the particle size of a soil sample results in an increase 

in spectral reflectance which constitutes an overall lighter colour. These changes, as supported by the 

lack of a relationship between the particle size fractions and the determined Munsell values, are 

mostly not visually detectable. 

The fact that a wide range of particle size distributions were recorded in the sampled soils and that 

colours ranged from red to yellow to grey/bleached complicates clear conclusions about the 
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relationship between the expressed soil colours and the accompanying particle size distributions of 

the soils. Again, the different size fractions play no role as active pigmentation agents in the soil but 

the fact that especially the finer soil fractions have higher surface areas imply that these fractions can 

affect soil colour.  

 

3.4 CONCLUSIONS 

The comparison between visual colour assessment and spectroscopic colour measurement in the 

Munsell colour space revealed certain discrepancies. Although the presented data indicated that the 

direction of colour changes in each of the Munsell colour dimensions were similarly registered 

between these two measurement techniques, the generated colour variables did not always 

correspond under all circumstances. In the case of Munsell hue, visual and spectroscopic colours 

predominantly agreed although the instrument tended to register slightly redder hues (by 

approximately one hue unit). The reported Munsell values showed only slight differences between 

perceived and measured colours and it was concluded that value is the Munsell colour dimension that 

can be most precisely determined through visual means. The highest variability was recorded between 

perceived and measured chroma. The instrument tended to consistently register lower chromas (up 

to three chroma units), indicating that the eye perceived the soils to be brighter and more chromatic 

and, as a result, was less sensitive towards detecting bleached horizon colours. Due to the nature of 

the colour variation involved with the chroma dimension of the Munsell colour space it was concluded 

that this colour variable is the most difficult to determine through visual comparison to soil colour 

chips.  

The soil colour variations brought about by the addition of moisture were also not similarly registered 

between the spectrophotometer and visual perception. It was determined that although soil colour 

changes significantly from a dry to a moist state, the instrument record this effect across both Munsell 

hue and value whereas visual colour determination tend to predominantly register the changes in 

Munsell value. The enhanced sensitivity of the instrument towards changes in the soil’s reflective 

properties, the addition of unstandardised quantities of moisture to the soil samples, as well as a range 

of physical and psychophysical features influencing the way soil colour is perceived, are proposed to 

explain these differences within the dataset. Nonetheless, both the instrument and visual perception 

reported a darkening effect with the addition of moisture to the soil sample, as indicated by the 

decrease in both L* and value. Furthermore, the addition of moisture also resulted in lower a* and b* 

values within the CIELAB colour space, but a lack of predefined value ranges for these variables 

disallow any assumptions about the perceivable colour differences represented by these changes. 
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Due to the reported precision of spectrophotometer colour measurements, a series of physical and 

psychophysical conditions were put forward to explain why visual perception and spectrophotometer 

readings did not always agree. The outcome was that soil colour remains a perception that is dictated 

by the measurement conditions under which it is determined. These conditions are more variable 

during visual compared to spectroscopic colour interpretations. As a result, visual colour 

determination will suffice in broad-scale soil classification ventures but for more accurate applications 

of soil colour, instrument measurements is a prerequisite.  

With regards to the relationship between soil colour expression and soil chemical and physical 

properties, it was concluded that Fe oxides are the main pigmentation agents in the soils that were 

sampled for this study. The predominantly red and yellow-brown colours caused by respectively 

hematite and goethite were reported in both top- and subsoil horizons, excluding of course the 

bleached topsoil variants that also formed part of this study. An increase in the soil Fe content resulted 

in a perceived reddening in the Munsell soil colour space as indicated by the reported redder hues. 

Similarly, this reddening phenomenon was also observed in the CIELAB colour space, where more Fe 

resulted in greater a* values. What was interesting to note was that the reddening effect of Fe was 

not observed in the spectrophotometer measured Munsell colours, which was attributed to the colour 

data processing techniques that were applied in the study. This observation in addition also alluded 

to the coarser and more discrete unit scale of the Munsell colour space which cautions its use in 

studies aimed at generating linear correlations between colour and soil properties.  
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CHAPTER 4: THE PEDOGENETIC ORIGIN OF BLEACHED TOPSOIL HORIZONS IN WEAKLY 
STRUCTURED SOIL PROFILES OF THE WESTERN CAPE AND MPUMALANGA PROVINCES OF 
SOUTH AFRICA 

 

4.1 INTRODUCTION 

The pedogenetic processes that are proposed to be responsible for the removal of soil pigmentation 

agents and the consequent expression of bleached colours within a soil horizon includes Fe reduction 

and loss (Fritsch & Fitzpatrick 1994; Cox et al. 1996; Peterschmitt et al. 1996; He et al. 2003), 

podzolization (Davey et al. 1975; Soil classification working group 1991; Zaidel’man 2007) and clay 

eluviation (Zaidel’man 2007; Fey 2010; Van der Waals 2013). Due to the specific environmental, 

climatic and geological conditions required for the development of podzolic soils (Lundström 2000) 

and the limited distribution of such conditions across South Africa (Fey 2010), bleaching as a result of 

podzolization is deemed to be a regional phenomenon. The processes of Fe reduction and clay 

eluviation, however, are more widespread and common features in many South African soils. 

The reductive loss of Fe from a soil horizon is well understood. This microbial-mediated process results 

in the reduction of ferric Fe in oxide minerals and the consequent formation of ferrous Fe, a more 

solubilised Fe phase that is easily transported through soil solution (Wheeler et al. 1999; Rabenhorst 

& Parikh 2000; Thompson et al. 2006). The redox potential at which such a transformation will take 

place is strongly dependent on the soil pH, although various other factors are also influential. Seasonal 

fluctuations in soil water content as a result of variations in rainfall and evapotranspiration generates 

alternating conditions of Fe reduction and oxidation within the soil (Thompson et al. 2006). Van 

Huyssteen et al. (2010) proposed that a saturation of 70% pore space is sufficient to bring about 

reduction in the soil environment. During wetter periods reduction will result in the mobilization of Fe 

and its movement through the soil profile. Upon the subsequent drying-out of the soil matrix, ferrous 

Fe is again oxidized to ferric Fe in the presence of oxygen resulting in the deposition and accumulation 

of Fe oxides. These alternating periods of reduction and oxidation, correlated to the alternating dry 

and wet cycles within the soil, are therefore responsible for the segregation and redistribution of Fe 

oxides resulting in zones of relative iron accumulations and depletions (Peterschmitt et al. 1996; 

Rabenhorst & Parikh 2000).  These zones are easily identifiable based on the distinct colours they 

display (Vepraskas 1992). Iron depletion zones are generally the colour of uncoated mineral grains 

(i.e. bleached, low chroma, grey to white colours) whilst Fe accumulation zones are redder or browner 

chromatic sections.  

Although clay eluviation has been proposed as a potential mechanism responsible for bleached topsoil 

colourations, no certainty exists about what the mechanism is with which the translocation of clay 

Stellenbosch University  https://scholar.sun.ac.za



62 
 

particles causes a loss in colour. The process by which fine soil material moves out of a horizon or soil 

zone is referred to as eluviation (IUSS working group WRB 2007; Cornu et al. 2014). The release and 

mobilisation of these colloidal particles are dictated by electrostatic charge balances. In simple terms, 

for the negatively charged clay colloids to be transported through the soil medium, either repulsive 

forces by other negatively charged soil constituents or attractive forces binding the particles to a 

positively charged mobile substance must be present in the immediate soil environment. Various 

other soil features can however alter the direction and extent of the electrostatic influence of a 

particular soil constituent. Therefore, any electrostatically active soil component or feature 

responsible for changes in the electrostatic charge balance of the soil environment can influence clay 

dispersibility.  

Amézketa (1999) lists electrolyte concentration (EC), solution pH, sodium adsorption ratio, clay 

mineralogy, CaCO3, gypsum, organic matter and sesquioxides as internal soil features applicable to 

clay dispersion. Sesquioxides, and more particularly Fe oxides, are of great interest in this study due 

to their abundance in the sampled soils and their known stabilising effect on the soil colloidal fraction 

(Duiker et al. 2003). One of the hypotheses proposed to explain eluviation-related bleaching in the 

Western Cape in particular, is associated with the crystallinity and therefore reactivity of the present 

Fe oxide phases. It is proposed that due to the mature age of the landscape and its soils (Hendey 

1983), the present Fe oxides will be extremely crystalline and therefore less reactive and capable of 

stabilising the clay phase (Bech et al. 1997; Duiker et al. 2003).  In addition, Laker (2004) also considers 

parent material, the degree of soil weathering and pedogenesis, magnesium, and particle size 

distribution as additional factors influential to dispersive soils in South Africa.  

The aim of this chapter was to chemically and physically characterise bleached topsoils and the weakly 

structured subsoil horizons they overlie and to use this information to determine whether Fe 

reduction, clay eluviation or any other mechanism could in fact be responsible for bleaching in these 

soil profiles. In addition, although all the sampled profiles were collectively investigated, bleached and 

non-bleached profiles from the two sampling regions were also separately assessed to determine 

whether the actual mechanisms responsible for bleaching under these weakly-structured subsoil 

conditions were the same across the Western Cape Province and Mpumalanga Highveld of South 

Africa. 
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4.2 MATERIALS AND METHODS 

Soil sampling, colour measurement and physical and chemical soil characterisation was completed 

following the methods specified in Chapter 2.  

4.2.1 Statistical analyses 

For all the determined physical and chemical soil characteristics, descriptive statistical parameters 

including the range, mean and standard deviation (SD) were calculated. Significance testing was 

conducted by means of a combination of one-way and two-way ANOVAs to be able to identify which 

features differed between soils from 1) the Western Cape (WC) and Mpumalanga Highveld, 2) 

bleached and non-bleached profiles, and more specifically also 3) the bleached and non-beached 

profiles in each location. Differences were deemed to be significant at p-values < 0.05 whilst trends 

were also reported up to p-values of ≤ 0.15. The decision to report on such trends was based upon the 

small data set that was analysed in the study and the awareness that each profile represents a complex 

amalgamation of pedogenic processes and therefore does not serve as a true statistical replicate of a 

particular morphology.  

Although significance testing was conducted on the soil profile groupings of both measured and 

perceived colours, measured colour groupings are predominantly reported due to the higher precision 

level of the instrument (Post et al. 1993).  

In addition, a Principle Component Analysis (PCA) was conducted on the determined soil parameters 

to indicate which soil characteristics show variation between bleached and non-bleached soil profiles. 

The profiles were grouped into bleached or non-bleached based on measured soil colours and a PCA 

biplot was generated for all the sampled profiles combined as well as separately per location. This was 

done to ensure that if different soil parameters had different influences in each of the two locations, 

this would be visually represented in the location-specific biplots.  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Physical soil characterisation 

4.3.1.1 Particle size distribution 

Distinct differences in the particle size distributions of the soil profiles sampled on the Mpumalanga 

Highveld and Western Cape were observed. The different size class distributions are presented in 

more detail in Appendix 4.1. The Western Cape profiles had a significantly greater silt and clay content 

in both the top- and subsoil compared to the Highveld profiles which were subsequently more sandy 

(Figures 4.1a & b). As a result the majority of the Highveld soils had a sandy loam texture whilst the 
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greater fine soil fractions in the Western Cape profiles meant that silt-, clay- and true loam soils were 

more abundant. There were no significant differences in the particle size distributions of bleached and 

non-bleached profiles on the Highveld whilst in the Western Cape both the top- and subsoil horizons 

of the sampled bleached profiles had significantly greater silt contents and consequently lower clay 

contents than the non-bleached variants. Clay change parameters indicating the difference in the fine 

and coarse clay fractions between the sub- and topsoil horizons indicated differences in the 

proportional distribution of these size fractions in the Western Cape soils. Although this feature will 

be discussed in more detail in the subsequent section on the dispersible clay phases of these soils, 

these clay changes indicated that bleached profiles in the Western Cape have proportionally more Fi 

clay in the subsoil than in the topsoil compared to the non-bleached variants.  
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Figure 4.1. Texture triangles representing the top- (a) and subsoil (b) particle size distributions of the sampled profiles. The different sites and locations are indicated on the figures. 
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4.3.1.2 Bulk density 

The determined bulk densities (BD) of the sampled soils did not exhibit any substantial differences 

between bleached and non-bleached profiles in either of the two locations. Bulk density in general 

seemed to be quite variable and very high, exceeding values of 1900 kg.m-3 in some instances (Table 

4.1). This was attributed to erroneous sampling and experimental approaches, where bulk density was 

determined using the clod method on weakly structured soils that exhibited limited levels of 

aggregation. The result being that many of the collected clods were friable and weak and of variable 

size which affected the generated results. What was however noticeable was that the topsoil bulk 

density was significantly higher in the cultivated Highveld soils than in the undisturbed Western Cape 

profiles (F=6.9, p=0.02). Although conventional tillage practices are applied on the maize fields where 

these soils were sampled and thus it would be expected that topsoil bulk density should be lower in 

these areas (Franzluebbers et al. 1995; Osunbitan et al. 2005), it is proposed that the higher bulk 

densities in the Highveld is a consequence of soil texture and/or the sampling approach that was 

followed. When sampling weak structured soils with minimal macro-aggregation the risk is that upon 

removing the clod from the profile, all the loosened soil crumbles away and essentially the most 

compact parts of the profile i.e. clods are removed and used to determine bulk density. Furthermore, 

Daddow & Warrington (1983) also concluded that coarse-textured soils have greater bulk densities 

than fine-textured variants. The reported sandier textures of the Highveld soils can therefore also be 

the cause of the higher bulk densities reported in this location.  Nonetheless, bulk density results are 

often proven to be variable (Ferreras et al. 2000) and for the purpose of this study, it was deemed to 

have no relation to bleaching in either of the two locations.  

Table 4.1. Top- and subsoil bulk density. The value range, mean and standard deviation (SD) for the 
sampled top- and subsoil horizons at each location is given.  

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

 
Range 

Mean 
± SD 

Range 
Mean 
± SD 

Range 
Mean 
± SD 

Range 
Mean ± 

SD 

Topsoil bulk 
density (kg.m-3) 

1183-
1885 

1560 ± 

234 
1492-
1859 

1631.9 
± 131.2 

1585- 
1907 

1729± 

125 
1635-
1949 

1797 ± 

109 

Subsoil bulk 
density (kg.m-3) 

1518-
1790 

1668 ± 

102 
1527-
1799 

1709 ± 

97 
1487-
1918 

1690 ± 

206 
1490-
1938 

1650± 

158 
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4.3.1.3 Water dispersible clay (WDC)  

From the values presented in Table 4.2, both the top- and subsoil horizons of the Western Cape 

profiles had an observable greater WDC % than the soils from the Highveld. The results generated by 

means of ANOVA analyses concluded these differences to be significant for both horizons (Table 4.3). 

The topsoil WDC % also tended to be higher in bleached compared to non-bleached profiles 

collectively, but the consequent two-way ANOVAs that were performed proved this trend to be the 

result of the significantly higher WDC % in bleached Western Cape profiles compared to the non-

bleached variants of this location (Table 4.3, Figure 4.2). There was no significant difference between 

the water dispersible clay phase of bleached and non-bleached topsoils on the Mpumalanga Highveld. 

Although the difference was less pronounced, the subsoil WDC % proved to follow a similar trend 

being higher in the bleached compared to non-bleached soils of the Western Cape and showing no 

difference on the Mpumalanga Highveld (Figure 4.2). 

Table 4.2. Clay dispersion parameters. The water dispersible clay (WDC) percentages of the top-
and subsoil horizons and the percentage clay increase from the A to the B horizon for the 
different clay fractions. The value range as well as the mean and standard deviation (SD) for each 
variable is given.  

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

 
Range 

Mean ± 
SD 

Range 
Mean ± 

SD 
Range 

Mean 
± SD 

Range 
Mean ± 

SD 

Topsoil WDC 
(%)1 

15.5-
59.9 

38.0 ± 

15.4 
12.2-
35.2 

24.4 ± 

8.6 
1.7-
11.2 

8.0 ± 

3.8 
7.2-
13.3 

10.3 ± 2.3 

Subsoil WDC 
(%)1 

8.5-
57.4 

28.0 ± 

18.9 
2.0-
30.4 

18.5 ± 

9.0 
8.0-
14.9 

10.8 ± 

2.7  
2.8-
22.0 

9.4 ± 6.2 

Total clay 
change (%)2 

5.0-
139.9 

42.4 ± 

45.8 
15.0-
89.0 

47.0 ± 

30.3 
8.4-
50.1 

28.8 ± 

18.9 
-26.9-
44.4 

15.6 ± 

24.0 

Co clay change 
(%)2 

2.1-
114.8 

35.7 ± 

37.5 
14.9-
78.5 

36.5 ± 

22.9 
8.8-
47.1 

25.7 ± 

17.4 
-26.7-
41.7 

14.1 ± 

23.8 

Fi clay change 
(%)2 

9.4-
3901.6 

969.8 ± 

1375.3 
9.1-

511.1 
128.7 ± 

191.2 

5.0-
83.0 

47.5 ± 

29.7 
-27.9-
58.2 

24.6 ± 

26.1 

1 WDC % = [Water dispersible clay fraction (% of total clay) / Sodium dispersible clay fraction (% of total clay)] * 100 
2  Clay change % = [(Clay % horizon 2 – Clay % horizon 1) / Clay % horizon 1] * 100 
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Table 4.3. Comparison between the water dispersible clay percentages of the sampled 
top- and subsoil horizons by means of one-way and two-way ANOVAs.  

Grouping variables F-value p-value 

Topsoil WDC (%) 

WC vs MP Highveld 34.66 <0.01* 

Bleached vs Non-bleached 2.34 0.14* 

WC: Bleached vs Non-bleached 4.51 0.01* 

MP Highveld: Bleached vs Non-bleached 4.51 0.69 

Subsoil WDC (%) 

WC vs MP Highveld 8.46 <0.01* 

Bleached vs Non-bleached 1.44 0.24 

WC: Bleached vs Non-bleached 0.79 0.14* 

MP Highveld: Bleached vs Non-bleached 0.79 0.83 
(* = significant differences & reported trends) 

 

   (a)          (b) 

Figure 4.2. The difference between the topsoil (a) and subsoil (b) WDC % of bleached and non-bleached profiles in the Western 
Cape and Mpumalanga Highveld. Standard error bars and significance letters are indicated. 

 

To substantiate the WDC results which clearly suggested the Western Cape profiles to be more 

dispersive, clay change parameters where also calculated from the particle size distribution data. This 

was done separately for each clay fraction and entailed expressing the difference in clay content from 

the first to the second horizon as a percentage of the first horizon’s total clay fraction. Although less 

apparent from the values given in Table 4.2, the ANOVA analyses suggested similar trends as with the 

WDC %. Total-, coarse- and fine clay tended to increase towards the subsoil horizons in the Western 

Cape profiles, whereas no such trends were observed in the Highveld soils.  With regards to bleaching, 

fine clay change tended to be higher in bleached compared to non-bleached profiles but this was again 

attributed to the strong trend reported in fine clay change between Western Cape bleached and non-

bleached soils (Table 4.4, Figure 4.3). 
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Table 4.4. Comparison of the changes in the different clay fractions from the first to the 
second horizon of the sampled soil profiles by means of one-way and two-way ANOVAs.  

Grouping variables F-value p-value 

Total clay change (%) 

WC vs MP Highveld 3.08 0.09* 

Bleached vs Non-bleached 0.11 0.74 
WC: Bleached vs Non-bleached 0.48 0.79 
MP Highveld: Bleached vs Non-bleached 0.48 0.49 

Coarse clay change (%) 

WC vs MP Highveld 2.15 0.16* 

Bleached vs Non-bleached 0.24 0.63 
WC: Bleached vs Non-bleached 0.32 0.95 
MP Highveld: Bleached vs Non-bleached 0.32 0.47 

Fine clay change (%) 

WC vs MP Highveld 2.94 0.10* 

Bleached vs Non-bleached 2.08 0.16* 

WC: Bleached vs Non-bleached 1.87 0.05* 

MP Highveld: Bleached vs Non-bleached 1.87 0.96 
(* = significant differences & reported trends) 

 

Figure 4.3. The difference between the fine clay change % of the bleached and non-bleached Western Cape and Highveld 
profiles. Standard error bars and significance letters are indicated. 

Although the fine clay change does not give an absolute indication of clay translocation, it is presumed 

that if clay was being transported by percolating water through these profiles, the finest clay fraction 

would most likely be subject to mobilisation (Chittleborough 1992; Fey 2010).  Therefore, the results 

obtained from the calculated fi clay change percentages are regarded as evidence in support of a 

dispersive clay phase and potentially also clay movement from the A to the B horizons of the sampled 

profiles.  
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4.3.2 Chemical soil characterisation 

4.3.2.1 pH & EC 

Table 4.5. The pH and electrical conductivity (EC) (mS/m).  The value range as well as the mean and 
standard deviation (SD) for each variable is given.  

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

 
Range 

Mean ± 
SD 

Range 
Mean ± 

SD 
Range 

Mean ± 
SD 

Range 
Mean ± 

SD 

Topsoil pH 
(H2O) 

4.8-6.2 5.5 ± 0.5 5.0-5.8 5.5 ± 0.4 5.5-7.0 6.1 ± 0.6 5.1-6.3 5.6 ± 0.4 

Topsoil pH 
(KCl) 

3.8-5.2 4.5 ± 0.6 3.8-5.0 4.4 ± 0.4 4.2-6.2 5.1 ± 0.8 4.3-5.3 4.6 ± 0.3 

Subsoil pH 
(H2O) 4.7-6.2 5.4 ± 0.6 5.1-6.5 5.7 ± 0.7 5.0-7.2 6.0 ± 0.9 4.9-6.3 5.6 ± 0.7 

Subsoil pH 
(KCl) 3.8-4.9 4.3 ± 0.4 4.0-5.5 4.4 ± 0.5 4.2-6.3 5.0 ± 0.9 4.2-5.6 4.7 ± 0.6 

Topsoil EC 
(mS/m) 1.7-15.7 8.6 ± 4.8 1.6-19.1 11.2 ± 6.5 1.3-13.2 7.1 ± 5.8 1.5-15.4 8.9 ± 4.4 

Subsoil EC 
(mS/m) 1.6-8.3 4.0 ± 3.0 1.2-44.1 9.6 ± 15.7 1.1-9.7 6.8 ± 3.5 1.1-14.7 7.7 ± 5.2 

 

The basic soil chemical properties of pH and electrical conductivity (EC) proved to have no observable 

relation to the occurrence of bleaching. According to Table 4.5, the topsoil pH in water ranged from 

4.8 to 6.2 in the Western Cape and 5.1 to 7.0 on the Highveld. The topsoil pH in KCl was, as expected, 

lower and ranged from 3.8 to 5.2 in the Western Cape and 4.2 to 6.2 on the Highveld. Subsoil pH in 

water proved to be fairly similar to the recorded topsoil values and ranged from 4.7-6.5 and 4.9-7.2 in 

the Western Cape and Mpumalanga Highveld respectively. Subsoil pH in KCl in the Western Cape was 

between 3.8 and 5.5 and in the Highveld between 4.2 and 6.3. The pH measurements in KCl eluded to 

the presence of moderate levels of reserve acidity on the exchange sites of the soils at both locations. 

Significance testing recorded a strong trend suggesting topsoil pH in both water (p=0.13) and KCl 

(p=0.07) to be higher for the Highveld soils compared to those of the Western Cape. The subsoil pH 

values followed a similar, but less pronounced trend. 

In general, the overall lower pH values reported for these red and yellow weakly structured soils across 

the different areas of their distribution are not unexpected seeing that these soils are known to be 

highly leached (Lambrechts 1983; Fey 2010). The reported higher pH values on the Mpumalanga 

Highveld is most probably the result of lime additions in the maize fields where these soils were 

sampled. The influence of natural fynbos vegetation can also be the cause for the slightly more acidic 

pH values that were recorded at the Western Cape sites (Richards et al. 1997). No significant trends 
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were observed for the measured EC between the two locations or between the bleached and non-

bleached profiles in either.  

4.3.2.2 Exchangeable cations 

The ECEC of the sampled top- and subsoil horizons were relatively low (Table 4.6) but did not prove 

to be substantially different between the two locations nor between the bleached and non-bleached 

profiles in each. Base saturation percentages indicated that on average, high saturation levels (Table 

4.6) were present in the soils at both locations although base saturation on the Highveld was 

significantly higher compared to the Western Cape in both topsoil (p=0.03) and subsoil (p=0.05) 

horizons. No difference was recorded between bleached and non-bleached profiles collectively or 

separately per location.  As can be expected from the lower pH values, the titrated exchangeable 

acidity was significantly higher in the top- (p=0.02) and subsoil horizons (p=0.02) of the Western Cape. 

The topsoil ESP values showed that the Western Cape soils contained significantly more Na on their 

exchange sites (Table 4.7, Figure 4.4a) although the ESP levels of these Western Cape topsoils still 

reflect only marginal- to non-sodic conditions (Hazelton & Murphy 2007). Subsoil ESP followed a 

similar trend (Table 4.7, Figure 4.4b) with the recorded ESP values also being within comparable ranges 

to that recorded for the topsoil horizons (Table 4.6). Noticeably, the overall top-and subsoil ESP did 

not significantly differ between bleached and non-bleached profiles nor between the bleached and 

non-bleached profiles in the Western Cape and Mpumalanga Highveld respectively (Table 4.7). The 

topsoil Ca:Mg ratio tended to be higher in the Highveld profiles with this trend being less pronounced 

in the subsoil, but still observable (Table 4.7, Figure 4.5a). Essentially, a high Ca to Mg ratio indicates 

that the divalent Ca cation, which is a very effective clay flocculent, is present in sufficient quantities 

relative to Mg to overcome the dispersing effect that Mg has on soil colloids, especially in soils with 

high sodium saturation levels (Bakker & Emerson 1973; Curtin et al. 1994; Dontsova & Norton 2001). 

As with the ESP, no differences between bleached and non-bleached profiles collectively or 

individually per region were observed (Table 2.8).
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Table 4.6. Exchangeable soil cations in cmolc.kg-1 determined at soil pH together with calculated standard cation parameters. The value range as well as 
the mean and standard deviation (SD) for each variable is given.  

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

 Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD 

Topsoil 

Ca (cmolc.kg-1) 0.37-2.80 1.18 ± 0.85 0.17-3.50 1.54 ± 1.05 0.70-2.95 1.92 ± 0.85 0.88-2.69 1.63 ± 0.57 

Mg (cmolc.kg-1) 0.33-1.72 0.75 ± 0.51 0.30-1.32 0.74 ± 0.34 0.47-0.92 0.60 ± 0.12 0.28-1.32 0.6 ± 0.34 

K (cmolc.kg-1) 0.12-0.42 0.29 ± 0.12 0.08-0.28 0.13 ± 0.07 0.14-0.44 0.29 ± 0.12 0.13-0.38 0.28 ± 0.09 

Na (cmolc.kg-1) 0.10-0.30 0.14 ± 0.07 0.13-0.94 0.40 ± 0.27 0.05-0.07 0.06 ± 0.01 0.04-0.07 0.06 ± 0.01 

S-value (cmolc.kg-1) 1.13-5.05 2.36 ± 1.34 1.34-5.85 2.80 ± 1.52 1.42-4.18 2.87 ± 1.01 1.68-3.77 2.62 ± 0.80 

Exchangeable Al (cmolc.kg-1) 0.00-1.40 0.59 ± 0.64 0.09-0.98 0.33 ± 0.32 0.00-0.25 0.10 ± 0.10 0.00-0.25 0.14 ± 0.10 

Exchangeable acidity (cmolc.kg-1) 0.02-1.84 0.80 ± 0.82 0.09-1.44 0.51 ± 0.50 0.02-0.34 0.14 ± 0.13 0.04-0.34 0.18 ± 0.10 

ECEC (cmolc.kg-1) 2.20-5.09 3.15 ± 0.95 2.33-5.94 3.31 ± 1.24 1.76-4.19 3.01 ± 0.89 1.92-3.82 2.80 ± 0.73 

Base saturation % 38.7-99.3 73.3 ± 26.3 48.2-98.5 81.8 ± 18.7 80.6-99.6 93.8 ± 7.8 86.9-98.9 92.5 ± 4.7 

ESP 2.16-8.47 4.65 ± 1.97 1.46-10.45 4.54 ± 2.98 1.56-3.45 2.12 ± 0.76 1.25-2.95 2.10 ± 0.58 

Ca:Mg 0.53-3.60 1.80 ± 1.15 0.28-4.18 2.21 ± 1.29 1.49-4.44 3.15 ± 1.25 1.50-5.57 2.97 ± 1.51 

Subsoil 

Ca (cmolc.kg-1) 0.10-2.73 0.81 ± 0.92 0.07-1.77 0.97 ± 0.55 0.57-2.36 1.43 ± 0.73 0.40-2.40 1.30 ± 0.76 

Mg (cmolc.kg-1) 0.08-1.23 0.67 ± 0.39 0.35-2.71 1.02 ± 0.83 0.39-0.85 0.65 ± 0.21 0.13-1.30 0.62 ± 0.35 

K (cmolc.kg-1) 0.07-0.43 0.24 ± 0.13 0.07-0.69 0.28 ± 0.22 0.08-0.22 0.14 ± 0.06 0.07-0.20 0.15 ± 0.04 

Na (cmolc.kg-1) 0.08-0.23 0.13 ± 0.05 0.07-0.70 0.20 ± 0.23 0.05-0.08 0.06 ± 0.01 0.05-0.07 0.06 ± 0.01 

S-value (cmolc.kg-1) 0.33-4.36 1.84 ± 1.30 1.07-4.04 2.48 ± 0.96 1.12-3.33 2.28 ± 0.87 1.11-3.26 2.13 ± 0.72 

Exchangeable Al (cmolc.kg-1) 0.08-1.60 0.69 ± 0.64 0.02-1.40 0.56 ± 0.49 0.00-0.43 0.16 ± 0.18 0.00-0.65 0.27 ± 0.26 

Exchangeable acidity (cmolc.kg-1) 0.04-2.09 0.90 ± 0.82 0.02-1.84 0.80 ± 0.63 0.02-0.64 0.24 ± 0.27 0.02-0.79 0.33 ± 0.32 

ECEC (cmolc.kg-1) 1.48-4.40 2.74 ± 0.95 2.41- 4.28 3.27 ± 0.58 1.51-3.34 2.52 ± 0.68 1.55-3.30 2.46 ± 0.56 

Base saturation % 99.1-22.7 63.9 ± 31.6 44.3-99.4 74.2 ± 21.5 73.6-99.5 88.1 ± 13.2 64.7-99.3 85.1 ± 14.3 

ESP 3.42-7.56 4.78 ± 1.43 2.51-22.27 6.19 ± 7.16 1.67-3.64 2.43 ± 0.85 1.95-3.65 2.41 ± 0.57 

Ca:Mg 0.19-2.63 1.21 ± 0.91 0.13-2.96 1.39 ± 1.12 0.95-3.41 2.27 ± 1.11 0.56-15.35 3.84 ± 5.23 
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(* = significant differences & reported trends) 

  

   (a)          (b) 

Figure 4.4. The calculated exchangeable sodium percentage (ESP) of the sampled top- (a) and subsoil (b) horizons of bleached 
and non-bleached profiles in both the Western Cape and Mpumalanga Highveld. Standard error bars and significance letters 
are indicated. 
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Table 4.7. The calculated exchangeable sodium percentage (ESP) and Ca:Mg ratio of the 
sampled top- and subsoil horizons  by means of one-way and two-way ANOVAs.  

