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Abstract

Object detection and tracking are important components of many computer
vision applications including automated surveillance. Automated surveillance
attempts to solve the challenges associated with closed-circuit camera sys-
tems. These include monitoring large numbers of cameras and the associated
labour costs, and issues related to targeted surveillance. Object detection is
an important step of a surveillance system and must overcome challenges such
as changes in object appearance and illumination, dynamic background ob-
jects like flickering screens, and shadows. Our system uses Gaussian mixture
models, which is a background subtraction method, to detect moving objects.
Tracking is challenging because measurements from the object detection stage
are not labelled and could be from false targets. We use multiple hypothesis
tracking to solve this measurement origin problem. Practical long-term track-
ing of objects should have re-identification capabilities to deal with challenges
arising from tracking failure and occlusions. In our system each tracked ob-
ject is assigned a one-class support vector machine (OCSVM) which learns the
appearance of that object. The OCSVM is trained online using HSV colour
features. Therefore, objects that were occluded or left the scene can be re-
identified and their tracks extended. Standard, publicly available data sets are
used for testing. The performance of the system is measured against ground
truth using the Jaccard similarity index, the track length and the normalized
mean square error. We find that the system performs well.
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Uittreksel

Die opsporing en volging van voorwerpe is belangrike komponente van baie
rekenaarvisie toepassings, insluitend outomatiese bewaking. Outomatiese be-
waking poog om die uitdagings wat verband hou met geslote kring kamera
stelsels op te los. Dit sluit in die monitering van groot hoeveelhede kameras en
die gepaardgaande arbeidskoste, en kwessies wat verband hou met toegespitse
bewaking. Die opsporing van voorwerpe is 'n belangrike stap in 'n bewaking-
stelsel en moet uitdagings soos veranderinge in die voorwerp se voorkoms en
beligting, dinamiese agtergrondvoorwerpe soos flikkerende skerms, en skadu-
wees oorkom. Ons stelsel maak gebruik van Gaussiese mengselmodelle, wat
'n agtergrond-aftrek metode is, om bewegende voorwerpe op te spoor. Vol-
ging is 'n uitdaging, want afmetings van die voorwerp-opsporing stadium is
nie gemerk nie en kan afkomstig wees van valse teikens. Ons gebruik verskeie
hipotese volging (multiple hypothesis tracking) om hierdie meting-oorsprong
probleem op te los. Praktiese langtermynvolging van voorwerpe moet her-
identifiseringsvermoéns besit, om die uitdagings wat voortspruit uit mislukte
volging en okklusies te kan hanteer. In ons stelsel word elke gevolgde voorwerp
'n een-klas ondersteuningsvektormasjien (one-class support vector machine,
OCSVM) toegeken, wat die voorkoms van daardie voorwerp leer. Die OCSVM
word aanlyn afgerig met die gebruik van HSV kleurkenmerke. Daarom kan
voorwerpe wat verdwyn later her-identifiseer word en hul spore kan verleng
word. Standaard, openbaar-beskikbare datastelle word vir toetse gebruik. Die
prestasie van die stelsel word gemeet teen korrekte afvoer, met behulp van die
Jaccard ooreenkoms-indeks, die spoorlengte en die genormaliseerde gemiddelde
kwadraatfout. Ons vind dat die stelsel goed presteer.
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Chapter 1

Introduction

Judging by the growing number of closed circuit cameras spread throughout
cities and towns in South Africa, it is clear that surveillance is an impor-
tant issue. This increase in closed circuit camera systems is not only driven
by commercial institutions like banks and airports, but also by governments
through law enforcement departments. Although the price of purchasing and
installation of the hardware decreases daily, the cost of the labour required
to monitor these systems is increasing rapidly [19]. Meanwhile, the immense
volume of video recordings generated by these systems makes it impossible to
monitor every frame. In fact, most of the video recordings are mainly used
as forensic evidence, being called upon to verify the facts after an event has
occurred [19]. Moreover, there are issues related to targeted monitoring where
operators decide to pay close attention to a camera based on the appearances
of pedestrians, rather than their behaviours [26], [55].

The monitoring of surveillance systems calls for a scientific solution, which is of-
fered by computer vision in the form of active surveillance. Active surveillance
“attempts to detect, recognise and track certain objects from image sequences,
and more generally, to understand and describe object behaviour” [38]. Thus,
the ultimate goal is to automate the entire surveillance process. This technol-
ogy has applications in diverse areas including access control; flux statistics and
congestion analysis; and anomaly detection and alerting of personnel. These
are high level functions which involve the description and understanding of ob-
ject behaviours. The low level functions are modelling of environments; object
detection, classification, recognition and tracking; and retrieval and fusion of
data from multiple cameras.

1.1 Background

Collins et al. [19] have implemented one of the most complete automated
surveillance systems. It uses multiple, different sensors such as video and
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thermal cameras to achieve cooperative tracking. Moreover, their system dis-
tinguishes different types of objects like people, groups of people and cars. The
system also gives the position of tracked objects in terms of global position
system (GPS) coordinates. Another state-of-the-art system is the off-the-shelf
Knight system by Shah et al. |76] which can detect, track and categorise ob-
jects in the scene covered by multiple cameras. Some of the object categories
that it can recognise are people, groups of people, vehicles, animals and bicy-
cles. It also flags abnormal events such as the presence of a person on a track
while a train is coming and presents a summary in terms of key frames and
a textual description of observed activities. This summary is presented to a
human operator for final analysis and decision making.

We now consider systems that use a single camera to track multiple interacting
objects. Yang et al. [90] use background subtraction to detect moving objects
and the global nearest neighbour algorithm for data association. However,
they do not model the motion of the objects. The decision to associate a track
and a measurement is based on the Euclidean distance and deciding on the
threshold might be arbitrary. Merge and split events are detected and han-
dled explicitly. However, the assumption in the re-identification stage is that
the appearance of an object before a merge event is similar to the appearance
immediately after the split event. This is practical in the case of short-lived
interaction.

Gilbert and Bowden [33] point out that in crowded scenes with overlapping
people techniques such as background subtraction cannot be used. As a result
the authors train a generic object detector to detect the outline of the head
and shoulder. This is due to the assumption that the camera is overlooking
the pedestrians and thus the head and shoulders should always be visible. The
detected objects are tacked using the mean-shift tracker [20]. The authors note
that the mean-shift tracker can fail and result in fragmented tracks. These are
joined together using dynamic programming methods.

Benfold and Reid [9] use a generic head detector to detect pedestrians which
are then tracked using the Kanade-Lucas-Tomasi (TLK) tracker [54] to track
up to four corner features. They note that the TLK tracker is more robust
than the mean-shift tracker. They also note that tracking multiple points pro-
vides redundancy against tracking failures. The assignment of measurements
to tracks is performed using Markov chain Monte Carlo data association.

Our goal is to implement a system that can detect and track multiple inter-
acting pedestrians using a single static camera. The short review of complete
systems pointed out challenges that we must solve and points that we must
take into account in order to realize our system. Firstly, background subtrac-
tion does not work in crowded scenes. Therefore, we either use background
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subtraction and consider sparsely crowded scenes, or consider crowded scenes
and use generic object detectors. Secondly, tracking algorithms can fail and
result in fragmented tracks. Therefore, a method must be devised to connect
the fragments into complete tracks. Thirdly, a data association method may
be required to assign measurements to tracks. Finally, we should explicitly
detect and handle merge and split events.

Our pedestrian detection and tracking system uses a single camera because a
multiple camera system can be implemented as a super-system that associates
and fuses tracks from multiple single camera systems [45], [7]. In the process,
we demonstrate the ability to systematically select components that work to-
gether to achieve our goal. We also use machine learning methods to overcome
the challenges such as track fragmentation due to occlusions and interacting
pedestrians. Track fragmentation occurs when a tracking algorithm fails to
track an object and a new track is generated for that object. We use standard
computer vision components but their combination into a system is unique.

1.1.1 Object detection

Object detection is an important first stage of a surveillance system because it
focuses the attention of subsequent stages such as tracking and classification
on dynamic regions of the image and scene. Techniques for object detection
may be classified as either background subtraction [18], [31], [61], [79], optical
flow [8], [54] or machine learning [24], [34], [56], [86]. Background subtraction
and optical flow methods rely on the motion of objects to detect them. The
goal of background subtraction is maintenance of an image that is represen-
tative of the scene covered by a camera. Optical flow methods, particularly
dense flow methods, can be computationally expensive and thus not suitable
for real-time systems [19], [93].

Machine learning approaches to object detection learn the generic appearance
and shape of objects for them to be detected in images and videos [24], [86].
Most of the methods in this class must be trained off-line using large labelled
data sets. They do not adapt to the changes in the appearance of objects
as it is not possible to learn all the appearances of all the objects in a class.
Moreover, it is especially difficult to make viewpoint- or scale-invariant models.
Algorithms have been proposed to learn the appearance of objects online but
those rely on robust tracking and/or selective updating of the models [34], [43].
This is a drawback because incorrectly labelled samples can corrupt the learnt

model. As a result background subtraction, and in particular Gaussian mixture
models (GMM), will be used in this thesis.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.1.2 Tracking

Tracking is a crucial component for computer vision applications such as auto-
mated surveillance and human-computer interaction. It seeks to consistently
label objects of interest in every frame of the video sequence. Tracking can be
complex due to noise in images, cluttered environments, illumination changes
in the scene, object and camera motions, non-rigid and articulated objects, and
object occlusions. The requirement for real-time systems is also a challenge
because it can disqualify components or combinations thereof that are optimal
yet computationally expensive [89]. Tracking may also require the use of mul-
tiple cameras either to handle occlusions or to cover large areas. In this case
the challenge is reconciling the different identities of an object as seen from
the fields of view of different cameras. In our case a single static camera is used.

Approaches to tracking can be divided into two major groups which are fil-
tering and data association, and target representation and localization [20].
Filtering and data association approaches model the dynamics of the object
of interest and solve the problem of assigning measurements to tracks. In con-
trast, target representation and localization approaches model the shape and
appearance of objects and thus can cope with changes in the appearances of
those objects. These two approaches may be integrated and weighed depend-
ing on the tracking problem that is being solved. For example, tracking a face
in a crowded environment relies more on target representation and localiza-
tion. In contrast, aerial surveillance relies more on the dynamics of the target
and the camera. Filtering and data association provide a direct answer to the
location of the object being tracked. Target representation and localization
answer the question of what the object looks like. Only then do they search
for that object in the next frame in order to answer the question of where it
is. We intend using both approaches in our system.

Target representation refers to the shape and appearance of objects. Mod-
els used to represent the shape of objects include points, geometric primitives
such as rectangles and ellipses, object contours and silhouettes, and articulated
shape and skeletal models [91]. Points are appropriate for tracking objects
that occupy small regions in the image. Primitive shapes identify the bounds
of the objects and may be used for either rigid or non-rigid objects. The other
methods are appropriate for non-rigid objects and imply exact segmentation
of objects due to the high level of detail required. We will use rectangles,
which are essentially a pair of points on the diagonal, to represent the shape
of objects.

As mentioned earlier, target representation also refers to the appearance of ob-
jects. Yang et al. [89] identify colour [20], gradient [24] and texture [59], [62]
features as appropriate for tracking applications. Colour features are more
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sensitive to illumination compared to gradient and texture features [91]. How-
ever, colour features can be more discriminative [89] and will be used in this
thesis. Tracking algorithms that rely heavily on object representation must
search subsequent images for objects that have similar appearances.

The settings used in our experiments contain sparsely crowded environments
and there are interactions between pedestrians. Either one of the approaches
to tracking may be used but we make a case for using filtering and by exten-
sion data association. Yilmaz et al. [91] classify tracking algorithms into point,
kernel and silhouette tracking methods. Point tracking methods include the
Kalman [87] and particle filters [28]. Our goal is to track multiple interacting
objects. Tracking silhouettes is not ideal as they are sensitive to occlusions.
Moreover, they provide more detail than is required for our purpose.

Kernel-based methods such as tracking-by-detection [39], [35] and the mean-
shift tracker [20] require an external method for initialization. This can be
provided by an object detection method such as background subtraction [36],
optical flow methods, or generic object detectors [24], [85]. We use back-
ground subtraction which can also highlight the regions kernel-based methods
may search for matching patterns. The next issue is that of initializing the
search. Cominaciu et al. |20] start searching where the pattern was found on
the previous time step. However, they suggest incorporating a filtering algo-
rithm to better predict the starting position.

The appearance of objects may change due to changes in illumination and
viewpoint, and the non rigidity of objects. Tracking methods, particularly
kernel-based tracking methods, must account for these changes. One approach
is to adapt the appearance of objects. An example of a highly adaptive tracker
is the mean-shift tracker [20] which considers the current appearance of the
tracked object as the target appearance. This adapted template could move
off the desired object either because of inclusion of background regions in the
template or occlusions [10]. Moreover, mean-shift tracking has no memory of
any of the past appearance models and may not be able re-identify objects
after tracking failure.

Recent approaches use machine learning methods to learn the appearance of
objects online [35], [39], [71]. Even in this case, a strategy must be devised to
search for regions in the next frame that are confidently explained by the clas-
sifiers to find the object of interest in that frame. An alternative approach is to
pair online learning methods with particle filter methods to predict prospective
object locations [71], [92]. The particle that is best explained by the model
can be used as an estimate for the current location of the object. We also
note that online learning of object-specific appearances may corrupt the learnt
model if incorrectly labelled samples are used.
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In conclusion, kernel-based methods require an external method to initialize
them. They also must locate the most similar region in the next frame either
by searching or by integrating particle methods to predict prospective object
locations. Both of these approaches work well when tracking a single object,
which is the assumption in most of the methods mentioned above. However,
they may be computationally intensive when applied to the tracking of mul-
tiple objects. Moreover, they require an external method for initialization.
Therefore, we do not use kernel-based tracking.

We have rejected kernel and silhouette tracking and are left with point track-
ing. We have also rejected all models but points and geometric primitives
(rectangles and ellipses) for object shape representation. Note that two points
are sufficient to represent either a rectangle or an ellipse. Earlier we noted
that filtering methods are examples of point tracking algorithms. As a result
we will use rectangles to represent the shape of objects and filtering methods
to track those objects.

1.1.3 Tracking multiple targets

Another challenge that we face is tracking of multiple objects. It is particularly
challenging because filtering methods assume a one-to-one mapping between
the measurements and tracks. This is a data association problem which we
will solve using the multiple hypothesis tracker (MHT). MHT provides track
initialization, management and termination functions. It uses a number of
frames to make track to measurement assignment decisions. We will pose the
MHT problem as an integer programming problem and then solve it using a
standard solver.

Nevertheless, we note that tracking approaches can fail due to unsuitable mod-
els. Most importantly, tracking failure can be due to the assumption that
objects of interest are never completely occluded. These methods are likely to
fail when objects interact and this issue is not addressed by these methods. In-
stead, new tracks are initialized after tracking failure or when objects reappear.
We are interested in long term tracking of pedestrians which implies consistent
labelling of pedestrians whenever they are in the monitored environment. As a
result, we will use machine learning algorithms to learn object-specific appear-
ances which are then used to uniquely re-identify objects when they reappear
or after tracking failure. To this end, both shape and appearance modelling
will be used, respectively, for filtering and learning of pedestrian appearances.
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1.1.4 Overview

We have identified object detection, filtering, data association and learning
of object appearances as major components of the system. Figure 1.1 shows
the high level interactions between these components. The only input to the
system is a sequence of frames and the outputs are the frames and a list of
tracks that are displayed on the monitor. Of particular interest is the two way
flow of data between the components that perform tracking and learning of
pedestrians appearances. Tracking results are used to learn the appearance
of pedestrians and the learnt appearances are used to pick up tracks during
re-identification.

Tracking
Filtering and data
- association
Static Frame= Object detection > A Tracks= Display
camera v Frame
Appearance learning

Figure 1.1: High level flow diagram of the system developed.

1.2 Problem statement

The problem we solve is long-term tracking of multiple interacting pedestri-
ans using a single static camera. Such a system must be robust and efficient.
Robustness refers to the ability of the system to function under varying con-
ditions. Efficiency refers to the ability of the system to run in real-time. The
problem involves both detection and tracking and there are a number of al-
gorithms for each of them, each with its advantages and disadvantages. The
problem is to select components that work together to yield a robust and effi-
cient system.

The phrase long-term tracking means that objects are consistently labelled
whenever they are in the field of view of the camera. However, standard
tracking algorithms can fail due to occlusions and insufficient models. The
standard approach is to initialize new tracks whenever tracking failure occurs
and this leads to track fragmentation.
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1.3 Research objectives

The aim of this thesis is to implement a system that can detect and track
multiple interacting pedestrians using a single static camera. Our objectives
are

e to systematically select algorithms that implement background subtrac-
tion, filtering, data association and online learning,

e and to integrate these algorithms so that they work together to achieve
our goal.

Such a system is an important component of an automated surveillance sys-
tem which aims to understand and describe the behaviour of pedestrians in
an environment covered by multiple cameras. Two aspects make our system
important to the general automated surveillance system. First, the extension
to multiple cameras may be implemented by fusing tracks from multiple single
camera systems [45], [7]. Second, the ability to understand and describe the
behaviour of pedestrians implies collection of information on those pedestri-
ans. This requires that we know where they are in every frame. In fact, the
track itself could help in that process.

