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Summary 

The contribution of agriculture in South Africa to the economy, is one of those major drivers of 

employment in South Africa.  The two most produced commercial crops in SA are maize and wheat.  In 

chapter one, the importance of these crops and the effect of farming practices such as conventional and 

conservation agriculture were briefly compared and discussed.  Furthermore, the importance of 

microorganisms in agriculture as well as their role in various biological processes that occurs in soil are 

briefly discussed.  Particular attention was given to the role of Trichoderma spp. as they interact and 

form relationships with other soil organisms.  This was followed by a brief discussion on the taxonomic 

history of Trichoderma spp. and the application of Trichoderma spp. in the industrial and agricultural 

sectors. 

Chapter two is the first of three research chapters and discussed the isolation and identification of 

Trichoderma species from wheat soil in the Western Cape.  All isolates in this chapter were collected 

from agricultural soil only.  The identification and classification of species was primarily based on macro 

features and amplification of internal transcribed spacer (ITS) regions.  Thereafter, the final identification 

was done by combining two markers (ITS and Elongation factor 1 alpha (TEF1)).  Ninety-one (91) strains 

of Trichoderma spp. which resolved into seven species that were identified as T. virens, T. 

saturnisporum, Trichoderma sp., T. gamsii, T. koningiopsis, T. velutinum, and T. spirale.  It was also 

reported that T. gamsii was the predominant species.  In addition, crop rotation practices resulted in a 

higher number of strains and species when it is compared with the monoculture practices. 

Chapter three is similar to Chapter 2 and focuses on the identification of Trichoderma species, on maize 

from different geographical areas in KwaZulu-Natal and the Free State.  Soil samples were collected 

from sites with crop rotation as well as monoculture practices.  From isolations, 337 strains were 

recovered from maize soil representing 11 Trichoderma species.  Seven species have been isolated 

previously in South Africa.  However, five species namely, T. velutinum, T. rifaii, T. paratroviride, T. 

neokoningii and T. peberdyi are being reported for the first time in South Africa.  Distribution of the 

species significantly differed between crop rotation and monoculture practices, with crop rotation sites 

resulting in a higher number of species than monoculture practices.  Furthermore, T. gamsii and T. 

hamatum were the most abundant species isolated. 
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In chapter four the potential functions of different strains were investigated.  The results suggest that 

each certain function in Trichoderma spp. could be strain specific.  This chapter determined the abilities 

of Trichoderma strains to solubilize phosphate and produce indole acetic acid.  These two metabolic 

factors (solubilization of phosphate and production of indole acetic acid) were evaluated because it is 

known that they could be used for primary identification of species that might have the capacity to 

improve plant growth.  Findings indicated that the majority of strains were able to solubilize phosphate 

and pH reduction play a vital role in this case.  T. koningiopsis NNC066 solubilized the maximum amount 

of phosphate whereas Trichoderma sp. K4 solubilized the least amount of phosphate.  Moreover, no 

strains were able to produce indole acetic acid (IAA) in the absence of tryptophan (L-TRP).  Although, 

the amendments of the media with L-TRP, enabled all strains to produce the IAA where maximum 

amount obtained at 41.90 µg/ml by T. gamsii NNC019, while the least amount was at 0.30 µg/ml by 

Trichoderma sp. K1. 
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Opsomming 

Die bydrae van die landbou in Suid -Afrika tot die ekonomie, is een van die belangrikste dryfvere vir 

werk in Suid -Afrika.  Die twee mees geproduseerde kommersiële gewasse in SA, is mielies en koring. 

In hoofstuk een is die belangrikheid van hierdie gewasse en die effek van boerderypraktyke soos 

konvensionele en bewaringslandbou kortliks vergelyk en bespreek.  Verder word die belangrikheid van 

mikroörganismes in die landbou sowel as hul rol in verskillende biologiese prosesse wat in die grond 

voorkom, kortliks bespreek.  Spesifieke aandag is gegee aan die rol van Trichoderma spp. as hulle 

interaksie het en verhoudings met ander grondorganismes vorm. Dit is gevolg deur 'n kort bespreking 

oor die taksonomiese geskiedenis van Trichoderma spp. en die toepassing van Trichoderma spp. in die 

industriële en landbousektor. 

Hoofstuk twee is die eerste van drie navorsingshoofstukke en bespreek die isolasie en identifisering van 

Trichoderma -spesies uit koringgrond in die Wes -Kaap.  Alle isolate in hierdie hoofstuk is slegs uit 

landbougrond versamel.  Die identifisering en klassifikasie van spesies was hoofsaaklik gebaseer op 

makrokenmerke en versterking van interne getranskribeerde afstandhouers (ITS) streke.  Daarna is die 

finale identifikasie gedoen deur twee merkers (ITS en Elongation factor 1 alpha (TEF1)) te kombineer. 

Een-en-negentig (91) stamme van Trichoderma spp. wat opgeneem het in sewe spesies wat geïdentifiseer 

is as T. virens, T. saturnisporum, Trichoderma sp., T. gamsii, T. koningiopsis, T. velutinum en T. spirale.  

Daar is ook berig dat T. gamsii die oorheersende spesie is.  Boonop het wisselboupraktyke 'n groter aantal 

stamme en spesies tot gevolg gehad as dit vergelyk word met die monokultuurpraktyke. 

Hoofstuk drie is soortgelyk aan hoofstuk 2 en fokus op die identifisering van Trichoderma-spesies, op 

mielies uit verskillende geografiese gebiede in KwaZulu-Natal en die Vrystaat.  Grondmonsters is 

versamel vanaf terreine met wisselbou sowel as monokultuurpraktyke.  Uit isolasies is 337 stamme 

gevind uit mieliegrond wat 11 Trichoderma -spesies verteenwoordig.  Sewe spesies is voorheen in Suid 

-Afrika geïsoleer. Vyf spesies, naamlik T. velutinum, T. rifaii, T. paratroviride, T. neokoningii en T. 

peberdyi, word egter vir die eerste keer in Suid -Afrika aangemeld.  Die verspreiding van die spesies het 

aansienlik verskil tussen wisselbou- en monokultuurpraktyke, met wisselbouplekke wat 'n groter aantal 

spesies as monokultuurpraktyke tot gevolg gehad het. Verder was T. gamsii en T. hamatum die mees 

voorkomende spesies wat geïsoleer is. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

ix 

 

In hoofstuk vier is die moontlike funksies van verskillende stamme ondersoek.  Die resultate dui daarop 

dat elke sekere funksie in Trichoderma spp. kan stamspesifiek wees.  Hierdie hoofstuk bepaal die 

vermoëns van Trichoderma -stamme om fosfaat op te los en indool -asynsuur te produseer.  Hierdie twee 

metaboliese faktore (oplosbaarheid van fosfaat en produksie van indool -asynsuur) is geëvalueer omdat 

dit bekend is dat dit gebruik kan word vir primêre identifisering van spesies wat die vermoë het om 

plantgroei te verbeter.  Bevindings het aangedui dat die meerderheid stamme fosfaat kon oplos en pH -

vermindering speel in hierdie geval 'n belangrike rol. T. koningiopsis NNC066 het die maksimum 

hoeveelheid fosfaat opgelos terwyl Trichoderma sp. K4 het die minste hoeveelheid fosfaat opgelos.  

Boonop kon geen stamme indool-asynsuur (IAA) produseer in die afwesigheid van tryptofaan (L-TRP).  

Alhoewel die wysigings van die media met L-TRP alle stamme in staat gestel het om die IAA te 

produseer waar die maksimum hoeveelheid op 41,90 µg/ml verkry is deur T. gamsii NNC019, terwyl die 

minste hoeveelheid op 0,30 µg/ml was deur Trichoderma sp. K1. 
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Introduction 

The South African agricultural sector is important for economic growth as it contributes between 2.5 and 

3% towards the national gross domestic products (GDP) (Poonyth et al., 2001; Musvoto et al., 2015).  

Despite the relatively low contribution towards the national GDP, agriculture remains the highest 

contributor to local economies (Musvoto et al., 2015) and could play an important role in the reduction 

of poverty as it employs a large fraction of the workforce (Van Rooyen et al., 1987; Van Zyl et al., 1988; 

Van Rooyen and Sigwele, 1998; Poonyth et al., 2001).  In addition, agriculture is the main contributor 

to food security for an increasing population (Godfray et al., 2010). 

Food security faces various challenges including climate change, an increase in the human population, 

and high poverty rates (Godfray et al., 2010; FAO, 2016).  These challenges place pressure on the 

agricultural sector to produce higher yields of commercial crops.  The production of these crops will be 

enhanced using conventional farming techniques which might result in more problems.  For instance, the 

incorporation of agrochemicals may have a detrimental effect on soil health in the long run (Matson et 

al., 1997; MacDonald and McBride, 2009).  However, one of the solutions to these challenges in South 

Africa is the application of green economy methods (Musvoto et al., 2015; Loiseau et al., 2016; Consolo 

et al., 2020). 

The green economy is defined as a practice that aims to implement approaches and techniques that reduce 

environmental damage (Pearce et al., 1991; Musvoto et al., 2015; Loiseau et al., 2016).  Advantages of 

the green economy include the reduction of carbon emissions and waste, increased energy and water 

production, limited habitat destruction and limited loss of ecological structure (Pearce et al., 1991; 

Musvoto et al., 2015; D’Amato et al., 2017).  One such example would be the use of biological entities 

such as microbes to produce valuable products (enzymes, fertilizers, antimicrobial compounds, 

nanoparticles, etc.) (Kusari et al., 2008; Singh et al., 2016; Leylaie and Zafari, 2018). 

Conservation (regenerative) agriculture is one of the green economy approaches that should be 

considered as an alternative to conventional farming practices.  This type of practice focuses on 

restoration of soil since it only allows minimum or no soil disturbance (Erenstein et al., 2012; Fiorini et 

al., 2020).  Also, the incorporation of agrochemicals is low or not applied at all in this practice.  The 

agrochemicals are usually substituted with biological fertilizers that are produced from various 

microorganisms (Mukherjee et al., 2014; Olanrewaiu et al., 2017; Kribel et al., 2020).  Trichoderma is 

among those genera that are predominantly utilized in agriculture for different functions (Mukherjee et 

al., 2014; Bischof et al., 2016; Mahato et al., 2018). 
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Trichoderma species are found in various environments including soil, plants, and water (Gams and 

Bissett, 1998; Druzhinina and Kubicek, 2005; Brotman et al., 2013).  Trichoderma species have the 

ability to produce various enzymes and other bioactive compounds that contribute in fighting against 

soil-borne pathogens (Shalaby et al., 2013; Abo-Elyousr et al., 2014; Elshahawy et al., 2017), and have 

been used as biocontrol agents against various pathogenic microorganisms (Samuels, 1996; Waghunde 

et al., 2016; Mutawila et al., 2016).  In addition, recent studies on this genus evaluated their capacity to 

improve plant growth.  Trichoderma spp. were found to exert positive traits for plant growth such as the 

production of plant hormones and solubilizing minerals (Gravel et al., 2007; Saber et al., 2017; Herrera-

Jaminez et al., 2018; Bader et al., 2020; Mendes et al., 2020).  Therefore, the isolation and identification 

of this genus could help in improvement of commercial crops. 

Commercial crops play an important role in supporting the economy of the country (FAO, 2016; Dube 

et al., 2019).  Major global crops including maize, wheat and rice serve as staple for many people.  

Among these crops, maize and wheat are the most produced crops in South Africa compared to other 

African countries (Wallington et al., 2012; Ekwomadu et al., 2018; Mupangwa et al., 2019).  Therefore, 

focusing on these crops could contribute to food security for the South African population by 2050 

(Godfray et al., 2010; FAO, 2016; Dube et al., 2019). 

 

Important commercial crops 

Maize 

Maize (Zea mays) belongs to the family Poaceae which originated from Mexico 7000 years ago (Ranum 

et al., 2014; BFAD, 2015), and was distributed by colonizers and traders all over the world.  Its success 

can be contributed to its ability to survive in various environmental conditions and, therefore, proved to 

be a successful crop on most continents including Africa (Abassian, 2006).  Maize is the basic staple 

crop that is cultivated in Sub-Saharan Africa (Byerlee and Heisey, 1997), with South Africa the leading 

region (Muller et al., 2016; Musokwa et al., 2019). 

South Africa produces approximately 8 million tons of maize per year on 3.1 million ha land (FAOSTAT, 

2019).  White maize is mostly consumed by people as food while yellow maize is widely consumed as 

animal fodder (Greyling and Pardey, 2018).  Furthermore, yellow maize is extensively grown in the 

northern hemisphere countries including China, whereas white maize is mostly found or cultivated in 

countries such as Mexico and Southern Africa (Abassian, 2006; BFAP, 2015).  Maize is grown for a 
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variety of reasons around the world, with animal feed being the most common, followed by industrial 

uses and human consumption (Nuss and Tanumihardjo, 2010; Wallington et al., 2012; Ekwomadu et al., 

2018; Mupangwa et al., 2019). 

 

Wheat 

Wheat (Triticum aestivum L) is the second largest grain crop in South Africa (Dube et al., 2019; 

Naledzani et al., 2019) as it is consumed as food and serves as livestock feed (Shewry, 2009). It is the 

second most widely used staple food in the world after maize (Hussain and Shah, 2002; Dugassa et al., 

2019).  In South Africa, wheat is produced at higher rates compared to other Sub-Saharan African 

countries (Demeke and Di Marcantonio, 2013; Dugassa et al., 2019). 

Growing of wheat was first recorded in South-eastern parts of Turkey about 10 000 years ago (Shewry, 

2009).  In South Africa, wheat was first grown approximately 368 years ago, although, the commercial 

cultivation of this crop was only established from 1910 onwards (Du Plessis, 1933; Nhemachena and 

Kirsten, 2017).  The commercialization of wheat in South Africa resulted in improving food security 

because it can also be used for the production of important food products such as alcoholic beverages, 

cereals, bread, etc. (Stander, 2012; Nhemachena and Kirsten, 2017; Naledzani et al., 2019). 

 

Soil health and the production of maize and wheat 

Maize and wheat are the most consumed crops in South Africa as food (Demeke and Di Marcantonio, 

2013; FAO, 2016; Muller et al., 2016; Musokwa et al., 2019; Dugassa et al., 2019).  In addition to these 

crops being consumed as food and used to produce feeds, their residues are also used to generate 

environmentally friendly energy (bio-energy) (Urosevic and Gvozdenac-Urosevic, 2012; FAO, 2016; 

Batidzirai et al., 2016).  However, their inconsistency in production could limit them in other beneficial 

uses such as bioenergy (Varvel et al., 2008; Scarlat et al., 2011). 

Lower production of maize and wheat crops could be compounded by environmental factors such as the 

decline in soil fertility and the occurrence of diseases (MacDonald and McBride, 2009; Ncube et al., 

2011; Kucukakyuz et al., 2016; FAO, 2016; Lu et al., 2017).  The decline in soil fertility can be attributed 

to intensification of farming practices such as the overuse of the agrochemicals and disturbance of soil 

(Matson et al., 1997; Bouwman et al., 2013).  This may result in eliminating essential nutrients and 

disturbing microbial diversity in soil (Matson et al., 1997; Singh et al., 2016; Mahanty et al., 2017; 
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Srivastava et al., 2019; Mattoo et al., 2021; Zhai et al., 2021).  Furthermore, the use of agrochemicals 

might lead to soil and water pollution (Savci, 2012; Singh et al., 2016).  This could be resolved, or at 

least be minimized by employing conservation agricultural practices, such as crop rotation, the use of 

cover crops, minimum or no tilling, and application of bio-fertilizers, bio-pesticides, and bio-fungicides.  

In this scenario the application of Trichoderma spp. could be used to enhance plant growth and also 

protect against pathogenic microorganisms (Rudresh et al., 2005; Saravanakumar et al., 2013; Chagas et 

al., 2016; Sharma et al., 2019; Khoshmanzar et al., 2020). 

 

Overview of conventional and conservation agricultural practices 

Conventional agriculture is known as a practice that involves the disturbance of soil, focuses more on 

the use of agrochemicals (Morrison-Whittle et al., 2017; Tal, 2018) and has been used as the main 

farming technique over the last couple of decades due to high and intensified production requirements in 

response to a rapid growing population (Godfray et al., 2010; Seufert et al., 2012; FAO, 2016).  The 

introduction of agrochemicals in the 20th century in order to the improve plant growth (fertilizers) and 

control diseases (pesticides) (Johnston and Mellor, 1961; Schultz, 1964; Johnson et al., 2003; McArthur 

and McCord, 2017; Carvalho et al., 2017) contributed to the massive increase in yield (Fig. 1.1).  

However, the overuse of agrochemicals resulted in higher levels of environmental toxicity which in turn 

had deleterious effects on the surrounding ecosystems (Matson et al., 1997; Tilman et al., 2002; Aktar et 

al., 2009; Savci, 2012; Bouwman et al., 2013; Amaral and Abelho, 2016; Sheahan et al., 2017; Mahanty 

et al., 2017; Sellare et al., 2020). 
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Figure 1. 1.  Cereal production rate versus fertilizer use in 2017, cereal yield are measured in tonnes per 

hectare.  Fertilizer use is measured in kilograms of nitrogenous fertilizer applied per hectare of 

cropland 

 

 

Figure 1. 2.  Average fertilizer rates for selected countries over the long-run, measured in kilograms of 

nutrient per hectare of arable land 

 

Stellenbosch University  https://scholar.sun.ac.za



 

7 

 

Conventional agricultural practice currently receives criticism due to its adverse effect on the 

environment, especially soil health (Matson et al., 1997; Savci, 2012; Mahanty et al., 2017).  While it is 

common knowledge that the application of agrochemicals increase yield and reduce pests, the effect on 

the general microbial community is unknown, but considered to be detrimental.  Wickings et al. (2016) 

found that chemical fertilizers have an adverse effect on microbial diversity.  However, another study 

revealed that the application of agrochemicals (glyphosate) increased the number of fungi and 

actinomycetes while the number of bacteria was reduced (Araújo et al., 2003).  This is not always good 

as agrochemicals in conventional farming eliminate certain groups of microorganisms, because the 

chemicals select for microorganisms by changing their environment (Araújo et al., 2003; Kalia and 

Gosal, 2011; Wickings et al., 2016; Lupatini et al., 2017).  The disadvantages of conventional farming, 

notably a decrease in microbial diversity, and increasing microbial resistance against pesticides, created 

the opportunity to adopt alternative ways to improve crop production and disease protection (Araújo et 

al., 2003; Wickings et al., 2016). 

Conservation agriculture is regarded as a sustainable farming practice since it focuses on producing 

higher crop yields while avoiding or minimizing adverse environmental effects (Williams, 2002; 

Erenstein et al., 2012; Fiorini et al., 2020).  In this practice, the use of organic or bio-fertilizers is 

combined with minimal or no soil tillage.  Minimal or no till has been shown to increase microbial 

diversity and soil organic matter, improve soil health, and maintain optimum moisture content (Gomiero 

et al., 2011; Wang et al., 2016; Fiorini et al., 2020).  Conservation agriculture also involves the use of 

other crops and livestock to manage soil health and diseases in a production system. 

