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Abstract 

During the 2009 financial year the sawlog production from plantations in South Africa 

amounted to 4.4 million m3 and sawn timber of R4.2 billion was produced from these logs.  

At the current average price for structural timber, a 1% increase in volume recovery at a 

medium-sized South African sawmill with an annual log intake of 100 000m3 will result in 

additional profit of about R2.2 million annually. 

The purpose of this project was to evaluate the potential of increasing in value recovery at 

sawmills through optimization of the positioning of a log at the primary workstation by 

considering the internal knot properties. Although not yet commercially available, a high 

speed industrial log CT scanner is currently in development and will enable the evaluation of 

the internal characteristics of a log before processing.  

The external profiles and the internal knot properties of ten pine logs were measured and the 

whole log shape was digitally reconstructed.  By using the sawmill simulation program 

Simsaw, explicit enumeration was performed to gather data.  This data include the monetary 

value that can be earned from sawing the log in a specific log position. For every log a total 

of 808 020 sawing positions were evaluated. 

In the sawmill production environment only a few seconds are available to make a decision 

on the positioning of each log. Meta-heuristic optimization algorithms were developed in 

order to come to a near optimal solution in a much shorter time than that required when 

simulating all possible log positions.  The algorithms used in this study include the Genetic 

algorithm, Simulated Annealing, Population Based Incremental Learning and the Cross-

Entropy method. An Alternative algorithm was also developed to incorporate the trends 

identified through analysis of the sawmill simulation results. 

The effectiveness of these meta-heuristic algorithms were evaluated using the sawmill 

simulation data created. Analysis of the simulation data showed that a maximum increase in 

product value of 8.23% was possible when internal knot data was considered compared to 

using conventional log positioning rules. When only external shape was considered a 

maximum increase in product value of 5% was possible compared to using conventional log 

positioning rules.  The efficiency of the meta-heuristic algorithms differed depending on the 

processing time available. As an example the Genetic algorithm increased the mean product 

value by 6.43% after 200 iterations. Finally, a method to evaluate the investment decision to 

purchase an internal scanning and log positioning system is illustrated. 
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Opsomming 

Gedurende die 2009 finansiële jaar is daar 4.4 miljoen m3 rondehout op plantasies in Suid 

Afrika geproduseer en saaghout ter waarde van R4.2 biljoen is hieruit vervaardig.  Met die 

huidige gemiddelde prys vir strukturele hout, kan ‘n 1% verhoging in volumeherwinning by ‘n 

gemiddelde grootte saagmeul in Suid Afrika met ‘n jaarlikse rondehout inname van 100 000 

m3 ‘n bykomende wins van R2.2 miljoen lewer.  

Die doel van hierdie projek was om die potensiële verhoging in waardeherwinning by ‘n 

saagmeul te evalueer, indien die posisionering van ‘n stomp by die primêre werkstasie 

geoptimeer word deur interne kwas eienskappe in ag te neem.  Kommersiële CT-

skandeerders word tans nog nie hiervoor aangewend nie, maar ontwikkelinge in tegnologie 

sal dit moontlik binnekort prakties moontlik maak om die interne karakteristieke van ‘n stomp 

te evalueer voor prosessering. 

Die eksterne profiel en interne kwas eienskappe van tien Pinus rondehout stompe is gemeet 

en die al tien stompe is digitaal geherkonstrueer.  Met behulp van die 

saagmeulsimulasieprogram, Simsaw, is 808 020 verskillende saagsimulasielopies uitgevoer. 

Elk van hierdie simulasielopies het ‘n ander beginposisie gehad in terme van rotasie, 

skeefheid en horisontale verskuiwing.  Die finansiële waarde wat verdien kan word deur ‘n 

stomp in ‘n sekere posisie te saag is telkens bepaal. 

In die saagmeulomgewing is daar slegs ‘n paar sekondes beskikbaar om ‘n besluit te maak 

oor hoe ‘n stomp geposisioneer moet word.  Meta-heuristiese optimisering algoritmes is 

ontwikkel om ‘n naby optimale oplossing te bepaal in ‘n baie korter tyd as wanneer alle 

saagposisies geëvalueer word.  Vyf verskillende meta-heuristiese algoritmes is teen mekaar 

opgeweeg. Vier van hierdie algoritmes is bestaande heuristieke wat vir verskeie ander 

optimeringsprobleme ingespan word. Die vyfde algoritme is spesifiek vir doeleindes van 

hierdie projek ontwikkel om die neigings wat tydens die data-analise van die 

saagmeulsimulasie geïdentifiseer is, te inkorporeer. 

Die effektiwiteit van hierdie meta-heuristiese algoritmes is bepaal deur van die saagmeul 

simulasiedata wat gegenereer is gebruik te maak.  Analise van die simulasiedata toon dat ‘n 

maksimum toename in produk waarde van 8% moontlik is wanneer interne kwaseienskappe 

ook geïnkorporeer word tydens besluitneming teenoor die konvensionele 

stompposisioneringreëls.  Wanneer slegs die eksterne stompprofiel in ag geneem word, is ‘n 

maksimum produkwaardeverhoging van tot 5% moontlik teenoor resultate wat verkry word 

met konvensionele stompposisioneringsreëls.   

http://scholar.sun.ac.za



 
 

5 

Die effektiwiteit van die meta-heuristiese algoritmes word beïnnvloed deur die hoeveelheid 

tyd beskikbaar vir besluitneming.  Met die Genetiese algoritme, kan die gemiddelde produk 

waarde byvoorbeeld met 6% verhoog word na 200 iterasies.  Ten einde is ‘n metode om die 

beleggings besluit in ‘n interne skandering en stomp positionering stelsel geilustreer. 

.
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1 Introduction 

Forestry plantations cover about 1.3 million ha of South Africa’s land surface.  Of the total 

plantation area, 51% is covered with softwood trees.  Of the total log harvest, 34% of the 

volume is processed in sawmills.  The production from these plantations in the 2009 financial 

year amounted to 4.4 million m3 of sawlogs.  The value of sales of sawn timber from these 

logs amounted to R4.2 billion (Forestry Economics Services, 2009) 

This study investigated the optimization of the log breakdown process and specifically the 

positioning of a log in front of the primary breakdown saw when the internal knot 

characteristics were known. Meta-heuristic techniques were evaluated for their efficiency in 

reaching optimal or close-to-optimal solutions in a limited number of iterations.    

A small increase in the volume (total volume of lumber sawn from a log) or value (total 

monetary value of lumber sawn from a log) recovery of a sawmill can have a significant 

impact on the profitability of the operation. At the current average price for structural timber, 

as listed by  Crickmay and Associates (2010) a 1% increase in volume recovery at a 

medium-sized South African sawmill with an annual log intake of 100 000m3 will result in 

additional profit of about R2.2 million annually.  

To produce timber from logs in a sawmill, complex actions need to be performed at a 

number of working stations. The timber production process is shown diagrammatically in 

Figure 1. This project focuses on the primary breakdown station, also known as the headrig. 

Apart from the economic advantage that can be achieved by increasing the volume and 

value recovery from a log, it also has a positive impact on the environment.  If more timber is 

recovered from all harvested logs, it means fewer trees have to be cut down to produce the 

same amount of timber. 
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Figure 1: The log breakdown process  

1.1 Problem statement 

 

One of the most important decisions during the log breakdown process is at the primary 

breakdown station. The positioning of the log at this stage largely determines the potential 

value that can be recovered from that log. Subsequent operations cannot correct poor 

positioning decisions at the primary breakdown saw. 

Most features that affect the quality of timber are distributed irregularly across the log. In 

South Africa the knot properties of timber largely determine the grade and price of a board. 

When in the log form, the operator cannot see or even predict where knots might be, as 

most sawlog trees in South Africa are pruned. The position of the log during primary 

breakdown determines where knots will be situated in boards and influences the quality and 

the volume of the timber produced.  Both the volume and the quality of the timber produced 

significantly influence the value earned from the timber (Rinnhofer, 2003). 

To make the best decision on how to break down the log, the operator of the machine, firstly, 

has to know what the defects are inside the log and, secondly, decide which position will 

yield the optimum utilization (Wessels, 2006).  Currently, at most sawmills in South Africa the 

operator can neither see the defects inside of the log, nor does he have the decision support 

to decide on the best position. Logs are positioned solely based on external features like the 

curvature (sweep) and taper.  The only way to control the position of the knots in the lumber 

is to internally scan logs before they are sawn.  Internal x-ray log scanners that providing 2-

dimensional scans of logs have been commercialised in the last decade and are used to 

grade logs according to their internal features. Such scanners are not suitable for positioning 

logs at a saw. The first commercial log CT scanner is currently being built and will be 

implemented in 2011 in Chile.  (pers. comm. Martin Bacher, Microtec, 2010). Such a scanner 

provides a detailed 3-dimensional internal image of the log. This specific scanner will be 
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used to assist with bucking decisions of logs but might be used in future for log positioning 

optimization. 

   

Purpose and objectives 

The purpose of this project was to evaluate the optimization of the log breakdown process at 

the primary workstation by considering the internal knot properties and to develop an 

optimization algorithm to find the optimal or near-optimal log position. To accomplish this, the 

following objectives were set: 

• Evaluate the effectiveness of log breakdown when internal knot properties are 

known, compared to the effectiveness if only external characteristics are known. 

• Develop meta-heuristic algorithms to arrive at a set of position parameters that would 

result in a near-optimum log value recovery after breakdown. 

• Validate the effectiveness of these meta-heuristic algorithms through experimentation 

involving actual knot property data from real logs.  

• Aid in the selection of such an algorithm.  

• Evaluate the economic feasibility of log breakdown through internal scanning.  

 

1.2 Hypotheses 

Knowledge of internal knot properties of logs result in more effective breakdown of a log 

compared to when only external log properties are known. 

A meta-heuristics method will result in an improvement in the economic feasibility from 

implementing an internal log scanning system. 

1.3 Scope  

The study considered Pinus radiata logs from a single compartment in Tookai forest in the 

Western Cape, South Africa.  Since the logs used in this study had to be sawn into small 

pieces, it could not be utilized as lumber, which limited the amount of logs that could be 

used.  The logs used were sponsored by MTO Forestry - they agreed to sponsor ten logs of 

3m each. Five logs came from the pruned section of a tree and five logs from the unpruned 

section. The logs could not be longer than 3m due to length restrictions of the lathe on which 

the external profile of the log was measured. Since the number of logs is limited and it is only 
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from a single location, the results from the study cannot necessarily be applied to other log 

resources.  

Inetrnal log images had to be constructed manually since there were no internally scanned 

log images of Pine logs from South Africa available to the author.  The only scanners 

available in South Africa to scan logs internally are the CT scanners in hospitals and at 

airports.  For practical reasons, none of these could be used to scan the logs. 

The sawing method used in this study is the cant sawing method, which is the most popular 

method in softwood sawmills in South Africa.  This method is described in more detail in 

section 2.1.   

The simulation program that was used to determine the monetary value that can be earned 

from sawing a log in a certain position in front of the headrig is called Simsaw. To create the 

whole log shape, including the internal knot information of the log, a new Simsaw version 

was programmed for purposes of this project.  The previous version, Simsaw6, did not have 

the ability to enter knot information.  An independent programmer did the programming of 

the new Simsaw version.  The author helped in the process of developing the new version, 

which included testing the version and pointing out problems with it, but did not assist in the 

programming of the new Simsaw version. 

The meta-heuristic algorithms used in the study are the Genetic Algorithm, Simulated 

Annealing, Population Based Incremental Learning (PBIL) and the Cross-Entropy method.  

An initial literature study rendered these algorithms as the most likely to result in fast and 

accurate solutions for this type of application. 

1.4 Research approach 

According to Mouton (2008) statistical modeling and computer simulation study are “aimed 

at developing and validating accurate representations (models) of the real world.  In 

statistical modeling, a specification of a model is constructed through a process of 

abstraction from what are theorized to be the process in the ‘real world’.”  For this project 

meta-heuristic methods were used to generate expected values that were compared to 

actual data. The research design map provided by Mouton (2008) was used. 

This study was aimed at developing and validating an accurate representation of the real 

world (the log breakdown process).  Specifically, for this project, meta-heuristic optimization 

methods to theorize about the most effective log breakdown algorithm were used. 

This approach is based on the model building process suggested by Winston (2004).  After 

the problem was formulated, the following steps were followed.(Winston, 2004): 
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• Collect the data 

• Develop the optimization algorithm 

• Verify the algorithm and use the algorithm for prediction 

• Present the results and conclusion of the study 

• Select a suitable alternative 

• Implement  

• Identify suitable alternative 

 

1.4.1 Collect the data 

Log digitizing 

To carry out the study, 3-dimensional internal images of South African Pinus Radiata logs 

were used.  Images from South African logs were used since differences can be detected in 

logs from other parts in the world and this research was aimed at a local audience.  As 

mentioned before, there were no scanners available in South Africa to produce such images.  

Hence, an alternative method was necessary to obtain data that would otherwise have been 

revealed through scanning technology.  This alternative is explained in section 3.2. 

Simsaw 

The Simsaw program was initially developed by the CSIR in South Africa in 1975 (Wessels 

et al, 2006).  It is a program that predicts the volume, grade and monetary value of the 

boards sawn from the log, based on specified inputs – such as sawing pattern, kerf size, 

rotation angle, etc.  In this study it was the monetary value that we wanted to optimize.  

Previous versions of Simsaw did not fulfil in the requirements needed to handle the 

simulations that needed to be done for this study.  The requirements of a new Simsaw 

version were set out, and a programmer programmed a new Simsaw version.   

As the need for more complex calculations to be done with the program grew, more versions 

of the program were written.  The program is freeware and the latest versions were 

programmed in Delphi programming software. 

Simulation scenarios 

Simsaw was used to run many simulations for one log. By changing variables such as 

rotation angle, log skewing and offset, Simsaw gave the monetary value when the log is 
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sawn under each combination of these variables.  This simulation process can also be 

referred to as explicit enumeration.  Figure 2 gives a representation of what these three 

variables mean in practice.  The algorithm which was developed to come to an optimal 

solution determines what the values must be for these three variables. 

Log rotation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Log offset Log skewing 

Figure 2: Graphical representation of the three variables investigated (rotation, offset and skewing)  

All the variables with the ranges which was considered: 

o X1 – Rotation angle  (0° < X1
 < 360°), in increments of 2°  ;  180 possibilities 

o X2 – Offset  (-100 < X2
 < 100), in increments of 3mm  ;  67 possibilities 

o X3 – Log skew  (-100 < X3
 < 100), in increments of 3mm  ;  67 possibilities 

This resulted in 808 020 possible log positions per log. 

Since the only product produced from a log that was used to calculate the monetary value 

from the log were the sawn boards, the value that we wanted to optimize will henceforth be 

referred to as the board value. 

The time it took to calculate the board value for one log position depended on the amount of 

internal information for the specific log.   

It was necessary to compare optimizing for best board value when internal log information 

was considered with optimizing volume recovery when only external log information was 
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considered.  It was not necessary to run a new simulation.  When the original simulation was 

done, Simsaw also calculated the volume recovery. 

 

1.4.2 Develop the sawing optimization algorithm 

Even if 3D images of logs were available it will take a computer with a 3 GHz processor and 

2Gb RAM between one and eight weeks, depending on the amount of internal information of 

the log, to solve all possible solutions.  In total, 808 020 log positions were solved in Simsaw 

for each log.  By proving that an improvement in board value from a log can be obtained by 

correctly positioning the log in front of the primary breakdown saw does not prove it is 

practically implementable.  The whole process of scanning the log and making a decision on 

how to position the log needs to happen within a few seconds.  In one example sawmill, on 

average 2334 logs are sawn per day, which means 14 seconds are available per log to 

come to a solution.  A meta-heuristic algorithm was developed to come to a near optimal log 

position within reasonable time.   

“Heuristics are fallible and they do not guarantee a correct solution. It is important to 

understand their limitations when applying them to different equipment and processes. Even 

though heuristics are limited, they may be of value because they offer time saving 

approximations in preliminary process design.” (Turton et al,  2003)  

For the purpose of this project, the meta-heuristic optimization algorithms were programmed 

in MATLAB. 

Section 4.2 is devoted to the development of the optimization algorithms. 

1.4.3 Verify the algorithm and use the algorithm for prediction 

Each algorithm was run for a different number of iterations (one iteration means that one 

combination of the three variables is evaluated) with different values for the constants of 

each algorithm.  The values for the constants which yielded the best results were used to do 

the final simulation run of the algorithm, which was used to compare the different algorithms 

against each other.  Section 5.3 is devoted to the validation of the meta-heuristic algorithms 

to increase the utilization of the logs. 

