
FPGA implementation of a network coding
capable switch

by

Daniel Bernard Beaumont de Villiers

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering (Electronic) in the

Faculty of Engineering at Stellenbosch University

Supervisors: Prof. H.A. Engelbrecht
Mr. A. Barnard

March 2020

Plagiaatverklaring / Plagiarism Declaration

1 Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele

eiendom van ander persone asof dit jou eie werk is.

Plagiarism is the use of ideas, material and other intellectual property of another’s work

and to present is as my own.

2 Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van

diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

3 Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

4 Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die

internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks

sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

5 Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my

eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik

ingehandig het vir bepunting in hierdie module/werkstuk of ‘n ander module/werkstuk

nie.

I declare that the work contained in this assignment, except where otherwise stated, is

my original work and that I have not previously (in its entirety or in part) submitted it for

grading in this module/assignment or another module/assignment.

Copyright © 2020 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

FPGA implementation of a network coding capable
switch

D.B.B. de Villiers
Department of Electrical and Electronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (E&E)
March 2020

The amount of internet connected devices is expected to increase dramati-
cally in the near future. This is especially due to the widespread use of Internet
of Things (IoT) devices. The Fifth-Generation (5G) of cellular network tech-
nologies aims to facilitate in the rapid expansion of IoT devices by providing
an increased data rate, higher throughput, device capacity and connection re-
liability. In order for 5G to be fully integrated into existing telecommunication
system, many new technologies are being developed.

Two technologies to help make 5G a reality are network coding and Soft-
ware Defined Networking (SDN). Network coding is an alternative approach to
traditional packet forwarding. Traditional packet-based networks use a “store-
and-forward” approach, where intermediate nodes relay or replicate incoming
information. Network coding provides an additional step and performs coding
on the incoming data, known as “compute-and-forward”.

SDN is another widely adopted network technology required for 5G. SDN
segregates the traditional decentralized networking approach, into control and
data processes. A software component is installed on each data forwarding
device as the dataplane. The dataplane is the fast component of the network
and is where all packet processing is conducted. The dataplane devices are
controlled by centralised controller devices. The controllers have a “birds-eye-
view” of the entire network and can therefore make more informed network
processing decisions, compared to traditional networking.

Multiple software implementations of network coding have been developed
and implemented. Network coding has been integrated into SDN in emulated
and software environments. There exist many hardware devices that support
SDN protocols such as OpenFlow.

ii

Stellenbosch University https://scholar.sun.ac.za

ABSTRACT iii

However, there are no commercially available network hardware devices
that support network coding. Researchers in the field of computer networking
have to modify existing devices to include network coding functions. Network
hardware devices are often proprietary and therefore it is difficult to modify
existing devices to add custom features and functions, such as network coding.

This thesis solves these problems by implementing a network coding ca-
pable switch in both a software and hardware based environment. The soft-
ware based network coding functions are created as Virtual Network Func-
tions (VNFs) that are deployed in an SDN environment as required. The
hardware based network coding functionality is implemented using a Field
Programmable Gate Array (FPGA) device. Both software and hardware im-
plementations are integrated together using the OpenFlow based SDN bridge,
Open vSwitch (OvS). The overall platform is designed to run on a general
purpose PC and allows network coding to be evaluated in both physical and
virtual network environments, with physical and Virtual Machine (VM) hosts.

The network coding implementations are evaluated using a real packet
based network. The VNF based network encoder and decoder achieve a coding
throughput of 164.67 and 87.99 Mbps respectively. The FPGA based network
encoder and decoder are able to achieve a coding throughput of 223.16 and
496.40 Mbps respectively, providing a speedup of 1.36 and 5.71 over the VNF
based implementations. The FPGA logic is run using a single PCIe lane and
50Mhz clock frequency. Taking full advantage of the FPGA device resource
utilization, all four possible PCIe lanes and the maximum clock frequencies,
the encoder and decoder functions could be implemented to achieve a coding
throughput of 1.5 and 2.96 Gbps respectively.

The thesis demonstrates that FPGA based network coding is feasible and
provides a significant performance increase over software based implementa-
tions. The performance however is reduced dramatically when integrated with
a real packet based network. Future work should focus on optimising the inte-
gration between OvS and the network coding functions. This would hopefully
alleviate any potential integration bottlenecks.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

FPGA implementering van ’n netwerk kodering
bekwame skakelaar

(“FPGA implementation of a network coding capable switch”)

D.B.B. de Villiers
Departement Elektriese en Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (E&E)
Maart 2020

Die hoeveelheid internetverbindende toestelle sal na verwagting in die na-
bye toekoms dramaties toeneem. Dit is veral te wyte aan die wydverspreide
gebruik van Internet van Items (IvI) toestelle. Die vyfde generasie (5G) van
sellulêre netwerktegnologieë is daarop gemik om die vinnige uitbreiding van
IvI toestelle te vergemaklik deur ’n verhoogde datatempo, hoër deurvoer, toe-
stelkapasiteit en verbindingsbetroubaarheid te bied. Ten einde 5G volledig in
die bestaande telekommunikasiestelsel te laat integreer, word baie nuwe teg-
nologieë ontwikkel.

Twee tegnologieë om 5G ’n werklikheid te maak, is netwerkkodering en
Sagteware Gedefinieerde n etwerk (SGN). Netwerkkodering i s ’ n alternatiewe
benadering tot tradisionele pakketversending. Tradisionele pakketgebaseerde
netwerke gebruik ’n “winkel-en-vorentoe” benadering, waar tussenknope die
inkomende inligting weergee of herhaal. Netwerkkodering bied ’n ekstra stap
en voer kodering uit op die inkomende data, bekend as “bereken-en-vorentoe”.

SGN is nog ’n algemene gebruikte netwerktegnologie wat benodig word vir
5G. SGN skei die tradisionele gedesentraliseerde netwerkbenadering in beheer
en dataprosesse. ’n Sagteware komponent word op die data deurstuurtoestel
geïnstalleer as die “dataplane”. Die dataplane is die vinnige komponent van die
netwerk en dit is waar al die pakkieverwerkings gedoen word. Die dataplane
toestelle word beheer deur gesentraliseerde beheertoestelle. Die beheerders
het ’n “voël-oog"” van die hele netwerk en kan gevolglik meer ingeligte verwer-
kingsbesluite neem in vergelyking met tradisionele netwerking.

iv

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL v

Verskeie sagtewareimplementering van netwerkkodering is ontwikkel en ge-
ïmplementeer. Netwerkkodering is in die geëmuleerde en sagtewareomgewings
in SGN geïntegreer. Daar bestaan baie hardeware toestelle wat SGN protokolle
ondersteun, soos OpenFlow.

Daar is egter geen kommersiële beskikbare hardeware toestelle wat net-
werkkodering ondersteun nie. Navorsers op die gebied van rekenaarnetwerke
moet bestaande toestelle verander om netwerkkoderingsfunksies in te sluit.
Netwerkhardeware toestelle is dikwels ontoegangklik en daarom is dit moeilik
om bestaande toestelle te verander om gespesialiseerde funksies, soos netwerk-
kodering, by te voeg.

Hierdie tesis los hierdie probleme op deur ’n skakelaar met ’n netwerkkode-
ring in ’n sagteware en hardeware omgewing te implementeer. Die sagteware
gebaseerde netwerkkoderingsfunksies word geskep as Virtuele Netwerk Funk-
sies (VNF’s) wat na behoefte in ’n SGN omgewing ontplooi word. Die har-
deware gebaseerde netwerk kodering funksionaliteit word geïmplementeer met
behulp van ’n FPGA toestel. Beide sagteware en hardeware implementasies
word saam geïntegreer met behulp van die OpenFlow gebaseerde SGN brug,
Open vSwitch (OvS). Die algehele platform is ontwerp om op ’n algemene re-
kenaar te funksioneer en kan die netwerkkodering in beide fisiese en virtuele
netwerkomgewings evalueer, met fisiese en Virtuele Masjiene (VM).

Die implementering van die netwerkkodering word geëvalueer met behulp
van ’n ware pakket gebaseerde netwerk. Die VNF gebaseerde netwerkkodeer-
der en dekodeerder het ’n kodering van onderskeidelik 164.67 en 87.99 Mbps.
Die FPGA gebaseerde netwerkkodeerder en dekodeerder kan ’n kodering van
223.16 en 496.40 Mbps onderskeidelik behaal, met ’n versnelling van 1.36 en
5.71 oor die VNF gebaseerde implementasies. Die FPGA logika word uitge-
voer met behulp van ’n enkele PCIe baan en 50 MHz klokfrekwensie. Met
die volle benutting van die FPGA hulpbronbenutting, al vier moontlike PCIe
bane en die maksimum klokfrekwensies, kan die kodeerder en dekodeerfunksies
geïmplementeer word om ’n kodering van onderskeidelik 1.5 en 2.96 Gbps te
verkry.

Die tesis demonstreer dat FPGA gebaseerde netwerkkodering uitvoerbaar
is en dat dit ’n beduidende toename in prestasie lewer ten opsigte van sag-
teware gebaseerde implementerings. Die werkverrigting word egter dramaties
verminder as dit geïntegreer is in ’n werklike pakketgebaseerde netwerk. Toe-
komstige werk moet fokus op die optimalisering van die integrasie tussen OvS
en die netwerkkoderingsfunksies. Dit sal hopelik die moontlike knelpunte vir
integrasie verlig.

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people and organ-
isations:

My supervisors, Prof. H.A Engelbrecht and Mr. A. Barnard, for their contin-
uous support, encouragement, optimism and education throughout this thesis,
as well as providing me with the necessary advice and feedback to complete
successfully. I am privileged to have had the opportunity to work with and be
mentored by both of you.

To my mother, Yolanda de Villiers for her continuous encouragement, and
allowing me the opportunities to achieve my passions and goals. Without
your support none of this would have been possible.

To my girlfriend, Christina Louw for her divine sense of humour and love.
Thank you for standing by me though all the late nights and for always sup-
porting me.

To my flatmates and friends in the MIH Media Lab, for all the good memories
and encouragement throughout the last two years.

To the Department of Electrical and Electronic Engineering for providing me
with a bursary for the past two years, as well as for funding the FPGA Open-
VINO starter kits.

vi

Stellenbosch University https://scholar.sun.ac.za

Dedications

This thesis is dedicated to Christina.

vii

Stellenbosch University https://scholar.sun.ac.za

Contents

Abstract ii

Uittreksel iv

Acknowledgements vi

Dedications vii

Contents viii

List of Figures xi

List of Tables xiv

Nomenclature xvi

1 Introduction 1
1.1 Overview . 1
1.2 Background . 1
1.3 Problem statement . 4
1.4 Objectives . 5
1.5 Research methodology . 5
1.6 Related work . 6
1.7 Contributions . 7
1.8 Thesis outline . 8

2 Literature Review 9
2.1 Introduction . 9
2.2 Sub-problems to address . 9
2.3 Traditional network switching 11
2.4 Network coding . 15
2.5 Software-based network coding 21
2.6 Software-based network coding with SDN 23
2.7 Software-based network coding within a virtualization environ-

ment . 24

viii

Stellenbosch University https://scholar.sun.ac.za

CONTENTS ix

2.8 Hardware accelerated network coding 28
2.9 Network coding switch functionality 32
2.10 Summary . 35

3 System architecture overview 36
3.1 Introduction . 36
3.2 System architecture . 36
3.3 Bridge component: Open vSwitch 38
3.4 Physical layer . 41
3.5 Virtual layer . 42
3.6 Summary . 42

4 Network coding in the virtual layer: Virtual Network Func-
tions 43
4.1 Introduction . 43
4.2 Methodology . 43
4.3 Component overview . 44
4.4 Kodo Python baseline . 44
4.5 DPDK networking layer . 47
4.6 DPDK encoding pipeline . 52
4.7 DPDK encoding function . 56
4.8 DPDK decoding pipeline . 58
4.9 DPDK decoding function . 60
4.10 Summary . 61

5 Network coding in the hardware layer: Field Programmable
Gate Array 63
5.1 Introduction . 63
5.2 Methodology . 63
5.3 Implementation: network encoder 64
5.4 Implementation: network decoder 72
5.5 Module verification . 80
5.6 Summary . 81

6 Open vSwitch and network coding function integration 82
6.1 Introduction . 82
6.2 Software layer integration: OvS and VNF 82
6.3 Control plane: Ryu SDN controller 84
6.4 Hardware layer integration: OvS and FPGA 87
6.5 Summary . 100

7 Performance evaluation 102
7.1 Introduction . 102
7.2 Runtime analysis: network coding only 102

Stellenbosch University https://scholar.sun.ac.za

CONTENTS x

7.3 Network throughput, latency and packet delay variation 109
7.4 FPGA resource utilization . 118
7.5 Maximum operating frequency 120
7.6 Summary . 121

8 Conclusion 122
8.1 Overview . 122
8.2 Future work . 124

Bibliography 126

Appendices 132

System setup 133
Network configuration scripts outputs 133
Physical network setup . 138

Kodo Python baseline 139
Kodo Python code . 139

Raw RLNC data values 143
Source, un-coded data . 144
Coding coefficient data . 145
Encoded data . 146
Decoded data . 146

RLNC VNF GitHub project 147
VNF DPDK networking setup script 148

Results 150

Scapy test scripts 153
Scapy packet generator . 153
Scapy pcap analyzer . 157

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 Butterfly network . 2

2.1 OSI networking layer model . 11
2.2 Ethernet packet format . 12
2.3 Unicast vs Multicast . 13
2.4 IGMPv2 packet format . 14
2.5 MicroCast network coding throughput rates 21
2.6 Linux networking layer model . 25
2.7 DPDK overview diagram . 27
2.8 OpenVINO Starter Kit . 31
2.9 Open vSwitch component diagram 33
2.10 Type 1 vs Type 2 hypervisor . 34

3.1 Network coding switch system overview 37
3.2 Open vSwitch and DPDK setup script flow diagram 40

4.1 Python RLNC implementation flow diagram 45
4.2 Kodo input data format . 46
4.3 Kodo coding coefficient data format 46
4.4 DPDK Ethernet interface configuration procedure. 48
4.5 DPDK memory buffer layout. 49
4.6 Setup used to verify DPDK networking loopback function. 50
4.7 Selection process used by DPDK application to determine coding

operations. 52
4.8 DPDK encoding pipeline flow diagram. 54
4.9 DPDK encoder function flow diagram. 57
4.10 Source and encoded packet formats 58
4.11 DPDK decoding pipeline flow diagram. 59
4.12 DPDK decoder function flow diagram. 61

5.1 Hardware encoder flow diagram . 66
5.2 Hardware encoder entity: input FIFO buffer 67
5.3 Hardware encoder input FIFO read and write FSMs 68
5.4 8-bit shift register . 69
5.5 8-bit linear-feedback shift register 69

xi

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xii

5.6 8-bit Galois linear-feedback shift register 70
5.7 Hardware encoder entity: prngen 71
5.8 Hardware encoder entity: Galois field multiplier 72
5.9 Hardware decoder finite-state machine 74
5.10 Hardware decoder data segmentation 74
5.11 Gauss-Jordan elimination finite-state machine 76
5.12 Gauss-Jordan elimination matrices representation 77
5.13 Hardware decoder entity: row division 78
5.14 Hardware decoder entity: row multiply-and-subtract 79
5.15 Hardware decoder entity: Galois field divider 80
5.16 Hardware decoder entity: Galois field inverter 80

6.1 IGMP snooping functionality flow diagram from OvS bridge. 85
6.2 IGMP snooping functionality flow diagram from Ryu controller. . . 86
6.3 OvS and hardware-based network coding integration functionality. . 87
6.4 Hardware coding integration architecture. 88
6.5 Terasic PCIe fundamental reference design 90
6.6 Memory map of FPGA on-chip RAM 91
6.7 Avalon MM Master read template 92
6.8 Avalon MM Master write template 92
6.9 Master read flow diagram . 94
6.10 Master write flow diagram . 95
6.11 Flow diagram of TAP interface creation function. 97
6.12 Network topology used to verify userspace TAP interface loopback

function. 98
6.13 Flow of software application used to interface OvS with FPGA coders.100

7.1 Coding runtime timing values. 103
7.2 VNF-based network coding end-to-end test topology. 110
7.3 FPGA-based network coding end-to-end test topology. 113

1 Screenshot of output from OvS-DPDK networking setup script
setup_ovsdpdk.sh. 134

2 Screenshot of output from physical hosts networking setup script
setup_nichosts.sh. 135

3 Screenshot of output from virtual machine hosts networking setup
script setup_vmhosts.sh. 136

4 Screenshot of output from virtual machine VNFs networking setup
script setup_vmvnfs.sh. 137

5 Physical layer lab setup. 138

6 File structure of the RLNC_VNF GitHub project. 147
7 Screenshot of output from VNF DPDK networking setup script. . . 149

8 FPGA encoder signal tap result . 151

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xiii

9 FPGA decoder signal tap result . 152

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1 OvS Bridge port configuration: br0 39
3.2 Network configuration scripts summary 40

4.1 Kodo-C network coding functions: general 55
4.2 Kodo-C network coding functions: encoder 55
4.3 Kodo-C network coding functions: decoder 60

6.1 Avalon Memory-Mapped Master read template signals 93
6.2 Avalon Memory-Mapped Master write template signals 94
6.3 Summary of Terasic PCIe library functions used to interface userspace

software application with OpenVino starter kit. 99

7.1 Timing values for the encoder and decoder VNF coding functions. . 105
7.2 Runtime, throughput and loading overhead for the encoder and

decoder VNF coding functions. 105
7.3 Timing values for the encoder and decoder FPGA coding functions. 107
7.4 Runtime, throughput and loading overhead for the encoder and

decoder FPGA coding functions. 107
7.5 Throughput, latency and jitter results for VNF-based coding func-

tion in PHY to PHY test. 111
7.6 Throughput, latency and jitter results for VNF-based coding func-

tion in VM to VM test. 111
7.7 Throughput, latency and jitter results for FPGA-based coding func-

tion in PHY to PHY test. 114
7.8 Throughput, latency and jitter results for FPGA-based coding func-

tion in VM to VM test. 114
7.9 Overall network, input, output and in-between throughputs for

VNF coders end-to-end tests. 116
7.10 Overall network, input, output and in-between throughputs for

FPGA coders end-to-end tests. 116
7.11 Throughput performance reduction for VNF coders. 117
7.12 Throughput performance reduction for FPGA coders. 117
7.13 Encoder resource utilization cumulative summary 119
7.14 Decoder resource utilization cumulative summary 119

xiv

Stellenbosch University https://scholar.sun.ac.za

LIST OF TABLES xv

7.15 Maximum operating frequencies of FPGA encoder and decoder im-
plementations . 120

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Acronyms
4G Fourth Generation Cellular Network Technology
5G Fifth Generation Cellular Network Technology
ACK Acknowledgement
ALM Adaptive Logic Module
ALU Arithmetic Logic Units
API Application Programming Interface
ARP Address Resolution Protocol
BAR Base Address Register
CPU Central Processing Unit
CRC Cyclic Redundancy Checksum
CUDA Computer Unified Device Architecture
DLR Dedicated Logic Registers
DMA Direct Memory Access
DPDK Data Plane Development Kit
FEC Forward-Error Correction
FIFO First-in, first-out
FOSS Free and Open Source Software
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPU Graphics Processing Unit
HDL Hardware Descriptive Language
IGMP Internet Group Management Protocol
IP Core Intellectual Property Core
IP Internet Protocol
IaaS Infrastructure as a Service
IoT Internet of Things
KVM Kernal-based Virtual Machine
LAN Local Area Network

xvi

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvii

LCM Linear Code Multicast
LFSR Linear-Feedback Shift Register
MAC Media Address Control
MPLS Multiprotocol Label Switching
MTU Maximum Transmission Unit
NFV Network Function Virtualization
NIC Network Interface Card
OSI Open Systems Interconnection
OS Operating System
OvS Open Virtual Switch
P2P Peer-to-Peer
PCIe Peripheral Component Interconnect Express
PC Personal Computer
PDM Poll Mode Driver
PHY Physical host
PIO Parallel Input/Output
QEMU Quick Emulator
RAM Random Access Memory
RLNC Random Linear Network Coding
RTT Round Time Trip
SDK Software Development Kit
SDN Software Defined Networking
SR-IOV Single-Root Input/Output Virtualization
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
UDP User Datagram Protocol
VHDL Very-High-Speed Integrated Circuit Hardware Description

Language
VM Virtual Machine
VNF Virtual Network Function
WMN Wireless Mesh Networks
XOR Exclusive-or

Variables
m Galois field size
h Generation size
G Acyclic graph

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xviii

V Graph vertices
E Graph edges
S Senders
R Receivers
N Data packet length
xi Source vector
xi Source symbol
X Source matrix
e Single graph edge
gi(e) Coding coefficient symbol
g(e) Global coding vector
Gt Coefficient matrix
y(e) Encoded output symbol
y(ei) Encoded output vector
y(e) Encoded output matrix
Ih h x h Identity matrix
l Number of 32-bit data segments
k Coefficient data length for each packet
tcoding Overall coding runtime
Tcoding Overall coding throughput
Tnetwork Network throughput
tlatency Network latency
PDV Network packet delay variation

Units
Mbps Megabits per second
KB Kilobytes
MB Megabytes
GB Gigabytes
Mhz Megahertz
Ghz Gigahertz
µs Microseconds

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Overview
The objective of this thesis is to design and implement a network switch with
the capability of performing network coding, in a real packet-based network.
The switch requires the ability to offload packet data to both software and
hardware-based packet processors. We begin the discussion by outlining the
various technologies explored before moving onto addressing the problems and
need for the network switch. Once the problems are understood, we derive
objectives to address the problems. We look at past work that is related to
the thesis and list the contributions made by our work, in comparison.

1.2 Background
The amount of internet connected devices is expected to increase dramatically
in the near future. This is especially due to the widespread use of Internet of
Things (IoT) devices. The Fifth-Generation (5G) of cellular network technol-
ogy aims to provide an increased data rate, higher throughput, device capacity
and connection reliability. Specifically, 5G will enable the rapid expansion of
IoT technologies. Unlike previous cellular network technology generations, 5G
is consider to be a “revolution” rather than a generational upgrade as with
Fourth-Generation (4G). There are a number of technological challenges that
exist in order for 5G to be fully integrated into existing telecommunication sys-
tems. In response, many technologies are being engineered [1]. One of these
technologies is network coding.

Network coding is an alternative approach to traditional packet forwarding.
Traditional packet-based networks work on a “store-and-forward” basis, where
intermediate nodes relay or replicate incoming information. Network coding
provides an additional step and performs coding on the incoming data, as a
“compute-and-forward” paradigm. The idea that information should not only
be stored at intermediate nodes, but coding could also be performed originates

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

from Ashlswede et al. in [2]. Network coding has shown to improve throughput
and redundancy in various applications, such as multicast streaming [3].

The principle example of network coding is explained using the butterfly
network, taken from Fragouli and Soljanin in [4]. The butterfly network, in
Fig. 1.1 consists of two sources S1 and S2, and two receivers R1 and R2. If R1

requests data from both S1 and S2, then it will be able to receive from both.
This is also the case when R2 is receiving data from both sources. When both
sources send data to both receivers simultaneously, then there is congestion
at the edge CE. More specifically, consider if S1 wants to send bit x1 to R2

simultaneously, while S2 sends bit x2 to R1. In traditional information flow
only one bit can be sent at a time. The other bit waits to be transmitted. In
network coding however, the intermediate node C is able to combine both bits
into a third packet x1 + x2. At the receiving end, each receiver can solve a
simple system of linear equations and obtain x1 and x2.

S1 S2

A B

C

D

E

F

x1 x2

x1 + x2

R1 R2

x2

Figure 1.1: Butterfly network topology of two sources S1 and S2, and two receivers
R1 and R2. Network coding advantage is obtained by combining bits x1 and x2 at
the intermediate node C.

The first practical implementation of network coding is shown by Chou et
al. [5]. A packet format is presented that enables network coding to be used
in practical packet-based networks. Chou et al. also introduces the idea of
grouping packets into a generation. The coding operations are then performed
on the generation itself.

The most adopted form of network coding used in practical implemen-
tations is Random Linear Network Coding (RLNC). In RLNC, intermediate

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

nodes select random coding coefficients independently. This allows the receiver
to decode after obtaining sufficient independent linear combinations.

Examples of RLNC software libraries that can be used in practise are:
NCUtils [6], Random Linear Network Coding Library [7] and Kodo [8]. The
Kodo project by Steinwurf is the most mature and widely adopted in litera-
ture. Kodo provides a large variety of network coding algorithms and functions.
Kodo’s functions are written in C++ and provide wrappers for other program-
ming languages such as C and Python. While network coding libraries such as
Kodo exist, there is currently no commercial network switch that implements
network coding.

According to [1], another widely adopted technology required for 5G is
Software Defined Networking (SDN). Traditional networking is not flexible at
a large scale. Network devices are difficult to configure and manage on an
individual basis. This becomes problematic when network topologies need to
be upgraded or modified. It is complicated to service these networks and as a
result downtime can occur.

SDN aims to solve the difficulties of traditional networking by segregating
networks into control and data processes [9]. A software component is installed
on each data forwarding device as the dataplane. The dataplane is the fast
component of the network and is where all the packet processing is conducted.
Control of the network is centralised using one or more controller devices.
The controllers have a “birds-eye-view” of the entire network. Network control
applications are run on the controllers to characterise how the data is processed
in the dataplane. The controller has direct control over the dataplane through
an Application Programming Interface (API). OpenFlow is currently the most
widely adopted API for SDN.

An OpenFlow device uses flow tables that dictate the actions to perform on
each incoming packet [10]. Unknown packets received by a dataplane device
are sent to the controller. The controller determines the appropriate actions
and updates the flow table on the dataplane device. This creates a rule and
future packets do not need to be sent to the controller. This provides a more
dynamic approach to network management. Projects such as OpenFlow enable
SDN to provide easier deployment and integration of networking technologies.
SDN can be used to integrate network coding operations within a network by
adding the appropriate OpenFlow flows to an SDN compatible network switch.

SDN integrates well with Network Function Virtualization (NFV). Follow-
ing along the direction of computer servers, computer network functionality
is also being virtualized. NFV or Virtual Network Functions (VNFs) are a
recently introduced trend in computer network communication systems [1].
NFV tries to move away from using dedicated networking hardware. VNFs
are usually created within Virtual Machines (VMs) that run in a hypervisor
environment. Therefore a server with Network Interface Cards (NICs) can be
used to deploy multiple network functions. Examples of such network functions
are switches, routers, gateways, firewalls and forward-error-correction coders.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

A SDN-based network can assign these network functions as required. Net-
work coding can be implemented within a VNF to be deployed in a SDN-based
network.

A fast packet processing library that can be used to create VNFs is Intel’s
Data Plane Development Kit (DPDK) [11]. The Linux operating system pro-
vides a great amount of flexibility for packet processing. The problem however,
is that there is much overhead built into the default network stack. DPDK
aims to solve this by making use of Poll Mode Drivers (PMDs) to allow for
network function development in the userspace. PMDs are a type of “kernel
bypass” that allow for packet processing without using the default Linux net-
working stack. DPDK has shown a large amount of performance increases in
practical network use. An example of this is the widely adopted integration
with Open vSwitch (OvS) [12].

OvS is a open source virtual switch that uses OpenFlow to provide SDN
capability [13]. OvS can be installed on many different Operation Systems
(OS), including Linux. Therefore, OvS can be run on a general purpose desktop
or server computer. Both virtual and physical network space can be utilised by
adding networking or processing hardware to the computer. Examples of such
hardware are NICs and accelerators. The Peripheral Component Interconnect
Express (PCIe) interface is one way of connecting additional hardware to the
computer.

PCIe can be used to connect hardware such as an Field Programmable
Gate Array (FPGA). FPGAs are Integrated Circuit (IC) devices that can be
configured to implement digital logic-based circuits. Therefore, many different
packet processing circuits can be developed to run on FPGAs. FPGAs provide
the ability to run multiple parallel circuits at once and can provide increased
performance over software-based algorithms. Therefore FPGA’s can be inter-
faced through PCIe, with a computer running OvS in order to accelerate the
RLNC algorithm.

1.3 Problem statement
Multiple software implementations of network coding have been developed and
implemented. Network coding has been integrated into SDN in emulated and
software environments. There exist many hardware devices that support SDN
protocols such as OpenFlow.

However, there are no commercially available network hardware devices
that support network coding. Researchers in the field of computer networking
cannot go and buy an “off-the-shelf” network switch in order to evaluate net-
work coding in a practical network. This leads researchers to have to modify
existing devices to include network coding functions.

Hardware devices are often proprietary. While this is well justified in the
commercial industry, it becomes problematic in research. It is difficult to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

modify existing network devices to add custom features and functions, such as
network coding.

This thesis solves these two problems by providing an easily modifiable
hardware-accelerated network coding switch platform. The switch can be used
to evaluate network coding in a real, packet-based network. This allows for
further research to be conducted regarding network coding itself. Researchers
do not have to focus on the implementation of network coding, but rather the
use cases.

1.4 Objectives
The aim of this project is to create a flexible network switch platform, in order
to evaluate network coding in a real packet-based network. Network coding
functions are implemented in a hardware and software environment. This is
achieved through the following objectives:

1. Design and implement a network coding capable switch in a software-
based environment. The software implementation serves as a baseline
for comparison with the hardware coders. The software implementation
also allows for network coding to be used in a virtualization environment.
Network coding can be deployed as a VNF and in an Infrastructure as a
Service (IaaS) environment.

2. Design and implement a network coding capable switch with the capabil-
ity of offloading network traffic to an FPGA to assist in packet processing
acceleration.

3. Evaluate the runtime, throughput, latency and jitter performance of both
the software and hardware network coding switch implementations, in a
real packet-based network.

4. Maintain the philosophy of open networking by using techniques of SDN
and NFV where possible, to provide a flexible and expandable solution.
Following the current trend of modern networking enables this thesis to
remain relevant for any future work.

1.5 Research methodology
The design and implementation of a network coding capable switch, should
allow for easier configuration and study of network coding algorithms. In ad-
dition, the use of hardware-based acceleration should also increase the perfor-
mance of network coding implementations in practical packet-based networks.
These assumptions are validated through the following research methodology:

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

1. Designing and implementing virtual, software-based network coding func-
tions to establish a baseline set of performance metrics (runtime, through-
put, latency and jitter).

2. Designing and implementing FPGA-based, hardware network coding
functions to evaluate the feasibility and performance of hardware-based
network coding.

3. Designing and implementing suitable methods to interface both software
and hardware coding functions together within a real packet-based net-
work.

4. Creating a suitable set of testing procedures to accurately compare both
software and hardware-based network coding implementations.

5. Performing the set of testing procedures using both software and hardware-
based implementations and evaluating the results in comparison.

6. Outlining the benefits and weaknesses of both software and hardware-
based implementations, and deriving suitable conclusions regarding both
approaches.

1.6 Related work
Previous work to implement network coding in practical network systems using
either SDN or FPGAs are done by [14], [1] and [15]. These works of literature
are referenced and expanded upon throughout this thesis.

1.6.1 Kim, et al. Design and evaluation of random
linear network coding accelerators on FPGAs

Kim, et al. implements FPGA-based RLNC decoder logic in [14]. Two different
decoder designs are presented that take advantage of the parallel computation
ability of FPGAs. The designs are synthesized using a Xilinx Virtex 5 FPGA.
A maximum throughput of 64.98 Mbps is obtained by the decoder implemen-
tation, providing speedup of 13.84 compared to software implementations.

The designs make use of ModelSim to simulate the hardware implemen-
tation, and do not implement the decoders in a real packet-based network.
The work also only implements a RLNC decoder and not an encoder. This
thesis expands on the work by Kim, et al. by providing the design for both
an FPGA-based RLNC encoder and decoder as well as integration into a real
packet-based network. The decoder implementation is this thesis achieves a
coding throughput of 378.86 Mbps, a speedup of 5.83 over the implementation
in [14].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

1.6.2 Hansen, et al. Network coded software defined
networking: Enabling 5G transmission and
storage networks

Hansen, et al. [1] emphasizes the importance of network coding with SDN
for 5G technologies, by implementing an integration between OpenFlow and
Kodo. The article discusses the problem of adding network coding capability
to existing routers and switches. A solution is provided by implementing the
coding functions on a VM as a VNF. The OvS bridge is used to direct traffic
flow to the coder VM as required.

This thesis expands on the work of [1] by integrating hardware-based
(FPGA) network coding functions into an SDN and OvS environment, along-
side VNF-based network coding functions. The VNFs are implemented using
the DPDK packet processing library.

1.6.3 Gabriel, et al. Practical deployment of network
coding for real-time applications in 5G networks

The conference paper by the Gabriel, et al. [15] demonstrates a practical de-
ployment of RLNC VNFs within an SDN environment to improve video stream-
ing quality due to congestion based packet loss. The demonstrator presented
makes use of off-the-shelf hardware and the OpenStack SDN environment. The
RLNC functions are implemented using the Kodo library.

The work focuses on the setup and implementation of the integrated sys-
tem, and does not provide network performance results. This thesis expands
on the work of [15] by implementing the VNFs using the DPDK library and
adding FPGA-based network coding functions to the SDN environment. Prac-
tical results are given based on the implementation, to provide indication of
the strengths and limitations of implementing network coding in a SDN envi-
ronment.

1.7 Contributions
The following contributions are made through this thesis:

• An FPGA network coding encoder and decoder is developed that can be
used within a practical SDN network. This thesis presents FPGA logic
for a RLNC encoder which has not yet been shown in literature. The
thesis also showcases the design and implementation of integrating FPGA
network coding encoder and decoder functions with the OvS OpenFlow
SDN switch, and therefore a real packet-based network.

• A VNF-based network encoder and decoder that are implemented using
the DPDK software library.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 8

• A holistic research platform to evaluate network coding in a real packet-
based network, using both physical and virtual networking spaces. The
networking functions are integrated with OvS within an SDN environ-
ment.

• A network coding selection scheme to determine when to perform net-
work coding in a real packet-based network.

• An SDN controller program design to implement multicast snooping
within an SDN environment.

1.8 Thesis outline
• Chapter 2 provides a literature review to further expand on the concepts

covered in this introduction. Previous related work is discussed. The
chapter intends to inform the reader of current trends in computer net-
working, and provide the knowledge required for understanding the rest
of the thesis.