The use of crop and animal management on a single farm is known as integrated crop/livestock farming 

(Thornton and Herrero, 2001; Hilimire, 2011).  There are some advantages that are associated with this 

method including improved soil quality, enhance yields, controlled pests, and weeds, and improved land-

use efficiency (Clark, 2004; Russelle et al., 2007; Hilimire, 2011).  The combination of various crops or 

animals will depend on your desired function or product.  For example, poultry can be used to control 

weeds or pests (Clark and Gage, 1996; Tanaka et al., 2008) and ruminants can transform forage to manure 

for fertilizer (Weller and Bowling, 2007).  There are also some challenges associated with livestock as 

they account for around 18% of greenhouse gas emissions (Reynolds et al., 2015).  However, as 

compared to extensive agricultural practices, this approach is meant to keep agriculture sustainable, less 

environmentally detrimental, and produces greater or equivalent yields (Wang et al., 2016; Fiorini et al., 

2020). 
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The role of microorganisms in agriculture 

Microorganisms are crucial components of soil as they contribute to plant health (Khan et al., 2009; 

Lundberg et al., 2012; Bulgarelli et al., 2013).  The use of selected microorganisms in the agricultural 

sector is increasing (mostly in developed countries) due to their positive attributes such as being eco-

friendly and cost-effective compared to agrochemicals (Vaxevanidou et al., 2015; Singh et al., 2016).  In 

an ideal world, expensive agrochemicals should be replaced by the use of biological fertilizers.  

Agrochemicals have far reaching damaging effects on the ecosystem, especially on soil composition 

which eventually impacts soil health as well as in extreme conditions leads to eutrophication (Savci, 

2012; Bouwman et al., 2013; Mahanty et al., 2017). 

The beneficial effects of microorganisms include their ability to fix atmospheric nitrogen, decompose 

organic waste, stimulate plant growth hormones and control soil pathogenic microorganisms (Sabry et 

al., 1997; Reinhold-Hurek and Hurek, 1998; Harman et al., 2004; Yadav et al., 2009; Kapri and Tewari, 

2010; Verma et al., 2010; Singh et al., 2011; Singh et al., 2016; Mahato et al., 2018; Kucuk et al., 2019).  

These properties have an important role in regulating the plant growth.  Furthermore, some 

microorganisms confer resistance toward biotic and abiotic factors, and this has been observed from 

various studies as they reported that the growth of different plants was improved under stress conditions 

when microorganisms were employed (Shukla et al., 2012; Zhao et al., 2015; Zhang et al., 2016; Habib 

et al., 2016). 

The potential of microorganisms to improve plant growth and distribute or solubilize nutrients in 

agriculture has been widely documented (Kapri and Tewari, 2010; Zhang et al., 2016; Mahato et al., 

2018).  The most commonly utilized microorganisms in agriculture are bacteria, fungi, and yeast, 

although the common applications are more based on the use of fungi and bacteria (Mahanty et al., 2017).  

Bacteria and fungi stimulate the growth of the plant through different mechanisms which will not be 

discussed in this review (Kapri and Tewari, 2010; Zhang et al., 2016; Mahato et al., 2018; Setyaningrum 

et al., 2019).  Genera that are commonly used in agriculture include Bacillus (Navon, 2000; Borriss, 

2011), Rhizobia (Dardanelli et al., 2010; Vargas et al., 2017), Penicillium (Kucey, 1998; Pradhan and 

Sukla, 2006), Aspergillus (Mwajita et al., 2013), and Trichoderma (Harman, 2000, Harman et al., 2004; 

Yadav et al., 2009). 
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Trichoderma is one of various microorganisms that have been used in the development of biological 

fertilizers and biological control agents (Mukherjee et al., 2014; Kucuk et al., 2019), due to its beneficial 

functions.  However, little research has been done in Africa and Asia on the prevalence of this group in 

natural or agricultural settings (Yadav et al., 2009; Druzhinina et al., 2010; Shukla et al., 2012; Du Plessis 

et al., 2018; Setyaningrum et al., 2019).  Trichoderma has a cosmopolitan distribution and can be isolated 

from a number of sources such as soil, decaying trees, and plant tissues (Brotman et al., 2013; Jiang et 

al., 2016; Du Plessis et al., 2018).  A number of studies isolated this genus from rhizospheric soils and 

plant tissues (endophytes) (Belayneh et al., 2010; Contreras-Cornejo et al., 2016; Frisvad et al., 2018). 

Rhizosphere soil has a diverse microbial community and most of the processes occurs in rhizosphere 

space which enables it to be used for isolation of Trichoderma (Kalam et al., 2017; Benitez et al., 2017).  

Endophytic Trichoderma on the other hand, are also preferable to be isolated due to their useful properties 

(Strobel, 2003; Kusari et al., 2008; Chaverri et al., 2015).  Rhizospheric and endophytic microorganisms 

have the ability to colonize the plants roots without causing any diseases (Vázquez et al., 2000; Zhang 

et al., 2013), but rather benefit the plant.  Furthermore, endophytic microorganisms were found to exhibit 

various beneficial properties such as the production of antimicrobial compounds and helping host plants 

develop resistance against biotic and abiotic factors (Kusari et al., 2008; Mastouri et al., 2012; Singh and 

Dubey, 2020).  Therefore, the exploration of these habitats is essential in order to identify 

microorganisms that can render valuable properties. 

 

Endophytes 

Endophytes are defined as microorganisms that are capable of colonizing the internal parts of plants 

without causing disease (Schulz and Boyle, 2006; Wallace and May, 2018; Collinge et al., 2019).  Bacon 

and White (2000, 2016) also defined endophytes as non-pathogenic fungi or bacteria that occupy the 

inner parts of plant tissues such as stem, roots, flower, and seeds.  Although endophytic organisms were 

recognized 100 years ago, these organisms were not well studied and little interest was paid to them, 

until the mid-twentieth century when researchers started to isolate them from the internal part of the plant 

tissues (Johnson and Whitney, 1992; Pereira et al., 1993; Strobel, 2003; 2018).  It is a known fact that 

most endophytes may play a vital role in the agricultural, medical, and biotechnological industries 

(Strobel, 2003; Kusari et al., 2008). 
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Endophytes have been reported to produce important biological compounds (Kusari et al., 2008; 

Ronsberg et al., 2013; Leylaie and Zafari, 2018; Lai et al., 2020; Singh and Dubey, 2020). These 

biological compounds are able to exhibit different functions such as antimicrobial activity and inducing 

resistance against biotic and abiotic stresses (Kusari et al., 2008; Suryanarayanan, 2013; Singh and 

Dubey, 2020; Khalil et al., 2021).  For instance, the production of hypercirin by endophytic fungi has 

antibiotic and antiviral activity (Kusari et al. 2008).  However, Ronsberg et al. (2013) and Khalil et al. 

(2021) reported that some of the compounds produced by endophytes had no effect against tested 

pathogens.  Therefore, it is important to further assess the compounds from endophytes before developing 

these as biopesticides. 

 

Rhizosphere 

The rhizosphere is a part of soil that is near the roots of plant (Curl and Truelove, 2012).  The rhizosphere 

acts as a habitat for a large number of living organisms, including microorganisms, and insects (McNear 

Jr, 2013; Benitez et al., 2017).  Many of the soil processes take place in this part of the plant (Bakker et 

al., 2013; McNear Jr, 2013).  Despite a large diversity of microorganisms in the rhizosphere, the ones 

that are of interest to the Agri-industry are those that exhibit beneficial characteristics (Mukherjee et al., 

2012; Collinge et al., 2019). 

Beneficial microorganisms are essential for plant health (Mukherjee et al., 2012; Van Dam and 

Bouwmeester, 2016; Mahato et al., 2018; He et al., 2019).  These microorganisms employ different 

mechanisms to achieve this such as mycoparasitism, competition, and antibiosis (Contreras-Cornejo et 

al., 2016; Habib et al., 2016; Venturi and Keel, 2016; Xiang et al., 2017; Benitez et al., 2017; Yan et al., 

2017; He et al., 2019).  These mechanisms are mainly based on competition for nutrients and the 

production of antimicrobial compounds and are the main mechanisms employed by Trichoderma to 

control pathogens (Vinale et al., 2008; Verma et al., 2007; John et al., 2010; Qualhato et al., 2013). 
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Trichoderma interaction with pathogenic microorganisms 

Competition for nutrients and space, antibiosis, and mycoparasitism are the most typical methods of 

interaction between pathogenic microbes and Trichoderma spp. (Whipps and Davies, 2000; Whipps, 

2001; Harman et al., 2004; Qualhato et al., 2013; Latz et al., 2018).  Competition for nutrients and space 

can be easily observed on agar plates (confrontational assays) where Trichoderma spp. and pathogenic 

microorganisms compete nutrients such as carbon and nitrogen (Whipps, 2001; Contreras- Cornejo et al. 

2016; Jiang et al., 2016).  A number of Trichoderma spp. has the capacity to outgrow plant pathogens 

that are usually associated with causing diseases to commercial crops (John et al., 2010; Jiang et al., 

2016). 

Antibiosis is the secretion of antimicrobial compounds by microorganisms to inhibit or destroy other 

microorganisms in the region of their growth area (Verma et al. 2007).  During antibiosis, antimicrobial 

proteins and various other metabolites are produced to hinder the growth of competing species (Whipps, 

2001; Latz et al., 2018).  For instance, metabolites produced by Trichoderma species were able to reduce 

the gray mold caused by Botrytis cinerea on tomato (Vinale et al., 2008).  In addition, Katoch et al. 

(2019) found that metabolites (Tribacopin AV) produced by endophytic Trichoderma species have an 

antifungal activity but not antibacterial activity. 

Mycoparasitism is defined as the killing of one fungus by another (Ridout et al., 1988; Whipps and 

Davies, 2000; Mukherjee et al., 2012; Qualhato et al., 2013).  Trichoderma spp. are known for their 

ability to parasitize other fungi, although their mycoparasitism is not easy to demonstrate in situ (Verma 

et al., 2007).  The mycoparasitism of Trichoderma spp. is known to be initiated or induced by the 

production of hydrolytic enzymes (Ridout et al., 1988; Antal et al., 2000; Harman et al., 2004; Qualhato 

et al., 2013; Latz et al., 2018).  All of these mechanisms are of importance when it comes to evaluating 

biological control abilities of any strain. 
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Trichoderma overview 

The genus Trichoderma (Hypocrea) is commonly found in soil and on decaying trees and are known to 

produce important industrial enzymes (Zachow et al., 2009; Belayneh Mulaw et al., 2010; Blaszczyk et 

al., 2011; Jaklitsch and Voglmayr, 2015).  In addition, Trichoderma spp. are used as biological control 

agents and biological fertilizers (Gams and Bissett, 1998; Druzhinina and Kubicek, 2005; Brotman et al., 

2013; Sandle, 2014; Jaklitsch and Voglmayr, 2015; Contreras-Cornejo et al., 2016).  Some Trichoderma 

spp. are opportunistic pathogens in mammals, including humans with compromised immune systems 

(Druzhinina et al., 2006; Sandle, 2014; Recio et al., 2019).  However, the use of Trichoderma spp. could 

be beneficial to improve the growth of crops (Saravanakumar et al., 2013; Chagas et al., 2016; Contreras-

Cornejo et al., 2016; Khoshmanzar et al., 2020). 

The morphological characteristics of Trichoderma spp. are studied on various culture media namely, 

potato dextrose agar (PDA), cornmeal dextrose agar (CMD), and malt extract agar (MEA).  Colony 

characteristics that are normally seen on these culture media are greenish, bluish, black, or greyish 

colonies.  Occasionally white to yellow mycelium-like structures are observed.  Under the microscope, 

strains are usually seen as small, green, or white conidia, in the presence of phialides (lageniform to 

ampuliform) on profusely or slightly branched conidiophores (Hassan et al., 2014; Hassan et al., 2019).  

However, some Trichoderma species are so similar that morphological identification alone is not enough 

to differentiate between them (Samuels et al., 2010; Jaklitsch et al., 2013; Du Plessis et al., 2018). 

Various traditional methods have been used to identify and distinguish between different Trichoderma 

species.  Most of these methods were based on macroscopic and microscopic characters as well as the 

secondary metabolites they produce (Degenkolb et al., 2008; Frisvad et al., 2008).  However, none of 

these methods can differentiate between closely related species as they are morphologically similar.  In 

addition, the production of secondary metabolites by Trichoderma are strain specific and not necessarily 

species specific (Horinouchi, 2007; Frisvad et al., 2008; Samuels and Ismaiel, 2009; Samuels et al., 

2010). 
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Trichoderma spp. are known to produce various types of secondary metabolites, such as terpenoids, 

pyrones, indolic derived compounds, siderophores, and enzymes (Mukherjee et al., 2013; Contreras-

Cornejo et al., 2016; Frisvad et al., 2018).  These secondary metabolites can be seen as facilitators of 

chemical communication in soil communities (Contreras-Cornejo et al., 2016).  Furthermore, some 

secondary metabolites play an important role in initiating the mechanisms that lead to the improvement 

of plant growth, tolerance to biotic and abiotic stresses and fighting against pathogenic fungi (Waghunde 

et al., 2016; Kashyap et al., 2017; Sharma et al., 2019). 

Trichoderma spp. have been found to be resistant to various types of toxins and xenobiotic compounds 

(Harman et al., 2004; Oros et al., 2011; Cocaign et al., 2013).  These can be any harmful compounds 

including chemical fungicides, and pesticide residues.  Trichoderma species tend to vary in terms of 

tolerance to these compounds (Oros et al., 2011).  This was observed when alkanols were tested against 

Trichoderma spp. which showed the tolerance efficiency to be different from species to species (Oros et 

al., 2011).  In addition, Trichoderma species (T. virens and T. reesei) shown resistance towards highly 

toxic pesticide residue such as 3, 4-dicloroaniline (Cocaign et al., 2013). 

Trichoderma is also known for colonizing the inner parts of plant tissues (Harman, 2006; Bae et al., 

2011).  Colonization of plant tissues by Trichoderma can alter the metabolic processes of plants and also 

regulate the metabolism (Contreras-Cornejo et al., 2016).  This can result in the production or secretion 

of hormones or compounds that are important in triggering the growth of plants, and absorption of 

nutrients and minerals (Harman et al., 2004).  Trichoderma spp. that has the ability to inhabit the internal 

parts of plant tissues are considered to be endophytes. 

Understanding the diversity of Trichoderma is important because of its variety of uses and application 

(Herman et al., 2004; Cummings et al., 2016).  However, our understanding of Trichoderma diversity in 

Africa is still inadequate (Druzhinina et al., 2006; Du Plessis et al., 2018).  A recent study revealed that 

the majority of the known Trichoderma spp. were only recently detected in South Africa (Du Plessis et 

al., 2018).  Exploring this genus in previously unexplored regions may thus aid in the identification of 

native and some novel species. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

14 

 

Taxonomic history of Trichoderma spp. 

The name Trichoderma is derived from a Latin and Greek word Tricho meaning ‘hair’, and derma 

meaning ‘skin’ in Latin.  In 1794, Persoon described four species, T. viride, T. aureum, T. roseum, and 

T. nigrescens (Bisby, 1939; Samuels, 1996; Druzhinina et al., 2006; Jaklitsch, 2009; Zeng and Zhuang, 

2019).  Three of the species (i.e. T. aureum, T. roseum, and T. nigrescens) were later found to be unrelated 

to Trichoderma which resulted in their exclusion from the genus (Bissett, 1984, 1991; Mukherjee et al., 

2013).  Rafai (1969) identified nine aggregate species and suggested that each aggregate species might 

consist of different sub-species if new methods for identification become available.  Later, an in-depth 

revision of aggregate species was done, and aggregates species were grouped into four sections 

representing 27 species (Bissett, 1984, 1991). 

The introduction of molecular methods in the 19th century enabled researchers to identify and describe 

Trichoderma species more precisely.  Kindermann et al. (1998) and Dodd et al. (2000) introduced the 

use of molecular methods to describe Trichoderma species.  This method was initially based on the 

internal transcribed spacer regions (ITS sequences) (Kindermann et al., 1998; Dodd et al., 2000), 

although later the ITS regions was shown to provide low resolution for the identification of Trichoderma 

species (Kuhls et al., 1997; Jaklitsch et al., 2006; Hatvani et al., 2007; Jaklitsch, 2009). 

The identification of Trichoderma species was improved using protein coding genes which were 

employed to increase the robustness of the phylogenetic analysis (Lieckfeldt et al., 1998).  These include 

the translation elongation factor 1-alpha (tef1) (Hermosa et al., 2004; Lu et al., 2004; Overton et al., 

2006), endochitinase (chi18-5 or ech42), RNA polymerase II  (rpb2) (Jaklitsch and Voglmayr, 2015), 

actin (act), and calmodulin (cal1) (Lieckfeldt et al., 1998) gene regions.  Moreover, these gene regions 

were found to be more reliable compared to the ITS gene region (Overton et al., 2006; Samuels, 2006; 

Jaklitsch and Voglmayr, 2015).  Among them, tef1 was considered to provide accurate identification, 

and provides the highest resolution in the different clades (Samuels, 2006; Jaklitsch et al., 2006; Jaklitsch 

and Voglmayr, 2015). 
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There are a number of databases that are commonly used for accurate taxonomically identification of 

Trichoderma spp.  The National Center for Biotechnology Information (NCBI) database is normally used 

to compare sequences via blastn search.  However, the other databases such as International Commission 

on Trichoderma Taxonomy (ICTT) (https://trichoderma.info/trichoderma-taxonomy-2020/), Multilocus 

Identification System for Trichoderma (MIST) (http://mmit.china-cctc.org/), and Trichokey 

(https://www.trichokey.com/index.php) should be prioritized as they give more reliable results (Duo et 

al., 2020; Cai and Druzhinina, 2021).  Therefore, using these databases in conjunction with NCBI 

database could potentially yield accurate results if used properly. 

To date 375 species have been recognized in Trichoderma (Zeng and Zhuang, 2019; Cai and Druzhinina, 

2021).  The limited diversity studies of Trichoderma in other countries bring hope that more species 

could be identified (Druzhinina et al., 2006; Du Plessis et al., 2018).  Thus, the accurate identification of 

this genus is important due to its applications and ecological importance.  
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Figure 1. 3.  Diagrammatic representation of taxonomic history of Trichoderma species (Re-printed 

from Druzhinina et al., 2006) 
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Characteristics of Trichoderma spp. colonies:  

Macroscopic characterization 

Morphological characterization of Trichoderma species has been based on various types of growth media 

such as Oats Agar (OA), Cornmeal Dextrose Agar (CMD), Synthetic Nutrient poor Agar (SNA), Potato 

Dextrose Agar (PDA), and Malt Extract Agar (MEA) (Gams and Bissett, 1998; Jaklitsch, 2009; Hassan 

et al., 2019).  SNA and CMD usually produce morphological characters that are commonly found in 

natural environments (Samuels, 2004).  The conidium production is more abundant on CMD than on 

SNA.  Colony morphology should be studied early during the development, in order to visualize 

conidiophores and phialides.  The ideal temperature for Trichoderma spp. growth is 25℃.  Several 

morphological traits can be observed to identify Trichoderma species according to their colony 

morphology (Jaklitsh, 2009). 