1.4.4 Present the results and conclusion 

The results include the optimum amount of value in Rand (South African currency) found by 

the optimization algorithms compared to the absolute maximum which can be earned from a 

log.  The absolute maximum was also compared to the traditional method of log breakdown, 

which means sawing the log in the “horns-up” position (which is when the log’s maximum 
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curvature is upright).  Based on this information, the value increase that would result from 

installing an internal log scanning and optimization system could be calculated. 

1.4.5 Select a suitable alternative 

The different algorithms were evaluated against each other based on the following criteria:  

• Speed to reach a solution 

• Consistency 

• The maximum value found by the algorithm 

 

1.5 Thesis roadmap 

The roadmap followed to execute this methodology is shown in Figure 3. 

 

Figure 3:  Thesis roadmap 

The rest of this study is structured according to this roadmap: 

• Chapter two reviews, firstly, literature on the scanning of logs, as well as previous 

studies on the optimization of the primary breakdown of logs.  Secondly, a literature 

study was conducted on the operation of the different optimization algorithms used.   

• Chapter 3 is devoted to the data gathered and used in this study. This includes the 

digitizing of the logs and the virtual sawing of the logs in all possible positions. 

• Chapter 4 describes the working of the optimization algorithms as well as why each 

algorithm works in a particular way. 
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• The analysis of the different algorithms and the interpretation thereof are described in 

chapter 5. 

There is a real need to convert logs into timber more effectively.  This study aims to improve 

the utilisation of the logs at the primary breakdown station in the log breakdown process.  

Statistical modeling and computer simulation is a suitable research methodology to do so.  
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2 Literature review 

 

Figure 4:  Thesis roadmap 

The purpose of this project was to optimize the primary breakdown of a log.  To implement 

such an optimization process in practice, (i) digital images of the log needs to be created, (ii) 

an optimization decision needs to be made, and (iii) the log needs to be positioned and 

sawn. 

This chapter is devoted to literature on: 

1.  the log breakdown process, including the sawing pattern used and the scanning of logs; 

2.  previous techniques considered regarding optimization of the primary log breakdown; and 

3.  the optimization algorithms used. 

2.1 The log breakdown process 

A few different sawing techniques are used at the primary breakdown stations of sawmills. 

The most common patterns include Cant sawing, Live sawing, Quarter sawing, Round 

sawing, Grade sawing and Radial sawing.  These sawing patterns are illustrated in Figure 5 

to Figure 9:   
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Figure 5:  Live sawing 
 

Figure 6:  Cant sawing 

 

Figure 7:  Grade sawing 

 

Figure 8:  Radial sawing 

 

Figure 9:  Quarter sawing 

 

 

2.1.1 Cant sawing method 

Most pine sawmills in South Africa use a framesaw (Figure 10) for primary breakdown of 

logs.  These framesaws make use of either the cant or the live sawing method.  Only the 

cant sawing method will be used in this study, since this is the most common sawing pattern 

used in softwood sawmills in South Africa.  A framesaw consists of a number of blades that 

are fixed in a frame that moves up and down at a high speed.  The log is pushed through the 

saw, which then produces the cant and the side boards.  The cant is the centre section 

which still has bark on both sides. The cant is then turned 90° and sawn into boards by 

another framesaw.  One disadvantage of a framesaw is the fact that the dimensions of the 

boards sawn cannot be changed during production.  To change the dimensions, a whole 

new blade setup has to be done. This takes a substantial amount of time. 
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Figure 10: An industrial framesaw 

 

2.1.2 Scanning technology 

In the past few decades much effort was put into the development of internal wood scanning 

technology. X-ray scanners producing internal 2-dimensional images of logs have been 

commercialised and are sometimes used for grading of logs (see Figure 11). These images, 

however, does not give accurate 3-dimensional data suitable for positioning of logs.  

 

Figure 11:  A 2-dimensional x-ray image of a log from a commercial log scanner (Microtec, 2011). 

X-ray computed tomography (CT) scanning technology has shown to be the most promising 

technique to successfully scan logs for 3-dimensional internal images in an industrial 

environment (Schmoldt, 2000).  CT scanners have been implemented for many years in the 

medical area, but the big challenge is to have such a scanner which can be used in industrial 

environments, where the time to scan plays an important role.  The first industrial internal CT 

log scanner will be implemented in Chile in 2011.  This scanner will only be used for log 

bucking decisions (pers. comm. Martin Bacher, Microtec, 2010).  Log bucking is the process 

of cutting a whole tree stem into logs.  Such a system will determine the optimal lengths and 
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positions of the logs sawn from the stem.  According to Microtec a system is currently being 

developed to internally scan a log and used for decision support in sawing pattern selection 

for individual logs (Giudiceandrea, 2010). 

 

Figure 12:  The CT log scanner from Microtec (Giudiceandrea, 2010) 

2.1.3 Digitizing logs with manual method 

When developing a log breakdown optimization system, the way the log is described is one 

of the most critical aspects of how accurate the solution will be.  No matter what algorithm is 

used to obtain a final solution, the further the log model is from the real shape of the log, the 

further the solution will be from the optimum (Zeng,1995). 

There are several methods for modeling a log on a computer.  According to Zeng (as cited in 

Alleckson, 1980) one can define log models as whole log, cross section, or computer array 

models. 

 “Whole log models use a mathematical equation to describe a log. Examples of this 

approach are cylinder and truncated-cone models.” (Zeng,1995) 

Zeng states that early systems mostly used such simplified log models instead of real log 

shapes (as cited in Geerts, 1984; Hallock and Lewis, 1971, 1973, 1978; Lewis, l985a, 

1985b; Tejavibulya, 1981).  The cylinder model simply used a diameter and length of a log to 

represent it as a cylinder.  The truncated cone method added a small end diameter to 

include taper and represent the log as a cone. 

Cross-section models use a number of cross sections at certain intervals along the length of 

the log to build up a 3-D representation of the log.  The surface of the log is represented by 

lines that connect each pair of intervals with each pair of cross section.  This representation 

can be seen in Figure 14.  Since each cross section is different, models such as these 

http://scholar.sun.ac.za



 
 

27 

include irregularities such as crook and sweep.  Cross-section models can be divided into 

circular, elliptical and polygonal cross-section models.  Circular cross-section models simply 

use a radius at each cross-section.  In an elliptical cross-section model the cross-sections 

are made by using the long and short axes of the cross section.  In polygonal cross-section 

modeling, the cross-section is represented by a series of points on the cross-section (Zeng, 

1995).  The polygonal cross-section method was used in this study, since it is the closest to 

the real log shape. 

 

Figure 13: A cross section of the polygonal cross-section model. (Zeng, 1995) 

   

 

Figure 14 : A log represented by the polygonal cross-section model. (Zeng, 1995) 

 

According to Zeng (1995) the best results can be expected if real shape laser scanning 

systems are used.  Because of the unavailability of such scanners during the current study, 

polygonal cross-section models had to be constructed on a manual method.  Zeng also 

mentioned that one should consider reality and complexity when choosing a log modeling 
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method.  When using a model that more accurately describes the shape of the model, the 

final solution will be more accurate, but the computing time will be longer, since more log 

information must be processed. 

Another method to construct models of logs is by mathematical reconstruction of the log 

from board flitches.  This method was used by Pinto et al (2002).  They sawed the logs into 

25mm thick flitches, which were then scanned and the information stored.  Such information 

included geometric outline of the sawing surface, the log pith line and the location, size, 

shape and quality factor of each knot.  All these measurements were stored as points in xyz 

co-ordinates. The process can be seen in Figure 15 (Pinto et al, 2002). 

 

Figure 15: Log shape and internal knots reconstruction: (a) stem cross cutting into logs; (b) scanning of 

flitches; (c) marking knots on the flitch sawing surface; (d) log and knots reconstruction in the xyz co-

ordinate system; (e) knot in the xz plane  (Pinto, 2002) 

Due to the fact that the equipment needed to make use of this method was not available, this 

method could not be used in the present study. 

According to Smith (2003) there are basically three manual log breakdown methods that do 

not require any scanning technology and that can be used for the reconstruction of logs for 

further research, each with its own advantages and disadvantages: 

• Firstly, logs can be crosscut. A disadvantage of this method is that knots can be 

situated in the middle of sawn sections since knots are parallel to the cuts.   
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• Secondly, logs can be rotary cut. A problem with this method is that the outside parts 

of the log that fall off before the log is cut to a perfect cylinder may be difficult to keep 

track of.    

• Thirdly, logs can be cut longitudinally. A disadvantage of this method is that the end 

of a knot can be anywhere within the thickness of a board.   

The rotary and longitudinal cutting methods both allow the veneer or timber to be used for 

further processing so that it does not go to waste.  In line with the resources available, it was 

decided to make use of the crosscut method for this study. The method followed is described 

in section 3.2. 

2.2 Optimizing using internal and external log information 

 

Wessels (2009) did a simulation study to find the optimum or close-to-optimum sawing 

positions of small-diameter pine logs by using real external log shape information.  Three 

positioning variables were used in the study: rotation, offset and skewing.  Simulation 

scenarios were done at different increments of these variables to determine the effect of the 

increment sizes.  Wessels (2009) found that there was a higher frequency of optimal 

solutions spread close to the conventional horns-up and horns-down positions (where the 

plane of maximum log curvature is vertical). In most cases the optimal position was not 

exactly on the conventional position but close to it.  This was also investigated in the current 

study and is explained further in section 4.1.1. 

When 4056 log positions were considered, the log volume recovery increased with 2,51%, 

compared to the conventional “horns-up” position (Wessels, 2009).  He found that when only 

90 positioning combinations were used, it resulted in an average increase of volume log 

recovery of 1,87%, which is only 0,64% less than considering 4056 positions. This is 

represented graphically in Figure 16.   
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Range 1:       [345º to 15º and 165º to 195º; -5 to

                     5 mm; -10 to 10 mm] = 90 positions;

Range 2:       [330º to 30º and 150º to 210º; -10 to

                     10 mm; -15 to 15mm] = 350 positions;

Range 3:       [300º to 60º and 120º to 240º; -15 to

                     15 mm; -25 to 25 mm] = 1386 positions; 

Range 4:       [0º to 360º; -30 to 30 mm; -30 to 30 mm] =

                     4056 positions. 

Positioning annotation: [rotation; offset; skew ing]

Increments: rotation: 15º; offset: 5mm; skew ing: 5mm

 

Figure 16: The average maximum volume recoveries obtained within four positioning ranges for the 60 

sample logs (Wessels, 2009). 

In another study, Du Plessis (2010) compared four meta-heuristic search algorithms to find 

the optimal or close-to-optimal position of small diameter pine logs for primary breakdown.  

He found that it was more rewarding to exhaustively search a small space around the high 

quality positioning regions than to search for solutions in a large search space using search 

algorithms.  These results were very much affected by the sweep in the logs.   

Zeng (1995) developed a log breakdown system to find the optimal pattern using external 

and internal log information.  The system included log positioning in front of the headrig.  

Zeng made use of the programs SAW3DG and SLGRADER to simulate the cutting process 

and do timber grading.  SAW3DG uses dynamic programming algorithms to find the optimal 

log breakdown pattern.  

Zeng stated that certain operations research techniques such as linear programming, integer 

programming, dynamic programming and network techniques can be used for optimization 

during log board sawing, but only dynamic programming has been applied successfully.  If a 

log breakdown optimization problem is properly formulated, it can be defined as a dynamic 

programming problem.  A recursive equation can be established to find the optimal value 

(Zeng, 1995). 

 

 Figure 17 indicates the decision making process used by SAW3DG. The program variables 

were log rotation and skewing.  The rotation and skewing increment sizes and the skewing 

range can be entered by the user.  The program determines the total value which will be 

earned from a log under a current sawing position.  
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 Figure 17: Log breakdown procedure of SAW3DG (Zeng, 1995) 

Todoroki (1999) developed a model that integrates the primary and secondary breakdown of 

pruned Pinus radiata logs.  Internal as well as external log information was considered 

during modeling.  Todoroki developed dynamic programming formulations to determine the 

optimal cutting sequence of logs into slabs.  She found that when value is maximised instead 

of volume, an overall increase of 16% in value can be achieved. Todoroki only considered 

live-sawing cutting patterns.  

In a different study Todoroki (2001) acquired three-dimensional images of logs containing 

the external profile and internal defect information.  Sawing simulation was done with the 

Autosaw program by live sawing and changing the opening face repeatedly for each log.  

Todoroki (2001) again found that a 16% higher value yield is obtained when value rather 

than volume was optimized. In the current study the value arrived at when maximizing for 
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value is compared to the value found when maximizing for volume.  In section 5.2 the value 

determined by Todoroki (2001) is compared to the results of the current study. 

Barbour (2003) assessed Douglas-fir and Ponderosa pine logs for product potential by 

diagramming the location, size and type of knots that are visible on the outside surface of the 

log.  The Autosaw program was used to evaluate the processing options.  All the logs were 

physically sawn, dried and graded.  The log sawing were also simulated using Autosaw, 

which consistently underestimated the volume recovery by 10 to 15 percent.  A correction 

factor could have been applied to compensate for this variance.  By evaluating sawing of the 

logs in different sawing positions with the Autosaw program, it was shown that greater value 

could have been recovered from the small-diameter Douglas-fir logs.   

Since the same Autosaw version is not used in the current study, it cannot be said that the 

Simsaw software also underestimates the recovery of the log.  Because all the logs were 

sawn into pieces, the accuracy of Simsaw could not be determined.  Even if it is inaccurate, 

it will not necessarily affect the outcome of the current study, since, presumeably all logs and 

all log positions will be miscalculated with roughly the same percentage.  In the current study 

the different board values are compared with each other. 

Occeña (1997) generated three hypothetical logs (grades 1-3) which were simulation sawn 

using six established log sawing heuristics; with and without using internal log information.  

Preliminary results showed that in the absence of an optimal log breakdown procedure, but 

with just internal log information, value recovery can be improved by 8,5% for grade #1 logs.  

For lower grade logs, timber value does not change significantly.  Section 5.2 compares this 

value to the results of the current study. 

2.3 Meta-heuristic optimization algorithms 

 The large number of log position options available make the exhaustive evaluation of every 

possibility through simulation impractical. In practice only a few seconds are available to 

come to a solution, not a few days.  Thus a method had to be found to arrive at a solution in 

a much shorter time. 

Rardin (1997) stated that when an optimization model is too large for exhaustive evaluation, 

heuristic algorithms can often yield very effective results.  In many cases their optimality 

cannot be guaranteed; nor can it be determined how close they come to optimal.  Since the 

full search space was evaluated in our data, the maximum found by the heuristic algorithms 

can be evaluated by comparing it to the global optimum. 

This section shows how the algorithms implemented in this project works. 
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2.3.1 Genetic algorithm 

This section provides the necessary literature background to support the development of the 

genetic algorithm for the purpose of this project (refer to section 4.2.2). 

A genetic algorithm attempts to emulate the biological evolution process.  The algorithm 

operates on a chosen constant-size population.  When the algorithm is applied to an 

optimization problem, the following analogy can be drawn:  A population of possible 

solutions is created (initialization). The population comprises a number of individuals (the 

population size).  Each individual (referred to as a chromosome) represents a solution of the 

problem.  Similar to parents producing children, two chromosomes in the population are 

combined to produce offspring.  To produce these offspring the parents undergo steps of 

crossover and mutation.   If a newly produced chromosome is better than a chromosome in 

the current population, it replaces that chromosome and becomes part of the current 

population. In this way, the population improves over time.  The steps of the process 

described above are discussed in more detail below (Rardin, 1997) (Houck, 1995). 

Initialization 

A genetic algorithm must start with an initial population.  The initial population can either be 

created by using another algorithm or it can be generated randomly.  According to Houck et 

al. (1995) and Bekker and Groves (2001) it is most common to create the entire initial 

population randomly.  However, in section 4.2.7, for purposes of this project, the hypothesis 

is considered that a non-random initial population based on trends found in the data after 

data inspection will result in a significant increase of value. 

Selection function 

There are several ways of selecting individuals to produce offspring with.  These methods 

include: roulette wheel selection, scaling techniques, tournament, elitist models and ranking 

models (Houck et al, 1995). 

In the author’s opinion, roulette wheel selection is the best selection method, since this 

method gives individuals with higher fitness value a bigger probability to be selected to 

reproduce offspring with.  The problem with applying this method in this specific project is 

the fact that in some cases the fitness values do not differ that much between individuals.  

For instance: two individuals’ fitness value may be 370 and 366 respectively.  When the 

percentage change between these two values is calculated, it is a very small, but we want 

the first value to be chosen with a much higher probability than the second. In our problem 

the percentage change in value recovery between options might be small but the financial 

effect on the business is large. 
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When this problem is encountered, Luke (2009) recommends that one should use the 

tournament selection method. The tournament selection method simply chooses a user 

specified amount of individuals randomly, and selects the fittest solution. 