• Chapter 3 provides a system overview of the network switch. Due to the
various components and interfaces of the system, a system diagram is
created. This provides a visual aid in understanding the overall system
architecture. Each component is introduced and discussed.

• Chapter 4 discusses the software implementation of network coding func-
tions. The specifics of how DPDK is used to create an encoder and
decoder VM-based VNFs are described.

• Chapter 5 discusses the hardware implementation of network coding
functions. The details of how the RLNC algorithm is implemented in
FPGA hardware are given. The chapter provides information on the
methodology, architecture, implementation and evaluation of the coders.

• Chapter 6 describes how the software and hardware implementations
are interfaced with the OvS bridge. Details regarding the control plane
operations are provided.

• Chapter 7 describes the experimental evaluation of the various compo-
nents. The software and hardware implementations are tested and com-
pared. The results are discussed and the overall system is evaluated.

• Chapter 8 provide conclusions and recommendations regarding the the-
sis.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

2.1 Introduction
The previous chapter introduces the concepts of network coding, SDN, NFV
and FPGAs. In this chapter, we continue the discussion further by outlin-
ing the various sub-problems to address. Specifically, the requirements for a
software and hardware platform, and network coding switch functionality are
scoped. After outlining the sub-problems, we proceed into the various net-
working technologies to address the specified sub-problems. The literature
review is used to study past work relevant to the design and development of a
network coding capable switch.

2.2 Sub-problems to address
To design and develop a network coding switch to meet the thesis objectives
from section 1.4, we begin the discussion with the various sub-problems that
need to be addressed. This chapter reviews past literature to find a solution
to the following:

2.2.1 Software platform for a network coding switch

A software-based network coding implementation is required to serve as a
baseline for comparing and implementing hardware-based network coding. The
software-based network coding implementation has the following requirements:

1. The software-based implementation must be able to use the RLNC al-
gorithm.

2. The software-based network coding implementation must be SDN com-
patible and be used in a real packet based network.

9

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 10

3. The software-based network coding implementation must be deployable
in a virtualization environment.

2.2.2 Hardware platform for a network coding switch

A suitable hardware platform is required to perform network coding. The
hardware-based implementation has the following requirements:

1. The hardware implementation must be able to use the RLNC algorithm.

2. The hardware implementation must be able to integrate with an SDN
environment to be used in a real packet-based network. Specifically, the
switch must be able to run an SDN dataplane protocol (such as Open-
Flow) and be able to communicate and interface with an SDN controller
in the controlplane.

2.2.3 Network coding switch functionality

In addition to the software and hardware-based network coding implementa-
tions, the network switch also requires the following functionality:

1. The network switch must perform the basic switching function of for-
warding networking packets.

2. The network switch must be SDN compatible.

3. The network switch must have the ability to offload network traffic to
both the software and hardware-based network coding implementations.

4. The network switch must be able to function in both a physical and
virtual network environment.

5. The network switch must be able to perform multicast snooping to be
used in multicast streaming applications.

We begin the literature discussion with the traditional approach to net-
work switching within a packet-based network. We then provide more details
on network coding before moving onto discussing suitable platforms for the
software and hardware-based network coding implementations. We conclude
the literature review by evaluating the network coding switch functionality
requirements.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 11

2.3 Traditional network switching
The definition of traditional networking is not necessarily clear. In fact, neither
is the definition of the adjective itself. In the context of this thesis however,
traditional networking refers to computer networking concepts that are not
part of an SDN ecosystem. More specifically, traditional networking refers
to computer network systems where the data and control plane do not have
a clear structural boundary. These networks are often, but not necessarily,
decentralised.

The concepts of traditional networking form the basis of SDN techniques.
Therefore this section is necessary to understand implementations regarding
SDN and VNF. The explanations derive from [16], unless cited otherwise. The
first concept is to understand how computer networks are structured.

Computer networks are divided into different layers. These layers resemble
programming interfaces or libraries. There are many different models describ-
ing networking layers. The most popular is provided by the Open Systems
Interconnection (OSI) project. The OSI attempts to establish networking
standards by providing a seven layer model. A diagram depicting the vari-
ous OSI layers is shown in Fig. 2.1. The layers of OSI are: physical, data link,
network, transport, session, presentation and application.

L2: Data link

L3: Network

L 4: Transport

L5: Session

L6: Presentation

L7: Application

L1: Physical

Layers Protocols

MAC, LLC and PPP

IPv4, IPv6, ICMP and IGMP

TCP and UDP

API’s and Sockets

ASCII, JPEG and GIF

HTTP, FTP, SSH and DNS

WiFi, RJ45, USB and Bluetooth

Figure 2.1: OSI networking layer model with examples of protocols that belong to
each layer.

The OSI layer of most importance within this thesis is the data link layer,
or the L2 layer. The data link layer is responsible for node-to-node transfer
and includes Local Area Network (LAN) communication. LANs are essentially

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 12

serial lines used to interface between network hardware. The most common
LAN protocol: Ethernet, was originally developed in 1976 and became popular
due to its low cost and ease of use.

2.3.1 Ethernet LAN protocol

An Ethernet network groups information bits into buffers of data called pack-
ets. Packets allow devices within a network to communicate. Packets often
have a preceding sequence of bits called a header. The header provides the
necessary information to transfer a packet through a network. The packet data
that is required by the application layers is the payload.

In a computer, the Ethernet LAN protocol assigns each network interface a
unique six byte hardware address. This address is known as the Media Access
Control (MAC) address. Each network interface monitors for arriving packets
containing a destination address equal to the device MAC address. If the
packet matches, the interface forwards the packet to the CPU to be processed.

The Ethernet packet frame format is shown in Fig. 2.2. The packet tra-
verses through the network from the source address src_addr to the destina-
tion address dst_addr. The Ethernet type eth_type field provides information
regarding the protocol that is used by the payload. The payload is the actual
data that needs to be transmitted by the packet. The payload is not part of
the Ethernet header. The Cyclic Redundancy Checksum (CRC) crc field is
an error-correcting code used to detect any data changes that occurred during
transmission.

dst_addr src_addr eth_type payload crc

6 bytes 6 bytes 2 bytes 46 - 1500 bytes 4 bytes

Figure 2.2: Ethernet packet format containing: destination address dst_addr,
source address src_addr, Ethernet type eth_type, data payload and cyclic redun-
dancy checksum crc.

2.3.2 Ethernet switch

Ethernet networks are connected together using switches. An Ethernet switch
is a L2 networking device that functions on the MAC layer. These devices
forward packets between multiple Ethernet interfaces within a network.

Ethernet switches forward packets using forwarding or MAC tables. A
forwarding table is a lookup table with two primary fields: destination ad-
dress and next hop output port. When an Ethernet packet is received by the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 13

switch, a lookup is performed based on the destination address. The packet is
forwarded to the correct device connected to the next hop port.

To begin forwarding packets, switches first need to establish the correct
forwarding table. A learning process is used to populate the forwarding table
from empty. The switch learns where each destination is through the use of
fallback-to-flooding. If a packet is received and the destination is unknown, the
packet is forwarded through each output port. The switch floods the packet
to each port. At the same time, the switch stores the source address of the
received packet in the forwarding table. The source address is stored along
with the port where the packet arrived, therefore creating an entry in the
forwarding table. Future incoming packet destination addresses are compared
to the forwarding table. If the address matches, then the switch does not flood
the network, but rather forwards it to the correct interface.

2.3.3 Multicast

s1

switch

Unicast:

Multicast:

switch switch

r1 r2 r3 r4

s1

switch

switch switch

r1 r2 r3 r4

Figure 2.3: Unicast vs multicast streaming packet flows. The advantage of multi-
cast is illustrated showing a reduced number of packet streams.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 14

In an Ethernet network, packets are either transmitted via unicast, broadcast,
or multicast. Unicast is traffic sent to a specific host, while broadcast and
multicast send traffic to the whole network or a set of hosts respectively. Mul-
ticast is of particular interest in video streaming applications, where multiple
users request the same data from the server simultaneously.

The advantage of multicast is demonstrated in Fig. 2.3. The example
illustrates a source s1 sending data to four separate receivers r1, r2, r3 and
r4. In a unicast network a separate packet is created with the destination
address set to each receiver. Four packets with exactly the same payload, but
different headers are transmitted. These packets are then forwarded through
the network until they reach the receivers. In the multicast network however,
the sender only creates one packet and therefore reduces the overall network
traffic.

Multicast reduces network traffic by using group addresses. Multiple users
or subscribers are able to receive data packets from a single source address
within the multicast group. Multicast uses a unique MAC address format to
distinguish from unicast Ethernet frames. A value of 1 for the least-significant
bit in the first byte of the Ethernet MAC address indicates if the address is
multicast.

While multicast can be done on a L2 layer, L3 or IP-based multicast is often
preferred. By default, L2 switches cannot determine the location of multicast
group members. As a result, switches will broadcast multicast packets instead.
To avoid broadcast, switches can use what is known as snooping.

A popular protocol for IP-based multicast that enables L2 switch snooping
is the Internet Group Management Protocol (IGMP). There are three versions
of IGMP, namely IGMPv1, IGMPv2 and IGMPv3. The most widely used is
IGMPv2, which is documented in the RFC-2236 standard [17]. The IGMPv2
protocol is used in this thesis and hereby referred to as IGMP.

Type Checksum

8 bytes

Max Resp Time

Group Address

8 bytes 16 bytes

32 bytes

Figure 2.4: IGMPv2 packet format containing: message type, maximum allowed
response time to respond to membership query, checksum and multicast group ad-
dress.

Hosts in a network use IGMPmessages to report their membership status to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 15

neighbouring multicast routers. An IGMP packet has the format given in Fig.
2.4. The types of IGMP messages are membership query (0x11), membership
report (0x16) and group leave (0x17). The maximum response time max resp
time field is only used by the membership query and is the maximum allowed
time to respond to a query. The multicast group being reported or left is held
in the group address field.

An Ethernet switch with IGMP snooping monitors network traffic and
inspects each IGMP packet. The switch creates a lookup table and stores
a list of respective multicast group members. When a packet arrives, if the
multicast group is known to the switch, then the switch forwards the packet
to the correct members. The switch therefore, does not need to default to
broadcasting and reduces the amount of network traffic.

While the multicast example in Fig. 2.3 only has a single transmitter,
throughput is difficult to maintain when multiple multicast streams exist si-
multaneously. This is where network coding comes in. As introduced by the
butterfly network in Fig. 1.1, network coding aims to improve throughput in
multicast streaming applications.

2.4 Network coding
Network coding needs to be integrated into an intermediate device or network
switch to benefit multicast traffic. To incorporate network coding into an
Ethernet switch, an algorithm is required that can work in a real packet-based
network.

This section aims to create a set of links from the original idea of network
coding to practical coding implementations. A bias is taken towards finding
practical parameters to utilise network coding for robust, continuous packet
processing. Factors of packet construction, link stability, network topology
and codecs are all investigated. The focus is on the practical and application
side of network coding, and how it is derived from theory.

2.4.1 Codes to Kodo

The theoretical discussion begins with the max-flow min-cut theorem. The
theorem states that the maximum information flow rate of a network is limited
by the minimum cut. Taken from graph theory, the minimum cut is the sum of
the removed edge capacities between the source and sink nodes, to stop flow.

Ahlswede’s states a conjecture similar to max-flow min-cut where the source
information rate must be less or equal to the max-flow of the sender to receiver
[2]. Network configurations consisting of sources sending to multiple sink nodes
(i.e. multicast) would require network coding in order to achieve maximum
flow capacity. Ahlswede shows that even simple codes are able to achieve max-
flow. Alpha codes, which are a type of block code, are used as the original bases

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 16

for network coding. Convolutional codes are also shown to be good alternatives
to block codes for practical scenarios. While the idea was introduced here,
Ahlswede left lots of room for improvement.

One of the first expansions to [2] was conducted by Li, et al. using linear
codes for network coding [18]. In Li’s approach data is represented as a row
vector, and linear transformations are applied at coding nodes. The informa-
tion leaving the coding nodes is a linear combination of the incoming data.
This idea is presented as a linear code multicast or LCM. A physical realiza-
tion of LCM in a acyclic network is provided. Each individual, intermediate
node waits until data has been received on each incoming channel. The node
performs network coding and sends the encoded data out on each outgoing
channel. Each intermediate node performs coding based on a sequential order.

Use of an LCM is shown to achieve the same individual max-flow capacity
presented by Ahlswede. This is an advancement because linear codes are
easier to implement in practise. However, due to the approach being based
upon synchronisation, it is not suitable for real-time applications. Li leaves
room for improvement, and opens the field to many mathematical disciplines.

Koetter and Médard took advantage of [18]’s work in [19]. They provide an
algebraic framework to solve network coding scenarios. The main contribution
is suitable algebraic conditions to determine network feasibility, and study
network capacity when using linear codes. The results of [2] are achieved
using only scalar linear algebra over a finite field. This is significant in that
it allows the use of powerful algebraic mathematics to solve network coding
problems. A technique for finding linear coding coefficients is also provided.
Another result presented by [19] is that network coding provides robustness in
the context of link failure.

Previous work and that done by [19], uses an overview of the complete
network for network coding. On the other hand, Ho, et al. shows that dis-
tributed randomised coding is beneficial over routing [20]. The idea is that
each intermediate node selects coding coefficients from the finite field given by
[19]. The receiving nodes only require the overall linear combination to decode
the original information. Random coding maintains the network capacity of
[2], while providing robustness. This robustness is achieved by distributing in-
formation over the network, allowing for any topology changes or link failures.
The probability of successful information flow is shown to be proportional to
the finite field size.

Two additional approaches to the work of [19] for determining network
feasibility, and if a linear code is valid are given in [21]. This work is done in
companion, to help formulate the results of [21]. A tighter bound on required
coding field size over [19] is given.

All previous discussion up to this point has been focused on the feasibility
of network coding from a mathematical side. The results presented by Chou,
et al. provide a practical distributed network coding scheme in [5]. The
theoretical work looks at synchronous network flow, where as practical systems

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 17

are subject to packet loss, delays and jitter which cause asynchronous flow. The
capacities between nodes are not known, along with a less complete network
overview. Chou addresses various additional practical problems such as cycle
networks, link loss, topology changes and congestion. A packet format is
proposed that allows for decentralised network coding operations. The results
show that a field size of 28 is sufficient in practise, while 216 is more than
enough.

The scheme in [5] works as follows. Incoming symbols are packeted into
vectors of specific length related to the field size, e.g. 1400 symbols for 28.
On the outgoing side, each vector is expressed as a linear combination of
the incoming vectors. Each packet includes the global coding vector as a
header, allowing a receiver to decode the original information via Gaussian
elimination. The cost of this approach is in transporting the coding coefficients.
The overhead however, is relatively small compared to the overall packet size,
especially considering the benefit of decentralisation. This approach allows
receivers to decode the original information in a practical system, as well as
when randomly chosen coefficients such as those in [20] are used.

In practical systems where packets transverse asynchronously through a
network, the packet format by itself becomes problematic. This is because
packets from the same source vectors can be received out of order. The decoder
does not know which packets should be decoded together. To solve this, [5]
introduces the concept of generations, in which packets from the same source
are grouped by generation with a specific generation size.

Each generation has a specific number which is included in the packet
header. Packets received at a node are buffered by generation number. When
an outgoing transmission opportunity arises, a random linear combination of
all packets in that generation are sent out as a packet. Older generations
are removed based on a flushing policy, where packets that arrive belonging
to older generations are discarded. A loss of throughput can be experienced
from this and is proportional to the delay between the time it takes for the
first packet to reach a node over the slowest and fastest paths. This delay is
known as delay spread. Increasing the generation size is shown to decrease
throughput loss, but increases net throughput due to increased packet header
size. Another condition known as interweaving length is shown to have a large
effect on decreasing throughput loss.

Interweaving length is the amount of buffers which the original multicast
session is distributed. It is suggested that different flushing policies can be used
to reduce throughput further. Packets that do not provide new information for
generating random packets to be sent out are useless and therefore disregarded.
Keeping track of non-innovative packets can also help to reducing bandwidth.

The simulation results performed by Chou show performance gained in
terms of received rank, throughput and decoding delay as a function of sending
rate, latency, field size, generation size, and interweaving length. The average
receiver rank is shown to gain very minimal increase over field sizes of 28.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 18

Throughput is described as the product of sending rate and average received
rank divided by the generation size. The results show that throughput loss
is inversely proportional to generation size and interweaving length. This
shows that a larger generation size and longer interweaving length will reduce
throughput losses.

After the significant practical contribution of [5], more theoretical study is
conducted by some of the same authors from [19], [20] and [21]. This work
presented by Ho, et al. in [3] presents a RLNC approach that achieves multi-
cast capacity with almost certainty as the code length increases. The results
contribute by expanding those of [20] and show how random codes can be cre-
ated, as well as transmitted from source to receivers in a distributed network.
The approach is able to maintain capacity as well as improve robustness. It
is mentioned that network coding is not useful for all network configurations.
As a result, simulations are conducted with two scenarios that benefit from
network coding.

The scenarios that benefit from network coding are distributed networks,
and networks with dynamic connections. Simulation results show that RLNC
is able to outperform traditional routing approaches [20]. Overheads are ob-
served while performing coding operations at the encoder and decoder, and
with coefficients in the packet headers.

2.4.2 RLNC theory

In order to implement RLNC in a software and hardware-based platform, the
RLNC theory needs to be well understood to determine the types of processing
operations required. We therefore continue the discussion onto the details of
the RLNC algorithm.

The encoder needs to encode the incoming packet data. Incoming, un-
coded packets are grouped in generations of a generation size, h. All of the
packets in a generation are from the same source. These incoming packets are
multiplied by a set of randomly generated coding coefficients, as RLNC. The
work previously done by Chou, et al. provides a foundation for the encoding
process [5]. A packet format is proposed that does not require any consid-
eration of graph topology or coding functions. The same notation is used to
provide a comparative discussion.

The standard framework for network coding is taken from Ahlswede, et al.
and describes a network as an acyclic graph [2],

G = (V,E)

The set of edges E carry information between the vertices V, from the source
senders S ⊆ V to the receivers R ⊆ V . The source vector for a single packet,
of N symbols, is written as,

xi = [xi ,1 , xi ,2 , ..., xi ,N]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 19

where each source symbol xi represents one byte of data. Grouping the source
packets along h incoming edges, as a generation, gives the source vectors,

x1, ...,xh

which is written in matrix form as,

X =

∣∣∣∣∣∣
x1...

xh

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x1,1 x1,2 ... x1,N...

...
xh,1 xh,2 ... xh,N

∣∣∣∣∣∣ (2.1)

Following the same formation, the coding coefficient symbols gi(e), along edge
e are written in vector form as,

g(e) = [g1 (e), g2 (e), ..., gh(e)]

where g(e) corresponds to the global coding vector for the edge e. Combining
the global coding vectors for h incoming edges,

e1, e2, ..., eh

is represented in matrix form, with rank h as,

Gt =

∣∣∣∣∣∣
g(e1)...

g(eh)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
g1(e1) g2(e1) ... gh(e1)...

...

g1(eh) g2(eh) ... gh(eh)

∣∣∣∣∣∣ (2.2)

The output symbol for a given edge e is calculated as the linear combination
of the source packets and the coding coefficients,

y(e) =
h∑

i=1

gi(e)xi = g1(e)x1 + g2(e)x2 + ...+ gh(e)xh (2.3)

Combining all the output symbols along e into a single output packet y(ei)
provides the output vector,

y(ei) =

∣∣∣∣∣∣
y1(ei)...

yN(ei)

∣∣∣∣∣∣
T

=

∣∣∣∣∣∣∣∣
g1(ei)x1,1 + g2(ei)x2,1 + ...+ gh(ei)xh,1
g1(ei)x1,2 + g2(ei)x2,2 + ...+ gh(ei)xh,2...

g1(ei)x1,N + g2(ei)x2,N + ...+ gh(ei)xh,N

∣∣∣∣∣∣∣∣
T

= g(ei)X

(2.4)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 20

Further, combining all the output packets for a generation size h, provides the
encoded output matrix,

y(e) =

∣∣∣∣∣∣
y(e1)...

y(eh)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
y1(e1) y2(e1) ... yN(e1)...

...

y1(eh) y2(eh) ... yN(eh)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
g1(e1) g2(e1) ... gh(e1)...

...

g1(eh) g2(eh) ... gh(eh)

∣∣∣∣∣∣
∣∣∣∣∣∣
x1,1 x1,2 ... x1,N...

...

xh,1 xh,2 ... xh,N

∣∣∣∣∣∣
=

∣∣∣∣∣∣
g(e1)...

g(eh)

∣∣∣∣∣∣
∣∣∣∣∣∣
x1...

xh

∣∣∣∣∣∣
= GtX

(2.5)

Once the packets are encoded, they can transverse through the network to
the decoder. The main aim of the decoder, is to decode the incoming encoded
packets, in order to solve for the original source packets,

x1, ...,xh

The original source symbols are found by combining the received encoded
packet and coefficient data into matrices as a system of linear equations and
solving for the inverse of the input data matrix to obtain, from [5],

∣∣Gt y(e)
∣∣ =

∣∣∣∣∣∣
g1(e1) g2(e1) ... gh(e1) y1(e1) y2(e1) ... yN(e1)...

...

...

g1(eh) g2(eh) ... gh(eh) y1(eh) y2(eh) ... yN(eh)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 ... 0 x1,1 x1,2 ... x1,N...

...

...

0 0 ... 1 xh,1 xh,2 ... xh,N

∣∣∣∣∣∣
=
∣∣Ih X

∣∣
(2.6)

In RLNC, the random coefficients are taken from a Galois (also known as
finite) field. Network coding operations are also performed over the Galois
field. A Galois field is a mathematical field that contains a finite number of
elements [22]. The field used throughout this thesis is a Galois field of degree
eight (GF (28)), containing 256 elements.

This concludes the details regarding the necessary background on tradi-
tional networking concepts as well as on network coding. We continue the dis-
cussion onto the suitable platform for a software-based network coding switch.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 21

2.5 Software-based network coding
A suitable platform for network coding in the software implementation is re-
quired. We review past software-based network coding implementations that
have been implemented practically. Investigation into past implementations
help address the requirement to be able to use the RLNC algorithm.

2.5.1 Software-based network coding implementations

Network coding is used in [23] to implement a co-operative peer-to-peer system
for video streaming. The work done by Keller, et al. propose the MicroCast
system to help aid in multicast streaming scenarios. A scenario where a group
of smartphone users in the same proximity, want to watch the same video
simultaneously is used.

The architecture of MicroCast includes the MicroNC-P2 algorithm that im-
plements network coding. The network coding scheme uses generation-based
coding over the field GF (28). The coding coefficients are selected uniformly
at random and therefore the scheme uses RLNC. The coding scheme is imple-
mented in Java to be run on the Android mobile OS.

The paper mentions that network coding is a CPU intensive operation.
To reduce CPU usage, the generation size is limited to 25 packets of 900
bytes each. Two implementations are created, the one with pure Java and
the other through the Java Native Interface (C-based). Both implementations
use lookup tables for Galois field multiplication and division, and exclusive-or
(XOR) operations for addition and subtraction.

Figure 2.5: Throughput rates of the MicroCast network coding implementations
for different segment (generation) sizes, taken from [23].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 22

The pure Java implementation can encode and decode at a throughput of
2.9 Mbps and 4.3 Mbps respectively. The Java Native Interface implementa-
tion achieves a higher 24 Mbps for both encoding and decoding. The study
shows the coding rates when the number of packets used in the generation is
varied. The results are shown in Fig. 2.5, and indicate that higher coding rates
are achieved with smaller segment (generation) sizes.

Another practical application of RLNC is shown with indoor sensor net-
works in [24]. RLNC is used as an erasure code and compared alongside
Forward Error Correction (FEC). The results show that RLNC works best in
environments of severe interference, while FEC works better in low interfer-
ence environments. For these reasons, Angelopoulos, et al. propose a Joint
Channel-Network Coding (JCNC) scheme [24].

Due to the delay and memory constraints of low-power sensors, the RLNC
implementation in [24] uses a generation size of four packets. The RLNC
operations are done over the field GF (28) and make use of Linear Feedback
Shift Registers (LFSR) to generate the random coefficients.

While the work done by [23] and [24] provides insight into network coding
algorithms and their success in practise, the RLNC algorithm code is not made
available. This makes it difficult for researchers to study network coding. To
solve this problem Pedersen, et al. created the Kodo network coding library
[25].

2.5.2 Kodo network coding library

The Kodo software library provides a research friendly environment to evaluate
network coding. Kodo provides researchers with an open source tool for using
network coding in practise. Coding schemes can be implemented with existing
networking protocols. Kodo provides network coding algorithms including
RLNC. The algorithms and functions are written in C++, C and Python.

Kodo works by segmenting data into chucks of h packets of length N. The
span of hN is a generation as seen from [5]. Kodo provides a basic partitioning
algorithm, which handles segmenting data into these generations. The user is
able to select the generation size, packet size and the field size. The choice
of field size is a trade-off between computational cost and coding efficiency.
Registration is required to view the GitHub source and the software can be
used freely in a research or education environment. Steinwurf provide an
extensive tutorial and API for easy integration into user projects [8].

Due to Kodo’s ease of use and implementation, it has been widely adopted.
Kodo is considered the recommended network coding software library, while
research shows that there are not many other software libraries that have
similar support and scale. For this reason Kodo is investigated to implement
network coding algorithms in the software implementation.

An example of Kodo in practise is the PlayNCool opportunistic protocol,
introduced in [26]. The paper uses RLNC to increase wireless mesh network

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 23

(WMN) throughput. Simulations are done using the Kodo C++ library. Their
reason for using Kodo is to be able to translate the simulated implementations
to a practical network if required.

Hansen, et al. describes Kodo as a high-performance library that enables
network coding to be deployed in a practical network with ease [1]. Specifi-
cally, Kodo is used to implement RLNC as a VNF in an SDN network. The
coding scheme uses systematic code, where the original input symbols are first
sent uncoded along with the encoded symbols. The coding operations are per-
formed over the field GF (28) using a generation of 10 packets, of 1356 bytes
each.

The Kodo library will allow the software-based network coding platform to
use the RLNC algorithm in practise. Due to the lack of open source RLNC
software, the alternative would be to implement the network coding algorithm
from the RLNC theory. Due to the maturity and widespread use of Kodo
however, it is chosen to implement the RLNC functionality of the software-
based platform.

2.6 Software-based network coding with SDN
Another requirement of the software implementation is to be compatible with
SDN. To make the software implementation SDN compatible, we look at past
network coding implementations that integrate with SDN.

Nemeth, et al. was one of the first to combine network coding and Open-
Flow in [27]. A testbed is presented for inter-session network coding (combin-
ing packets from different network coding flows). The work demonstrates that
smarter switches, such as those with OpenFlow are crucial for deploying net-
work coding in practical network environments. The implementation extends
the OpenFlow protocol by adding custom actions: XOR-encode, XOR-decode
and set-mpls-label-from-counter. Network coding metadata is sent using Mul-
ticast Label Switching (MPLS) labels.

The first label is used by the OpenFlow switch to match packets to the flow
table. The set-mpls-label-from-counter action is then used to prepend sequence
numbers. The XOR-encode action makes a copy of the original packet, and
places it on the encoding queue. Once packets are encoded the MPLS labels are
updated and the encoded packets are sent through the pipeline. The decoding
action XOR-decode is used to decode the encoded packets using their sequence
numbers.

Another network coding and SDN integration, that also makes use of MPLS
labels is done by Yang, et al. in [28]. The work done by [27] is only suitable for
the butterfly network and therefore not real networks. Yang, et al. expands
their work and proposes an OpenFlow Network Coding (OFNC) architecture
with a standard communication protocol between the data and control planes.
Mininet is used to simulate and evaluate the performance. The results show

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 24

that while link capacity is improved, coding calculation overhead causes trans-
mission delays.

Network coding is integrated with SDN in a Wireless Mesh Networks
(WMNs) application in [29]. This study implements their own protocol, Open-
Coding which has similar SDN functionality to OpenFlow, but with network
coding. OpenCoding makes use of SDNs entire network view to optimise
network resources and make effective use of network coding. This approach
showed improvements over standalone OpenFlow or network coding protocols.

The implementation from Hansen, et al. in [1] integrates Kodo with Open-
Flow. A realistic network showcase of network coding is presented. A virtual
network environment, using OvS is used to demonstrate easy integration of
network coding into existing SDN systems. This approach enables network
coding to be applied only when necessary, preventing limitations in scenarios
where network coding does not provide improvement.

A more recent paper by Gabriel, et al. demonstrates a practical deployment
of network coding for real-time applications [15]. The implementation deploys
RLNC with SDN and NFV to improve video streaming quality over lossy
and congested network channels. An OpenFlow-enabled controller is used to
manage the network and the OpenStack cloud platform is used to manage the
network coding functions. Instead of adding custom actions to OpenFlow as
in [27], [28] and [29], flows are used to redirect traffic to the VNFs. OvS is
used by OpenStack to implement switching between network interfaces.

The use of NFV to integrate software-based network coding and SDN en-
ables the requirement of being able to deploy the software-based network cod-
ing platform within a virtualization environment. We therefore continue the
discussion onto possible ways of implementing network coding as a VNF for
the software-based implementation.

2.7 Software-based network coding within a
virtualization environment

The first step in creating a VNF is to figure out how to perform packet pro-
cessing on the Linux operating system. Specifically, network packets need to
be modified in order to provide RLNC operations. We therefore continue the
discussion to userspace orientated packet processing techniques.

2.7.1 Linux-based packet processing

The Linux network stack is shown in Fig. 2.6. The layers are abstracted into
three primary sections, the userspace, Kernel space and physical space. The
Kernel networking layers make use of POSIX sockets. The application begins
by creating a socket. The socket’s file descriptor is used to receive and transmit

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 25

packets over the network. The socket operations are performed as system calls
using the system call interface.

Device drivers

Device agnostic interface

Network protocols

Protocol agnostic interface

System call interface

Application

Physical device hardware

Layers Description

Hardware and Kernel communication.

Interface with device drivers.

TCP, UDP and IP

Interface with transport protocols.

Call between application and Kernel.

Users of network stack.

Device connectivity to networks.

User

Space

Kernel

Physical

Figure 2.6: Linux networking layer model segmented into userspace, kernel and
physical space regions.

A generic method of processing packets within a Linux program is through
the use of the universal TUN/TAP device driver [30]. TUN/TAP interfaces
can either be used in TUN (TUNnel) or TAP (Terminal Access Point) mode
to operate on the Ethernet or IP layers respectively. TUN/TAP devices are
virtual network interfaces and unlike a physical interface, TUN/TAP allows for
a userspace program to receive and transmit network packets. The userspace
program can therefore perform packet manipulation on network traffic received
by the TUN/TAP interface, using the C programming language. The network
coding functions can be implemented in the same userspace program as the
TUN/TAP interface. An alternative to using TAP/TUN is to create a custom
program to interface with the OS kernel. This would be out of the scope of
this thesis and therefore the TUN/TAP interface is used instead.

The TUN/TAP userspace program works by opening the “/dev/net/tun”
file descriptor in Linux and using an input/output control system call to reg-
ister a network device with the Kernel. The network device functions exactly
like a physical device and can be assigned a MAC and IP address. Network
traffic to be processed can therefore simply transmit to the TUN/TAP inter-
face. The network device will disappear when the userspace program closes,
unless a persistent device is created.

Packet processing using TAP/TUN within Linux provides great flexibility.
With an increase in the use of 10GbE NICs however, the kernel networking
stack begins to bottleneck processing performance [31]. While the network

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 26

implementations in this thesis do not explicitly make use of networking equip-
ment equal or greater than 10Gbps, commercial networks and data centers
do [32]. In fact, companies such as Mellanox already provide NICs of up to
200Gbps [33]. In order to keep this thesis relevant for future work, alternative
packet processing techniques are investigated.

Bottlenecks can be alleviated through the use of Kernel-bypass networking.
Kernel-bypass as the name implies, moves network protocol processing from
the kernel to the userspace. In order to understand exactly why a Kernel-
bypass is needed, we need to understand how packets are normally processed
in Linux. The following explanations are taken from [34].

When a packet is received by a network interface in the physical space, it
is first sent to a receive queue. The packet is then copied to the computers
Random Access Memory (RAM) using Direct Memory Access (DMA). DMA
allows for devices to access the RAM without the CPU being fully occupied
during memory transfers. The CPU is used to initiate the transfer and receives
an interrupt when the packet transfer is complete.

Once the DMA transfer is complete, the new packet is placed into a specifi-
cally allocated Kernel space buffer, namely the socket buffers “sk_buff struct”.
These buffers are allocated for each incoming packet and become free when
the packet is transferred to the userspace.

The first problem with this approach is that many bus cycles are required
to continually transfer packet data from the sk_buff to the userspace for each
incoming packet. Another problem is that the Linux networking stack was
designed to facilitate as many networking protocols as possible. As a result,
the sk_buff struct contains metadata for all the protocols and is therefore
overcomplicated. This reduces packet processing speed because each struct
contains more data than necessary.

Kernel-bypass networking reduces the overheads caused by Kernel space
packet processing. Packet handling can be moved to the hardware, OS or
userspace. Hardware-based packet processing can be done through the use
of SmartNICs. SmartNICs, however are expensive network devices and not
necessary for the network speeds in this thesis. Instead, a userspace orientated
Kernel-bypass is investigated.

2.7.2 DPDK

A userspace Kernel-bypass project that have been heavily adopted is DPDK.
The work done by Kourtis, et al. showcase that VM-based VNFs are able to
achieve significantly higher packet throughput performance when using DPDK
over the Linux Kernel network stack [35]. Another example of DPDK perfor-
mance gain is demonstrated in [36]. The white paper boasts a twelve times
increase in performance of OvS when using the DPDK datapath over the Linux
networking stack.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 27

Further investigation into the usage of DPDK with OvS, shows that DPDK
is widely adopted for use with OvS. Cloud computing platforms such as Open-
Stack and CloudStack both have tutorials on using DPDK with OvS in [37]
and [38] respectively. For these reasons, DPDK is investigated as the method
of Kernel-bypass for the implementations in this thesis.

The DPDK software consists of many drivers and libraries that can be used
to perform packet processing. Not only does DPDK provide packet manipula-
tion, but it also minimises the number of CPU cycles required to do so. DPDK
makes it more easy and intuitive to develop packet processing applications by
providing an extensive documentation. An overview of the DPDK architecture
is given in Fig. 2.7 from [11].

