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Abstract

Background: Careful consideration of experimental artefacts is required in order to successfully apply high-
throughput 16S ribosomal ribonucleic acid (rRNA) gene sequencing technology. Here we introduce experimental
design, quality control and “denoising” approaches for sequencing low biomass specimens.

Results: We found that bacterial biomass is a key driver of 16S rRNA gene sequencing profiles generated from
bacterial mock communities and that the use of different deoxyribonucleic acid (DNA) extraction methods [DSP
Virus/Pathogen Mini Kit® (Kit-QS) and ZymoBIOMICS DNA Miniprep Kit (Kit-ZB)] and storage buffers [PrimeStore®
Molecular Transport medium (Primestore) and Skim-milk, Tryptone, Glucose and Glycerol (STGG)] further influence
these profiles. Kit-QS better represented hard-to-lyse bacteria from bacterial mock communities compared to Kit-ZB.
Primestore storage buffer yielded lower levels of background operational taxonomic units (OTUs) from low
biomass bacterial mock community controls compared to STGG. In addition to bacterial mock community controls,
we used technical repeats (nasopharyngeal and induced sputum processed in duplicate, triplicate or quadruplicate)
to further evaluate the effect of specimen biomass and participant age at specimen collection on resultant
sequencing profiles. We observed a positive correlation (r = 0.16) between specimen biomass and participant age at
specimen collection: low biomass technical repeats (represented by < 500 16S rRNA gene copies/μl) were primarily
collected at < 14 days of age. We found that low biomass technical repeats also produced higher alpha diversities
(r = − 0.28); 16S rRNA gene profiles similar to no template controls (Primestore); and reduced sequencing
reproducibility. Finally, we show that the use of statistical tools for in silico contaminant identification, as
implemented through the decontam package in R, provides better representations of indigenous bacteria following
decontamination.

Conclusions: We provide insight into experimental design, quality control steps and “denoising” approaches for
16S rRNA gene high-throughput sequencing of low biomass specimens. We highlight the need for careful
assessment of DNA extraction methods and storage buffers; sequence quality and reproducibility; and in silico
identification of contaminant profiles in order to avoid spurious results.
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Background
High-throughput 16S ribosomal ribonucleic acid (rRNA)
gene sequencing has the potential to provide detailed
characterization of microbial communities from a range
of ecological niches in humans [1–3]. These range from
the densely colonized gastro-intestinal tract [4, 5] to low
biomass sites including the lower respiratory tract [6–8]
and womb [9, 10] which have previously been consid-
ered sterile. However, there is much controversy sur-
rounding evidence from 16S rRNA sequencing studies
supporting opposing hypotheses on womb sterility - in
particular the placental microbiome [11, 12] - and on
the accuracy of studies of low biomass samples more
broadly [13, 14].
A primary concern when using 16S rRNA gene se-

quencing to analyse specimens with low levels of en-
dogenous deoxyribonucleic acid (DNA) is preferential
amplification and sequencing of contaminant DNA ori-
ginating from reagents or the laboratory environment
[15–18]. No template controls (NTCs) such as storage
buffers, elution buffers, or water may serve as good ap-
proximates for “contaminants” introduced during extrac-
tion and library preparation steps [16, 18, 19] (Fig. 1a).
However, DNA and amplicon “spill-over” from high bio-
mass to low biomass specimens (also referred to as well-
to-well contamination) adds to exogenous biological
profiles in neighbouring low biomass specimens [20]
(Fig. 1b). This physical exchange of DNA/amplicon be-
tween biological specimens, and between biological spec-
imens and NTCs (Fig. 1b), calls for a rigorous in silico
approach to identify and remove contamination. For ex-
ample, simply subtracting NTC contaminant profiles
from biological specimens introduces the risk of remov-
ing true biological profiles alongside contaminant pro-
files [18] (Fig. 1b). Some studies have used in silico
approaches to remove previously reported potential con-
taminant profiles [21, 22], however, contaminant profiles
are likely to vary between laboratories and between ex-
periments within laboratories. Hence, the only way to ef-
ficiently deal with contaminants is to include controls
tailored to each experiment and to use optimal decon-
tamination approaches.
In addition to addressing contamination, 16S rRNA

