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Summary 

Summary 

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis, and 

their associated symbiotic bacteria Xenorhabdus and Photorhabdus, are efficient biological 

control agents, due to their ease of culture, high rate of fatality caused against key pests, and 

safety. However, the large-scale commercial utilisation of EPNs as biological control agent, in 

integrated pest management (IPM) programmes, is limited by their finite shelf life, both in storage 

and formulations. Thus, efficient formulation of EPNs is essential in IPM strategies. To achieve 

this, nematode survival mechanisms, in terms of heat and cold tolerance, desiccation, osmotic 

stress / water activity (aw), hypoxia, and energy reserves, or in formulation, and their influence on 

the formulation of EPNs, as well as in maintaining the quality of EPN products, should be 

investigated.  

In this case, South African EPN species, including Steinernema yirgalemense, S. jeffreyense 

and Heterorhabditis bacteriophora, were investigated regarding their role in formulations 

according to various formulation techniques. These included the encapsulation of the infective 

juveniles (IJs) in alginate beads, as well as the use of diatomaceous earth (DE) at 6°C, 14°C and 

25°C, for 4 weeks. The beads successfully retained most of the IJs with a longer storage capacity, 

while the survival rate for DE was still high (80%) by the fourth week. 

 The three EPN species researched revealed poor survival and loss of virulence at low 

temperatures, for both formulations. The optimisation process involved testing for the viability of 

S. yirgalemense at room temperature, and at a higher density in DE after 4 weeks, in addition to 

the direct effect of antifungal agents on its efficacy. Microbial contamination unequivocally lowers 

the quality and shelf life of EPNs in formulations. Peroxyacetic acid (PAA), trans-cinnamic acid 

(TCA) and nipagin were measured as antifungal agents in the study. A decline in the survival rate 

and pathogenicity of S. yirgalemense, due to PAA, was reported. In contrast, TCA and nipagin 

did not affect the survival rate and pathogenicity of S. yirgalemense. The shelf life of IJs stored in 

DE formulation at room temperature improved, when measured against the 80% mean survival 

rate of S. yirgalemense in week 4 at 25°C. There is lack of information on the respiratory 

physiology of the nematode/bacterium complex of EPNs during production, storage, and 

formulation. Equally important, low oxygen supply jeopardises their survival. The present study 

determined, by means of basal measurement, the specific oxygen consumption rate (OCR) of the 

IJs of S. yirgalemense, S. jeffreyense, and H. bacteriophora, using fibre-optic sensors. The results 

showed that nematode size inversely influences its OCR, with smaller nematodes, with a higher 

surface-area-to-volume ratio than larger nematodes, having a higher OCR. Steinernema 
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jeffreyense and S. yirgalemense did not significantly differ from each other in terms of the results 

obtained, probably due to their proximity in size, with the former being slightly larger than the 

latter, but they differed significantly from H. bacteriophora.  

Water activity (aw), as a determinant of microbial contamination, as well as desiccation, was 

investigated in relation to the quality and shelf life of EPNs in formulation. In the current study, the 

concept of determining moisture content at the corresponding aw-values, using the Guggenheim-

Anderson-Boer (GAB) isotherm model, has been studied concerning DE, as well as the survival 

of S. yirgalemense. Scanning electron microscopy was employed to determine the effect of DE 

on S. jeffreyense during storage in formulation. A decline in the survival rate of S. yirgalemense 

at high aw-values, due to bacterial sporulation and toxin production, was reported. Scanning 

micrographs depicted a strong desiccative effect of DE on S. jeffreyense, exceeding rejuvenation 

on the addition of water. Desiccation was random and limited in terms of distribution throughout 

the sample.  

Lastly, but of equal importance, because virulence remains the key standard for the 

measurement of nematode quality and is often determined through using either one-on-one or 

sand-well bioassays, which are costly in terms of laboratory consumables and time, new 

alternatives have been investigated. The potential for quality control of formulated S. jeffreyense 

and S. yirgalemense in DE, and the characterisation of different species using attenuated total 

reflectance (ATR), in conjunction with Fourier-transform infrared spectroscopy (FTIR) and 

hyperspectral imaging (HSI) tools, have been investigated. Such tools have a proven wide 

application in other fields of research, due to their quick, non-destructive and effective quality 

control techniques. Results report, for the first time, the use of ATR-FTIR spectral analysis in 

detecting chemometric changes in the formulated EPN product, and changes occurring over time, 

during storage. Such changes are mainly for purposes of nematode survival, due to environmental 

stresses. HSI tools were able to differentiate between variables, in terms of differences in 

nematode densities in the formulated sample. For EPN characterisation, the study reports close 

similarities among the species, as detected by the ATR-FTIR.  

The above findings provide a much-required working formulation for the commercial 

application of EPN. However, much research still needs to be done, especially in areas such as 

the use of fibre-optic sensors for oxygen measurement, ATR-FTIR and HSI in quality control to 

draw realistic and meaningful conclusions.  
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Opsomming 

Opsomming 

Entomopatogeniese nematodes (EPNs) van die genera Steinernema en Heterorhabditis, 

tesame met hul geassosieerde simbiotiese bakterieë, is welbekende effektiewe biologiese beheer 

agente. Dit word toegeskryf aan die gemak waarmee hul aangeteel kan word, hul sukses in die 

beheer van belangrike pes insekte, asook hul veiligheid. Die kommersiële gebruik van EPNs as 

ŉ biologiese beheermiddel in geïntegreerde pes beheer (GPB) programme word egter 

gekniehalter deur hul beperkte rakleeftyd na formulering en opberging. Die effektiewe formulasie 

van EPNs is dus noodsaaklik vir GPB strategieë. Om die formulasie van EPNs te optimaliseer, 

moet die oorlewingsmeganismes van nematodes ondersoek word in terme van hitte en koue 

toleransie, uitdroging, osmotiese stres / water aktiwiteit (aw), hipoksie en energie reserwes, asook 

die invloed daarvan op die formulasie van EPNs en die handhaaf van die kwaliteit van EPN 

produkte.  

In hierdie studie was drie Suid-Afrikaanse EPN spesies, Steinernema yirgalemense, S. 

jeffreyense en Heterorhabditis bacteriophora ondersoek vir faktore wat hul formulering sal 

beïnvloed, volgens verskillende formulasie tegnieke. Die twee tegnieke wat ondersoek was, was 

die formulering van infektiewe larwes (ILs) in alginaat korrels, asook die gebruik van diatomiet, 

by 6°C, 14°C en 25°C, vir 4 weke. Die korrels het die meeste van die ILs suksesvol binne gehou 

en ook ŉ langer bergingskapasiteit gehad, terwyl die oorlewings van die nematodes in diatomiet 

steeds hoog was (80%) teen die vierde week.  

 Al drie EPN spesies het lae oorlewingsgetalle en verminderde infektiwiteit getoon by laer 

temperature, in beide formulasies. Die optimaliseringsproses was gefokus daarop om die 

lewensvatbaarheid te toets van S. yirgalemense by kamertemperatuur, asook in diatomiet by ‘n 

hoër temperatuur na 4 weke, tesame met die direkte effek van teen-swam middels op die 

effektiwiteit van die nematode. Mikrobiese kontaminasie verlaag die kwaliteit en rakleeftyd van 

EPNs in formulasie. Peracetic suur (PAS), trans-kaneel suur (TKS) en Nipagin was die teen-

swam middels wat getoets was in hierdie studie. Resultate het getoon dat PAS gelei het tot ŉ 

afname in die oorlewing en infektiwiteit van S. yirgalemense. TKS en Nipagin het egter nie 

oorlewing of infektiwiteit beïnvloed nie. Die rakleeftyd van ILs wat gestoor was in diatomiet by 

kamertemperatuur het verbeter, teenoor die 80% gemiddelde oorlewingskoers van S. 

yirgalemense in week 4 by 25°C. Daar is ŉ tekort aan informasie oor die respiratoriese fisiologie 

van die nematode/bakterieë kompleks van EPNs gedurende produksie, berging en formulering. 

Dit is wel bekend dat lae suurstof vlakke in die formulasie die oorlewing van die nematodes 

benadeel. Met gebruik van veseloptiese sensors en basale metings, is die spesifieke koers 

waarteen suurstof verbruik word deur die ILs van S. yirgalemense, S. jeffreyense en H. 
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bacteriophora, bepaal. Resultate het getoon dat nematode grootte ŉ omgekeerde effek het op 

suurstofverbruik, wat beteken dat kleiner nematodes wat ŉ hoër oppervlak-tot-volume verhouding 

gehad het, hoër suurstofverbruik getoon het. Daar was nie ŉ beduidende verskil in die 

suurstofverbruik resultate van S. jeffreyense en S. yirgalemense nie, moontlik omdat hulle bykans 

dieselfde grootte is, met S. jeffreyense wat effens groter is as S. yirgalemense. Albei het wel 

beduidende verskille getoon in vergelyking met die suurstofverbruik van H. bacteriophora.  

Water aktiwiteit (aw) as ŉ bepaler van mikrobiese kontaminasie, sowel as uitdroging, was 

ondersoek met betrekking tot die kwaliteit en rakleeftyd van EPNs in formulasie.  In die huidige 

studie, is die konsep van die bepaling van vog inhoud by ooreenstemmende aw waardes 

ondersoek in diatomiet, deur gebruik te maak van die Guggenheim-Anderson-Boer (GAB), sowel 

as die oorlewing van S. yirgalemense. Skandeer elektron mikroskopie is gebruik om die effek van 

diatomiet op S. jeffreyense te ondersoek in berging, sowel as in formulasie. Die resultate het ŉ 

afname getoon in die oorlewing van S. yirgalemense by hoë aw-waardes, as gevolg van die groei 

van bakterieë en toksien produksie. Skandeer mikrograwe het getoon dat diatomiet ŉ sterk 

uitdrogingseffek het op S. jeffreyense, sterker as die herstelproses van die nematode wat 

plaasgevind het wanner water bygevoeg was. Uitdroging was lukraak en beperk in terme van 

verspreiding deur die monster. 

Die laaste deel van die studie was gefokus op die infektiwiteit van die nematode. Infektiwiteit 

is een van die belangrikste faktore in die bepaling van die kwaliteit van nematodes en word 

gewoonlik getoets met een-tot-een of sand biotoetse. Hierdie metodes verg egter baie tyd in 

terme van laboratorium verbruiksgoedere, wat gelei het tot die ontwikkeling van nuwe metodes. 

Die potensiaal vir die kwaliteitsbeheer S. jeffreyense en S. yirgalemense, geformuleer in 

diatomiet, asook die karakterisering van verskillende spesies is ondersoek, met gebruik van 

verswakte totale refleksie (VTR) tesame met Fourier-transformasie infrarooi (FTIR) spektroskopie 

asook hiperspektrale beeldanalise (HSB) tegnieke. Hierdie metodes word algemeen gebruik in 

ander navorsingsvelde, as gevolg van hul vinnige, nie-afbrekende en effektiewe kwaliteitsbeheer 

tegnieke. Die resultate toon dat VTR-FTIR spektrale analise vir die eerste keer gebruik was om 

chemometriese veranderinge op te spoor in die geformuleerde EPN produk, sowel as 

veranderinge oor tyd gedurende berging. Die funksie van sulke veranderinge is meestal vir die 

oorlewing van nematodes, as gevolg van omgewingstres. HSB tegnieke was suksesvol gebruik 

om te onderskei tussen veranderlikes, in terme van verskille in nematode digthede in die 

geformuleerde voorbeeld. In terme van die karakterisering van EPNs soos ondersoek deur die 

VTR-FTIR, het die resultate nabye ooreenkomste tussen spesies getoon.  

Die bevindinge van die studie verskaf ŉ belangrike werkende formulasie vir die kommersiële 

gebruik van EPNs. Baie navorsing moet egter steeds gedoen word, veral in areas soos die 

gebruik van veseloptiese sensors vir die meet van suurstofvlakke, VTR-FTIR en HSB in 

kwaliteitsbeheer, om betekenisvolle gevolgtrekkings te kan maak.  

Stellenbosch University  https://scholar.sun.ac.za



vii 

 
 

 

 

 

 

This dissertation is dedicated in the loving memory of my late mom Florence Nalwoga and the 

power of her broken cup that has been a driving force in my academics. 

  

Stellenbosch University  https://scholar.sun.ac.za



viii 

 

Biographical sketch 

Biographical sketch 

My name is Nicholas Kagimu and I’m a Ugandan. I hold a BSc (Honours) in Horticulture, Makerere 

University 2009, and MSc in Nematology, Ghent University, 2015. With a PhD completed, I look 

forward to postdoctoral research leading to full lectureship and University academic career as 

well as industry. 

  

Stellenbosch University  https://scholar.sun.ac.za



ix 

 

Acknowledgements 

Acknowledgement  

I wish to express my sincere gratitude and appreciation to the following persons and institutions: 

• This research was funded by NemaBio to which end I’m highly gratified and the 

Technology and Human Resources for Industry Programme (THRIP grant number: 

TP14062571871) 

• The wonderful supervision rendered by Professor Antoinette P Malan 

• The Department of Conservation Ecology and Entomology for the facilities 

• Prof DG Nel for assistance with statistical analysis 

• Dr Divann Robertson, Dr Pfukwa Hellen, and Magagula Sifiso (Department of Polymer 

Science for their FTIR analysis and facilitation 

• Dr Janine Colling (Vibrational Spectroscopy) Central Analytical Facilities (CAF) 

• Prof Lydia-Marie Joubert (Electron Microscopy) Central Analytical Facilities (CAF) 

• I wish to thank, Sheila, Murray, Matia and Kim, for their technical support 

• My family, friends, and all colleagues in the nematology laboratory for moral support 

  

Stellenbosch University  https://scholar.sun.ac.za



x 

 

Preface 

Preface 

This dissertation is presented as a compilation of seven chapters. Each chapter is introduced 

separately and is written according to the style of the Journal Nematology. 

  

Chapter 1  General Introduction, Literature review and project aims 

  The attributes of survival in the formulation of entomopathogenic nematodes 
utilised as insect biocontrol agents  

Chapter 2  Research results 

  Formulation of Steinernema yirgalemense, S. jeffreyense and Heterorhabditis 
bacteriophora in alginate beads and diatomaceous earth 

Chapter 3  Research results 

  Effect of antifungal agents on the efficacy of Steinernema yirgalemense and 
room temperature storability in diatomaceous earth 

Chapter 4  Research results 

  Basal metabolic oxygen consumption rate measurements for 
entomopathogenic nematodes, using fibre-optic sensors 

Chapter 5  Research results 

  Effect of water activity and desiccation on the stability of Steinernema 
yirgalemense and S. jeffreyense formulated in diatomaceous earth at room 
temperature 

Chapter 6  Research results 

  Potential of attenuated total reflectance-Fourier transform infrared 
spectroscopy and hyperspectral imaging techniques for quality testing of 
formulated entomopathogenic nematodes 

Chapter 7  General discussion and conclusions 

Stellenbosch University  https://scholar.sun.ac.za



xi 

 

Table of Contents 

Table of contents 

Summary ........................................................................................................................................ iii 
Opsomming ..................................................................................................................................... v 
Biographical sketch ...................................................................................................................... viii 
Acknowledgement .......................................................................................................................... ix 
Preface ............................................................................................................................................. x 

Formulation of Steinernema yirgalemense, S. jeffreyense and Heterorhabditis bacteriophora in 

alginate beads and diatomaceous earth ........................................................................................... x 
Table of contents ............................................................................................................................ xi 
List of tables ................................................................................................................................. xiv 

Table of Figures ............................................................................................................................ xv 
Chapter 1 ......................................................................................................................................... 1 
Literature review ............................................................................................................................. 1 
The attributes of survival in the formulation of entomopathogenic nematodes utilised as insect 

biocontrol agents ............................................................................................................................. 1 
Abstract ........................................................................................................................................... 1 
Introduction ..................................................................................................................................... 2 
Factors affecting nematode survival ............................................................................................... 3 

HEAT AND COLD TOLERANCE ........................................................................................................... 4 
OSMOTIC STRESS .............................................................................................................................. 5 

Desiccation ...................................................................................................................................... 5 

Hypoxia ........................................................................................................................................... 6 

BIOCHEMICAL ENERGY RESERVES AND SURVIVAL ............................................................................ 7 
CULTURE METHOD ........................................................................................................................... 9 
ANTIMICROBIAL AGENTS ................................................................................................................ 10 

Storage, formulations and application ........................................................................................... 10 
Quality Assessment ....................................................................................................................... 15 

Conclusion ..................................................................................................................................... 18 
Aim of the study ............................................................................................................................ 19 
References ..................................................................................................................................... 19 
Chapter 2 ....................................................................................................................................... 31 

Formulation of Steinernema yirgalemense, S. jeffreyense and Heterorhabditis bacteriophora in 

alginate beads and diatomaceous earth ......................................................................................... 31 

Abstract ......................................................................................................................................... 31 
Introduction ................................................................................................................................... 32 
Materials and methods .................................................................................................................. 35 
SOURCE OF NEMATODES AND HOST INSECTS .................................................................................. 35 
FORMULATION IN ALGINATE BEADS ............................................................................................... 36 

RATE OF NEMATODE ESCAPED FROM ALGINATE BEADS .................................................................. 36 
Pathogenicity of IJs stored in alginate beads ................................................................................ 37 
FORMULATING USING DIATOMACEOUS EARTH ............................................................................... 38 
SURVIVAL OF NEMATODES IN DIATOMACEOUS EARTH .................................................................... 38 
STATISTICAL ANALYSIS .................................................................................................................. 39 

Results ........................................................................................................................................... 39 
RATE OF NEMATODE ESCAPED FROM ALGINATE BEADS .................................................................. 39 

PATHOGENICITY OF IJ STORED IN ALGINATE BEADS ....................................................................... 41 
SURVIVAL IN DIATOMACEOUS EARTH ............................................................................................. 43 
Effect of temperature on the survival of EPNs in diatomaceous earth ......................................... 43 
Desiccative effect of diatomaceous earth on the survival of EPNs ............................................... 44 
Overall survival rate in diatomaceous earth at different temperatures .......................................... 45 

Stellenbosch University  https://scholar.sun.ac.za



xii 

 

Discussion ..................................................................................................................................... 46 

References ..................................................................................................................................... 48 
Chapter 3 ....................................................................................................................................... 53 
Effect of antifungal agents on the efficacy of Steinernema yirgalemense and room temperature 

storability in diatomaceous earth ................................................................................................... 53 

Abstract ......................................................................................................................................... 53 
Introduction ................................................................................................................................... 54 
Materials and methods .................................................................................................................. 55 
SOURCE OF NEMATODES AND HOST INSECTS .................................................................................. 55 
FORMULATING USING DIATOMACEOUS EARTH ............................................................................... 56 

SURVIVAL OF NEMATODES IN DIATOMACEOUS EARTH .................................................................... 57 
ANTIFUNGAL TOXICITY SCREENING ................................................................................................ 57 

EFFECT OF ANTIFUNGAL AGENT ON IJ PATHOGENICITY .................................................................. 57 

STATISTICAL ANALYSES ................................................................................................................. 58 
Results ........................................................................................................................................... 58 
ANTIFUNGAL AGENT TOXICITY SCREENING .................................................................................... 58 
Effect of antifungal agent on IJ pathogenicity .............................................................................. 59 
SURVIVAL OF NEMATODES IN DIATOMACEOUS EARTH .................................................................... 60 

Discussion ..................................................................................................................................... 61 
References ..................................................................................................................................... 63 
Chapter 4 ....................................................................................................................................... 68 
Basal metabolic oxygen consumption rate measurements for entomopathogenic nematodes, using 

fibre-optic sensors ......................................................................................................................... 68 

Abstract ......................................................................................................................................... 68 
Introduction ................................................................................................................................... 69 
Materials and methods .................................................................................................................. 72 

SOURCE OF ORGANISM ................................................................................................................... 72 
OXYGEN CONSUMPTION RATE MEASUREMENTS.............................................................................. 73 

STATISTICAL ANALYSIS .................................................................................................................. 73 
Results ........................................................................................................................................... 73 
Discussion ..................................................................................................................................... 76 

References ..................................................................................................................................... 78 
Chapter 5 ....................................................................................................................................... 85 

Effect of water activity and desiccation on the stability of Steinernema yirgalemense and S. 

jeffreyense formulated in diatomaceous earth at room temperature ............................................. 85 
Abstract ......................................................................................................................................... 85 
Introduction ................................................................................................................................... 86 

Materials and methods .................................................................................................................. 90 
SOURCE OF NEMATODES AND HOST INSECTS .................................................................................. 90 
EQUILIBRATING DE WITH THE AW-VALUE OF A SATURATED SOLUTION .......................................... 91 
FORMULATING NEMATODES IN DE FOR SEM ANALYSIS DESEM ..................................................... 91 
SURVIVAL OF NEMATODES IN DE AT DIFFERENT AW ....................................................................... 92 

CALCULATION OF AW FROM THE MODEL FIT OF GAB ..................................................................... 92 
SEM OF THE FORMULATED IJS (DESEM) ......................................................................................... 93 
DATA ANALYSIS ............................................................................................................................. 94 

Results ........................................................................................................................................... 94 
SURVIVAL OF NEMATODES IN DE AT DIFFERENT AW LEVELS ........................................................... 94 
CALCULATION OF AW FROM THE MODEL FIT OF GAB ..................................................................... 96 
SEM OF FORMULATED IJS (DESEM) ................................................................................................ 97 

Discussion ..................................................................................................................................... 99 
References ................................................................................................................................... 102 
Chapter 6 ..................................................................................................................................... 109 

Stellenbosch University  https://scholar.sun.ac.za



xiii 

 

Potential of attenuated total reflectance-Fourier transform infrared spectroscopy and hyperspectral 

imaging techniques for quality testing of formulated entomopathogenic nematodes ................. 109 
Abstract ....................................................................................................................................... 109 
Introduction ................................................................................................................................. 110 
Materials and methods ................................................................................................................ 111 

SOURCE OF NEMATODES AND HOST INSECTS ................................................................................ 111 
FORMULATING USAGE OF DIATOMACEOUS EARTH ........................................................................ 112 
EXPERIMENTAL PROCEDURE ........................................................................................................ 112 
DATA ANALYSIS ........................................................................................................................... 113 
Results ......................................................................................................................................... 115 

FTIR-ATR ANALYSIS OF EPN FORMULATED IN DE ..................................................................... 115 
FACTOR ANALYSIS OF THE FTIR SPECTRUM IN ASSESSING THE QUALITY OF FORMULATED IJS .... 120 

ADDITIONAL FTIR-ATR ANALYSIS FOR WEEKS 2 AND 4 ............................................................. 122 

EPN CHARACTERISATION USING FTIR-ATR ............................................................................... 123 
FACTOR ANALYSIS OF THE FTIR SPECTRA IN ASSESSING EPNS .................................................... 124 
CLUSTER ANALYSIS OF EPN SPECIES ........................................................................................... 126 
HYPERSPECTRAL IMAGING ........................................................................................................... 127 
SWIR – no glass with SNV correction and PCA model pixel-wise analysis ............................. 127 

SWIR – no glass with SNV correction and PCA model object-wise analysis ............................ 129 
Discussion ................................................................................................................................... 131 
References ................................................................................................................................... 134 
Chapter 7 ..................................................................................................................................... 139 

General discussion and conclusion ............................................................................................. 139 

Appendix 1 .................................................................................................................................. 143 
 

  

Stellenbosch University  https://scholar.sun.ac.za



xiv 

 
List of tables 

Table 2.1. The strain, origin, mean body length, width and mass of the infective juveniles of 
different Steinernema and Heterorhabditis species. ................................................................. 35 

Table 4.1. Steinernema and Heterorhabditis species, their origin, mean body length and width of 
the IJs concerned. .................................................................................................................... 72 

Table 5.1. Water content and aw from the model fit of GAB to the desorption isotherms of a silty 
clay loam soil. ........................................................................................................................... 97 

Table 6.1.The spectral interpretations for Steinernema jeffreyense in diatomaceous earth over 
time. ....................................................................................................................................... 117 

 

  

Stellenbosch University  https://scholar.sun.ac.za



xv 

 
Table of Figures 

Fig. 2. 1.Alginate bead external gelation and formulation process. ........................................... 37 

Fig. 2. 2. Diatomaceous earth formulation process. ................................................................. 38 

Fig. 2. 3. Mean number of infective juveniles (IJs) (95% confidence level) that moved out of the 
beads after 4 weeks in respect of S. jeffreyense, H. bacteriophora and S. yirgalemense. Different 
letters above the bars indicate significant differences (p < 0.05). .............................................. 40 

Fig. 2. 4. Mean percentage mortality (95% confidence level) of Galleria mellonella inoculated with 
the infective juveniles of Steinernema jeffreyense, Heterorhabditis bacteriophora and S. 
yirgalemense, formulated and stored in alginate beads at different temperatures for four weeks 
(F (6, 108) = 22.164, p < 0.001). Mean separated by Games-Howell post hoc test; Error: Between 
MSE = 188.49, df = 108.00. Different letters above the bars indicate significant differences (p < 
0.05). ........................................................................................................................................ 41 

Fig. 2. 5. Mean percentage survival rate (95% confidence level) of EPNs in diatomaceous earth 
at different temperatures during the 4 weeks, with the repeated-measures two-way ANOVA: (F (6, 

171) = 171.89, p < 0.0001). Mean separated by Fisher’s least significant difference (LSD) post hoc 
test; Error: Between; Within; Pooled MS = 46.642, df = 211.53. Different letters above the bars 
indicate significant differences. ................................................................................................. 43 

Fig. 2. 6 Mean percentage survival (95% confidence level) infective juveniles of Steinernema 
yirgalemense, Heterorhabditis bacteriophora, and S. jeffreyense in diatomaceous earth at 
different temperatures during the 4 weeks, and repeated-measures two-way ANOVA: (F (6, 531) = 
8.4622, p < 0.0001). Mean separated by Fisher’s least significant difference (LSD) post hoc test; 
Error: Between; Within; Pooled MS = 416.77, df = 293.30. Different letters above the bars indicate 
significant differences (P < 0.05). ............................................................................................. 44 

Fig. 2. 7. Mean percentage survival (95% confidence level) of S. yirgalemense, H. bacteriophora, 
and S. jeffreyense IJs in diatomaceous earth at different temperatures during the 4 weeks and 
repeated measures two-way ANOVA: (F (12, 513) = 32.860, p < 0.0001). Mean separated by Fisher’s 
least significant difference (LSD) post hoc test; Error: Between; Within; Pooled MS = 48.306, df = 
666.44. The same letter above the bar indicates no significant difference. Different letters above 
the bars indicate significant differences (p < 0.05). ................................................................... 46 

Fig. 3.1. Diatomaceous earth formulation process………….. ……………………………...56 

Fig. 3.2. Mean percentage survival (95% confidence level) of S. yirgalemense infective juveniles 
(IJs) after 24 h in the antifungal agents peroxyacetic acid (PAA), trans-cinnamic acid (TCA) and 
nipagin (F (2, 435) = 2174.1, p < 0.001). Mean separated by Games-Howell post hoc test; error: 
between MSE = 116.91, df = 435.00. Different letters above the bars indicate significant 
differences (p < 0.05). .............................................................................................................. 59 

Fig. 3.3. Mean percentage mortality (95% confidence level) of Galleria mellonella larvae 
inoculated with Steinernema yirgalemense, after 24 h exposure to the respective antifungal 
agents, peroxyacetic acid (PAA), trans-cinnamic acid (TCA) and nipagin (F (2, 389) = 1606.9, p < 
0.001). Mean separated by Games-Howell post hoc test; error: between MSE = 128.17, df = 
389.00. Different letters above the bars indicate significant differences (p < 0.05). ................... 60 

Fig. 3.4. Mean percentage survival (95 % confidensce level) of Steinernema yirgalemense 
infective juveniles (IJ) in diatomaceous earth at different temperatures during the 4 weeks 
(repeated measures ANOVA: (F (1, 38) = 0.86115, p > 35927). Mean separated by Fisher’s least 
significant difference (LSD) post hoc test; error: between; within; pooled MS = 11.975, df = 46.626. 
Different letters above the bars indicate significant differences (p < 0.05). ............................... 61 

Fig. 4. 1. Trial 1: Mean basal measurement of oxygen consumption rate in micromole/h/g/IJ (95% 
confidence level) for infective juveniles of Steinernema jeffreyense, Heterorhabditis 
bacteriophora, and S. yirgalemense (two-way ANOVA: F (2, 111) = 18.670, ρ < 0.001) for batches 1 
and 2. Means were separated by applying the LSD test: ρ = 0.05; error: between MSE = 2499.2, 
df = 111.00. The same letter above the bars indicates the absence of significant difference. ... 74 

Stellenbosch University  https://scholar.sun.ac.za



xvi 

 
Fig. 4. 2. Trial 2: The mean basal measurement of the oxygen consumption rate in 
micromole/h/g/IJ (95% confidence level) for the IJs of Steinernema jeffreyense, Heterorhabditis 
bacteriophora, and S. yirgalemense (F(2, 138) = 8.5894, ρ < 0.005) for batches 3 and 4. Mean 
separated by Games-Howell post hoc test: error: between MSE = 2192.4, df = 138.00. The same 
letter above the bars indicates the absence of significant difference....................................... 755 

Fig. 5. 1 Model fit of the Guggenheim–Anderson–Boer (GAB) model to the adsorption-desorption 
isotherms of a silty clay loam soil. Applicability of the GAB water vapour sorption model for the 
estimation of soil-specific surface area (European Journal of Soil Science. Source: Adapted from 
Arthur et al., 2018) ..................................................................................................           93 

Fig. 5. 2 Water activity versus sorption isotherm, displaying the hysteresis often encountered, 
depending on whether the water is being added to the dry material or removed (in drying) from 
the wet material, as well as on the effect of the associated temperature and pressure shifts in a 
hysteresis. Of much interest to the current study is the section on solvent and free water (source: 
http://www1.lsbu.ac.uk/water/water/activity.html). ..................................................................... 93 

Fig 5. 3.Mean percentage survival of Steinernema yirgalemense in diatomaceous earth at 
different equilibrated aw per salt after a period of 24 and 48 h (95% confidence level) and repeated 
measures one-way ANOVA (F (4, 15) = 0.87600, p = 0.50125). Mean separated by Fisher’s least 
significant difference (LSD) post hoc test; Error: Between; Within; Pooled MS = 36.138, df = 
21.840. The same letter above the bar indicates no significant difference (p <0.05). ................ 95 

Fig. 5. 4.Mean percentage survival of Steinernema yirgalemense IJs in diatomaceous earth at 
different equilibrated aw per salt during a period of 1 to 4 weeks (95 % confidence level) and 
repeated measures two-way ANOVA (F (12, 45) = 3.0483, ρ = 0.00329). Mean separated by Fisher’s 
least significant difference (LSD) post hoc test; Error: Between; Within; Pooled MS = 99.815, df = 
42.816. The same letter above the bar indicates no significant difference. Different letters above 
the bars indicate significant differences (p <0.05). .................................................................... 96 

Fig. 5. 5.Steinernema jeffreyense infective juvenile (IJ) used as the control: (A) anterior of 
exsheathed IJ; (B) and; (C) shift in orientation of ridges in the mid-body; (D) tail region. The IJ 
was not freshly harvested prior to the scanning preparation. .................................................... 98 

Fig 5. 6.Different magnification of diatomaceous earth: (E) and (F). ......................................... 98 

Fig 5. 7. Steinernema jeffreyense infective juvenile (IJ): (G) anterior of region of unsheathed IJ 
with damaged cuticle; (H) mid-body region desiccated, with only lateral lines extant; (I) strongly 
desiccated mid-body area; (J) only lateral lines remaining in desiccated IJ; (K) anterior region of 
unsheathed desiccated IJ, showing the excretory pore. The IJs were formulated in diatomaceous 
earth for a varying number of weeks prior to scanning preparation. .......................................... 98 

Fig. 6 1. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2, 4 and 8, top 
and bottom), S. jeffreyense paste and diatomaceous earth showing the differences in the region 
4000-500 cm−1…………………………………………………………………………. …………...115 

Fig. 6. 2. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2, 4 and 8, top 
and bottom), S. jeffreyense paste and diatomaceous earth showing the differences in the region 
1900-500 cm−1. ....................................................................................................................... 116 

Fig. 6.3. PC1-PC2 scatter plots for the FTIR spectra of Steinernema jeffreyense in diatomaceous 
earth (weeks 2, 4 and 8, top and bottom), S. jeffreyense paste and diatomaceous earth in the 
region from 4000-500 cm−1. .................................................................................................... 120 

Fig. 6.4. PC1-PC2 scatter plots for the FTIR spectra of Steinernema jeffreyense in diatomaceous 
earth (weeks 2, 4 and 8, top and bottom), S. jeffreyense paste and diatomaceous earth in the 
region from 1900-500 cm−1. .................................................................................................... 121 

Fig. 6.5. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2 and 4), S. 
jeffreyense paste and diatomaceous earth showing the differences in the region from 4000-500 
cm−1. ....................................................................................................................................... 122 

Stellenbosch University  https://scholar.sun.ac.za



xvii 

 
Fig. 6.6. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2 and 4), S. 
jeffreyense paste and diatomaceous earth showing the differences in the region from 1900-500 
cm−1. ....................................................................................................................................... 123 

Fig. 6.7. FTIR spectra of Steinernema yirgalemense, Heterorhabditis bacteriophora, H. baujardi, 
H. indica, H. noenieputensis, H. safricana, and H. zealandica, showing the differences in the 
region from 4000-2750 cm−1 and 1900-500 cm−1. ................................................................... 123 

Fig. 6 8. FTIR spectra of Steinernema yirgalemense, Heterorhabditis bacteriophora, H. baujardi, 
H. indica, H. noenieputensis, H. safricana, and H. zealandica, showing the differences in the 
region 1900-500 cm−1. ............................................................................................................ 124 

Fig. 6.9. PC1-PC2 scatter plots for the FTIR spectra of Steinernema yirgalemense, 
Heterorhabditis bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. 
zealandica in the region from 4000-500 cm−1. ........................................................................ 125 

Fig. 6.10. PC1-PssC2 scatter plots for the FTIR spectra of Steinernema yirgalemense, 
Heterorhabditis bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. 
zealandica in the region from 1900-500 cm−1. ........................................................................ 125 

Fig. 6.11. Tree diagram for the FTIR spectra of Steinernema yirgalemense, Heterorhabditis 
bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. zealandica in the 
region from 4000-500 cm−1, according to Ward`s method and 1-Pearson r. ............................ 126 

Fig. 6.12. Tree diagram for the FTIR spectra of Steinernema yirgalemense, Heterorhabditis 
bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. zealandica in the 
region from 1900-500 cm-1, according to Ward`s method and 1-Pearson r. ............................ 126 

Fig. 6.13. A: Near-infrared (NIR) hyperspectral imaging (HIS) SWIR-384 (short-wave infrared) 
spectra PCA model – contour 2D (T) data set (multiple image import); B: PC1-PC2; C: PC1-PC3; 
and D: PC2-PC3 scatter 2D (T) plot values for SWIR-384 spectra (from 780-2500 nm), showing 
distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous earth and 
diatomaceous earth separately, as control. ............................................................................ 127 

Fig. 6.14. Short-wave infrared (SWIR)-384 spectra hyperspectral imaging (HSI) PCA model –
loading data set (multiple image import): A. PC1, and B. PC2 for Steinernema yirgalemense and 
S. jeffreyense in diatomaceous earth and diatomaceous earth separately, as control, with no glass 
/ SNV correction. .................................................................................................................. 1288 

Fig. 6.15. Short-wave infrared (SWIR)-384 spectra hyperspectral imaging (HSI) object-wise PCA 
– score data set (object identification), PC1-PC2 score values for SWIR-384 spectra (from 780-
2500 nm), showing distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous 
earth, and diatomaceous earth separately as control. ............................................................ 129 

Fig. 6.16. Short-wave infrared (SWIR)-384 spectra hyperspectral imaging (HSI) PCA model –
loading data set (multiple image import): A. PC1, and B. PC2 for Steinernema yirgalemense and 
S. jeffreyense in diatomaceous earth and with diatomaceous earth separately as control, with no 
glass / SNV correction. ........................................................................................................... 130 

 

Stellenbosch University  https://scholar.sun.ac.za



  1 

Chapter 1 

Literature review 

1The attributes of survival in the formulation of entomopathogenic nematodes utilised 

as insect biocontrol agents 

 

Abstract 

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis 

and their associated symbiotic bacteria of the genera Xenorhabdus and Photorhabdus, are 

efficient biological control agents, due to their ease of culture, their high caused fatality against 

key insect pests and their safety in use. However, their commercial utilisation is limited by their 

finite shelf life, both in storage and in formulations. Thus, efficient storage in the formulation of 

EPNs is essential so as to attain success in integrated insect pest management strategies. 