Grouping variables F-value p-value 

Topsoil ESP 

WC vs MP Highveld 10.67 <0.01* 

Bleached vs Non-bleached 0.01 0.94 

WC: Bleached vs Non-bleached 0.00 0.92 

MP Highveld: Bleached vs Non-bleached 0.00 0.99 

Subsoil ESP 

WC vs MP Highveld 4.03 0.06* 

Bleached vs Non-bleached 0.21 0.65 

WC: Bleached vs Non-bleached 0.22 0.50 

MP Highveld: Bleached vs Non-bleached 0.22 0.99 

Topsoil Ca:Mg 

WC vs MP Highveld 4.10 0.06* 

Bleached vs Non-bleached 0.05 0.83 

WC: Bleached vs Non-bleached 0.31 0.57 

MP Highveld: Bleached vs Non-bleached 0.31 0.82 

Subsoil Ca:Mg 

WC vs MP Highveld 2.35 0.14* 

Bleached vs Non-bleached 0.59 0.45 

WC: Bleached vs Non-bleached 0.37 0.36 

MP Highveld: Bleached vs Non-bleached 0.37 0.91 
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   (a)          (b) 

Figure 4.5. The calculated Calcium to Magnesium ratio of the sampled top- (a) and subsoil (b) horizons of bleached and non-
bleached profiles in both the Western Cape and Mpumalanga Highveld. Standard error bars and significance letters are 
indicated. 

From the results obtained during the exchangeable cation analyses it is presumed that the higher ESP 

values reported for the Western Cape profiles together with the lower Ca:Mg ratio contributed to the 

very dispersive clay phase that was recorded in these soils (Amézketa 1999; Laker 2004). In addition, 

the higher base saturation and lower exchangeable acidity levels in the Highveld is most probably a 

consequence of the fertilisation program applied to the maize fields in which these soils were sampled. 

4.3.2.3 Extractable Fe & Al 

Due to the different Fe and Al phases that are targeted by the citrate-bicarbonate-dithionite (CBD) 

and ammonium oxalate (AAO) extraction agents, the registered FeCBD and AlCBD content in the soil 

differs from the FeAAO and AlAAO values. Although some controversy exists regarding these extraction 

processes, particularly with regards to Al oxides, CBD is deemed to be a stronger reducing agent which 

targets both crystalline and poorly-crystalline Fe oxide phases whereas AAO is deemed to extract only 

the poorly crystalline and very reactive Fe oxide phases (McKeague & Day 1966; Loeppert & Inskeep 

1996). The FeCBD content is subsequently also used as a representation of the total Fe oxide content 

of the soils. Seeing that the above described functioning of the two reducing agents is more assured 

for Fe oxides compared to Al, no assumptions were made about the crystallinity of the Al phases 

present within the soils. From the determined Fe contents however, a crystallinity index (CI) 

quantifying the crystalline nature of the recorded Fe oxides was calculated as indicated in Table 4.8. 

In the study by Bech et al. (1997) a similar ratio was calculated, which was referred to as the Fe activity 

ratio. The nomenclature in this study was based on the relationship between crystallinity and 

reactivity (Duiker et al. 2003). 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Mpumalanga Highveld WC

To
p

so
il 

C
a:

M
g

Bleached

Non bleached

0

1

2

3

4

5

6

Mpumalanga Highveld WC

Su
b

so
il 

C
a:

M
g

Bleached

Non bleached

a 

a 

a 

a 

a 

a 

a 

a 

Stellenbosch University  https://scholar.sun.ac.za



75 
 

Table 4.8. The extracted citrate-bicarbonate-dithionite (CBD) and acidified ammonium oxalate (AAO) Fe and Al fractions from the sampled top-and subsoil 
horizons. The calculated crystallinity index (CI) of the soil Fe content, an Al ratio and the soil Fe: clay ratio is also presented. The value range as well as the 
mean and standard deviation (SD) for each variable is given.  

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

 Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD 

Topsoil 

FeCBD (%) 2.78-0.56 1.61 ± 0.82 1.16-2.55 1.73 ± 0.48 0.67-1.88 1.23 ± 0.44 1.05-2.39 1.52 ± 0.45 

FeAAO (%) 0.08-0.15 0.11 ± 0.03 0.09-0.17 0.12 ± 0.03 0.07-0.11 0.10 ± 0.02 0.08-0.13 0.10 ± 0.02 

Fe CI (%)1 
4.96-15.14 8.36 ± 3.57 4.47-9.92 7.46 ± 1.79 5.76-10.83 8.34 ± 1.94 5.27-7.43 6.53 ± 0.87 

AlCBD (%) 0.15-0.61 0.29 ± 0.17 0.10-0.41 0.28 ± 0.12 0.11-0.25 0.18 ± 0.06 0.16-0.34 0.24 ± 0.06 

AlAAO (%) 0.07-0.27 0.14 ± 0.07 0.07-0.16 0.12 ± 0.03 0.09-0.13 0.11 ± 0.02 0.10-0.21   0.13 ± 0.04 

Al ratio (%)2 
34.33-60.0 48.37 ± 7.99 24.64-70.59 49.23 ± 14.99 46.15-91.67 66.90 ± 19.50 41.07-102.94 57.56 ± 21.31 

FeCBD:clay 0.09-0.17 0.12 ± 0.03  0.10-0.19 0.14 ± 0.03 0.11-0.19 0.13 ± 0.03 0.09-0.18 0.13 ± 0.03 

Subsoil 

FeCBD (%) 1.08-2.54 1.86 ± 0.63 1.50-4.58 2.86 ± 1.03 0.61-2.02 1.40 ± 0.50 1.44-3.24 2.23 ± 0.80 

FeAAO (%) 0.08-0.19 0.13 ± 0.04 0.11-0.35 0.20 ± 0.09 0.07-0.16 0.11 ± 0.03 0.08-0.16 0.11 ± 0.03 

Fe CI (%)1 
4.26-11.49 7.32 ± 2.32 3.57-12.75 7.58 ± 3.29 5.66-11.80 8.14 ± 2.78 2.50-9.39 5.61 ± 2.28 

AlCBD (%) 0.21-0.59 0.35 ± 0.13 0.10-0.72 0.43 ± 0.10 0.11-0.35 0.26 ± 0.09 0.13-0.46 0.30 ± 0.11 

AlAAO (%) 0.10-0.28 0.16 ± 0.06 0.09-0.24 0.17 ± 0.05 0.08-0.17 0.14 ± 0.04 0.10-0.25 0.16 ± 0.05 

Al ratio (%)2 
31.15-62.79 45.91 ± 9.37 22.50-93.75 48.87 ± 23.52 46.51-73.68 56.18 ± 11.62 27.63-95.45 59.71 ± 27.23 

FeCBD:clay 0.06-0.16 0.11 ± 0.04 0.08-0.19 0.12 ± 0.03 0.10-0.15 0.12 ± 0.02 0.09-0.26 0.16 ± 0.06 
1 Fe CI (%): [FeAAO (mg.kg-1) / FeCBD (mg.kg-1)] * 100 

2 Al ratio: [AlAAO (mg.kg-1) / AlCBD (mg.kg-1)] * 100 
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As expected, the FeAAO content was lower than the FeCBD content in all of the sampled soil horizons 

(Table 4.8), indicating that both crystalline and poorly crystalline Fe phases were present in the soils. 

The relationship between the different Al phases was more variable but according to Loeppert & 

Inskeep (1996) this is not unexpected seeing that the amount of Al extracted through these different 

reducing agents is soil dependent. Importantly, the determined FeCBD did not prove to show a 

significant difference between bleached and non-bleached topsoil horizons (Table 4.9, Figure 4.6a) 

which is in stark contrast to what was expected (Soil classification working group 1991). However, 

making use of the additional auger samples collected on the Highveld as part of this study and their 

corresponding XRF-determined Fe contents, bleached topsoil horizons proved to have a lower total 

Fe content compared to their non-bleached counterparts (p=0.02). The probability of Fe loss therefore 

not being the cause of the bleached soil appearance is extremely unlikely, seeing that various authors 

including Torrent et al. (1983) and Fey (2010) report on the dominant pigmenting effect of Fe oxides 

in soils of comparable nature. In the study by Carstens (2015, Thesis submitted) a larger sample set of 

similar soils were used and a significant difference in FeCBD between bleached and non-bleached 

profiles was recorded.  The abnormality in the generated statistics of this study is therefore proposed 

to rather be the result of the variability of the soils that were sampled in combination with the small 

size of the data set.  

Noticeably, a significant difference was recorded in the subsoil FeCBD (Table 4.9, Figure 4.6b) between 

bleached and non-bleached profiles (p=<0.01), with a similar trend also being observed with subsoil 

FeAAO (p=0.07, Table 4.9).  Overall more CBD and AAO extractable Fe was reported in the subsoils of 

non-bleached profiles. Per location, subsoil FeCBD was also significantly higher in the non-bleached 

Western Cape profiles whilst the Highveld subsoils further displayed a similar trend. This indicated 

that bleached profiles had an overall lower Fe content compared to their non-bleached counterparts. 

In the case of subsoil FeAAO, the non-bleached Western Cape profiles again exhibited a greater poorly 

crystalline Fe phase whilst no difference was detected between bleached and non-bleached Highveld 

profiles. However, it must be kept in mind that on the Highveld, soils were sampled from adjacent 

profile positions along a catenal transect where bleached topsoils were not observed on the redder 

Fe-rich soils. To be able draw conclusions about how the poorly-crystalline Fe contents changed, it is 

better to look at comparisons of the Fe crystallinity index.   

Both the recorded FeCBD and FeAAO contents tended to be higher in the Western Cape profiles 

compared to the Highveld, but proportionally similar amounts of crystalline and poorly-crystalline Fe 

oxides were present at the two locations as indicated by the similar top-and subsoil Fe CI values (Table 

4.8). However, the CI tended to be higher in bleached compared to non-bleached topsoils with such a 

difference in the subsoil CI between bleached and non-bleached profiles not being as apparent (Table 
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4.9, Figures 4.7 and 4.8). This trend was more pronounced on the Highveld, where the CI of the topsoil 

Fe oxides was higher in bleached compared to non-bleached profiles. Noticeably, the subsoil Fe CI in 

this location also followed a similar trend although no such differences were observed in the Western 

Cape subsoils.  A higher Fe CI indicates that similar amounts of crystalline and poorly-crystalline Fe is 

present within a horizon. The observed occurrence of relatively more poorly-crystalline Fe in the 

bleached profiles is indicative of more freshly-precipitated Fe oxides which may be attributed to a 

wetter soil moisture regime and alternating cycles of saturation and Fe reduction (Wahid & Kamalam 

1993; Stumm & Morgan 1996; Thompson et al. 2011).  

Table 4.9. The different extractable Fe phases of the sampled top- and subsoil horizons. 
Comparisons based on results generated by means of one-way and two-way ANOVAs.   

Grouping variables F-value p-value 

Topsoil FeCBD 

WC vs MP Highveld 1.70 0.21 
Bleached vs Non-bleached 0.81 0.38 
WC: Bleached vs Non-bleached 0.15 0.70 
MP Highveld: Bleached vs Non-bleached 0.15 0.39 

Topsoil FeAAO 

WC vs MP Highveld 5.29 0.03* 

Bleached vs Non-bleached 0.38 0.54 
WC: Bleached vs Non-bleached 0.28 0.40 
MP Highveld: Bleached vs Non-bleached 0.28 0.95 

Topsoil Fe CI % 

WC vs MP Highveld 0.28 0.60 
Bleached vs Non-bleached 2.23 0.15* 

WC: Bleached vs Non-bleached 0.25 0.47 
MP Highveld: Bleached vs Non-bleached 0.25 0.19* 

Subsoil FeCBD 

WC vs MP Highveld 3.02 0.10* 

Bleached vs Non-bleached 8.69 <0.01* 

WC: Bleached vs Non-bleached 0.09 0.03* 

MP Highveld: Bleached vs Non-bleached 0.09 0.09* 

Subsoil FeAAO 

WC vs MP Highveld 6.87 0.02* 

Bleached vs Non-bleached 3.67 0.07* 

WC: Bleached vs Non-bleached 2.47 0.02* 

MP Highveld: Bleached vs Non-bleached 2.47 0.82 

Subsoil Fe CI % 

WC vs MP Highveld 0.30 0.59 
Bleached vs Non-bleached 1.15 0.30 
WC: Bleached vs Non-bleached 1.76 0.85 
MP Highveld: Bleached vs Non-bleached 1.76 0.12* 

(* = significant differences & reported trends)   
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        (a)                         (b) 

Figure 4.6. The top- (a) and subsoil (b) CBD extractable Fe contents of bleached and non-bleached profiles in the Western 
Cape and Mpumalanga Highveld. Standard error bars and significance letters are indicated. 

 

Uncertainty surrounding the type and crystallinity of the Al oxides extracted by citrate-bicarbonate-

dithionite and ammonium oxalate, together with the controversial influence of these minerals on clay 

stabilisation (Amézketa 1999) make clear interpretations about their role in bleaching and the overall 

dynamics of the sampled soils difficult. The results indicated that both top- and subsoil AAO Al did not 

differ between the locations or between the bleached and non-beached profiles in each. However, 

top- and subsoil AlCBD tended to be higher in the soils from the Western Cape compared to Highveld 

(p=0.12 & p=0.07). The calculated Al ratio (Table 4.8) in contrary tended to be higher in the Highveld 

topsoil (p=0.06) and subsoil (p=0.16) horizons. Neither of these two parameters however had any 

connotation to bleaching. In conclusion, some variation in the Al fraction of the soils that were 

sampled were recorded but Al oxides had no detectable effect on the occurrence of bleaching in the 

topsoil horizons that were investigated. 
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Figure 4.7. The calculated crystallinity index (CI) (%) of the soil Fe content for the sampled topsoil horizons of both bleached 
and non-bleached profiles in the Western Cape and Mpumalanga Highveld. Standard error bars and significance letters are 
indicated.   

 

 

Figure 4.8. The calculated crystallinity index (CI) (%) of the soil Fe content for the sampled subsoil horizons of both bleached 
and non-bleached profiles in the Western Cape and Mpumalanga Highveld. Standard error bars and significance letters are 
indicated.   

 

Due to the known stabilising effect of Fe oxides on the soil colloidal fraction (Amézketa 1999; Duiker 

et al. 2003; Laker 2004), the Fe content of the sampled soils were normalised to the corresponding 

clay contents to investigate what relative quantity of Fe oxides resulted in what degree of clay 

stabilisation. This allowed comparison between soils with variable Fe and clay contents. A FeCBD: clay 

ratio was calculated for all the sampled horizons, which tended to be higher in the Highveld compared 

to the Western Cape top- and subsoil horizons (p=0.11 & p=0.15, respectively) (Figures 4.9a and b). 

The subsoil FeCBD: clay ratio also proved to be slightly higher in the non-bleached Highveld profiles 
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compared to bleached variants (p=0.09) (Figure 4.9b). It is expected that a higher FeCBD: clay ratio will 

imply that more Fe oxides are present to stabilise the clay fraction and limit clay dispersion. Therefore, 

the higher FeCBD: clay ratio registered on the Highveld for both top- and subsoil horizons is presumed 

to contribute to the stable clay phase recorded in these soils. In the Western Cape, however, results 

indicated that relatively less FeCBD per percentage of clay was present, which could enhance the 

dispersibility of the clay phase in these soils. Duiker et al. (2003) however warns against such literal 

interpretations and states that a variety of factors including the pH, crystal size, oxide genetic 

pathway, soil solution composition and the presence of certain organic molecules can also influence 

the stabilising effect that Fe oxides have in the soil. Nonetheless, the recorded ratios are in agreement 

with the measured clay dispersion parameters which indicate that some relationship does exist.  

 

   (a)          (b) 

Figure 4.9. The normalised FeCBD to clay ratio of the sampled top- (a) and subsoil (b) horizons of bleached and non-bleached 
profiles in the Western Cape and Mpumalanga Highveld. Standard error bars and significance letters are indicated. 

 

4.3.2.4 Organic C and N 

To characterise to some extent the organic matter content of the sampled soils was a definite priority 

due to organic matter’s association with the Fe reduction process, its influence on clay stabilisation 

and of course its known soil pigmenting effect. Organic C drives soil redox chemistry and will 

essentially fuel Fe reduction under anaerobic conditions (Wheeler et al. 1999). In addition, the C:N 

ratio of a soil is also a commonly used to indicate what  microbial mediated processes will occur within 

the soil (Hazelton & Murphy 2007). From the obtained results, the organic C contents of the sampled 

horizons were low but in agreement to what is expected for mineral soils under South African 

conditions (Fey 2010), with the topsoil C content also being higher than subsoil values in all of the 
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sampled profiles (Table 4.10). The C: N ratios proved to be more variable and did not follow such a 

trend.  

Significance testing indicated that topsoil C content was substantially higher in the Western Cape 

compared to the Highveld (Table 4.11, Figure 4.10). The topsoil C:N ratio however, showed no 

difference between the locations but rather tended to be higher in bleached compared to non-

bleached horizons (Table 4.11, Figure 4.11a). This observed trend was the result of the significantly 

higher C:N ratios that were determined in the bleached Western Cape topsoils compared to the non-

bleached variants. Subsoil C content was, as expected, more variable and proved to not differ between 

the locations or between the bleached and non-bleached profiles (Table 4.11). In the Western Cape, 

subsoils from bleached profiles tended to have a greater organic C content (p=0.15). The subsoil C: N 

ratio proved to be significantly higher in the Highveld and also tended to be higher in bleached 

compared to non-bleached profiles (Table 4.11, Figure 4.11b). 

Table 4.10. Top- and subsoil carbon content (%) and the calculated C: N ratio. The value range, 
mean and standard deviation (SD) for both the top- and subsoil horizons of each location are given.  

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

 
Range 

Mean ± 
SD 

Range 
Mean ± 

SD 
Range 

Mean 
± SD 

Range 
Mean ± 

SD 

Topsoil C 
(%) 

0.97-
2.36 

1.61 ± 0.48 0.87-2.85 1.49 ± 

0.70 
0.74-
1.11 

0.92 ± 

0.16 
0.87-
1.55 

1.08 ± 

0.27 

Topsoil 
C:N 

11.06-
40.64 

23.35 ± 

10.26 
9.80-
24.72 

14.06 ± 

5.16 
14.75-
24.64 

18.08 ± 

3.85 
13.71-
24.41 

18.35 ± 

3.37 

Subsoil C 
(%) 

0.64-
1.34 

0.92 ± 0.27 0.54-1.22 0.75 ± 

0.25 
0.70-
0.87 

0.76 ± 

0.07 
0.51-
0.97 

0.77 ± 

0.16 

Subsoil 
C:N 

0.0-47.8 20.72 ± 

14.11 
8.77-
18.75 

14.95 ± 

3.78 
19.82-
36.71 

29.88 ± 

6.86 
12.76-
47.16 

22.38 ± 

11.30 
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Table 4.11. Comparisons between the organic carbon (%) and C: N ratios of the 
sampled top- and subsoil horizons by means of one-way and two-way ANOVAs.   

Grouping variables F-value p-value 

Topsoil C % 

WC vs MP Highveld 8.64 <0.01* 

Bleached vs Non-bleached 0.01 0.91 

WC: Bleached vs Non-bleached 0.55 0.65 

MP Highveld: Bleached vs Non-bleached 0.55 0.57 

Topsoil C:N 

WC vs MP Highveld 0.04 0.85 

Bleached vs Non-bleached 3.09 0.09* 

WC: Bleached vs Non-bleached 3.48 0.01 

MP Highveld: Bleached vs Non-bleached 3.48 0.94 

Subsoil C % 

WC vs MP Highveld 0.61 0.44 

Bleached vs Non-bleached 0.91 0.35 

WC: Bleached vs Non-bleached 1.14 0.15* 

MP Highveld: Bleached vs Non-bleached 1.14 0.94 

Subsoil C:N 

WC vs MP Highveld 4.31 0.05* 

Bleached vs Non-bleached 2.76 0.11* 

WC: Bleached vs Non-bleached 0.05 0.30 

MP Highveld: Bleached vs Non-bleached 0.05 0.22 
(* = significant differences & reported trends) 

 

Figure 4.10. The topsoil organic C content of both the sampled bleached and non-bleached profiles in the Western Cape and 
Mpumalanga Highveld. Standard error bars and significance letters are indicated. 

The lower topsoil C content registered in the Highveld compared to the Western Cape profiles is again 

likely a result of cultivation practices. Conventional tillage practices enhances organic matter 

decomposition by amongst others, destroying the physical protection provided by soil aggregates and 
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therefore results in lower organic C contents (Balesdent et al. 2000). In the undisturbed Western Cape 

profiles, normal organic matter accumulation and decomposition processes will not have been altered 

or enhanced in any way. The soil mixing action of conventional tillage practices can also result in the 

translocation of organic material from topsoil- to subsoil horizons, which can explain the higher subsoil 

C:N ratio in the Highveld profiles. What did prove interesting was the higher topsoil C:N ratio in 

bleached profiles in the Western Cape. The data generated in this study does not enable clear 

conclusions about the significance of this feature and to explain its influence more research is 

therefore required.   

 

   (a)          (b) 

Figure 4.11. The top- (a) and subsoil (b) C: N ratio of both the sampled bleached and non-bleached profiles in the Western 
Cape and Mpumalanga Highveld. Standard error bars and significance letters are indicated. 

 

4.3.3 Mechanisms of topsoil bleaching 

The comprehensive nature of the data collected on the sampled soil profiles of the Western Cape and 

Mpumalanga Highveld meant that various different dimensions surrounding the bleaching of topsoil 

horizons under weakly structured subsoil conditions have to be discussed in order to better 

understand what is pedogenetically implied by this soil phenomenon. Soil-landscape relationships 

together with particular components of the presented chemical and physical profile characteristics 

have to be discussed in combination to be able to explain the mechanism by which bleached topsoil 

horizons originate in the weakly structured soil profiles of the Western Cape and Mpumalanga 

Province. To condense the generated dataset, PCA biplots were generated (Appendix 4.8) but 

unfortunately provided no conclusive information regarding the bleaching of topsoils in either of the 

two locations. These biplots were consequently not included as part of the current discussion. The 
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variability with which soil characteristics were expressed in the sampled profiles as well as the 

different influences related to these expressions were deemed to be responsible for this result.  

4.3.3.1. Evidence for Fe reduction: Soil-landscape relationships 

Milne’s work in East Africa is arguably the first comprehensive record of the relationships that exists 

between soil characteristics and landscape features (Milne 1935) and today, the influence of 

landscape dynamics on soil pedogenesis is widely recognised and has been well-studied (Huggett 

1975; Gessler et al. 1995). Within the current pedological sphere, very few studies can afford to 

overlook the landscape’s contribution toward soil genetic processes. Although the initial layout of this 

study did not include investigating soil-landscape relationships per se, field observations necessitated 

the inclusion of this facet into the overall framework and also resulted in a change in the soil sampling 

approach, particularly on the Mpumalanga Highveld. Important observations regarding the 

occurrence of bleached topsoils, the type of well-drained subsoil they overlie and the landscape 

relationships associated with this feature where made in both the locations were profiles were 

sampled. Firstly and most importantly, bleaching on the Mpumalanga Highveld was observed to be 

landscape related with bleached orthic A horizons only occurring on yellow-brown apedal B subsoil 

horizons in either midslope or footslope positions along the red-yellow-grey plinthic catenas 

commonly found in these parts of South Africa. In the Western Cape however, the bleached profiles 

did not always seem to follow a landscape pattern and had both red and yellow weakly structured B 

horizons. These observable differences between the two locations meant that sampling on the 

Mpumalanga Highveld was conducted along catenal transects whereas the sampled Western Cape 

profiles were simply selected based on weak structured subsoil condition and the presence or absence 

of bleaching in the topsoil.   

The discrepancy between bleached and non-bleached soils based on perceived and measured colours 

resulted in different profile groupings and slight differences in the landscape characteristics of each 

group between the two locations (Tables 4.12 and 4.13). Based on the slope type and slope gradient 

little evidence exists to distinguish the bleaching phenomenon from non-bleached variants. Slope 

gradients in the Western Cape were greater for both bleached and non-bleached profiles compared 

to that which was recorded on the Highveld. The significance of the landscape information provided 

in Tables 4.12 and 4.13 is more related to the differences in the distribution of bleached and non-

bleached profiles along the different terrain units in the Western Cape and Mpumalanga Highveld. 

Although only minor differences can be observed between the relative frequencies of these groupings, 

bleached topsoils occurred exclusively in upper midslope positions in the Western Cape. This is in 

agreement with the proposed geomorphic history of these soils (Lambrechts 1983). These landscape 

positions are usually intermediately well-drained and therefore red- and yellow soil colours are 
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present as a result of Fe oxide coatings on the soil mineral particles (Fey 2010; van Tol et al. 2011). 

Interestingly, non-bleached profiles also predominantly occurred in these positions or even lower 

down the slope in theoretically wetter topographical units. From the information provided in Table 

4.12 and 4.13, it is suggested that i) landscape position did not have such an observable influence on 

the occurrence of bleaching in the Western Cape, and ii) the corresponding wetness associated with 

each terrain unit did not seem to be the primary cause for bleaching in this province.  

On the Highveld the bleaching phenomenon was recorded primarily on lower midslopes within the 

transition zone towards the footslope positions. Non-bleached profiles were found along the entire 

spectrum of topographical positions also including the lower lying areas but in this regard a couple of 

important factors need to be considered when interpreting the presented data in Table 4.12 and 4.13. 

Firstly, the spectrum of terrain units is predominantly a consequence of sampling along a catenal 

transect. Secondly, this study made no distinction between borderline bleached or non-bleached 

colour conditions mainly for statistical purposes and therefore some of the non-bleached profiles 

recorded in the lower lying areas exhibited very prominent bleaching tendencies similar to that which 

was noted by Van der Waals (2013) but which also did not qualify based on the specified colour criteria 

(Soil classification working group 1991). The spectrophotometer however, classified these horizons as 

bleached and therefore more bleached profiles were recorded based on instrument-measured 

colours, as seen in Table 4.13. Lastly, in order to better interpret the landscape information provided 

in Tables 4.12 and 4.13 one must be made aware of the size of the area in question i.e. where bleached 

topsoils overlay well-drained yellow-brown apedal B horizons along these catenas.  This area will 

undeniably range in size from one catena to the next but based on the catenas that were sampled in 

this study, this specific soil sequence occurred within a band never exceeding 10 to 12 meters in width. 

This of course is on a much smaller scale than what would be used to distinguish between landscape 

terrain units, implying that in some instances where the transition in topsoil colour from non-bleached 

to bleached occurred within a small distance between sampled points, both bleached and non-

bleached profiles were registered on the same terrain unit, distorting the evident landscape related 

expression of bleaching within this region. Therefore, to better illustrate the proposed relationship 

that exists between landscape position and bleached topsoils on the Mpumalanga Highveld, soil cross 

sections were generated of the four catenas that were sampled (Figures 4.12-4.19).  
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Table 4.12. Landscape and terrain characteristics of the individual profiles recorded during 
field sampling based on perceived soil colours determined by means of visual comparison 
with the Munsell soil colour chart. The relative frequencies of the terrain units and slope 
types are given as well as the range and mean slope gradients (%) of the sampled profiles. 

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

Terrain unit1 

1 - - - 1 

3U 6 5 1 4 

3L  2 2 2 

4 - 1 - 2 

Slope type2 

Convex 3 2 - 1 

Concave - 3 2 3 

Straight - 2 1 4 

Straight-Convex 2 1 - - 

Straight-
Concave 

- - 
- 1 

Slope % range 2-25 3-9 0.5-4 0.5-4 

Slope % mean 8.0 ± 8.6 6.6 ± 2.1 2  1.6 ± 1.5 
1 1=crest, 3U=upper midslope, 3L=lower midslope, 4=footslope; 2 Profile Hh 4 omitted due to human disturbance 

 

Table 4.13. Landscape and terrain characterisation of the sampled profiles following colour 
measurement with the spectrophotometer. The relative frequencies of the terrain units and 
slope types are given as well as the range and mean slope gradients (%) of the sampled 
profiles. 

 Western Cape Mpumalanga Highveld 

 Bleached Non-bleached Bleached Non-bleached 

Terrain unit1 

1 - - - 1 

3U 7 4 1 4 

3L  2 3 1 

4 - 1 1 1 

Slope type2 

Convex 2 3 - 1 

Concave 1 2 3 2 

Straight 1 1 1 4 

Straight-Convex 2 1 - - 

Straight-Concave - - 1 - 

Slope % range 2-25 3-8 0.5-4 0.5-4 

Slope % mean 8.4 ± 7.8 6 ± 1.9 2.5 ± 2.1 2.2 ± 1.6 

1 1=crest, 3U=upper midslope, 3L=lower midslope, 4=footslope; 2 Profile Hh 4 omitted due to human disturbance 
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The term catena describes a predictable sequence of soils related to specific topographical positions 

within the landscape (Milne 1935). In South Africa, an extensive part of the country’s interior is 

occupied by a catena which, in its perfect form is represented by red soils on well-drained crests 

grading through yellow soils on midslope positions towards gleyed colours (predominantly grey) in the 

poorly-drained footslopes and valley bottoms (Soil and Irrigation Research Institute 1987; Fey 2010). 

The presence of plinthic horizons at varying depths throughout this catena has given rise to its name 

the red-yellow-grey plinthic catena or more commonly the Highveld plinthic catena. As can be seen 

from Figures 4.12 to 4.19 the soils that were sampled followed this typical red-yellow-grey catenal 

sequence. Slight differences in the expressed soil colours and horizon sequences were recorded 

between the individual catenas and clear differences were also observed between profile classification 

and characterisation based on perceived and measured soil colours. Nonetheless, collective trends 

were observed among the sampled catenas with specific reference to bleaching and the determined 

soil colour variations and more importantly, the existence of bleached topsoils overlying well-drained 

yellow-brown apedal B subsoil horizons were verified (van der Waals 2013).  
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Figure 4.12. Catena 1 – perceived soil colour. Cross section of catena 1 with soil classification and characterisation based on perceived colours. The XRF determined Fe content of the different 
positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.13. Catena 1 – measured soil colour. Cross section of catena 1 with soil classification and characterisation based on instrument-measured colours. The XRF determined Fe content of the 
different positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.14. Catena 2 – perceived soil colour. Cross section of catena 2 with soil classification and characterisation based on perceived colours. The XRF determined Fe content of the different 
positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.15. Catena 2 – measured soil colour. Cross section of catena 2 with soil classification and characterisation based on instrument-measured colours. The XRF determined Fe content of the 
different positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.16. Catena 3 – perceived soil colour. Cross section of catena 3 with soil classification and characterisation based on perceived colours. The XRF determined Fe content of the different 
positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.17. Catena 3 – measured soil colour. Cross section of catena 3 with soil classification and characterisation based on instrument-measured colours. The XRF determined Fe content of the 
different positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.18. Catena 4 – perceived soil colour. Cross section of catena 4 with soil classification and characterisation based on perceived colours. The XRF determined Fe content of the different 
positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Figure 4.19. Catena 4 – measured soil colour. Cross section of catena 4 with soil classification and characterisation based on instrument-measured colours. The XRF determined Fe content of the 
different positions along the catena are also indicated. Soils were classified according to the South African classification system. Note: the slope gradient of the catena is exaggerated. 
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Catena 1 (Figures 4.12 and 4.13) was the only catena that consisted of undisturbed soils that were not 

previously under cultivation. The parent material was suggested to be Fe-rich sandstone (van der 

Waals, 2014 pers. comm.) Only two profiles 15 m apart from one another were sampled, each on 

opposing sides of the transition zone between a non-bleached and bleached topsoil.  Subsoil colour 

followed a gradual transition from a reddish-brown (Position 1) to a more yellow-brown matrix 

(Position 2) and a change in the depth at which plinthite occurred was also recorded. Based on the 

perceived colours (Figures 4.1) the soil form recorded at respectively Position 1 was a Hutton/Bainsvlei 

transition (orthic A – red apedal B – plinthite at ± 150 cm depth) and at Position 2 an Avalon (orthic A 

– yellow-brown apedal B – soft plinthic B) (Soil classification working group 1991). According to the 

instrument-measured soil colour, the more reddish-brown colour of the B horizon observed at 

Position 1 did not allow it to qualify as a diagnostic red apedal B and accordingly the classification of 

this profile was changed to an Avalon (Figure 4.13). Notably, the instrument measured a colour of 

7.5YR 5/3 in the B horizon at position 2 which is not included in any of the diagnostic colour ranges in 

the soil classification system of South Africa (Soil classification working group 1991).  The documented 

family criteria indicates a mesotrophic (intermediately leached) and non-luvic (limited textural 

contrast between A and B) B horizon was present in both profiles. The A horizon observably thickened 

from position 1 to position 2 (10 to 30 cm) which alluded to the potential presence of an E horizon at 

a depth of ± 15 cm. The bottom of this thickened A horizon however appeared to be more like an A/B 

transition zone comprising of a mixture of bleached and yellow-brown soil material. A border-line 

bleached colour was visually recorded along the bottom parts of this thickened horizon and this, 

together with the fact that the horizon did not exceed 350 mm in depth, provided the justification 

behind recognising only a bleached orthic A horizon in this profile. According to the Soil classification 

working group (1991, p. 19) “As these ‘grey’ A horizons become thicker, however, a point, difficult to 

identify especially in sands, is passed after which an E horizon, which cannot easily be distinguished 

from the ‘grey’ A horizon, is definitely present. When such difficulty exists, an E horizon should be 

regarded as being present when the material beneath 350 mm depth qualifies as a diagnostic E 

horizon”. Upon re-measuring the colours with the spectrophotometer, the instrument registered a 

much more definitive bleached colour within this transition zone (Figure 4.13) but due to the above-

mentioned depth limitations and the fact that visual observations tended towards an A/B transition 

zone rather than an E horizon, profile classification was again inclined to exclude a diagnostic E horizon 

from the recorded horizon sequence. Nonetheless, the difference in the measured colours between 

the upper and lower parts of this thickened A horizon implies that an E horizon cannot be completely 

excluded and therefore the profile was classified as an Avalon/Constantia (orthic A - E - yellow-brown 

apedal B) soil form. The XRF determined Fe content in the top- and subsoil horizons at position 1 was 
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comparable but showed a substantial decrease in both horizons down the slope towards position 2 

(Figures 4.12 and 4.13).  The field-estimated texture at both these positions were similar for the top-

and subsoil horizons. 