Crossover 

Crossover is a step in the genetic algorithm which combines two chromosomes (parents) to 

produce two new chromosomes (offspring).  The intention of crossover is to produce at least 

one chromosome which combines the good characteristics from each of the parents.  

Crossover occurs with a user specified probability. Should crossover not occur, the offspring 

are exact replicas of the parents (NeuroDimensions, 2002). 

There are various ways in which the crossover process can be executed, including single-

point, two point, uniform, arithmetic and heuristic crossover.  For the purpose of this project, 

the single-point crossover method is used, since this method has the lowest degree of 

randomness (Obitko, 1998). 

Single point crossover:  One random point is selected at which to cross over.  The binary 

string from the one parent up to the crossover point is used as the first part of the first 

offspring. The part just after the crossover position to the end is used as the second part of 

the second offspring (Obitko, 1998) (NeuroDimensions, 2002). 

Parent1: 1001|0101 

Parent2: 1100|1010 

Offspring1: 1001|1010 

Offspring2: 1100|0101 

Mutation 

Mutation is an operator that takes the offspring chromosomes that were created with the 

crossover operation and changes the bits of each offspring with a certain probability.  

Mutation prevents the algorithm from stagnating at a local optima.  There are two mutation 

methods that can be used with binary string chromosomes, the flip bit method and another 

method suggested by NeuroDimensions (2002). 

Flip bit:   The value of each bit in a chosen gene is inverted.  (a 0 changes to a 1, and a 1 

changes to a 0).  This method can only be used for binary genes. 

Diwekar (2008) suggested a method of changing each bit of each chromosome with a set 

probability.  This probability should be developed by means of trial and error.  
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NeuroDimensions suggests a good beginning probability is 0.01. The probability at which 

mutation should occur, should not be set too high, as this will result in the search becoming 

a primitive random search. 

Termination 

Termination is the method the algorithm uses to decide whether to go on searching for a 

better solution or to stop the search.   

The following termination methods can be used: generation number, evolution time, fitness 

threshold, fitness convergence, population convergence and gene convergence 

(NeuroDimensions, 2002).  

Generation number:  The algorithm runs for a set number of evolutions.  According to  

Houck et al (1995) this is the most common stop criteria. 

 

2.3.2 Population based incremental learning (PBIL) 

 

The PBIL algorithm was initially developed by Baluja (Bekker, 2008).  It consists of the 

following concepts:  set-up of the solution structure, probability vector, mutation, formation of 

the next generation and convergence. 

Each of these concepts is described below: 

Initialization 

The initial population of the PBIL algorithm is similar to the initial population of the genetic 

algorithm.  The initial population consists of a user specified amount of individual solutions.  

Each solution is made up of a certain number of bits.  These bits represent the different 

variables of the individual in binary format.  Thus each bit can be either a 0 or a 1. 

Probability vector 

The probability vector is a separate structure which consists of just as many bits as the 

individuals in the population.  But each bit contains a certain probability instead of a 0 or 1.  

A specific bit in the probability vector indicates the probability that the specific element in a 

solution vector contains a 1.  A low value in the digit indicates a low probability of the 

element in the solution vector containing a 1.  The probability vector is the core of the PBIL 

algorithm.  Initially each element in the probability vector contains 0.5.  With every repeat of 

the algorithm, the probability vector changes. 
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The algorithm generates an initial population.  The evaluation value of all the individual 

solutions (called solution vectors) is calculated and the solution vector with the highest 

evaluation value is selected to modify the probability vector.  This modification of the 

probability vector is done with the following formula: 

1j j j

B
P ( i ) P ( i ) ( LR ) SV ( i ) LR← × − + ×    

where  

P 
j(i) = value of the i-th cell in the probability vector in the j-th generation 

LR = learning rate (typically 0.1–0.4)  

j

B
SV (i) = value of the i-th digit in the solution vector (0 or 1) yielding the maximum 

  evaluation value (the current ‘best’) j-th generation 

Formation of the next generation   

A random number is created for each element in each solution vector of the current 

population.  If the number in the probability vector is smaller than the random number in the 

corresponding element of the solution vector, a 1 is assigned to that element of the solution 

vector. Otherwise a 0 is assigned.  This forces each element in the probability vector to 

converge to either 1 or 0.  This new generation is then used in the same manner that the 

initial generation is used. 

Termination 

The algorithm is considered as converged and is stopped when every element of the 

probability vector is either smaller than 0.05 or higher than 0.95.  When the algorithm has 

converged, all elements with a value below 0.05 are changed to 0, and all elements higher 

than 0.95 are changed to 1 (Bekker, 2008). 

2.3.3 Simulated Annealing 

The idea for a Simulated Annealing algorithm was first published by Metropolis et al. in 1953.  

The algorithm is based on the annealing process in solid materials.  When a solid is heated 

past its melting point and cooled, crystals are formed.  When the material is cooled rapidly, 

the crystals formed will contain imperfections, but when it is cooled very slowly, fewer 

imperfections are formed, making the material stronger.  The algorithm search can be seen 

as giving the atoms in the material that are trying to find the lowest form of energy enough 

time to move around and settle into place. 
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Initialization 

Unlike the Genetic Algorithm and the PBIL algorithm that work with a population of solutions 

at a certain time, the Simulated Annealing algorithm only works with one solution at a time.   

An initial solution can either be generated randomly or generated by using another heuristic.  

The initial temperature of the algorithm as well as the cooling rate is set by the user.  

New solution 

The generation of a new solution and the acceptance of a solution depend largely on the 

current temperature (Moins, 2002; Ma et al, 2010).  If the initial temperature is too low, the 

algorithm will most likely remain at a local optima.  If the initial temperature is too high, the 

algorithm will basically become a random search (Diwekar, 2008). 

Selection  

A new solution is generated and if it is a better solution, it is automatically accepted.  If the 

new solution is not better, it is accepted with probability   

where 

∆E – difference in fitness values of old and new solution 

k – Boltzmann constant 

T – Current temperature 

Termination 

The algorithm can be stopped when either one of the following criteria is met:  when the 

temperature reaches a certain user specified temperature, when a specified number of 

moves have been made, or when no significant change has been made in a certain number 

of moves (Diwekar, 2008) (Po Wong, 1995). 

 

2.3.4 The Cross-Entropy method (CE) 

The Cross-Entropy method was first introduced by Rubenstein.  The main difference 

between the Cross-Entropy method and the Simulated Annealing and Genetic algorithms is 

the fact that the Cross-Entropy method performs a global search, whereas the other two 

perform more of a local search.  The Cross-Entropy algorithm generates a sequence of 

random solutions that converge randomly to the optimal or near-optimal solution.  The 

Cross-Entropy optimization method aims to minimize the variance between solutions; when 

the variance drops below a certain point, the algorithm is stopped (De Boer, 2005). 
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Perelman and Ostfeld (2007) did a study to optimize the design of a water distribution 

system.  They set out the following steps for the Cross-Entropy algorithm: 

Initialization 

Set an iteration counter t = 0. 

Create a probability vector p0 with components p0,i (i = 1,…..,m) where p0,i is the probability 

of choosing node i at iteration zero and m is the total number of nodes.  Normally all nodes 

in the probability vector are initially set to 0.5. 

Probability vector 

By using the probability vector, N sample vectors are generated, each of size m and each 

consisting of a 0 or a 1. 

Determine the fitness value for each sample vector. 

Sort all sample vectors in decreasing order according to their fitness value. 

Select the top user specified percentage (e.g. 10%) performance vectors to update the 

probability vector. 

The probability vector is upgraded as follows: 

pt+1,i =  

Where Bti is the total number of times node i was chosen in the solution vectors selected in 

the previous step.  TBt is the total number of solution vectors selected in the previous step.  

A smoothing parameter α is used to control the rate at which the performance vector 

changes.  The performance vector is changed with the following equation:  

pt+1,i = a * pt+1,i + (1 – α)pt,i 

Termination 

Check stopping conditions:  if the standard deviation between a user specified amount of 

iterations remains unchanged, the algorithm is stopped; else return to step 3.  
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3 Gathering of study data  

 

Figure 18:  Thesis roadmap 

 

3.1 Logs used 

 

Pinus radiata logs were used for this study.  It was decided to use pine logs since 51% of the 

1.3 million ha plantations in South Africa is covered with softwood logs, of which most are 

pine trees (Godsmark, 2006). Pinus radiata is the most common specie found in the 

Southern and Western Cape areas of South Africa (Forestry Economics Services, 2009).  

The logs used for the study were harvested at Tokai plantation near Cape Town.  The logs 

were debarked with the ring debarker at Cape Sawmills in Stellenbosch before use in the 

study.  Table 1 shows the forestry history of the logs, which include the age of the trees 

when thinning (cutting down weaker trees to improve the growth of stronger trees) and 

pruning (cutting off the lower branches) were done. 

Thinning is done to increase the amount of sunlight and decrease the competition of the 

remaining trees, resulting in an increase of the growth rate. 

Pruning influences the quality of the timber produced.  If pruning is done too often, the tree 

will have too few branches, thereby decreasing the growth of the tree.  If pruning is done too 

infrequently, the timber will have too many knots.  Figure 21 on page 42 shows a knot in a 

log that has been pruned.  Differences in pruning and thinning practices are also one of the 

major determinants of the differences between Pinus radiata from South Africa and softwood 
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logs from especially the northern hemisphere.  It is important to realize that the quality of raw 

material in a study such as this might play an important role in the outcomes of the study and 

that all the results might not be applicable to other log resources.  

Table 1: History of logs 

Operation Age (years) 

Plant 0 

Thin 9 

Prune 13 

Thin 14 

Thin 19 

Fell 37 

 

3.2 Data collection technique 

Because there are no log scanners available in South Africa to scan logs internally, images 

of logs had to be constructed manually.  Different possible methods to create such images 

were discussed in section 2.1.3. 

3.2.1 External shape 

Scanners which can scan the external shape of a log are available in South Africa, but the 

ones available to us did not provide enough data points to be used in this study.  For 

instance, the scanner at Cape Sawmills in Stellenbosch only offers the coordinates of four 

points at a certain cross section of the log.  More detailed images of the logs had to be 

produced to make accurate calculations.  

To develop such images the logs were put on a lathe with a length of 3m (Figure 19).  The 

coordinates of the surface of the logs were measured using a laser distance measure 

(Figure 20).     A Bosch DLE 40 Professional laser measurement device was used.  The tool 

has a typical measuring accuracy of ±1,5 mm. 

Measurements were taken at a series of cross-sections at specific intervals along the length 

of the log and at specific rotational degrees.  A measurement was taken every 30cm along 

the length of the log, and the log was rotated 15° at a time.   
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When Simsaw (refer to section 3.2.3 for more information) uses the coordinates of the log 

shape, the area between all the coordinates entered are interpolated.  To ensure that the log 

was represented as accurately as possible, the cross-sectional measurements were 

sometimes not taken exactly at every 30cm, but moved a few centimetres to one side.  This 

was done to avoid taking a measurement on a branch stub, since this will result in wrongly 

simulating the end of the branch stub as the diameter of the log.  It was important to take 

measurements where there were big indentations in the log, else the simulation software will 

cut ‘n board where there was actually no wood. Remaining bark was removed where 

measurements were taken. 

When the measurements taken with the laser distance measurement device were subtracted 

from the constant distance of the laser to the centre rotation axis of the log it only gives the 

radius of the log at that specific point.  To create the log image in Simsaw the coordinates of 

the points had to be placed on the x and y planes.  To calculate these x-y coordinates, the 

following calculations were made: 

To calculate x coordinates: 

Xq = - (K-Lq)*(cos Θq) 

To calculate Y coordinates: 

Yq = (K-Lq)*(sin Θq) 

 

Figure 19: Lathe used to measure external shape of 
log 

Figure 20: Laser measure used 
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where 

K – Distance from laser measurement device to rotation axis 

Lq – Measurement taken with laser measurement device 

Θq – Angle from 1st measurement to measurement number q 

 

3.2.2 Internal information 

To obtain the internal information of the log, the logs had to be sawn.  The logs were cut with 

a chainsaw into approximately 5 cm thick discs.  The cuts were made from one side of the 

log, until a knot whorl was found, then a thicker disc was sawn to try and include the whole 

length of the knot in the disc.   

For Simsaw to draw the knot in the log, the following information for each knot had to be 

measured:  the rotation angle of the knot in the disc (azimuth), the angle between the log’s 

longitudinal axis and the branch’s longitudinal axis (knot or branch angle), the maximum 

diameter of the knot, the length of the knot and the dead knot length.  Figure 21 shows a 

typical cross section of a knot on which most of its properties were measured.  To expose 

the knot to measure all this information, the discs were sawn through the pith of each knot 

with a bandsaw.  All the information was measured with a ruler and a protractor. 

 

Figure 21:  Crosscut through a pruned knot which was used to measure the required properties 

http://scholar.sun.ac.za



 
 

43 

Knot shape 

In a Pinus radiata tree, branches  are usually formed in whorls and start at the pith or centre 

of the tree.  Some branches called epicormic shoots might start from the outer parts of the 

stem.  The shape of a knot can be described as conical with a bent centrelineas shown in 

Figure 21. Simsaw modelled a branch as a cone which does not take into account the slight 

bent shape of the branch. The error resulting from this simplification, however, will be very 

small since it has a small effect on the largest value determinant which is the knot size.  

Usually, boards without knots or with the least possible number of knots are preferred and 

result in higher value boards, though in some cases knots are used for artistic effect.  In pine 

timber, boards are normally sawn to produce boards with the least possible number of knots, 

since clear timber earns a higher price.  In a longitudinally sawn board, a knot will appear as 

a circular solid piece of wood around which the grain of the rest of the wood “flows”.   Knots 

affect the mechanical properties of timber for the worse and roughly 70% of South African 

sawn timber are used as structural timber (Crickmay and Associates, 2010). 

Defects not considered in study 

While gathering the internal information of the logs, a few defects were discovered that 

cannot be modelled by Simsaw.  Such defects include resin canals and resin pockets. 

3.2.3 Simsaw 

Simsaw is a simulation software package that virtually saws wood logs to calculate certain 

outputs such as volume recovery, board sizes, board grades and value (Rand) for all boards 

in one log.  All the log shape information gathered, including internal and external 

information, was entered into Simsaw to create 3D images of the logs.  Such a log image 

can be seen in Figure 22. 
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Figure 22: 3D image of reconstructed log as recreated in Simsaw 

One disadvantage of this simulation method is the fact that it cannot be verified how 

accurately the virtual sawing of the logs represent the physical sawing of the logs (all the 

logs were destructively evaluated).  Since we only compare our results for volume recovery 

and value yield with each other, however, it does not matter, as both will be under or over 

estimated with the same percentage if there are inaccuracies.  It also does not make a 

difference with the optimization algorithms, since they work with the same generated data. 

Just like all machines and processes are physically set up in a sawmill, various settings can 

be entered into Simsaw.  All the settings entered are given below:   

Product definitions 

Both the wet and dry dimensions of board dimensions must be specified.  The wet values 

are the dimensions of the board directly after it is sawn.  But all boards must be dried, and 

because of the moisture loss during the drying process the boards shrink.  The dry value is 

more or less 95% of the wet value.  In the wood industry, boards may only be of a certain 

thickness or width.  The following dry board dimensions were entered into Simsaw as 

allowable sizes: 

Widths: 76, 114, 156 and 228 cm 

Thickness: 25 and 38 cm 
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Board grades 

In practice each board in a sawmill is graded according to strict criteria set out by the SABS.  

Each board grade has a different price per m3.  The prices for all board grades and sizes are 

listed in Table 16 of Appendix A. Simsaw uses the same criteria as contained in SANS 1783 

parts 1-4 to grade boards according to knots. 

Grades:  Packaging(25), XXX 38), Utility(25), S5(38), S7(38) and Clear(25 & 38).  (The 

number in brackets indicates the allowable thickness for that board grade) 

Table 2 contains the maximum allowable knot ratio per cross section for each board grade.  

The knot size is measured as the distance that the knot extends across the width of the face 

side, back or edge of the board.   

Table 2: Maximum allowable knot ratio as a percentage of the face or edge of a board according to SANS 

1783 parts 1-4 

 Maximum % knot  

 Worst single 

face 

Combined 

faces 

Worst edge Combined 

edges 

All surfaces 

Packaging ∞ ∞ ∞ ∞ ∞ 

XXX ∞ ∞ ∞ ∞ ∞ 

Utility 67 ∞ 100 150 83 

S5 67 ∞ ∞ 125 112 

S7 50 ∞ ∞ 75 58 

Clear 0 0 0 0 0 

 

The ∞ sign indicates that there is no limit for that board grade under that condition. 