1.4 Underlying assumptions

We assume that the system will be used in sparsely crowded environments.
This motivated our choice of components which requires that there are peri-
ods when tracked objects are not occluded or interacting which will allow the
system to build a model of the appearance of the pedestrian which may be
used for re-identification. The assumption of sparse crowds also motivated our
use of background subtraction.

In addition, it is assumed that all moving objects are pedestrians. Therefore,
instead of using a generic pedestrian detector, we define the smallest bounding
box that can enclose a pedestrian. Also, this minimises the number of false
detections.

We also assume that the camera is static and is placed above the height of

pedestrians and a pedestrian in a given frame occupies a small fraction of that
frame.

1.5 Thesis outline

This thesis comprises five method chapters and each one addresses the litera-
ture specific to it. In Chapter 2 we justify our use of Gaussian mixture models
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(GMM), and outline and discuss the GMM equations. In Chapter 3 we intro-
duce filters and motivate our choice of Kalman filters. We then outline the
Kalman filter equations and their initialisation. In Chapter 4 we survey the
data association literature and conclude that the multiple hypothesis tracker
(MHT) is the best for our system. Chapter 5 outlines the steps required to
transform the MHT problem into an integer programming problem which may
then be solved using off-the-shelf software.

In Chapter 6, the last method chapter, we motivate our use of support vector
machines (SVM) to learn the appearance of pedestrians. We then reformulate
the SVM optimization problem so that it may be solved using one training sam-
ple at a time. This yields an online learning SVM. In Chapter 7 we integrate
the components chosen in the above chapters to obtain a complete system.
The system is then tested, and the result and discussions are in Chapter 8.
We conclude the thesis in Chapter 9.
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Chapter 2

Background subtraction

Background subtraction is used in this thesis because it is comparatively com-
putationally efficient. It aims to classify pixels in a video sequence into either
foreground (moving objects) or background and relies on the motion of ob-
jects to detect them. The idea behind background subtraction is to maintain
an image that is representative of the scene monitored by a camera at all times.
Although a large number of background subtraction methods exist in the lit-
erature, they all follow a simple flow diagram as shown in Figure 2.1. The
four major steps in the background subtraction algorithm are pre-processing,
background maintenance, foreground detection and post-processing [18]. The
pre-processing stage involves simple image processing tasks that transform the
raw input video into a format that can be processed by subsequent stages.
These may include reducing the frame size and rate, temporal and spatial
smoothing and geometric adjustments [18].

The background maintenance stage creates and then maintains a model of the
appearance of the background scene as covered by the camera. This stage
may be further subdivided into model representation, model initialization and
model adaptation. These components expand on the model used to repre-
sent the background, how it is initialized and the mechanism used to adapt
this model to changes in the background. Various background maintenance
methods are available and may be classified as either predictive [83] or non-
predictive [79], [88], and recursive [79], [88] or non-recursive [30], [83].

Non-recursive algorithms maintain a buffer of the most recent N frames. The
algorithms in this class are highly adaptive as they do not depend on the history

Video

Background L) Foreground
frame

maintenance subtraction

Foreground

Pre-processing [
p 9 mask

> Post-processing [—>

Figure 2.1: Background subtraction flow diagram.
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beyond those frames stored in the buffer. However, the storage requirements
may be significant [18]. On the contrary, recursive techniques recursively up-
date the background model based on each input frame. Predictive algorithms
model the scene as a time series and develop a dynamic model to recover the
current input given the past observations. Non-predictive methods neglect the
order of the input observations and construct a probability density of the ob-
servations at a particular pixel [57].

Foreground detection compares the input video frame with the background
model and identifies foreground pixels from the input frame. Absolute dif-
ferences [83] or statistical [30], [79] techniques may be used to quantify the
differences between the input frame and the model. The binary-valued differ-
ence map is often obtained by thresholding. Another approach is to use two
thresholds with hysteresis [23]. Firstly, pixels with absolute differences that
exceed the larger threshold are marked as foreground. Then the foreground
region is grown by including neighbouring pixels with absolute differences that
exceed the smaller threshold.

The final stage in the pipeline is post-processing. The purpose of this stage is
to improve the foreground mask by minimizing the number of false positives
and negatives using information external to the background model. Some of
the common techniques are median filtering, morphological operations and
connected component analysis [18]. When the background model adapts at a
slower rate compared to the moving objects, large areas of false objects known
as ghosts will appear. These areas can be identified by computing the optical
flows at candidate foreground regions because ghosts have no motion |23].

An ideal background subtraction algorithm should adapt to the gradual and
sudden changes in illumination, dynamic background objects such as waving
trees or escalators, background objects that suddenly start moving and leave
holes in the model of the background (ghosts), and background objects that are
moved and remain in the foreground forever. It should also handle challenges
due to large homogeneously coloured objects where the interior pixels are often
undetected, shadows, camouflage and training periods that have foreground
objects [83].

2.1 Background maintenance algorithms

The simplest background maintenance model can be obtained in controlled
environments, like a movie set, by using a uniformly coloured surface. Even
then, the values of a pixel are not fixed in time due to factors such as camera
noise and dust particles in the atmosphere. Wren et al. [88] model each pixel
with a single Gaussian distribution to allow for these small variations. The
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mean and variance are updated using a simple adaptive filter. This approach
is similar to the work of Heikkild and Silvén [37] where the intensity of a pixel
is tracked using a Kalman filter. The similarities are due to the Kalman filter
assumptions that the dynamic and measurement processes are linear and the
noise terms are Gaussian [87]. This type of model cannot handle multi-modal
events such as waving trees or flickering monitors which occur in uncontrolled
environments [61], [79].

Grimson et al. [79] extend this single Gaussian model by modelling each pixel
as a mixture of K Gaussian distributions, where K is fixed and is the same
for all pixels. In addition to the mean and variance, each Gaussian distri-
bution is parameterized by a weight that is proportional to its contribution
to the mixture. These parameters are adapted using a simple adaptive filter.
The algorithm relies on the assumption that the background is visible more
frequently than any foreground object and that it has modes with relatively
narrow variances (42|, |64].

The major drawbacks of this model are the initialization and slow stabilization
of the parameters [42], [64]. Moreover, the number of components in a mixture
is the same and fixed for all pixels. Zivkovic [94] proposes an improvement
to the method that determines at runtime the optimal number of Gaussian
distributions required to model the pixel values, in addition to estimating the
parameters of each distribution in the mixture. This allows the modes to re-
tain relatively small variances while taking into account that multi-modality
is variable both spatially and temporally [15].

In this thesis, moving object detection is performed using the improved mix-
ture of Gaussian distributions algorithm as outlined by KaewTraKulPong and
Bowden [42]|. Their improvements to the original method by Grimson et al. [79]
solve the issues related to the initialization and stabilization of the model pa-
rameters. A detailed description of the algorithm is given in Section 2.2. Many
other improvements that either attempt to be statistically rigorous or intro-
duce spatial and/or temporal constraints are available, and are surveyed by
Bouwmans et al. [15]. Still, all these improvements cannot handle challenges
due to substantial illumination changes. The alternative is to detect these
changes and then re-initialize the model [64]. For the purpose of completeness
we outline other background subtraction methods that aim to solve the chal-
lenges associated with mixture models.

One of the challenges to the mixture of Gaussian distributions approach is that
the noise in the images is assumed to have a Gaussian distribution [15], [47].
Moreover, the same fixed number of Gaussian distributions in the mixture is
used at every pixel in the image. A viable solution to these issues is to model
the variations in the intensity of a pixel using adaptive kernel density esti-
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mation [30], [57], [82]. Algorithms in this class estimate the density function
directly from the data without making any assumptions about the underly-
ing distribution. Elgammal et al. [30], for the purpose of experimentation,
assume that the kernel is a Gaussian distribution which results in a general-
ization of the mixture of Gaussian approach. Note that choosing the Gaussian
distribution as a kernel function is different from fitting the distribution to a
Gaussian model. Here the Gaussian is only used as a function to weigh the
data points [31].

The results of the experiments by Elgammal et al. [30] indicate that the adap-
tive kernel density estimation approach outperforms the original mixture of
Gaussian [79] approach. A comparison with the extension to the mixture
of Gaussian distributions by Zivkovic [94] would be interesting because both
methods automatically select the number of kernels. Adaptive kernel density
estimation methods are computationally and memory intensive [82|. The win-
dow size N must also be specified being mindful of the inverse relationship be-
tween accuracy and both computation and memory efficiency [82]. The major
issue when a finite number of samples is used is the choice of the kernel band-
width. Too small a bandwidth will result in a ragged density estimate, while
too wide a bandwidth will lead to an over-smoothed density estimate [29], [31].

Toyama et al. [83] propose a predictive and non-recursive algorithm that solves
most of the background subtraction challenges. It processes frames at a pixel,
region and frame level. At a pixel level, each pixel is modelled as a Wiener
process using the N most recent pixel intensity values. A pixel that deviates
significantly from the predicted intensity value is marked as foreground. This
level handles common problems such as gradual illumination changes, dynamic
background objects, camouflage and bootstrapping. Region level processing
fills in homogeneous regions of foreground by considering inter-pixel relation-
ships. Frame level processing handles global, sudden changes in the frame by
switching between alternative models that are kept in memory. The method is
computationally expensive because the parameters of the Wiener process for
each pixel must be recalculated at every time step. It is also memory intensive
because N frames must be kept in memory at all times.

Hidden Markov models (HMMs) may be viewed as a generalization of the
mixture of Gaussian distributions if each state of the HMM is modelled using
a single Gaussian distribution. The states are hidden (due to unpredictable
scene activity) and only indirectly observed through the associated pixel value
[64]. This is the approach used by Stenger et al. [80]. More generally, a
two state HMM could correspond to an on-off light switch problem where the
probability distribution at a state may be a mixture of Gaussians. This would
provide statistically rigorous methods to determine when new states may be
generated using state splitting. This is in contrast to Toyama et al. [83] where
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an arbitrary threshold is used to determine whether to initialize a new model
or not. Additionally, HMMs impose a temporal continuity constraint, i.e. if a
pixel is part of the foreground it is likely to still be part of the foreground in the
next time step [44]. However, real-time computation and topology modification
to adapt to dynamic conditions are major limitations of HMMs [80].

2.2 Mixture of Gaussian distributions

The use of a mixture of Gaussian distributions for background subtraction
was proposed in Stauffer and Grimson [79] and Grimson et al. [36]. How-
ever, the implementation used in this thesis is the improved version of Kaew-
TraKulPong and Bowden [42] that solves the parameter initialization and sta-
bilization problems associated with the original method. This section follows
the mathematical derivations of Power and Schoonees [64] and Bilmes [11]
while highlighting the assumptions and simplifications that yield the origi-
nal [79] and improved [42] methods.

2.2.1 Background

Each surface that comes into the view of a given pixel is represented by an
element k from the set of states {1,2,..., K'} where the number of states K
is assumed to be constant. Each state k is associated with an a priori prob-
ability, p(k) = wy, that it will be in the view of the pixel in the next time
step, such that 215:1 wr = 1. The actual state cannot be observed and must
be estimated. This is reminiscent of tracking problems where the dynamic
and measurement processes are defined. The dynamic model K generates the
state at each time step and the measurement process X measures the pixel
values. The samples of X may be 1-dimensional (monochrome images) or 3-
dimensional (colour).

In this case the pixel value process X is modelled using a mixture of K Gaussian
distribution functions with parameters 6, for each state k:

1

—6_%(X_“k)TZE1(X—le)7 (2.2.1)
(2m)z | 2]

Ixpe(X 1k, 0r) =

N

where i, is the mean vector, 3, is the covariance matrix of the kth density and
n is the length of the state vector. For computational purposes Stauffer and
Grimson [79] assume that the covariance matrix is of the form % = o2I. This
implies that the components have the same statistics [64], and the diagonal
matrix implies that the components of X are independent.

The density parameter set is defined as 0 = {uy, ox} for a given state k and
the total set of parameters becomes © = {wy,wo, ... ,wk,01,02,...,0k}. The
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state events k are disjoint and thus the distribution of the measurement process
X may be modelled as a mixture of Gaussian distributions:

fx(X|©) = Zwkfx‘k X|k,05)., Zwk = 1. (2.2.2)

All the parameters © must be estimated from observations of X in parallel
with the estimation of the hidden state.

2.2.2 Estimating the current state

Once the parameters of the Gaussian mixture are known the next step is to
estimate which Gaussian distribution gave rise to the current sample X. Given
the observation X and the set of parameters ©, the probability that state k
generated this observation, p(k| X, ©), may be calculated using Bayes’ theorem:

p(k>fX\k(X|k7 9k)
xX[e)

where p(k| X, ©) is the posterior probability.

p(k| X, ©) = (2.2.3)

The state k£ that maximizes the posterior probability, called a match, solves
the maximum a posteriori (MAP) problem:

k= argmgxp(k|X, ©)= argmgxwkfX(XM:, k), (2.2.4)

where the second equality follows because fx(X|O) is a normalizing constant
in (2.2.3) that is obtained by summing over all values of k, as seen in (2.2.2).

This definition of a match is theoretically correct but does not account for the
case where the observation was not generated by any of the components in the
mixture. This could be avoided by augmenting the MAP problem with a con-
straint on the posterior probabilities p(k|X,©) > pg, Vk. A better approach
is by Stauffer and Grimson |79] and Grimson et al. [36] who consider a compo-
nent k to have generated the sample X if the distance between this sample and
the mean py, is less than a constant multiple A of the standard deviation o. In
particular, A = 2.5 was used for experimentation. The threshold is a per-pixel-
per-distribution threshold which is useful when different regions have different
lighting |79]. This is the same matching criterion used by KaewTraKulPong
and Bowden [42] and in this thesis.

2.2.3 Estimating the parameters

Given a mixture of Gaussian density functions (2.2.2) governed by a set of
parameters O, and a data set X = {X;, Xy,..., Xy} of size N drawn from
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this distribution, the resulting density function for the samples is:

p(X10) = [ x(Xi10) =[] D_ wnfxin(Xilk, b)) (2:2.5)

t=1 t=1 k=1

= (6. (2.2.6)

The samples are independent and identically distributed with distribution p.
The goal is to find the set of parameters that maximizes the likelihood function
L(6]X).

Analytically, it is easier to estimate the parameters that maximize the log of
the likelihood function because it is represented as a sum rather than a product
of functions:

N K
" = argmgxlog L(O|X) = argmnglog [Z wkfx|k(Xt]k,9k)] . (2.2.7)

t=1 k=1

Note that a measurement X; may be generated by only one Gaussian distri-
bution function fx,, where k; € {1,2,..., K}, at time ¢. Hence, the sum on
which the logarithm operator operates should collapse to a single element and
simplify the expression significantly. To this end, an assumption is made that
the data set X is incomplete. In addition, there exists a data set Y = {k;},
whose values identify the Gaussian pdf that generated X; at time ¢.

This leads to the complete-data log-likelihood objective function

log(L(B|X,Y)) = Zlog(wkt Pr, (24]6k,)), (2.2.8)

t=1

which is optimized iteratively using a set of equations derived from the ex-
pectation maximization algorithm. The derivation is found in [11] and the
iterative equations are as follows:

N
. 1
p = N; p(k|X,,09) (2.2.9)

g
,[Lk — Zt=1 ti( ‘Xh@ ) (2210)

S p(k| Xy, ©9)
S (X — i) o (Xe — ) p(k| X, ©9)

52 = 2.2.11
¢ PRI X, ©9) (22.11)

for k = 1,2,..., K. Here o is the element-wise (Hadamard) multiplication
operator and p(k|X;,©) is given by (2.2.3). ©9 is the current estimate of
the parameters of the mixture of Gaussian distribution functions. The above
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equations assume that K and X are stationary processes and the number of
observations N is fixed. A practical implementation must deal with these as-
sumptions.

An online method must estimate the generating component k and the parame-
ters © as new data X; arrives. It must also adapt to changing scene statistics.
Manipulation of (2.2.9) yields the online equivalent:

1 1
Wkt = %p(k|Xt, @g) —+ (1 — ;) Wk, t—1 (2212)
=y p(k| Xy, 0%) + (1 — o) W, e-1- (2.2.13)
Note the use of t instead of N because the process is online and these two

become interchangeable. Also, the time subscript has been added to the pa-
rameters.

Substituting wi, N = S0, p(k|X;, ©) from (2.2.9) into (2.2.10) and (2.2.11)
yields, respectively,

tee = (1= pre) pie, -1 + Pr,e X (2.2.14)
Tit (1= prg) 0oy + prye (KXo — puiee) © (Xy — puree)) - (2:2.15)

where

k|X,, 09
ooy = CP(FX,©7) (2.2.16)
Wk, t

)

The model should be able to adapt to changing illumination by emphasizing
more recent samples over older samples [64]. As (2.2.12) stands it integrates
all the historical data and becomes more and more insensitive to new data
because a; = % —0ast— oo.

