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Abstract 

In plants, the raffinose family oligosaccharides (RFOs) have a wide range of functions, 

ranging from membrane trafficking to participation in signal transduction processes. 

Their most well characterized role in plants, is the ability to function as compatible 

solutes that provides protection against abiotic stress factors. Raffinose is a member 

of the RFOs that have been found to be important in the protection of the 

photosynthetic apparatus of Arabidopsis thaliana under cold-acclimation. 

It has been well characterized that raffinose accumulates in chloroplasts under cold-

acclimation and is transported via a plastidic membrane transporter. The true identity 

of this elusive transporter is currently unknown. Presently, the only known eukaryotic 

transporter ever characterized is Mrt, which is found in the fungus Metarhizium 

robertsii. A protein BLAST analysis comparing the amino acid sequences of Mrt and a 

well characterized Arabidopsis chloroplastic glucose transporter, pGlcT1 (plastidic 

glucose translocator 1, TAIR accession code: AT5G16150) revealed a 24.7 % 

sequence homology. This showed significant functional homology between the two 

transporters. 

Our research aimed to identify the chloroplastic raffinose transporter by employing a 

multipronged approach. Firstly, an Arabidopsis thaliana library with full length clones 

in pBlueScript SK (+) was transformed in E. coli BL21 and growth was tested on M9 

minimal media supplemented with raffinose to determine whether pGlcT1 was present. 

The Gateway® protein expression vector, pDEST17, containing the pGlcT1 gene was 

also transformed into E. coli BL21. The construct was used for heterologous 

expression of pGlcT1 in E.coli BL21 AI on M9 minimal media supplemented with 

raffinose to test growth. This approach involved an in planta approach which utilized 

chlorophyll fluorescence to measure the quantum efficiency of Photosystem II 

photochemistry (Fv/Fm) in pGlcT1 (SALK_066365) mutant plants. This was to 

determine if pGlcT1 was essential for raffinose accumulation in Arabidopsis 

chloroplasts under cold-acclimation (4oC) for 7 d. 

The results demonstrated that E. coli was able to grow on raffinose and sucrose in the 

presence of pGlcT1.  Chlorophyll fluorescence analyses indicated an expected Fv/Fm 

reduction in the raffinose synthase (RafS) mutant (RS14) plants consistent with 

previous studies. There was also a notable decrease in Fv/Fm (P = 0.0006) within the 
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pGlcT1 mutant plants while the Col-0 wild type plants maintained normal Fv/Fm values 

(~0.80) for the duration of cold-acclimation. The decrease in Fv/Fm values for the 

pGlcT1 mutant plants were statistically significant (P = 0.0004) based on a repeated 

measures one-way ANOVA test coupled with a linear trend post-test. 

Despite the preliminary nature of our work, it can be deduced from our results that 

pGlcT1 may facilitate the uptake of raffinose into E. coli cells. Raffinose that enters 

cells is most likely catabolised through inherent α-galactosidase activity. When 

compared with the Fv/Fm values of the wild type Col-0 plants, the decrease in Fv/Fm 

values in both the RafS and pGlcT1 mutant plants indicates that there is a possible 

raffinose deficiency within the chloroplasts of these plants under cold-acclimation 

(4oC). This hints at the probable importance of pGlcT1 in transporting raffinose into the 

chloroplast which safeguards the photosynthetic machinery of PSII under cold-

acclimation conditions.  
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Opsomming 

 

In plante, die raffinose familie oligosakkariede (RVO) het 'n wye verskeidenheid van 

funksies, wat wissel van membraan handel deelname aan seintransduksie prosesse. 

Hul mees gekenmerk funksie is die vermoë om as versoenbaar opgeloste stowwe wat 

plante bied beskerming teen abiotiese stresfaktore te funksioneer. Raffinose is 'n lid 

van die RVO's wat gevind is belangrik in die beskerming van die fotosintetiese 

apparaat van Arabidopsis thaliana onder koue akklimatisering te wees.  

 

Dit is goed dat gekenmerk raffinose ophoop in chloroplaste onder koue akklimatisering 

en via 'n plastidic membraan vervoerder vervoer word. Die ware identiteit van hierdie 

ontwykende vervoerder is tans onbekend. Tans, die enigste bekende eukariotiese 

vervoerder ooit gekenmerk is Mrt, wat gevind word in die swam Metarhizium robertsii. 

A proteïen BLAST analise vergelyk die aminosuur volgorde van Mrt en 'n goed 

gekenmerk Arabidopsis chloroplastic glukose vervoerder, pGlcT1 (plastidic glukose 

locator 1, TAIR toetreding kode: AT5G16150) het ook 'n 27% volgorde homologie. Dit 

het getoon beduidende funksionele homologie tussen die twee transporters.  

 

Ons navorsing is daarop gemik om die chloroplastic raffinose vervoerder identifiseer 

deur die gebruik van 'n multipronged benadering. Eerstens, 'n Arabidopsis thaliana 

biblioteek vollengte klone in pBlueScript SK (+) was 'n proteïen uitdrukking te bou met 

die Gateway® pDEST17 vektor wat die pGlcT1 gene geskep is. Die konstruk is wat 

gebruik word vir heteroloë uitdrukking van pGlcT1 in E.coli BL21 AI op M9 minimale 

media aangevul met raffinose toets groei. Hierdie benadering betrokke is 'n in planta 

benadering wat chlorofil-fluoressensie aangewend word om die doeltreffendheid van 

kwantum Photosisteem II fotochemie (Fv/Fm) in pGlcT1 (SALK_066365) mutant plante 

te meet. Dit was om te bepaal of pGlcT1 was noodsaaklik vir raffinose opeenhoping in 

Arabidopsis chloroplaste onder koue akklimatisering (4oC) vir 7 d. 

 

 Die resultate het getoon dat E. coli was net in staat om te groei op raffinose en sukrose 

in die teenwoordigheid van pGlcT1. Chlorofil-fluoressensie ontledings aangedui 'n 

verwagte afname Fv/Fm (P = 0.0006) in die raffinose sintase (RafS) mutant (RS14) 
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plante in ooreenstemming met vorige studies. Daar was ook 'n redelik beduidende 

afname in Fv / Fm (P = 0.0004) binne die pGlcT1 mutant plante terwyl die kol-0 wilde-

tipe plante gehandhaaf normale Fv / Fm waardes vir die duur van die koue 

akklimatisering. 

 

Dit is duidelik uit die resultate dat pGlcT1 fasiliteer die opname van raffinose in E. coli 

selle. Raffinose wat selle binnegaan is waarskynlik catabolised deur inherente α-

galaktosidase aktiwiteit. In vergelyking met die Fv/Fm waardes van die wilde-tipe Kol-0 

plante, die afname in Fv/Fm waardes in beide die RafS en pGlcT1 mutant plante 

bevestig dat daar 'n raffinose tekort binne die chloroplaste van hierdie plante onder 

koue akklimatisering (4oC). Dit belig die belangrikheid van pGlcT1 in die vervoer van 

raffinose in die chloroplast wat die fotosintetiese masjinerie van PSII beskerm onder 

koue akklimatisering voorwaardes. 
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Chapter 1:  Introduction 

Abiotic stress factors such as heat shock, high light, drought, high and low 

temperatures and salinity negatively influence the biochemistry and physiology of 

plants (Tuteja et al, 2011; Krasensky & Jonak, 2012; Atkinson & Urwin, 2012). Abiotic 

stress factors have long been selective pressures that have driven plant evolution and 

environmental adaptation and stringent measures adopted by plants to survive these 

adverse stress conditions are incredibly complex (Bijlsma & Loeschke, 2005; Pareek, 

2010; Ahmad & Prasad, 2012). This complexity is derived from the multifaceted levels 

of interplay between perceptions, signalling and regulatory mechanisms that elicit plant 

responses to abiotic stress. These responses result in plants adapting positively to 

antagonistic growth conditions (Tuteja, 2007; Akpinar et al, 2012; Atkinson & Urwin, 

2012).   

 

Abiotic stress factors prompt multiple responses within plants. These responses are 

initiated by stress perception. This is followed by the activation of signalling pathways 

and consequently the alteration of gene expression levels (Di Toppi & Pawlik-

Skowronska, 2003; Gill and Tuteja, 2010; Cramer et al, 2011; Ahmad & Prasad, 2012; 

ElSayed et al, 2014). These alterations lead to disparities in plant physiology, growth 

and development (Yamaguchi & Blumwald, 2005). One of the major mechanisms 

utilized by plants to counteract these deleterious effects is the synthesis of compatible 

solutes. Compatible solutes include amino acids, amines, quaternary compounds and 

sugars such as trehalose and raffinose family oligosaccharides (RFOs, Mahajan & 

Tuteja, 2005). 

 

Raffinose Family Oligosaccharides such as raffinose, stachyose and verbascose are 

soluble carbohydrates that are formed when D-galactose units are attached to the D-

glucose moiety of a sucrose molecule through an α-(1→6) glycosidic linkage (Avigad 

& Dey, 1997). They have a diverse range of roles within plants. These include 

participation in signal transduction processes (Xue et al. 2007); membrane trafficking 

(Thole & Nielsen, 2008), the transport and storage of carbon and they even serve as 

osmoprotectants during seed desiccation (Hoekstra et al, 1997). The most well 

characterized attribute of RFOs is their ability to function as compatible solutes or 

osmolytes for defence against abiotic stress (Bachmann et al, 1994; Taji et al, 2002; 
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Hannah et al, 2006; Skinner, 2006; ElSayed et al, 2014).  Plants that produce RFOs, 

generally possess commercial value and include curcubits, mints, legumes, olives, 

grapes, pines and grains (ElSayed et al, 2014). Raffinose Family Oligosaccharides 

benefit human nutrition even further by functioning as prebiotics, which aid in 

stimulating the growth of human gut bacteria (Kozlowska et al, 2000). 

 

1.1  RFO biosynthesis 

The biosynthesis of RFOs is the result of the action of a set of galactyltransferases. 

The first stage, galactinol synthesis as shown in Figure 1.1 is catalysed by galactinol 

synthase (GolS), from UDP-D-Galactose and myo-inositol (Sprenger & Keller, 2000). 

The galactinol synthesis reaction is proceeded by the addition of extra galactosyl units 

donated by galactinol, resulting in sucrose and subsequently, raffinose. This is a 

reversible reaction and is facilitated by raffinose synthase (RafS) (Lehle & Tanner, 

1973). The addition of a further galactosyl unit from galactinol to raffinose in the 

presence of stachyose synthase (STS) results in the formation of stachyose. 

Figure 1.1 Schematic representation of the RFO biosynthetic pathway representing the galactyl-

transferases involved in RFO biosysnthesis. (Adapted from Nishizawa et al, 2008). 
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Galactinol synthase, which is localized in the cytosol, plays a critical role in the 

regulation of carbon separation between sucrose and RFOs (Schneider & Keller, 2009; 

Saravitz et al, 2002). This is corroborated by Taji et al (2002), who noted a substantial 

increase in the levels of endogenous galactinol and raffinose present in transgenic 

Arabidopsis thaliana plants under standard conditions, where the GolS2 gene was 

overexpressed. It is possible for RFOs with a higher degree of polymerization (DP) to 

be produced in the absence of galactinol. In plants such as Ajuga reptans and Coleus 

blumei, this is accomplished via the action of galactan: galactan galactosyl transferase 

(GGT), which is found in the vacuole (Haab & Keller, 2002; Peters et al, 2009; Gilbert 

et al, 1997). Despite GGT activity, GolS is still essential to the RFO biosynthetic 

pathway, especially since it regulates the amounts of specific RFOs that are 

accumulated (Peterbauer et al, 2002). 

 

The second stage of RFO biosynthesis exclusively involves RafS, which transfers a 

galactosyl unit from galactinol to the C6 position of the glucose moiety in sucrose. This 

subsequently forms an α-(1→6) glycosidic linkage that yields the tri-saccharide 

raffinose (Egert et al, 2013). Raffinose is one of the most abundant soluble 

carbohydrates found in nature, second only to sucrose (Dey et al, 1997; Hugouvieux-

Cotte-Pattat et al, 2009). Raffinose synthases are not well characterized within plants 

and only a few putative RafS genes have been identified in plants such as pea, 

cucumber, maize, grape, rice and Arabidopsis (Dierking & Bilyeu, 2008). Research 

regarding RafS is limited, which is not surprising as there are numerous missing links 

concerning raffinose transport and other raffinose related mechanisms in plants.  

 

Another important RFO that is produced after raffinose in the RFO biosynthetic 

pathway is the tetra-saccharide stachyose. Stachyose is synthesised by the action of 

stachyose synthase (SS) and is comprised of 2 α-D-galactose, 1 α-D-glucose and 1 α-

D-fructose subunits respectively. Stachyose, like raffinose has been found to 

accumulate in plants under cold-acclimation conditions (Bertrand et al, 2006; Iftime et 

al, 2011). Raffinose and stachyose are both able to interact with membranes, 

conserving them in a liquid crystal-like state once the hydration shell of the lipid head-

groups is misplaced during drying or freezing of the membrane in question (Hincha et 

al, 2003). Subsequently membrane damage is prevented (Hincha, 2003).  
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Stachyose has been demonstrated to possess superior membrane protection 

capability to raffinose in vitro (Santarius, 1973; Iftime et al, 2011). However, despite its 

greater protective ability, Iftime et al (2011) found that stachyose does not accumulate 

in the chloroplast and is confined to the cytosol whereas raffinose is transported into 

the chloroplast. This fact supports the theory that raffinose does not play a role in 

freezing tolerance of plants but rather it is more integral to protecting the thylakoid 

membrane of the chloroplast (Zuther et al, 2004; Knaupp et al, 2011). 