Colony growth rate: This should be prioritized when investigating Trichoderma strains based on their 

colony morphology (Kim et al., 2012).  This is because growth rates of colonies may differ due to various 

conditions ranging from media and temperature to incubation time.  The colony radius is expected to be 

measured daily for seven days (Jaklitsch, 2009).  The majority of Trichoderma strains have a rapid 

growth rate and can fill an entire 90 mm Petri dish in less than a week under optimum conditions. 

Conidium formation: Conidia of Trichoderma species are different from each other in terms of texture.  

The texture of conidia depends on type of media used.  Moreover, structures or textures that may be 

obtained from colonies are as follows (Jaklitsch, 2009): 

⮚ Fertile pustule formation : distinct dense opaque conidiation structures. 

⮚ Tufts: are also called ‘fluffy tufts’ appear as loose cotton like structures. 

⮚ Granules or shrubs: grow on the agar like sand texture (Fig. 1.4 H and I). 

⮚ Effuse conidia formation: conidia form on the surface layer of mycelium that develops out of the 

substrate and no pustules are formed. 

⮚ Pustule and effuse conidia formation: they simultaneously produce conidia effuse and form 

pustules. 

Colony odors: a coconut-like odor on CMD and PDA can be observed in some species such as T. 

atroviride, T. asperellum, T. gamsii, T. viride, T. afroharzianum, T. camerunense, however, this can be 

Stellenbosch University  https://scholar.sun.ac.za



 

18 

 

impractical for the identification of species since not all strains exhibit this trait (Jaklitsch, 2009; Chaverri 

et al., 2015). 

Conidium color: Trichoderma species normally are characterized by greyish green to dark green conidia 

on CMD and SNA, while other species form yellow conidia on media such as PDA and MEA (Samuels, 

1996; Du Plessis et al., 2018). 

Reverse coloration: The majority of Trichoderma spp. usually does not form any color on the reverse 

of CMD or SNA, while PDA can reveal the brown or yellow reverse pigmentation (Fig. 1.4. F-G). 

Zonation: Some Trichoderma spp. can be stimulated by light to sporulate (Betina and Farkas, 1998).  

Trichoderma colonies are sporulating more in the light conditions than those in the dark (Du Plessis, 

2018).  Thus, colonies appearance and texture can be affected (Kim et al., 2012). 

Exudates: this forms at the end of hyphae tips whereby exudates are produced in different colors ranging 

from hyaline, green, or brownish yellow. 
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Figure 1. 4.  Illustrations of macroscopic features of Trichoderma spp. A. T. neokoningii (PDA), B. T. 

asperellum (PDA), C. T. peberdyi (PDA), D. T. saturnisporum (PDA), E. T. koningiopsis (PDA), F. T. 

afroharzianum (Reverse view on PDA), G. T. spirale (Reverse view on PDA), H. T. gamsii (CMD), I. 

T. rifaii (CMD) 
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Microscopic characterization 

Microscopic characterization of Trichoderma strains is normally performed using colonies grown on 

media such as PDA, CMD or SNA, mounted using a 3% KOH solution or lactic acid (Jaklitsch, 2009; 

Samuels et al., 2012).  Slides prepared using 3% KOH may results in brown conidia, on the other hand 

with lactic acid conidia will be blue, green, or hyaline.  Slides should not be prepared from old or very 

mature cultures, since it will be difficult to view complete structures.  Relevant microscopic structures 

of Trichoderma spp. are as follows: 

Type of phialide: Trichoderma spp. usually form lageniform, flask-shaped, lanceolate, or subulate 

phialides which are curved or slender.  Phialides can arise in whorls or occur solitary. 

Regular or irregular conidiophores. Regular conidiophores can be tree or pyramid-like with many 

branches at the base and less branching on the top while an irregular conidiophore is recognized by 

showing unpaired branching from the stipe. 

Conidium shape: Conidia (Fig. 1.5 J-L) can be ellipsoidal, subglubose, globose, oblong, or oval-shaped 

conidia. 

Chlamydospores: Chlamydospores can be absent or present in Trichoderma spp.  Noticeable traits of 

chlamydospores are globose to pyriform, smooth, or rough, thick-walled.  These structures are normally 

seen in older cultures (from 10 days upwards) especially when using CMD medium. 

Conidiophore hyphal elongations: Commonly observed in Pachybasium clade, and hyphal elongations 

form at the terminal of conidiophores.  Hyphal elongations can be sterile or fertile (Bissett, 1991). 

Conidiophore type: Trichoderma spp. develop various types of conidiophores which can be used to 

classify species: 

⮚ Acremonium-like: Basic conidiophores, characterized by one or few phialides which originate 

directly from stalk-like support. 

⮚ Verticillium-like: Unbranched or scarcely branched conidiophores and whorls of phialides 

originate on the same level. 

⮚ Trichoderma-like: Conidiophores are elastic and branched which may be irregular at right 

angles. Phialides are lageniform, bent, sometimes repetitive. 

⮚ Pachybasium-like: classified by having more thick branches and flask-like phialides. 

Conidiophore commonly ending in simple or branched, sterile, or fertile elongations. 
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⮚ Gliocladium-like: Unbranched conidiophores, with penicillin-like structure having more or less 

parallel phialides at the apex. 

Intercalary phialides: It is described by phialides that resembles the formation of nodes-like (septum-

like), as seen in Longibrachiatum clade. 

Conidium ornamentation: Trichoderma conidia can display various ornamentations and appear as 

warted, smooth, partially roughened, or roughened. Ornamentations can be easily observed from mature 

conidia (Fig. 1.5 A). 
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Figure 1. 5.  Illustrations of microscopic features of Trichoderma spp.: A. Conidium ornamentations 

(Re-printed from Du Plessis, 2015), B-E. Phialides, F-I. Conidiophores, J-L. Conidia 
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Application of Trichoderma spp. 

The application of Trichoderma spp. is growing as this genus have various interesting industrial and 

agricultural applications (Mukherjee et al., 2014; Bischof et al., 2016; Mahato et al., 2018). 

Industrial application 

Trichoderma species have been used for various industrial purposes such as the production of enzymes, 

antimicrobial compounds, and bioremediation agents (Wen et al., 2005; Saravanakumar and Kathiresan, 

2014; Borin et al., 2015; Yao et al., 2015; Carvalho et al., 2017; El Aty et al., 2018).  This genus is 

known for producing important enzymes such as cellulases and other hydrolytic enzymes (Lorito et al., 

1993; Wen et al., 2005; Carvalho et al., 2017).  Enzymes have various roles that they play, for instance 

one of the xylanases produced by T. stromaticum have the ability to improve softness and volume of 

wheat and grain breads (Carvalho et al., 2017). 

Trichoderma species and other genera were investigated for their ability to produce xylanases on 

different substrates such as wheat bran, rice straw, peach palm and potato peels (Mander et al., 2014; 

Mostafa et al., 2014; Carvalho et al., 2017; El Aty et al., 2018).  It was shown that almost all Trichoderma 

spp. produce higher xylanases on the above-mentioned substrates when compared to other genera, 

although this is also strain specific.  This was proven when other genera were investigated for their ability 

to produce xylanase, and they produced it at an optimum level when wheat bran was used as a substrate 

(Mander et al., 2014; Mostafa et al., 2014).  Thus, the enzymes production will depend on the type of 

substrate used for them to be produced at an optimum level. 

Trichoderma also produce enzymes that are important in dye removal (Saravanakumar and Kathresan, 

2014).  Dyes from industries have an adverse impact in the environment especially when discharged into 

the water sources.  Various methods are being used to remove dyes or to decrease their toxicity before 

discharging them into the environment (Garg et al., 2004; Anjaneyulu et al., 2005; Akar et al., 2013; 

Chew and Ting, 2016).  Among these approaches the use of Trichoderma is a promising method since it 

has been reported to degrade malachite green dye by producing laccase (Saravanakumar and Kathresan, 

2014). 
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Agricultural application 

Fungicides are widely used in agriculture to protect crops from pathogenic fungi (Mutawila et al., 2016).  

Fungicides are inorganic in nature and their continuous and long-term use in agriculture has had led to 

the production of toxic residues which ultimately had an adverse effect on the surrounding environments 

(Matson et al., 1997; Elshahawy et al., 2017).  Adverse effects include the development of resistance 

against fungicides, and health issues in mammals (Avenot and Michailides, 2007; Miles et al., 2014; 

Lucas et al., 2015).  Therefore, biological control agents could be an alternative approach in plant 

protection (Mukherjee et al., 2014; Elshahawy et al., 2017). 

Trichoderma spp. have been extensively utilized as biological control agents since 1920 (Samuels, 1996; 

Waghunde et al., 2016; Mutawila et al., 2016; Morales-Rodriguez et al., 2018) against a variety of plant 

pathogens (Shalaby et al., 2013; Abo-Elyousr et al., 2014; Elshahawy et al., 2017).  For example, 

Trichoderma strains were able to suppress Sclerotium cepivorum which causes onion white rot disease 

(Shalaby et al., 2013; Elshahawy et al., 2017), as well as Alternaria porri responsible for onion purple 

blotch disease (Abo-Elyousr et al., 2014).  Moreover, some studies have shown the potential of 

Trichoderma strains to control other pathogens namely, Sclerotium delphinni (Mukherjee et al., 2014), 

Fusarium head blight (Sarrocco et al., 2011; Matarese et al., 2012; Sarrocco et al., 2013), Rhizoctonia 

solani, and Sclerotium oryzae (Swain et al., 2018). 

Various microorganisms such as bacteria, fungi, and actinomycetes play an important role in enhancing 

plant growth (Shoresh and Herman, 2008; Kapri and Tewari, 2010; Doni et al., 2014).  Microorganisms 

could improve plant growth by solubilizing phosphate, and producing phytohormones (e.g., indole acetic 

acid) (Sabry et al., 1997; Harman, 2000; Yedidia et al., 2001; Kapri and Tewari, 2010; Saravanakumar 

et al., 2013; Zhao and Zhang, 2015; Li et al., 2015).  Trichoderma is one of the genera that is known to 

improve plant growth through solubilizing phosphate and the production of phytohormones (Kapri and 

Tewari, 2010; Saravanakumar et al., 2013; Saber et al., 2017; Bononi et al., 2020). 

Phosphorus is important for plant growth (Richardson, 2000; Maguire et al., 2005; Saravanakumar et al., 

2013).  Phosphorus in the soil can be in the fixed form of either Ca3 (PO4)2 and FePO4 or AlPO4 in alkaline 

and acidic soil, respectively (Grant et al., 2001; Kapri and Tewari, 2010).  Plants may not get the required 

amount of phosphorus for their growth even though it is abundant in the soil, as its insoluble nature 

makes it inaccessible to plants (Grant et al., 2001; Kudoyarova et al., 2017; Alori et al., 2017).  However, 

microorganisms can make it available for plant uptake through various mechanisms (Jones and Oburger, 

2011; Saravanakumar et al., 2013; Bader et al., 2020).  There are two mechanisms predominantly known 
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for making phosphate available for uptake by plants such as the (1) dissolution of phosphate containing 

minerals through a combination of soil acidification and the production of organic acids, or (2) an 

enzymatic reaction by phosphatases (Cunningham and Kuiack, 1992; Jones and Oburger, 2011).  The 

first mechanism occurs mostly in phosphate limiting environments since it helps in solubilizing and 

mobilizing insoluble mineral-bound phosphates, while the second mechanism is normally used in 

controlling phosphate in natural environments (Jones and Oburger, 2011).  Fungi are considered to be 

better at solubilizing insoluble phosphate than bacteria (Kucey, 1983; Turan et al., 2006; Rajankar et al., 

2007; Gupta et al., 2007; Sembiring, 2017).  However, some studies have shown that bacteria were able 

to solubilize phosphate more effectively compared to fungi (Alam et al., 2002; Mwajita et al., 2013; 

Hussein and Joo, 2015; Zhang et al., 2020).  These different findings could be due to different methods 

used to screen phosphate, or the strains that were used in an experiment. 

Trichoderma strains were evaluated in many studies for their ability to enhance various plant growth 

through solubilizing phosphate (Rajankar et al., 2007; Saravanakumar et al., 2013; Chagas et al., 2016; 

Khoshmanzar et al., 2020; Mendes et al., 2020; Kribel et al., 2020).  For instance, soybean plants were 

enhanced by Trichoderma spp. that have the ability to solubilize phosphate, showing an increase in plant 

height and roots in treated plants compared to untreated ones (Bononi et al., 2020).  The solubilization 

of phosphate by Trichoderma has been associated with the production of organic acids and enzymes, as 

well as a reduction in pH (Saravanakumar et al., 2013; Zuniga-Silgado et al., 2020; Tandon et al., 2020; 

Bononi et al., 2020), although, some studies did not observe any production of organic acids and 

reduction in pH when solubilization of phosphate were assessed (Altomare et al., 1999; Rudresh et al., 

2005; Chagas et al., 2016).  In addition to Trichoderma spp. being phosphate solubilizers, this genus also 

can produce indole acetic acid (IAA) which is regarded as another metabolic factor that helps in the plant 

growth (Gravel et al., 2007; Hussein and Joo, 2015; Herrera-Jaminez et al., 2018; Bader et al., 2020; 

Mendes et al., 2020). 

Indole acetic acid (IAA) is an auxin that contributes to root hair development which then results in the 

efficient use of nutrients (Gravel et al., 2007; Saber et al., 2017; Herrera-Jaminez et al., 2018).  Previous 

studies have shown that Trichoderma species have the potential of producing indole acetic acid (Gravel 

et al., 2007; Hussein and Joo, 2015; Herrera-Jaminez et al., 2018; Bader et al., 2020; Mendes et al., 

2020).  The production of indole acetic acid resulted in the growth improvement of different plants 

(Kotasthane et al., 2015; Chagas et al., 2016; Khoshmanzar et al., 2020).  However, some studies 

indicated that the production of IAA by Trichoderma did not have a positive correlation with the growth 

improvement (Hoyo-Carvajal et al., 2009; Kotasthane et al., 2015; Nieto-Jacobo et al., 2017).  This could 
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be due to the fact that Trichoderma properties are strain specific (Hoyo-Carvajal et al., 2009; Kotasthane 

et al., 2015).  Also, the methods of evaluating strains that can produce IAA could be another contributing 

factor since quantitative and qualitative assays might not give the same results.  Despite the fact that in 

some cases IAA production by Trichoderma strains has an adverse relationship with plant growth, it is 

however considered a required assay to determine if a given Trichoderma strain has the ability to increase 

plant development. 

Trichoderma spp. can tolerate stressful conditions by producing a variety of compounds (defense related 

enzymes) (Chandra et al., 2004; Mastouri et al., 2012; Shukla et al., 2012; Zhang et al., 2014).  Among 

these stressful conditions, abiotic and biotic factors are sometimes the limiting factors in agriculture as 

they may lower production yield of crops.  Trichoderma could potentially play an essential role in helping 

plants to confer resistance to biotic and abiotic stresses (Bjorkman et al., 1998; Mastouri et al., 2010; 

Shukla et al., 2012).  Various studies have been reported that Trichoderma species proved to be beneficial 

to plant growth even when stress conditions were experienced (Mastouri et al., 2010; Shukla et al., 2012; 

Zhang et al., 2014).  This was due to the increased levels of stress related proteins produced by 

Trichoderma.  For example, the seeds treated with Trichoderma strains resulted in the improved growth 

of tomato roots and shoots compared to untreated seeds (Mastouri et al., 2012). 

Trichoderma species have been used to improve growth of different crops including maize and wheat 

(Mastouri et al., 2012; Saravanakumar et al., 2013; Zhang et al., 2014; Mahato et al., 2018; Nepali et al., 

2020).  Various studies have indicated the capabilities of different strains of Trichoderma to increase the 

maize and wheat growth parameters such as roots, stem, and yield (Saravanakumar et al., 2017; Mahato 

et al., 2018; Nepali et al., 2020).  These findings are an indication that Trichoderma spp. can be 

successfully used as a biofertilizer to minimize the use of synthetic fertilizers.  Therefore, Trichoderma 

spp. could be used for multifunctional purposes in agricultural fields. 
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Conclusion 

Maize and wheat in South African economy have huge impact because most people and animals depend 

on these crops as a primary source of food.  The cultivation of these crops in South Africa is commonly 

based in conventional practices rather than conservation practices.  This is because intensive agricultural 

practices (conventional) have been known to produce higher yields which is required for an increasing 

population.  However, in this century the conventional method for cultivating crops needs to be adapted 

to mitigate their negative impact on the environment, and particularly on soil health.  Conservation 

agricultural practices could potentially deliver in this goal, ensuring optimum yield is obtained while 

minimizing negative impacts in the surrounding ecosystems.  One element of conservation agriculture is 

the use of microorganisms as biofertilizer or biological control agents.  The genus Trichoderma has been 

widely explored for its protection against pathogens and potential to improve plant growth.  Trichoderma 

improves plant growth via the solubilization of phosphate and the production of phytohormones (Indole 

acetic acid).  It has been noted that majority of Trichoderma strains that solubilize phosphate and produce 

IAA have been reported to be the good candidates for development of bio-stimulants.  The diversity of 

Trichoderma species have been widely documented, however in South Africa there is still a gap in terms 

of isolating and identifying this genus.  This was highlighted by a recent study that was done in South 

Africa (Du Plessis et al., 2018).  The identification of this genus in agricultural soils could potentially 

yield native strains that could enhance plant growth via production of phytohormones and solubilization 

of phosphate. 

 

Research questions 

● Does agricultural soil from Western Cape, KwaZulu-Natal and Free State provinces in South 

Africa differ in terms of Trichoderma species distribution?  

● Does Trichoderma strains from wheat and maize rhizosphere soil have the potential to solubilize 

phosphate and produce indole acetic acid? 
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Research Aims 

● To isolate and identify naturally occurring Trichoderma spp. in the rhizosphere of maize and 

wheat under conventional and conservation agricultural practices 

● To evaluate the ability of Trichoderma species to exhibit plant growth properties such as, 

production of auxins (indole acetic acid) and nutrients acquisition (solubilization of phosphate) 

Research Objectives 

● To isolate and identify Trichoderma spp. from rhizosphere soil of maize and wheat. 

● To investigate the impact of farming practices on the presence of different Trichoderma spp. 

● To identify Trichoderma strains that can solubilize phosphate and produce indole acetic acid. 