This paper reviews the latest information that is available on EPN storage, formulation, quality 

and application methods, coupled with improvement strategies for the effective control of 

insects. Nematode survival mechanisms investigated were heat and cold tolerance, 

desiccation, osmotic stress, hypoxia and energy reserves, among others, in storage, field or 

formulations. Their influence on the formulation of EPNs is also discussed. 

 

Key words: above-ground application, formulation, Galleria mellonella, Heterorhabditis, 

Steinernema, shelf life, survival, virulence.  
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Introduction 

Entomopathogenic nematodes (EPNs) from the Steinernema Travassos, 1927 

(Rhabditida: Steinernematidae) and Heterorhabditis Poinar, 1976 (Rhabditida: 

Heterorhabditidae) and their associated symbiotic bacteria Xenorhabdus (Enterobacteriales: 

Enterobacteriaceae) Thomas & Poinar 1983 and Photorhabdus (Enterobacteriales: 

Enterobacteriaceae) Boemare, Akhurst & Mourant, 1993 (Boemare et al. 1993; Akhurst et al. 

1996; Ehlers, 2007) are efficient biological control agents, due to their ease of culture, their 

high fatality caused against key pest insects, and their safety in use (Grewal, 2002). Species 

mainly commercially investigated include Steinernema carpocapsae (Weiser, 1955) Wouts, 

Mráček, Gerdin & Bedding, 1982, S. feltiae (Filipjev, 1934) Wouts, Mráček, Gerdin & Bedding, 

1982 and Heterorhabditis bacteriophora Poinar, 1976. They are utilised in controlling a wide 

range of insect pests (Peters, 1996) that occur in soil and cryptic environments (Grewal & 

Peters, 2005) worldwide (Hominick, 2002; Campos Herrera et al., 2012). Nevertheless, up-to-

date information on their geographic distribution is obscured and it is unrealistic, since it is 

either prejudiced/biased, or it is influenced by the researchers’ interests in nematology 

research and where the latter are based, with more sampling taking place in Europe and North 

America, and considerably less in Africa (Stock, 2005; Campos Herrera et al., 2012; San-Blas, 

2013). 

Equally important, EPNs do not add to biological pollution and are environmentally safe; 

they are also specific to the intended insect pest, with no detrimental outcomes, unlike 

chemical insecticides (Ehlers, 2003). They can be mass-produced on an industrial scale in 

liquid culture, due to the scale up and the downstream processing of large culture volumes, 

which can be mechanised, thus reducing production costs (Ehlers, 2001; Shapiro-Ilan & 

Gaugler, 2002; Ehlers & Shapiro-Ilan, 2005). Many countries have exempted EPNs from 

registration obligations (Akhurst & Smith, 2002). In addition, EPNs can be incorporated into 

integrated pest management (IPM) programmes (Grewal, 2002); which has enabled both 

small and medium-sized enterprises to develop nematode-based plant protection products 

(Ehlers, 2003). 

For both the steinernematid and heterorhabditid nematodes, the dauer or infective 

juvenile (IJ) stage is the only free-living stage. Their mutualistic bacteria are the actual killing 

agents on entry into the target pest insect, where they multiply in the insect, and cause 

septicaemia, resulting in the death of the insect (Ciche et al., 2006). Although the IJs are non-

feeding since their mouth and anus are closed (Grewal et al., 2002); they can persist for a 

long time in the soil, until a potential host turns up. They enter mostly the soil-inhabiting insect 

stages, through the anus, mouth, and trachea, or even through the cuticle (Ehlers, 2001). The 

released bacteria, once they are within the host insect, change phase from a dormant stage 
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to a metabolically active stage. They then digest the haemolymph, propagating and producing 

toxins, enzymes and other metabolites that suppress the host’s defence mechanism. The 

insect dies within 24 to 48 hours after invasion (Dunphy & Webster, 1988; Burnell & Stock, 

2000; Dowds & Peters, 2002; Webster et al., 2002). The nematodes develop into adults, feed 

on the bacteria, and reproduce. After approximately three generations, when all the nutrients 

of the insect carcass are depleted, the development of IJs is induced, as a result of the food 

depletion and the high nematode density. The IJs then leave the cadaver, so as to find a new 

host (Han & Ehlers, 2000, 2001; Ehlers, 2001). 

Moreover, EPNs are so immensely competent in the soil that on some occasions, they 

exceed the control results obtained with chemical compounds, probably due to their mobility 

(Ehlers, 2003). EPNs can be stored for a few months, which aids in the marketing of 

nematode-based products (Grewal & Peters, 2005). They have extended prospects of large-

scale outdoor use, with production estimates of roughly 35,000 ha per year, chiefly against 

soil-dwelling insect pests in high value crops and in turf (Shapiro-Ilan et al., 2002; Shapiro-Ilan 

et al., 2012). Presently, EPNs are chiefly used on occasions where no other control 

procedures against a specific insect are available. Examples of such use are against insects 

that were once thought impossible to control like Coleoptera, or in habitats where chemical 

compounds are found wanting/failing/lacking, primarily being in the soil, in galleries of boring 

insects, and on occasions of resistance to insecticides (Ehlers, 2003; Grewal & Peters, 2005). 

More so, EPNs are competent biological control agents against insect pests, but their 

commercial use is limited by their finite shelf life, although some species have already become 

commercially available (Gaugler et al., 2000). However, their short shelf life is a major 

drawback to their large-scale commercial use (Grewal, 2000a,b). The poor survival rate at 

room- temperature storage is a major hindrance for their potential use as bio-insecticides 

(Grewal, 2002). Their ability to survive is poor in terms of desiccation (Womersley, 1990; 

Surrey & Wharton, 1995). 

Factors affecting nematode survival 

Research is currently under way to understand the underlying factors influencing the 

survival and the longevity of EPNs in storage, with recent emphasis on the in-progress 

genome sequence of the H. bacteriophora TTO1 strain. More so, the prolonged survival of IJs 

without food at temperatures that are favourable for the normal growth and reproduction of 

EPNs has led to the asking of interesting questions about the latent mechanisms and the 

genetic factors controlling the metabolism and the survival of the IJs concerned (Grewal et al., 

2011). Several studies have investigated the following factors: 
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HEAT AND COLD TOLERANCE 

The capability of EPNs to tolerate such environmental stressors as desiccating or freezing 

conditions, can add significantly to their insecticide efficacy. Thus, when selecting nematodes 

for use in specific biocontrol programmes, it is essential to be able to predict which strain or 

species to utilise in target areas where environmental stress is anticipated (Shapiro-Ilan et al., 

2014). Temperature is a major environmental factor influencing the life processes of all 

organisms. Certain EPN species are known to be able to adapt to both cold and warm 

environments (Grewal et al., 2006). Temperature has a resounding influence on IJ longevity, 

with the extent of the influence differing with the EPN species involved (Grewal, 2000a). For 

example, Hill et al. (2015) reported that acclimation has been recorded as having both 

negative and positive effects on the temperature stress survival of Steinernema yirgalemense 

Nguyen, Tesfamariam, Gozel, Gaugler & Adams, 2004 and on that of Heterorhabditis 

zealandica Poinar 1990, despite it being with non-significant overall variation. Mass-produced 

EPNs are often stored for variable spans of time preceding their application in the field. 

Heterorhabditid nematodes like H. bacteriophora, however, have poor storage capability 

(Grewal, 2002), as compared with such steinernematids as S. carpocapsae, S. feltiae, and 

Steinernema riobrave Cabanillas, Poinar & Raulton, 1994 (Grewal, 2000a; Grewal et al., 2002; 

Ebssa & Koppenhöfer, 2012). 

Some nematodes are able to survive temperatures as low as -80°C (Glazer 2002), which 

is a temperature at which the metabolism is liable to have ceased. For example, it has been 

established that S. feltiae, S. arenarium (Artyukhovsky, 1967) Wouts, Mráček, Gerdin & 

Bedding) (syn. S. anomali (Kodzodoi, 1984) Curran, 1989) and H. bacteriophora are all 

freezing tolerant with the lower lethal temperature (LLT) of -22, -14 and -19°C, respectively 

(Brown & Gaugler, 1995). Cryopreservation studies (Popiel & Vasquez, 1989; Curran et al., 

1992) have shown that EPNs can be stored indefinitely in liquid nitrogen. Ali & Wharton (2013) 

observed that the cold survival of H. bacteriophora IJs, after being subjected to freezing 

conditions overnight at -1°C, was similar to that of S. feltiae IJs, with a LLT of -13°C. The 

above-mentioned researchers also detected that the ability of S. feltiae and their infectivity of 

Galleria mellonella L. (Lepidoptera: Pyralidae) larvae were not affected in IJs that survived 

freezing at -13°C. However, no meaningful increase in survival occurred after acclimation, or 

rapid cold-hardening in H. bacteriophora. On the contrary, (Jagdale & Grewal, 2003) reported 

that the level of improved thermal stress tolerance due to accumulation of trehalose varied 

with nematode species. Nevertheless, high amounts of trehalose are accumulated by EPNs 

during freezing (Jagdale & Grewal, 2007; Jagdale & Grewal, 2003). 
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OSMOTIC STRESS 

The existing shipping system for EPNs requires low temperature conditions. If IJs in a 

physiological state induced by a salt solution can be shipped at room temperature, and under 

elevated temperatures, without losing their viability, their intensive application in the field 

stands to improve substantially (Feng et al., 2006). Also, the IJs in their heat-tolerance state 

are very suitable for foliar application, in cases where cumulative osmotic stress occurs as 

water evaporates, and when high temperatures occur as a result from the sun (Feng et al., 

2006). Approaches of partial anhydrobiosis or quiescence (Womersley, 1990) initiation include 

absorption, desiccation and osmotic dehydration (Feng et al., 2006). Osmotic dehydration 

offers the following advantages over evaporative dehydration: (1) large numbers of nematodes 

can be treated under dehydration pressure, for example, if their acclimatisation is necessary, 

with their rate of increase being simply and precisely controlled; (2) the nematodes can be 

separated from the solution without difficulty; and (3) many IJs can be equally exposed to 

levels of dehydration pressure, so as to facilitate more reproducible results than might 

otherwise be obtained (Qiu et al., 2000; Yan et al., 2010). Nematodes in anhydrobiotic state 

are extremely resilient to extreme environment conditions, including those that are subject to 

hypoxia, radiation and metabolic poisons that are lethal to active organisms (Glazer & Salame, 

2000; Grewal, 2000b). Efforts to induce EPNs into partial anhydrobiosis through imposing 

such conditions on them to increase their shelf life have been successful (Chen & Glazer, 

2005; Feng et al., 2006). Osmotic dehydration usually uses two types of osmotic solutions: 

ionic solutions, like different salts, and non-ionic solutions, such as glycerol, sucrose and 

polyethylene gels (Glazer & Salame, 2000). In the formulation of stable nematode products 

by means of the partial dehydration of IJs, osmotic dehydration has benefits over desiccative 

dehydration in terms of standardisation, the effective processing of large quantities of 

nematodes under dehydration pressure (Qiu et al., 2000), and ease of application in the field 

(Feng et al., 2006).  

Various species of EPN and strains within a species have been reported to show variation 

in their tolerance to dehydration, either by means of disclosure to relative humidity (RH), or to 

osmotic solutions (Grewal et al., 2002; Yan et al., 2010). An investigation by Yan et al. (2011) 

indicated that a range of different strains of S. carpocapsae are tolerant to osmotic treatment, 

and that the treatment impressively increases the heat tolerance of such strains.  

Desiccation  

Strauch et al. (2004); in their work on genetic improvement of H. bacteriophora using 

selective breeding technique observed its low tolerance to desiccation. Certainly, this is also 

true of other EPNs. Desiccation can have a robust effect on the longevity of EPN IJ (Grewal 
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et al., 2011). EPNs can endure only a limited amount of desiccation or of partial anhydrobiosis 

in a quiescent state (Womersley, 1990). Simons & Poinar (1973) were the first to validate that 

S. carpocapsae, when air-dried slowly at 97% RH at room temperature, could endure 

subsequent exposure to much lower RH. It has been proven that desiccation tolerance varies 

noticeably among species and strains of EPNs using glycerol as an osmolyte. For example, 

H. bacteriophora IJs could only survive exposure to 25% glycerol for 72 h at 25°C, with their 

survival varying between 25% and 90% among 15 H. bacteriophora strains (Grewal et al., 

2002). Also, Mukuka et al. (2010) reported that desiccation tolerance, with or without previous 

adaptation varied among H. bacteriophora strains from diverse geographic zones.  

Although the physiological mechanisms involved in the initiation of anhydrobiosis are not 

fully understood (Grewal et al., 2011), a relationship between the accumulation of polyols and 

sugars, and their function in protecting intracellular proteins in addition to biological 

membranes, in the course of dehydration has been documented in various anhydrobiotic 

nematodes (Womersley, 1990). For example, a correlation between glycerol or trehalose 

accumulation and increased desiccation tolerance has been noted in Heterorhabditis megidis 

Poinar, Jackson & Klein, 1987, Heterorhabditis indica Poinar, Karunakar & David, 1992 and 

S. carpocapsae by O'Leary et al. (2001). The preconditioning of S. feltiae, S. carpocapsae 

and H. bacteriophora at 97% RH for 3 days improved their survival at 85% and 75% RH 

(Womersley, 1990; Solomon et al., 1999), which has been correlated with the synthesis of 

trehalose, glycerol or water stress-related proteins (Solomon et al., 1999; Grewal et al., 2006).  

As reviewed by Grewal et al. (2011), the ability of anhydrobiotic organisms to tolerate 

desiccation is largely associated with the accumulation of carbohydrates, including trehalose 

and water stress-related proteins. Trehalose protects membranes and proteins from 

desiccation and freezing injuries by substituting the structural water that is associated with the 

phospholipid bilayer, upholding membrane fluidity, in addition to retaining the duo layer in the 

liquid crystalline state and by forming glass (vitrification) to stabilise the cell content. During 

desiccation, trehalose equally safeguards proteins by replacing ‘bound water' in addition to 

decreasing the 'browning' or Maillard reaction. Further reviewed by Grewal et al. (2011), over 

13,000 protein-coding sequences have been predicted from the in-progress genome 

sequence of H. bacteriophora TTO1 strain (Bai et al. unpubl.). 

Hypoxia 

In view of the fact that nematodes are aerobic organisms, hypoxic environments can 

decrease their survival and longevity. Details of the effect of soil oxygen on EPNs are further 

restricted. Burman & Pye (1980) reported that S. carpocapsae IJs could survive oxygen 

tensions of as low as 0.5% saturation at 20°C for 43 days. In sandy soil, in contrast, the survival 
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of S. carpocapsae and of S. glaseri lessened significantly after 8 weeks, as tested oxygen 

intensities declined from 20% to 1%, with no nematode survival being noted after 16 weeks 

(Kung et al., 1990). Significant differences exist in the capability of EPN species and strains 

to survive hypoxic conditions (Grewal et al., 2011). For instance, survival at about 0% 

dissolved O2 at 25°C for 96 hours, differing significantly among H. bacteriophora populations 

collected from various zones (Grewal, 2002). In addition, a great genetic variability for 

tolerance to hypoxia, heat, and UV, as well as to desiccation, in addition to IJ longevity, was 

noted in the inbred lines of two strains (GPS11 and HP88) of H. bacteriophora (Sandhu et al. 

unpubl., as cited in Grewal et al. (2006). A positive correlation was found between IJ longevity, 

heat, and UV, as well as was hypoxia tolerance, in the inbred lines of both GPS11 and HP88 

strains. In spite of this, the relationship between IJ longevity and desiccation tolerance differed 

in the inbred lines of the two strains. Nevertheless, S. carpocapsae can tolerate similar 

conditions (Grewal et al., 2002) for up to 10 days (Somasekhar et al., 2002). Similarly, there 

is more variation in hypoxia tolerance among strains of H. bacteriophora (Grewal et al., 2002) 

than there is among strains of S. carpocapsae (Somasekhar et al., 2002).  

BIOCHEMICAL ENERGY RESERVES AND SURVIVAL 

The presence of lipids is undoubtedly, imperative for survival as a chief energy reserve 

for non-feeding IJs, and infectivity with regard to lipid reserves has been studied (Perry et al., 

2012). Equally important, a number of reports have shown (Patel et al., 1997a,b; Patel & 

Wright, 1997a,b,c) that nematode infectivity drops as energy reserves are depleted in storage. 

Such climatic influences as temperature, oxygen and nematode activity in the course of 

storage (Grewal & Georgis ,1999) tend greatly to affect the rate of lipid utilisation, which further 

differs between EPN species (Grewal, 2000b), as well as among individuals within a species. 

The quantity of lipids that are present in the IJs differs with the nematode species, and with 

different batches (Grewal & Georgis, 1999). The amount of stored energy reserves is a major 

factor in determining IJ longevity, with lipids constituting approximately 34-60% of the dry 

weight of IJs (Selvan et al., 1993; Fitters et al., 1999).  

In commercial production systems, the lipid content of IJs is predisposed by such factors 

as the amount and type of media components, in addition to antifoam utilised, the temperature, 

as well as the amount of liquefied oxygen that is available during fermentation (Grewal, 2002). 

What is more, it is more cost-effective to produce steinernematid nematodes that are capable 

of surviving long-term storage better than to produce heterorhabditid nematodes that are less 

so (Georgis & Gaugler, 1991; Kaya & Gaugler, 1993). In spite of this, the former’s efficacy 

against specific target insects is not as good as is that of Heterorhabditis. Selvan et al. (1993) 

contended that the poor storage stability of H. bacteriophora is possibly due to the existence 
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of large quantities of unsaturated fatty acids in the freshly emerged IJs. Such was inferred 

upon the analysis of lipid content, and upon the realisation of a positive correlation between 

the fatty acids composition of the total lipid and the surge in water content. Furthermore, Fitters 

et al. (1999) reported that the fatty acid patterns were similar between the three isolates of 

Heterorhabditis from diverse geographical backgrounds. Oleic (C18:1n−9), palmitic (C16:0), 

and linoleic (C18:2n−6) acid prevailed with 51, 13 and 12%, respectively, in the total lipid (TL) 

of fresh nematodes (in terms of the average for the three isolates). The levels of unsaturation, 

in respect of the Unsaturation Index (UI), of fresh nematodes were on average 110, 112, 113 

and 152 for the TL, neutral lipid (NL), phospholipid, and free fatty acid fractions, 

correspondingly (Fitters et al., 1999). 

Additionally, high lipid levels supply non-feeding IJs with the necessary energy for host- 

finding or persistence in the soil, in the unavailability of hosts. The shelf life of commercially 

produced nematodes is similarly reliant on the quantity of energy reserves stored, and on the 

rate of utilisation throughout storage (Selvan et al., 1993). Next, the UIs of TLs and 

phospholipids increased in S. feltiae and S. carpocapsae as the culture, or storage 

temperature, diminished from 25 to 5°C (Jagdale & Gordon, 1997a,b). Equally important, 

Fitters et al. (1997) reported that UIs of the phospholipids of two strains of H. megidis 

increased throughout a 5-week storage period, during which time they were kept at 5°C. Again, 

the IJs of EPNs comprise high levels of NLs that are utilised as energy substrates (Selvan et 

al., 1993). Jagdale & Gordon (1997b) also affirm their belief that the increased unsaturation of 

TLs at cold temperatures was due to an increase in the proportion of polyunsaturated fatty 

acids present, with an associated amount of reduction in the proportion of saturated fatty acids, 

mainly consisting of palmitic (16:0) and stearic (18:0) acids. A modification in the action of 

metabolic enzymes, and in the proportion of saturated and unsaturated fatty acids, as well as 

in the synthesis of novel isozymes, sugars, and polyols, together with trehalose and glucose, 

in addition to the heat-shocking proteins are among the physiological mechanisms that are 

undertaken by EPN IJs in the course of survival under cold or overly warm conditions (Grewal 

et al., 2006). 

The further exposure of IJs to reasonable stress circumstances facilitates the synthesis 

of such molecules as trehalose, which is vital for membrane protection in the course of water 

loss (Womersley, 1990; Perry et al., 2012). Desiccation survival, as well as trehalose, have 

long been implicated in the above; for instance, some nematode anhydrobiotes, such as the 

second-stage juveniles of Anguina tritici (Steinbuch, 1799) Chitwood, 1935 and Ditylenchus 

dipsaci (Kühn, 1857) Filipjev, 1936 J4, segregate trehalose. The latter is often recommended 

as a protectant against desiccation, due to the importance of membrane stability preservation, 

thus it helps to prevent protein denaturation, as well as acting as a free-radical scavenging 
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agent (Glazer, 2002; Perry et al., 2012). Trehalose accumulation was noted among S. feltiae 

that had been slow dried at high RH (Solomon et al., 1999; Perry et al., 2012). However, 

conflicting reports exist concerning the significance of trehalose (Burnell & Tunnacliffe, 2011). 

Although the synthesising of trehalose in the course of dehydration might show initial 

preparation in dehydrated/arid situations, it does not, essentially, provide assurance of survival 

throughout subsequent severe desiccation (Perry et al., 2012). For one thing, during initial 

reviews, a surge in the trehalose level in Steinernema feltiae IS-6 strain, in the course of pre-

conditioning treatment, was established (Solomon & Glazer, unpubl.) cited in Solomon et al. 

(1999).  

Patel & Wright (1997a) also reported that EPN IJs also have considerable amounts of 

glycogen at their disposal, in addition to lipids and trehalose. They reported that glycogen 

levels differed from 8% dry weight in S. riobrave to 18% in Steinernema glaseri. IJs of both S. 

carpocapsae and S. riobrave survived for 120 to 135 days and utilised 90% of their glycogen 

reserves at a nearly continuous rate in the course of a 112-day storage period. The IJs of S. 

feltiae and S. glaseri lived for much longer (>450 days) than did the above, but their glycogen 

content diminished by 27 and 40%, respectively, in the course of a 250-day storage period. In 

contrast to other species, the degree of lipid decline surpassed that of glycogen in S. 

carpocapsae.  

Furthermore, although glycogen which is an important energy reserve, occurs in 

considerable quantities in some EPNs (Selvan et al., 1993; Boemare, 2002), its significance 

has not yet been determined. Subsequent results established that S. feltiae, S. carpocapsae, 

S. riobrave, and S. glaseri’s glycogen content dropped in the course of storage. Patel et al. 

(1997b) proposed that glycogen might play a noteworthy, perhaps even a superior, role to NLs 

in the conservation of the infectivity of the species mentioned.  

The longevity of IJs of EPNs is a function (proportionally) of their metabolic rate, in addition 

to their primary energy reserve concentrations (Boemare, 2002). The accessibility of energy 

reserves is indispensable to supporting the physiological and behavioural processes that are 

associated with adaptation to environmental stress (Glazer, 2002). Finally, expounding on the 

metabolic and physiological processes that are involved in IJ host-finding and survival should 

offer data that might enable the preloading of IJs, in the course of the production process, with 

adequate storage material to support their activities and persistence (Grewal et al., 2006). 

CULTURE METHOD 

Nematodes produced in vivo have been cited in Grewal (2002) as being relatively steady 

in both the laboratory and the field environments in contrast to those that are produced in vitro. 

For instance, the endurance of S. riobrave in water at 9°C was greater when they were 
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cultured in larvae of G. mellonella, as compared to their culturing in liquid media. Evidently, 

this is because the nutritional status of G. mellonella larvae; and thus, the quality of IJs, varies 

from that produced in the much-simplified fermenter environment; which further varies 

between EPN species and strains (Ebssa & Koppenhöfer, 2012; Griffin, 2015). Nonetheless, 

the procedures for these disparities, which have not yet been investigated, might offer hints 

as to the physiological factors upsetting storage stability. The exposure of nematodes, in the 

course of culturing, to such factors as temperature stress, oxygen deficiency, shear stress, 

and kind and amount of antifoam, in addition to microbial adulteration, can impact on 

nematode quality, leading to decreased shelf life. Nematodes are extremely shear sensitive, 

so that their use in stirred fermenters can impact on their reproduction. Shear stress during 

fermentation can, correspondingly, lessen the survival rate of nematodes in formulations. In 

stirred fermenters, batches of S. carpocapsae were found to have extreme negative 

correlation with impeller tip speed, as well as with nematode endurance at 25°C, as reviewed 

by Friedman (1990). 

ANTIMICROBIAL AGENTS 

Microbial contamination is an important setback in the case of nematode formulations with 

elevated moisture content (Grewal, 2002). Contamination can exhaust the existing amount of 

oxygen, decrease the disposability of formulations, instigate the clogging of spray nozzles, 

and decrease the adequacy of the product. Even though antimicrobial agents can be used to 

subdue microbial growth, care must be taken with their use, as they can decrease the 

nematode survival rate in the formulations concerned. What is more, nematode species vary 

in their vulnerability to antimicrobial agents. For instance, both S. feltiae and S. riobrave are 

more susceptible to Proxel, a commonly used antimicrobial agent, than is S. carpocapsae 

(Grewal, 2002). Heterorhabditis bacteriophora is also predisposed to bacterial contamination 

in the course of storage (Grewal & Georgis, 1999). 

Storage, formulations and application  

The term ‘formulation’ relates to the preparation of a product from a constituent by means 

of combining precise functional (active) coupled with inert (non-active) ingredients. It is 

imperative to note that formulation, as well as quality control attributes, are very useful in the 

commercialisation of nematodes as biocontrol agents. Mass-produced nematodes are 

formulated for the conservation of quality and simplicity. They are also formulated for purposes 

of the enhancement of storage stability, shelf life and field efficacy, as well as for the reduction 

of transport costs and application (Georgis, 1990; Georgis et al., 1995; Georgis & Kaya, 1998; 

Jones & Burges, 1998; Grewal, 2002; Shapiro-Ilan & Gaugler, 2002; Grewal & Peters, 2005; 

Hiltpold, 2015). 
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In spite of the fact that EPN IJs can be stored in water for several months in refrigerated 

aerated tanks, the high cost and the complications of maintaining quality prohibit the frequent 

use of this method. Furthermore, the sensitivity of various species to low temperatures, the 

settling of nematodes, their high oxygen requirements, their vulnerability to microbial 

adulteration, and the effect of antimicrobial agents on nematode survival are some of the major 

aspects influencing nematode quality in the course of their storage in water (Georgis, 1990; 

Georgis et al., 1995; Grewal, 2002; Shapiro-Ilan & Gaugler, 2002; Grewal & Peters, 2005). 

Equally important, their formulation is generally intended to enhance their activity, absorption, 

and delivery, as well as their simplicity of usage or the storage stability of a functional 

component. Besides the above, the constituents of nematode formulations are comparable to 

those of pesticide formulations, with the ingredients, or additives, comprising antimicrobial 

agents, antioxidants, absorbents, adsorbents, binders, anticaking agents, carriers, 

dispersants, humectants, surfactants, preservatives, thickeners, solvents, and ultraviolet (UV) 

absorbers. Nematodes present unique challenges. For instance, the high oxygen and 

moisture requirements of concentrated nematodes, their sensitivity to temperature extremes, 

and the behaviour of IJs constrains the choice of mode of formulation, in addition to the 

ingredients (Georgis et al., 1995; Georgis & Kaya, 1998; Jones & Burges, 1998; Grewal, 2002; 

Grewal & Peters, 2005). 

According to Ehlers (2007), the successful introduction of EPNs into biocontrol practice 

decisively entails the immediate formulation of nematodes after production, so as to reduce 

the resulting number of dead nematodes, as many nematodes die in storage. For example, 

Matadamas-Ortiz et al. (2014) reported that the age of the IJs, among other factors 

experienced during storage at room temperature, decreased the EPN survival of 

encapsulation, and the recommended use of fresh IJs. Also, research is still required into the 

species and strain of EPNs in terms of their proper storage and formulation (Strauch et al., 

2000), since their physiology, ecology and behaviour vary (Ravensberg, 2011). 

Nematode formulations for storage and transport are generally used in one of two forms. 

The one method entails the consignment of nematodes to inert carriers that allow them free 

gas exchange and movement. Such inert carriers as polyether–polyurethane sponge and 

vermiculite are extensively utilised for the storage and transport of small numbers of 

nematodes. The formulations are easy and relatively expensive to produce, despite requiring 

continuous refrigeration, as the nematodes remain active, freely moving in, or on the 

substrates. The shelf life of the formulations under refrigeration (2–10°C) varies from 1 to 3, 

or 4 months, subject to the nematode species concerned. A major drawback to the use of this 

method is the strict refrigeration requirement, even during transportation, which renders the 

formulations involved extremely costly for the customer (Georgis et al., 1995; Grewal, 2002; 
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Shapiro-Ilan & Gaugler, 2002; Grewal & Peters, 2005). For one thing, the positioning of 

nematodes in such inert carriers as sponge or vermiculite, offers a suitable means of shipping 

small quantities of nematodes, despite the fact that the high activity of the nematodes 

concerned rapidly depletes their stored energy reserves. Occasionally, the nematodes 

emerge from the inert carriers and dry out. Therefore, in the second method, formulations 

have been developed in which the mobility/metabolism of nematodes is reduced by physical 

trapping, by the addition of metabolic inhibitors, or by using the induction of partial 

anhydrobiosis (Grewal & Georgis, 1999; Grewal & Peters, 2005).  

The most recent and comprehensive reviews on formulation are those of Grewal (2002) 

and Grewal & Peters (2005), with all later research on formulation being mere modifications 

of the already existing formulations. Examples of the above include nematodes that are 

physically confined in alginate and flowable gel formulations that hold sufficient moisture to 

avert the induction of nematode anhydrobiosis. In a particular formulation, sheets of calcium 

alginate stretched over plastic screens have been employed to trap nematodes (Georgis, 

1990). The entrapping of nematodes in alginate gels permits storage at room temperature. 

For example, in one alginate gel formulation, S. carpocapsae can be kept for 3 to 4 months at 

25°C, while S. feltiae can be kept for 2 to 4 weeks (Grewal, 2002). In addition, Chen & Glazer 

(2005) disclosed that S. feltiae IJs could progressively enter a quiescent state in the calcium 

alginate granules in the course of 6 months of storage. They further affirmed that their study 

was the first time that osmotically treated nematodes had been stored in calcium alginate 

granules at room temperature for such a prolonged period of time.  