gene sequencing studies also need to validate the process
of DNA extraction and polymerase chain reaction (PCR)
amplification, which is typically done via the inclusion of
bacterial mock communities as extraction and sequen-
cing controls [23]. These mixtures of known bacterial
composition can be generated to mimic biological speci-
mens and used to identify optimal DNA extraction
methods for the specimen type of interest. Due to their
known composition, they are also used to evaluate se-
quencing reproducibility and identify contaminants.
However, mock community controls also need to mimic

biological profiles in their biomass, as specimen biomass
contributes to the level of contaminants and sequencing
reproducibility observed in any given sequencing run.
Therefore, biological specimens - with inherent variation
in biomass - randomly selected for repeat extraction
and/or sequencing within and between different sequen-
cing runs may provide an added benefit when measuring
reproducibility and identifying potential contaminants.
Standardization of bacterial profiling methods provides

opportunity for multicentre comparative analyses [24],
however, this may not rule out technical biases. Proto-
cols for analysing bacterial profiles from low biomass
specimens, which are at particular risk of PCR bias and
contamination, need to be optimized prior to
standardization. Nasopharyngeal (NP) specimens are one
such example as they have bacterial densities of < 106

16S copies/mL [15, 17, 25]. In order to contribute to the
development of robust 16S rRNA gene sequencing pro-
tocols for low biomass specimens, we outline important
quality control steps using NP and induced sputum (IS)
specimens collected from infants. Our first objective was
to determine how different DNA extraction methods,
bacterial biomass and specimen storage buffers could in-
fluence 16S rRNA gene sequencing profiles from bacter-
ial mock community controls. Our second objective was
to investigate whether specific characteristics from low
biomass biological specimens (NP and IS) correlates
with sequencing quality. Finally, our third objective was
to evaluate the use of two methods for in silico identifi-
cation of potential contaminants from 16S rRNA gene
sequencing data generated from low biomass biological
specimens (NP and IS). Overall, we aimed to provide
additional insight into experimental design, quality con-
trol steps and “denoising” approaches for sequencing
low biomass specimens.

Results
DNA extraction method, specimen biomass and storage
buffer influence 16S rRNA gene sequencing profiles
This section describes sequencing profiles generated using
DNA extracts from high and low biomass bacterial mock
community controls (Zymobiomics-Primestore-high,
Zymobiomics-STGG-high, Zymobiomics-Primestore-low
and Zymobiomics-STGG-low) generated using a commer-
cial bacterial mock community (Zymobiomics-Cells) and
two storage buffers (Primestore and STGG) (Table 1,
Additional file 1). For each of the four bacterial mock
communities, we present sequencing profiles generated
from triplicate DNA extracts using two DNA extraction
kits (Kit-QS and Kit-ZB) (Table 2). In addition, we report
on sequencing profiles from two pre-extracted commer-
cially available bacterial mock community DNA controls
(Zymobiomics-DNA and BEI-DNA), included as sequen-
cing controls (Table 1, Table 2).
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Bacterial profiles sequenced from BEI-DNA controls
(n = 3) showed good reproducibility and comparability to
manufacturer’s specifications [27] (Additional file 2).
Three genera, reported at low abundances by the manu-
facturer (Actinomyces 0.02%, Deinococcus 0.02% and

Propionibacterium 0.2%) [27], were not detected from
the DNA amplified and sequenced in our laboratory. We
detected 11 additional genera (6 of which were unclassi-
fiable at genus-level) at low abundances from BEI-DNA
controls processed in our laboratory. The sequenced

Fig. 1 Representation of a expected and b actual sequencing profiles from no template controls, low biomass and high biomass specimens
following 16S rRNA gene sequencing. a Expected 16S rRNA gene sequencing profiles from i) no template controls (NTCs), ii) low biomass and iii)
high biomass biological specimens which corresponds with their endogenous bacterial composition. b Actual 16S rRNA gene sequencing profiles
generated from i) NTCs may comprise of reagent and laboratory contaminants as well as exogenous sequences from low and high biomass
specimens (well-to-well contamination); ii) low biomass biological specimen sequencing profiles may be overrepresented by exogenous profiles
from both NTCs (reagent and laboratory contaminants) and high biomass specimens (well-to-well contamination); whilst iii) high biomass
sequencing profiles are expected to be least affected by reagent and laboratory contaminants present in NTCs and cross-contamination from low
biomass specimens
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profiles from Zymobiomics-DNA controls (n = 8) also
matched the manufacturer’s specifications with the ex-
ception of a few low abundant OTUs (Additional file 2).
We detected 35 additional genera (16 of which were un-
classifiable at genus-level) at low abundances from the
eight Zymobiomics-DNA controls processed in our la-
boratory (Additional file 2).
Data generated from the four bacterial mock communities