The “All surfaces” grading criteria for the boards in SANS 1783 are given in the form “width 

of face + 1 ½ the width of edge”.  Since a board can consist of a few combinations of 

dimensions, it is not that straight forward to determine the percentage of knot at a certain 

cross section. The formulas below show how these percentages are calculated.  
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W – Width of board 

T – Thickness of board 

The value rendered will differ for every different dimension of the board, but Simsaw only 

allows for one value for the grading criteria.  So these percentage values were calculated for 

each possible dimension of the board, and the average taken as the criteria.  This is only the 

case for the Utility, S5 and S7 grades. Table 3 shows the highest and lowest values for the 

different board dimensions, and the average used. 

Table 3: Values used for "All surfaces" grading of boards 

Board grade Highest value Lowest value Average used 

Utility 90 38 83 

S5 118 108 112 

S7 64 50 58 

 

Machine settings 

All settings that can physically be implemented in a sawmill can be set in Simsaw.  The 

settings were set up as follows: 

Primary breakdown: 

Kerf size: 4mm 

Secondary breakdown: 

Kerf size: 4mm 

Cant guiding (“Round the curve”): Half taper 

Edging/X-Cut/Resaw: 

Edging for maximum: Volume 

Number of edging blades: 2 

Edger kerf: 5mm 
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Sawing pattern 

All the logs were sawn with the cant sawing method, as described in section 2.1.  The 

pattern used and the size of the boards during simulation sawing of logs are shown in Figure 

23. 

 

 

Figure 23: Sawing pattern used for Simulation sawing 

 

3.3 Explicit enumeration 

With all the log shape information and the sawing settings in place, the logs could be 

simulation-sawn.  Each log were sawn in 808 020 different positions.  The simulation-sawing 

log positioning information can be seen in section 1.4.1.  This process of generating data by 

simulation-sawing the logs can also be called explicit enumeration. 

Table 4 shows the time it took Simsaw to simulation-saw each log. 
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Table 4:  Time it took Simsaw to do simulation sawing 

Log Time per position (s) Total simulation time (days) 

1 0.77 7.2 

2 1.5 14 

3 1.26 11.8 

4 1.3 12.2 

5 3.3 30.9 

6 5.86 54.8 

7 2.15 20.1 

8 5.22 48.8 

9 3.23 30.2 

10 0.8 7.5 

 

An example of the outputs of the simulation sawn logs can be seen in Table 15 in Appendix 

A.  The aim was to optimize Board value.  The volume recovery results were used to 

evaluate the difference for optimizing for optimal volume recovery versus optimizing for best 

value recovery. 

The explicit enumeration data was used by the optimization algorithms.  Each time the 

algorithm reads a board value from the file, it is as if Simsaw has to simulation-saw that 

specific log position.  Explicit enumeration was done since the current Simsaw version does 

not have the ability to communicate directly with programming software like MATLAB.  The 

whole Excel file with all explicit enumeration data is read into an array in MATLAB.  The 

process through which the optimization programs in MATLAB read from the array is 

illustrated in Figure 24. 

http://scholar.sun.ac.za



 
 

49 

Row ID Rotation Offset Skewing 
Board 

value 

14241 78 -3 0 378.1278 

14242 78 -3 3 375.3414 

14243 78 -3 6 373.4838 

14244 78 -3 9 371.6261 

14245 78 -3 12 354.2723 

14246 78 -3 15 354.2723 

14247 78 -3 18 348.5041 

14248 78 -3 21 342.4913 

14249 78 -3 24 330.1237 

14250 78 -3 27 325.2843 

14251 78 0 -27 324.1368 

14252 78 0 -24 340.4005 

14253 78 0 -21 367.7155 

14254 78 0 -18 362.1426 

14255 78 0 -15 362.1426 

14256 78 0 -12 367.8132 

14257 78 0 -9 370.6973 

14258 78 0 -6 373.4838 

14259 78 0 -3 375.3414 

14260 78 0 0 378.1278 

14261 78 0 3 376.2702 

14262 78 0 6 375.3414 

14263 78 0 9 377.199 

14264 78 0 12 354.2723 

14265 78 0 15 354.2723 

14266 78 0 18 341.0735 

14267 78 0 21 343.7623 

14268 78 0 24 322.6932 

14269 78 0 27 316.925 

14270 78 3 -27 327.8521 

14271 78 3 -24 330.7362 

14272 78 3 -21 354.8703 

14273 78 3 -18 362.1426 

Figure 24:  The process for handling board values from different log positions 

The optimization algorithm 

performs its steps.  When the 

optimization algorithm needs to 

evaluate a certain log position, 

the program determines in what 

row that specific combination of 

the three variables is.  The board 

value is then looked up at that 

row in the array.  If, for instance, 

the algorithm wants to evaluate 

the log position 78;0;-21, it is 

determined that it lies in row 

14253, the specific row is 

checked up in the array, and the 

board value in that row is 

returned to the algorithm. 
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4 Mathematical model 

 

Figure 25:  Thesis roadmap 

 

4.1 Data inspection 

Before a mathematical model was developed, the data from the explicit enumeration had to 

be analysed to identify trends in the data that could assist in an algorithm that searched 

more intelligently.  Since there were 808 020 lines of data for each log, this was not an easy 

task.  Data were analysed by looking at the influence of the different variables in the sawing 

procedure as well as the differences in log shape had on the board value.  Variables for the 

sawing procedure include log rotation, skewing and offset.  Variables for log shape include 

log taper, sweep, ovality and defect core.  Other variables that could influence the optimal 

log position included length and diameter, but these could not be investigated in this study 

since all the logs had the same length and fell in the same log diameter class. 

As previously mentioned, the search space for the three variables was rotation[0º;360º], 

offset[-100mm;100mm] and skewing[-100mm;100mm].  The maximum board value, in most 

cases, was within a certain region near the zero offset and zero skewing positions. This is 

discussed in more detail in section 4.1.2 below.  In Table 5, the board values were compared 

for each of the 10 respective logs when the offset and skewing variables were restricted to 

only change between -27 and 27 mm.  The maximum board value obtained did not change 

much.  The only two logs whose values changed were logs 5 and 7, and log 5 did not 

change much.  Compared to the other logs, log number 7 changed with a fairly large 

amount.  Nevertheless, it was worthwhile to decrease the search space, since the amount of 
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possible log positions decreases from 808 020 (180 x 67 x 67) to 64 980 (180 x 19 x 19), 

which considerably decreased search time. The conclusion is that in practice optimization 

searches will probably benefit from limiting the search space to areas near the zero offset 

and skewing positions. 

Table 5:   The maximum board value for searching offset and skewing between -100mm and 100mm 
compared to -27mm to 27mm 

Log 1 2 3 4 5 6 7 8 9 10 

Best 

value 392.25 480.37 453.82 421.31 441.61 241.64 264.86 328.91 298.13 549.87 

Best 

value_27 392.25 480.37 453.82 421.31 440.19 241.64 251.05 328.91 298.13 549.87 

 

4.1.1 Effect of rotation 

To detect the effect of log rotation on the outcome of the board value, the rotation at certain 

fixed offset and skewing positions were obtained.  Rotation could not be tested at each offset 

and skewing combination, since there are 361 (19 x 19) combinations at each rotation 

position.  Combinations of offset and skewing were selected to represent the whole range of 

possible positions.  Combinations selected are shown in Table 6.  To test the effect of 

rotation, the skewing and offset combinations below were kept fixed while running through all 

possible rotation positions.  Figure 26 shows the results for these tests of log 1.  The rest of 

the logs’ graphs can be seen in Figure 68 to Figure 77 of Appendix A.  The further the offset 

and skewing variables move from the zero, the lower the yield becomes.  

It can also be noted that the maximum rotation position for one offset and skewing 

combination is not necessarily the maximum position for another offset and skewing 

combination.  If this were the case, it would have greatly simplified the search for the global 

optimum.  Furthermore, had this been the case, a search for the maximum rotation position 

at any offset and skewing combination could have been conducted, followed by a search for 

the maximum offset and skewing at that rotation position.   

If the skewing or offset variable is changed within a certain range, the value yield graph does 

follow more or less the same pattern.  This trend in the data was the main factor 

incorporated during the development of an alternative optimization algorithm, which is 

described in section 4.2.6. 
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Table 6:  Skewing and offset positions to test rotation effect 

 

 

 

 

 

 

 

 

Figure 26:  Effect of change in offset and skewing on board value recovered 

 

Figure 27 provides a representation of the situation when all logs are rotated so that the 

maximum board value is at zero degrees when skewing and offset is zero.  The log shape 

does have a significant influence on the outcome of the value yield.  Wessels, (2009) also 

found this phenomenon in his results.  He found that the maximum values are almost always 

close to the “horns-up” or “horns-down” positions.  The “horns-down” position is 180° from 

the “horns-up” position.  Thus, it can be speculated that the results found in Figure 27 can be 

ascribed to sweep in the logs.  The logs used in this study did not have a significant amount 

of sweep and where there was sweep it was almost impossible to detect the direction 

thereof.  It was also investigated whether or not ovality played a role on the value yield; there 

was no indication that ovality had a big influence on the optimal log position.  Other aspects 

Series in 

Figure 26 

Skewing Offset 

Series 2 0 0 

Series 3 0 -15 

Series 4 0 30 

Series 5 0 75 

Series 6 -15 0 

Series 7 -15 30 

Series 1 75 75 
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such as knot position and taper could also have influenced the optimal log position, but 

because of all the factors that can influence the optimal log position, it is very difficult to 

determine which log characteristic made the biggest difference.  What can be concluded is 

that there is a characteristic or a combination of different characteristics of the log that 

makes that a near optimal log position is 180º from the actual optimal. 

 

Figure 27: Average of all 10 logs, where the rotation angle is positioned so the maximum board value is 
at 0° 

 

4.1.2 Effect of offset and skewing 

Figure 29 to Figure 38 indicate the board value at 0° rotation.  The effect offset and skewing 

have on the board value is illustrated in these graphs.  In Figure 28, the colour intensity of 

the red area gives an indication of the board value. 

The optimum board value does not necessarily lie on the zero skewing and offset positions, 

but in most cases it is not far from the zero positions.  This was also found by Wessels 

(2009).  The maximum position normally lies within the -27 and 27mm range.   

The data also normally follow a trend whereby when either offset or skewing increases or 

decreases in value, the other variable should be changed in the same direction.  If a log is 

skewed in a certain direction, the log has to be moved in the same direction to keep it in the 

sawing range of the framesaw. 
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Figure 28:  Colour scheme for MATLAB graphs.  (Left equals low numbers, increasing to right) 

 

Figure 29:  Log 1 at 0° rotation  

Figure 30:  Log 2 at 0° rotation 

 

Figure 31:  Log 3 at 0° rotation 
 

Figure 32:  Log 4 at 0° rotation 

 

Figure 33:  Log 5 at 0° rotation 

 

Figure 34:  Log 6 at 0° rotation 
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Figure 35:  Log 7 at 0° rotation 

 

Figure 36:  Log 8 at 0° rotation 

 

Figure 37:  Log 9 at 0° rotation 

 

Figure 38:  Log10 at 0° rotation 

 

From Figure 34, Figure 35 and Figure 37 it is apparent that these logs have three fairly large 

local optimums.  An explanation for this phenomenon is that when a log is moved beyond a 

certain offset, it loses recovery of one board on the opposite side than to which the log is 

moved.  But when it is moved past a certain point, the next blade of the framesaw starts to 

cut an extra board from the log on the side to which the log is moved.  This still does not 

affect the outcome of the optimal position, since the local optimum nearest to the zero offset 

and skewing positions always outperforms the local optima further away. The above 

described phenomenon is illustrated in Figure 39 to Figure 42.  Figure 39 to Figure 41 

illustrate the boards that will be sawn from the log in the given position.  The number in block 

brackets corresponds with the number in Figure 42. 

 

http://scholar.sun.ac.za



 
 

56 

 

 

4.2 Meta-heuristic optimization algorithms 

To determine the constant values in each of the algorithms, except for the Alternative 

algorithm, each algorithm was run 10 times for each log under the same constant values and 

with the same number of iterations.  The number of iterations was increased from 100 to 

1000 with increments of 100 each time.  For each amount of iterations and each constant 

combination, the average of all 10 runs from all logs for a certain amount of iterations and 

with each constant combination was taken to compare against each other.  The initial values 

tested for these constants, were values that worked well for other applications of these 

algorithms, but since these values will differ slightly for different applications, the values that 

were tested in the different versions, was by changing the values in an upward and 

downward direction. 

4.2.1 MATLAB 

The optimization algorithms were coded in the software program MATLAB.  MATLAB stands 

for Matrix Laboratory.  MATLAB is a numerical computing environment that allows matrix 

manipulations, plotting of functions and data, and implementation of algorithms.  For this 

reason, MATLAB was chosen as the program to use during this project.  All of these features 

were used during the execution of the project.  Large amounts of data had to be plotted 

during the data analysis stage, the algorithms had to be coded and executed, and the 

program had to work with large data arrays. 

The complete MATLAB code for all the algorithms is shown in Appendix B. 

4.2.2 Genetic algorithm (GA) 

The literature background concerning this algorithm is given in a previous chapter (refer to 

section 2.3).  Below, the development of this algorithm within the context of the project is 

discussed: 

 

Figure 39:  Log9  
Position  0;24;39   [1] 

 

Figure 40:  Log9  
Position   0;63;18   [2] 

 

Figure 41:  Log9  
Position  0;-24;21   [3]  

Figure 42:  Log 9 

1 2 3 
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The results of the different simulation runs described earlier in this section are indicated in 

Figure 43.  Table 7 gives the values for all the constants for the different combinations of 

constants tested (each combination of constants tested is called a version).  Different 

versions can only be compared with each other if only one of the variables differ.  Different 

versions are compared against each other according to the results they show in Figure 43.  

When versions 1, 2 and 3 are compared, it is apparent that version 2 rendered the best 

results, indicating that it is best to have a mutation probability of 0.1.  When versions 2 and 4 

are compared with each other, version 2, which has a crossover probability of 0.8, yields 

better results.  When version 2 and version 5 are compared, version 5, which has population 

size of 20, gives better results. 

 

Figure 43:  The effect of using different constant values for the genetic algorithm 

 

Table 7:  Different values evaluated for constants in genetic algorithm  

Version 1 2 3 4 5 

Probability 

for mutation 

0.5 0.1 0.01 0.1 0.1 

Probability 

for crossover 

0.8 0.8 0.8 1 0.8 

Population 

size 

10 10 10 10 20 
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for i=1:PPL, 
   PP(i,1:18) = 

round(rand(1,18));   %Creates 

array with PPL rows en 18 

columns 
end;  % i for loop 

 

  %Choose two parents with tournament 

selection method 
  Crandom = ceil(rand(1,4) * PPL)  

%Generate random numbers from one to PPL 
if PP(Crandom(1,1),19) > 

PP(Crandom(1,2),19) 
    Parent1 = PP(Crandom(1,1),1:18) 
else 
    Parent1 = PP(Crandom(1,2),1:18);  
end 
if PP(Crandom(1,3),19) > 

PP(Crandom(1,4),19) 
    Parent2 = PP(Crandom(1,3),1:18) 
else 
    Parent2 = PP(Crandom(1,4),1:18); 
end 

The steps followed by the genetic algorithm are stipulated below: 

Step 1:  A random population is created by 

randomly assigning 1’s or 0’s to an array with 

a size of 20 rows and 18 columns.  This 

population is called the ‘Present population’.  

There are 20 rows because this is the 

size of the population as determined 

above.  There are 18 columns in the array 

since this is the amount of bits needed to 

create the three variables in decimal 

format. 

Step 2:  Two parents are chosen by 

means of the tournament selection 

method (described in detail in section 

2.3). 

Step 3:  Crossover is performed on the 

two parents to create two children.  The 

crossover operation makes use of the 

single point crossover method.  

Crossover is done at a random position 

with equal possibility throughout the 

whole chromosome.  The two 

chromosomes created after crossover 

is called the offspring. 