The use of alginate capsules, or beads has of late become a highly sought-after 

formulation technique. Other microorganisms and/or structures, like the hyphae of the 

endoparasitic nematophagous fungi Hirsutella rhossiliensis Minter & Brady 1980 

(Ascomycota: Hypocreomycetidae), feeding stimulants, or plumes of plant roots are combined 

with EPNs, with the sole purpose of baiting insects, to reduce the mobility of EPNs, and/or to 

control plant-parasitic nematodes (Hiltpold, 2015). This technique, though still requiring 

improvement, streamlines the transportation, storage, handling, and application of EPNs using 

seed planters (Hiltpold, 2015). In the research of Hiltpold et al. (2012), H. bacteriophora was 

encapsulated in alginate capsules, from which the IJ could easily escape. Later improvements 

by Kim et al. (2015) produced hard capsules that were intended to increase the time of release 

of the nematodes. 

As reviewed by Grewal & Peters (2005), nematodes have also been formulated in various 

heteropolysaccharides (agarose, Carbopol®, carrageenan, dextran, or guar/gellan gum), 

surrounded by a paste of hydrogenated oil. Up to 35 days’ storage of S. carpocapsae at room 

temperature has been reported for this hydrogenated oil formulation. Grewal (1998) reported 

Stellenbosch University  https://scholar.sun.ac.za

http://www.uniprot.org/taxonomy/4890
http://www.uniprot.org/taxonomy/222543


  13 

a liquid concentrate, including a proprietary metabolic inhibitor to decrease nematode oxygen 

demand that was developed for the transporting of nematodes in bulk tanks.  

As already seen, the induction of anhydrobiosis not only decreases the nematode 

metabolism, but it also provides extra tolerance to warm and cold temperatures (Glazer & 

Salame, 2000; Grewal & Jagdale, 2002). A state of partial anhydrobiosis can be induced in 

steinernematid and heterorhabditid nematodes by means of regulating the water activity (aw) 

of the substrate, via the composition of formulation ingredients (Grewal, 2000b). The aw is a 

degree of exactly how firmly water is bound, chemically or structurally, to the substrate. Unlike 

water content, aw is predisposed by way of water molecules bonded to the surface, in addition 

to the osmotic effect achieved. Aw equals the RH of air, which is in equilibrium with a sample 

of nematodes, in a fastened vessel. The formulations that are capable of sustaining moderate 

numbers of anhydrobiotic nematodes comprise powders, granules and gels (Grewal & Peters, 

2005). Bedding & Butler (1994) established a formulation in which nematode slurry was 

blended in anhydrous polyacrylamide, so as to facilitate the subsequent gel achieving an Aw-

value of between 0.800 and 0.995. Despite the nematodes being moderately desiccated, their 

endurance at room temperature was low. A composition of 2 to 3 g of polyacrylate with 

branded additives (Nemagel2) to 250 ml of nematode slurry containing 40 million S. feltiae 

resulted in the survival of the nematodes concerned for a period of 2 years at 4°C (Hokkanen 

& Menzler-Hokkanen, 2002). Furthermore, at room temperature, survival for a year was 

recorded in 25-ml bags containing 2 million S. feltiae. The Aw in this formulation was 

considerably greater than it had been in the case of the previous formulation (>0.995). Another 

formulation wherein nematodes were blended in clay to eradicate surplus surface moisture, in 

addition to inducing a state of partial anhydrobiosis, was described by Bedding (1988). The 

formulation, termed a ‘sandwich’, entailed using a film of nematodes sandwiched between two 

sheets of clay. 

A report by Strauch et al. (2000) on formulation, using mixed attapulgite, or bentonite clay 

together with concentrated nematodes, or nematode slurry, revealed that H. bacteriophora 

(hybrid strain) and H. indica (LN2 strain) survived for only 2 weeks and 1 week respectively, 

at 25°C. At 5°C, the survival of H. bacteriophora was higher in sponge than it was in clay, but 

that of H. indica was superior in clay to what it was in sponge, at 15°C. Granular formulations, 

likewise, have been established for storage and transport of nematodes, as cited in Grewal & 

Peters (2005) and Grewal (2002). Capinera & Hibbard (1987) described a formulation wherein 

nematodes were, to some extent, encapsulated in lucerne meal, as well as in wheat flour. 

Connick et al. (1993) designed granules in which nematodes were spread all over a wheat 

gluten matrix. This ‘Pesta’ formulation comprised a filler and a humectant to improve the 

nematode survival. The process entailed the drying of granules to a low moisture content, so 
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as to avoid nematode migration and risk of contamination. However, the granules promptly 

dried out during storage, thus resulting in subsequent poor nematode survival rates (Grewal 

& Georgis, 1999; Grewal & Peters, 2005).  

Furthermore, as cited in Grewal & Peters (2005), water-dispersible granules (WGs) have 

been developed, in which IJs are encased in 10–20-mm diameter granules entailing mixtures 

of multiple quantities of silica, clays, cellulose, lignin, and starches. The granular matrix 

enables the nematodes to access oxygen supplies in the course of storage and transport, with 

them entering a partial anhydrobiotic state at optimum temperature, due to the slow removal 

of body water by the substrate. The induction of a state of partial anhydrobiosis is often obvious 

within 4 to 7 days, by means of a three- to fourfold decrease in the oxygen intake of the 

nematodes, subsequent to an initial increase (Grewal, 2000a,b). What is more, WG 

formulation offers several advantages over other formulations, with the primarily commercial 

formulation permitting storage of S. carpocapsae for a period of over six months at 25°C, at a 

nematode concentration of over 300,000/g (Grewal, 2000a). The shelf life involved signified 

an extension of IJ longevity by 3 months, as compared to that of the nematodes stored in 

water (Grewal, 2000a,b). The WG also improved nematode tolerance to temperature stress, 

thus allowing easier and less expensive transportation, the enhanced ease of usage of 

nematodes, resulting from the eradication of labour-intensive preparation steps, a decreased 

container size and coverage ratio, and the condensing of disposal material. In contrast, the 

WG formulation is prone to microbial contamination at room temperature. Therefore, 

antimicrobial and antifungal agents are often supplemented, so as to overpower the growth of 

contaminating microbes (Grewal, 2002). Nonetheless, such agents are toxic. However, WGs 

have, as yet, not been successfully used with several steinernematid and heterorhabditid 

nematodes, and thus are no longer available on the market (Georgis, 2002). 

Noteworthy, nematodes can also be applied, small-scale, in the form of infected insect 

cadavers (Shapiro-Ilan et al., 2001, 2003; Ansari et al., 2009; Deol et al., 2011; Wang et al., 

2014). Cadavers can be coated with a protective formulation (e.g. a starch and clay mixture) 

to avert rupturing in the course of storage and shipping (Shapiro-Ilan et al., 2001). As cited in 

Grewal (2002), they can also be applied in the form of capsules and baits. For detailed EPN 

formulation examples, with temperatures and shelf life period refer to Grewal (2002). 

Again, recent works on the formulation of EPNs have focused on above-ground 

applications (Ravensberg, 2011; Hiltpold, 2015), in terms of which surfactants and absorbents 

are used to shield off the effect of desiccation. However, the results of such applications have 

been found to vary (Georgis et al., 2006). For several examples on the use of EPNs against 

above-ground insect pests, refer to Arthurs et al. (2004) where the authors compiled a 

comprehensive list of insect pests and crops. 
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As with nematode formulation technologies that have been developed on the basis of 

existing chemical pesticide techniques, the application of nematodes in the field relies on the 

modification of the existing farm equipment, such as pressurised sprayers and mist blowers 

(Shapiro-Ilan & Dolinski, 2015). In the case of the use of such equipment, the swirl plates, 

filters, and screens are always removed to avoid any blockage. Furthermore, research is under 

way to apply several nematodes in combination, or together with other microorganisms, like 

nematophagous fungi and bacteria. Research is also ongoing into the immediate release of 

other insect parasitoids, after nematode application, or together with other chemical 

pesticides, which is intended to render an additive, or synergistic, effect to some pest 

management techniques (Koppenhöfer & Kaya, 1997; Ansari et al., 2008; Dillon et al., 2008; 

Koppenhöfer & Fuzy, 2008; Mbata & Shapiro-Ilan, 2010). For a comprehensive view of 

application technologies and future prospects in the application of EPNs, refer to works by 

Shapiro-Ilan et al. (2006), Ravensberg (2011), Hiltpold (2015), and Shapiro-Ilan & Dolinski 

(2015). 

Quality Assessment 

Quality assessment calls for the training of employees, and for robust managerial 

dedication. When nematodes are mass-produced by small companies, their resources are 

often restricted in terms of the promotion of quality control methods and the routine 

assessment of quality, despite the fact that there are no registration obligations for EPNs in 

many countries (Grewal & Peters, 2005), like France and Germany, unlike Belgium and 

Sweden, among others (De Luca et al., 2015). Quality is the degree of excellence of a product, 

and quality control is a system of upholding standards in manufactured products, which is 

accomplished by means of testing a sample of the product in terms of particular specifications. 

EPN quality demands the verification of species identity, the total number of live nematodes, 

the ratio between live and dead nematodes, the matching of host-finding behaviour to the 

target pest, the pathogenicity and reproduction (recycling) capability in the target insect pest, 

and the age of the nematodes concerned, as well as their storability, heat tolerance, and cold- 

or warm-temperature activity (Grewal & Peters, 2005). In addition, effective quality control 

strategising relies on the conservation of extensive viability and virulence during production, 

formulation and storage (Grewal, 2002).  

Over-packing is a method of guaranteeing the presence of the least total number of viable 

nematodes in a product (Grewal, 2002). Grewal & Peters (2005), further, report that nematode 

viability and virulence, and their associated bacteria (Bilgrami et al., 2006), can be predisposed 

by various factors during mass production, formulation and storage. Such factors include the 

source and the genetic diversity of the master stock, the quality of the host, or of the media 
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used, exposure to environmental extremes (temperature, aeration, shear), contamination, and 

the toxicity of antifoaming and antimicrobial agents. Furthermore, such factors as moisture 

content and the rate of water loss from formulations, thermal cycling during storage, and RH 

might influence the quality of the nematodes concerned. The toxicity of detergents during 

harvesting, and the length of storage period of both bulk nematode and product storage, are 

among other factors that can affect the viability and virulence of nematodes (Grewal & Peters, 

2005).  

Of even greater importance than the above is the fact that the optimum levels of various 

factors might vary with nematode species, so that close consideration should be paid to 

monitoring all factors concerned (Grewal & Peters, 2005). For instance, the optimum storage 

temperature varies with nematode species. Although low temperatures (2–5°C) normally 

decrease nematode metabolic activity, and can, thus, improve their shelf life, some species, 

such as H. indica and S. riobrave, that are adapted to warm temperatures can also store well 

at temperatures below 10°C (Strauch et al., 2000; Grewal, 2002). This is rather true in 

temperate climate with developed countries. However, in the tropics, its rather expensive and 

consequently nematodes die. Immediate formulation of nematodes and avoidance of low 

temperatures is thus required. The length of time of production, time from formulation to 

packaging, and time from packaging to shipping, is typically controlled, because, as the 

product matures, the exhaustion of stored energy reserves might degrade the degree of 

virulence that is obtainable with the use of the product (Patel et al., 1997b). Such degradation 

can also affect the nictation capability of the EPN involved (Lewis et al., 1995; Bilgrami et al., 

2006; Bal et al., 2014), and the environmental tolerance of the IJs (Selvan et al., 1993; Patel 

et al., 1997a). Estimating the level of microbial contamination is an essential component of 

nematode product quality assessment. The use of batch codes and of expiration dating helps 

to facilitate the tracking and controlling of the products in terms of the refrigerated storage time 

before application. Such physical characteristics as product temperature and packaging, 

colour and weight, granule size distribution, and formulation ability in respect of scattering 

have also been observed to lessen batch−to−batch variability and the maintenance of product 

consistency (Grewal, 2002).  

Noteworthy, nematode production batches can also vary in quality (Grewal, 2002). 

According to Grewal & Peters (2005), there is an equal risk of genetic deterioration via genetic 

drift or accidental selection during the recurrent sub-culturing of nematodes, with variation in 

the virulence of nematode batches being quite common. Incidentally, some nematode species 

might be more disposed to rapid deterioration than are others. For example, Wang & Grewal 

(2002) witnessed a drop in the environmental stress tolerance of H. bacteriophora within three 

to six cycles through G. mellonella in the laboratory. They also validated that the best method 
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of averting such genetic deterioration is the complete storage of the master stock in liquid 

nitrogen.  

An assessment of nematode quality should offer information on whether or not the 

produced nematode batch will be able to control the target insect in the field. On the contrary, 

a recent review by San-Blas (2013) has depicted a paucity of recent literature on quality control 

of EPNs, compared to other aspects of EPN mass production yet it’s of utmost importance in 

the improvement of shelf life. Of equal importance is the fact, as cited in Grewal (2002) and 

Grewal & Peters (2005), that virulence is, undeniably, the most important element in nematode 

quality. Several different techniques can be taken to measure the virulence of nematodes, 

including one-on-one bioassay, LC50, establishment efficiency, and invasion rate (Georgis, 

1992; Glazer, 1992; Grewal et al., 1999). Conversely, assays using multiple nematodes 

against single or multiple hosts are deemed unsuitable for quality control purposes, because 

of the host–parasite interactions involved, such as the recruitment and over-dispersion of 

natural parasite populations (Grewal et al., 1999). The invasion of pre-infected hosts has been 

considered to be more likely than is the invasion of non-infected hosts, but some studies have 

shown the repellence of IJs from infected cadavers (Glazer, 1997; Grewal et al., 1997). If they 

are grouped in a single arena, infected cadavers would be likely to distress the infection of 

further insects (Grewal & Peters, 2005).  

For one thing, one-on-one assays can be used to compare the virulence of any nematode 

species with a predestined yardstick, compared to the virulence of such a susceptible host as 

G. mellonella larvae. This method processes the number of infective nematodes that are 

present in a population, as well as reflecting the presence of damaged nematodes. The use 

of such a technique is applicable to species that have a lethal level of one IJ per larva (Grewal, 

2002; Grewal & Peters, 2005). Yet, the lowest nematode concentrations that produce about 

50% larval mortality in G. mellonella have been verified for use with other species. Galleria 

mellonella has been shown to be a preferred bioassay host, because it is highly susceptible 

to EPNs, as well as being commercially available, thus assuring supply (Grewal & Peters, 

2005). As further cited in Grewal & Peters (2005) and Grewal (2002), filter paper arenas are 

fit for ambushing nematodes like S. carpocapsae, whereas sand columns are ideal for cruisers 

like H. bacteriophora. This is despite the fact that both ambushers and cruisers do equally well 

in sand-well bioassays that aid both the ambushing and the cruising behaviours of IJ. The 

method is also easy to establish, and it is more comparable to field conditions than are the 

filter paper bioassays. Thus, it is suggested that the sand-well bioassay be adopted as a 

standard quality control tool for assessing the virulence of EPNs (Grewal, 2002). 

Equally important, the use of G. mellonella in quality assessment has been criticised, due 

to the fact that it is overly susceptible to EPNs, and thus it might not be sensitive to unviable 
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nematodes (Grewal & Peters, 2005; Ulu & Susurluk, 2014). Another commercially available 

insect host, the mealworm Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), is used in 

the quality assessment of EPNs, particularly in Europe (Peters, 2000; Shapiro-Ilan & Gaugler, 

2002; Grewal & Peters, 2005). It goes without saying that IJs prefer G. mellonella when they 

are exposed to both G. mellonella and T. molitor. However, this technique seems to be 

problematic in terms of use in developing countries, where there are few breeding companies 

for the mass rearing of test insects like G. mellonella and T. molitor. It is for this reason that 

researchers in countries like Venezuela are employing infrared spectrometry/imaging tools as 

a relatively easy and indirect quality control measure (San-Blas et al., 2015). With the use of 

this technique, energy reserves, proteins and differences in batches can, among others, be 

investigated using visual spectra (San-Blas et al., 2011; Lau et al., 2012; San-Blas et al., 2012, 

2015). To conclude the current discussion, a good assay must be able to detect dissimilarities 

between various nematode batches, and between the different age groups of a particular 

nematode species. 

Conclusion 

The most common underlying factor in the production, storage and formulation of EPNs 

is the cost implication involved, which invariably affects the final price of the product. 

Improvement in formulation and application technologies is likely to lower such costs. Many 

nematode formulations against a wide range of insect pests are available on the market, but 

they are largely suitable for small-scale niche markets, like those that are related to 

greenhouse and lawn turf production. Many aspects of EPN utilisation outdoors in fields and 

orchards still require investigation, with an eye to calling for improvements in the existing 

formulations, or to adopting formulations from other fields of research, like from those that 

have to do with entomopathogenic fungi and bacteria. Improving conditions in the field by 

means of the use of cover crops, mulches and proper tillage before the application of EPNs is 

likely to increase their survival rate, and thus to maintain their infectivity. An increase in the 

current amount of public awareness regarding the importance of EPNs in IPM is required, 

which should lead to an improvement in the existing legislative requirements for EPNs in the 

countries that have had to contend with outraged public opinion regarding the genetic 

modification of an organism. The raising of public awareness should also lead to an increase 

in the amount of research funding that is made available for EPN-related investigations. The 

issue is a serious one in Europe, where some governments emphasise the environmental 

effects of the mass release of EPNs in agrarian environments, where native or foreign, species 

of EPNs are applied. All in all, this field of research is promising, in terms of the recent above-

ground EPN applications against key insect pests, and their corresponding use in the control 

of plant-parasitic nematodes. 
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Aim of the study 

To develop a formulation for transport of entomopathogenic nematode (EPN) to the field 

for commercial application and to be fully cognisant of the survival mechanisms of the infective 

juveniles (IJ), with the intent of attaining an acceptable shelf life. 

The objectives for the study include the following objectives: 

• to evaluate Steinernema yirgalemense, S. jeffreyense and Heterorhabditis 

bacteriophora for their suitability in formulations and long-term storability at different 

temperatures; 

• to optimise a selected formulation to improve its efficiency and productivity for long-

term room temperature storability; 

• to investigate desiccation, hypoxia, osmotic stress, and temperature storage effects of 

S. yirgalemense, S. jeffreyense and H. bacteriophora; 

• to determine the water activity (aW)of IJs of Steinernema yirgalemense at 25°C; and 

• to assess the effect of formulation on nematode quality over time, as well as alternative 

methods for quality control. 

The chapters of this study have been written as separate publishable papers, and for this 

reason, some repetition, in the different chapters, has been unavoidable. The format of the 

Journal Nematology is used as a guide. 
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Chapter 2 

Formulation of Steinernema yirgalemense, S. jeffreyense and Heterorhabditis 

bacteriophora in alginate beads and diatomaceous earth 

Abstract 

The desire to use entomopathogenic nematodes (EPNs) on a large scale as biological 

control agent, in integrated pest management programmes, is frustrated by their short shelf 

life. To investigate their role in formulations, three local South African EPN species were used, 

including Steinernema yirgalemense, S. jeffreyense and Heterorhabditis bacteriophora, 

employing different formulation techniques. Encapsulation of the infective juveniles (IJs) in 

alginate beads, as well as the use of diatomaceous earth (DE), with reduced water activity (aw 

-value at 0.97) to induce quiescence, as well as to reduce the metabolism of the IJs, was 

investigated. Survival of the IJs in the formulations was determined at 6°C, 14°C and 25°C for 

4 weeks. Of the IJs, 10% to 20% were observed to escape from the beads, depending on the 

prevailing temperature, and readily survived the encapsulation process. DE did not cause the 

desiccation of the nematodes, with there still being a high survival rate by the fourth week of 

the study. However, desiccation effect was noticeable at 6°C. In both formulations, the survival 

and virulence rates differed significantly at 6°C, as compared to at 14°C and 25°C, with a 

drastic decrease over time for S. yirgalemense. The EPN species revealed poor survival and 

loss of virulence at low temperatures in both formulations. Thus, future research should 

investigate the survival of the species between the higher temperatures of 8°C and 10°C. The 

beads successfully retained most of the IJs and can be stored for a longer time. Of the two 

methods studied, formulating EPNs in DE is regarded as being the best way forward, due to 

the relative ease of optimisation.  

 

Key words: Encapsulation, temperature, quiescence, survival, virulence, desiccation, 

anhydrobiosis, Galleria mellonella, tixosol   
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Introduction  

Entomopathogenic nematodes (EPN) have many advantages and are mass-produced on 

an industrial scale in liquid culture. This is due to the relatively easy scale-up and downstream 

processing of large culture volumes, which can be mechanised, thus reducing production 

costs (Ehlers, 2001; Ehlers & Shapiro-Ilan, 2005; Shapiro-Ilan & Gaugler, 2002). Although 

many countries have exempted EPNs from registration obligations (Akhurst & Smith, 2002), 

in South Africa such is not the case (Hatting et al., 2018). In addition, EPNs can be 

incorporated into integrated pest management (IPM) programmes (Grewal, 2002), which has 

enabled both small and medium-sized enterprises to develop nematode-based plant 

protection products (Ehlers, 2003).  

For both the steinernematid and heterorhabditid nematodes, the dauer or infective 

juvenile (IJ) stage is the only free-living stage. Their mutualistic bacteria, with the aid of the 

nematode, are the etiological agents, which, on entering the target pest insect, where they 

multiply, cause septicaemia, resulting in the death of the insect (Ciche et al., 2006; Lu et al., 

2017). Although the IJs are non-feeding (Grewal et al., 2002), they can persist for a long time 

in the soil, until a potential host turns up. They enter mostly the soil-inhabiting insect stages, 

either through the anus, mouth and trachea, or even through the soft or thin parts of the cuticle 

(Ehlers, 2001). The insect dies within 24 to 48 h after nematode invasion (Burnell & Stock, 

2000; Dowds & Peters, 2002; Dunphy & Webster, 1988; Webster et al., 2002). When the food 

in the insect is depleted, the IJs then leave the cadaver to find a new host (Han & Ehlers, 

2000, 2001). Moreover, EPNs are, in some cases, so competent when present in the soil that 

they can exceed the control results obtained with chemical compounds, probably due to their 

mobility (Ehlers, 2003).  

The ability of EPNs to survive in storage for a few months aids in the marketing of 

nematode-based products (Grewal & Peters, 2005). Extended prospects of using EPNs in 

large-scale outdoor areas, chiefly against soil-dwelling insect pests in high-value crops, and 

in turf, have been investigated (Shapiro-Ilan et al., 2002, 2012). Presently, EPNs are mainly 

used where no other control procedures against a specific insect are available. Examples of 

such use are against insects, like Coleoptera, that have proved themselves to be very difficult 

to control, or in habitats where chemical compounds are found wanting/ failing/lacking, 

primarily in the soil, or in galleries of boring insects with resistance to insecticides, and during 

the harvesting of edible produce (Ehlers, 2003; Grewal & Peters, 2005).  

With the withdrawal from use of agrochemicals against pest insects for many horticultural 

crops in Europe, and with the existing Framework Directive 2009/128/EC on the sustainable 

use of pesticides, marketing opportunities for biopesticide products have increased, including 
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use of EPNs. The success of a biological control agent depends on the presence of certain 

key traits, including environmental tolerance, compatibility with the target pest, host-finding 

ability, reproductive potential, and the ability to mass culture (Bilgrami et al., 2006; Hopper et 

al., 1993). 

Even though EPNs are competent biological control agents against insect pests, their 

commercial use is limited by their predetermined shelf life, which is a major drawback in terms 

of large-scale commercial use (Grewal, 2000a, b). Their poor survival rate in storage at room 

temperature is a major hindrance to their potential use as bioinsecticides (Grewal, 2002). In 

addition, their ability to survive under such conditions is also highly compromised in terms of 

desiccation (Surrey & Wharton, 1995; Womersley, 1990). 

The successful commercialisation of EPNs after mass production requires the 

development of storage and formulation techniques that curtail nematode mortality, loss of 

virulence, and pathogenicity. In many commercial EPN-based biopesticide companies, the 

formulations that are manufactured result from the use of a variety of methods, ranging from 

simply saturating EPNs on artificial sponge, all the way through to highly advanced granular 

formulations. Major challenges have included obtaining room temperature shelf stability, ease 

of use, and contamination control. 

Kagimu et al. (2017) recently reported that DE is mainly used for formulations, due to its 

many advantages, including its ease of application using available farm implements and 

irrigation systems, among others. The authors, further, draw attention to the shift in research 

trends regarding formulations devised, ranging from a focus on the soil to a focus on above-

ground applications using adjuvants, and alginate beads and capsules (Kagimu et al., 2017).  

In South Africa, investigations to determine the commercial prospects of using a local 

isolate of Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, Gaugler & Adams, 2004 

for the control of codling moth (Cydia pomonella L.) (Lepidoptera, Tortricidae), vine mealybug 

(Planococcus ficus) (Hemiptera, Pseudococcidae), citrus mealybug (Planococcus citri), and 

maize stalk borer (Busseola fusca) (Lepidoptera, Noctuidae) is under way (Malan & Hatting, 

2015; Odendaal et al., 2015, 2016). Similar investigations have been undertaken in 

considering the commercial possibilities of H. bacteriophora for the control of bollworm 

(Helicoverpa armigera) (Lepidoptera, Noctuidae), fruit fly (Ceratitis capitata; C. rosa), (Diptera: 

Tephritidae), maize stalk borer (B. fusca), and sugarcane borer (Eldana saccharina) 

(Lepidoptera: Pyralidae) (Malan & Hatting, 2015).  

Nematodes encapsulated in sodium and calcium alginate gels by means of internal or 

external techniques (Kaya & Nelsen, 1985; Kaya et al., 1987), and in other hydrophilic colloids 

(Patel & Vorlop, 1994), have been used to protect the IJs from both desiccation and ultraviolet 
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light (Navon et al., 1998, 2002). The beads and capsules are produced by forming droplets 

from liquids, and by solidifying the liquid droplets to form particles. The process of gelation, or 

of membrane formation, is categorised by the way in which droplet formation (dripping and 

emulsification) occurs (Hiltpold et al., 2012; Vemmer & Patel, 2013). Increasingly, beads and 

capsules are coated using such polyelectrolytes as xanthan gum, with altering charges 

(Hiltpold et al., 2012; Kim et al., 2015; Vemmer & Patel, 2013) being used to strengthen them, 

and a few drops of colouring being added to distinguish the solution during gelation. Presently, 

such EPN formulation is still undergoing development, with the process encountering many 

diverse challenges. For example, Hiltpold et al. (2012) and Kim et al. (2015) report that EPNs 

readily escaped from soft capsules within a few days, especially when they were 

unrefrigerated, and that the capsules did not retain EPNs over an extended period of time, 

therefore limiting the long-term storage of such a medium. Adjusting the capsule properties, 

like the formation of alginate capsules at 4°C, resulted in thinner shelled, yet harder, capsules 

than when the polymerisation was performed at 24°C. Post-treatment of the capsules with 

additional Ca2+ markedly improved the hardness of the capsules concerned. Although the 

hardened capsules retained EPNs significantly better than did the unhardened ones, 

surprisingly, post-treatment with Ca2+ exerted an adverse effect on EPN retention, with very 

few IJs being able to escape from the capsules concerned. Ideally, EPN beads should retain 

their EPNs inside the bead, until they are required, and they should maintain the EPN viability 

for a few months, at room temperature (Kim et al., 2015). 

In contrast, DE, consisting of unicellular, or colonial, silicified skeletons of algae 

(Bacillariophyceae) (Buchholz et al., 2009), and composed of 89% amorphous SiO2, 4%, Al2O3 

1.7% Fe2O3, 1.4% CaO, >1% MgO + K2O and 3% H2O, was tested equally (Wakil et al., 2011). 

Inert dusts have been reported to be effective for the control of various pests (Golob, 1997). 

Although several DE formulations have been tested and evaluated for their effectiveness 

against the insect pests of stored products, all DE formulations do not give the same level of 

effectiveness. Thus, the use of a proper tested grade of DE is encouraged for formulation 

(Wakil et al., 2011).  

DE desiccates the IJs by causing partial anhydrobiosis, whereby the nematode enters a 

physiological state of quiescence, in which its metabolic activity and energy reserve 

consumption diminish, so that it can retain its survival capacities and infectivity until field 

application (Silver et al., 1995). Upon being reactivated by the moisture in the soil, it is 

liberated, and, if it locates a susceptible host, the effective biological control of the pest 

infestation may be achieved (Matadamas-Ortiz et al., 2014). The efficacy of EPN formulation 

can be influenced by some characteristics such as homogeneity (shape, size, quantity of 
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nematodes, and weight), structure, mechanical resistance, and the properties of the inert 

granular materials of DE formulation (Hiltpold et al., 2012; Silver et al., 1995). 

The objectives of the current study were to formulate three South African EPN species 

and to test them for suitability and survival enhancement, using two different types of 

formulation. The types of formulation used consisted of alginate beads and DE. With the 

beads, the number of nematodes escaping from them was determined, after formulation and 

storage at different temperatures, as was the pathogenicity of the IJ. In the case of DE, the 

viability of the nematodes was determined after storage at different temperatures, up until a 

period of four weeks had elapsed. 

Materials and methods 

SOURCE OF NEMATODES AND HOST INSECTS 

The three-nematode species used in the study were Steinernema jeffreyense Malan, 

Knoetze & Tiedt, 2015, S. yirgalemense and Heterorhabditis bacteriophora Poinar, 1976, all 

endemic to South Africa. The species, which were collected from previous surveys, were 

maintained in the EPN collection of the Nematology laboratory, at the Department of 

Conservation Ecology and Entomology, Stellenbosch University (Malan & Hatting, 2015). The 

details regarding the origin and size of the IJ are summarised in Table 2.1. 

Table 2.1. The strain, origin, mean body length, width and mass of the infective juveniles of different 
Steinernema and Heterorhabditis species. 

Species Strain  Origin 

 Infective juvenile 

 Length 
 (µm) 

Width 
(µm) 

Mass 
(µg) 

S. jeffreyense J194 Jeffreys Bay, Eastern Cape  924 
(784-1043) 

35 
(23-43) 

0.7089 

S. yirgalemense 157-C Friedenheim, Mpumalanga  635 
(548-693) 

29 
(24-33) 

0.3338 

H. bacteriophora SF351 Wellington, Western Cape  588 
(512-671) 

23 
(18-31) 

0.1944 

Malan et al., 2016; Nguyen et al., 2004; Poinar, 1976 

Galleria mellonella (Lepidoptera: Pyralidae) larvae were cultured according to Van Zyl & 

Malan (2015), on an artificial diet kept at 25°C in a growth chamber. The Galleria larvae were 

inoculated with IJs of the three-nematode species in 9-mm-diam Petri dishes, supplied with 

moist filter paper. Freshly harvested IJs were cultured in vivo, using last-instar larvae of G. 

mellonella, at 25°C in growth chambers. Modified White traps (Kaya & Stock, 1997) were used 

to harvest the emerged EPNs. The harvested IJs were stored in distilled water at 14°C, 

collected in 5-L Erlenmeyer flasks that were constantly stirred using a 70 × 10 mm cylindrical 
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magnetic stirring bar on an AGE magnetic stirrer (VELP® Scientifica) for approximately three 

weeks, until the desired concentration of IJs for each batch was achieved.  

FORMULATION IN ALGINATE BEADS 

The encapsulation of IJs in sodium alginate beads was done by means of modification of 

the methods of Chen & Glazer (2005) and of Kim et al. (2015) at room temperature (24°C), 

with two batches per species being studied. Two solutions of different composition were 

utilised. The infective juveniles (IJ) of 98 000 IJs/ml of each nematode species were 

suspended in 20 ml of solution containing 10% glycerol, 2% sodium alginate (FMC 

Biopolymer, Cape Town, South Africa), and 0.075% of formaldehyde and Moir’s crimson red 

or apple green food colour dye in distilled water. A droplet of 10-µl alginate solution was 

dripped from a 1-ml disposable syringe into 20 ml of Ca2+- solution, containing 0.5% CaCl2 

H2O (Merck SA (Pty) Ltd), 10% glycerol and 0.075% formaldehyde in distilled water. The 

formation of the alginate beads was immediate. The Ca2+- solution was shaken at 1200 rpm, 

using an orbital shaker (Benchmark’s ORBI-SHAKER™ JR), which prevented the beads from 

sticking together. After 20 min of bead formation, the beads were removed from the reaction 

beaker with a spatula and dried on paper towels (SCOTT® KIMDRI*, Bedfordview, South 

Africa).  Each bead finally contained approximately 490 ± 25 nematodes (5% error). 

RATE OF NEMATODE ESCAPED FROM ALGINATE BEADS 

The 22 beads used for storage and the 8 beads used for crushing at each temperature 

were placed individually in 2.0-ml microcentrifuge tubes (QSP®, USA). The tubes were stored 

in cardboard microtube freezer boxes (TrueNorth®) in the dark, at 6°C, 14°C and 25°C. The 

EPNs that escaped from each bead, after being retrieved from each tube with 500 µl of distilled 

water, were counted using a stereomicroscope (40 × magnification) weekly up to 4 weeks, to 

determine the survival percentage. Each bead was transferred to a new microcentrifuge tube. 

Two representative beads per sample were crushed in a 1.5 ml microcentrifuge tube, using a 

disposable tissue grinder pestle (Axygen®, Axygen Biosciences, Union City, USA) and 

observed, using a stereomicroscope, in an embryo dish, to determine the status of the IJs that 

remained inside the beads. The process was repeated on a different test date, using a fresh 

batch of nematodes. 
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Fig.2. 1. Alginate bead external gelation and formulation process. 