(Zymobiomics-Primestore-high, Zymobiomics-Primestore-
low, Zymobiomics-STGG-high and Zymobiomics-STGG-

low) showed that Kit-QS extracted purer DNA compared to
Kit-ZB based on the ratio of absorbance (260 nm and 280
nm) measured by the NanoDrop® ND-1000 (Table 3). We
only compared ratio of absorbance measures for the two kits
using high biomass bacterial mock communities, as low bio-
mass bacterial mock community dsDNA concentrations
were outside the NanoDrop® ND-1000 Spectrophotometer’s
lower limit of detection. As much as 100-fold more 16S
rRNA gene copies per millilitre of specimen input volume
was extracted from low biomass bacterial mock

Table 1 Reference guide to DNA extraction kits, storage buffers/no template controls, bacterial mock communities, technical
repeats and decontamination approaches
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Table 2 Extraction and sequencing controls included in this study

Control
type

Control
subtype

Control name Composition Source DNA
extraction
performed
in our
laboratory

DNA
extraction
kit

Extraction
replicates

Sequencing
replicates

Total
included for
equencing

Extraction
controls

Bacterial mock
communities

Zymobiomics-
Primestore-high

900 μl of
Zymobiomics-Cells
suspended in
3600 μl Primestore

Zymo Research Corp.,
Irvine, CA, United States
&
Longhorn Vaccines &
Diagnostics, Bethesda,
MD, USA

✓ Kit-QS
Kit-ZB

3 per DNA
extraction kit

– 6

Zymobiomics-
STGG-high

900 μl of
Zymobiomics-Cells
suspended in
3600 μl STGG

Zymo Research Corp.,
Irvine, CA, United States
& National Health
Laboratory Services,
Cape Town, South
Africa

✓ Kit-QS
Kit-ZB

3 per DNA
extraction kit

– 6

Zymobiomics-
Primestore-low

1-in-104 fold
dilution of
Zymobiomics-
Primestore-high

Zymo Research Corp.,
Irvine, CA, United States
& Longhorn Vaccines &
Diagnostics, Bethesda,
MD, USA

✓ Kit-QS
Kit-ZB

3 per DNA
extraction kit

– 6

Zymobiomics-
STGG-low

1-in-104 fold
dilution of
Zymobiomics-
STGG-high

Zymo Research Corp.,
Irvine, CA, United States
& National Health
Laboratory Services,
Cape Town, South
Africa

✓ Kit-QS
Kit-ZB

3 per DNA
extraction kit

– 6

NTCs Primestore Storage buffer
Primestore

Longhorn Vaccines &
Diagnostics, Bethesda,
MD, USA

✓ Kit-QS
Kit-ZB

3 per DNA
extraction kit

– 6

STGG Storage buffer
STGG

National Health
Laboratory Services,
Cape Town, South
Africa

✓ Kit-QS
Kit-ZB

3 per DNA
extraction kit

– 6

Sequencing
controls

Bacterial mock
community
DNA

BEI-DNA 1-in-10 fold
dilution of HM-
783D in Milli-Q®
ultrapure water

BEI Resources, NIAID,
NIH as part of the
Human Microbiome
Project, Manassas, VA,
USA & MilliporeSigma,
Burlington, MA, USA

x Not
specified

– – 3

Zymobiomics-
DNA

1-in-10 fold
dilution of
ZymoBIOMICS™
Microbial
Community DNA
Standard in
Milli-Q® ultrapure
water