 

 

1.2  Role of RFOs as a stress protectant 

 

Drought, salinity and heat stress are all environmental factors that can drastically affect 

plant growth on a biochemical and physiological level. Plants have adapted to adverse 

environmental factors by synthesizing protective compounds that allow them to survive 

these harsh environmental changes. The protective compounds often react by 

stabilizing membranes and proteins or by mediating osmotic adjustment (Bohnert et 

al, 1995; Hoekstra et al, 2001). These compounds include water soluble carbohydrates 

(WSC) like glucose, sucrose as well as Raffinose Family Oligosaccharides, for 

instance raffinose and stachyose (Amiard et al, 2003). 

 

RFOs, namely raffinose and stachyose have numerous functions regarding abiotic 

stress defence such as osmo-protectant capabilities that confer desiccation tolerance 

in certain plant seeds (Saravitz et al, 1987; Blackman et al, 1992). Additionally, RFOs 

are responsible for the protection of uni-lamellar liposomes from dehydration via direct 

in vitro sugar membrane interactions (Hincha et al, 2003). According to Santarius 

(1973), raffinose, in particular has been found to reduce the inactivation of electron and 

cyclic photophosphorylation during photosynthesis, in the thylakoid membrane of 

chloroplasts found in spinach (Spinacea oleracea) under freezing, desiccation and high 

temperature conditions. 

 

Taji et al (2002) reported that galactinol synthase over-expressing Arabidopsis plants 

that had increased levels of galactinol and raffinose, exhibited increased drought stress 

tolerance. This suggests that galactinol and raffinose may function as osmo-

protectants under high salinity stress levels. Nishizawa-Yokoi et al (2008) have 
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demonstrated that high intracellular levels of galactinol and raffinose accumulate within 

Arabidopsis plants overexpressing the GolS gene. This accumulation was associated 

with increased tolerance to methyl-viologen treatment (induces oxidative stress within 

plants) and chilling stress. The galactinol and raffinose that accumulated was found to 

effectively protect salicylate from attack by hydroxyl radicals in vitro (Nishizawa-Yokoi 

et al, 2008). The importance of these results, imply that galactinol and raffinose do not 

only function as osmo-protectants, but they also serve as antioxidants within the leaves 

of Arabidopsis plants.   

 

The antioxidant function of RFOs such as raffinose, is necessary to counteract the 

accumulation of reactive oxygen species (ROS) under abiotic stress conditions 

(Nishizawa et al, 2008; Peshev et al, 2013). These ROS are necessary for various 

physiological processes occurring within plants (Bolwell et al, 2002; Bailey-Serres, 

2006; Tripathy & Oelmüller, 2012; Baxter et al, 2013). They are constantly produced 

via mitochondrial respiration and photosynthesis. Plants start undergoing stress when 

the ROS concentration increases as a result of stresses such as drought, chilling, heat 

and high light irradiation (Bowler et al, 2002). This increase in ROS levels if 

unquenched by antioxidants results in oxidative damage at the cellular level of plants. 

 

Arguably, the most harmful form of ROS is the hydroxyl radical derived from hydrogen 

peroxide (ElSayed et al, 2013). This hydroxyl radical has the potential to react with all 

biological molecules and increased levels will eventually cause cell death as cells have 

no method of removing the hydroxyl from their system. Within recent years, RFOs have 

been shown to play essential roles in oxidative stress defence mechanisms in plants 

(Nishikawa et al, 2008; Peshev et al, 2013). As stated previously, the fact that raffinose 

has been identified in protecting photophosphorylation and electron transport within 

chloroplast thylakoid membranes of spinach (Santarius et al, 1973), convincingly 

supports the idea that raffinose might function as a ROS scavenger. This is further 

supported by Nishizawa et al (2008), who observed increased levels of raffinose 

present in Arabidopsis plants, where the RafS gene was over-expressed. This 

increased accumulation of raffinose led to a proportional increase in ROS scavenging 

as well as oxidative stress tolerance. 
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Raffinose’s almost ubiquitous presence in nature is arguably derived from its function 

as an important stress protective molecule in plants. Raffinose is the only RFO to 

accumulate in Arabidopsis vegetative tissues such as leaves and roots and is only 

detected under abiotic stress conditions (Nishizawa et al, 2008). High raffinose 

concentrations have been associated with freezing tolerance in plants as varied as 

Arabidopsis  thaliana (Klotke et al, 2004; Rohde et al, 2004) and woody conifers 

(Strimbeck et al, 2007).  

 

Arabidopsis accumulates high concentrations of raffinose in the leaves, under 

conditions of cold-acclimation (4oC, Santarius & Milde, 1976; Taji et al, 2002; Zuther et 

al, 2004; Strimbeck et al, 2007; Schneider & Keller, 2009). However, Zuther et al (2004) 

first observed that in Arabidopsis plants (RS14 line) containing a knock-out mutation 

of the only endogenous RafS gene present, there was no difference in the freezing 

tolerance of cold acclimated wild-type and mutant plants. This suggested that despite 

an almost ubiquitous response in raffinose mass increase during cold-acclimation in 

many plants, raffinose’s occurrence was not responsible for freezing protection as was 

previously thought (Schneider & Keller, 2009; Knaupp et al, 2011; Iftime et al, 2011). 

Subsequently, reports described a novel transport mechanism where a portion (up to 

20% in Arabidopsis) of raffinose accumulated in leaves during cold-acclimation 

appeared in the chloroplast (Zuther et al, 2004, Klotke et al, 2004; Schneider and 

Keller, 2009; Knaupp et al, 2011; Iftime et al, 2011). 

 

Schneider & Keller (2009) conducted compartmentation analyses on leaf mesophyll 

protoplasts which led them to the conclusion that up to 20% of raffinose accumulates 

in the chloroplasts of the common bugle (Ajuga reptans), spinach (Spinacia oleracea) 

and Arabidopsis under cold acclimated conditions. They deduced that since GolS & 

RafS, both essential for raffinose synthesis were localized to the cytosol, raffinose must 

enter the chloroplast via a raffinose transporter located in the chloroplast envelope, 

most likely via an active uptake process.  

 

Knaupp et al (2011) conducted an elegant experiment utilizing chlorophyll fluorescence 

imaging and electrolyte leakage analyses to determine the role of raffinose in 

stabilizing PS II during freeze-thaw cycles. Chlorophyll fluorescence analysis is a 

powerful and widely used tool that allows researchers to analyse the photosynthetic 
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performance of plants under a variety of environmental conditions (Maxwell & Johnson, 

2000). Measuring the yield of fluorescence allows researchers to monitor and gather 

data on any changes in photosynthetic processes which provides useful data on a 

plant’s photosynthetic performance. Additionally, chlorophyll fluorescence is able to 

provide valuable information on a plant’s ability to tolerate environmental stresses. It 

can in particular, determine the extent to which these stresses have affected the 

photosynthetic machinery of the plant (Maxwell & Johnson, 2000). The basic principle 

underlying chlorophyll fluorescence involves the absorption of light energy by 

chlorophyll molecules present in leaves. This energy can be used in three different 

paths, namely; to drive photosynthesis, excess energy is dissipated as heat and finally 

the light energy can be emitted as a photon resulting in fluorescence (Maxwell & 

Johnson, 2000).  

 

Knaupp et al (2011) confirmed that raffinose is not essential for freezing tolerance 

through electrolyte leakage and chlorophyll fluorescence imaging analyses conducted 

on the same Arabidopsis thaliana RafS mutant previously used by Zuther et al (2004) 

along with wild type Col-0 plants. From the electrolyte leakage studies, they discovered 

that a lack of raffinose plays no role in electrolyte leakage from leaf cells following 

freeze-thaw cycles. This finding verifies the fact that raffinose is not a pre-requisite for 

plasma membrane protection. Alternatively, Knaupp et al (2011) confirmed via the 

chlorophyll fluorescence analysis that under cold-acclimation conditions, the maximum 

quantum yield of PSII (Fv/Fm) along with other fluorescence constraints, were 

significantly lower as opposed to the wild type plants. 

 

This is an important distinction with regards to the role of raffinose as a cryo-protectant 

molecule in that it is not responsible for the protection of the plasma membrane but 

rather, it is more likely to be involved in preserving the chloroplast thylakoid membrane 

(Iftime et al, 2011). Hence, raffinose aids in maintaining the functional and structural 

integrity of the photosynthetic machinery within the chloroplasts. Under cold-

acclimation conditions, the raffinose that accumulates within chloroplasts has been 

shown to protect thylakoid membranes with functions such as stabilizing the 

chloroplast coupling factor CF1, which is essential for photophosphorylation 

(Lineberger & Steponkus, 1980a) and also membrane attachment of plastocyanin 
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which is responsible for electron transfer between cytochrome f of the cytochrome b6f 

complex from Photosystem II (PS II) and P700+ from Photosystem I (Hincha, 1990).  

 

1.3  The molecular identity of the chloroplastic transporter is unknown 

 

Although the biosynthesis and protective roles of raffinose have been studied in depth, 

there is a major gap regarding its transport and localization in the chloroplast. For many 

years, raffinose has been understood to be synthesised in the cytosol (Bachmann et 

al, 1994). Raffinose has mainly been found to occur in seeds as well as in the leaves 

of plants such as Arabidopsis (Zuther et al, 2004). An interesting observation that ties 

in with the compatible solute capabilities of raffinose, is its increased concentration 

levels in the chloroplasts of plants such as Arabidopsis and Ajuga reptans, under cold-

acclimation conditions (Santarius & Milde, 1977; Bachmann et al, 1994; Zuther et al, 

2004; Schneider & Keller, 2009). Even though raffinose is synthesized in the cytosol, 

approximately 20% of total cellular raffinose accumulated within chloroplasts, during 

exposure to cold stress (Schneider & Keller, 2009, Knaupp et al, 2011; Iftime et al, 

2011).  

 

Raffinose is not synthesized in the chloroplast of Arabidopsis. This is supported by 

Schneider & Keller (2009), who found that raffinose biosynthetic enzymes, GolS and 

RafS activities are not present within the chloroplast but rather in the cytosol.  They 

also discovered that galactinol, which is a GolS product and a RafS substrate, was 

only present extra-chloroplastically. Emanuelsson et al (2007) determined that no 

chloroplastic transit peptides were linked to all known GolS and RafS protein 

sequences when different sequence based predictors were utilized.   

 

Past studies have utilized aqueous (Schneider & Keller, 2009) and non-aqueous 

fractionation techniques (Iftime et al, 2011; Voitsekhovskaja et al, 2006; Benkeblia et 

al, 2007; Nadwodnik and Lohaus, 2008) to determine water-soluble carbohydrate 

distribution patterns between the leaf chloroplasts of a multitude of cold acclimated 

plants such as Ajuga reptans, Apium graveolens, Arabidopsis thaliana, Brassica 

oleracea and Plantago sylvestris among others. Raffinose was found to accumulate at 

higher levels than the compartment size fraction in the chloroplasts but only in cold 

acclimated plants. This further substantiates the finding that raffinose is synthesised in 
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the cytosol and only accumulates in chloroplasts to fulfil its stress protectant role. 

Raffinose is in fact degraded in the chloroplast during de-acclimation by AtDIN10 

(DARK INDUCIBLE 10, AT5g20250), which has been recently categorized as a 

stroma-localized α-galactosidase involved in raffinose degradation during stress 

recovery (Christ, 2013). 

 

Schneider & Keller (2009) determined that raffinose uptake in Ajuga and Arabidopsis 

is an active process as opposed to the facilitated diffusion of glucose into the 

chloroplast. The presence of raffinose within the chloroplast along with its rapid and 

active uptake is indicative of some form of transport mechanism that allows raffinose 

to enter the chloroplast. In Ajuga chloroplasts, the transport kinetics of the raffinose 

transporter were very similar to the only known RFO transporter, the stachyose/H+ 

antiporter found in Japanese artichoke (Stachys sieboldii) tuber vacuoles (Keller, 1992; 

Niland & Schmitz, 1995; Schneider & Keller, 2009) This transport mechanism is most 

likely a chloroplastic membrane transporter that allows raffinose to pass through 

across the chloroplast envelope into the chloroplast. Furthermore, the transport system 

in Arabidopsis is known to be selective only for raffinose and not stachyose (Hannah 

et al, 2006; Iftime et al, 2011). Despite extensive characterisation of the actual 

chloroplastic transport system, the molecular identity of the chloroplastic raffinose 

transporter in Arabidopsis remains unknown.  

 

Numerous raffinose transporters have been characterized in prokaryotes (Aslanidis & 

Schmitt, 1990; Benz et al, 1992; Ulmke et al, 1997). However, the first eukaryotic 

raffinose transporter was only recently functionally characterized (Fang & St. Leger, 

2010). Metarhizium Raffinose Transporter (MRT) represents the first oligosaccharide 

transporter ever discovered in a fungus, Metarhizium robertsii and more importantly in 

any eukaryote, signifying the extensive importance of RFO transport in nature (Fang 

& St. Leger, 2010).  

 

Fang & St. Leger (2010) screened over 20 000 transformants in a M. robertsii genome-

wide random DNA insertion library. They found a mutant that exhibited poor growth on 

root exudate was disrupted in the MRT sugar transporter gene. They later found that 

disrupting the Mrt gene led to the mutants exhibiting diminished growth as opposed to 

the wild type fungi on media supplemented with sucrose, lactose, raffinose, stachyose 
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and verbascose separately. However, on media supplemented with simple 

monosaccharides and oligomers composed entirely of glucose subunits, both the wild 

type and Mrt mutants grew equally well. This suggested that MRT was the sole 

transporter for heterologous disaccharides as well as oligosaccharides such as 

raffinose (Fang & St. Leger, 2010). 

 

A BLAST analysis conducted with the Mrt gene CDS (GenBank accession no. 

GQ167043) against TAIR (The Arabidopsis Information Resource) curated sequence 

database, yielded a match with a significant homology of 36.1%. Additionally, protein 

BLAST analysis, established that the pGlcT1 transporter shared a 24.7 % amino acid 

identity similarity with the raffinose transporter Mrt found in Metarhizium robertsii. This 

match was for a well characterised plastidic glucose translocator 1 gene (pGlcT1, 

GenBank accession no.: AT5G16150).  