 

Significance of the research 

Limited research has been done on Trichoderma species isolated in South Africa, thus this research can 

strengthen the existing knowledge of this genus in SA.  Furthermore, this research also hopes to identify 

Trichoderma species that can solubilize phosphate and produce indole acetic acid that could be 

researched further to understand their effectiveness in natural soils.  These results could increase the pool 

of species that used in the development of bio-fertilizers, as literature indicates that these strains have the 

potential to improve crop development.  In addition, these indigenous or local Trichoderma strains could 

have a better chance of being commercialized since they have been accustomed to the South African 

environment. 
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Chapter 2: Trichoderma spp. isolated from rhizosphere soil of wheat in Western 

Cape, South Africa 
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Abstract 

Wheat is the second most consumed staple crop in South Africa.  However, from 2000 - 2019, South 

Africa’s wheat output figures showed a decline.  The decline in the production of wheat is mostly caused 

by factors such as a decline in soil fertility, climate change, and plant diseases.  Synthetic fertilizers are 

used in the intensive agricultural practice to overcome these issues.  However, it has been reported that 

this practice is not sustainable.  Therefore, the implementation of other methods, such as conservation 

practices which are better for the environment, is required.  Conservation practices allow the use of bio-

fertilizers developed from different microorganisms to be used as an alternative to agrochemicals, and 

these include Trichoderma.  Trichoderma have already been used for plant protection and development 

in a number of cropping systems.  In this study, 91 strains of Trichoderma spp. were isolated from the 

wheat rhizospheres, under different management practices (crop rotations and monoculture) and 

identified using molecular and taxonomy methods.  Seven Trichoderma species were identified namely 

T. gamsii, T. koningiopsis, T. spirale, T. saturnisporum, T. velutinum, T. virens, and Trichoderma sp 

NNC105.  T. gamsii was found to be the most dominant species in all agricultural practices.  T. velutinum 

was reported for the first time in South Africa.  Other Trichoderma species isolated were previously 

reported from South Africa.  Overall, it was noted that fields under crop rotation resulted in a higher 

number of species compared to fields under monoculture.  The isolation and identification of 

Trichoderma species in South Africa is needed since we have limited knowledge in the diversity and 

distribution of this genus in this region.  Furthermore, regional Trichoderma strains could open other 

paths to further develop Trichoderma based products for use as bio-fertilizers and biocontrol agents. 
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Introduction 

Trichoderma spp. (Hypocreaceae) was described by Persoon 227 years ago (Samuels, 1996; Zeng and 

Zhuang, 2019).  This group of fungi are known to produce industrial important enzymes, control plant 

diseases and improve plant growth (Harman et al., 2004; Kubicek et al., 2008; Sadfi-Zouaoui et al., 

2009).  Bissett et al. (2015) recognized 254 species of Trichoderma, and this has now increased to 375 

species currently known (Du Plessis et al., 2018; Zeng and Zhuang, 2019; Cai and Druzhinina, 2021).  

Trichoderma spp. are commonly found in all types of habitats such as natural soils, decaying wood 

(Hosseyni-Moghaddam and Soltani, 2014), plant material, agricultural habitats, living plants (Cummings 

et al., 2016), the human body, water-related environments, air and settled dust (Samuels, 1996; Jaklitsch 

et al., 2006; Mouton et al., 2012; Kredics et al., 2014). 

Trichoderma strains have the ability to colonize the inner parts of plant tissues and play a crucial role in 

plant development (Kredics et al., 2014; Cummings et al., 2016).  These strains produce various 

compounds inside plant tissues that can induce systemic resistance, which ultimately aid in enabling 

plants to fight against pathogenic microorganisms.  For example, T. virens has been reported to produce 

peroxidases and synthesize tepernoids which contribute to the induction of host resistance (Baek et al., 

1999; Howell et al., 2000).  In addition, some strains compete and parasitize other pathogenic or non-

pathogenic microorganisms (Kubicek et al., 2008; Cummings et al., 2016). Trichoderma spp. can, 

therefore, have a beneficial effect on plants while controlling diseases caused by microorganisms. 

Secondary metabolites produced by Trichoderma spp. can also have a positive effect on plants (Silva et 

al., 2019).  These secondary metabolites play a significant role in controlling soil-borne diseases and also 

promote plant growth (Hosseyni-Moghaddam and Soltani, 2014).  In addition, these secondary 

metabolites can also be used in other areas such as medicine and the industrial sector (Mukherjee et al., 

2013; Frisvad et al., 2018). 

To date, 28 Trichoderma species have been reported from South Africa (Du Plessis, 2018).  Bisby was 

the first person to isolate Trichoderma strains in South Africa (Bisby, 1939).  Other research followed, 

although most of them focused on evaluating the potential biocontrol of Trichoderma species (Askew 

and Laing, 1994 a, b; Kotze et al., 2011; Mutawila et al., 2011).  In another study, Trichoderma species 

were isolated during surveys of fungi occurring on diseased Acacia mearnsii in South Africa (Roux and 

Wingfield, 1997).  Their findings showed that Trichoderma were excluded from those fungi causing 

disease since they formed no lesions.  Mouton et al. (2012) also reported the presence of Trichoderma 

sp. in a study conducted to evaluate culturable fungi from marine environments.  A number of large 
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monographic studies that focused on diversity of Trichoderma species, included strains from South 

Africa (Jaklitsch et al., 2006; Druzhinina et al., 2008; Kubicek et al., 2008; De Respinis et al., 2010; 

Druzhinina et al., 2010).  To date, only one survey was conducted to study the diversity of Trichoderma 

in South Africa (Du Plessis et al., 2018). 

Trichoderma spp. are extensively used for their beneficial characteristics.  Some studies suggested that 

locally sourced strains may be more effective than imported strains (Phua et al., 2011; Roese et al., 2017).  

In South Africa, Trichoderma diversity has not been extensively investigated (Du Plessis et al., 2018) 

for use in commercial products.  The most abundant species found in South Africa include T. harzianum, 

T. viride, T. orientalis and T. saturnisporum (Du Plessis et al., 2018).  Du Plessis et al. (2018) isolated 

161 strains of Trichoderma from natural soils and found some species to be novel, and in some cases 

endemic to this region. 

The aim of this study was, therefore, to isolate and identify Trichoderma species from rhizosphere of 

wheat plants in Western Cape, South Africa.  Rhizosphere was selected because it composed of various 

types of organisms which varies from microorganisms to insects (McNear Jr, 2013; Benitez et al., 2017).  

In addition, it is recognized that this environment allows for a variety of processes to occur (Kalam et 

al., 2017; Benitez et al., 2017), with a strong selective pressure from the plant.  
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Materials and Methods 

Collection of soil samples and isolation 

 

Figure 2. 1.  Map indicating the sampling sites (scale bar = 50 km)  

 

Soil was collected from three wheat farms (Langgewens, Hopefield, and Tygerhoek) in April (Pre-Plant), 

June (Germination), July (Top dressing), and October 2019 (at Harvest) from the Western Cape province, 

South Africa (Fig. 2.1. & Table 2.1).  Samples were taken from the same spot or location throughout, 

and 3 replicates samples were taken from each camp.  Rhizosphere soil was sampled by removing plants 

with their roots.  The samples were then placed in sterile polyethene bags and kept at 4℃ before 

processing in the lab.  For each sample about 10 g of soil was mixed with 100 ml saline solution in sterile 

conical flasks.  The soil suspension was left on a shaker at 26℃, 121 rpm for 1 hr.  The dilutions were 

prepared using saline solution from 1×10-1 to 1×10-3, and from each dilution 0.1 ml mixture was spread 

onto PDA medium (Neogen, UK) supplemented with antibiotics namely 50 ppm dichloran, 50 ppm 

chloramphenicol and 100 ppm streptomycin (Applichem, SA).  The plates were incubated at 26℃ for 7 
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days.  The plates were observed under a stereo microscope (NIKON SMZ800, Japan) and all colonies 

that resembled Trichoderma were sub-cultured onto malt extract agar (MEA) (Biolab, Merck, 

Modderfontein) (Crous et al., 2009; Jacklitsch, 2009; Du Plessis et al., 2018). 

 

Distribution of Trichoderma species under different agricultural practices 

Sites for isolation represent two agricultural practices namely crop rotation and monoculture (Table 2.1).  

The Trichoderma species distribution was analysed by calculating percentages of strains isolated from 

each practice using Microsoft Excel 2016. 

 

Table 2. 1.  Agricultural practices used for the isolation of Trichoderma spp. on different sites 

 

Farm names Practice Treatment GPS coordinate 

 

Langgewens 

 

 

Tygerhoek 

 

 

 

Hopefield 

Crop rotation 

 

Monoculture 

 

Crop rotation 

 

Monoculture 

 

Crop rotation 

 

Wheat after canola 

Wheat after medic 

Wheat after wheat 

 

Wheat after canola 

Wheat after medic 

Wheat after wheat 

 

Wheat after canola 

Wheat after medic 

S33°16.996'E018°42.414 

S33°17.017'E018°42.434 

S33°16.906'E018°42.484 

 

S34°09.913'E019°54.582 

S34°09.863'E019°54.559 

S34°09.900'E019°54.585 

 

S33°02.108'E018°26.195 

S33°01.924'E018°26.222 

 

 

 

DNA extraction, PCR and Sequencing 

Genomic DNA was extracted from Trichoderma cultures grown on MEA using bacterial/fungal DNA 

Mini-Prep kit (Zymo research, USA) according to manufacturer’s instructions.  Polymerase Chain 

Reactions (PCRs) were conducted as described by White et al. (1990) using the following primers; ITS1 

and ITS4 (White et al., 1990) to amplify the ITS1- 5.8s- ITS2 rDNA region and EF1F and EF2R (Jacobs 

et al., 2004; Du Plessis et al., 2018) to amplify the partial elongation factor 1α gene, respectively.  PCR 

reactions were set up in 10 µl volumes, which consisted of the following, 5 µl Kapa Taq Ready mix (KM 

1000, KAPA Biosystem), 0.2 µl of each primer (0.2mM), 0.5ng of gDNA template, and 4.1 µl milliQ 

H2O.  The thermal cycle for ITS were set up with an initial denaturing step of 94 ℃ for 5 minutes 

followed by 40 cycles consisting of 30 seconds denaturing at 94 ℃, 30 seconds annealing at 56 ℃ and 
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45 seconds extending at 72 ℃ and a final extension step of 7 minutes at 72 ℃ was used.  The EF1α 

thermal cycle were set up with an initial denaturing step at 96 ℃ for 5 minutes followed by 40 cycles 

consisting of 30 second denaturing at 94 ℃, 30 seconds annealing at 51 ℃, and 90 seconds extending 

step at 72 ℃, with a final extension step at 72 ℃ for 5 minutes.  Sequencing reactions were set up in 10 

µl volume with the following: 1 µl DNA (amplified DNA), 1.25 µl Buffer, 1 µl BigDye, and 1 µl forward 

primer (0.2mM) with 5.75 µl H2O.  Thermal cycle conditions were set up with an initial denaturing at 96 

℃ for 1 minute followed by 25 cycles of denaturing at 96 ℃ for 10 seconds, annealing at 50 ℃ for 10 

seconds and extension step at 60 ℃ for 4 minutes.  Sequence reaction products were analysed using an 

ABI Prism 310 genetic analyser at Central Analytical Facilities (CAF, Stellenbosch University). 

 

Phylogenetic analyses 

Sequences were opened and trimmed using Chromas 2.6.6 version (Technelysium, DNA Sequencing 

Software, Australia) (Available from: http://technelysium.com.au/wp/) and compared to the National 

Center for Biotechnology Information (NCBI) database using a blast-n search option.  Species isolated 

from agricultural soils were compared to the ex- type strains based on previous studies (Jacklitsch, 2009; 

Bissett et al., 2015; Du Plessis et al., 2018; Inglis et al., 2020).  Sequences were aligned using MAFFT 

from Geneious Prime 2021.0.3 (Kearse et al., 2012; Katoh and Standley, 2013).  Thereafter, the EF1α 

and ITS1 datasets were concatenated.  Mega-X (Kumar et al., 2018) was used to construct maximum 

likelihood phylogenetic trees, where branched strengths were assessed by bootstrap using 1000 

replicates. 

 

Morphological characterization 

Trichoderma species were grown on PDA, SNA, and CMA (Fluka Analytical, Sigma-aldrich, USA) with 

2% D (+) glucose monohydrate (KIMIX, Chemicals and Lab Suppliers) for seven days at 26 ℃.  Harris 

(2000) modified tape method was used to prepare the microscope slides.  All the microscope slides were 

prepared from 7 day old cultures.  Conidiophores, conidia, and phialide structures were viewed using a 

compound microscope (Nikon Eclipse E800, Japan) with differential interference contrast capabilities 

and a CFI plain Apochromat VC 100X lens. 
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Results 

Isolation of Trichoderma species 

A total number of 91 strains were isolated from wheat rhizosphere soil in Western Cape Province in 

South Africa (Table 2.3).  These strains resulted in 7 Trichoderma species and were identified as 

Trichoderma velutinum, Trichoderma sp NNC105, Trichoderma virens, Trichoderma spirale, 

Trichoderma gamsii, Trichoderma koningiopsis, and Trichoderma saturnisporum, respectively (Table 

2.2 and Table 2.3).  These species resolved in four (4) clades, namely the Harzianum clade, Virens clade, 

Viride clade, and Longibrachiatum clade (Table 2.2).  All the identifications of species were performed 

using morphological features and phylogenetic analysis. 

No Trichoderma species were isolated at Hopefield farm during any of the sampling times.  Tygerhoek 

and Langgewens sampling resulted in 30 and 61 strains, respectively.  The five species isolated at 

Tygerhoek were T. virens, T. spirale, T. saturnisporum, Trichoderma sp NNC105, and T. gamsii.  At 

Langgewens we isolated four Trichoderma species namely T. gamsii, T. saturnisporum, T. koningiopsis, 

and T. velutinum.  Moreover, wheat after wheat, wheat after canola, and wheat after medic isolated 4, 4, 

and 6 Trichoderma spp. respectively (Fig. 2.2).  T. gamsii and T. saturnisporum were widely distributed 

across all sites (Fig. 2.2). 

Distribution of Trichoderma spp. at different agricultural practices 

Monoculture resulted in 23% of the total number of strains (Table 2.3 and Fig. 2.3).  On the other hand, 

crop rotation resulted in 77% of the total number of strains (Table 2.3 and Fig. 2.4).  Only four 

Trichoderma species, T. spirale, T. saturnisporum, T. velutinum, and T. gamsii (Table 2.3 & Fig. 2.2), 

were isolated from fields where monoculture is practiced.  Crop rotation resulted in seven Trichoderma 

species.  All species that were isolated from monoculture sites were also reported under crop rotation 

with the additional species identified as, T. virens, Trichoderma sp. NNC105, and T. koningiopsis (Table 

2.3 & Fig. 2.2). 

T. gamsii was found to be the most dominant species across all sites, since it resulted in a higher number 

of strains both from monoculture (9) and crop rotations (25) (Table 2.3).  The fewest number of strains 

in the monoculture system was T. spirale and T. saturnisporum, whereas in the crop rotation system it 

was Trichoderma sp NNC105 with only one strain (Table 2.3 and Fig. 2.4).  Overall, it appears that 

different farming practices select for different species consortia.  
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Table 2. 2.  Sections and species obtained in this study 

 

Sections Clades Species names First report in SA 

    

Pachybasium T. harzianum T. velutinum 

Trichoderma sp. 

YES 

YES 

Trichoderma 

 

 

 

Longibrachiatum 

T. virens 
 

T. viride 
 

T. longibrachiatum 

T. virens 
T. spirale 
T. gamsii 

T. koningiopsis 
T. saturnisporum 

NO 
NO 
NO 

NO 
NO 

 

 

Table 2. 3.  Number of Trichoderma strains from different practices 

 

Trichoderma spp.  

 

 

 Monoculture Crop rotation 

T. virens 

 

T. spirale 

 

T. saturnisporum 

 

T. velutinum 

 

T. gamsii 

 

T. koningiopsis 

 

Trichoderma sp. 

0 

 

2 

 

2 

 

8 

 

9 

 

0 

 

0 

13 

 

2 

 

11 

 

6 

 

25 

 

12 

 

1 

Total  21 70 

 

 

 

 

 

 

 

 

Number of strains per practice 

Stellenbosch University  https://scholar.sun.ac.za



 

66 

 

 

 

 

 

 

 

 

 

Figure 2. 2.  Representation of Trichoderma spp. at different treatments used in agricultural practices 

(crop rotation and monoculture) 
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Figure 2. 3.  Distribution of Trichoderma species under monoculture 
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Figure 2. 4.  Distribution of Trichoderma species under crop rotation 
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Phylogenetic analyses 

The ITS1 and TEF1 markers were combined for construction of the maximum likelihood phylogenetic 

trees.  The initial identification was based on morphological features and clade classification was based 

on TEF1 gene sequences.  The resulting sequences had approximately 540 bp and 700 bp for ITS1 and 

TEF1, respectively.  All clades were supported by the significant bootstrap values greater than 75 based 

on the phylogenetic analyses using the two genes. 

Trichoderma longibrachiatum clade in the current study only consists of T. saturnisporum (Fig. 2.5).  All 

strains from this clade grouped with ex-type and other reference T. saturnisporum strains that were 

previously identified.  T. citrinoviride and T. pseudokoningii are phylogenetically closely related to T. 

saturnisporum but were not isolated in this study. 

Trichoderma harzianum clade consists of two species identified as T. velutinum and Trichoderma sp. 

(Fig. 2.7).  This is the first report of T. velutinum from South Africa (Fig. 2.9).  T. velutinum clustered 

with other strains that were recognized in previous studies.  In addition, only one strain (NNC105) 

grouped separately within T. harzianum complex species in this study.  This strain could potential be a 

novel species in this complex since it clustered separately from others within this clade (Fig. 2.7). 

The Trichoderma virens clade composed of T. spirale and T. virens (Fig. 2.6).  T. spirale strains that 

were identified previously grouped with all of the strains that were obtained in this study.  T. spirale 

obtained from this study formed a sub-clade and are phylogenetically closely related to T. hunanense.  T. 

virens strains isolated in the current study grouped with other reference strains of T. virens and are 

phylogenetically closely related to their sister clade T. crassum. 

Trichoderma viride clade in the current study resulted in two species and were assigned to T. gamsii and 

T. koningiopsis (Fig. 2.8).  T. gamsii strains from this study clustered together with ex-type and reference 

strains of T. gamsii that were previously identified.  T. koningiopsis strains from this study also grouped 

with ex-type strain and other T. koningiopsis reference strains that were isolated from previous studies 

(Samuels et al., 2006; Du Plessis et al., 2018).  T. koningiopsis are phylogenetically closely relate to T. 

ovalisporum and T. viride (Fig. 2.8). 
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Table 2. 4.  Strains and accession numbers for ITS1 and TEF1 sequences used in phylogenetic tree of 

T. longibratium clade, T. virens clade, T. viride clade, and T. harzianum clade 
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Table 2.4.  (continued) 
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Table 2.4.  (continued) 
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Table 2.4.  (continued) 
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Table 2.4.  (continued) 
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Table 2.4.  (continued) 
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Table 2.4.  (continued) 

 
*Trichoderma strains isolated in this study are in boldface. 
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Figure 2. 5.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. longibrachiatum clade, 

the tree was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet 

“T”, and the tree was rooted with Protocrea farinosa CBS 121551. (Scale bar = 0.050) 
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Figure 2.5.  (continued) 
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Figure 2. 6.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. virens clade, the tree 

was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet “T”, 

and the tree was rooted with Protocrea farinosa CBS 121551. 
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Figure 2.6.  (continued) 
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Figure 2. 7.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. harzianum clade, the 

tree was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet 

“T”, and the tree was rooted with Protocrea farinosa CBS 121551 
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Figure 2.7.  (continued) 
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Figure 2. 8.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. viride clade, the tree 

was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet “T”, 

and the tree was rooted with Protocrea farinosa CBS 121551. (Scale bar = 0.050) 
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Figure 2.8.  (continued) 
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Figure 2.8.  (continued) 
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Notes on isolated species 

Trichoderma harzianum Rifai, Mycological Papers 116: 38 (1969)  

Trichoderma harzianum complex species are distributed worldwide (Gherbawy et al., 2004; Jaklitsch 

et al., 2006; Jiang et al., 2016).  It has been reported that at least three monophyletic lineages 

representing different species exist within the T. harzianum complex (Druzhinina et al., 2010).  