Figure 2.7: DPDK overview diagram showcasing available packet processing func-
tionality, from [11]

DPDK operations begin by unbinding network devices from the Linux net-
work stack. The ports are then managed by one of the DPDK provided drivers:
vfio_pci, igb_uio or uio_pci_generic. These drivers enable the userspace to
interact with the network devices. While these drivers still contain Kernel
modules, they are only used to initialise devices and do not make use of the
Linux networking stack.

Once the network devices are bound to DPDK, further communication is
done using the DPDK Poll Mode Drivers (PMDs). PMDs are the main reason
for DPDK’s performance increases. A PMD is a collection of APIs that run
in the userspace. PMDs are used to quickly access the receive and transmit
descriptors of network devices in order to accelerate packet processing.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 28

Along with PMDs, DPDK makes use of huge pages [39]. Huge pages in
Linux are page sizes bigger than 4KB, and specifically in an x86-64 architecture
are 2MB or 1GB. A memory page is a contiguous block of virtual memory that
enables applications from having to manage shared memory space. Virtual
memory also provide memory isolation as well as let applications use more
memory through the use of paging. A Translation Lookaside Buffer (TLB) is
used to store virtual memory to physical memory translations. The TLB cache
is limited in size. Huge pages increase performance by reducing the number of
address translations and TLB usage, therefore increasing the performance of
DPDK.

This concludes the literature review regarding the software implementa-
tion of network coding. We therefore continue the discussion onto finding a
suitable platform for hardware-based network coding. The hardware platform
requirements are to implement the RLNC algorithm and to be integrated with
SDN.

2.8 Hardware accelerated network coding
One of the main bottlenecks of network coding is the computational complex-
ity of the encoding and decoding operations. The above mentioned network
coding implementations are mostly done using CPUs. Other hardware ac-
celerators such as Graphics Processing Units (GPUs) and FPGAs are able to
provide performance increase of software algorithms. This is mainly due to the
ability of using parallel processing. For this reason we investigate alternative
processing implementations of the RLNC algorithm.

2.8.1 Network coding on GPUs

A GPU is a dedicated hardware device that is able to perform multiple par-
allel mathematical calculations. The primary use case for GPUs are in image
and video graphics processing. While many of these tasks can and were pre-
viously done on the CPU, they can be offloaded to the GPU for increased
performance. Due to the increased performance gain in parallel processing ap-
plications, GPUs have been used to implement many other algorithms apart
from visual rendering. This makes it possible to implement network coding on
a GPU.

One of the first GPU implementations of network coding is done by Chu,
et al. in [40]. Algorithms are proposed that aim to maximize the parallelism of
encoding and decoding operations. The implementations provided make use
of the Computer Unified Device Architecture (CUDA) programming model to
run network coding algorithms on the GPU.

The network coding operations are performed in the field GF (28). The
encoding process makes use of logarithmic and exponential tables to perform

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 29

Galois field multiplication. It takes O(hN) time to encode an entire generation
in their encoding operation. The decoding operation solves a system of linear
equations after receiving all h packets in the generation. However Chu, et al.
do not use the GPU to perform decoding due to parallel implementation issues
using CUDA. Instead, the CPU is used to compute the inverse matrix.

Shojania, et al. present another GPU-based network coding implementa-
tion, Nuclei in [41]. The coding functions are created using CUDA, written
in C. One of the performance bottlenecks in [40]’s implementation is that the
Galois multiplication is done using lookup tables, and memory access delays
are imposed. To curb this, [41] uses a loop-based multiplication and shows
that the approach is better suited for parallel implementation.

Both above mentioned implementations show that GPUs are able to pro-
vide performance increases in network coding operations, using parallel pro-
cessing. The one problem with GPUs are that they cannot easily be imple-
mented in embedded devices, such as those used in IoT applications. This
makes it less feasible to use a GPU in the network coding test platform. FP-
GAs however, do not need to be implemented alongside a PC and therefore
can be deployed in an embedded environment more easily. For this reason we
consider FPGAs for hardware acceleration.

2.8.2 Network coding on FPGAs

A design for an FPGA-based network coding decoder is proposed in [14]. The
article by Kim, et al. provides and compares two different decoding meth-
ods. The approach improves decoding speeds by dividing and paralleling the
decoding process. The optimization is focused on Galois field operations and
performing matrix multiplication.

RLNC is used as the network coding algorithm, and all computation is done
in the field GF (28). Two types Galois field Arithmetic Logic Units (ALUs)
are compared. The one method is a table lookup method and the other is
a computation-orientated method. The table lookup method was also seen
in [23] and [40]. A precalculated table is used to store the results of Galois
field operations. Using logarithm and antilogarithm, the lookup tables allow
for Galois field multiplication and division to simply become addition and
subtraction.

Two decoding architectures are proposed that each make use of the different
Galois field ALUs: Inversion first (INVF) and Full Gauss-Jordan (FGJ). The
first method uses Gauss-Jordan elimination to find the inverse of the coefficient
matrix and then multiplies the result with the encoded matrix. The FGJ
method performs Gauss-Jordan elimination on both the coefficient and input
data to obtain the source data.

The resultant implementation is done using a Xilinx FPGA device and
synthesized with the Xilinx ISE package. The modules are then evaluated
using ModelSim SE. The maximum possible clock frequency is 83.3 MHz. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 30

highest throughput produced is 65.98 Mbps using the INVF method with the
computational-orientated Galois field ALU with a generation size of 16 packets.
The results are compared to AMD Phenom-X4 and Intel Core 2 Quad desktop
CPUs implementations, with speed increases of a multiple of 13.84 and 6.73
respectively.

The work done by Kim, et al. in [14] shows that RLNC can feasibly be
implemented on an FPGA. Their implementation however, is only evaluated
through simulation and not a real network. While a Virtex 5-based FPGA
is used during synthesis, their implementation does not actually use a real
FPGA either. The question remains as to the performance when RLNC is
implemented on an actual FPGA in a real network.

An FPGA is required to implement the RLNC functions in hardware,
within a real network. The first requirement is to be able to interface the
FPGA with the computer. PCIe is a high speed expansion interface used to
connect add-on cards by providing multiple fast lanes to interface with the
computer. For this reason we investigate two PCIe-based FPGA platforms for
this thesis: NetFPGA and OpenVINO Starter Kit.

2.8.3 NetFPGA

The NetFPGA is a Xilinx-based FPGA network development platform with
four network interfaces [42]. There exist multiple different variants such as the
SUME, CML, 10G and 1G models. Due to the flexibility of the FPGA, more
than 3500 different network systems have been implemented on the NetFPGA
platform [43].

The original NetFPGA OpenFlow switch developed in [44] can be extended
to include additional network functionality. This is shown in [45] and [46] to
implement computationally intensive network inspection and attack preven-
tion algorithms. Other integrations of OpenFlow on the NetFPGA have been
done in [47], [48] and [49]. These integrations discuss the advantage of us-
ing an FPGA for increased portability, flexibility and performance in an SDN
environment.

The NetFPGA CML model is a 1Gbps device with a Xilinx Kintex-7 and is
one of the current actively supported NetFPGA models [50]. The CML is ideal
for implementing complex network devices while still remaining cost effective
compared to the 10Gbps SUME model. The PCIe 2.0 interface is used to
connect to the CML, which enables the host computer to act as the OpenFlow
controller, while additional nodes are connected to each of the Ethernet ports.
This configuration along with the FPGA enables flexible implementation of
different networking devices. The CML model is compatible with existing
Xilinx design kits, allowing for the use of Xilinx design software and Ethernet
Intellectual Property (IP) cores [51].

While the NetFPGA provides great flexibly, the most basic model costs
1400 USD. DPDK and OvS shows that it is feasible to implement the Open-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 31

Flow switch on the Linux OS and offload traffic if needed. It is therefore not
necessary to have the NICs directly attached to the FPGA, but instead as a
seprate device. For this reason, we continue the search for a more cost effective
FPGA development platform.

2.8.4 OpenVINO Starter Kit

The OpenVINO Starter Kit is an PCIe-based Intel Cyclone V-based FPGA
development board intended for developing OpenCL and other mainstream
applications [52]. The OpenVINO starter kit is priced at 525 USD, and does
not include on board NICs. A diagram of the developemnt kit is shown in Fig.
2.8.

Figure 2.8: OpenVINO Starter Kit hardware diagram, from [52].

While the OpenVINO starter kit uses an older PCIe generation (version
1.0) than that of the NetFPGA (version 2.0), Intel reports PCIe version 1.0
with four lane performance throughput benchmarks of 6584 Mbps and 7056
Mbps for DMA read and write respectively [53]. These results are just shy
of the theoretical PCIe four lane maximum of at 7416 Mbps for both DMA
reads and writes. The OpenVINO starter kit is therefore more than capable of
providing the required throughput for hardware offloading of network packets.
The expected throughput results for hardware offloading are based on the
FPGA decoder implementation of [14].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 32

An important consideration for an FPGA is the number of resources. This
is difficult to do because each hardware vendor, and each FPGA generation
use different resource implementations. Direct comparisons between devices is
therefore not always accurate. The resource utilization results from [14] cannot
be used to determine which Intel FPGA will work, specifically the Cyclone V
on the OpenVINO kit.

Luckily, with Intel Quartus Prime, resource utilization is determined after
place and route and can be done without the physical FPGA. Therefore the
design can be completed and the resultant resource usage can be checked to
see if it will fit on the device. This approach is used in this thesis. Chapter 7
shows that the implementation fits on the OpenVINO starter kit.

The OpenVINO starter kit will allow the hardware requirements for a net-
work coding switch to be met. The RLNC algorithm can be implemented
in FPGA logic on the Cyclone V device. The development kit can be inte-
grated with a computer to be used in an SDN environment and therefore a
real packet-based network.

We have established how to meet the requirements for the software and
hardware-based network coding platforms. We continue the literature review
onto meeting the additional network coding switch functionality.

2.9 Network coding switch functionality
The network coding switch needs to be SDN compatible. From the above men-
tioned work it is clear that SDN, specifically OpenFlow is a crucial requirement
for integrating network coding into existing networks. It is also shown that
OvS is a feasible and popular virtual network switch that uses the OpenFlow
protocol. For this reason OvS is investigated further.

2.9.1 Open vSwitch

The emergence of network virtualization requires a virtual network switch
with much functionality. OvS is a virtual switching platform that uses the
OpenFlow protocol [13]. OvS was designed for virtual environment networking
as a alternative to traditional software switching architectures.

OvS works with most hypervisors and operating systems. VMs can be
interconnected with minimal effort using OvS as the virtual switch. OvS is
designed to be flexible and open and for this reason has been heavily adopted
in practical networking applications [13].

The components of OvS is shown in Fig. 2.9. The main component is the
userspace switch daemon ovs-vswitchd. The userspace switch daemon instructs
the Kernel datapath module on how to handle incoming packets through Open-
Flow actions. The kernel datapath module is used to access the packet buffers
on the physical NIC and virtual interfaces. The ovsdb-server is used by the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 33

daemon to store the OpenFlow flow tables. The flow table entries are deter-
mined by the controller. The first packet received on the port needs to be sent
to the ovs-vswitchd module to determine the appropriate forwarding actions.
Subsequent packets however, take full advantage of the kernel and do not get
sent back to the userspace unless the flow rules change.

OvS allows for many of the network coding switch functionality require-
ments to be met. The functionality of performing basic packet forwarding is
met as OvS is able to function as a L2 learning switch by implementing the
necessary OpenFlow rules. OvS also meets the requirements of SDN compati-
bility by being OpenFlow compatible. To meet the requirements of being able
to perform multicast snooping, the OvS bridge can implement the necessary
flow rules by creating a controller application that monitors multicast network
traffic.

Controller

Userspace switch
daemon

Kernel datapath

Flow Table
Database

Kernel

User

Off-box

OpenFlowOVSDB

Netlink

First packet

Subsequent packets

Figure 2.9: Open vSwitch diagram showing integration between userspace and
kernel components. The first packet is sent to the userspace switch daemon and
subsequent packets are forwarded via the faster kernel component.

OvS provides great flexibility by allowing for network functions to be de-
ployed as required. Software-based network coding can be deployed as a VNF
connected to OvS. In order to deploy a VNF, a hypervisor is required. A
hypervisor is a process layer that allows for VMs to be created, managed and
run on a host machine. There exist two hypervisor types, namely type 1 and
type 2. The difference is that type 1 hypervisors run directly on the hardware,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 34

while type 2 hypervisors run on the host OS. The difference is shown in Fig.
2.10. Examples of type 1 hypervisors are Hyper-V, Xen and ESXi. These are
often used in datacenters and provide the best performance. Examples of type
2 hypervisors are VMWare Workstation and Virtualbox.

Hardware Hardware

Host OS

Hypervisor

Virtual machines

Hypervisor

Virtual machines

Type 1 Type 2

Figure 2.10: Type 1 vs Type 2 hypervisor. Type 2 runs on the host OS and
includes an additional component over type 1.

The Kernel-based Virtual Machine (KVM) is a virtualization platform that
is built into Linux. KVM is known as a hybrid hypervisor and enables Linux to
be turned into a type 1 hypervisor, while still maintaining OS level flexibility
that comes with a type 2 hypervisor. KVM can be used alongside Quick
Emulator (QEMU) to create, run and manage VMs directly on the Linux OS.
The KVM hypervisor is used in this thesis as the work is not dependant on
any specific hypervisor and the authors preference of using the Linux OS over
Windows. The software-based implementation can be moved to the Windows
OS (using the hyper-v hypervisor) with minimal effort if required. The VNF

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 35

VMs however, are designed to run the Linux OS and therefore the VNF design
is focused on Linux only compatibility.

The hypervisor provides virtual ports to connect the VMs to the OvS
bridge. Physical network ports such as those provided by a NIC, can be con-
nected to the OvS bridge to interface the VM and physical machine networking.
This allows OvS to meet the requirement of functioning in both the physical
and virtual network space. This also meets the requirements of being able to
offload traffic to both the software and hardware network coding implementa-
tions.

2.10 Summary
This chapter provided a literature review to determine the objectives and re-
quirements of the network coding capable switch. The review begins by dis-
cussing the traditional approach to packet-based network switching. Concepts
such as the Ethernet protocol and switch are discussed as well as multicast
networking.

The theory behind network coding is provided. The discussion begins by
investigating links between the original idea of network coding, to practical
implementations, with focus on practical parameters to utilize network coding
in the software and hardware implementations. The most important network
coding algorithm for practical network coding, RLNC is discussed in detail.
Packet representation of the encoding and decoding process are discussed to
provide the necessary background for implementing network coding in practise.

Next, the software-based network coding platform is investigated. The re-
quirements of implementing the RLNC algorithm in software is investigated
by reviewing past software-based network coding implementations. The Kodo
software library is shown to be the most viable option to add RLNC function-
ality to the software coding platform. Further requirements of the software
platform are investigated by looking at past work of software-based network
coding within SDN and VNF environments. Methods of implementing net-
work coding within a VNF are discussed by looking at Linux-based packet
processing and the DPDK packet processing library.

The use of GPUs and FPGAs are both investigated as possible hardware-
based network coding platforms. FPGA implementations are favoured over
GPUs due to being more flexible in IoT and embedded system applications.
With regards to using FPGA, two possible options are investigated: the NetF-
PGA and the OpenVINO starter kit. The cost of the OpenVINO starter kit
makes it the more desirable device, while still being able to meet the require-
ments of implementing the RLNC algorithm and being SDN compatible.

The literature review concludes by investigating OvS as a solution to meet
the necessary requirements of the additional network coding switch function-
ality.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

System architecture overview

3.1 Introduction
The previous chapter provided a literature review in order to meet the require-
ments of the network coding switch. In this chapter, these requirements are
used to determine an overall system architecture design.

3.2 System architecture
The system is split into three sections: bridge interface, physical layer and
virtual layer. Both the physical and virtual layer contain respective coder and
host components. The overall system architecture is shown in Fig. 3.1.

The bridging interface enables network traffic to traverse seamlessly be-
tween the physical and virtual components. This is important because it al-
lows for a researcher to evaluate network coding in their layer of choice. The
objective of open networking is maintained by allowing the user the freedom
to choose their networking environment. A system user can choose to deploy a
combination of components for different test case scenarios. An example would
be to use a VNF-based encoder to encode network traffic from one physical
host to another, while using an FPGA entity as the decoder.

The physical layer provides the ability to evaluate network coding in a
network with physical hosts. This provides a similar plug-and-play experience
as with commercial network switches. Hardware-based network coders are
interfaced to offload packets for processing.

Modern networking systems make extensive use of virtualization [13]. Pro-
viding integration with the virtual space allows for network coding to be eval-
uated alongside emerging virtual network technologies. Another benefit to
incorporating the virtual layer is that multiple VM hosts can be deployed.
Network coding scenarios can be evaluated with as many hosts as the server
can handle. Use of the virtual layer therefore reduces the requirements of
additional hardware and saves on equipment costs.

36

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW 37

FPGA Entity:
encoder

FPGA Entity:
decoder

p:vhp0 p:vhp1 p:vhp2 p:vhp3

p:eth0 p:eth1 p:eth2 p:eth3

Open vSwitch bridge: br0

p:encodeVNF

p:tapDecoder

p:decodeVNF

Software hypervisor: QEMU-KVM

VM0 VM1 VM2 VM3

Hardware Interface: PCIe

p:tapEncoder

NIC: Intel PRO/1000 PT Quad Port

PHY0 PHY1 PHY2 PHY3

FPGA: Cyclone V

DPDK VNF:
encoder

DPDK VNF:
decoder

Virtual Machine hosts

Physical hosts

Virtual Machine coders

Physical hardware coders

Virtual layer:

Physical layer:

Figure 3.1: Network coding switch system overview: The switch consists of a
physical and virtual layer, interfaced together using the Open vSwitch bridge. The
physical layer includes an Intel quad port NIC to connect to four physical hosts. An
FPGA hardware-based encoder and decoder are connected via PCIe for hardware
packet processing. The virtual layer uses QEMU-KVM as a hypervisor to interface
the Open vSwitch bridge to virtual machine hosts, and virtual machine-based encoder
and decoder functions.

A bridging platform is required that will enable the use of both physical
and virtual layers. Off-the-shelf network switches do not have the general
processing power, resource availability, or flexibility to run a hypervisor with
virtual machines. Hardware components cannot be added to existing network
switches to perform network coding. For these reasons, the overall system is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW 38

designed to be implemented on a general purpose PC. The use of a PC enables
interfacing with the virtual and physical layers using a hypervisor and PCIe
respectively.

The PC needs an operating system to run the hypervisor and control soft-
ware, as well as necessary drivers for PCIe. While there are many possible
operating systems available, Linux is chosen. The Linux Foundation provides
extensive documentation on the Linux kernel [54]. This enables great flexibility
in terms of creating network interfaces. Using Linux maintains the objective
of open networking. Many different networking platforms have been written
for Linux, including OvS.

3.3 Bridge component: Open vSwitch
The bridging interface needs to be implemented in software in order to run on
a Linux PC. The simplest way to implement software switching in Linux is to
use the default Ethernet bridge administration utility, brctl. The brctl utility is
used to set up, maintain and monitor a software-based Ethernet bridge running
in the kernel. The default bridge implementation, however does not use SDN
and therefore does not meet the objective of open networking.

In Chapter 2 we argue that for this thesis, the most appropriate OpenFlow-
based virtual switch is OvS. The reasons for using OvS as the central switching
component are as follows.

• OvS makes use of OpenFlow and is therefore SDN compatible. This
ensures that the bridging component meets the objective of open net-
working.

• OvS is a software-based switch which enables use of both physical and
virtual networking layers.

• OvS is open source and can therefore be modified to add packet process-
ing.

• OvS runs on any Linux, BSD or Windows operating system. Therefore
any computer with the capability of running an OS can be used as the
base for the networking switch.

• OvS can be interfaced with DPDK to increase the performance of data
plane processing. OvS-DPDK enables Linux-based packet processing
above 10Gbps which is not obtainable using the default network stack.
OvS-DPDK prevents the bridging component from bottlenecking the
system in future iterations.

The host and coder components are interfaced with the OvS bridge br0
through respective ports. Table 3.1 shows which ports are used by the bridge.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW 39

The first column refers to the interface and port name used to identify the
port. The second column provides the port type associated with each port.
The type of network, virtual or physical, is given in the third column. The
last column lists the component or device connected to the port.

OvS provides various port types for different use case scenarios [55]. The
port types used in this implementation are dpdk and dpdkvhostuser. The dpdk
port allows for attaching physical and TAP interfaces with a DPDK-backend.
This port is therefore used to connect the physical hosts and TAP interfaces
that connect to the FPGA, to OvS. The virtual machines are all bridged
using the dpdkvhostuserclient port. This port type makes use of DPDK-based
vHost user ports. VHost User is the networking interface used by the QEMU
emulator [56]. This is also the recommended use case by OvS [55].

Port\Interface Port Type Network Connected to
eth0 (enp7s0f0) dpdk physical PHY0
eth1 (enp7s0f1) dpdk physical PHY1
eth2 (enp8s0f0) dpdk physical PHY2
eth3 (enp8s0f1) dpdk physical PHY3
tapEncoder dpdk physical FPGA encoder
tapDecoder dpdk physical FPGA decoder
vhp0 dpdkvhostuserclient virtual VM0
vhp1 dpdkvhostuserclient virtual VM1
vhp2 dpdkvhostuserclient virtual VM2
vhp3 dpdkvhostuserclient virtual VM3
encodeVNF dpdkvhostuserclient virtual VNF encoder
decodeVNF dpdkvhostuserclient virtual VNF decoder

Table 3.1: OvS Bridge port configuration: br0

3.3.1 Setup configuration

A specific sequence of Linux terminal commands are executed to configure
the system from boot time to the fully interfaced layout in Fig. 3.1. These
commands are written as bash shell scripts and grouped under the “netconfig”
folder in the GitHub repository, OvS-DPDK-Coding-Switch [57]. A tabulated
summary of the scripts used are given in table 3.2.

Each script is responsible for configuring a specific component of the sys-
tem. The “setup_all.sh” script is used to run the other scripts in the correct
order. This script can be modified by the user to enable or disable compo-
nents for different use case scenarios. Screenshots depicting the outputs of the
various scripts are given in appendix 8.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW 40

Bash script Action(s)
setup_ovsdpdk.sh Set-up and start OvS bridge with DPDK.
setup_nichosts.sh Bind NIC ports to DPDK and add to bridge.

setup_fpga.sh Load FPGA PCIe driver and add ports to
bridge.

setup_vmhosts.sh Start VMs and add ports to bridge.
setup_vmvnfs.sh Start coding VNFs and add ports to bridge.
setup_all.sh Run all of the setup scripts in order.

Table 3.2: Network configuration scripts summary

The “setup_ovsdpdk.sh” script form table 3.2 is used to configure the OvS
bridge with DPDK on the Linux operating system. A flow diagram of the
process is given in Fig. 3.2.

Clean OvS
environment

Start OvS
switch database

Enable DPDK
config

Create and Initialise
OvS bridge

Set OvS controller
IP address

Start OvS
daemon

Figure 3.2: Open vSwitch and DPDK setup script flow diagram

The setup begins by cleaning the OvS environment. Any previous running
OvS database server and switch daemon processes are killed. This provides
a clean environment to setup OvS. The OvS database server ovsdb is then
started. The next step is to set the runtime configuration to initiate DPDK.
Once the configuration has been set, then the OvS switch daemon ovs-vswitchd
is started. OvS is then running on the system, but no ports or flow tables exist.

Next the bridge br0 is created. If a previous bridge is running, it is first
deleted. Once the bridge is running then the controller IP details are assigned
to the bridge so that the bridge can be controlled by the controller. If no
controller is specified or times out, by default the bridge runs as a normal
learning switch. However, if a controller is specified then full control is taken
by the controller application.

Once OvS and DPDK are successfully configured, the output details are
displayed to the user. The details are regarding the status of the bridge and
DPDK Hugepage memory usage. The host and coder components can now
begin to interface with the switch.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW 41

3.4 Physical layer
On the physical layer, two component devices are interfaced to the PC via
PCIe. The first device, an Intel PRO/1000 PT quad port NIC is used to
provide four physical Ethernet ports. These ports are connected to physical
machines: PHY0, PHY1, PHY2 and PHY3. The second device is an Intel
Cyclone V-based FPGA. The FPGA runs the accelerated network coding en-
coder and decoder entities. The physical layer lab setup is shown in appendix
8.2.

3.4.1 Intel NIC

The Intel PRO/1000 PT quad port NIC is chosen because it is relatively inex-
pensive and provides compatibility with DPDK. Therefore multiple NICs could
be used to interface many physical hosts together if the PC supports multiple
PCIe interfaces. While other NICs provide additional features, the imple-
mentation does not use them and therefore the Intel PRO/1000 is more than
sufficient. The physical machines connected to the NIC are all Linux-based
and can run Linux network testing tools such as iperf, nmap and tcpdump.

3.4.2 FPGA

The hardware encoder and decoder entities are run on the FPGA. Network
traffic is sent to TUN/TAP interfaces in TAP mode. TAP interfaces offload
the packets onto the FPGA. Further detail regarding the implementation of
the coding entities is provided in chapter 5.

The FPGA device chosen is the OpenVINO starter kit from Terasic. The
development board uses an Intel Cyclone V 5CGXFC9 FPGA and supports
four lane PCIe. The OpenVINO starter kit is chosen because it was one of
the least expensive PCIe-based development boards, with an Intel FPGA com-
mercially available at the time. The resources provided by the Cyclone V are
greater than required to run the encoders or decoders from Chapter 5.

The “setup_fpga.sh” script is used to load the PCIe FPGA driver and add
the TAP interfaces to OvS. TAP kernel interfaces are used to connect the
FPGA to OvS through a userspace application. While the literature review in
Chapter 2 indicates that a kernel-bypass packet processing technique provides
increased performance, the PCIe application provided by Terasic makes use of
DMA and therefore using DPDK would not leverage any benefits and a more
simple interface of TAP is used instead. However, in future implementations
without using the provided library from Terasic, DPDK could be used to
implement the userspace networking for the FPGA and OvS interface. Details
explaining the interface software is provided in Chapter 6.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW 42

3.5 Virtual layer
On the virtualization side, QEMU is used along with KVM as the hypervisor
to run VMs. Two instances of VMs are used in the system. The one instance is
to run standard Linux-based machines: VM0, VM1, VM2, VM3. The second
instance are the encoder and decoder functions as dedicated VNFs. DPDK is
used along with the Kodo library to implement the network coding functions
in the C programming language.

3.5.1 VNFs

The VNFs are created using Ubuntu 18.04 server Linux VMs. DPDK is run
on the VM to add network coding packet processing. Further details on the
implementation of the RLNC VNFs are given in Chapter 4.

A single DPDK application “dpdk_coder” with both the encoder and de-
coder functions is created. The user can choose to run the the coder in encode,
decoder or nocode modes. Encode and decode mode call the RLNC encoder and
decoder functions respectively. The nocode node simply forwards the packets
through the VNF without and coding operations. Nocode mode is used as a
baseline to evaluate the time taken for packets to traverse through the VM.
Source code for the DPDK coding application can be found on GitHub [58].

3.6 Summary
This chapter provides the system overview, and how the various system com-
ponents are integrated to perform the task of a network coding-capable switch.
The system is constructed using three main components: a networking bridge,
a physical layer and a virtual layer. OvS is chosen as the networking bridge
and provides all the network switching functionality to integrate the virtual
and physical layers. Details regarding the port configuration are provided.

The physical layer consists of the Intel PRO/1000 PT quad port NIC used
to connect to physical machines, and the OpenVINO FPGA device to per-
form hardware-based network coding. The virtual layer consists of the QE-
MU/KVM hypervisor to run VMs and VNFs. The VNFs are implemented
using the DPDK packet processing library.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Network coding in the virtual
layer: Virtual Network Functions

4.1 Introduction
In the previous chapter we explained the setup and configuration of the sys-
tem to support both virtual and physical network interfaces. In this chapter
we discuss how network coding is implemented as virtual network functions.
We implement the software component of the network coding functions as dis-
cussed in section 2.5. The software-based coding functions are created using
the DPDK packet processing library and implemented as VNF VMs. We dis-
cuss the components required to create the software functions, as well as the
steps taken to implement the components.

4.2 Methodology
We begin the software component design by describing the required compo-
nents. Once the components are established, we begin the process of con-
structing the components and detail the process used to do so. The software
construction is implemented in three steps. First a Python-based implementa-
tion is created to understand and verify the functionality of the Kodo library.
Next, DPDK is used to construct the networking layers. The networking func-
tionality is done to a point where packets can be received, processed and trans-
mitted using DPDK-based interfaces. Then finally, we combine the Python
Kodo functionality with the DPDK networking layers to create the C-based
Kodo RLNC functions. The functions are implemented in VMs as VNFs.

43

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 44

4.3 Component overview
In order to implement the software based network coding functions, the fol-
lowing components are required:

• A component performing network coding functionality to process packet
data using the RLNC algorithm. The network coding functionality is
implemented using the Kodo software library.

• Networking functionality to interface the network coding functions with
the rest of the (real packet-based) network. DPDK is used to implement
this functionality and run the software based coding functions as VNFs.

The discussion continues onto the process followed to construct the software
coding components. We begin with the Python-based coding implementation,
to investigate and design a RLNC algorithm using Kodo. The RLNC algorithm
obtained from the Python-based implementation is rewritten in C in the final
DPDK based VNF.

4.4 Kodo Python baseline
The first step in creating a network coding function is to establish a functional-
ity baseline. The functionality baseline is a working implementation of network
coding that showcases the correct encoding and decoding results. The baseline
is used as a reference to determine that the VNF-based coders are producing
the correct outputs.

The functionality baseline is created using the Kodo-Python RLNC func-
tions [59]. Python is chosen to create the baseline application over C due
to its ease of use and script-ability. Furthermore, the Python and C Kodo li-
braries are simply wrappers of Kodo’s C++ functions. The functionality of the
Python and C Kodo libraries are therefore the same, allowing for the baseline
application to be rewritten in C with DPDK, at a later stage.

The flow diagram of the Python implementation is shown in Fig. 4.1. First
the coding parameters: field size m, number of packets h and packet size N
are declared. The coding parameters are input to the encoder and decoder
factory functions to create the coder objects. Next the input and coefficient
data lists are declared and populated. The encoder and decoder objects are
assigned the declared data lists. The coding process begins by encoding each
packet and immediately decoding the encoded result. The decoded result is
then compared to the input data list. If the input data is equal to the decoded
data, then the coding result is successful. The software code used in the Python
implementation is provided in Appendix 8.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 45

Declare network
coding parameters

Create encoder and
decoder factories

Declare input
data

Set source symbols
to input data

Declare list to store
decoded results

Declare coefficient
data

i < h? Encode packet

i++

true

input
data == decoded

data?
Decode packet

i = 0

false

Coding failure

Coding success

true

false

Figure 4.1: Python implementation flow diagram. The coding loop consists of en-
coding each packet and immediately decoding the encoded result. The loop continues
until each packet in the generation of packet size h has been decoded successfully. If
the decoded results equal the input data then the coding process is successful.

The Python baseline performs RLNC without any networking functionality.
Instead of using data received from a network interface, coding operations are
performed on fixed input and coefficient data. The input data refers to the
un-coded source data. The input data and coefficient data formats are shown
in Figs. 4.2 and 4.3 respectively.

The source data from Fig. 4.2 consists of h data packets of N bytes each.
These packets are grouped into a generation of size hN bytes. A coefficient
data vector of length h bytes is required for each of the h source data packets.
The coefficient data vectors are grouped together in Fig. 4.3 to form a coeffi-
cient data matrix of size h2 bytes. The coding coefficients and input data are
represented as hard-coded lists in the Python implementation.

The Python implementation outputs the encoded data during the encoding
process. The encoded data along with the un-coded and coefficient data is used
as a reference to design the VNF-based coders. Specifically, the encoded data is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 46

used to check if the VNF encoders are producing the correct output. The VNF
decoder output is also checked by using the Python implementation encoded
data as an input.

...data(0)(0) data(0)(N-1)

...data(1)(0) data(1)(N-1)

...data(2)(0) data(2)(N-1)

...data(3)(0) data(3)(N-1)

...data(4)(0) data(4)(N-1)

...data(5)(0) data(5)(N-1)

...data(6)(0) data(6)(N-1)

data(0)(1)

data(1)(1)

data(2)(1)

data(3)(1)

data(4)(1)

data(5)(1)

data(6)(1)

N
[bytes]

h
[packets]

Figure 4.2: Kodo input data format. Source input data is grouped into a generation
of size hN bytes.

h
[bytes]

h
[packets]

...coeff(0)(0) coeff(0)(h-1)

...coeff(1)(0) coeff(1)(h-1)

...coeff(2)(0) coeff(2)(h-1)

...coeff(3)(0) coeff(3)(h-1)

...coeff(4)(0) coeff(4)(h-1)

...coeff(5)(0) coeff(5)(h-1)

...coeff(6)(0) coeff(6)(h-1)

coeff(0)(1)

coeff(1)(1)

coeff(2)(1)

coeff(3)(1)

coeff(4)(1)

coeff(5)(1)

coeff(6)(1)

Figure 4.3: Kodo coding coefficient data format. All the coefficients are grouped
into a matrix of h2 bytes.

The source, coefficient and encoded data are kept constant throughout this
thesis. The data values are randomly generated once and then kept for all
implementations, including the VNF and FPGA coders. This is crucial as
it ensures a fair testing environment across all coding implementations. The
values used are listed in appendix 8.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 47

4.5 DPDK networking layer
The networking functionality is constructed using the DPDK 18.11 software
library. DPDK is installed on a VM running the Ubuntu 18.04 Linux OS.
Hugepages are allocated at boot for packet buffering, as required by DPDK.
The amount of hugepage memory to allocate is taken from the blog post of
Trayner in [60].

The blog article calculates 4096 MB of required hugepages for using OvS-
DPDK, with both physical and virtual maximum transmission unit (MTU)
sizes of 1500 and 9000 bytes respectively. While the packet sizes used in this
thesis are limited to 64 bytes, to accommodate for future work, the same size
of hugepages is used.

A single network interface port is used to receive and transmit packet data.
The network interface of the VM is assigned to be controlled by the DPDK
PMD using a configuration script on start-up. The network link is first un-
bound from the Linux networking stack and then bound to the DPDK with
the uio_pci_generic kernel driver. The setup script is given in appendix 8.2.