Zymo Research Corp.,
Irvine, CA, United States
& MilliporeSigma,
Burlington, MA, USA

x Not
specified

– – 8

Technical
repeats

Within-run
repeats

NP and IS
specimens stored
in Primestore

Collected from infants
enrolled in the
DCHS [26]

✓ Kit-QS – 2 per
specimen

86

Between-run
repeats

NP and IS
specimens stored
in Primestore

Collected from infants
enrolled in the
DCHS [26]

✓ Kit-QS – 2, 3 or 4
per
specimen

123

NTCs Primestore Storage buffer
Primestore

Longhorn Vaccines &
Diagnostics, Bethesda,
MD, USA

✓ Kit-QS – – 35

Zymobiomics-Cells ZymoBIOMICS™ Microbial Community Standard bacterial cells (Catalog No. D6300, Zymo Research Corp., Irvine, CA, United States),
Kit-QS DSP Virus/Pathogen Mini Kit® using QIAsymphony® SP instrument (catalogue no. 937036, Qiagen GmbH, Hilden, Germany), Kit-ZB ZymoBIOMICS
DNA Miniprep Kit (catalogue no. ZR D4300, Zymo Research Corp., Irvine, CA, United States), NTCs No template controls, Primestore PrimeStore®
Molecular Transport medium (Longhorn Vaccines & Diagnostics Bethesda, MD, USA), STGG transport medium containing Skim-milk, Tryptone, Glucose
and Glycerol, NP Nasopharyngeal swabs IS Induced sputum, DCHS Drakenstein Child Health Study
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communities using Kit-ZB (Table 3). This observation was
only made for low biomass bacterial mock communities
generated using Primestore storage buffer. Bacterial pro-
files resulting from triplicate extractions of each of the
four bacterial mock communities (Zymobiomics-Primes-
tore-high, Zymobiomics-Primestore-low, Zymobiomics-
STGG-high and Zymobiomics-STGG-low) were highly re-
producible for both extraction methods: Kit-QS (n = 12)
[bacterial mock communities coefficient of determination
in linear regression analysis (R2): 0.96 (interquartile range
(IQR): 0.94–0.98)] and Kit-ZB (n = 12) [bacterial mock
communities R2: 0.98 (IQR: 0.96–0.99)].
Principal coordinate analysis at OTU-level showed that

bacterial biomass is a key driver of 16S rRNA gene pro-
files (analysis of beta diversities by PERMANOVA: P =
0.001) (Fig. 2a). High biomass bacterial mock communi-
ties (Zymobiomics-Primestore-high and Zymobiomics-
STGG-high) grouped together in a compact cluster

alongside Zymobiomics-DNA, whilst low biomass bac-
terial mock communities (Zymobiomics-Primestore-low
and Zymobiomics-STGG-low) clustered midway be-
tween their undiluted counterparts and NTCs (Primes-
tore and STGG) (Fig. 2a). Beta diversities were also
significantly different when comparing the two DNA ex-
traction methods (P = 0.001) and storage buffers (P =
0.001) (Fig. 2a). When stratifying our analyses based on
the two storage buffers [Primestore (Fig. 2b) and STGG
(Fig. 2c)], we observed clear differentiation in beta diver-
sities in relation to specimen biomass (P = 0.001) and the
DNA extraction method (P = 0.001) used.
In order to assess the efficiency of the two extraction

methods in extracting DNA from hard- and easy-to-lyse
bacteria, we compared sequencing profiles at OTU-level
from Zymobiomics-Primestore-high (n = 6) and
Zymobiomics-STGG-high (n = 6) to Zymobiomics-DNA
(n = 8). Compared to Zymobiomics-DNA, both Kit-QS

Table 3 Quantity and quality of DNA extracted using two DNA extraction methods

Control DNA extraction kit Buffer Replicate 16S rRNA gene copy numbers
(copies/ml of specimen input volume)