Trichoderma sp. NNC105 belongs to T. harzianum clade based on phylogenetic analysis.  

Trichoderma sp. NNC105 is phylogenetically closely related to T. harzianum and T. rifaii.  Other 

species that belongs to this clade that have been isolated in South Africa includes T. afroharzianum 

(Du Plessis et al., 2018).  Trichoderma spp. in this clade have the ability to improve plant growth and 

control diseases (Abdel-Fattah et al., 2007; Chaverri et al., 2015; Umadevi et al., 2018).  In addition, 

these species are capable of producing various types of volatile organic compounds (VOCs) which 

are also useful in the process of fighting against pathogenic microorganisms (Song et al., 2018; Guo 

et al., 2019). 

Trichoderma virens (J.H. Mill., Giddens & A.A. Foster) Arx, Beihefte zur Nova Hedwigia 87: 

288 (1987)  

Trichoderma virens have been isolated in South Africa and other parts of the world (Du Plessis, 2015; 

Jiang et al., 2016), and 13 strains in this study were isolated only from fields with crop rotation 

practices.  T. virens have both teleomorph and anamorph states, and the anamorph strains are known 

to be cosmopolitan (Chaverri et al., 2001).  In addition, T. virens have been widely studied for their 

mechanisms that they use to control various pathogenic diseases due to their common use in 

agriculture (Baek et al., 1999; Howell et al., 2000; Howell, 2006).  A number of studies showed that 

strains from this species vary in terms of biocontrol activity, and were highly strain dependent (Baek 

et al., 1999; Howell et al., 2000; Howell, 2006).  T. virens also have the capacity to improve plant 

growth (Vargas et al., 2009; Contreras-Cornejo et al., 2009). 

Trichoderma spirale Bissett, Canadian Journal of Botany 69 (11): 2408 (1992)  

Trichoderma spirale have been found in many studies (Bisset, 1991; Chaverri et al., 2003; Du Plessis, 

2015; Jiang et al., 2016; Jang et al., 2017).  Four strains of Trichoderma spirale were isolated in this 

study.  Moreover, another study reported only two strains of T. spirale which were isolated from 

agricultural soil in East China (Jiang et al., 2016).  In contrast, other studies found that this species 

was dominant when compared to other species of Trichoderma in China (Sun et al., 2012) and 

Republic of Korea (Oh et al., 2018).  Furthermore, some studies investigated the ability of this species 
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to enhance plant growth and prevent diseases (Abdel-Monaim et al., 2014; Do Nascimento et al., 

2017; Baiyee et al., 2019).  Their findings indicated that T. spirale was found to be most effective in 

controlling Leucoagaricus gongylophorus and Corynespora cassiicola (Do Nascimento et al., 2017; 

Baiyee et al., 2019), in contrast to the foregoing results another study reported that T. spirale had a 

low efficacy against Fusarium wilt disease when compared to other Trichoderma spp. (Abdel-

Monaim et al., 2014). 

Trichoderma gamsii Samuels & Druzhin., Studies in Mycology 56: 168 (2006)  

Trichoderma gamsii was the most abundant species in this study as 34 strains were isolated.  This 

species has been previously reported from South Africa and it is known to be distributed globally 

(Jaklitsch et al., 2006; Samuels and Druzhinina, 2006; Anees et al., 2010; Sun et al., 2012; Du Plessis 

et al., 2018).  Many studies reported the potential of T. gamsii to improve plant growth and harness 

plant diseases (Rinu et al., 2014; Baroncelli et al., 2016; Chen et al., 2016; Zhou et al., 2018; Chihat 

et al., 2021), for instance T. gamsii isolated from lentil roots was found to have the capacity to 

solubilize phosphate, chitinase activity, and produce ammonia, and salicyclic acid, although the other 

important metabolites (e.g. Indole acetic acid and siderophores) which are also known to play an 

important role in plant growth improvement, were not detected (Rinu et al., 2014).  Moreover, T. 

gamsii is known to colonize the inner plant tissues (Rinu et al., 2014; Chen et al., 2016; Sarrocco et 

al., 2020). 

Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Studies in Mycology 56: 117 

(2006)  

Trichoderma koningiopsis have been reported in South Africa (Du Plessis et al., 2018) and is known 

to be common in tropical America, although it has also been isolated from East Africa, Europe, and 

Canada (Jaklitsch et al., 2006; Samuels et al., 2006).  The current study isolated twelve T. 

koningiopsis strains.  This species is ubiquitous in nature and have been isolated as endophytes 

(Samuels et al., 2006; Jiang et al., 2016).  It is well documented that T. koningiopsis strains can 

prevent pathogenic diseases and improve plant growth (Moreno et al., 2009; Hu et al., 2017; Tandon 

et al., 2020).  In addition, other studies reported that this species can produce various secondary 

metabolites (Hu et al., 2017; Marik et al., 2018; Chen et al., 2019). 
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Trichoderma saturnisporum Hammill, Mycologia 62 (1): 112 (1970) 

Trichoderma saturnisporum normally found in the environments that have a high organic matter 

content and are also associated with warm environments (Danielson and Davey, 1973).  T. 

saturnisporum was reported in Africa, Georgia, Italy, and Texas (Kuhls et al., 1997; Sadfi-Zouaoui 

et al., 2009; Du Plessis et al., 2018).  T. saturnisporum was shown to be effective biological control 

agent as well as growth promotion of crop plants (Marin-Guirao et al., 2016; Fernando et al., 2018; 

Diánez et al., 2016; Sharma et al., 2018).  In this study, 13 strains were isolated from wheat soil, two 

strains from monoculture fields and eleven strains from crop rotation fields.  This finding supports 

the fact that T. saturnisporum is commonly found in environments with high organic matter content, 

as the crop residues were left on the field in the crop rotation sites, before planting. 

Trichoderma velutinum Bissett, C.P. Kubicek & Szakacs, Canadian Journal of Botany 81 (6): 

579 (2003) 

Trichoderma velutinum is a cold tolerant species that belongs to the T. harzianum clade (Bisset et al., 

2003).  According to our knowledge this is the first report of T. velutinum in South Africa, and 14 

strains were isolated in this study (Fig. 2.7).  The South African strains tend to have unique phialides 

(fusiform to papillate shape) compared to other previously isolated strains (Fig. 2.7) (Bissett et al., 

2003).  It has previously been isolated from rice agricultural soil (Jiang et al., 2016), and contributed 

to improving plant growth (Mayo et al., 2016; Guo et al., 2019).  Furthermore, it is mycoparasitic on 

pathogenic fungi (Sharma et al., 2017, Matarese et al., 2012), and mycoparasitism was induced by 

the production of volatile organic compounds (VOCs) from T. velutinum (Guo et al., 2019). 
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Figure 2. 9.  Morphological features of Trichoderma velutinum (NNC116 representative), A. PDA, B. 

CMD, C. SNA all after 7 days. D, F, I. Phialides. E, G. Conidiophores. H. Conidia (All scale bars are 

10 µm in length) (Magnification 400X) 

 

 

 

 

  

A B C 

D E F 

G H I 

Stellenbosch University  https://scholar.sun.ac.za



 

90 

 

Discussion 

Trichoderma species have been explored worldwide for their beneficial impact in both controlling 

diseases and stimulating plant growth (Abdel-Fattah et al., 2007; Chaverri et al., 2015; Umadevi et al., 

2018; Guo et al., 2019).  In this study a total of seven Trichoderma spp. have been isolated from 

agricultural soil.  The majority of species that were isolated in this study have been found by other 

researchers from agricultural soils, for example T. velutinum, T. virens, T. spirale, T. saturnisporum, and 

T. koningiopsis (Jiang et al., 2016).  Furthermore, most of the Trichoderma species isolated in the current 

study were re-isolated since they had previously been isolated in this region (Du Plessis et al., 2018), but 

two Trichoderma species were discovered for the first time in this region. 

Species identification in the current study was based on morphological characters and phylogenies were 

based on ITS and TEF markers in order to achieve a robust analysis (Jacklitsch and Voglmayr, 2015; 

Qiao et al., 2018; Maria del Carmen et al., 2021).  This has been used in other studies as the ITS gene 

region does not provide sufficient resolution in this genus (Kuhls et al., 1997; Jacklitsch et al., 2006; 

Hatvani et al., 2007; Jacklitsch, 2009), and the use of TEF can effectively distinguish between closely 

related species (Hermosa et al., 2004; Lu et al., 2004; Overton et al., 2006; Samuels, 2006).  However, 

the use of other genes such as act, cal1, and rpb2 could still be amplified from the Trichoderma species 

that were isolated in the current study, because recent studies have shown to also include these genes 

(Qiao et al., 2018; Ingilis et al., 2020; Maria del Carmen et al., 2021). 

T. harzianum complex is the most common group isolated from soil (Druzhinina et al., 2010; Chaverri 

et al., 2015; Du Plessis et al., 2018; Ingilis et al., 2020).  In this study, strain NNC 105 is a member of 

T. harzianum complex.  In the analysis it clustered close to other strains of this clade, although it forms 

a separate lineage within the complex, suggesting that it may represent a novel species.  We have, 

however, not described it, as it is represented by a single strain, where novel species should ideally be 

represented by more than one strain (Seifert and Rosman, 2010).  Moreover, this single strain was 

phylogenetically related to T. harzianum and T. rifaii (Fig. 2.7).  Its microscopic features were not similar 

to those of T. harzianum, but it did resemble most of the features of T. rifaii (Chaverri et al., 2015, also 

see Chapt. 3, Fig. 3.10). 

T. gamsii and T. saturnisporum were isolated across all the sites in this study (Fig. 2.2).  This was not 

surprising as these Trichoderma species have been reported to be cosmopolitan (Danielson and Davey, 

1973; Kuhls et al., 1997; Jaklitsch et al., 2006; Samuels and Druzhinina, 2006; Sadfi-Zouaoui et al., 
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2009; Anees et al., 2010; Sun et al., 2012).  A recent study in South Africa reported that T. saturnisporum 

was found to be the second most isolated species from non-agricultural soils (Du Plessis et al., 2018). 

The distribution of Trichoderma species was largely affected by plant diversity in this study.  This was 

shown by the number of species that were isolated from monoculture sites compared to crop rotation 

sites.  However, the comparison between monoculture and crop rotation in this study was neglected since 

the number of crop rotation fields were not equal to monoculture fields.  In the current study only four 

species were isolated from monoculture sites whereas, seven species were isolated under crop rotation 

sites.  Other studies also reported that crop rotation resulted in an increased microbial diversity compared 

to monoculture (Lupwayi et al., 1998; Zak et al., 2003; Venter et al., 2016; D’Acunto et al., 2018).  All 

these studies focused on evaluating the entire microbial community rather than looking at one genus, as 

it was done in the current study.  However, some studies showed an inverse relationship between 

microbial community and crop rotation, these studies were based on wheat-fallow, wheat-pea, wheat-

wheat, and wheat-soybean (Yin et al., 2010; Reardon et al., 2014).  Therefore, this suggest that one 

should consider other environmental factors that might be part of these findings, such as climate, 

geographical location, soil type, and soil pH.  To date, no study has been conducted to evaluate the 

Trichoderma species distribution based on crop or plant diversity. 

Overall, crop rotation and monoculture farming practices isolated 7 and 4 Trichoderma spp., respectively.  

T. gamsii was the most abundant species in both farming practices.  The investigation of this genus is 

important since its exhibit positive functions that are vital in improving crop development (Rinu et al., 

2014; Baroncelli et al., 2016; Chen et al., 2016; Zhou et al., 2018; Tandon et al., 2020; Chihat et al., 

2021).  Only two Trichoderma spp. were reported for the first time in South Africa and were identified 

as T. velutinum and Trichoderma sp NNC105.  Future studies from other crops may reveal even more 

species from South Africa, expanding our knowledge on the distribution of this group.  This is also vital 

in the development of agricultural products from local strains as bio-fertilizers, and biocontrol agents. 
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Chapter 3: Distribution of Trichoderma spp. from maize rhizosphere soil in 

KwaZulu-Natal and Free State, South Africa 
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Abstract 

Trichoderma species are globally distributed and exert beneficial properties such as improving plant 

growth and fight against plant pathogens.  Previous studies on the diversity of Trichoderma spp. in South 

Africa resulted in the identification of 28 species to date.  The role of species in this group as beneficial 

organisms in agriculture is well known and documented.  The aim of this study was to isolate and identify 

Trichoderma species from rhizosphere of maize, particularly those grown under different farming 

practices such as crop rotation and monocultures.  The total of 337 strains were isolated from maize soil 

and identification was based on morphology and phylogenetic analyses.  The strains grouped into eleven 

species which were identified as T. asperellum, T. afroharzianum, T. gamsii, T. hamatum, T. 

koningiopsis, T. neokoningii, T. paratroviride, T. peberdyi, T. rifaii, T. spirale, and T. velutinum.  The 

crop rotation practice had the highest number of Trichoderma spp. compared to monoculture samples.  

T. gamsii and T. hamatum were the most abundant species isolated from maize soil.  Five species 

identified as T. neokoningii, T. paratroviride, T. peberdyi, T. rifaii, and T. velutinum were reported for 

the first time in South Africa.  Therefore, this study adds to our knowledge on the distribution of 

Trichoderma in South Africa and provide a pool of potential candidates for use in agriculture. 
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Introduction 

Maize is a ubiquitous crop and serves as a food source and fodder (Byerlee and Heisey, 1997; Musokwa 

et al., 2019).  It is the staple for many people and renders essential nutrients such as Ca, P, K, Na, Mg, 

Fe, Mn, and Zn (Devi et al., 2014).  Maize is planted worldwide, and South Africa is among top ten 

countries that have the highest production (Wallington et al., 2012; Demeke and Di Marcantonio, 2013; 

FAOSTAT, 2019) with approximately 8 million tons of maize per year produced (FAOSTAT, 2019).  In 

addition, South Africa is also recognized as being number one in the production of maize in Africa 

(FAOSTAT, 2019). 

Yield of maize is, however, inconsistent from year to year.  This is because of diseases that reduce yield 

(Bressan et al., 2008; Torres et al., 2014; Guadie et al., 2019) and environmental fluctuations such as 

droughts.  In order to increase yields the overuse of agrochemicals are widespread, with detrimental 

effect on the environment (Savci, 2012; Mabe et al., 2017; Naeem et al., 2018; Badu-Apraku et al., 

2020).  Therefore, environmentally sustainable approaches are required to solve these negative effects, 

since the currently used methods are detrimental for soil health in the long run (Savci, 2012; Bouwman 

et al., 2013). 

The rhizosphere is defined as the area around the roots of plants, and harbors important microorganisms 

(Curl and Truelove, 2012).  Rhizosphere microorganisms have been reported to form beneficial 

relationships with plants (Benitez et al., 2017; Collinge et al., 2019).  Most of these microorganisms have 

the ability to improve plant growth by making uptake of nutrients more efficient and also produce 

metabolites that are responsible for growth promotion (Gravel et al., 2007; Saber et al., 2017; Bader et 

al., 2020; Mendes et al., 2020), phosphate solubilization and the production of auxins (Zahir et al., 2010; 

Gravel et al., 2007; Saber et al., 2017). 

Trichoderma spp. are ubiquitous in nature as they are predominantly found in all ecosystems including 

the rhizosphere (Druzhinina and Kubicek, 2005; Belayneh Mulaw et al., 2010; Blaszczyk et al., 2011; 

Contreras-Cornejo et al., 2016; Recio et al., 2019).  Species from this genus are known for its uses in the 

industrial and agricultural sectors.  In agriculture, they are used as plant growth stimulants (Harman et 

al., 2004; Rajankar et al., 2007; Saravanakumar et al., 2013; Mendes et al., 2020; Kribel et al., 2020) as 

well as for plant disease prevention (Samuels, 1996; Verma et al., 2007; Mukherjee et al., 2014; 

Elshahawy et al., 2017).  In the industrial sector, they have been used to produce various secondary 

metabolites and some important industrial enzymes such as cellulases, and chitinases (Yao et al., 2015; 

Bischof et al., 2016; Waghunde et al., 2016).  
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The diversity of Trichoderma spp. has been widely studied across the globe, although the information 

for Africa is still scarce (Druzhinina et al., 2006; Brotman et al., 2013; Jaklitsch and Voglmayr, 2015; 

Hassan et al., 2019).  A previous study from South Africa, focusing on non-agricultural soil, identified 

five novel Trichoderma species in addition to a number of first reports for this country (Du Plessis et al., 

2018).  Therefore, this study aim to isolate and identify Trichoderma spp. in maize soil under 

conventional and conservation agricultural practices, in order to identify naturally occurring 

Trichoderma species that could be beneficial for plant growth. 
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Materials and methods 

Sampling and Isolation of Trichoderma spp. 

 

 

Figure 3. 1.  Map indicating the sampling sites (scale bar = 100 km) 
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Rhizosphere soil (fine layer of soil on the surface of roots) was collected from two farms (Zunckel Farms) 

in KwaZulu-Natal and two farms (Van Rooyenswoning and Uitkyk farms) in the Free State, respectively 

(Table 3.1).  Five samples were collected in each field, which resulted in having 20 samples.  At Zunckel 

Oats farm, we started at ZMO1 and walked to the secondary (from the middle) to sample ZMO2.  We 

then drove around the field trying to sample in each quadrant of the field, to account for any variation in 

the field.  At Zunckel Peas farm, we sampled ZMP1 in the outer circle, ZMP2 in the circle 3, ZMP3 in 

circle 4, ZMP4 in circle 5, and ZMP5 in circle 2, respectively.  At VanRooyenswoning and Uitkyk farms 

the sampling pattern was the same, we walked 20m from the gate and established the first sampling site 

M1, from M1 we while looking directly away from the gate we sampled M2, 10m away from M1 starting 

at 9 o’clock, M3 was 10m away from M1 at 12 o’clock, M4 was 10m away from M1 at 3 o’clock and 

M5 was 10m away from M1 at 6 o’clock.  We sampled in a clockwise direction with M1 as the center.  

The sampling times were as follow, October 2019 (Pre-Plant), January 2020 (Germination), and July 

2020 (at Harvest) (Table 3.1).  All soil samples were stored in sterile polyethene bags and kept at 4 ℃ 

before processing in the laboratory.  Ten (10) g of soil was weighed and mixed with 100 ml saline solution 

in a sterile conical flask.  The mixture was left for one hour on a shaker at 26 ℃, 121 rpm.  The soil 

suspension was used for dilutions 1×10-1 to 1×10-3, and then 0.1 ml from dilutions was spread onto PDA 

medium (Neogen, UK) supplemented with antibiotics 50 ppm dichloran, 50 ppm chloramphenicol and 

100 ppm streptomycin (Applichem, South Africa).  Plates were incubated at 26 ℃ for 7 days and 

thereafter, were viewed under stereo microscope (NIKON SMZ800, Japan) to identify all colonies that 

resemble those of Trichoderma spp.  All colonies that resembled Trichoderma spp. were transferred into 

new PDA media (Neogen, UK) for DNA extractions. 