The main goal of the networking layer is to perform packet processing,
i.e. specifically to receive data, perform network coding and then transmit the
result. The networking layer is created as a C application. The implementation
of the overall DPDK networking layer is done systematically.

4.5.1 Receive and transmit loopback

The first step in developing the DPDK networking layer is to create a loop-
back application. In a communication system, loopback is considered to be a
primary way of testing. Loopback involves transmitting a packet received by
the network interface without performing any processing. This confirms that
the receiving and transmitting functions are operating as expected.

The loopback application requires a means of receiving and transmitting
packets in the userspace DPDK application. DPDK provides many APIs that
allow for the network interface to be controlled from the userspace. The Eth-
ernet device API enables access to the receive and transmit file descriptors of
the networking interface port [11].

4.5.2 DPDK interface configuration

While the network interface has been bound to DPDK, it needs to be con-
figured in the userspace application, in order to receive and transmit packets.
The DPDK network interface requires receive and transmit queues to buffer
incoming and outgoing packet data. The setup procedure is shown in Fig. 4.4.
The portID is set to be “0” because there is only one DPDK interface on the
VNF. The portID is used by all proceeding functions to modify the network
descriptors.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 48

Set portID Initialize port with
Rx and Tx queue

Allocate and
setup Rx queue

Allocate and
setup Tx queue

Start deviceEnable promiscuous
mode

Output device
link status

Display MAC
address

Figure 4.4: DPDK Ethernet interface configuration procedure.

The Ethernet device is initialised with a single receive and transmit queue
because only a single logical core is assigned to the DPDK port. Both queues
are setup and allocated memory. The device is then started and promiscuous
mode is enabled. Promiscuous mode allows all packets received on the port to
be sent to the DPDK application, and not just packets sent to the MAC ad-
dress specifically. It is important to enable promiscuous mode because packets
scheduled for coding have MAC addresses relative to their intended destination
and not the coding VNF. Therefore, the packets would normally be ignored
without promiscuous mode.

One thing to note, is that DPDK takes control of the Ethernet interface.
The interface is no longer listed under Linux utilities such as ip and the older
ifconfig. The DPDK configuration procedure therefore concludes by showing
device link status and MAC address. The configuration and networking details
can be confirmed as a result.

4.5.3 Receiving packets

Once the Ethernet interface is configured the application can begin network
communication. The rte_eth_rx_burst() function from the RTE Ethernet
Device API is used to receive packets:

static uint16_t rte_eth_rx_burst(
uint16_t port_id,
uint16_t queue_id,
struct rte_mbuf **rx_pkts,
const uint16_t nb_pkts)

The function takes four parameters and outputs the number of packets
received. The input parameters, are the port identifier, receive queue index,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 49

address to store received data and number of packets to receive. The port and
queue IDs are set to “0” because there is only one network interface, with a
single receive queue. The received packets are stored in packet buffers.

rte_mbuf

headroom

packet
header + data

tailroom

struct rte_mbuf *m

m->buf_addr

rte_pktmbuf_mtod(m)

Figure 4.5: DPDK memory buffer layout.

An rte_mbuf struct is used by the DPDK application to store network
packet data. The Mbuf library is used to manage and configure the memory
buffers. Fig. 4.5 shows the layout of the mbuf buffer. The actual packet
header and data received by the network interface are encapsulated within
DPDK metadata. The rte_pktmbuf_mtod() function is called on the mbuf to
return the location of the actual packet header and data. Packet processing is
done at this location, and without the DPDK metadata.

The buffers are stored in a single mempool, managed by the Mempool
library. The rte_pktmbuf_pool_create() function is called to create the mem-
pool struct. Each mempool uses a unique name and makes use of ring data
types to store the mbufs. A new mbuf is allocated using the rte_pktmbuf_alloc()
function, which returns a pointer to the new mbuf.

4.5.4 Transmitting packets

To complete the loopback function, the received packets are transmitted out of
the same port. Packets are transmitted using the rte_eth_tx_burst() function:

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 50

static uint16_t rte_eth_tx_burst(
uint16_t port_id,
uint16_t queue_id,
struct rte_mbuf ** tx_pkts,
uint16_t nb_pkts)

The port and queue ID are set to be the same as the receive function, “0”.
A mbuf pointer to the packet data to be transmitted is given. In the loopback
case, the received packet data is used.

4.5.5 Loopback function verification

Virtual machine:
Transmit: ping

Receive: tcpdump

DPDK VNF: loopback
Monitor: rte_pktmbuf_dump()

Open vSwitch bridge: br0

Figure 4.6: Setup used to verify DPDK networking loopback function.

To verify that the loopback is functioning correctly, packets are sent from
one of the non-coding VMs, and the loopback results are sniffed. The ping
and tcpdump Linux network utilities are used to send packets and inspect
packets on the non-coding VM respectively. The utilities cannot be run on
the VNF because the network interface is bound to DPDK. Instead, the
rte_pktmbuf_dump() function is called on the received packet to dump the
mbuf structure to stdout.

A summary of the verification setup is shown in Fig. 4.6. A packet is sent
using ping from the VM and tcpdump is run to inspect the received packet. If
the same packet is received then it confirms that DPDK loopback is working
correctly.

The next step is to begin adding packet processing as network coding.
Before the coding functions are created, a decision making process is designed
to decide what to do with each of the received packets. We therefore continue
the discussion onto the coding function selection process.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 51

4.5.6 Coding function selection process

A coding function selection process is created that determines when to perform
network coding operations. The tasks of encoding, decoding and forwarding
need to be applied as necessary when packets are received. For multiple net-
work coders to exist within a network, a selection process is established to
maintain co-ordination.

To incorporate network coding traffic into the network, two changes are
proposed. The first is the use of a unique Ethernet type 0x2020. The Ethernet
type is used by switches or coding nodes to differentiate between coded and un-
coded packets. An unlisted Ethernet type is used from the IEEE 802 standard
to prevent conflicts between other networking protocols [61].

The second change is the addition of a coding capable field to the MAC
forwarding table. An output port is flagged as coding capable if the switch has
received a network coded packet through that port. The assumption is made
that nodes capable of encoding can also decode RLNC packets. If an output
port is coding capable then the switch can send encoded packets through the
respective port. If the port is not coding capable, then the switch must not
forward encoded packets to that port because there is no guarantee that they
will be decoded.

The flow diagram in Fig. 4.7 shows the selection process used by the coding
pipeline. Packets are received on the ingress queue of the network port. The
coding pipeline reads and stores the Ethernet type and destination address of
the packet. The destination address is found in the MAC table to determine
if the port is coding capable. If the port is coding capable and the Ethernet
type does not equal 0x2020, then the packet should be encoded. If the port is
not coding capable and the packet is encoded or un-coded, then the packet is
decoded or forwarded respectively.

Another scenario is when the destination address is coding capable and the
packet type is already 0x2020. This implies that an encoded packet is being
sent to a destination that can perform coding functions. The packet is then
recoded. In the implementation in this thesis, however, no recoding function is
created. While recoding in network coding is almost identical to the encoding
process, this implementation is left for future work. With the current VNF
implementation, the packet is therefore dropped.

The coding selection process does not run on the VNF coder, but on the
SDN controller application. The DPDK coding function however is designed
to be compatible with the selection process. Therefore the selection process is
introduced here, and the controller implementation is given later in Chapter
6.

A separate coding pipeline is designed for the encoder and decoder respec-
tively. The aim of the coding pipelines are to prepare the received packet data,
and resultant processed data for each of the coding functions. We continue
the discussion onto the encoder pipeline.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 52

Packet received Read
Ethernet type

Read
destination address

dest
== coding
capable?

true

false

type ==
0x2020?

true

false

Decode packet

type ==
0x2020?

false

Forward packetEncode packet

true

End

Recode packet
(not implemented)

Figure 4.7: Selection process used by DPDK application to determine coding op-
erations.

4.6 DPDK encoding pipeline
The encoder groups packets into a generation, based on the destination address
from the Ethernet header. Once all the packet have been received the network
encoding process is executed. The generation size is set to be the same as
with the Python baseline, h = 7 packets. There is however, no algorithmic
restriction on the generation size and packet size, and these values can be easily
modified without rewriting the coding function. This is done to aid with the
objective of keeping the implementation flexible for future work.

In a real network, incoming packets are not always received synchronously
from a source. Scenarios occur where multiple senders are sending packets
through the switch, and as a result packets may arrive in a jumbled order. To
keep track of which packets belong to each generation, the encoder makes use
of a MAC table and creates an encoding ring for each MAC table entry. The
encoding ring stores incoming packets for each generation as they are sent to
the VNF.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 53

The encoding ring is created using the DPDK ring library. Rings are fixed
sized, First In First Out (FIFO) data structures. Mempools that are used to
store mbufs also make use of rings, and is the preferred way of storing packet
data in DPDK [11]. Rings provide advantages such as a lockless implementa-
tion, and bulk enqueue and dequeue operations.

The structure of the MAC table and encoding rings are as follows,

#define MAC_ENTRIES 200
#define ENCODING_RINGS 128

/* Encoding rings array: Used to store all encoding rings based
on dst_addr*/

struct rte_ring encoding_rings[ENCODING_RINGS];

static unsigned mac_counter = 0;

/* Mac Fwd TABLE to group generations by dst_addr */
struct mac_table_entry {

struct ether_addr d_addr;
};
struct mac_table_entry *mac_fwd_table;

mac_fwd_table = (struct mac_table_entry*)calloc(MAC_ENTRIES,
MAC_ENTRIES * sizeof(struct mac_table_entry));

The number of MAC entries in the MAC table and number of encoding
rings can be set to any value, and are dependant on network traffic and cod-
ing speeds. The values are set high enough to prevent packets from getting
dropped.

The MAC table is created as an array of MAC entry structs. The format
is different to the traditional MAC forwarding table of a destination address
and next hop, described in Chapter 2. Instead, the MAC table stores the
destination address of the packets in the generation. This is used as a reference
to determine if incoming packets need to be added to an existing encoding ring,
or if a new ring should be created. The MAC table is therefore not used as
a forwarding table, because all encoded packets are transmitted out again
through the same port.

A flow diagram of the DPDK encoding pipeline is shown in Fig. 4.8.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 54

Packet received Get destination and
source address

src addr in
MAC table?

false

true

Add dst addr
to MAC table

Create new
encoding ring

Increment MAC
counter

Add packet
to encoding ring

Run encoder
function

De-queue coded
packets

Encoding
successful?

End

true

false

Reset encoding ring

Figure 4.8: DPDK encoding pipeline flow diagram.

The process begins by receiving the packet and obtaining the destination
and source MAC addresses. If the source address does not exist in the table,
the destination address is added to the table. A new encoding ring is created
using the rte_ring_create() function:

struct rte_ring* rte_ring_create(
const char * name,
unsigned count,
int socket_id,
unsigned flags

)

The name of the ring is set to encoding_ringX where X is the mac counter
value used to keep track of how many MAC entries are in the table. The size
of the encoding ring is defined by the count parameter and the socket ID is
set to the default value of using any socket (In this case only one is available
to the DPDK application).

The flags parameter is used to set single or multiple consumers and pro-
ducers. Producers add objects to the ring, while consumers remove objects.
Multiple producers or consumers are used when multiple processes want to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 55

access the ring. In this implementation however, only a single producer and
consumer are used as a single process application is used.

Kodo-C Function Description

kodoc_factory_build_coder() Initialises the encoder or decoder for net-
work coding, based on the factory type.

kodoc_block_size() Returns the block size of the encoder or
decoder.

kodoc_rank()

Returns the current rank of the encoder
or decoder. This provides an indicator of
how many symbols have been encoded or
decoded.

kodoc_delete_coder() Deletes the encoder or decoder instance.
This is done after every generation.

kodoc_delete_factory() Deletes the encoder or decoder factory.
This is done when the program ends.

Table 4.1: Kodo-C network coding functions: general

Kodo-C Function Description

kodoc_new_encoder_factory()

Creates a new network encoder factory.
The encoder factory is used to initialise
encoder instances, using set coding pa-
rameters.

kodoc_set_systematic_off()
Sets systematic coding to off. This pre-
vents the encoder from sending the origi-
nal source symbols first.

kodoc_set_const_symbols()
Specifies the source data to be used for
all symbols. The source data is set to the
incoming un-coded data.

kodoc_write_payload() Writes a symbol to the payload buffer.
This is the encoded data.

kodoc_payload_size()
Returns the size of the generated, encoded
payload. This is used to get the payload
size when creating the output packets.

Table 4.2: Kodo-C network coding functions: encoder

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 56

After the new encoding ring is created, or if the source address is in the
MAC table, the packet is added to the ring using the rte_ring_enqueue()
function. The encoder function is then called, and if encoding is successful (and
all packets dequeued), the ring is reset. The first packet from each generation
will always take slightly longer to process than the remaining packets. This is
something to take into consideration for smaller generation sizes.

The encoding function called during the encoding pipeline process is dis-
cussed next. The Python-based coding implementation is rewritten in DPDK
using the Kodo RLNC-C library [62]. A summary of relevant, general Kodo
functions and those used by the encoder is shown in tables 4.1 and 4.2 respec-
tively.

4.7 DPDK encoding function
The DPDK-based encoding function flow diagram is shown in Fig. 4.9. The
encoder function is called whenever a packet is added to an encoding queue.
The function loops through each encoding ring and checks if the ring is full.
If the ring is full, then there are a generations size h packets in the ring and
the encoding process begins. The packets to be encoded are dequeued in bulk
from the full encoding ring using the rte_ring_dequeue_bulk() function. The
packets are processed individually from the entire block of the encoding ring,
because the packet data must first be extracted from each packet. Once the
packets are dequeued, they can be used by the encoder.

A Kodo RLNC encoder is created using the kodoc_factory_build_coder()
function. Systematic coding is turned off using the kodoc_set_systematic_off()
function. This is important because with systematic coding turned on, the en-
coder first outputs the original packets, and then the encoded packets. The
implementation only requires the encoded packets and therefore systematic
coding needs to be disabled.

A new mbuf is created to store the data to be encoded, as well as for the
encoded result data. Next the input data is assigned to the encoder. The
payload as well as the Ethernet type are to be encoded. This is because the
encoded packet Ethernet type is set to 0x2020 to signal that it is an encoded
packet. The original Ethernet type needs to be preserved and is therefore
encoded along with the payload data.

A generation ID is created for the packets in the generation. The gen-
eration ID is appended to the encoded resultant packets, and is used by the
decoder function to group packets for decoding. The generation ID is ran-
domly generated using the random() function from character values in the
range A, .., Z.

Once the generation ID is created, each of the packets in the encoding
ring are encoded in a loop, and the resultant packet is transmitted out. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 57

resultant encoded packet format is shown in Fig. 4.10, for a generation size of
h = 7 and packet size of N = 64.

Begin i = 0
i <= mac
counter?

false

true

i++

Get encoder
ring

encoder
ring full?

false

true
Bulk dequeue
encoding ring

Create encoder from
encoder factory

Set systematic
coding off

Create mbuf for input
data and payload

Create generation
ID

pkt <
h?

pkt = 0

Assign input data
to encoder

Encode data
to payload buffer

Create mbuf for
encoded reply

Transmit encoded
packet

pkt++

true

End

false

Figure 4.9: DPDK encoder function flow diagram.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 58

dst_addr src_addr eth_type payload

6 bytes 6 bytes 2 bytes 64 bytes

dst_addr src_addr eth_type encoded_data

6 bytes 6 bytes 2 bytes 71 bytes

gen_id

8 bytes

Source packet:

Encoded packet:

(To be encoded)

(0x2020)

Figure 4.10: Source and encoded packet formats. The section of the source packet
to be encoded is shown, as well as the 0x2020 Ethernet type used by the encoded
packet.

4.8 DPDK decoding pipeline
Similarly with the encoder, a decoding pipeline is created for the decoder func-
tion. Incoming encoded packets are grouped by generation ID. Once h packets
are received with the same generation ID, the decoding process begins. To
keep track of all the packets in each generation, the decoder uses a generation
ID table. A decoding ring is created to store all the incoming encoded packets,
for each generation ID. The structure of the generation ID table is as follows,

#define GENID_LEN 8
static unsigned genIDcounter = 0;
struct generationID {

char ID[GENID_LEN];
};
/* GenerationID table: Used to store list of all generations

still being decoded. */
struct generationID *genID_table;

genID_table = (struct generationID*)calloc(MAC_ENTRIES,
MAC_ENTRIES * sizeof(struct generationID));

The generation ID table is created as an array of generationID structs. Each
generationID struct contains a char array as the ID.

The flow diagram of the DPDK decoding pipeline is shown in Fig. 4.11.
The process begins by receiving the encoded packet and obtaining the gener-
ation ID. The generation ID is checked to be valid by looking at the length,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 59

and if the ID is comprised of alphabetic characters. If the generation ID is
not valid the packet is dropped. If the ID is valid, then it is looked up in the
generation ID table.

The first packet received by the decoding process from a generation will not
have the generation ID in the table. The decoding process adds the ID to the
table and creates a new decoding ring using the rte_ring_create() function.
The parameter values are the same as with the encoding rings, except that the
name is set to the generation ID.

Encoded
packet received

genID
valid?

Drop packet

false

truegenID in
genTable?

Add packet
to decoding ring

Run decoder
function

Add genID
to genTable

false

Create new
decoding ring

Increment genID
counter

Get generation ID
from encoded packet

true

Figure 4.11: DPDK decoding pipeline flow diagram.

Once the new decoding ring is created, or if packet with an existing gener-
ation ID is received, the packet is added to the corresponding decoding ring.
The decoder function is then called.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 60

4.9 DPDK decoding function
The Kodo RLNC-C library is used to create the decoding function from the
Python baseline implementation, in the DPDK environment. A summary of
the relevant Kodo-C functions used to implement the decoder are given in
table 4.3.

The DPDK-based decoding function flow diagram is shown in Fig. 4.12.
The process begins by looping through each decoding ring in the generation
ID table. If a decoding ring is full, then the decoding begins.

Kodo-C Function Description

kodoc_new_decoder_factory()

Creates a new network decoder factory.
The decoder factory is used to initialise
decoder instances, using set coding pa-
rameters.

kodoc_set_mutable_symbols() Specifies the data buffer where the de-
coder should store the decoded symbols.

kodoc_is_complete()

Checks the decoder to see if decoding has
been completed. This is used in a while-
loop to continue the decoding process un-
til all packets are decoded.

kodoc_read_payload()
Passes the encoded payload to the de-
coder. This is called during the decoder
loop.

Table 4.3: Kodo-C network coding functions: decoder

The encoded packets are dequeued in bulk from the decoding ring. Next, a
Kodo RLNC decoder is created using the kodoc_factory_build_coder() func-
tion. A mbuf is created to store the resultant decoded data and the decoding
loop is started. The loop cycles through each packet from the decoding ring,
assigns the data to the decoder and decodes the data.

Once the decoding process is completed, the resultant un-coded packets are
packetized for transmission. The original Ethernet type, that was encoded, is
recovered and appended to the resultant packet. The encoding Ethernet type
0x2020 is removed from the packet and the result is identical to the original
source packet from 4.10. After the packets are transmitted, the generation ID
is removed from the generation ID table, and the decoding ring is freed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 61

Begin i = 0 i <= genID
counter?

false

true

i++

Get decoder
ring

decoder
ring full?

false

true
Bulk dequeue
decoding ring

Create decoder from
decoder factory

Create mbuf for
decoded data

pkt = 0 pkt <
h?

Assign encoded
data to decoder

Decode datapkt++

Assign encoded
data to decoder

false

true

pkt = 0pkt <
h?

pkt++Create mbuf for
decoded reply

Transmit decoded
packet

true

false

Remove genID
from genTable

Free decoding
ring

End

Figure 4.12: DPDK decoder function flow diagram.

4.10 Summary
This chapter discussed the design and implementation of the software-based
VNF network coding functions. The discussion begins with the methodology
used to design the software coding functions. The design process is abstracted
into three steps: a Kodo Python baseline implementation, the DPDK network-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. NETWORK CODING IN THE VIRTUAL LAYER: VIRTUAL
NETWORK FUNCTIONS 62

ing layers, and C-based Kodo RLNC functions incorporated into the DPDK
networking layers.

The Kodo functions are implemented in Python to establish a functionality
baseline for the network coding functions. The functionality baseline is used to
showcase the correct encoding and decoding results. The baseline application
is used as reference for the complete VNF and hardware implementations to
determine that they are functioning correctly.

Once the Python baseline is complete, a DPDK loopback application is
created to develop and confirm the DPDK networking layer functionality. The
networking layer is constructed to perform packet processing. Specifically to
receive data, perform network coding and then transmit the result.

A coding function selection process is presented to determine when to per-
form network coding operations. The coding selection process provides the use
of a unique Ethernet type 0x2020 to differentiate between coded and un-coded
packets within a network. The addition of a coding capable field to the MAC
table is also proposed. The coding capable field is used to flag a network port
that has received an encoded packet in the past. The switch will only forward
encoded packets packets to a coding capable port to ensure that the packets
can be successfully decoded.

The DPDK coding functions are designed to be compatible with the coding
selection process. A separate coding pipeline is designed for the encoder and
the decoder. The coding pipelines prepare received packet data and resultant
processed data for each of the encoder and decoder coding functions.

The DPDK encoding pipeline groups incoming packets in a generation
based on the packet destination address. The encoding process begins once all
h packets have arrived. The encoder uses a MAC-based table to keep track
of all the packets that belong to each generation. The encoding function is
created using the Kodo RLNC functions. A generation ID is created by the
encoder for all the packets in the generation. The generation ID is used by the
decoder function to group packets for decoding.

The DPDK decoding pipeline groups incoming encoded packets by gener-
ation ID and begins decoding once h packets have arrived. The decoder uses
a generation ID table to keep track of all the packets that belong to each gen-
eration. The Kodo RLNC library is also used to create the decoding function.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Network coding in the hardware
layer: Field Programmable Gate
Array

“Later there will be, I hope, some people who will find it to their
advantage to decipher all this mess."

— Evariste Galois, May 29, 1832

5.1 Introduction
In the previous chapter we discussed the design and implementation of network
coding in the virtual layer, using virtual network functions. In this chapter
we discuss how network coding is implemented in the physical layer, in FPGA
hardware.

5.2 Methodology
A bottom-up design approach is used to implement RLNC coding modules for
the Terasic OpenVINO Starter kit board, using Intel’s Quartus Prime 18.1.0
lite edition design suite. Very High Speed Integrated Circuit Hardware De-
scription Language (VHSIC-HDL) (VHDL) is used to implement the coders,
and Verilog is used to interface the coding modules to the PCIe IP core. VHDL
is used due to familiarity and previous experience, while Teraisc provides the
PCIe interface in Verilog. The discussion on how the coding modules are inter-
faced with PCIe is done in chapter 6. The source code for the coding modules
can be found on GitHub [57].

The main design priorities are functionality, modularity and adaptability.
Functionality ensures that the hardware fulfils the required objectives and
intentions. Specifically, being able to perform network encoding and decoding,
using the RLNC algorithm. A proof of concept is created, that demonstrates
the possibility and feasibility of successful network coding. The design is kept
as modular as possible to facilitate any further expansion and optimization.

63

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 64

This ensures that the modules are adaptable for any future work and enables
sub-component optimization, without a complete architectural change.

The encoder and decoder are created using a variety of sub-components.
Some of these sub-components are shared, while others are specific to the
encoder and decoder respectively. The sub-components are designed to be
adapted for different constants. These include, Galois field size, generation
size and packet size. However, within this thesis, they are constrained to
values of eight bits, seven packets and 64 bytes respectively. This enables a
seven by seven coding coefficient matrix to be used in hardware. These values
are chosen to correspond with the software implementation of network coding
as discussed in chapter 4.

Design objectives such as resource utilization and power consumption are
taken into consideration. These however, are only to provide a suitable im-
plementation, and are not the main design focus. If an embedded design is
required, then these objectives would need to be considered.

5.3 Implementation: network encoder

5.3.1 Algorithm breakdown

The main advantage of using FPGA technology is parallel processing. There-
fore, the encoder is designed with this in mind, utilizing as many parallel
multiplication operations as possible. This is done by determining what data
can be multiplied independently, and performing all those multiplication op-
erations separately using multiple independent multiplier modules.

Equation 2.4 shows that y(ei) is dependant on the global coding vector
g(ei) to obtain the coded output packet. Each symbol in the source packet xi

is multiplied by the respective coding coefficient gi(ei). Therefore for a gen-
eration size of h, there exist Nh multiplication operations for a given output
packet y(ei). If full vector encoding is used, where the encoder waits for the
entire generation to begin encoding, along h edges, there exist Nh2 multiplica-
tion operations to complete the encoding process from equation 2.5. All of the
multiplication operations are independent of one another and in theory there
could be Nh2 operations occurring in parallel.

In the practical system, the host computer needs to pipeline the incom-
ing packets to the FPGA. The host computer word size is limited to 32-bits.
Therefore, only four symbols of the incoming packet data can be processed at
once. This presents a problem with full vector encoding because the encoder
will need to wait for all the symbol segments to arrive before encoding can be-
gin. Specifically, for a packet size of N symbols, l = N

4
segments are required.

Therefore, it would take lh = Nh
4

loading operations for the encoder to receive
the entire generation, to begin encoding. This is solved by performing the re-
quired multiplication operations on each incoming set of symbols and keeping

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 65

track of the results to be added together. Instead of waiting for the entire
incoming packet generation to arrive, it is more affective to perform multipli-
cation as the four byte packet segments are received. This is in contrast to full
vector encoding and is a on-the-fly coding approach [63].

A coding vector, corresponding to a column vector from the coding matrix
in equation 2.2,

g′
i(e) = [gi(e1), gi(e2), ..., gi(eh)] (5.1)

is generated for each incoming source packet in the source matrix 2.1, using
a pseudo-random number generator. Each symbol in the generated coding
vector is multiplied by each symbol from the source packet to produce h column
vectors, for each edge e,

y′
i(e1) =

∣∣∣∣∣∣
gi(e1)xi,1...

gi(e1)xi,N

∣∣∣∣∣∣ ,y′
i(e2) =

∣∣∣∣∣∣
gi(e2)xi,1...
gi(e2)xi,N

∣∣∣∣∣∣ , ...,y′
i(eh) =

∣∣∣∣∣∣
gi(eh)xi,1...

gi(eh)xi,N

∣∣∣∣∣∣ (5.2)

where h vectors are produced for each incoming packets as,

y′
1(e),y

′
2(e), ...,y

′
h(e)

Summing the column vectors from 5.2 for each edge e gives the encoded output
matrix from equation 2.5,

y(e) =

∣∣∣∣∣∣∣∣
(
∑h

i=1 y
′
i(e1))

T

(
∑h

i=1 y
′
i(e2))

T

...

(
∑h

i=1 y
′
i(eh))

T

∣∣∣∣∣∣∣∣ (5.3)

This coding approach can be used with the segmented input source. The
approach only requires 4h multipliers for the four incoming symbols, and
the addition operation is performed as the incoming symbols are multiplied.
Therefore, the encoded output is obtained once all the incoming packets are
received and requires Nh

4
less multipliers for the same amount of time as a full

vector encoder.

5.3.2 Overview

The flow diagram, illustrating the various hardware encoder modules is shown
in Fig. 5.1. The pipeline is broken into the following sub-components: a
pseudo-random number generator prngen, a 32x128 input data FIFO data_in,
Galois field multipliers gf_muls and a Galois field adder gf_add. The sub-
components are controlled by six synchronous processes: data_in, count, pseudo,
multiply, add and data_out.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 66

Source in:
pkt32bseg_i

Encoded out:
pkt32bseg_o

FIFO:
data_in

Random gen:
prngen

GF:
muls

GF:
add

Figure 5.1: Hardware encoder flow diagram

The encoding process begins by piping segmented packet data into the
data_in FIFO. The data_in process is used to control the FIFO read and write
operations for the packet input segments. The first coding symbol vector is
then generated from equation 5.1. The pseudo process is used to generate the
pseudo-random numbers for the coding vectors, and output the coding vectors
to the correct port. Once the FIFO is ready to be read, each of the four source
symbols are multiplied by each value in the coding vector to produce,

y′
i(e1) =

∣∣∣∣∣∣∣∣
gi(e1)x1,1
gi(e1)x1,2
gi(e1)x1,3
gi(e1)x1,4,

∣∣∣∣∣∣∣∣ (5.4)

for each coding vector symbol,

g1(e1), g2(e1), ..., gh(e1)

This is done using the multiply process where the multiplier operands are
assigned to the source and coding symbols. The processing continues until
all l packet segments are received for the first packet, and the results are
stored in an output vector. Further incoming segments are processed and the
results of the proceeding multiplications are appended using XOR operations.
This addition is done during the add process. When the first segment of the
final packet is received, the output vector represents the fully encoded output
packets, and a output flag is asserted to signal that the encoder output is ready.
The encoder then outputs the result in four byte segments, just like the input.
The data_out process controls when the output vectors should be output to
the output port. To maintain synchronisation the count process is used. The
count process controls all the counters responsible for delaying input to the
multipliers, adder and output vector while information is being processed by
the multipliers.

Further, more detailed discussions of the various sub-components are pro-
vided in the proceeding subsections.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 67

5.3.3 FIFO buffer

The encoder takes longer to encode the incoming packet data, than the rate
at which the data comes in. This is the overhead of network encoding, or the
cost. Due to this, a buffer is required to store the incoming packet data while
the packets are processed. One commonly used method in FPGA hardware
design is to use First-In, First-Out (FIFO) buffers. FIFOs have a specified
depth, which is the number of data elements, that can be stored. These data
elements are constrained to a set width. Intel provides a FIFO Intellectual
Property Core (IP Core) [64], that can be customized using the MegaWizard
Plug-In tool in Quartus.

The design parameters are set using the MegaWizard Plug-In tool. The
FIFO is designed to store all data required to successfully perform encoding,
on a full generation, even if encoding begins before all the packets have arrived.
In this instance the width and depth are set to 32 and 128 respectively. The
width is set to equal the 32-bit input and output word size used by the host
operating system. The host computer can only output data through PCIe to
the FPGA in 32-bit word sizes. The depth of the FIFO is calculated based on
the input packet size N = 64 bytes, and the network coding generation size
h = 7. Dividing N x h = 448 bytes into 32-bits, equals 8Nh

32
= 112 segments.

Since the MegaWizard Plug-In tool limits the depth of the FIFO to base-two
numbers, the depth is therefore rounded up to 128 data elements. The input
FIFO buffer pin-out is shown in Fig. 5.2.

fifo32x128

clock

data[0:31]

rdreq[0:1]

wrreq[0:1]

empty[0:1]

full[0:1]

q[0:31]

Figure 5.2: Hardware encoder entity: input FIFO buffer

The FIFO has four inputs: clock, data, rdreq and wrreq. The output side
includes empty, full and q. The incoming packet data is input to data during
write mode, and output to q during read mode. Both read and write operations
are clocked by the clock input. Careful attention needs to be given, to prevent
writing to the FIFO when full (Overflow), or reading from the FIFO when
empty (Underflow). To prevent these errors, two simple FSMs are used to
control the read and write states. The FSM diagrams for read and write are
shown in Fig. 5.3. During start-up, both states are set to idle. While both
state machines are in idle, the wrreq and rdreq flags are set to zero, and no
read or write operations are performed. While in idle, the write state machine

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 68

checks to see if the full flag is set to zero. This indicates that there is space
remaining and it is safe to write data. The state machine then enters the write
state and sets the wrreq flag to one. Incoming packet data is written through
the data port until the full flag is set back to zero. The read state machine
functions in a similar way, except by monitoring the empty flag. The state
machine remains in the read state while the FIFO is not empty, and the empty
flag is set to zero. However, unlike the write state, the request flag rdreq is
only set if the multiplier is also ready to process the data. Therefore to read
the data from the q port, the read state machine must be in the read state, and
the mulready flag must be set to one. This functionally enables the FIFO to
be used to bottleneck the incoming data stream. The output rate is controlled
by the multiplier counter, and the input is unrestricted while the FIFO has
space.

idle
(starting state) write

idle
(starting state) read

full = ’0’
wrreq = ’0’ wrreq = ’1’

full = ’1’

empty = ’0’rdreq = ’0’

if rd &
mulready == ’1’ ?
then rdreq = ’1’

empty = ’1’

Figure 5.3: Hardware encoder input FIFO read and write FSMs

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 69

5.3.4 Pseudo-random number generator

A technique for generating random numbers is required to produce the co-
efficients for the coding vector in equation 5.1. These coding symbols are
used to encode the source data through matrix multiplication. As a result,
a hardware-based random number generator is required. It is not physically
practical to generate true random numbers within hardware, and therefore a
pseudo-random number generator is created instead. This is done using an
8-bit Galois Linear-Feedback Shift Register (LFSR).

According to Klein’s book, LFSRs are an essential component in the fields
of cryptography and coding theory [65]. A shift register is a sequence of flip-
flops where the output of each flip-flop is connected to the input of another.
Each flip-flop stores a single bit or state. When a clock signal is applied,
the bits shift from one flip-flop to the other. A shift register of m flip-flops
enables up to 2m states. An m = 8 bit shift register is illustrated in Fig.
5.4 and consists of eight states S0, S1, ..., S7. While a shift register itself is
useful for converting between interfaces, this application requires something
more interesting. This is done by introducing feedback to alter the state of the
flip-flops. Fig. 5.5 shows how feedback is added to created a linear-feedback
shift register, where the input bit is a linear function f of the previous state.
In this application the linear function is the XOR operation. Therefore the
input of the shift register is the XOR function of the current state bits.

S0 S1 S2 S3 S4 S5 S6 S7

Figure 5.4: 8-bit shift register

S0 S1 S2 S3 S4 S5 S6 S7

f

Figure 5.5: 8-bit linear-feedback shift register

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 70

A practical implementation of the LFSR can be realised in two ways. The
first is to directly implement Fig. 5.5 in hardware. This is known as the Fi-
bonacci implementation and makes use of external feedback, where the func-
tion is performed externally. An alternative to this is the Galois implementa-
tion that uses internal feedback. This is the preferred method as the Galois
implementation only requires the use of two-input XOR operations, compared
to multi-input of the Fibonacci. This enables a higher clock speed to be used
for a Galois LFSR, while producing the same output as a Fibonacci LFSR
[65]. Therefore a Galois LFSR is used for this implementation, as illustrated
in Fig. 5.6.