260/280 NanoDrop®
ND-1000 ratio

Zymobiomics-Primestore-high Kit-QS Primestore 1 2.47E9 1.68

2 2.06E9 1.75

3 1.92E9 1.90

Kit-ZB Primestore 1 2.14E9 2.09

2 1.99E9 1.34

3 1.61E9 1.19

Zymobiomics-Primestore-low Kit-QS Primestore 1 3.77E3 –

2 5.82E3 –

3 5.37E3 –

Kit-ZB Primestore 1 2.08E5 –

2 2.72E5 –

3 3.43E5 –

Zymobiomics-STGG-high Kit-QS STGG 1 7.52E8 1.96

2 7.32E8 1.89

3 5.58E8 1.93

Kit-ZB STGG 1 3.09E9 2.53

2 1.89E9 1.34

3 1.73E9 1.23

Zymobiomics-STGG-low Kit-QS STGG 1 2.79E5 –

2 3.58E5 –

3 5.10E5 –

Kit-ZB STGG 1 1.89E5 –

2 2.85E5 –

3 2.76E5 –

Zymobiomics-Primestore-high 900 μl of Zymobiomics-Cells suspended in 3600 μl Primestore, Zymobiomics-Primestore-low 1-in-104 fold dilution of Zymobiomics-
Primestore-high, Zymobiomics-STGG-high, 900 μl of Zymobiomics-Cells suspended in 3600 μl STGG, Zymobiomics-STGG-low 1-in-104 fold dilution of Zymobiomics-
STGG-high, Kit-QS DSP Virus/Pathogen Mini Kit® using QIAsymphony® SP instrument (catalogue no. 937036, Qiagen GmbH, Hilden, Germany), Kit; ZB ZymoBIOMICS
DNA Miniprep Kit (catalogue no. ZR D4300, Zymo Research Corp., Irvine, CA, United States), Primestore PrimeStore® Molecular Transport medium (Longhorn
Vaccines & Diagnostics Bethesda, MD, USA), STGG Storage medium containing skim milk, tryptone, glucose, and glycerine
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and Kit-ZB yielded an over-representation of easy-to-
lyse gram-negative bacteria (Pseudomonas, Salmonella
and Escherichia-Shigella) and an under-representation of
hard-to-lyse gram-positive bacteria (Enterococcus,
Staphylococcus, Listeria and Bacillus) (Additional file 3).
Differences between Zymobiomics-DNA and the two
DNA extraction methods were more marked for Kit-ZB
(Additional file 4 a). The hard-to-lyse gram-positive bac-
teria Enterococcus, Staphylococcus and Listeria were also
significantly less represented by Kit-ZB when compared
to Kit-QS (Additional file 4 b).
We detected more “background OTUs” (OTUs not ex-

pected in mock communities) from low biomass bacterial
mock communities (Zymobiomics-Primestore-low and
Zymobiomics-STGG-low) compared to high biomass bac-
terial mock communities (Zymobiomics-Primestore-high
and Zymobiomics-STGG-high), irrespective of the DNA
extraction method and storage buffer used (Fig. 3). The
latter was more pronounced from low biomass profiles
generated using storage buffer STGG (average proportion
of “contaminant OTUs”: 9.5%) when compared to Primes-
tore (average proportion of “contaminant OTUs”: 1.5%).
In summary, we show that the bacterial biomass is an

important determinant of 16S rRNA gene sequencing
profiles and that storage buffers and DNA extraction
methods further influence these profiles. When

comparing Kit-QS to Kit-ZB, we observed better quality
of DNA and a better representation of hard-to-lyse bac-
teria from profiles generated using Kit-QS. Finally, we
show that the use of different storage buffers impacts on
low biomass “background OTUs”, with the commonly
used STGG buffer associated with increased
background.

Quality of 16S rRNA gene sequencing data from
respiratory tract specimens correlates with specimen
biomass
We validated 16S rRNA gene sequencing data generated
across 11 sequencing runs from low biomass technical re-
peats (NP and IS specimens) and determined criteria for
excluding specimens based on the likelihood of spurious
results. We compared 1) technical repeat profiles to NTC
profiles, 2) examined sequencing reproducibility and 3) in-
vestigated the presence of “spurious OTUs” in relation to
specimen biomass, participant age at specimen collection
and read counts following bioinformatic processes. In
total, we analysed 244 sequencing libraries generated from
35 Primestores (NTCs) and 209 technical repeats (NP and
IS specimens) (Table 1, Table 2). All technical repeats had
a minimum of two sequencing profiles available for ana-
lysis. We generated 86 sequencing profiles from within-
run repeats (43 NP/IS specimens processed in duplicate