Catena 2 (Figures 4.14 and 4.15) was believed to be sandstone-derived and occurred within a field 

actively used for maize cultivation. The soil colour sequence again followed the typical red-yellow-

grey pattern although the detail at which sampling was done along this catena (auger 13 holes, 10 m 

apart, starting in red and ending in grey) meant that even the slightest variation in soil colour was 

noticed. Particularly along the midslope at Position 7 the subsoil was perceived to be unnaturally dark, 

in contrast to the instrument-measured lighter red colour. Although the colour variation within this 

landscape positions seemed out of place, one must not neglect to take into account the influence of 

micro topography, where a small depression in the landscape (e.g. a slight concave or convex slope 

type on a midslope) can result in different drainage features and water flow characteristics resulting 

in unexpected soil colour expressions (Peterschmitt et al. 1996). Evidence to support such a cause for 

the colour discrepancy recorded at Position 7 can be observed in the XRF determined Fe content. As 

can be seen in Figures 4.14 and 4.15, subsoil Fe content increases slightly in these positions alluding 

to either an accumulation of Fe oxides or a hindered removal thereof. A thickening of the A horizon 

was also observed as with Catena 1 but where this A horizon was perceived and measured to be 

bleached, it did not exceed a thickness of 350 mm and no clear E horizon was visible. Again, the bottom 

of this thickened A horizon looked much more like a transition zone between the A and B horizon (i.e. 

a mixture of yellow-brown and bleached colours) than an E horizon. XRF determined Fe content 

followed a similar pattern as Catena 1 with the Fe content predominantly decreasing from the top to 

the bottom of the catena. The higher Fe content at the footslope position (Position 13) is most 

probably due to laterally transported ferrous Fe that was deposited and re-oxidised (Peterschmitt et 

al. 1996; Fey 2010). Field-estimated texture classified the soils at most positions as being luvic and 

also recorded a clay increase down the slope in both the top- and subsoil horizons. 

Catena 3 (Figures 4.16 and 4.17) again consisted of soils used for maize cultivation. What made this 

catena unique however, was the presence of ferruginised shale, hard Fe concretions and quartz gravel 

that was recorded throughout the profile giving the impression that the soil material was transported 

(Appendix 2.1). The presence of numerous small ferruginised rock fragments is proposed to be the 

cause for the higher XRF Fe contents recorded for this catena. Five holes were augered 20 m apart 

from one another along the catena and sampling was ceased before a subsoil G horizon was reached 

at the bottom of the catena. The thickening of the A horizon, as observed in the previous two catenas, 

was much more exaggerated and although the bottom of this thickened A horizon was 

morphologically very similar to that recorded in the previous two catenas (A/B transition zone rather 
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than an E horizon), the prominent bleached colour as well as the depth of bleaching (>350 mm) meant 

that an E horizon was recognised. The classification outcome was a luvic Constantia soil form with no 

podzolic character beneath the B horizon (Soil classification working group 1991).  

Probably the most significant aspects of this catena was i) the way in which the colour sequences in 

the top- and subsoil changed along the catena, and ii) the marked differences in where bleaching was 

detected by means of visual colour determination and the spectrophotometer measurements. As can 

be seen from Figures 4.15 and 4.16 the eye was unable to detect the bleaching condition higher up on 

the catena. These soil profiles were classified as non-bleached Avalon and Pinedene (orthic A – yellow-

brown apedal B – unspecified material with signs of wetness) soil forms (Soil classification working 

group 1991). Upon the re-measurement of these soil colours with the instrument, the topsoil of the 

two profiles at positions 3 and 4 qualified as bleached, which meant that again bleached A horizons 

overlying well-drained yellow subsoils were present. Thus, both under measured and perceived soil 

colours, there seems to be an unsynchronised change in soil colour from red to yellow to grey between 

the top- and subsoil. This results in the catenal subsoil colour change (red-yellow-grey) lagging behind 

topsoil colour change as one moves down the slope. The result is an overlap in bleached topsoils and 

yellow-brown subsoil horizons. The XRF determined Fe contents again decreased with the change in 

colour from red to yellow to grey in both the top-and subsoil, with the field-estimated clay content 

increasing in the same direction.    

Sampling along Catena 4 (Figures 4.18 and 4.19) comprised of 7 auger holes which were unevenly 

spaced. Sampling again started at a higher landscape position in deep red soils and followed the 

catenal transect down the slope to where gleyed colours were observed along the footslopes. This 

catena was very similar to what was observed in Catena 3. Classification based on perceived colours 

again failed to detect any bleached topsoil horizons on the well-drained apedal subsoils (Figure 4.17) 

although record was made of a clear bleaching tendency at Position 5. Following instrument-measured 

soil colour, the topsoil at this position qualified as bleached (Figure 4.18). Similar to that observed in 

all the other catenas, a thickening A horizon, which in its bottom parts appeared to be more like a 

transition zone between the grey A and yellow B horizon, was also recorded. At Position 5 visual colour 

estimates did not detect bleached colours in this soil zone but upon re-measurement with the 

spectrophotometer an E-horizon was recorded. This resulted in the classification of a bleached 

Constantia soil form. What must be mentioned however is that bleaching and an E horizon was visually 

detected on the Kroonstad (orthic A – diagnostic E – diagnostic G) soil forms at Positions 6 and 7 (Soil 

classification working group 1991). Similar to Catena 3 the unsynchronised change between top-and 

subsoil colour was also observed which resulted in the recorded topsoil bleaching and bleaching 

tendencies at Position 5 along the catena. As shown in all the other catenas, the Fe content decreased 
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in both the top- and subsoil horizons from higher to lower topographical positions. Interestingly, the 

soils along this catena revealed no observable textural differences between the A/E and B horizons 

and no real increase in clay content down the slope. 

To summarise what was observed along the sampled catenas and similar to the record given by Van 

der Waals (2013), a thickening of the bleached A horizons was observed starting on the lower 

midslopes and becoming more pronounced until it graded into an E horizon down at the footslope 

positions. Although initial classification of these thickened A horizons did not recognise the presence 

of an E horizon toward its bottom boundary due to an inadequate colour difference and the depth 

limit of 350 mm (Soil classification working group 1991), the exaggerated thickening and measured 

bleached colours recorded in particularly Catena 3 and 4 (Figures 4.15-4.18) justified the inclusion of 

an E horizon in the subsequent profile classifications. Noticeably there was no observable difference 

in the thickened bleached A horizons that did not exceed 350 mm in depth to those that did, implying 

that a similar pedogenetic process was responsible for both although the arbitrary depth boundary of 

350 mm resulted in different classification outcomes.  In addition, an unsynchronised change between 

top- and subsoil colour from red to yellow to grey resulted in a zone of overlap where bleached orthic 

A horizon overlying yellow-brown apedal B horizons were recorded. Although the area occupied by 

such a horizon sequence was relatively small it exposed a clear gap in the current South African 

classification system (Van der Waals 2013). Lastly, recorded colour deviations from the normal red-

yellow-grey sequence were in agreement with zones of Fe depletion or accumulation along the 

catenas and collectively, the XRF determined Fe contents also revealed a decrease in the soil Fe 

content from red to yellow to grey colour zones. Field-estimated texture followed a more sporadic 

pattern, with textural contrasts between the A/E and B horizon not being observed in all of the 

catenas. Clay content did however seem to increase down the slopes. These recorded observations 

along all of the sampled catenas provide strong evidence towards a relationship between bleaching, 

topography and hydrology on the Mpumalanga Highveld.  

Joffe (1949) (as cited by Huggett 1975) was amongst the first to point out that topography as a soil 

forming factor is a condition influencing other factors. Most noticeably is the relationship that exists 

between topography and soil hydrological processes (Ticehurst et al. 2007; van Tol et al. 2010; van Tol 

et al. 2011). If one is to consider water as the main factor influencing soil development in most 

environments (Wysocki et al. 2000) the association between topography and hydrology is 

predominantly responsible for the expression of soil characteristics within a landscape (Lin et al. 2005). 

However, the relationship between soil and hydrology is also interactive and although water can serve 

as a primary agent in soil genesis, soil characteristics also dictate hydrological processes (van Tol et al. 

2010). Nonetheless, many studies have made use of soil morphological characteristics, most 
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noticeably colour, to indicate soil-water dynamics (Van Huyssteen & Ellis 1997; He et al. 2003; 

Ticehurst et al. 2007). The specific sequence of soil colours such as those recorded along the Highveld 

plinthic catena, which range from red higher up in the landscape through yellow in midslope positions 

to paler colours at the bottomlands is a prominent feature in ferrallitic environments across the globe 

(Peterschmitt et al. 1996). It is also widely accepted that this expression of colour is related to 

increasing aquic conditions and the selective dissolution of Fe oxides along such a soil toposequence 

(Cox et al. 1996; Peterschmitt et al. 1996; Van Huyssteen & Ellis 1997; Fey 2010). The active process 

within these landscapes is Fe reduction, which in more moderately drained midslope positions results 

in soil yellowing and in the waterlogged footslope positions causes bleaching. The process of yellowing 

is a consequence of both the degree of Al substitution within the clay fraction of the Fe oxides and to 

a lesser extent, the crystal size of these minerals (Curi & Franzmeier 1984; Jeanroy et al. 1991; 

Peterschmitt et al. 1996). Hematite is generally less substituted with Al in comparison to goethite, and 

seeing that Al restricts the dissolution of Fe oxides because it is not redox reactive (Segal & Sellers 

1984; McBride 1994), hematite is more easily reduced and dissolved (Macedo & Bryant 1987). The 

more resistant goethite, although it can also vary in its degree of Al substitution (Peterschmitt et al. 

1996), remains as a constituent on the soil particle surfaces and facilitates the expression of yellow 

soil colours. Where amorphous or poorly crystalline Fe oxides are present, this dissolution process is 

further enhanced (Jeanroy et al. 1991). Therefore the onset of wetter soil conditions is expressed 

through the yellowing process and more specifically the selective dissolution of hematite. Water 

saturation, however, triggers bleaching and the complete removal of Fe oxides (Fritsch & Fitzpatrick 

1994). Peterschmitt et al. (1996) consequently proposes yellowing to be a precursor process to 

bleaching with yellow soils representing a soil state in which Fe oxide coatings have only partially been 

stripped from the soil mineral particles. The reported decrease in the Fe content of the soils down the 

catenal slopes provide strong evidence towards this phenomenon.   

From the above-presented literature there seems to be little doubt that the catenal cross-sections 

presented in Figures 4.12-4.19 signifies a water-driven soil environment (Soil and Irrigation Research 

Institute 1987; Fey 2010). The precise dynamics of this system however remains unclear seeing that 

no active hydrological monitoring was done along these catenas primarily due to time and logistical 

constraints. However, the sequence of observed soil colours suggest Fe reduction to be the prominent 

genetic process within these landscapes and therefore it would appear highly likely that bleaching, 

even in the morphologically well-drained zones, is a result of Fe reduction. To link the reduction 

process to bleaching in these soil zones, one must however first obtain a better understanding of the 

hydrological dynamics of i) the specific top- and subsoil horizons in this study to which bleaching is 

applicable and ii) the soil toposequence present along these catenas.  
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According to the soil classification system of South Africa, yellow-brown apedal B horizons are deemed 

to have a higher average moisture status than their red counterparts (Soil classification working group 

1991). Work done by van Huyssteen & Ellis (1997) in the Grabouw district and by Van Huyssteen et al. 

(2010) in the Weatherly catchment of South Africa support this notion. The study by van Huyssteen & 

Ellis (1997) only measured the duration of free water in profiles containing yellow-brown apedal B 

horizons but not the degree of water saturation that was present. Consequently, this study showed 

that yellow profiles contain water for longer periods of the year compared to uniform red profiles but 

no measure of the potential of these horizons to undergo reduction was actually determined. In the 

study by van Huyssteen et al. (2010) a saturation value of 70% of soil porosity was adopted as the 

threshold for where reduction would start to occur (van Huyssteen et al. 2005) and consequently these 

authors focussed more on measuring the duration of water saturation at a potential value where it 

would result in Fe reduction. Clear variability in the number of days that yellow-brown apedal B 

horizons tended to be saturated above 0.7 of porosity were recorded but their data suggested that 

these horizons are saturated to this level for slightly longer periods of the year (average duration of 

28 days) and also tend to have a higher average degree of saturation per month compared to red 

apedal B horizons. These authors therefore concluded that overall yellow-brown apedal B horizons 

represent a wetter soil state than the uniform red variants. This is in agreement with the statement 

made by van Huyssteen & Ellis (1997) who, based on field observations and surveying experience, 

propose some yellow-brown apedal B horizons to be saturated with water for up to two months of 

the year.  

To obtain any information in the literature about the hydrological features of diagnostic orthic A 

horizons that will be applicable to the topsoils present along the Highveld plinthic catenas poses a 

significant challenge. These diagnostic horizons occur throughout South Africa under a wide range of 

conditions and are therefore not completely uniform in the characteristics they exhibit (van Huyssteen 

2012). To draw correlations between orthic A horizons from different regions of the country can 

therefore result in incorrect assumptions about the behaviour of these soils. This strengthens the 

opinion that without proper hydrological monitoring it is close to impossible to definitely state what 

hydrological forces are active in the bleached orthic A horizons that were sampled along the Highveld. 

However, the information that exists within the literature can still aid in formulating certain 

assumptions about the mechanisms at hand. The most significant piece of literature available in this 

regard is the work done by van Huyssteen (2012) in the Weatherly catchment of South Africa. The 

author focussed specifically on the hydrological aspects of orthic A horizons in this region and found 

that these A horizons mimicked the spectrum of subsoil hydrological conditions that were recorded. 

Orthic A horizons overlying E or G horizons were reported to be saturated with water for more than 
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six months whereas the A horizons of the well-drained red and yellow-brown apedal B subsoils were 

waterlogged for less than 30 days in the year. These findings are in agreement with the views of the 

Soil classification working group (1991), who state that there tends to be a genetic relationship 

between diagnostic orthic A horizons and the subsoils they overly implying similarities in their 

exhibited characteristics. One must not however neglect to consider that there are factors specifically 

applicable to topsoil horizons that will differentiate them from the subsoils they overlie such as for 

instance the seasonal influences of precipitation on topsoil moisture status. Van Huyssteen et al. 

(2010) reported that during the summer rainfall months in the Weatherly catchment, orthic A horizons 

are significantly wetter than the red-, yellow-brown and neocutanic B horizons they overly because of 

their position within the profile and their consequent direct exposure to precipitation.   

For the purpose of this study the interest of course lies in the hydrological dynamics of orthic A topsoils 

overlying yellow-brown apedal B horizons. The above presented evidence, although proposing yellow-

brown subsoils to be relatively well-drained, indicates that where the subsoil tends to be wetter, the 

topsoil follows this pattern. Taking into consideration the higher moisture status that has been 

recorded for yellow-brown apedal B’s relative to red soils, it seems improbable that their topsoils 

should not also follow this same dynamic. Nonetheless, most of the recorded results on the moisture 

status of both yellow-brown apedal B subsoil horizons and diagnostic orthic A horizons reflect 

considerable variation (Van Huyssteen et al. 2010; Van Huyssteen 2012). To complicate the matter 

even more, the thickening of the bleached topsoils observable in Figures 4.11-4.18 propose that the 

bleached orthic A horizons recorded in the midslope positions along the sampled catenas are subject 

to a similar soil moisture regime as the E horizons they overly in the bottomlands. This is also the view 

of Van der Waals (2013). Literature on the hydrological status of diagnostic E horizons across South 

Africa have yielded variable results, indicating that some E horizons are considerably wetter than 

others (Van Huyssteen & Ellis 1997; Van Huyssteen et al. 2010). Again, this allows for no clear 

assumptions about the moisture status of these bleached orthic A horizons although it does allude to 

the fact that the potential for saturation and Fe reduction should not be overlooked. Whether the 

hydrological conditions that exist within the bleached topsoil horizons found on the lower midslope 

position of these Highveld catenas are sufficient to stimulate Fe reduction remains uncertain without 

any direct measurement of redox potential. It must however not be excluded based on the fact that 

hydromorphy and the onset of reduction is soil specific and can vary depending on the degree of water 

saturation, pH, soil porosity, organic matter and Fe content, temperature and the nature of the 

microbial population present within the soil (Van Huyssteen 2012). Taking this into consideration, 

topsoils generally tend to have a lower redox potential in comparison to subsoil horizons due to the 

higher accumulation of organic material (Wheeler et al. 1999; Rabenhorst & Parikh 2000).  
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What is apparent from the studies that have been reported on thus far, is that limited information 

regarding the hydrological links between red-yellow-grey subsoils and their accompanying topsoils in 

the landscape are given. This factor is probably the most applicable to understanding the hydrological 

dynamics of these catenas and bleaching along its midslopes. Although the generalised hydrological 

characteristics of yellow-brown B, orthic A and E horizons eludes to the possibility of these horizons 

being saturated with water to such an extent that reduction can ensue, the best evidence for Fe 

reduction along the midslopes of the sampled catenas will probably be exposed through a better 

understanding of water flow dynamics along this soil toposequence. However, Van der Waals (2013) 

noticed that the classification and characterisation of subsoil horizons are most commonly used to 

define the soil moisture regime present within a landscape, with the hydrological links between topsoil 

horizons along a slope often receiving little attention. South African literature providing detailed 

information on the topsoil moisture status along these Highveld catenas could not be found. Again, 

this allows one only to speculate as to how the soil-water system behaves, particularly along the upper 

horizons of these soil toposequences. The only real evidence that exists upon which to base 

assumptions about the soil’s hydrological dynamics is of course morphological interpretation (Van 

Huyssteen & Ellis 1997; Van Huyssteen et al. 1997; He et al. 2003; Ticehurst et al. 2007). This 

unfortunately leaves one in a conundrum with regards to bleaching in the landscape. Nonetheless, the 

red-yellow-grey soil sequence is known to represent increased aquic conditions. Water from the 

extremely well-drained red soil zones at higher topographic positions percolates down through the 

midslope positions by means of subsurface lateral flow, resulting in the expressed yellow soil colours, 

and eventually accumulates at the bottomlands where waterlogged conditions ensues and grey soil 

colours develop (Van Tol et al. 2011). The observed lag in this colour sequence between top and 

subsoil horizons indicate that the topsoil possess a higher moisture status than the subsoil and 

therefore undergo these colour changes at positions higher up along the slope. This feature also seems 

to become apparent in the thin bleached A horizon that already starts on the lower midslope positions 

and thickens into an E horizon lower down. Information on the genesis of E horizons predominantly 

states that this zone of eluviation is the result of lateral subsurface flow (Van Huyssteen & Ellis 1997; 

Ticehurst et al. 2007; Van der Waals 2013; Van Tol et al. 2011) eluding to a condition where water 

from higher up on the catena is moving through the topsoil and saturating the soil pores to such an 

extent that reduction and eluviation can take place. The possibility of higher OM contents in the 

topsoil resulting in lower redox potentials and essentially a lower moisture requirement to enable 

reduction must also not be ignored as a potential influence in this system. 

The question of course remains, what is essentially causing this subsurface lateral flow if the subsoil 

is morphologically well-drained and poses no restriction to water infiltration? Van der Waals (2013) 
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hypothesises that the slight textural contrast between the A and B horizon aids in stimulating lateral 

flow and therefore saturation lower down the slope. The results presented in this study did record 

some textural differences (mainly just to the extent that the subsoils were classified as luvic), but not 

in all the sampled catenas (e.g. Catena 4) and therefore the process cannot be solely as a result of this 

soil feature. Rather, and in agreement with Van der Waals (personal conversation, 2014), it is 

proposed that due to the rainfall tendencies of the region, frequent small quantities of rain ensures 

that the topsoil remains wet (Van Huyssteen et al. 2010) in these midslope positions for almost the 

entire duration of the summer therefore causing reduction and the bleached colours. It is however 

not implied that no water movement will occur through these topsoils along the slope, but based on 

the very gradual slope gradients recorded along these catenas (Tables 4.12 and 4.13) it is assumed 

that water will predominantly drain vertically down the profile. The hydrological influence of the 

infiltrated water results in the formation of plinthic horizons at deeper soil depths.  The possibility also 

exists that as more precipitation enters the system, the presence of antecedent soil moisture limits 

vertical drainage and stimulates lateral flow (Hardie et al. 2011). Consequently, two systems are 

ostensibly at work in the formation of the soil horizon sequences recorded along the Mpumalanga 

plinthic catenas: i) frequent low quantity rain showers that provide sufficient moisture to the top 

couple of centimetres of the soil profile to ensure that these soil horizons, with their accumulation of 

OM and consequent lower reduction potentials, remains wetter for longer and ii) shallow subsurface 

water flow and soil water fluctuations that are responsible for the red-, yellow- and plinthic B horizons 

at the varying depths. Throughout the summer, rainfall will drain down through the profile, providing 

the water responsible for subsurface flow and the genesis of the plinthic horizons. The high frequency 

of rain during this period also allows the topsoil to remain wet. Consequently, the ‘thick’ E horizon 

that is recorded along the footslope positions is essentially present on the midslope positions as a 

bleached orthic A which gradually becomes thicker further down the slope (Van der Waals 2013). 

4.3.3.2. Evidence for Fe reduction: Fe characterisation 

Iron can occur in the soil environment either as a constituent ion in the clay mineral structure or as an 

oxide adhering to the surface of the soil mineral particles (Carroll 1958). In an oxidised form Fe is 

responsible for the expression of red and yellow-brown soil colour, that with the onset of Fe reduction 

result in the formation of redox depletions and bleaching (He et al. 2003). The oxides responsible for 

colour expression in the soil can range in their abundance, mineralogy and reactivity (Carroll 1958; 

Torrent et al. 1983; Thompson et al. 2006) which will dictate i) the nature of the colour influence of 

the particular Fe species, as well as ii) the chemical and physical influence of the mineral on overall 

soil dynamics. In general, abundance and the specific Fe mineralogy is reasoned to be of less 

significance in the soil environment compared to the reactivity of the Fe phases, seeing that reactivity 
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will directly influence Fe reduction processes (Bonnieville et al. 2004) and the cycling of various other 

soil constituents (Thompson et al. 2011). Iron reactivity is essentially expressed in the crystallinity of 

the oxide forms with poorly-crystalline Fe oxides having a greater reactive surface compared to 

crystalline variants, consequently being more reactive (Duiker et al. 2003; Thompson et al. 2011).  

To be able to differentiate between the crystallinity and reactivity of the Fe phases present within the 

soil environment, different Fe extraction agents are used. Citrate-bicarbonate-dithionite (CBD) is 

deemed to be a strong reducing agent consequently targeting not only very reactive poorly-crystalline 

Fe but also more well-ordered crystalline Fe phases (McKeague & Day 1966; Loeppert & Inskeep 1996). 

In contrast, ammonium oxalate (AAO) extracts only the poorly-crystalline Fe species. Based on the 

specified Fe phases targeted by CBD and AAO, a Fe activity ratio indicative of the reactivity and degree 

of crystallinity of the Fe species can be calculated through FeAAO/FeCBD (Torrent 1976; Bech et al. 1997). 

As previously mentioned, in this study the ratio was expressed as a percentage and termed the Fe 

crystallinity index (CI). 

The results of the different Fe extraction procedures reported lower FeAAO contents in all of the 

sampled horizons compared to FeCBD contents indicating that both crystalline and poorly crystalline Fe 

phases were present in the soils. The relationship between crystallinity and reactivity mentioned 

above meant that the proportions in which these different Fe oxide phases occur in the soil is of 

greater significance than these absolute measurements.  The calculated Fe CI values were similar in 

both the top- and subsoil horizons at both locations, indicating that proportionally similar amounts of 

crystalline and poorly-crystalline Fe oxides were present in both the Western Cape and Highveld 

profiles. However, the CI of the topsoil Fe content tended to be higher in bleached compared to non-

bleached profiles with this observed trend being more pronounced on the Highveld compared to the 

Western Cape soils.  

In relation to Fe reduction, Thompson et al. (2006) observed that although the interchange between 

ferrous and ferric Fe states as a result of alternating redox cycling is well-documented, little is actually 

known about what the cumulative effects of such cycles are on the nature of the Fe oxides present 

within the soil, specifically pertaining to their crystallinity. Although some discrepancies in their 

laboratory trails were reported, these authors proposed that following the reduction of the available 

crystalline and poorly-crystalline Fe phases in the soil, the re-introduction of O2 and the consequent 

rapidly precipitated Ferric oxides will predominantly be short-ranged-ordered or poorly-crystalline in 

nature (Wahid & Kamalam 1993; Stumm & Morgan 1996). The opposite effect that was reported in 

the laboratory was tested in the field and following a series of field-trials by the same authors, 

Thompson et al. (2011) concluded that with increasing rainfall, more poorly-crystalline Fe oxides were 
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present at the wetter soil sites. It is therefore proposed that due to the higher Fe CI in the topsoils of 

the Highveld bleached compared to non-beached profiles, more poorly crystalline FeAAO is present 

which implies more novel or freshly-precipitated Fe species that are the result of a wetter soil moisture 

regime and alternating cycles of saturation and Fe reduction (Wahid & Kamalam 1993; Stumm & 

Morgan 1996; Thompson et al. 2011).  These results thus provide further evidence towards the role 

of water saturation and reduction in the genesis of bleached A horizons on the Mpumalanga Highveld.  

4.3.3.3. The probability of clay eluviation 

The soil-landscape relationships and Fe oxide characteristics of the soil profiles sampled in the 

Western Cape and Mpumalanga Highveld revealed significant differences with regards to the nature 

and occurrence of topsoil bleaching in these two locations. In summary, the lack of any landscape-

related expression of bleaching in the Western Cape profiles, as well as the proportionally similar 

quantities of poorly-crystalline to crystalline Fe phases in both the bleached and non-bleached 

profiles, suggests that in contrast to bleaching on the Highveld, Fe reduction might not be the 

dominant or exclusive mechanism responsible for this soil phenomenon in this part of the country.  

Within the literature, the other prominent pedogenetic process proposed to result in light coloured 

soil horizons is clay eluviation (Zaidel’man 2007; Fey 2010; Van der Waals 2013). Eluviation refers to 

the mobilisation and transportation of colloidal material out of a soil horizon to a zone of 

accumulation, where the opposite process of illuviation is responsible for the acquisition of these 

translocated particles in the underlying material. Collectively, clay eluviation and illuviation are 

referred to as lessivage (IUSS working group WRB 2007). According to Quénard et al. (2011), lessivage 

has generally been poorly quantified and modelled in past research and remains a somewhat 

controversial subject despite the description of its presence in many soil types. This can in part be 

attributed to the elaborate and time-consuming experimental procedures prescribed for accurately 

determining clay migration through a soil column (Cornu et al. 2014). Nonetheless, various soil 

researchers (e.g. Chittleborough 1992) and many soil classification systems including the USDA’s Soil 

Taxonomy (Soil survey staff 2010) consider the morphological expression of argillans (or clay cutans) 

in a soil horizon as indisputable evidence for the translocation of clay particles. Therefore, the cutanic 

nature of the weakly structured subsoil horizons sampled in parts of the Western Cape strongly 

propose clay dispersion and translocation to be an active pedogenetic process in these soils (Soil 

classification working group 1991). As previously stated, the colour of all the horizons sampled in this 

study was first determined in the soil’s natural state of aggregation i.e. as clods, where after the same 

procedures were repeated on fine samples. It was decided to not report the colour data on the 

difference between clod and fine sample colours due to the regional difference in the effect of this 

phenomenon and the statistical implications thereof. Visual perception could only detect slight 

Stellenbosch University  https://scholar.sun.ac.za



107 
 

differences between clod and fine soil colours in some of the Western Cape soils. On the Highveld, no 

such differences were observed. This small set of soils in which aggregation resulted in colour 

differences meant that no colour effect could be statistically detected. Visual observations however 

provide enough reason to state that in some of the weakly structured B horizons sampled in this study, 

non-uniformity in colour was much more apparent in clods than in fine samples. This was the result 

of the presence of cutans in and around soil aggregates which caused red or yellow-brown colour 

variations in these subsoils, whilst bleached clay skins covering the outside of topsoil clods were also 

observed and resulted in a similar phenomenon. Upon crushing these clods, a more uniform and 

slightly different colour was observed. These features potentially provide morphological evidence for 

clay movement. Whether a relationship exists between clay migration and bleaching in these profiles 

is unknown. Unfortunately, the intricate nature of lessivage experiments also meant that directly 

measuring the migration of clay particles through the soil profiles sampled in this study was not 

possible. Instead, no direct measure of clay translocation was conducted but the focus rather was on 

determining the stability of the clay phase and concluding to what extent, if at all, clay dispersion 

occurs in bleached and non-bleached soil profiles in the Western Cape and Highveld.   

Clay dispersion is usually quantified by analysing micro-aggregate stability, most commonly in the 

form of water dispersible clay (WDC) experiments (Seta & Karathanasis 1996; Amézketa 1999).  Due 

to the inherent higher stability of micro-aggregates compared to macro-aggregates and clay 

flocculation’s fundamental contribution to overall soil aggregation and structure, WDC measurements 

are deemed to be vital in soil stability studies (Dexter 1988; Amézketa 1999). The WDC fractions 

determined for top-and subsoil horizons in the Western Cape and Mpumalanga Highveld revealed two 

very important features of clay stability in these soils. Firstly, both top-and subsoil WDC was 

significantly higher in the Western Cape profiles compared to the Highveld (Figures 4.2a and b). 

Secondly, within the more dispersive Western Cape soils WDC was significantly higher in the bleached 

compared to the non-bleached topsoil horizons (Table 4.3, Figure 4.2a), with subsoil WDC also 

exhibiting a similar trend (Table 4.3, Figure 4.2b).  