Pathogenicity of IJs stored in alginate beads 

The three EPN species that were encapsulated in sodium alginate beads, as was 

previously described, and which were stored for four weeks at 6°C, 14°C and 25°C, were 

crushed in an embryo dish, following which dilutions of 100 IJs in 50 µl were made. The 

dilutions were tested for pathogenicity against the last-instar larvae of G. mellonella, using 24-

well bioassay plates. Each bioassay plate contained 12 larvae, placed alternately in the wells, 

fitted with a piece of filter paper. Each well was inoculated with 100 IJs in 50 µl of distilled 

water, while water only was used for the controls. The lid of each well was fitted with a piece 

of glass of the same shape as the lid, to prevent the G. mellonella larvae from escaping. Five 

24-well plates, each consisting of 12 wells (n = 60), were used for each treatment (nematode 

species), with the control receiving water only. The plates were placed in a plastic container, 

lined with wet paper towels, thus creating 100% humidity, and kept in a growth chamber at 

25°C for a period of 48 h. Mortality was confirmed by means of the visual observation of the 

colour of the cadavers of the wax moth larvae, which were stained yellow, brick-red, and black, 

for S. yirgalemense, H. bacteriophora, and S. jeffreyense, respectively. The experiment was 

conducted twice with each nematode species on different test dates, using fresh batches of 
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nematodes encapsulated in sodium alginate beads, and stored in the same conditions 

described above. 

FORMULATING USING DIATOMACEOUS EARTH  

Nematodes were concentrated into a paste using a 32-µm sieve (Clear Edge Filtration SA 

(Pty) Ltd, South Africa). The three EPN species were formulated in DE (Celite 209 – Imerys 

Refractory Minerals SA (Pty) Ltd). The steps followed in the formulation process are depicted 

in Fig. 2.2. The proportions of the ingredients used in the formulation were followed according 

to Grewal & Jagdale (2002). The relative free water activity of the formulation was 0.970, which 

induced partial anhydrobiosis and slow desiccation in the IJs (Grewal 2000a, b). 

 

 

Fig. 2. 2. Diatomaceous earth formulation process. 

SURVIVAL OF NEMATODES IN DIATOMACEOUS EARTH 

The formulated nematodes were weighed, with 10 g being added to the plastic containers 

with lids (Mambo's Plastics) (n = 30). The ten containers were placed in larger plastic 

containers, lined with moistened paper towels (SCOTT® KIMDRI*, Bedfordview, South Africa), 

and covered with a lid to maintain the humidity levels at 100%. The containers were stored for 

four weeks at 6°C, 14°C and 25°C. The experiment was conducted twice with each nematode 
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species on different test dates, using another batch of nematodes, and stored in similar 

conditions to those described above. 

Formulated nematodes were counted according to the modification method of Peters 

(2004). One gram from a container of 10 g containing 500 000 IJs was dissolved in 10 ml of 

distilled water in a 50-ml beaker. Air was bubbled in from an aquarium air pump (Second 

Nature Whisper™ 1000), with its tube leading to the bottom of the beaker. One 100 µl sample 

was pipetted into 5 ml distilled water in a clean beaker. Mixing was undertaken by shaking, 

and 1 ml was further diluted with 2 ml of distilled water, with the number of IJs being counted, 

using a binocular microscope, weekly, for four weeks, to determine the survival percentage in 

each of the 10 containers, at the respective temperatures of 6°C, 14°C and 25°C. 

STATISTICAL ANALYSIS 

Statistical analyses were conducted using STATISTICA 13.2 software (StatSoft. Inc). The 

two-way ANOVA and repeated-measure ANOVAs were calculated accordingly. Where the 

results were not normally distributed, bootstraps were performed on the data for multiple 

comparisons. In other instances, the means were accordingly separated by means of the 

Fisher’s least significant difference or the Games-Howell post hoc test. 

Results 

RATE OF NEMATODE ESCAPED FROM ALGINATE BEADS  

No significant differences (p > 0.05) were obtained between the main effects of the 

nematode treatments and the dates between the two batches, thus the data were pooled for 

analysis. The results indicated that temperature had a significant effect on the number of 

nematodes moving out of the beads. Fewer IJs moved out of the beads at 6°C, followed by 

an increase at 14°C and 25°C, respectively. At 6°C, the mean numbers of S. jeffreyense 

differed significantly from those of H. bacteriophora and S. yirgalemense (p < 0.001), which 

did not differ significantly (p = 1.00) from each other (Fig. 2.3).  
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Fig. 2. 3. Mean number of infective juveniles (IJs) (95% confidence level) that moved out of the beads 
after 4 weeks in respect of S. jeffreyense, H. bacteriophora and S. yirgalemense. Different letters above the 
bars indicate significant differences (p < 0.05).  

The highest mean number of 6.50 IJs was recorded for H. bacteriophora, followed by the 

mean numbers of 3.80 and 0.68 for S. yirgalemense and S. jeffreyense IJs, respectively, at 

6°C. Equally, at 14°C, the mean number of IJs of S. yirgalemense differed significantly from 

those of H. bacteriophora (p = 0.01) and S. jeffreyense (p < 0.001), which did not differ 

significantly (p = 0.13) from each other. The highest mean number of 62.73 IJs was recorded 

for S. yirgalemense, followed by those of 13.75 IJs and 9.59 IJs for H. bacteriophora and S. 

jeffreyense, respectively. Additionally, at 25°C, the mean number of IJs of S. yirgalemense 

differed significantly from those of H. bacteriophora (p < 0.001) and S. jeffreyense (p < 0.001), 

which did not differ significantly (p = 0.99) from each other. The highest mean number of 77.39 

IJs was recorded for S. yirgalemense, followed by those of 26.59 IJs and 23.11 IJs for S. 

jeffreyense and H. bacteriophora, respectively (Fig. 2.3).  The mean number of IJs moving out 

of the beads for the nematode species at different temperatures could be observed to have 

increased. The mean number of Steinernema yirgalemense IJs, at 6°C, differed significantly 

from those at 14°C (p = 0.001) and 25°C (p = 0.001). At 14°C, the mean number did not differ 

significantly from that at 25°C (p = 0.99). For S. yirgalemense, the largest mean number of 

77.39 IJs moving out of the beads occurred at 25°C, followed by the mean numbers of 62.73 

and 3.80 occurring at 14°C and 6°C, respectively (Fig. 2.3). 
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The H. bacteriophora IJs, at 6°C, did not differ significantly from those at 14°C (p = 0.99), 

but significantly differed from those at 25°C (p < 0.001). For H. bacteriophora, the largest mean 

number of IJs moving out of the beads was 23.11 at 25°C, followed by 13.75 and 6.5 at 14°C 

and 6°C, respectively. The S. jeffreyense, at 6°C, differed significantly from those at 14°C (p 

= 0.04) and 25°C (p = 0.013). At 14°C, the mean number differed significantly from that at 

25°C (p = 0.01). For the S. jeffreyense IJs, the largest mean number of 26.59 IJs moving out 

of the beads was observed at 25°C, followed by the 9.59 and 0.68 moving out at 14°C and 

6°C, respectively (Fig. 2.3). 

PATHOGENICITY OF IJ STORED IN ALGINATE BEADS 

No significant differences (p > 0.05) were obtained between the two batches in terms of 

the main effects of nematode species and treatment, thus the data from the two batches were 

pooled before analysis. At 6°C, no significant difference was found in the Galleria mortality 

between S. jeffreyense and S. yirgalemense (p = 0.38) and H. bacteriophora (p = 0.93), which 

did not differ significantly (p = 0.22) from each other. The H. bacteriophora IJs caused the 

highest mean percentage mortality of Galleria larvae, of 27.50% ± 4.34%, followed by S. 

jeffreyense and S. yirgalemense, with 15.83% ± 4.34% and 4.17% ± 4.34%, respectively (Fig. 

2.4). 
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Fig. 2. 4. Mean percentage mortality (95% confidence level) of Galleria mellonella inoculated with the 
infective juveniles of Steinernema jeffreyense, Heterorhabditis bacteriophora and S. yirgalemense, 
formulated and stored in alginate beads at different temperatures for four weeks (F (6, 108) = 22.164, p < 
0.001). Mean separated by Games-Howell post hoc test; Error: Between MSE = 188.49, df = 108.00. 
Different letters above the bars indicate significant differences (p < 0.05). 
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At 14°C, no significant differences were found among the mean percentage Galleria 

mortality for S. jeffreyense, S. yirgalemense (p = 0.99), and H. bacteriophora (p = 0.97), which 

did not differ significantly (p = 0.99) from each other. The S. jeffreyense IJs caused the highest 

mean percentage Galleria mortality of 95.00% ± 4.34%, followed by S. yirgalemense and H. 

bacteriophora, with 90.83% ± 4.34% and 83.33% ± 4.34%, respectively (Fig. 2.4). At 25°C, no 

significant difference was found between the mean percentage Galleria mortality for S. 

jeffreyense and S. yirgalemense (p = 0.81), while a significant (p < 0.01) difference was 

recorded with H. bacteriophora, which also significantly (p < 0.01) differed from the mean 

percentage obtained for the S. yirgalemense IJs. The S. yirgalemense IJs had the highest 

mean percentage Galleria mortality of 98.33% ± 5.27%, followed by S. jeffreyense, and by H. 

bacteriophora with 90.00% ± 14.05% and 30.00% ± 13.72%, respectively (Fig. 2.4). No 

significant differences were found among the mean percentage Galleria mortality values for 

S. jeffreyense and S. yirgalemense (p = 1.00), and for H. bacteriophora (p = 0.35), which did 

not differ significantly (p = 0.71) from each other in the control (Fig. 2.4).  

Within the nematode species, there were significant (ρ < 0.05) and non-significant (p > 

0.05) differences per treatment. The S. jeffreyense IJs at 6°C differed significantly from those 

at 14°C (p < 0.0001) and at 25°C (p < 0.0001) but did not differ significantly (p = 0.32) from 

the control. At 14°C, they did not differ significantly from those at 25°C (p = 0.99). For the S. 

jeffreyense IJs, the highest mean percentage mortality value of 95.00% ± 4.34% was observed 

at 14°C, followed by 90.00% ± 4.34% and 15.83% ± 4.34%, at 25°C and 14°C respectively 

(Fig. 2.4). 

The S. yirgalemense IJs, at 6°C, differed significantly from those at 14°C (p < 0.0001) and 

25°C (p < 0.0001). At 14°C, they differed significantly from those at 25°C (p = 0.006). At 25°C, 

they did not differ significantly from those at 14°C (p = 0.70). For the S. yirgalemense IJs, the 

highest mean percentage Galleria mortality value of 98.33% ± 4.34% was observed at 25°C, 

followed by 90.83% ± 4.34% at 14°C, and by 5.00% ± 4.34% at 6°C, (Fig. 2.4). 

The H. bacteriophora IJs, at 6°C, differed significantly from those at 14°C (p = 0.007), but 

did not differ significantly from those either at 25°C (p = 1.00), or from the control (p = 0.89). 

At 14°C, they differed significantly from those at 25°C (p = 0.006), and from the control (p = 

0.0002). At 25°C, the IJs differed significantly from the control (p = 0.002). For H. bacteriophora 

IJs, the highest mean percentage Galleria mortality of 83.33% was observed at 14°C, followed 

by 30.00% ± 4.34% at 27°C, and the 27.50% ± 4.34% at 6°C (Fig. 2.4).  
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SURVIVAL IN DIATOMACEOUS EARTH 

Effect of temperature on the survival of EPNs in diatomaceous earth 

No significant differences (p > 0.05) were obtained between the two batches in terms of 

the main effects of temperature and date in the two-way ANOVA, thus enabling the data 

obtained from the two batches to be pooled and analysed. The analysis of data for weeks 1 

to 4 showed significant differences (repeated-measures two-way ANOVA: F (6, 171) = 171.89, p 

< 0.0001) between the temperatures regarding the survival of EPNs over time. A steep decline 

occurred in the mean percentage survival of the EPNs over time at 6°C, whereas a near-stable 

condition was maintained at 14°C and at 25°C, respectively. In week 1, the mean percentage 

survival of EPNs at 6°C differed significantly from that at 14°C (p < 0.0001) and at 25°C (p < 

0.0001), with neither differing significantly from the other either at 14°C (p = 0.94), or at 25°C 

(p = 0.94) (Fig. 2.5). 
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Fig. 2. 5. Mean percentage survival rate (95% confidence level) of EPNs in diatomaceous earth at 
different temperatures during the 4 weeks, with the repeated-measures two-way ANOVA: (F (6, 171) = 
171.89, p < 0.0001). Mean separated by Fisher’s least significant difference (LSD) post hoc test; Error: 
Between; Within; Pooled MS = 46.642, df = 211.53. Different letters above the bars indicate significant 
differences. 

In week 1, an almost equal mean percentage survival rate was obtained at 25°C (93.81% 

± 2.36%), and at 14°C (93.63% ± 2.36%), followed by that which was obtained at 6°C (71.70% 

± `2.36%). In week 2, the mean percentage survival rate of EPNs at 6°C significantly differed 

from that at 14°C (p < 0.0001) and at 25°C (p < 0.0001), of which neither differed significantly 

from each other at 14°C (p = 0.96), or at 25°C (p = 0.96). Similarly, a practically equal mean 
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percentage survival rate was obtained at 25°C (84.83% ± 1.55%), and at 14°C (84.72% ± 

1.55%), followed by that which was obtained at 6°C (39.21% ± 1.55%), respectively (Fig. 2.5).  

In week 3, the mean percentage survival rate of EPNs at 6°C significantly differed from 

that which was obtained at 14°C (p < 0.0001), and at 25°C (p < 0.0001), but neither differed 

significantly from the other (14°C (p = 0.73) and 25°C (p = 0.73)). Similarly, a practically equal 

mean percentage survival rate was obtained at 25°C (92.02% ± 0.92%), and at 14°C (91.28% 

± 0.92%), followed by that which was obtained at 6°C (9.49% ± `0.92%). In week 4, the mean 

percentage survival rate of EPNs at 6°C significantly differed from that at 14°C (p < 0.0001) 

and at 25°C (p < 0.0001), of which neither differed significantly from the other (14°C (p = 0.94) 

and 25°C (p = 0.94)). An almost equal mean percentage survival rate was obtained at 14°C 

(91.01% ± 0.72%) and at 25°C (88.31% ± 0.72%), followed by that which was obtained at 6°C 

(0.00% ± `0.72%) (Fig. 2.5).  

Desiccative effect of diatomaceous earth on the survival of EPNs  

No significant differences (p > 0.05) were obtained between the two batches in relation to 

the main effects of nematode species and date in respect of the two-way ANOVA, thus 

enabling the data from the two batches to be pooled and analysed. The analysis of the data 

from weeks 1 to 4 showed significant differences (repeated-measures two-way ANOVA: (F (6, 

531) = 8.4622, p < 0.01)) between the different nematode populations regarding their survival 

over time. A general decline in the mean percentage survival rate of the nematodes occurred 

over time (Fig. 2.6). 
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Fig. 2. 6 Mean percentage survival (95% confidence level) of infective juveniles of Steinernema 
yirgalemense, Heterorhabditis bacteriophora, and S. jeffreyense in diatomaceous earth (data for 
different temperatures pooled) during the 4 weeks, and repeated-measures two-way ANOVA: (F (6, 531) 

= 8.4622, p < 0.0001). Mean separated by Fisher’s least significant difference (LSD) post hoc test; 
Error: Between; Within; Pooled MS = 416.77, df = 293.30. Different letters above the bars indicate 
significant differences (P < 0.05). 
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In week 1, the mean percentage survival rate of S. yirgalemense did not differ significantly 

from that of H. bacteriophora (p = 0.70), although it did differ from S. jeffreyense (p = 0.009), 

which also differed significantly from each other (H. bacteriophora (p = 0.027); S. jeffreyense 

(p = 0.027)). The highest mean percentage survival was obtained with S. yirgalemense 

(86.38% ± 1.29%), followed by H. bacteriophora (84.95% ± 1.29%) and by S. jeffreyense 

(76.64% ± 1.29%) (Fig. 2.6).  

In week 2, the mean percentage survival rate of S. yirgalemense differed significantly from 

H. bacteriophora (p = 0.004), but it did not differ significantly from S. jeffreyense (p = 0.059), 

with the difference from each other not being significant (H. bacteriophora (p = 0.06); S. 

jeffreyense (p = 0.06)). The highest mean percentage survival rate was obtained with H. 

bacteriophora (80.27% ± 2.03%), followed by S. jeffreyense (73.33% ± 2.03%), and S. 

yirgalemense (69.59% ± 2.03%). In week 3, the mean percentage survival rate of S. 

yirgalemense significantly differed from that for H. bacteriophora (p = 0.009), but it did not 

differ significantly from S. jeffreyense (p = 0.23), with the difference from each other not being 

significant (H. bacteriophora (p = 0.16); S. jeffreyense (p = 0.16)). The highest mean 

percentage survival rate was obtained with H. bacteriophora (74.03% ± 3.25%), followed by 

that which was obtained with S. jeffreyense (68.72% ± 3.25%), and with S. yirgalemense 

(64.26% ± 3.25%). In week 4, the mean percentage survival rate of S. yirgalemense differed 

significantly from that of H. bacteriophora (p = 0.011) and from that of S. jeffreyense (p = 

0.015) which did not differ significantly from each other (H. bacteriophora (p = 0.90); S. 

jeffreyense (p = 0.90)). A slightly higher mean percentage survival rate was obtained with H. 

bacteriophora (69.35% ± 3.38%) than with S. jeffreyense (68.90% ± 3.38%), followed by that 

which was obtained with S. yirgalemense (59.77% ± 3.38%) (Fig. 2.6).  

Overall survival rate in diatomaceous earth at different temperatures 

A summary of the survival rate of the EPNs investigated, as affected by both temperature 

and DE, is depicted in Fig. 2.7.  
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Fig. 2. 7. Mean percentage survival (95% confidence level) of S. yirgalemense, H. bacteriophora, and 
S. jeffreyense IJs in diatomaceous earth at different temperatures during the 4 weeks and repeated 
measures two-way ANOVA: (F (12, 513) = 32.860, p < 0.0001). Mean separated by Fisher’s least 
significant difference (LSD) post hoc test; Error: Between; Within; Pooled MS = 48.306, df = 666.44. 
Different letters above the bars indicate significant differences (p < 0.05). 

Discussion 

The current study reports on the improvement in the alginate beads formulation of the IJs 

of S. jeffreyense, H. bacteriophora and S. yirgalemense. Currently, the formulation of IJs in 

alginate beads is being faced with several challenges, including that of the IJs being able to 

readily escape from the soft alginate beads (Hiltpold et al., 2012). The result is that the beads 

cannot retain the EPNs over an extended period, therefore limiting the long-term storage of 

alginate beads containing nematodes. Also, the adjustment of the bead properties, as with the 

post-treatment of the beads with additional Ca2+ to improve their hardness, could exert an 

adverse effect on EPN retention, thus preventing the IJs from escaping from the beads (Kim 

et al., 2015). Attaining a month-long room temperature shelf stability in the formulation of the 

three local EPN species was necessary, given the commercial interest that the EPNs hold in 

terms of protecting crops within the sphere of South African agricultural production. The mean 

number of IJs that escaped from the beads at 25°C during the 4 weeks was relatively low, 

indicating that alginate beads can release IJs at a relatively slow pace, and thus improve their 

long-term room temperature shelf stability.  

Temperature had a significant effect on the different EPN species involved, regarding the 

number of nematodes moving out of the beads. Kagimu et al. (2017) and Stuart et al. (2015) 
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identified temperature, in terms of heat and cold tolerance, as one of the abiotic factors 

influencing the survival of IJs. Kagimu et al. (2017) further asserted that the prevailing 

temperature could add significantly to the insecticide efficacy of IJs, which could be seen at 

6°C, at which temperature the IJs caused significantly lower mortality to the highly susceptible 

G. mellonella larvae than they did at the other temperatures at which the tests were conducted. 

Furthermore, Addis et al. (2016), in their study of the life history traits of S. yirgalemense using 

a hanging drop reported low survival rates, not exceeding 42 days, at a storage temperature 

of 4°C. In contrast, they found that, at 15°C and 25°C, more than 95% of the IJs survived for 

a period of up to 66 days. The S. yirgalemense strain 157-C used, was the same as that which 

was used in the current study. All species studied in the present research were local isolates, 

which are adapted to the relatively warm South African climate (Malan & Hatting, 2015), and 

which are, thus, less well adapted to surviving under conditions of low temperature, further 

explaining the observations made.  

The survival of IJs is often improved in many formulations, by means of storing the 

nematodes concerned at lo w temperatures between 4°C and 15°C (Grewal & Peters, 2005). 

The present data do not support the making of such a supposition, however, given the low 

mean number of IJs observed to be moving out of the beads at 6°C. Furthermore, the results 

show loss of virulence at low temperatures. Therefore, the three formulated nematodes should 

be stored at temperatures ranging between 14°C and 25°C, leading to no refrigeration of the 

nematodes stored in formulation for the local species. Furthermore, the results clearly show 

that the temperature had a significant effect on the survival of the three species in DE, with 

the temperature of 6°C substantially reducing the survival of IJs over time, especially in the 

case of S. yirgalemense. 

Diatomaceous earth is widely used as an insecticide, with control generally caused by 

desiccation, due to the hygroscopic nature of some of the grades available. In this study, 

relatively few of the IJs were expected to survive, due to the low density of IJs in the 

formulation. Coincidentally, the results showed a stable decrease, or slow lowering, of the 

shelf life of the IJs stored in DE formulation. The results also showed that the use of DE did 

not lead to the desiccation of the nematodes, with there being a considerably higher survival 

rate by the fourth week of the study. This finding can only be explained by such characteristics 

as homogeneity (shape, size, quantity of nematodes, and weight), structure, mechanical 

resistance, and the properties of the inert granular materials of DE formulation that could 

influence the efficacy of EPNs in the control of pest infestations (Hiltpold et al., 2012; 

Matadamas-Ortiz et al., 2014; Silver et al., 1995). For example, Ziaee et al. (2016), in their 

investigation of the possible use of Iranian DEs as grain protectants in stored-product pest 

management programmes, observed the increased mortality of adults of Oryzaephilus 
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surinamensis (L.), with increasing exposure intervals and concentration levels. The low 

density of IJs/g in the DE, as used in the current study, does not necessarily translate into the 

reduced shelf life of the IJs, as would be likely to be observed at higher densities. The above 

is due to the strong desiccative effect of the formulation on the IJs employed. In contrast, the 

results correspond to those of Matadamas-Ortiz et al. (2014), whose best results were 

obtained following 100DE:0AC proportions. 

In conclusion, the properties of alginate beads were adjusted to enable them to release 

IJs on a regular basis, which has gone some way to solving the challenges encountered with 

the use of soft and hard beads. The loss of virulence and survival is reported for the first time 

as occurring at relatively low temperatures for the three EPNs stored at 6°C. The high survival 

and virulent abilities of the studied species at room temperature obtained showed potential for 

a reduction in the existing costs of refrigeration during both storage and transportation. In the 

present study, we were constrained from obtaining the much-desired number of IJs due to the 

in vivo culturing of IJs, so that we were only able to formulate IJs at a lower density (IJs/g) of 

DE formulation. We recommend, in terms of using in vitro cultures, striving to obtain a much 

higher density of IJs in formulation, to be able to obtain a more realistic and improved DE 

formulation.  
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Chapter 3 

Effect of antifungal agents on the efficacy of Steinernema yirgalemense and 

room temperature storability in diatomaceous earth 

Abstract 

The quality of food systems is often deteriorated by microbial contamination. The 

formulation of entomopathogenic nematodes (EPNs) in diatomaceous earth (DE) for use as 

biological control agents, in integrated pest management programmes, is no exception. 

Microbial contamination unequivocally lowers the quality and shelf life of EPNs in formulation. 

For a feasible solution, the effect of such antifungal agents as peroxyacetic acid (PAA), trans-

cinnamic acid (TCA) and nipagin on the efficacy of the infective juveniles of Steinernema 

yirgalemense, a local South African species of EPNs, was studied. The viability of the room 

temperature storability of S. yirgalemense, at a higher density in DE after 4 weeks, was equally 

considered. A decline in the survival rate and pathogenicity of S. yirgalemense, due to PAA, 

is reported upon. In contrast, TCA and nipagin had no effect on the survival rate and 

pathogenicity of S. yirgalemense. Furthermore, the shelf life of IJs stored in DE formulation at 

room temperature improved when measured against the 80% mean survival rate of S. 

yirgalemense in week 4 at 25°C. 

Key words: formulation, nipagin, peroxyacetic acid, entomopathogenic, virulence, trans-

cinnamic acid, microbial, toxicity 
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Introduction 

The successful commercialisation of EPNs after mass production prerequisites the 

development of storage and formulation techniques that curtail nematode mortality, as well as 

their loss of virulence and pathogenicity. However, their meagre shelf life is a drawback 

especially in terms of large-scale commercial use (Grewal, 2000a,b). Yet, maintenance of 

high-quality EPNs at all levels from the bioreactor, liquid storage, and storage in formulation, 

until the product reaches the famers’ field (Grewal & Peters, 2005; Kagimu et al., 2017), is of 

importance. Such maintenance is necessary, because EPNs are affected by both biotic and 

abiotic factors, especially when in formulation, in relation to which the temperature, aeration, 

moisture content and water loss, as well as the contamination and toxicity of antimicrobial 

agents in terms of IJs are of foremost importance (Grewal & Peters, 2005; Kagimu et al., 

2017). 

Microbial contamination, such as the frequent contamination of nematode formulations 

with high moisture content by microbial organisms, which is a significant hindrance, especially 

in relation to room temperature shelf life, is of significance (Grewal, 2002). The reason for the 

above is that microbials tend to compete for existing oxygen supplies, decrease the usability 

of formulations, and initiate the clogging of spray nozzles, thereby decreasing the suitability of 

the formulated product. Notably, some antimicrobial agents may also decrease the extent of 

nematode survival in the formulations (Grewal, 2002). 

Peroxyacetic/ peracetic acid (PAA) is a strong oxidant and disinfectant, with a wide 

spectrum of antimicrobial activity, which is commercially available as a mixture containing 

acetic acid, hydrogen peroxide and water. Various industries have demonstrated its 

effectiveness as an antibacterial, antiviral and antifungal agent (Ayoub et al., 2017; Kitis, 

2004). Peracetic acid (CH3CO3H) is registered by the United States Environmental Protection 

Agency (US EPA 2007) for its utilisation in agriculture and food processing, as well as in 

medical facilities, as an antimicrobial disinfectant. Furthermore, in Europe, PAA, which is 

approved for use in veterinary medicine, is one of the few compounds approved for use as a 

disinfectant in aquaculture (Straus et al., 2012).  

Equally important, cinnamic acid, which is an organic acid that naturally occurs in plants, 

has low toxicity and a broad spectrum of biological activities. Cinnamic acid has antimicrobial 

activity and its derivatives, when isolated from plant material and synthesised, have 

antibacterial, antiviral and antifungal properties (Nascimento et al., 2000; Sova, 2012). 

Cinnamic acid mainly exists in cis and trans isomers. Besides, trans-cinnamic (TCA) has been 

isolated as a secondary metabolite of the EPN-associated bacteria Photorhabdus 
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luminescens and reported to be having an immense antifungal capability (Bock et al., 2014; 

Hazir et al., 2016, 2017, 2018).  

Last but not least, nipagin M (methyl 4-hydroxybenzoate), or methyl paraben, methyl p-

hydroxybenzoate, or methyl parahydroxybenzoate is the methyl ester of p-hydroxybenzoic 

acid. The compound, which has been used as an antimicrobial preservative in foods, drugs 

and cosmetics for over 50 years is stable and non-volatile (Błędzka et al., 2014; Mahuzier et 

al., 2001; Soni et al., 2002). Nipagin, which is biodegradable, since it is readily metabolised 

by common soil bacteria, is often used as an antimicrobial agent in many insect food diets 

(Garrido-Jurado et al., 2011; Quesada-Moraga et al., 2006; Rohlfs et al., 2005).  

In Chapter 2, the storage of formulated local South African species of EPNs was 

recommended at temperatures ranging between 14°C and 25°C, due to the relatively high 

survival and virulence rates attained at such temperatures. In addition, the comparatively low 

density of the IJs/g of diatomaceous earth (DE), which was investigated in Chapter 2, 

coincidentally depicted the relatively long shelf life of IJs, as observed at relatively high 

densities. Thus, the need to provide a comparatively high density of IJs for a realistic and 

improved DE formulation was of interest to the current study. 

The aim of the present study was to test Steinernema yirgalemense Nguyen, 

Tesfamariam, Gozel, Gaugler & Adams, 2004 at a relatively high density in DE, for the 

improvement of its shelf life. Furthermore, the study considered the likelihood of bacterial and 

fungal infections being present in the sample at a comparatively high-water activity, at which 

such microbials as fungi tend to thrive in formulation, due to the increased amount of water in 

the formulation. The study, hence, determined the survival and the efficacy of the IJs against 

three antifungal agents, namely PAA, TCA and nipagin. 

Materials and methods 

SOURCE OF NEMATODES AND HOST INSECTS 

The nematode S. yirgalemense, which is endemic to South Africa, was used in the current 

study. Galleria mellonella (Lepidoptera: Phyralidae) larvae were cultured according to Van Zyl 

& Malan (2015), on an artificial diet at 25°C in a growth chamber. The Galleria larvae were 

inoculated with IJs in 9-mm-diameter Petri dishes, lined with moist filter paper. Freshly 

harvested IJ were cultured in vivo, using last-instar larvae of Galleria, kept at 25°C in growth 

chambers. Modified White traps (Kaya & Stock, 1997) were used to harvest the emerged 

EPNs. Harvested IJs were stored in distilled water at 14°C and collected in 5-L Erlenmeyer 

flasks that were constantly stirred using a 70 × 10 mm cylindrical magnetic stirring bar on an 
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AGE magnetic stirrer (VELP® Scientifica) for approximately three weeks, until the desired 

concentration of IJs for each batch was achieved. 

FORMULATING USING DIATOMACEOUS EARTH  

Nematodes were concentrated into a paste using a 32-µm sieve (Clear Edge Filtration SA 

(Pty) Ltd, - South Africa). The technique described in Chapter 2 was used to formulate 40 

million IJs of S. yirgalemense in DE (Celite 209 - Imerys Refractory Minerals SA (Pty) Ltd). 

The proportions of the ingredients used in the formulation were employed according to Grewal 

& Jagdale (2002) as is indicated in Table 3.1 below. The water activity of 0.970 was used in 

the formulation and induced the IJs into a partial anhydrobiosis and a slow desiccation (Grewal 

2000a, b). The nematode paste was hand-mixed with all the ingredients and the formulated 

nematodes weighing 10 placed in lidded containers (Mambo's Plastics) (n = 30). Ten 

containers were further placed into larger covered containers, lined with moistened paper 

towels (SCOTT® KIMDRI* – Bedfordview, South Africa) to maintain humidity at 100%. The 

containers were stored for four weeks at 14°C and 25°C. Fig. 3.1 below depicts the steps 

followed in the formulation process. The experiment was conducted twice on different test 

dates, using different batches of nematodes, and stored under the same conditions as those 

that are described above. 

 

Fig. 3. 1. Diatomaceous earth formulation process. 
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SURVIVAL OF NEMATODES IN DIATOMACEOUS EARTH 

Formulated nematodes were counted according to a modification method of Peters 

(2004). One g of the formulation from a container with 10 g with 2 000 000 IJs was dissolved 

in 10 ml of distilled water in a 50-ml beaker and the IJs suspended. Air was bubbled in from 

an aquarium air pump (Second Nature Whisper™ 1000), with its tube leading to the bottom of 

the beaker. One 100-µl sample was pipetted into 5 ml distilled water in a clean beaker, which 

was then brought into suspension, with 1 ml of the suspension being diluted with 2 ml of 

distilled water. The IJs were counted weekly, using a binocular microscope, for four weeks to 

determine the survival percentage in each of the 10 containers at the respective temperatures 

of 14°C and 25°C. 

ANTIFUNGAL TOXICITY SCREENING 

Three antifungal agents, PAA, TCA and nipagin, were tested for their toxic effects on S. 

yirgalemense. Approximately 250 IJs were suspended in 1 ml liquid, in 2-cm-diameter watch 

glasses containing either PAA solution (36-40 wt% in acetic acid, Sigma-Aldrich), TCA 

(Kosher; natural ≥ 99%, FG-Sigma-Aldrich), or nipagin (methylparaben). The concentrations 

used for each of the respective antifungal agents in the study were: 0.01%, 0.02%, 0.03%, 

0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 1%, 2%, 3%, 5%, and 10%. The 

concentrations were percentages of the corresponding antifungal agents in the 1 ml containing 

250 IJs in the watch glass. The control involved the suspension of IJs in distilled water. Five 

watch glasses per concentration were placed in a large glass Petri dish, with a piece of moist 

tissue paper being placed between them to maintain 100% humidity. They were incubated at 

25°C for 24 hours, upon the elapse of which all 250 IJs were counted out onto a Petri dish to 

determine the number of live and dead IJs. The experiment was conducted twice on different 

test dates, using different batches of nematodes. 

EFFECT OF ANTIFUNGAL AGENT ON IJ PATHOGENICITY 

After exposing the EPN to the antifungal agents for 24 h, they were tested for pathogenicity 

against the last-instar larvae of G. mellonella, using 24-well bioassay plates (flat-bottom, 

Nunc™, Cat. No. 144530). Each bioassay plate contained 10 larvae, placed alternately in the 

wells, fitted with a piece of filter paper. Each of the wells was inoculated with 50 IJs in 100 µl 

of the mixture of IJs/antifungal agents, while water only was used for the controls. The lid of 

each well was fitted with a piece of glass of the same shape as the lid, to prevent the G. 

mellonella larvae from escaping. Five 24-well-plates, with 10 wells in each (n = 50), were used 

for each treatment/concentration. The plates were placed in a plastic container that was lined 

with wet paper towels, thus creating 100% humidity. They were then kept in a growth chamber 
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at 25°C for a period of 48 h. Mortality was confirmed by means of the visual observation of the 

colour of the cadavers of the wax moth larvae, which turned yellowish for S. yirgalemense. 