 

The pGlcT1 gene was first characterized by Weber et al (2000), in spinach (Spinacia 

oleracea) leaves. It was found that in higher plants, pGlcT plays a significant role in the 

export of starch degradation products (Cho et al, 2011). As photosynthesis occurs, a 

portion of the fixed carbon is directed towards the synthesis of transient starch, which 

functions as an intermediate carbon storage resource in chloroplasts. This transient 

starch is then transported at night time. Hydrolytic enzymes degrade the starch into 

glucose and this particular pathway requires a glucose translocator to facilitate the 

export of the glucose from the chloroplasts (Weber et al, 2000). 

 

After discovering pGlcT1, Weber et al (2000), re-assessed the kinetic properties of the 

glucose translocator utilizing a differential labelling approach. They identified a 43-kDa 

protein present in the chloroplast inner envelope membrane which matched pGlcT1. 

They later cloned homologous cDNAs from tobacco, potato, Arabidopsis, and maize. 

Weber et al (2000) conducted in vitro protein importation experiments and found that 

the pGlcT1 protein is imported into the chloroplast inner envelope membrane.  

 

The aim of the present study was to determine whether the pGlcT1 glucose transporter 

also functions as a raffinose transporter. A two-pronged approach was utilized. Firstly, 

a heterologous screening system (E.coli) was used to determine if recombinant pGlcT1 

expression allows E. coli to utilise raffinose as the sole carbon source for growth. 
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Laboratory strains of E. coli are deficient in this ability due to the absence of a raffinose 

transporter.   

 

Secondly, using an in planta strategy and the known physiological response of the 

RS14 mutant line (RafS and raffinose deficient, Zuther, et. al, 2004; Knaupp et al, 

2011) during cold-acclimation (4oC) the quantum efficiency of PS II was determined in 

pGlcT1 T-DNA insertion mutants. We reasoned that under cold-acclimation one should 

recover comparable Fv/Fm values between the RS14 and the pGlcT1 mutants, since if 

pGlcT1 genuinely encoded for a raffinose transporter then both mutants would be 

unable to accumulate any raffinose in the chloroplasts (during cold-acclimation), 

compromising PSII quantum efficiency under stress. 
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Chapter 2: Materials and Methods 

 

2.1 Plant material 

 

2.1.1 Seed stocks 

 

Two Arabidopsis thaliana SALK line (SALK_051876 and SALK_066365) seed sets for 

T-DNA insertions within the pGlcT1 gene were obtained from the Nottingham 

Arabidopsis Stock Centre (NASC). Plants were grown under standard Arabidopsis 

growth conditions as described in 2.1.2.  

 

2.1.2 Plant propagation 

 

The SALK line Arabidopsis seeds were placed on Jiffy-7®-peat pellets, with sterile 

forceps (Jiffy International AS, Kristiansand, Norway) and stratified at 4oC overnight 

before being transferred to an isolated Arabidopsis growth room. All plants were 

subjected to long photoperiods of 16 h (500 µmol.m-2.s-1, 25oC, 8 h dark and 

approximately 60-70 % relative humidity) in order to induce rapid flowering. Each plant 

was supplemented with 5-10 ml (1.44 g/L) of Phostrogen All Purpose Plant Food 

(Bayer CropScience Limited, Cambridge, United Kingdom) at 7 and 14 d after 

germination respectively, to provide the plants with additional nutrients.  

 

2.1.3 Seed harvest  

 
Seeds were harvested by first bagging the mature plants with paper bags and then 

allowing them to dry out. The bagged inflorescences were threshed by hand and the 

seeds are separated from chaff through a fine sieve onto clean paper. The seeds were 

sieved multiple times to remove any excess debris. Seeds were then split equally into 

three adequately labelled, threaded cryo-vials with rubber seals and stored indefinitely 

at room temperature (22-25oC).  
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2.2  General experimental methods 

 

All major buffer and media compositions are shown in Appendix A1. All major protocols 

that were used in the experimental procedures that follow are shown in Appendix A2. 

 

2.2.1 Genomic DNA extractions 

All genomic DNA (gDNA) extractions on Arabidopsis plants were performed using a 

simple and rapid genomic DNA extraction protocol adapted from Edwards et al (1991). 

Each extraction process required one large Arabidopsis leaf which was macerated. 

The Edward’s extraction buffer [200 mM Tris base (pH 7.5), 250 mM NaCl, and 25 mM 

EDTA, 10% SDS (w/v)] was used in conjunction with isopropanol and 70% (v/v) ethanol 

to isolate genomic DNA. The gDNA is was re-suspended in TE buffer (pH 8.0). 

 

2.2.2 Polymerase chain reaction (PCR) 

 

Standard PCR conditions were used, including an initial denaturation temperature of 

94oC for 50 s. This was followed by 35 cycles at 94oC for 50 s, primer annealing 

temperature for 50 s, 72oC initial elongation at 1min/kb and a final elongation step at 

72oC for 10 min completes the PCR. All primer-specific annealing temperatures are 

mentioned in their respective experimental outlines. 

 

Each PCR amplified approximately 150 ng template DNA in a 50 µl total reaction 

volume. Every PCR constituted 1x GoTaq® Green Reaction Buffer (Promega 

Corporation, Wisconsin, USA), 0.30 mM deoxy-nucleotide triphosphates, 0.30 µM 

primers and 0.50 U GoTaq Taq polymerase (Promega Corporation, Wisconsin, USA). 

All primers, unless stated otherwise were designed using Oligo-Explorer v1.5 (Teemu 

Kuulasma, 2002). 

 

PCR reactions that required the Roche Expand™ High Fidelity PCR system (Hoffman-

La Roche, Basel, Switzerland) were conducted as per the manufacturer’s instructions. 

These PCR reactions had an initial denaturation temperature of 94oC for 2 minutes 

followed by 35 cycles of 94oC for 30 s, primer annealing temperature for 30 s, 72oC 

initial elongation at 40 s/kb with a final elongation step at 72oC for 7 min. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

13 
 

All colony PCRs were performed using the same reagent specifications as mentioned 

above with the exception of the template DNA being replaced by single colonies. Also, 

colony PCR conditions were slightly different and were as follows. An initial 

denaturation temperature of 95oC for 5 min, followed by 35 cycles at 95oC for 1 min, 

primer annealing temperature for 1.5 min , 72oC initial elongation at 1min/kb and a final 

elongation step at 72oC for 5 min. 

 

2.2.3 Gel electrophoresis and gel visualization 

 
Gel electrophoresis for visualization of PCR products involved the use of 1 % (w/v) 

agarose gels with 1x TBE buffer as the solvent. All gels were pre-stained with non-

toxic PronaSafe®( Laboratorios CONDA, Madrid, Spain) stain for visualization under 

UV light. Restriction digests that required gel excision and purification were run on 

0.75% low gelling temperature agarose gels (Sigma-Aldrich, Missouri, USA). 

BenchTop 1kb ladder (Promega Corporation, Wisconsin, USA) was the molecular 

marker of choice for gel electrophoresis, unless otherwise stated. Gels were visualized 

at 260 nm UV wavelength in an Alpha-Innotech Illuminator (Alpha-Innotech, California, 

USA). 

 

2.2.4 Restriction digests and ligations 

 

All diagnostic restriction digests used 500 ng template DNA with a total reaction volume 

of 20 µl. All digests were conducted using Thermo-Fisher Scientific (Massachusetts, 

USA) restriction enzymes and buffers. Digests which required gel excision and 

purification for ligations used 1-5 µg of template DNA per reaction, with a total reaction 

volume of 20 µl. Ligations were performed at an insert and vector DNA ratio of 4:1, 

within a total reaction volume of 20 µl. The reaction mixture contained 2x Rapid 

Ligation Buffer (Promega Corporation, Wisconsin, USA) and 2U T4 DNA ligase 

(Promega Corporation, Wisconsin, USA). 
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2.2.5 E.coli transformations, mini-preparations, plasmid recovery & DNA 

purification from agarose gels 

 

All vector constructs were transformed into chemically ultra-competent E.coli cells. 

Table 3.1 indicates the various E. coli strains and vectors used in the study.  E. coli 

cells were rendered ultra-competent using a modified Inoue et al (1990: 23-28) protocol 

(Refer to Appendix A2). Transformation involved using a standard heat shock protocol 

(Refer to Appendix A2). Plasmids were isolated from 5 ml of the E. coli transformant 

cultures grown in 50 ml BD Falcon tubes containing liquid LB medium, overnight at 

37oC with 200 rpm vigorous shaking. Antibiotic selection was dependant on the 

plasmid to be isolated.  

 

Plasmid recovery was performed with the Promega Wizard® Plus SV Minipreps DNA 

Purification System kit (Promega Corporation, Wisconsin, USA) as per the 

manufacturer’s detailed protocol.  

 

Plasmid recovery was facilitated through the use of the Wizard® Plus SV Minipreps 

DNA purification (Promega Corporation, Wisconsin, USA). For DNA purification, the 

required bands were excised from the gel using a sterile scalpel. The subsequent 

purification of DNA from the agarose gel pieces as well as from PCR products were 

done via the Wizard® SV Gel and PCR Clean-Up System (Promega Corporation, 

Wisconsin, USA) as per the manufacturer’s detailed protocol. 
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Table 2.1 Vectors and bacterial strains used, including relevant characteristics. 

Vector/Strain Specificity 

pGEM T-Easy Cloning vector, ampicillin resistance 

pBlueScript (SK +) Cloning and sub-cloning vector, ampicillin 

resistance 

pCR8™/GW/TOPO Gateway® recombination Entry vector, high 

efficiency cloning 

pRSET C Bacterial vector for high-level expression of 

proteins with a cleavable 6xHis tag and 

ampicillin resistance 

pDEST17 Gateway bacterial expression vector with a 

6xHis tag, ampicillin resistance and a T7 

promoter 

E. coli DH5α Bacterial strain with reduced endogenous 

nuclease activity, often used for plasmid 

propagation 

E. coli BL21 AI Tight regulation and strong expression of 

toxic proteins from any T7 promoter-based 

expression systems, Gene expression is 

regulated by the addition of L-arabinose to 

culture 

E. coli TOP10® For high-efficiency cloning and plasmid 

propagation 

E. coli OmniMax® For transformation of Gateway® and 

TOPO® reactions, ccdB sensitive 

E. coli DB 3.1® Gateway cloning strain. Contains the 

gyrA462 allele which renders the strain 

resistant to the toxic effects of the ccdB 

gene 

 
 
 

2.2.6 Sequencing analysis 

 

Plasmid constructs and PCR products were sequenced at the Central Analytical 

Facilities (University of Stellenbosch, Stellenbosch, South Africa) using a 3730XL DNA 

Analyzer (Thermo-Fisher Scientific, Massachusetts, USA) in conjunction with the 
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BigDye® Terminator v3.1 Cycle Sequencing Kit (Thermo-Fisher Scientific, 

Massachusetts, USA) which is centred on the original dideoxynucleotide chain 

termination method established by Sanger et al (1977). All sequences were aligned 

and edited in silico using BioEdit v7.2.5 (Hall, 2013) and Addgene Analyze Sequence 

(https://www.addgene.org/analyze-sequence/). 

 

2.3  Cloning 

 

2.3.1 Isolation and cloning of pGlcT1 cDNA 

 

Total RNA was extracted from fresh leaves of Arabidopsis thaliana Col-0 plants using 

the QIAGEN RNeasy Mini Kit (QIAGEN, Hilden, Germany) as per the manufacturer’s 

instructions. cDNA was generated via reverse-transcription PCR with the Promega 

M-MLV RT, RNase H Minus, Point Mutant kit (Promega Corporation, Wisconsin,USA) 

according to the manufacturer’s instructions. PCR using the Roche Expand™ High 

Fidelity PCR system (Hoffman-La Roche, Basel, Switzerland) was performed 

(annealing temperature of 58oC), with the previously generated cDNA as template as 

per PCR conditions mentioned in 2.2.2. The forward primer                                       

5’-CAGCAATCACAATCTATCTG-3’ and reverse primer                                                             

5’-TAGTGGTCATGAAAAGATTTC -3’ were used. The resulting PCR product was 

electrophoresed in a 1.0 % agarose gel as described in 2.2.3 to visualise the 

amplified PCR product.  

 

2.3.2 TOPO cloning of pGlcT1 

 

The PCR product from 2.3.1 was purified with the Wizard® SV Gel and PCR Clean-Up 

System (Promega Corporation, Wisconsin, USA) as per the manufacturer’s detailed 

protocol. 

 

The purified pGlcT1 PCR product was then TOPO cloned using the pCR™8/ GW/ 

TOPO® TA Cloning Kit (Invitrogen, Carlsbad, USA) to generate the pcr8:: pGlcT1 entry 

clone. The correct orientation of the pGLcT1 gene within the construct was verified for 

downstream cloning purposes with the gene specific forward primer and the T7 reverse 

primer. Additionally the pcr8:: XhLEA construct was obtained from Erik Denkhaus 
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(University of Stellenbosch, Stellenbosch, South Africa) to serve as an entry clone for 

the creation of an expression construct that would serve as a control for the 

heterologous expression of pGLcT1. 

 

2.4  SALK line genotyping 

 

2.4.1 Isolation of genomic DNA  

 

Seeds from the two SALK lines previously mentioned in 2.1.1 were planted and fresh 

leaves were used for genomic DNA extraction. Initially genomic DNA extraction was 

conducted for 6 plants for both lines using a modified protocol described by Edwards 

et al (1991). Large scale genotyping of many plant leaf samples was conducted using 

a Harris Uni-Core 0.5mm punch (Sigma-Aldrich, Missouri, USA) with 6 leaf disc 

cuttings substituting buffer extracted gDNA per PCR.  