The WDC results of both the top-and subsoil horizons suggests that the Western Cape profiles are 

more dispersive in nature than the soils sampled up on the Highveld. Seeing that both the recorded 

FeCBD and FeAAO contents also tended to be higher in the Western Cape profiles compared to the 

Highveld (Tables 4.8 and 4.9), this represented an interesting anomaly primarily because Fe oxides are 

deemed to enhance structural stability and counteract clay dispersion (Le Bissonnais 1996; Seta & 

Karathanasis 1996; Amézketa 1999). According to Van den Broek (1989) and Duiker et al. (2003) in 

most studies where Fe oxides were found to have a weak stabilising effect on the soil colloidal fraction 

(e.g. Boggaard 1983; Bartoli et al. 1991), the authors neglected to properly characterise the Fe oxides 

Stellenbosch University  https://scholar.sun.ac.za



108 
 

that were present in those studied soils. According to these authors, the distribution, particle size and 

crystallinity of Fe oxides will have a profound influence on their particle stabilising capacity. Duiker et 

al. (2003) in particular focussed on the influence of oxide crystallinity on clay stabilisation and in 

support of the findings by Arduino et al. (1989), concluded poorly-crystalline and therefore more 

reactive Fe oxides, to be more effective in aggregating and stabilising soil particles than more 

crystalline variants. Based on this evidence, one of the hypotheses in this study for eluviation-related 

bleaching in the Western Cape was that due to the mature age of the landscape and its soils (Hendey 

1983), the present Fe oxides will be extremely crystalline and therefore less reactive and capable of 

stabilising the clay phase (Bech et al. 1997; Duiker et al. 2003). However, as presented in the previous 

section of this discussion, Fe oxide characterisation with regards to crystallinity and reactivity 

indicated that proportionally similar amounts of crystalline and poorly-crystalline Fe oxides were 

present in both the Western Cape and Highveld (Figures 4.7 and 4.8). Furthermore, there was no 

difference in the degree of crystallinity of the Fe oxides present in the Western Cape’s bleached and 

non-bleached profiles despite the bleached variants having a more dispersive clay phase. It would 

therefore seem that despite the equally reactive Fe oxide fractions in the Highveld and Western Cape, 

the Fe oxides present in the Western Cape soils are unable to effectively stabilise the clay phase. In 

addition, the lack of a difference in the degree of crystallinity of the Fe oxides present in the bleached 

and non-bleached Western Cape profiles further disproves any crystallinity-related explanations for 

the weak stabilising capacity of the Fe oxides present in these soils.  

The dynamic and complex nature of the clay dispersion phenomenon cautions one to solely attribute 

the dispersive nature of the Western Cape soils to an inability of the present oxidic minerals to provide 

a stabilising effect on micro-aggregate level. Although the evidence suggest that reactive and 

abundant Fe oxide phases are present in these distinctly dispersive soils, authors such as Amézketa 

(1999) advises that with regards to clay dispersion ‘one must not consider one parameter without 

considering the interactions with the other parameters’. Similarly, authors such as Le Bissonnais 

(1996), Laker (2004) and Van Zijl et al. (2014) have all reported on the interactions of dispersion factors 

and the many processes involved with this phenomenon. To even further substantiate the complexity 

of clay dispersion and especially the role of Fe oxides in its dynamics, various accounts of red, Fe-rich 

soils that are prone to dispersion also exist. Authors such as Fedoroff (1997) and Yaalon (1997) studied 

red Mediterranean soils and concluded clay illuviation to be a prominent pedogenetic process in these 

soil environments despite the Fe oxides present at these locations. Under South African conditions, 

Laker & Smith (2006) reported instances of severely eroded red soils in the former Transkei region of 

the country. Fey (2010) in his description of oxide-rich South African soils explains that the luvic 

properties of some red- and yellow-brown apedal profiles also suggest that oxidic minerals do not 
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impart sufficient stability to clay particles to prevent their dispersion under all circumstances, a feature 

also noted by Van Zijl et al. (2014). Therefore, to be able to make definitive statements about the 

enhanced dispersive nature of the soils in the Western Cape and even more so, the bleached profiles 

of this province, a number of dispersion factors other than sesquioxides were investigated.  

With the exception of clay mineralogy, the majority of the factors known to enhance soil dispersion 

were investigated in this study (Le Bissonnais 1996; Amézketa 1999; Laker 2004). Neither the EC, pH 

nor the organic matter fraction of the sampled profiles proved to differ between the stable Highveld 

and unstable Western Cape soils and were not deemed to play a role in the dispersibility of the 

Western Cape soils (Table 4.5, Figures 4.10 & 4.11). However, the normalised ratio of FeCBD: clay 

indicated that although the Western Cape soils had more Fe oxides and a greater clay fraction, 

proportionally more clay tended to be present per percentage Fe than in the Highveld (Figure 4.9). 

Although reactivity rather than the abundance of Fe oxides are deemed to be more significant in this 

regard (Thompson et al. 2011), the fact that more clay has to be stabilised per oxide molecule implies 

that the sheer abundance of clay particles could potentially overwhelm the stabilising capacity of the 

present Fe oxides and therefore contribute to the more dispersive nature of the Western Cape soils. 

In addition to the FeCBD: clay ratio the determined exchangeable cations provided the most significant 

results with regards to clay dispersion in the Western Cape. Both the exchangeable sodium percentage 

(ESP) and Ca:Mg ratios of the sampled top- and subsoil horizons proved to differ between the Western 

Cape and Highveld. Figure 4.4 indicates the significantly higher ESP values that were recorded in 

topsoil horizons of the Western Cape profiles as well as a similar tendency in the subsoil horizons at 

this location. Figure 4.5 in addition also provides evidence for proportionally more Mg relative to Ca 

on the exchange sites of the Western Cape topsoil- and subsoil horizons compared to those of the 

Highveld. Laker (2004) states that low soil Ca:Mg ratios are common throughout South Africa and is 

more often than not related to the specific parent material from which the soils develop. In addition, 

the high exchangeable sodium levels (and to some extent Mg as well) commonly reported in soils 

along coastal regions such as the Western Cape are proposed to be a result of atmospheric accession 

of sea salts (Gunn & Richardson 1979). 

The negative effect of high levels of exchangeable sodium on soil structural stability is well-known and 

accounts thereof have been made in many studies (Le Bissonnais 1996; Seta & Karathanasis 1996). 

This dispersing effect of sodium is related to the small and strongly hydrated nature of the monovalent 

cation, which upon its addition to the soil solution forms a thick film around colloidal particles thereby 

generating repulsive forces greater than the weak van der Waals attractive forces responsible for clay 

flocculation (Rengasamy & Olsson 1991). Richards (1954) (as cited by Laker 2004) reported a threshold 
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ESP value of 15 to be the level at which severe soil physical deterioration will start to occur. 

Consequently, an ESP value of 15 has been adopted and is currently still established as the critical 

value above which a Natric soil horizon in both the World Reference Base (IUSS working group WRB 

2007) and Soil Taxonomy (Soil survey staff 2010) is defined. Despite the view that clay dispersion 

mainly depends on the ESP of a soil (Le Bissonnais 1996) various studies have concluded that due to 

the complex interactions of the different clay dispersion factors, defining specific ESP value ranges to 

predict soil stability is of little significance. Cresimanno et al. (1995) reported dispersion to occur at 

ESP levels between 2 and 5 percent whilst Van Zijl et al. (2014) found an ESP of as little as 0.67% to be 

sufficient in causing dispersion to the extent that it resulted in gully erosion. Although the ESP levels 

of the Western Cape soils by definition only represent marginal- to non-sodic conditions (Hazelton & 

Murphy 2007), the results from this study are in support of the statement made by Laker (2004) who 

concluded that the effect of sodium on the dispersion and erodibility of soils will differ and therefore 

no single threshold value can be adopted to quantify its influence.  

The significance of the determined Ca:Mg ratio and the higher levels reported in the dispersive 

Western Cape soils, is that regardless of the divalent nature of both these cations, Mg has been 

reported to be less effective in flocculating clay particles than Ca (Rengasamy et al. 1986; Curtin et al. 

1994; Dontsova & Norton 2001). Similar to sodium, the greater hydration energy of Mg over Ca means 

that the hydration radius of the Mg cation is greater which causes a larger separation distance 

between clay layers and decreases the attractive forces responsible for flocculation (Dontsova & 

Norton 2001). What is even more significant in the context of this study is that in soils exhibiting higher 

sodicity levels, Mg has been shown to exhibit enhanced negative effects on soil structural stability 

(Bakker & Emerson 1973; Emerson & Bakker 1973; Rengasamy et al. 1986; Curtin et al. 1994). Rahman 

& Rowell (1979) and Curtin et al. (1994) state that besides the more direct influence of Mg on clay 

stability due to the larger hydration sphere of the cation, Mg can also enhance dispersion in a more 

indirect manner in sodic soils. This more indirect mechanism is related to the Mg-facilitated higher 

adsorption of sodium on the soil exchange sites which means that it is essentially sodium that is 

responsible for the higher dispersion rates in these soils. Various South African studies have also 

reported on the dispersing effect of Mg and in the study done by Bloem & Laker (1994) Ca:Mg ratios 

of below one was deemed to enhance dispersion in a variety of soils sampled across the country. 

Additional experimental evidence for the enhanced dispersion effect of low Ca:Mg ratios in South 

African soils are also provided in the study done by Nel (1989) (as cited in Laker 2004). This author 

summarised that a low Ca:Mg ratio in combination with amongst others, a clay mineralogy consisting 

primarily of illite and an ESP of 3 or more, to be sufficient in causing dispersion. 
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Based on the above-presented literature, it is proposed that the dispersive nature of the soils sampled 

in the Western Cape is a result of an exchange complex comprised of primarily Na, Mg and Ca (Bakker 

& Emerson 1973; Emerson & Bakker 1973; Rengasamy et al. 1986; Laker 2004). Sodium and Mg are 

present at such levels that the dispersion influences related to their individual cation characteristics 

are exaggerated to such an extent that clay dispersion is a common phenomenon in the soils from this 

region. However, the data reported in Figures 4.4 and 4.5 present some anomalies in that although an 

inflated Na and Mg content can explain the difference in the WDC phase between the Western Cape 

and Highveld soils, none of the dispersion factors considered provided an explanation for the 

significantly higher WDC percentages in the bleached profiles of the Western Cape compared to the 

non-bleached variants. This means that the reasons for the strong relationship between clay 

dispersibility and bleaching in these soils is still unknown and even more significant, no certainty exist 

about which process precedes the other. It is entirely possible that clay dispersion is caused by the 

loss of Fe oxide coatings from the soil mineral particles as opposed to clay dispersion resulting in 

bleached soil colours. However, to be able to more definitively report on the role of clay eluviation as 

a potential mechanism for topsoil bleaching, it was assumed that the absence of statistically 

prominent dispersion factors in the bleached Western Cape profiles is related to dissimilarities in the 

individual profile characteristics and therefore inadequate statistical replications. As a result, each of 

the bleached profiles sampled in the Western Cape had to be individually re-assessed to identify 

potential influences that could be responsible for bleaching under circumstances other than clay 

eluviation and which could be responsible for the absence of statistical evidence towards eluvation-

related bleaching in this Province. We proposed that lithological discontinuities between the top- and 

subsoil horizons of the bleached Western Cape profiles as well as the influences of podzolization are 

most likely responsible for this apparent anomaly.  

For all of the sampled profiles the lithological continuity of the top- and subsoil horizons were 

calculated by means of the comparative particle size distribution (CPSD) index (Langohr et al. 1976). 

This index indicates the percentage of similarity between the sand fractions of the top- and subsoil 

horizons. One of the major shortcomings of this method however, is that index ranges indicative of 

the uniformity of the underlying lithology are not specified and therefore have to be adapted to the 

particular soils under investigation. For the purpose of this study, the CPSD index ranges were defined 

as follows: <90 = discontinuous; 90-94 = transitory; >94 = continuous. These ranges were based on the 

work from a combination of authors including Rindfleisch & Schaetzl (2001) who used a CPSD 

threshold value of 93 to determine lithological uniformity and Liebens (1999) who arbitrarily selected 

90 as the threshold. Langohr & Van Vliet (1979) used categories where index values greater than 94 

represented soils with high uniformity, 94-90 for soils that were highly similar and 90-85 for soils 
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considered similar. Although the CPSD method and the above defined ranges did indicate lithological 

discontinuities to occur in both bleached and non-bleached profiles in the Western Cape and Highveld, 

it was concluded that no relationship existed between the occurrence of bleaching and the 

distribution of binary profiles in each location. The majority of the profiles were also classified in the 

90-94 CPSD value range where no clear conclusions could be made about the lithological uniformity 

of the profile horizons. To compensate for the influence of lithology in statistical analyses where such 

a small data set is used was deemed to be impractical. Despite the findings of this study, it is extremely 

important to state that the influence of transported material on the occurrence of topsoil bleaching 

in profiles across South Africa cannot be overlooked and will surely in some instances explain the 

presence of morphologically contrasted horizon sequences.  

The process of podsolization is commonly known to cause lighter colours in topsoil horizons (Davey et 

al. 1975) and bleaching as a result of podsolization is recognised within the South African soil 

classification system (Soil classification working group 1991). This pedogenetic process by which 

complexes of organic acids with Al and Fe are formed and transported down a soil profile is regarded 

to occur only under very specific environmental, climatic and geological conditions (Lundström 2000). 

According to Fey (2010) podzolic soils in South Africa are most commonly found on sandy parent 

materials in the higher rainfall areas of the western and south-eastern Cape where the occurrence of 

fynbos vegetation also enhances podzol development. Profile sampling in the Western Cape therefore 

required a certain degree of awareness as to the possibility of observing bleached topsoils that 

developed as a result of podsolization. Due to the known bleaching effect of this pedogenetic process, 

the inclusion of a podzolic bleached profile could potentially skew the statistical output and distort 

evidence for alternative or novel mechanisms of bleaching.  

To limit the possibility of such errors, the Fieldes and Perrott NaF field test for the detection of podzol 

B horizons was used (Brydon & Day 1970; Clough & Payn 1988). Two bleached profiles in particular, 

one on the midslopes of Papegaaiberg outside Stellenbosch (Pb 2) and the other towards the southern 

parts of the town of Malmesbury (Mb 1), had observable podzolic tendencies (Figure 4.20). The 

climatic conditions of the regions were deemed to be in line with what is required for podzol 

development, and although the type of vegetation that naturally occurred on the Malmesbury soil 

could not be identified due to human disturbances, natural fynbos was recorded at the Papegaaiberg 

site. The profile feature that provided the most evidence towards a podzolic soil environment was the 

sandy texture (>65%) and low clay contents (<15%) of both these soils (Figures 4.21 and 4.22). 

Morphologically, these two profiles were also the only soils sampled in the Western Cape with an 

undeniable yellow subsoil colour instead of the borderline red/yellow-brown matrixes observed in the 

other profiles. Due to their sandy nature, Pb 2 and Mb 1 also did not express a weak granular structure 
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similar to the other WC soil profiles. Despite the observable differences of these two profiles in 

relation to the other bleached profiles sampled in the Western Cape, the Fieldes and Perrott NaF field 

test indicated the subsoils in these profiles to not comprise of podzol B horizons (Soil classification 

working group 1991). Consequently, these two profiles were included in the overall statistical 

analyses.  

Only after no clear explanation could be provided for the more dispersive clay phase of bleached 

profiles in the Western Cape did the podzolic nature of profiles Pb 2 and Mb 1 seem more significant. 

Despite the failed detection of a podzol B horizon in these profiles by the Fieldes and Perrott NaF test, 

the possibility of podsolization still occurring to some extent in these soils could not be excluded. 

Consequently, the pH in 1 M NaF was determined for all the top- and subsoil horizons collected during 

the study to provide some reference. Similar to the Fieldes and Perrott field test, the reaction of NaF 

with hydroxyaluminium present in the soil environment causes the release of hydroxyl ions and higher 

pH values (Brydon & Day 1970; Alves & Lavorenti 2004). In the field test, a phenolphthalein colour 

development is used to indicate a rise in pH. Similarly, a higher pHNaF value would imply a higher 

content of reactive hydroxyaluminium, which in the study by Brydon & Day (1970) was in agreement 

with the quantity of freshly accumulated poorly crystalline aluminosilicates characteristic of podzolic 

soil horizons. These authors found that all of the podzolic soils sampled in their study had a pHNaF value 

close to 11 but established a threshold pHNaF value of 10.2 to be in agreement with podzolic soil 

conditions detectable by means of the field test. In South Africa, Clough & Payn (1988) recorded some 

podzol B horizons with pHNaF values smaller than 10.3 but still concluded the field test to be adequate 

in detecting the majority of podzolic horizons in this country. Due to the fact that the field test was 

negative for podzol B horizons in profiles Pb 2 and Mb 1, the expectation was that pHNaF values in the 

extent of 10 or above would not be reported. The aim was rather to see how the pHNaF of profile Pb 2 

and Mb 1 compared to other profiles sampled in the Western Cape.   
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The measured pHNaF values ranged from 7.6 to 9.2 in the Highveld topsoils and from 7.6 to 9.5 in the 

subsoil horizons sampled at this location (Appendix 4.4). In the Western Cape, the values ranged from 

7.7 to 9.6 in the topsoil and 8 to 9.7 in the subsoils. The average pHNaF value for the Highveld top- and 

subsoils respectively was 8.5 and 8.8 with the Western Cape averages being 8.2 and 8.9. Similar to 

Brydon & Day (1970), a good correlation was also recorded between pHNaF and AlAAO verifying the 

reaction between NaF and supposedly poorly-crystalline and reactive aluminosilicates (Appendix 4.9). 

The top- and subsoil pHNaF values of profile Pb 2 was 7.8 and 9.1 whilst profile Mb 1 also had a topsoil 

pHNaF value of 7.8 but a lower subsoil value of 8.5. Although the pHNaF values of these two profiles do 

not seem excessive, when all of the pHNaF values of the Western Cape soils are plotted against their 

determined sand fractions (Figures 4.20 & 4.21) these profiles can be clearly distinguished.  

Figure 4.20. The bleached Western Cape profiles Pb 2 (left) and Mb 1 (right) proposed to be podzolic in nature during field 
sampling although the Fieldes and Perrott podzol test indicated no podzol B horizons were present.   
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Figure 4.21. The relationship between topsoil sand content and the measured pH in 1 M NaF of the Western Cape profiles. 
Both profiles Pb 2 and Mb 1 are indicated. 

 

 

Figure 4.22. The relationship between topsoil sand content and the measured pH in 1 M NaF of the Western Cape profiles. 
Both profiles Pb 2 and Mb 1 are indicated. 

 

The proposed presence of very reactive aluminosilicates as indicated by the relatively higher pHNaF and 

the substantial difference between the pHNaF values of the top- and subsoil horizons, as well as the 

significantly greater sand fraction in profiles Pb 2 and Mb 1 were deemed to be evidence enough to 

suggest potential podzolic influences in their genesis. The other soil profile which expressed a similar 

relationship between pHNaF and total sand content was Mb 2, another profile sampled in the 

Malmesbury region. Profile Mb 2, however, was not bleached nor did it exhibit any podzolic 

tendencies but rather had a uniform red colour in both its top- and subsoil horizons.  

Upon the exclusion of the profiles Pb 2 and Mb 1 due to their suspected podzolic nature, statistical 

analyses were again conducted on the dispersive top- and subsoil horizons of the Western Cape 
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profiles. The WDC phases proved to remain significantly higher in the bleached compared to the non-

bleached soils. Similarly, the determined FeCBD: clay and ESP values did not differ between the top- or 

subsoil horizons of the bleached and non-bleached profiles as previously reported. The exclusion of 

profiles Pb 2 and Mb 1 however elucidated a trend of lower Ca:Mg ratios in the topsoil horizons of 

bleached Western Cape profiles compared to the non-bleached variants (p=0.11) (Figure 4.23). It 

would therefore seem that a greater proportion of Mg relative to Ca on the exchange sites of these 

soils is enhancing clay dispersion and resulting in a bleached topsoil appearance.  

 

Figure 4.23. The average topsoil Ca:Mg ratio of bleached and non-bleached profiles in the Western Cape following the 
exclusion of profiles Pb 2 and Mb 1. Standard error bars and significance letters are indicated.  

 

To further substantiate the probability that enhanced dispersibility of the clay phase is due to lower 

Ca:Mg ratios, clay mineralogy was determined for the top- and subsoil horizons of two of the bleached 

Western Cape profiles. As previously mentioned, Nel (1989) reported that under South African 

conditions a low Ca:Mg ratio will be influential to clay dispersion if illite is dominant in the clay fraction.  

The determined mineralogy of the two profiles indicated the soils to be well-weathered (XRD patterns 

provided in Appendix 4.10). A clay assemblage comprised of both kaolinite and illite as well as strongly 

crystalline hematite and goethite was observed. Although the XRD results undoubtedly showed that 

kaolinite is the dominant clay mineral in these soils, the presence of illite even as a subordinate clay 

mineral may enhance clay dispersion in these bleached Western Cape profiles. Amézketa (1999) 

makes note of the difficulty of assessing the influence of clay mineralogy on soil stability due to the 

mixture of clay minerals usually present within a soil and the interactions of various dispersion factors 

with each other. Nonetheless, the overall higher sodicity levels of the Western Cape soils in 

combination with the lower Ca:Mg ratio and traces of illite reported in the mineralogy of some of the 
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bleached profiles in this region may explain the dispersibility of the clay phase in these soils. It must 

be stated though that from the limited dataset generated in this study no decisive mechanism could 

be attained for the clay dispersion differences observed in the bleached and non-bleached soils of the 

Western Cape. How clay dispersion is related to bleaching therefore remains a somewhat perplexing 

concept. 

Topsoil bleaching can be the result of a number of processes related to clay dispersion. An important 

distinction to make is that mobile clay is not representing a pigmentation agent that is moving out of 

the profile as would be the case with reduced ferrous Fe, but it would rather seem to be responsible 

for generating some or other condition within the soil that allows for this loss in colour. It is therefore 

impossible to investigate clay dispersion as a probable cause for bleaching without considering what 

related processes can result in a paler soil colour, and how, if at all, clay dispersion can contribute to 

or initiate such processes. It must be mentioned however, that if one is to consider the presence or 

rather absence of Fe oxides to be responsible for colour expression in these soils, no certainty exists 

surrounding whether mobile clay is transporting the Fe oxides or whether Fe reduction is essentially 

destabilising the clay phase and facilitating dispersion. Nonetheless, to essentially be able to state that 

clay dispersion can be responsible for topsoil bleaching, it is proposed that mobile clay would have to 

either i) result in a permeability contrast between the top and subsoil horizons that allows for changes 

in the redox condition of a soil, or ii) be acting as a carrier agent for Fe oxides.  

It is widely recognised that the processes of clay eluviation and illuviation occurring continuously 

within a soil profile, can be responsible for a textural and structural difference between top- and 

subsoil horizons (Chittleborough 1992; Fritsch & Fitzpatrick 1994). Clay eluviation in the topsoil is 

followed by clay illuviation down through the profile which results in the establishment of a permeable 

topsoil layer overlying a less permeable subsoil layer and consequently the formation of saturated soil 

conditions during rainfall events. This would result in Fe reduction and bleaching through ferrous Fe 

translocation, a mechanism fairly similar to that proposed for the Highveld soils. Within this study, the 

evidence for Fe reduction in the Western Cape remains inconclusive seeing that although the luvic 

nature of many of the soil profiles did cause a slight textural contrast, this showed 1) no relationship 

with bleaching and 2) no detectable difference in the Fe oxide characteristics were reported between 

bleached and non-bleached profiles. The lack of an observable landscape-related expression of 

bleaching and the occurrence of bleached topsoils predominantly on well-drained landscape positions 

further discourages the possibility of a saturation-induced bleaching mechanism. Nonetheless, 

caution is advised to anyone definitively stating that Fe reduction has no or a limited role to play in 

topsoil bleaching in weakly structured red and yellow-brown soils of the Western Cape. No evidence 

was obtained in this study to enable one to make conclusive statements regarding the role of Fe 
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reduction and clay eluviation as independent or complementary processes responsible for bleaching 

in the sampled Western Cape soils. 

An alternative mechanism related to clay dispersion and proposed to be responsible for bleaching, is 

the transportation of Fe oxides by means of clay movement (Fanning & Fanning, 1989). Although such 

a pigmenting process is in stark contrast to the previously-mentioned stabilising effect of Fe oxides on 

clay minerals, authors such as Fedoroff (1997) and Yaalon (1997) put forward a rubefaction process in 

the red Mediterranean soils they investigated where pigmented soil material is transported with clays 

to depth. They propose clay eluviation and the more general translocation of particles to be the soil 

forming process responsible for the expression of red colours throughout the soil profiles sampled in 

their studies. Although no scientific evidence was collected in this study to support such a process in 

the bleached soils of the Western Cape, the strong association between clay dispersion and the 

occurrence of bleaching implies that such a possibility cannot be disregarded. 

 

4.4 CONCLUSIONS 

Physical soil characteristics including the particle size distributions and bulk densities of the sampled 

soils did not show any relation to the occurrence of bleaching in topsoil horizons. Similarly, chemical 

parameters such as pH and EC, exchangeable acidity, the extractable Al oxide phases and the 

determined organic C and N contents also had no observable influence on the bleaching phenomenon 

in either of the two locations. The most significant findings of this broad scale investigation into the 

characteristics of bleached profiles in the Western Cape and Highveld, were that sampled profiles in 

the Western Cape possessed a significantly more dispersive clay phase compared to the Highveld soils. 

Clay dispersibility was even more enhanced in the bleached topsoils of this location compared to the 

non-bleached variants. Exchangeable basic cations may provide the explanation for this phenomenon, 

with elevated levels of Na and Mg being reported on the exchange sites of the Western Cape soils 

relative to those of the Highveld. The calculated fine clay change also tended to be higher in the 

Western Cape soils and even more so in the bleached profiles of this location. Although it was 

stipulated that the calculated fine clay change parameter does not give an absolute indication of clay 

translocation, the presumption that the fine clay fraction will be the most mobile in soil solution 

provides potential evidence of clay movement from the A to the B horizons of the sampled profiles. 

The lack of a significant difference in the topsoil extractable FeCBD contents between bleached and 

non-bleached profiles was attributed to the nature and small size of the soil data set. Making use of 

the additional auger samples collected on the Highveld as part of this study and their corresponding 

XRF-determined Fe contents, bleached topsoil horizons proved to have a lower total Fe content 
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compared to their non-bleached counterparts. Fe oxides are accordingly deemed to be the main 

pigmentation agents in the sampled profiles and therefore the pale colouration exhibited in bleached 

topsoils are considered to be the result of Fe loss. Overall the Western Cape soils tended to have both 

a higher FeCBD and FeAAO content than the Highveld soils. The calculated Fe crystallinity index (CI) of the 

present Fe oxides, however, indicated that proportionally similar amounts of crystalline and poorly-

crystalline Fe phases were present at both locations. The amount of poorly-crystalline Fe oxides 

proved to be slightly higher in bleached compared to non-bleached soils, with this trend being more 

pronounced on the Highveld. This proportionally greater abundance of poorly-crystalline Fe oxides 

was attributed to a wetter soil moisture regime and more freshly precipitated Fe in the Highveld 

bleached profiles.   

Field observations together with the presented catenal cross-sections and the proportionally greater 

amounts of poorly crystalline Fe oxides that were reported for the bleached profiles in the Highveld, 

suggest Fe reduction to be the pedogenetic process responsible for bleached topsoil horizons 

overlying weakly structured subsoils in this region of South Africa. The more dispersive clay phase 

reported in the Western Cape soils eluded to the importance of clay eluviation as pedogenetic process 

in these profiles. For the Western Cape profiles, the Ca:Mg ratio tended to be lower in the bleached 

profiles compared to the non-bleached variants, substantiating the strong association that exists 

between bleaching and clay dispersion in these soils. The presented data provide no clear explanation 

for how clay eluviation results in bleached soil colours but the strong relationship between bleaching 

and clay dispersibility indicates that clay eluviation has some connection to the bleaching process in 

weakly structured red and yellow-brown soils of the Western Cape. 

It is clear from the data presented in this chapter, that the mechanism of topsoil bleaching in weakly 

structured profiles is complex, especially in the soils of the Western Cape. Each profile used represents 

a complex amalgamation of pedogenic processes and does not serve as a true statistical replicate of a 

particular morphology. Thus trying to determine statistically significant differences between bleached 

and non-bleached soils, in order to make inferences on their different genetic pathways is challenging.  

That said, it can be concluded that there are real differences in weakly structured profiles in the 

Western Cape and Mpumalanga Highveld in terms of clay dispersibility which should provide some 

guidance on the classification of these soils.  
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CHAPTER 5: CONCLUSIONS AND RESEARCH SIGNIFICANCE 

 

5.1 STUDY CONCLUSIONS 

 Differences were recorded in the manner with which visual perception and 

spectrophotometer measurements registered the Fe oxide-induced soil colours in the Munsell 

colour space. In general, the instrument reported significantly lower chromas (with up to three 

chroma units) and redder hues (by approximately one unit) compared to that which was 

visually determined. The eye perceived the soils to be brighter and more chromatic and, as a 

result, was less sensitive towards detecting bleached horizon colours. Munsell value 

corresponded well between measured and perceived colour determination techniques and 

was deemed to be the Munsell variable that can be most precisely determined through visual 

means.  Due to the nature of the colour variation involved with chroma it was concluded that 

this colour variable is the most difficult to accurately determine through visual comparison to 

soil colour chips. 

 The addition of moisture to the soil samples resulted in redder hues, darker values and lower 

chromas. The darkening effect of moisture was also observed in the lower L* values that were 

reported for moist soil samples. In the case of hue, instrument measurements were 

significantly lower (redder) than that which was visually perceived whilst with Munsell value, 

the eye tended to exaggerate the darkening effect of moisture and registered significantly 

lower values. It was determined that although soil colour changes significantly from a dry to a 

moist state, the instrument records this effect across both Munsell hue and value whereas 

visual colour determination tends to predominantly register the changes in Munsell value.  

 The discrepancies between measured and perceived colour variables were related to the 

inconsistencies associated with visual colour determination, which is the result of a series of 

physical and psychophysical influences affecting human colour perception. Under moist soil 

conditions, these influences coupled with the enhanced sensitivity of the instrument towards 

changes in the soil’s reflective properties and the addition of unstandardized quantities of 

moisture are proposed to have further resulted in the differences that were reported between 

the measured and perceived colours of dry and moist soil samples.  

 Visual colour determination was deemed to be sufficient for general soil classification 

purposes but with regards to more intricate soil colour investigations where colour’s 

relationship to one or other soil property is under scrutiny, more precise colour 

measurements techniques such as the use of a spectrophotometer, are prescribed.  
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 In the weakly structured red and yellow-brown soil profiles sampled across parts of the 

Western Cape and Mpumalanga Highveld, Fe oxides proved to be the main pigmentation 

agents responsible for the expression of red- and yellow based colours. Results indicated that 

an increase in the soil Fe content resulted in a reddening of the soil sample and that in most 

instances the red soils that were sampled had the greatest Fe oxide contents. 

 The discrepancies between visual and instrument colour measurement techniques resulted in 

different profile classifications and groupings. Spectrophotometer-measured colour was 

deemed to be more precise and consistent and was therefore used to group bleached and 

non-bleached profiles for subsequent statistical analysis and significance testing. 

 Important observations regarding the occurrence of bleached topsoils, the type of well-

drained subsoil they overlie and the landscape relationships associated with this feature were 

made in the Western Cape and Mpumalanga Highveld: i) Bleaching on the Mpumalanga 

Highveld was observed to be landscape related with bleached orthic A horizons only occurring 

on yellow weakly structured subsoil horizons in either midslope or footslope positions along 

the red-yellow-grey plinthic catenas. As a result sampling on the Mpumalanga Highveld was 

conducted along catenal transects.  ii) The bleached profiles in the Western Cape did not seem 

to follow an observable landscape pattern and subsoils comprised of both redder and yellower 

weakly structured horizons were recorded.  

 The majority of the determined chemical and physical soil properties did not differ between 

the Western Cape and Highveld profiles and did not show any relation to the bleaching 

phenomenon in either of the two locations. However, the different extractable Fe phases and 

the water dispersible clay (WDC) fractions of the sampled horizons proved to be significant 

soil features associated the occurrence of bleaching.  

 The Western Cape soils possessed higher FeCBD and FeAAO contents but the amount of 

crystalline to poorly-crystalline Fe was proportionally similar between the two locations. 

Bleached profiles tended to have more poorly-crystalline Fe in the topsoil across both 

locations, with this trend being more pronounced in the Highveld soils. Proportionally greater 

amounts of poorly-crystalline Fe was deemed to be indicative of a wetter soil moisture regime 

and alternating cycles of Fe reduction and oxidative precipitation. 