Stauffer and Grimson [79] and Grimson et al. [36] fix the value of oy = « to
work around this problem. KaewTraKulPong and Bowden [42]| indicate that
this leads to poor initialization. The proposed solution is to set a lower bound
on the learning rate ay:

_ [y ift<L,
" {1/L, otherwise, (2.2.17)

where ¢t and L are the number of data points used in estimating the parameters.
This definition of oy highlights the dichotomy that should exist in the behaviour
of the iterative equations. If ¢ < L the online implementation of the average
should be used. In contrast, if ¢ > L the online implementation of the L-
window running average should be used. The iterative equations obtained
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thus far cater for the first case. The following iterative equations cater for the
second case [42]:

w;m = Oétp<k|Xt, @g) + (1 — Oét) wk’t,1 (2218)

e = (L= o) p 1 + pr, e Xo (2.2.19)
2

Okt — (1—ay) Uz,t—1 + Pk, t ((X: — Hk,t) o (Xt — pg,1))- (2.2.20)
We note that the value of py ; in (2.2.16) differs from the one used by Stauffer
and Grimson [79]. Here the posterior probability p(k|X;, ©9) is used whereas
Stauffer and Grimson [79] use the likelihood function fx(X|k,0;). Kaew-
TraKulPong and Bowden [42] point out that the use of the likelihood func-
tion means a very small value for p; , which results in the slow adaptation
of the parameters. Substituting (2.2.3) into (2.2.16) indicates that Stauffer
and Grimson [79] are missing the normalizing constant which could adjust py ¢
upwards:

o fxje(X]k, 0r)

7 X6) (2.2.21)

Pkt =

The posterior p(k|X;, ©) will not be used to find a match. However, it is still
used in the iterative equations. Thus, the computational benefit derived from
the new definition of a match is lost because the posterior must be calculated
[64]. To avoid calculating posterior probabilities Power and Schoonees [64]
note that they are either close to 0 or close to 1. Specifically, this probability
is close to 1 for one and only one component in the mixture [79], [64]:

1, if k£ is a match,

p(k|X, ©) = My, = { 0, otherwise.

(2.2.22)

In case there is more than one match, the one with the highest supporting
data (largest wy, /ox ¢) is chosen.

The final online equations, with some adjustments, are summarized below for
convenience:

1, if k is a match,
Mo = { 0, otherwise (2.2.23)
wet = M+ (1 —ou) wg t-1 (2.2.24)
_ & _ Pk, ts if t < L7
Pt = Wk, ¢ M.t Tht = { a; , otherwise (2.2.25)
He e = (1-— nk,t) Mk, t—1 + Pt Xt (2.2.26)
ore = (L=mre) oy g+ pre (KXo — pie) o (Xy — pue)). (2.2.27)
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2.2.4 Segmenting the foreground

The mixture model does not distinguish between foreground and background
surfaces. Once the Gaussian mixture component k that generated the obser-
vation X; has been identified, we need to determine whether it represents the
foreground or background surface. Heuristically, background objects will have
the most supporting evidence (wy — 1), and the least variance (¢ — 0) [79)].
Consider as an example a static background surface. Each pixel can be mod-
elled with a single Gaussian pdf, w=1, and will have a very small variance [88|.

The components of the mixture are first sorted using the criterion wy /oy which
integrates the two objectives [79]. If oy is n-dimensional the ranking must be
done using wy/||ok|| or w?/|lox||?>. Then, the first B components represent the
background model, where

b
B = argmbin;wk <T (2.2.28)

and 7' is the minimum fraction of the data that should accounted for the back-
ground. A small value of T forces the model to have a single modality thus
only a single surface may represent the background.

Lastly, if a match k is found and & < B then the pixel is marked as back-
ground, otherwise it is marked as foreground. If a match is not found then
the pixel is classified as foreground. In this case the lowest ranked component
is replaced with a new Gaussian probability distribution function. The mean
of this distribution is the value of the sample X, and the variance and weight
are set to large and small default values respectively. The parameters may
then be updated. Finally the weights are normalized so that they represent
probabilities.

2.3 Conclusion

This chapter introduced moving object detection and focused on our choice
for segmenting moving objects which is background subtraction. A detailed
outline of the use of mixture of Gaussian distributions for background sub-
traction was given. In particular, the assumptions and simplifications to the
theoretic model that are required to implement the version used in the thesis
were highlighted.

One advantage of Gaussian mixture models is that the existing background
is not destroyed when a new surface becomes part of the background. The
existing background remains in the mixture until it becomes the last ranked
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surface and is replaced with a new one. Thus, when an object is stationary
long enough to become part of the background and then moves, the component
that represents the previous background will still be in the mixture and will
be recovered quickly [36], [79]. A flow diagram that clarifies the interactions
between the different functions is given in Figure 2.2.

Rank the .
P Normalize the |
components or [« X -
weights.
surfaces.
Mark pixel as
background.
Frame Mas
v
# of N Add a new Update the
surfaces
= K? component. parameters.
'
Replace the lowest v.| Mark pixel as \4

ranked component. "| foreground.

Figure 2.2: Detailed flow diagram of the Gaussian mixture model approach to back-
ground subtraction.
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Chapter 3

Filtering

Filtering attempts to estimate states of systems. It involves the use of measure-
ments on those systems to obtain better estimates of their states. Filtering is
important when the states of systems of interest cannot be measured directly.
Moreover, the measurements on the objects are taken at discrete times and
may be corrupted with noise.

Formally, the problem that filtering algorithms attempt to solve is to estimate
the state x; € R"* of the system at all times, k, as the system evolves. The
exact state x; is not observable and thus at least two models are required
to analyze and make inferences about the system. The first is the dynamic
process which models the evolution of the state:

Xkt+1 = fk(xk,uk,wk), (301)

where {wy|k = 1,2,...} is a set of process noise terms that compensates for
the inaccuracies in the state vector due to the complexity of the system, insuf-
ficient knowledge and unknown environments [73|. The variable uy represents
the input external to the system. Note that the function can change with time
and is possibly nonlinear.

As the system evolves it may be measured at discrete times. This yields the
second of the models, referred to as the measurement process, which relates
the measurement vector z, € R™ to the state vector x; at time k:

Z — hk(Xk, Vk), (302)

where {vi|k =1,2,...} is a set of i.i.d. measurement noise terms. This noise
takes into account sources of uncertainty such as digitization, backlash and
nonlinear response in the sensors. As in (3.0.1), the function may also change
with time and is possibly nonlinear.

We note that Xy = {x;]: = 1,2,...,k} is the history of the state vector up to
time k. Also, Zy = {z;]i = 1,2,..., k} is the set of measurements on the system

21



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FILTERING 22

up to time k. Thus, the models are evaluated in discrete time and formulated
within a state-space framework. Moreover, for most problems, an estimate
of the state vector x; is required every time a new measurement is acquired.
This estimation process involves two stages: predicting and updating the state
vector. The prediction stage uses (3.0.1) to propagate the state vector forward
in time. The updating stage takes into account the measurements as well as
their relationship to the state vector as modelled by (3.0.2). This lends itself
to the recursive application of the Bayes filter.

3.1 Bayesian framework

The Bayes filter is a theoretic solution to the state estimation problem. Within
the Bayesian framework, estimating the state vector x; given all sensor mea-
surements Z; is equivalent to constructing a posterior probability distribution
function p(xx|Zi). Moreover, Bayes’ theorem indicates that

P(Zht1 [Xpg 1) P(Xi41| Zi)

P(Xpt1|Zg11) = : 3.1.1
( k+1| k+1) p(zk+1|zk) ( )
where the denominator is a normalization constant given by

P(Zp41|Zi) = /p(zk+1|Xk+1)p(Xk+1|Zk) X1 (3.1.2)

In fact, (3.1.1) is the updating equation. It takes into account the likelihood
that the hypothetical state x;,; has a measurement z; ;. The likelihood pdf,
P(Zg+1]|Xk+1), is defined by the measurement equation (3.0.2) and the known
noise process Wg.1.

Equation (3.1.1) also takes into account the prior pdf, p(xx11|Zx). Supposing
that the posterior pdf p(xy|Z) at time k is known, the prior is defined as

p(Xkt1]Zy) = /P(Xkﬂ\xk)p(xk\zk)dxk- (3.1.3)

The prior takes into account the probabilistic model of the evolution of the
system, p(Xy+1|Xx), which is defined by the dynamic model (3.0.1) as well as
the process noise vy [2]. This is the prediction equation.

Equations (3.1.1) and (3.1.3) are the theoretic solution of the filtering problem.
Analytical solutions of the problem exist for a few cases, in particular when
the dynamic and measurement models are linear and their respective noise pa-
rameters have Gaussian distributions. These are exactly the assumptions used
in deriving the Kalman filter which, in this case, is the optimal filter [70], [87].
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If the noise parameters have Gaussian distributions but the models are non-
linear, the favoured approaches are the extended and unscented Kalman filters.
The extended Kalman filter linearizes the models locally by considering their
first order Taylor expansions [87]. In contrast, the unscented Kalman filter
approximates the probability distribution of the state using a set of determin-
istically chosen sample points [40], [41]. The case where at least one of the
models is nonlinear and the noise parameters are non-Gaussian is tackled using
particle methods, specifically the particle filters.

The choice of which filtering method to use cannot be made in isolation. The
data association method which is used to assign measurements to tracks must
also be considered. The multiple hypothesis tracker (MHT) is used for data
association and the justification is provided in Chapter 4. In short, MHT pro-
vides facilities to initialize tracks and quantify their quality. Unfortunately,
the computational tractability of the combination of MHT and a particle filter
is a major stumbling block.

The linear Kalman filter is used in conjunction with MHT in this thesis. The
use of the Kalman filter makes it easier to evaluate the quality of tracks in
MHT. One disadvantage of this combination stems from the Kalman filter as-
sumptions that the noise in the measurement and state evolution processes
have uni-modal Gaussian distributions. Using MHT may be thought of as in-
troducing multi-modality to these processes. In Morefield [58] and Avitzour |3|
the multiple target tracking problem interpretation is such that a measurement
is generated by a mixture of density distributions. Also, people tend to walk
in straight lines at constant velocities. Thus, the constant velocity Kalman
filter model is used in this thesis.

3.2 Linear Kalman filter

3.2.1 Derivation

The Kalman filter may be derived from (3.1.1) and (3.1.3) by assuming that
the dynamic and measurement processes are linear and the noise is additive
and Gaussian, i.e.

Xpr1 = fe(xp, up, wi) = Fixg + Gruy + wy,

zp = hg(xg, vi) = Hixy + vy,

where v;, ~ N(0,Qy) and wy;, ~ N(0,Ry). N(p,X;) is a normal distribution
function with mean p and covariance matrix X.
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The system and measurement noise processes w; and v are assumed to be
uncorrelated, i.e.

T _ le if k= l>
Elwiw, | = { 0, otherwise, (3.2.3)
T - Rk7 lf k — l7
Elvivi] = { 0, otherwise, (3.2.4)
Elwyvi] = 0 forallk, L. (3.2.5)

Another assumption is that the initial state of the system x is a random vec-
tor that is not correlated to either the system or measurement noise processes.
Moreover, the initial state has a known mean X and error covariance matrix

Po,o = I['11[(?(0,0 - Xo)(fio,o - XO)T]-

The linear Kalman filter is an unbiased filter that minimizes the mean square
error. Thus, given that the dynamic and measurement processes are linear,
and a set of observations Z;, = {z;|i = 1,2,...,k}, the Kalman filter yields
the optimal estimate of xj, denoted Xy, that minimizes the expectation of
the square-error loss function [69]:

E(lxi — xial?) = El(xr — %np)" (x5 — Xien)] (3.2.6)
and is unbiased, i.e. the expected state estimate is the exact expected state:

Either of these two approaches yields the Kalman filter which consists of the
prediction and update steps.

e The prediction step, which is also known as the time update step, pre-
dicts the state and state error covariance matrix at time k£ + 1 given the
information at time k:

Xit1e = FiXpr + Grug,
> > T
Piiix = FipPriFp + Qu.

e The update step, which is also referred to as the measurement update
step, uses the measurement z;; and the predicted state to update the
state and error covariance matrix:

Xt o1 = Xigth + Kip1[Zer1 — HepiXeg1], (3.2.10)
D = I - Kk+1Hk+1, (3211)
Piiigs1 = DPrpD" + KR K, (3.2.12)
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where Ky, is the Kalman gain given by

Kii1 = ProHp o [He PepcHE )+ Ry ™ (3.2.13)

This, together with the initial conditions on the state and error covariance
matrix, yields the Kalman filter which is an iterative algorithm.

3.2.2 Initializing the Kalman filter

One of the Kalman filter assumptions is that the initial state and the error
covariance matrix are known. The state of the object at time £ is represented
as a column vector Xi, = [Tk, Yk, Vg, Vyk, Wk, hi)’ . The centre of the bound-
ing box is (zy, yx) and wy and hy, are the width and height, respectively. The
components of the velocity vector are (v, i, v, x). We assume that the dimen-
sions of the bounding box remain constant.

Methods for initializing the state and, in particular, the error covariance ma-
trix are available in the literature and include using either one or two measure-
ments. When using a single measurement, the centre and dimensions of the
bounding box are known, therefore their variances are set to small values. In
contrast, the velocity vector is not known and the variances of its components
are set to large values to ensure that their estimates converge quickly and the
influence of the initial guess soon is negligible [53|. In the case where two mea-
surements are used for initialization, the object position and velocity vectors
can be determined and thus the entries of the posterior state error covariance
matrix may be set to small values. In this thesis a single measurement is used
to initialize the Kalman filter.

3.3 Conclusion

Filtering methods attempt to estimate the states of objects of interest. This
requires modelling of the object dynamic and measurement processes. We
outlined the Bayes filter which is the theoretic iterative solution to the filtering
problem. Different assumptions on the process and noise terms yield different
practical filters. We opted for Kalman filters which can be derived by assuming
that the processes are linear and the noise terms are Gaussian and additive.
We outlined the Kalman filter equations and the two methods that can be used
to initialize filtering. We noted that our interest is the tracking of multiple
pedestrians and yet are using a filtering method that assumes a one-to-one
relationship between tracks and measurements. This raises data association
issues which are addressed in Chapter 4. Strictly speaking, the choice of data
association method also informed the choice of filtering method.
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Data association

Filtering involves the use of measurements to obtain better estimates of the
state of an object. The measurements are not labelled and could be from valid
objects, false alarms or clutter. In the case of multiple target tracking, some
of the measurements could be from new targets because the number of targets
in the scene is unknown. Moreover, some of the tracked objects may not be
detected in a frame because they either exited the surveillance area or were
occluded [22]. The goal of data association is to solve this measurement ori-
gin problem. Data association enables the use of standard filtering algorithms
such as the Kalman filter [87] which assume a one-to-one mapping between
tracks and measurements.

Data association is a way to model the interactions between objects particu-
larly when the dynamics of the individual objects are assumed to be indepen-
dent. Classical approaches to data association may be categorized as either
sequential [49] or deferred logic [68], [81] approaches. Sequential logic meth-
ods make data association decisions as measurements are received. Deferred
logic methods delay making these decisions until more information is available.
These methods are preferred because once the data association decisions have
been made they may not be changed. Incorrect data association decisions may
result in lost or fragmented tracks.

Deferred logic methods may be further classified as enumerative and non-
enumerative [65]. Enumerative methods entail the explicit consideration of
hypothesis and include the multiple hypothesis tracker [68]. Non-enumerative
methods include the probabilistic multiple hypothesis tracker [3], [81] and rep-
resenting the multiple target tracking problem as a multi-dimensional assign-
ment problem (MDAP) [58], [63]. Note that probabilistic multiple hypothesis
tracking (PMHT) and the MDAP are alternative formulations of the multiple
target tracking problem that is posed as an incomplete statistical data prob-
lem. The state of the tracks represent the known data and the measurement-
track associations represent the unknown data. In the case of PMHT, the
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measurements may then be assumed to have been generated by a mixture of
densities. The MDAP is derived by noting that only one of the components of
the mixture may generate a measurement. The probabilistic MHT is derived
by converting the problem into a complete data problem. However, it is not
clear if they have track initialization capabilities.

Particle filter approaches to multiple target tracking integrate the interaction
model with the dynamic and measurement processes [50]. One approach is to
use the joint state vector but this results in what is referred to as the curse of
dimensionality. That is, the size of the state vector increases exponentially with
the increase in the number of tracked objects. An alternative is to use a particle
filter to track each object when the objects are far apart. If objects get too close
to each other an alternative method is then used to model the interactions.
Markov random fields are the preferred method for this purpose [46], [50]. In
this thesis each object is assigned a Kalman filter and the interactions are
modelled using a classical data association method.