 

Distribution of Trichoderma spp. under crop rotation and monoculture 

Crop rotation and monoculture practices settings (Table 3.1) were compared to each other in regard to 

the prevalence of Trichoderma spp.  In each practice we determined the number of Trichoderma species 

obtained and also the most dominant species was identified.  All the analysis of diversity distribution 

was analysed using Microsoft Excel 2016 where the data were expressed in the form of percentages and 

represented in pie charts. 
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Table 3. 1.  Sampling sites and farming practices used for isolation of Trichoderma spp. 

 

 

 

DNA extraction, PCR and Sequencing 

Genomic DNA was extracted from Trichoderma cultures grown on PDA using bacterial/fungal DNA kit 

(Zymo research, USA) according to manufacturer’s instructions.  Polymerase chain reactions (PCRs) 

were conducted as described by White et al. (1990) using the following primers; ITS1 – ITS4 to amplify 

the ITS1- 5.8s- ITS2 rDNA regions and EF1F – EF2R (Jacobs et al., 2004; Du Plessis et al., 2018) to 

amplify the partial elongation factor 1α gene (TEF), respectively.  PCR reactions were set up in 10 µl 

volumes, which consisted of the following, 5 µl Kapa Taq Ready mix (KM 1000, KAPA Biosystems), 

0.2 µl of each primer (0.2mM), 0.5ng of gDNA template, and 4.1 µl milliQ H2O.  Thermal cycle for ITS 

were set up with an initial denaturing step at 94 ℃ for 5 minutes followed by 40 cycles consisting of 30 

seconds denaturing at 94 ℃, 30 seconds annealing at 56 ℃ and 45 seconds extending at 72 ℃ and a final 

extension step of 7 minutes at 72 ℃ was used.  The TEF thermal cycle were set up with an initial 

denaturing step at 96 ℃ for 5 minutes followed by 40 cycles consisting of 30 second denaturing at 94 

℃, 30 seconds annealing at 51 ℃, and 90 seconds extending step at 72 ℃, with a final extension step at 

72 ℃ for 5 minutes.  Sequencing reactions were set up in 10 µl volume with the following; 1 µl DNA 

(amplified DNA), 1.25 µl Buffer, 1 µl BigDye, and 1 µl forward primer (0.2mM) with 5.75 µl H2O.  

Thermal cycle conditions were set up with an initial denaturing at 96 ℃ for 1 minute followed by 25 

cycles of denaturing at 96 ℃ for 10 seconds, annealing at 50 ℃ for 10 seconds and extension step at 60 

℃ for 4 minutes.  Sequence reaction products were sent to CAF (Central analytical facility, Stellenbosch 

University) for analyses. 
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Phylogenetic analyses 

DNA sequences were viewed and trimmed using Chromas 2.6.6 version (Technelysium, Australia) 

(Available from: https://technelysium.com.au/wp/).  National Center for Biotechnology Information 

(NCBI) database was used to blast the DNA sequences of Trichoderma spp. in order to compare them 

with the existing sequences of Trichoderma spp. in the database.  Ex-type and reference strains were 

extracted from the NCBI database based on updated and recent previous studies (Bissett et al., 2015; Du 

Plessis et al., 2018; Inglis et al., 2020).  MAFFT plugin from Geneious Prime 2021.03 was used for 

aligning all the sequences (Katoh et al., 2002; Kearse et al., 2012; Katoh and Standley, 2013).  The 

resulting alignments were checked and refined using Geneious Prime 2021.03.  Post successfully 

alignments, the two gene (TEF1 and ITS1) sequences were concatenated using Geneious Prime 2021.03, 

and all files were converted into FASTA format (Katoh et al., 2002; Kearse et al., 2012; Katoh and 

Standley, 2013).  Thereafter, maximum likelihood phylogenetic trees were constructed using MEGA-X 

where defaults settings were kept unchanged and branched strengths were evaluated by using 1000 

bootstrap replicates (Kumar et al., 2018). 

 

Morphological characterization 

Trichoderma species were grown on PDA, SNA, and CMA (Sigma-Aldrich, USA) with 2% D (+) 

glucose monohydrate (KIMIX, Chemicals & Lab Suppliers) for 7 days at 26 ℃.  Microscopic features 

were observed using a compound microscope (Nikon Eclipse E800, Japan) with differential interference 

contrast capabilities and a CFI plain Apochromat VC 100X lens.  Microscope slides were prepared using 

shear solution and a modified tape method was used (Harris, 2000). 
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Results 

Isolation and distribution of Trichoderma species 

This study resulted in the isolation and identification of eleven Trichoderma species which resolved in 

two sections namely section Trichoderma and section Pachybasium (Table 3.2).  Each of these sections 

consisted of two clades.  Section Trichoderma consist of T. viride and T. pachybasium A, while the 

section Pachybasium consists of T. virens and T. harzianum.  The clades which obtained more species 

are T. harzianum and T. viride as both were represented by four species each.  The clades that had the 

least number of species were T. pachybasium A and T. virens, represented by two and one species, 

respectively.  Five species namely T. paratroviride, T. velutinum, T. peberdyi, T. rifaii, and T. neokoningii 

were reported for the first time in South Africa (Table 3.2).  All other species that were isolated in the 

current study were previously isolated in South Africa (Jaklitsch et al., 2006; Kubicek et al., 2008; 

Druzhinina et al., 2008; Du Plessis et al., 2018). 

Different farming treatments resulted in different numbers of Trichoderma spp. isolated (Fig. 3.4).  

According to the data, maize after maize resulted in seven Trichoderma spp., which was comparable to 

the maize after peas treatment.  Among all treatments, maize after oats resulted in the largest number of 

Trichoderma spp. (9), whereas maize after sunflower resulted in the least number of species (6) (Fig. 

3.4).  Moreover, in terms of geographical location it was revealed that higher number of Trichoderma 

species were isolated from the farms in KwaZulu-Natal (KZN) compared to the sites in the Free State 

(FS).  All Trichoderma spp. isolated in FS were also found in KZN, with the exception of T. 

paratroviride, T. asperellum, and T. neokoningii which were exclusively found in KZN. 

A total of 337 Trichoderma strains were isolated from maize soil.  Sixty (18%) strains were isolated from 

monoculture sites, whereas 277 (82%) strains were isolated from sites under crop rotation.  In the 

monoculture system, 7 species were identified as T. spirale, T. gamsii, T. koningiopsis, T. hamatum, T. 

afroharzianum, T. rifaii, and T. peberdyi (Table 3.2 and Fig. 3.2), respectively.  T. hamatum was the most 

isolated species while the T. koningiopsis and T. spirale were the least isolated species in monoculture 

systems.  These findings are in contrast to fields under crop rotation, where 11 species were identified as 

T. gamsii, T. paratroviride, T. koningiopsis, T. spirale, T. asperellum, T. hamatum, T. afroharzianum, T. 

velutinum, T. peberdyi, T. rifaii and T. neokoningii (Table 3.3 and Fig. 3.3), respectively.  T. gamsii and 

T. hamatum were represented by 84 and 64 strains, respectively and were the most abundant species 

isolated in this study while T. neokoningii was represented by only one strain isolated.  Four species were 
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only isolated from fields under crop rotation and were identified as T. paratroviride, T. asperellum, T. 

velutinum and T. neokoningii. 

 

Table 3. 2.  Trichoderma species that were obtained from maize soil 

 

Sections Clades Species First report in South Africa 

Trichoderma Viride T. paratroviride YES 

  T. gamsii NO 

  T. koningiopsis NO 

  T. neokoningii YES 

 Pachybasium T. hamatum NO 

  T. asperellum NO 

    

Pachybasium Virens T. spirale NO 

 Harzianum T. afroharzianum NO 

  T. velutinum YES 

  T. peberdyi YES 

  T. rifaii YES 

 

 

Table 3. 3.  Trichoderma isolates from monoculture agricultural practice 

 

Trichoderma species Number of strains under monoculture 

T. gamsii 10 

T. koningiopsis 1 

T. spirale 1 

T. hamatum 18 

T. afroharzianum 13 

T. peberdyi 4 

T. rifaii 13 
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Figure 3. 2.  Trichoderma diversity under maize monoculture practice 

 

Table 3. 4.  Trichoderma strains from crop rotation agricultural practice 

 

Trichoderma species Number of strains under crop rotation 

T. gamsii 74 

T. neokoningii 1 

T. paratroviride 8 

T. koningiopsis 32 

T. spirale 21 

T. asperellum 31 

T. hamatum 46 

T. afroharzianum 5 

T. velutinum 9 

T. peberdyi 33 

T. rifaii 17 
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Figure 3. 3.  Trichoderma diversity under crop rotation practice 
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Figure 3. 4.  Total number of Trichoderma spp. under different farming treatments 

 

 

Phylogenetic analyses 

PCR reactions resulted in amplicons of 540 and 700 bp for ITS1 and TEF1, respectively.  All strains 

isolated in this study clustered with four clades, namely the T. harzianum clade, T. virens clade, T. viride 

clade, and T. pachybasium A clade.  All of the clades obtained were well supported by the bootstrap 

analysis. 

 

Pachybasium A clade 

NN192 is a representative which belongs to T. pachybasium A clade, under subclade T. asperellum.  This 

representative grouped with T. asperellum strains identified in previous studies (Table 3.5 & Fig. 3.5).  

T. asperellum is phylogenetically related to T. yunnanense and T. asperelloides.  Furthermore, ex-type 

strain T. kumningense used in this study was found grouping with other strains of T. asperellum. 
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NN13 is a representative that forms a cluster with T. hamatum.  This species belongs to the Pachybasium 

A clade, under T. hamatum subclade.  T. hamatum is phylogenetically closely related to T. pubescens 

(Fig. 3.5). 

 

Harzianum clade 

NN15 is a representative belonging to the Harzianum clade that was obtained in the study and found to 

phylogenetically grouped with other T. rifaii strains that were identified previously (Fig. 3.6).  This 

species resembles T. rifaii, for instance, fast growth on SNA media, small globose conidia, phialides and 

conidiophores.  All these features of T. rifaii did not diverge from those that were previously identified 

for this species (Fig. 3.10).  T. azevedoi is phylogenetically closely related to T. rifaii. 

NN25 grouped with other T. afroharzianum strains that were obtained in previous studies and this was 

supported by 86% bootstrap value, which also make this node significant (Fig. 3.6).  Morphological 

features of NN25 strain were similar to these strains classified previously.  

NN102 belongs to the T. velutinum as it clustered with other previously identified T. velutinum (Fig. 3.6). 

T. velutinum is phylogenetically related to T. tomentosum.  This species is to be reported for the first time 

is South Africa. 

NN70 is a representative of T. peberdyi that grouped with strains of T. peberdyi that were previously 

isolated (Fig. 3.6).  This species is recently discovered in garlic and onion soil in Brazil.  They descendent 

from the same ancestor and is supported by 99% bootstrap value.  NN70 showed features that were 

similar to previously identified strains.  However, other features diverge from identified strains such as 

the color of colony on PDA media (Fig. 3.11), which resembles a green mycelium in the current study 

whereas whitish mycelium was observed in previous study (Inglis et al., 2020). 

 

Virens clade 

NN321 representative clustered with T. spirale which were identified in previous studies (Fig. 3.7).  

Morphological features were similar to those identified previously, with one exception: yellowish reverse 

pigment on PDA media, which had not been detected in prior studies (see Chap 1).  T. longisporum and 

T. hunanense were phylogenetically related to T. spirale in this study, and this relationship was also 

shown by Chen and Zhuang. (2017). 
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Viride clade 

NN311 is a representative which grouped with T. gamsii strains that were previously identified (Fig. 3.8, 

Chap 2).  T. gamsii is phylogenetically close to T. neokoningii, and in this study this was also observed.  

Features that were obtained from previously identified T. gamsii strains did not differ from the NN311 

representative.  

NN191 is the only strain that grouped separately within the clade, and it was observed that it is 

phylogenetically related to T. viridescens and T. gamsii strains (Fig. 3.8).  However, this strain was 

identified as T. neokoningii due to non-significant bootstrap value and it grouped with other T. 

neokoningii strains. 

NN275, this representative belongs to the viride clade and was identified as T. paratroviride, due to 

grouping with other T. paratroviride strains.  This species is reported for the first time in SA and is 

known to be closely related to T. atroviride (Fig. 3.8). 

NN312 represent the T. koningiopsis which belongs to the viride clade.  NN312 was found to group with 

other T. koningiopsis strains that were identified previously (Fig. 3.8, Chap 2).  T. koningiopsis and T. 

ovalisporum are phylogenetically related to each other, with a high bootstrap support. 
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Table 3. 5.  Trichoderma strains used to construct maximum likelihood phylogenetic tree of T. 

pachybasium A, T. virens, T. viride, and T. harzianum clades 
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Table 3.5.  (continued) 
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Table 3.5.  (continued) 
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Table 3.5.  (continued) 
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Table 3.5.  (continued) 
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Table 3.5.  (continued) 
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Table 3.5.  (continued) 

 

*Trichoderma strains isolated in this study are in boldface. 
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Figure 3. 5.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. pachybasium A clade, 

the tree was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet 

“T”, and the tree was rooted with Protocrea farinosa CBS 121551. 
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Figure 3.5.  (continued) 
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Figure 3. 6.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. harzianum clade, the 

tree was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet 

“T”, and the tree was rooted with Nectria eustromatica CBS 125578. (Scale bar = 0.050) 
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Figure 3.6.  (continued) 

 

 

 

T
. 
a

fr
o
h

a
rz

ia
n

u
m

 
T

. 
ve

lu
ti

n
u

m
 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

127 

 

 

 

 

 

 

 

 

 

Figure 3.6.  (continued) 
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Figure 3. 7.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. virens clade, the tree 

was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet “T”, 

and the tree was rooted with Protocrea farinosa CBS 121551. 
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Figure 3.7.  (continued) 
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Figure 3. 8.  Maximum likelihood phylogenetic tree of Trichoderma spp. from T. viride clade, the tree 

was based on concatenated sequence data (ITS1 and TEF1), ex-type strains indicated by alphabet “T”, 

and the tree was rooted with Protocrea farinosa CBS 121551. (Scale bar = 0.050) 
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Figure 3.8.  (continued)  
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Figure 3.8.  (continued) 
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Notes on isolated Trichoderma species 

This section is providing the notes about all the Trichoderma species that were isolated in this study.  

Although other Trichoderma species will not be discussed here because they were also isolated and 

discussed namely T. gamsii, T. koningiopsis, T. spirale, and T. velutinum (see Chapter 2). 

Trichoderma neokoningii Samuels & Sober., Studies in Mycology 56: 172 (2006) 

T. neokoningii is originally known to be isolated from pseudostroma of Monilophthora roreri infecting 

a pod of Theobroma cacao in tropical region of Peru.  It belongs to the T. viride clade of Trichoderma.  

T. neokoningii is morphologically and phylogenetically closely related to T. gamsii (Jaklitsch et al., 

2006).  For instances, T. gamsii and T. neokoningii produced abundant of chlamydospores.  The notable 

unique character that can be recognized between the two is the large size of conidia that are exhibited by 

T. gamsii.  In addition, T. neokoningii, T. koningii, and T. koningiopsis are morphologically difficult to 

distinguish.  It can be concluded that the best and accurate method of differentiating closely related 

species in regard to their morphology is to employ phylogenetic analysis where two or more concatenated 

markers are used. 

Trichoderma hamatum (Bonord.) Bainier, Bulletin de la Société Mycologique de France 22: 131 

(1906)  

T. hamatum is a cosmopolitan species that was firstly discovered by Bonorden in 1851.  Bainier re-

described the species and rendered detailed illustrations, however that was not the specimen that was 

originally collected by Bonorden (Bissett 1991).  Thereafter, Bissett (1991) neotypified the species, 

which then was fully described in detail by Chaverri et al. (2003).  T. hamatum has been found in various 

habitats such as soil, wood, and herbaceous tissues.  It is known of being identical to T. pubescens, 

although there are slightly differences between them which includes growth rate, dimension of conidia 

and phialides.  In the current study 64 strains of T. hamatum were identified.  A previous study that was 

conducted in South Africa isolated eleven strains of T. hamatum from non-agricultural soil in the Western 

Cape province (Du Plessis, 2015). 
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Trichoderma asperellum Samuels, Lieckf. & Nirenberg, Sydowia 51: 81 (1999) 

T. asperellum was firstly described in 1999, and it is common in many nations such as South Western 

Asia, Africa and Peru (Samuels et al., 1999).  It is widely distributed due to the fact that it was reported 

to be an endophyte and occur in soil.  This species belongs to the T. pachybasium A clade.  It is known 

of being phenotypically indistinguishable to T. asperelloides (Samuels et al., 2010).  The 12 strains have 

been documented on previous study from non-agricultural soil in Western Cape, South Africa (Du 

Plessis, 2015).  In contrast 31 strains of T. asperellum were obtained in this study.  In addition, it is also 

used as a biostimulant or biocontrol (Kumar et al., 2017; Fu et al., 2021). 

Trichoderma afroharzianum P. Chaverri, F.B. Rocha, Degenkolb & Druzhin., Mycologia 107 (3): 

568 (2015) 

Trichoderma afroharzianum was first recognized in 2010 and it was fully described in 2015 (Druzhinina 

et al., 2010; Chaverri et al., 2015).  This species belongs to the T. harzianum complex and is widely 

distributed (Druzhinina et al., 2010; Du Plessis et al., 2018).  A previous study from South Africa isolated 

10 strains of T. afroharzianum (Du Plessis, 2015), whereas 18 strains were obtained in this study.  It is 

mostly known to occur in soil and has been reported as biocontrol agent, this was due to the lytic enzymes 

produced by T. afroharzianum (Sawant et al., 2017; Liu et al., 2020; Tchameni et al., 2020). 

Trichoderma paratroviride Jaklitsch & Voglmayr, Studies in Mycology 80: 75 (2015) 

Trichoderma paratroviride was isolated from wood and bark of trees and shrubs in Spain (Jaklitsch and 

Voglmayr, 2015).  Furthermore, T. paratroviride is suspected to be from shiitake mushroom farms in 

Korea (Kim et al., 2012; Jaklitsch and Voglmayr, 2015).  T. paratroviride was isolated from maize soil 

in this study, which is the first to report of its presence in South Africa.  It is known that T. paratroviride 

and T. atroviride are not distinct in terms of their microscopic features, although they show unique colony 

characters.  The NN275 representative resembled the phenotypic characters that are similar to the 

previously described T. paratroviride strains (Jaklitsch and Voglmayr, 2015).  However, the colony 

growth rate was faster on CMD plate at 25 ℃ for this strain compared to those previously identified 

(Jaklitsch and Voglmayr, 2015). 
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Figure 3. 9.  Morphological features of Trichoderma paratroviride (NN275) on A. PDA, B. CMD, and 

C. SNA. D. Conidia, E. Chlamydospores, F-G. Hyphae (All scale bars = 20 µm) (Magnification 400X) 
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Trichoderma rifaii F.B. Rocha, P. Chaverri & Samuels, Mycologia 107 (3): 586 (2014)   

T. rifaii is a member of T. harzianum complex and phylogenetically related to T. azevedoi (Chaverri et 

al., 2015; Ingilis et al., 2020).  T. rifaii is the first time to be reported in South Africa as it is only known 

to occur in tropical South America.  The 30 strains were attained in this study.  This species is commonly 

known only as endophytes in leaves and stems of tropical trees, although it was isolated from agricultural 

soil in the current study.  Morphological features of the representative strain are similar with other strains 

that were previously identified, such as fast growth on SNA, ampuliform to lageniform phialides, and 

phialides arising in whorls at the tips of secondary branches, and conidial pustules usually not well 

formed.  
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Figure 3. 10.  Morphological features of Trichoderma rifaii (NN15) on A. PDA, B. CMD, and C. SNA. 