Fig. 2 16S rRNA gene bacterial profiles are reflective of specimen biomass and are further influenced by DNA extraction methods and storage
buffers. a Differences in beta diversities (calculated at OTU-level) measured from all bacterial mock community controls and no template controls
(NTCs). b Differences in beta diversities measured from bacterial mock community controls and NTCs generated using Primestore storage buffer.
c Differences in beta diversities measured from bacterial mock community controls and NTCs generated using STGG storage buffer. The
proportion of variance captured by coordinate analysis axes are shown in the bottom left corner of each panel. Blue and red colours represent
DNA extraction methods Kit-QS and Kit-ZB, respectively. Shades of chartreuse filled circles represent bacterial mock communities generated using
Primestore storage buffer (solid-filled chartreuse circles: high biomass bacterial mock communities; pattern-filled chartreuse circles: low biomass
bacterial mock communities). Shades of emerald filled circles represent bacterial mock communities generated using STGG storage buffer (solid-
filled emerald circles: high biomass bacterial mock communities; pattern-filled emerald circles: low biomass bacterial mock communities). Dark
green filled circles represent Zymobiomics-DNA. Chartreuse and emerald pattern-filled squares represent Primestore and STGG NTCs, respectively
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within respective runs); and 123 sequencing profiles from
between-run repeats [NP/IS specimens processed in du-
plicate (n = 30), triplicate (n = 9) and quadruplicate (n = 9)
across different runs].

Participant age at specimen collection correlates with
specimen biomass which in turn correlates with sequencing
metrics (read counts, alpha diversity, OTU counts and
“spurious OTUs”)
We observed a positive correlation (r = 0.16) between 16S
rRNA gene copy numbers (representing specimen biomass)
and participant age at which specimens were collected
(Fig. 4a). The majority (33/37; 89%) of technical repeats col-
lected at < 1 day of life (birth specimens) had < 500 16S
rRNA gene copies/μl (Fig. 4a). The majority of specimens

with < 500 16S rRNA gene copies/μl (low biomass technical
repeats) were collected at < 14 days of age (37/61; 61%),
whilst almost all specimens with > 500 16S rRNA gene cop-
ies/μl (high biomass technical repeats) were collected at >
14 days of age (144/148; 97%) (Additional file 5).
We also observed a marginally negative correlation

(r = − 0.04) between specimen biomass and reads avail-
able for downstream analysis (Fig. 4b). Low biomass
technical repeats (< 500 16S rRNA gene copies/μl) had a
median read count of 4400 (IQR: 1890–9691) compared
to 13,377 (IQR: 7093–20,213) observed from high bio-
mass technical repeats. There was an increase in the me-
dian read counts with increasing age for both low and
high biomass technical repeats, respectively [< 14 days:
2815 (IQR: 989–5643) and 6610 (IQR: 5981–7680) vs. >

Fig. 3 Proportions of operational taxonomic units (OTUs) in four bacterial mock communities using two DNA extraction methods, with triplicate
testing. A gradient scale is used to represent the proportions of the 100 most abundant OTUs detected across the bacterial mock community
controls. OTU and genus-level classifications are provided on the left and right side of the figure, respectively. OTUs expected in each of the four
bacterial mock communities are shown using green squares. Red squares denote OTUs not expected in the four bacterial mock communities
(“background OTUs”). The bacterial mock communities (Primestore vs STGG), their biomass (high versus low) and the DNA extraction methods
used are denoted at the top of each heatmap
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Fig. 4 (See legend on next page.)
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14 days: 8930 (IQR: 4042–17,527) and 13,897 (IQR:
7128–20,747) (Additional file 5).
In addition, specimen biomass correlated negatively