 Western Cape and Highveld profiles expressed significant differences in terms of the water 

dispersible clay phases of the soils. In the Western Cape, profiles tended to be more dispersive 

than on the Highveld, with the bleached Western Cape profiles proving to be even more 

unstable than the non-bleached variants. It was concluded that the Fe oxides in the Western 

Cape were unable to stabilise the clay phase in these locations and that the dispersive nature 
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of these soils can potentially be attributed to the elevated levels of Na and Mg recorded on 

the soil exchange sites. It was however recognised that clay dispersion and the factors 

responsible for its expression in the soil represents a complex interaction. An hypothesis was 

subsequently developed which propose that within a soil, flocculants and dispersing agents 

are essentially in a “tug-of-war”, where certain threshold values for each factor dictate at 

which stage clay will become dispersive or remain stable. 

 The reported poorly-crystalline nature of the Fe oxides together with field observation and 

the presented catenal cross-sections, suggest Fe reduction to be the pedogenetic process 

responsible for bleached topsoil horizons overlying weakly structured subsoils on the 

Mpumalanga Highveld.  

 The strong association that was recorded between bleaching and clay dispersibility in weakly 

structured red and yellow profiles of the Western Cape suggest clay eluviation to be a central 

pedogenetic process in these soils. Importantly, the presented data provided no clear 

explanation for how clay eluviation results in bleached soil colours and no evidence was 

obtained in this study to enable one to make conclusive statements regarding the role of Fe 

reduction and clay eluviation as independent or complementary processes responsible for 

bleaching in the sampled Western Cape soils. 

 Lithological discontinuities and podzolization are proposed as additional potential causes for 

bleached topsoils overlying weakly structured subsoil horizons in South Africa but further 

work would need to verify this. 
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5.2 RESEARCH RECOMMENDATIONS 

As with most scientific research focussed on novel topics, the outcome of this study leaves just as 

many questions as it provides answers. Our broad-scale investigation into the dynamics and 

characterisation of bleached topsoils on weakly structured subsoils in South Africa highlighted some 

interesting questions within the South African pedological sphere, some of which provide fascinating 

grounds for future research.  

 Eluviation-related bleaching in the Western Cape? Probably the most significant question to 

ask in the light of the presented data, is how clay dispersibility is related to bleaching in the 

weakly structured red and yellow soils of the Western Cape? There is no doubt that due to 

the geomorphological history of the area, these soils represent a special condition. To explain 

this observed relationship, we proposed two potential mechanisms: 1) mobile clay is moving 

down the profile and in doing so, transports soil pigmenting agents such as Fe oxides out of 

the topsoil resulting in a bleached soil appearance, or 2) Fe reduction is responsible for the 

bleached colouration and the removal of Fe oxides from the topsoil thereby also destabilising 

the clay phase. Further research is needed to establish the dominant mechanism in this 

regard. 

 The significance of bleached topsoils? Establishing the extent and presence of bleaching on 

weakly structured subsoil horizons in the Western Cape and Mpumalanga Highveld provides 

little information about the significance thereof to land-use. Based on basic soil and crop-

production knowledge we know that features such as water saturation and clay dispersion are 

not ideal under most circumstances. How these features can influence yields or soil-use 

efficiency would therefore need to be determined. Bleaching’s significance towards wetland 

delineation is another aspect deserving of consideration.  

 The role of organic matter (OM)?  Organic matter serves as the fuel for Fe reduction. Our data 

did not provide any conclusive evidence about its role in reduction-related bleaching. Based 

on the premise that topsoils will inherently have a higher OM content and therefore a lower 

redox potential, OM is proposed to play an essential part in reduction-related bleaching. 

Investigating this dynamic in more detail might therefore prove interesting. 

 The stabilising effect of Fe oxides? Although many reports have been made of the 

inconsistent stabilising effect that Fe oxides have in soils, in most studies where discrepancies 

were recorded Fe oxides were not properly characterised. Taking this into consideration, one 

of the initial hypotheses of this study was that in the Western Cape, the advanced age of the 

soils mean that extremely crystalline Fe phases are present that are less reactive and therefore 

less able to stabilise the clay phase. Our characterisation of Fe into poorly-crystalline and 
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crystalline phases suggested that greater absolute amounts of both Fe phases were present 

in the very dispersive Western Cape soils but proportionally equal amounts of poorly-

crystalline, or more reactive, Fe were present in the Western Cape and the stable Highveld 

soils. Although this disproved the hypothesis, the dispersive nature of the clay phase in the 

Western Cape eluded to an inability of the Fe oxides to provide a stabilising effect. Elevated 

levels of Na and Mg relative to Ca were suggested to be responsible for the dispersive nature 

of the clay phase and the hypothesis developed that within a soil, flocculants and dispersing 

agents are essentially in a “tug-of-war”, where certain threshold values for each factor dictate 

at which stage clay will become dispersive or remain stable. It is however recognised that clay 

dispersion and the factors responsible for its expression in the soil represents a complex 

interaction that is soil specific and therefore one that is even more complex to investigate 

through experimental means. Nonetheless, it is recommended that a more meticulous scale 

for quantification of Fe oxide crystallinity be used and tested in combination with a number 

of soil dispersion factors to investigate the influence of oxide crystallinity on the stabilising 

capacity of Fe oxides in the presence of different known dispersing agents.  

 Hydrological relationships along a plinthic catena? Although various studies regarding the 

hydrological dynamics of red-yellow-grey soil toposequences have been conducted in 

different parts of the world, literature on the Highveld plinthic catenas are either not readily 

available or do not exist. The extensive nature with which these local catenas occur across the 

Mpumalanga Highveld provides the ideal opportunity to investigate how water influences soil 

characteristics along these toposequences. More importantly, an investigation into the 

hydrology of particularly the topsoil horizons that are part of these catenas can provide an 

indication of the degree, extent and duration of water saturation particularly in the lower 

midslope and footslope positions of these soil sequences. It would also be interesting to see 

if a difference in the moisture status of bleached and non-bleached topsoils overlying yellow-

brown apedal B subsoil horizons at different positions along these catenas are present.  

 Bleaching in other parts of the country? This study was focussed on two areas where 

bleached topsoils overlying weakly structured subsoil horizons had been previously recorded. 

Due to the variable nature of the South African soil landscape, it is not possible to make 

assumptions about the bleaching phenomenon across the entire country. Similar 

investigations into bleached topsoils overlying comparable subsoil horizons reported in other 

parts of the country, for example the Lowveld, would therefore also need to be conducted to 

better understand bleaching in the South African context.  
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5.3 BLEACHED TOPSOILS: CLASSIFICATION SIGNIFICANCE FOR SOUTH AFRICA 

Although this study predominantly aimed to determine the mechanisms by which bleached topsoils 

develop on weakly structured subsoil horizons across two regions of their distribution, the awareness 

was that a better understanding of this phenomenon would also serve to direct the future 

classification of such profiles in the field. Important observations regarding soil colour measurements 

and the outcomes it can have on soil classification were also made during the study. The significance 

of our results towards soil classification in South Africa is as follows: 

Soil colour measurement 

Within the South African soil classification system, very precise Munsell colour ranges are specified as 

criteria used for the recognition of particular diagnostic horizons. From the colour data presented in 

this study it is clear that visual colour determination is far from consistent, and no means exist 

whereby the accuracy thereof can be determined. The significance is that in scenarios where colour is 

used as the defining horizon characteristic, different observers often interpret this phenomemon in a 

different manner resulting in different classification outcomes. Where possible, surveyors should be 

mindful about using colour as the definitive diagnostic criteria and rather make use of additionally 

specified horizon criteria to aid in the classification selection. Unfortunately, in the case of bleaching 

no alternative criteria exist by which to recognise this phenomenon, and our experience is that this 

has often lead to the misidentification of topsoil bleaching in many soil profiles. Although we do not 

propose establishing additional or more defining soil characteristics for the identification of bleached 

topsoils, we do however want to focus the attention onto the colour criteria specified for this 

phenomenon. In the South African soil classification system, the defined colour ranges for the 

recognition of a diagnostic E horizon includes more precise colours than for instance the colour criteria 

specified for the recognition of an albic horizon in the WRB and Soil Taxonomy systems. Re-evaluating 

these colours in the South African context and expanding the bleached colour selection might 

therefore result in fewer mistakes with regards to the identification of bleaching.   

Furthermore, with specific relation to the recognition of bleached soil colours, the use of a 

spectrophotometer in this study indicated that where there was doubt as to whether a horizon would 

qualify as being bleached, the instrument tended to register the colour as bleached. Visual colour 

determination had a seemingly weaker ability to detect bleached soil colours.  We therefore prescribe 

that in addition to using the existent Munsell colour criteria specified for identifying bleached topsoils, 

soil scientist in the field must be aware of other colour aspects of the soil profile as well. The most 

significant we believe, is the contrast between the A and B horizon. If a clear contrast, or even a 
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tendency towards a different topsoil colour exist, the soil surveyor should rather tend towards 

classifying the profile as bleached.  

What is also important to realise is that the difference between red and yellow-brown soil colour is 

not always at the perceptual boundary one believes it to be. This is simply because the perception of 

a colour between one observer and the next, differs. Therefore, it is not proposed that the colour 

criteria specified in the South African classification system defining red and yellow-brown be changed, 

but rather that soil scientist be aware that a soil perceived to be red is sometimes per definition 

yellow-brown. In addition, it must be noted that the colour 7.5YR 5/3 is not allocated to neither yellow-

brown apedal B nor an E horizon. The colour 7.5YR 5/3 was classified as being yellow-brown in this 

study.  

Bleached topsoil horizons 

On the Mpumalanga Highveld, and as part of the red-yellow-grey plinthic catenas commonly observed 

in this region, bleached topsoils were recorded overlying yellow-brown apedal B horizons at midslope 

and footslope positions along this landscape. The observed and determined characteristics of these 

soils agree with the literature on red-yellow-grey soil toposequences and suggest that these Highveld 

catenas are a water-driven soil phenomena. It is proposed that the pedogenetic origin of these pale 

coloured topsoils is similar to that of the E horizons observed in comparable or lower landscape 

positions in this region. As a result, Fe reduction is suggested to result in the bleached colours recorded 

on the Mpumalanga Highveld. Based on the restricted occurrence of bleached topsoils on yellow-

brown apedal B subsoil horizons and the proposed relationship of this phenomenon with water 

saturation and Fe reduction, the inclusion of bleached orthic A horizons as family criteria in wetter 

variants of the yellow-brown apedal profiles are suggested for the new edition of the South African 

soil classification system. This would include the Pinedene (orthic A – yellow-brown apedal B – 

unspecified material with signs of wetness), Avalon (orthic A - yellow-brown apedal B – soft plinthic 

B) and Glencoe (orthic A - yellow-brown apedal B – hard plinthic B) soil forms.  

In addition, our observation regarding the bleaching phenomenon on the Highveld and its close 

relationship to E horizons suggest that the Constantia soil form (orthic A – diagnostic E - yellow-brown 

apedal B) would be a common occurrence along the lower landscape positions of these plinthic 

catenas. This suggests that together with the necessary perceptual shift soil scientists need to undergo 

surrounding the well-drained nature of the yellow-brown apedal B horizon, the perception about this 

soil form also requires some transformation. Fey (2010, p. 114) in his book on the Soils of South Africa 

makes record about the controversy surrounding the Constantia soil form. Here this author mentions 

the opposing trains of though, where the apparent contradictory nature of an E horizon overlying a 
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well-drained yellow-brown apedal B horizon has resulted in some to believe the Constantia soil form 

needs to be disbanded and its families be allocated to a podzolic soil form (e.g. Concordia) and  

neocutanic profile sequences (e.g. Vilafontes). Our data suggest that such a split would be incorrect 

and that the Constantia soil form deserves its place in the South African soil classification system. The 

pedogenetic origins of the Constantia horizon sequence are not restricted to podzolization or any 

other process allegedly related to the development of an E horizon on neocutanic subsoils (clay 

eluviation?), but rather that Fe reduction can be responsible for the formation of an E horizon on 

yellow-brown apedal B horizons.  

We believe careful consideration needs to go into the widely-accepted view that yellow-brown apedal 

B horizons are continuously well-drained and represent a similar drainage condition to their red 

counterparts. Our data suggests that this is not always the case. 

The results from this study also provided significant information with regards to the classification of 

bleached profiles in the Western Cape. In comparison to the profiles sampled along the Mpumalanga 

Highveld, bleached topsoils occurred on both red and yellow weakly structured B horizons in the 

Western Cape. In addition, the Western Cape profiles also exhibited a significantly more dispersive 

clay phase. Although the morphological expression of cutans are not always as observable in some 

neocutanic B horizons, their origin in these soils, and in the rest of the cutanic group for that matter, 

is predominantly  related to clay movement within the profile. Therefore, this dispersive clay phase in 

the bleached profiles of the Western Cape should provide some guidance on the classification of these 

soils. We propose that the red and yellow weakly structured subsoils underlying bleached topsoils in 

this area would be better classified as neocutanics, based on the instability of the clay phase and the 

high probability of clay movement within the profile.  

If a weakly structured bleached profile outside the sequence of a red-yellow-grey catena is observed, 

and the possibilities of podzolization or a lithological discontinuity is ruled out, the probability exists 

that such pale coloured horizons has some relation to the process of clay eluviation. Bleaching can 

therefore serve as an indication of a more unstable profile in such circumstances, which should direct 

classification towards the recognition of a neocutanic B subsoil horizon.    
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APPENDICES 

Appendix 1: Soil profile descriptions (all profiles were described by J.L. le Roux and C.E. Clarke) 

Profile: Bp 1     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 47' 35,376'' / 29° 42' 0,468''  

Soil form & family: Tukulu 1220   Transitional form: Avalon  

Terrain unit: Midslope (3) Parent material solum: Origin single, unknown, local 
colluvium suspected 

Slope %: 1 Underlying material: Mixed lithology 

Slope shape: Straight Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: West     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 3. Origin unknown. Suspected transported material, contains ferruginised shale 
and Fe nodules. Non-uniform colour in B, soft plinthite at depth. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Bp1.1) 0-350 

dry colour: yellowish red 

5YR4/6; moist colour: dark 

reddish brown 5YR3/4; 

texture: sandy loam; 

structure: apedal; 

consistence: hard, friable; 

very few ; clear smooth 

transition 
 

Orthic A 

B1 (Bp1.2) 350-600 

dry colour: yellowish red 

5YR5/8; moist colour: 

yellowish red 5YR4/6; 

texture: sandy loam; few 

medium distinct red 

mottles; structure: weak fine 

subangular blocky; 

consistence: hard, friable; 

few sesquioxide cutans; 

many rounded gravel 2-

6mm; diffuse tonguing 

transition. 

 

Neocutanic B 

B2 
600-
1500+ 

texture: sandy loam; 

common medium distinct 

red mottles; structure: weak 

fine subangular blocky; 

consistence: hard, friable; 

many rounded gravel 2-

6mm. 

Unspecified 
material, with 
signs of 
wetness 
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Profile: Bp 2     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 47' 34,1874'' / 29° 42' 0,3954'' 

Soil form & family: Avalon 2200   Transitional form: Tukulu 

Terrain unit: Midslope (3) Parent material solum: Origin single, unknown, local 
colluvium suspected 

Slope %: 1 Underlying material: Mixed lithology 

Slope shape: Straight Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: West     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 3. Origin unknown. Suspected transported material, contains ferruginised shale 
and Fe nodules. Non-uniform colour in B, but deemed to be yellow-brown apedal. Soft plinthite at depth. Profile 
photo shows moisture in the A/B interface. 

Horizon (number 

in brackets refer to 
sample number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Bp2.1) 0-300 

dry colour: strong 

brown 7.5YR5/6; 

moist colour: brown 

to dark brown 

7.5YR4/4; texture: 

sandy loam; structure: 

apedal; consistence: 

slightly hard,  
friable; many rounded 

gravel 2-6mm; clear 

smooth transition. 
 

Orthic A 

B1 (Bp2.2) 300-650 

dry colour: strong 

brown 7.5YR5/8; 

moist colour: 

yellowish red 

5YR4/6; texture: 

sandy loam; few fine 

faint red mottles; 

structure: weak fine  
subangular blocky; 

consistence: slightly 

hard, friable; many 

rounded gravel 2-

6mm; gradual smooth 

transition 
 

Yellow-brown 
apedal B 

B2  
650-
1500+ 

texture: sandy loam; 

common fine 

prominent red 

mottles; structure: 

weak fine subangular 

blocky; consistence: 

hard, friable; many 

rounded gravel 2- 
6mm. 
 

Soft plinthic B 
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Profile: Bp 3     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 47' 33,5034'' / 29° 42' 0,2874'' 

Soil form & family: Pinedene 2200   Transitional form: Avalon 

Terrain unit: Footslope (4) Parent material solum: Origin single, unknown, local 
colluvium suspected 

Slope %: 0.5 Underlying material: Mixed lithology 

Slope shape: Concave Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: West     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 3. Origin unknown. Suspected transported material, contains ferruginised shale 
and Fe nodules. Very gradual transition between A and B. Horizon at depth few fine faint mottles, not deemed 
to be plinthic. Plinthic characteristic potentially more distinct at lower depths. Profile photo shows moisture in 
the A/B interface. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Bp3.1) 0-300 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: brown to dark 

brown 10YR4/3; texture: 

sandy loam; structure: 

apedal; consistence: slightly  
hard, friable; few rounded 

gravel 2-6mm; diffuse 

smooth transition. 
 

Orthic A 

AB (Bp3.2) 300-400 

dry colour: yellow 

10YR7/8; moist colour: 

strong brown 7.5YR5/8; 

texture: sandy loam; 

structure: weak fine 

subangular blocky; 

consistence: slightly 
hard, friable; few rounded 

gravel 2-6mm; clear 

smooth transition 
 

Yellow-brown 
apedal B 

B (Bp3.3) 
400-
1100+ 

texture: sandy loam; few 

fine faint red and brown 

mottles; structure: weak 

fine subangular blocky; 

consistence: slightly hard, 

friable; few rounded  
gravel 2-6mm. 
 

Yellow-brown 
apedal B 
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Profile: Br 1     Location: Bronkhorstspruit, MP 

Lat + Long: 25° 47' 30,876'' / 28° 32' 7,26'' 

Soil form & family: Hutton 2200   Transitional form: Bainsvlei 

Terrain unit: Crest (1) Parent material solum: Origin single 

Slope %: 1 Underlying material: Sandstone (unspecified) 

Slope shape: Straight Weathering of underlying material: Strong physical 

Aspect: North-east    Alteration of underlying material: Ferruginised  

Land use: Natural vegetation, edge of maize field Erosion: Not observed 

Notes: Profile part of catena 1. Classified as a Hutton, soft plinthite observed at 1500mm depth boundary. 

 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Br1.1) 0-150 

dry colour: brown to dark 

brown 7.5YR4/4; moist 

colour: dark brown 

7.5YR3/4; texture: sandy 

loam; structure: apedal 

massive; consistence: loose,  
loose, non-sticky, non-

plastic; few fine pores; 

common roots; gradual 

smooth transition. 
 

Orthic A 

B1 (Br1.2) 150-400 

dry colour: yellowish red 

5YR5/6; moist colour: dark 

reddish brown 5YR3/4; 

texture: sandy loam; few 

fine faint brown mottles; 

structure: weak fine  
subangular blocky; 

consistence: soft, friable, 

non-sticky, non-plastic; few 

fine pores; common roots; 

gradual smooth transition. 
 

Red apedal B 

B2 400-1500 

dry colour: yellowish red 

5YR5/8; texture: sandy 

loam; structure: weak fine 

subangular blocky; 

consistence: soft, friable, 

non-sticky, non-plastic;  
few fine pores; common 

roots. 
 

Red apedal B 
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Profile: Br 2     Location: Bronkhorstspruit, MP 

Lat + Long: 25° 47' 30,786'' / 28° 32' 7,7994'' 

Soil form & family: Avalon 2200   Transitional form: Constantia 

Terrain unit: Midslope (3) Parent material solum: Origin single 

Slope %: 1.5 Underlying material: Sandstone (unspecified) 

Slope shape: Straight Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North-east    Alteration of underlying material: Ferruginised  

Land use: Natural vegetation, edge of maize field Erosion: Not observed 

Notes: Profile part of catena 1. Transition A/B potentially an E horizon, colour change very gradual. B2 horizon 
not described but classified as soft plinthic at depth 1100mm+. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Br2.1) 0-150 

dry colour: brown 

10YR5/3; moist colour: 

dark brown 10YR3/3; 

texture: loamy sand; few 

fine faint mottles; structure: 

apedal fine subangular  
blocky; consistence: loose, 

friable, non-sticky, non-

plastic; few fine pores; few 

roots; gradual smooth 

transition. 

 

Orthic A 

AB (Br2.2) 150-300 

dry colour: light yellowish 

brown 10YR6/4; moist 

colour: dark brown 

7.5YR3/4; texture: loamy 

sand; few fine faint brown 

iron oxide mottles;  
structure: weak fine 

subangular blocky; 

consistence: soft, friable, 

non-sticky, non-plastic; few 

fine pores; few roots; 

gradual smooth transition. 
 

Yellow-brown 
apedal B 

B1 (Br2.3) 300-1100 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: dark yellowish 

brown 10YR4/4; texture: 

loamy sand; few fine faint 

red iron oxide mottles;  
structure: weak fine 

subangular blocky; 

consistence: soft, friable, 

non-sticky, non-plastic; few 

fine pores; few roots; 

gradual smooth transition. 
 

Yellow-brown 
apedal B 
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Profile: Hh 1     Location: Old helshoogte pass, Stellenbosch, WC 

Lat + Long: 33° 55' 14,592'' / 18° 54' 26,9994'' 

Soil form & family: Oakleaf 1120   Transitional form:  

Terrain unit: Upper Midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 8 Underlying material: Acid intrusive rocks (granite) 

Slope shape: Concave Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North-east    Alteration of underlying material: Koalinised 

Land use: Fynbos     Erosion: Water - sheet slight, partially stabilized  

Notes: Profile close to Hh 2 and very similar. Granite PM. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Hh1.1) 0-200 

dry colour: light yellowish 

brown 10YR6/4; moist 

colour: brown to dark 

brown 10YR4/3; texture: 

silty loam; structure: weak 

fine crumb; consistence: 

hard, friable; common fine 

pores, common medium & 

coarse pores; very few 

angular gravel 2-6mm; 

bleached surface crust; 

many roots; clear smooth 

transition. 
 

Orthic A 

B1(Hh1.2) 200-400 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: brown to dark 

brown 10YR4/3; texture: 

loam; structure: weak fine 

subangular blocky;  
consistence: very hard, 

friable; common fine 

bleached pores, few 

medium & coarse pores; 

common clay cutans; very 

few angular gravel 2-6mm;  
common roots; gradual 

smooth transition. 
 

Neocutanic B 

B2 400-600+ 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: brown to dark 

brown 10YR4/3; structure: 

weak fine subangular 

blocky; consistence: very 

hard, slightly firm; common 

clay cutans; very few 

angular gravel 2-6mm; 

common roots. 
 

Neocutanic B 
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Profile: Hh 2     Location: Old helshoogte pass, Stellenbosch, WC 

Lat + Long: 33° 55' 13,44'' / 18° 54' 23,6154''    

Soil form & family: Oakleaf 2120   Transitional form:  

Terrain unit: Upper Midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 8 Underlying material: shale 

Slope shape: Convex Weathering of underlying material: Moderate physical, 
moderate chemical 

Aspect: North-east    Alteration of underlying material: Koalinised 

Land use: Fynbos     Erosion: Water - sheet slight, partially stabilized  

Notes: Profile close to Hh 1 and very similar. Shale PM. Shale visible at depth. Thin bleached surface crust was 
observed. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Hh2.1) 0-200 

dry colour: light brown 

7.5YR6/4; moist colour: 

dark brown 7.5YR3/4; 

texture: silty loam; 

structure: apedal fine 

subangular blocky; 

consistence:  
hard, friable, non-sticky, 

non-plastic; many fine 

bleached pores; few angular 

gravel 2-6mm; bleached 

surface crust; many roots; 

clear tonguing  
 

Orthic A 

B1 (Hh2.2) 200-400 

dry colour: brown 

7.5YR5/4; moist colour: 

dark brown 7.5YR3/4; 

texture: silty loam; 

structure: weak fine 

subangular blocky; 

consistence: very hard, 
slightly firm, non-sticky, 

non-plastic; few fine 

normal pores, few medium 

& coarse pores; many clay 

cutans; few angular gravel 

2-6mm; common  
roots; gradual smooth 

transition. 
 

Neocutanic B 

B2 400-600 

structure: weak fine 

subangular blocky; 

consistence: very hard, 

slightly firm, non-sticky, 

non-plastic; few fine 

normal pores, few medium 

& coarse  
pores; many clay cutans; 

few angular gravel 2-6mm; 

common roots. 
 

Neocutanic B 
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Profile: Hh 3     Location: Old helshoogte pass, Stellenbosch, WC 

Lat + Long: 33° 55' 11,028'' / 18° 54' 51,3354'' 

Soil form & family: Oakleaf 1220   Transitional form:  

Terrain unit: Upper midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 6 Underlying material: Acid intrusive rocks (granite) 

Slope shape: Convex Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North-east    Alteration of underlying material: Ferruginised 

Land use: Fynbos, Old plantation (forestry)  Erosion: Water - sheet slight, partially stabilized  

Notes:  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Hh3.1) 0-150 

dry colour: strong brown 

7.5YR5/6; moist colour: 

yellowish red 5YR5/6; 

texture: loam; structure: 

apedal fine massive; 

consistence: slightly hard,  
friable; many fine normal 

pores, few medium & 

coarse normal pores; 

common roots; clear 

smooth transition. 
 

Orthic A 

B1 (Hh3.2) 150-300 

dry colour: strong brown 

7.5YR5/6; moist colour: 

yellowish red 5YR4/6; 

texture: clay loam; 

structure: weak subangular 

blocky; consistence: very  
hard, slightly firm; few fine 

normal pores, few medium 

& coarse normal pores; 

common sesquioxide 

cutans; common gravel 2-

6mm; few roots;  
gradual smooth transition 
 

Neocutanic B 

B2 300-500 

structure: weak subangular 

blocky; consistence: very 

hard, slightly firm; few fine 

normal pores, few medium 

& coarse normal pores; 

common clay 
cutans; common gravel 2-

6mm; few roots. 
 

Neocutanic B 
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Profile: Hh 4     Location: Old helshoogte pass, Stellenbosch, WC 

Lat + Long: 33° 55' 11,2434'' / 18° 54' 45,468'' 

Soil form & family: Oakleaf 2120   Transitional form:  

Terrain unit: Upper midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 3 Underlying material: Generalised/unknown 

Slope shape: landscape disturbed Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North     Alteration of underlying material: Koalinised 

Land use: Fynbos, Old plantation (forestry)  Erosion: Water - sheet slight, partially stabilized  

Notes: 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Hh4.1) 0-200 

dry colour: light yellowish 

brown 10YR6/4; moist 

colour: strong brown 

7.5YR4/6; structure: apedal 

fine; consistence: slightly 

hard; many fine  
normal pores; few roots; 

gradual smooth transition. 
 

Orthic A 

B1 (Hh4.2) 200-400 

dry colour: strong brown 

7.5YR5/6; moist colour: 

brown to dark brown 

7.5YR4/4; structure: apedal 

fine; consistence: hard; 

common fine normal  
pores; few clay cutans; 

gradual smooth transition. 
 

Neocutanic B 

B2 400-600 

dry colour: yellowish red 

5YR5/6; moist colour: 

yellowish red 5YR4/6; 

structure: apedal fine; 

consistence: hard; few fine 

normal pores; common  
clay cutans. 
 

Neocutanic B 
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Profile: Mb 1     Location: Westdean cemetery, Malmesbury, WC 

Lat + Long: 33° 27' 11,016'' / 18° 42' 18,3234'' 

Soil form & family: Oakleaf 2120   Transitional form: Clovelly 

Terrain unit: Upper midslope (3U) Parent material solum: Origin single, local colluvium  

Slope %: 4 Underlying material: Intrusive igneous rocks 
(unspecified) 

Slope shape: Convex Weathering of underlying material: Strong physical 

Aspect: South-east    Alteration of underlying material: Ferruginised 

Land use: Cemetery Erosion: Water - sheet slight, partially stabilized, Wind - 

slight 

Notes: Subsoil prominent yellow colour. Very sandy. Potentially qualify as Clovelly. Profile moist during 

sampling. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Mb1.1) 0-150 

dry colour: light yellowish 

brown 10YR6/4; moist 

colour: brown to dark 

brown 10YR4/3; texture: 

sandy loam; structure: 

apedal fine subangular  
blocky; consistence:  

friable; common fine pores; 

few roots; clear smooth 

transition 
 

Orthic A 

B1 (Mb1.2) 150-450 

dry colour: reddish yellow 

7.5YR6/6; moist colour: 

strong brown 7.5YR4/6; 

texture: sandy loam; 

structure: weak fine 

subangular blocky;  
consistence:  friable; 

common fine pores; 

common clay cutans; few 

roots; gradual smooth 

transition. 
 

Neocutanic B 

B2 
450-
1500+ 

texture: sandy loam; 

structure: weak fine 

subangular blocky; 

consistence:  friable; 

common fine pores; few 

clay cutans; few roots. 

Unspecified 
material 
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Profile: Mb 2     Location: R45, Rooidraai farm, Malmesbury, WC 

Lat + Long: 33° 24' 35,64'' / 18° 41' 59,82'' 

Soil form & family: Clovelly 2200   Transitional form: Hutton 

Terrain unit: Upper midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 3 Underlying material: Generalised/unknown 

Slope shape: Convex Weathering of underlying material: Strong physical 

Aspect: North-west    Alteration of underlying material: Ferruginised 

Land use: Undisturbed, Roadside vegetation Erosion: Non observed 

Notes: Subsoil borders red/yellow colour. Appears red but qualifies as yellow.  

 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Mb2.1) 0-200 

dry colour: strong brown 

7.5YR5/6; moist colour: 

strong brown 7.5YR4/6; 

texture: sandy loam; 

structure: weak fine 

subangular blocky; 

consistence:  
hard, friable, non-sticky, 

non-plastic; few fine pores; 

few roots; clear smooth 

transition. 
 

Orthic A 

B1 (Mb2.2) 200-450 

dry colour: yellowish red 

5YR5/6; moist colour: 

reddish brown 5YR4/4; 

texture: sandy loam; 

structure: weak fine 

subangular blocky; 

consistence:  
hard, friable, non-sticky, 

non-plastic; few fine pores; 

few clay cutans; few roots. 
 

Yellow-brown 
apedal B 
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Profile: Mm 1     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 49' 26,4'' / 29° 41' 3,444''  

Soil form & family: Hutton 2200   Transitional form:   

Terrain unit: Upper midslope (3U) Parent material solum: Origin single 

Slope %: 0.5 Underlying material: Sandstone (unspecified) 

Slope shape: Straight Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 2. Profile moist at A/B interface on photograph. 

 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Mm1.1) 0-250 

dry colour: reddish brown 

5YR4/4; moist colour: dark 

reddish brown 2.5YR3/4; 

texture: sandy loam; 

structure: apedal fine 

subangular blocky;  
consistence: slightly hard, 

friable, non-sticky, non-

plastic; gradual wavy 

transition. 
 

Orthic A 

B (Mm1.2) 
250-
1500+ 

dry colour: red 2.5YR5/6; 

moist colour: dark reddish 

brown 2.5YR2.5/4; texture: 

sandy loam; structure: weak 

fine subangular blocky; 

consistence:  
slightly hard, friable, non-

sticky, non-plastic; gradual 

wavy transition. 
 