The experiment was repeated once on a different test date, using another batch of nematodes. 

STATISTICAL ANALYSES 

All the experiments were conducted twice on different test dates, using different batches 

of nematodes, with the results being combined for analysis. Statistical analyses were 

conducted using STATISTICA 13.2 software (StatSoft. Inc). Data on the negative effect of 

antifungal agents on the survival percentage were arcsine transformed prior to analysis. All 

the results on antifungal agents were analysed using general linear models (GLM), with the 

mean being separated by means of the Games-Howell post hoc test. The results on the DE 

were analysed by means of a two-way repeated-measures ANOVA, and the means were 

separated by means of the LSD test. 

Results  

ANTIFUNGAL AGENT TOXICITY SCREENING 

As no significant differences (p > 0.05) were obtained between the two batches in terms 

of the main effects of time and treatment of the nematodes with the different antifungal agents, 

the data from the two batches were pooled and analysed. A significant difference (p < 0.001) 

was found in the effect of the antifungal agents on the percentage survival of S. yirgalemense 

IJs after 24 h exposure. The nipagin differed significantly from the TCA (p < 0.01) and the PAA 

(p < 0.01), which also differed significantly (p < 0.01) from each other (Fig. 3.1). Nipagin 

caused the highest mean percentage survival value of 99.89% ± 0.87 %, followed by TCA 

acid, and then by PAA, with 98.78 % ± 0.87 % and 29.24 % ± 0.87%, respectively (Fig. 3.2).  
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Fig. 3. 2. Mean percentage survival (95% confidence level) of S. yirgalemense infective juveniles (IJs) 

after 24 h in the antifungal agents peroxyacetic acid (PAA), trans-cinnamic acid (TCA) and nipagin (F 

(2, 435) = 2174.1, p < 0.001). Mean separated by Games-Howell post hoc test; error: between MSE = 

116.91, df = 435.00. Different letters above the bars indicate significant differences (p < 0.05). 

Effect of antifungal agent on IJ pathogenicity 

No significant differences (p > 0.05) were obtained between the two batches with the 

main effects of nematode and antifungal agents, thus the data from the two batches were 

pooled and analysed. A significant difference (p < 0.001) was found in the percentage mortality 

of G. mellonella larvae by S. yirgalemense IJs after 24 h exposure to the respective antifungal 

agents. The peracetic acid differed significantly from the TCA (p < 0.0001) and the nipagin (p 

< 0.0001), which did not differ significantly (p = 0.58) from each other. The S. yirgalemense 

IJs that were previously treated with TCA caused the highest mean percentage mortality value 

of G. mellonella larvae of 100% ± 0.91%, followed by nipagin, and then by PAA, with 99.97% 

± 0.91% and 36.70% ± 0.91%, respectively (Fig. 3.3).  
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Fig. 3. 3. Mean percentage mortality (95% confidence level) of Galleria mellonella larvae inoculated 

with Steinernema yirgalemense, after 24 h exposure to the respective antifungal agents, peroxyacetic 

acid (PAA), trans-cinnamic acid (TCA) and nipagin (F (2, 389) = 1606.9, p < 0.001). Mean separated by 

Games-Howell post hoc test; error: between MSE = 128.17, df = 389.00. Different letters above the 

bars indicate significant differences (p < 0.05).  

SURVIVAL OF NEMATODES IN DIATOMACEOUS EARTH 

No significant differences (p > 0.05) were obtained between the two batches with the main 

effects of treatment and date in the two-way ANOVA, thus the data from the two batches were 

pooled and analysed using a one-way ANOVA. The analysis of the data from weeks 2 and 4 

showed significant differences (repeated measures two-way ANOVA: (F (1, 38) = 0.86115, p > 

35927) between the treatments with regards to survival. A high survival rate was attained 

during the observation period. Besides the above, the mean percentage survival was 

significantly (p < 0.05) higher in week 2 than it was in week 4. At week 2, the survival of S. 

yirgalemense in DE did not significantly differ at both 14°C (p = 0.69) and 25°C (p = 0.69). The 

mean percentage survival rate obtained at 14°C (85.60% ± 0.84%) was slightly higher than 

was that at 25°C (85.16% ± 0.84%). Furthermore, at week 4, the survival of S. yirgalemense 

in DE also did not differ significantly at both 14°C (p = 0.85) and 25°C (p = 0.85). Unlike at 

week 2, the mean percentage survival rate obtained at 25°C (80.67% ± 0.71%) was slightly 

higher than it was at 14°C (80.67% ± 0.71%) (Fig. 3.4).  
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Fig. 3. 4. Mean percentage survival (95 % confidence level) of Steinernema yirgalemense infective 
juveniles (IJ) in diatomaceous earth at different temperatures during the 4 weeks (repeated measures 
ANOVA: (F (1, 38) = 0.86115, p > 35927). Mean separated by Fisher’s least significant difference (LSD) 
post hoc test; error: between; within; pooled MS = 11.975, df = 46.626. Different letters above the bars 
indicate significant differences (p < 0.05).  

Discussion 

The study reports on the loss of survival and pathogenicity of S. yirgalemense due to PAA. 

Despite PAA being a strong disinfectant, with a wide spectrum of antimicrobial activity, it is not 

suited to protect EPN formulation against contamination. Peroxyacetic acid has previously 

been used as a nematicide (An et al., 2017; Jagdale & Grewal, 2002; Krishnayyaand & 

Grewal, 2002), with the previously obtained results agreeing with the findings made in the 

current study. For example, An et al. (2017) report that ZeroTol (BioSafe Systems) caused 

100% mortality of Aphelenchoides fragariae (Ritzema Bos, 1891) Christie, 1932 

(Aphelenchida: Aphelenchoididae) in aqueous suspension at 20-fold (low) dilution. ZeroTol 

further reduced, by over 85% and 75%, A. fragariae population in soil 7 and 42 days after 

treatment, respectively, in drench application. An et al. (2017) deduced that spray application 

of ZeroTol could reduce > 70% of the A. fragariae population in leaf discs, and that it, thus, 

has great potential to manage foliar nematodes in floriculture. The active ingredient of ZeroTol 

is PAA (270 g/l). The above-mentioned results clearly support the results obtained in the 

current study, in terms of which nematodes lost their survival and virulence in 24 hours. 

Similarly, Krishnayyaand & Grewal (2002) reported that the hydrogen dioxide/PAA mixture 

(ZeroTol) was incompatible with the IJs of Steinernema feltiae (Filipjev, 1934;) Wouts, Mráček, 
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Gerding & Bedding, 1982, as it caused 100% mortality after 120 h of incubation, and, hence, 

could not be tank-mixed during application. The current study confirms that PAA is not 

recommendable as an antimicrobial in formulations using EPNs. 

Results from the study showed that TCA has no effect on the viability and virulence of the 

IJs of S. yirgalemense at all the tested concentrations, up to 24 h of exposure. Trans-cinnamic 

acid has been isolated as a secondary metabolite of the mutualistic bacteria, Photorhabdus 

luminescens (Bock et al., 2014; Hazir et al., 2016, 2017, 2018). However, the acid’s effect on 

EPN IJs, to the current researchers’ knowledge, has not previously been tested, with this being 

the first report showing its compatibility with EPNs. Overall, several other antimicrobials have 

been isolated from the metabolites of the Photorhabdus and Xenorhabdus species. Such 

antimicrobials include numerous antimicrobial compounds, such as xenorhabdins, 

xenocoumacins, nematophin, cabanillasin, and xenofuranones A and B, isolated from 

Xenorhabdus species (Brachmann et al., 2006; Houard et al., 2013; Li et al., 1997; Sharma et 

al., 2016; Webster et al., 2002). Likewise, antifungal and/or antibacterial products, like 

hydroxystilbenes, trans-stilbenes, TCA, anthraquinone pigments, and the toxin complex (Tc), 

have been isolated from Photorhabdus (Bock et al., 2014; Bode, 2009; Boemare & Akhurst, 

2006; Shapiro-Ilan et al., 2009). The toxicity against important fungal pathogens from the 

already examined crude bacterial exudates and metabolites of Photorhabdus and 

Xenorhabdus species in the different studies is offering encouraging results (Bock et al., 2014; 

Chen et al., 1996; Fang et al., 2014; Hazir et al., 2016; McInerney et al., 1991a,b; San-Blas et 

al., 2012; Shapiro-Ilan et al., 2009, 2014). Though the bioactive metabolite of Xenorhabdus 

indica Somvanshi, Lang, Ganguly, Swiderski, Saxena & Stackebrandt, 2009 associated with 

S. yirgalemense (Ferreira et al., 2016) is unknown and has not yet been isolated, the notion 

that it is compatible with TCA probably holds true. Incidentally, the results of the current study 

have revealed the bioactive secondary metabolites of the bacteria associated with EPN as 

being potent antimicrobials in formulation. 

Furthermore, results of the present study also show that nipagin, likewise, has no effect 

on the viability and virulence of the IJs of S. yirgalemense at all the tested concentrations, up 

to 24 h of exposure. By contrast, Kermarrec & Mauléon (1989) reported that nipagin evidently 

lowered the pathogenicity of Steinernema carpocapsae (Weiser, 1955) Wouts, Mráček, 

Gerdin & Bedding, 1982 to the caterpillars of two Pyralid moths (Diatraea saccharalis and 

Galleria mellonella) by 200 times (all instars), ranging from 50 to 250 times with larval aging 

from the third to the fifth instar. 

Research showed an improvement in the shelf life of IJs stored in DE formulation, in 

relation to a previous study in the formulation of S. yirgalemense (Chapter 2). A notable result 

in this case is the high survival rate (80%) of S. yirgalemense in week 4 at 25°C. The above 
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finding is reassuring in terms of the implications that it holds for the much-desired room 

temperature storage of IJs in DE formulation. The improvement in the number of nematodes 

in DE formulation has undoubtedly influenced the survival of EPNs in terms of the current 

research (Hiltpold et al., 2012; Matadamas-Ortiz et al., 2014; Silver et al., 1995). The above 

is in accordance with the findings of Matadamas-Ortiz et al. (2014), who obtained best results 

following 100DE:0AC proportions. The present results obtained are also similar to those of 

Ziaee et al. (2016), who reported the increased mortality of the adults of Oryzaephilus 

surinamensis (L.) (Coleoptera: Sylvanidae), with the increasing exposure intervals and 

concentration levels of DE proving to be key to the function of serving as the grain protectants 

of stored product pests. Preliminary results (not shown here) of S. jeffreyense in DE at a 

density of 4 000 000 IJs/g of formulation have given 100% survival and pathogenicity for three 

months at 14°C. Equally important, the study revealed an inverse relationship between the 

number of IJs in the DE formulation and the presence of water. The higher the number of IJs, 

the lower is the amount of DE and water that is required in the formulation. The use of such a 

formula leads to improved DE formulation. At the point where the DE becomes saturated with 

IJs, so much so that it forms a paste, no additional water is required, as adding more at this 

stage would serve to expedite microbial growth. 

In conclusion, PAA is not recommended for use as an antimicrobial in the formulation of 

EPNs. The present study reports on the high survival and virulent abilities of S. yirgalemense 

in relation to both TCA and nipagin exposure. Future studies are recommended to include the 

bioactive metabolites of the mutualistically associated Photorhabdus and Xenorhabdus as 

antimicrobials in the EPN formulations concerned. Although good results were obtained during 

the study using the DE formulation described, still higher densities of nematodes are 

recommended for use in improving the survival rate and virulence of IJs in DE formulations. 

In addition, the current study has revealed an inverse relationship between the number of IJs 

in the DE formulation and the presence of water. In short, the higher the number of IJs present, 

the lower is the amount of DE and water that is required in the formulation. Following such a 

guideline should lead to the creation of an improved DE formulation. At a certain point, when 

the DE is saturated with IJs in the form of a paste, no further water should be added to the 

formulation, as doing so would serve to encourage microbial growth. 
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Chapter 4 

Basal metabolic oxygen consumption rate measurements for 

entomopathogenic nematodes, using fibre-optic sensors 

 

Abstract 

Entomopathogenic nematodes (EPNs) are aerobic organisms, whose infective juveniles 

(IJs) are constantly exposed to micro-aerobic, or anaerobic, conditions in the soil, yet low 

oxygen supply risks their survival. Unfortunately, there is limited information on the respiratory 

physiology of EPNs. Therefore, gathering information on the specific oxygen demands of the 

nematode/bacterium complex of EPNs during production, storage and formulation should 

maximise their utilisation. Nematode culturing in bioreactors has led to an awareness of their 

oxygen requirements, leading to a research focus on bioreactor designs and the nematode-

bacterium complex. In the present study, fibre-optic sensors were used to determine, by 

means of basal measurement, the specific oxygen consumption rate (OCR) of the IJs of three 

locally isolated EPN species: Steinernema yirgalemense; S. jeffreyense; and Heterorhabditis 

bacteriophora. The results showed that nematode size inversely influences its OCR, with 

smaller nematodes having a higher surface-area-to-volume ratio than do larger nematodes 

with a higher OCR. Steinernema jeffreyense and S. yirgalemense did not significantly differ 

from each other in terms of the results obtained, probably due to their proximity in size, with 

the former being slightly larger than the latter, but they did significantly differ from H. 

bacteriophora. However, the results could not be reflected in all batches for H. bacteriophora 

and S. yirgalemense, due to the variation encountered. The results provide baseline screening 

for comparing respiratory and metabolic physiology among EPN species, using the latest 

available technology of fibre-optic sensors. 

Key words - diatomaceous earth, polarographic, Steinernema yirgalemense; S. jeffreyense; 

Heterorhabditis bacteriophora. 
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Introduction  

With the unending desire to consume safe food expressed among consumers in such 

markets as the European Union, coupled with the existing restrictions on the use of 

agrochemicals, challenges exist for farmers to seek alternative means of crop protection. The 

prevailing situation calls for the use of biocontrol organisms like entomopathogenic nematodes 

(EPNs) (Rhabditida: Steinernematidae). EPNs from the genera Steinernema (Travassos 

1927) and Heterorhabditis (Poinar 1976), and their associated symbiotic bacteria 

Xenorhabdus (Thomas & Poinar 1983) and Photorhabdus Boemare, Akhurst & Mourant 1993 

(Ehlers, 2007; Stock, 2015), are efficient biological control agents. The above is substantiated 

by their ease of culture, their high fatality caused against key pest insects, and their safety in 

use (Grewal, 2002; Piedra-Buena et al., 2015; Stuart et al., 2015). Research has commercially 

exploited the above advantages of EPNs by means of investigating several species, including 

Steinernema carpocapsae (Weiser 1955) Wouts, Mráček, Gerdin & Bedding 1982, 

Steinernema feltiae (Filipjev 1934) Wouts, Mráček, Gerdin & Bedding 1982 and 

Heterorhabditis bacteriophora Poinar 1976.  

Formulation has been achieved by means of relying on the dauer, or the infective juvenile 

(IJ), stage (Kagimu et al., 2017), which is the only free-living nematode in the life cycle. The 

mutualistic bacteria of the IJs become the actual killing agents on entry into the target pest 

insect, where they multiply in the haemocoel, and cause septicaemia, resulting in the death of 

the insect (Ciche et al., 2006; Griffin, 2015; Karimi & Salari, 2015). Although the IJs are non-

feeding, since their mouth and anus are closed (Grewal et al., 2002; Stock, 2015; Stuart et al., 

2015), they can persist for a long time in the soil. The commercial use of EPNs is limited by 

their finite shelf life, even though some species have already become commercially available 

(Gaugler et al., 2000). The poor survival rate at room-temperature storage is a major hindrance 

for their potential use as bioinsecticides (Grewal, 2002). Their ability to survive is poor in terms 

of desiccation (Surrey & Wharton, 1995; Womersley, 1990).  

Alternatively, since nematodes are aerobic organisms, availing them of low oxygen supply 

jeopardises their survival (Andaló et al., 2010; Evans & Perry, 1976; Glazer, 2002; Wharton, 

1986), given that IJs are constantly exposed to micro-aerobic, or anaerobic, conditions in the 

soil (Atkinson, 1976; Wright, 1998). Grewal et al. (2011) also identified hypoxia as being one 

of the main abiotic factors affecting IJ survival in storage. The available information on oxygen 

consumption mainly pertains to terrestrial (Bair, 1955; Ferris et al., 1995; Fourie et al., 2014; 

Klekowski et al., 1972; Suda et al., 2005; Van Aardt et al., 2016), freshwater (Schiemer & 

Duncan, 1974), and marine (Atkinson, 1973) nematodes, with a limited amount of information 

being available about EPNs. Therefore, it is important to gather information about the specific 
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oxygen demands of the nematode/bacterium complex of EPNs, since an improved 

understanding of the oxygen balance during their production, storage and formulation 

maximises their utilisation.  

The culturing of nematodes in bioreactors, in contrast, has led to the important realisation 

of the oxygen requirements of the nematodes, and, thus, the focus has shifted to bioreactor 

designs and the nematode-bacterium complex (Chavarría-Hernández et al., 2011, 2014; De 

la Torre, 2003; Friedman et al., 1989; Shapiro-Ilan et al., 2012; Sharma et al., 2011; Upadhyay 

et al., 2013). Some laboratories have investigated bacteria (Belur et al., 2013; Hodgson et al., 

2003; Wang & Zhang, 2007), and formulation (Andaló et al., 2010; Silver, 1999), whereas 

others have investigated the effects of soil oxygen on EPNs (Kung et al., 1990). Few reports 

have been compiled about the specific oxygen consumption rate (OCR) of the IJ in general, 

with the existing examples including Burman & Pye (1980) and Qiu & Bedding (2000), who 

measured the respiration rate of S. carpocapsae, while Lindegren et al. (1986) reported that 

of S. feltiae.  

In researching how oxygen levels tend to regulate gene expression in Photorhabdus 

temperata Fischer-Le Saux, Viallard, Brunel, Normand & Boemare 1999 (Enterobacteriales: 

Enterobacteriaceae), Hodgson et al. (2003) demonstrated the effect of oxygen on the two 

phases of the bacterium. They reported that the amount of oxygen present inhibited flagellum 

and antibiotic production by secondary-phase (phase II) cells, while the absence of oxygen 

down-regulated many primary-phase (phase I) traits. However, aeration is more urgently 

required to ensure enhanced production yields during phase I, in terms of nematode growth 

and development, than is the case in phase II. Also, Strauch & Ehlers (2000) doubled the yield 

production by increasing the aeration rate, while Jenkins & Goettel (1997), Friedman et al. 

(1989), and Wang & Zhang (2007) emphasised the need for oxygen by both nematode and 

bacteria during their mass production in a bioreactor.  

In terms of behaviour, Rankin (2005) showed how Caenorhabditis elegans Maupas 1900 

(Rhabditida: Rhabditidae) individuals migrate towards an oxygen level that is associated with 

food, by means of using taste, smell, and temperature cues. The observation could be in line 

with the behaviour of IJs of EPNs during their search for a possible host that could also be 

associated with the same oxygen gradient. Rankin (2005) further reports that C. elegans 

thrives within a threshold value of oxygen. Such a situation is also likely among EPNs, but an 

excess supply of oxygen relates to increased activity and metabolism, which leads to the 

overutilisation of the energy reserves of the IJ, and possibly further translates into a reduced 

shelf life for the IJs in storage and formulation.  

Stellenbosch University  https://scholar.sun.ac.za

http://animaldiversity.org/accounts/Rhabditidae/classification/#Rhabditidae


  71 

The same observation by Rankin (2005) has been observed by Kagimu et al. (Unpubl.), 

in relation to work on the formulation of EPNs in diatomaceous earth, that the nematodes 

concerned tend to migrate to the surface, and to aggregate together, immediately after a 

homogeneous formulation is made and packaged in a container. Such behaviour by IJs is due 

to their search for enough oxygen, with them eventually dying off slowly, having lost the 

protection rendered by the formulation, due to their open exposure, which results in an overall 

decline in product shelf life. The same observations are discussed by Silver (1999). 

Given the variability among EPN species and strains in almost all tested traits covered in 

the relevant literature, the notion that OCR is probably also variable betokens that it should be 

further investigated and confirmed prior to mass production and commercialisation. 

Intraspecific variability exists in the relationship between the OCR and the body size (Atkinson, 

1976; Wright, 1998), temperature (Burman & Pye, 1980; Lindegren et al., 1986), and age of 

the nematodes concerned (Wright, 1998). For an explanation of such factors and their 

influence on the OCR, refer to Wright (1998) and Atkinson (1973).  

Several methods are in place to measure the OCR of small aquatic animals, including 

nematodes (Zhdanov et al., 2012). The aforementioned methods include: the Winkler 

chemical analysis method (Bair, 1955); the Cartesian diver (Bhatt & Rohde, 1970; Van Aardt 

et al., 2016); and several manometric methods (Umbreit et al., cited in Van Aardt et al., 2016). 

However, the above-mentioned techniques require a considerable length of time for the 

running of a single experiment (Van Aardt et al., 2016). In contrast, extensive advances have 

been made in terms of the measurement of OCR, using polarographic oxygen sensors (POS) 

(Atkinson, 1973; Clark, 1956; Fourie et al., 2014; Van Aardt et al., 2016), infrared (IR) gas 

analysis (Ferris et al., 1995) and fibre-optic sensors (FOS) (Dancy et al., 2013; Suda et al., 

2005), which require comparatively less time to use (Van Aardt et al., 2016). For example, 

Burman & Pye (1980) utilised POS in their studies, with, more recently, Van Aardt et al. (2016) 

having used the same technique, together with FOS, to measure the OCR of Meloidogyne 

incognita J2, thereby providing a baseline for the OCR measurement of EPNs, on a similar 

scale. Van Aardt et al. (2016) report substantial variation in J2 OCR measurements having 

been obtained by both analysers between the different J2 batches harvested over time, with 

no explanation being found for such discrepancy. For the aforementioned reasons, FOS 

measurements are regarded as the comparatively better option, due to: its sensitive nature, 

or high accuracy; the use of fewer nematodes per measurement; and the multiple 

measurement of the OCR of nematodes (Moodley et al., 2008; Van Aardt et al., 2016). 

In the present study, FOS was used to determine the specific OCR of three locally isolated 

EPN species: Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, Gaugler & Adams 

2004; Steinernema jeffreyense Malan, Knoetze & Tiedt 2015; and H. bacteriophora. 
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Materials and methods 

SOURCE OF ORGANISM 

The three EPN species used in the current study were local isolates from South Africa, 

obtained from the EPN collection of the nematology laboratory at the Department of 

Conservation Ecology and Entomology, Stellenbosch University. Their details are summarised 

in Table 4.1 below. 

Table 4. 1. Steinernema and Heterorhabditis species, their origin, mean body length and width of the 
IJs concerned. 

    Infective juveniles 

Species Strain  Origin  Length (µm) Width (µm) Mass (µg) 

S. jeffreyense J194 Jeffrey’s Bay, Eastern Cape  924 

(784-1043) 

35 

(23-43) 

0.7089 

S. yirgalemense 157-C Friedenheim, Mpumalanga  635 

(548-693) 

29 

(24-33) 

0.3338 

H. bacteriophora SF351 Wellington, Western Cape  588  

(512-671) 

23 

(18-31) 

0.1944 

Sources: Malan et al., 2011, 2016; Poinar, 1976. 

Freshly harvested EPNs were cultured in vivo, using the last-instar larvae of Galleria 

mellonella (Lepidoptera: Phyralidae), at 25°C in growth chambers. The larvae of G. mellonella 

were cultured, according to the methodology of Van Zyl and Malan (2015), on an artificial diet 

at 25°C in a growth chamber. Modified White´s traps (Kaya & Stock, 1997) were used to 

harvest the emerged EPNs. Harvested IJs were stored in distilled water at 14°C, in cell culture 

flasks (CELL STAR®, Greiner Bio-One GmbH), for one to two days, before being transported 

in a 6-L CoolMateTM (cooler-box blue, ADDIS®) to the nematology laboratory of the Unit for 

Environmental Sciences and Management, North-West University, Potchefstroom. The fresh 

masses of S. yirgalemense, S. jeffreyense and H. bacteriophora were determined according 

to Andrássy (1956), with the body volume being calculated (Fourie et al., 2014) using 

published data regarding the average diameter and length of the IJs (Malan et al., 2011, 2016; 

Poinar, 1976).  
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OXYGEN CONSUMPTION RATE MEASUREMENTS  

The OCR measurements, expressed per gram of live body mass (g live mass) −1, are 

presented for the IJs of the three-nematode species concerned. The determination of the 

OCR, using FOS (Seahorse XFe96 analyser; Seahorse Bioscience), was carried out 

according to the methodology of Van Aardt et al. (2016), with their recommended use of 100 

M. incognita J2 in future studies being applied to the study of the IJs of S. yirgalemense, S. 

jeffreyense and H. bacteriophora in the current study. The sensor made use of a cell culture 

microplate and a sensor cartridge, containing one probe, and four injection ports, for each 

well. The FOS analyser uses the fluorescence of a chemical complex in a sol-gel to measure 

the partial pressure of oxygen. Following on the probe calibration of the FOS, the utility plate 

was ejected, whereupon the cell culture microplate containing the IJs was inserted and 

analysed (Rogers et al., 2011; Van Aardt et al., 2016). The temperature of the FOS instrument, 

which was controlled by means of adjusting the room temperature, ranged between 24.8°C 

and 26.8°C. One drawback of using the Seahorse XFe96 analyser is that no specific 

temperature can be set for an analysis. Hence, a temperature range close to between 25°C 

and 26°C was used, since the EPN species used in the study were mass-reared under such 

a temperature regime. Six drops of 10-µl nematode suspension were counted out, using a 

stereomicroscope (40× magnification), with dilutions being made to ensure that 100 ± 5 IJs 

were transferred to the designated wells of a 96-well Seahorse cell culture microplate. Each 

well was then topped up with sterile tap water to a maximum volume of 220 µl. Three replicates 

per trial were used for each species in the four trials performed. Sterile tap water was equally 

used as a control.  

STATISTICAL ANALYSIS 

Statistical analyses were conducted using STATISTICA 13.2 software (Statistica Version 

13.3; http://www. statsoft.com). The data for each trial were first separately analysed, using 

the analysis of variance (ANOVA). The pooled data for the two batches were subjected to the 

application of general linear models, with the means being separated by means of the least 

significant difference (LSD) and Games-Howell post hoc tests.  

Results  

Significant differences (ρ < 0.05) were obtained between the two batches of the first trail 

(Trial 1), with the nematode species and the date concerned providing the main effects, 

preventing the possibility of pooling the data from the two batches, so that separate analysis 

was required. In Trial 1, batch 1, the OCR of H. bacteriophora was found to differ significantly 
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from that of S. jeffreyense and S. yirgalemense (ρ < 0.001), which did not differ significantly 

(ρ = 0.99) from each other. The H. bacteriophora IJs had the highest mean OCR value of 

308.11 μmol O2 h−1 g −1, followed by S. jeffreyense, and then by S. yirgalemense, with 198.79 

and 198.66 μmol O2 h−1 g −1, respectively (Fig. 4.1). 
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Fig. 4. 1. Trial 1: Mean basal measurement of oxygen consumption rate in micromole/h/g/IJ (95% 
confidence level) for infective juveniles of Steinernema jeffreyense, Heterorhabditis bacteriophora, and 
S. yirgalemense (two-way ANOVA: F (2, 111) = 18.670, ρ < 0.001) for batches 1 and 2. Means were 
separated by applying the LSD test: ρ = 0.05; error: between MSE = 2499.2, df = 111.00. The same 
letter above the bars indicates the absence of significant difference.  

In Trial 1, batch 2, a significant difference was found between S. jeffreyense and S. 

yirgalemense (ρ = 0.003), while no significant difference (ρ = 0.23) was found between H. 

bacteriophora and S. jeffreyense, and S. yirgalemense (ρ = 0.08) (Fig. 4.1). The S. 

yirgalemense IJs had the highest mean OCR value of 276.89 μmol O2 h−1 g −1, followed by H. 

bacteriophora, with 245.31 μmol O2 h−1g −1, and S. jeffreyense, with 223.79 μmol O2 h−1 g −1 

(Fig. 4.1). Furthermore, in view of the batch interaction in Trial 1, a significant increase in the 

OCR values of 198.79 to 223.79 μmol O2 h−1 g −1, in the case of S. jeffreyense, a significant 

decrease from 308.11 to 245.31 μmol O2 h−1 g −1, for H. bacteriophora, and a significant 

increase from 198.66 to 276.89 μmol O2h−1g−1, for S. yirgalemense (ρ < 0.001), was observed, 

respectively.  

Even more markedly, significant differences were found between the two batches of the 

second trial (Trial 2), with the main effects relating to the date and nematode species 
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concerned. As the data from the two batches could not be pooled, they were presented 

separately. In batch 3, the OCR of S. yirgalemense, S. jeffreyense, and H. bacteriophora 

differed significantly from each other (ρ < 0.001). The S. yirgalemense IJs had the highest 

mean OCR value of 399.06 μmol O2 h−1 g −1, followed by that of S. jeffreyense and H. 

bacteriophora, with 204.92 and 146.09 μmol O2 h−1 g −1, respectively (Fig. 4.2). 
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Fig. 4. 2. Trial 2: The mean basal measurement of the oxygen consumption rate in micromole/h/g/IJ 
(95% confidence level) for the IJs of Steinernema jeffreyense, Heterorhabditis bacteriophora, and S. 
yirgalemense (F(2, 138) = 8.5894, ρ < 0.005) for batches 3 and 4. Mean separated by Games-Howell post 
hoc test: error: between MSE = 2192.4, df = 138.00. The same letter above the bars indicates the 
absence of significant difference.  

In Trial 2, batch 4, the mean OCR value for S. yirgalemense differed significantly from that 

for both S. jeffreyense and H. bacteriophora (ρ < 0.001), yet the latter two species did not 

differ significantly (ρ = 0.99) from each other (Fig. 4.2). The S. yirgalemense IJs had the 

highest mean OCR value of 450.29 μmol O2 h−1 g −1, followed by that of H. bacteriophora, and 

of S. jeffreyense, with 188.98 and 183.74 μmol O2 h−1 g −1, respectively (Fig. 4.2). Furthermore, 

for the batch interaction in Trial 2, the recorded mean OCR values for S. jeffreyense IJs lacked 

significance (ρ = 0.22), decreasing from 204.92 to 183.74 μmol O2 h−1 g −1 in batches 3 and 4, 

respectively. In contrast, the OCR in H. bacteriophora IJs significantly increased (ρ = 0.003) 

from 146.09 to 188.98 μmol O2 h−1 g −1 in batches 3 and 4, respectively. Also, there was a non-

significant (ρ = 0.09) increase in the OCR values of S. yirgalemense IJs, from 399.06 to 450.29 

μmol O2 h−1 g −1 in batches 3 and 4, respectively. Lastly, the mean OCR values of S. 
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yirgalemense IJs increased throughout the study, unlike was the case with both S. jeffreyense 

and H. bacteriophora, for which mixed trends were recorded in all batches.  

Discussion 

The study reports on the characterisation of the IJs of S. jeffreyense, H. bacteriophora, and 

S. yirgalemense by means of the basal measurement of their OCR, using fibre-optic oxygen 

sensors. The IJs were non-feeding, as their mouth and anus were closed (Grewal et al., 2002), 

and they only respired through the body wall. There is paucity in literature on the respiratory 

physiology of EPNs (Atkinson, 1976, 1980; Burman & Pye, 1980; Chitwood & Perry, 2009; 

Lindegren et al., 1986; Perry et al., 2013; Qiu & Bedding, 2000; Wright, 1998). Determination 

of the specific OCR of three EPN species, S. yirgalemense, S. jeffreyense and H. 

bacteriophora, was necessary, because neither the OCR of the IJs, nor the corresponding 

bacterium of either S. yirgalemense or S. jeffreyense was known. The lack of information has 

proved to be a hindrance in the past, given the commercial interest that the EPNs concerned 

hold in protecting crops in South African agricultural production. 

The observations made in this study are heterogeneous. Unfortunately, there is scarcity of 

information on the matter for inference.  Within the available literature search, the size of the 

nematode inversely influences its OCR, with smaller nematodes having a higher surface-area-

to-volume ratio than do the larger nematodes, and thus a higher OCR, which tends to vary 

both within and between species (Atkinson, 1976; Wright, 1998).  The results obtained in Trial 

1, batch 1 (Fig. 4.1) represented a plausible scenario for all the nematodes involved, based 

on their size. The above explains why the smaller nematodes tend to sustain a higher rate of 

metabolism than do the larger nematodes, per unit of body weight, due to the increased 

surface-to-volume ratio of the smaller nematodes, and the subsequently increased efficiency 

of the surface-dependent processes involved, such as O2 diffusion (Atkinson, 1980; Ferris et 

al., 1995). Yet, the metabolic rate of equal-sized nematodes may vary with such factors as 

life-history strategies, among others (Ferris et al., 1995). The above held true for the results 

obtained in Trial 1, batch 1, in terms of which S. jeffreyense and S. yirgalemense did not 

significantly differ from each other regarding their OCR. The above could be ascribed to their 

proximity in size, with S. jeffreyense being slightly larger than S. yirgalemense, but significantly 

different in OCR from H. bacteriophora. However, due to nature of heterogeneity the result 

obtained could neither be replicated in Trial 1, batch 2, nor in Trial 2, batches 3 and 4, for 

either H. bacteriophora, or for S. yirgalemense.  