 

 

 

 

 

 

CrossWF = 0; 
while CrossWF == 0 
 Cif = rand; 
 Cpos = 1; 
 if Cif <= PC 
    Cpos = ceil(rand * 17); %Choose place 

where crossover should be performed 
    Child1(1:Cpos) = Parent1(1:Cpos); 
    Child1(Cpos+1:18) = 

Parent2(Cpos+1:18); 
    Child2(1:Cpos) = Parent2(1:Cpos); 
    Child2(Cpos+1:18) = 

Parent1(Cpos+1:18); 
 else 
    Child1 = Parent1; 
    Child2 = Parent2; 
 end 

Figure 44:  Random population generation 

Figure 45:  Step 2; Choose parents to produce offspring with 

Figure 46: Step 3: Crossover procedure 
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MutWF = 0; 
Child1_2 = Child1 
while MutWF == 0 
   Child1_2 = Child1 
for y=1:18 
   RM = rand 
   if RM <= PM 
       if Child1(1,y) == 1 
           Child1_2(1,y) = 0 
       else 
           Child1_2(1,y) = 1 
       end 
   end 
end  % y loop     

 

Convert = Child1_2(1,1:18) 
ConvToDecGa; 
Child1_2(1,19) = array(nommer,4) 
BVC1 = Child1_2(1,19) 
Convert = Child2_2(1,1:18) 
ConvToDecGa; 
Child2_2(1,19) = array(nommer,4) 
BVC1 = Child2_2(1,19) 
PP = sortrows(PP, -19) 
C1 = Child1_2(1,19) 
C2 = Child2_2(1,19) 
PP9 = PP(9,19) 
if Child1_2(1,19) > Child2_2(1,19) 
    if Child1_2(1,19) > PP(9,19) && 

Child2_2(1,19) > PP(9,19) 
       PP(PPL-1,1:19) = Child1_2(1,1:19) 
       PP(PPL,1:19) = Child2_2(1,1:19) 
    else 
        if Child1_2(1,19) > PP(PPL,19) 
            PP(PPL,1:19) = 

Child1_2(1,1:19) 
        end 
    end 
else 
    if Child1_2(1,19) > PP(9,19) && 

Child2_2(1,19) > PP(9,19) 
       PP(PPL-1,1:19) = Child2_2(1,1:19) 
       PP(PPL,1:19) = Child1_2(1,1:19) 
    else 
       if Child2_2(1,19) > PP 
          PP(PPL-1,1:19) = 

Child1_2(1,1:19) 
          PP(PPL,1:19) = Child2_2(1,1:19) 
       else 
          if Child2_2(1,19) > PP(PPL,19) 
              PP(PPL,1:19) = 

Child2_2(1,1:19) 
          end    
       end 
    end 
end 

 

Step 4:  Mutation is done with a probability of 0.1.  This means that every bit in the offspring 

chromosomes have a 10% possibility of changing value (changing a 0 to a 1 and vice versa). 

Step 5:  The two children are compared with the two weakest chromosomes in the 

population.  The two best chromosomes of the four are then stored in the place of the two 

weakest chromosomes selected.  

Depending on the number of iterations to be evaluated, Steps 2 – 5 are carried out a certain 

number of times. 

 

 

 

 

 

 

 

 

 

 

Figure 47:  Step 4: Mutation procedure 

Figure 48:  Step 5: Test if offspring should become part of 
population 
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for x=1:18, 
   if SV(maxry,x) == 1  
      PV(1,x) = PV(1,x)*(1-LR)+ 

SV(maxry,x)*LR; 
    else 
      PV(1,x) = PV(1,x)*(1-LR); 
       end 
    end; 

 

 

4.2.3 Population based incremental learning (PBIL) 

Table 8 shows the values of the constants in the different versions that were tested.  Error! 

Not a valid bookmark self-reference. shows the results for all the different versions.  When 

the different versions were compared to each other by considering the outcome in Error! 

Not a valid bookmark self-reference., it was shown that Version 4 reaches a fairly good 

solution quite quickly, but versions 1 and 5 did give slightly better results when more 

iterations were carried out.  The values from version 4 were used as the final values for the 

constants. 

Table 8:  Different values used for constants to determine best values 

Version 1 2 3 4 5 

Learning rate 0.1 0.2 0.3 0.3 0.1 

Population 

size 

10 10 10 20 20 

 

 

Figure 49:  The effect of using different constant values for the PBIL algorithm 

The PBIL algorithm works as follows: 

Step 1:  A probability vector was created with 
one row and 18 columns; a value of 0.5 was 
assigned to each cell in the vector.    MATLAB 
code:  PV(1:18) = 0.5; 

 

Figure 50: Step 3: Updating the probability vector 
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Step 2:  A random population was created by randomly assigning 1’s or 0’s to an array with 

a size of 20 rows and 18 columns.  Each row in the matrix represents a binary number which 

can be converted to three decimal numbers, which are the three variables in the simulation 

problem.    The MATLAB code is the same as this step in the Genetic algorithm. 

Step 3:  Each row in the population was converted to decimal numbers and the fitness of 

each was calculated.  Each value in the probability vector was changed by using the row 

vector with the highest board value.  Each bit in the probability vector was changed with the 

following formula:  PV(i) = PV(i)*(1-LR) + MaxRow(i)*LR 

Steps 2 and 3 were carried out a certain number of times, depending on the number of 

iterations to be evaluated.  In certain applications of this algorithm, the algorithm was 

stopped once all numbers in the probability vector were either less than 0.05 or larger than 

0.95.  The author decided to make the number of runs a fixed amount since certain bits 

converge more slowly, which will make the number of iterations evaluated unnecessarily 

high. 

The probability factor was converted to decimal numbers and the board value was 

calculated.  These decimal numbers were the outcome of the algorithm.  

4.2.4 Simulated Annealing 

As in the other algorithms, a few simulation runs were done and compared against each 

other to determine the values of the constants in the algorithm.   

Table 9:  Values for constants with different simulation runs 

Version 1 2 3 4 5 6 

Initial temperature 5 5 10 10 10 20 

Decrease in temperature 0.1 0.1 0.1 0.1 0.2 0.4 

Amount of iterations 

evaluated before 

temperature is decreased 

5 10 5 10 5 5 

Total amount of iterations 

evaluated 

250 500 500 1000 250 250 
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    while RoTF == 0 
        ChRo = ceil((rand(1)-

0.5)*2*45*(T/Tin));   %Change in 

Rotation variable (can change 90° to 

each direction) 
        if Ro + ChRo < 0  
            RoTF = 0; 
        else 
           if Ro + ChRo > 179  
               RoTF = 0; 
           else 
               RoTF = 1; 
               Ro = Ro + ChRo; 
           end 
        end 
    end 

 

 

Figure 51:  Board value for each version tested in the Simulated Annealing algorithm 

Figure 51 gives the results of running the Simulated Annealing algorithm with different 

values for the constants.  Version 4 gave the best results and was used as indicated in Table 

9.  Only if the number of iterations evaluated was the same can different starting conditions 

be compared with each other.  When considering versions 1, 5 and 6, version 5 gave the 

best results. This indicates that a starting temperature of 10 degrees and cooling rate of 0.2 

degrees was best.   When the temperature was set higher, the algorithm accepted too many 

solutions in step 3 (described below), rendering an outcome that was worse than the current 

solution.   

When versions 2 and 3 were compared with each other, it did not make a difference whether 

the initial temperature and the number of iterations per temperature were different –  as long 

as the number of iterations evaluated was the same.   

The steps of the simulated 

annealing algorithm are described 

below: 

Step 1: The algorithm ran the 

Alternative algorithm V1 to get a 

fairly good starting solution; this 

made the algorithm more likely to 

come to a good solution than 

starting at a random place. 

Figure 52:  Step2: Changing the rotation variable 
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    delta = BV - BVN;  % BVN = 

Board Value New 
    if delta < 0 
        Sol = SolN;  % SolN = 

Solution New 
        BV = BVN; 
        m = m + 1 
        val(m,1) = Sol; 
        val(m,2) = BVN; 
    else 
        Pe = rand(1)  % Pe = 

Probability to accept solution 
        if Pe < exp(-delta/T) 
            Sol = SolN; 
            BV = BVN; 
            m = m + 1 
            val(m,1) = Sol; 
            val(m,2) = BVN; 
        else 
        end    
    end 

 

 

Step 2:  Generate a new solution.  The following procedure was carried out for each of the 

three variables (rotations, offset and skewing).  A random number from -1 to 1 was 

generated.  This random number was then multiplied with the result of the current 

temperature, divided by the initial temperature, in order to decrease the amount of change 

as the temperature of the algorithm decreases.  This number was then multiplied by 90 

(because the rotation variable may only change up to a maximum of 90 degrees in each 

direction) to obtain the amount of change in the rotation variable.  The same was done with 

the offset and skewing variables.  Each of them was restricted to change up to 27mm in 

each direction. 

Step 3:  Evaluate if the new 

solution must be accepted.  If the 

new solution was better than the 

old solution, it was automatically 

accepted.  If the new solution was 

not better than the old solution, it 

was accept it with the 

probability  

where 

OS = Old Solution  

NS = New solution and  

T = Current temperature 

Repeat steps 2 and 3 a certain 

number of times, depending on the number of iterations to be evaluated.   

Step 4:  Reduce the current temperature with 0.1 degrees and repeat steps 2 and 3. 

Step 5:  Repeat steps 2 to 4 until the temperature reaches zero degrees. 

Figure 53:  Step3: Accepting new solution 
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4.2.5 The Cross-Entropy Method 

 

Figure 54:  Effect of different population sizes in the Cross-Entropy algorithm 

The Cross-Entropy algorithm is the only algorithm that was not programmed by the author.  

James Bekker from the University of Stellenbosch tested the data used in this study on this 

algorithm that was programmed by him.  For this reason the steps of this algorithm were not 

described in detail. 

The only constant for the Cross-Entropy algorithm that had to be determined was the 

population size.  Figure 54 shows the results for the different population sizes tested.  The 

size eventually used for this algorithm was 200.  A population size of 100 initially gave a 

better solution, but after a certain number of iterations it did not increase anymore.  A 

population size of 250 also initially gave better solutions than when a population size of 200 

was used.  After a certain number of iterations a population size of 250 again gave better 

solutions, but using 200 gave better solutions for the biggest part as the number of iterations 

increased.  

 

4.2.6 Alternative algorithm 

Through inspection of the data, it was decided to write a new algorithm that was not based 

on previously developed algorithms.  The aim of this algorithm was to search more 

intelligently by incorporating the knowledge learned after analysing the data in section 4.1.   

Ten algorithms were written that all work in the same manner, but that differ in the number of 

simulation combinations they considered.  All the alternative algorithms started with a non-

random solution.  They all started with all three variables at zero. 
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Hypothesis:  The board value obtained by this alternative algorithm will be higher than the 

average board value obtained by the other algorithms included in this study. 

The manner in which the different versions of this algorithm operated are indicated below: 

(The number in block brackets indicate the number of iterations it evaluated at each step) 

Alternative version 1 

Step 1: A search was 

done for the maximum 

board value (BV) when 

the log was rotated 30° 

at a time and offset and 

skewing stayed at 0mm. 

[12] 

Step 2: At the 

maximum rotation 

position, 14° in each 

direction was searched 

with increments of 2° 

[14] 

Step 3: At the maximum board value position, the offset variable was changed in increments 

of 6mm between -24mm and 24mm. [8] 

Step 4: At the maximum position, the skewing variable was changed in increments of 6mm 

between -24mm and 24mm. [8] 

Total positions evaluated = 42 
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Alternative version 2 

Version 2 did the same as 

version 1, but it also took 

an angle 180° from the 

maximum angle calculated 

in step 1 to perform steps 2 

– 4 on.  Total positions 

evaluated = 72 

 

 

 

 

 

 

 

Alternative version 3 

Version 3 did the same as 

version 2, except at steps 3 and 

4.  Instead of searching from -

24mm to 24mm with increments 

of 6mm, it searched from -27 mm 

to 27mm with increments of 

3mm. 

Total positions evaluated = 112 
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Alternative version 4   

Step 1: A search was done 

for the maximum board 

value (BV) when the log was 

rotated 10° at a time. [36] 

Did steps 2 – 4 with 

maximum angle obtained in 

step 1 as well as with angle 

180° from maximum angle. 

Step 2: At the maximum 

rotation position, 4° in each 

direction was searched with 

increments of 2° [4] 

Followed same step 3 and 4 as in version 1. 

Total positions evaluated = 76 

 

Alternative version 5 

Version 5 did the same as 

version 4, except for step 

one, where the log was 

rotated 4° at a time, and at 

step 2 only searched 2° to 

each direction. 

Total positions evaluated = 

126 
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Alternative version 6 

Version 6 did the same as 

version 5, except in step 1 the 

rotation increment was 2°. 

Total positions evaluated = 212 

 

 

 

 

 

 

Alternative version 7 

Step 1: A search was done for 

the maximum board value (BV) 

when the log was rotated 10° at 

a time. [36] 

Step 2: At the maximum 

position, the offset variable was 

changed in increments of 3mm 

between -27mm and 27mm. [9] 

Step 3: At the maximum 

position, the skewing variable 

was changed in increments of 

3mm between -27mm and 

27mm. [9] 

Step 4: At the maximum position in step 3, the maximum position was searched for by 

changing the rotation by increments of 4°, up to 44° in each direction. 

Total positions evaluated = 94 
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Alternative version 8 

Did the same as in 

version 1, but did steps 2 

– 4 with the second and 

the third best positions 

obtained in step 1. 

Total positions evaluated 

= 68 

 

 

 

 

 

 

 

Alternative version 9 

Version 9 did the same as version 

7, but instead of doing steps 2 – 4 

with the position 180° from the best 

position, it rather took the second 

best position to carry out steps 2 – 

4. 

Total positions evaluated = 94 
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Alternative version 10 

Step 1: The maximum 

board value (BV) was 

searched for when the log 

was rotated 10° at a time. 

[36] 

Step 2: At the maximum 

position, the offset variable 

was changed in increments 

of 3mm between -27mm 

and 27mm. [9] 

Step 3: At the maximum 

position, the skewing 

variable was changed in 

increments of 3mm between -27mm and 27mm. [9] 

Step 4: At the maximum position found in step 3, the rotation variable was changed with 

increments of 4°, up to 44° in each direction, the maximum board value found was used as 

the result for the search. 

In versions 2 – 9 the optimizing steps were carried out 180° from the optimal position, except 

for 8, because as can be seen in Figure 27, the next position with the best probability where 

the optimal may lie, was 180° from the maximum obtained position.   

4.2.7 Genetic Algorithm starting with random vs. intuitive initial 

population 

The Genetic algorithm, Cross entropy algorithm and the PBIL algorithm’s initial population 

were chosen randomly.  To test if the initial population of an algorithm had an effect on the 

results of the algorithm, the Genetic algorithm was tested starting with an intuitive population 

versus starting with a random population.   Since the PBIL and Cross entropy algorithms 

generated random populations throughout the running of the program, it will not make a 

difference to start the first population with an intuitive solution. 

The intuitive starting population must have 20 individual solutions.  All these solutions were 

chosen to have an offset and skewing value of zero, since the optimum board values are 

usually scattered around the zero offset and skewing positions.  Since the population 

consists of 20 individuals, the rotation variable is distributed across the whole range of 
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possible rotation positions.  The first solution has a rotation value of zero, and thereafter 

each individual’s rotation value is 18° more than the previous.   

H0:  An intuitive starting population will result in finding a higher board value than starting 

with a random solution with the Genetic algorithm. 

Figure 55 shows the results for when the intuitive population is used as the initial population, 

compared to when a random population is used.  

 

Figure 55:  Results for starting the Genetic algorithm with an intuitive population compared to a random 
population 

A data analysis was conducted on the data from the intuitive initial population compared to 

the random initial population.  “The P-value is the probability that the test statistic will take on 

a value that is at least as extreme as the observed value of the statistic when the null 

hypothesis is true.”  (Montgomery, 2007)  The P-value was determined for each log (Table 

10), and the average for all logs was calculated.   

Average from all 10 logs: 

P-Value = 0,0000700526 < 0,05 

Table 10:  The P-values from data for starting the Genetic algorithm with intuitive population and starting 
with a random population 

 Log1 Log2 Log3 Log4 Log5 Log6 Log7 Log8 Log9 Log10 

P-value 

 

0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 
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The average P-value, as well as all the P-values for all the logs, is less than 0,05, which 

means H0 is rejected.  This indicates that it does not make a difference if the algorithm is 

started with an intuitive population or with a random population. 
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5 Results and discussion 

 

Figure 56:  Thesis roadmap 

 

5.1 Sawing with aid of scanning vs. current sawing technique 

 

Currently there are only a few automatic log positioning systems at the headrig at sawmills in 

South Africa.  The positioning of the log is usually done by an operator who uses his own 

judgement on how to position the log.   The main factor influencing the decision the operator 

makes in positioning the log is the sweep of the log.  If the log has no sweep, the operator 

simply tries to align the log with the middle of the saw.  If the log has sweep, he tries to 

rotate the log so that it enters the saw in the horns-up or horns down position.  The few 

automated log positioning systems in SA uses the same rules as described above. The logs 

used in this study did not have significant amounts of sweep.  Because these logs had no 

sweep, the operator would have just positioned the logs in the middle of the saw, the rotation 

position would have been random.  Thus the 0° log rotation position was taken as the 

conventional position in which we assume the operator would have positioned the log, 

because the 0° rotation position was also taken at random when the log’s profile was 

measured.  The offset and skewing variables was also taken at the 0mm position.  The Rand 

(South African currency) value of sawing the log in the conventional log position compared to 

the optimal position after scanning and virtually sawing the log are given in Table 11 below. 
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Table 11:  Comparing board value by comparing conventional log positioning to internally scanned log 
optimal position. 