 

2.4.2 PCR genotyping 

 

PCR conditions were as described in 2.2.2. Six plants from each SALK line were 

individually genotyped via the modified Edwards et al (1991) method mentioned in 

2.2.1. The Harris punch method was used for large scale genotyping of many 

SALK_051876 plants, due to the difficulty experienced in identifying homozygous 

plants. Primers for genotyping both SALK lines were acquired from the SALK Institute’s 

primer database (http://signal.salk.edu/tdnaprimers.2.html).  

 

For SALK_051876 plants, the left-border primer (LP)                                                 

5’-TCTGCACACTCTGAGCTGTTG-3’ and the right-border primer (RP)                        

5’-ATTTCGTGATGTTGCGTCTTC-3’ (annealing temperature of 58oC) were used. 

For SALK_0663665 plants, LP 5’-TTTTCTTTTGCGAAGACGTTG-3’ and RP             

5’-TTCCTTTAACCGCATACGTTG-3’ (annealing temperature of 58oC) were used. 

For both SALK lines, a universal internal border primer (LBb1.3)                                

5’- ATTTTGCCGATTTCGGAAC-3’ was used in combination with each line’s 

respective RP (annealing temperature of 52oC). 
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2.5  Arabidopsis cDNA library screening 

 

An Arabidopsis cDNA library, where full length clones were available in the pBlueScript 

SK (+) vector (Stratagene, Anatech, South Africa) was obtained from Dr James Lloyd 

(University of Stellenbosch, Stellenbosch, South Africa). It was transformed into E.coli 

One Shot TOP10® chemically competent cells (Invitrogen, Johannesburg, South 

Africa) and serial dilutions (between 10-2 and 10-10) were plated onto M9 minimal media 

plates containing D-Glucose (Sigma-Aldrich, Missouri, USA) or Raffinose-

pentahydrate (Sigma-Aldrich, Missouri, USA) supplemented with ampicillin (100 

µg/ml). All plates were incubated at 37oC with agitation. 

 

Colonies which had grown on raffinose supplemented M9 plates were then grown in 5 

ml starter cultures (37oC, 14 h, with agitation) and  plasmid DNA  isolated using the 

Wizard® Plus SV Miniprep DNA purification system (Promega Corporation, Anatech, 

South Africa ) following the manufacturer’s instructions. Plasmid isolates were digested 

with the Bam HI and XhoI restriction endonucleases. Additionally, plasmid isolates 

were also re-transformed into TOP10® competent cells and plated onto raffinose 

supplemented M9 plates. Plasmids inserts were fully sequenced using a rolling-

sequencing approach (Macrogen Inc., Amsterdam, Netherlands). 

 

2.6  Preliminary growth testing of E.coli strains on M9 minimal media 

 

The common laboratory strains of E. coli, namely DH5α, OneShot® OmniMax 2-T1R 

(Invitrogen, Carlsbad, USA), BL21 AI (Invitrogen, Carlsbad, USA) and OneShot® 

TOP10 (Invitrogen, Carlsbad, USA) were tested for growth on M9 minimal media. M9 

minimal media plates (Refer to Appendix A1 for M9 minimal media preparation 

protocol) were prepared separately with 100 mM glucose, 100 mM raffinose, 100 mM 

sucrose and a combination of 100 mM glucose and 100 mM raffinose, plain M9 minimal 

media lacking a carbon source and finally Luria Agar (LA) plates. No antibiotics were 

added to these plates. The carbon source stock solutions in combination with the M9 

minimal media were tested for reducing hexose sugar contamination via a Benedict’s 

reagent [1.14 M sodium carbonate, 0.7 M sodium citrate dehydrate, 0.7 M copper(II) 

sulphate pentahydrate] test as described by Simoni et al (2002). The aforementioned 
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E. coli strains were streaked separately onto the various M9 plates and incubated at 

37oC for approximately 10 d before recording the results. 

 

2.7  Heterologous expression in E. coli 

 

2.7.1 Sub-cloning pGlcT1 and XhLEA   

 

Plasmid DNA mini-preparations were set up from E.coli (One Shot® OmniMAX™ 2-

T1R) 5 ml cultures transformed with the pcr8:: pGlcT1 and pcr8:: XhLEA construct, 

which had been grown overnight. Mini-preparations were conducted as described in 

2.2.5. Two Gateway® LR Clonase II reactions (Invitrogen, Carlsbad, USA) were 

performed according to the manufacturer’s specifications in order to the generate 

pDEST17:: pGlcT1 and pDEST17:: XhLEA constructs using the pcr8:: pGlcT1 and 

pcr8:: XhLEA entry clones respectively along with the pDEST17 (Invitrogen, Carlsbad, 

USA) protein expression vector. The pDEST17:: XhLEA construct was used a control 

as the pDEST17 empty vector could not be used. The empty pDEST17 vector contains 

the lethal ccdB gene which encodes the ccdB toxin that targets the gyrase enzyme 

preventing the growth of E. coli (Afif et al, 2001). Hence, the pDEST17 as an empty 

control was not a viable option. The XhLEA gene is a known gene from our previous 

studies and when cloned into pDEST17 acts as a sufficient control. 

 

The pDEST17:: pGlcT1 and pDEST17:: XhLEA constructs were subsequently 

transformed into E.coli (One Shot® OmniMAX™ 2-T1R) competent cells via a standard 

heat shock transformation protocol. Transformed colonies were selected for on M9 

minimal media comprising different carbon sources (100 mM glucose, sucrose and 

raffinose).  

 

 

2.7.2 M9 minimal media growth testing with pDEST17:: pGlcT1 construct 

 

The pDEST17:: pGlcT1 and control pDEST17:: XhLEA constructs were tested for 

growth on M9 minimal media plates supplemented separately with 100 mM glucose, 

100 mM sucrose, 100 mM raffinose, plain M9 with no carbon source and plain LA. All 

plates were supplemented with 1 µg/ml ampicillin.  Both constructs were transformed 
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into BL 21 Arabinose Inducible (AI) (Invitrogen, Carlsbad, USA) E. coli competent cells 

via a standard heat shock transformation protocol.  

 

Transformed cells were then spread plated onto the M9 plates containing the different 

carbon sources. Plates were incubated at 37oC for 10 d to allow sufficient growth. 

Colonies were sub-cultured onto fresh M9 minimal media supplemented with the 

appropriate carbon sources to the confirm growth phenotypes.  

 

2.7.3 Recombinant pGlcT1 expression 

 

A sterile 50 ml Erlenmeyer flask containing 5 ml of Luria Broth (LB) with 1 µg/ml 

ampicillin was inoculated with a single colony of E. coli BL 21 AI containing pDEST17:: 

pGlcT1 overnight at 37oC with agitation. Additional sterile Erlenmeyer flasks under the 

same conditions were inoculated with the controls namely, E. coli BL 21 AI containing 

an empty pRSET C vector and pDEST17:: XhLEA. The cultures were then inoculated 

into separate 1 L Erlenmeyer flasks containing 200 ml of pre-warmed LB (37oC with 

agitation) with 1 µg/ml ampicillin.  

 

The cultures were grown until an OD600 of 0.40 was obtained, then 13.32 mM L-

Arabinose (Sigma-Aldrich, Missouri, USA) was added. After 4 h of growth, 200 ml of 

each culture was transferred to a 250 ml polycarbonate copolymer (PPCO) bottle 

(Nalge Nunc International, New York, USA). E.coli cell pellets were collected by 

centrifugation (Sorvall RC6 Plus Centrifuge, 5500xg, 10 min at 4oC) and stored at -

20oC for protein purification.  

 

Prior to centrifugation, 5 ml of each induced culture was used for growth testing on M9 

minimal media with different carbon sources. The cultures were centrifuged (Heraeus 

Biofuge Pico, 5000xg) for 1 min at room temperature. The supernatant was aspirated 

and the pellet was re-suspended in distilled water. These steps were repeated two 

more times so as to remove any residual L-Arabinose present in the cultures. The re-

suspended cultures were then plated onto new corresponding M9 minimal media 

plates containing the appropriate carbon sources as described earlier. 
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2.7.4 Protein purification 

 

All proteins to be purified were expressed by genes cloned into vectors containing 

6xHis tags. Therefore, immobilized metal ion affinity chromatography (IMAC) 

purification was performed using Protino® Ni-TED 1000 gravity flow Packed Columns 

(Macherey-Nagel, Düren, Germany). The E. coli cell pellets stored at -20oC as 

mentioned in 2.6.3 were thawed on ice and thoroughly re-suspended in 2 ml of the 

Protino® Ni-TED 1000 kit’s supplied LEW (Lysis, Equilibration, Wash) buffer.  

 

1 mg/ml lysozyme (Sigma-Aldrich, Missouri, USA) was added to cell suspension 

samples and incubated on ice with agitation for an hour. The cell suspension samples 

were each sonicated on ice (10 x 15 s bursts) with a Virtis Virsonic 100 Ultrasonic Cell 

Disruptor (Virtis, Massachusetts, USA). The sonicated samples were centrifuged 

(Sorvall RC6 Plus Centrifuge, 10 000xg, 30 min at 4oC) to remove cellular debris and 

the supernatants were transferred to sterile 10 ml tubes on ice. Subsequently, the 

detailed manufacturer’s instructions were followed for protein purification under native 

conditions. 

 

2.7.5 SDS-PAGE  

 

The pGlcT1, empty pRSET C and XhLEA purified proteins obtained in 2.6.4 were 

separately re-suspended in 10 µl of 5x SDS loading sample buffer [250 mM Tris-HCl 

(pH6.8), 10% SDS (w/v), 30% Glycerol (v/v), 10 mM 2-mercaptoethanol, 0.05% 

bromophenol blue (w/v)] and boiled at 100oC for 5 min. Samples were then 

electrophoresed in a SDS-PAGE gel consisting of a 5% stacking gel [30% Acrylamide 

mix (v/v), 1.0 M Tris (pH 6.8), 10% SDS (w/v)] and a 12% resolving gel [30% 

Acrylamide mix (v/v), 1.5 M Tris (pH 8.8), 10% SDS (w/v)]. SDS-PAGE gels were 

electrophoresed at 130 V. Gels were stained overnight in Coomassie brilliant blue R-

250 staining solution [0.05% Coomassie brilliant blue R-250 (w/v), 50% methanol (v/v), 

10% glacial acetic acid (v/v), 40% H2O (v/v)]. De-staining was performed with 

Coomassie de-staining solution [50% methanol (v/v), 40% glacial acetic acid (v/v), 10% 

H2O (v/v)]. 
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2.7.6 Bacterial total RNA extraction and transcript detection 

 

Starter cultures (5 ml) containing single colonies of E. coli BL21 AI transformed with 

pDEST17:: pGlcT1, the empty pRSET C vector and pDEST17:: XhLEA were 

inoculated (37oC with agitation). The starter cultures were added to 50 ml pre-warmed 

LB in sterile 250 ml Erlenmeyer flasks. The cultures were then induced as described 

in 2.6.3. The induced cultures were monitored until the OD600 values reached 1.0 / ml 

of culture. This value was the approximate equivalent to 1 x 109 E. coli cells/ ml of 

culture. For each sample, 1 x 109 bacterial cells were processed for total RNA 

extraction with the QIAGEN RNeasy Mini Kit (QIAGEN, Hilden, Germany) as per the 

manufacturer’s detailed instructions. 

 

Once total RNA was purified, cDNA was generated for each of the samples with the 

Promega M-MLV RT, RNase H Minus, Point Mutant kit (Promega Corporation, 

Wisconsin, USA). The random hexa-deoxynucleotide primers supplied in the kit were 

used instead of the oligo (dT)15 primers. PCR reactions were performed using the 

previously generated cDNA for each sample under the PCR conditions described in 

2.2.2 to determine transcript levels. 

 

2.8  Chlorophyll fluorescence analysis 

 

Six confirmed homozygous SALK_066365 plants were planted out as described in 

2.1.2. Six wild type Col-0 and six RSS5 (RS14 line from Zuther et al, 2004) mutant 

plants were also planted to serve as controls for the experiment. The six plants from 

each line were planted out and stratified over the same period of time in order to make 

sure all seeds germinated at the same time. This step was taken to ensure that all 

plants were growing under standardized conditions, so as to avoid any discrepancies 

with regards to downstream chlorophyll fluorescence experiments. After 6 weeks, 

when the plant leaves were strong enough to withstand repetitive physical stress, 

chlorophyll fluorescence parameters were measured with a Hansatech FMS-2 field 

portable chlorophyll fluorometer (Hansatech, Norfolk, UK).  

 

Prior to the chlorophyll fluorescence measurement experiment, sqPCR was performed 

on cDNA generated from total RNA isolated from the leaves of 6 SALK_066365 plants 

Stellenbosch University  https://scholar.sun.ac.za



 

23 
 

and one Col-0 wild-type plant that were planted out, to confirm that the pGlcT1 gene 

was knocked out. sqPCR gene specific primers amplifying a 550bp fragment were 

used to detect pGlcT1 expression while Actin2 (ACT2) sqPCR forward and reverse 

primers were used as a control. 

 

Fv/Fm was determined consistently after 8 h dark-adaptation every day over the course 

of one week with cold-acclimation (4oC) in a Micro Clima-Series Economic Lux micro-

climate chamber (Snijders Labs, Tilburg, Netherlands). The plants were first allowed 

to acclimate to the new light and temperature conditions (8 h light and 16 h dark at 

22oC) in the growth chamber for one week before cold-acclimation was induced. For 

each line, three leaves from each of the 6 plants were continuously measured. The 

Modfluor32 and Parview32 software (Hansatech, Norfolk, UK) was used to consistently 

record the chlorophyll fluorescence parameters and also to plot comparative analyses 

curves. 