Red apedal B 

    

 

Stellenbosch University  https://scholar.sun.ac.za



151 
 

Profile: Mm 2     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 49' 25,14'' / 29° 41' 3,372'' 

Soil form & family: Avalon 2200   Transitional form:   

Terrain unit: Midslope (3) Parent material solum: Origin single, unknown  

Slope %: 0.5 Underlying material: Sandstone (unspecified) 

Slope shape: Concave Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: East     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 2. Very gradual transition from A to B. Profile moist at A/B interface on 
photograph. Soft plinthite at depth (1000 mm), not described.  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Mm2.1) 0-300 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: dark brown 

10YR3/3; structure: apedal 

fine; consistence: slightly 

hard, friable, non-sticky, 

non-plastic; diffuse smooth 

transition. 
 

Orthic A 

B1 (Mm2.2) 300-600 

dry colour: red 7.5R4/6; 

moist colour: yellowish red 

5YR4/6; few fine faint 

brown mottles; structure: 

weak fine subangular 

blocky; consistence:  
slightly hard, friable, non-

sticky, non-plastic; few 

organic cutans; gradual 

smooth transition. 
 

Yellow-brown 
apedal B 

B2 600-1000 

dry colour: red 7.5R4/6; 

moist colour: yellowish red 

5YR4/6; few fine faint 

brown mottles; structure: 

weak fine subangular 

blocky; consistence:  
slightly hard, friable, non-

sticky, non-plastic; few 

organic cutans; gradual 

smooth transition. 
 

Yellow-brown 
apedal B 
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Profile: Mm 3     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 49' 24,9234'' / 29° 41' 3,2994'' 

Soil form & family: Avalon 2200   Transitional form:   

Terrain unit: Midslope (3) Parent material solum: Origin single, unknown 

Slope %: 0.5 Underlying material: Sandstone (unspecified) 

Slope shape: Concave Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: East     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed 

Notes: Profile part of catena 2. Very gradual transition from A to B. Profile moist at A/B interface on 
photograph. Soft plinthite at depth (1200 mm), not described.  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Mm3.1) 0-300 

dry colour: light yellowish 

brown 10YR6/4; moist 

colour: dark yellowish 

brown 10YR4/4; texture: 

sandy loam; structure: 

apedal; consistence:  
slightly hard, friable; 

gradual smooth transition. 

 

Orthic A 

B1 (Mm3.2) 300-1200 

dry colour: brownish 

yellow 10YR6/6; moist 

colour: dark yellowish 

brown 10YR4/6; texture: 

sandy loam; few fine faint 

red mottles; structure: weak  
fine subangular blocky; 

consistence: slightly hard, 

friable; diffuse smooth 

transition. 
 

Yellow-brown 
apedal B 
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Profile: Mm 4     Location: Beestepan Farm, Middelburg, MP 

Lat + Long: 25° 48' 59,5434'' / 29° 40' 44,796' 

Soil form & family: Avalon 2200   Transitional form:   

Terrain unit: Footslope (3) Parent material solum: Origin single, unknown, local 
colluvium suspected 

Slope %: 1 Underlying material: Generalised/unknown 

Slope shape: Concave Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North     Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed 

Notes: Profile not sampled as part of catena.  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Mm4.1) 0-350 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: dark yellowish 

brown 10YR4/4; texture: 

sandy loam; structure: 

apedal; consistence: hard,  
friable, non-sticky, non-

plastic; abrupt smooth 

transition. 

 

Orthic A 

B1 (Mm4.2) 350-800 

dry colour: strong brown 

7.5YR5/6; moist colour: 

strong brown 7.5YR4/6; 

texture: sandy loam; few 

fine faint red and yellow 

mottles; structure:  
weak fine subangular 

blocky; consistence: hard, 

friable, non-sticky, non-

plastic; many mixed-shape 

gravel 2-6mm; gradual 

smooth transition 
 

Yellow-brown 
apedal B 

B2  
800-
1500+ 

texture: sandy loam; many 

coarse prominent red and 

yellow mottles; structure: 

weak fine subangular 

blocky; consistence: hard, 

slightly firm, non- 
sticky, non-plastic; gradual 

smooth transition. 
 

Soft plinthite B 
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Profile: Pb 1     Location: Papagaaiberg, Stellenbosch, WC 

Lat + Long: 33° 56' 10,9314'' / 18° 50' 44,3034'' 

Soil form & family: Oakleaf 2120   Transitional form: Clovelly  

Terrain unit: Midslope (3) Parent material solum: Origin binary, local colluvium 

Slope %: 10 Underlying material: Shale 

Slope shape: Straight Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: South     Alteration of underlying material: Koalinised 

Land use: Fynbos, Old plantation (forestry)  Erosion: Non-observed  

Notes: Profile was moist when sampled, appeared uniform in colour but following drying cutanic 

characteristics became apparent. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Pb1.1) 0-150 

dry colour: strong brown 

7.5YR5/6; moist colour: 

dark brown 7.5YR3/4; 

texture: silty loam; 

structure: weak fine crumb; 

consistence:  friable; many  
fine normal pores, common 

medium & coarse normal 

pores; few gravel 2-6mm; 

surface crust; many roots; 

gradual smooth transition. 

 

Orthic A 

B1 (Pb1.2) 150-300 

dry colour: strong brown 

7.5YR4/6; moist colour: 

brown to dark brown 

7.5YR4/4; texture: clay 

loam; structure: weak 

medium crumb; 

consistence:   
friable; common fine 

normal pores, few medium 

& coarse normal pores; few 

clay cutans; few gravel 2-

6mm; gradual smooth 

transition. 
 

Neocutanic B 

B2 300-900 

moist colour: strong brown 

7.5YR4/6; structure: weak 

medium crumb; 

consistence:  friable; 

common fine normal pores, 

few medium & coarse  
normal pores; few clay 

cutans; few gravel 2-6mm. 
 

Unspecified 
material 
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Profile: Pb 2     Location: Papagaaiberg, Stellenbosch, WC 

Lat + Long: 33° 56' 16,9794'' / 18° 50' 35,3034'' 

Soil form & family: Clovelly 2200   Transitional form: Constantia 

Terrain unit: Upper midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 2 Underlying material: Shale 

Slope shape: Convex Weathering of underlying material: Unknown 

Aspect: South     Alteration of underlying material: Normal weathering 

Land use: Fynbos, Old plantation (forestry)  Erosion: Water - sheet slight, stabilized. 

Notes: Profile very sandy and prominent yellow colour was observed. Suspected podzol B, but did not qualify by 

means of the Fieldes & Perrott field test.  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Pb2.1) 0-150 

dry colour: light yellowish 

brown 10YR6/4; moist 

colour: yellowish brown 

10YR5/4; texture: sandy 

loam; structure: apedal 

single grain; consistence: 
slightly hard, friable; 

common fine normal pores, 

many medium & coarse 

normal pores; bleached 

surface crust; many roots; 

abrupt smooth  
 

Orthic A 

B1 (Pb2.2) 150-300 

dry colour: reddish yellow 

7.5YR6/6; moist colour: 

strong brown 7.5YR5/6; 

texture: sandy loam; 

structure: apedal single 

grain; consistence: slightly  
hard, firm; many fine 

normal pores, many 

medium & coarse normal 

pores; common roots; 

gradual smooth transition. 

 

Yellow-brown 
apedal B 

B2 300-1500 

dry colour: yellow 

10YR7/8; moist colour: 

strong brown 7.5YR5/8; 

texture: sandy loam; 

structure: apedal single 

grain; consistence: slightly 

hard, firm; many fine 

normal pores, many 

medium & coarse normal 

pores; common roots; 

gradual smooth transition. 

 

Yellow-brown 
apedal B 
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Profile: Pb 3     Location: Papagaaiberg, Stellenbosch, WC 

Lat + Long: 33° 56' 0,6354'' / 18° 50' 57,084'' 

Soil form & family: Tukulu 1120   Transitional form:  

Terrain unit: Upper midslope (3U) Parent material solum: Origin binary, local colluvium 

Slope %: 25 Underlying material: Shale 

Slope shape: Convex Weathering of underlying material: Unknown 

Aspect: South     Alteration of underlying material: Normal weathering 

Land use: Fynbos, Old plantation (forestry)  Erosion: Water - sheet slight, stabilized. 

Notes: Profile a little more structured but still qualifies as weak grade. 

Horizon 
(number in 
brackets 
refer to 
sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Pb3.1) 0-200 

dry colour: light yellowish 

brown 10YR6/4; moist colour: 

brown to dark brown 

7.5YR4/4; texture: silty loam; 

structure: weak fine subangular 

blocky; consistence: slightly 

hard, friable; many fine normal 

pores, few medium & coarse 

pores, medium cracks; 

bleached surface crust; 

common roots; clear smooth 

transition. 

 

Orthic A 

B1 (Pb3.2) 200-400 

dry colour: reddish yellow 

7.5YR6/6; moist colour: 

reddish brown 5YR4/4; 

texture: silty loam; structure: 

weak medium subangular 

blocky; consistence: very hard, 

slightly firm; few fine normal 

pores, few medium & coarse 

bleached pores, medium 

cracks; common clay cutans; 

common roots; gradual smooth 

transition. 

 

Neocutanic B 

B2 
400-
1100 

dry colour: yellowish red 

5YR5/6; moist colour: 

yellowish red 5YR4/6; texture: 

silty clay loam; structure: weak 

medium subangular blocky;  
consistence: very hard, slightly 

firm; few fine normal pores, 

few medium & coarse pores, 

medium cracks; common clay 

cutans; few roots; gradual  

 

Neocutanic B 

C 
1100-
1500+ 

texture: silty clay loam; few 

medium faint grey and yellow 

oxidized iron oxide mottles; 

structure: moderate medium 

subangular blocky; common  
clay cutans; few roots; gradual 

smooth transition. 
 

Unspecified 
material, with 
signs of 
wetness 
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Profile: Rk 1     Location: Ribbokkop Farm, Ceres, WC 

Lat + Long: 33° 18' 8,532'' / 19° 37' 2,208''  

Soil form & family: Tukulu 2110   Transitional form:  

Terrain unit: Lower Footslope (4L) Parent material solum: Origin binary, local colluvium 

Slope %: 4     Underlying material: shale 

Slope shape: Concave Weathering of underlying material: Strong physical, 
moderate chemical 

Aspect: North-east    Alteration of underlying material: koalinised 

Land use: Fynbos (Renosterveld)   Erosion: Water – sheet slight, stabilised   

Notes: Large colour variations observed in A. Clear cutans in B, some bleached. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Rk1.1) 0-250 

dry colour: brown 
7.5YR5/4; moist colour: 
brown to dark brown 
7.5YR4/4; texture: sandy 
loam; structure: weak fine 
subangular blocky; 
consistence: slightly hard, 
friable, non-sticky; few fine 
normal pores, few medium 
& coarse normal pores; 
very few mixed-s 

Orthic A 

 B1 (Rk1.2) 250-550 

dry colour: yellowish red 
5YR5/8; moist colour: 
yellowish red 5YR4/6; 
texture: sandy clay loam; 
structure: weak fine 
subangular blocky; 
consistence: hard, friable, 
non-sticky; few fine normal 
pores, few medium & 
coarse normal pores; 
common clay cutans; fe 

Neocutanic B 

B2 
550-
1500+ 

dry colour: red 2.5YR4/8; 
moist colour: yellowish red 
5YR5/8; texture: clay; 
common medium distinct 
yellow reduced iron oxide 
mottles; common medium 
faint yellow mottles; 
structure: moderate 
medium angular blocky; 
consistence: hard, friable, 
slightly stic 

Unspecified 
material, with 
signs of 
wetness 
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Profile: Rk 2     Location: Ribbokkop Farm, Ceres, WC 

Lat + Long: 33° 18' 8,532'' / 19° 36' 31,86'' 

Soil form & family: Tukulu 2120   Transitional form:  

Terrain unit: Lower Midslope (3L) Parent material solum: Origin binary, local colluvium 

Slope %: 8     Underlying material: Mixed lithology 

Slope shape: Concave Weathering of underlying material: Unknown 

Aspect: North-east    Alteration of underlying material: koalinised 

Land use: Fynbos (Renosterveld)   Erosion: Water – sheet slight, stabilised   

Notes:  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Rk2.1) 0-300 

dry colour: brown 

10YR5/3; moist colour: 

brown to dark brown 

7.5YR4/4; texture: sandy 

loam; structure: apedal fine 

massive; consistence: 

slightly hard; few fine 

normal pores, few medium 

& coarse normal pores, fine 

cracks; very few mixed-

shape coarse gravel 6-

25mm; bleached surface 

crust; few roots; clear wavy 

transition. 

Orthic A 

 B1 (Rk2.2) 300-700 

dry colour: reddish yellow 

5YR6/6; moist colour: 

yellowish red 5YR4/6; 

texture: loam; structure: 

weak fine angular blocky; 

consistence: hard; few  
fine normal pores, few 

medium & coarse normal 

pores, fine cracks; few clay 

cutans; very few mixed-

shape coarse gravel 6-

25mm; common roots;  
clear wavy transition. 

Neocutanic B 

B2 
700-
1500+ 

dry colour: strong brown 

7.5YR5/8; common 

medium distinct grey and 

yellow mottles; structure: 

weak fine angular blocky; 

consistence: hard; few  
fine bleached pores, few 

medium & coarse bleached 

pores, fine cracks; very few 

mixed-shape stones 25-

75mm; few roots. 
 

Unspecified 
material, with 
signs of 
wetness 
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Profile: Rk 3     Location: Ribbokkop Farm, Ceres, WC 

Lat + Long: 33° 18' 33,408'' / 19° 36' 0,432''  

Soil form & family: Oakleaf 1220   Transitional form:  

Terrain unit: Lower Midslope (3L) Parent material solum: Origin single, local colluvium 

Slope %: 7     Underlying material: Mixed lithology 

Slope shape: Straight Weathering of underlying material: Unknown 

Aspect: South-west    Alteration of underlying material:  

Land use: Fynbos (Renosterveld)   Erosion: Water – sheet slight, stabilised   

Notes:  

Horizon 
(number in 
brackets 
refer to 
sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Rk3.1) 0-300 

dry colour: strong brown 

7.5YR4/6; moist colour: 

reddish brown 5YR4/4; 

texture: sandy loam; 

structure: weak fine 

subangular blocky; 

consistence:slightly 

hard; common fine 

normal pores; common 

roots; gradual smooth 

transition. 
 

Orthic A 

 B1 (Rk3.2) 300-600 

dry colour: yellowish 

red 5YR5/6; moist 

colour: reddish brown 

5YR4/4; texture: loam; 

structure: weak fine 

subangular blocky; 

consistence: hard; few 

fine normal pores, 

common medium & 

coarse pores; few clay 

cutans; common roots; 

clear smooth transition. 

Neocutanic B 

B2 
600-
1500+ 

dry colour: red 

2.5YR5/6; moist colour: 

red 2.5YR4/6; common 

red iron oxide mottles; 

structure: weak 

subangular blocky; 

common clay cutans; 

few roots. 
 

Unspecified 
material  
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Profile: Rk 4     Location: Ribbokkop Farm, Ceres, WC 

Lat + Long: 33° 18' 33,588'' / 19° 35' 57,732'' 

Soil form & family: Oakleaf 1220   Transitional form:  

Terrain unit: Upper Midslope (3U) Parent material solum: Origin single, local colluvium 

Slope %: 7     Underlying material: Mixed lithology 

Slope shape: Convex Weathering of underlying material: Unknown 

Aspect: South     Alteration of underlying material:  

Land use: Fynbos (Renosterveld)   Erosion: Water – sheet slight, stabilised   

Notes:  

Horizon 
(number in 
brackets 
refer to 
sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Rk4.1) 0-250 

 

dry colour: strong brown 

7.5YR5/6; moist colour: 

brown to dark brown 

7.5YR4/4; texture: loam; 

structure: weak 

subangular blocky; 

consistence: 
slightly hard; common 

fine normal pores, few 

medium & coarse pores; 

very few mixed-shape 

gravel 2-6mm; common 

roots; gradual transition. 
 

Orthic A 

 B1 (Rk4.2) 250-650 

dry colour: strong brown 

7.5YR5/6; moist colour: 

reddish brown 5YR4/4; 

texture: loam; structure: 

weak subangular blocky; 

consistence: slightly  
hard; few fine normal 

pores; few sesquioxide 

cutans; very few mixed-

shape gravel 2-6mm; 

few roots; gradual 

transition. 

Neocutanic B 

B2 
650-
1500+ 

structure: weak; 

consistence: soft; few 

fine normal pores; few 

roots. 

Unspecified 
material 
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Profile: Us 1     Location: Uys Farm, Hendrina, MP 

Lat + Long: 26° 12' 3,24'' / 29° 49' 44,5074''  

Soil form & family: Hutton 2200   Transitional form:   

Terrain unit: Upper midslope (3U) Parent material solum: Origin single, unknown 

Slope %: 4 Underlying material: Sandstone (unspecified) 

Slope shape: Convex Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North-west    Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 4.  

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Us1.1) 0-350 

dry colour: reddish brown 

5YR5/4; moist colour: dark 

reddish brown 5YR3/3; 

texture: sandy loam; 

consistence: slightly hard, 

friable, non-sticky 
non-plastic; few mixed-

shape gravel 2-6mm; 

gradual smooth transition. 

Orthic A 

B (Us1.2) 
350-
1500+ 

dry colour: yellowish red 

5YR5/8; moist colour: red 

2.5YR4/8; texture: sandy 

loam; consistence: slightly 

hard, friable, non-sticky, 

non-plastic; few  
mixed-shape gravel 2-6mm; 

gradual smooth transition. 
 

Red apedal B 
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Profile: Us 2     Location: Uys Farm, Hendrina, MP 

Lat + Long: 26° 12' 0,6474'' / 29° 49' 42,312'' 

Soil form & family: Avalon 2100   Transitional form:  Glencoe 

Terrain unit: Lower midslope (3L) Parent material solum: Origin single, unknown 

Slope %: 4 Underlying material: Sandstone (unspecified) 

Slope shape: Straight Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North-west    Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 4. Plinthite borderline between soft and hard. 

Horizon 
Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (Us2.1) 0-350 

dry colour: yellowish 

brown 10YR5/4; moist 

colour: brown to dark 

brown 10YR4/3; texture: 

sandy loam; structure: 

apedal; consistence: slightly  
hard, friable, non-sticky, 

non-plastic; gradual smooth 

transition. 

Orthic A 

B1 (Us2.2) 
350-
1000+ 

dry colour: yellowish 

brown 10YR5/6; moist 

colour: dark yellowish 

brown 10YR4/4; texture: 

sandy loam; structure: weak 

fine subangular blocky;  
consistence: slightly hard, 

friable, non-sticky, non-

plastic; few gravel 2-6mm; 

gradual wavy transition 

Yellow-brown 
apedal B 

B2 
1000-
1500+ 

texture: sandy loam; many 

coarse prominent red 

mottles; structure: weak 

fine subangular blocky; 

consistence: hard, slightly 

firm, non-sticky, non- 
plastic; continuous strong 

nodular pan cementation of 

iron & manganese oxides. 

 

Soft plinthic B 

 

  

Stellenbosch University  https://scholar.sun.ac.za



163 
 

Profile: Us 3     Location: Uys Farm, Hendrina, MP 

Lat + Long: 26° 11' 59,994'' / 29° 49' 41,736'' 

Soil form & family: Avalon 1200   Transitional form:  Constantia 

Terrain unit: Lower midslope (3L) Parent material solum: Origin single, unknown 

Slope %: 4 Underlying material: Sandstone (unspecified) 

Slope shape: Concave Weathering of underlying material: Strong physical, 
strong chemical 

Aspect: North-west    Alteration of underlying material: Ferruginised  

Land use: Agronomic cash crop   Erosion: Not observed   

Notes: Profile part of catena 4. Gradual transition between A and B. Signs of wetness (mottles) grade into soft 
plinthite with depth. 

Horizon 
(number in 
brackets refer 
to sample 
number) 

Depth 
(mm) 

Description 
Diagnos
tic 
horizon 

A (Us3.1) 0-350 

dry colour: greyish brown 

10YR5/2; moist colour: 

very dark greyish brown 

10YR3/2; texture: sandy 

loam; structure: apedal; 

consistence: slightly  
hard, friable, non-sticky, 

non-plastic; diffuse wavy 

transition. 

 

Orthic A 

AB (Us3.2) 350-450 

dry colour: very pale 

brown 10YR7/4; moist 

colour: brownish yellow 

10YR6/6; texture: sandy 

loam; structure: weak fine 

subangular blocky;  
consistence: slightly hard, 

friable, non-sticky, non-

plastic; few organic cutans; 

few rounded gravel 2-

6mm; diffuse wavy 

transition. 

Yellow-
brown 
apedal B 

B1 450-800 

moist colour: brownish 

yellow 10YR6/8; texture: 

sandy loam; few medium 

faint red mottles; structure: 

weak fine subangular 

blocky; consistence:  
slightly hard, friable, non-

sticky, non-plastic; few 

rounded gravel 2-6mm; 

gradual smooth transition.  

Yellow-
brown 
apedal B 

B2 
800-
1500+ 

texture: sandy loam; 

common medium distinct 

red mottles; structure: 

weak fine subangular 

blocky; consistence: 

slightly hard, friable, non-

sticky, non-plastic; few 

rounded gravel 2-6mm. 
 

Soft 
plinthic B 
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Profile: W3     Location: Welgevallen, Stellenbosch, WC 

Lat + Long: 33° 57' 5.2'' / 18° 52' 16.8''   

Soil form & family: Oakleaf 2120   Transitional form:  

Terrain unit: Upper Midslope (3U) Parent material solum: Origin single, local colluvium 

Slope %: 6 Underlying material: Mixed lithology 

Slope shape: Convex Weathering of underlying material: NA 

Aspect: North-east    Alteration of underlying material:  

Land use: Abandoned field/disturbed land  Erosion: Water - sheet slight, stabilized  

Notes:  

 

  Horizon 
Depth 
(mm) 

Description 
Diagnostic 
horizon 

A (W31.1) 0-300 

Moist state; dry colour: light 

yellowish brown 10YR6/4; 

moist colour: brown to dark 

brown 7.5YR4/4; texture:  

medium sandy clay loam; 

structure: apedal massive; 

consistence: hard, firm; few 

fine normal pores, few 

medium  

Orthic A 

B1 (W31.2) 300-600 

Moist state; dry colour: 

reddish yellow 7.5YR6/6; 

moist colour: yellowish red 

5YR4/6; texture: sandy clay 

loam; few medium distinct 

red and brown iron oxide 

mottles; structure: weak 

medium subangular blocky; 

consistence: hard, slightly 

firm; few fine normal pores, 

few medium & coarse 

normal pores; few clay 

cutans; few roots;  

Neocutanic B 

B2 600-900 

Moist state; dry colour: 

reddish yellow 7.5YR6/6; 

moist colour: yellowish red 

5YR5/6; texture: sandy clay; 

common medium distinct 

red and brown iron oxide 

mottles; structure: weak fine 

subangular blocky; 

consistence: hard, slightly 

firm; few fine normal pores, 

few medium & coarse 

normal pores; few clay 

cutans; few roots; 

Neocutanic B 

B3 900-1200+ 

Moist state; dry colour: 

reddish yellow 7.5YR6/6; 

moist colour: yellowish red 

5YR5/8; texture: sandy clay; 

many medium distinct red 

and brown iron oxide 

mottles; structure: weak fine 

subangular blocky; 

consistence: hard,  

slightly firm; few fine 

normal pores, few medium 

& coarse normal pores; few 

clay cutans; few roots. 

Neocutanic B 
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Appendix 2.1. A comparison between extractable citrate-bicarbonate-
dithionite (CBD) Fe in milled and unmilled soil from a randomly selected 
subsample. 

 FeCBD (%) 

Sample Unmilled Milled 

Br 1.2 1.67 1.64 

Mn 1.1 1.57 1.54 

Hh 3.1 2.45 2.55 

Bp 2.1 1.88 2.40 

Rk 3.1 2.00 2.08 

 

 

Photographic evidence of the Fe concretions (ferruginised rock and gravel fragments) recorded along catena 3, which included 
horizon Bp 2.1. This was proposed to result in higher FeCBD values in the milled sample. All of the Bp soils contained similar 
fragments. 
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Appendix 3.1. Spearman-r correlation values indicating the relationships between all the recorded soil and colour variables. 

 

Co 
Clay 
(%) 

Fi 
Clay 
(%) 

Total 
Clay 
(%) 

Bulk 
Density 
(Kg.m-1) 

pH 
(H20) 

pH 
(KCl) 

EC 
(mS/m) 

CBD 
Fe 
(%) 

AAO 
Fe 
(%) 

CBD 
Al 
(%) 

AAO 
Al 
(%) 

Fe CI 
Al 
Ratio 
(%) 

CBD 
Fe:Clay 

Coarse 
Fragments 
% 

Very 
CoSa 
(%) 

CoSa 
(%) 

Perceived Hue 
(Clod) 

-0,40 -0,34 -0,42 -0,16 0,06 0,13 0,00 -0,64 -0,41 -0,27 
-

0,36 
0,45 0,08 -0,45 -0,25 -0,13 0,13 

Perceived Value 
(Clod) 

0,07 -0,16 0,03 -0,28 -0,03 -0,07 0,26 -0,09 0,01 0,06 
-

0,10 
0,09 -0,10 -0,27 0,05 0,23 -0,08 

Perceived Chroma 
(Clod) 

0,39 0,57 0,45 0,02 0,06 0,00 0,06 0,61 0,44 0,42 0,50 -0,37 -0,14 0,35 0,26 0,26 -0,13 

Perceived Hue -0,43 -0,42 -0,47 -0,16 -0,03 0,04 0,11 -0,56 -0,31 -0,23 
-

0,32 
0,38 0,10 -0,21 -0,09 0,02 0,17 

Perceived Value -0,05 -0,24 -0,08 -0,05 -0,05 -0,06 0,18 -0,20 -0,07 -0,02 
-

0,11 
0,21 -0,03 -0,27 0,02 0,12 -0,04 

Perceived Chroma 0,44 0,63 0,50 0,15 0,14 0,11 0,17 0,54 0,34 0,49 0,50 -0,38 -0,26 0,17 0,27 0,31 -0,09 

Measured Hue -0,22 -0,28 -0,24 -0,26 -0,09 0,00 -0,05 -0,26 -0,14 -0,05 
-

0,10 
0,13 -0,01 -0,10 -0,12 -0,21 -0,08 

Measured Value 0,16 -0,39 0,08 -0,11 -0,10 -0,12 0,13 -0,04 0,16 0,16 
-

0,04 
0,20 -0,22 -0,18 0,27 0,17 -0,20 

Measured Chroma 0,62 0,22 0,58 0,02 -0,19 -0,29 0,06 0,47 0,57 0,57 0,40 -0,09 -0,36 0,03 0,36 0,02 -0,37 

L* 0,41 -0,22 0,33 -0,23 -0,21 -0,33 0,02 0,12 0,30 0,35 0,12 0,15 -0,33 -0,25 0,27 0,02 -0,40 

a* 0,71 0,56 0,73 0,06 -0,08 -0,18 0,03 0,75 0,58 0,59 0,59 -0,38 -0,26 0,19 0,29 0,11 -0,32 

b* 0,63 0,15 0,59 -0,15 -0,24 -0,33 0,08 0,42 0,53 0,63 0,44 -0,05 -0,44 -0,11 0,32 0,09 -0,45 
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Appendix 3.1 (Continued). Spearman-r correlation values indicating the relationships between all the recorded soil and colour variables. 

 
MeSa 
(%) 

FiSa 
(%) 

Very 
FiSa 
(%) 

Total 
Sand 
(%) 

CoSi 
(%) 

FiSi 
(%) 

Total 
Silt 
(%) 

WDC  SDC  
WDC 
(%) 

Ca 
(cmolc.kg-1) 

Mg 
(cmolc.kg-1) 

Na 
(cmolc.kg-1) 

K (cmolc.kg-1) 
Exchangeable 
Basic cations 
(cmolc.kg-1) 

Perceived Hue 
(Clod) 

0,37 0,42 0,06 0,38 -0,12 -0,36 -0,32 -0,34 -0,37 -0,15 -0,01 -0,11 -0,24 -0,19 -0,08 

Perceived Value 
(Clod) 

-0,15 -0,11 -0,13 -0,19 0,20 0,18 0,23 0,23 0,12 0,21 -0,15 -0,04 0,32 -0,09 -0,13 

Perceived Chroma 
(Clod) 

-0,30 -0,14 -0,04 -0,28 0,24 0,18 0,25 0,24 0,65 -0,12 0,02 0,15 0,08 -0,14 0,08 

Perceived Hue 0,32 0,25 -0,09 0,27 0,03 -0,22 -0,17 -0,25 -0,43 0,00 -0,03 -0,13 -0,18 -0,03 -0,13 

Perceived Value -0,04 0,01 -0,14 -0,08 0,17 0,08 0,10 0,11 0,03 0,11 -0,10 -0,07 0,16 -0,17 -0,08 

Perceived Chroma -0,30 -0,09 -0,03 -0,25 0,18 0,15 0,20 0,24 0,68 -0,14 0,04 0,06 0,15 -0,10 0,10 

Measured Hue 0,13 0,05 -0,13 0,02 0,20 -0,06 -0,01 -0,07 -0,30 0,04 -0,06 0,05 -0,21 0,02 -0,08 

Measured Value -0,32 -0,33 -0,24 -0,40 0,32 0,47 0,47 0,43 0,10 0,45 -0,17 0,03 0,52 -0,02 -0,11 

Measured Chroma -0,58 -0,50 -0,11 -0,61 0,31 0,54 0,58 0,61 0,58 0,34 -0,33 0,23 0,50 -0,18 -0,16 

L* -0,52 -0,49 -0,20 -0,59 0,36 0,62 0,64 0,61 0,29 0,54 -0,36 0,04 0,68 -0,06 -0,23 

a* -0,56 -0,42 0,00 -0,58 0,33 0,46 0,50 0,53 0,79 0,10 -0,17 0,17 0,39 -0,13 -0,02 

b* -0,60 -0,47 -0,16 -0,68 0,42 0,62 0,66 0,66 0,65 0,33 -0,40 0,09 0,62 -0,18 -0,23 
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Appendix 3.1 (Continued). Spearman-r correlation values indicating the relationships between all the recorded soil and colour variables. 

 

Al 
(cmolc.kg-1) 

H (cmolc.kg-1) 
Exchangeable 
acidity (cmolc.kg-1) 

ECEC ESP 
Ca:Na 
ratio 

Ca:Mg 
ratio 

%N %C 
C:N 
ratio 

Perceived Hue 
(Clod) 

-0,15 -0,18 -0,15 -0,36 0,02 0,07 0,10 -0,27 -0,09 0,14 

Perceived Value 
(Clod) 

0,07 0,12 0,06 -0,06 0,33 -0,28 -0,08 -0,08 -0,06 0,09 

Perceived Chroma 
(Clod) 

0,04 0,18 0,08 0,22 -0,07 -0,04 -0,07 -0,16 -0,32 0,01 

Perceived Hue -0,08 -0,03 -0,06 -0,25 -0,03 0,07 0,08 -0,09 0,16 0,19 

Perceived Value 0,07 0,12 0,05 0,03 0,18 -0,17 -0,01 -0,12 -0,11 0,16 

Perceived Chroma 0,01 0,08 0,01 0,22 -0,01 -0,05 0,02 -0,14 -0,34 -0,02 

Measured Hue -0,02 -0,13 -0,04 -0,15 -0,06 0,05 -0,13 -0,07 0,14 0,15 

Measured Value 0,12 0,27 0,16 0,12 0,43 -0,40 -0,17 0,03 0,13 0,06 

Measured Chroma 0,33 0,37 0,34 0,15 0,36 -0,50 -0,43 0,09 -0,07 -0,13 

L* 0,30 0,43 0,34 0,08 0,62 -0,62 -0,36 0,05 0,12 0,06 

a* 0,26 0,30 0,26 0,27 0,20 -0,33 -0,26 0,03 -0,28 -0,17 

b* 0,38 0,51 0,42 0,15 0,52 -0,62 -0,41 -0,01 -0,10 0,00 
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Appendix 3.2. Spearman-r correlation matrix indicating the relationships between the recorded soil colour variables.  