D-F. Phialides, E. Conidia, G. Conidiophores (All scale bars = 80 µm) (Magnification 400X)  
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Trichoderma peberdyi M.C. Valadares-Inglis & P.W. Inglis, PLoS One 15 (3): 12 (2020)  

This species was firstly isolated in garlic and onion soil in Brazil (Ingilis et al., 2020).  It belongs to T. 

harzianum clade and has been reported that it is closely related to T. tomentosum and T. ceraceum.  This 

is the first study to isolate this species in South Africa and 37 strains of this species were attained.  

Moreover, to date no studies have been conducted to evaluate it potential applications.  Therefore, this 

species still needs to be explored for various applications that are currently known to be exhibited by 

other Trichoderma species (Rudresh et al., 2005; Mukherjee et al., 2014; Carvalho et al., 2017; 

Khoshmanzar et al., 2020). 
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Figure 3. 11.  Morphological features of Trichoderma peberdyi (NN70) on A. PDA, B. CMD, and C. 

SNA, D. Conidia, E. Hyphae, F-G. Phialides and Conidiophores (All scale bars = 80µm) (Magnification 

400X)  
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Discussion 

The correct identification and classification of Trichoderma spp. is crucial as this genus has various 

beneficial impacts on our daily lives (Rudresh et al., 2005; Mukherjee et al., 2014; Waghunde et al., 

2016; Bischof et al., 2016; Khoshmanzar et al., 2020).  One example of this is where Trichoderma is 

used as plant growth promoting agent and as well as biological control agent (Harman et al., 2004; 

Saravanakumar et al., 2013; Zhang et al., 2016) in food production.  In addition, its ability to produce 

various enzymes is well studied (Mander et al., 2014; Mostafa et al., 2014).  These enzymes are useful 

in biotechnology industries for different purposes (Saravanakumar and Kathresan, 2014; Carvalho et al., 

2017).  Having a larger pool of local potential beneficial strains can enhance crop production in South 

Africa. 

Maize is regarded as a cosmopolitan crop and one investigation reported that the same Trichoderma spp. 

were isolated from several maize sites (Zachow et al., 2016).  T. koningii, T. koningiopsis, T. harzianum, 

and T. hamatum are among the maize associated species (Zachow et al., 2016).  The current investigation 

confirms earlier findings, as two of these species, T. koningiopsis and T. hamatum, were isolated in this 

study.  Jiang et al. (2016) reported nine Trichoderma spp. in maize soil, whereas eleven Trichoderma 

spp. were isolated in this study.  This might be as a result of differences in geographical locations and 

other environmental factors (Danielson and Davey, 1973; Hermosa et al., 2004; Jaklitsch et al., 2006).  

In this study, we isolated three species (T. koningiopsis, T. asperellum, and T. hamatum), that was also 

identified by Jiang et al. (2016) from maize associated soils. 

Some of the species that are found in the current study were also isolated from wheat soil (see Chapter 

2) in the Western Cape.  These species were T. gamsii, T. koningiopsis, T. spirale, and T. velutinum (see 

Chapter 2 for full description).  This might suggest that these particular species are generalists, and are 

commonly found in agricultural soil in South Africa regardless of differences in biogeography, 

environmental conditions or crops.  Two species, T. asperellum and T. gamsii, were isolated from this 

study, both of which are known to be abundant in Mediterranean climates (Hermosa et al., 2004; Jaklitsch 

et al., 2006).  It’s not a surprise that these species may be found in non-Mediterranean climate, given 

their widespread distribution (Samuels et al., 1999; Samuels et al., 2010; Chen et al., 2016; Zhou et al., 

2018). 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

141 

 

Crop rotation and monoculture agricultural practices had an apparent impact in the distribution of 

Trichoderma species.  More species and strains were isolated from fields under crop rotation compared 

to species and strains isolated from fields under monoculture (Fig. 3.4).  Diversification of plants is 

normally known to have a direct result on the microbial diversity which also shows an increase in 

diversity (Zak et al., 2003; Venter et al., 2016).  This is, however, not always the case, and some studies 

showed that monoculture performed better compared to some crop rotation practices (Yin et al., 2010; 

Gałązka et al., 2017).  In this study the monoculture resulted in a higher number of Trichoderma spp. 

compared to maize after sunflower rotation (Fig. 3.4).  There may be a variety of reasons for this, 

including environmental conditions, soil types, geographical location, moisture, seasons and this 

warrants further investigation (Hermosa et al., 2004; Jaklitsch et al., 2006; Marais et al., 2012; Reardon 

et al., 2014). 

The diversity of Trichoderma spp. from agricultural habitats has only been documented in a few studies 

(Zachow et al., 2016; Jiang et al., 2016), and no diversity study has been undertaken on Trichoderma 

from maize soil in South Africa.  Furthermore, most Trichoderma spp. used to promote maize crop 

growth and development, have been isolated from habitats other than maize soil (Okoth et al., 2011; 

Kumar et al., 2017; Nepali et al., 2020; Fu et al., 2021).  Thus, in the current study we focused on 

isolating and identifying Trichoderma spp. that are already associated with maize crop.  These strains 

could potentially have a good interaction with maize when applied as bio-stimulants or biological control 

agents because they have been accustomed to the maize soil environments. 

T. kunmingense is a recently described species (Qiao et al., 2018) and group with all T. asperellum strains, 

including the type strains and strains isolated in this study (Fig. 3.5).  However, the validity of this species 

may be questioned because Qiao et al. (2018) based their analyses solely on a single strain.  Based on 

this, we argue that T. kunmingense be considered a synonym of T. asperellum. 

The strains from this study that have been identified as T. rifaii (Fig. 3.6), could potentially represent a 

novel species as it formed a monophyletic clade within T. rifaii, and is significantly supported by 

bootstrap value of 99%.  However, all the phenotypic characters resembled that of T. rifaii (Chaverri et 

al., 2015).  A more detailed study, including additional strains and gene markers should be included to 

determine the validity of a novel species. 
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Overall, findings showed that eleven Trichoderma spp. were isolated in this study, with five species 

reported for the first time in South Africa.  T. gamsii and T. hamatum were the most abundant species in 

crop rotation and monoculture practices, respectively.  Both of these species were reported to be 

cosmopolitan (Bissett, 1991; Chaverri et al., 2003; Hermosa et al., 2004; Jaklitsch et al., 2006).  The 

distribution of Trichoderma spp. in this study showed that crop rotation farming should be adopted since 

it consitsts of higher number of Trichoderma species, although this was biased when we looked at it in 

comparison with monoculture fields since there were more fields of crop rotation than monoculture 

fields.  This is essential because Trichoderma spp. have the beneficial functions in agriculture including 

the improvement of plant growth as well as prevention of plant diseases.  This study will also reinforce 

the knowledge of Trichoderma in SA and increases the pool of locally Trichoderma strains that could be 

used in agriculture. 
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Chapter 4: Assessing the solubilization of phosphate and the production of indole 

acetic acid (IAA) by Trichoderma species 
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Abstract 

Plant growth is mostly dependant on nutrients and hormones.  Phosphate is one of the essential nutrients 

needed by plants for their growth and development.  Soil is known to have an abundance of insoluble 

phosphate that is inaccessible to plants.  Therefore, solubilized phosphate is needed to improve the 

growth of plants.  Indole acetic acid (IAA) is an auxin hormone which is normally produced by plants 

and microorganisms, and exogenous IAA is needed for plant root growth at a specific stage of 

development.  Trichoderma spp. is a cosmopolitan genus that has the capacity to solubilize phosphate 

and produce indole acetic acid.  In this study, at least one strain as a representative of the Trichoderma 

species that were previously identified were screened for their ability to solubilize phosphate and produce 

IAA.  All the screening methods were quantitative since they are known to give accurate results as 

compared to qualitative assays.  Findings showed that most Trichoderma strains solubilized varied 

amounts of phosphate.  T. koningiopsis NNC066 (187 µg/ml) solubilized the highest amount of 

phosphate while the least amount was obtained with Trichoderma sp. K4 (0.83 µg/ml), a commercial 

strain.  Other Trichoderma strains that were able to solubilize phosphate were T. gamsii NN42 (104.60 

µg/ml), T. koningiopsis NNC113 (154.60 µg/ml), and T. koningiopsis NN266 (132.50 µg/ml) from the 

T. viride clade.  All Trichoderma species that were used in the study were unable to produce IAA in the 

absence of L-tryptophan.  However, all strains produced IAA when tryptophan was supplemented.  T. 

gamsii NNC019 produced the highest amount of IAA (41.90 µg/ml), and Trichoderma sp. K1 produced 

the lowest amount of IAA (0.30 µg/ml).  Other Trichoderma strains that produced high amounts of IAA 

were T. paratroviride NN275 (28.50 µg/ml), T. paratroviride NN207 (33.70 µg/ml), T. gamsii NNC037 

(29.00 µg/ml), and T. koningiopsis NNC113 (21.40 µg/ml) from the T. viride clade.  The solubilization 

of phosphate and production of IAA appeared to be strain specific.  These strains can be further evaluated 

for their performances in green house or field trials to observe their ability to enhance crop growth.  This 

enlarges the pool of locally isolated strains for incorporation into biological products aimed at the local 

market. 
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Introduction 

Metabolic factors including phosphate solubilization and auxin production, are known to be responsible 

for the growth regulation in different plants (Altomare et al., 1999; Kotasthane et al., 2015; Saber et al., 

2017; Sanchez-Montesinos et al., 2020).  Organic phosphate and auxins are also commonly known for 

their abilities to enhance the growth in various crops (Zahir et al., 2010; Saravanakumar et al., 2013; 

Naveed et al., 2015; Kotasthane et al., 2015; Bader et al., 2020).  Regardless of these metabolic factors 

being known to promote plant growth, other studies showed that some of the Trichoderma strains were 

not able to improve plant growth even though they exhibit some metabolic factors that are essential for 

plant growth development (Hoyos-Carvajal et al., 2009; Kotasthane et al., 2015).  However, to date these 

metabolic factors (phosphate solubilization, and auxin production) are primary parameters to be 

evaluated prior to their application as bio-stimulants to improve plant growth. 

Phosphorus (phosphate) is one of the essential nutrients that is required for plant growth (Grant et al., 

2001; Richardson, 2001; Kapri and Tewari, 2010; Saravanakumar et al., 2013).  Soil may contain high 

amounts of phosphate although a large portion of it is in the insoluble form such as Ca3(PO4)2, FePO4 or 

AlPO4, and cannot be absorbed by the plants (Grant et al., 2001; Kapri & Tewari, 2010; Kudoyarova et 

al., 2017).  Microorganisms are able to make phosphate available to plants by solubilizing it via the 

production of organic acids and phosphatases (Dechassa & Schenk, 2004; Tandon et al., 2020). 

Organic acids can be produced by microorganisms and plants (Richardson, 2001; Tandon et al., 2020).  

Usually organic acids serve as anions during the process of displacing phosphate (ligand exchange 

reactions) (Raghothama and Karthikeyan, 2005; Tandon et al., 2020).  Organic acids that consist of more 

hydroxyl groups such as citric acid tend to exhibit better efficiency in phosphate mobilization compared 

to those containing less hydroxyl groups such as lactic, and acetic acids (Raghothama and Karthikeyan, 

2005; Alori et al., 2017).  In addition, production of organic acids may result in the reduction of pH in a 

solution (Saravanakumar et al., 2013; Zuniga-Silgado et al., 2020). 

Indole acetic acid (IAA) is a type of auxin which it is a plant hormone that plays a significant role in the 

plant growth (Saber et al., 2017; Mehmood et al., 2018; Bader et al., 2020).  IAA has been known to be 

produced by plants through a mechanism that involves gravity and light (Rashotte et al., 2000; Buer and 

Muday, 2004).  Microorganisms can also produce IAA since it is needed by plants at their certain stage 

of development (Gravel et al., 2007; Hussein and Joo, 2015; Herrera-Jaminez et al., 2018; Bader et al., 

2020; Mendes et al., 2020).  Moreover, microorganisms can synthesize IAA to alter physiological 

precesses of the host for various purposes (Waqas et al., 2012; Mohite, 2013).  For instances, it was 
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reported that the process of nodule formation could also be the results of IAA produced by 

microorganisms (Badenochjones et al., 1984; Basu and Ghosh, 1998; Theunis et al., 2004; Ghosh and 

Basu, 2006).  Therefore, this can suggest that IAA serves as a molecule that keep the interaction between 

plants and microorganisms.  Furthermore, its potential in the improvement of plant growth have been 

widely reported (Patten and Glick, 2002; Gravel et al., 2007; Hussein and Joo, 2015; Saber et al., 2017; 

Bader et al., 2020; Mendes et al., 2020). 

Various microorganisms including Trichoderma spp. can be either L-tryptophan dependent or 

independent, and sometimes can produce IAA in both presence and absence of L-tryptophan (Sarwar et 

al., 1992; Naveed et al., 2015; Palacios et al., 2016; Saber et al., 2017).  L-Tryptophan is a precursor of 

IAA; therefore, the presence of tryptophan could potentially result in the production of IAA (Davies, 

2004; Khalid et al., 2006; Naveed et al., 2015).  Previous studies indicated that amendments of L-

tryptophan helped the microorganisms to produce higher amounts of IAA and ultimately improved the 

plant growth (Zahir et al., 2010; Naveed et al., 2015; Saber et al., 2017).  There are limited studies that 

evaluated the phosphate solubilization and IAA production on locally isolated Trichoderma strains.  As 

a result, this study sought to assess the potential of selected Trichoderma strains isolated from South 

African agricultural soil to solubilize phosphate and produce indole acetic acid. 
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Materials and methods 

 

Solubilization of phosphate 

The modified method by Saravanakumar et al. (2013) was used with National Botanical Research 

Institute’s Phosphate (NBRIP) broth medium (g/l) (glucose 10g, tricalcium phosphate 5g, Magnesium 

chloride 5g, Magnesium sulphate 0.25g, Potassium chloride 0.2g, Ammonium sulphate 0.1g).  The 250 

ml Erlenmeyer flasks containing 100 ml of broth was inoculated with 4 agar discs (5 mm diameter) of 

active growing cultures of Trichoderma strains.  Flasks were incubated at 26 ℃ in a shaker at 121 rpm 

for 7 days.  The samples were then centrifuged at 5000 rpm for 10 minutes and 750 µl supernatant was 

mixed with 750 µl colour reagent containing ammonium molybdate 1.5 % (w/v); sulphuric acid solution 

5.5 % (v/v) and ferrous sulphate solution 2.7 % (w/v).  Experiments were done in triplicate for each strain 

and the absorbance was determined using a spectrophotometer at 595 nm (BioRad iMark Microplate 

Reader, Lasec).  The concentration of phosphate was determined by using a standard graph of K2HPO4 

(SAARCHEM, SA) and expressed in µg/ml. 

 

Screening of indole acetic acid (IAA) 

An indole acetic acid assay was conducted following modified methods described in the literature (Loper 

and Scroth, 1986; Brick et al., 1991; Patten and Glick, 2002).  Trichoderma strains were grown in Czapek 

broth (g/l) (containing sucrose 30g, sodium nitrate 3g, dipotassium phosphate 1g, magnesium sulphate 

0.5g, potassium chloride 0.5g, and ferrous sulphate 0.01g) with and without L-tryptophan (1%) (Sigma- 

Aldrich, USA).  The 250 ml Erlenmeyer flasks containing 100 ml of broth was inoculated with 4 agar 

discs (5 mm diameter) of actively growing Trichoderma strains and incubated on a shaker at 26℃ at 121 

rpm for 7 days (Qiang et al., 2019).  After incubation, the culture was centrifuged for 30 min at 3000 

rpm.  The supernatant (1ml) was collected into test tubes and 2 – 3 drops of ortho-phosphoric acid and 2 

ml of Salkowski’s reagent was added and incubated at 26℃ for 30 min in a dark room.  Development of 

pink or red colour from the mixture indicated the production of IAA.  Samples were pipetted on a sterile 

flat bottom 96-well microliter plate, and absorbance was measured at 540 nm using a spectrophotometer. 

The concentration of IAA was calculated using an Indole-3-acetic acid (Merck) standard curve (10 -100 

µg/ml).  The IAA produced by each strain was measured in triplicate. 
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Statistical Analysis 

For all data, mean and standard deviation values were determined.  Data were subjected to one-way 

analysis of variance (ANOVA) using GeneStat (12th edition) and GraphPad Prism 9 (Available from: 

https://www.graphpad.com/scientific-software/prism/) to determine whether the means differences are 

significant or not, where a significance level of p< 0.05 was used.  All means values were compared to 

each other using multiple comparison test (Tukey’s method), this was done after confirming that the 

means difference is significant.  GraphPad Prism was used to construct the graphs. 
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Table 4. 1.  Trichoderma strains used for screening of phosphate and indole acetic acid (IAA) 

Trichoderma species Strain number Strain source 

T. afroharzianum NN32 Maize soil 

T. asperellum NN209 Maize soil 

T. asperellum NN198 Maize soil 

T. asperellum NN194 Maize soil 

T. atroviride N/A Commercial strain 

T. gamsii NNC019 Wheat soil 

T. gamsii NNC037 Wheat soil 

T. gamsii NNC106 Wheat soil 

T. gamsii NN311 Maize soil 

T. gamsii NN42 Maize soil 

T. hamatum NN13 Maize soil 

T. hamatum NN150 Maize soil 

T. koningiopsis NN312 Maize soil 

T. koningiopsis NN244 Maize soil 

T. koningiopsis NN266 Maize soil 

T. koningiopsis NNC081 Wheat soil 

T. koningiopsis NNC113 Wheat soil 

T. koningiopsis NNC066 Wheat soil 

T. neokoningii NN191 Maize soil 

T. paratroviride NN207 Maize soil 

T. paratroviride NN275 Maize soil 

T. peberdyi NN308 Maize soil 

T. peberdyi NN130 Maize soil 

T. rifaii NN318 Maize soil 

T. rifaii NN112 Maize soil 

T. rifaii NNC105 Wheat soil 

T. saturnisporum NNC001 Wheat soil 

T. saturnisporum NNC107 Wheat soil 

T. spirale NN322 Maize soil 

T. spirale NN321 Maize soil 

T. spirale NN100 Maize soil 

T. spirale NNC111 Wheat soil 

T. velutinum NN263 Maize soil 

T. velutinum NNC018 Wheat soil 

T. velutinum NNC116 Wheat soil 

T. virens NNC012 Wheat soil 

T. virens NNC109 Wheat soil 

Trichoderma sp. K1 Commercial strain 

Trichoderma sp. K2 Commercial strain 

Trichoderma sp. K3 Commercial strain 

Trichoderma sp. K4 Commercial strain 

*T. atroviride and all other strains with “K” are used in commercial products, and the origin of the strains 

is confidential.  
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Results 

Screening of Trichoderma strains to solubilize phosphate 

Trichoderma strains varied in terms of phosphate solubilization and ranged from 0.83 µg/ml to 187.80 

µg/ml (Fig. 4.1 and Table 4.2).  T. koningiopsis NNC066 showed the highest phosphate concentration of 

187.80 µg/ml whereas Trichoderma sp. K4 solubilized the least amount of 0.83 µg/ml (Fig. 4.1 and Table 

4.2).  It was noticeable that other strains such as T. gamsii NN42, T. koningiopsis NNC113, and T. 

koningiopsis NN266 that solubilized 104.60 µg/ml, 154.60 µg/ml, and 132.50 µg/ml, respectively are 

better candidates for phosphate solubilization than the commercial strains (Fig. 4.1 and Table 4.2).  