S0 S1 S2 S5 S6 S7S3 S4

Figure 5.6: 8-bit Galois linear-feedback shift register

The LFSR uses three XOR operations as the internal feedback function.
The location of the XORs is dependent on the bit positions used to modify the
state. These bit positions are known as the taps and are determined using a
primitive polynomial for an 8-bit Galois field GF (28). While there are multiple
primitive polynomials for the field, the one used in the implementation of the
LFSR is,

p(x) = x8 + x4 + x3 + x2 + 1 (5.5)

which is determined from the Steinwurf Fifi library. The “binary8.hpp” file
used by [66] lists the default prime as 0x11D which in binary 100011101b
equates to the primitive polynomial in equation 5.5. It is important to use the
same primitive polynomial as the Fifi library because it is used by Kodo and
would otherwise generate a different set of random numbers. This would lead
to an inaccurate comparison between the hardware and Kodo implementation.

The starting state of a LFSR is called the seed, and is selected to be an
arbitrary number, 31. This provides a starting value for the LFSR, which will
proceed to output a non-repeating sequence of numbers from one to 255. The
sequence is determined by the seed, and will remain the same until changed.
In this use case the seed is kept constant. If security is a priority, then the seed
could be set to a dynamic value. One such value would be to use the input
data at a set interval. Another option, if a real-time clock is available, is to
use a segment of the current time. The only restriction on the seed is that it
must be an 8-bit number. This being said, LFSRs are not cryptographically
secure and additional work is required to generate a true secure sequence [65].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 71

In the scope of this thesis however, this implementation is sufficient to obtain
a random sequence.

The prngen pin-out is shown in Fig. 5.7.

prngen
(seed,m)

clock

reset
rslt[0:7]

Figure 5.7: Hardware encoder entity: prngen

The module uses two constants: seed and m. The seed value is used as
the starting seed for the LFSR, and m is the Galois field size of eight. After
the reset flag is set to one, the rslt output vector will output a different 8-bit
number for each clock cycle clock. This continues until all values in the interval
[1 : 255] have been generated, then the cycle repeats.

5.3.5 Galois field Multiplier

The encoder module requires the functionality of multiplying the source sym-
bols with the coding symbols. This entity is also used during Gauss-Jordan
elimination by the decoder. The multiplication needs to be done within a Ga-
lois field GF (28), and therefore normal multiplication will not work. According
to Kerl, multiplication within the Galois field can be done in two methods [22].
The one method reduce-en-route produces the result as following,

rslt(x) = (op1(x) ∗ op2(x))mod(p(x)) (5.6)

where the first operand op1 is multiplied by the second op2, and then the re-
mainder is obtained by dividing by the primitive polynomial p(x). This is done
effectively using the same LFSR from the pseudo-random number generator
in subsection 5.3.4.

Two processes are used within the module, the one mul begins by taking
the binary multiplication of each bit in op1 by the first bit in op2, which is
incremented by a counter. This result is fed to the LFSR process, which
performs the modulo operation and the result is then fed back to the mul
process. This continues until the binary multiplication has incorporated each
bit from op2. The Galois field multiplication result takes m−1 shift sequences
for the overall state to represent the correct output.

The pin-out for the Galois field multiplier is shown in Fig. 5.8. The module
has the inputs clock, reset, operand_1, operand_2 and the output rslt. Using
the module is fairly straightforward as operand_1 is multiplied by operand_2
and the output result is given by rslt.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 72

gfmul
(m)

clock

reset

operand_1[0:7]

operand_2[0:7]

rslt[0:7]

Figure 5.8: Hardware encoder entity: Galois field multiplier

5.3.6 Galois field Adder

The encoder module needs to sum the results obtained by the multiplier mod-
ules over the Galois field, GF (28). Unlike multiplication, addition and sub-
traction are simply performed using the XOR operation. This is a lot easier to
implement in hardware than the multiplier module. For this reason, a separate
module is not created for the Galois field adder. The addition operations take
place within the add process.

5.4 Implementation: network decoder

5.4.1 Algorithm breakdown

The main aim of the decoder, is to decode the incoming encoded packets. In
order to solve for the original source packets,

x1, ...,xh

This requires the coding vectors, as well as the encoded vectors. Each encoded
packet includes coding symbols in the header, along with the encoded data
symbols. In a full vector coding approach, the entire generation of encoded
packets and coding vectors is needed to begin the decoding process. As with
the encoder, the symbols are grouped together as a generation, to construct
two matrices: the coding matrix from equation 2.2,

Gt =

∣∣∣∣∣∣
g1(e1) g2(e1) ... gh(e1)...

...

g1(eh) g2(eh) ... gh(eh)

∣∣∣∣∣∣
and the encoded output matrix from equation 2.5,

y(e) =

∣∣∣∣∣∣
y1(e1) y2(e1) ... yN(e1)...

...

y1(eh) y2(eh) ... yN(eh)

∣∣∣∣∣∣

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 73

The original source symbols are found by combining these matrices as a system
of linear equations and solving for the inverse of the input data matrix to
obtain, from [5],

∣∣Gt y(e)
∣∣ =

∣∣∣∣∣∣
g1(e1) g2(e1) ... gh(e1) y1(e1) y2(e1) ... yN(e1)...

...
...

g1(eh) g2(eh) ... gh(eh) y1(eh) y2(eh) ... yN(eh)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 ... 0 x1,1 x1,2 ... x1,N...

...

...

0 0 ... 1 xh,1 xh,2 ... xh,N

∣∣∣∣∣∣
=
∣∣Ih X

∣∣
(5.7)

One effective method to determine the inverse of a matrix in hardware, is
Gauss-Jordan elimination. The details of how Gauss-Jordan elimination is
implemented in FPGA hardware is discussed in the proceeding subsections.

5.4.2 Overview

Gauss-Jordan elimination is implemented in VHDL using a FSM approach.
This is implemented as a module, and performs the necessary row operations on
the input data and coefficient matrices. These row operations are performed on
the entire packet length, until the coefficient matrix is in reduced-row echelon
form. The host computer, sends the encoded packet data to the FPGA via
PCIe. A problem occurs that the host word size of 32-bit is much less than the
packet length used by the Gauss-Jordan elimination module. This is solved
by encapsulating the module within a decoder FSM module, responsible for
loading 32-bit packets into the Gauss-Jordan elimination module. The decoder
state machine is shown in Fig. 5.9. There are four states, load, gj_elim,
complete and idle. The first state is the load state, and is where the 32-bit
packet segments are loaded into the data-in and coefficient registers. The state
machine then enters the gj_elim state, executing the Gauss-Jordan elimination
process. Once done, the complete state is entered to load the decoded data
back into 32-bit data segments. Then finally, after all segments are loaded out,
the idle stage is entered until the reset is triggered.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 74

load

gj_elim

complete

idle

load_done = ’0’

load_done = ’1’

gj_elimination_done = ’0’

gj_elimination_done = ’1’

complete_done = ’0’

complete_done = ’1’

rst = ’1’

Figure 5.9: Hardware decoder finite-state machine

The data representation of the load state is shown in 5.10. The input
data packet on the FPGA side, data_in, has a size of N = 64 bytes and is
broken into 32-bit segments. The number of segments required is equal to l =
8N
32

= 16. The coefficient data for each packet, coef_in, is k = 7 bytes long and
therefore uses less than two segments. The decoder FSM can only load one
data segment per clock cycle on a single PCIe lane. Therefore, for a generation
size of h, the number of clock cycles required to load the data in and out of
the Gauss-Jordan elimination module is bottlenecked by the generation size
and length of the input packet, as long N > k. As a result, the number of load
operations required for segmentation is 2lh, where l = 8N

32
.

b0 b1 ... b31 b0 b1 b24

b1b0 ... b31 b0 ... b7

b1b0 b7...

coeffs_in(t=1) coeffs_in(t=0)

... ...

...

32bseg_i(t=15) 32bseg_i(t=0) data_in(t=N-1) data_in(t=0)

coef_in(t=h-1) coef_in(t=0)

...

b1

Figure 5.10: Hardware decoder data segmentation

This section is written from a top-down approach, where the subcomponent
required in each module is discussed as the text progresses. Each row operation
is designed as a separate hardware module, and discussed in subsections 5.4.4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 75

and 5.4.5. These row operations are broken down into further Galois field
inverter and divider modules, in subsections 5.4.7 and 5.4.6 respectively.

5.4.3 Gauss-Jordan elimination

The Gauss-Jordan elimination process is done by performing row operations,
specifically row division and row multiplication-and-subtraction, on both the
input (encoded) data and RLNC coefficient data matrices, until the coefficient
data matrix is in reduced-row echelon form. Specifically since the coefficient
matrix is an invertible h x h square matrix, it is non-singular, and the reduced-
row echelon form will also be an identity matrix. Once this is achieved, the
resultant output data matrix will be the inverse of the input matrix and rep-
resent the original decoded data. The process is broken into solving the lower
and upper triangles of the coefficient matrix, obtaining an identity matrix.

The lower triangle is solved first and makes use of both row operations:
division and multiply-and-subtract. The first step is to obtain a leading value
of one in the first entry of the first row. This is done using the row division
operation and dividing the first row by the leading value entry of that row.
The next step is to make sure that all entries below the leading value of one
are equal to zero. This is done using the multiply-and-subtract operation. The
first row Ri, is multiplied by the leading non-zero entry in each of the following
rows Rj and is then subtracted from that row. The process continues using
the row division operation to make the leading value entry of the second row
equal to one. This continues until all the entries in the lower triangle of the
coefficient matrix are equal to zero, and the diagonal entries are all equal to one.
The row division and multiplication-and subtraction operations are performed
h and (h−1) times respectively. The coefficient matrix is in row-echelon form,
the result of using Gauss elimination.

While row-echelon form is sufficient to decode the encoded input data,
a further step is taken to solve the upper triangle, to obtain a reduced-row
echelon form. This provides a more explicit solution, where the resultant data
matrix represents the exact required output of the decoded data. This result
is the matrix inverse of the encoded data matrix. Solving the upper triangle of
the coefficient matrix, only makes use of one of the row operations: multiply-
and-subtract. This is performed for (h − 1) operations, until the resultant
coefficient matrix is in reduced-row echelon form, and an identity matrix.

The Gauss-Jordan elimination FSM makes use of lower and upper trian-
gle flags to help determine which state the Gauss-Jordan elimination module
should be in. The states of the FSM are load, divRow, mulsubRow, complete
and idle. Each state comprises of a separate pipeline and sub-components.
The state machine diagram is shown in Fig. 5.11. The starting state is the
load state. During this state, the encoded packet data and coding coefficients
are loaded into the data and coefficient matrices respectively. Each matrix
contains h = 7 number of rows, corresponding to the generation size. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 76

data matrix contains N = 64 byte length rows, and the coefficient matrix
contains h byte length rows, stored as registers. Fig. 5.12 illustrates the ma-
trices data representation. Once the load state is completed, the Gauss-Jordan
elimination process is started.

load

divRow mulsubRow

complete

idleload_done = ’0’

lower_triangle = ’0’
&
load_done = ’1’

div_done = ’0’

lower_triangle = ’1’ &
mulsub_done = ’1’

lower_triangle |
upper_triangle = ’1’
& div_done = ’1’

mulsub_done = ’0’

upper_triangle = ’0’
&
lower_triangle = ’0’

complete_done = ’0’

complete_done = ’1’

gj_elimination_done = ’0’

Figure 5.11: Gauss-Jordan elimination finite-state machine

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 77

0 ... N-1
0
1
2
3
4
5
h-1

0 ... h-1
0
1
2
3
4
5
h-1

b0 ... b7

...data_in(t=hN-1) data_in(t=0)

b1

...data(0)(0) data(0)(N-1)

...data(1)(0) data(1)(N-1)

...data(2)(0) data(2)(N-1)

...data(3)(0) data(3)(N-1)

...data(4)(0) data(4)(N-1)

...data(5)(0) data(5)(N-1)

...data(6)(0) data(6)(N-1)

b1b0 b7...

...coef_in(t=h2-1) coef_in(t=0) ...coeff(0)(0) coeff(0)(h-1)
...coeff(1)(0) coeff(1)(h-1)
...coeff(2)(0) coeff(2)(h-1)
...coeff(3)(0) coeff(3)(h-1)
...coeff(4)(0) coeff(4)(h-1)
...coeff(5)(0) coeff(5)(h-1)
...coeff(6)(0) coeff(6)(h-1)

Figure 5.12: Gauss-Jordan elimination matrices representation

The states mulsubRow and divRow both represent a Gauss-Jordan elim-
ination row operation. The lower-triangle is solved first and begins in the
divRow state. The divRow state is entered when the lower triangle flag is set
to zero. The state will change to mulsubRow when row division is completed
and either of the triangle flags are set. The state machine will then cycle back
to divRow if the lower triangle flag is still set. This cycle continues until the
lower-triangle is solved. The next step is to solve the upper-triangle, which
only makes use of the mulsubRow state. If the upper triangle is set to one, the
mulsubRow state will be held until both triangle flags are set to zero. After
Gauss-Jordan elimination is completed, the decoded data matrix is loaded into
the output registers. This happens during the complete state. Finally, once
the output loading is complete, the state machine enters the idle state.

The VHDL implementation of the Gauss-Jordan elimination is constructed
using two module components, one for each row operation. A single row divi-
sion module is used as row division only needs to be done on one row at a given
time. The multiply-and-subtract row operations are normally done on more
than one row during the mulsubRow state, and therefore there are h multiply-
and-subtract modules, to allow multiple row operations in parallel. This is
used to decrease the processing time as in theory, performing the multiply-
and-subtract operation on one or h rows should take the same amount of time
in hardware. The remaining VHDL includes four processes. The one process
is for the FSM itself, and the other three are for load and complete, divRow
and mulsubRow state processing.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 78

5.4.4 Row operation: divide

Gauss-Jordan elimination requires a row division operation. This is used to
divide an entire row by a set value, usually with the intention of obtaining a
positive one for the leading value. The leading value being the first non-zero
value in the row from left to right. This is used along with the multiply-and-
subtract row operation to convert the coefficient matrix into an identity matrix
form.

The row division module divides the input and coefficients data rows. The
module consists of h + N dividers for each byte in the input and coefficient
data rows. This allows for the entire row to be divided in parallel. The
remaining hardware in the module is used to segment the row register into
byte length registers, and check if the row division is completed. The module
has five inputs: clock, reset, a, pkt_coef_in and pkt_data_in. Inputs clock
and reset are used for clock input and reset triggering respectively. The value
to divide the entire data and coefficient rows is given my the value a. The data
row is given by pkt_data_in and the coefficient row by pkt_coef_in. Once
the module has completed the row division operation, the data and coefficients
is sent to the pkt_data_out and pkt_coef_out outputs. The done_o output
flag is set to one, signalling other modules that the operation is completed. A
summary of the row division module, with input and output bit sizes, is show
in Fig. 5.13.

gj_divRow
(m,h,N)

clock
reset
a[0:7]

pkt_coef_in[0:55] done_o[0:1]
pkt_data_in[0:511]

pkt_coef_out[0:55]
pkt_data_out[0:511]

Figure 5.13: Hardware decoder entity: row division

5.4.5 Row operation: multiply-and-subtract

The second row operation required for the Gauss-Jordan elimination module is
multiply-and-subtraction. During this operation, one row Ri is multiplied by
an input value, and then subtracted from another row Rj. This is done with
the intention of making all other entries in the row Rj, besides the leading
value of one, equal zero. As with the row division operation, the multiply-
and-subtract module is used to convert the coefficient matrix to an identity
matrix.

The module multiplies both of the data and coefficient rows at row index
Ri by a constant value and then subtracts them from the data and coefficient
rows at row index Rj. The module contains h+N multipliers for each byte in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 79

the input and coefficient rows of row index Ri. Two processes are used to split
the row data into individual bytes, as well as from individual bytes to single
row registers. This enables the entire rows at row index Ri to be multiplied
by the constant value in parallel. The subtraction of each row element is also
done in parallel, using the XOR operation, in the Galois-field GF (28). This is
done in a separate process. Each of the multipliers use the same Galois-field
multipliers as in the network encoder, discussed in subsection 5.3.5.

The multiply-and-subtract row module takes two sets of input data for
each row. The inputs pkt_coef_i_in and pkt_data_i_in are for row Ri,
while inputs pkt_coef_j_in and pkt_data_j_in are for row Rj. The value to
multiply Ri with is given by the input a. Once the row operation is completed
a single row output is provided by pkt_coef_out and pkt_data_out. The
output flag done_o is set to one to signal that the row operation has completed
successfully. A summary of the module is show in Fig. 5.14, illustrating the
input and output bit sizes.

gj_mulsubRow
(m,h,N)

clock
reset
a[0:7]

pkt_coef_i_in[0:55]
pkt_coef_j_in[0:55]

pkt_data_i_in[0:511]
pkt_data_j_in[0:511]

done_o[0:1]

pkt_coef_out[0:55]
pkt_data_out[0:511]

Figure 5.14: Hardware decoder entity: row multiply-and-subtract

5.4.6 Galois field divider

The row divider module requires a Galois field divider to divide each data
and coefficient byte. The simplest way of doing this is to use the already
constructed Galois field multiplier, discussed in subsection 5.3.5. The module
pin-out is shown in Fig. 5.15. Instead of multiplying the two operands directly,
the first input operand_1 is multiplied by the inverse of the second input
operand_2. The only additional component required is therefore a Galois field
inverter. The Galois field inverter can easily be constructed using a lookup
array, as discussed in subsection 5.4.7.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 80

gfdiv
(m)

clock

reset

operand_1[0:7]

operand_2[0:7]

rslt[0:7]

Figure 5.15: Hardware decoder entity: Galois field divider

5.4.7 Galois field inverter

The implementation of the Galois field divider requires a Galois field inverter.
Creating a hardware inverter in a Galois field is generally considered to be a
difficult task. Therefore, instead of using complicated logic, a simple lookup
register array is constructed from pre-calculated values. These values are gen-
erated using Steinwurf’s fifi-python library [66]. This is the same library that is
used by Kodo, and therefore performs Galois-field calculations using the same
primary polynomial as the implemented Galois field multiplier module. The
array remains small for the Galois field GF (8), containing 255 possible values.
The array index is from one to 254 and each value corresponds to the inverse
of the index. Zero is omitted from the array because the inverter results are
used in division operations, which would cause an undefined output. Due to
the small size of the array, this operation is favoured over more complex logic.

The pin-out of the module is show in Fig. 5.16. The operation is very
straightforward. The number to be inverted is input to operand, and the
output result is given by rslt.

gfinv

clock

reset

operand_1[0:7]
rslt[0:7]

Figure 5.16: Hardware decoder entity: Galois field inverter

5.5 Module verification
Verification is conducted by writing testbenches for each of the sub-components,
as well as the overall encoder and decoder. Input data is passed to the test-
benches from text files to simulate incoming packet streams. The output data
is stored in text files to analyse the completed results. Each of the modules

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. NETWORK CODING IN THE HARDWARE LAYER: FIELD
PROGRAMMABLE GATE ARRAY 81

are evaluated using the Kodo RLNC Python library [59] and the Fifi Python
library [66]. The outputs are then compared to the Kodo Python baseline from
Chapter 4 to confirm that the coding operations, as well as the sub-modules
are all functioning correctly.

5.6 Summary
This chapter presented details on the design and implementation of the FPGA-
based hardware network coding functions. The discussion begins with the
methodology used. The Quartus Prime design suite is used to develop the
RLNC coding modules for the OpenVINO starter kit FPGA and the coding
modules are written in VHDL. The design priorities are functionality, modu-
larity and adaptability.

The encoder and decoder are created using a variety of sub-components
that can be adapted and modified on an individual basis. In this thesis, how-
ever the modules are constrained to implement network coding on a generation
size of seven packets, with a length of 64 bytes, within the Galois Field GF (28).

The network encoder implementation begins by breaking down the RLNC
encoder algorithm and figuring out what data can be multiplied independently,
and performing all those multiplication operations separately using multiple
multiplication modules. An overview of the various modules used by the en-
coder are provided. Each of the various sub-components are then discussed in
detail.

The decoder implementation makes use of Gauss-Jordan elimination to
decode the encoded packets. A FSM approach is used by the decoder imple-
mentation to perform the various row operations of Gauss-Jordan elimination,
as well as load data to and from the decoder module. Each of the decoder
sub-components are discussed in detail.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Open vSwitch and network coding
function integration

6.1 Introduction
Chapters 4 and 5 provide details on the VNF and FPGA network coding
implementations respectively. The coders need to be integrated with OvS to be
used in a real network. This chapter discusses the design and implementation
of the interface between the coders and OvS bridge.

6.2 Software layer integration: OvS and VNF
The DPDK-based encoder and decoder from Chapter 4 need to be interfaced
with the OvS bridge. While the use of VNFs is chosen as the method of of-
floading packets to the software-based coders, two other possible methods of
offloading packets from OvS to the DPDK userspace program were investi-
gated. The two methods involve direct use of OvS dpdkr and vhost-user ports
[11].

The dpdkr and vhost-user ports are normally used to interface OvS with
VM guests. It was investigated if it would be possible to directly access the
network interfaces queues of the ports, and have the OvS switch forward pack-
ets to the ports for coding. This would possibly eliminate the overhead of
packets needing to be passed through the coding VM.

The dpdkr port makes use of the DPDK ring library. This library is used
extensively in the implementation in Chapter 4 and therefore shows promise
of ease of integration. An interface was created using the dpdkr port, but a
segmentation fault often occurred during packet processing. Reading through
the DPDK source code reveals that the rings used by the dpdkr port are
created as single producer and consumer. This therefore limits the interface
as multiple processes can not access the port rx and tx ring simultaneously.
This is a requirement because the interface is the second process accessing

82

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 83

the port while OvS is the primary process. The DPDK documentation also
suggests that dpdkr should no longer be used for VM guest communication.
The vhost-user port should be used instead.

Investigation into the vhost-user port shows that it is used by QEMU to
interface OvS with VMs. An attempt was made to create a new interface by
following the QEMU source code [67]. While no official documentation exists
on how to do so, it was found to be difficult to figure out the exact commu-
nication between QEMU and OvS. Sniffing the Linux system calls during VM
initialization provided more detailed insight, but the exact details of the neces-
sary function calls were unknown. The process was unsuccessful and deemed
out of the scope of this thesis. Therefore, the design decision was made to
follow the work in [1] and [15] and implement the DPDK coding functions as
VNFs.

The use of VNFs provide more flexibility than a direct interface to the OvS
port. This allows for the coding implementations to still work if OvS makes
structural changes to the ports. The use of VNFs also meet the objective
requirements of open networking through the use of NFV and SDN.

6.2.1 Using OvS OpenFlow flows

The hypervisor from Chapter 3 connects the VNFs to the OvS bridge. To
offload packets for processing, OpenFlow flows are added to the OvS bridge.
The flows are used to direct traffic to the network coders based on a set of rule
criteria and actions. The flows can be added to the OvS bridge using the built
in OvS OpenFlow control ovs-ofctl utility, or by an SDN controller.

The ovs-ofctl utility is a command line tool used to monitor and administer
the OvS bridge. The utility can be used with the add-flow argument to add a
OpenFlow flow to the switch as following:

ovs-ofctl add-flow <switch> <flow>

The switch value is set to the name of the OvS bridge, in this case br0. The
flow entry is specified by a specific flow syntax with key-value pairs. The first
value is the match field and is followed by the actions field. An example of
flows that could be used to offload packets for encoding and decoding are:

Encoder offload:
ovs-ofctl add-flow br0 in_port="vhp0",actions=output:"encodeVNF

"
Decoder offload:
ovs-ofctl add-flow br0 dl_type=0x2020,actions=output:"decodeVNF

"

In these example flows, all packets from the VM port vhp0 would be forwarded
to the encoder VNF. Encoded packets using the Ethernet type 0x2020 (from

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 84

the coding function selection process in Chapter 4) would be forwarded to the
decoder VNF.

The ovs-ofctl command utility is useful for easily adding flows to the OvS
bridge. This approach is good when a specific network topology and use case
is required, such as with performing testing. For this reason the evaluation
done in Chapter 7 uses the utility in some of the testing scripts. In an oper-
ational network however, with continuous packet flow, the network topology
and configuration is not always known. There are many different use-case sce-
narios for a network switch, and therefore control plane controller support is
implemented.

6.3 Control plane: Ryu SDN controller
One of the system requirements from Chapter 2 is that the network switch
implementation needs to be able to connect to an SDN controller. This re-
quirement is derived from the objective that the switch needs to be SDN
compatible. Therefore, to verify the support and ability to use an SDN con-
troller with the system, a control algorithm is designed and implemented that
is capable of deploying network coding functions as necessary.

The requirements for network coding deployment vary with application.
One of the benefits of using network coding on an SDN-based switch is flex-
ibility of control. The SDN controller has the ability to make forwarding
decisions based on user defined algorithms and criteria. The controller uses
these algorithms to create the necessary flows on the OvS bridge.

The SDN switch sends all unknown packets to the controller. The con-
troller analyses the packets and creates the necessary flows on the OvS bridge.
Future packets that have matching fields are not sent to the controller and are
forwarded using the dataplane.

The control plane is managed by a dedicated computer running the Ryu
SDN controller software. The Ryn SDN controller is a Python-based frame-
work that supports OpenFlow up to version 1.5. Ryu provides an extensive
API that is open source and is officially integrated into OpenStack. The con-
troller therefore meets the objective of open networking and the Ryu project
is at the time of writing this thesis, well supported [68].

Another system requirement from Chapter 2 is that the switch needs to be
able to perform multicast snooping to be used to evaluate network coding in
a practical network.

Ryu is used to create a controller algorithm that implements multicast
snooping. The specific multicast protocol used is IGMP. While other multi-
cast protocols exists, IGMP is chosen because the controller algorithm is only
created as a proof of concept to determine SDN controller support. The con-
troller algorithm is implemented as an extension of the basic L2 learning switch

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 85

example used by Ryu. Network coding functionality is added using the coding
function selection process from Chapter 4.

6.3.1 Multicast Snooping

There is no single method for conducting multicast snooping on a switch. Many
switch manufactures use their own implementations for their specific needs. To
create a more consistent standard, RFC 4541 in [69] provides a guideline of
how to implement IGMP and Multicast Listner Discovery (MLD) on a network
switch. The RFC 4541 recommendations require the use of an IGMP router
(querier) to work correctly. In the context of this controller however, there is
no IGMP router present. The scope of the thesis is to create a network switch,
which is a LAN specific (L2) networking device and therefore router support
is omitted. The RFC 4541 recommendation is therefore only used as a general
guideline and reference.

Flow diagrams of the IGMP snooping functionality from the dataplane and
controlplane is given in Fig. 6.1 and 6.2.

Connect Ryu
controller

IGMP packet
received

Start OvS
bridge

control

data
IGMP data
or control?

Send packet to Ryu
controller

false

true In
mlcst group

flow?

Drop packet

Send packet to mlcst
group memebers

Figure 6.1: IGMP snooping functionality flow diagram from OvS bridge.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 86

Create IGMP
lookup table

Start packet
handler

Leave

Report
Report or
Leave?

Add host to
lookup table

Remove host from
lookup table

IGMP control
packet received

Update switch flow

Figure 6.2: IGMP snooping functionality flow diagram from Ryu controller.

The IGMP snooping process begins on the OvS bridge. The bridge is
started and connected to the Ryu controller. If an IGMP packet arrives, it is
checked to be a control or data packet. Control packets refer to IGMP query,
report or leave packets. IGMP data packets are multicast packets to be sent
to the multicast group. If the packet is IGMP control, it is sent to the Ryu
controller.

The Ryu controller begins by creating an IGMP lookup table of the struc-
ture:

grp_to_mac = defaultdict(list)

Each table entry is a multicast group that contains a list of ports that belong
to the group. If a report message is received, then the port is added to the
relevant multicast group. Similarly, if a leave message is received, the port is
removed from the group. The lookup table is used to update the switch flows.
If multiple OpenFlows flows exist with the same match, then the first flow
will be followed. This will prevent the switch from sending to all members of
the multicast group. To solve this, the controller only creates a single flow for
each multicast group. The group members are modified by adding or removing
OpenFlow output actions, where each output action corresponds to a multicast
group member.

Once the switch flows are updated, IGMP data packets can be sent to the
correct multicast group member ports. If no flow exists for the group address
then the packets are dropped. IGMP control packets are therefore the only
IGMP type packets sent to the controller, and IGMP data packets remain in
the dataplane.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 87

6.4 Hardware layer integration: OvS and
FPGA

The OvS bridge needs the ability to offload packets to the FPGA. The hardware-
based encoder and decoder from Chapter 5 cannot directly be used in a net-
work. An interface is therefore required between the OpenVINO development
kit and OvS.

Receive packets
from OvS.

Extract
payload data.

Transfer data
to FPGA.

FPGA processing.Transfer result
from FPGA.

Packetize results.

Transmit packets
to OvS.

Figure 6.3: OvS and hardware-based network coding integration functionality.

An overview of the interface functionality is illustrated in Fig. 6.3. Packets
to be coded are received from OvS. Once the packets are received, the payload
data is extracted and transferred to the FPGA. The FPGA then processes the
data using the network coders and the results are transferred back to the PC.
The results are packetized and transmitted to the OvS bridge.

To meet the functional requirements from Fig. 6.3, the interface is designed
in two parts. The interface is comprised of a software application and hardware
modules, shown in Fig. 6.4.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 88

Network
coding entity

Shared
memory

Input/Output
registers

PCIe connection

PCIe
module

Memory
control

Register
control

Memory
control

Userspace network
interface

PCIe
control

Open vSwitch bridge

Virtual Ethernet link
Userspace (Host PC):
Software application

Physical space (FPGA):
Hardware module

Figure 6.4: Hardware coding integration architecture.

The hardware modules are placed on the FPGA and encapsulate the coder
entities. A separate hardware module is created for each coder. Only a single
hardware module is placed on the FPGA at a time, and therefore a single
coding entity. The hardware module requires the following to meet the func-
tionality from Fig. 6.3:

• A PCIe module to implement PCIe connectivity, allowing the host PC
to connect to the Cyclone V FPGA device. This will allow packet data
to be transferred and offloaded to the FPGA for processing.

• A form of shared memory that is accessible by both the FPGA and the
host computer. This memory is used to store packets to be processed by
the coding entities.

• FPGA-based memory control logic to transfer packet data between the
shared memory and the coding entities, on the FPGA.

• Input and output registers to control the FPGA coding entities from the
host computer. These registers can be modified by both the FPGA and
host computer to communicate control flags. The flags are used to tell
the coder entity when to begin and tell the host computer when coding
is finished.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 89

• FPGA-based register control logic, to read and set the input and output
registers from the FPGA.

The software application runs on the host computer and is written as a C
application. Data transfer and communication between the OvS bridge and
the FPGA is done through the software application. The application requires
the following to meet the functionality from Fig. 6.3:

• A network interface that can be manipulated from the userspace. This
will allow packets to be transferred between the software application and
the OvS bridge.

• Software to provide PCIe control. This will allow the application to
connect to the PCIe module on the FPGA.

• A form of memory control to read and write to the FPGA shared mem-
ory, from the userspace.

• A method of setting the input and output registers to control the FPGA
coders.

We begin the discussion with the hardware module implementation. The
Intel Quartus Prime 18.1.0 lite edition design suite is used to implement the
FPGA hardware modules. The Quartus Platform Designer tool is used to add
the necessary IP components to the design. The first step is to create the
functionality required to connect to the FPGA device to the PCIe expansion
bus.

6.4.1 Hardware module: PCIe module

Terasic, the manufacture of the OpenVINO starter kit provide a collection of
reference designs to be used with their products [52]. Included in the collec-
tion is a PCIe reference design, PCIe_Fundamental. The PCIe_Fundamental
reference design is used as a base for the hardware modules. The reference de-
sign contains the necessary PCIe IP core to interface the FPGA coding entities
with the PCIe expansion bus. The IP core provided is specific to the Cyclone
V FPGA device. All PCIe hardware logic is handled by the reference design.
There is therefore no further PCIe logic implementation required. An overview
of the reference design is shown in Fig. 6.5 from [52]. Avalon interfaces are
used to provide the interconnection fabric to connect all of the components
within the reference design.

Avalon interfaces are an interface protocol used to connect components
within the Quartus Platform Designer software [70]. They are used to make
system component integration easier within an Intel FPGA. The two Avalon in-
terfaces used within the hardware modules are Avalon Memory-Mapped (MM)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 90

and Avalon Conduit interfaces. The Avalon-MM interface is used for address-
based read and write operations between a master and slave device. Avalon
Conduit interfaces are used to represent signals, or groups of signals that can
be exported from the Quartus Platform Designer, to be used with FPGA user
logic written in other Hardware Descriptive Language (HDL) files.

On-Chip
Memory

PIO
Base Address

Registers (BARs)

Interconnection Fabric for
Avalon Memory-Mapped Interface

Avalon-MM Cyclone V Hard IP for PCI Express
+ Modular SGDMA

PCIe Gen 1 x4

User
Logic

Figure 6.5: Hardware block diagram of PCIe reference design from [52]

6.4.2 Hardware module: network coding entity

The encoder and decoder entities from Chapter 5 are instantiated within the
PCIe reference design. While the network coder entities are written in VHDL,
the PCIe reference design is written in Verilog. Luckily, VHDL modules can
be instantiated within Verilog (and vice-versa), and therefore the hardware
modules are written in Verilog. A port map is performed to connect the coder
entity ports to internal signals within the main PCIe_Fundamental Verilog
file.

6.4.3 Hardware module: shared memory

Shared memory needs to be implemented on the FPGA, to store packets to
be used by the coding entities. The PCIe reference design makes use of the
on-chip Random Access Memory (RAM) IP core by Intel to store data. The
IP core parameters are modified to set the data width to 32-bits and total
memory size of 2048 bytes. The data width is set to match the word size used

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 91

by the host computer and the total memory size is chosen to accommodate for
received, transmitted and coefficient packet data. The memory address map of
the on-chip memory is set to the range 0x07000000 - 0x070007FF and shown
in Fig. 6.6.

The memory map shows the address space used by the received, transmit-
ted and coefficient data packets. The received packets refer to the packets
received from the OvS bridge that need to be processed by the coding entity.
The transmitted packet data is the result of the coding process, that need to be
transmitted back to the OvS bridge. In both cases, coefficient data is present.
The coefficient data address space is populated either from the FPGA or host
PC, depending if encoding or decoding is done respectively. The receive and
transmit data each occupy a total of hN = 7× 64 = 448 bytes, and the coeffi-
cient data occupies a total of hh = 72 = 49 bytes. These value are represented
in hexadecimal for convenience as 0x1C0 and 0x31 respectively.