 

Statistical analyses were performed on the observed Fv/Fm values for all six 

SALK_066365 and RSS5 plants over the 7 d period of cold acclimation (4oC) included 

a repeated measures one-way ANOVA coupled with a post test for linear trend 

between mean and Fv/Fm values for all 6 plants. The linear trend post-test was most 

appropriate for repeated measures data sets. 
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Chapter 3: Results 

 

 

3.1 In silico analysis of pGlcT1 

 

   1 ATGCAGTCGT CAACGTATGC GGTTAAAGGA AACGCTGCGT TTGCGTTTCA 

  51 GAGACGGACC TTCTCTTCTG ACAGATCGAC GACTTCTACC GGAATTCGCT 

 101 TCGCTGGTTA TAAGAGCTTA GCCACCACCG GGCCACTCTA CTGTTCTGGT 

 151 TCTGAAGCCA TGGGAGCGAC GCTTGCTCGT GCTGATAACG GGATCCAGAG 

 201 CGTTATGAGT TTCTCTTCTG TCAAAGCTCG ATCGGTCAGA GCTCAAGCCT 

 251 CATCTGATGG AGATGAAGAA GAAGCTATAC CTCTGAGATC TGAAGGGAAA 

 301 AGCTCTGGAA CAGTTTTGCC TTTTGTTGGT GTTGCTTGTC TTGGTGCTAT 

 351 ACTCTTTGGT TATCATCTCG GGGTGGTTAA TGGTGCTCTT GAATATCTTG 

 401 CTAAGGATCT TGGGATCGCC GAAAATACTG TTTTGCAAGG ATGGATTGTT 

 451 AGTTCTCTGC TTGCTGGTGC TACGGTAGGT TCATTCACTG GAGGTGCATT 

 501 AGCTGACAAA TTTGGACGAA CAAGAACTTT TCAATTGGAT GCTATCCCGC 

 551 TTGCCATTGG AGCTTTCTTA TGTGCAACAG CTCAGAGTGT GCAGACTATG 

 601 ATTGTGGGAC GTCTGCTCGC TGGAATTGGA ATTGGAATCT CATCAGCGAT 

 651 TGTACCACTT TACATATCTG AGATATCACC AACTGAAATC CGTGGAGCAC 

 701 TCGGATCTGT GAACCAGTTG TTCATCTGTA TAGGAATACT TGCAGCCTTG 

 751 ATAGCTGGAT TACCCCTTGC AGCAAACCCT CTATGGTGGA GGACGATGTT 

 801 TGGTGTTGCA GTTATCCCTT CCGTTCTATT GGCCATAGGA ATGGCTTTTT 

 851 CTCCAGAAAG CCCAAGGTGG CTCGTTCAGC AAGGAAAAGT CTCTGAAGCT 

 901 GAAAAGGCGA TCAAAACTTT GTATGGTAAA GAAAGAGTGG TTGAACTAGT 

 951 TCGCGACTTA TCAGCCTCTG GCCAAGGTTC TTCTGAGCCG GAGGCAGGAT 

1001 GGTTTGATCT ATTCAGCAGC CGCTACTGGA AAGTTGTAAG CGTAGGTGCG 

1051 GCTCTCTTCT TGTTTCAACA GTTAGCCGGG ATAAACGCAG TTGTGTATTA 

1101 CTCCACATCG GTATTCCGTA GTGCGGGAAT CCAATCAGAT GTTGCAGCCA 

1151 GTGCTCTCGT TGGAGCATCA AATGTCTTTG GCACTGCTGT TGCTTCATCG 

1201 TTGATGGATA AAATGGGAAG GAAAAGTCTT TTACTGACAA GCTTTGGTGG 

1251 AATGGCTTTG TCAATGCTGT TACTCTCCTT GTCCTTCACA TGGAAGGCTC 

1301 TTGCTGCCTA TTCTGGAACC CTTGCCGTTG TTGGAACTGT TCTATATGTC 

1351 CTGTCATTCT CACTTGGTGC TGGCCCGGTA CCGGCTCTTC TTCTTCCAGA 

1401 GATATTTGCA TCCCGAATCA GAGCAAAAGC CGTCGCTCTT TCTCTCGGCA 

1451 TGCACTGGAT ATCAAACTTT GTGATCGGAC TATACTTCTT AAGCGTTGTG 

1501 ACTAAATTCG GAATCAGCAG TGTCTACTTG GGTTTTGCTG GAGTCTGCGT 

1551 CCTTGCGGTC CTCTACATTG CAGGAAACGT CGTCGAGACT AAAGGTCGAT 

1601 CACTGGAGGA AATAGAGCTT GCTCTTACAT CTGGAGCTTG A 

 

The nucleotide sequence of pGlcT1 from generated cDNA was discovered to have an 

open reading frame (ORF) of 1641bp. It encodes a polypeptide that is predicted to 

have an average mass of 56.97 kDa (UniProtKB accession code: Q56ZZ7) and a total 

of 546 amino acid residues. Upon BLASTp analysis, the pGlcT1 transporter was found 

to have a 25% amino acid identity similarity with the raffinose transporter Mrt found in 

Metarhizium robertsii.  
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3.2 pGlcT1 SALK lines genotyping  

 

Initially 5 plants from both the SALK_051876 and SALK_0666365 lines were 

genotyped. All 5 plants genotyped for the SALK_066365 line were confirmed as 

homozygous mutants for the pGlcT1 gene (Figure 3.1). The initial 5 plants for the 

SALK_051876 line were genotyped as wild type (Figure 3.2). More plants for the 

SALK_051876 line were genotyped and observed as wild type plants. An additional 

pair of primers suggested by the Salk Institute Genomic Analysis Laboratory (SIGnAL) 

were used to genotype the SALK_051876 plants. The new results (Figure 3.3) 

confirmed that the plants were wild type. 

 

Figure 3.1 PCR genotyping results for the SALK_066365 plants. Lanes 1, 3, 5, 7, 9 and WT represent 
the LP & RP primer combination (wild-type allele) whereas lanes 2,4,6,8 and 10 represent the LBb1.3 
& RP primer combination (mutant allele) for genotyping analyses performed on 5 individual plants. 

 

 

Figure 3.2 PCR genotyping results for the SALK_051876 plants. Lanes 1, 3, 5, 7, 9 and WT represent 
the LP & RP primer combination whereas lanes 2,4,6,8 and 10 represent the LBb1.3 & RP primer 
combination for genotyping analyses performed on 5 individual plants. 
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Figure 3.3 PCR genotyping results for additional SALK_051876 plants using a different primer set for 
the wild-type and mutant alleles. Lanes 1, 3, 5, 7, 9 and WT represent the LP & RP primer combination 
whereas lanes 2, 4, 6, 8 and 10 represent the LBb1.3 & RP primer combination for genotyping analyses 
performed on 5 individual plants. 

 

 

3.3 sqPCR analyses of SALK_066365 plants 

 

The sqPCR performed on cDNA generated from total RNA of the SALK_066365 plants 

grown for measuring chlorophyll fluorescence were confirmed to be knockout mutants 

as shown in Figure 3.4. cDNA integrity was confirmed by performing PCR with on all 6 

cDNA samples using Actin2 gene specific primers. The Actin2  sqPCR control was 

performed on plant 1 cDNA (Figure 3.4, lane 2). When compared to the Actin2 

(~500bp) and WT (~550bp), no amplification occurs with the pGlcT1 gene specific 

primers, confirming that the plants are indeed homozygous knockout mutants. 

 

 

 

Figure 3.4 sqPCR performed on cDNA generated from SALK_066365 plants. Lane 1 represents the 
ACT2 housekeeping gene transcript, lanes 2-7 represent the SALK_066365 plants and the last lane 
shows pGlcT1 amplification in the wild type positive control 
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3.4 Preliminary E.coli growth tests on M9 minimal media 

 

To ensure that our carbon supplements (raffinose and sucrose) were not contaminated 

by hexose sugars such as glucose, fructose and galactose, they were subjected to a 

classical Benedict’s test for reducing sugars (hexose). The sucrose and raffinose 

solutions in combination with the other M9 minimal media reagents did not change 

colour in the presence of Benedict’s reagent, however the glucose stock solution did 

change colour as expected (Figure 3.5). 

 

Figure 3.5 Benedict’s reagent test for reducing sugar contamination within M9 minimal media 
components with the carbon sources (a) 100 mM glucose, (b) 100 mM sucrose and (c) 100 mM raffinose. 

 

Colony growth for the E. coli lab strains DH5α, TOP10®, OmniMax® and BL21 AI was 

observed on Luria Agar (LA) and M9 minimal media plates supplemented with 100 mM 

glucose as well as on a combination of 100 mM glucose and 100 mM raffinose after 

10 d (Figure 3.6). No growth was observed on M9 plates supplemented with 100 mM 

sucrose, 100 mM raffinose and a plain M9 plate lacking a carbon source. 
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Figure 3.6 Laboratory strains of E. coli (1) DH5α, (2) BL21 AI, (3) OmniMax® and (4) TOP10® streaked 

onto M9 minimal media plates supplemented with (a) 100 mM glucose, (b) 100 mM sucrose, (c) 100 

mM glucose and 100 Mm raffinose in combination, (d) 100 mM raffinose, (e) M9 with no carbon source 

and (f) on LB. Plates were incubated at 37oC for 10 d.  
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3.5 Arabidopsis thaliana cDNA library screening     

 
An Arabidopsis thaliana cDNA library (commercially purchased) in pBlueScript II SK 

(+) was used to screen for E.coli (TOP10®) growth on M9 minimal media plates 

supplemented with either 100 mM glucose or 100 mM raffinose after 6 or 10 d, 

respectively (Figure 3.7a & Figure 3.7b). Fourteen colonies were recovered from this 

approach and sub-cultured onto LA and M9 minimal media plates (100 mM raffinose 

supplemented).  

 

Following the sub-culturing, twelve colonies showed positive growth after 1 d of 

incubation (37oC) on the LA plates while all 14 colonies showed positive growth after 

incubation for 3 d. These colonies were marked and sub-cultured onto a fresh LA 

(Figure 3.8a) and M9 minimal media plates with raffinose (Figure 3.Figure 3.88b).The 

growth period was faster with visible colonies forming within 3-4 d. 

 

After confirming that growth consistently occurred on M9 minimal media with raffinose 

as the sole carbon source, plasmid DNA was isolated from these positive colonies. 

Only 8 of the 14 colonies yielded viable plasmid DNA (concentration ≥ 100 ng/µl). 

Subsequent restriction enzyme digestions of these plasmids using Bam HI and XhoI, 

exhibited similar banding patterns (Figure 3.9) as well as different fragment sizes when 

run on a 1% agarose gel. A band in each sample lane on the gel seemed to correlate 

with the pBlueScript II SK (+) backbone size of 3000 bp. 
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Figure 3.7 Arabidopsis thaliana cDNA library in pBlueScript II SK (+) transformed into E. coli (TOP10®) 
and plated onto M9 minimal media plates supplemented with (a) 100 mM glucose and (b) 100 mM 
raffinose. Plates were supplemented with 100 µg/ ml Ampicillin and incubated at 37oC for (a) 10 d or (b) 
6 d 
 

                                                                                                        
Figure 3.8 Arabidopsis thaliana cDNA library in pBlueScript II SK(+) transformed into E. coli (TOP10®) 

and sub-cultured from initial screening plates onto (a) M9 minimal media and (b) LB plates 

supplemented with 100 mM raffinose and 100 µg/ ml Ampicillin. Plates were incubated at 37oC for 2 d.  

 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 3.9 An agarose gel representing plasmid DNA isolated from E. coli colonies growing on M9 
minimal media supplemented with 100 mM raffinose following transformation with an Arabidopsis cDNA 
library in pBlueScript II SK (+). Plasmid samples were digested with BamHI and XhoI. 
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Figure 3.10 Three plasmid isolates from E. coli colonies transformed with the Arabidopsis thaliana cDNA 
library in pBlueScript SK (+) that demonstrated positive growth on M9 minimal media supplemented with 
100 mM raffinose were then re-transformed into E. coli (TOP10®) for (a) colony 3, (b) colony 11 and (c) 
colony 14 and plated onto M9 minimal media plates supplemented with 100 mM raffinose. All plates 
were supplemented with 100 µg/ ml Ampicillin and incubated at 37oC for 3 d. 

 
 

The plasmid isolates were sent for sequencing (Macrogen, Amsterdam, Netherlands) 

returned sequences identical to 5 different genes present in the annotated Arabidopsis 

thaliana genome (Table 3.1).  

 

 

 

 

 

 

(c) 

(b) (a) 
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Table 3.1 Genes derived from sequencing of plasmid isolates of the Arabidopsis thaliana 
cDNA library in pBlueScript that allowed for growth of E. coli (TOP10®) on M9 minimal media 
supplemented with 100 mM raffinose. 

Gene TAIR 
Accession no. 

Function 

adenosine kinase 1 

(ADK1) 

AT3G09820 Involved in the salvage synthesis of adenylates 

and methyl recycling 

 

 

Ribulose 

bisphosphate 

carboxylase (small  

chain) family protein 

 

AT5G38410 Encodes a member of the Rubisco small subunit 

(RBCS) multigene family. Functions to yield 

sufficient Rubisco content for leaf photosynthetic 

capacity 

UDP-D-gluconurate 
4-epimerase 6 (GAE  
6) 

AT3G23820 Catalyses the conversion of UDP-gluconurate to 

UDP-D-galactouronate which is a major sugar in 

plant cell walls 

 

Ascorbate peroxidase 

1 (APX1) 

 

AT1G07890 Scavenges hydrogen peroxide in plant cells. 