 
Hue (perceived, 
dry) 

Value 
(perceived, dry) 

Chroma 
(Perceived, dry) 

Hue (Measured, 
dry) 

Value 
(Measured, dry) 

Chroma 
(Measured, dry) 

L* (dry) a* (dry) b* (dry) 

Hue (perceived, 
dry) 

1 0,42 -0,52 0,54 0,37 -0,14 0,26 -0,67 -0,01 

Value 
(perceived, dry) 

 1 -0,05 0,31 0,60 0,08 0,56 -0,15 0,44 

Chroma 
(Perceived, dry) 

  1 -0,45 -0,12 0,49 0,02 0,78 0,38 

Hue (Measured, 
dry) 

   1 0,18 -0,20 0,14 -0,50 0,00 

Value 
(Measured, dry) 

    1 0,38 0,86 -0,03 0,67 

Chroma 
(Measured, dry) 

     1 0,54 0,65 0,74 

L* (dry)       1 0,19 0,86 

a* (dry)        1 0,56 

b* (dry)         1 
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Appendix 3.3. Spearman-r correlation matrix for the determined soil parameters. 

 

Co 
Clay 
(%) 

Fi 

Clay 
(%) 

Total 

Clay 
(%) 

Bulk 

Density 
(Kg.m-1) 

pH 
(H20) 

pH 
(KCl) 

EC 
(mS/m) 

CBD 

Fe 
(%) 

AAO 

Fe 
(%) 

CBD Al 
(%) 

AAO 

Al 
(%) 

Co Clay (%) 1,00 0,45 0,99 0,02 -0,09 -0,25 0,07 0,74 0,74 0,70 0,65 

Fi Clay (%)  1,00 0,57 0,10 0,07 0,14 0,15 0,44 0,17 0,41 0,59 

Total Clay (%)   1,00 0,03 -0,09 -0,23 0,09 0,74 0,70 0,70 0,70 

Bulk Density 
(Kg.m-1) 

   1,00 0,45 0,44 0,30 0,08 -0,11 -0,05 -0,18 

pH (Water)     1,00 0,89 0,13 0,01 -0,27 -0,22 -0,30 

pH (KCl)      1,00 0,31 -0,11 -0,38 -0,29 -0,27 

EC (mS/m)       1,00 0,13 0,00 0,08 0,02 

CBD Fe (%)        1,00 0,66 0,78 0,63 

AAO Fe (%)         1,00 0,60 0,65 

CBD Al (%)          1,00 0,70 

AAO Al (%)           1,00 

Fe CI            

Al Ratio (%)            

CBD Fe:Clay            

Coarse Fragments 
% 

           

Very CoSa            

CoSa            

MeSa            

FiSa            

Very FiSa            

Total Sand (%)            

CoSi            

FiSi            

Total Silt (%)            

WDC            

SDC            

WDC (%)            

Ca (cmolc.kg-1)            

Mg (cmolc.kg-1)            

Na (cmolc.kg-1)            

K (cmolc.kg-1)            

Exchangeable 
Basic cations 
(cmolc.kg-1) 

           

Al (cmolc.kg-1)            

H (cmolc.kg-1)            

Exchangeable 
acidity (cmolc.kg-
1) 

           

ECEC            

ESP            

Ca:Na ratio            

Ca:Mg ratio            

%N            

%C            
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Appendix 3.3 (Continued). Spearman-r correlation matrix for the determined soil parameters. 

 
Fe CI 

Al 
Ratio 
(%) 

CBD 
Fe:Clay 

Coarse 
Fragments 
% 

Very 
CoSa (%) 

CoSa 
(%) 

MeSa 
(%) 

FiSa 
(%) 

Very 
FiSa (%) 

Total 
Sand (%) 

Co Clay (%) -0,29 -0,35 -0,11 0,40 -0,01 -0,56 -0,79 -0,69 0,06 -0,87 

Fi Clay (%) -0,45 -0,11 -0,01 -0,01 0,29 0,01 -0,08 0,10 0,14 -0,11 

Total Clay (%) -0,33 -0,34 -0,13 0,34 0,04 -0,51 -0,73 -0,63 0,07 -0,81 

Bulk Density (Kg.m-
1) 

-0,22 -0,18 0,14 0,24 0,46 0,27 0,14 0,07 -0,24 0,08 

pH (Water) -0,26 -0,06 0,05 0,15 0,36 0,17 0,09 0,19 0,01 0,17 

pH (KCl) -0,28 0,03 0,07 0,09 0,49 0,27 0,28 0,39 0,06 0,31 

EC (mS/m) -0,30 -0,14 -0,02 0,26 0,69 0,18 0,05 0,06 -0,12 -0,04 

CBD Fe (%) -0,62 -0,51 0,51 0,52 0,13 -0,44 -0,62 -0,49 -0,05 -0,65 

AAO Fe (%) 0,06 -0,18 0,18 0,49 -0,13 -0,69 -0,78 -0,55 0,24 -0,74 

CBD Al (%) -0,41 -0,73 0,27 0,49 0,01 -0,48 -0,54 -0,36 -0,06 -0,59 

AAO Al (%) -0,26 -0,11 0,13 0,31 -0,05 -0,55 -0,49 -0,25 0,15 -0,56 

Fe Ratio (%) 1,00 0,46 -0,42 -0,19 -0,43 -0,13 0,06 0,13 0,36 0,21 

Al Ratio (%)  1,00 -0,28 -0,39 -0,18 0,13 0,26 0,24 0,30 0,29 

CBD Fe:Clay   1,00 0,35 0,09 -0,04 -0,05 0,01 -0,10 0,00 

Coarse Fragments %    1,00 0,31 -0,51 -0,60 -0,26 0,10 -0,43 

Very CoSa     1,00 0,35 0,09 0,09 -0,26 0,05 

CoSa      1,00 0,81 0,33 -0,51 0,66 

MeSa       1,00 0,71 -0,29 0,87 

FiSa        1,00 0,26 0,82 

Very FiSa         1,00 0,02 

Total Sand (%)          1,00 

CoSi           

FiSi           

Total Silt (%)           

WDC           

SDC           

WDC (%)           

Ca (cmolc.kg-1)           

Mg (cmolc.kg-1)           

Na (cmolc.kg-1)           

K (cmolc.kg-1)           

Exchangeable Basic 
cations (cmolc.kg-1) 

          

Al (cmolc.kg-1)           

H (cmolc.kg-1)           

Exchangeable 
acidity (cmolc.kg-1) 

          

ECEC           

ESP           

Ca:Na ratio           

Ca:Mg ratio           

%N           

%C           
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Appendix 3.3 (Continued). Spearman-r correlation matrix for the determined soil parameters. 

 

CoSi 
(%) 

FiSi (%) 
Total Silt 
(%) 

WDC  SDC 
WDC 
(%) 

Ca 
(cmolc.
kg-1) 

Mg 
(cmolc.
kg-1) 

Na 
(cmolc.
kg-1) 

K 
(cmolc.
kg-1) 

Co Clay (%) 0,36 0,75 0,74 0,79 0,77 0,39 -0,14 0,41 0,60 0,11 

Fi Clay (%) 0,09 -0,08 -0,04 0,10 0,64 -0,37 0,08 0,05 -0,23 -0,08 

Total Clay (%) 0,32 0,67 0,66 0,74 0,80 0,30 -0,12 0,39 0,52 0,08 

Bulk Density (Kg.m-1) -0,30 -0,10 -0,17 0,03 0,03 -0,03 0,45 0,00 0,03 0,31 

pH (Water) -0,07 -0,19 -0,19 -0,09 -0,07 -0,07 0,81 0,24 -0,08 0,40 

pH (KCl) -0,03 -0,31 -0,30 -0,27 -0,15 -0,26 0,86 0,24 -0,33 0,34 

EC (mS/m) 0,10 -0,01 -0,02 -0,09 0,10 -0,23 0,39 0,01 0,07 0,30 

CBD Fe (%) 0,28 0,52 0,54 0,54 0,69 0,17 0,01 0,34 0,39 0,08 

AAO Fe (%) 0,41 0,71 0,72 0,63 0,62 0,36 -0,21 0,51 0,40 0,00 

CBD Al (%) 0,30 0,45 0,50 0,45 0,62 0,09 -0,24 0,10 0,40 -0,11 

AAO Al (%) 0,40 0,41 0,46 0,37 0,74 -0,08 -0,18 0,28 0,06 -0,16 

Fe CI -0,07 -0,06 -0,08 -0,16 -0,36 0,13 -0,26 -0,02 -0,11 -0,20 

Al Ratio (%) 0,02 -0,22 -0,22 -0,28 -0,22 -0,12 0,07 0,08 -0,47 -0,08 

CBD Fe:Clay 0,05 0,03 0,06 -0,03 0,04 -0,05 0,11 0,12 -0,07 0,00 

Coarse Fragments % 0,15 0,44 0,44 0,36 0,33 0,28 0,25 0,21 0,41 0,22 

Very CoSa -0,05 -0,06 -0,07 0,04 0,17 -0,09 0,40 -0,07 0,08 0,32 

CoSa -0,43 -0,65 -0,69 -0,53 -0,41 -0,37 0,05 -0,46 -0,35 0,08 

MeSa -0,45 -0,87 -0,88 -0,82 -0,57 -0,62 0,08 -0,47 -0,67 -0,17 

FiSa -0,33 -0,84 -0,80 -0,83 -0,34 -0,75 0,30 -0,32 -0,75 -0,33 

Very FiSa 0,11 0,04 0,06 -0,07 0,00 -0,06 0,23 0,33 -0,23 -0,08 

Total Sand (%) -0,58 -0,94 -0,95 -0,89 -0,62 -0,60 0,17 -0,45 -0,70 -0,20 

CoSi 1,00 0,51 0,65 0,39 0,34 0,17 0,02 0,30 0,20 0,12 

FiSi  1,00 0,97 0,89 0,46 0,75 -0,18 0,48 0,73 0,24 

Total Silt (%)   1,00 0,87 0,49 0,69 -0,19 0,48 0,70 0,20 

WDC    1,00 0,55 0,79 -0,20 0,43 0,73 0,16 

SDC     1,00 -0,01 -0,16 0,25 0,34 -0,12 

WDC (%)      1,00 -0,16 0,31 0,67 0,25 

Ca (cmolc.kg-1)       1,00 0,27 -0,24 0,44 

Mg (cmolc.kg-1)        1,00 0,08 0,12 

Na (cmolc.kg-1)         1,00 0,21 

K (cmolc.kg-1)          1,00 

Exchangeable Basic 
cations (cmolc.kg-1) 

          

Al (cmolc.kg-1)           

H (cmolc.kg-1)           

Exchangeable acidity 
(cmolc.kg-1) 

          

ECEC           

ESP           

Ca:Na ratio           

Ca:Mg ratio           

%N           

%C           
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Appendix 3.3 (Continued). Spearman-r correlation matrix for the determined soil parameters. 

 

Exchangeable 
Basic cations 
(cmolc.kg-1) 

Al 
(cmolc.
kg-1) 

H 
(cmolc.
kg-1) 

Exchangeable 
acidity 
(cmolc.kg-1) 

ECEC ESP 
Ca:Na 
ratio 

Ca:Mg 
ratio 

%N %C 
C:N 
ratio 

Co Clay (%) 0,10 0,31 0,40 0,35 0,47 0,30 -0,40 -0,39 0,38 0,09 -0,38 

Fi Clay (%) 0,09 -0,07 0,04 -0,05 -0,01 -0,23 0,17 0,06 -0,08 -0,29 -0,04 

Total Clay (%) 0,10 0,28 0,38 0,32 0,44 0,25 -0,35 -0,36 0,34 0,04 -0,34 

Bulk Density (Kg.m-1) 0,45 -0,48 -0,36 -0,47 0,30 -0,19 0,34 0,44 -0,02 -0,20 -0,22 

pH (Water) 0,80 -0,90 -0,71 -0,89 0,38 -0,37 0,64 0,59 -0,17 -0,27 -0,13 

pH (KCl) 0,78 -0,94 -0,82 -0,95 0,27 -0,57 0,80 0,64 -0,19 -0,25 -0,09 

EC (mS/m) 0,31 -0,20 -0,18 -0,24 0,27 -0,17 0,27 0,42 0,36 0,09 -0,31 

CBD Fe (%) 0,17 0,16 0,30 0,21 0,48 0,05 -0,18 -0,22 0,23 -0,02 -0,28 

AAO Fe (%) 0,05 0,45 0,52 0,48 0,53 0,06 -0,32 -0,48 0,33 0,11 -0,41 

CBD Al (%) -0,13 0,38 0,49 0,44 0,24 0,24 -0,38 -0,27 0,13 0,01 -0,12 

AAO Al (%) -0,08 0,39 0,47 0,43 0,28 -0,13 -0,14 -0,35 0,17 0,08 -0,10 

Fe CI -0,21 0,23 0,14 0,20 -0,16 0,03 -0,13 -0,19 -0,13 0,00 -0,01 

Al Ratio (%) 0,01 -0,04 -0,17 -0,11 -0,12 -0,38 0,30 0,01 -0,02 0,02 -0,01 

CBD Fe:Clay 0,11 -0,06 0,00 -0,02 0,21 -0,28 0,15 0,00 -0,04 0,04 0,05 

Coarse Fragments % 0,29 -0,06 0,10 -0,03 0,46 0,00 0,03 0,09 0,11 0,05 -0,24 

Very CoSa 0,31 -0,43 -0,28 -0,46 0,15 -0,09 0,32 0,48 0,01 -0,12 -0,06 

CoSa -0,14 -0,31 -0,31 -0,31 -0,44 -0,04 0,20 0,34 -0,22 -0,18 0,25 

MeSa -0,17 -0,30 -0,36 -0,32 -0,57 -0,26 0,37 0,39 -0,36 -0,20 0,35 

FiSa 0,07 -0,36 -0,38 -0,39 -0,41 -0,50 0,57 0,53 -0,50 -0,38 0,26 

Very FiSa 0,31 0,00 -0,07 -0,04 0,19 -0,37 0,28 0,04 0,08 0,01 -0,27 

Total Sand (%) -0,06 -0,35 -0,41 -0,37 -0,54 -0,33 0,46 0,48 -0,44 -0,28 0,32 

CoSi 0,08 0,16 0,11 0,13 0,30 -0,06 -0,09 -0,17 0,18 0,10 -0,15 

FiSi 0,06 0,34 0,37 0,35 0,53 0,36 -0,47 -0,51 0,48 0,42 -0,28 

Total Silt (%) 0,04 0,36 0,36 0,36 0,50 0,33 -0,46 -0,51 0,41 0,36 -0,25 

WDC 0,06 0,26 0,32 0,28 0,46 0,43 -0,48 -0,47 0,32 0,21 -0,20 

SDC 0,01 0,24 0,41 0,29 0,31 0,14 -0,29 -0,27 0,03 -0,24 -0,19 

WDC (%) 0,04 0,18 0,15 0,17 0,35 0,45 -0,41 -0,40 0,34 0,41 -0,11 

Ca (cmolc.kg-1) 0,91 -0,85 -0,71 -0,85 0,50 -0,64 0,87 0,77 0,09 -0,06 -0,27 

Mg (cmolc.kg-1) 0,56 -0,19 -0,14 -0,19 0,62 -0,32 0,19 -0,38 0,21 0,21 -0,25 

Na (cmolc.kg-1) -0,05 0,31 0,38 0,33 0,35 0,75 -0,66 -0,28 0,36 0,26 -0,18 

K (cmolc.kg-1) 0,47 -0,33 -0,29 -0,33 0,44 -0,15 0,26 0,31 0,42 0,30 -0,40 

Exchangeable Basic 
cations (cmolc.kg-1) 

1,00 -0,78 -0,60 -0,76 0,70 -0,55 0,71 0,51 0,15 -0,03 -0,38 

Al (cmolc.kg-1)  1,00 0,77 0,96 -0,24 0,51 -0,78 -0,64 0,24 0,25 0,04 

H (cmolc.kg-1)   1,00 0,90 -0,04 0,46 -0,71 -0,55 0,16 0,14 0,00 

Exchangeable acidity 
(cmolc.kg-1) 

   1,00 -0,20 0,52 -0,80 -0,65 0,22 0,24 0,03 

ECEC     1,00 -0,29 0,25 0,08 0,41 0,20 -0,41 

ESP      1,00 -0,88 -0,41 0,05 0,09 0,16 

Ca:Na ratio       1,00 0,70 -0,07 -0,12 -0,11 

Ca:Mg ratio        1,00 -0,04 -0,22 -0,14 

%N         1,00 0,74 -0,57 

%C          1,00 -0,01 
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Appendix 3.4. The generated MFA correlation circle representing the relationship between selected soil parameters (black) 
and soil colour variables (blue).  

Note: The generated MFA correlation circle provides a visual representation of which soil 

characteristics are responsible for which colour variations within the sampled soils. The colour 

variables and soil characteristics were combined into a single data set and the generated dimensions 

expressed on the axes of Figure 3.4 accounts collectively for 49.4% of the variation in this combined 

data set. To interpret the figure one must however be familiar with what the arrows and particularly 

the directions of the arrows represent. If the arrows is of a similar length and runs in the same direction 

it implies a strong positive correlation between the two variables.  Where the arrows run in the 

opposite direction, a negative correlation is implied. Arrows perpendicular to one another suggests 

no relationship between the represented variables. It is however advised that this figure be inspected 

together with the above provided correlation matrixes to limit erroneous interpretations.   
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Appendix 4.1a Particle size distributions (%) of the sampled soil profiles. 

Profile Location Colour  
Condition:  
Perceived 

Colour  
Condition:  
Measured 

Co 
Fragments 

Total  
Sand  

Very  
CoSa 

CoSa MeSa FiSa Very 
FiSa 

Total  
Silt 

CoSi FiSi Total  
Clay 

Co  
Clay 

Fi  
Clay 

Bp 1.1 MP Highveld Non bleached Non bleached 42,3 65,1 12,3 6,8 11,4 20,6 13,9 21,3 7,6 13,7 11,6 1,7 13,3 

Bp 1.2 MP Highveld Non bleached Non bleached 44,4 56,2 7,9 5,3 9,7 19,9 13,3 25,5 6,9 18,7 15,9 2,4 18,3 

Bp 2.1 MP Highveld Non bleached Bleached 27,7 73,7 6,6 6,8 16,7 30,3 13,3 16,2 6,7 9,5 8,6 1,5 10,1 

Bp 2.2 MP Highveld Non bleached Non bleached 29,2 62,8 11,9 5,1 10,3 23,2 12,4 22,0 8,6 13,4 12,6 2,5 15,2 

Bp 3.1 MP Highveld Non bleached Bleached 15,7 75,3 7,4 9,1 18,5 27,7 12,6 15,9 6,9 9,0 7,7 1,1 8,8 

Bp 3.2 MP Highveld Non bleached Non bleached 18,4 74,2 8,1 9,2 18,6 27,9 10,4 15,7 6,6 9,1 8,5 1,6 10,1 

Bp 3.3 MP Highveld Non bleached Non bleached 10,3 59,2 4,7 5,9 12,4 22,7 13,5 24,0 9,7 14,3 13,9 2,8 16,8 

Br 1.1 MP Highveld Non bleached Non bleached 1,3 76,0 0,1 10,5 33,7 21,6 10,1 16,2 6,2 10,0 6,9 0,9 7,7 

Br 1.2 MP Highveld Non bleached Non bleached 1,6 77,8 0,2 11,4 35,7 22,4 8,1 14,5 6,0 8,5 6,6 1,1 7,7 

Br 2.1 MP Highveld Bleached Bleached 2,0 79,8 0,1 10,3 33,6 23,0 12,8 14,2 5,7 8,5 5,3 0,6 5,9 

Br 2.2 MP Highveld Bleached Bleached 1,8 80,5 0,1 11,9 35,0 23,1 10,4 13,0 4,4 8,6 5,8 0,6 6,4 

Br 2.3 MP Highveld Non bleached Non bleached 0,8 81,1 0,2 10,8 33,2 25,1 11,8 12,5 4,5 8,0 5,6 0,7 6,3 

Hh 1.1 WC Bleached Bleached 14,7 39,8 3,0 4,1 6,2 13,1 13,3 48,2 11,9 36,3 12,0 0,0 12,1 

Hh 1.2 WC Non bleached Bleached 24,2 38,0 4,8 5,3 6,4 10,1 11,4 43,2 7,6 35,6 17,7 1,0 18,8 

Hh 2.1 WC Bleached Bleached 11,2 25,9 1,3 1,7 3,4 9,2 10,3 59,2 10,2 49,0 14,8 0,1 14,9 

Hh 2.2 WC Non bleached Bleached 12,6 29,8 1,8 2,7 4,4 9,3 11,6 54,5 11,8 42,8 15,1 0,5 15,6 

Hh 3.1 WC Non bleached Non bleached 6,5 45,7 7,7 8,2 9,1 9,3 11,3 34,4 4,8 29,6 17,6 2,3 19,9 

Hh 3.2 WC Non bleached Non bleached 31,8 35,6 5,5 7,5 8,4 8,2 5,9 37,8 8,5 29,3 22,8 3,7 26,5 

Hh 4.1 WC Bleached Bleached 4,6 34,0 5,1 5,5 6,6 8,2 8,7 47,5 10,0 37,5 17,1 1,4 18,4 

Hh 4.2 WC Non bleached Non bleached 7,1 34,0 4,8 5,9 7,8 8,9 6,7 44,5 6,0 38,5 20,0 1,5 21,5 

Mb 1.1 WC Bleached Bleached 3,6 73,4 14,2 19,5 22,0 13,9 3,8 16,4 5,4 11,0 8,9 1,3 10,2 

Mb 1.2 WC Non bleached Bleached 42,3 65,1 12,3 6,8 11,4 20,6 13,9 21,3 7,6 13,7 11,6 1,7 13,3 

Mb 2.1 WC Non bleached Non bleached 44,4 56,2 7,9 5,3 9,7 19,9 13,3 25,5 6,9 18,7 15,9 2,4 18,3 

Mb 2.2 WC Non bleached Non bleached 27,7 73,7 6,6 6,8 16,7 30,3 13,3 16,2 6,7 9,5 8,6 1,5 10,1 

Mm 1.1 MP Highveld Non bleached Non bleached 29,2 62,8 11,9 5,1 10,3 23,2 12,4 22,0 8,6 13,4 12,6 2,5 15,2 

Mm 1.2 MP Highveld Non bleached Non bleached 15,7 75,3 7,4 9,1 18,5 27,7 12,6 15,9 6,9 9,0 7,7 1,1 8,8 

Mm 2.1 MP Highveld Non bleached Non bleached 18,4 74,2 8,1 9,2 18,6 27,9 10,4 15,7 6,6 9,1 8,5 1,6 10,1 

Mm 2.2 MP Highveld Non bleached Non bleached 10,3 59,2 4,7 5,9 12,4 22,7 13,5 24,0 9,7 14,3 13,9 2,8 16,8 

Mm 3.1 MP Highveld Bleached Bleached 3,1 67,4 9,0 14,2 15,1 19,6 9,5 18,9 8,0 10,9 11,4 2,3 13,7 
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Appendix 4.1a (Continued). Particle size distributions (%) of the sampled soil profiles. 

Profile Location Colour  
Condition:  
Perceived 

Colour  
Condition:  
Measured 

Co 
Fragments 

Total  
Sand  

Very  
CoSa 

CoSa MeSa FiSa Very 
FiSa 

Total  
Silt 

CoSi FiSi Total  
Clay 

Co  
Clay 

Fi  
Clay 

Mm 3.2 MP Highveld Non bleached Bleached 3,9 65,7 5,4 10,7 16,0 18,6 15,0 23,3 8,8 14,5 9,9 1,2 11,1 

Mm 4.1 MP Highveld Non bleached Non bleached 1,8 60,9 5,7 8,3 14,4 19,1 13,4 24,7 9,4 15,3 12,5 1,9 14,4 

Mm 4.2 MP Highveld Non bleached Non bleached 1,7 72,4 2,8 10,0 19,9 25,2 14,5 15,5 5,7 9,8 10,0 2,0 12,1 

Pb 1.1 WC Non bleached Bleached 1,8 67,4 3,0 8,2 19,0 24,8 12,3 18,7 8,6 10,1 11,5 2,4 13,9 

Pb 1.2 WC Non bleached Non bleached 1,4 72,2 2,9 8,2 20,6 26,2 14,1 17,0 8,1 8,9 9,1 1,8 10,9 

Pb 2.1 WC Bleached Bleached 1,5 64,9 2,9 7,2 17,5 24,8 12,4 19,3 9,1 10,2 12,9 2,9 15,7 

Pb 2.2 WC Non bleached Bleached 1,7 72,5 3,1 8,1 19,1 26,8 15,3 17,4 8,2 9,2 8,6 1,5 10,1 

Pb 3.1 WC Bleached Bleached 1,5 65,2 3,0 6,6 16,4 25,2 13,9 19,9 10,0 9,9 12,1 2,8 14,9 

Pb 3.2 WC Non bleached Bleached 6,8 77,3 3,5 10,2 22,8 28,8 12,1 12,3 4,3 8,0 8,5 1,8 10,4 

Rk 1.1 WC Non bleached Non bleached 22,7 73,5 8,5 7,1 16,8 29,1 12,1 14,6 6,9 7,8 9,4 2,4 11,8 

Rk 1.2 WC Non bleached Non bleached 7,1 32,3 1,6 2,0 5,1 11,8 11,8 47,6 17,6 30,0 17,8 2,3 20,1 

Rk 2.1 WC Bleached Non bleached 4,9 27,6 0,5 1,1 2,9 10,2 12,9 48,4 15,3 33,1 21,0 3,0 24,0 

Rk 2.2 WC Non bleached Non bleached 4,2 74,7 3,5 4,8 16,8 30,0 19,5 19,6 7,5 12,0 5,6 0,2 5,8 

Rk 3.1 WC Non bleached Non bleached 4,9 66,4 0,7 2,7 13,1 29,2 20,7 19,8 7,2 12,5 12,0 1,8 13,8 

Rk 3.2 WC Non bleached Non bleached 9,0 31,5 1,5 1,5 3,7 12,1 12,8 56,5 11,1 45,5 11,9 0,0 11,9 

Rk 4.1 WC Non bleached Non bleached 6,1 25,0 1,2 1,3 3,2 9,2 10,1 60,0 11,3 48,7 14,5 0,5 15,0 

Rk 4.2 WC Non bleached Non bleached 10,0 57,5 1,9 1,1 2,9 18,6 33,0 26,3 6,6 19,7 14,9 1,3 16,2 

Us 1.1 MP Highveld Non bleached Non bleached 5,0 42,2 0,3 0,3 1,6 19,0 21,1 33,3 6,8 26,6 21,6 2,8 24,5 

Us 1.2 MP Highveld Non bleached Non bleached 19,9 61,8 1,0 1,1 2,3 16,8 40,7 28,2 8,0 20,1 9,8 0,2 10,0 

Us 2.1 MP Highveld Non bleached Non bleached 13,7 49,2 0,5 0,4 1,9 14,6 31,8 31,7 7,0 24,8 17,5 1,5 19,0 

Us 2.2 MP Highveld Non bleached Non bleached 14,9 51,7 1,8 1,0 2,5 13,0 33,4 29,2 7,3 21,8 17,5 1,7 19,1 

Us 3.1 MP Highveld Bleached Bleached 25,7 41,0 0,5 0,7 1,8 10,7 27,3 37,0 12,4 24,6 20,1 1,9 22,0 

Us 3.2 MP Highveld Bleached Bleached 16,4 43,9 1,6 0,9 2,9 14,7 23,8 37,2 9,6 27,7 17,1 1,7 18,8 

W3 1.1 WC Non bleached Non bleached 8,1 38,8 2,0 1,4 2,9 12,8 19,7 38,1 8,4 29,7 21,2 1,8 23,1 

W3 1.2 WC Non bleached Non bleached 3,7 58,6 1,7 5,6 12,8 18,6 19,9 18,0 2,8 15,2 19,6 3,7 23,3 
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Appendix 4.2. The water dispersible clay (WDC) %, sodium dispersible clay (SDC) % and the reported  
WDC ratio for each of the sampled soil horizons. 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

WDC %1 SDC % WDC %2 

Bp 1.1 MP Highveld Non bleached Non bleached 0,200 1,504 13,280 

Bp 1.2 MP Highveld Non bleached Non bleached 0,574 2,608 22,014 

Bp 2.1 MP Highveld Non bleached Bleached 0,071 4,190 1,701 

Bp 2.2 MP Highveld Non bleached Non bleached 0,332 3,035 10,933 

Bp 3.1 MP Highveld Non bleached Bleached 0,064 0,847 7,567 

Bp 3.2 MP Highveld Non bleached Non bleached 0,150 1,322 11,349 

Bp 3.3 MP Highveld Non bleached Non bleached 0,244 3,122 7,825 

Br 1.1 MP Highveld Non bleached Non bleached 0,056 0,682 8,243 

Br 1.2 MP Highveld Non bleached Non bleached 0,080 0,787 10,207 

Br 2.1 MP Highveld Bleached Bleached 0,046 0,427 10,695 
Br 2.2 MP Highveld Bleached Bleached 0,072 0,480 14,923 

Br 2.3 MP Highveld Non bleached Non bleached 0,094 0,555 16,873 

Hh 1.1 WC Bleached Bleached 0,524 1,250 41,930 

Hh 1.2 WC Non bleached Bleached 1,058 2,087 50,690 

Hh 2.1 WC Bleached Bleached 0,618 1,387 44,542 

Hh 2.2 WC Non bleached Bleached 1,002 1,747 57,354 

Hh 3.1 WC Non bleached Non bleached 0,874 2,483 35,210 

Hh 3.2 WC Non bleached Non bleached 0,601 4,001 15,015 

Hh 4.1 WC Bleached Bleached 1,362 2,273 59,906 

Hh 4.2 WC Non bleached Non bleached 0,794 2,834 28,014 

Mb 1.1 WC Bleached Bleached 0,255 0,999 25,478 

Mb 1.2 WC Non bleached Bleached 0,311 2,433 12,767 

Mb 2.1 WC Non bleached Non bleached 0,190 0,897 21,200 

Mb 2.2 WC Non bleached Non bleached 0,312 1,955 15,959 

Mm 1.1 MP Highveld Non bleached Non bleached 0,106 1,472 7,179 

Mm 1.2 MP Highveld Non bleached Non bleached 0,164 1,866 8,805 

Mm 2.1 MP Highveld Non bleached Non bleached 0,128 1,139 11,208 

Mm 2.2 MP Highveld Non bleached Non bleached 0,274 2,968 9,228 

Mm 3.1 MP Highveld Bleached Bleached 0,131 1,163 11,218 

Mm 3.2 MP Highveld Non bleached Bleached 0,211 2,642 8,004 

Mm 4.1 MP Highveld Non bleached Non bleached 0,132 1,255 10,489 

Mm 4.2 MP Highveld Non bleached Non bleached 0,054 1,312 4,103 

Pb 1.1 WC Non bleached Bleached 0,671 2,309 29,047 

Pb 1.2 WC Non bleached Non bleached 0,657 3,748 17,514 

Pb 2.1 WC Bleached Bleached 0,085 0,552 15,475 

Pb 2.2 WC Non bleached Bleached 0,177 2,071 8,528 

Pb 3.1 WC Bleached Bleached 0,727 1,455 49,930 

Pb 3.2 WC Non bleached Bleached 0,661 3,101 21,316 
Rk 1.1 WC Non bleached Non bleached 0,612 1,821 33,616 

Rk 1.2 WC Non bleached Non bleached 1,504 4,956 30,354 

Rk 2.1 WC Bleached Non bleached 0,294 1,009 29,098 

Rk 2.2 WC Non bleached Non bleached 0,745 2,952 25,236 

Rk 3.1 WC Non bleached Non bleached 0,263 1,603 16,430 

Rk 3.2 WC Non bleached Non bleached 0,559 2,833 19,725 

Rk 4.1 WC Non bleached Non bleached 0,390 1,713 22,761 

Rk 4.2 WC Non bleached Non bleached 0,592 2,755 21,479 

Us 1.1 MP Highveld Non bleached Non bleached 0,263 2,066 12,745 

Us 1.2 MP Highveld Non bleached Non bleached 0,246 2,949 8,357 

Us 2.1 MP Highveld Non bleached Non bleached 0,114 1,313 8,691 
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Appendix 4.2 (Continued). The water dispersible clay (WDC) %, sodium dispersible clay (SDC) % and the 
reported WDC ratio for each of the sampled soil horizons. 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

WDC %1 SDC % WDC %2 

Us 2.2 MP Highveld Non bleached Non bleached 0,074 2,636 2,825 

Us 3.1 MP Highveld Bleached Bleached 0,090 1,001 9,026 

Us 3.2 MP Highveld Bleached Bleached 0,177 2,031 8,702 

W3 1.1 WC Non bleached Non bleached 0,298 2,439 12,224 

W3 1.2 WC Non bleached Non bleached 0,205 10,074 2,036 

1 Water dispersible clay determined as a percentage of the total clay fraction  
2  Reported WDC (%): (WDC % of total clay fraction / SDC % of the total clay fraction ) * 100 
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Appendix 4.3. Changes in the different clay fractions from the first to the second horizon of the sampled soil profiles.  