Although Burman & Pye (1980) and Lindegren et al. (1986) reported temperature-

dependent results, the results in the current study contrasted to the previous researchers’ 
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observations made in the above respect. The local strains that were used in the current study 

were isolated from the dry areas of South Africa. The strains were adapted to temperatures 

ranging between 24.8°C and 26.8°C on the FOS instrument, and they were also cultured in 

vivo at 25°C; thus, the temperature could not have had much influence on the observed 

variation in the measured OCR, within the batches of the different EPN species studied. Ferris 

et al. (1995) and Anderson & Coleman (1982), in contrast, suggest that nematode species in 

the same environment have different thermal optima. However, in concurrence with the 

observations made by Burman & Pye (1980), the observed respiration rate in the present 

study might have been due to the increased amount of activity in the nematodes experienced 

at a temperature of 25°C during their culturing and harvesting. The above might have led to 

the depletion of some energy reserves, leading to a lowering of their activity levels in the wells 

of the FOS, even though the growth temperature did not affect the respiration of 

Caenorhabditis elegans, as was found to occur in the research of Dusenbery et al. (1978).  

Nordmeyer & Dickson (1989) report that antibiotics affected the oxygen uptake by 

Meloidogyne spp. J2 during the measurement of the OCR, leading to them not being used in 

the present study. The above was despite Burman & Pye (1980) obtaining the desired results, 

after having disinfected the IJs of S. carpocapsae with 0.1% quaternary ammonium 

compounds and M9 buffer. However, such treatment ought to have a negligible effect on such 

contaminants as mites and collembola (Epsky et al., 1988; Gilmore & Potter, 1993; Kaya & 

Koppenhöfer, 1996; Wilson & Gaugler, 2004), which are often antagonistic to EPNs.  

Mites tend to have a high OCR (Block, 1977; Ellingsen, 1978; Kanungo, 1965; Karagoz et 

al., 2007), with mites of the genus Sancassania engaging in predatory behaviour towards 

EPNs (Cakmak et al., 2010; Ekmen et al., 2010a, b; Ulug et al., 2014). Contamination of the 

EPN culture with such mites, and the later determination of the OCR by means of the taking 

of highly sensitive measurements by way of the FOS analyser (Moodley et al., 2008; Van 

Aardt et al., 2016; Zhdanov et al., 2012) would be likely to result in the production of such 

large values as those that were observed for S. yirgalemense in trials 2, 3 and 4. However, no 

mites were observed during the counting of the number of IJs present in the current study. 

Another plausible source of the variation found in the results was the pipetting that was 

used, which might have reflected a drop, or rise, in the OCR, due to the increase/decrease in 

the number of IJs employed per treatment. Any error in counting and/or pipetting could have 

influenced the total number of nematodes accessed in the wells by the highly sensitive FOS. 

Given that multiple treatments were investigated at any one given time, the error involved 

would also have been largely magnified, too. The nematodes were pipetted into the 96-well 

plates after counting, under conditions of constant stirring on a magnetic stirrer, with the 

probability of uneven distribution occurring at the subsequent sampling times. The result was, 
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then, the observed decreasing and increasing means of the OCR found in trials 2, 3 and 4 for 

H. bacteriophora and S. yirgalemense. Steinernema yirgalemense was the only nematode 

whose mean OCR values increased throughout the study in the corresponding batches and 

trials. Van Aardt et al. (2016) and Dancy et al. (2013) reported an increase in the mean OCR 

with and increasing number of J2 of M. incognita, and for bigger nematodes (C. elegans), 

respectively.  

The current study cannot conclude on a discussion of the cause(s) of the variation in the 

different trials and batches involved. The portrayal of the results can, however, provide 

baseline screening for the comparing of respiratory and metabolic physiology among EPN 

species, using the latest available technology, like FOS. Therefore, the conclusions drawn as 

to the OCR measurements of the different EPNs require further research. There is need for 

improving the protocol to get homogeneous results. 
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Chapter 5 

Effect of water activity and desiccation on the stability of Steinernema 

yirgalemense and S. jeffreyense formulated in diatomaceous earth at room 

temperature 

Abstract 

Microbial contamination, as well as desiccation, are, among other factors, often 

responsible for the quality and short shelf life of entomopathogenic nematodes (EPNs) in 

formulation. The water activity (aw) of a food system governs microbial growth and toxin 

production. In the current study, the concept of determining moisture content at the 

corresponding aw-values, using the Guggenheim-Anderson-Boer (GAB) isotherm model, has 

been studied, with regards to diatomaceous earth (DE), as well as to the survival of 

Steinernema yirgalemense. Scanning electron microscopy has been employed to determine 

the effect of DE on S. jeffreyense during storage in formulation. A decline in the survival rate 

of S. yirgalemense at high aw-values, due to bacterial sporulation and toxin production, is 

reported. Scanning micrographs show the desiccation of S. jeffreyense, beyond rejuvenation 

on the addition of water. The effect of desiccation was, however, not widely distributed 

throughout the sample, and it was equally random between the different test dates. Future 

research should investigate this problem using high densities of IJs/g of formulation, which 

are reported to be relatively stable. Equally, the moisture content at different aw-values for 

each of the ingredients used in the formulation should be investigated separately, so as to 

enable stabilising of the formulation and improvement of the shelf life.  

Key words: Guggenheim-Anderson-Boer isotherm, scanning electron microscopy, 

diatomaceous earth, formulation, microbials, toxin, adsorption, desorption 
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Introduction 

Entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae) from the 

Steinernema Travassos, 1927 and Heterorhabditis Poinar, 1976 and their associated 

symbiotic bacteria of Xenorhabdus Thomas & Poinar, 1983 and Photorhabdus Boemare, 

Akhurst & Mourant, 1993 (Boemare et al., 1993; Akhurst et al., 1996; Ehlers, 2007), are 

regarded as excellent biological control agents of pest insects. Their many advantages are 

compromised by their short shelf life, which is a major shortfall to their large-scale commercial 

utilisation (Grewal, 2000a,b). Their poor survival rate at room temperature, coupled with them 

being prone to desiccation, hinders their potential utilisation as bio-insecticides (Grewal, 2002; 

Surrey & Wharton, 1995; Womersley, 1990). Research into the mass culturing of EPNs for 

commercialisation in medium to large-scale farming systems is under way in South Africa, 

where strides have been made in several sectors of production not limited to formulation 

(Hatting & Malan, 2017, Hatting et al., 2018, Malan & Ferreira, 2017). In a recent review 

(Kagimu et al., 2017), microbial contamination, as well as desiccation, were identified as being 

among other factors affecting the survival of formulated EPNs.  

Maintenance of the high quality of EPNs in formulation is imperative for their successful 

commercialisation. Such a necessity can be identified in terms of their virulence and 

pathogenicity (Grewal & Peters, 2005; Kagimu et al., 2017). The impact of contamination and 

toxicity of antimicrobial agents on IJs was of utmost importance to the present study (Grewal 

& Peters, 2005; Kagimu et al., 2017). Microbial contamination of nematode formulations with 

high moisture content, especially at room temperature shelf life, is of significance (Grewal, 

2002). The above is due to the propensity of microbials to compete for the existing oxygen 

supply, which renders the formulations concerned decreasingly usable, as well as leading to 

the clogging of spray nozzles, which decreases the suitability of the formulated product. 

Noteworthy, some antimicrobial agents may also decrease the extent of nematode survival in 

the formulations (Grewal, 2002).  

Water activity is defined as the ratio of partial pressure of water vapour in the product to 

that in the presence of pure water (Mathlouthi, 2001). Microbial growth is mainly determined 

by aw, which is a better index for microbial growth than is water content (Heidemann & Jarosz, 

1991). Water activity has extensively been employed in optimising product formulation, 

thereby improving the antimicrobial effectiveness of such formulations. Scott (1953) 

demonstrated that it was not the water content, but rather the aw, of a food system that governs 

microbial growth and toxin production. In addition, the researcher also showed that 

microorganisms have a limiting aw-level, below which they will neither grow, nor produce 

toxins.  
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Although water activity changes osmotic stress-prompting sporulation response in spore-

forming microorganisms, both bacterial endospores and certain fungal spores have special 

requirements, such as aw-values for the initiation of germination and outgrowth (consisting of 

the minimal aw for germination, which is often higher than the minimum aw for sporulation) 

(Tapia et al., 2007). Sporulation, germination and toxin production by microbes often occurs 

at different minimal aw-values. Such processes are affected by aw, along with other 

environmental factors like type of solute, temperature, pH, and nutrient availability, among 

others, which strongly affect the responses involved, as reviewed by Beuchat (1987, 2002) 

and Tapia et al. (2007).  

According to Tapia et al. (2007), the minimal aw-value defines, in theory, the level below 

which certain biologicals can no longer reproduce, even though other microbes that are more 

resistant, and that are more adapted, to aw reduction can grow, thereby leading to the spoiling 

or compromising of shelf life. Tapia et al. (2007) and Troller (1987) further stress the need for 

laboratory model systems for obtaining aw, in terms of which the abiotic factors influencing 

microbial response are regarded as being at their optimum, given the fact that it is extremely 

difficult to isolate responses to aw alone within a formulation (Troller, 1987). Most putrefying 

bacteria are generally accepted to thrive below 0.95 aw, as well as are bacteria to be the 

dominant flora in mostly high-moisture formulations. Other bacteria may reach values ranging 

from 0.90 to 0.85 aw. However, exceptions exist in the case of moderate-high halophilic 

bacteria that are comparable to those that spoil brines and salt-rich foods.  

Other than the above-mentioned, bacteria do not tend to thrive in a high osmotic, or a low 

aw, environment. Fungi are the predominant microflora in ranges of aw-values of 0.85 to 0.61, 

in which yeast and moulds tend to bloom equally well (Fontana, 2002; Tapia et al., 2007). No 

microbes can grow at ≤ 0.6 aw, which is a critical point at which there is potential for the growth 

of microbes, if the moisture content increases still further. For a broader range of examples of 

microorganisms inhibited by the lowest aw for their growth and/or the aw of some foods, 

selected consumer and pharmaceutical products refer to the works of Beuchat (2002), 

Fontana (2007c), Fontana & Schmidt (2007), Schmidt & Fontana (2007) and Tapia et al. 

(2007).  

Welti-Chanes et al. (2007) reviewed innumerable management applications of aw in the 

food industry, and various government regulations in addition to the Food and Drug 

Administration (FDA) and the US Department of Agriculture (USDA) regulations, as well as 

the Hazzard Analysis and Critical Control Points (HACCP). The above, among other relevant 

bodies (Fontana, 2000; Labuza & Altunakar, 2007), have included consideration of aw in their 

practices. Fontana & Schmidt (2007) in contrast, illustrated several applications of aw in non-

food systems including: water potential and soil–plant water applications; the association 
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between aw and seeds (in terms of the latter’s viability, coating and priming); and medical and 

pharmaceutical applications. Naturally, the concept of aw in the formulation of EPNs in 

diatomaceous earth (DE), comprising a food and soil system, is equally important to the above. 

Several methods have been employed to determine aw in formulations, with them not 

being limited to isopiestic equilibration, freezing point, hair or polymer, electrolytic, 

capacitance, or dew point hygrometers (Rahman, 1995). The use of water vapour sorption to 

estimate soil-specific surface area (SA) from single-point measurements (Puri & Murari, 1964; 

Newman, 1983) and/or modelling approaches has recently proved to be of much interest 

(Arthur et al., 2013; Akin & Likos, 2014, 2017; Khorshidi et al., 2017; Arthur et al., 2018). The 

Guggenheim-Anderson-Boer (GAB) equation developed by Anderson (1946), De Boer (1953), 

and Guggenheim (1966) is, at present, comprehensively applied as being the most efficient 

equation for sorption isotherm prediction (Kiranoudis et al., 1993). The GAB model has several 

major advantages, which are not limited to having a viable theoretical background, but also to 

its applicability to virtually all foods, with a range of 0 to 0.95 aw, coupled with its ease in 

engineering calculations. The above is due to its three parameters having a mathematical 

form, together with its parameters having physical meaning in terms of sorption processes. In 

addition, the model has the ability to designate temperature effects on isotherms by means of 

employing Arrhenius-type equations (Van den Berg & Bruin, 1981; Al-Muhtaseb et al., 2002; 

Labuza & Altunakar, 2007; Andrade et al., 2011). For the above-mentioned reasons, the GAB 

equation has been recommended by the European Project Group COST 90 on Physical 

Properties of Food (Wolf et al., 1984). The equation was equally expeditiously accepted at the 

International Symposium on the Properties of Water (ISOPOW) in 1983 as being the best 

equation for modelling the moisture isotherm. 

In conformity with the arguments of Labuza & Altunakar (2007), aw estimates the limiting 

reaction(s) that a formulation can support at a point. The aw <0.2 would tend to be degraded 

by lipid oxidation, whereas aw >0.85 would be likely to be spoiled by bacterial growth, due to 

the amount of available free water. Therefore, focusing the current study on the water 

relationships involved in relation to the aw levels concerned, considering the range of water 

content to which a DE formulation might be subjected on a large scale, was of interest. The 

water vapour sorption isotherm (WSIs) of soil defines the relationship between aw and water 

content over a range of aw values, at a given temperature, along an adsorption/desorption, 

path (Arthur et al., 2016). Conforming to the methodology of Arthur et al. (2016), the soil clay 

mineralogy fraction was, therefore, correlated to the water vapour sorption at a given 

temperature along such an adsorption or desorption path. Recent studies have shown the 

possibilities implicit in predicting clay content from the equilibrium water content at a given aw-

value (Wuddivira et al., 2012; Arthur et al., 2015), as well as in evaluating the water content of 
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clay, in addition to other soil textural fractions (Schneider and Goss, 2012; Jensen et al., 2015). 

The water vapour sorption isotherm can be adequately characterised using models that 

establish the relationships between the model parameters and the clay content, which are 

more common and more readily measured (Arthur et al., 2016).  

When the vapour pressure is equal in the water isotherm, the amount of 

adsorption/desorption experienced for the same food might differ. Such difference is referred 

to as the sorption hysteresis. Hysteresis has some practical aspects. For example, if a moist 

low aw product is desired, as in the case of a DE formulation, a large desorption hysteresis 

would be beneficial, as then an increased amount of water would be available at the same aw 

level. However, at the same aw, the relatively high moisture content (desorption) also tends to 

result in a relatively high rate of loss for some chemical reactions, thus reducing the shelf life 

concerned, which is undesirable (Kapsalis, 1981). In terms of hysteresis, the calculations of 

water content from a model fit of GAB to the adsorption-desorption isotherms of any system, 

such as DE formulation of EPNs, is feasible. The clay mineralogy in DE, even though of 

minimal percentage, is likely to be comparable to that which was recently found by Arthur et 

al. (2018), in the case of silt-clay soils. According to Arthur et al. (2018), the GAB equation 

accurately describes the water sorption isotherms (with aw ranging from 0.03 to 0.93 or 0.95) 

for a wide range of natural (Arthur et al., 2016) and swelling soils (Akin & Likos, 2017), 

especially in relation to the desorption data concerned. For the above, Arthur et al. (2018) 

recently evaluated the water activity corresponding to the GAB monolayer water content for 

different soil groups (kaolinite-rich, illite-rich and mixed clay samples, smectite-rich and 

organic soil samples). The authors measured the soil water vapour sorption isotherms for both 

adsorption and desorption for aw ranging from 0.03 to 0.93, at a temperature of 25°C, using a 

vapour sorption analyser (METER Group Inc., Pullman, WA, USA), for 321 soil samples. The 

authors affirm that the GAB sorption model accurately characterises soil water vapour sorption 

isotherms and suggest the adoption of such a model as an alternate approach to determining 

the SA from water vapour sorption. 

A recent review by Kagimu et al. (2017) mentions that osmotic stress, microbial growth and 

desiccation, among other factors, tend to affect the survival rate of EPNs in formulations. In 

nematology, osmotic solutions are often attained using polyethylene glycol (PEG), which tends 

to increase the osmotic potential, and to lower the aw, concerned (Feng et al., 2006; Kagimu 

et al., 2017). For the above reason, PEG has been extensively utilised in formulating EPNs. 

The current study sought to adopt a different approach to testing the survival rate of EPNs at 

different aw levels, using the equilibrated saturated salts of known aw at a determined 

temperature. Due to the hidden costs involved in using PEG, the current researchers resolved 
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to exploit the use of isotherms in determining aw and its relationship with water content, despite 

them apparently never before having been tested in relation to EPNs.  

EPNs have a short shelf life, due to their disposition to low desiccation tolerance, which 

greatly affects their IJ longevity, host-finding, penetration, pathogenicity, and/or virulence traits 

(Strauch et al., 2004; Grewal et al., 2011). As EPNs experience partial anhydrobiosis in a 

quiescent stage (Womersley, 1990), they tend to perform poorly in terms of desiccation. 

However, the extent of damage that is exerted on the EPNs by DE, which is the preferred 

carrier in EPN formulation, is unknown. Therefore, the aim of the current study was to improve 

the viability of the DE formulation by assessing the aw-stability of locally isolated Steinernema 

species at room temperature, and by determining the desiccative effect of DE on EPNs. The 

above was done by using the equilibration method transfer of the aw of saturated salts at 25°C 

into DE, and by determining the EPN survival rate for four weeks. The GAB isotherm model 

was used to calculate the amount of water required during the formulation of IJs in DE at that 

aw level. Lastly, scanning electron microscopy (SEM) was used in reporting the desiccative 

effect of DE on IJs during storage. 

Materials and methods 

SOURCE OF NEMATODES AND HOST INSECTS 

The nematodes, Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, Gaugler & 

Adams, 2004 and Steinernema jeffreyense Malan, Tiedt & Knoetze, 2016, which are both 

endemic to South Africa, were used in the current study (Malan et al., 2011, 2016). Galleria 

mellonella L. (Lepidoptera: Phyralidae) larvae were cultured, according to the methodology 

employed by Van Zyl & Malan (2015), on an artificial diet at 25°C in a growth chamber. The 

Galleria larvae were inoculated with S. yirgalemense IJs in 9-mm-diameter Petri dishes, lined 

with moist filter paper. Freshly harvested S. yirgalemense IJs were cultured in vivo, using the 

last-instar larvae of Galleria, kept at 25°C in a growth chamber. Modified White traps (Kaya & 

Stock, 1997) were used to harvest the emerged EPNs. The harvested IJs were stored in 

distilled water at 14°C, being collected in 5-L Erlenmeyer flasks that were constantly stirred, 

using a 70 × 10 mm cylindrical magnetic stirring bar, on an AGE magnetic stirrer (VELP® 

Scientifica). The above-mentioned procedure was followed for approximately three weeks, 

until the desired concentration of IJs for each batch was achieved. However, the S. jeffreyense 

IJs were cultured in vitro, in 50 ml liquid medium, in 250-ml Erlenmeyer flasks, according to 

the methodology employed by Ferreira et al. (2014, 2016). The harvested IJs were 

concentrated, and the associated bacteria removed, by letting them settle in Erlenmeyer 

flasks. The supernatant was siphoned off, and distilled water was added, in several cleaning 

cycles, until the suspension was clear. This study was challenged with in vitro mass culture of 
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S. yirgalemense, unlike S. jeffreyense. This explains the difference in the culture methods 

explained above. 

EQUILIBRATING DE WITH THE AW-VALUE OF A SATURATED SOLUTION 

The equilibration process involved keeping 100 g of DE (Celite 209) in a Petri dish in an 

oven at 100°C for 48 h. After drying, the weight of the sample was determined. The difference 

in initial and final weight, corresponding to the amount of water that was associated with the 

DE, was determined. Samples of 50 g of bone-dried DE placed in separate Petri dishes, along 

with 100 ml of saturated solution of potassium bromide (KBr), potassium chloride (KCl), 

strontium nitrate (Sr(NO3)2), potassium nitrate (KNO3), or potassium sulphate (K2SO4) in a 

200-ml beaker, were kept in desiccators. They were covered with a lid and with Parafilm, after 

being greased with silicone to make the containers airtight. The entire set-up was kept inside 

an incubator at 25°C for 48 h, to enable the DE to be equilibrated with the corresponding aw 

from the saturated salt solution (KBr, aw = 0.809; KCl, aw = 0.843; Sr(NO3)2, aw = 0.851; KNO3, 

aw = 0.936; K2SO4, aw = 0.973) (Greenspan, 1977; Fontana, 2007a). After incubation, the DE 

that had acquired the desired aw (DEaw) by means of equilibrium, after being mixed with 5 000 

000 IJs (paste) of S. yirgalemense, was kept in an airtight container for a period of 4 weeks at 

25°C. The survival rate of the IJs was checked after 24 h and 48 h, as well as after 1 to 4 

weeks, respectively. The experiment was conducted twice on different test dates, using 

different batch of nematodes.  

FORMULATING NEMATODES IN DE FOR SEM ANALYSIS DESEM  

Steinernema jeffreyense was concentrated into a paste using a 32-µm sieve (Clear Edge 

Filtration SA (Pty) Ltd, South Africa). The technique described in Chapters 2 and 3 was used 

to formulate 64 million IJs of S. jeffreyense in DE (Celite 209 − Imerys Refractory Minerals SA 

(Pty) Ltd). The proportions of the ingredients used in the formulation were employed according 

to the methodology favoured by Grewal & Jagdale (2002), which was an improvement on the 

procedure reported on in chapters 2 and 3, attaining a final density of 3 700 000 IJs/g of 

formulation. The aw-value of 0.970 that was used in the formulation induced the IJs into a state 

of partial anhydrobiosis and subjected them to slow desiccation (Grewal, 2000a,b). After hand-

mixing the nematode paste together with all the ingredients, 10 g of the formulated nematodes 

were placed in lidded containers (Mambo's Plastics) (n = 5), which were stored at 14°C. The 

formulated nematodes were scanned after 1 to 8 weeks to determine the desiccative effect of 

DESEM. The control in this experiment consisted of freshly harvested IJs. The experiment was 

repeated thrice on different test dates, using different batches of nematodes, which were 

stored under the same conditions as those described above. 
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SURVIVAL OF NEMATODES IN DE AT DIFFERENT AW  

The formulated nematodes were counted according to a modification method of Peters 

(2004). One g from a container with 50 g, containing 5 000 000 IJs, was dissolved in 10 ml of 

distilled water in a 50-ml beaker. Air was bubbled in from an aquarium air pump (Second 

Nature Whisper™ 1000), whose tube led to the bottom of the beaker. One 100-µl sample was 

pipetted into 5 ml distilled water in a clean beaker, which was then brought into suspension, 

with 1 ml of the suspension being diluted in 2 ml of distilled water. The IJs were counted after 

the first 24 h and 48 h, and later weekly, for 4 weeks, using a binocular microscope to 

determine the IJ survival percentage in each of the DEaw samples at a temperature of 25°C. 

Moisture content was estimated from the water sorption data obtained, based on the GAB 

model (Van den Berg & Bruin, 1981). The GAB isotherm equation: 

𝑚 =
𝑚0𝑘𝑏𝑐𝑎𝑤

[(1 − 𝑘𝑏𝑎𝑤)(1 − 𝑘𝑏𝑎𝑤  + 𝑐𝑘𝑏𝑎𝑤)]
 

where kb is a constant in the range 0.70 to 1, and c is a constant in the range 1 to 20, was 

used. In the above equation, mo is the monolayer water content [water per solid (kg kg−1)] and 

aw is the water activity at moisture (m) level (Van den Berg & Bruin, 1981). The three-

parameter equation is often calculated using a nonlinear solution. The above was done by 

calculating the moisture content (m) at a minimum of five water activity (aw) values in the range 

0.1 to 1. Nonlinear regression could then be used to determine the values of kb, c, and mo. 

Once the constant values are known for the isotherm concerned, any water activity value can 

be inserted into the GAB equation to determine the corresponding moisture content (Fontana, 

2007b; Labuza & Altunakar, 2007).  

The moisture content of DE in the current study was extrapolated from the GAB graph for 

both the adsorption and the desorption isotherms concerned, according to Arthur et al. (2018), 

since the graph is linear, and was prepared for clay-rich soils. 

CALCULATION OF AW FROM THE MODEL FIT OF GAB  

The aw-values were extrapolated from the research of Arthur et al. (2018) (Figs 5.1 and 

5.2), as the relationship between aw and water content is linear. 
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Fig 5. 1 Model fit of the Guggenheim–Anderson–Boer (GAB) model to the adsorption-desorption 
isotherms of a silty clay loam soil. Applicability of the GAB water vapour sorption model for the 
estimation of soil-specific surface area (European Journal of Soil Science. Source: Adapted from Arthur 
et al., 2018). 

 

Fig 5. 2 Water activity versus sorption isotherm, displaying the hysteresis often encountered, depending 
on whether the water is being added to the dry material or removed (in drying) from the wet material, 
as well as on the effect of the associated temperature and pressure shifts in a hysteresis. Of much 
interest to the current study is the section on solvent and free water (source: 
http://www1.lsbu.ac.uk/water/water/activity.html). 

SEM OF THE FORMULATED IJS (DESEM) 

After fixed the samples in 4% paraformaldehyde (PFA) with 2% glutaraldehyde in 0.1M 

phosphate buffer (pH7.4) at 4°C overnight, they were post-fixed in 1% aqueous osmium 
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tetroxide (OsO4), and then dehydrated in an increasing ethanol series (50%, 70%, 90%, 100%, 

with intervals of 5 min between each) before undergoing final treatment with 

hexamethyldisilazane (HMDS), and overnight drying in a desiccator. The samples were then 

mounted on standard 15-mm aluminium SEM stubs, and coated with a thin layer of gold, using 

an Edwards S150A sputter coater to enhance conductivity. Imaging was done using a Zeiss 

MERLIN field emission scanning electron microscope (FESEM), operated at 2-4 kV, and using 

InLens Secondary (SE) and SE2 detection. The above was done using the facilities of the 

Centre for Analytical Facilities, Stellenbosch University. 

DATA ANALYSIS 

Statistical analyses were conducted using STATISTICA 13.2 software (StatSoft. Inc). The 

results of the survival of S. yirgalemense in DEaw were analysed by means of a two-way 

repeated measures ANOVA, and the means were separated by means of Fisher's least 

significant difference post hoc test. The moisture content data extrapolated from the GAB 

adsorption-desorption isotherm was not analysed, due to the few entries obtained. 

Results 

SURVIVAL OF NEMATODES IN DE AT DIFFERENT AW LEVELS 

No significant differences (p >0.05) were obtained between the two batches with the main 

effects of treatment and date, thus enabling the data from the two batches to be pooled and 

analysed. Two groups of data were separated based on the dates concerned, meaning that 

the data from 24 and 48 h, and those from 1 to 4 weeks, were analysed separately. The 

analysis of the 24 h and 48 h data showed no significant differences (F (4, 15) = 0.87600, p = 

0.50125) between the treatments, with regards to survival. In general, the mean percentage 

survival was higher after 24 h than it was after 48 h of incubation. After 24 h, the mean 

percentage survival of S. yirgalemense in DEaw, treated at aw 0.809, did not differ significantly 

from the aw 0.843 (p = 0.82), the aw 0.851 (p = 0.36), the aw 0.936 (p = 0.97), or the aw 0.973 

(p = 0.72), of which none differed significantly (p >0.05) from the others. The highest aw mean 

percentage survival was obtained with aw 0.973 (89.38% ± 2.55%), followed by that which was 

obtained with aw 0.843 (88.77% ± 2.55%), with aw 0.936 (87.97% ± 2.55%), with aw 0.809 

(87.80% ± 2.55%), and with aw 0.851 (83.82% ± 2.55%), respectively. Likewise, after 48 h, the 

survival of S. yirgalemense in DEaw, treated at aw 0.809, did not differ significantly from the aw 

0.843 (p = 0.70), the aw 0.851 (p = 0.66), the aw 0.936 (p = 0.33), or the aw 0.973 (p = 0.82). 

The highest mean percentage survival was obtained with aw 0.973 (85.12% ± 3.40%), followed 

by aw 0.809 (84.16% ± 3.40%), aw 0.843 (82.53% ± 3.40%), aw 0.851 (82.28% ± 3.40%), and 

aw 0.936 (79.96% ± 3.40%), respectively. Only the mean percentage survival at aw 0.843, and 
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aw 0.936, after 24 h differed significantly from that which was attained after 48 h (p = 0.033), 

and (p = 0.009), respectively. The remaining treatments did not differ significantly during the 

short time interval concerned (Fig. 5.3).  
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Fig. 5. 3.Mean percentage survival of Steinernema yirgalemense in diatomaceous earth at different 
equilibrated aw per salt after a period of 24 and 48 h (95% confidence level) and repeated measures 
one-way ANOVA (F (4, 15) = 0.87600, p = 0.50125). Mean separated by Fisher’s least significant 
difference (LSD) post hoc test; Error: Between; Within; Pooled MS = 36.138, df = 21.840. The same 
letter above the bar indicates no significant difference (p <0.05). 

Equally important, at weeks 1 to 4, no significant differences (p >0.05) were obtained between 

the two batches, with the main effects of treatment and date in terms of the two-way ANOVA, 

thus enabling the data from the two batches to be pooled. The analysis of the data from weeks 

1 to 4 showed significant differences (repeated measures two-way ANOVA: F (12, 45) = 3.0483, 

p = 0.003) between the treatments, with regards to survival. Overall, in weeks 1 and 2, no 

such significant differences (p >0.05) in the mean percentage survival of S. yirgalemense was 

observed as was noted in weeks 3 and 4. A gradual decrease in the survival of IJs occurred 

with the increasing number of weeks. In week 1, the survival of S. yirgalemense in 

DEaw  treated, at aw 0.809, did not differ significantly from that which was treated at aw 0.843 

(p = 0.25), aw 0.851 (p = 0.23), aw 0.936 (p = 0.58), or aw 0.973 (p = 0.66). In short, the above 

did not differ significantly (p >0.05) from each other. The highest mean percentage survival 

was obtained with aw 0.809 (80.15% ± 2.83%), followed by aw 0.973 (76.98% ± 2.83%), with 
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aw 0.936 (76.26% ± 2.83%), aw 0.843 (71.91% ± 2.83%), and aw 0.851 (71.50% ± 2.83%), 

respectively (Fig. 5.4). 
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Fig. 5. 4.Mean percentage survival of Steinernema yirgalemense IJs in diatomaceous earth at different 
equilibrated aw per salt during a period of 1 to 4 weeks (95 % confidence level) and repeated measures 
two-way ANOVA (F (12, 45) = 3.0483, ρ = 0.00329). Mean separated by Fisher’s least significant difference 
(LSD) post hoc test; Error: Between; Within; Pooled MS = 99.815, df = 42.816. Different letters above 
the bars indicate significant differences (p <0.05). 

Besides the above, in week 2, the survival of S. yirgalemense in DEaw, treated at aw 0.809, 

did not differ significantly from that treated at aw 0.843 (p = 0.11), at aw 0.851 (p = 0.14), at aw 

0.936 (p = 0.32), or at aw 0.973 (p = 0.79), which did not differ significantly (p >0.05) from each 

other. The highest mean percentage survival rate was obtained with aw 0.809 (73.74% ± 

2.92%), followed by aw 0.973 (71.86% ± 2.92%), aw 0.936 (66.59% ± 2.92%), aw 0.851 (63.25% 

± 2.92%), and aw 0.843 (62.22% ± 2.92%), respectively. Notwithstanding the observations 

made in weeks 1 and 2, in weeks 3 and 4 there was a rapid decline in the survival rate of S. 

yirgalemense in DEaw for all water activities, apart from aw 0.809, whose survival rate remained 

high. The effect was dire for aw 0.851 and for aw 0.973 in week 4.  

CALCULATION OF AW FROM THE MODEL FIT OF GAB  

Extrapolated aw-values from inference from the GAB model are depicted in Table 5.1. 
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Table 5. 1. Water content and aw from the model fit of GAB to the desorption isotherms of a silty clay 
loam soil. 

Water activity aw  Water content /gg-1 

Desorption  Adsorption  

0.81 0.061 0.055 

0.84 0.064 0.059 

0.85 0.065 0.060 

0.94 0.074 0.069 

0.97 0.077 0.072 

SEM OF FORMULATED IJS (DESEM) 

Few observable differences could be seen between the different test dates and the 

nematodes in terms of desiccation. Therefore, the results are presented with the unformulated 

IJs as control, and with the formulated IJs showing desiccative effect (Fig. 5.5, 5.6 and 5.7). 

 

Fig 5. 5.Steinernema jeffreyense infective juvenile (IJ) used as the control: (A) anterior of 
exsheathed IJ; (B) and; (C) shift in orientation of ridges in the mid-body; (D) tail region. The IJ 
was not freshly harvested prior to the scanning preparation. 
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Fig 5. 6.Different magnification of diatomaceous earth: (E) and (F). 

 

Fig 5. 7. Steinernema jeffreyense infective juvenile (IJ): (G) anterior of region of unsheathed IJ 
with damaged cuticle; (H) mid-body region desiccated, with only lateral lines extant; (I) strongly 
desiccated mid-body area; (J) only lateral lines remaining in desiccated IJ; (K) anterior region 
of unsheathed desiccated IJ, showing the excretory pore. The IJs were formulated in 
diatomaceous earth for a varying number of weeks prior to scanning preparation. 