Two chloroplastic types have been described for 

Arabidopsis. Part of the induction of heat shock 

proteins during light stress in Arabidopsis  is 

mediated by H2O2 that is scavenged by APX1 

 

Photosystem II 
reaction centre 
protein M (PBSM) 

ATCG00220 Anchored in the thylakoid membrane of plants 

and are main protein components of plant 

photosynthetic reaction centres 
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3.6 Heterologous expression of pGlcT1 in E. coli  

 

3.6.1 Sub-cloning of pGlcT1 into pDEST17 

 
 

 

Figure 3.11 Colony PCR confirmation of pDEST17:: pGlcT1 construct with lane 1 representing pGlcT1 
fwd and rev primers and lane 2 indicating T7 fwd an pGlcT1 rev primers 

 
 
 

3.6.2 Recombinant pGlcT1 expression (SDS-PAGE Gel) 

 

Colony PCR performed on 6 BL21 AI colonies were tested for the presence of the 

pGlcT1 gene within the bacteria. Figure 3.12, shows that the gene was present in all 

6 colonies. Results for PCR performed on cDNA generated from L-arabinose induced 

BL21 AI cultures containing the pDEST17:: pGlcT1 and the pDEST17:: XhLEA 

constructs with gene-specific primers is shown in Figure 3.13. The presence of 

mRNA transcripts is verified. 

 

The SDS-PAGE gel conducted with proteins purified from L-arabinose post-induction 

cultures yielded the ~ 57 kDa pGlcT1 protein (Figure 3.14, lane 1). The XhLEA positive 

control also yielded the correct ~25 kDa protein (Figure 3.14, lane 2).The negative 

control pRSET C did not show any significant band in the gel, as expected (Figure 

3.14, lane 3).  
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Figure 3.12 Results for colony PCR performed on 6 Bl21 AI colonies containing the pDEST17:: pGlcT1 

construct with pGlcT1 gene-specific primers positively confirming the presence of the pGlcT1 gene. 
 
 
 

 
Figure 3.13 PCR performed on cDNA generated from total RNA isolated from L-arabinose induced 

cultures, confirming the presence of the pGLCT1 mRNA transcripts. Lane 1 represents the pDEST17:: 

pGlcT1 construct and Lane 2 represents the control, pDEST17:: XhLEA. 
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Figure 3.14 SDS-PAGE gel depicting proteins purified after culture induction with L-arabinose. Lane L 
represents the PageRuler Plus marker, lane 1 represents recombinant pGlcT1 (~57 kDa) obtained from 
arabinose induction of transformed into E. coli (BL21 AI), lane 2 represents recombinant XhLEA (~25 
kDa, positive control for recombinant protein induction) obtained from an L-Arabinose induction of 
pDEST17:: XhLEA and lane 3 represents empty pRSET C vector control.  
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3.6.3 M9 minimal media growth testing with pDEST17:: pGlcT1 construct 

 

BL21 AI colonies containing the pDEST17:: pGlcT1 construct were induced for 

recombinant protein expression with 13.32 mM L-arabinose. Four centrifuge rinsing 

steps were conducted before cell pellets were re-suspended and plated onto M9 

minimal media plates supplemented with either 100 mM sucrose (Figure 3.16Figure 3.14 

c) or 100 mM raffinose (Figure 3.1Error! Reference source not found.6e). Growth 

was observed after 6 to 10 d, respectively. Growth on the raffinose M9 plate was more 

prominent compared to the sucrose M9 plate.  

 

The controls, namely BL21 AI containing the pDEST17:: XhLEA construct (Figure 

3.16d & Figure 3.16f) as well plain BL21 AI with no construct (Figure 3.15Figure 3.14 b 

& Figure 3.15c) showed no growth on the 100 mM sucrose or 100 mM raffinose M9 

plates after 6 and 10 d, respectively. Subsequently, BL21 AI colonies containing 

pDEST17:: pGlcT1 and showing positive growth on M9 minimal media supplemented 

with either sucrose or raffinose were sub-cultured onto fresh M9 plates supplemented 

with 100 mM sucrose and 100 mM raffinose. Much faster growth was observed with 

colonies forming within 3 d as shown in Figures 3.17a & b.  
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Figure 3.15 Growth profiles of E. coli (BL21 AI) without a construct when plated onto M9 minimal media 
plates supplemented with (a) 100 mM glucose, (b) 100 mM sucrose, (c) 100 mM raffinose, (d) plain M9 
only (e) LA, following L-arabinose induced-induction for recombinant protein expression for a period of 
4 h. Plates were incubated at 37oC for 10 d. 
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Figure 3.16 Growth profiles of E. coli (BL21 AI) with pDEST17:: pGlcT1 plated onto M9 minimal media 
supplemented with 100 mM glucose, 100 mM sucrose, 100 mM raffinose, M9 only and LA (a, c , e, g 
and I respectively) and with pDEST17:: XhLEA  plated onto M9 minimal media supplemented with 100 
mM glucose, 100 mM sucrose, 100 mM raffinose, M9 only and LA (b, d, f, h and j respectively) 
following L-arabinose induced-induction for recombinant protein expression for a period of 4 h. Plates 
were incubated at 37oC for 10 d. 
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Figure 3.16 Growth profiles of E. coli (BL21 AI) with pDEST17:: pGlcT1 plated onto M9 minimal media 
supplemented with 100 mM glucose, 100 mM sucrose, 100 mM raffinose, M9 only and LA (a, c , e, g 
and I respectively) and with pDEST17:: XhLEA  plated onto M9 minimal media supplemented with 100 
mM glucose, 100 mM sucrose, 100 mM raffinose, M9 only and LA (b, d, f, h and j respectively) following 
L-arabinose induced-induction for recombinant protein expression for a period of 4 h. Plates were 
incubated at 37oC for 10 d. 
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Figure 3.17 Growth profiles of BL21 AI colonies containing pDEST17:: pGlcT1 sub-cultured onto M9 
minimal media plates supplemented with (a) 100 mM sucrose and (b) 100 mM raffinose. All plates 
except the M9 plate with the BL21 AI were supplemented with 100 µg/ml Ampicillin and incubated at 
37oC for 10 d. 

 

 

3.7 Evaluation of the quantum efficiency of photosystem II in the pGLCT1 

mutant exposed to cold stress 

 

The Fv/Fm growth curves for the Arabidopsis thaliana Col-0 wild type, RSS-5 and 

SALK_066365 plant lines is shown in Figure 3.18. The Fv/Fm value for plants for all 

three lines at day 0 under normal conditions (25oC) was found to be ~0.835, which is 

within the expected range for Arabidopsis leaves under optimal plant growth 

conditions. The chlorophyll fluorescence analysis showed a fairly constant Fv/Fm for the 

Col-0 wild type plants which averaged 0.82 over the duration of 7 d under cold-

acclimation (4oC). The RSS-5 and SALK_066365 plants exhibited a consistent 

decrease in Fv/Fm over the 7 d period under cold-acclimation. The decrease in Fv/Fm 

was more pronounced for the RSS-5 line as opposed to the SALK_066365 line. 

However, both the RSS-5 and SALK_066365 lines had a clearly visible decrease in 

Fv/Fm values as opposed to the Col-0 wild type plants.  

 

The repeated measures one-way ANOVA test (Appendix A2, Table A2.1 & Table A2.2) 

performed on observed Fv/Fm values between replicate measurements of three leaves 

per plant for all six SALK_066365 (P = 0.0006) and RSS5 (P = 0.0004) line plants were 

determined to be statistically significant when compared to the Col-0 WT plants. The 

(b) (a) 
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linear trend was also found to be significant for the post test for linear trend involving 

the SALK_066365 (P = 0.0032) and RSS5 (P = 0.0001), respectively. 

 

 

 

 
Figure 3.18 Graph showing the Fv/Fm values obtained for Col-0, the RSS-5-1 T-DNA insertion mutant 
(Zuther et al, 2004, Knaupp et al, 2011; Egert et al, 2013) and pGlcT1 T-DNA insertion mutant 
(SALK_066365) plants under cold-acclimation conditions ( 4oC,  7 d). Measurements were taken prior 
to the day cycle of the controlled environment chamber and represent plants that were thus dark 
adapted for a period of 8 h. Statistical significance for SALK_066365 (P = 0.0006) and RSS5 (P = 
0.0004) were determined through a repeated measures one-way ANOVA test with a linear trend post-
test.  
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Chapter 4: Discussion 

 

Raffinose family oligosaccharides (RFOs) have been extensively described in their 

roles in phloem translocation and carbon storage (roots and tubers, reviewed in Keller 

and Pharr, 1986). However they have also been implicated in the general responses 

to abiotic stress in plants, where their role has been linked to osmotic adjustment as  

compatible solutes (Taji et al, 2002; Zuther et al, 2004; Hannah et al, 2006; Nishizawa 

et al, 2008; Egert et al, 2013; ElSayed et al, 2014).   

 

The tri-saccharide raffinose (Suc-Gal1) is the primary RFO reported to have increased 

concentrations in vegetative tissues (leaves and roots, Pessarakli, 2002; Amiard, 2003; 

Sengupta et al, 2015) during various abiotic stress-events. The exact mechanism(s) 

which underpin any protective functions remain elusive. However, under cold-

acclimation, a fraction of raffinose accumulated in the leaf mesophyll tissue has been 

described to accumulate within the chloroplasts. This was first described in cold-

treated cabbage and wheat, respectively (Heber, 1959; Santarius and Milde, 1977). 

Lineberger and Steponkus (1980) suggested the protective function of raffinose on 

proteins and membranes within isolated chloroplast thylakoid membranes. This was 

explicitly demonstrated in the Arabidopsis model, where the chloroplastic raffinose 

accumulated during cold-acclimation was shown to improve photosynthetic efficiency 

under low temperature (4C, Knaupp et al, 2011). 

 

Furthermore, a recent study demonstrated a novel raffinose transport system that 

actively transports raffinose that is synthesised in the cytoplasm into the chloroplast 

lumen (Schneider and Keller, 2009). That study demonstrated that RFO biosynthetic 

enzymes do not occur in the chloroplast. Subsequent studies using transgenic 

Arabidopsis which overexpressed a stachyose synthase (SS) isoform clearly showed 

that this transport system was selective only for raffinose, since mesophyllic stachyose 

was located exclusively in the cytosol (Keller & Schneider, 2009; Iftime et al, 2011) 

 

While raffinose transporters are quite well characterised in microbes (Ulmke et al, 

1997; Aslandis and Schmitt, 1990; Benz et al, 1992), the molecular identity of the 

transporter involved in chloroplastic raffinose transport in plants is still unknown. The 

first eukaryotic raffinose transporter (MRT, Genbank accession no.:  GQ167043) was 
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only recently described from the fungus Metarhizium robertsii (Fang & St. Leger, 2010). 

This discovery has spurred on a greater research focus on putative raffinose 

transporters in plants, especially in Arabidopsis.  

 

These findings led us to consider a multipronged strategy that sought to identify the 

chloroplastic raffinose transporter from Arabidopsis. Firstly, using a functional 

screening approach, we hoped to identify cDNAs from an Arabidopsis library that 

allowed laboratory strains of E. coli to grow on M9 minimal media supplemented with 

raffinose. Secondly, using rudimentary bio-informatics, we identified pGlcT1 (TAIR 

accession code: AT5G16150) as a potential homologue to MRT since it was a known 

mono- and disaccharide transporter with a specific plastidial (chloroplast) sub-cellular 

localisation.  A reverse-genetic approach was adopted to characterise Arabidopsis T-

DNA insertion mutants for their ability to accumulate chloroplastic raffinose by indirectly 

comparing their photosynthetic performace against the RS5 (TAIR accession code: 

AT5G40390) mutant line which is completely deficient in raffinose accumulation 

(Zuther et al., 2004; Knaupp et al., 2011; Egert et al., 2013). 

 

Another approach to identify the chloroplastic raffinose transporter was to utilise E.coli 

as a functional screening system.  

 

Since laboratory strains of E. coli are well described to lack raffinose transport systems, 

a simple yet efficient method to deduce what genes play a role in the raffinose transport 

mechanisms of Arabidopsis was used to screen  an entire Arabidopsis thaliana cDNA 

library in the pBlueScript SK (+) vector. The ability of E. coli (wild-type strains) to utilise 

raffinose is plasmid-borne. Conjugative plasmids such as pRSD2 (which possess a 

Raf operon and encodes a peripheral raffinose metabolic pathway) have been found 

in the E.coli K-12 strain, allowing for growth on only raffinose as a carbon source 

(Ulmke et al, 1997). In that study, the pRSD2 plasmid was described to contain a 

raffinose permease (transporter), an invertase (sucrose degrading enzyme) and an α-

galactosidase (raffinose degrading enzyme), facilitating the growth of certain 

enterobacteria such as E.coli K-12 on raffinose.  

 

All readily available E.coli laboratory strains namely DH5α, OneShot® OmniMax®, 

OneShot®  TOP10 and  BL21 AI were tested for growth on M9 minimal media plates 

Stellenbosch University  https://scholar.sun.ac.za



 

45 
 

supplemented with 100 mM raffinose (Figure 3.6d). None of the strains proliferated 

when raffinose was provided as the sole carbon source.   

 

When an Arabidopsis thaliana cDNA library was cloned and expressed in E.coli 

(OneShot®TOP10) we recovered a small number of colonies from raffinose 

supplemented M9 minimal media plates. We reasoned that laboratory E.coli strains 

transformed with this library would show growth in the presence of raffinose as the sole 

carbon source only if genes from Arabidopsis facilitated raffinose transport. Plasmid 

DNA was obtained for eight cDNAs that consistently facilitated growth with raffinose 

as the sole carbon source when these plasmids were re-transformed. Surprisingly, 

when we conducted restriction digests on these plasmids we obtained inserts of 

various sizes (Figure 3.9), implying that more than one gene (cDNA) was imparting the 

ability to utilise (grow) on raffinose.  

 

The five genes identified from sequencing the above mentioned plasmid isolates 

(Table 3.1) seem to possess no currently known function relating to raffinose uptake. 

Further, we did not identify the pGlcT1 gene from these results.  It is currently unclear 

how these particular genes facilitated the growth of E. coli on M9 minimal media 

supplemented with raffinose. Future studies need be conducted on these particular 

genes to determine whether these genes do indeed play a critical role in raffinose 

uptake. An alternative rationalization of these results may be that the Arabidopsis 

library screening system was leaky. This may have resulted in the selection of false 

positive colonies that allowed greater growth of E.coli (TOP10®) on 100 mM glucose 

as opposed to 100 mM raffinose. This explanation, however, does not support the 

continuous growth observed of the isolated colonies that were sub-cultured onto fresh 

M9 minimal media supplemented with 100 mM raffinose. 