4.1 Data association methods

The simplest data association algorithm is the nearest neighbour tracker which
updates a track with the measurement that is closest to the predicted state of
the track [49]. Here, the distance is defined as

D(Zk, }A(kvk) = (Zk — Hk}A(kyk)Tslzl(Zk — Hk}A((k}, k’)), (411)

where S, = HkaHk + Ri. Si is the covariance of the innovation corre-
sponding to the measurement z,. All other variables are as defined for the
Kalman filter in Section 3.2. Note that distance as defined above is a x? ran-
dom variable. Thus, given the dimension of the measurement vector (degree
of freedom) and the desired probability that a measurement was generated by
the target, a threshold A on the distance may be read off the y? table. The
validation region of the state x; can then be defined as

The nearest neighbour tracker may result in one track stealing the measure-
ment of another track especially then the targets are close together. This can
result in the other track being terminated. An improvement to this method is
the global nearest neighbour (GNN) method which minimizes the sum of the
distances between predicted states of the tracks and measurements [49|. This
can be posed as a 2-dimensional assignment problem and computationally ef-
ficient methods for solving such problems are available [14]. GNN works well
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when there is no clutter and track contention. However, it cannot handle the
appearance and disappearance of objects. T

The joint probabilistic data association (JPDA) filter is more robust to clutter
and track contention [7]. It is the extension of the probabilistic data associ-
ation filter to multiple target tracking. The JPDA filter assumption is that
the target may not have generated the closest measurement. That is, the true
measurement may be further away. To account for this, each measurement is
assigned a weight that is proportional to the probability that it was generated
by the track with which it is associated [52|. Hence, the average of the mea-
surements is used to update the state of the target. One drawback of JPDA
is that the tracks of closely spaced targets will tend to come together because
the same subset of measurements is used to update both targets [12]. Also,
the number of tracked objects must be known and fixed. Schulz et al. [75]
introduce the sample-based version of JPDA and define a distribution over
the number of tracked objects which allows a varying and unknown number of
targets to be tracked.

JPDA introduces the concept of the probability of track-measurement associa-
tion to multiple target tacking. This concept is crucial to multiple hypothesis
tracking (MHT) which is a deferred logic method [1], [68]. MHT is An exhaus-
tive method for enumerating all possible track to measurement associations.
Ultimately, an optimal set of disjoint tracks, referred to as a hypothesis, must
be retained. This process involves the evaluation of probabilities of sequences
of measurements having originated from various targets [6]. Two approaches to
MHT are the hypothesis-oriented MHT [68]| and the track-oriented MHT [6].
The original hypothesis-oriented MHT yields joint probabilities of measure-
ment to track association hypotheses. The probabilities of individual tracks
may then be obtained by marginalization. It is a top-down approach and the
reverse of track-oriented MH'T.

In this thesis multiple hypothesis tracking is used for data association. It
implicitly provides facilities for track initialization, continuation and termina-
tion [22]. Quantitative meanings are given to track management concepts such
as tentative and confirmed tracking [77|. It also explicitly models both spuri-
ous measurements and constraints on measurements. The MHT approach is
memory and computation intensive but techniques such as gating and track
clustering are available to improve the situation. This is explained in more
detail in Section 4.4.

4.2 Multiple hypothesis tracking

We consider the assignment problem in Figure 4.1 from Reid [68] to highlight
the difference between hypothesis-oriented MHT and track-oriented MHT. The
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Figure 4.1: Configuration of targets and measurements in example cluster.

current hypothesis contains two tracks with indices 1 and 2. In the case of
hypothesis-oriented MHT the new set of hypotheses can be represented in tree
form as demonstrated in Figure 4.2. Each path from the root of the tree to one
of the leaves corresponds to a hypothesis. In constructing these, it is assumed
that a measurement may be associated with a track, a false alarm or the start
of a new track. A measurement is a false alarm if it is not associated with at
least one track in a hypothesis and this is indicated with a zero. The index
of a new track is one more than the number of existing tracks. A track that
is associated with a measurement retains its index. Moreover, each track may
be associated with at most one measurement.

The path [0,0,0] in the tree is the hypothesis obtained by assuming that all
measurements are false alarms. This implies that the currently tracked ob-
jects were not detected in the current frame. The states of the objects are
even more uncertain and this could be reflected by increasing their state error
covariance matrices. The path [1,0,0] is obtained by updating track 1 with
the first measurement. Track 2 was not detected and the other measurements
are considered to be false alarms.

An example of an incompatible hypothesis is [1,2,1] marked with a star in
the tree. This means that track 1 was associated with the first and the third
measurements at the same time. Such hypotheses are discarded. The remain-
ing hypotheses are constructed in a similar fashion. This process yields a set
of hypotheses and it is repeated for each of these when a new set of mea-
surements is received. The data association problem is solved after a given
number of frames has been processed. Cox et al. [22] implement the solution
to hypothesis-oriented MHT using an algorithm due to Murty [60] which re-
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Figure 4.2: Tree representation of the hypotheses in hypothesis-oriented MHT.

turns the k best hypotheses.

The same example in Figure 4.1 is used to explain track-oriented MHT. Each
track is represented with a tree as shown in Figure 4.3. Each path down the
tree represents a candidate track: a path that the object of interest could have
followed. Tracks are updated with all measurements within their validation
region with each branch indicating a possible track to measurement associa-
tion. Moreover, each measurement is used to start a new track. This implies
that tracked objects may not be detected in a frame. Missed detections are
indicated with a zero and new tracks are assigned indices that are one more
than the existing number of tracks.

As more measurements are received with every scan, the depths of the trees
increase and new trees are created. As is the case with hypothesis-oriented
MHT, the data association problem may be solved after a given number of
frames has been processed. In this case, the problem must be augmented with
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Figure 4.3: Track expansions obtained using track-oriented MHT.

constraints to ensure that each measurement is used only once. At most one
path must be selected from a tree. This problem can be posed as an integer
programming problem [63].

In constructing hypothesis-oriented MHT trees, false alarms are explicitly
taken into consideration. In track-oriented MHT, every measurement is used
to initialize a new track. In this case, false alarms become apparent either
during the construction of the trees or once the assignment problem has been
solved. False alarms initialize false tracks which are identified in solving the
assignment problem. Note that a combination of the track hypotheses from
the trees in Figure 4.3, taking into account the constraints on measurements,
yields the list of hypotheses in Figure 4.2. In the simple single window appli-
cation of MHT the number of hypotheses far exceeds the number of tracks.
Hence, track-oriented multiple hypothesis tracking is used in the thesis. It is
the least memory and computation intensive of the two.

4.3 FEvaluation of tracks

The major component of track-oriented MHT is the calculation of the proba-
bility that a measurement was generated by a track with which it is associated.
The preferred approach is to use Bayes’ theorem and combinatorial analysis
of the data association problem to derive the joint probability of a hypothesis.
The result is the probabilistic expression presented by Reid [68] for hypothesis-
oriented MHT. The paper also presented a novel method for propagating mul-
tiple hypotheses. The track-oriented MHT formulation is then derived from
this result using reasonable assumptions [12].

For the purpose of implementation, it is easier to use the mathematically
equivalent log-likelihood ratio proposed by Sittler [77]. The likelihood ratio is
the ratio of the probability of a measurement having originated from a track
to the probability of this measurement having a different origin. The use of
log-likelihoods allows the formula to be expressed in terms of sums as opposed
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to products. In this section we give the log-likelihood ratio as derived in Sit-
tler [77]. We then discuss what each term of the ratio means and how it is
used for track management. This section is based on Sittler [77] and takes
into account the MHT framework. For example, every measurement is used to
initialize a new track in MHT. In Sittler |77], however, the last measurement
of a false track is used to initialize a new track.

The log-likelihood ratio function of track i through time m; as derived in |77]
is as follows:

Ao — Age~Qst1/m0) b

—_—+ In
)\N()\s"i_%) Z )\N‘Qﬂ'(Ek—i‘tk Szk>|%

k=2

Li =In

1 & L R
-3 Z(sz — Hyxi) (ex + t:Sin) " (zar — HyXyp) (4.3.1)
k=2

Ao~ Astl/m)(T—vi) 4 L
+1In o

As + =
70

where t;, is the time between the (k — 1)th and the kth measurements (the
last received and current measurements). An assumption made in deriving
the score is that the numbers of new objects and false alarms may be modelled
using Poisson distributions with parameters Ay and Ay, respectively. \q is the
average number of new objects per unit time per unit area of the region under
surveillance. Similarly, Ay is the number of false measurements per unit time
per unit area. The observations on a single object are assumed to follow a
Poisson process with the average rate ;.

Each object is assumed to persist independently through a length of time that
has an exponential distribution with time constant 7. This is the mean track
length. The assumption is reasonable because a new track will be created when
two or more objects interact. In fact, MHT is expected to correctly handle
short interactions and occlusions. Any extended interactions and occlusions
will be handled using re-identification of objects. The kth measurement asso-
ciated with track 7 is z;,. The predicted state of the track is x;.. S;; is the
innovation covariance matrix as defined in (4.1.1). T is the current time and
v; is the last time a measurement associated with track i was received. Note
that tracks with larger log-likelihood ratios are preferred.

The first term of (4.3.1) is the score assigned to a new track. When k = 1 the
summation cannot be evaluated, and T'— v; = 0. Hence, all but the first term
evaluate to zero. The result is the negative cost of initializing a new track.
The second term is evaluated when a measurement is available and it takes
into account the uncertainty in the state of the objects. It is the only term
that can contribute positively to the score. To ensure that this can happen,
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the parameter ¢, must be chosen such that

A e~ (s t1/m0) 8t

n 1
/\N|27T(€k + 0t SLk)‘i

> 0. (4.3.2)
0t=0

Note that €, may change with time because the innovation error covariance
matrix S;, changes with time.

The third term in (4.3.1) is also evaluated when a measurement is available.
This is the distance between the predicted and the actual measurements. Any
disparity between the two affects the score negatively. The best outcome oc-
curs when these two coincide and the term does not contribute to the score.
The worst outcome is when the measurement is on the edge of the validation
region and the term contributes —\. Here A is the threshold used to define
the validation region as shown in (4.1.1) and (4.1.2).

The fourth term in (4.3.1) does not contribute to the log-likelihood ratio if
there are no missed detections, i.e. v; = T. Any missed detection contributes
negatively to the score. Note that v;, the last time a measurement was received,
is finite. Therefore, letting T" — oo implies that T" — v; — oo which implies
that the last measurement that supported the track was received a long time
ago. Therefore, this track must be terminated. Evaluating the limit yields the
cost of terminating a track:

Ao~ Pst/m0)(T—vi) 4 1

: o
jlgrolo In T % = —In(1+ Ay 7). (4.3.3)

The formula for calculating the log-likelihood ratio of a track is intuitive. The
larger the log-likelihood of the track, the more favourable the track. Missed
detections should impact the score negatively and this is reflected in the for-
mula. The effect of missed detections is further incorporated in the numerator
of the second term. Sittler [77] proposes that it be an increasing function of
time. This is reasonable because the longer we wait for supporting measure-
ments the more uncertain we should be about the state of the objects being
tracked.

The parameters 79, A\g, A and Ay impact the ratio in an intuitive manner as
well. The ratio is not sensitive to 7. This is because it is always used in
conjunction with Ay and for practical systems A\, > Tio [77]. Qualitatively, an
object may be tracked for a long time and yet the state estimation may be
far off the mark due to drifting problems [43]. So, the expected length of a
track should be immaterial in determining the quality of a track. Taking the



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. DATA ASSOCIATION 34

quantitative arguments into account, the entrance score may be approximated
as

~In—=InX\ —InAy. (4.3.4)

This indicates that the entrance score is not sensitive to the expected number
of observations on an object per unit time A,;. A larger value of Ay, the num-
ber of false alarms per unit area per unit time, means that a larger penalty
must be paid in order to start a track. In contrast, a larger value of )y, the
number of new objects per unit area per unit time, decreases the penalty that
must be paid. The parameter Ay comes into play when calculating the cost of
terminating a track in (4.3.3). In this case, note that Ay7y approximates the
expected number of measurements that support a track after the last one was
received. Therefore, if the expected number of measurements is very large,
then a large price must be paid to terminate that track.

Two important values for the log-likelihood ratio have been mentioned so far.
The first is the entrance score of a new track:

AoAs
A=l ———— <0. 4.3.5
N+ =) (4:3.5)

The second is the cost of terminating a track:
B =—In(1+ X\1p) <0. (4.3.6)

A track is considered to be of a valid object if its log-likelihood score eventually
exceeds zero. Therefore, the third log-likelihood value that is also important
is C'=0. These values are important in quantifying the track management
concepts which are track initialization, confirmation and termination. We
now consider these track management concepts.

4.3.1 Track initialization

Each measurement is used to initialize a new track with a log-likelihood score
of A calculated using (4.3.5). However, the measurement may be due to false
alarms and clutter. Thus, a single measurement is not sufficient to conclude
that a track is correct and further data is required to support the track. If
supporting measurements are received, only the second and third terms in
(4.3.1) are evaluated, possibly increasing the score. However, if no supporting
measurements are received, these terms cannot be evaluated and the last term
worsens the score. A track is considered to be from a valid object if its score
eventually exceeds C' =0 without ever dropping below the value A. Such a
track is referred to as an initiated track. Otherwise, the track score drops
below A implying that the track was initialized using a false measurement, i.e.
it is a false track, and must be deleted.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. DATA ASSOCIATION 35

4.3.2 Track confirmation

The score of an initiated track has another threshold, —B > 0, to cross and
yield what is referred to as a confirmed track. The score of a confirmed track
does not depreciate based on the passage of time. That is, the last term
in (4.3.1) is ignored when updating the log-likelihood ratio of a confirmed
track. However, missed detections still impact the score negatively through
the innovation covariance matrix S;, in the second term. Recall that this
covariance matrix gets larger with every missed detection to account for the
increasing uncertainty in the state of the tracked object. In contrast, the score
of an initiated track, which has not been confirmed yet, depreciates with the
passage of time as modelled by the last term in (4.3.1). Missed detections
and measurements that are not good enough (the sum of the second and third
terms is less than zero) may still drive the track score below A. If this happens,
the entire track may be dismissed as a false track and deleted.

4.3.3 Track management

The process of making decisions on confirmed tracks is referred to as track
management. At this point, the log-likelihood ratio threshold A+ B <0 is of
interest. The score of a newly confirmed track is reset to zero and this point
serves as a reference of the end point of that track. As mentioned earlier,
missed detections affect the score through the increasing innovation covariance
matrix S;; only, the fourth term in (4.3.1) being ignored. Any new high value
in the score serves as a reference to the end point of the confirmed track. A
confirmed track must be removed from the set of track hypotheses and saved to
disk only if its log-likelihood score drops below A+ B indicating that the track
terminated some time ago. The track segment after the reference point up to
the termination point is first discarded as a false track before the confirmed
track is saved. In our system the saved confirmed tracks are candidates for
re-identification. This means that the object that generated those tracks may
come back into the scene, re-detected, and their tracks extended.

4.4 Additional hypotheses reduction methods

Pruning of trees by deleting unlikely track hypotheses is an intrinsic part of
MHT, particularly track-oriented MHT as outlined above. In this section we
consider other methods for managing the growth in the number of hypotheses,
thus minimizing the computational and memory costs. The simplest of these is
to only consider measurements that are within the validation region of a track.
A preferred method of defining the validation region when a Kalman filter is
used for tracking is defined by (4.1.1) and (4.1.2). A valid measurement can
fall outside this region possibly because the object motion does not satisfy the
Kalman filter assumptions. This can be minimized by a careful choice of the
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threshold A and the Kalman filter parameters.

The other method is to use a fixed window W where W is the number of frames
that must be processed before the data association problem is solved. One ex-
treme is to make data association decisions as data is received, i.e. W = 1,
which clearly defeats the idea of MHT. The other extreme is batch process-
ing where the data is provided all at once, e.g. as a video recording. Using a
small fixed window, say W = 5, is amenable to online, real-time surveillance
systems. In this case the measurement assignment problem is solved every W
frames. Tracks that are not re-detected in a certain number N < W of consec-
utive frames are assumed to have terminated and are removed. This eliminates
tracks that are due to clutter. In our implementation, such tracks are retained
if they were confirmed tracks and are candidates for re-identification.

Another method is hypothesis merging where similar tracks are merged [1].
Two tracks may be merged if they share N measurements and are closer than
a predefined threshold. A similarity measure between tracks must be defined.
Also, the two tracks may be merged if, at a particular instant, one track is
associated with a measurement and the other track is associated with a dummy
measurement. Lastly, clustering of hypotheses can also be used to reduce
the computational cost of track-oriented MHT. It is a divide and conquer
strategy [68]. Hypotheses that have at least one measurement in common are
grouped together before the data association problem may be solved. Thus,
instead of solving one large problem, a number of small sub-problems is solved.
This means that the solution may be parallelized at a higher level.

4.5 Conclusion

Tracking multiple targets is complex mainly because measurements from the
object detection stage are not labelled. Moreover, filtering methods assume
a one-to-one association between the tracks and measurements. Data asso-
ciation methods solve this measurements origin problem. We classified data
association methods as either classical or particle filter approaches. Particle
filter approaches may suffer from the curse of dimensionality but techniques
such as Markov random fields have been proposed to solve this.

In this thesis we use the classical approach to data association, specifically
multiple hypothesis tracking (MHT). This method was chosen because it is a
deferred logic method and provides track initiation, management and termi-
nation facilities. MHT is facilitated by the log-likelihood score which is used
to quantify the quality of hypotheses. The higher the log-likelihood score the
better the tracker. We presented this formula and our analysis lead to the
conclusion that its parameters affect the score in an intuitive manner.



Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Integer programming problem

A collection of tree structures is used to represent the track-oriented multiple
hypothesis (MHT) problem. Each tree is a collection of prospective tracks that
could be followed by an object. Therefore, at most one track hypothesis in a
tree may be the true track. This is implied by the MHT assumption that there
is at most one detection per object. Also, each measurement may be used at
most once. Each track hypothesis has a log-likelihood score which quantifies
the quality of that track. The track hypothesis with the largest log-likelihood
ratio is preferred. This is a combinatorial (assignment) problem that can be
posed as an integer programming problem (IPP).

Morefield [58] and Poore et al. [63] represent the multiple target tracking prob-
lem as a multi-dimensional assignment problem. One advantage of these ap-
proaches is that they do not enumerate the track hypotheses. Moreover, they
are presented as alternatives to MHT. In our case, the multi-dimensional as-
signment problem is derived from MHT. This means that we take advantage
of the track management capabilities of MHT. Also, the assignment problem
we are solving is smaller because some of the variables are essentially fixed
during the construction of the hypotheses. This is due to the condition that a
track may only be associated with measurements that are within its validation
region. The remainder of this chapter outlines the steps required to pose the
MHT problem as an integer programming problem.

5.1 Posing the MHT problem as an IPP

The first step in posing the MHT problem as an integer programming problem
is to ensure that all measurements are assigned unique indices. In constructing
the track-oriented MHT tree, at each level the measurements are numbered
from one to the total number of measurements received at that level. A single
dummy measurement, labelled zero, is maintained and is assigned as many
times as is necessary. This numbering scheme is appropriate for visualization.

37
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a. Default labelling scheme used in constructing the MHT tree.

b. New labelling scheme ensures that all measurements, including dummy measurements, have unique
indices.

()]

(6]

Figure 5.1: Comparison of the different labelling schemes.

We introduce a new numbering scheme that ensures that each measurement
in a window is assigned a unique index. This allows us to uniquely identify
measurements without having to specify the tree level or frame from which
they were obtained.

Suppose T, measurements have already been processed in the previous scans.
The next batch of M measurements will then be re-numbered from 7, + 1
to T, + M. Any dummy measurement required is assigned an index that is
one more than the total number of measurements. Thus, every dummy mea-
surement is assigned a unique index. This is in contrast to the approaches in
Morefield [58] and Poore et al. [63] which maintain a single dummy measure-
ment. This approach is suitable for a formulation that focuses on the presence
or absence of nodes rather than edges. It is easier to formulate the problem in
terms of nodes because they represent states of objects which are the major
concern. See Figure 5.1 for a comparison of the old and new node numbering
schemes.

We should point out that the actual tree structure is not used in the implemen-
tation. The track hypotheses from the same tree are maintained separately
as show in Figure 5.2. Each one of these free standing track hypotheses is a
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a. Track-oriented MHT tree. b. Track hypotheses in the implementation.

Figure 5.2: The tree view of the track-oriented MHT vs. the representation used for
implementation.

path down the tree from the node to one of the leaf nodes. This representation
simplifies the mathematical problem statement and is adopted from here on-
wards. This clearly increases the memory requirements of the implementation
as multiple copies of the same measurement must be maintained but, most
importantly, it simplifies the implementation. At this point we can uniquely
identify measurements but cannot tell in which one of the free standing track
hypotheses they were used.

The final step is to assign unique indices to each of the nodes in each free
standing track hypothesis. This is performed within the integer programming
problem solver and is simply a counting process where node ¢ is assigned the
index i. The order in which the nodes are counted is immaterial. Although
these nodes may have unique indices, a subset may refer to essentially the same
measurement. Thus, a mapping to keep track of these relations is constructed
concurrently:

71y, — Ly, (5.1.1)
K

L={1,2,....N} = | J{vi, 1Y, (5.1.2)
k=1

In={1,2,..., My}, (5.1.3)

where [,, and [, are sets of unique node and measurement indices, respectively.
My is the total number of measurements used in the current window. K is
the number of free standing track hypotheses and W is the window size. The
mapping enables the construction of the constraint that a measurement may
be used at most once. See Figure 5.3 for a graphical representation of this
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process.
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a. Generated track hypotheses. b. Assignment of unique indices to all nodes. ¢. The mapping used to create

constraints.

Figure 5.3: Constructing a mapping from the set of unique node indices to the set
of unique measurement indices.

Of particular interest in this definition is the notation used to define elements
of I,,. An element of v, € I, encodes the index of a track hypothesis £ as
well as the level ¢ of the measurement in the tree. A node marks the start of
a track if © = 0 and the end of a track if © = W. Given this definition, the kth
track hypothesis, which is a path in a graph, can then be defined as follows:

Th = €rothy " * Chyy 1>
€ki:(’l}ki,vki+1> ek k=12... K.

Here E is a set of edges (v;,v;) in the graph theoretic sense which indicates
that there is a link from node v; to node v;.

Each node is a placeholder for a measurement. Each measurement may be
used at most once. Moreover, each measurement may be associated with more
than one node. Therefore, we define an indicator function on node (k;):

1, if there exists an m € I,,, such that 7(vy,) = m
a(vg,) = ag, = and m is assigned to track k, (5.1.6)
0, otherwise.

This will allow us to say whether a valid measurement was used to update
track k. Track k is a valid track if and only if a(vy,)=1foralli =0,1,..., W.
Moreover, each node vy, has a negative log-likelihood ratio score ny, which
was calculated when the tree was constructed. This log-likelihood score is of
interest only if 7 = WW which marks the end point of a track and quantifies the
quality of the entire track.
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We are now ready to formulate the optimization problem which comprises the
objective function and a set of constraints on the variables. The objective
function is defined in terms of the negative log-likelihood scores of the tracks:

K
arg min Okyy Mgy (5.1.7)

{&kW }}[5:1 k=1

subject to the constraints that

form=1,2,..., My, (5.1.8)

M) =
S
>
A
s
ES
IA
\'H

k=1 i=0
B 1, if 7(vg,) = m,
Ok )sm) - = { 0, otherwise, (5.1.9)
W
d ok —an,(W+1) =0,  fork=12... K (5110
i=0

The first constraint (5.1.8) means that a measurement may be used at most
once. It simply counts the nodes where a measurement m could be used as
reflected by d(7(vg, ), m) while taking into account whether the node is actually
used as reflected by ay,. The second constraint (5.1.10) means that for a track
to be valid all the measurements on that track must be used. That is, track
k is a valid track if and only if a(vg,) = 1 for all the nodes vy, in the track.
Note that the length of a track, W + 1, is multiplied by the indicator function
of the leaf node of that track. In this sense the leaf node represents the entire
node and if it is used then all the nodes in that track must be used. This has
the effect that a track either has length 0 or length W + 1. The optimization
problem may be solved using an integer programming library. We use the
Symphony Callable library [66].

5.2 Conclusion

This chapter outlined the steps required to pose the MHT problem as an in-
teger programming problem. Naturally, an optimization problem comprises of
an objective function along with a set of constraints. The objective function
is based on the negative log-likelihood scores of tracks. The constraints de-
rive from the MHT assumptions that a measurement may be assigned to at
most one track and that there is only one detection per object. The resultant
optimization problem is solved using the Symphony Callable library.
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Chapter 6

Learning object appearances

Standard tracking approaches like the mean-shift [20] and the Kalman filter
(Section 3.2) assume that the object of interest is never completely occluded.
This and unsuitable models can result in tracking failure. These methods do
not directly address what happens after tracking failure. Instead, new tracks
are initialized after tracking failure or when objects reappear. In this thesis
machine learning algorithms are used to learn the object-specific appearances
which are then used to uniquely re-identify objects when they reappear or after
tracking failure.

At least three aspects are essential for learning the appearance model of an
object for re-identification purposes. First, the features used to represent the
appearance of objects must be discriminative. In the case of recognising peo-
ple, biometric features such as the face, iris and gait could be used to re-identify
people, but most surveillance video have low resolution or are difficult to seg-
ment [21]. As a result it is necessary to model the global appearance of each
object. This leads to the second aspect which is that models must be learnt
online because discriminative appearances of tracked objects cannot be known
in advance.

Learning algorithms that have been used to learn object appearance include
online versions of support vector machines (SVMs) [92], random forests [24],
boosting [35] and density mixture models [39]. Boosting involves using a lin-
ear combination of weak classifiers, i.e. classifiers that are accurate at least
fifty percent of the time. Online learning methods may be classified as either
generative [39], [43] or discriminative [35]. Generative methods learn a model
that represents the appearance of an object. Discriminative methods learn a
decision boundary that best separates the object from the background.

Last, a strategy must be devised to decide which samples to use to update the

model. Each update can introduce errors which can lead to the classifier not
learning the appearance of the intended object [89]. The errors may be due to
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the inaccuracies in segmenting the object. Moreover, some of the background
will be treated as part of the foreground no matter how tight the bounding
box.

6.1 Object representation

The subject of object representation was briefly treated in Chapter 1. Colour
features are used in this thesis mainly because they are very discriminative.
However, colour features lose the shape information. Yang et al. [89] note that
no single feature descriptor is robust enough to deal with all kinds of situations.
Thus, a combination of features is often used. However, colour features should
be sufficient for our goal which is to demonstrate that a global appearance
model of an object can be built and subsequently used to re-identify objects.

Several colour features are compared in the work by Van de Sande et al. [84].
Of particular interest is the invariance of colour features to light intensity
change and shift. Light intensity change includes shadows and shading. Light
intensity shift corresponds to objects being highlighted under a white light
source and scattering of a white source. The results indicate that the RGB
histogram is not invariant to light intensity change and shift. In contrast, the
hue and saturation histograms are invariant to light intensity change and shift.
Moreover similar colours are closer together in the hue-saturation-value (HSV)
colour space than they are in RGB colour space. As a result we use the HSV
colour histogram in the thesis.

The HSV colour histogram is generated by concatenating the histograms of
the individual channels. The vote of a pixel is weighed by how far it is from
the centre of the bounding box, using the Epanechnikov kernel

3(1 —w?), if |lul <1,
4 ) = 4
; (6.1.1)

K(u) = { , otherwise.
Here u is the distance from a pixel to the centre of the bounding box, normal-
ized by the distance from the centre to a point on the edge of the bounding
box. The point on the edge of the bounding box is chosen such that the pixel
lies on the line joining the centre to this point. We experimented with uniform
and triangular kernels but the Epanechnikov kernel performed better.

6.2 Selecting training samples

Kalal et al. [43] classify strategies used to decide whether or not to update
a model with a training sample as every-frame [34], [51] and selective up-
date [35], [92] strategies. The every-frame update strategy implicitly assumes
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that the tracker is always correct. This class implies quick adaptation but
can accelerate tracker failure [43]. Selective update strategies use either semi-
supervised [35], [92] or unsupervised [39], [43] learning to make this decision.
Jepson et al. [39] learn the density mixture model of objects using wavelet-like
features. The mixture has three components with the third one representing
an outlier. An advantage of this method is that it is a clustering algorithm
and as long as samples support a cluster, that cluster will be retained.

Yu et al. [92] use co-training of generative and discriminative classifiers to
automatically label training samples. The two classifiers are trained using
conditionally different views or features. The generative classifier represents
the global object appearance and contains a set of subspaces. Each subspace
approximates the local variations in the appearance of the object. The dis-
criminative classifier is an SVM that is trained online using histogram of ori-
ented gradient features. Co-training is accomplished by training one classifier
with the samples that were confidently labelled by another classifier. This
framework learns the global appearance of objects and approaches tracking as
classification. However, in our case we perform filtering and data association
which can be understood to provide confident labelling of training samples.
Then, the component of co-training that is missing is a generative classifier
that models the global appearance of objects.

Kalal et al. [43] implement a novel unsupervised strategy to decide whether to
use a sample to train the classifier. A distance measure between the classifier
and a given measurement is defined in terms of the normalized cross-correlation
between a pair of measurements. The process starts with a measurement that
is similar to the classifier (the distance between this measurement and the clas-
sifier is less that a given threshold). A sequence of measurements is retained
until a measurement that is similar to the classifier is found. In this case all
the retained measurements are used to train the classifier. The logic behind
this strategy is that if the tracker drifts it is unlikely that it will accidentally
return to the object of interest. The increase in the distance measure is then
attributed to major changes in the appearance of the object.

The approach in this thesis is similar to the one in Kalal et al. [43] and is in-
fluenced by the multiple hypothesis tracker used for data association. During
initialization, a sequence of measurements is retained and subsequently used
to train the classifier once the track score exceeds zero. During track main-
tenance, each measurement is used to train the classifier as long as the track
score is greater than zero. If the score drops below zero then a sequence of
measurements is retained until the score exceeds zero again. In this case all the
retained measurements are used to train the classifier. The drop in the score
is then attributed to a disagreement between the measurement and dynamic
processes, which may be due to object motion dynamics that are inconsistent
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with the model used.

6.3 Online learning of the global appearance
model

Lee and Kriegman [51] use a manifold, i.e. a set of subspaces, and a transi-
tion matrix. Each subspace models the local variations in the appearance of
an object. The transition matrix models the probability of moving between
two subspaces. Learning in this case involves finding the subspace that best
explains the query object and then updating all the subspaces. A drawback
of this method is initialization which requires an offline learnt generic manifold.

The density mixture method used by Jepson et al. [39] is closely related to
learning a set of manifolds. A disadvantage of this method is the fixed num-
ber of components in a mixture, three in this case, that must be specified
in advance. As a result, it implicitly assumes that an object may have a
known number of stable appearances. Zivkovic [94] presents an improvement
to density mixture models which selects the optimal number of components
in conjunction with estimating the parameters of those components. To our
knowledge this extension has not been applied to learning of object appearance.

Kalal et al. [43] uses random forests to learn the appearance of objects. This
class of machine learning algorithms is robust to labelling noise. Moreover,
they are computationally efficient both during training and classification [72].
Empirical results by Statnikov et al. |[78] indicate that support vector machines
(SVMs) outperform random forests at least in microarray-based cancer clas-
sification. In addition, SVMs and boosting outperform a number of methods
when learning in a high-dimensional space. Thus, we use SVMs to learn the
appearance of objects in this thesis.

6.3.1 Support vector machines

Support vector machines are machine learning algorithms that seek to find
a hyperplane (or a line in two dimensions) that optimally separates a set of
training examples into two classes. Optimality means that the hyperplane is
as far as possible from the closest sample of both classes [32]. Given a set of
N training examples

{x;,y;} where y;€{-1,1}, x; e XCR” i=1,...,N (6.3.1)
the hyperplane is defined as

wW-x+b = 0 (6.3.2)
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where w is the normal of the hyperplane and % is the shortest distance be-
tween the hyperplane and the origin.

The hyperplane divides the data set such that each sample {x;,y;} satisfies
either one of the following constraints:

w-x;+b> 1-& for y;= 1 (6.3.3)
w-x;,+b<—-1+4+¢& for y,=-1 (6.3.4)
&>0 i=1,2... N (6.3.5)

The slack variables &; allow for some misclassification, while punishing them,
in order to achieve the optimal solution. Training a support vector machine
means determining the parameters w and b that solve the following optimiza-
tion problem:

N
.1 2
min o |w]| +C;&, (6.3.6)
such that

The larger the value of C' the more the misclassifications are punished.

The Lagrangian formulation of the above optimization is required to yield the
simpler convex and quadratic optimization for which optimized solvers exist.
This is achieved by combining the objective function and the constraints to
form a new objective function:

=—||w||2+02& ZazyzWXz+b—1+5z Zmé}, (6.3.8)

=1 =1

where «; and p; are Lagrangian parameters. The objective function must be
minimized with respect to w, & and b, and maximized with respect to «; and
Wit =1,2,..., N. At the optimal, the following must hold:

oL

ow 0 = w= ;Oéiyixi, (6.3.9)
g?:O = C:ai_‘_:ui’ i:172>"'aN7 (6310)
oL N

F Zo‘i% =0 (6.3.11)
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Substituting (6.3.9), (6.3.10) and (6.3.11) into (6.3.8) and simplifying yield the
simpler optimization problem given by

N 1 N N
) P0G Yi Y Xi X | 6.3.12
such that
N
2ot =0, (6.3.13)
i=1
OSOéiSC, i:l,Q,...,N. (6314)

A sample x; with a Lagrangian multiplier «; such that 0 < a; < C'is a support
vector. If 0 < a; < C then the support vector is on the margin. A sample x;
with a weight o; = 0 is correctly classified and does not affect the hyperplane.