Log 1 2 3 4 5 6 7 8 9 10 

Optimal 

position 

392.2 480.4 

 

453.8 

 

421.3 

 

441.6 

 

241.6 

 

264.9 

 

328.9 

 

298.1 

 

549.9 

 

Conventional 365.3 

 

438 

 

440.8 

 

403.7 

 

424 

 

211.2 

 

226.7 

 

299.8 

 

256.3 

 

518.6 

 

Percentage 

of 

improvement 

6.8% 

 

 

8.8% 

 

2.9% 

 

4.2% 

 

4% 

 

12.6% 

 

14.4% 

 

8.9% 

 

14% 

 

5.7% 

 

 

 

Figure 57:  Board value for 0;0;0 (rotation;offset;skewing) position and global optimum 

When the values for the optimal log position are compared to the conventional log position in 

Table 11, there is a substantial increase in log value recovery when a log is positioned in the 

optimal position in front of the headrig.  The average increase in value is 8.23%. 

 

5.2 Value yield vs. volume recovery 

To determine the monetary value of the boards from a log, it is necessary to take the internal 

log information into account.  Simsaw does these calculations by grading the boards into 

different board grades.  Different board grades are worth different amounts. 

If volume recovery from a log is maximized, it does not necessarily mean the optimum 

monetary value will be earned from the log.  The grade of the boards that is sawn has to be 
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considered.  Table 12 shows the Rand value from when a log was sawn in the optimal 

position for volume recovery compared to the optimal position for board value. 

Table 12:  Optimizing for log volume recovery compared to optimizing for board value 

Log 1 2 3 4 5 6 7 8 9 10 

Optimal board 

value position 

392.2 480.4 

 

453.8 

 

421.3 

 

441.6 

 

241.6 

 

264.9 

 

328.9 

 

298.1 

 

549.9 

 

Optimal 

volume 

recovery 

position 

386.2 

 

460.4 

 

453.8 

 

409.8 

 

441.6 

 

226.3 

 

246 

 

324.7 

 

279.8 

 

532.1 

 

Increase from 

optimizing for 

value instead 

of volume 

1.5% 4.2% 0% 2.7% 0% 6.4% 7.1% 1.3% 6.2% 3.2% 

Increase from 

optimizing for 

volume 

recovery 

compared to 

conventional 

log position 

5.4% 4.8% 2.9% 1.5% 4% 6.7% 7.8% 7.7% 8.4% 2.5% 

 

The average increase from optimizing for value instead of increasing for log volume recovery 

is 3.26%.  Todoroki (2001) also found an increase of 3% when finding the optimum log 

position in front of the headrig while considering internal log defects (optimizing value yield) 

compared to only considering external log information (optimizing volume recovery). 
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Figure 58:  Comparing optimizing for value yield with optimizing for volume recovery 

 

5.3 Comparing different optimization algorithms 

 

The different optimizing algorithms to find the optimum log position in front of the headrig 

were compared in terms of the maximum value found, number of iterations needed to find a 

good solution, and the amount of deviation when optimum values were searched for.   

There is a trade-off in terms of number of iterations. There is a direct relationship between 

number of iterations and calculation time. Since a limited time is available for optimization 

decisions it is important to consider after how many iterations the algorithm should be 

stopped.  One iteration means that one log position from the explicit enumeration data is 

considered. 

The results for the different algorithms after different number of iterations were evaluated is 

shown in Figure 59.  Each algorithm was run 100 times for a certain number of iterations 

(e.g. 100, 200, 300, etc.).  To draw the graphs, the average for the 100 runs of the specific 

algorithm and the specific number of iterations was taken to plot one data point.  The x-axis 

on the graph is the number of iterations considered and the y-axis is the average board 

value from the ten logs when the board value is indicated as a percentage of the maximum 

possible board value. 

The algorithms were only tested up to 1000 iterations.  When, for instance, the Cross-

Entropy algorithm is considered, it can be observed that its graph has not levelled off yet, 
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which means it could most probably achieve better results were more iterations considered.  

The reason why the algorithms were only tested up to 1000 iterations, is that it is not 

practically implementable to evaluate more than 1000 iterations.  In current circumstances, 

1000 iterations take on average 42 minutes to complete.   

A random search was done with the data created with the explicit enumeration to compare 

with the other algorithms.  By comparing the results of an algorithm with the random search, 

one can determine whether a specific algorithm searches more intelligently than a random 

search.  With the random search, when for instance 100 iterations are allowed, 100 random 

log positions were selected and the maximum board value found was used as the outcome 

of the search.  Just as with the other algorithms, this was done 100 times and the average 

was determined for each data point on the graph.  

 

Figure 59:  Results of all algorithms for different amount of iterations evaluated (average of all 10 logs) 

The only two algorithms that outperformed the Genetic Algorithm at a specific point were the 

Simulated Annealing algorithm and the Alternative algorithm, which was only better up to 

about 150 iterations.  From there onwards the Genetic algorithm outperformed all the 

algorithms.  The Cross-Entropy algorithm gave equally good results as the Genetic algorithm 

after 1000 iterations.  These were the only two algorithms that substantially outperformed the 

random search when more than 800 iterations were considered.    

With the Genetic algorithm the board value showed a steep increase for the first 200 

iterations. The increase continues, but at a lesser rate after 200 iterations. In this case, it 

seems as if little benefit will be realised by executing more than 400 iterations. 
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The PBIL algorithm showed a very steep increase in the board value until 300 iterations 

were reached, where after the solution did not increase, no matter how many iterations were 

evaluated.  It can also be noted that only when 300 iterations were evaluated did it 

outperform the random search. This implies that, unless the algorithm is modified, it is 

definitely not a suitable algorithm for this application. 

The Cross-Entropy algorithm gave more or less the same results as the random search up 

to 400 iterations, where after it gave slightly better results when more iterations were 

considered.  It seems as if this algorithm may still show an increase if more than 1000 

iterations are considered.   

The Simulated Annealing algorithm showed the best results compared to the other 

algorithms up to 150 iterations, after which the Genetic algorithm performed better.  After 

800 iterations the random search gave better results than the Simulated Annealing 

algorithm. 

Up to about 100 iterations the Alternative algorithm rendered the best results, but not if more 

iterations were evaluated.  After less than 300 iterations the random search outperformed 

the alternative algorithm and after almost 350 iterations it performed the worst from all the 

algorithms. 

 

The standard deviation of a sample is the square root of the variance.  “The variance is a 

measure of the dispersion, or the variability in the distribution.” (Montgomery and Runger, 

2007) Thus the standard deviation was calculated to measure how constant the outcome of 

each algorithm was when it was run a few times (in this case 100) under exactly the same 

circumstances and the same number of iterations.  This tested whether the algorithm 

performed consistently.  If an algorithm performed with a lot of variation it would not have 

been possible to detect this simply by looking at the average outcome from running the 

algorithm a certain number of times.  The results for the standard deviation from all the 

algorithms are shown in Figure 60. 
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Figure 60:  Standard deviation from all algorithms 

The Simulated Annealing algorithm had the lowest standard deviation across any number of 

iterations.  The main reason for this may be because it started at the same log position every 

time it was tested.  The only algorithm that has a fairly high standard deviation is the PBIL 

algorithm, but only up to 300 iterations.  As mentioned above, the results from the PBIL 

algorithm also did not improve after 300 iterations.  All the other algorithms did not have a 

high standard deviation at any number of iterations.  The standard deviation did not differ 

that much between the different algorithms that it will have an effect on the choice of the best 

algorithm. 

The results for all logs for the different algorithms are shown in Figure 62 to Figure 67.  The 

algorithms were discussed in detail in the previous section.  Only aspects that stand out 

when all the logs’ data are considered will be mentioned in the next section. 

An interesting observation is that log 6 seems to have the lowest performance for all the 

algorithms.  An investigation of the data showed that this was because log 6’s global 

optimum board value was much higher than the second best solution.  For instance, in the 

other logs, if all the solutions of the log were sorted in descending order, the 50 best 

solutions did not differ more than 1% from the global maximum. With log 6, however, the 50 

best solutions differ up to 4% from the global maximum. This reduced the chances of finding 

a solution very near to the global optimum.  This is illustrated in Figure 61.  Log 6 had only 

one position closer than 2% away from the global optimum, which made the possibility to 

find a near optimum very low.  The opposite counted for log 4, which had many more 

solutions near the global optimum.  This was also why log 4 showed the best results for all 

the algorithms. 

http://scholar.sun.ac.za



 
 

80 

 

Figure 61:  Best 100 solutions when all possible solutions from the explicit enumeration data are 
arranged in descending order. 

 

5.3.1 Genetic algorithm 

Figure 62 shows how the Genetic Algorithm performed for each log.  This type of analysis 

was done to evaluate the different algorithms in terms of how constant each performed for 

the different logs.  This algorithm shows the most deviation for the logs as more iterations 

were considered.  Some of the logs showed worse results when more iterations were 

considered.  When the average outcome of all logs was considered, the optimum amount of 

iterations to consider can be calculated.  But it is not favourable to have a decrease in board 

value for some logs when more iterations were considered, as was the case with this 

algorithm. 
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Figure 62: Board values obtained (Genetic Algorithm) 

 

5.3.2 PBIL 

Figure 63 shows that the PBIL algorithm seemed to perform almost the same on all logs.  

Practically all logs followed the same trend as the algorithm evaluated more iterations. As 

mentioned previously, the outcome of the algorithms stabilised after 300 iterations.  Figure 

63 shows that this was the case with all logs, indicating that there will in no case be a benefit 

to evaluate more than 300 iterations. 

 

 

Figure 63: Board values obtained (PBIL) 
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5.3.3 Simulated Annealing 

As seen in Figure 64, certain logs had a steeper increase than other logs.  Log 4 had no 

increase no matter how many iterations were evaluated.  One explanation for the difference 

in slope of the different graphs was that logs with a flatter slope started with a better solution 

in the first instance.  Since the algorithm started with the position determined by the 

alternative algorithm’s version 1, this can also act as a test for how good the solution was 

that the alternative algorithm produced. 

 

 

Figure 64: Board values obtained (Simulated Annealing) 

5.3.4 Cross-Entropy Method 

As shown in Figure 65, except for Log 6 that had a low outcome, there was no log that 

showed any significant deviation from the pattern that was followed by this algorithm.  This 

was a reliable algorithm, in the sense that all logs continued to increase in value as the 

number of iterations increased. 
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Figure 65: Board values obtained (Cross-Entropy Algorithm) 

 

5.3.5 Alternative algorithm 

Figure 66 indicates that there was no increase in any of the logs after 74 iterations.  74 

iterations will take about three minutes using the current software and setup.  Most of the 

logs had a very steep increase in value at the beginning, but then rapidly stopped increasing.  

This indicates that it was a very good algorithm when only a few iterations can be evaluated. 

 

 

Figure 66: Board values obtained (Alternative algorithm) 
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5.3.6 Random 

If enough simulations were done for each data point, all the lines in Figure 67 would follow 

the same trend and no lines would go down progressively as more iterations were evaluated.  

The reason why only 100 simulations were done to obtain each data point, is that only 100 

points were taken for all other algorithms due to the time required to run all the algorithms. 

 

 

Figure 67: Board values obtained (Random search) 

5.4 Conventional log position vs. optimal log position found by 

optimizing algorithms 

The comparison between conventional log positioning and positioning the log in the optimal 

position found by the optimization algorithms, can be regarded as the actual improvement to 

be achieved in practice when an internal log scanning and positioning system is installed.   

The number of iterations that can be evaluated in practice depends on many factors.  The 

bottleneck in the scanning, optimizing and positioning system should be the sawing process 

at the headrig.  The system should be set up and installed in such a way that it does not 

affect the throughput efficiency of the system.  The scanners currently being developed to 

scan logs internally should be able to scan logs at a speed of 100m/min, which is much 

faster than the sawing speed of any headrig. (pers. comm. Martin Bacher, Microtec, 2010)   

When calculations were done on how long it takes to simulate one log sawing position, a 

normal desktop computer with a 3 GHz processor and 2Gb RAM was used.  In practice, a 

sawmill will install a computer with a much faster processor and more memory. 
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There are a few features that can be implemented to increase the number of iterations 

evaluated for each log:   

Theoretically and depending on some practical constraints in sawmills, the logs can be 

scanned, tagged and stored in a log yard.  The computer can then run the simulation to 

determine the optimum position of the log in front of the headrig whenever the time is 

available.  The log position will be stored in the memory of the computer.  When the log is 

then put on the conveyer to be sawn, the log will just be identified and the computer will 

indicate the way the log should be positioned.  In this way, the computer can run 24 hour a 

day, even though the sawmill only operates eight or sixteen hours per day and also have a 

certain amount of downtime.  

Another aspect that can be added to increase the number of iterations evaluated per log is to 

install more computers that run in parallel to compute the optimal position of the logs.  If ten 

computers are installed, it will increase the number of iterations evaluated tenfold. 

The following calculations were done to determine the number of iterations that can be 

evaluated for each log: 

 

 

 

Where 

IT = Total iterations that can be evaluated per day 

TT = Total time available per day (seconds) 

ST = Average simulation time per log position (seconds) 

LS = Logs sawn per day 

VO = Volume input of logs per day for a large sawmill in South Africa (m3) 

LV = Average volume of a log (m3) 

IL = Iterations available per log 
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If the above mentioned aspects are implemented to increase the number of iterations that 

can be evaluated per log, a fairly accurate number of iterations that can be used for 

calculations is 200.  The number of iterations available per log was calculated as 14, but 

when a larger number of computers and more powerful computers are used, 200 iterations is 

considered a fair estimate.  In Table 13 the calculations are also done with 100 and 300 

iterations to compare the expected number of iterations with a best and worst case scenario. 

Table 13 indicates the Rand value for positioning each log in the conventional position as 

well as the average board value when an optimizing algorithm was run 100 times for each 

log and each number of iterations.  The percentage increase from the conventional position 

to the position determined by the algorithm is also given.  For the optimized log position with 

100 iterations, the Simulated Annealing algorithm was used, since, as seen in Figure 59, at 

100 iterations Simulated Annealing gave the best log position.  For 200 and 300 iterations 

the Genetic algorithm was used because, when 200 and 300 iterations were evaluated, the 

Genetic algorithm gave the best results.  
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Table 13:  Conventional log scanning compared based on board value with optimized log position by 
optimization algorithms for different amount of iterations evaluated 

 Log1 Log2 Log3 Log4 Log5 Log6 Log7 Log8 Log9 Log10 Average 

Conventional 

log position 
365.3 438.0 440.8 403.7 424 211.2 226.7 299.8 256.3 518.6  

Optimizing 

algorithm 

position, 100 

iterations 

385 459.4 446.4 418.5 430.2 231.4 256.3 318.3 289.1 539.4  

% increase 

from 100 

iterations 

5.39 4.88 1.28 3.68 1.48 9.56 13.05 6.19 12.8 4.02 6.23% 

Optimizing 

algorithm 

position, 200 

iterations 

387.3 472.5 446.9 415.7 435.6 229.1 255.5 322.9 285.9 533.5  

% increase 

from 200 

iterations 

6.03 7.87 1.38 2.97 2.75 8.45 12.67 7.72 11.56 2.89 6.43% 

Optimizing 

algorithm 

position, 300 

iterations 

387 466.3 447.7 414.8 437.4 238.7 251.7 319.6 293.9 530.9  

% increase 

from 300 

iterations 

6.21 6.47 1.57 2.75 3.17 12.99 11 6.62 14.67 2.38 6.78% 

 

To do the cost analysis in section Error! Reference source not found. for the practical 

implementation of an optimizing system, the average increase with the optimizing algorithm 

in Table 13 is used when 200 iterations are evaluated, which is 6,43%. 

5.5 Cost analysis 

The purpose of this project was to evaluate the optimization of the log breakdown process at 

the primary workstation by firstly considering both the shape and internal knots of the logs 

and secondly developing an optimization algorithm to assist the operator in deciding on the 

best log position. To accomplish this, one of the objectives that were set was to evaluate the 

economic feasibility of log breakdown through internal scanning. 
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The following hypothesis was set:  a meta-heuristic method will result in an improvement in 

the economic feasibility from implementing an internal log scanning system. 