 

Since the results from the experiment involving the Arabidopsis thaliana cDNA library 

did not confirm the pGlcT1 gene’s role in transporting raffinose, an alternative 

experimental strategy was used to exploit the inability of E. coli to grow on raffinose 

(due to the missing uptake system). This involved creating a construct that allowed for 

the expression of the pGlcT1 gene within a tightly regulated and highly inducible 

environment. The BL21 AI E. coli strain afforded an ideal heterologous expression 

background, especially for potentially toxic eukaryotic membrane proteins such as 
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pGlcT1. It offers one of the most tightly regulated high-level expression systems 

available, greatly reducing basal expression, due to the arabinose-inducible araBAD 

promoter upstream of the T7 RNA polymerase gene. This meant that the pGlcT1 gene 

could be cloned into a T7 promoter-based vector such as the pDEST17 Gateway® 

expression vector. 

 

Upon confirmation of the pDEST17:: pGlcT1 construct (Figure 3.11), growth of E. coli 

BL21 AI transformed pDEST17:: pGlcT1 onto M9 minimal media supplemented with 

100 mM glucose, sucrose and raffinose was investigated.  As expected favourable 

growth of BL21 AI containing pDEST17:: pGlcT1 was observed on the glucose M9 

plate (Figure 3.16 a). However, this growth on glucose was much more prolific when 

compared to BL21 AI controls (raffinose and sucrose).  We suggest that this is due to 

pGlcT1 actually being a well characterized glucose transporter in a variety of plant 

species including Arabidopsis thaliana (Weber et al, 2000; Froelich et al, 2003; Ferro, 

2003, Lu et al, 2006; Cho et al, 2011; Chaparro et al, 2013). Therefore, recombinant 

pGLCT1 could supplement the natural glucose uptake system in E.coli and enhance 

growth under our conditions.  

 

 The reduced number of colonies observed on M9 minimal media supplemented with 

100 mM sucrose and 100 mM raffinose (Figure 3.16 c and e respectively) as opposed 

to prolific growth on glucose can also be attributed to the fact that co-transporters, 

particularly symporters facilitate the transport of certain molecules at a slower rate than 

other molecules (Lodish et al, 2000; Alberts et al, 2002). This is due to it being an 

active transport system which requires continuous amounts of energy to facilitate 

transport activity against concentration gradients. Consequently, M9 plates 

supplemented with 100 mM glucose allowed easier growth as opposed to M9 

supplemented with sucrose and raffinose, which E. coli is not able to metabolize as 

easily, if at all. Additionally, glucose is a much smaller molecule than both sucrose and 

raffinose (Lodish et al, 2004), hence the uptake of glucose would be much faster, 

allowing faster metabolism as opposed to sucrose and raffinose.  

 

pGlcT1 was first characterized by Weber et al (2000) via a procedure which involved 

differential labelling with glucose. The localization of pGlcT1 to the chloroplast 

envelope was further supported through mass spectrometry analyses (Froelich et al, 
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2003; Ferro, 2003). Amino acid sequence similarity analyses conducted on pGlcT1 

and the glucose transporter from spinach corroborated that pGlcT1 can be categorized 

into the sugar porter family which is a member of the large Major Facilitator Superfamily 

(MFS) (Saier, 1998; Weber et al, 2000).  

 

Although pGlcT1 is responsible for glucose transport within chloroplasts, it is not 

entirely limited to this function. This is supported by the finding that despite pGlcT1 

being localized in the chloroplast, a fair amount of pGlcT1 transcript was found in 

Arabidopsis roots, where starch degradation occurs. This infers that pGlcT1 most likely 

participates in non-starch related metabolism (Cho et al, 2011). Additionally, Butowt et 

al (2003) determined that pGlcT1 is not only expressed in starch-containing tissues but 

it is also expressed in tissues containing no starch, such as ripe olives. This implies 

that pGlcT1 not only functions in chloroplasts but in chromoplasts and plastids as well 

(Jaiwal et al, 2008).   

 

An alternate function that pGlcT1 may possess is the ability to transport sucrose. This 

is supported by one of our findings, where growth of the Bl21 AI strain (containing the 

pDEST17:: pGlcT1 construct) on M9 minimal media supplemented with 100 mM 

sucrose (Figure 3.16c) was observed. The controls, BL21 AI (containing the 

pDEST17:: XhLEA construct) as well as BL21 AI without any plasmid did not grow on 

M9 supplemented with sucrose at all (Figure 3.16d and Figure 3.15b respectively). 

This suggests that in the presence of pGlcT1, E. coli is able to utilise sucrose as a 

carbon source.  

 

        An initial concern with regards to screening for growth via M9 minimal media 

supplemented with different carbon sources, was potential reducing sugar 

contamination in either the carbon sources or in the M9 minimal media components. A 

Benedict’s reagent test was performed to verify whether there was any reducing sugar 

contamination present in the M9 minimal media with glucose, sucrose and raffinose 

(Figure 3.5). The M9 minimal media with 100 mM glucose (Figure 3.5a) changed colour 

as expected since all monosaccharides are categorized as reducing sugars (Simoni et 

al, 2002). The M9 minimal media containing 100 mM sucrose and 100 mM raffinose 

(Figure 3.5b & Figure 3.5c, respectively) did not change colour in the presence of 

Benedict’s reagent, confirming that there was no reducing sugar contamination.  

Stellenbosch University  https://scholar.sun.ac.za



 

48 
 

 

        The Benedict’s reagent test may not be as accurate as results obtained from HPLC 

methodologies, however, it is very effective as both a qualitative and quantitative test 

for the presence of reducing sugars (Simoni et al, 2002). Figure 3.15 (b and c) shows 

that there is no growth of E. coli BL21 AI (lacking a construct) at all on the M9 plates 

supplemented with 100 mM sucrose and 100 mM raffinose. This positively confirms 

that contamination of the sucrose and raffinose stock solutions was highly unlikely as 

there was significant growth of BL21 AI (with pDEST17:: pGlcT1) on M9 plates 

supplemented with sucrose and raffinose. Hence, it can be argued that growth of BL21 

AI (with pDEST17:: pGlcT1) witnessed on the M9 minimal media supplemented with 

sucrose and raffinose was not a result of hexose sugar contamination. 

 

In plants sucrose is the foremost transportation form for photo-assimilated carbon 

together with additional functions such as a source of carbon skeletons as well as 

energy for plant organs unable to perform photosynthesis better known as sink organs 

(Kuhn, 1999; Lalonde, 1999; Lemoine, 2000; Ayre, 2011). Sucrose is synthesised in 

the cytosol of photosynthesizing cells and is translocated over relatively long distances 

in solution via the phloem sap and as such it has to pass through a variety of 

membranes (Hammond & White, 2007). Hence, sucrose membrane transport has for 

a long time been considered as a fundamental aspect of determining plant productivity 

(Lalonde, 1999; Lemoine, 2000).  

 

Presently, nine sucrose transporter genes (SUTs) have been characterized in 

Arabidopsis (Kühn & Grof, 2014). Almost all known plant sucrose transporters have 

been described as sucrose/H+ symporters (Zhou et al, 2007). In Arabidopsis, multiple 

sucrose transporter cDNA sequences were discovered to be highly conserved and 

contain the characteristic 12 transmembrane α-helices associated with the MFS 

(Riesemeier et al, 1992; Lemoine, 2000; Kühn & Grof, 2014), which is the same 

superfamily that pGlcT1 belongs to. This is an interesting observation as it suggests a 

high likelihood that plant glucose transporters such as pGlcT1 may possess the innate 

ability to transport sucrose.  

 

E. coli is generally unable to metabolize sucrose with only two known natural occurring 

strains capable of utilizing sucrose as a major carbon source namely; the E. coli W and 
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E. coli EC3132 strains (Jahreis et al, 2002; Sabri et al, 2013). Both these strains are 

able to utilize sucrose via the collaborative action of chromosomally encoded sucrose 

catabolism (csc) genes. The csc regulon encompasses three genes, namely a sucrose 

permease (cscB), a frucokinase (cscK) and a sucrose hydrolase or invertase (cscA). 

These genes are organized into two operons and negatively controlled at the 

transcriptional level via the repressor CscR (Jahreis et al, 2002; Sabri et al, 2013).  

 

There is often uncertainty associated with the transport of sucrose via lactose 

permease (LacY) in the lac operon of E. coli. This is attributed to the fact that both 

LacY and cscB (sucrose permease) fall under the oligosaccharide/H+ symporter sub-

family of the Major Facilitator Superfamily (Vadyvaloo et al, 2006; Sugihara et al, 

2011). LacY and cscB only share an overall homology of ~51%, however many of the 

amino acid residues responsible for transport activity in LacY are highly conserved in 

cscB (Vadyvaloo et al, 2006). Despite this shared homology, there is no common 

substrate for these two permeases (Sugihara et al, 2011). Hence, LacY is unable to 

transport sucrose and cscB is unable to transport lactose.  

 

In our experiments we consistently did not recover any growth on sucrose 

supplemented M9 minimal media in our controls (Figure 3.15b & Figure 3.16d) but did 

observe growth when the pGLCT1 construct was present.  This uptake of sucrose in 

the E. coli BL21 AI cells (containing pDEST17:: pGlcT1) could be explained by the 

presence of pGlcT1, which shares the superfamily associated with sucrose 

transporters in E. coli.  

 

Sabri et al (2013) recently discovered that the sucrose utilizing E. coli strains require 

only the invertase (cscA) and the sucrose permease (cscB) which is a sucrose-H+ 

symporter, to catabolize sucrose. The CscB has been proven to show similarity to other 

well-studied sucrose transporters categorized as members of the MFS (Jahreis et al, 

2002, Sabri et al, 2013). This also implies a certain level of similarity to pGlcT1, further 

supporting the theory that pGlcT1 may play a role in sucrose transport.  

 

pGlcT1 appears to confer certain traits to the BL21 AI strain, that allows it to 

catabolize sucrose into glucose and fructose. The fact that the controls, B21 AI 

(pDEST17:: XhLEA) and the  empty BL21 AI cells did not grow under identical 
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conditions on sucrose, further re-affirms that the only contributing variable is pGlcT1. 

At present, the underlying mechanism of sucrose utilization in the presence of 

pGlcT1 is not clearly understood but we suggest that the presence of non-specific 

alkaline and/or acidic -galactosidases may very well result in the cleavage of both 

raffinose and sucrose when they enter the E.coli cell, thereby making glucose 

accessible for metabolism (and growth).  

 

BL21 AI (containing pDESt17:: pGlcT1) was able to consistently grow on M9 minimal 

media supplemented with 100 mM raffinose (Figure 3.16e). The controls pDEST17:: 

XhLEA and the empty BL21 AI cells (Figure 3.16f & Figure 3.15c respectively) were 

unable to utilize raffinose at all for growth. This provides strong evidence that pGlcT1 

may be responsible for raffinose transport into the cell. Colony PCR on randomly 

selected colonies show the presence of the pGlcT1 gene which confirms that the 

transporter is being expressed and that the growth on raffinose is not the result of an 

esoteric variable. Sub-culturing colonies after multiple centrifugation and rinsing steps 

negate the possibility that residual L-arabinose from induction might be facilitating 

growth on the M9 media supplemented with raffinose. The Benedict’s test (Figure 3.5c) 

also confirmed that no other external factors such as monosaccharide contamination 

were influencing the results in any way. 

 

The results are encouraging as BL21 AI along with most E. coli strains do not possess 

any inherent ability to transport raffinose into the cell (Ulmke et al, 1997). This is a 

plasmid facilitated ability that allows raffinose to enter the cell through the action of a 

raffinose porin (RafY) where it is metabolized (Ulmke et al, 1997). In the absence of 

plasmid-mediated raffinose uptake, BL21 AI must be using pGlcT1 to facilitate 

raffinose uptake into the cell. 

 

Once the raffinose has entered the cell, it is hydrolysed into galactose and sucrose by 

α-galactosidase. Sucrose is then cleaved into glucose and fructose by an invertase 

(Schmid & Schmitt, 1976). This entire process is part of the raffinose (Raf) catabolism 

operon encoded by conjugative plasmids such as D1021, pRSD1 or pRSD2 (Schmid 

& Schmitt, 1976; Ulmke et al, 1997). Common E. coli strains do not seem to possess 

an invertase or α-galactosidase which is responsible for raffinose catabolism 

(Burkhardt et al, 1978; Aslanidis et al, 1989; Ulmke et al, 1997).  
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Interestingly enough the plasmid induced uptake and catabolism of raffinose is highly 

similar to uptake and breakdown of sucrose. Both these systems are plasmid mediated 

in only certain enteric E. coli strains (K-12, W and EC3132) that are able to break down 

WSCs such as sucrose and raffinose. This essentially demonstrates that E. coli in 

general, has not evolved a method that allows it to catabolize raffinose under normal 

circumstances. The exact way in which this is accomplished needs to be studied in 

greater detail. 

 

Although the results from the M9 minimal media raffinose screening system were 

promising, a more targeted approach in plants was required to substantiate our 

conclusions that pGLCT1 could facilitate raffinose transport, in addition to its reported 

functions in glucose and sucrose export. To this end we looked to the recently 

described study which confirmed a function for chloroplastic raffinose protecting 

thylakoid membranes thereby improving photosynthetic efficiency under low 

temperature (Knaupp  , 2011). In that particular study, a raffinose synthase mutant for 

the RS5 gene (RS14 line, Zuther et al, 2004) clearly displayed a perturbation in 

photosynthetic efficiency under low temperature.  