0x07000000

0x070001C0
0x07000200

0x07000400

0x070007FF
0x07000431

0x070003C0

RX packet data

TX packet data

Coefficient data

Figure 6.6: Memory map of FPGA on-chip RAM. The address space of the received,
transmitted and coefficient data is shown.

The on-chip RAM provides an Avalon-MM slave signal which connects
to the system interconnection fabric. Other modules can read and write to
the RAM by using Avalon-MM master signals. We therefore continue the
discussion onto how to control the on-chip memory.

6.4.4 Hardware module: memory control

The FPGA needs to transfer data between the on-chip RAM and the coding
entities and therefore a memory controller is required. This is done using

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 92

the Avalon Memory-Mapped Master templates provided by Intel [71]. The
templates provide the necessary logic to connect to the same interconnection
fabric used by the PCIe reference design, using Avalon-MMmaster signals. The
Avalon-MM master signals are connected to the on-chip RAM slave signal.

The templates include Verilog modules that are added to the PCIe reference
design using the Quartus Platform Designer tool. A separate template is
provided for the read and write functions. The read and write master templates
are shown in Figs. 6.7 and 6.8 respectively from [71].

Figure 6.7: Avalon MM Master read template diagram showing user logic data and
control signals, taken from [71].

Figure 6.8: Avalon MM Master write template diagram showing user logic data
and control signals, taken from [71].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 93

The master templates make it easier to interface with the interconnect
fabric, by providing control and data signals to connect to user logic. The
signals are implemented using Avalon Conduit interfaces. This therefore allows
signals to be exported to be used in the main HDL design files, outside of the
Quartus Platform Design system. A summary of the exported signals for the
read and write templates are given in tables 6.1 and 6.2 respectively.

Signal name Description

control_fixed_location Flag used to toggle read-address auto-
increment.

control_read_base 32-bit read-address where the master
reads from.

control_read_length Number of 32-bit words to read.

control_go Instructs the read master to begin read-
ing.

control_done Asserted by read master when all 32-bit
words have been read.

user_buffer_data 32-bit word data read by read master.

user_data_available Asserted by read master when read data
is available.

user_read_buffer User logic to acknowledge data has been
read.

Table 6.1: Summary of control and data signals provided by the Avalon
Memory-Mapped master read template.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 94

Signal name Description

control_fixed_location Flag used to toggle write-address auto-
increment.

control_write_base 32-bit write-address where the master
writes to.

control_write_length Number of 32-bit words to write.

control_go Instructs the write master to begin writ-
ing.

control_done Asserted by write master when all 32-bit
words have been written.

user_buffer_data 32-bit word data written by write master.

user_buffer_full Asserted by write master when buffer is
full. No data should be written.

user_write_buffer Asserted by user logic to write data to
user buffer.

Table 6.2: Summary of control and data signals provided by the Avalon
Memory-Mapped master write template.

The provided control and data signals are used to transfer data between the
on-chip memory and the coding entities. Separate logic processes are created
for the read and write functionality. The process pipelines for the read and
write masters are shown in Figs. 6.9 and 6.10 respectively.

Set starting address to
RX packet location

true

Read data
available?

Acknowledge data
read

Increment read
address

Pass data to
coding entity

Instruct read master
to begin

false

Figure 6.9: Master read flow diagram used to read data from on-chip memory. The
data is passed to the coding entity to be processed.

Both the read and write process increment the address space manually
within user logic, and do not make use of the auto-increment provided by the
master templates. The control_fixed_location signal is deasserted to set auto-
increment off. The read process begins by setting the starting memory address

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 95

to the receive packet location through the control_read_base signal. The read
master is instructed to begin using the control_go signal. The process waits
until the read data is available by monitoring the user_data_available flag.
Once the data is available to read, it is passed to the coding entity from the
user_buffer_data buffer. The user logic then acknowledges that the data has
been read using the user_read_buffer flag, and increments the read address
to read the next data segment. The loop continues until all data has been read
successfully, then the read master is instructed to stop.

Set starting address to
TX packet location

Coder
complete?

Write buffer
full?

Write data
to memory

Instruct write master
to begin

true

false

truefalse

Increment write
address

Figure 6.10: Master write flow diagram used to write data to the on-chip memory.
The data is from the coding entity output.

The write process begins by setting the memory starting address to the
transmitted packet location through the control_write_base signal. The user
logic first checks to see if the coder is complete. If so, the user_buffer_full
signal is used to check if the write buffer is not full. If the buffer is not full,
the write master is instructed to begin by asserting the control_go signal. The
data is written to memory from the user_buffer_data and the write-address
is incremented. This continues until all data has been written to the on-chip
memory.

6.4.5 Hardware module: control registers

While packet data transfer is handled by the on-chip memory and memory
controller, another type of storage is needed to communicate coding control
signals. Input and output registers on the FPGA need be made accessible to
the host PC. The registers are used to set and get the coding start and finished
flags. The start flag is set by the host PC, after the received packets have been
written to the on-chip memory. The FPGA user logic waits until the start
flag has been set to begin the coding process. The finished flag is set once the
coding process is completed, to tell the host PC to read the results. Without
these flags, the coding entity has no idea of when to begin, and might read
the on-chip memory before packets have been received. Similarly, the host PC

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 96

does not know if the coding process is complete, and might read the on-chip
memory before the results have been added.

A PCIe device makes use of Base Address Registers (BARs) to set the PCIe
configuration address space between the host PC and the PCIe device. The
operating system reads the BARs to configure the PCIe device to be used with
the host PC. The BARs are also used to specify the amount of memory to be
mapped into the host PC RAM. A typical PCIe device contains up to six 32-
bit BARs. The BARs not used to specify memory mapping and configuration,
are used to implement control signals between the FPGA user logic and the
host PC.

The PCIe IP core is used to set and configure the BARs on the FPGA side,
allowing the host PC access through the PCIe bus. To access the BARs from
the FPGA user logic, the Parallel Input/Output (PIO) IP core is used. The
PIO provides an Avalon-MM slave and Avalon Conduit signal. The slave signal
is connected to the Avalon-MM master signals to access the BARs, and the
Conduit signal is exported to connect to general input/output registers from
the user logic. A separate PIO is created for the start and finished coding
flags, using the Quartus Platform Designer.

Once the FPGA hardware module part of the hardware interface is com-
pleted, we can begin designing and implementing the software application that
runs on the host PC. We start with the individual components to meet the
software application requirements, and then combine them to create a over-
all application. The first component to implement is the userspace network
interface.

6.4.6 Software application: userspace network interface

A method is required to communicate with OvS from the userspace. The uni-
versal TUN/TAP device driver, introduced in Chapter 2 allows for a userspace
application to interface with the Linux networking stack. The OvS bridge can
send packets to the TUN/TAP devices. The packet data can be accessed, and
therefore manipulated to add network coding functionality.

Similarly to the VNF implementation in Chapter 4, a loopback function is
created to verify the ability to receive and transmit packets. First a function
is created to initialise the TAP interface. The initialization process is shown
in Fig. 6.11.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 97

In Linux, network devices are created using ioctl() system calls. An ifreq
structure is used to contain information regarding the interface to be created
[55]:

struct ifreq {
char ifr_name[IFNAMSIZ]; /* Interface name */
union {

struct sockaddr ifr_addr;
struct sockaddr ifr_dstaddr;
struct sockaddr ifr_broadaddr;
struct sockaddr ifr_netmask;
struct sockaddr ifr_hwaddr;
short ifr_flags;
int ifr_ifindex;
int ifr_metric;
int ifr_mtu;
struct ifmap ifr_map;
char ifr_slave[IFNAMSIZ];
char ifr_newname[IFNAMSIZ];
char *ifr_data;

};
};

Open /dev/net/tun
clone device

Declare ifreq
structure.

Set device flag
to TAP device

Set device nameIssue ioctl()
to create interface

false
true

Creation
success?

Set interface
link up.

Set interface
MAC address

Add port
to OvS bridge

Exit function.

Figure 6.11: Flow diagram of TAP interface creation function.

The /dev/net/tun device is opened and returns a device file descriptor.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 98

This device is known as a clone device, and is required when creating a TUN/-
TAP interface. Next, the device name and TAP flag is set through the ifreq
struct. The interface is created by performing a system call using the ifreq
struct and clone device as parameters. If the interface is created successfully,
the TAP device is configured to be used on the network. The system() C
function is called as follows:

system("ip link set tapCoder up; ip link set tapCoder address
02:01:02:03:04:08; ovs-vsctl add-port br0 tapCoder");

This sets the TAP device interface up, assigns a MAC address and then adds
the interface port to the OvS bridge. The network interface can now be used
to communicate with the OvS bridge.

Packet reception is done by calling the read() function on the TAP device
file descriptor:

int nread = read(tapfd,tapBuffer,RX_BUFFER+TAP_HDR_LEN);

The function returns the number of bytes read, and stores the packet received
in a separate buffer.

Packet transmission is done in a similar way using the write() function:

int nwrite = write(tapfd,tapBuffer,TX_BUFFER);

To verify the correct loopback functionality. One of the non-coding VMs
is used to send ping packets to the TAP interface. The software application
outputs the received packet and transmits it back. The VM runs the tcpdump
utility to check the packet received. The packets received by the software
application and non-coding VM are compared to the original packet to confirm
that the loopback function is working as intended. Fig. 6.12 shows the network
topology used to verify the loopback.

Virtual machine:
Transmit: ping

Receive: tcpdump

TAP interface: loopback
Monitor: printf packet

Open vSwitch bridge: br0

Figure 6.12: Network topology used to verify userspace TAP interface loopback
function.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 99

After the software application is capable of communicating with the OvS
bridge, the next step is to communicate with the FPGA device. A method
of interfacing the userspace with the PCIe bus is therefore required. The
developers of the OpenVINO starter kit, Terasic provide a PCIe driver and
C/C++ software library to connect to the FPGA device from the userspace.

6.4.7 Software application: PCIe, on-chip memory and
register control

The Terasic PCIe library API provides a variety of functions to handle the
PCIe connection, on-chip memory read and write, and BAR read and write.
A summary of the important functions are given in table 6.3.

Terasic PCIe Function Description
PCIE_Load() Load PCIe driver and return handle.

PCIE_Open() Open PCIe device with specified vendor
ID, device ID and card index.

PCIE_Close() Close handle associated with PCIe device.

PCIE_Read32() Read 32-bit data from FPGA BAR ad-
dress.

PCIE_Write32() Write 32-bit data to FPGA BAR address.

PCIE_DmaRead() Read DMA memory-mapped memory
from PCIe device.

PCIE_DmaWrite() Write data to DMA memory-mapped
memory of PCIe device.

Table 6.3: Summary of Terasic PCIe library functions used to interface
userspace software application with OpenVino starter kit.

The PCIe device is initialised using the PCIE_Load() function. The
PCIE_Open() and PCIE_Close() functions are used to open and close the
PCIe connection before and after the packet offload process respectively. Pack-
ets to be processed by the FPGA are transferred between the on-chip memory
using the Terasic PCIE_DmaRead() and PCIE_DmaWrite() functions. Reg-
ister control is implemented by modifying user logic BARs using the
PCIE_Read32() and PCIE_Write32() functions.

6.4.8 Software application: design overview

The userspace networking interface is combined with the Terasic PCIe library
to create an algorithm for the overall software application. Fig. 6.13 provides

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 100

an overview of the software application used to integrate OvS and the FPGA
coders. First the TAP interface is created to allow for packet transfer. The
PCIe driver is then loaded, and the connection is established. The application
enters a loop and waits until all h packets are received.

The received packet data payloads are extracted and written to the on-chip
memory using DMA. Next, the required coder entity is started by writing to a
user implemented control logic start register. The software application waits
until the coder is finished by reading the control logic finished register. Once
the coder is completed, the resultant data is read from the on-chip memory,
packetized and transmitted to the OvS bridge.

Create TAP
Interface.

Load PCIe driver. Open PCIe
connection.

Packets
<h?

Receive packet.
false

true

Write packet data
to on-chip memory.

Write to coder
start register

Coder
done?

Read coder
complete register

false

true

Read result data
from on-chip memory.

Transmit result
packets

Figure 6.13: Flow of software application used to interface OvS with FPGA coders.

6.5 Summary
In this chapter we discussed the integration between OvS and the software and
hardware network coding functions. The software layer integration makes use
of the QEMU/KVM hypervisor to offload packets to the VNF for processing.
OpenFlow flows are used to add the correct forwarding paths to the OvS
bridge. The method of adding flows to the OvS bridge are discussed using the
built in OvS command line utility.

The control plane is also discussed to meet the requirements of the switch
being SDN compatible. The Ryn SDN controller is used to perform multicast
snooping for the IGMP protocol. Details regrading the snooping algorithm are
given.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OPEN VSWITCH AND NETWORK CODING FUNCTION
INTEGRATION 101

The hardware layer integration is provided to offload packets to the FPGA
and designed in two parts. The first part is a software application that runs
on the host PC and is responsible for data transfer and communication be-
tween the OvS bridge and the FPGA. The software application implements
the necessary network interface, PCIe and memory control.

Along with the software application, a hardware module is created for both
the encoder and decoder that run on the FPGA device. The hardware mod-
ules encapsulate the coder entities and implement the PCIe module, shared
memory, memory control and register control on the FPGA device to interface
with the software application.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Performance evaluation

7.1 Introduction
In the previous chapter we explained the integration between the Open vSwitch
bridge and the network coding functions. In this chapter we use the integrated
system to perform experimental tests on the final software and hardware net-
work coding implementations, and evaluate the results. The evaluation of
runtime, throughput, latency and packet delay variation is performed to meet
objective three from section 1.4. The network coding configuration for both
implementations use a generation size of h = 7 packets, containing N = 64
bytes in the Galois field GF (28).

7.2 Runtime analysis: network coding only
An important specification for FPGA-based hardware design is the runtime.
The runtime of both the FPGA and VNF coding functions are investigated and
compared against each other. Runtime refers to the amount of time taken for
the coding process to complete, independent of the network operations. This
provides a metric based purely on the coding function performance. Runtime is
an important measurement because network processing applications are timing
critical and therefore smaller runtime values are desired to be able to process
a greater amount of data.

Runtime measurements are not standardized and therefore to prevent mis-
information, a simple diagram is constructed to convey what is meant by
runtime in this context. Fig. 7.1 denotes the timing intervals for loading data
in, coding, loading data out and overall operation.

102

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 103

Load data in coding operations load data out

tcodingstart tcodingstoptbegin tend

tloadout_begintloadin_endtloadin_begin tloadout_end

t

Figure 7.1: Coding runtime timing values.

The overall coding runtime is measured as,

tcoding = tcodingstop − tcodingstart (7.1)

The coding runtime measurement is used to evaluate the throughput per-
formance of the coding functionality. Throughput is the amount of data that
is processed by the coder, within a set amount of time. The overall coding
runtime is used to obtain the overall coding throughput measurement as,

Tcoding =
number of bytes in generation

coding runtime
=

hN

tcoding
(7.2)

Another useful metric is to determine the overhead of the loading opera-
tions. This overhead provides indication of the amount of time used loading
data to and from the network coders, within the overall coding process. The
overhead can be used to determine if loading is bottlenecking the coding pro-
cess, and therefore optimised. The loading overhead is calculated as,

Loading overhead =
overall time - coding only time

overall time

=
(tend − tbegin)− (tcodingstop − tcodingstart)

(tend − tbegin)

(7.3)

We begin by measuring the runtime performance of the VNF-based encoder
and decoder function. The same tests are then performed on the FPGA coding
implementation, and the results are compared.

7.2.1 VNF-based network coders

Aim: To determine the runtime of the VNF encoder and decoder coding oper-
ations. The runtime values are used to calculate the throughput and loading
overhead. The VNF-based metrics are used as a comparative benchmark for
the FPGA-based coding function runtime.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 104

Test setup: The DPDK-based VNF coding function implementation from
Chapter 4 is modified to record time values using the clock() C library func-
tion. The clock function returns the number of clock ticks since the start of
the program. The number of seconds is obtained by dividing the clock ticks
by the CLOCKS_PER_SEC C macro. The time values are recorded at the
intervals shown in Fig. 7.1. The results are stored as comma separated values
in a plain text file on the VNF VM.

The Scapy packet generator is used to send packets to the VNF coder,
based on the coding values from Appendix 8.2. The VNF VM is allocated 4
logical cores and 8GB of RAM by the host PC hypervisor. A single generation
of h packets is repetitively transmitted to the encoder and decoder VNF 20
000 times respectively. The final runtime values are obtained by using the
mean value of all of the 20 000 tests.

Method :

1. Setup and start OvS bridge.

2. Assign internal port to bridge to stream packets to coding functions.

3. Start network coding VNF.

4. Bind VNF VM host network interface to DPDK.

5. Set OpenFlow flow on OvS bridge:

sudo ovs-ofctl del-flows br0
sudo ovs-ofctl add-flow br0 in_port="br0",actions=output

:"vhp_codeVNF"

6. Start coding VNF with either encode or decode function.

7. Start Scapy packet generator script to send packets.

8. Run the Linux awk utility on the output benchmark file to get the mean
of the runtime values:

awk -F’,’ ’{sum+=$1; ++n} END { print "Mean: "sum"/"n"="
sum/n }’ < BENCHMARKS.txt

9. Use equations 7.1, 7.2 and 7.3 to determine the overall coding runtime,
overall throughput and loading overhead for both the encoder and de-
coder VNF.

Result : The runtime timing intervals are given in table 7.1. The timing interval
values are used to obtain the results for the overall coding runtime, overall

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 105

throughput and loading overhead in table 7.2. The start time tbegin = 0s in all
test cases.

Coder tcodingstart (µs) tcodingstop (µs) tend (µs)
encoderVNF 9.180 30.945 44.076
decoderVNF 6.064 46.797 59.628

Table 7.1: Timing values for the encoder and decoder VNF coding functions.

Coder tcoding (µs) Tcoding (Mbps) Loading overhead
(%)

encoderVNF 21.765 164.668 50.619
decoderVNF 40.733 87.988 31.688

Table 7.2: Runtime, throughput and loading overhead for the encoder and
decoder VNF coding functions.

7.2.2 FPGA-based network coders

Aim: Determine the runtime of the FPGA encoder and decoder coding oper-
ations. The runtime values are used to calculate the throughput and loading
overhead. The FPGA-based metrics are compared against the VNF-based
coding functions.

Test setup: The OpenVINO starter kit is installed in the host PC PCIe slot.
The FPGA hardware modules from the hardware layer integration in Chap-
ter 6 are compiled and programmed onto the Cyclone V FPGA. The clock
frequency of the modules are set to one of the default on board clocks, at
50MHz. The software application from Chapter 6 is run on the host PC. The
Scapy packet generator is used to send a single generation of packets to the
FPGA-based encoder and decoder. The generation is only sent once because
due to the nature of FPGA hardware, the FPGA logic produces the same
output timing intervals with subsequent iterations. The Quartus Signal Tap
Logic analyzer is used to capture the signals on the FPGA during testing and
the timing values from Fig. 7.1 are logged.

Method :

1. Start Quartus Prime software and open the coding hardware module
project from Chapter 6.

2. Open the Signal Tap logic analyzer program from the Quartus suite.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 106

3. Add coding entity signal nodes to Signal Tap logic analyzer. Set trigger
to occur on the coding start register signal and set clock to the de-
fault 50MHz clock provided by the PCIe fundamental reference design,
CLOCK_50_B3B.

4. Compile design to generate a SRAM object file (.sof) used to configure
the FPGA device.

5. Program the FPGA using .sof file and the Quartus Programmer through
JTAG.

6. Perform a soft reset of the host PC, to allow for the Linux OS to reini-
tialise the PCIe device. The FPGA must maintain a power source during
the reset and therefore a hardware reset cannot be performed.

7. Once the host PC is restarted, re-open Quartus Prime and the Quartus
Signal Tap logic analyzer.

8. Setup and configure the OvS bridge, and load Altera PCIe driver module.

9. Start the hardware integration software application from Chapter 6. This
initialises the TAP device and the application waits for packets to be
received.

10. Add OpenFlow flows to the OvS bridge. This is done after the TAP
interface is initialised, otherwise OvS wont recognise the TAP port name.

11. Run the instance manager from the Signal Tap logic analyzer to begin
the signal capture. The signal capture waits for the trigger to be set
before beginning.

12. Run the Scapy packet generator script to send packets to the software
application. The software application transfers the packet data to the
FPGA and the trigger is set.

13. Open Signal Tap logic analyzer file to view timing results.

14. Calculate the overall coding runtime, overall throughput and loading
overhead for both the FPGA-based encoder and decoder.

Result : The Signal Tap Logic analyzer result diagrams are given in Appendix
8.2. The runtime timing intervals for the FPGA-based network coders are
shown in table 7.3. The timing interval values are used to obtain the results
for the overall coding runtime, overall throughput and loading overhead are
given in table 7.4. The start time tbegin = 0s in all test cases.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 107

Coder tcodingstart (µs) tcodingstop (µs) tend (µs)
encoderFPGA 0.000 16.060 18.660
decoderFPGA 2.240 9.460 11.680

Table 7.3: Timing values for the encoder and decoder FPGA coding functions.

Coder tcoding (µs) Tcoding (Mbps) Loading overhead
(%)

encoderFPGA 16.060 223.163 13.934
decoderFPGA 7.220 496.399 38.185

Table 7.4: Runtime, throughput and loading overhead for the encoder and
decoder FPGA coding functions.

7.2.3 VNF and FPGA coder only: results comparison
and conclusion

The runtime tests for the VNF-based coders show that the encoder and de-
coder take 21.765 and 40.733 microseconds to completed the coding process
respectively. The overall coding throughput for the encoder is 164.668 Mbps,
and 86.988 Mbps for the decoder. The decoding process therefore takes longer
to execute than the encoder. This is expected from the literature review in
Chapter 2, where it is mentioned that the decoding process is more computa-
tionally complex than the encoding process.

The loading overhead for the VNF-based encoder is 50.619%, and 31.688%
for the decoder. This shows that the loading overhead takes up a large amount
of the runtime of both coders, but especially the encoder. Reducing the loading
overhead would enable the coding runtime to decrease, therefore increasing the
throughput. Future work can aim to reduce the loading overhead as a result.
Possible ways to reduce the loading overhead within the VNF implementation
would be to perform coding operations directly from the receive queue buffers,
and not copy the packets into separate encoding and decoding rings. This
would reduce the operations of placing packets into the coding rings, and
having to retrieve them at a later stage for coding. Not using separate coding
rings would however, require a new way of keeping track of all the packets in
each generation.

The runtime tests for the FPGA-based coders show that the encoder and
decoder take 16.06 and 7.22 microseconds to complete the coding process re-
spectively. The runtime tests are used to calculate the coding throughput
of 223.163 and 496.399 Mbps for the encoder and decoder respectively. The
FPGA coding throughputs are much higher than that of the VNF-based im-
plementation. Specifically, the FPGA implementation provides a speedup of
1.36 and 5.71 over the VNF encoder and decoder respectively. Comparing

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 108

the FPGA-based coder throughput to past work done in [14], shows that the
FPGA-based decoder achieves a speedup of 7.64 over the maximum decoder
throughput by Kim, et al. of 64.98 Mbps. The work done by [14] does not
implement an FPGA-based encoder to be used for comparison.

One interesting result to note with the FPGA implementation is that the
encoder takes longer to perform the coding operation than the decoder. This is
unexpected because in software implementations such as those with the VNF
coders, the decoder almost always takes longer than the encoder. This is due
to the increased complexity of the RLNC decoding process. The difference in
runtime between the FPGA-based encoder and decoder is due to the different
design approaches used.

The FPGA encoder design performs all the required matrix multiplication
operations while the incoming data is segmented into the encoder module
from the host PC. The encoder does not wait for the entire incoming packet
generation to arrive and uses an on-the-fly coding approach. The original
design goal of using this approach is that the encoder does not have to wait
for the loading process to complete to begin the coding process. This design
only requires 4h multipliers compared to the possible Nh2 multipliers of using
a full-vector encoding approach, therefore also reducing FPGA resource usage.
The problem with this approach, as seen from the results, is that the maximum
amount of parallel multiplication operations are not performed.

The FPGA decoder makes use of full-vector coding and only begins the
decoding process once all packet data has been loaded in. The decoder is able
to maximize the number of parallel multiplication operations and therefore
achieves a lower runtime than the encoder. The decoder also however uses
more FPGA resources. A trade-off is therefore observed between using an
on-the-fly verses a full-vector approach. The full-vector approach increases
the potential to implement more parallel multiplication operations, but at the
expense of increased loading time and resource utilization. Future work could
therefore be to implement a full-vector encoder and a on-the-fly decoder to
further study the trade-off between the two approaches.

The loading overhead of the FPGA-based implementation is 13.934% for
the encoder, and 38.185% for the decoder. The FPGA-based encoder loading
overhead is relatively low compared to the FPGA decoder, and the VNF im-
plementations because the FPGA encoder starts coding as the data is input
to the FPGA and therefore the encoder t_codingstart is the same as t_begin,
at 0s.

In conclusion, the FPGA-based encoder and decoder provide a substantial
increase in coding throughput compared to the VNF implementations, as well
as past FPGA-based network coding results. This result showcases that FP-
GAs are able to increase the performance of the RLNC algorithm and can be
used to successfully accelerate network coding.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 109

7.3 Network throughput, latency and packet
delay variation

Throughput, latency and packet delay variation (PDV) are important network
performance measurements to determine the quality of a network transfer.
Network performance measurement definitions vary between different network
configurations and testing scenarios. It is therefore important to begin by
explicitly describing what exactly is meant by each term.

An end to end network topology is used for this test and includes a source,
intermediate node and a receiver. Packets are transmitted from the source and
either forwarded, encoded or decoded by the intermediate node. The resultant
packets from the intermediate node are received by the receiver.

The transmitted packets,

ptx,0, ptx,1, ..., ptx,h

are each transmitted by the source at the time intervals

ttx,0, ttx,1, ..., ttx,h

corresponding to the first bit of each transmitted packet. Similarly at the
receiving end, the last bit of the received packets,

prx,0, prx,1, ..., prx,h

are received at the time intervals

trx,0, trx,1, ..., trx,h

The timing intervals are used to obtain the overall network throughput,
latency and PDV. The network throughput, in this context refers to the actual
amount of data that is transferred through the network within a period of time.
The network throughput is similar to the coding throughput, but includes
consideration for the network integration, transfer and layers.

The network throughput is calculated over the timing interval between the
last received packet and the first transmitted packet as,

Tnetwork =
hN

trx,h − ttx,0
(7.4)

Latency is the amount of time taken for a packet to transfer from the
source to the receiver. The time taken is denoted as tlatency and calculated by
subtracting the transmitted time ttx from the received time trx to obtain,

tlatency = trx − ttx (7.5)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 110

PDV, or “jitter” is the variation in latency and is measured in seconds. A
network with consistent latency has no packet delay variation. Packet delay
variation is an important network performance metric for applications that
require consistently timed packet delivery, such as multimedia, VoIP and video
streaming. Packet delay variation is calculated from all the latencies within a
stream as,

PDV =

∑
tlatency(i+ 1)− tlatency(i)

h− 1
, 0 ≤ i < (h− 1) (7.6)

The throughput, latency and PDV are calculated in four different testing
scenarios: VM using a VNF coder, physical host using a VNF coder, VM using
an FPGA coder and physical host using an FPGA coder.

7.3.1 VNF-based network coders: end-to-end

Aim: To determine the throughput, latency and PDV of the VNF-based net-
work coders in a real packet-based network.

Test setup: The DPDK-based coding VNF is connected to a non-coding VM
and a physical host through the OvS bridge shown in Fig. 7.2. Packets are
transmitted from the host to the VNF coding VM and back again to the host.
The Scapy packet generator is run on the host and used to transmit packets
to the VNF. The network performance metrics are calculated for the genera-
tion of h packets and repeated by streaming to the coding VNF 20 000 times.
The tcpdump utility is run on the same host and is used to capture and record
both the transmitted and received packet timestamps in pcap files. Two Scapy-
based scripts are written to analyze the pcap files and calculate the network
performance metrics. The packet generator and packet analyzer scripts are
given in Appendix 8.2.

VM or physical host:
Transmit: Scapy
Receive: tcpdump

VNF Coder: nocode, encode
or decode

Open vSwitch bridge: br0

Figure 7.2: VNF-based network coding end-to-end test topology.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 111

Method :

1. Setup and start OvS bridge.

2. Start non-coding VM or physical host used to transmit and receive test
packets.

3. Start VNF VM to perform coding functions.

4. Set OpenFlow flows on OvS bridge:
sudo ovs-ofctl del-flows br0
sudo ovs-ofctl add-flow br0 in_port="hostport",actions=

output:"VNFport"
sudo ovs-ofctl add-flow br0 in_port="VNFport",actions=

output:"hostport"

5. Bind VNF internal network interface to DPDK.

6. Start VNF coding function with either nocode, encode or decode opera-
tions.

7. Start tcpdump on non-coding VM or physical host to log transmitted
and received packet timestamps in a pcap file.

sudo tcpdump -tttt -i ens4 -w testresult.pcap

8. Start Scapy packet generator script to send packets.

9. Obtain pcap file from non-coding VM or physical host and use Scapy
packet analyzer script to calculate throughput, latency and PDV.

Result :

Coder Tnetwork (Mbps) tlatency (µs) PDV (µs)
nocoderVNF 2.947 45.374 1.748
encoderVNF 2.858 658.813 318.587
decoderVNF 2.809 711.357 337.967

Table 7.5: Throughput, latency and jitter results for VNF-based coding func-
tion in PHY to PHY test.

Coder Tnetwork (Mbps) tlatency (µs) PDV (µs)
nocoderVNF 2.701 18.306 1.954
encoderVNF 2.844 647.191 338.373
decoderVNF 2.743 670.431 340.996

Table 7.6: Throughput, latency and jitter results for VNF-based coding func-
tion in VM to VM test.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 112

7.3.2 FPGA-based network coders: end-to-end

To take note: The FPGA integration implementation from Chapter 6 is
only implemented to provide a working proof of concept. The FPGA modules
are only capable of producing the correct results from a single generation of
packets, as done in the runtime tests. This is because the necessary logic to
reset the encoder and decoder module registers is not implemented. However,
the on-chip memory on the FPGA device can still be written to and read
from consecutively. The coding operations still complete on the FPGA, but
subsequent results are incorrect.

The assumption is made that implementing the necessary reset logic will
not alter the end-to-end results. This is because the coding process on the
FPGA completes faster than two consecutive C program function calls. Specif-
ically in Fig. 6.13, when the function is called to write data to the on-chip
memory using DMA, the FPGA encoder and decoder operations complete be-
fore the function to read the coder complete register, is called. As a result,
the end-to-end stream tests are still conducted with the FPGA integration
hardware modules.

Aim: To determine the throughput, latency and PDV of the FPGA-based
network coders in a real packet-based network. To determine the overhead of
the packet data memory transfer and networking operations. The test is used
to evaluate the performance of the hardware layer integration used to connect
the FPGA device to the OvS bridge.

Test setup: The OpenVINO starter kit is installed in the host PC PCIe slot.
The FPGA hardware modules from the hardware layer integration in Chapter 6
are compiled and programmed onto the Cyclone V FPGA. The clock frequency
of the modules are set to one of the default on board clocks, at 50MHz. The
software application from Chapter 6 is run on the host PC.

The Scapy packet generator is run on a non-coding VM or physical host, to
send a generation of packets to the FPGA-based encoder and decoder, repeti-
tively 20 000 times. The tcpdump utility is run on the same host and is used
to capture and record both the transmitted and received packet timestamps
in pcap files. The network performance metrics are calculated from the pcap
timestamps.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 113

VM or physical host:
Transmit: Scapy
Receive: tcpdump

FPGA hardware integration:
nocode, encode or decode

Open vSwitch bridge: br0

Figure 7.3: FPGA-based network coding end-to-end test topology.

Method :

1. Start Quartus Prime software and open the coding hardware module
project from Chapter 6.

2. Compile design to generate a .sof used to configure the FPGA device.

3. Program the FPGA using .sof file and the Quartus Programmer through
JTAG.

4. Perform a soft reset of the host PC, to allow for the Linux OS to reini-
tialise the PCIe device. The FPGA must maintain a power source during
the reset and therefore a hardware reset cannot be performed.

5. Start non-coding VM or physical host used to transmit and receive test
packets.

6. Setup and configure the OvS bridge, and load Altera PCIe driver module.

7. Start the hardware integration software application from Chapter 6. This
initialises the TAP device and the application waits for packets to be
received.

8. Add OpenFlow flows to the OvS bridge:

sudo ovs-ofctl del-flows br0
sudo ovs-ofctl add-flow br0 in_port="hostport",actions=

output:"TAPport"
sudo ovs-ofctl add-flow br0 in_port="TAPport",actions=

output:"hostport"

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 114

9. Start tcpdump on non-coding VM or physical host to log transmitted
and received packet timestamps in a pcap file.

10. Run the Scapy packet generator script on the non-coding VM or phys-
ical host to stream packets to the software application. The software
application transfers the packet data to the FPGA.

11. Obtain pcap file from non-coding VM or physical host and use Scapy
packet analyzer script to calculate throughput, latency and PDV.

Result :

Coder Tnetwork (Mbps) tlatency (µs) PDV (µs)
nocoderFPGA 2.827 127.264 10.045
encoderFPGA 2.106 976.430 243.267
decoderFPGA 2.110 975.444 242.899

Table 7.7: Throughput, latency and jitter results for FPGA-based coding func-
tion in PHY to PHY test.

Coder Tnetwork (Mbps) tlatency (µs) PDV (µs)
nocoderFPGA 2.605 73.519 9.235
encoderFPGA 2.000 970.107 268.378
decoderFPGA 2.014 966.418 271.625

Table 7.8: Throughput, latency and jitter results for FPGA-based coding func-
tion in VM to VM test.