However, four strains including T. asperellum NN198, T. hamatum NN150, T. saturnisporum NNC001 

and T. virens NNC109 were unable to solubilize phosphate (Fig. 4.1 and Table 4.2).  Of the 41 strains 

evaluated in this study only ten strains had the capacity to solubilize phosphate above 50 µg/ml (Table 

4.2). 

This study showed that the pH values of the environment have an inverse proportion compared to the 

phosphate concentration solubilized; as the pH values decrease, the concentration of phosphate 

solubilized increases (Fig. 4.2).  The pH values of the strains, T. koningiopsis NNC113, T. koningiopsis 

NNC066, T. gamsii NNC019, T. koningiopsis NN312, T. koningiopsis NN266, T. paratroviride NN275, 

T. gamsii NN311, T. gamsii NNC037, T. gamsii NN42, T. gamsii NNC106, and T. paratroviride NN207 

were recorded as 4.56, 4.36, 5.97, 4.91, 4.65, 4.92, 5.20, 5.34, 4.80, 5.00, and 5.14, respectively (Fig. 

4.2).  A decrease in pH from the initial pH of 8.90 was observed.  In strains that did not solubilize 

phosphate, the pH values remained the same or there was only a slight change (Fig. 4.2). 

 

Assessing the ability of Trichoderma strains to produce indole acetic acid (IAA) 

All the strains that were used in this study did not produce IAA in the absence of L-tryptophan. This was 

also supported by the lack of red or pink colour development when Salkowski’s reagent and supernatant 

of strain were mixed.  However, in the presence of L-tryptophan all strains produce a certain amount of 

IAA (Fig. 4.3 and Table 4.2).  The maximum amount of IAA produced was 41.90 µg/ml by T. gamsii 

NNC019 belonging to Trichoderma section, T. viride clade while the minimum amount was at 0.30 µg/ml 

by Trichoderma sp. K1 (Fig. 4.3 and Table 4.2). 
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The other nine strains were also found to produce good amount of IAA (greater or equal to 10 µg/ml) 

namely, T. spirale NNC111, T. koningiopsis NNC066, T. gamsii NNC037, T. gamsii NNC106, T. 

paratroviride NN275, T. koningiopsis NNC113, T. gamsii NN311, T. koningiopsis NNC266, and T. 

paratroviride NN207 obtained 17.40 µg/ml, 16.60 µg/ml, 29.00 µg/ml, 15.80 µg/ml, 28.50 µg/ml, 21.40 

µg/ml, 11.00 µg/ml, 12.10 µg/ml, and 33.70 µg/ml, respectively (Fig. 4.3 and Table 4.2).  Most of the 

Trichoderma strains had the significant difference when compared with the control (uninoculated media).  

Only two strains, Trichoderma sp. K1 and T. rifaii NNC105, showed to have a non-significant difference 

when compared to control as all of them have the same letter. 

 

 

 
 

Figure 4. 1.  The representation of Trichoderma strains showing their capacity to solubilize phosphate 

concentration measured in µg/ml.  Error bars represent standard deviation.  Multiple comparison test 

(Tukey’s method) was done.  Different letters indicate significant differences results where p<0.05. 
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Figure 4. 2.  The representation of NBRIP broth pH after 7 days incubation period with Trichoderma 

strains and control (uninoculated media).  pH values less than 6.0 are represented by asterisks (*). 
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Figure 4. 3.  The illustration of Trichoderma strains showing their ability to produce indole acetic acid 

(IAA) in the presence of tryptophan (1% L-TRP).  Error bars represent standard deviation.  Multiple 

comparison test (Tukey’s method) was done.  Different letters indicate significant differences results, 

p<0.05. 
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Table 4. 2.  Trichoderma strains and their potential to produce IAA and solubilize phosphate. 

Trichoderma species Strain number Phosphate 

concentration 

(µg/ml) 

IAA concentration 

(µg/ml) 

T. afroharzianum NN32 12.70 3.70 

T. asperellum NN209 2.80 4.00 

T. asperellum NN198 0.00 6.10 

T. asperellum NN194 0.97 4.80 

T. atroviride N/A 4.00 4.30 

T. gamsii NNC019 21.80 41.90 

T. gamsii NNC037 51.50 29.00 

T. gamsii NNC106 98.70 15.80 

T. gamsii NN311 82.40 11.00 

T. gamsii NN42 104.60 7.70 

T. hamatum NN13 3.40 6.90 

T. hamatum NN150 0.00 5.60 

T. koningiopsis NN312 87.50 5.20 

T. koningiopsis NN244 0.84 7.50 

T. koningiopsis NN266 132.50 12.10 

T. koningiopsis NNC081 10.61 2.50 

T. koningiopsis NNC113 154.60 21.40 

T. koningiopsis NNC066 187.80 16.60 

T. neokoningii NN191 9.00 5.30 

T. paratroviride NN207 63.70 33.70 

T. paratroviride NN275 92.90 28.50 

T. peberdyi NN308 8.10 2.40 

T. peberdyi NN130 2.50 3.30 

T. rifaii NN318 9.30 3.90 

T. rifaii NN112 7.10 3.70 

T. rifaii NNC105 11.40 0.90 

T. saturnisporum NNC001 0.00 6.90 

T. saturnisporum NNC107 4.10 5.70 

T. spirale NN322 3.50 4.10 

T. spirale NN321 3.90 5.40 

T. spirale NN100 4.20 3.40 

T. spirale NNC111 2.50 17.40 

T. velutinum NN263 3.40 3.00 

T. velutinum NNC018 3.40 3.80 

T. velutinum NNC116 6.10 3.90 

T. virens NNC012 16.20 4.30 

T. virens NNC109 0.00 4.10 

Trichoderma sp. K1 3.60 0.30 

Trichoderma sp. K2 4.60 7.00 

Trichoderma sp. K3 9.80 4.10 

Trichoderma sp. K4 0.47 2.50 
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Discussion 

Sufficient plant growth is dependent on various nutrients and minerals, and phosphate is the second most 

important nutrient for plant growth.  Phosphate is predominantly abundant in soil, however not always 

in form that can be utilized by plants (Kapri and Tewari, 2010; Kudoyarova et al., 2017).  Trichoderma 

strains are known to convert insoluble phosphate into soluble phosphate (Altomare et al., 1999; 

Saravanakumar et al., 2013; Kotasthane et al., 2015; Zuniga-Silgado et al., 2020).  This was also 

observed in the current study where most tested Trichoderma strains were able to solubilize phosphate. 

Phosphate concentrations varied among tested strains in this study with a maximum amount of phosphate 

of 187.80 µg/ml and a minimum amount of 0.83 µg/ml.  This variation has also been observed in previous 

studies (Kotasthane et al., 2015; Khoshmanzar et al., 2020; Gomez-Ramirez and Uribe-Velez, 2021).  

For instance, Saravanakumar et al. (2013) found that solubilized phosphate concentrations between 

different strains ranged from 139 µg/ml to 301 µg/ml.  In contrast, other studies found very low 

concentrations of solubilized phosphate with a maximum of 25 µg/ml (Rudresh et al., 2005; Chagas et 

al., 2016).  This suggests that the solubilization of phosphate is strain dependent as different strains from 

the same species solubilized different concentrations of phosphate. 

Strains of T. koningiopsis and T. gamsii were the best phosphate solubilizers in the current study (Fig. 

4.1 and Table 4.2).  Despite these species being commonly used as biocontrol agents (Moreno et al., 

2009), other studies also reported that T. koningiopsis (Saxena et al., 2015; Tandon et al., 2020) and T. 

gamsii (Rinu et al., 2014) have the capacity to solubilize phosphate.  Trichoderma strains that have a 

potential in solubilizing phosphate display a lowest pH than others with no phosphate activity, these 

findings agree with the results reported by Rinu et al. (2014). 

This reduction of pH plays a major part in solubilization of phosphate, which might suggest that organic 

acids are being produced in this process (Dechassa and Schenk, 2004; Tandon et al., 2020; Zuniga-

Silgado et al., 2020).  The pH values in this study were in inverse proportion to the phosphate 

concentration as pH decreases the concentration of phosphate increases.  The strains that had no, or low 

phosphate concentrations showed no or negligible changes in the pH values.  These findings are in 

agreement with Saravanakumar et al. (2013), and Zuniga-Silgado et al. (2020) as they also reported pH 

values that were inversely proportional to the amount of phosphate in the solution, which was also 

supported by the production of organic acids in these studies.  However, in the current study the 

production of organic acids was not assessed, therefore we would not conclude that the main contribution 

in the reduction of pH was because of the organic acids production. 
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Results showed that the strains that exhibit the lowest pH in the medium (lower than 6) were the best 

phosphate solubilizers.  In contrast, Altomare et al. (1999); Rudresh et al. (2005); and Chagas et al. 

(2016) found no correlation between the reduction of pH in the solubilization of phosphate.  This could 

be as a result of the inherent differences in strains. 

The production of auxins such as indole acetic acid (IAA) is one of the properties that has a significant 

role in plant growth.  Trichoderma spp. have been widely reported for their ability to produce IAA 

(Gravel et al., 2007; Naveed et al., 2015; Saber et al., 2017; Sanchez-Montesinos et al., 2020; Bader et 

al., 2020).  None of the strains used in this study produce IAA when L-tryptophan (IAA precursor) was 

absent.  This is similar to Hoyo-Carvajal et al. (2009), which also reported that no IAA was produced by 

Trichoderma strains when L-tryptophan was not supplemented in the medium.  This could be an 

indication that these strains solely rely on one pathway for IAA production.  Moreover, various studies 

showed that medium amended with L-tryptophan can increase the IAA amount (Gravel et al., 2007; 

Hoyo-Carvajal et al., 2009; Zahir et al., 2010; Saber et al., 2017; Sanchez-Montesinos et al., 2020).  

When L-tryptophan was added to the medium, all strains used in this study were able to produce IAA.  

Of the 41 strains evaluated, only T. paratroviride NN275 (28.50 µg/ml), T. koningiopsis NNC113 (21.40 

µg/ml), T. paratroviride NN207 (33.70 µg/ml), T. gamsii NNC037 (29.00 µg/ml), and T. gamsii NNC019 

(41.90 µg/ml) were categorized as the best producers of IAA. 

The results of this study are in concordance with other previous studies, for instance, some strains had 

the ability to increase the production of IAA substantially when L-tryptophan was added as a precursor 

(Gravel et al., 2007; Zahir et al., 2010; Saber et al., 2017; Sanchez-Montesinos et al., 2020).  

Furthermore, the Trichoderma species that were categorized as best IAA producers in the current study 

have been reported by other studies to produce IAA including T. koningiopsis (Saxena et al., 2015; You 

et al., 2016; Ortuno et al., 2017), and T. gamsii (Bader et al., 2020).  In contrast some studies have found 

that T. gamsii does not produce IAA (Rinu et al., 2014; Zhou et al., 2018).  It was interesting to note that 

T. paratroviride, a sister species of T. atroviride, which is well documented to produce IAA (Gravel et 

al., 2007; Salas-Marina et al., 2011; Contreras-Cornejo et al., 2014; Colla et al., 2015; Chen et al., 2021), 

were also able to produce IAA.  This is the first report that shows T. paratroviride able to produce IAA. 
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The majority of Trichoderma strains evaluated in this study showed significant differences when 

compared to control (uninoculated medium) in terms of IAA production.  Only two strains, Trichoderma 

sp. K1 and Trichoderma sp. NNC105, were not significant compared to the control.  The IAA production 

ranged from 0.30 to 41.90 µg/ml.  Kotasthane et al. (2015) and Bader et al. (2020) also obtained similar 

values as they reported between 1.08 to 30.80 µg/ml and 7.19 to 21.40 µg/ml, respectively in their studies. 

 

Conclusion 

Trichoderma strains that have the capacity to produce indole acetic acid and solubilize phosphate could 

be potentially useful for improving plant growth (Rudresh et al., 2005; Saravanakumar et al., 2013; 

Chagas et al., 2016; Khoshmanzar et al., 2020).  All Trichoderma strains evaluated were L-tryptophan 

dependent when comes to producing indole acetic acid (IAA).  Not all Trichoderma strains were able to 

solubilize phosphate, as four strains were tested negative for phosphate solubilization.  All of the 

Trichoderma strains that were better at solubilizing phosphate and producing IAA belonged to the T. 

viride clade.  Therefore, further studies are required to evaluate the strains for optimal IAA production 

and phosphate solubilization under greenhouse and field conditions for their potential to increase growth 

of various crops.  These strains will increase the pool of potential biological agents to be included in 

biofertilizers aimed at the local market. 
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Conclusion and Recommendation for future research  

Trichoderma species have been found to have a variety of beneficial properties.  Trichoderma spp. are 

known for their ability to promote plant growth and development as well as to reduce pathogens.  Other 

positive functions of this genus have also been discovered, including the production of enzymes and 

antibiotic compounds.  The main aim of this study was to isolate and identify naturally occurring 

Trichoderma spp. from wheat and maize agricultural soil using taxonomic and molecular methods. 

Trichoderma is one of the least studied, but most used fungal groups in South Africa.  Most research 

from South Africa seem to be more concerned with bioprospecting of this genus than with understanding 

its diversity.  The knowledge of Trichoderma spp. diversity in South Africa is needed because of its 

ecological importance.  To date 28 Trichoderma species have been reported from South Africa.  As a 

result of this research, we now have increased this to 33 species known from South Africa. 

A total number of 91 strains from wheat rhizosphere soil were isolated and resolved in seven species 

which were assigned to T. gamsii, T. velutinum, T. saturnisporum, T. virens, T. spirale, T. koningiopsis, 

and Trichoderma sp. NNC105.  Some species have been reported before, while T. velutinum was the first 

report for South Africa.  Different agricultural practices also yielded different results as monoculture and 

crop rotation isolated 4 and 7 species, respectively.  However, when evaluating Trichoderma species in 

terms of treatments it showed that both wheat after wheat (monoculture) and wheat after canola (crop 

rotation) resulted in the same number of Trichoderma species (4), whereas wheat after medic (crop 

rotation) produced the highest number of Trichoderma species (6) than the other two treatments.  

Moreover, T. gamsii and T. saturnisporum species were isolated in all treatments.  These two species are 

widely distributed in nature, and in addition T. gamsii was the most abundant species isolated in wheat 

soil. 

In maize soil a total of 337 strains were isolated and resulted in the classification of 11 species which 

were assigned to T. koningiopsis, T. gamsii, T. velutinum, T. rifaii, T. hamatum, T. spirale, T. peberdyi, 

T. asperrelum, T. hamatum, T. paratroviride and T. neokoningii.  In terms of agricultural practices, crop 

rotation isolated 11 Trichoderma spp. and monoculture practice isolated 7 Trichoderma spp.  Five 

Trichoderma species were reported for the first time in South Africa namely T. velutinum, T. rifaii, T. 

peberdyi, T. paratroviride, and T. neokoningii.  The most dominant species under monoculture was T. 

hamatum, whereas in crop rotation it was T. gamsii.  Overall, T. gamsii was the most abundant species 

isolated in maize soil. 
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Trichoderma species isolated from wheat and maize soil varied, although T. spirale, T. velutinum, T. 

gamsii, and T. koningiopsis were isolated in both crops.  This study also indicated that T. gamsii was 

most abundant species in both crops.  These findings were not surprising since T. gamsii is commonly 

known to be cosmopolitan.  The differences in Trichoderma distribution in both crops could be due to 

the different treatments that were used on the farms.  In addition, parameters such as soil type, soil pH, 

geographical locations, and climate are other contributing factors that one should also consider.  

Furthermore, the distribution of Trichoderma spp. in three provinces varied because KZN, FS, and WC 

isolated 11, 8, and 7 species respectively.  This could be due to different factors such as soil types, 

farming practice, and sampling procedures. 

The secondary objective of this study was to screen the ability to solubilize phosphate of selected strains.  

Plants require nutrients such as nitrogen (N), phosphorus (P), and potassium (K) for their optimum 

growth.  Phosphate (phosphorus) is one of the second most important nutrient after nitrogen that is needed 

by plants.  However, soil is known to have an abundance of phosphorus which is in the form of rock 

phosphate under alkaline environments and ferric or aluminum phosphate under acidic environments.  

Plants are unable to access this phosphate in the soil because it is insoluble.  Therefore, in this study we 

screened for phosphate solubilization potential from Trichoderma strains isolated on maize and wheat 

soil.  Findings shows that T. koningiopsis NNC066 solubilized the highest amount of phosphate (187.80 

µg/ml). 

The last objective of this study was to determine if selected Trichoderma species have the capacity to 

produce indole acetic acid (IAA).  IAA is a plant hormone that is required by plants for their root 

development.  Plants produce IAA, although it is insufficient for the plant’s optimal growth and 

development.  It has been reported that exogenous IAA is helpful in some developmental stages of plants.  

No strains produce IAA in the absence of L-tryptophan.  However, all Trichoderma strains were able to 

produce IAA in the presence of L-tryptophan.  The strain that produced highest IAA was T. gamsii 

NNC019 (41.90 µg/ml). 

Trichoderma strains that were used to screen phosphate solubilization and production of IAA were 

presented by various Trichoderma species namely, T. spirale, T. virens, T. gamsii, T. asperellum, T. 

hamatum, T. koningiopsis, T. paratroviride, T. saturnisporum, T. neokoningii, T. afroharzianum, T. 

velutinum, T. peberdyi, and T. rifaii.  This study found that most of Trichoderma strains identified as the 

best phosphate solubilizers and IAA producers belonged to T. viride clade.  However, these functions 

were shown to be strain specific most of the time. 
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Trichoderma species is still not thoroughly explored in South Africa, therefore additional research is 

required to gain a better understanding of Trichoderma diversity in South Africa.  Moreover, 

Trichoderma spp. that were isolated in this study will add to the pool of Trichoderma spp. that could be 

used in agriculture as bio-stimulants or biological control agents since they have been accustomed to the 

South African environments.  Trichoderma strains that showed ability to solubilize phosphate and 

produce IAA under in vitro assays can be further evaluated for their potential to enhance crop 

development under green house or field conditions. 
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