 

We reasoned that since the raffinose deficient RSS-5 loss-of-function mutant 

accumulated no raffinose at all, then the T-DNA insertion mutant line for pGLCT1 

(SALK_066365) would accumulate mesophyllic raffinose but not chloroplastic raffinose 

(based on the assumption that pGLCT1 was responsible for chloroplastic raffinose 

transport). This would result in similar decreased photosynthetic efficiency of both 

mutant lines under cold-acclimation since neither would contain any chloroplastic 

raffinose. 

 

The targeted in planta approach employed was based on chlorophyll fluorescence 

detection in Arabidopsis leaves under dark-adapted cold-acclimation (8h dark, 4oC) 

conditions. Under standard growth conditions for Arabidopsis, the Fv/Fm parameter 

provides an approximation of the maximum quantum efficiency of PS II photochemistry 

and its value for undamaged plant leaves is approximately 0.83 (Schreiber, 2004). Any 

impairment of PS II photochemistry efficiency due to environmental stress, such as 

cold stress decreases the Fv/Fm value (Krause & Weise, 1991; Barbagallo et al, 2003).  
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Our findings concerning the maximum quantum efficiency of PS II photochemistry 

within Col-0 WT, RS14 (RSS-5) and SALK_066365 mutant plants yielded similar 

results as Knaupp et al (2011), to a certain extent. Figure 3.18, shows that the Fv/Fm in 

Col-0 WT plants remained fairly constant with an average of 0.82, which is consistent 

with the values Knaupp et al (2011) observed for WT plants. Knaupp et al (2011) 

demonstrated that the Fv/Fm values measured for plants from the RS14 (RSS5) line 

were significantly reduced when compared to the Col-0 WT plants. Our results followed 

the same trend with the greatest reduction in Fv/Fm values observed in the RS14 

(RSS5) line as opposed to the pGlcT1 mutant and Col-0 WT lines. 

 

Knaupp et al (2011) found that the average Fv/Fm values in the RS14 mutants, first 

used by Zuther et al (2004) were lower than the Fv/Fm values obtained for Col-0 WT 

plants under cold-acclimation conditions. This denotes the lack of chloroplastic 

raffinose due to a knocked-out RafS gene, further confirming that although raffinose is 

not necessary for freezing tolerance or cold-acclimation in Arabidopsis (Zuther et al, 

2004), it is implicated in the protection of photosynthetic machinery of the chloroplasts.  

 

The pGlcT1 loss-of-function mutant plants also demonstrated reduced Fv/Fm values (P 

= 0.0006), although not as low as the RS14 line (P = 0.0004) but lower than the Col-0 

WT plants. This suggests that the pGlcT1 mutant plants were experiencing reduced 

photosynthetic efficiency under cold-acclimation (4oC). The only attributable factor is 

the lack of the pGlcT1 gene in the mutant plants. Although the results do agree with 

Knaupp et al (2011), only one physiological experiment was conducted within the time 

period of the study and this may have affected the results to a certain extent.  

 

An alternative explanation for the reduced Fv/Fm values in the SALK_066365 plants is 

the possible starch degradation impairment present in the pGlcT1 loss-of-function 

mutant plants. Since pGlcT1 has been implicated in starch degradation (Weber et al, 

2000; Cho et al, 2011), the mutant plants may have significantly compromised starch 

degradation. 
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Glucose along with maltose, is an end product of hydrolytic starch degradation and 

needs to be exported from the chloroplast stroma into the cytosol (Wise & Hoober, 

2006; Cho et al, 2011). Studies have demonstrated that starch-laden chloroplasts 

transport this glucose and maltose at night in the dark (Servaites, 2002; Ritte & 

Raschke, 2003; Weise et al, 2004). While pGlcT1 exports glucose out of the 

chloroplast stroma to the cytosol in the dark, maltose is simultaneously exported via 

a chloroplastic maltose exporter known as maltose exporter 1 (MEX1, TAIR 

accession code:  AT5G17520 ). Cho et al (2011) have demonstrated that when both 

pGlcT1 and MEX1 in Arabidopsis Col-0 were mutated, a more significant growth 

reduction phenotype was observed as opposed to when MEX1 was mutated alone. 

This reduction in growth does suggest that mutations in pGlcT1 can affect starch 

degradation adversely, which may have a negative impact on protection of PSII 

photochemistry machinery in the chloroplasts. 

 

Our results indicate a definite reduction in photosynthetic performance of the pGlcT1 

(P = 0.0006) mutant plants when compared to our wild-type controls (Col-0), thereby 

possibly confirming our claim that the well characterised plastidial glucose transporter 

pGlcT1 is also able to transport raffinose. We need to verify our results with additional 

replicate experiments. The functional characteristics of raffinose within the chloroplasts 

of the pGlcT1 loss-of-function mutant plants could have been investigated further 

through the use of transmission electron microscopy (TEM). This could be used to 

identify any differences that exist between Col-0 WT and pGlcT1 mutant plants’ 

chloroplast ultrastructure with regards to thylakoid membrane protection conferred by 

raffinose under cold acclimation conditions.    

 

General conclusion and future recommendations 

 

As discussed previously, raffinose is known to accumulate in chloroplasts under cold-

acclimation conditions the presence of a raffinose transporter localized to the 

chloroplast envelope has been well characterized. The identity of this transporter has, 

however, remained a mystery. Recent findings have justified that raffinose is not 

explicitly involved in freezing tolerance within plants. However, it was determined that 

raffinose plays a major role in protecting the photosynthetic apparatus of chloroplasts. 

Our work was conducted to determine whether a well characterized plastidic glucose 
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transporter (pGlcT1) possessed the ability to transport raffinose into chloroplast of 

Arabidopsis thaliana. 

 

Our preliminary analyses showed only a ~25% similarity between the amino acid 

sequences of the only characterized eukaryotic raffinose transporter (Mrt) and the 

pGlcT1 transporter. However, from our findings, it is clear that the ability of E.coli 

containing a plasmid encoding the pGlcT1 gene to grow on M9 minimal media 

supplemented with raffinose, is indicative of raffinose being transported into the cells. 

This raffinose is most likely catabolised via the action of an intrinsic and non-specific 

α-galactosidase.  

 

Our chlorophyll fluorescence analysis findings corresponded to a large extent with 

previously studied data (Knaupp et al, 2011) concerning the Fv/Fm values of 

Arabidopsis Col-0 and RS14 (P =0.0004) lines under dark-adapted cold-acclimation 

conditions (4oC). Most importantly, the Fv/Fm values (P = 0.0006) we obtained for the 

pGlcT1 T-DNA insertion mutant plants (SALK_066365), indicated reduced quantum 

efficiency of Photosystem II photochemistry when compared to wild-type controls. This 

could be attributed as a function for pGlcT1 (in planta) in chloroplastic raffinose 

transport. However, our interpretation is based on only one physiological experiment.  

 

Future studies involve repeat experiments to measure Fv/Fm under cold-acclimation in 

the pGlcT1 loss-of-function mutant. Furthermore, on the basis of the findings being 

reproducible, we will further conduct non-aqueous subcellular fractionation analyses 

on the pGlcT1 T-DNA insertion mutant plants to determine the amount of raffinose that 

accumulates in the chloroplasts under cold-acclimation conditions. A consideration is 

also the functional rescue of the mutant line where pGlcT1 expression is restored under 

the control of the native pGlcT1 promoter. Additionally, an electrophysiological 

procedure such as the patch-clamp technique may be applied to E. coli vesicles where 

recombinant pGlcT1 occurs, to further understand the active raffinose transport activity 

related to pGlcT1 at the molecular level and conclusively determine whether pGlcT1 is 

irrefutably the raffinose transporter in Arabidopsis. 
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Appendix 

Appendix A1 

 

M9 Minimal Media  

 64g Na2HPO4-7H2O 

 15g KH2PO4 

 2.5g NaCl 

 H2O to final 1L volume and autoclave 

To prepare 500mL M9 minimal media; 

 100mL of 5xM9 salts 

 1 mL 1M MgSO4 

 50 uL 1M CaCl2 

 5 mL 100x Basal Medium Eagle Vitamin Solution (Gibco) 

 2.5 mL filter sterilized NH4Cl (0.2 g/mL) or 0.5g dry 

 10 mL 20% d-glucose or 2g dry 

 glass distilled & autoclaved H2O to final volume of 500mL 

1. pH solution to 7.3 and filter sterilize (0.2u filter). 

2. Introduce media to a pre-autoclaved, wide-bottom (baffled) 2L flask and add 

ampicillin to a final concentration of 70-100 ug/ml. 

3. Grow 5mL overnight culture in same media to inoculate 500mL M9. 

4. Shake culture at 37oC until an OD600 of 07+/-0.2 then induce protein expression 

with the addition of IPTG (0.01-0.1 mM final concentration). 
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Appendix A2 

 

Simple and rapid method of plant genomic DNA isolation for PCR analysis 

(Adapted from Edwards et al (1990) NAR 19: 1349) 

 

METHOD: 

 

1. Grind tissue (one leaf generally; either fresh or pre-frozen in liquid N2) in 1.5 ml 

Eppendorf tubes on liquid  N2 with plastic pestle until well macerated 

2. Add 400 µl of buffer (200 mM Tris-Cl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% 

SDS) 

3. Vortex vigorously for approximately 1 min (place samples on ice until all preps 

are ready) 

4. Centrifuge (full speed, 13000 x g) at RT for 10 min 

5. Transfer 300 µl of supernatant to a fresh tube (keep on ice) 

6. Add 300 µl of isopropanol, mix by inversion, incubate at -20⁰C for 60 min 

7. Centrifuge (full speed, 13000 x g) at RT for 15 min, remove and discard 

supernatant 

8. Rinse the pellet with 1 ml of 70% ETOH, drain and air-dry pellet (approximately 

1 hr until all residual ETOH has evaporated) 

9. Resuspend pellet in 100 µl TE (pH 8.0). NOTE: Pellet will not dissolve 

completely, gently pipette up and down for 1 min, centrifuge at full speed 

for 1 min and use the supernatant for PCR) 

10. Use 5 µl in a 50 µl PCR reaction 

 

EXTRACTION BUFFER: 

 

For 200 ml: 

 4.844 g Tris base (Fw 121.1) dissolving in 180 ml ddH2O. Adjust Ph to 7.5 with 

concentrated HCl 

 Add 2.922 g NaCl (Fw 58.44) 
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 Add 1.861 g EDTA (Fw 372.2), alternatively 10 ml 0.5 M EDTA (pH8.0) 

 Bring to volume of 190 ml with ddH2O 

 Autoclave 

 Add 10 ml 10% SDS to make up 200 ml final volume 

 

Preparation of ultra-competent E. coli cells for transformation 

(Modified from Inoue et al (1990), Gene, 96:23-28) 

 

METHOD: 

 

1. Culture bacterial cells on LB agar plates at 37⁰C overnight 

2. Pick a colony and grow starter culture in 3 ml LB at 37⁰C overnight, with vigorous 

shaking (200 rpm) 

3. Inoculate 200 ml LB with the starter culture and grow cells at 37⁰C, shaking at 

200 rpm, until it reaches OD600 = 0.5 (takes approximately 4 hrs) 

4. Place the flask in ice for 10 min 

5. Pellet cells by centrifugation (4000 rpm) for 10 min at 4⁰C (cells can be divided 

into four 50 ml tubes) 

6. Resuspend each pellet in 20 ml ice-cold TB (hereafter, combine appropriately 

so that there are two tubes containing 40 ml TB) and store on ice for 10 min 

7. Centrifuge (4000 rpm) for 10 min at 4⁰C 

8. Gently resuspend each pellet in 10 ml ice-cold TB and 700 µl DMSO (DMSO 

needs to be stored at -20⁰C overnight before use) 

9. Aliquot the cells in volumes of 50 µl, snap-freeze in liquid nitrogen and store at 

-80⁰C 

10. Use aliquots for transformation as per “The magic E. coli transformation 

protocol” instructions. 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

70 
 

TB solution: 

 

 10 mM PIPES 

 15 mM CaCl2 

 250 mM KCl 

 Dissolve in milliQ water and adjust pH to 6.7 with KOH or HCl 

  Add MnCl2 to final concentration of 55 mM 

 Adjust to final volume 

 Sterilize by filtration with a 45 µm filter and store at 4⁰C 

 

 

Standard heat-shock transformation method 

 

1. Take competent cells out of -80⁰C freezer and thaw on ice 

2. Add 5 µl of ligation reaction to cells. DO NOT MIX BY PIPETTING UP AND 

DOWN 

3. Incubate mixture on ice for 30 min 

4. Set heating block to 42⁰C 

5. Heat-shock the cell mixture at 42⁰C for 45 s 

6. Place back on ice for 2 min 

7. Add 250 µl LB to cells and incubate at 37⁰C, with 200 rpm shaking, for 30 min 

8. Plate 50 µl and 100 µl of each transformation onto selective plates 

(LB+antibiotic) 

Culture cells overnight at 37⁰C 
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Table A2.1: Statistical analyses conducted on observed Fv/Fm values obtained 
for SALK_066365 plants. Repeated measures 1-way ANOVA (P = 0.0006) was 
used with linear trend between means and all plants were used. 
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Table A2.2: Statistical analyses conducted on observed Fv/Fm values obtained 
for RSS5 plants. Repeated measures 1-way ANOVA (P = 0.0004) was used 
with linear trend between means and all plants were used. 

 

Table Analyzed Data 1

Repeated Measures ANOVA

P value 0,0004

P value summary ***

Are means signif. different? (P < 0.05) Yes

Number of groups 3

F 14,74

R square 0,678

Was the pairing significantly effective?

R square 0,5099

F 6,462

P value 0,0016

P value summary **

Is there significant matching? (P < 0.05) Yes

ANOVA Table SS df MS

Treatment (between columns) 0,003325 2 0,001662

Individual (between rows) 0,005101 7 0,000729

Residual (random) 0,001579 14 0,000113

Total 0,01001 23

Post test for linear trend

Slope -0,01373

R square 0,3014

P value 0,0001

P value summary ***

Is linear trend significant (P < 0.05)? Yes
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