7.3.3 VNF and FPGA coder end-to-end test: results
comparison and conclusion

Loopback (nocoder) result discussion:

The end-to-end test of the VNF-based coding functions is done with both
a VM and a physical host. The first test performed evaluates the DPDK
coding pipeline of the VNF, and the transmitted packets are looped back to
the host without any coding operations (nocoder). This serves as a baseline
for the throughput, latency and PDV to compare to the encoder and decoder
functions. The nocoder throughput results for using the physical and VM hosts
are 2.947 and 2.701 Mbps, with latencies of 45.374 and 18.306 microseconds
respectively. The PDV of the VM and physical host are similar at 1.954 and
1.748 microseconds respectively. A low latency and PDV is expected of both
hosts as no coding is being performed, and therefore the packets are not being
held up for processing.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 115

The nocoder network throughput results for the FPGA-based coding func-
tions are given as 2.827 and 2.605 Mbps for the physical and VM hosts respec-
tively. The latency of the physical host nocoder is 127.264 microseconds, and
73.519 microseconds for the VM host. The PDV values are low at 10.045 and
9.235 microseconds for the physical and VM host respectively.

The nocoder tests between the VNF and FPGA coders show that network
loopback latency and PDV performance of the FPGA integration is worse
than that of the VNF interfaces. This is most likely due to the VNF coders
using DPDK, while the FPGA coder integration uses the TUN/TAP interface.
DPDK provides a performance increase by bypassing the traditional Linux net-
working stack. Future work should therefore implement the FPGA network
interface using DPDK instead of TUN/TAP.

Encoder and decoder results discussion:

The network throughput performance of both the VNF and FPGA-based
coders, for both the VM and physical host test are shown to be substantially
worse than those obtained from the coding only tests. All of the network
throughput values are between 2 and 3 Mbps. This indicates that there is
an overall limiting factor to either the tests or coding implementations. We
therefore conduct further investigation before discussing additional results and
conclusions.

The Pcap result files are analysed to calculate separate throughput rates.
The specific rates calculated are input rate, output rate and the rate between
receiving and transmitting packets (overall coding pipeline, without network-
ing operations), as shown in equations 7.7, 7.8 and 7.9 respectively:

Tinput =
hN

ttx,h − ttx,0
(7.7)

Touput =
hN

trx,h − trx,0
(7.8)

Tbetween =
hN

trx,0 − ttx,h
(7.9)

The results obtained from the input, output and in-between throughputs
are given in tables 7.9 and 7.10 for the VNF and FPGA tests respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 116

Coder Tnetwork

(Mbps)
Tinput
(Mbps)

Toutput
(Mbps)

Tbetween

(Mbps)
nocoderVNF_PHY 2.947 3.061 3.061 Nah
nocoderVNF_VM 2.701 2.740 2.739 Nah
encoderVNF_PHY 2.858 3.098 85.903 64.584
encoderVNF_VM 2.844 2.978 186.167 95.550
decoderVNF_PHY 2.743 3.022 552.587 30.469
decoderVNF_VM 2.809 2.987 1152.039 51.730

Table 7.9: Overall network, input, output and in-between throughputs for
VNF coders end-to-end tests.

Coder Tnetwork

(Mbps)
Tinput
(Mbps)

Toutput
(Mbps)

Tbetween

(Mbps)
nocoderFPGA_PHY 2.827 3.141 3.142 Nah
nocoderFPGA_VM 2.605 2.752 2.753 Nah
encoderFPGA_PHY 2.106 3.098 11.698 15.039
encoderFPGA_VM 2.000 2.816 10.745 19.252
decoderFPGA_PHY 2.110 3.104 11.736 15.007
decoderFPGA_VM 2.014 2.827 11.261 18.545

Table 7.10: Overall network, input, output and in-between throughputs for
FPGA coders end-to-end tests.

The results from the further investigation show that the input rate is the
overall limiting factor for both the VNF and FPGA coding end-to-end tests.
This is most likely due to the use of the Scapy packet generator. The Scapy
packet generator was used because the decoder tests required using the 0x2020
Ethernet type and therefore full manipulation of the Ethernet layer was re-
quired, which Scapy provides. In future work, a possible alternative packet
generator would be MoonGen. MoonGen is a high speed packet generator
based on DPDK, that provides the same level of flexibility as with Scapy [72].

In both VNF and FPGA networking implementations, the VM host is able
to obtain a faster throughput and lower latency than the physical host. This
is likely because the physical host makes use of a 5400 RPM hard disc drive
(HDD) compared to the VM host, which is run on a solid state drive (SSD), of
the server. SSDs are known to provide faster read/write speeds compared to
HDDs. Another possible reason for the performance difference is the processing
speed of the logical cores of the VM hosts compared to the physical hosts. The
VM is also on the same server as the OvS bridge, and therefore packets do not
have to traverse through external networking equipment (server NIC, Ethernet
cable and physical host NIC) as with the physical host.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 117

The between throughput results are taken over the time period after all
the packets have arrived, and before the resultant packets are transmitted
back. This result is essentially the throughput over which the coding functions
pipeline the packet data to and from the coders, including the time taken for
the coding operations to complete. The between throughput provides evalua-
tion regarding the integration between the coding functions and OvS, without
consideration for the networking layers.

To determine the impact of the OvS integrations, we calculate the per-
centage in which the coding only throughput is reduced when integrating the
coders with OvS, without consideration for the networking layers in table 7.11
and 7.12.

Coder Tcoding (Mbps) Tbetween (Mbps) Reduction (%)
encoderVNF_PHY 164.668 64.584 60.78
encoderVNF_VM 164.668 95.550 41.97
decoderVNF_PHY 87.988 30.469 65.37
decoderVNF_VM 87.988 51.730 41.21

Table 7.11: Throughput performance reduction for VNF coders.

Coder Tcoding (Mbps) Tbetween (Mbps) Reduction (%)
encoderFPGA_PHY 223.163 15.039 93.26
encoderFPGA_VM 223.163 19.252 91.37
decoderFPGA_PHY 496.399 15.007 96.98
decoderFPGA_VM 496.399 18.545 96.26

Table 7.12: Throughput performance reduction for FPGA coders.

The results from tables 7.11 and 7.12 show that the FPGA coding perfor-
mance suffers the most from the OvS integration. The maximum reduction
is with the FPGA decoder in the physical host test, at 96.98%. The smallest
reduction is seen with the VNF decoder in the VM host test, at 41.21%.

The lower between-throughput of the FPGA coders could likely be due to
the use of the Terasic provided PCIe and DMA library functions. Future work
could implement custom PCIe drivers and software integration functions to
try and reduce the overhead of the FPGA coder and OvS integration.

The output throughput does not limit the performance of the VNF-based
coding functions (Toutput > Tbetween), but does limit the possible FPGA coding
functions (Toutput < Tbetween). This is most again likely due to the VNF coders
using DPDK, while the FPGA coder integration uses the TUN/TAP interface.

The FPGA encoder and decoder results for the physical test are the same,
and similarly with the VM tests. This is because the FPGA coder and OvS

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 118

integration pipeline for the encoder and decoder are almost identical in oper-
ation. This result is therefore expected.

In conclusion, the end-to-end results show that both the VNF and FPGA
coding functions are bottlenecked by their respective integrations with the
networking layers. This indicates that future work should focus on improving
techniques to reduce the amount of time taken to offload packets to the coding
functions. The results also show that the use of VMs are a viable alternative
to using physical machines and are therefore a more cost effective approach,
in which equipment costs to research network coding can be reduced.

7.4 FPGA resource utilization
Aim: The resource utilization provides an indication of how much of the device
is being used by each entity and how much space remains on the device for
additional coders. The number of dedicated logic registers gives indication to
how the FPGA is utilising dedicated resources to construct the coders. These
metrics are useful as it allows for optimization in the HDL implementation as
well as compiler settings to construct a more efficient design.

Test setup: The results are taken from the compilation report provided by
Quartus. The values for the net_encoder_pci and net_decoder_pci entities
are obtained from the compiler flow summary, and after a full compilation is
completed. The other entities are calculated by summing the resource usage
for each entity instance from the “Fitter Resource Utilization Usage by Entity”
section of the compilation report. The results show the total resources used
by each entity.

Result : A summary of the resource utilization for the FPGA network encoder
and decoder are shown in tables 7.13 and 7.14 respectively, showcasing the
number of resources used out of the possible total available by the device. The
first column is the name of the HDL entity itself. The second column is the
total number of Adaptive Logic Modules (ALMs) used by all the instances of
that entity in the complete coder. ALMs are the basic building blocks used
to construct FPGA hardware logic and are specific to the device family. In
this case it is the Cyclone V device. According to Intel, each ALM supports
up eight inputs and outputs, two register logic cells and two combinational
logic cells [73]. The third column is the number of Dedicated Logic Registers
(DLRs) used and is a representation of the logic that is dedicated for use as
registers only. The DLRs are constructed using ALMs where a single ALM
can be used to construct two dedicated registers. Therefore DLRs are simply
ALMs that only use the register resources, where each register can store a
single bit. The fourth column is the amount of dedicated M10K type memory
blocks used in the implementation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 119

Entity ALMs
(113560)

DLRs
(227120) Memory (12492800)

fifo32x128 15 (<1%) 23 (<1%) 4096 (<1%)
prngen 15 (<1%) 61 (<1%) 0 (0%)
gfmul 160 (<1%) 273 (<1%) 0 (0%)
net_encoder 2905 (2.56%) 4504 (1.98%) 4096 (<1%)
net_encoder_
pci 10507 (9.25%) 21608 (9.51%) 2365200 (18.93%)

Table 7.13: Encoder resource utilization cumulative summary

Entity ALMs
(113560)

DLRs
(227120) Memory (12492800)

gj_mulsubRow 6873 (6.05%) 20724
(9.12%) 0 (0%)

gj_divRow 915 (< 1%) 2160 (<1%) 0 (0%)

gj_elimination 19703 (17.35%) 37576
(16.54%) 0 (0%)

net_decoder 20170 (17.76%) 38303
(16.87%) 0 (0%)

net_decoder_
pci 27590 (24.30%) 56422

(24.84%) 2860816 (22.90%)

Table 7.14: Decoder resource utilization cumulative summary

With regards to the encoder only (without PCIe logic) utilization, it shows
that the only dedicated memory blocks used are by the FIFO. This is expected
as the FIFO is used as a data buffer and is therefore would be regarded as a
storage module. According to Intel, the ALM metric is best used to determine
resource utilization [73]. The number of DLRs however, is also useful as it gives
indication of how many registers are used to store the symbols while they are
processed. The results of the multipliers to be added are stored as registers
within the net_encoder module and the result is shown by the number of DLRs
used. The resource use of the pseudo-random number generator prngen and
the Galois field multipliers gfmul are relatively minimal. This shows that the
majority of the resource usage is for storing the the multiplier and summation
results in registers.

The encoder entity only uses 2.56% of the available FPGA. Adding the
PCIe integration logic from Chapter 6 to the encoder entity increases the ALM
usage to 9.25% and the Memory usage to 18.93%. Extrapolating this result to
use all resources on the device, and disregarding any input and output bottle-
necks, the FPGA could potentially have 5 encoders running simultaneously.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 120

The decoder resource usage is summarized by each type of row operation
used in the Gauss-Jordan elimination entity gj_elimination. The resource us-
age of gj_elimination is shown with the overall decoder entity to showcase the
resource usage by the 32-bit segmentation process. The decoder is significantly
more resource intensive. This is expected because of the size and complexity of
the decoding operation compared to the encoder. A decoder stores all the row
elements used during Gauss Jordan elimination in registers and not in dedi-
cated memory blocks. This is shown in table 7.14 as the memory utilization
is 0% while the DLR usage is much higher at 16.87%. The ALM utilization
is 17.76% and shows that the decoder uses almost seven times more resources
than the encoder.

Adding the PCIe integration logic from Chapter 6, increases the decoder
ALM usage to 24.30% and the memory usage to 22.90% percent. Extrapolating
the result to use all resources, the FPGA could potentially have 4 decoders
running simultaneously.

7.5 Maximum operating frequency
Aim: An important consideration for FPGA design are the timing character-
istics. We investigate the maximum possible clock frequency (Fmax) of the
FPGA encoder and decoder implementations. The clock frequency limits the
processing speed of the coding modules. It is therefore important to obtain
Fmax to determine the maximum possible throughputs.

Test setup: The Fmax values are taken from the Quartus Timing Analyzer.
The values are presented as process, voltage and temperature variations for
the lower (0C) and upper (85C) temperature limits of a slower chip at a lower
voltage (1100mV).

Result : The Fmax values are given in table 7.15.

Entity Fmax (0C) Fmax (85C)
net_encoder_pci 84.03 MHz 81.65 MHz
net_decoder_pci 75.06 MHz 73.02 MHz

Table 7.15: Maximum operating frequencies of FPGA encoder and decoder
implementations, for the slow 1100mV 0C and 85C models.

The runtime tests for the FPGA encoder and decoder are performed at 50
Mhz. The frequencies of the encoder and decoder implementation can be in-
creased to run at those in table 7.15. Using the maximum possible frequencies,
and making use of all four PCIe lanes to implement four encoders or decoders

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. PERFORMANCE EVALUATION 121

on the FPGA at a time, the possible coding throughput of the encoder and
decoder is calculated as following:

Tcoding_max =
(Number of coders)(Fmax)(Tcoding)

(old clock frequency)
to obtain a maximum possible coding throughput for the encoder and de-

coder as 1.5 and 2.98 Gbps respectively.

7.6 Summary
This chapter provides results and evaluates the VNF and FPGA network cod-
ing implementations. A runtime analysis is performed to evaluate the perfor-
mance of the network coding functions, independent of networking operations.
What is meant by runtime analysis is discussed, as well as how to use runtime
to calculate the coding throughput and loading overhead.

The aim, test setup, method and runtime results are provided for both the
VNF and FPGA-based network coders. The VNF-based encoder and decoder
achieve a coding throughput of 164.668 and 87.988 Mbps respectively. The
FPGA-based encoder and decoder achieve a coding throughput of 223.163
and 496.399 Mbps respectively. The results of the VNF and FPGA coder are
compared and evaluated further.

Further end-to-end tests are performed regarding the network throughput,
latency and packet delay variation. What is meant by each term, as well as
how to calculate the network performance metrics are provided. The test are
performed using both VM and physical hosts, for both the VNF and FPGA
coding implementations. The results show that both the VNF and FPGA-
based network coders are bottlenecked by their respective integration pipelines.

The FPGA-based coder resource utilization and maximum frequency are
evaluated. The results show that five and four respective encoder or decoder
modules can fit on the OpenVINO starter kit at a time. The maximum fre-
quencies of the encoder and decoder module are used along with the number of
possible coders to determine the maximum possible coding throughput. The
result shows that the encoder and decoder can achieve a maximum coding
throughput of 1.5 and 2.98 Gbps, given the resource limitations of this device.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Conclusion

8.1 Overview
In conclusion, the thesis achieves the objectives of designing and implementing
a network coding capable switch in both a software and hardware-based envi-
ronment. The software-based network coding functions are created as VNFs
that are deployed in an SDN environment as required, to meet objective 1.
The hardware-based networking coding functionality is implemented using an
FPGA device, to meet objective 2. Both software and hardware implemen-
tations are integrated together using the OpenFlow-based SDN bridge, OvS.
The overall platform is designed to be run on a general purpose PC and al-
lows for network coding to be evaluated in both physical and virtual network
environments, with physical or VM hosts. The platform allows for objective 4
to be met.

The network coding implementations are evaluated together within a real
packet-based network, to meet objective 3. The VNF-based network coding
functions are able to achieve a coding throughput of 164.668 and 87.988 Mbps
for the encoder and decoder respectively. The FPGA-based network encoder
and decoder achieve a throughput of 223.163 and 496.399 Mbps respectively,
at a clock speed of 50 MHz, using a single PCIe 1.0 lane. The FPGA resource
utilization and maximum clock frequency results show that the encoder and
decoder could be implemented to achieve a throughput of 1.5 and 2.98 Gbps
respectively.

The VNF and FPGA-based network coding functions are shown to be able
to increase network coding performance by offloading packets to the coding
functions. The coding functions are limited however by the integration with
the OvS bridge. Future work should therefore focus on methods of alleviating
this bottleneck to improve techniques for offloading packet data to the network
coding functions with as little delay as possible.

Links to the software and HDL components of this thesis can be obtained
on GitHub for OvS-DPDK-Coding-Switch [57] and RLNC_VNF [58].

122

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 123

8.1.1 Contributions

The following contributions are made throughout this thesis:

• An FPGA network coding encoder and decoder that can be used within
a practical SDN network. This thesis presents FPGA logic for a RLNC
encoder which has not yet been shown in literature. The thesis also
showcases the design and implementation of integrating FPGA network
coding encoder and decoder functions with the OvS OpenFlow SDN
switch, and therefore a real packet-based network.

• A VNF-based network encoder and decoder that are implemented using
the DPDK software library.

• An all in one research platform to evaluate network coding in a real
packet-based network, using both physical and virtual networking spaces.
The networking functions are integrated with OvS within an SDN envi-
ronment.

• A network coding selection scheme to determine when to perform net-
work coding in a real packet-based network.

• An SDN controller program design to implement multicast snooping
within an SDN environment.

8.1.2 Limitations and improvements

The network coding functions are created with functionality as the primary
objective. The system is created to determine the feasibility of implementing
software and hardware-based network coding within a network switch. The
coding implementations are therefore not perfect and have several limitations.
The most important limitations are discussed, as well as some possible methods
of improving or rectifying them. The limitations are as follows:

• The FPGA integration can only offload a single generation of packets
to the FPGA-based encoder and decoder modules successfully. Further
streams of packets received by the coding functions do not yield the
correct coding results. This is because the necessary reset logic is not
implemented to reset all the coding sub-modules and therefore previous
generation packet data remains. This can be solved be implementing
consistent reset logic on all the subcomponents, that can be triggered
from the top level coding entity.

• The decoder integration coefficients are hard coded onto the FPGA de-
vice. This was done to save time during the FPGA implementation.
The functionality of loading packet data to and from the FPGA device

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 124

are implemented and demonstrated to provide a proof of concept, and
the coefficient data is still written to the shared on-chip memory. The
decoder produces the correct coding output, but is therefore limited to
only being able to decode packets that use the same coding coefficients
as on the device. To fix this, the same logic that is used to load packet
data to the coding entity from the on-chip memory needs to be imple-
mented to do the same for the coefficient data. This can be done using
the Avalon-MM Master Read template discussed in Chapter 6.

• The FPGA coder modules are limited by the use of the TUN/TAP device
used by the FPGA coding integration. The TUN/TAP device was used
to save time during the FPGA interface implementation, because TUN/-
TAP devices are the generic method of interfacing userspace applications
with networking layer functionality. The end-to-end results showed that
the VNFs were able to achieve better loopback performance, even while
in a VM, compared to the TUN/TAP integration. This was done using
the DPDK packet processing library. To reduce the limitations of the
Linux networking stack on the FPGA integration, the DPDK TUN/TAP
PMD could be used instead. This would allow for the same userspace
functionality to exist as with the current FPGA integration implemen-
tation, but with a performance benefits of DPDK.

• The DPDK VNF implementation is only developed as a single core ap-
plication. The implementation only makes use of a single port on the
core and therefore only a single queue. The potential coding performance
could be increased by using more ports to receive incoming packet data
from multiple streams simultaneously. The OvS bridge could be used
to divide the incoming packet streams evenly amongst the ports, and
grouped by generation to reduce any queueing delays on the coder itself.
The use of more cores on the VNF could be used to perform more simul-
taneous coding operations on stored packets and be used to reduce the
overall coding delay.

• The FPGA coding implementations only make use of a single PCIe lane
provided by the OpenVINO starter kit, out of the potential four. The
coding implementations could make use of all four PCIe lanes to provide
four streams of incoming packet data. This could be used to load packets
for four coding modules simultaneously, as discussed in Chapter 7, or to
load packet segments for a single coding module at a faster rate.

8.2 Future work
This thesis demonstrates that FPGA-based network coding is feasible and pro-
vides a significant performance increase over software-based implementations.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 125

The results in Chapter 7 showcase however, that the performance is reduced
dramatically when integrated with a real packet-based network. This is due
to the delays introduced from the coder and OvS integration implementations.
Future work should therefore focus more on the integration aspect of software
and hardware-based network coding functions with real packet-based networks.
Alternative techniques for offloading packet data to network coding functions
need to be developed.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] Hansen, J., Lucani, D.E., Krigslund, J., Médard, M. and Fitzek, F.H.: Net-
work coded software defined networking: Enabling 5G transmission and storage
networks. IEEE Communications Magazine, vol. 53, no. 9, pp. 100–107, 2015.

[2] Ahlswede, R., Ning Cai, Li, S.-Y. and Yeung, R.: Network information flow.
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[3] Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J. and Leong,
B.: A random linear network coding approach to multicast. IEEE Transactions
on Information Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[4] Fragouli, C. and Soljanin, E.: Network Coding Fundamentals. Foundations and
Trends® in Networking, vol. 2, no. 1, pp. 1–133, 2007.

[5] Chou, P., Wu, Y. and Jain, K.: Practical Network Coding. In: Allerton confer-
ence on communication control and computing., pp. 40–49. IEEE, 2003.

[6] Keller, L.: NCUtils. 2015.
Available at: https://lokeller.github.io/ncutils/

[7] Visegradi, A.: Github: rnc-lib. 2014.
Available at: https://github.com/avisegradi/rnc-lib

[8] Steinwurf ApS: Steinwurf tecnical documentation: Kodo. 2018.
Available at: http://docs.steinwurf.com/kodo.html

[9] Kreutz, D., Ramos, F.M.V., Esteves Verissimo, P., Esteve Rothenberg, C.,
Azodolmolky, S. and Uhlig, S.: Software-Defined Networking: A Comprehensive
Survey. Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, jan 2015.

[10] Open Networking Foundation: OpenFlow Switch Specification. 2015.
Available at: https://www.opennetworking.org/

[11] DPDK Project: Data Plane Development Kit Documentation. 2019.
Available at: https://core.dpdk.org/doc/

[12] Robin, G.: Open vSwitch* with DPDK Overview. 2016.
Available at: https : / / software . intel . com / en-us / articles /
open-vswitch-with-dpdk-overview

126

Stellenbosch University https://scholar.sun.ac.za

https://lokeller.github.io/ncutils/
https://github.com/avisegradi/rnc-lib
http://docs.steinwurf.com/kodo.html
https://www.opennetworking.org/
https://core.dpdk.org/doc/
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview

BIBLIOGRAPHY 127

[13] Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J.,
Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K. and Casado, M.: The
design and implementation of open vSwitch. Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2015, pp.
117–130, 2015.

[14] Kim, S., Jeong, W.S., Ro, W.W. and Gaudiot, J.L.: Design and evaluation of
random linear network coding accelerators on FPGAs. ACM Transactions on
Embedded Computing Systems, vol. 13, no. 1, pp. 13:1–13:24, 2013.

[15] Gabriel, F., Nguyen, G.T., Schmoll, R.S., Cabrera, J.A., Muehleisen, M. and
Fitzek, F.H.: Practical deployment of network coding for real-time applications
in 5G networks. In: CCNC 2018 - 2018 15th IEEE Annual Consumer Com-
munications and Networking Conference, vol. 2018-Janua, pp. 1–2. 2018. ISBN
9781538647905.

[16] Dordal, P.: An Introduction to Computer Networks. 2018.

[17] Fenner, W.: Internet Group Management Protocol, Version 2. 1997.
Available at: https://tools.ietf.org/html/rfc2236

[18] Li, S.Y.R., Yeung, R.W. and Cai, N.: Linear network coding. IEEE Transac-
tions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[19] Koetter, R. and Médard, M.: An algebraic approach to network coding.
IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–795, 2003.

[20] Ho, T., Koetter, R., Medard, M., Karger, D. and Effros, M.: The benefits of
coding over routing in a randomized setting. In: IEEE International Symposium
on Information Theory. IEEE, 2003.

[21] Ho, T., Karger, D.R., Médard, M. and Koetter, R.: Network coding from a
network flow perspective. In: IEEE International Symposium on Information
Theory, p. 441. 2003.

[22] Kerl, J.: Computation in finite fields. 2004.

[23] Keller, L., Le, A., Cici, B., Seferoglu, H., Fragouli, C. and Markopoulou, A.:
MicroCast: Cooperative video streaming on smartphones. In: MobiSys’12 -
Proceedings of the 10th International Conference on Mobile Systems, Applica-
tions, and Services, pp. 57–69. 2012.

[24] Angelopoulos, G., Paidimarri, A., Chandrakasan, A.P. and Medard, M.: Ex-
perimental study of the interplay of channel and network coding in low power
sensor applications. In: IEEE International Conference on Communications,
pp. 5126–5130. 2013.

[25] Pedersen, M.V., Heide, J. and Fitzek, F.H.: Kodo: An open and research ori-
ented network coding library. In: IFIP International Federation for Information
Processing, pp. 145–152. 2011.

Stellenbosch University https://scholar.sun.ac.za

https://tools.ietf.org/html/rfc2236

BIBLIOGRAPHY 128

[26] Pahlevani, P., Lucani, D.E., Pedersen, M.V. and Fitzek, F.H.: PlayNCool:
Opportunistic network coding for local optimization of routing in wireless mesh
networks. In: 2013 IEEE Globecom Workshops, GC Wkshps 2013, pp. 812–817.
2013.

[27] Németh, F., Stipkovits, Á., Sonkoly, B. and Gulyás, A.: Towards smartFlow:
Case studies on enhanced programmable forwarding in openFlow switches.
Computer Communication Review, vol. 42, no. 4, pp. 85–86, aug 2012.

[28] Yang, J., Dai, B., Lv, L. and Xu, G.: Coding Openflow: Enable Network Coding
in SDN Networks. International journal of Computer Networks & Communica-
tions, vol. 7, no. 5, pp. 29–38, 2015.

[29] Zhu, D., Yang, X., Zhao, P. and Yu, W.: Towards effective intra-flow network
coding in software defined wireless mesh networks. In: Proceedings - Interna-
tional Conference on Computer Communications and Networks, ICCCN, vol.
2015-Octob. 2015.

[30] Krasnyansky, M. and Thiel, F.: Universal TUN/TAP device driver. 2002.
Available at: https://www.kernel.org/doc/Documentation/networking/
tuntap.txt

[31] Barbette, T., Soldani, C. and Mathy, L.: Fast userspace packet processing. In:
2015 ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS), pp. 5–16. 2015. ISBN VO -.

[32] Xia, W., Zhao, P., Wen, Y. and Xie, H.: A Survey on Data Center Networking
(DCN): Infrastructure and Operations. IEEE Communications Surveys and
Tutorials, vol. 19, no. 1, pp. 640–656, 2017. ISSN 1553877X.

[33] Mellanox Technologies: ConnectX®-6 EN Single/Dual-Port Adapter Support-
ing 200Gb/s Ethernet. 2019.
Available at: https : / / www . mellanox . com / page / products{_}dyn ?
product{_}family=266{&}mtag=connectx{_}6{_}en{_}card

[34] Herrin, G.: Linux IP Networking: A Guide to the Implementation and Modifi-
cation of the Linux Protocol Stack. 2000.
Available at: https://www.cs.unh.edu/cnrg/people/gherrin/linux-net.
html

[35] Kourtis, M., Xilouris, G., Riccobene, V., McGrath, M.J., Petralia, G.,
Koumaras, H., Gardikis, G. and Liberal, F.: Enhancing VNF performance by
exploiting SR-IOV and DPDK packet processing acceleration. In: 2015 IEEE
Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN), pp. 74–78. 2015. ISBN VO -.

[36] Intel Corporation: Open vSwitch* Enables SDN and NFV Transformation,
2015.
Available at: https : / / software . intel . com / en-us / articles /
open-vswitch-with-dpdk-overview

Stellenbosch University https://scholar.sun.ac.za

https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.mellanox.com/page/products{_}dyn?product{_}family=266{&}mtag=connectx{_}6{_}en{_}card
https://www.mellanox.com/page/products{_}dyn?product{_}family=266{&}mtag=connectx{_}6{_}en{_}card
https://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html
https://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview

BIBLIOGRAPHY 129

[37] OpenStack: Open vSwitch with DPDK datapath. 2019.
Available at: https://docs.openstack.org/newton/networking-guide/
config-ovs-dpdk.html

[38] Vazquez, N.: Openvswitch with DPDK support on CloudStack. 2018.
Available at: https : / / www . shapeblue . com /
openvswitch-with-dpdk-support-on-cloudstack/

[39] The Linux Foundation: Huge Pages.
Available at: https : / / www . kernel . org / doc / Documentation / vm /
hugetlbpage.txt

[40] Chu, X., Zhao, K. and Wang, M.: Massively parallel network coding on GPUs.
In: Conference Proceedings of the IEEE International Performance, Computing,
and Communications Conference, pp. 144–151. 2008. ISBN 9781424433674.

[41] Shojania, H., Li, B. and Wang, X.: Nuclei: GPU-Accelerated Many-Core Net-
work Coding. In: IEEE INFOCOM 2009, pp. 459–467. 2009. ISBN VO -.

[42] Gibb, G., Lockwood, J.W., Naous, J., Hartke, P. and McKeown, N.: NetFPGA
- An open platform for teaching how to build gigabit-rate network switches and
routers. IEEE Transactions on Education, vol. 51, no. 3, pp. 364–369, aug 2008.

[43] NetFPGA.
Available at: https://netfpga.org/site/{#}/

[44] Naous, J., Erickson, D., Covington, G.A., Appenzeller, G. and McKeown, N.:
Implementing an OpenFlow switch on the NetFPGA platform. Proceedings of
the 4th ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems, ANCS ’08, pp. 1–9, 2008.

[45] Viet, A.N., Van, L.P., Minh, H.A.N., Xuan, H.D., Ngoc, N.P. and Huu, T.N.:
Mitigating HTTP GET flooding attacks in SDN using NetFPGA-based Open-
Flow switch. In: ECTI-CON 2017 - 2017 14th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Infor-
mation Technology, pp. 660–663. jun 2017.

[46] Wellem, T., Lai, Y.K., Cheng, C.H., Liao, Y.C., Chen, L.T. and Huang, C.Y.:
Implementing a heavy hitter detection on the NetFPGA OpenFlow switch. In:
IEEE Workshop on Local and Metropolitan Area Networks, vol. 2017-June, pp.
1–2. 2017.

[47] Khan, A. and Dave, N.: Enabling hardware exploration in software-defined net-
working: A flexible, portable openflow switch. In: Proceedings - 21st Annual
International IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, FCCM 2013, pp. 145–148. 2013.

[48] Liu, T.: Implementing Open flow switch using FPGA based platform. Masters,
Norwegian University of Science and Technology, 2014.

Stellenbosch University https://scholar.sun.ac.za

https://docs.openstack.org/newton/networking-guide/config-ovs-dpdk.html
https://docs.openstack.org/newton/networking-guide/config-ovs-dpdk.html
https://www.shapeblue.com/openvswitch-with-dpdk-support-on-cloudstack/
https://www.shapeblue.com/openvswitch-with-dpdk-support-on-cloudstack/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://netfpga.org/site/{#}/

BIBLIOGRAPHY 130

[49] Kalyaev, A. and Melnik, E.: FPGA-based approach for organization of SDN
switch. In: 9th International Conference on Application of Information and
Communication Technologies, AICT 2015 - Proceedings, pp. 363–366. 2015.

[50] Xilinx: Digilent NetFPGA-1G-CML Kintex-7 FPGA Development Board.
Available at: https : / / www . xilinx . com / products / boards-and-kits /
1-4le3gu.html

[51] Cao, J., Zheng, X., Sun, L. and Jin, J.: The Development Status and Trend
of NetFPGA. In: Proceedings - 2015 International Conference on Network and
Information Systems for Computers, ICNISC 2015, pp. 101–105. jan 2015.

[52] Terasic Inc.: OpenVINO Starter Kit User Manual, 2019.

[53] Intel: PCI Express High Performance Reference Design. 2018.
Available at: https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/an/an456.pdf

[54] The Kernel Development Community: The Linux Kernel documentation. 2016.
Available at: https://www.kernel.org/doc/html/v4.10/driver-api/80211/
mac80211.html

[55] The Linux Foundation: Open vSwitch Documentation. 2019.
Available at: http://docs.openvswitch.org/en/latest/

[56] Weil, S.: QEMU User Documentation. 2019.
Available at: https://qemu.weilnetz.de/doc/qemu-doc.html

[57] de Villiers, D.: GitHub: OvS-DPDK-Coding-Switch. 2019.
Available at: https://github.com/danieldevill/OvS-DPDK-Coding-Switch

[58] de Villiers, D.: GitHub: RLNC_VNF. 2019.
Available at: https://github.com/danieldevill/RLNC{_}VNF

[59] Steinwurf Aps.: GitHub - steinwurf/kodo-python: Kodo python bindings. .
Available at: https://github.com/steinwurf/kodo-python

[60] Traynor, K.: Open vSwitch-DPDK: How Much Hugepage Memory? 2018.
Available at: https : / / developers . redhat . com / blog / 2018 / 03 / 16 /
ovs-dpdk-hugepage-memory/

[61] Eastlake, D. and Abley, J.: IANA Considerations and IETF Protocol and Doc-
umentation Usage for IEEE 802 Parameters. 2013.
Available at: https://www.rfc-editor.org/rfc/rfc7042.txt

[62] Steinwurf Aps.: GitHub - steinwurf/kodo-c: Kodo C bindings. 2019.
Available at: https://github.com/steinwurf/kodo-c

[63] Sundararajan, J.K., Shah, D., Médard, M., Mitzenmacher, M. and Barros, J.:
Network coding meets TCP. In: IEEE INFOCOM, pp. 280–288. 2009.

Stellenbosch University https://scholar.sun.ac.za

https://www.xilinx.com/products/boards-and-kits/1-4le3gu.html
https://www.xilinx.com/products/boards-and-kits/1-4le3gu.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an456.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an456.pdf
https://www.kernel.org/doc/html/v4.10/driver-api/80211/mac80211.html
https://www.kernel.org/doc/html/v4.10/driver-api/80211/mac80211.html
http://docs.openvswitch.org/en/latest/
https://qemu.weilnetz.de/doc/qemu-doc.html
https://github.com/danieldevill/OvS-DPDK-Coding-Switch
https://github.com/danieldevill/RLNC{_}VNF
https://github.com/steinwurf/kodo-python
https://developers.redhat.com/blog/2018/03/16/ovs-dpdk-hugepage-memory/
https://developers.redhat.com/blog/2018/03/16/ovs-dpdk-hugepage-memory/
https://www.rfc-editor.org/rfc/rfc7042.txt
https://github.com/steinwurf/kodo-c

BIBLIOGRAPHY 131

[64] Intel: FIFO Intel® FPGA IP User Guide. 2018.
Available at: https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/ug/ug{_}fifo.pdf

[65] Klein, A.: Stream ciphers, vol. 9781447150. Springer, 2013.