It was proven that by internally scanning logs and finding a near optimal position in front of 

the headrig by means of optimization algorithms, an improvement in the value of the board 

sawn from a log can be made.  The question still remains whether it is economically feasible 

to implement such a system and how long will it take for a company to earn back the initial 

investment made. 

A cost analysis was done to show how an  investment decision can be performed when 

considering a log positioning optimization system based on internal scanning data at a 

sawmill in South Africa. It was not possible to get accurate input data for some of the 

variables and this cost analysis should thus be seen as an example based on assumptions 

for a specific sawmill rather than a general evaluation of the economic feasibility of the 

technology. 

Four different scenarios were considered during the cost analysis:   

• Firstly the income was determined per m3 of sawn timber when no optimization was 

implemented, in other words as it is currently done in most sawmills in South Africa 

today.  This scenario was labeled Pessimistic Scenario in Table 14. The breakeven 

time period was worked out accordingly. 

• Secondly, a scenario was created when a log was optimized by only considering 

external log information (labeled External Scanning in Table 14). The percentage of 

value increase used was when the global optimum was found in every situation.  

When a meta-heuristic optimizing algorithm was used to determine the optimal 

position, it will be a bit lower, but this calculation was done just to see how it 

measured up compared to internal scanning of logs.   

• A third scenario investigated was when the logs were internally scanned and a meta-

heuristic optimization algorithm found a near optimum position.  6,43% was used as 

the average increase in value from the conventional position. This was calculated in 

Table 13 when 200 iterations were considered.   

• The fourth scenario considered was optimistic.  When the global optimum in the 

explicit enumeration data was used, an average increase of 8,23% can be achieved.  

For this calculation, 8% was used, to indicate the effect if a solution very near the 

global optimum can be reached most of the time. 
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Table 14:  Cost analysis for implementing a internal log scanner at a large pine sawmill in South Africa 

  

Pessimistic 

Scenario 

External 

Scanning 

Practical 

Scenario 

Optimistic 

Scenario 

% improvement on value 

yield 

 0% 5.17% 6.43% 8% 

      

Income per m
3
 R 2610 R 2,610.00 R 2,744.94 R 2,777.82 R 2,818.80 

Additional Profit with 

scanning tech/m3 

 R     - R 134.94 R 167.82 R 208.80 

      

Volume per day (m3) 300 R     - R 40,481.10 R 50,346.90 R  62,640.00 

Cost of scanner per day  R     - R 1,000.00 R 1,000.00 R 1,000.00 

Contribution to profit per 

day 

 0 R 39,481.10 R 49,346.90 R 61,640.00 

      

Interest Rate 12.5%     

   Days to breakeven 

Scanning Technology 

(optimistic) 

-50 000 000   1244 950 

Scanning Technology 

(neutral) 

-75 000 000   2146 1574 

Scanning Technology 

(pessimistic) 

-100 000 000   3458 2368 

 

The income for one cubic meter of timber sawn from a log in the conventional log position 

was determined by taking the average from all the logs used in this study.  The value differs 

slightly from log to log since different grades of timber are worth different amounts.  The 

price per cubic meter for the different scenarios investigated was calculated by adding the 

percentage increase investigated to the conventional log position’s price per cubic meter. 

The volume sawn timber produced per day was taken as 300m3.  This is the amount of 

timber produced by a typical medium sized pine sawmill in South Africa.   

It is difficult to estimate the operating cost of an internal log scanner.  A rough estimate was 

made at R1000 per day for electricity and maintenance. 
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The interest rate for the loan made to purchase an internal log scanner was taken at 12,5%.  

There are many factors influencing the interest rate of the loan, for instance the credit history 

of the company and the default risk for the bank.  The interest rate can differ between the 

repo rate, which is currently 9%, and repo plus 4%.  In order to be conservative, the rate was 

taken as repo plus 3,5%. 

The price of an internal log scanner is very difficult to estimate.  Companies developing such 

systems do not want to give out such information. A laboratory version CT scanner that can 

scan short log sections was recently purchased at Stellenbosch University at a cost of R12.5 

million rand. The price of commercial versions is thus estimated at R50 million rand. 

The scenario where only external log information was considered was only compared in 

terms of the additional profit it can provide per day.  This was because the initial investment 

amount required for such a piece of equipment was not known. 

As mentioned earlier it is very difficult to estimate the real cost to implement such a system, 

since the first internal log scanner in a production environment will only be installed in 2011.  

Three different values were used as the initial investment made to install an internal log 

scanner.   The number of working days to break even was calculated for each estimated 

initial investment value. 

If the “practical scenario” is considered, and an initial investment of R100 million is 

considered, the breakeven point is 3458 working days.  The average working days in a 

production environment are 250.  This means the company will only start making a profit 

from their investment after almost 14 years.  
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6 Conclusion 

When a log is positioned in front of the primary breakdown station, there is a characteristic or 

a combination of different characteristics of the log that makes that a near optimal log 

position is 180º from the actual optimal.  The optimal log postion in term of skewing and 

offset, are most of the times positioned around the zero millimeter positions, but not 

necesseraly on the zero positions.  

After optimization algorithms were developed to find a near optimal log position within 

reasonable time, it was found that from all algorithms tested, the Genetic algorithm is best 

suitable for this application. 

During the analysis on the difference of optimizing the log volume recovery and value 

recovery, it was found that 5.17% more value can be earned when value is optimized.  Since 

it was not possible to simulate all possible log positions to find the global optimum log 

position, optimization algorithms were developed.  These algorithms find a near optimal log 

position.  If volume recovery is optimized an external log scanner must be installed, and 

when value is optimized, an internal log scanner needs to be installed.  The average 

increase found by these algorithms, considering a sensible number of iterations, was 6.43%.  

This shows that a significant increase in value can be achieved by installing an internal log 

scanner. 

When volume recovery is optimized it still does not mean that the global optimum will be 

achieved every time.  An optimization algorithm will also be required to find the optimum log 

position.  When volume recovery is optimized and when optimization algorithms are used, 

optimistically speaking a value increase of 5% will be achieved.  This makes the value 

increase for optimizing for value instead of volume and using optimization algorithms a mere 

1.43%.  For this reason it is at this stage not worthwhile to invest in an internal log scanner.   

Because of statements made in the two above paragraphs, both hypothesis in section 1.2 

can be confirmed as true. 

6.1 Future research 

The current study only used ten logs to test all optimization algorithms.  Even though good 

trends could be seen when the results from the different logs after running the optimization 

algorithms were compared, it would be more accurate and feasible when more logs are 
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used.  This study would also have been more accurate if three dimensional data from CT 

scanned logs have been used. 

One section of this study that can be done more thoroughly in future is the analysis of the 

economic feasibility of implementing an internal log scanner and log positioning system.  

This whole section is based on assumptions.  When such scanning devises are actually 

implemented in 2011, more information on the initial and running cost of such equipment 

would come available and more accurate calculations can be done. 
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Appendix A:  Data analysis 

Effect of log rotation 

 

 

Figure 68:  Log 1, Skewing and Offset = 0 

 

 

Figure 69:  Log 2, Skewing and Offset = 0 
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Figure 70:  Log 3, Skewing and Offset = 0 

 

 

Figure 71:  Log 4, Skewing and Offset = 0 
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Figure 72:  Log 5, Skewing and Offset = 0 

 

 

 

Figure 73:  Log 6, Skewing and Offset = 0 
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Figure 74:  Log 7, Skewing and Offset = 0 

 

 

Figure 75:  Log 8, Skewing and Offset = 0 
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Figure 76:  Log 9, Skewing and Offset = 0 

 

 

Figure 77:  Log 10, Skewing and Offset = 0 
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Table 15:  Outset from Simsaw (only a small part from log5) 

Log5 

Log rotation Log alignment Log offset Wet board volume Board value 
0 -27 -27 0.1748898 422.1058 

0 -27 -24 0.1745982 421.177 

0 -27 -21 0.1729458 416.5329 

0 -27 -18 0.1726218 415.6041 

0 -27 -15 0.1742418 420.2481 

0 -27 -12 0.1739178 419.3193 

0 -27 -9 0.1729458 416.5329 

0 -27 -6 0.173043 416.5329 

0 -27 -3 0.173043 416.5329 

0 -27 0 0.1736505 418.3905 

0 -27 3 0.1638225 390.5036 

0 -27 6 0.1657422 396.0765 

0 -27 9 0.1631178 370.8781 

0 -27 12 0.1689498 383.7561 

0 -27 15 0.1725138 392.0528 

0 -27 18 0.1725138 398.2986 

0 -27 21 0.1620018 374.3454 

0 -27 24 0.1620018 374.3454 

0 -27 27 0.1590498 367.746 

0 -24 -27 0.173043 416.5329 

0 -24 -24 0.1745982 421.177 

0 -24 -21 0.1719738 413.7464 

0 -24 -18 0.1739178 419.3193 

0 -24 -15 0.1742418 420.2481 

0 -24 -12 0.1726218 415.6041 

0 -24 -9 0.1739178 419.3193 

0 -24 -6 0.1710747 410.96 

0 -24 -3 0.173043 416.5329 

0 -24 0 0.1756674 423.9634 

0 -24 3 0.1736505 418.3905 

0 -24 6 0.1657422 396.0765 

0 -24 9 0.1631178 370.8781 

0 -24 12 0.1650618 376.451 

0 -24 15 0.1708938 387.4087 

0 -24 18 0.1725138 392.0528 

0 -24 21 0.1649538 380.9448 

0 -24 24 0.1620018 374.3454 

0 -24 27 0.1620018 374.3454 

0 -21 -27 0.1736505 418.3905 

0 -21 -24 0.1736262 418.3905 

0 -21 -21 0.1719738 413.7464 

0 -21 -18 0.1739178 419.3193 

0 -21 -15 0.1739178 419.3193 

0 -21 -12 0.1742418 420.2481 

0 -21 -9 0.1739178 419.3193 

0 -21 -6 0.1798218 436.4741 

0 -21 -3 0.1710747 410.96 

0 -21 0 0.173043 416.5329 

0 -21 3 0.1736505 418.3905 
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Table 16:  Board grade prices  

Thickness 

(mm) 

Width 

(mm) Length Grade 

Price 

per m3 

25 76 All Packaging 1566 

25 76 All Utility 2136 

25 76 All S7 3259 

25 114 All Packaging 1566 

25 114 All Utility 2136 

25 114 All S7 3259 

25 152 All Packaging 1566 

25 152 All Utility 2136 

25 152 All S7 3259 

25 228 All Packaging 1566 

25 228 All XXX 0 

25 228 All Utility 2136 

25 228 All S7 3259 

38 76 All XXX 1564 

38 76 All S5 2188 

38 76 All S7 3300 

38 76 All Clear 2445 

38 114 All XXX 1388 

38 114 All S5 2126 

38 114 All S7 3300 

38 114 All Clear 2376 

38 152 All XXX 1421 

38 152 All S5 2199 

38 152 All S7 3300 

38 152 All Clear 2457.5 

38 228 All XXX 1454 

38 228 All S5 2272 

38 228 All S7 3300 

38 228 All Clear 2539 
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Appendix B:  MATLAB code for all optimizing algorithms 

Genetic algorithm 

 
PPL = 20;  %Present Population size 
PC = 0.8;  %Probability value for Crossover 
PM = 0.1;  %Probability value for Mutation 
m = 0; 
Convert(1:PPL,1:18) = 0; 
array = xlsread('Log1_27'); 
   % PP is die Present Population 
for i=1:PPL, 
   PP(i,1:18) = round(rand(1,18));   %Creates array with PPL rows en 

18 columns 
end;  % i for loop 
% Test each chromosome in the created array whether or not it is a 

viable 
  solution 
for j =1:PPL, 
   strSk2 = 20; 
   strOf2 = 100;  
   strRo2 = 400; 
    while (strSk2>18) 
          strOf2 = 100;   
            while (strOf2>18)   
               strRo2 = 400; 
                  while (strRo2>179) 
                     PP(j,1:18) = round(rand(1,18));                     
                     Convert = PP(j,1:18) 
                     z = 1; 
                     ConvToDecGA    
                  end   % while 
        end;   % while 
  end;  % while 

  
end  % j for loop 

  
for big=1:50, %amount of times new offspring are produced 
  for k = 1:PPL  %Determine board value for each chromosome in PP 
      z = 1; 
     Convert = PP(k,1:18); 
     ConvToDecGA;   
     PP(k,19) = array(nommer,4); 
  end  % k for loop 

  
  %%Create new population 
  %Choose two parents with tournament selection method 
  Crandom = ceil(rand(1,4) * PPL)  %Generate random numbers from one 

to PPL 
if PP(Crandom(1,1),19) > PP(Crandom(1,2),19) 
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    Parent1 = PP(Crandom(1,1),1:18) 
else 
    Parent1 = PP(Crandom(1,2),1:18);  
end 
if PP(Crandom(1,3),19) > PP(Crandom(1,4),19) 
    Parent2 = PP(Crandom(1,3),1:18) 
else 
    Parent2 = PP(Crandom(1,4),1:18); 
end 

  
  %%Crossover 
CrossWF = 0; 
while CrossWF == 0 

  
 Cif = rand; 
 Cpos = 1; 
 if Cif <= PC 
    Cpos = ceil(rand * 17); %Choose place where crossover should be 

performed 
    Child1(1:Cpos) = Parent1(1:Cpos); 
    Child1(Cpos+1:18) = Parent2(Cpos+1:18); 
    Child2(1:Cpos) = Parent2(1:Cpos); 
    Child2(Cpos+1:18) = Parent1(Cpos+1:18); 
 else 
    Child1 = Parent1; 
    Child2 = Parent2; 
 end 
 % Test if Child1 gives viable solution 
 Convert = Child1; 
 ConvToDecGA; 
    if strSk2 <= 18 
        CrossWF = 1; 
    end 
    if strOf2 <= 18 && CrossWF == 1 
        CrossWF = 1; 
    else 
        CrossWF = 0; 
    end 
    if strRo2 <= 179 && CrossWF == 1 
        CrossWF = 1; 
    else 
        CrossWF = 0; 
    end 

  
% Test if Child2 gives viable solution 
 Convert = Child2; 
 ConvToDecGA; 
    if strSk2 <= 18 && CrossWF == 1 
        CrossWF = 1; 
    else 
        CrossWF = 0; 
    end 
    if strOf2 <= 18 && CrossWF == 1 
        CrossWF = 1; 
    else 
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        CrossWF = 0; 
    end 
    if strRo2 <= 179 && CrossWF == 1 
        CrossWF = 1; 
    else 
        CrossWF = 0; 
    end 
end %While CrossWF 

  
%Mutation for Child1 
MutWF = 0; 
Child1_2 = Child1 
while MutWF == 0 
   Child1_2 = Child1 
for y=1:18 
   RM = rand 
   if RM <= PM 
       if Child1(1,y) == 1 
           Child1_2(1,y) = 0 
       else 
           Child1_2(1,y) = 1 
       end 
   end 
end  % y loop     
%Mutation Child1 
 Convert = Child1_2; 
 ConvToDecGA; 
    if strSk2 <= 18 
        MutWF = 1; 
    end 
    if strOf2 <= 18 && MutWF == 1 
        MutWF = 1; 
    else 
        MutWF = 0; 
    end 
    if strRo2 <= 179 && MutWF == 1 
        MutWF = 1; 
    else 
        MutWF = 0; 
    end 

  
end  % while MutWF for Child1 

  
%Mutation Child2 
MutWF = 0; 
Child2_2 = Child2 
while MutWF == 0 
   Child2_2 = Child2 
for y=1:18 
   RM = rand 
   if RM <= PM   
       if Child2(1,y) == 1 
           Child2_2(1,y) = 0; 
       else 
           Child2_2(1,y) = 1; 

http://scholar.sun.ac.za



 
 

106 

       end 
   end 
end%  of y loop  
 Convert = Child2_2; 
 ConvToDecGA; 
    if strSk2 <= 18 
        MutWF = 1; 
    end 
    if strOf2 <= 18 && MutWF == 1 
        MutWF = 1; 
    else 
        MutWF = 0; 
    end 
    if strRo2 <= 179 && MutWF == 1 
        MutWF = 1; 
    else 
        MutWF = 0; 
    end 
end % of while MutWF for Child2 

  
z = 1; 
%Test if new offspring should replace weakest gene in population 

 
Convert = Child1_2(1,1:18) 
ConvToDecGa; 
Child1_2(1,19) = array(nommer,4) 
BVC1 = Child1_2(1,19) 
Convert = Child2_2(1,1:18) 
ConvToDecGa; 
Child2_2(1,19) = array(nommer,4) 
BVC1 = Child2_2(1,19) 
PP = sortrows(PP, -19) 
C1 = Child1_2(1,19) 
C2 = Child2_2(1,19) 
PP9 = PP(9,19) 
if Child1_2(1,19) > Child2_2(1,19) 
    if Child1_2(1,19) > PP(9,19) && Child2_2(1,19) > PP(9,19) 
       PP(PPL-1,1:19) = Child1_2(1,1:19) 
       PP(PPL,1:19) = Child2_2(1,1:19) 
    else 
        if Child1_2(1,19) > PP(PPL,19) 
            PP(PPL,1:19) = Child1_2(1,1:19) 
        end 
    end 
else 
    if Child1_2(1,19) > PP(9,19) && Child2_2(1,19) > PP(9,19) 
       PP(PPL-1,1:19) = Child2_2(1,1:19) 
       PP(PPL,1:19) = Child1_2(1,1:19) 
    else 
       if Child2_2(1,19) > PP 
          PP(PPL-1,1:19) = Child1_2(1,1:19) 
          PP(PPL,1:19) = Child2_2(1,1:19) 
       else 
          if Child2_2(1,19) > PP(PPL,19) 
              PP(PPL,1:19) = Child2_2(1,1:19) 
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          end    
       end 
    end 
end 
PP = sortrows(PP, -19) 