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

Fi clay  

change %
1 

Co clay  

change %
1 

Total clay  

change %
1 

Bp 1 MP Highveld Non bleached Non bleached 34,83 37,79 37,40 

Bp 2 MP Highveld Non bleached Bleached 66,99 47,13 50,13 

Bp 3 MP Highveld Non bleached Bleached 41,06 10,71 14,64 

Br 1 MP Highveld Non bleached Non bleached 25,77 -3,27 -0,05 

Br 2 MP Highveld Bleached Bleached 5,03 8,78 8,41 

Hh 1 WC Non bleached Bleached 3901,63 47,32 55,65 

Hh 2 WC Bleached Bleached 641,79 2,09 5,01 

Hh 3 WC Non bleached Non bleached 59,86 29,81 33,32 

Hh 4 WC Bleached Bleached 9,42 17,01 16,45 

Mb 1 WC Bleached Bleached 75,11 28,43 34,56 

Mb 2 WC Non bleached Non bleached 62,27 26,40 30,13 

Mm 1 MP Highveld Non bleached Non bleached 19,06 14,37 15,16 

Mm 2 MP Highveld Non bleached Non bleached 58,20 41,66 44,41 

Mm 3 MP Highveld Bleached Bleached 82,99 40,80 47,14 

Mm 4 MP Highveld Non bleached Non bleached 30,52 10,49 13,99 

Pb 1 WC Non bleached Bleached 33,83 17,82 19,62 

Pb 2 WC Bleached Bleached 943,03 114,75 139,86 

Pb 3 WC Bleached Bleached 1183,99 22,14 25,89 

Rk 1 WC Non bleached Non bleached 114,37 45,47 51,11 

Rk 2 WC Non bleached Non bleached 511,10 78,51 89,04 

Rk 3 WC Non bleached Non bleached 15,41 14,91 14,95 

Rk 4 WC Non bleached Non bleached 9,13 24,11 22,77 

Us 1 MP Highveld Non bleached Non bleached -27,86 -26,75 -26,92 

Us 2 MP Highveld Non bleached Non bleached 31,54 24,39 25,35 

Us 3 MP Highveld Bleached Bleached 41,34 21,31 23,74 

W3 WC Bleached Non bleached - - 87,68 

1 
Clay change %: [(Clay % horizon 2 – Clay % horizon 1) / Clay % horizon 1] * 100 

  

Stellenbosch University  https://scholar.sun.ac.za



180 
 

Appendix 4.4. The pH (KCl and water) and electrical conductivity (EC) (mS/m) measured in a 1:2.5 soil solution for each 
of the sampled soil horizons. The measured pH in 1M NaF (1:50 soil solution) is also included. 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

pH (H2O) pH (KCl) pH (NaF) EC  
(mS/m) 

Bp 1.1 MP Highveld Non bleached Non bleached 6,25 5,32 9,02 10,90 

Bp 1.2 MP Highveld Non bleached Non bleached 6,15 5,13 9,20 6,47 

Bp 2.1 MP Highveld Non bleached Bleached 6,43 5,61 8,51 12,93 

Bp 2.2 MP Highveld Non bleached Non bleached 5,61 4,66 9,19 9,29 

Bp 3.1 MP Highveld Non bleached Bleached 6,99 6,23 8,57 13,24 

Bp 3.2 MP Highveld Non bleached Non bleached 7,24 6,28 8,77 7,77 

Bp 3.3 MP Highveld Non bleached Non bleached 6,16 5,19 9,22 14,58 

Br 1.1 MP Highveld Non bleached Non bleached 5,66 4,44 7,88 1,491 

Br 1.2 MP Highveld Non bleached Non bleached 5,37 4,25 8,09 1,086 

Br 2.1 MP Highveld Bleached Bleached 5,5 4,22 7,63 1,28 
Br 2.2 MP Highveld Bleached Bleached 5,32 4,23 7,63 1,139 

Br 2.3 MP Highveld Non bleached Non bleached 5,37 4,23 7,65 0,974 

Hh 1.1 WC Bleached Bleached 5,95 4,91 7,75 11,83 

Hh 1.2 WC Non bleached Bleached 5,94 4,73 8,53 1,698 

Hh 2.1 WC Bleached Bleached 6,17 5,06 7,97 7,26 

Hh 2.2 WC Non bleached Bleached 6,17 4,88 8,22 1,613 

Hh 3.1 WC Non bleached Non bleached 5,03 3,98 8,59 10,14 

Hh 3.2 WC Non bleached Non bleached 5,05 4,06 9,41 6,95 

Hh 4.1 WC Bleached Bleached 4,81 3,82 8,41 15,7 

Hh 4.2 WC Non bleached Non bleached 4,99 3,86 8,96 8,28 

Mb 1.1 WC Bleached Bleached 6,07 5,22 7,79 12,32 

Mb 1.2 WC Non bleached Bleached 5,72 4,45 8,46 6,48 

Mb 2.1 WC Non bleached Non bleached 5,77 5,01 7,76 17,43 

Mb 2.2 WC Non bleached Non bleached 6,45 5,46 8,03 11,11 

Mm 1.1 MP Highveld Non bleached Non bleached 5,41 4,43 8,58 7,21 

Mm 1.2 MP Highveld Non bleached Non bleached 5,11 4,25 9.00 7,51 

Mm 2.1 MP Highveld Non bleached Non bleached 5,62 4,60 8,65 7,56 

Mm 2.2 MP Highveld Non bleached Non bleached 6,44 5,32 9,18 1,424 

Mm 3.1 MP Highveld Bleached Bleached 5,83 4,78 8,67 6,39 

Mm 3.2 MP Highveld Non bleached Bleached 6,65 5,63 9,28 5,95 

Mm 4.1 MP Highveld Non bleached Non bleached 5,12 4,32 8,58 15,42 

Mm 4.2 MP Highveld Non bleached Non bleached 6,40 5,59 8,99 14,73 

Pb 1.1 WC Non bleached Bleached 5,33 4,17 9,57 1,673 

Pb 1.2 WC Non bleached Non bleached 5,28 4,18 9,69 1,587 

Pb 2.1 WC Bleached Bleached 5,33 4,18 7,79 5,65 

Pb 2.2 WC Non bleached Bleached 4,81 4,25 9,06 1,589 

Pb 3.1 WC Bleached Bleached 4,97 3,97 8,74 5,81 

Pb 3.2 WC Non bleached Bleached 4,72 3,79 9,14 6,45 
Rk 1.1 WC Non bleached Non bleached 5,71 4,45 7,75 6,42 

Rk 1.2 WC Non bleached Non bleached 6,05 4,43 8,51 1,159 

Rk 2.1 WC Bleached Non bleached 5,04 3,80 7,71 1,574 

Rk 2.2 WC Non bleached Non bleached 5,55 4,02 8,74 1,214 

Rk 3.1 WC Non bleached Non bleached 5,60 4,40 8,70 7,71 

Rk 3.2 WC Non bleached Non bleached 5,28 4,04 9,48 1,286 

Rk 4.1 WC Non bleached Non bleached 5,78 4,80 8,52 16,39 

Rk 4.2 WC Non bleached Non bleached 5,80 4,33 9,09 1,648 

Us 1.1 MP Highveld Non bleached Non bleached 5,77 4,71 9,18 7,55 

Us 1.2 MP Highveld Non bleached Non bleached 5,02 4,32 9,49 11,67 

Us 2.1 MP Highveld Non bleached Non bleached 5,27 4,47 8,58 12,15 
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Appendix 4.4 (continued). The pH (KCl and water) and electrical conductivity (EC) (mS/m) measured in a 1:2.5 soil 
solution for each of the sampled soil horizons. The measured pH in 1M NaF (1:50 soil solution) is also included.  

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

pH (H2O) pH (KCl) pH (NaF) EC  
(mS/m) 

Us 2.2 MP Highveld Non bleached Non bleached 4,86 4,22 9,01 11,27 

Us 3.1 MP Highveld Bleached Bleached 5,56 4,52 8,39 1,711 

Us 3.2 MP Highveld Bleached Bleached 5,01 4,27 8,98 9,70 

W3 1.1 WC Non bleached Non bleached 5,83 4,33 8,33 19,07 

W3 1.2 WC Non bleached Non bleached 5,40 4,16 9,17 44,10 
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Appendix 4.5. Exchangeable cations and calculated cation parameters for each of the sampled soil horizons.  

Profile Location Colour  
Condition:  
Perceived 

Colour  
Condition:  
Measured 

Ca  
(cmolc.kg-1) 

Mg 
(cmolc.kg-1) 

Na 
(cmolc.kg-1) 

K 
(cmolc.kg-1) 

S-value 
(cmolc.kg-1) 

Exchangeable  
Al (cmolc.kg-1) 

Exchangeable  
Acidity 
(cmolc.kg-1) 
 

ECEC Base  

saturation % 

ESP Ca:Mg 

Bp 1.1 MP Highveld Non bleached Non bleached 2,69 0,63 0,07 0,38 3,77 0,00 0,04 3,82 98,91 1,82 4,25 

Bp 1.2 MP Highveld Non bleached Non bleached 2,40 0,58 0,07 0,20 3,26 0,05 0,04 3,30 98,74 2,24 4,11 

Bp 2.1 MP Highveld Non bleached Bleached 2,38 0,53 0,07 0,33 3,30 0,05 0,09 3,39 97,30 1,92 4,44 

Bp 2.2 MP Highveld Non bleached Non bleached 1,61 0,48 0,08 0,14 2,30 0,10 0,14 2,44 94,20 3,21 3,37 

Bp 3.1 MP Highveld Non bleached Bleached 2,95 0,72 0,07 0,44 4,18 0,00 0,02 4,19 99,60 1,56 4,07 

Bp 3.2 MP Highveld Non bleached Non bleached 2,36 0,69 0,06 0,22 3,33 0,00 0,02 3,34 99,50 1,69 3,41 

Bp 3.3 MP Highveld Non bleached Non bleached 1,95 0,67 0,07 0,16 2,83 0,03 0,07 2,90 97,70 2,25 2,92 

Br 1.1 MP Highveld Non bleached Non bleached 0,88 0,49 0,06 0,26 1,68 0,25 0,24 1,92 87,40 2,95 1,81 

Br 1.2 MP Highveld Non bleached Non bleached 0,40 0,52 0,06 0,13 1,11 0,40 0,44 1,55 71,48 3,65 0,78 

Br 2.1 MP Highveld Bleached Bleached 0,70 0,47 0,06 0,19 1,42 0,25 0,34 1,76 80,64 3,45 1,49 

Br 2.2 MP Highveld Bleached Bleached 0,57 0,39 0,05 0,10 1,12 0,25 0,39 1,51 74,06 3,46 1,44 

Br 2.3 MP Highveld Non bleached Non bleached 0,54 0,43 0,06 0,09 1,12 0,25 0,34 1,46 76,63 3,87 1,27 

Hh 1.1 WC Bleached Bleached 1,35 1,09 0,17 0,40 3,00 0,05 0,04 3,04 98,63 5,43 1,24 

Hh 1.2 WC Non bleached Bleached 0,95 1,05 0,12 0,43 2,55 0,05 0,14 2,69 94,73 4,37 0,91 

Hh 2.1 WC Bleached Bleached 2,80 1,72 0,11 0,42 5,05 0,02 0,04 5,09 99,18 2,13 1,63 

Hh 2.2 WC Non bleached Bleached 2,73 1,23 0,16 0,24 4,36 0,02 0,04 4,40 99,05 3,56 2,23 

Hh 3.1 WC Non bleached Non bleached 0,17 0,63 0,17 0,37 1,34 0,98 1,44 2,78 48,23 6,09 0,28 

Hh 3.2 WC Non bleached Non bleached 0,07 0,54 0,13 0,32 1,07 1,00 1,34 2,41 44,33 5,41 0,13 

Hh 4.1 WC Bleached Bleached 0,42 0,79 0,30 0,15 1,65 1,40 1,84 3,49 47,27 8,47 0,53 

Hh 4.2 WC Non bleached Non bleached 0,24 0,68 0,23 0,09 1,25 1,30 1,74 2,99 41,75 7,56 0,36 

Mb 1.1 WC Bleached Bleached 1,57 0,44 0,10 0,34 2,44 0,00 0,02 2,46 99,32 4,07 3,60 

Mb 1.2 WC Non bleached Bleached 0,89 0,34 0,10 0,36 1,68 0,13 0,17 1,85 90,97 5,18 2,63 

Mb 2.1 WC Non bleached Non bleached 1,98 0,61 0,11 0,39 3,08 0,10 0,09 3,17 97,11 3,43 3,25 

Mb 2.2 WC Non bleached Non bleached 1,77 0,69 0,07 0,40 2,93 0,05 0,02 2,95 99,44 2,51 2,56 

Mm 1.1 MP Highveld Non bleached Non bleached 1,48 0,48 0,07 0,26 2,28 0,08 0,19 2,47 92,25 2,64 3,09 

Mm 1.2 MP Highveld Non bleached Non bleached 1,19 0,45 0,05 0,19 1,89 0,28 0,31 2,20 85,82 2,37 2,64 

Mm 2.1 MP Highveld Non bleached Non bleached 1,50 0,51 0,06 0,36 2,43 0,13 0,12 2,55 95,24 2,21 2,94 

Mm 2.2 MP Highveld Non bleached Non bleached 1,71 0,68 0,06 0,15 2,59 0,00 0,04 2,64 98,42 2,14 2,50 

Mm 3.1 MP Highveld Bleached Bleached 1,97 0,56 0,05 0,35 2,94 0,08 0,04 2,98 98,60 1,75 3,52 
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Appendix 4.5 (continued). Exchangeable cations and calculated cation parameters for each of the sampled soil horizons. 

Profile Location Colour  
Condition:  
Perceived 

Colour  
Condition:  
Measured 

Ca  
(cmolc.kg-1) 

Mg 
(cmolc.kg-1) 

Na 
(cmolc.kg-1) 

K 
(cmolc.kg-1) 

S-value 
(cmolc.kg-1) 

Exchangeable  
Al (cmolc.kg-1) 

Exchangeable  
Acidity 
(cmolc.kg-1) 
 

ECEC Base  

saturation % 

ESP Ca:Mg 

Mm 3.2 MP Highveld Non bleached Bleached 1,79 0,83 0,05 0,18 2,84 0,00 0,02 2,87 99,24 1,67 2,15 

Mm 4.1 MP Highveld Non bleached Non bleached 1,56 0,28 0,05 0,27 2,16 0,20 0,24 2,40 90,14 2,18 5,57 

Mm 4.2 MP Highveld Non bleached Non bleached 2,02 0,13 0,06 0,16 2,37 0,00 0,02 2,38 99,30 2,37 15,35 

Pb 1.1 WC Non bleached Bleached 0,69 0,49 0,12 0,31 1,61 0,90 1,24 2,86 56,52 4,11 1,40 

Pb 1.2 WC Non bleached Non bleached 0,60 0,67 0,10 0,26 1,64 0,75 0,94 2,58 63,54 4,04 0,89 

Pb 2.1 WC Bleached Bleached 1,05 0,33 0,10 0,12 1,61 0,35 0,59 2,20 73,12 4,74 3,20 

Pb 2.2 WC Non bleached Bleached 0,10 0,08 0,08 0,07 0,33 0,95 1,14 1,48 22,66 5,30 1,27 

Pb 3.1 WC Bleached Bleached 0,37 0,37 0,10 0,28 1,13 1,40 1,79 2,92 38,74 3,57 1,01 

Pb 3.2 WC Non bleached Bleached 0,12 0,63 0,11 0,23 1,09 1,60 2,09 3,18 34,25 3,42 0,19 

Rk 1.1 WC Non bleached Non bleached 1,09 0,87 0,10 0,13 2,19 0,30 0,14 2,33 93,92 4,48 1,25 

Rk 1.2 WC Non bleached Non bleached 1,11 2,71 0,15 0,07 4,04 0,10 0,24 4,28 94,35 3,56 0,41 

Rk 2.1 WC Bleached Non bleached 0,93 0,50 0,08 0,23 1,75 0,50 0,84 2,59 67,50 3,19 1,86 

Rk 2.2 WC Non bleached Non bleached 0,60 1,52 0,13 0,07 2,33 0,50 0,74 3,07 75,83 4,11 0,40 

Rk 3.1 WC Non bleached Non bleached 1,85 0,92 0,10 0,49 3,36 0,20 0,34 3,70 90,77 2,70 2,01 

Rk 3.2 WC Non bleached Non bleached 0,85 0,53 0,10 0,22 1,70 1,40 1,84 3,54 48,05 2,82 1,59 

Rk 4.1 WC Non bleached Non bleached 3,50 1,32 0,09 0,94 5,85 0,10 0,09 5,94 98,46 1,46 2,64 

Rk 4.2 WC Non bleached Non bleached 1,39 0,81 0,09 0,69 2,99 0,35 0,49 3,48 85,88 2,62 1,71 

Us 1.1 MP Highveld Non bleached Non bleached 1,99 1,32 0,05 0,34 3,70 0,07 0,12 3,82 96,94 1,25 1,50 

Us 1.2 MP Highveld Non bleached Non bleached 0,73 1,30 0,06 0,14 2,23 0,50 0,67 2,89 76,95 1,95 0,56 

Us 2.1 MP Highveld Non bleached Non bleached 1,31 0,81 0,04 0,13 2,28 0,25 0,34 2,62 86,98 1,66 1,62 

Us 2.2 MP Highveld Non bleached Non bleached 0,64 0,69 0,05 0,07 1,45 0,65 0,79 2,24 64,72 2,13 0,92 

Us 3.1 MP Highveld Bleached Bleached 1,60 0,72 0,05 0,14 2,51 0,15 0,19 2,71 92,92 1,93 2,21 

Us 3.2 MP Highveld Bleached Bleached 0,81 0,85 0,05 0,08 1,79 0,43 0,64 2,43 73,58 2,15 0,95 

W3 1.1 WC Non bleached Non bleached 1,24 0,30 0,28 0,24 2,05 0,30 0,62 2,66 76,85 10,45 4,18 

W3 1.2 WC Non bleached Non bleached 1,02 0,35 0,70 0,20 2,27 0,55 0,89 3,16 71,82 22,27 2,96 
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Appendix 4.6. The extracted citrate-bicarbonate-dithionite (CBD) and acidified ammonium oxalate (AAO) Fe and Al fractions from the sampled  
soil profiles. 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

FeCBD (%) FeAAO (%) Fe CI1 AlCBD (%) AlAAO (%) Al ratio2 

Bp 1.1 MP Highveld Non bleached Non bleached 2,39 0,13 5,27 0,34 0,14 41,07 

Bp 1.2 MP Highveld Non bleached Non bleached 3,24 0,12 3,71 0,40 0,15 37,88 

Bp 2.1 MP Highveld Non bleached Bleached 1,88 0,11 5,76 0,14 0,13 91,67 

Bp 2.2 MP Highveld Non bleached Non bleached 2,02 0,11 5,66 0,35 0,17 49,15 

Bp 3.1 MP Highveld Non bleached Bleached 1,35 0,11 8,00 0,23 0,11 46,15 

Bp 3.2 MP Highveld Non bleached Non bleached 1,47 0,10 6,55 0,26 0,12 46,51 

Bp 3.3 MP Highveld Non bleached Non bleached 1,88 0,10 5,44 0,37 0,17 45,90 

Br 1.1 MP Highveld Non bleached Non bleached 1,29 0,09 6,98 0,22 0,10 47,22 

Br 1.2 MP Highveld Non bleached Non bleached 1,67 0,08 5,03 0,27 0,10 37,78 
Br 2.1 MP Highveld Bleached Bleached 0,67 0,07 10,83 0,11 0,09 78,95 
Br 2.2 MP Highveld Bleached Bleached 0,61 0,07 11,80 0,11 0,08 73,68 

Br 2.3 MP Highveld Non bleached Non bleached 0,61 0,10 15,74 0,11 0,10 88,89 
Hh 1.1 WC Bleached Bleached 1,06 0,10 9,06 0,17 0,08 48,28 

Hh 1.2 WC Non bleached Bleached 2,06 0,14 6,99 0,37 0,11 31,15 
Hh 2.1 WC Bleached Bleached 2,17 0,11 4,98 0,23 0,13 53,85 

Hh 2.2 WC Non bleached Bleached 2,54 0,11 4,26 0,26 0,12 46,51 

Hh 3.1 WC Non bleached Non bleached 2,55 0,11 4,47 0,38 0,16 41,27 

Hh 3.2 WC Non bleached Non bleached 3,70 0,13 3,57 0,51 0,22 42,35 
Hh 4.1 WC Bleached Bleached 2,78 0,14 4,96 0,40 0,14 34,33 

Hh 4.2 WC Non bleached Non bleached 1,31 0,15 11,49 0,26 0,16 62,79 
Mb 1.1 WC Bleached Bleached 0,90 0,08 8,67 0,15 0,07 48,00 

Mb 1.2 WC Non bleached Bleached 1,24 0,08 6,80 0,21 0,10 45,71 

Mb 2.1 WC Non bleached Non bleached 1,16 0,09 7,76 0,10 0,07 70,59 

Mb 2.2 WC Non bleached Non bleached 1,50 0,11 7,22 0,10 0,09 93,75 

Mm 1.1 MP Highveld Non bleached Non bleached 1,57 0,08 5,37 0,23 0,10 43,59 

Mm 1.2 MP Highveld Non bleached Non bleached 1,56 0,11 6,92 0,13 0,13 95,45 

Mm 2.1 MP Highveld Non bleached Non bleached 1,05 0,08 7,43 0,16 0,10 62,96 

Mm 2.2 MP Highveld Non bleached Non bleached 1,44 0,10 6,69 0,19 0,17 90,32 

Mm 3.1 MP Highveld Bleached Bleached 1,12 0,08 7,53 0,17 0,12 68,97 

Mm 3.2 MP Highveld Non bleached Bleached 1,44 0,09 6,27 0,24 0,15 62,50 

Mm 4.1 MP Highveld Non bleached Non bleached 1,17 0,08 6,67 0,23 0,11 50,00 

Mm 4.2 MP Highveld Non bleached Non bleached 3,13 0,08 2,50 0,46 0,13 27,63 

Pb 1.1 WC Non bleached Bleached 2,28 0,14 6,07 0,61 0,27 44,12 

Pb 1.2 WC Non bleached Non bleached 2,45 0,14 5,89 0,59 0,28 46,94 

Pb 2.1 WC Bleached Bleached 0,56 0,08 15,14 0,18 0,11 60,00 

Pb 2.2 WC Non bleached Bleached 1,08 0,08 7,81 0,38 0,16 41,27 

Pb 3.1 WC Bleached Bleached 1,56 0,15 9,65 0,30 0,15 50,00 
Pb 3.2 WC Non bleached Bleached 2,33 0,19 7,98 0,40 0,19 46,97 
Rk 1.1 WC Non bleached Non bleached 1,65 0,11 6,57 0,25 0,12 48,78 

Rk 1.2 WC Non bleached Non bleached 4,58 0,35 7,61 0,53 0,14 27,27 
Rk 2.1 WC Bleached Non bleached 1,21 0,12 9,92 0,15 0,10 64,00 

Rk 2.2 WC Non bleached Non bleached 2,07 0,26 12,75 0,25 0,14 58,54 
Rk 3.1 WC Non bleached Non bleached 1,99 0,15 7,54 0,32 0,16 48,15 

Rk 3.2 WC Non bleached Non bleached 2,46 0,26 10,73 0,47 0,24 50,63 

Rk 4.1 WC Non bleached Non bleached 1,90 0,17 9,18 0,32 0,15 47,17 

Rk 4.2 WC Non bleached Non bleached 2,73 0,19 7,05 0,41 0,19 47,06 
Us 1.1 MP Highveld Non bleached Non bleached 1,70 0,11 6,71 0,20 0,21 102,94 

Us 1.2 MP Highveld Non bleached Non bleached 2,87 0,14 5,02 0,33 0,25 74,55 
Us 2.1 MP Highveld Non bleached Non bleached 1,49 0,11 7,27 0,29 0,16 55,10 
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Appendix 4.6 (continued). The extracted citrate-bicarbonate-dithionite (CBD) and acidified ammonium oxalate (AAO) Fe and Al fractions from  
the sampled soil profiles. 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

FeCBD (%) FeAAO (%) Fe CI1 AlCBD (%) AlAAO (%) Al ratio2 

Us 2.2 MP Highveld Non bleached Non bleached 1,73 0,16 9,39 0,34 0,19 54,39 

Us 3.1 MP Highveld Bleached Bleached 1,13 0,11 9,56 0,25 0,12 48,78 

Us 3.2 MP Highveld Bleached Bleached 1,50 0,16 10,43 0,32 0,16 49,06 

W3 1.1 WC Non bleached Non bleached 1,68 0,11 6,79 0,41 0,10 24,64 

W3 1.2 WC Non bleached Non bleached 3,03 0,13 4,16 0,72 0,16 22,50 
1 Fe CI: [FeAAO (mg.kg-1) / FeCBD (mg.kg-1)] * 100 

2 Al ratio: [AlAAO (mg.kg-1) / AlCBD (mg.kg-1)] * 100 
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Appendix 4.7. The organic carbon and nitrogen percentages of each of the sampled soil horizons and  
their calculated C:N ratio. 
 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

C % N % C:N 

Bp 1.1 MP Highveld Non bleached Non bleached 0,933 0,052 17,94 

Bp 1.2 MP Highveld Non bleached Non bleached 0,905 0,049 18,47 

Bp 2.1 MP Highveld Non bleached Bleached 0,760 0,047 16,17 

Bp 2.2 MP Highveld Non bleached Non bleached 0,753 0,038 19,82 

Bp 3.1 MP Highveld Non bleached Bleached 0,743 0,044 16,89 

Bp 3.2 MP Highveld Non bleached Non bleached 0,771 0,021 36,71 

Bp 3.3 MP Highveld Non bleached Non bleached 0,669 0,032 20,91 

Br 1.1 MP Highveld Non bleached Non bleached 1,367 0,056 24,41 

Br 1.2 MP Highveld Non bleached Non bleached 0,896 0,019 47,16 
Br 2.1 MP Highveld Bleached Bleached 1,109 0,045 24,64 
Br 2.2 MP Highveld Bleached Bleached 0,722 0,023 31,39 

Br 2.3 MP Highveld Non bleached Non bleached 0,635 0,009 70,56 
Hh 1.1 WC Bleached Bleached 1,570 0,048 32,71 

Hh 1.2 WC Non bleached Bleached 0,642 0.000 0,00 
Hh 2.1 WC Bleached Bleached 1,523 0,086 17,71 

Hh 2.2 WC Non bleached Bleached 1,062 0,051 20,82 

Hh 3.1 WC Non bleached Non bleached 1,854 0,075 24,72 

Hh 3.2 WC Non bleached Non bleached 1,219 0,065 18,75 
Hh 4.1 WC Bleached Bleached 2,361 0,093 25,39 

Hh 4.2 WC Non bleached Non bleached 1,338 0,061 21,93 
Mb 1.1 WC Bleached Bleached 0,973 0,088 11,06 

Mb 1.2 WC Non bleached Bleached 0,635 0,031 20,48 

Mb 2.1 WC Non bleached Non bleached 1,017 0,091 11,18 

Mb 2.2 WC Non bleached Non bleached 0,544 0,049 11,10 

Mm 1.1 MP Highveld Non bleached Non bleached 0,932 0,049 19,02 

Mm 1.2 MP Highveld Non bleached Non bleached 0,675 0,036 18,75 

Mm 2.1 MP Highveld Non bleached Non bleached 0,867 0,049 17,69 

Mm 2.2 MP Highveld Non bleached Non bleached 0,674 0,030 22,47 

Mm 3.1 MP Highveld Bleached Bleached 0,987 0,055 17,95 

Mm 3.2 MP Highveld Non bleached Bleached 0,700 0,020 35,00 

Mm 4.1 MP Highveld Non bleached Non bleached 0,936 0,047 19,91 

Mm 4.2 MP Highveld Non bleached Non bleached 0,510 0,026 19,62 

Pb 1.1 WC Non bleached Bleached 1,832 0,103 17,79 

Pb 1.2 WC Non bleached Non bleached 1,104 0,061 18,10 

Pb 2.1 WC Bleached Bleached 1,910 0,047 40,64 

Pb 2.2 WC Non bleached Bleached 0,717 0,015 47,80 

Pb 3.1 WC Bleached Bleached 1,088 0,060 18,13 
Pb 3.2 WC Non bleached Bleached 0,938 0,059 15,90 
Rk 1.1 WC Non bleached Non bleached 0,960 0,060 16,00 

Rk 1.2 WC Non bleached Non bleached 0,688 0,042 16,38 
Rk 2.1 WC Bleached Non bleached 1,215 0,111 10,95 

Rk 2.2 WC Non bleached Non bleached 0,607 0,034 17,85 
Rk 3.1 WC Non bleached Non bleached 1,672 0,118 14,17 

Rk 3.2 WC Non bleached Non bleached 0,564 0,032 17,63 

Rk 4.1 WC Non bleached Non bleached 2,846 0,245 11,62 

Rk 4.2 WC Non bleached Non bleached 0,977 0,069 14,16 
Us 1.1 MP Highveld Non bleached Non bleached 1,549 0,113 13,71 

Us 1.2 MP Highveld Non bleached Non bleached 0,970 0,076 12,76 
Us 2.1 MP Highveld Non bleached Non bleached 0,979 0,062 15,79 
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Appendix 4.7 (continued). The organic carbon and nitrogen percentages of each of the sampled soil  
horizons and their calculated C:N ratio. 
 

Profile Location Colour 
Condition: 
Perceived 

Colour  
Condition: 
Measured 

C % N % C:N 

Us 2.2 MP Highveld Non bleached Non bleached 0,786 0,045 17,47 

Us 3.1 MP Highveld Bleached Bleached 1,003 0,068 14,75 

Us 3.2 MP Highveld Bleached Bleached 0,874 0,033 26,48 

W3 1.1 WC Non bleached Non bleached 0,872 0,089 9,80 

W3 1.2 WC Non bleached Non bleached 0,649 0,074 8,77 
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Appendix 4.8 – The generated Principle Component Analysis biplots. 
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Appendix 4.8 (1). The generated PCA biplot for all the determined chemical and physical characteristics of the sampled bleached and non-bleached profiles combined. 
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Appendix 4.8 (2). The generated PCA biplot for all the determined chemical and physical characteristics of the sampled bleached and non-bleached profiles in the Western Cape. 
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Appendix 4.8 (3). The generated PCA biplot for all the determined chemical and physical characteristics of the sampled bleached and non-bleached profiles in the Mpumalanga Highveld.
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Appendix 4.9 – The calculated relationship between the measured pHNaF and AlAAO. 

 

 

Appendix 4.9. The calculated correlation between the determined pHNaF and AlAAO of all the soils horizons sampled in the 
Western Cape and Mpumalanga Highveld. 
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Appendix 4.10. XRD clay mineralogy of K- and Mg-saturated Hh 4 samples. 
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Appendix 4.10. XRD clay mineralogy of K- and Mg-saturated Pb 3 samples. 
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