The kernel trick is used in order to train an SVM that nonlinearly separates
data. The first step of this trick is the assumption that there exists a function
¢ : X — F that maps the input space X into a high-dimensional space F
within which the data is linearly separable. Moreover, the inner product must
be defined for objects in F. This is particularly important given that the
linear SVM objective function (6.3.12) is defined in terms of inner products.
The power of the trick is the realization that it is not necessary to know the
functional form of ¢(x). It is only necessary to know a function k(x,y), referred
to as a kernel, defined in X such that

k(x,y) = o(x)-¢(y), xy€AX. (6.3.15)

The kernel used when the original data is linearly separable is the linear kernel
k(x,y) = x-y. Another common kernel which is used in this thesis is the radial
basis function (RBF)

k(x,y) = e 2z, (6.3.16)

In our case we want to train the support vector machine using samples from
the same class. The goal is to obtain a function f(x) that demarcates a region
S € X in the input space representative of the training data such that

f(x)>0, ifxeS
f(x) <0, otherwise. (6.3.17)

The function ¢(x) transforms the input data into F where a hyperplane opti-
mally separates the data from the origin. Thus the origin in F represents all
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inputs that do not belong to the same class as the training data. Scholkopf et
al. [74] derive the optimization problem

N
. 1 9 1
— — ;i — b, 6.3.18
min - Sfwl + VN;& (6.3.18)
subject to

where € = {£1,&,...,&xn} is a set of slack variables, b is the offset of the hy-
perplane and v € (0, 1) is a parameter chosen by the user. Scholkopf et al. [74]
prove that v is an upper bound on the fraction of outliers and a lower bound
on the fraction of support vectors.

We could proceed in the same fashion as for the binary classifier and that
would imply batch learning. In our case, however, the object appearance must
be learnt online because training samples are provided one at a time. Cauwen-
berghs and Poggio [17] present an exact solution to incremental training of
two-class SVMs. Davy et al. [25] extend this method to online training of
the one-class SVM. The framework allows learning and un-learning of a single
example at a time. The extension uses a fixed window of training examples
in a sense that when a new sample is used for training the oldest sample is
removed from the model. The fixed window is a drawback as it means that we
assume that earlier appearances will not reappear.

The optimization problem in its current form was derived with batch process-
ing in mind. Kivinen et al. [48] derive an equivalent objective function by
considering classification as a risk minimization problem. The resultant opti-
mization problem is solved using stochastic gradient descent, which considers
one sample at a time to find the optimal point and essentially results in online
learning. This is in contrast to classical gradient descent where all samples are
required for one iteration. The latter is not always possible either because the
data set is too large to fit in memory or because the data arrives sequentially
and decisions must be made at the same time. Stochastic gradient descent is
used in this thesis.

6.3.2 Online one-class SVM

In this thesis we use stochastic gradient descent to train the one-class SMV as
derived by Kivinen et al. [48]. The first step is to transform the optimization
problem (6.3.18)—(6.3.19) into a form equivalent to the one by Kivinen et
al. [48]. This is accomplished by multiplying the objective function with a
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constant v:
v 1 &
Vr‘lllérzl) §||W||2 +ty ;fl — by, (6.3.20)
subject to
wo(x;) >b—¢&, &>0 i=1,2,... N. (6.3.21)

This changes the value of the objective function at the optimal point without
changing the optimal point. Note that at the optimal all the slack variables
&,1=1,2,..., N, satisfy

(6.3.22)

¢ — {b—w-aﬁ(xi), if x;, € NSV,

0, otherwise.

NSV is a set of support vectors that are not on the margin. If the slack variable
do not satisfy (6.3.22) the optimal solution has not been found. Given that
& > 0 for all 4, (6.3.22) may be written compactly as

& = max(0,b— w-o(x;)). (6.3.23)

Finally, we rewrite the optimization problem in the same form as that in
Kivinen et al. [48]:

N
1
rf}vll? g”WH2 + N ; max(0,b — w - ¢(x;)) — bu, (6.3.24)

which is equivalent to

N
rf’lvlgl g||w||2 + % ; max(0,b — w - o(x;)) — Nbov|.  (6.3.25)
The objective function is referred to as the regularized empirical risk. The first
term is the regularization function which is used to measure the complexity of
the function f(x). The second term is the empirical risk. Thus, given w and b,
and by extension the decision function f(x), and the set of training examples
S, the regularized empirical risk is

Rieg[w, b, 8] = g||w||2—|—Remp[W,b] (6.3.26)
N

Remplw, 8] = %Z[max(o,b—w-gb(x)))—]\fby} (6.3.27)
1 z]:Vl

= NZK(W, b, X). (6.3.28)
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The loss function ¢(w, b, x) punishes the incorrect classification of the sample x.

We are interested in online learning where a single sample x is presented at
a time. The goal is to find a sequence of parameters {(w,,b,)} "', hence a
sequence of decision functions f = {f1, fo,..., fn+1}. Here the initial parame-
ter set (wy, by) is arbitrary and (w,,,b,), n>1, is obtained after observing the

(n — 1)th training sample, that is

n—1
w, = Za?gb(xi) (6.3.29)
i=1
fa(x) = Wy (%) = by (6.3.30)
A superscript is used for the Lagrange multipliers o', ¢ = 1,2,...,n—1, to

emphasize that they evolve as more samples are used to train the SVM.

As a result of the interest in online learning we define the instantaneous ap-
proximation of the regularized empirical risk R,.,:

Rinst[wn7fnaxn] - Rreg[wn,bn,xn] (6331)
- [gHWHQ—i—E(wb,xn)] (6.3.32)

wW=w,,b=bn,
v
= [_“WHQ—Fmax(O, b—w-p(x,)) —bv (6.3.33)
2 W=wWn,b=bn
Thus ¢(w,,, b,,Xx,) is the loss the decision function incurs when it tries to pre-
dict whether the training sample x,, belongs to the same class as the historic
samples {X1,Xa,...,X,_1}-

At this point we introduce stochastic gradient descent which enables the ap-
proximation of the optimal solution using a single sample. Stochastic gradient
descent methods perform gradient descent with respect to the instantaneous
regularized risk [48]. In our case the update rules are given by

Wnpi1 = Wy — 1)y a_WRinst(wa b7 Xn) (6334)
w=w,,b=b,
0
bn+l = bn — Tn %Rinst(wa ba Xn) 5 (6335)
W=Wp,,b=bn,

where n, is the learning rate which may change with every received training
sample x,, at time n. Kivinen et al. [48] use the dynamic learning rate

T = — (6.3.36)

which has been shown to achieve the best convergence speed and satisfies the
conditions

i?ﬁ < 00, io:m — 00 (6.3.37)
i—1 i=1
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that are a requirement for convergence [13].

Evaluating the derivative in (6.3.34) and then substituting (6.3.29) into the
resultant expression we obtain the update formulae for o, 7 = 1,2,...,n,
which are given below (we omit the detail of their derivations because they are
the same as those obtained by Kivinen et al. [48]):

ottt = (1—wnpy)af, i=1,2,...,n, (6.3.38)
n+l __ Tn s if fn(Xn) < O,
R { 0, otherwise. (6.3.39)

The update rule for b, is different from the one derived in the work by Kivinen
et al. [48] and is therefore derived here in detail. We first evaluate the derivative
in (6.3.35):

_Rinst [Wa b> Xn]

34
5 (6.3.40)

_ {1—1/, if b, — w,,-o(x,) > 0,

- —v, otherwise.
W=w,,,b=b,

Substituting the above into (6.3.35) and using (6.3.30) yield the update rule
for b,,:

bn+1

by — (1 = v)n,, if fu(x,) <0,
{ bn + U, otherwise. (6341)

In summary, the update rules (6.3.38), (6.3.39) and (6.3.41) yield the stochastic
gradient descent solution to the one-class SVM. The use of stochastic gradient
descent converts a batch algorithm into an online one. Note that v and 7,
must be chosen such that 1 — v, > 0. This can be inferred from (6.3.38) by
noting that all Lagrange multipliers o',7 = 1,2,..., n, must be non-negative.

6.4 Conclusion

Standard tracking algorithms like the Kalman filter do not address what should
happen after tracking failure. This chapter proposed online learning of the
global appearances of objects which can then be used to re-identify objects af-
ter tracking failure. The chapter addressed three important aspects of online
learning of object appearances. The first one is the discriminative power of
the features used to represent objects. The HSV colour space is used mainly
because it is invariant to changes and shifts in light intensity. However, we
note that a combination of features is often more effective but conclude that
the HSV features are sufficient for our task.

The next aspect is deciding whether to use a sample for training or not. This
is because incorrectly labelled or segmented samples can impact the existing
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model negatively. Our choice relies heavily on the multiple hypothesis tracker.
If the score of a track exceeds zero the sample is used for training. This essen-
tially assumes that Kalman filtering yields the correct object bounding box.
The last aspect is the online machine learning algorithm. An online single class
support vector machine is used. The conversion to an online method was pos-
sible because the stochastic gradient descent is used to solve the optimization
problem.
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Chapter 7

System integration

The main goal of the thesis is to design a system that can detect and track
multiple interacting people. We have identified four components required for
the system which are object detection, filtering, data association and online
learning of object appearances. The goal of this chapter is to outline how
these components interact to achieve the complete system. This chapter also
addresses aspects of multiple target tracking such as the handling of merging
and splitting tracks.

Object detection is accomplished using background subtraction, in particular
mixture of Gaussian distributions [36], [79]. The OpenCV mixture of Gaus-
sian distributions implementation [16] is used in the thesis. This component
provides unlabelled measurements and given that multiple objects are being
tracked, a method is required to solve the measurement-track assignment prob-
lem. This is the data association problem and is solved using multiple hypoth-
esis tracking (MHT) [68], [77].

Filtering iteratively predicts the state of objects and then uses measurements
to update those estimates. In our case the linear Kalman filters are used mainly
because they simplify the MHT equations. Filtering assumes a one-to-one re-
lationship between the tracks and measurements, a task solved using MHT. In
fact, MHT sits between the prediction and update stages of the Kalman filter.
The Kalman filter used in the thesis is an extension of the one implemented in
OpenCV [16]. The last component of the system is online learning of object
appearances which is accomplished using one-class support vector machines
(OC-SVM) as implemented in OpenCV [16]. This component is used to re-
identify objects after tracking failure or when they reappear.

In integrating these components we consider the software development ap-
proach. Note that these components are to a large extend independent, there-
fore each one is represented with a class. A class is a data type that groups the
functionalities of a category of objects and their data. Consider the Kalman
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filter class as an example. The data includes the state of the object, the transi-
tion matrix and the prior error covariance matrix. The functionalities include
prediction and updating of the state and the prior error covariance matrix. A
variable of a class is referred to as an object.

This approach requires that additional classes be defined. The first one is
the Pedestrian class which defines what is being detected and tracked. Each
pedestrian is tracked using a Kalman filter and its global appearance is learnt
concurrently. As a result the Kalman filter and online learning classes are data
members of the Pedestrian class. The second class is the integer programming
problem solver (IPPSolver) class which poses the MHT problem as an integer
programming problem and then solves it. This class is implemented using
the Symphony mixed integer programming problem library [66]. The last
class is the single camera system (SCS) class which coordinates the interaction
between the aforementioned classes.

7.1 System classes: global view

This section gives an overview of the various classes and their interactions. We
start with the class diagrams which list the name of each class, its primary
function as well as the major modules and variables it requires to achieve this
function. These are shown in Figures 7.1, 7.2 and 7.3. A negative sign before
the modules and variables indicates that these are private to each variable of
the class and may not be accessed by other variables directly. A positive sign
before a module indicates that the module can be accessed by other variables
directly. In each class diagram the first row gives the name of the class, and the
second row summarizes the main function of the class. The third and fourth
rows contain the methods and data members, respectively, of the class.

Figure 7.4 provides the global view of the class interactions. The diagram
indicates that each SCS object must have one and only one of each of the
Data Association and Background Subtraction objects as data members. The
same holds for the relationship between the Pedestrian object, and the Kalman
Filter and Online Learning objects. This makes sense because each Pedestrian
represents what is being tracked as modelled by the Online Learning object, as
well as the track which is obtained using the Kalman Filter object. Therefore, if
the Pedestrian object exists then the corresponding Kalman Filter and Online
Learning objects must also exist. The Data Association object contains a list
of Pedestrian objects. As a result the Data Association object may exist even
when there are no Pedestrian objects. This type of relationship is referred
to as composition and is represented with a hollow diamond near the Data
Association class and a star near the Pedestrian class.
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BackgroundSubtraction

Single Camera System (SCS)

Detection of moving objects using Gaussian
mixture models. Elimination of blobs that are
too small. Shadow detection.

+getMeasurements()
-preProcessing()
-postProcessing()
-updateModel()
-shadowDetection()

Coordinate the interaction between
Background Subtraction and Data
Association objects. Display a set of tracks
on the screen.

+displayTracks()

-BackgroundSubtraction object
-DataAssociation object

-OpenCV MoG object

Figure 7.1: Background Subtraction and Single Camera System class diagrams.

Integer programming problem solver
(IPPSolver)

DataAssociation

Represents the MHT problem as an integer
programming problem and then solves it.

Implements data association using track-
oriented multiple hypothesis tracking.

+solveMHTProblem()

-Symphony IPP library object

Online Learning

Implements the one-class support vector
machine (OC-SVM). Batch learning is used
instead of online learning so that the
classifier is trained from scratch every time
a new sample is received.

+getValidTracks()
-trackConstruction()
-trackManagement()
-trackClustering()
-hypothesesMerging()
-detectAndHangleMerges()
-detectAndHandleSplits()
-reldentification()

-IPPSolver object
-List of Pedestrian objects

+trainClassifier()
+evaluateClassifier()

-OpenCV OC-SVM object

Figure 7.2: IPPSolver, Online Learning and Data Association class diagrams.
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Kalman Filter

Pedestrian

Fulfills the state estimation function.

+predictBox()
+updateBox()
+initializeFilter()

-posteriorStateEstimate
-priorStateEstimate
-priorStateErrorCovMatrix
-posteriorStateErrorCovMatrix
-transitionMatrix
-measurementMatrix
-measurementErrorCovMatrix
-processErrorCovMatrix

Represents what is being tracked as well as
the track itself.
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+createPedestrian()
+deepCopyOfPedestrian()
+predictBox()

+updateBox()

+displayTrack()
+measurementMatchesAppModel()
-updateTrackScore()
-updateAppearanceModel()

-KalmanFilter object
-OnlineLearning object

Figure 7.3: Kalman filter and Pedestrian class diagrams.

KalmanFilter
4
1
Pedestrian *—<1> DataAssociation (1—0 SCS
1 1 1
i} 3 b
OnlineLearning IPPSolver BkgrndSubtraction

Figure 7.4: The interactions between the system classes.

7.2 Flow diagrams: some details

The interactions between the Single Camera System (SCS), Background Sub-
traction (BS) and Data Association (DA) classes are simple. The SCS receives

a frame and then passes it to the BS object. This object returns a list of mea-
surement bounding boxes which, along with the current frame, are then passed
to the DA object. This object returns a list of valid tracks to the SCS object
which are then visualized. Figure 7.5 provides the graphical representation of
this process. Note that the class that is responsible for a particular function

is highlighted in bold letters in the corresponding flow diagram block.
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Get frame. Get measurements. Get a set of tracks. Display the tracks.
(SCS) /"1 Bs) ™ (DA) ™| (scs) ~®

Figure 7.5: The high level functions of the detection and tracking system.

Measurements, .
input frame. Track construction. —¢

Merge hypotheses.

ValidTracks(): Compile |
@4— < Track management.

a list of tracks.

Figure 7.6: Design of the main data association function: getValidTracks().

Most of the processing is done through the DA class and we provide additional
details on its implementation. The DA class diagram in Figure 7.2 indicates
that only the function getValidTrack(), preceded by a positive sign, may be
used by clients to interact with a variable of this class. It is the main function
and Figure 7.6 shows its flow diagram.

The track construction module evokes functions that detect merges and splits.
Most importantly, it implements the multiple hypothesis tracking algorithm.
Also, it uses every measurement to try to re-detect tracks. See Figure 7.7 for
the graphical representation and the order in which these functions are per-
formed. Note the use of the notation Pedestrian:KalmanFilter in the block
responsible for the construction of the track-measurement association matrix.
In this case it indicates that some aspect of the function is performed using a
Kalman filter object which is tied to a Pedestrian object. This also emphasizes
that the DA object which performs track construction does not have a direct
relationship with the Kalman filter as shown in Figure 7.4.

The class that has not featured in our diagrams is the IPPSolver class. It is
involved in compiling a list of tracks that must be returned to the SCS object
which then displays them on the screen. Figure 7.8 shows where the TPPSolver
class fits in this process. Note that it is involved only when all the frames in
an MHT window have been processed. Otherwise validated tracks with the
highest scores, and therefore most likely tracks, are chosen and returned to the
SCS.
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Measurements
and input
frame.

f—

Fill track-measurements
association matrix.
(Pedestrian:Kalman Filt
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er)

v

'

Detect and handle splits.

Detect and handle merges.

v '

Hypothesis construction.

@4— (Pedestrian:Kalman Filter, [«

Pedestrian :0C-SVM, MHT)

Attempt pedestrian re-
identification. <
(Pedestrian:0C-SVM)

Figure 7.7: Some details into the track construction process.

List of track
hypotheses.

Processed a
MHT
window?

True False

Find most likely track
hypotheses.

Cluster hypotheses.

A \ 4

| Return list of optimal track
"| hypotheses.