         
%%Write chromosome with best value to an array 
Convert = PP(1,1:18); 
ConvToDecGA; 
BVmax = PP(1,19); 
nommermax = nommer; 
Romax = strRo2*2; 
Ofmax = strOf2*3-27; 
Skmax = strSk2*3-27; 
m = m + 1;    
finalarray(m,1) = Romax; 
finalarray(m,2) = Ofmax; 
finalarray(m,3) = Skmax; 
finalarray(m,4) = BVmax; 
finalarray(m,5) = nommermax; 

   
end  %big for loop 

 

      

“ConvToDecGa” function: 

 

strSk2 = 0; 
strOf2 = 0; 
strRo2 = 0; 
Convert 
for a=5:-1:1 
   strSk2 = strSk2 + Convert(z,a)*2^(5-a); 
end 
for a=10:-1:6 
   strOf2 = strOf2 + Convert(z,a)*2^(10-a); 
end 
for a=18:-1:11 
   strRo2 = strRo2 + Convert(z,a)*2^(18-a); 
end            
nommer = strRo2*361 + 19*(strOf2) + strSk2 + 1; 

 

PBIL 

 
Big = 100; 
for final = 1:Big  %amount of times the algorithm is repeated to get 

'final' amount of answers 
LR = 0.3;   % Learning rate 
b = 23;   % number of bits in chromosome 
PV(1:18) = 0.5; 
PV2(1:18) = 0.5; 
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SVL = 20;  %Number of rows in SV 
z = 1; 
count = 0; 
for big=1:50,  %This determines how many iterations should be 

evaluated 
    for i=1:SVL, 
      SV(i,1:18) = rand(1,18);   %Creates array with SVL rows and 18 

columns 
    end 

  
%% 
% Test each chromosome in the created array whether or not it is a 

viable solution 
for z=1:SVL, 
   strSk2 = 20; 
   strOf2 = 100;  
   strRo2 = 400; 
    while (strSk2>18) 
          strOf2 = 100;   
            while (strOf2>18)   
               strRo2 = 400; 
                  while (strRo2>179) 
                     SV(z,1:18) = rand(1,18);   
                     for y=1:18  % Tests if random number is smaller 

than number in PV 
                        if SV(z,y) < PV(1,y) 
                            SV(z,y) = 1; 
                        else 
                            SV(z,y) = 0; 
                        end 
                     end      
                     Convert = SV 
                     ConvToDecPBIL2;    
                  end; 
        end; 
  end; 
     nommer = (strRo2)*361 + 19*(strOf2) + strSk2 + 1 
     BV = array(nommer,4); 
     board(1,z) = BV; 
  end;  % z for loop 
  %%  
  maxry = 1; 
  maxvalue = board(1,1); 
  for y=1:(SVL-1)  % Search the row in SV with the greatest board 

value 
      if board(1,y+1) > maxvalue 
          maxvalue = board(1,y+1); 
          maxry = y + 1; 
      end; 
  end; 
  count = count + 1 
 values(count,1) = maxvalue;         
    for x=1:18, 
       if SV(maxry,x) == 1  
          PV(1,x) = PV(1,x)*(1-LR) + SV(maxry,x)*LR; 
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         else 
          PV(1,x) = PV(1,x)*(1-LR); 
       end 
    end; 

  
  PV 
end; % of big for loop 

   

  
  %% convert PV's binary values to decimal values 
  PV 
  for x=1:18, 
      if PV(1,x) > 0.5 
          PV(1,x) = 1; 
      else 
          PV(1,x) = 0; 
      end; 
  end; 
  Convert = PV; 
  z = 1; 
  ConvToDecPBIL2;          
  nommer = strRo2*361 + 19*(strOf2) + strSk2 + 1; 
strRo2 = strRo2*2; 
strOf2 = strOf2*3-27; 
strSk2 = strSk2*3-27; 
     BV = array(nommer,4); 
     finalarray(final,1) = strRo2; 
     finalarray(final,2) = strOf2; 
     finalarray(final,3) = strSk2; 
     finalarray(final,4) = BV; 
     finalarray(final,5) = nommer; 

      
end  % big for loop 

 

ConvToDecPBIL2 function: 

strSk2 = 0; 
strOf2 = 0; 
strRo2 = 0; 
for a=5:-1:1 
   strSk2 = strSk2 + Convert(z,a)*2^(5-a) 
end 
for a=10:-1:6 
   strOf2 = strOf2 + Convert(z,a)*2^(10-a) 
end 
for a=18:-1:11 
   strRo2 = strRo2 + Convert(z,a)*2^(18-a) 
end  
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Simulated annealing 

clc 
clear all 
array = xlsread('Log1_27'); 
Fritz_algoritme_V1 
Tmin = 0; 
Tin = 5; 
Sol = maxry4 
IRo = (Sol-mod(Sol,361))/361  %Initial Rotation position , from 0 to 

179 
IOfvar = (Sol-IRo*361)-1; 
IOf = (IOfvar-mod(IOfvar,19))/19   %from 0 to 18 
ISk = Sol-IRo*361-IOf*19-1   % from 0 to 18 

  
T = Tin;  %current temperature 
m = 1; 
BV = array(Sol,4) 
val(m,1) = Sol; 
val(m,2) = BV; 
Sol = maxry4 %solution 
Ro = IRo 
Of = IOf 
Sk = ISk 
while T >= Tmin 
    for p = 1:5 
    RoTF = 0; 
    while RoTF == 0 
        ChRo = ceil((rand(1)-0.5)*2*45*(T/Tin));   %Change in 

Rotation variable (kan 90 grade na elke kant toe verander) 
        if Ro + ChRo < 0  
            RoTF = 0; 
        else 
           if Ro + ChRo > 179  
               RoTF = 0; 
           else 
               RoTF = 1; 
               Ro = Ro + ChRo; 
           end 
        end 
    end 
    OfTF = 0; 
    while OfTF == 0 
        ChOf = ceil((rand(1)-0.5)*2*9*(T/Tin));   %Change in 

Rotation variable 
        if Of + ChOf < 0  
            OfTF = 0; 
        else 
           if Of + ChOf > 18  
               OfTF = 0; 
           else 
               OfTF = 1; 
               Of = Of + ChOf; 
           end 
        end 
    end 

http://scholar.sun.ac.za



 
 

111 

    SkTF = 0; 
    while SkTF == 0 
        ChSk = ceil((rand(1)-0.5)*2*9*(T/Tin));   %Change in 

Rotation variable 
        if Sk + ChSk < 0  
            SkTF = 0; 
        else 
           if Sk + ChSk > 18  
               SkTF = 0; 
           else 
               SkTF = 1; 
               Sk = Sk + ChSk; 
           end 
        end 
    end 
    Ro 
    Of 
    Sk 
    SolN = Ro*361 + Of*19 + Sk + 1  %New solution 
    BVN = array(SolN,4) 
 % for K = 1:10  
    delta = BV - BVN;  % BVN = Board Value New 
    if delta < 0 
        Sol = SolN;  % SolN = Solution New 
        BV = BVN; 
        m = m + 1 
        val(m,1) = Sol; 
        val(m,2) = BVN; 
    else 
        Pe = rand(1)  % Pe = Probability to accept solution 
        if Pe < exp(-delta/T) 
            Sol = SolN; 
            BV = BVN; 
            m = m + 1 
            val(m,1) = Sol; 
            val(m,2) = BVN; 
        else 
        end    
    end 
  %end 
  end 
  T = T - 0.1 
end 

  

  

 

Cross-Entropy method 

function SawWood 

  
NumVars=3; PopSize = 50; varrho=0.75; 
N(1) = 180; N(2) = 19; N(3) = 19; 
Solutions = xlsread('Log1_27.xls'); 
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    estimated_gamma = -1000000; Terminate = 0; 
for i=1:NumVars 
    Pr(1:N(i), i)=1/N(i); 
end  %i 
WorkArea(1:PopSize, 1:NumVars+1)=0; 
tic 
for z=1:50 
for j=1:NumVars 
    for i=1:PopSize 
        TempR = rand; 
        CumSum = 0; 
        for k=1:N(j) 
            CumSum = CumSum + Pr(k, j); 
            if CumSum >= TempR, break, end 
        end  %j 
        WorkArea(i,j) = k; 
    end 
end  %i 
%Calc indices: 
WorkArea(:,1) = 2*(WorkArea(:,1) - 1); 
WorkArea(:,2:3) = 3*(WorkArea(:,2:3) - 1) - 27; 
%Lookup the objective associated with the three-combo of indices: 
for i=1:PopSize 
    Index = 361*WorkArea(i,1)/2 + 19*(WorkArea(i, 2)+27)/3 + 

(WorkArea(i, 3)+27)/3 + 1; 
    WorkArea(i, NumVars+1) = Solutions(Index, NumVars+1); 
end  %i 
%Sort for CEM: 
WorkArea = sortrows(WorkArea, -(NumVars+1)); 
%Get proportions of each index in top varrho group: 
N1 = round(PopSize*varrho); 
SampleSize = PopSize - N1; 
Sample=[]; 
Sample = WorkArea(1:PopSize-N1,:); 

  
Last_estimated_gamma = estimated_gamma; 
estimated_gamma = Sample(1, NumVars+1) 
if Last_estimated_gamma == estimated_gamma, Terminate = Terminate + 

1; end 
if Terminate > 5, break, end 
Stdev = std(Sample(:,NumVars+1)); 

     
for j=1:NumVars 
    if j==1 
       Bins(1:N(j)) = 2*((1:N(j)) - 1); %Maps onto 0 to 358 degrees 
    else 
       Bins = 3*((1:N(j))-1) - 27;  %Maps onto -27 to +27 in steps 

of 3. 
    end 
    H = hist(Sample(:,j), Bins);  
    for k=1:N(j) 
        PrevPr = Pr(k, j); 
        Pr(k, j) = Pr(k, j) + H(k)/SampleSize; 
        Pr(k, j) = 0.75*Pr(k, j) + 0.25*PrevPr; 
    end  %i     
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end 

  
end %z 

  
toc 
z 
Sample(1,:) 
end  % SawWood 

 

Alternative algorithm version 10 

array = xlsread('Log1_27'); 
count = 0; 
%Determine max when every 10degrees are tested 
for z=1:36 
   grade(1,z) = array(181+(z-1)*1805,4); 
end 
grade 
  maxrycount = 1; 
  maxvalue = grade(1,1) 
  for y=1:35, 
      if grade(1,y+1) > maxvalue 
          maxvalue = grade(1,y+1); 
          maxrycount = y + 1; 
      end; 
  end; 
  maxry = (maxrycount-1)*1805+181 
  maxvalue = array(maxry,4);  %stores monetary value of max 
count = count + 1; 
 values(count,1) = maxvalue;  
 values(count,2) = maxry; 
  maxry1 = maxry; 

  

   
  %Determines max offset at maxry (degrees) 
  for x=0:18,    
     offset(1,x+1) = array(maxry+19*(x-9),4); 
  end 
  maxryOf = 1; 
  maxvalue = offset(1,1); 
  for y=1:18, 
      if offset(1,y+1) > maxvalue 
          maxvalue = offset(1,y+1); 
          maxryOf = y + 1; 
      end; 
  end; 
  offset; 
  maxryOf = maxry + (maxryOf-10)*19; 
 count = count + 1; 
 values(count,1) = maxvalue;  
 values(count,2) = maxryOf; 
  %Determine max skewing at max offset 
    for x=0:18,    
     skew(1,x+1) = array(maxryOf+(x-9),4); 
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  end 
  maxry4 = 1; 
  maxvalue = skew(1,1); 
  for y=1:18, 
      if skew(1,y+1) > maxvalue 
          maxvalue = skew(1,y+1); 
          maxry4 = y + 1; 
      end; 
  end; 
  skew; 
  maxry4; 
  maxry4 = maxryOf + (maxry4-10); 
           count = count + 1; 
 values(count,1) = maxvalue;  
 values(count,2) = maxry4; 

   
  %Determine max degrees at above offset en skewing, 44 degrees to 

each side, with increments of 4degrees 
for z=1:23 
    ry(1,z) = maxry4+(z-1)*722-7942; 
    if ry(1,z) < 0 
        grade(1,z) = array(64981+ry(1,z),4); 
    else 
        if maxry4+(z-1)*722-7942 > 64980 
            grade(1,z) = array(maxry4+(z-1)*722-7942-64980,4); 
        else 
            grade(1,z) = array(maxry4+(z-1)*722-7942,4); 
        end 
    end 
end 
  maxrycount = 1; 
  maxvalue = grade(1,1); 
  for y=1:22, 
      if grade(1,y+1) > maxvalue 
          maxvalue = grade(1,y+1); 
          maxrycount = y + 1; 
      end; 
  end; 
  grade; 
  maxry = ry(1,maxrycount); 
  maxvalue = array(maxry,4); 
           count = count + 1; 
 values(count,1) = maxvalue;  
 values(count,2) = maxry; 

  
  %Determine max offset at maxry2 (degrees) 
  for x=0:18,    
     offset_1(1,x+1) = array(maxry2+19*(x-9),4); 
  end 
  maxry3_1 = 1; 
  maxvalue2 = offset_1(1,1); 
  for y=1:18, 
      if offset_1(1,y+1) > maxvalue2 
          maxvalue2 = offset_1(1,y+1); 
          maxry3_1 = y + 1; 
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      end; 
  end; 
  offset_1; 
  maxry3_1 = maxry2 + (maxry3_1-10)*19; 
  maxvalue2 = array(maxry3_1,4); 
           count = count + 1; 
 values(count,1) = maxvalue2;  
 values(count,2) = maxry3_1; 
  %Determine max skewing at max offset 
    for x=0:18,    
     skew_1(1,x+1) = array(maxry3_1+(x-9),4); 
  end 
  maxry4_1 = 1; 
  maxvalue2 = skew_1(1,1); 
  for y=1:18, 
      if offset_1(1,y+1) > maxvalue2 
          maxvalue2 = skew_1(1,y+1); 
          maxry4_1 = y + 1; 
      end; 
  end; 
  maxry4_1 = maxry3_1 + (maxry4_1-10); 
  maxvalue2 = array(maxry4_1,4); 
           count = count + 1; 
 values(count,1) = maxvalue2;  
 values(count,2) = maxry4_1; 
  %Determine max degrees at above offset and skewing, 44degrees to 

each side, with increments of 4 degrees 
for z=1:23  
    ry(1,z) = maxry4_1+(z-1)*722-7942;  %create array 'ry' which 

stores the row value that needs to be evaluated 
    if ry(1,z) < 0  %test of row values are negative or too big, and 

chances it accordingly 
        grade(1,z) = array(64981-ry(1,z)); 
    else 
        if maxry4_1+(z-1)*722-7942 > 64980 
            grade(1,z) = array(maxry4_1+(z-1)*722-7942-64980,4); 
        else 
            grade(1,z) = array(maxry4_1+(z-1)*722-7942,4); 
        end 
    end 
end 
  maxrycount = 1; 
  maxvalue2 = grade(1,1); 
  for y=1:22, 
      if grade(1,y+1) > maxvalue2 
          maxvalue2 = grade(1,y+1); 
          maxrycount = y + 1; 
      end; 
  end; 
  maxry_1 = ry(1,maxrycount); 
  maxvalue2 = array(maxry_1,4); 
           count = count + 1; 
 values(count,1) = maxvalue2;  
 values(count,2) = maxry_1; 
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  maxvalue 
  if maxvalue > maxvalue2 
      absmax = maxvalue 
      absmaxry = maxry4; 
  else 
      absmax = maxvalue2 
      absmaxry = maxry_1; 
  end 
     count = count + 1; 
   values(count,1) = absmax;  
 values(count,2) = absmaxry; 
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