Stellenbosch University  https://scholar.sun.ac.za



  99 

Discussion 

The EPNs are poor desiccants and it is expected that a low density of IJs in DE formulation 

(IJs/g) will lead to low survival rate (Kagimu, personal communication). The study reports on 

the gradual loss of survival of S. yirgalemense in DE during the first 2 weeks of storage. 

However, the loss was steep between the third and fourth weeks. Still, even though DE is very 

desiccative, and it is widely used as an insecticide, due to the hygroscopic nature of some of 

its grades, the loss in survival of the IJs experienced in the present research might not, in its 

entirety, have been due to the DE. Coincidentally, the survival rate was less than was 

observed in the fourth week in the study, than what was reported in Chapter 2, where the 

survival remained high, at 60%, by the fourth week. However, the survival rate was ascribed 

to the density of 50 000 IJs/g formulated, compared to in the present study, which employed 

a density of 100 000 IJs/g. Survival ranged between 1% and 10% by the fourth week, at the 

same temperature as was maintained for the storage. An even greater difference occurred at 

a density of 200 000 IJs/g, which was reported in Chapter 3, in terms of which an 80% survival 

rate was attained during the fourth week, at a temperature of 25°C.  

The only plausible source of the observed variation in IJ survival is the corresponding aw-

values tested in the current study, which caused a significant and sharp decrease in the 

survival rate of S. yirgalemense in DE. The repeated measures experimental design used in 

the current study probably had an inherent effect on the physical and chemical reactions in 

the different treatments during the study, due to the opening and closing of containers during 

subsequent samplings. Since the stability of dehydrated foods is predisposed to aw, both 

chemical reaction rates, as well as microbial activity, are directly controlled thereby (Labuza et 

al., 1985). Formulations of EPNs that are stabilised at a certain aw, should be sealed in non-

moisture-permeable packaging material, so as to avoid absorbing moisture from the 

atmosphere, which would otherwise be likely to lead to an increase in aw, thereby decreasing 

the shelf life of the EPNs so affected. In addition, the formulated EPNs in DE, if they are sealed 

in impermeable packaging material, should not be subjected to temperature modifications 

either in storage, or in transportation, as such temperature variance might equally alter the aw 

at which they were stabilised, hence leading to a decline in their shelf life. The above is 

because aw increases with increasing temperature and pressure. Notwithstanding the above, 

Labuza et al. (1985) had to contend with the decreasing aw of salts, with increasing 

temperature being a factor that is entirely different in a food system. 

The results from the survival of S. yirgalemense in DE at different aw per salt during the 1 

to 4 weeks showed aw 0.973 and aw 0.809, respectively, causing a lower and higher than 

expected mean percentage survival of IJs. The observed trend is that which was hypothesised 

for the study. Since EPNs tend to respond poorly to desiccation, which is a tendency that is 
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easily achieved by means of lowering the aw during stabilisation of the formulation, a higher 

survival rate at a higher aw than what was observed was anticipated. The effect was probably 

due to the sporulation and toxin production by bacteria at the aw ranges at which such bacteria 

tend to thrive (Beuchat, 1987, 2002). 

The above phenomenon is explained by Labuza & Altunakar (2007), who found that, at 

somewhat high aw-levels in the 0.6 to 0.8 range, a small increase in aw tends to translate into 

a large gain in moisture content, resulting in the growth of bacteria that cause the spoiling of 

some foods. Such behaviour was observed at high aw levels, throughout the current study, as, 

with high aw-values, solvents and free water are likely to favour bacterial growth. According to 

the literature, many empirical equations inaccurately attempt to describe hysteresis behaviour. 

However, the water activity isotherm should be experimentally determined for each of the 

ingredients (EPNs in this case) required in DE formulation to estimate the shelf life of foods 

free of fungal and bacterial growth (Seiler, 1976; Bell & Labuza, 2000; Labuza & Altunakar, 

2007; Suntaro et al., 2014; Zhang et al., 2015). Since 1 g was removed with each subsequent 

sampling, which could have led to the development of error in estimating water loss in this 

repeated measure experimental set-up, the researchers chose to infer the water content of 

the corresponding aw values to the GAB model fit isotherm of Arthur et al. (2018). However, 

the study insight was gained into the survival trends of S. yirgalemense in DE at different aw-

values. As the results from the present study do not contribute to understanding the improved 

long-term shelf life of the formulation, making short survival gains at the corresponding aw 

values would be of little value. 

The extrapolated results in Table 5.2 show that the water content at the desorption 

isotherm are slightly higher than those at the adsorption isotherm at any given aw. Despite 

analysis of the above, in practice, care should be taken to find the equilibrium point between 

the two isotherms, which is often called the working isotherm (Labuza & Altunakar, 2007). 

The SEM results revealed the severe damage caused by the desiccative effect of DE on 

S. jeffreyense, and that the effect is random with the sample. The effect is not spread 

throughout the treatment, but, where it happens, it can be devastating. The damaged IJs have 

no possibility of survival, if they are damaged beyond repair, the likelihood of which increases 

with the length of storage.  

Incidentally, the study showed that variations in terms of batches, when it comes to 

desiccation, do not necessarily occur chronologically. Rather, some newer batches have been 

found to be desiccated, while some of the older ones were not. Such results are comparable 

with those found in the relevant literature, which reveals that the commercial utilisation of 
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EPNs in biological control is restricted, due to their comparatively short shelf life, which relates 

to their low tolerance of desiccation (Strauch et al., 2004).  

Desiccation can have a robust effect on EPN IJ longevity (Grewal et al., 2011). As EPNs 

experience partial anhydrobiosis in a quiescent stage (Womersley, 1990), they tolerate 

desiccation poorly. Although the physiological mechanisms that are involved in the initiation 

of anhydrobiosis are not yet fully understood (Grewal et al., 2011), a relationship between the 

accumulation of polyols and sugars, and their function in the protection of intracellular proteins, 

in addition to that of biological membranes during dehydration, has been documented in 

various anhydrobiotic nematodes (Womersley, 1990).  

As reviewed by Grewal et al. (2011) and Kagimu et al. (2017), the ability of anhydrobiotic 

organisms to tolerate desiccation is largely associated with the accumulation of 

carbohydrates, including trehalose and water stress-related proteins. Trehalose protects 

membranes and proteins from desiccation and cold or freezing injury, by means of substituting 

the structural water that is associated with the phospholipid bilayer, thus upholding membrane 

fluidity. In addition, it retains the duo layer in the liquid crystalline state, and by means of 

forming glass (through the process of vitrification) to stabilise the cell content. During 

desiccation, trehalose equally safeguards proteins by replacing ‘bound water', in addition to 

decreasing the 'browning' or Maillard reaction (Womersley, 1990; Perry et al., 2012). The 

results obtained in the current study have clearly shown that IJs tend to desiccate to the point 

where the lateral lines are prominent at the time of storage increases. Certainly, such IJs are 

no longer viable, as they will have lost all their energy reserves, like lipids, which are 

undoubtedly essential to the survival of the non-feeding IJs (Perry et al., 2012; Kagimu et al., 

2017), and are then subjected to the loss of traits for host-finding or for persistence in the soil 

once hosts are unavailable. Furthermore, several reports have shown (Patel & Wright, 1997a, 

b; Patel et al., 1997) that the nematode infectivity levels tend to drop as energy reserves 

become depleted in storage. The accessibility of energy reserves is indispensable to 

supporting the physiological and behavioural processes that are associated with adaptation to 

environmental stress (Glazer, 2002; Kagimu et al., 2017).  

In conclusion, the present study reports on the gradual loss of survival of S. yirgalemense 

in DE, probably due to changes in their chemical and physical responses at the corresponding 

aw-values. The study equally reports on the significant differences observed in the survival of 

S. yirgalemense at the corresponding aw-values. A repeated measures experimental design 

does not favour the simultaneous study of both the survival of EPNs and of the corresponding 

water content of the system at the corresponding aw-values. For such simultaneous study, we 

recommend studying each aspect separately, while using the water vapour isotherm models, 

and then employing the joint results to stabilise the system. The current study has affirmed 
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the notion that EPNs are poor desiccators, and it has indicated that nematodes do not 

desiccate at the same rate, meaning that some are likely to survive adverse circumstances 

prior to application.  

With these findings, and with what is already known from the literature, increasing the 

density of IJs/g in DE formulation is recommended. An increase in the number of IJs has 

already been shown in chapters 2 and 3, and in other trials not reported here, to stabilise such 

formulations. The current study further suggests the creating of awareness among farmers, 

and the adequate labelling of the formulated EPN product. Having an unlimited number of 

unformulated in vitro mass-cultured nematodes available is advisable for this kind of study. 

Future research should be aimed at investigating DE formulation still further, as positive results 

have already been achieved in stabilising such. 
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Chapter 6 

Potential of attenuated total reflectance-Fourier transform infrared 

spectroscopy and hyperspectral imaging techniques for quality testing of 

formulated entomopathogenic nematodes 

Abstract 

Quality control is very important in upholding standards, during the manufacturing of 

products according to specifications, including the commercialisation of entomopathogenic 

nematodes (EPNs). For nematode quality, virulence remains the most important standard for 

measurement, which is often determined through using either one-on-one, or sand-well, 

bioassays, which are costly in terms of laboratory consumables and time. Such determination 

calls for the use of quick, non-destructive and effective quality control techniques, which could 

include the application of attenuated total reflectance (ATR), in conjunction with Fourier 

transform infrared spectroscopy (FTIR) and hyperspectral imaging (HSI) tools, which have 

been proven to have a wide application in other fields of research. In this study, the potential 

for the quality control of formulated Steinernema jeffreyense and S. yirgalemense in 

diatomaceous earth (DE), and the characterisation of different species using ATR-FTIR and 

HSI have been investigated. Results report, for the first time, the use of ATR-FTIR spectral 

analysis in detecting chemometric changes in the formulated EPN product and changes 

occurring over time, during storage. The changes are mainly for reasons of nematode survival, 

in response to environmental stresses. HSI was able to differentiate between variables, in 

terms of differences in nematode densities, in the formulated sample. For EPN 

characterisation, the study reports close similarities among the species, as detected by the 

ATR-FTIR. 

Key words: virulence, Heterorhabditis, Steinernema, formulation, multivariate analysis, 

trehalose, short-wave infrared, visible near-infrared.  
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Introduction 

The degree of excellence of a product is its quality, and quality control is a system of 

upholding standards in manufactured products. The associated system requires the testing of 

a sample of the product, according to specific specifications. Kagimu et al. (2017) opine that 

small companies with limited resources tend to forego the adoption of proper quality control 

methods and the routine assessment of quality. Quality assessment calls for training of staff 

and resources, which requires major commitment by management. Virulence, which remains 

the most important element of nematode quality, is often determined by means of the use of 

either one-on-one, or sand-well, bioassays (Grewal, 2002; Grewal & Peters, 2005). The two 

methods are costly, in terms of both laboratory consumables and time. The need exists to 

investigate quick, non-destructive and efficient quality control techniques used by other 

laboratories. The tools employed include the use of attenuated total reflectance (ATR), in 

conjunction with Fourier transform infrared spectroscopy (FTIR), consisting of ATR-FTIR, 

Raman spectroscopy and hyperspectral imaging (HSI) tools that have been proven to have 

wide application. Of much interest to the current study is the use of ATR-FTIR and HSI.  

The ATR-FTIR micro spectroscopy is considered as a powerful technique that can be 

used to determine the chemical structure and composition of various materials, including 

biological samples (Bouyanfif et al., 2018). It has had applications in terms of nematology 

research, especially in relation to Caenorhabditis elegans Maupas, 1900. For broader 

reference, attention should be drawn to the current review by Bouyanfif et al. (2018) on FTIR 

micro spectroscopy applications, which investigates the biochemical changes occurring in C. 

elegans. The applications include: the detection of diet- and genotype-dependent changes in 

the chemical composition of wild-type C. elegans and mutant strains (Bouyanfif et al., 2017); 

the molecular mechanisms of anhydrobiosis; and the role of trehalose and of phospholipid 

headgroup composition and trehalose in desiccation tolerance (Abusharkh et al., 2014), 

among others. Furthermore, ATR-FTIR has been used to characterise such 

entomopathogenic nematodes (EPNs) as Steinernema glaseri Wouts, Mráček, Gerdin & 

Bedding 1982 and Heterorhabditis indica Poinar, Karunakar & David 1994, and to assess the 

differences between the nematodes and the C. elegans wild strain (San-Blas et al., 2011). 

They equally utilised the same tool to characterise Xenorhabdus and Photorhabdus bacteria 

associated with EPNs. Even more so, Virágh et al. (2003) used FTIR to analyse the role of 

polar (phospholipid) membranes, polyunsaturated fatty acids and sterols in the thermo-

adaptation of Steinernema. The differences in the intensity of spectral peaks of the two strains 

of Steinernema feltiae (Filipjev, 1934) Wouts, Mráček, Gerdin & Bedding, 1982, being S. feltiae 

VIJE (from Norway) and S. feltiae IS6 (from Israel), were relied upon in terms of inference, 

regardless of the culture temperature of the nematodes. Wharton et al. (2008) also used ATR 
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infrared spectroscopy in confirming surface lipid triglyceride and its proportion of fatty acids in 

the plant-parasitic nematode, Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936, during complete 

anhydrobiosis. 

Hyperspectral imaging, in contrast, has not previously been applied within the ambit of 

Nematology. However, HSI is extensively utilised in food science, with regards to the quality 

assessment of products. Su & Sun (2017), in their recent review of FTIR, Raman, and HSI 

techniques, expound on the application in determining the quality of powdery foods. HSI is 

used mainly to detect impurities, by means of scanning, and by way of comparing the output 

with that of a predetermined model. Zhang et al. (2015), in their research into the internal 

defects of food products, report the wide use of HSI for detecting the insect-induced damage 

of food products. This include field peas, wheat kernels, soybeans, and jujubes, with the 

common denominator in the products being reflection-based applications. Equally important, 

Liu et al. (2013) report how near-infrared (NIR) spectroscopy and imaging techniques can 

provide useful information for the estimation of quality attributes in fish and fish products, due 

to their rapid speed, non-invasiveness, ease of use, and minimal sample preparation.  

In addition, the data obtained from the use of such chemometric methods as FTIR, as 

well as HSI, can be combined with multivariate data analysis tools like principal component 

analysis (PCA), as well as hierarchical cluster analysis (HCA), to mention but a few. The above 

can statistically illustrate biochemical events at the molecular level and identify metabolic 

fingerprints (Ami et al., 2004).  

The aim of the current study was to test the applicability of ATR-FTIR and HSI in 

determining the quality of a formulated EPN product. The emphasis was on the impurities 

present in diatomaceous earth (DE) formulations, such as microbial growth, as well as on the 

reduction in either the protein or the lipid content of the infective juveniles (IJ), the only living 

stage present in such an environment, due to the desiccative effect of the DE. The above was 

accomplished through the formulation and storage of EPNs in DE, and through the scanning 

of the product after storage, using either tool. The study also included the characterisation of 

several local EPN species, using ATI-FTIR. 

Materials and methods 

SOURCE OF NEMATODES AND HOST INSECTS 

The nematodes used in the current study included endemic South African EPNs: 

Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, Gaugler & Adams, 2004; 

Steinernema jeffreyense Malan, Knoetze & Tiedt, 2016; Heterorhabditis bacteriophora Poinar, 

1976; Heterorhabditis baujardi Phan, Subbotin, Nguyen & Moens, 2003; H. indica; 
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Heterorhabditis noenieputensis Malan, Knoetze & Tiedt, 2014; Heterorhabditis safricana 

Nguyen, Malan, De Waal, Tiedt, 2008; and Heterorhabditis zealandica Poinar 1990 (Malan et 

al., 2011, 2016; Malan & Ferreira, 2017). Galleria mellonella L. (Lepidoptera: Phyralidae) 

larvae were cultured, according to the methodology advocated by Van Zyl & Malan (2015), on 

an artificial diet, at 25°C in a growth chamber. The Galleria larvae were inoculated with either 

each species (except for S. jeffreyense), in 9-mm-diameter Petri dishes, lined with moist filter 

paper. Freshly harvested IJs were cultured in vivo, using the last-instar larvae of Galleria, kept 

at 25°C in a growth chamber. Modified White traps (Kaya & Stock, 1997) were used to harvest 

the emerged EPNs. The harvested IJs were stored in distilled water at 14°C and collected in 

5-L Erlenmeyer flasks that were constantly stirred, for approximately three weeks, until the 

desired concentration of IJs for each batch had been collected. Steinernema jeffreyense were 

cultured in vitro, in 50 ml liquid medium, in 250-ml Erlenmeyer flasks, according to Ferreira et 

al. (2014, 2016) and Dunn et al. (2018). The control for the FTIR experiment consisted of 

freshly harvested IJs.  

FORMULATING USAGE OF DIATOMACEOUS EARTH 

Both S. jeffreyense and S. yirgalemense were concentrated into a paste, using a 32-µm 

sieve (Clear Edge Filtration SA (Pty) Ltd, South Africa). The technique described in Chapters 

2 and 3 was used to formulate 64 million IJs of S. jeffreyense, as well as 10 million IJs of S. 

yirgalemense in DE (Celite 209 − Imerys Refractory Minerals SA (Pty) Ltd). A final density of 

3 700 000 IJs/g for S. jeffreyense, and 300 000 IJs/g for S. yirgalemense, was obtained in the 

formulation. The formulated nematodes were stored at 14°C, and scanned after 2, 4 and 8 

weeks, to determine their spectra in both the FTIR-ATR and HSI analyses. The experiment 

was conducted twice on different test dates, using different batches of nematodes, stored 

under the same conditions.  

 

EXPERIMENTAL PROCEDURE 

FTIR analyses of the samples were performed on a Thermo Nicolet iS10 Spectrometer 

(Thermo Scientific™ Nicolet™ iS™, Waltham, MA, USA). The Nicolet is 10 FTIR is equipped 

with a Smart Diamond ATR accessory, and operates in the mid-infrared range of 4 000 to 500 

cm-1 on both solid and liquid samples. It is easy to operate, and it is designed for precise and 

fast-paced operation. It has a deuterated-triglycine sulfate (DTGS) detector, KBr beamsplitter, 

a helium-neon (HeNe) laser, and a diamond HATR crystal of the Thermo Scientific™ Smart 

iTR™ ATR accessory. The spectra data were collected as absorbance spectra. A background 

spectrum was collected from the diamond crystal, prior to the recording of the nematode 
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images. Spectra were recorded at a resolution of 4 cm-1, with 32 scans being recorded for 

each spectrum. Thermo Scientific OMNIC software (version 8.1) was used for the spectra data 

collection and processing. A linear baseline was subtracted from the spectral region 

corresponding to the entire range of the spectra, prior to the fitting of the spectra.  

For the NIR HSI system, all the hyperspectral images were acquired with a push broom 

HySpex VNIR-1800 (visible near-infrared) and SWIR-384 (short-wave infrared) imaging 

system (Norsk Elektro Optikk, Norway) using Breeze® (Prediktera), software version 

2018.17.1. The cameras were mounted on a laboratory rack, with a translation stage, and 

fitted with a 30-cm focal-length lens. The field of view (FOV) for the VNIR was 9.773 cm, with 

it being 9.447 cm for the SWIR. The imaging system consisted of an imaging spectrograph, 

which was coupled to a CMOS (complementary metal-oxide-semiconductor) detector for the 

VNIR-1800, and to an MCT (mercury cadmium telluride) sensor for the SWIR-384. The 

spectral range for the VNIR camera was from 400 nm to 1000 nm, and the spectral resolution 

was 3.26 nm, resulting in 182 bands. The spatial resolution for the VNIR-1800 using the 30- 

cm lens was 54 µm, and each image consisted of 1800 pixels. The spectral range for the 

SWIR camera was from 850-2500 nm, with a spectral resolution of 5.45 nm, resulting in 288 

spectral bands. The spatial resolution for the SWIR-384, using a 30-cm lens, was pixel size 

0.247 mm, with each image consisting of 384 pixels. Samples were illuminated by means of 

two 150-W halogen lamps (Ushio lighting Inc., Japan), which had the capacity to emit light in 

the 400-2500 nm wavelength range. The integration time, which is the duration of time during 

which the sensor stores light energy, was fixed manually, and set to 8000 µs (VNIR), or 3000 

µs (SWIR). Images were recorded with a maximum frame rate of 100 frames per second (fps). 

Radiometric calibration was performed in the Breeze software package. A 50% grey 

reflectance standard Zenith Allucore diffuse (SphereOptics GmbH, Germany) was used as a 

white reference. Dark references were recorded, with both references being used to correct 

for uneven light intensity of different wavelength bands. Each sample, including DE alone, and 

S. yirgalemense and S. jeffreyense formulated in DE, was transferred to a glass Petri dish, 

and imaged four times with both cameras, with the imaging taking place either with, or without, 

the glass lid. 

DATA ANALYSIS 

For the FTIR analyses, statistical analyses were conducted using STATISTICA 13.2 

software (StatSoft. Inc). During data exploration, the absorbance spectra were observed not 

to be normally distributed, and the results were subjected to Spearman’s rank-order 

correlations, a non-parametric (rank-order) correlations equivalent of the paired t-test. All the 

variables differed significantly (p < 0.05) from each other. The above was done for the entire 
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spectrum, 4000-500 cm-1 and 1900-500 cm-1. The results were further subjected to factor 

principal component analysis (PCA), with the varimax rotations being normalised. A varimax 

solution yields results, which facilitates the identifying of each variable with a single factor. The 

above-mentioned procedure was carried out on the entire FTIR spectra (regions 4000-500 

cm-1) and fingerprint regions (1900-500 cm-1) that were established by means of visual 

comparison of the spectra, since many visible disparities were present in the fingerprint 

regions. Factor analysis, as a statistical method, is used to describe the variability among the 

observed, correlated variables in terms of a potentially relatively low number of unobserved 

variables, called factors, with it aiming to find independent unobserved latent variables. Unlike 

with the PCA variable reduction technique, factor analysis assumes the existence of an 

underlying model. Factor loadings (varimax-normalised, with marked loadings > 0.7) 

extraction yielded the two-factor principal components. Squared factor loading is the 

percentage of variance in that indicator variable, in terms of the specific factor. In the factor 

PCs used, the variance of the squared loadings of a factor (column) on all the tested variables 

in a factor matrix was differentiated by means of either large or small loadings of the variables 

in the next factor. Each variable could be identified with a single factor. Scatter plots of the 

PCAs case score showing which PCA had the largest variance explained between the 

variables were plotted.  

For data on the EPN species, in addition to the factor analysis explained above, 

hierarchical cluster analysis (HCA) was performed on the entire FTIR spectra (regions 4000-

500 cm-1) and fingerprint regions (1900-500 cm-1), using Ward`s method with 1-Pearson r. 

Ward's minimum variance criterion minimises the total within-cluster variance. Ward’s method 

says that the distance between two clusters, A and B, is how much the sum of the squares is 

likely to increase when merged. Ward’s method keeps such growth as small as possible. A 

distance metric for two variables, X and Y, which is known as Pearson's distance, can be 

defined from their correlation coefficient. The Pearson distance has been used in terms of 

cluster analysis (de Amorim, 2015). The combination provides good correlation between 

different spectroscopic data.  

For HSI data calibrated images were exported to Evince® processing software version 

2.7.9 (Prediktera AB, Umea, Sweden). The images were automatically calibrated, using the 

white and dark references and converted to pseudo-absorbance. The HSI data were first 

normalised by means of mean centring, using standard normal variate (SNV) correction. A 

three-component PCA model (pixel and object-wise) was developed to allow for exploration 

of the data and to display the variation between the three sample sets obtained. The images 

were cleaned to remove the background and edge effects. Spectral preprocessing (SNV) was 

applied, which served to decrease the influence of physical properties and other artefacts. 
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Results 

FTIR-ATR ANALYSIS OF EPN FORMULATED IN DE 

The results show differences in the FTIR regions 4000-2750 cm−1 and 1900-500 cm−1 

(Fig. 6.1). At certain points, the relative absorbances of the variables merge, and then later 

split. The trend was similar with all the variables, except for DE, which exhibits less 

absorbance in the FTIR region 4000-2750 cm−1 and a high peak (with the peaks of other 

variables, including DE, also being high) in the FTIR region of 1900-500 cm−1.  
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Fig. 6 1. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2, 4 and 8, top and 
bottom), S. jeffreyense paste and diatomaceous earth showing the differences in the region 4000-500 
cm−1. 

Within the FTIR region 1900-500 cm−1, the results show that each variable is different in 

its peak intensity, despite their parallelism. The highest peaks around FTIR region 1000 cm−1, 

in their entirety, are due to the presence of DE, given that the peak for S. jeffreyense is farther 

down, and rises as that of the DE falls (Fig. 6.2). Most of the observed variations were found 

to occur in the fingerprint region. The spectral interpretations for the observed peaks in Fig. 

6.1, 6.2, 6.5, and 6.6 are summarised in Table 6.1. Results were only given for the appearance 

of peaks, and not per variable. However, as seen from Fig. 6.1, 6.2, 6.5, and 6.6 and Table 
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6.1, new peaks appeared and disappeared between the variables, especially in weeks 2, 4 

and 8 across the spectra. The trend is much more evident in region 3500-2200 cm−1. 
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Fig. 6. 2. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2, 4 and 8, top and 
bottom), S. jeffreyense paste and diatomaceous earth showing the differences in the region 1900-500 
cm−1. 
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Table 6. 1. The spectral interpretations for Steinernema jeffreyense in diatomaceous earth over time. 

Peak positions of formulated S. jeffreyense in DE scanned over time, together with the corresponding biomolecules References 

DE S. jeffreyense Week 2  
 

Week 4  
 

Week 8  Assignment  

3355     O-H, N-H, C-H, 
Stretching N-H asymmetric 

(Dovbeshko et al., 2000, 2002; 
Movasaghi et al., 2008) 

  3348   Stretching N-H asymmetric (Dovbeshko et al., 2002) 
   3295  Amid A (N-H stretching) (Movasaghi et al., 2008)  
    3282 C-H stretching 

 
(Movasaghi et al., 2008; San-Blas et 
al., 2011, 2012) 

 3278    Stretching O-H symmetric (Movasaghi et al., 2008; San-Blas et 
al., 2011, 2012) 

     
 
 
2959 

C-H stretching (asymmetric) CH3 (Holman et al., 2008; Wu et al., 2001) 
    Asymmetric stretching vibration of CH3 of acyl chains (Movasaghi et al., 2008; San-Blas et 

al., 2011, 2012) 

   2924 2926 C-H stretching  
Asymmetric CH2 lipids 
 

(Fung et al., 1996; Wu et al., 2001; 
Movasaghi et al., 2008; San-Blas et 
al., 2012) 

   2854 2854 C-H stretching, symmetric (CH2, lipids, fatty acids) (Dovbeshko et al., 2002; Shetty et al., 
2006) 

    2166 Stretching N-H. A combination of hindered rotation and O-H 
bending (water) 

(Fabian et al., 1995; Dovbeshko et al., 
2000; Movasaghi et al., 2008) 

    2107 Stretching N-H. A combination of hindered rotation and O-H 
bending (water) 

(Fabian et al., 1995; Dovbeshko et al., 
2000; Movasaghi et al., 2008) 

   2123  Stretching N-H (Dovbeshko et al., 2000) 
 2112    Stretching N-H. A combination of hindered rotation and O-H 

bending (water) 
(Fabian et al. 1995; Dovbeshko et al., 
2000; Movasaghi et al., 2008) 

   1744 1744 C=O stretching band mode of the fatty acid ester, lipids, ester 
group (C=O) vibration of triglycerides 

(Yoshida et al., 1997; Movasaghi et 
al., 2008) 

  1640  1640 Amide I band of protein and H-O-H deformation of water (Li et al., 2005; Movasaghi et al., 
2008) 

 1633  1633 1634 ν(C=C), C=C uracyl, C=O (Dovbeshko et al., 2000; Schulz & 
Baranska, 2007) 

 1548    Ring base (Dovbeshko et al., 2000; Movasaghi et 
al., 2008) 

   1544 1544 Amide II bands (arising from C-N stretching and & CHN bending 
vibrations) 

(Huleihel et al., 2002; Wood et al., 
1998; Movasaghi et al., 2008) 

    1541 Amide II absorption (primarily an N-H bending, coupled to a C-N 
stretching vibrational mode)  

(Wood et al., 1996; Chiriboga et al., 
1998; Wood et al., 1998) 
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Peak positions of formulated S. jeffreyense in DE scanned over time, together with the corresponding biomolecules References 
1479     Amide II band in tissue proteins. Amide II mainly stems from the 

C-N stretching and C-N-H bending vibrations weakly coupled to 
the C=O stretching mode 

(Eckel et al., 2001;  
Shetty et al., 2006; Movasaghi et al., 
2008) 

  1472   Amide II  
 

(Eckel et al., 2001) 

    
 
 
1456 

 
 
 
1456 

Asymmetric CH3 bending modes of the methyl groups of proteins (Fujioka et al., 2004) 
 1455  CH3 bending vibration (lipids and proteins) (Fabian et al., 1995) 

    1403 Symmetric CH3 bending modes of the methyl groups of proteins (Fujioka et al., 2004; Movasaghi et al., 
2008) 

 1398    CH3 symmetric deformation (Agarwal et al., 2006) 
     

1339 
Collagen (Fung et al., 1996) 

    In-plane C-O stretching vibration, combined with the ring stretch of 
phenyl 

(Schulz & Baranska, 2007; Movasaghi 
et al., 2008) 

 1241    Phosphate stretching bands from phosphodiester groups of 
cellular nucleic acids vibrating asymmetric phosphate 

(Fung et al., 1996; Movasaghi et al., 
2008) 

 1080    Symmetric PO-
2 stretching phosphate vibration 

Collagen and phosphodiester groups of nucleic acids 
 
(Movasaghi et al., 2008) 

1054  1050 1050  Phosphate and oligosaccharides 
P-O-C antisymmetric stretching mode of phosphate ester, and C-
OH stretching of oligosaccharides 

 
(Yoshida et al., 1997; Movasaghi et 
al., 2008) 

    1047 Phosphate and oligosaccharides (Yoshida et al., 1997) 
  1043   Phosphate and oligosaccharides 

Symmetric phosphate group stretching in RNA and DNA 
 
(Movasaghi et al., 2008) 

 1032    O-CH3 stretching of methoxy groups (Schulz & Baranska, 2007) 
 993    C-O ribose, C-C (Dovbeshko et al., 2000)  
855  854 853 853 Out-of-plane bending vibrations (Schulz & Baranska, 2007; Movasaghi 

et al., 2008)  
796     Guanine (Dovbeshko et al., 2000) 
  784  784 Guanine 

Out-of-plane bending vibrations 
(Schulz & Baranska, 2007; Movasaghi 
et al., 2008)  

  780  779 Guanine 
Out-of-plane bending vibrations 

(Schulz & Baranska, 2007; Movasaghi 
et al., 2008)  

713     711 Guanine 
Out-of-plane bending vibrations 

(Schulz & Baranska, 2007; Movasaghi 
et al., 2008)  
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The results show a wide spread of alcohol, proteins, carbohydrates, lipids, and fatty acids, 

among other molecules, across/along the FTIR spectra. For example, at peak 3355 cm−1, 

functional groups O-H, N-H, C-H for alcohol, amine II and aromatic groups, respectively, are 

suspected. In the region 3500-2200 cm−1, there are asymmetric lipids for the phospholipid 

bilayer, lipids, fatty acids and amine II for the secondary proteins. Peak 1744 cm−1 was 

observed during weeks 4 and 8, with it being assigned to the C=O stretching band mode of 

the fatty acid ester, lipids, ester group (C=O) vibration of triglycerides. Triglycerides are the 

main constituents of body fat among animals. The fatty acids in this section correspond to 

unsaturated fats, due to the observed double bond. More so, peak 1640 cm−1 was observed 

from weeks 2 to 8 of the study. The peak was assigned to the amide I band of protein (primary 

protein) and to the H-O-H deformation of water. Equally important, peak 1544 cm−1 appeared 

in weeks 4 and 8, and peak 1541 cm−1 in week 8. The peaks are assigned amide II absorption 

(primarily an N-H bending, coupled to a C-N stretching vibrational mode). Peak 1455/6cm−1 

appeared in weeks 2, 4 and 8. They are assigned to asymmetric CH3 bending modes of the 

methyl groups of proteins, and to the CH3 bending vibration (lipids and proteins), whereas 

peak 1403 cm−1 for the symmetric CH3 bending modes of the methyl groups of proteins was 

recorded in week 8. Furthermore, peak 1339 cm−1 was recorded in week 8, with it being 

assigned for the in-plane C-O stretching vibration, combined with the ring stretch of phenyl. 

Peaks 1241-1080 cm−1 were last recorded for S. jeffreyense, with their disappearance in 

weeks 2, 4 and 8. Such peaks are assigned to phosphate-stretching bands from 

phosphodiester groups of cellular nucleic acids vibrating asymmetric phosphate, as well as 

symmetric PO-
2 stretching phosphate vibration for collagen and phosphodiester groups of 

nucleic acids respectively. Peak 1050 cm−1 in weeks 4 and 8 and peak 1047cm−1 in week 8 

are assigned to phosphate and oligosaccharides. This is due to the P-O-C antisymmetric 

stretching mode of phosphate ester, and to the C-OH stretching of oligosaccharides, with peak 

1043 cm−1, in week 2, being assigned to phosphate and oligosaccharides. They form a 

symmetric phosphate group stretching in RNA and DNA. Peak 1032 cm−1 for S. jeffreyense is 

assigned to the O-CH3 stretching of methoxy groups, which disappeared in weeks 2, 4 and 8. 