[66] Steinwurf Aps.: GitHub - steinwurf/fifi-python: Fifi python bindings. .
Available at: https://github.com/steinwurf/fifi-python

[67] QEMU: GitHub - qemu/qemu: Official QEMU mirror. 2019.
Available at: https://github.com/qemu/qemu

[68] Ryu SDN Framework Community: Ryu SDN Framework. 2017.
Available at: https://osrg.github.io/ryu/

[69] Christensen, M., Kimball, K., Solensky, F., Thrane & Thrane, Hewlett-Packard
and Calix: Considerations for Internet Group Management Protocol (IGMP)
and Multicast Listener Discovery (MLD) Snooping Switches. 2006.
Available at: https://tools.ietf.org/html/rfc4541

[70] Intel Corporation: Avalon® Interface Specifications. 2019.
Available at: https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/manual/mnl{_}avalon{_}spec.pdf

[71] Intel Corporation: Avalon-MM Master Templates Readme, 2008.
Available at: https://www.intel.com/content/www/us/en/programmable/
support/support-resources/design-examples/intellectual-property/
embedded/nios-ii/exm-avalon-mm.html

[72] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F. and Carle, G.: Moon-
Gen: A Scriptable High-Speed Packet Generator. In: Internet Measurement
Conference 2015 (IMC’15). Tokyo, Japan, oct 2015.

[73] Altera: Cyclone V Device Handbook Volume 1: Device Interfaces and Integra-
tion, 2019.

Stellenbosch University https://scholar.sun.ac.za

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug{_}fifo.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug{_}fifo.pdf
https://github.com/steinwurf/fifi-python
https://github.com/qemu/qemu
https://osrg.github.io/ryu/
https://tools.ietf.org/html/rfc4541
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl{_}avalon{_}spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl{_}avalon{_}spec.pdf
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-avalon-mm.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-avalon-mm.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-avalon-mm.html

Appendices

132

Stellenbosch University https://scholar.sun.ac.za

System setup

Network configuration scripts outputs
A collection of bash scripts are used to setup the network configuration. These
are provided in the case of reproducibility. Anyone setting up the GitHub
project can use the screenshots to validate their configuration.

133

Stellenbosch University https://scholar.sun.ac.za

SYSTEM SETUP 134

Figure 1: Screenshot of output from OvS-DPDK networking setup script
setup_ovsdpdk.sh.

Stellenbosch University https://scholar.sun.ac.za

SYSTEM SETUP 135

Figure 2: Screenshot of output from physical hosts networking setup script
setup_nichosts.sh.

Stellenbosch University https://scholar.sun.ac.za

SYSTEM SETUP 136

Figure 3: Screenshot of output from virtual machine hosts networking setup script
setup_vmhosts.sh.

Stellenbosch University https://scholar.sun.ac.za

SYSTEM SETUP 137

Figure 4: Screenshot of output from virtual machine VNFs networking setup script
setup_vmvnfs.sh.

Stellenbosch University https://scholar.sun.ac.za

SYSTEM SETUP 138

Physical network setup
The physical network is created using six computers. The physical setup is
shown in Fig. 5. The main computer is a dual Intel Xeon E5-2670 CPU server
with 120GB of DDR3 memory. The switching component, hypervisor, VMs
and all interfacing is done on this server.

The remaining five computers are Dell OptiPlex desktop computers with
Intel Core-i5 2400 CPUs and 4GB of DDR3 memory. Linux Mint is installed
as the OS. These computer are used for the four physical host machines, as
well as the SDN controller.

OpenVINO
FPGA

To

PHY0

PHY1

PHY2

PHY3

Host server running OvS,
hypervisor, VMs
and interfaces.

Intel PRO/1000
PT Quad port NIC

To controller and
external network

Figure 5: Physical layer lab setup.

Stellenbosch University https://scholar.sun.ac.za

Kodo Python baseline

A Python implementation of the Kodo RLNC algorithm is created to show-
case the correct encoding and decoding results. The software code used to
implement the Kodo Python baseline is presented in 8.2.

Kodo Python code

#! /usr/bin/env python
import os
import random
import sys
import numpy
import kodo
import re
import fifi

def main():

#Paramaters
field = kodo.field.binary8
packets = 7
packet_size = 64

#Create an encoder/decoder factory that are used to build the
#actual encoders/decoders
encoder_factory = kodo.RLNCEncoderFactory(field, packets,

packet_size)
encoder = encoder_factory.build()
decoder_factory = kodo.RLNCDecoderFactory(field, packets,

packet_size)
decoder = decoder_factory.build()

#Block Data
data_in = bytearray([

139

Stellenbosch University https://scholar.sun.ac.za

KODO PYTHON BASELINE 140

251,153,198,77,15,71,255,10,138,213,33,37,212,104,200,106,
228,160,133,83,152,161,233,93,127,176,172,34,98,151,95,229,
191,26,68,16,100,221,65,234,5,62,36,99,31,235,153,123,
24,55,25,116,255,236,0,24,137,77,82,205,199,113,153,131,
109,23,110,212,112,187,112,55,74,70,161,87,11,180,134,39,
178,19,148,9,34,249,144,187,41,88,108,219,185,139,234,114,
78,25,123,17,191,44,80,48,95,255,113,90,173,121,39,34,
245,150,6,161,64,28,66,210,212,18,238,93,132,218,142,114,
73,62,213,141,0,62,100,11,149,180,210,112,144,206,176,117,
55,7,156,13,172,9,84,104,47,58,43,169,119,215,171,206,
255,171,125,77,40,19,18,133,247,141,191,245,160,94,66,217,
133,185,149,77,146,102,175,222,159,69,216,48,108,34,64,253,
36,170,244,95,177,230,28,49,180,142,108,136,90,47,7,164,
115,83,237,119,83,181,180,134,248,163,205,207,208,146,152,126,

223,57,185,71,115,161,161,31,40,44,239,72,107,71,126,7,
25,165,77,92,29,85,128,201,100,90,169,146,195,56,205,95,
206,49,60,45,244,59,224,109,219,99,215,211,250,145,135,232,
250,226,232,4,126,107,42,235,114,202,219,197,196,113,73,178,
22,24,231,159,200,75,180,171,53,104,160,91,104,211,174,19,
110,250,42,89,146,250,66,64,95,61,202,202,224,242,141,77,
242,33,241,248,65,172,159,115,13,121,202,232,165,56,199,139,
247,246,233,66,195,119,67,9,62,250,190,236,27,63,238,177,
3,101,19,88,14,5,199,102,248,151,170,108,133,4,255,85,
203,65,53,104,223,159,131,230,200,167,121,195,209,197,206,217,

1,124,108,61,179,145,208,237,186,96,195,102,217,202,155,32,
15,62,94,239,16,174,82,27,249,212,75,49,29,139,6,213,
50,225,206,2,96,18,49,34,12,53,218,117,166,49,114,131,
82,221,45,236,68,102,143,199,106,136,125,127,31,195,193,30])

print("Data in symbols:")
packet_number = 0
for d in data_in:
print(’{:02X} ’.format(d),end = ’’)
packet_number+=1
if packet_number == packet_size:
print()
packet_number = 0

#Coefficient Data
coef0 = bytearray([157,181, 214, 252, 153, 49, 207])
coef1 = bytearray([19, 109, 185, 21, 255, 84, 105])
coef2 = bytearray([20, 170, 19, 69, 7, 83, 131])
coef3 = bytearray([213, 47, 207, 139, 226, 14, 107])

Stellenbosch University https://scholar.sun.ac.za

KODO PYTHON BASELINE 141

coef4 = bytearray([244, 95, 247, 36, 116, 154, 33])
coef5 = bytearray([92, 183, 235, 115, 11, 71, 241])
coef6 = bytearray([201, 224, 155, 217, 41, 113, 151])
coefs = [coef0,coef1,coef2,coef3,coef4,coef5,coef6]
print("\nCoding coefficients:")
for i in range(0,7):
coefficients = bytearray(coefs[i])
print("".join(’\\x{:02x}’.format(c) for c in coefficients))

#Set encoder input array
encoder.set_const_symbols(data_in)

#Set decoder output array
data_out = bytearray(decoder.block_size())
decoder.set_mutable_symbols(data_out)

packet_number = 0

#Coding loop
print("\nCoding symbols:")
for i in range(0,7):
#Get coding coefficients
coefficients = bytearray(coefs[i])

#Write a coded symbol to the symbol buffer
symbol = encoder.write_symbol(coefficients)

#Print encoded symbols
for s in symbol:
print(’\\x{:02x}’.format(s),end = ’’)
packet_number+=1
if packet_number == 64:
print()
packet_number = 0

Pass that symbol and the corresponding coefficients to the
decoder

decoder.read_symbol(symbol, coefficients)

print("Coding finished")

#Check decoded results with original data
print("Checking results...")
if data_out == data_in:

Stellenbosch University https://scholar.sun.ac.za

KODO PYTHON BASELINE 142

print("Data decoded correctly")

if __name__ == "__main__":
main()

Stellenbosch University https://scholar.sun.ac.za

Raw RLNC data values

The raw source data, coefficient data and encoded data used in the Kodo
Python implementation is provided. The same data is used to verify the en-
coder and decoder results of the VNF and FPGA implementations. The values
are presented in hexadecimal form, for each of the h = 7 packets of N = 64
bytes in size. The data is grouped together in blocks.

143

Stellenbosch University https://scholar.sun.ac.za

RAW RLNC DATA VALUES 144

Source, un-coded data

b0 FB 99 C6 4D 0F 47 FF 0A 8A D5 21 25 D4 68
b14 C8 6A E4 A0 85 53 98 A1 E9 5D 7F B0 AC 22
b28 62 97 5F E5 BF 1A 44 10 64 DD 41 EA 5 3E
b42 24 63 1F EB 99 7B 18 37 19 74 FF EC 0 18
b56 89 4D 52 CD C7 71 99 83 6D 17 6E D4 70 BB
b70 70 37 4A 46 A1 57 0B B4 86 27 B2 13 94 9
b84 22 F9 90 BB 29 58 6C DB B9 8B EA 72 4E 19
b98 7B 11 BF 2C 50 30 5F FF 71 5A AD 79 27 22
b112 F5 96 6 A1 40 1C 42 D2 D4 12 EE 5D 84 DA
b126 8E 72 49 3E D5 8D 0 3E 64 0B 95 B4 D2 70
b140 90 CE B0 75 37 7 9C 0D AC 9 54 68 2F 3A
b154 2B A9 77 D7 AB CE FF AB 7D 4D 28 13 12 85
b168 F7 8D BF F5 A0 5E 42 D9 85 B9 95 4D 92 66
b182 AF DE 9F 45 D8 30 6C 22 40 FD 24 AA F4 5F
b196 B1 E6 1C 31 B4 8E 6C 88 5A 2F 7 A4 73 53
b210 ED 77 53 B5 B4 86 F8 A3 CD CF D0 92 98 7E
b224 DF 39 B9 47 73 A1 A1 1F 28 2C EF 48 6B 47
b238 7E 7 19 A5 4D 5C 1D 55 80 C9 64 5A A9 92
b252 C3 38 CD 5F CE 31 3C 2D F4 3B E0 6D DB 63
b266 D7 D3 FA 91 87 E8 FA E2 E8 4 7E 6B 2A EB
b180 72 CA DB C5 C4 71 49 B2 16 18 E7 9F C8 4B
b194 B4 AB 35 68 A0 5B 68 D3 AE 13 6E FA 2A 59
b308 92 FA 42 40 5F 3D CA CA E0 F2 8D 4D F2 21
b322 F1 F8 41 AC 9F 73 0D 79 CA E8 A5 38 C7 8B
b336 F7 F6 E9 42 C3 77 43 9 3E FA BE EC 1B 3F
b350 EE B1 3 65 13 58 0E 5 C7 66 F8 97 AA 6C
b364 85 4 FF 55 CB 41 35 68 DF 9F 83 E6 C8 A7
b378 79 C3 D1 C5 CE D9 1 7C 6C 3D B3 91 D0 ED
b392 BA 60 C3 66 D9 CA 9B 20 0F 3E 5E EF 10 AE
b406 52 1B F9 D4 4B 31 1D 8B 6 D5 32 E1 CE 2
b420 60 12 31 22 0C 35 DA 75 A6 31 72 83 52 DD
b438 2D EC 44 66 8F C7 6A 88 7D 7F 1F C3 C1 1E

Stellenbosch University https://scholar.sun.ac.za

RAW RLNC DATA VALUES 145

Coding coefficient data

b0 9D B5 D6 FC 99 31 CF
b7 13 6D B9 15 FF 54 69
b14 14 AA 13 45 7 53 83
b21 D5 2F CF 8B E2 0E 6B
b28 F4 5F F7 24 74 9A 21
b35 5C B7 EB 73 0B 47 F1
b42 C9 E0 9B D9 29 71 97

Stellenbosch University https://scholar.sun.ac.za

RAW RLNC DATA VALUES 146

Encoded data

b0 7B AE 15 C9 39 4C 1A FD 7 4D 25 87 54 BF
b14 DB CB CD 56 6C 29 E3 FB F5 76 9 7C C6 98
b28 EA D2 BC 90 74 C9 50 7 75 2D 1E 98 8C 5
b42 87 EE F9 E4 41 B0 21 4D 8 44 B7 5D DA 76
b56 97 1C 49 B5 E3 F9 EB BE CF 3A CC E8 53 D3
b70 B7 5E 67 AF 1B 15 C2 65 B7 E8 8E 67 F5 27
b84 CF DE EE 79 A1 6C 50 15 C9 B5 64 B1 A1 68
b98 B1 BB 6F 2B A4 92 95 A1 6D 2A 8E DA FE DC
b112 AD 63 4D AC 9C 78 B7 89 E2 E2 D9 DE 8B 6C
b126 73 36 9B 4E 5C 70 24 DA 68 2F B7 F3 9F 9B
b140 78 48 8C 84 DE CC 42 3 C3 D5 23 95 F3 D7
b154 C2 D8 13 55 24 C6 3D EB 9 C3 E6 48 13 39
b168 2D A8 B4 70 12 D4 73 53 27 1B B0 3E 3D E2
b182 F7 34 B8 C4 EA DF AB C4 39 B1 20 FC 7 62
b196 D4 14 60 4B 93 CE 0D 5 7F 2D 4B BC 67 74
b210 D2 81 A9 63 EA 52 B1 A9 98 A2 FD 25 14 7C
b224 A6 D5 73 64 EE C1 8B 3D F3 B5 2C 6F 89 8B
b238 0F 65 FD 71 F7 CA 49 12 3F E5 63 2D 3A 62
b252 A9 8C DB 35 6 8D 44 C8 1F 3F AE 25 43 4
b266 1C 9A CD 65 98 F9 F9 EC 15 22 E5 60 28 26
b180 5C F0 E9 B1 4F 79 91 46 94 33 48 7F 98 D8
b194 E2 91 70 4F 4D 21 34 50 57 FB DF C3 14 E5
b308 52 10 A4 A7 93 6B 67 F9 AB 7F 30 13 DF 85
b322 E8 BC DA A9 6E 69 FD DC DD 82 BB E1 C0 4E
b336 C1 35 3A C6 3E AC FE E3 DB FB FB 3D D4 74
b350 A6 F0 0E 67 51 9E 9F B8 0D F4 57 23 2E 2
b364 B6 CC E9 CC 0A E7 0B 28 1B 14 B4 38 C1 92
b378 84 C9 0E 84 4D 84 37 29 2F F4 92 F8 C2 0E
b392 BE B4 99 88 F5 21 B3 36 ED 50 43 D6 50 A1
b406 CE 84 F5 31 26 94 8F DC 5A C5 22 4A 4D 84
b420 38 11 E2 9D 0C 9 F5 85 47 A4 18 67 3F EB
b438 72 84 C8 89 6 3A 85 7A 10 CB 40 7D A9 5

Decoded data
Same as source data.

Stellenbosch University https://scholar.sun.ac.za

RLNC VNF GitHub project

The code for the DPDK based coding functions can be found in the GitHub
project RLNC_VNF at [58]. The GitHub project folder is structured as shown
in Fig. 6.

dataplane

coderRLNC_VNF

netconfig

encode
decode
nocode

} DPDK coder function.

} DPDK setup script.

} Coder start scripts.

Figure 6: File structure of the RLNC_VNF GitHub project.

The dataplane folder contains the DPDK coder function C program that
implements the encoder and decoder functions. The script used to bind the
VM networking interface to DPDK is placed under netconfig. Three start
scripts encode, decode, nocode are created to start the DPDK coder in encoding,
decoding or loopback mode respectively.

147

Stellenbosch University https://scholar.sun.ac.za

RLNC VNF GITHUB PROJECT 148

VNF DPDK networking setup script
The DPDK setup script, “setup_all.sh” code is given below. A screenshot of
the output produced from the script is shown in Fig. 7. The output shows the
VM network device bound to the DPDK compatible driver and the amount of
Hugepages used before the coder is started.

#!/bin/bash

#Start DPDK setup.

#Export $RTE_SDK
export RTE_SDK=/usr/src/dpdk-stable-18.11.2

#Bind device to DPDK
echo Binding devices to DPDK..
sudo ip link set ens4 down

#Enable PMD
sudo modprobe uio_pci_generic
#sudo modprobe igb_uio
#sudo insmod /usr/src/dpdk-stable-18.11.1/build/kmod/igb_uio.ko
#sudo modprobe igb_uio

#Bind NICs to DPDK
sudo $RTE_SDK/usertools/dpdk-devbind.py --bind=uio_pci_generic

ens4

#Print outputs of dpdk drivers and ovs-vsctl/ovs-ofctl to
confirm.

sudo $RTE_SDK/usertools/dpdk-devbind.py -s

#Print number of Hugepages
grep Huge /proc/meminfo

Stellenbosch University https://scholar.sun.ac.za

RLNC VNF GITHUB PROJECT 149

Figure 7: Screenshot of output from VNF DPDK networking setup script.

Stellenbosch University https://scholar.sun.ac.za

Results

The Signal Tap logic analyzer diagram for the FPGA encoder and decoder
results are given in Figs. 8 and 9 respectively.

150

Stellenbosch University https://scholar.sun.ac.za

RESULTS 151

F
ig

u
re

8:
F
P
G
A

en
co
de
r
si
gn

al
ta
p
re
su
lt
s
sh
ow

in
g
ru
nt
im

e
of

th
e
en
co
di
ng

pr
oc
es
s.

Stellenbosch University https://scholar.sun.ac.za

RESULTS 152

F
ig

u
re

9:
F
P
G
A

de
co
de
r
si
gn

al
ta
p
re
su
lt
s
sh
ow

in
g
ru
nt
im

e
of

th
e
de
co
di
ng

pr
oc
es
s.

Stellenbosch University https://scholar.sun.ac.za

Scapy test scripts

Scapy packet generator
The Scapy packet generator program used for the encoder and decoder are
given below respectively:

import scapy.all as scapy
import sys

eth_src = "42:43:5d:3f:df:44"
eth_dst = "de:ad:be:ef:00:09"
eth_type = 0x8000

p0 = "\xfb\x99\xc6\x4d\x0f\x47\xff\x0a\x8a\xd5\x21\x25\xd4\x68\
xc8\x6a\xe4\xa0\x85\x53\x98\xa1\xe9\x5d\x7f\xb0\xac\x22\x62\
x97\x5f\xe5\xbf\x1a\x44\x10\x64\xdd\x41\xea\x05\x3e\x24\x63\
x1f\xeb\x99\x7b\x18\x37\x19\x74\xff\xec\x00\x18\x89\x4d\x52\
xcd\xc7\x71\x99\x83"

p1 = "\x6d\x17\x6e\xd4\x70\xbb\x70\x37\x4a\x46\xa1\x57\x0b\xb4\
x86\x27\xb2\x13\x94\x09\x22\xf9\x90\xbb\x29\x58\x6c\xdb\xb9\
x8b\xea\x72\x4e\x19\x7b\x11\xbf\x2c\x50\x30\x5f\xff\x71\x5a\
xad\x79\x27\x22\xf5\x96\x06\xa1\x40\x1c\x42\xd2\xd4\x12\xee\
x5d\x84\xda\x8e\x72"

p2 = "\x49\x3e\xd5\x8d\x00\x3e\x64\x0b\x95\xb4\xd2\x70\x90\xce\
xb0\x75\x37\x07\x9c\x0d\xac\x09\x54\x68\x2f\x3a\x2b\xa9\x77\
xd7\xab\xce\xff\xab\x7d\x4d\x28\x13\x12\x85\xf7\x8d\xbf\xf5\
xa0\x5e\x42\xd9\x85\xb9\x95\x4d\x92\x66\xaf\xde\x9f\x45\xd8\
x30\x6c\x22\x40\xfd"

p3 = "\x24\xaa\xf4\x5f\xb1\xe6\x1c\x31\xb4\x8e\x6c\x88\x5a\x2f\
x07\xa4\x73\x53\xed\x77\x53\xb5\xb4\x86\xf8\xa3\xcd\xcf\xd0\
x92\x98\x7e\xdf\x39\xb9\x47\x73\xa1\xa1\x1f\x28\x2c\xef\x48\
x6b\x47\x7e\x07\x19\xa5\x4d\x5c\x1d\x55\x80\xc9\x64\x5a\xa9\
x92\xc3\x38\xcd\x5f"

p4 = "\xce\x31\x3c\x2d\xf4\x3b\xe0\x6d\xdb\x63\xd7\xd3\xfa\x91\
x87\xe8\xfa\xe2\xe8\x04\x7e\x6b\x2a\xeb\x72\xca\xdb\xc5\xc4\
x71\x49\xb2\x16\x18\xe7\x9f\xc8\x4b\xb4\xab\x35\x68\xa0\x5b\

153

Stellenbosch University https://scholar.sun.ac.za

SCAPY TEST SCRIPTS 154

x68\xd3\xae\x13\x6e\xfa\x2a\x59\x92\xfa\x42\x40\x5f\x3d\xca\
xca\xe0\xf2\x8d\x4d"

p5 = "\xf2\x21\xf1\xf8\x41\xac\x9f\x73\x0d\x79\xca\xe8\xa5\x38\
xc7\x8b\xf7\xf6\xe9\x42\xc3\x77\x43\x09\x3e\xfa\xbe\xec\x1b\
x3f\xee\xb1\x03\x65\x13\x58\x0e\x05\xc7\x66\xf8\x97\xaa\x6c\
x85\x04\xff\x55\xcb\x41\x35\x68\xdf\x9f\x83\xe6\xc8\xa7\x79\
xc3\xd1\xc5\xce\xd9"

p6 = "\x01\x7c\x6c\x3d\xb3\x91\xd0\xed\xba\x60\xc3\x66\xd9\xca\
x9b\x20\x0f\x3e\x5e\xef\x10\xae\x52\x1b\xf9\xd4\x4b\x31\x1d\
x8b\x06\xd5\x32\xe1\xce\x02\x60\x12\x31\x22\x0c\x35\xda\x75\
xa6\x31\x72\x83\x52\xdd\x2d\xec\x44\x66\x8f\xc7\x6a\x88\x7d\
x7f\x1f\xc3\xc1\x1e"

l2packet0 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p0)

l2packet1 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p1)

l2packet2 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p2)

l2packet3 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p3)

l2packet4 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p4)

l2packet5 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p5)

l2packet6 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p6)

s = scapy.conf.L2socket(iface="br0")

for i in range(0,20000):
s.send(l2packet0)
s.send(l2packet1)
s.send(l2packet2)
s.send(l2packet3)
s.send(l2packet4)
s.send(l2packet5)
s.send(l2packet6)

import scapy.all as scapy
import sys

eth_src = "42:43:5d:3f:df:44"
eth_dst = "02:01:02:03:04:08"

Stellenbosch University https://scholar.sun.ac.za

SCAPY TEST SCRIPTS 155

eth_type = 0x2020

#Encoded packet data
e0 = "\x7b\xae\x15\xc9\x39\x4c\x1a\xfd\x07\x4d\x25\x87\x54\xbf\

xdb\xcb\xcd\x56\x6c\x29\xe3\xfb\xf5\x76\x09\x7c\xc6\x98\xea\
xd2\xbc\x90\x74\xc9\x50\x07\x75\x2d\x1e\x98\x8c\x05\x87\xee\
xf9\xe4\x41\xb0\x21\x4d\x08\x44\xb7\x5d\xda\x76\x97\x1c\x49\
xb5\xe3\xf9\xeb\xbe"

e1 = "\xcf\x3a\xcc\xe8\x53\xd3\xb7\x5e\x67\xaf\x1b\x15\xc2\x65\
xb7\xe8\x8e\x67\xf5\x27\xcf\xde\xee\x79\xa1\x6c\x50\x15\xc9\
xb5\x64\xb1\xa1\x68\xb1\xbb\x6f\x2b\xa4\x92\x95\xa1\x6d\x2a\
x8e\xda\xfe\xdc\xad\x63\x4d\xac\x9c\x78\xb7\x89\xe2\xe2\xd9\
xde\x8b\x6c\x73\x36"

e2 = "\x9b\x4e\x5c\x70\x24\xda\x68\x2f\xb7\xf3\x9f\x9b\x78\x48\
x8c\x84\xde\xcc\x42\x03\xc3\xd5\x23\x95\xf3\xd7\xc2\xd8\x13\
x55\x24\xc6\x3d\xeb\x09\xc3\xe6\x48\x13\x39\x2d\xa8\xb4\x70\
x12\xd4\x73\x53\x27\x1b\xb0\x3e\x3d\xe2\xf7\x34\xb8\xc4\xea\
xdf\xab\xc4\x39\xb1"

e3 = "\x20\xfc\x07\x62\xd4\x14\x60\x4b\x93\xce\x0d\x05\x7f\x2d\
x4b\xbc\x67\x74\xd2\x81\xa9\x63\xea\x52\xb1\xa9\x98\xa2\xfd\
x25\x14\x7c\xa6\xd5\x73\x64\xee\xc1\x8b\x3d\xf3\xb5\x2c\x6f\
x89\x8b\x0f\x65\xfd\x71\xf7\xca\x49\x12\x3f\xe5\x63\x2d\x3a\
x62\xa9\x8c\xdb\x35"

e4 = "\x06\x8d\x44\xc8\x1f\x3f\xae\x25\x43\x04\x1c\x9a\xcd\x65\
x98\xf9\xf9\xec\x15\x22\xe5\x60\x28\x26\x5c\xf0\xe9\xb1\x4f\
x79\x91\x46\x94\x33\x48\x7f\x98\xd8\xe2\x91\x70\x4f\x4d\x21\
x34\x50\x57\xfb\xdf\xc3\x14\xe5\x52\x10\xa4\xa7\x93\x6b\x67\
xf9\xab\x7f\x30\x13"

e5 = "\xdf\x85\xe8\xbc\xda\xa9\x6e\x69\xfd\xdc\xdd\x82\xbb\xe1\
xc0\x4e\xc1\x35\x3a\xc6\x3e\xac\xfe\xe3\xdb\xfb\xfb\x3d\xd4\
x74\xa6\xf0\x0e\x67\x51\x9e\x9f\xb8\x0d\xf4\x57\x23\x2e\x02\
xb6\xcc\xe9\xcc\x0a\xe7\x0b\x28\x1b\x14\xb4\x38\xc1\x92\x84\
xc9\x0e\x84\x4d\x84"

e6 = "\x37\x29\x2f\xf4\x92\xf8\xc2\x0e\xbe\xb4\x99\x88\xf5\x21\
xb3\x36\xed\x50\x43\xd6\x50\xa1\xce\x84\xf5\x31\x26\x94\x8f\
xdc\x5a\xc5\x22\x4a\x4d\x84\x38\x11\xe2\x9d\x0c\x09\xf5\x85\
x47\xa4\x18\x67\x3f\xeb\x72\x84\xc8\x89\x06\x3a\x85\x7a\x10\
xcb\x40\x7d\xa9\x05"

#Coefficient data
c0 = "\x9d\xb5\xd6\xfc\x99\x31\xcf"
c1 = "\x13\x6d\xb9\x15\xff\x54\x69"
c2 = "\x14\xaa\x13\x45\x07\x53\x83"
c3 = "\xd5\x2f\xcf\x8b\xe2\x0e\x6b"

Stellenbosch University https://scholar.sun.ac.za

SCAPY TEST SCRIPTS 156

c4 = "\xf4\x5f\xf7\x24\x74\x9a\x21"
c5 = "\x5c\xb7\xeb\x73\x0b\x47\xf1"
c6 = "\xc9\xe0\x9b\xd9\x29\x71\x97"

#GENID
g0 = "\xaa\xbb\xcc\xdd\xee\x11\x22\x33\x00"

#Packet ex + cx for x in 0-6:
p0 = g0 + c0 + e0
p1 = g0 + c1 + e1
p2 = g0 + c2 + e2
p3 = g0 + c3 + e3
p4 = g0 + c4 + e4
p5 = g0 + c5 + e5
p6 = g0 + c6 + e6

l2packet0 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p0)

l2packet1 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p1)

l2packet2 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p2)

l2packet3 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p3)

l2packet4 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p4)

l2packet5 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p5)

l2packet6 = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/
scapy.Raw(load=p6)

s = scapy.conf.L2socket(iface="br0")

for i in range(0,20000):
s.send(l2packet0)
s.send(l2packet1)
s.send(l2packet2)
s.send(l2packet3)
s.send(l2packet4)
s.send(l2packet5)
s.send(l2packet6)

Stellenbosch University https://scholar.sun.ac.za

SCAPY TEST SCRIPTS 157

Scapy pcap analyzer

from scapy.all import *
import numpy as np

tx_times = []
rx_times = []

print("Reading pcap file..")
packets = sniff(offline=str(sys.argv[1]))

print("Reading done.\nAnalyzing captured packets..")
gencount = 0
packetcount = 0

txcount = 0

flag = 0;

for packet in packets:

if flag == 1:
flag = 0;
continue;

if hex(packet[Ether].type) == "0x0806":
flag = 1;

if hex(packet[Ether].type) == "0x2020" or hex(packet[Ether].
type) == "0x8000":

#print(’%s %.30f’ % (hex(packet[Ether].type),packet.time))
if hex(packet[Ether].type) == "0x8000":
tx_times.append(packet.time)
if hex(packet[Ether].type) == "0x2020":
rx_times.append(packet.time)

print(len(tx_times))
print(len(rx_times))

#print(rxtx_deltas)
if len(tx_times) > len(rx_times):
#Remove last elements as packets dropped/lost

Stellenbosch University https://scholar.sun.ac.za

SCAPY TEST SCRIPTS 158

tx_times = tx_times[:len(rx_times)]

rx_times = rx_times[:len(rx_times)]

#Throughput, based on a single generation, and not over the
entire test.. but averaged over the test.

#Input rate: Total bytes / From first packet to last Tx packet
time

throughputs_t = np.array(tx_times[6::7]) - np.array(tx_times
[0::7])

print("Tx input only Throughput mean: Mbps", ((448*8)/np.mean(np
.array(throughputs_t)))/(1000000))

#Ouput rate: Total bytes / From first packet to last Rx packet
time

throughputs_t = np.array(rx_times[6::7]) - np.array(rx_times
[0::7])

print("Rx out only Throughput mean: Mbps", ((448*8)/np.mean(np.
array(throughputs_t)))/(1000000))

#Thoughput time between last Tx and first Rx:
throughputs_t = np.array(rx_times[0::7]) - np.array(tx_times

[6::7])
print("Between last Tx and first Rx Throughput mean: Mbps",

((448*8)/np.mean(np.array(throughputs_t)))/(1000000))

#Last rx bit of last packet
throughputs_t = np.array(rx_times[6::7]) - np.array(tx_times

[0::7])
print("Throughput (of last Rx packet) mean: Mbps", ((448*8)/np.

mean(np.array(throughputs_t)))/(1000000))

#First rx bit of first packet
throughputs_t = np.array(rx_times[0::7]) - np.array(tx_times

[0::7])
print("Throughput (of first Rx packet) mean: Mbps", ((448*8)/np.

mean(np.array(throughputs_t)))/(1000000))

#Latency
rxtx_deltas = np.array(rx_times) - np.array(tx_times)
rxtx_deltas_split = np.array_split(rxtx_deltas,len(rxtx_deltas)

/7)
rxtx_deltas_split_avg = [np.mean(arr) for arr in

rxtx_deltas_split]

Stellenbosch University https://scholar.sun.ac.za

SCAPY TEST SCRIPTS 159

print("Average Latency:",np.mean(rxtx_deltas_split_avg))

#Jitter
print("Jitter:",np.mean(np.abs(np.diff(rxtx_deltas))))

Stellenbosch University https://scholar.sun.ac.za

	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Overview
	Background
	Problem statement
	Objectives
	Research methodology
	Related work
	Contributions
	Thesis outline

	Literature Review
	Introduction
	Sub-problems to address
	Traditional network switching
	Network coding
	Software-based network coding
	Software-based network coding with SDN
	Software-based network coding within a virtualization environment
	Hardware accelerated network coding
	Network coding switch functionality
	Summary

	System architecture overview
	Introduction
	System architecture
	Bridge component: Open vSwitch
	Physical layer
	Virtual layer
	Summary

	Network coding in the virtual layer: Virtual Network Functions
	Introduction
	Methodology
	Component overview
	Kodo Python baseline
	DPDK networking layer
	DPDK encoding pipeline
	DPDK encoding function
	DPDK decoding pipeline
	DPDK decoding function
	Summary

	Network coding in the hardware layer: Field Programmable Gate Array
	Introduction
	Methodology
	Implementation: network encoder
	Implementation: network decoder
	Module verification
	Summary

	Open vSwitch and network coding function integration
	Introduction
	Software layer integration: OvS and VNF
	Control plane: Ryu SDN controller
	Hardware layer integration: OvS and FPGA
	Summary

	Performance evaluation
	Introduction
	Runtime analysis: network coding only
	Network throughput, latency and packet delay variation
	FPGA resource utilization
	Maximum operating frequency
	Summary

	Conclusion
	Overview
	Future work

	Bibliography
	Appendices
	System setup
	Network configuration scripts outputs
	Physical network setup

	Kodo Python baseline
	Kodo Python code

	Raw RLNC data values
	Source, un-coded data
	Coding coefficient data
	Encoded data
	Decoded data

	RLNC VNF GitHub project
	VNF DPDK networking setup script

	Results
	Scapy test scripts
	Scapy packet generator
	Scapy pcap analyzer