Solve each cluster.
(IPPSolver)

4,@

Figure 7.8: The processes involved in compiling a list of valid tracks.

7.3

This section considers topics that do not fit into any of the preceding chapters
but form part of the system. An example of this is detecting and handling
merging and splitting events which are achieved using measurements from
background subtraction, predictions from the Kalman filters, and the learnt
appearance models. The section also considers topics that are directly related
to a previous chapter but their exact implementation details were deemed to
be irrelevant at that point. The case in point is the choice of parameters, in
particular € in evaluating the quality of tracks in Chapter 4.

Implementation details
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7.3.1 Merging and splitting tracks

Multiple targets in the environment are likely to interact. Given the use of
background subtraction to provide measurements, these interaction will result
in merging and splitting of blobs. The multiple hypothesis tracking (MHT)
algorithm can handle short-lived interactions mainly because of the use of the
validation region which is used to eliminate unlikely track-measurement asso-
ciations. When two objects merge, the bounding box of the resultant mea-
surement will be too large to associate with either one of the merging tracks.

In the case of splitting tracks, it is clear that the measurement bounding boxes
of splitting objects will eventually become much smaller than the predicted
bounding box of the merged track as the targets walk away from each other.
Short-lived in this case means that objects should merge and then split before
their tracks are deleted because they have not been detected in a given num-
ber of consecutive frames. This will not always be the case. As a result we
explicitly detect and handle the merges and splits in this thesis. Once splits
are detected, the splitting objects may be re-identified.

At this point we assume that we can detect both merges and splits. Once
merging conditions are satisfied all the objects that are involved in the merger
are marked to indicate that they may not be used for re-identification. This
is required to deal with the weakness in the colour histograms that is used to
represent the appearance of objects. Recall that the colour histogram loses
shape information and the appearance of the merged object may be similar to
either one of the merging objects. The merged object is automatically used
to initialize a new track as per the MHT algorithm. When objects split, all
tracks of objects that merged are marked to indicate that they may be used
for re-identification.

Our system handles a single merger and split at a time and so it is enough to
maintain a boolean variable for each track that indicates whether that track
may be used for re-identification or not. In the case where multiple objects
may merge and multiple mergers may take place, a more complex scheme is
required such that each merger can be uniquely identified. A track involved
in a merger must record the identity number of that merger. When an object
splits, only tracks that carry the identity number of the splitting object may
be cleared to be used for re-identification purposes. The rest of this section
outlines the conditions that must be satisfied in order to conclude that either
merging or splitting is taking place.
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7.3.1.1 Detecting merges

This section outlines the conditions that indicate that a merger between two
or more targets has taken place. A set of N tracks with predicted bounding
boxes By, Bs, ..., By are involved in a merger if:

e forallm=1,2,..., N, there exists a k € {1,2,..., N}, n # k, such that
B7LmBk$é®;

e they do not share a measurement in the given MHT window,

e There exists a measurement M such that B, N M # () for all i =
1,2,..., N.

The first condition merely states that if two objects merge, then their predicted
bounding boxes must intersect. The second condition is used to ignore tracks
from the same MHT tree because they represent the same object. It also takes
into account the fact that each measurement may be used more than once.
Recall that every measurement is used to initialize a new track, hence to track
a new object. The last one simply states that we should be able to find a
merged blob.

7.3.1.2 Detecting splits

Conditions that indicate that a tracked object O has split into two or more
objects are that:

e the track of object O is not associated with a measurement,

e the predicted bounding box of object O intersects two or more measure-
ments,

e the ratio of the total area of the measurements to the area of the predicted
bounding box of the object O exceeds a preset threshold which is 0.7 in
the experiments.

7.3.2 Gaussian mixture models

We made the decision to use Gaussian mixture models to detect moving ob-
jects. This, however, is only one component of the larger object detection
stage. In this subsection we outline the preprocessing and post-processing
functions that we use to improve the results obtained using Gaussian mixture
models. We also consider the actual implementation of the condition that a
pixel value matches one of the densities in the mixture.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SYSTEM INTEGRATION 61

7.3.2.1 Preprocessing

The input frame is converted from the RGB colour space to the hue-saturation-
value (HSV) colour space. The global histogram equalization is performed on
the value channel of the HSV space. Finally the image is smoothed using a
Gaussian filter.

7.3.2.2 Post-processing

The first step of the post-processing stage is the detection and removal of
shadows using the algorithm developed by Cucchiara et al. [23]. Given the
input frame I and the background image B both in the HSV colour space, a
pixel F(x, y) in the foreground mask F is marked as a shadow if the following
conditions are satisfied:
1IV(z,y)
< —17 < 7.3.1

=By = (73

’IH(I‘?y) - BH(x>y)’ < TH,

IS('I’ y) - BS(%?J) < Ts,

where 0 < a < § < 1 and the superscripts indicate the channel of the HSV
colour space used. The darker the shadow the smaller the value of a. The
value of f is used to increase robustness to noise because the lightness of the
frame cannot be similar to that of the background image.

Shadow detection and removal is followed by median filtering which fills in some
of the missing foreground regions. Thereafter erosion and dilation are applied
in that order with erosion removing some of the noise and dilation growing the
foreground region. Median filtering and dilation can join two regions of the
same object. Finally, connected components analysis is performed. Connected
components that comprise at least a certain number of pixels are retained
as candidate pedestrians. The smallest rectangle that encloses a candidate
pedestrian is returned as a measurement.

7.3.2.3 Defining a match

Given a Gaussian density function N (i, 0?), a greyscale pixel value X belongs
to this density function if

| X —ul < Tio, (7.3.4)

where T = 2.5 is used in Grimson and Stauffer [36]. This choice of T, ensures
that the area under the density function within the given interval is just over
ninety-nine percent of the total area. In our case we are using colour images
and one approach to implementing this matching condition is to assert that it
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is satisfied by each channel. The approach used in the OpenCV library, and
in this thesis, is to re-formulate the distance as a y? variable:

(X -2 (X —p) < T, (7.3.5)

where Y is the covariance matrix. Here T, = 12.8 is read off the y? table such
that the degrees of freedom, which correspond to the number of channels, are
three and the area under the x? density function is 0.995.

7.3.3 Multiple hypothesis tracking

The multiple hypothesis tracking problem is solved using a moving window.
That is, the problem is formulated and solved using N+1 frames ¢, t+1, ..., t+
N, and then for frames t+ D, t+D+1,...,t+ D+ N, and so on. Here D < N
is the number of frames the window is moved.

We now consider the task of quantifying the quality of a track. Only one
term of the track quality score can contribute positively to the score given a
measurement. We rewrite the formula here for convenience:

My )\ +1/TQ)

L =In S+ :
>\N<>\ + ; )\N‘27T ek—l—tkSZk)]i

—3 Z(sz — Hya) (e + tSar) ™ (zar — Hikip) (7.3.6)
k=2

A e~ Cet1/m)(T—v) | 1

+In 0

As + =
70

The only term that can contribute positively to the score is the second term
of the formula. To ensure that this happens, the parameter ¢, must be chosen
such that:

Ao~ (et1/molin
fler) = |In : > 0. (7.3.7)
An[2m (e + S |2 |, _,

A simplifying assumption is made that €, = ¢xI where I is an identity matrix
of the same dimension as S; and ¢y € RT. Moreover, ¢ € RT is chosen such
that f(ex) = ¢ > 0. The choice of ¢ is not very important because its impact
is offset by the third term in the quality score formula. In the implementation
¢ = 1 is used. At this point we can solve for ¢,:

IR
€= — Ee%@ (7.3.8)
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7.4 Conclusion

This chapter integrates the background subtraction, Kalman filter, the multi-
ple hypothesis tracking, the integer programming problem solver (IPPSolver)
and the one-class support vector machines (OC-SVM) introduced in previ-
ous chapters to yield a complete system. These methods are represented as
classes which facilitate modular design. The Pedestrian and the Single Cam-
era System classes were introduced to complete the system. The Pedestrian
class represents what is being tracked as well as the the track itself. The
Single Camera System coordinates the interactions between the Background
Subtraction and Data Association classes.

Class and flow diagrams were used to demonstrate the interactions between
the various classes and functions. The class diagrams were used to summarize
the services the classes can provide (functions) as well as the variables required
to provide those services. Moreover, we provided the high level interactions of
the classes. Flow diagrams were used to provide more details and to highlight
where the IPPSolver and OC-SVM classes fit in the system.

This chapter also addressed parts of the system that do not fit into any one
method or were deemed to be peripheral to a method section. Detection and
handling of merging or splitting tracks do not belong to any one method section
as their implementations use the Kalman filter and the OC-SVM methods. We
also outlined the pre-processing and post-processing stages of the background
subtraction method.
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Experiments

In this chapter we discuss the experiments conducted to test the ability of our
system to handle various tracking scenarios, and the results. These include the
re-identification of people, and tracking of two people walking side-by-side and
crossing paths. We also provide examples of tracking failures in the system.
One such case is the failure of the re-identification function which is attributed
to the use of colour features. The datasets collected by Baltieri et al. [5], [4]
and Rasid and Suandi [67] are used. These videos were chosen because they
met the assumptions of the system which are that each pedestrian occupies
a small fraction of the frame, the camera looks down on the pedestrians and
the only moving objects are pedestrians. We tried to make optimal decisions
based on sound theoretical arguments when choosing the components of the
system and the results in this chapter should be viewed as more of a proof of
concept.

The intersection between the estimated and the ground truth bounding boxes
is used as the basis for performance measurement. In particular, we use the
Jaccard similarity coefficient:

1S NG|

J5.6) = 1556 (8.0.1)

where S and G are the system and ground truth bounding boxes, respectively.
|S] is the cardinality of the set S which is interpreted as the area of the bound-
ing box. A person is said to be correctly tracked in a given frame if the Jaccard
similarity coefficient (JSC) exceeds 0.65.

In order to quantify the performance of the object detection component of
the system we use the number of true and false positives and negatives. The
number of true positives Nrp is the number of instances that the system and
ground truth bounding boxes for which the JSC exceeds the threshold. The
number of false positives Npp is the number of instances that the system indi-
cates that an object is present when the ground truth indicates otherwise. The
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number of true negatives Nry is the number of frames where both the system
and the ground truth indicate that there is no object. The number of false
negatives Npy is the number of instances where the ground truth bounding
box has no matching system bounding box. These quantities are not measured
at a pixel-level because we only care about how much of the object is within
the bounding box that is returned by the system.

The ground truth used in this thesis was generated using the MATLAB toolbox
developed by Dollar [27]. We manually drew the bounding boxes of pedestrians
in a few key frames. The toolbox then interpolated the bounding boxes in the
other frames. We could then adjust individual bounding boxes that we were
not satisfied with. The track length and the mean square error normalized
using the track length are also used to measure the performance of the system.
The latter is the normalized mean square error (NMSE).

A set of experiments is performed for the three scenarios. The first one involves
finding an optimal parameter T" for the background subtraction method. For
a given pixel, NV of the M sorted densities in the mixture with weights w;,: =
1,2,..., M represent the background if

N
j=1

where T is the minimum fraction of the data that should account for the back-
ground.

In quantifying the performance of the background method we can use the
receiver operating characteristic (ROC) curve or the precision-recall curve.
The ROC curve plots the true positive rate (TPR) versus the false positive
rate (FPR). These quantities are defined below:

Nrp

Recal =TPR = ——m—F——— 8.0.2
Nrp + Npn ( )

Npp
FPR = ———— 8.0.3
Npp + Nrn ( )

.. Nrp
Precision = Pre = ——M——. 8.0.4
Nrp + Npp ( )

The ideal point within the ROC space is TPR = 1.0 and FPR = 0.0. In the
precision-recall space, the ideal point is PR = 1.0 and Pre = 1.0. We note
that false detections will result in false tracks which are handled automatically
by the multiple hypothesis tracking algorithm. So, we could choose the point
(TPRy, FPRy) over the point (TPRs, FPRs) as long as TPR;>TPR,. This
is the case even when FFPR; > FPR,. As a result we use the precision-recall
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curve to select the optimal parameter. Finally, we perform experiments that
test the ability of the system to handle various scenarios.

The following parameters are used unchanged throughout the experiments.
These correspond to background subtraction, the Kalman filter, learning the
appearance of object and the multiple hypothesis tracking algorithms:

1. Background subtraction:

a) threshold on the definition of a match: 7" = 12.8 which ensures that
the area under the x? distribution of three degrees is 0.995.
2. Kalman filter:

a) the small dynamic process matrix multiplier: ¢ = ¢=%2%,

b) the measurement covariance matrix: Q = 50 * I, T € R™4,

c¢) the initial prior state error covariance matrix:

00 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 50 0 0 0 0 0
P 0 0 0 5 0 0 0 0
°~ 1 0o o 0 0 10 0 0 0
0 0 0 0 0 10 0 0
00 0 0 0 0 5 0
0 0 0 0 0 0 0 50

3. Learning object appearances:

a) Gaussian kernel parameter: v = 0.125,

b) adaptive upper bound on the ratio of misclassification: v =
where N is the number of training examples.

1
N

4. y? threshold:

a) A = 1.650 which implies a cutoff probability of 0.80. A x? value less
than the threshold implies that the deviation of the measurement
and the predicted state can be explained by chance alone as opposed
to incorrectly modelled dynamics, for example.

5. MHT parameters:

a) Ao =25 x107% Ay =35x107",
b) )\s 208, To = 50.
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Any changes to the parameters when performing an experiment will be high-
lighted before the results of that experiment are given. The values of the
parameters Ay and Ay might seem to be too small but consider Ay which is
the number of false detections per unit time per unit area, that is:

N N
N7 (704 = 30) x (564 — 70) x NF
1
_ 8.0.5
(704 — 30) x (564 — 80) x NF (8.05)
= NF = 854654 ~85 (8.0.6)

where 30 and 70 are the minimum width and height of a pedestrian, respec-
tively. The frame is of size 564 x 704. Here we fix the number of false detections
(N) and vary the unit time (NF') which is the number of frames. In this case
we expect one false detection per unit area every 85 frames.

8.1 Scenario 1: two people walking together

The first scenario tests the ability of the system to track two people walking
side-by-side. The first experiment that is performed is to determine the op-
timal parameter T for the background subtraction method identified in the
introduction. Figure 8.1 shows the changes in the TPR, precision and dis-
tance to the ideal precision-recall point as the parameter 7' changes. The
value T' = 0.65 was used in the experiments because it resulted in the highest
true positive rate. In the second experiment, the system is used to track the
two people as they walk across the scene. In this case re-identification is not
used and the tracks are not fragmented as shown in Figure 8.2.

Finally, Figure 8.3 shows the tracks generated by the system in black as well as
the respective ground truth tracks in red. Pedestrian 1 was correctly tracked
for 78 of the 79 frames he was in the scene with an NMSE of 3.79 pixels.
Pedestrian 9 was correctly tracked for 75 of the 77 frames he was in the scene
with NMSE of 4.55 pixels.
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Figure 8.1: Changes in TPR, precision and distance to the ideal point as the param-
eter T' changes.

Figure 8.2: Tracks of two people walking side-by-side generated by the system.
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Figure 8.3: System generated tracks in black along with the ground truth tracks in
red.
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Figure 8.4: Changes in TPR, precision and distance to the ideal point as the param-
eter T' changes.
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RICVidegil-JPEG 3

Figure 8.5: Testing the re-identification abilities of the system.

8.2 Scenario 2: re-identification capability

In this section we test the re-identification ability of the system. The first ex-
periment that we perform is to determine the optimal value of the background
subtraction parameter 7" as explained in the introduction. Figure 8.4 shows the
changes in the TPR, precision and distance to the ideal precision-recall point
as the parameter 7' changes. The values of 7" between 0.5 and 0.75 yield the
same value for the true positive rate. However, the values between 0.6 and 0.75
yield better precision rates. As a result, 7' = 0.65 was used in the experiments.

In the second experiment, a tracked pedestrian is completely occluded by a
pillar and the system manages to re-identify him when he reappears and extend
his tracks. The results are shown in Figure 8.5. The pedestrian then disappears
behind the third pillar and is not re-identified when he reappears. This is due to
the dark shadow in the region which changes the appearance of the pedestrian.
This highlights the reality of re-identification which is that an object can only
be re-identified if its current appearance is similar to one of the previously seen
appearances. Finally, Figure 8.6 shows the track generated by the system in
green as well as the ground truth track in red. The system successfully tracked
the pedestrian in 38 of the 48 frames with an NMSE of 9.72 pixels which is
slightly higher than the NMSEs in the first scenario. This is due to the jump
in the track to which we referred above.
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RICVidegil-JPEG 3

Figure 8.6: The track obtained using the system in green along with the ground
truth in red.

8.3 Scenario 3: two people crossing paths

In this section we test the ability of the system to track two pedestrians whose
paths cross. The first experiment is to determine the optimal value for the
background subtraction parameter 7. Figure 8.7 shows the changes in the
TPR, precision and the distance to the ideal precision-recall point as the pa-
rameter 7' changes. The graph indicates that values of 7" between 0.55 and
0.70 yield the same results for all measures. A value of 7' = 0.65 is used in the
experiments to match those used in previous experiments.