From peak 993 cm−1 onwards to 711 cm−1 only Guanine and out-of-plane bending vibrations 

are assigned (Fig. 6.1). 
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FACTOR ANALYSIS OF THE FTIR SPECTRUM IN ASSESSING THE QUALITY OF FORMULATED IJS 

For the FTIR spectra in region 4000-500 cm−1, factor analysis results on Eigenvalues (E) 

extraction gave rise to four principal components, with PC1, PC2, PC3 and PC4 measuring 

87.36%, 11.89%, 0.58% and 0.14%, respectively, of the total variance of 99.95%. In this case, 

PC1 and PC2 measured most of the variance in all the variables accounted for by these 

factors. The above was further illustrated in the plot of the Eigenvalues, in which the curve 

made an elbow at factor PC2. Factor loadings (varimax-normalised, with marked loadings > 

0.7) extraction yielded two-factor principal components. The squared factor loading is the 

percentage of variance in that indicator variable, explained by the factor. In the factor PCs, the 

variance of the squared loadings of a factor (column) on all the tested variables in a factor 

matrix was differentiated, by either large or small loadings of the variables in the next factor. 

The identification of each variable with a single factor was possible, as seen in Fig. 6.3. 
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Fig. 6.3. PC1-PC2 scatter plots for the FTIR spectra of Steinernema jeffreyense in diatomaceous earth 
(weeks 2, 4 and 8, top and bottom), S. jeffreyense paste and diatomaceous earth in the region from 
4000-500 cm−1. 
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The factor analysis results indicated extreme variance of PCs with PC1 (87%), and PC2 

(12%), giving 99% of the total variance of the system, which explained and specified that the 

PC1 expressively explained the utmost significant component within the system features. Only 

1% of the information was lost, which could only be explained by other insignificant factors. 

The same analyses, as shown above, were carried out for the region 1900-500 cm-1 of the 

spectrum, in terms of which considerable variations in relation to the intensities of relative 

absorbances were observed among the variables. The variables were similarly significantly (p 

< 0.05) different from each other upon subjection to Spearman’s rank-order correlations. 

Likewise, the factor analysis results yielded four principal components, with PC1, PC2, PC3 

and PC4 measuring 85.00%, 14.13%, 0.63%, and 0.18%, respectively, of the total variance of 

99.93%. In the same way, PC1 and PC2 measured most of the variance in all the variables 

accounted for by such factors. The factor loadings extraction yielded two-factor principal 

components. The factor analysis results indicated extreme variance of PCs with PC1 (85%), 

and PC2 (14%) giving 99% of the total variance concerned (Fig. 6.4). The factors clearly 

separated the main ingredients, S. jeffreyense paste and DE, on one side, along with other 

variables in between, as was reported in the preceding discussion of FTIR spectra in the 

current study. 
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Fig. 6.4. PC1-PC2 scatter plots for the FTIR spectra of Steinernema jeffreyense in diatomaceous earth 
(weeks 2, 4 and 8, top and bottom), S. jeffreyense paste and diatomaceous earth in the region from 
1900-500 cm−1.  
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The scatter plots show slight shift in the position in the two plots of week 8, bottom and 

top, in the two plots of the same data. In addition, week 2 bottom and top variables almost 

merge. The PCs that explained most of the variance were neither decomposed nor 

deconstructed to obtain additional functional groups but used other tools to show differences 

in the variables in terms of their chemometric print. As has already been pointed out, detailed 

analysis of the results of the FTIR spectra, using formulated S. jeffreyense in DE that was 

scanned after weeks 2 and 4, respectively, was carried out to draw a cogent/logical 

conclusion. 

ADDITIONAL FTIR-ATR ANALYSIS FOR WEEKS 2 AND 4  

After separating the results for weeks 2 and 4 into two groups, including the entire 

spectrum and the region 1900-500 cm-1 of the spectrum, they were subjected to Wilcoxon 

matched-pairs signed-ranks testing in the form of a non-parametric test. The variables were 

found to be significantly (p < 0.001) different from each other for the entire spectrum, although 

not significantly (p = 0.17) different in the region 1900-500 cm-1 of the spectrum (Fig. 6.5 and 

6.6, and Appendices 1a, 1b, 1c and 1d).  
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Fig. 6.5. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2 and 4), S. 
jeffreyense paste and diatomaceous earth showing the differences in the region from 4000-500 cm−1. 
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Fig. 6.6. FTIR spectra of Steinernema jeffreyense in diatomaceous earth (weeks 2 and 4), S. jeffreyense 
paste and diatomaceous earth showing the differences in the region from 1900-500 cm−1. 

EPN CHARACTERISATION USING FTIR-ATR  

The results show differences in the FTIR regions 4000-2750 cm−1 and 1900-500 cm−1. At 

certain points, the relative absorbances of the variables merge, and then later split. The trend 

was similar with all the variables. Mainly two regions of variation in relative absorbance exist 

in the FTIR regions 4000-2750 cm−1 and 1900-500 cm−1. The fingerprint region (1900-500 

cm−1) shows that each EPN species is different in peak location and intensity of absorption. 

However, species are parallel to each other (Figs 6.7 and 6.8).  
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Fig. 6.7. FTIR spectra of Steinernema yirgalemense, Heterorhabditis bacteriophora, H. baujardi, H. 
indica, H. noenieputensis, H. safricana, and H. zealandica, showing the differences in the region from 
4000-2750 cm−1 and 1900-500 cm−1. 
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Fig. 6 8. FTIR spectra of Steinernema yirgalemense, Heterorhabditis bacteriophora, H. baujardi, H. 
indica, H. noenieputensis, H. safricana, and H. zealandica, showing the differences in the region 1900-
500 cm−1. 

FACTOR ANALYSIS OF THE FTIR SPECTRA IN ASSESSING EPNS 

For the FTIR spectra in region 4000-500 cm−1, factor analysis results, on eigenvalues (E) 

extraction, gave rise to two principal components, with PC1 (99%), and PC2 (1%) explaining 

the entire total variance of the system, although PC1 meaningfully explained the utmost 

significant component within the system features (Fig. 6.9). The region 1900-500 cm-1 of the 

FTIR spectra was no exception from the FTIR spectra in region 4000-500 cm−1, given that the 

factor analysis results were similar (Fig 6.10). Furthermore, the factors separating the EPNs 

and the scatter plots show proximity of species, unlike in Figs 6.3 and 6.4, where S. jeffreyense 

was widely separated from the DE. The scatter plots show slight orientation of the species in 

the two plots. The species originally plotted in an upper position in one plot ended up in a 

lower position in another plot. 
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Fig. 6.9. PC1-PC2 scatter plots for the FTIR spectra of Steinernema yirgalemense, Heterorhabditis 
bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. zealandica in the region 
from 4000-500 cm−1. 
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Fig. 6.10. PC1-PssC2 scatter plots for the FTIR spectra of Steinernema yirgalemense, Heterorhabditis 
bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. zealandica in the region 
from 1900-500 cm−1. 
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CLUSTER ANALYSIS OF EPN SPECIES 

The cluster analyses were drawn from FTIR spectra regions 4000-500 cm−1 and 1900-

500 cm−1, respectively. The tree clusters depict strong similarity of the different EPN species 

(Figs 6.11 and 6.12).  
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Fig. 6.1. Tree diagram for the FTIR spectra of Steinernema yirgalemense, Heterorhabditis 
bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. zealandica in the region 
from 4000-500 cm−1, according to Ward`s method and 1-Pearson r. 
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Fig. 6.2. Tree diagram for the FTIR spectra of Steinernema yirgalemense, Heterorhabditis 
bacteriophora, H. baujardi, H. indica, H. noenieputensis, H. safricana, and H. zealandica in the region 
from 1900-500 cm-1, according to Ward`s method and 1-Pearson r. 
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HYPERSPECTRAL IMAGING 

SWIR – no glass with SNV correction and PCA model pixel-wise analysis 

Data analysed with the PCA model pixel-wise analysis showed that PC1 contributed 

77.4%, PC2, 12% and PC3, 1.97% explaining a total of 91.37%, with 8.63 of the information 

lost (Fig. 6.13). The results in Fig. 6.13 obtained by PCA shows two principal components 

explaining a variance of 91.37% with 8.63% of the information lost. The PCA score plot shows 

clear variation along the first principal component, which lies between S. jeffreyense and DE, 

whereas S. yirgalemense and DE show low variation, being explained only by the second 

principal component in the PCA score plot (Fig. 6.13). Given that the peaks in the PC loadings 

were unclear (Fig. 6.14), they were not further analysed.  

 

Fig. 6.3. A: Near-infrared (NIR) hyperspectral imaging (HIS) SWIR-384 (short-wave infrared) spectra 
PCA model – contour 2D (T) data set (multiple image import); B: PC1-PC2; C: PC1-PC3; and D: PC2-
PC3 scatter 2D (T) plot values for SWIR-384 spectra (from 780-2500 nm), showing distribution of 
Steinernema yirgalemense and S. jeffreyense in diatomaceous earth and diatomaceous earth 
separately, as control. 
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Fig. 6.4. Short-wave infrared (SWIR)-384 spectra hyperspectral imaging (HSI) PCA model –loading 
data set (multiple image import): A. PC1, and B. PC2 for Steinernema yirgalemense and S. jeffreyense 
in diatomaceous earth and diatomaceous earth separately, as control, with no glass / SNV correction. 
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SWIR – no glass with SNV correction and PCA model object-wise analysis 

Data analysed using the PCA model object-wise, showed that PC1 contributed 89.6% and 

PC2, 9.9%, explaining a total variance of 99.5%, with only 0.5% of the information having been 

lost. The PCA score plot, just as in Fig. 6.13, shows a clear variation along the first principal 

component, which is between S. jeffreyense and DE, whereas S. yirgalemense and DE show 

low variation, which is only explainable by the second principal component in the PCA score 

plot (Fig. 6.15). Similarly, the peaks in the PC loadings were just as unclear (Fig. 6.16), and, 

hence, were not sufficiently decomposed to enable a logical conclusion to be drawn regarding 

the corresponding functional groups. 

 

 

Fig. 6.5. Short-wave infrared (SWIR)-384 spectra hyperspectral imaging (HSI) object-wise PCA – score 
data set (object identification), PC1-PC2 score values for SWIR-384 spectra (from 780-2500 nm), 
showing distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous earth, and 
diatomaceous earth separately as control. 
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Fig. 6.6. Short-wave infrared (SWIR)-384 spectra hyperspectral imaging (HSI) PCA model –loading 
data set (multiple image import): A. PC1, and B. PC2 for Steinernema yirgalemense and S. jeffreyense 
in diatomaceous earth and with diatomaceous earth separately as control, with no glass / SNV 
correction. 

 

The results for SWIR-384 spectra with glass were no different from those that were obtained 

for the spectra with glass and were not reported. Equally important, the results for VNIR, with 

or without glass, were obscure and could not be interpreted, leading to them not being 

reported. 
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B 
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Discussion 

The study reports on the ability of ATR-FTIR spectral analysis to detect chemometric 

changes in the EPN formulated product over time. This is the first time, to the current 

researchers’ knowledge, that FTIR has been utilised in accessing the quality control of EPNs, 

in terms of the chemical changes occurring in formulated nematodes, opposed to their 

virulence. In short, the results have coincidentally revealed the appearance and 

disappearance of peaks in the spectra of formulated nematodes as the time of storage 

increases. This trend was much more evident in region 3500-2200 cm−1. The trend could 

probably be attributed to methyl changes in the lipids, confirming biomolecular chemical 

changes in the formulated nematode. In addition, peak 1744 cm−1, for example, was observed 

in weeks 4 and 8, which is assigned to the C=O stretching band mode of the fatty acid ester, 

lipids, and ester group (C=O) vibration of triglycerides (Movasaghi et al., 2008). Triglycerides 

are the main constituents of body fat in animals. The fatty acids in this section correspond to 

unsaturated fats, due to the observed double bond. Such bonding clearly shows the 

breakdown of triglycerides for conversion into trehalose during the glyoxylate cycle (Barrett et 

al., 1970). Trehalose is important in preserving the structures of nematodes under harsh 

environmental conditions and in the present case, under the desiccative effect of DE 

(Womersley, 1990; Grewal et al., 2006, 2011; Perry et al., 2012). According to Grewal et al. 

(2011), the ability of anhydrobiotic organisms to tolerate desiccation is largely associated with 

the accumulation of carbohydrates, including trehalose and water stress-related proteins. 

Trehalose protects membranes and proteins from desiccation injury, by means of: (1) 

substituting the structural water that is associated with the phospholipid bilayer; (2) maintaining 

membrane fluidity; (3) retaining the duo layer in the liquid crystalline state; and (4) forming 

glass (vitrification) to stabilise the cell content.  

In addition, the observed peak at 3355 cm−1 corresponds to the functional groups O-H, N-

H, C-H for alcohol, amine II and aromatic groups, respectively (Dovbeshko et al., 2000, 2002; 

Movasaghi et al., 2008). In region 3500-2200 cm−1, asymmetric lipids are present for the 

phospholipid bilayer, as well as are lipids, fatty acids and amine II for the secondary proteins 

(Movasaghi et al., 2008). Peak 1640 cm−1 was observed from weeks 2 to 8 of the study, yet it 

corresponds to the amide I band of protein (primary protein) and to the H-O-H deformation of 

water (Li et al., 2005). During desiccation, trehalose equally safeguards proteins by replacing 

the ‘bound water' (on that note, the likely deformation of water), in addition to decreasing the 

'browning' or Maillard reaction. The deformation of water molecules alone is evident enough 

to emphasise the fact that stress in the nematode could have caused the observed change. 

Most of the observed peaks were in the formulated S. jeffreyense, rather than in the S. 
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jeffreyense paste and the DE, further confirming the presence of biomolecular chemical 

changes, preparing the nematodes for survival during formulation. 

Results have further showed that the different tested variables have different intensities of 

absorption in the FTIR spectra, implying that they differ from each other. Though some of the 

differences were visible even without analysis, the different analytical tools, like multivariate 

data analyses, are not limited to the factor PCA, and HCA further confirmed the close similarity 

among the variables, especially in the case of the EPN species studied. Some peaks are 

difficult to discern, as attested by San-Blas et al. (2012). The observed disparities in the cluster 

of EPNs, as with S. yirgalemense, clustering within heterorhabditid nematodes should not be 

confused with the molecular phylogenetic trees of these nematodes, where S. yirgalemense 

cluster among steinernematid nematodes, which are based on molecular DNA composition in 

their constructs, they are viewed in terms of their chemical composition. Equally important, 

performing a secondary derivative on the data is likely to correct such an erroneous 

appearance. Previous studies employed secondary derivatives for proper analysis and 

reported on the exact functional group, or molecule, that was responsible for the observed or 

summarised relative absorbance peaks. However, the current study followed an alternative 

trend, by utilising other statistical means, like multivariate analysis, using factor and cluster 

analyses to draw inferences. The results obtained are like those by Virágh et al. (2003), who 

used FTIR, while analysing the role of polar (phospholipid) membranes, polyunsaturated fatty 

acids and sterols in the thermo-adaptation of the Steinernema species. The differences in the 

intensity of spectral peaks of the two strains of nematode S. feltiae, S. feltiae VIJE (from 

Norway) and S. feltiae IS6 (from Israel), were relied upon in inference, regardless of the culture 

temperature of the nematodes. The concept was equally tested in the present study in terms 

of the scanning of the FTIR spectra of S. jeffreyense in DE, after weeks 2 and 4 of storage in 

formulation; the subjection of the spectra to the Wilcoxon paired test; and the confirmation of 

the observed differences in the intensities of the spectra. 

The study, again for the first time, has been successful in harnessing the application of HSI 

in the quality control of EPN products. Although the results of the HSI were not analysed 

beyond the principal component analysis PC loading examination, the PC score plots revealed 

the variances between the EPN species and the DE tested. Given the small size of the 

nematodes, and the height at which the VNIR and SWIR cameras were mounted, obtaining 

such results creates hope for the advancement of the research along similar lines. As the 

peaks in the PC loadings SWIR were unclear, they were not decomposed to assign the 

relevant peaks to the corresponding functional groups.  

The limitations regarding the use of HSI in the quality control of EPNs include the height of 

the microscope. The cameras are high and yet nematodes are microscopic. It is probably due 

Stellenbosch University  https://scholar.sun.ac.za



133 

 
to this that the results for the VNIR, with or without glass, were obscure and could not be 

resolved. In addition, both the FTIR and the HSI would not require use with a homogeneous 

product, as they only detect impurities. This fact has been elaborated on by Su & Sun (2017), 

in relation to FTIR, Raman and HSI techniques, in the quality determination of powdery foods. 

The researchers asserted that, in principle, spectral imaging techniques were irrelevant for 

checking the quality attribute of homogeneous samples, and that the degree of HSI accuracy 

attained would depend on whether the powdered sample was representative and 

heterogeneous in respect to bulk. Being adapted to particulate data acquisition, they are not 

suited to dealing with such homogeneous samples as the formulated EPN product. The above 

held true in the case of the current study, whose earlier hypothesis involved introducing 

entomopathogenic fungi into one of the formulations to create a heterogenous sample, but 

which was restricted in application, as the spores involved would have contaminated the 

laboratory. Instead, a lower density of S. yirgalemense and a higher density of S. jeffreyense 

in the DE provided changes detectable by the HSI SWIR camera. The principal component 

score plots suggested that S. yirgalemense was closer to DE than was to S. jeffreyense.  

Furthermore, many different sample scans are required to create a model. However, the 

above would require having an unlimited number of nematodes that could only be supplied by 

means of in vitro culture. Both ATR-FTIR and HSI require modelling to be easily utilised in 

nematology research. Using focal plane array (FPA) imaging detectors in the FTIR will 

probably replace use of the HSI in future nematology research, aimed at assuring the quality 

of formulated EPNs. More so, the HSI also generates such large images that they can even 

crash computers with small random-access memory and storage space (Su & Sun, 2017). 

Therefore, the images presented in the current study were of poor quality when presented as 

screen shots. However, the ability for gaining rapid information about food chemical 

components, while using these techniques, remains commendable.  

In conclusion, the present study reports the first-time application of ATR-FTIR in the quality 

control of formulated EPNs. The researchers were able to observe the changes occurring in 

the functional groups of the spectra, as the time of storage increased. The ability to make such 

observations further compels those who are involved in the commercial application of EPNs 

to use them within the designated amount of time, so as to avoid deterioration in their quality. 

The results have further confirmed the notion, that EPNs have a short shelf life, as they could 

be easily traced in the appearance of new peaks during the second week of storage in 

formulation. Future research into the use of FTIR should create a standard model for the 

quality control of formulated EPNs, based on the results obtained in the present study. 

Modelling would necessitate correlating the spectral data with other variables such as 

pathogenicity, virulence, survival as already covered in the previous chapters above.  
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 Of the two techniques studied, preference is given to FTIR rather than to HSI, since the 

former’s data require minimal the use of pre-analytical processes, unlike with HSI. More so, 

the authors recommend substituting HSI with FPA imaging detectors on FTIR in future 

research, aimed at the quality control of formulated EPNs. Furthermore, HSI will, most likely, 

only detect impurities like microbial growth in the formulated EPN product, unlike with FTIR, 

which can detect changes within a single point. The results achieved with the spectral 

interpretation of formulated S. jeffreyense and the desiccative effect of DE are comparable to 

those that were attained with the scanning electron micrographs, which depicted the immense 

effect that DE had on IJs within a short space of time. The HSI is, however, still useful in other 

research fields of biology, however, for application in the quality control of formulated EPN 

products, further research in this direction is necessitated. A limitation of HSI is that it requires 

many samples to create a meaningful model as a reference for future quality assurance, unlike 

in the case of the FTIR, which is easily obtainable with the future in vitro culture of nematodes. 
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Chapter 7 

General discussion and conclusion 

Worldwide restrictions exist on the use of agrochemical pesticides, with alternatives for 

biocontrol being advocated and lobbied for by conservationists. Among the biologicals of much 

interest are the entomopathogenic nematodes (EPNs) of the genera Steinernema and 

Heterorhabditis, and their associated symbiotic bacteria Xenorhabdus and Photorhabdus. In 

view of the above, 12 novel local species of EPNs have been isolated from South African soil 

to date, with numerous local studies having been undertaken into nematode efficacy, 

indicating outstanding success in using certain nematode-insect combinations, such as false 

codling moth, weevil, codling moth, and fruit fly.  

Furthermore, studies are under way for the in vitro mass culture of EPNs in large fermenters 

for commercial application in South Africa. However, the large-scale commercial utilisation of 

EPNs as biological control agent, in integrated pest management programmes is limited by 

their finite shelf life, both in storage and formulations. Thus, attaining a suitable formulation is 

a crucial final step in transferring the nematodes from the laboratory to the field. Not only is 

the nature of such formulations of key importance to the successful storage and transport of 

mass-cultured nematodes, but the formulation used should also be able to maintain 

nematodes of high quality. The development of such a formulation to enable both medium-

sized and large enterprises to disperse and apply nematodes successfully against key insect 

pests in both under-cover and large-scale commercial application was of focus in the current 

study. 

The study investigated a suitable formulation for EPNs, regarding their survival and 

infectivity under varying conditions of temperature, oxygen consumption, 

dehydration/desiccation, water activity (aw), and energy reserves. In other words, the 

researchers involved aimed at becoming fully cognisant of the survival mechanisms of 

infective juveniles (IJs) (the survival stage of EPNs), employed in commercially applicable 

formulations, with the intention of attaining an acceptable shelf life, by means of the objectives 

elaborated on below. 

The study evaluated Steinernema yirgalemense, S. jeffreyense and Heterorhabditis 

bacteriophora for their suitability in formulations and for their long-term storability at different 

temperatures. The formulations included the encapsulation of the infective juveniles (IJs) in 

alginate beads, as well as the use of diatomaceous earth (DE) at 6°C, 14°C and 25°C for 4 

weeks. The beads, which successfully retained most of the IJs, can be stored for longer 
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periods of time, while in the case of DE they showed a high survival rate (80%) by the fourth 

week. The study of EPN species revealed poor survival and the loss of virulence at the low 

temperatures of a refrigerator, in both formulations. The present report is the first on the 

successful formulation of local South African EPNs. The usefulness of alginate beads was 

found to be limited in terms of scale-up production, thus requiring further research in mass 

production. If this impediment is alleviated, they will be used in all the sectors and levels of 

production, such as under cover, and in-home gardens. The use of DE, on the other hand, 

can easily be upscaled, with the application involving the dissolving of the product in water 

tanks and sprays, using available farm equipment.  

Incidentally, in both formulations, the results showed a decline in the survival and 

pathogenicity of the EPNs at low temperatures. This is an important finding, due to the 

phenomenon being of benefit in terms of commercial application in relation to South African 

producers, as refrigeration costs during the storage and transportation of EPN products can, 

thus, be eliminated. Such is not the case for the European and American markets, for which 

EPNs require refrigeration. The EPN products in this case are in concurrence with those 

produced by the Volcani Institute – Agriculture Research Organization-Negev Israel, where 

EPN products can even be dispatched using slow mail, without additional cooling. Never the 

less, the study recommends conducting similar future research investigations at the higher 

temperatures of 8°C and 10°C to widen the market scope. 

 In addition, the study recommended optimising the formulating of EPNs in DE, given the 

associated advantages. The optimisation was the second objective of the study, which aimed 

at maximising the quality of DE formulations by means of improving their efficiency and 

productivity for purposes of long-term room temperature storability. The optimisation process 

involved considering the viability of S. yirgalemense at room temperature, and at higher 

density in DE after 4 weeks. The direct effect of antifungal agents on the efficacy of S. 

yirgalemense was equally investigated. This is because microbial contamination often occurs 

in EPNs, with such contamination tending to lower the quality and shelf life in formulations. 

Therefore, peroxyacetic acid (PAA), trans-cinnamic acid (TCA) and nipagin were investigated 

as antifungal agents in the study. A decline in the survival rate and pathogenicity of S. 

yirgalemense, due to the addition of PAA, was reported. Contrastingly, TCA and nipagin had 

no effect on the survival rate and pathogenicity of S. yirgalemense. The shelf life of IJs stored 

in DE formulation at room temperature improved, when measured against the 80% mean 

survival rate of S. yirgalemense in week 4, at 25°C. The improved room temperature shelf life 

confirms the observations recorded in relation to the first objective. Again, this is another first 

report of room temperature long term shelf life of South African EPNs. Equally important, 

nipagin and TCA have been identified as potential antifungal agents for use during the 
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commercialisation of EPNs. Since nipagin is cheaper than TCA, it is recommended for future 

use. More so, the study has confirmed PAA as being a potent nematicide against plant-

parasitic nematodes.  

More still, the study investigated the oxygen consumption rates of S. yirgalemense, S. 

jeffreyense and H. bacteriophora as there is limited information, on the respiratory physiology 

of the nematode/bacterium complex of EPNs during production, storage, and formulation. 

Furthermore, low oxygen supply jeopardises EPN survival. Therefore, the present study 

determined, by means of basal measurement, the specific oxygen consumption rate (OCR) of 

the IJs of the three EPN species, using fibre-optic sensors. The results showed that nematode 

size inversely influences its OCR, with smaller nematodes having a higher surface-area-to-

volume ratio than do larger nematodes, with a higher OCR. Steinernema jeffreyense and S. 

yirgalemense did not significantly differ from each other in terms of the results obtained, which 

is ascribed to their proximity in size, with the former being slightly larger than the latter, but 

they differed significantly from H. bacteriophora. The study reports on the first-known use of 

fibre-optic sensors in determining the OCR of EPNs, although the technique is already being 

used in other fields of biology. However, the above only happened in 1 out of 4 batches. The 

study therefore recommends further studies of EPNs, with the same tool, using different EPN 

species. Also, improving the protocol to get homogeneous results in future research is needed. 

The next objective was aimed at determining the water activity (aw) of the IJs of 

Steinernema yirgalemense at 25 °C. The determination was achieved by investigating aw as 

a deciding factor in terms of microbial contamination. The aspect of desiccation was further 

examined in relation to the quality and shelf life of EPNs in formulation. In the current study, 

the concept of determining the moisture content at the corresponding aw-values, using the 

Guggenheim-Anderson-Boer (GAB) isotherm model, has been studied, with regards to DE, 

as well as in terms of the survival of S. yirgalemense. Scanning electron microscopy was 

employed to determine the effect of DE on S. jeffreyense during storage in formulation. A 

decline in the survival rate of S. yirgalemense at high aw-values, due to bacterial contamination 

and toxin production, was reported. Of equal importance is the recommendation that the 

moisture content at different aw-values for each of the ingredients used in the formulation 

should be investigated separately, to enable stabilising of the formulation and improvement of 

the shelf life. Equally, the challenge of controlling aw with the subsequent sampling was 

considered, in line with the difficulty experienced with simultaneously assessing both the 

moisture/water content and the survival of IJs. Scanning micrographs depicted the strongly 

desiccative effect of DE on S. jeffreyense, which proved to be beyond rejuvenation on the 

addition of water. Such effects were found to be random, and not widely distributed throughout 
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the sample. The above-mentioned shortcoming can be mitigated by increasing the density of 

IJs/g in formulation in future research, reported as being relatively stable in the current study. 

The final objective was to assess the effect of formulation on nematode quality over time, 

as well as to devise alternative methods of quality control. Since virulence, which remains the 

most important standard for the measurement of nematode quality, is often determined by 

using either one-on-one or sand-well bioassays, which are costly in terms of laboratory 

consumables and time, new alternatives have been investigated. The potential for the quality 

control of formulated S. jeffreyense and S. yirgalemense in DE, and the characterisation of 

different species using attenuated total reflectance (ATR), in conjunction with Fourier-

transform infrared spectroscopy (FTIR) and hyperspectral imaging (HSI), tools have been 

investigated. The results reported noted, for the first time, the use of ATR-FTIR spectral 

analysis in detecting chemometric changes in the formulated EPN product and changes 

occurring over time, during storage. The changes are connected to nematode survival, due to 

environmental stresses. The HSI tools were able to differentiate between variables, in terms 

of differences in nematode densities, in the formulated sample. For EPN characterisation, the 

study reports close similarities among the different species investigated, as detected by the 

ATR-FTIR, which is a significant finding. Despite ATR-FTIR being widely used in other 

nematode-related research, it had not previously been used in the quality control of 

nematodes, with the current report being the first to record their successful utilisation in this 

regard. Modelling of the application, and miniaturisation of the set-up, using existing FTIR 

systems, need to be further investigated. This can be a real turning point in the quality control 

of EPN products. Use of the hyperspectral tool, in contrast, requires additional research at 

high nematode densities to attain meaningful conclusions in future studies. 

The main challenge experienced during the present study lay in obtaining the required 

number of nematodes for the setting up of experiments by way of in vivo culturing. Since such 

studies require the use of relatively high numbers of nematodes, in vitro culturing is 

recommended, as such a process would save valuable research time. The objectives of the 

study have been met, with novel findings that have broadened the scientific understanding of 

the subject in question. The results of the study have also led to the making availability of an 

effective formulation for commercial application. 
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Appendix 1A. Box-and-whisker plots of the region 4000-500 cm-1 of the FTIR spectra for Steinernema 

jeffreyense, formulated in diatomaceous earth and scanned in both weeks 2 and 4, respectively. Each 

big box contains the middle 50% of the data, with the small box within each box representing the 

median, and the lower and upper ends of the box representing the first (25%) and third (75%) quartiles, 

respectively, with whiskers extending out to the minimum and maximum.  

Appendix 1B. Descriptive statistics (relative absorbance of the entire FTIR spectra for Steinernema 

jeffreyense formulated in diatomaceous earth and scanned in both weeks 2 and 4). 

Variable Valid 

N 

Mean Median Min Max Lower 

quartile 

Upper 

quartile 

Std dev 

Week 2 6950 0.095319 0.044356 0.00 0.610752 0.002493 0.162656 0.123198 

Week 4 6950 0.094019 0.061433 0.00 0.418725 0.002918 0.158784 0.106628 
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Appendix 1C. Box-and-whisker plots of the region 1900-500 cm-1 of the FTIR spectra for Steinernema 

jeffreyense, formulated in diatomaceous earth and scanned in both weeks 2 and 4, respectively. Each 

big box contains the middle 50% of the data, with the small box within each box representing the 

median, and the lower and upper ends of the box representing the first (25%) and third (75%) quartiles, 

respectively, with whiskers extending out to the minimum and maximum. 

Appendix 1D. Descriptive statistics (relative absorbance of the region 1900-500 cm-1 of the FTIR 

spectra for S. jeffreyense formulated in diatomaceous earth and scanned in both weeks 2 and 4. 

Variable Valid N Mean Median Min Max Lower 

quartile 

Upper 

quartile 

Std dev 

Week 2 2596 0.164215 0.125903 0.000071 0.610752 0.054340 0.243370 0.148972 

Week 4 2596 0.157286 0.143677 0.000328 0.418725 0.073189 0.220365 0.114345 

  

Stellenbosch University  https://scholar.sun.ac.za



145 

 
SWIR – with glass/SNV correction 

PCA model pixel-wise analysis 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1E. A. PC1-PC2; B. PC1-PC3; C. PC2-PC3 scatter 2D (T) plot values for SWIR-384 spectra 

(from 780-2500 nm), showing the distribution of Steinernema yirgalemense and S. jeffreyense in 

diatomaceous earth and separately in diatomaceous earth, as control. 

The PC1 contributed 87.2%, PC2, 8.05% and PC3, 1.19%, explaining a total variance of 97.15%, with 

only 2.85% of the information having been lost.  
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SWIR – with glass/SNV correction 

PCA model object-wise analysis 

 

Appendix 1F. PC1-PC2, scatter 2D (T) plot values for SWIR-384 spectra (from 780-2500 nm), showing 

the distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous earth and separately 

in diatomaceous earth, as control. The PC1 contributed 93.4% and PC2, 6.52% explaining a total 

variance of 99.92%, with only 0.08% of the information having been lost. In conclusion, the entire 

variance was explained by means of the system.  
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VNIR – with glass/SNV correction 

 

 

Appendix 1G. VNIR-1800 spectra PCA model – contour 2D (T) data set (multiple image import), 

showing distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous earth and 

separately in diatomaceous earth, as control. The scans were not fully separated on completion of the 

cleaning-up process of the data.  
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Appendix 1H. PC1-PC2; PC1-PC3; and PC2-PC3 scatter 2D (T) plot values for VNIR-1800 spectra 

(from 780-2500 nm), showing distribution of Steinernema yirgalemense and S. jeffreyense in 

diatomaceous earth and separately in diatomaceous earth, as control. The PC1 contributed 47.3%, the 

PC2, 5.24% and the PC3, 3.08% explaining a total variance of 55.62%, with only 44.38% of the 

information having been lost.  
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VNIR – with no glass/SNV correction 

 

 

 

Appendix 1I. VNIR-1800 spectra PCA model – contour 2D (T) data set (multiple image import), showing 

distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous earth and separately in 

diatomaceous earth, as control. The scans were not fully separated on completion of the cleaning-up 

process of the data.  
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Appendix 1J. VNIR-1800 spectra PCA model − contour 2D (T) data set (multiple image import); PC1-

PC2; PC1-PC3; and PC2-PC3 scatter 2D (T) plot values for VNIR-1800 spectra (from 780-2500 nm), 

showing the distribution of Steinernema yirgalemense and S. jeffreyense in diatomaceous earth and 

separately diatomaceous earth, as control. The PC1 contributed 47.1%, PC2, 6.26% and PC3, 3.01%, 

explaining a total variance of 56.37%, with only 43.63% of the information having been lost. 
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