The second experiment demonstrates how the system handles merging and
splitting tracks. Figure 8.8 shows the tracks before merging takes place. The
pedestrians are tracked individually for three more frames once merging has
taken place as shown in Figures 8.9, 8.10 and 8.11. This is the case even though
the pedestrians are not detected as separated entities in those frames. Recall
that a track that is not associated with a measurement in a given number of
consecutive frames, in this case three, is assumed to have left the scene and
is deleted. This is used to manage the number of hypotheses in the MHT
tracking algorithm.

Figure 8.12 shows that the group is being tracked as a single object. This track
was created when the two pedestrians first merged but had to be supported
by additional measurements to ensure that it is not a false track. Figure 8.13
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Figure 8.7: Changes in TPR, precision and distance to the ideal point as the param-
eter T' changes.

shows that the group is still tracked as a single object even though the pedes-
trians have finally separated. It will only be deleted after three consecutive
missed detections. At this point the splitting event has been detected and the
measurements are used for re-identification. The pedestrians are successfully
re-identified as shown in Figure 8.14.

Finally, Figure 8.15 shows the system generated tracks along with the asso-
ciated ground truth tracks in red and magenta. Pedestrian 4, facing to the
left, was correctly tracked for 51 of the 53 frames he was in the scene with an
NMSE of 8.89 pixels. Pedestrian 27, facing to the right, was correctly tracked
for 30 of the 31 frames he was in the scene with an NMSE of 6.91 pixels. Note
that the system tracks overshoot the ground truth tracks substantially when
going into the merger. This is because tracks are retained for at most three
consecutive frames even though the tracked objects are not detected in those
frames as shown in Figures 8.10 and 8.11. This can be avoided by not record-
ing the bounding box of objects if it is determined that they are involved in a
merger. This should not be difficult because tracks that have merged cannot
be associated with a measurement.
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Figure 8.8: System generated tracks in green and yellow for pedestrians 4 and
27, respectively, before merging takes place.
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Figure 8.9: System generated tracks in green and yellow for pedestrians 4 and
27, respectively, in the first frame of the merging event.
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Figure 8.10: System generated tracks in green and yellow for pedestrians 4 and
27, respectively, in the second frame of the merging event.

Figure 8.11: System generated tracks in green and yellow for pedestrians 4 and
27, respectively, in the third frame of the merging event.
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Figure 8.12: The track of the merged object in green is finally displayed four frames
after the merging event because it has received enough supporting measurements.
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Figure 8.13: The pedestrians have split but are still tracked as single object.
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Figure 8.14: Both tracks are successfully re-identified after the splitting event.

-

Figure 8.15: System generated tracks and the corresponding ground truth tracks in
red and magenta.
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Figure 8.16: A case where the system fails because the two pedestrian have similar
appearances.

8.4 System failure

This section demonstrates a scenario where the system fails because of the
similar appearance of pedestrians. In Figure 8.16 the pedestrian on the right,
the one leading, was occluded by the middle pillar when the pedestrian on
the left, the one lagging, entered the scene. This meant that the track of the
leading pedestrian could be used for re-identification. As a result, the lagging
pedestrian was mistaken for the leading pedestrian because their appearances
are similar. This can be resolved by using a different or additional feature
that preserves the shape information of the pedestrian such as the histogram
of orientation gradients. In this case, re-identification can also be improved
by using a rule that humans can only move with finite speed and thus cannot
jump in position from one frame to the next.

8.5 Sensitivity to MHT parameters

In this section we investigate the sensitivity of the results to the MHT pa-
rameters which are \g, \g and A\y. For convenience, we rewrite the track score
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The re-identification capability of the system is turned off. A video with a
single person following a curved path is used in this set of experiments.

8.5.1 Parameter: )\,

This parameter is involved in three of the four terms of the track score formula
(8.5.1). In the first term, which is the entrance score, its impact should be
minimal as long as that term evaluates to a negative value. Its impact on the
other two terms is not clear as a large value for the parameter incurs a large
discount due to the negative exponential. This parameter is also involved in
the cost of terminating a track:

B =—1In(1+ \m). (8.5.2)

A larger value of \; should mean a higher cost of terminating a track. How-
ever, this term kicks in when there are missed detections which are the unclear
cases stated above.

The parameter is varied from 0.05 to 0.95 in steps of 0.05 while the other
parameters are fixed (\g = 25 x 107, Ay = 35 x 107, 75 = 100). The
results indicate that the track either exists or it does not exist. Values of
the parameter between 0.45 and 0.95 yield exactly the same results when we
consider the track length (47) and the mean square error (4.8154) which is
normalized using the length of the track. From 0.15 to 0.4 the track length
remains the same but the mean square increases slightly to 4.9678. The system
is not able to pick up the track for A\, = 0.05 and A\, = 0.10.

8.5.2 Parameter: )\

This parameter is involved in determining the entrance score of a track. The
larger it is, the smaller the cost of initializing a track and the easier it is to
initialize new tracks. There is also the constraint

1
A An(1
0 = N( * )\87—0

) (8.5.3)
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Constraint | Track ID | Track length | MSE | Time(sec)
Satisfied 2 47 4.7954 75
Violated 1 5 44 4.8975 371
Violated 2 7 44 4.8803 6326

Table 8.1: Results when constraint (8.5.3) is satisfied vs when it is violated.

which enforces the assumption that a single measurement is not enough to
conclude that a track exists. A new track is given a negative entrance score
and subsequent measurements associated with the track should drive the score
to exceed zero, hence confirming that the track is valid. We perform an ex-
periment to determine what happens if this constraint is violated.

The first experiment we perform is to determine what happens when the con-
straint mentioned above is violated. In the first experiment the parameter
values \g = 25 x 1078, Ay = 35 x 1072, \;, = 0.65 and 75 = 100 are used. In
the second experiment \y = 95 x 10~% is used. The only notable difference is
that it takes longer to process a video sequence. This does indicate how easy
it is for tracks to be confirmed. A large number of confirmed tracks implies
a high number of variables when the data association problem is converted to
an integer programming problem. This implies a higher computational cost.
Table 8.1 summarizes the results.

Making Ao very small exposed a weakness in our system. A very small value
of this parameter means a very high cost must be paid to initialize a track.
Hence, it is difficult for tracks to be confirmed. Consider the example in
Figure 8.17 with two tracks that have not been confirmed. Assume that three
frames later all the track hypotheses are still not confirmed. The expanded T2
tree resembles the left branch of the expanded T1 tree shown in Figure 8.18.
This leads to an explosion of track hypotheses. It is alleviated when most
of them are confirmed and the data association problem is solved but then

T1 T2

Figure 8.17: An example where one tree can replicate a subset of another tree.
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Figure 8.18: An example where one tree can replicate a subset of another tree.

it starts all over again. Thus, the computational and memory costs increase
but the final track is of the same quality when we consider the track length
and the normalized mean square error. This problem may be resolved by
using measurements that have not been associated with tracks to initialize
new tracks.

8.5.3 Parameter: \y

This parameter is involved in two terms in the track score formula and the
larger its value is, the higher the expected number of false targets. The first
term is the track entrance score where a larger value means a higher cost of
initializing tracks. The second term is the only term that can contribute pos-
itively to the track score. In this case the impact of the parameter should be
greater when there are missed detections.

Table 8.2 shows the results obtained when Ay is varied. NF is the number of
frames, NMSE is the normalized mean square error and TTCT is the time to
confirm a track. In the TTCT column, the number in brackets is the frame
number in which the track was first detected. As the expected number of false
detections increases the quality of the track remains fairly stable as measured
using the NMSE and the track length. Also, note that it takes longer for tracks
to be confirmed. This is to be expected as increasing Ay should increase the
cost of initializing a track. The track cannot be confirmed when the unit time
drops below 14 frames.
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An(107?) | nF | NMSE | Track Length | TTCT | ID
35 | 85 | 4.8463 17 14(10) | 2
75 | 40 | 4.9128 17 16(10) | 2
195 | 15 | 4.8429 17 19(10) | 2
213 | 14 | 4.6171 14 23(13) | 5

Table 8.2: The impact of the Ay on the quality of the track. NF is number of frames,
NMSE is the normalized mean square error and TTCT is the time to confirm a track.

8.6 Analysis and conclusion

In this chapter a number of experiments were performed and analyzed to test
the different aspects of the system. Four data sets were used. The first data set
tested the ability of the system to track two people walking side by side. The
second and third sets tested the re-identification capabilities of the system. In
particular, the first of these two tested the ability of the system to recover from
occlusions. The second one tested the ability of the system to handle merge
and split events. The last data set was used to analyze the sensitivity of the
system to the MHT parameters.

The experiments also demonstrated two cases where the system fails which
are directly related to the colour features used. In the first case, the system
failed to re-identify a pedestrian when they re-appeared in the scene. This was
attributed to the darker shadow in the region the pedestrian walked into when
he re-appeared. This highlights the fact that objects may only be re-identified
if their current appearance is similar to one of their historical appearances. In
the second case a pedestrian was mistaken for another one because the two of
them had similar colour appearances. This highlights the weakness of colour
histogram features which is that they lose the shape information. This can be
overcome by using a combination of features.

Apart from when determining the sensitivity of the system to the MHT pa-
rameters, the same set of parameters was used for all the experiments which
suggests that the system is robust. The impact of the MHT parameters on
the track score formula is supported by the experiments. The system does not
seem to be sensitive to A¢ because results of the same quality are received for a
large range of values. However, \; can be so small that the cost of terminating
a track is so small that tracks cannot be confirmed.

Increasing the value of A\ so that the constraint \g < An(As + %) is violated
still yields good results when we consider the track length and the normalized
mean square error. However, the time required to process a video sequence
increases the more the constraint is violated. This makes sense because the
larger the value of the parameter, the smaller the entrance score and the easier
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it is for a track to be confirmed. This means that there is a large number of
confirmed tracks which translates to a high number of variables when the prob-
lem is converted to an integer programming problem. Making Ay very small
also increases the computational cost of the algorithm. However, it does not
affect the quality of the final track when the track length and the normalized
mean square error are used as quantitative measures.

Increasing the value of Ay increases the cost of initializing a track. However,
it does not have the same impact on the system (increased computational
cost) as decreasing the value of Ao, which also increases the cost of initializing
tracks. This is because Ay is also involved when there are missed detections
and serves to accelerate the decay in the track score. Increasing the value of
this parameter beyond a certain point results in tracks not being confirmed.
This is understandable because the parameter has a negative impact on the
only term that can contribute positively to the score.
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Conclusion

The goal of this thesis was to design and implement a system that can detect
and track multiple interacting pedestrians over a prolonged period of time.
Such a system is necessitated by the challenges due to the growing number
of closed circuit cameras in our cities, malls and airports. These networks of
cameras, though cheaper to install, are expensive to monitor. They also raise
issues of targeted surveillance. Automation of surveillance through the appli-
cation of computer vision algorithms can solve some of these challenges. This
is automated surveillance which involves detecting, classifying and tracking
objects, and understanding and describing their behaviours.

We focused on pedestrian detection and tracking. The components of the sys-
tem that were identified are object detection, motion estimation using filters,
data association, and learning of appearances of pedestrians. Object detection
is an important first stage of many computer vision applications because it
focuses the attention of subsequent stages on dynamic regions of the scene. A
number of object detection algorithms which include background subtraction,
optical flow and learning methods were identified and reviewed. The decision
was taken to use background subtraction which relies on the motion of objects
to detect them. It is comparatively computationally inexpensive. In particu-
lar, Gaussian mixture models are used to detect moving objects.

Long-term tracking is achieved using data association, filtering and online
learning of appearances of objects of interest. Data association is required be-
cause measurements from the object detection stage are not labelled and could
be from false targets. In our system data association is realized using multiple
hypothesis tracking (MHT) which uses information from a number of frames
to solve the measurement origination problem. Note that incorrect data asso-
ciation decisions can lead to fragmented or lost tracks. MHT is used because it
implicitly provides track initiation and management facilities. Moreover, data
association enables the use of filtering algorithms which essentially assume a
one-to-one relationship between tracks and measurements. Our system uses

83
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the Kalman filter for this purpose mainly because it makes the MHT equations
easier to evaluate.

Standard tracking algorithms like the Kalman filter can fail. Also, tracked
objects may be temporarily occluded or leave the area under surveillance and
then return. One approach is to initiate new tracks when any of these issues
occur. In our case, however, the one-class support vector machine (OC-SVM)
is used to learn the appearance of tracked objects and to re-identify those ob-
jects. Thus, tracks may be picked up and extended.

Last is object representation which comprises object shape and appearance.
Object shape is relevant to the Kalman filter and is modelled using a rectangle.
Object appearance modelling is required for online learning of appearances of
objects. The hue saturation value (HSV) colour histograms were used to model
the appearance. Colour features can be discriminative. However, they lose the
shape information and this emphasizes that a combination of appearance mod-
els is required to handle real-world conditions.

These components are represented as classes in the software development sense.
Moreover, they must interact in order to produce a complete system. This re-
quired the introduction of the Pedestrian, Integer Program Problem Solver
(IPPSolver) and Single Camera System classes. The Pedestrian class repre-
sents what is being tracked as well as the track itself. The IPPSolver converts
the MHT problem into an integer programming problem and then solves it.
The Single Camera System coordinates the interactions between the various
classes.

Three tracking scenarios were used to test the ability of the system. The first
one demonstrated the ability of the system to track two people walking side
by side which was achieved. In this case it is possible that one track steals the
measurement, of another track when the tracks are close to each other. This is
possible when the nearest neighbour tracker is used for data association. It is
also possible that the tracks drift towards each other which can happen when
the joint probabilistic data association method is used measurement to track
association.

The second scenario demonstrated the ability of the system to recover from
occlusions. The system was able to recover from the first occlusion event but
failed to recover from the second one. The failure was attributed to the darker
shadow of the region the pedestrian walked into when they reappeared. This
highlighted the weakness of re-identification. It shows that objects can only
be re-identified if their current appearance is similar to one of the historic ap-
pearances.
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The third scenario demonstrated the ability of the system to handle merging
and splitting events. Merging and splitting can be handled by the MHT tracker
if their duration is less than the MHT window (which is the number of frames
that must be processed before the data association problem can be solved).
However, we could not rely on this to happen every time and therefore these
are handled explicitly. The system handles merges and splits by detecting split
and then evoking re-identification. It was able track two people whose paths
crossed.

In addition to the re-identification failure in the second scenario, we demon-
strated another failure which is attributed to the histogram colour feature.
Colour features lose the shape information of objects. While a tracked pedes-
trian (A) was temporarily occluded, another pedestrian (B) with a similar
appearance entered the scene. Pedestrian B was mistaken for pedestrian A
and assigned the track history and ID of A. This highlights that a combina-
tion of features may be required for robust re-identification.

The qualitative performance of the system is good as can be seen from the
images in the experiments chapter. The performance was measured against
ground truth using the Jaccard index, track length and normalized mean
square error (NMSE). The Jaccard index quantifies performance at a frame
level by comparing the ground truth and system bounding boxes of a given
object. If it exceeds a preset threshold then the object is correctly tracked.
The system track length flags fragmentation issues when compared against
the ground truth track. The NMSE quantifies performance when the object is
correctly tracked. All these measures indicate that the system performs well
for all but the re-identification scenario. In this scenario the system failed to
re-identify a pedestrian thus negatively affecting the track length.

Finally, a set of experiments were performed to determine the sensitivity of the
system to the parameters of the MHT tracker. The experiments indicated that
the system returned similar results for a wide range of parameter values, hence
it is robust. The track length and normalized mean square error were used to
measure performance. The noticeable effect of different parameter values was
the computational time required to process the given video sequence and the
time required to confirm tracks. Increasing \g and decreasing Ay tend to de-
crease the time required to confirm tracks. Increasing Ay and and decreasing
Ao tend to increase the computational cost. All these support the analysis of
the track score function. The fact that the same set of parameters were used
in all experiments but the sensitivity analysis experiments indicate that the
system is robust.

There are improvements that can be made to the system. The first improve-
ment would be to use a number of features to represent objects. Colour fea-
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tures are discriminative but lose the shape information. This was highlighted
in one of the experiments when a pedestrian was mistaken for another pedes-
trian with a similar colour histogram. Complementing the colour histogram
with a histogram of oriented gradients can solve the mistaken identity problem.

Re-identification can also be improved by using rules. One such is that hu-
mans can only move with finite speed and therefore cannot jump in position
between frames. This could have solved the mistaken identity problem as well.

Another improvement would be to extend the system to handle multiple merges
and splits. Currently, the system can handle a single merge and split event
at a time. This is because once a merge event is detected all the track hy-
potheses are locked so that they may not be used for re-identification. All the
track hypotheses are unlocked and may be used for re-identification once a
split event is detected. All the components required to handle multiple merge
and split events are implemented in the current system. All that is required
is the data structure to maintain the multiple merges and manage the locking
and unlocking of the corresponding tracks.

A set of track hypotheses in the same tree was maintained separately when
transforming the track-oriented MHT problem into an integer programming
problem. This increased the memory requirements of the system but simplified
the implementation. We could optimize the implementation by using a tree
structure and using the current implementation for validation purposes.
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