(r = − 0.28) with alpha diversity (Shannon diversity
index) [< 500 16S rRNA gene copies/μl: 2.5 (IQR: 1.7–
2.9) vs. > 500 16S rRNA gene copies/μl: 0.8 (0.5–1.1)]
(Fig. 4c). The median alpha diversity from low biomass
technical repeats was comparable to that measured from
Primestore [2.3 (IQR: 1.7–2.9) vs. 2.2 (IQR: 2.0–2.7)]
(Fig. 4c). We also observed a negative correlation be-
tween specimen biomass and the number of OTUs se-
quenced [< 500 16S rRNA gene copies/μl: 101 (IQR: 48–
142) vs. > 500 16S rRNA gene copies/μl: 42 (27–70)]
(Additional file 5); and specimen biomass and the num-
ber of “spurious OTUs” (OTUs with a total of < 5 reads
amongst all 244 technical repeats and Primestore) [<
500 16S rRNA gene copies/μl: 2 (IQR: 0–4) vs. > 500
16S rRNA gene copies/μl: 0 (0–1.3)]. The “per specimen
frequency” at which spurious OTUs were identified
(number of spurious OTUs/number of technical repeats)
was 3.1 for low biomass technical repeats compared to
1.0 for high biomass technical repeats (Additional file 5).

Sequencing profiles from low biomass technical repeats (NP
and IS specimens), collected during the first two weeks of
life, are similar to profiles from no template controls
(Primestore)
Using logarithm of ratio-transformed data (log-ratio)
biplots, we observed two distinct clusters in relation to par-
ticipant age at specimen collection (Fig. 5a) and specimen
biomass (16S rRNA gene copies/μl) (Fig. 5b). Almost all
technical repeats collected at < 14 days of life clustered
closely with Primestore (Fig. 5a). This was also evident for a
subset of specimens collected at > 14 days of life. The ma-
jority of technical repeats with < 500 16S rRNA gene cop-
ies/μl clustered with Primestore (Fig. 5b). Although less
marked, we also observed a tendency of specimens with
lower read counts to cluster with Primestore (Fig. 5c).
Unsupervised clustering analysis at OTU-level gener-

ated nine primary clusters (complete linkage clustering
distance set to 0.99) (Fig. 6). A clustering distance set to
0.90 generated up to four sub-clusters within each of the
nine primary clusters. Clusters 1–3 and 9 consisted of
both Primestore and technical repeats, whilst clusters 4–
8 primarily consisted of technical repeats. The majority
of technical repeats in clusters 1–3, which included an
even mixture of Primestore (29/62, 47%) and technical
repeats (33/62, 53%), represented early life specimens

(collections at < 14 days of age: 28/33, 85%) of low bio-
mass (< 500 16S rRNA gene copies per μl: 32/33, 97%).
All Primestores in clusters 1–3 were also of low biomass
(< 500 16S rRNA gene copies per μl). OTUs classified as
“Other” at genus-level were most abundant in Primes-
tore and technical repeats throughout clusters 1–3.
Clusters 4–6 consisted only of technical repeats, the ma-
jority of which were collected at > 14 days of age (143/
145, 99%) with > 500 16S rRNA gene copies per μl (127/
145, 88%). OTUs belonging to the genera Moraxella,
Corynebacterium and Haemophilus (commonly detected
from respiratory tract specimens) were most abundant
in technical repeats from clusters 4, 5 and 6, respectively.
Cluster 7 primarily consisted of technical repeats (18/20,
90%), primarily consisting of OTUs belonging to the
genera Neisseria (n = 3) and Streptococcus (n = 15). As
for clusters 4–6, technical repeats in cluster 7 were also
primarily collected at > 14 days of age (14/18, 78%) with
high biomass (> 500 16S rRNA gene copies per μl: 12/
18, 67%), however, these were slightly less prevalent
when compared to clusters 4–6 (78% vs. 99 and 67% vs.
88%, respectively). Cluster 8 consisted of only three
technical repeats, all of which were collected at < 0 days
of age with < 500 16S rRNA gene copies per μl. OTUs
predominating these profiles were classified as “Other”
at genus-level. Cluster 9 had an uneven representation
of technical repeats (10/14, 71%) and Primestore (4/14,
29%). Fewer technical repeats from cluster 9 were col-
lected at > 14 days of age with > 500 16S rRNA gene
copies per μl when compared to cluster 7 and clusters
4–6 (60% vs. 78% vs. 99 and 60% vs. 67% vs. 88%, re-
spectively). Technical repeats in cluster 9 primarily con-
sisted of OTUs belonging to Lactobacillus (n = 4),
Salmonella (n = 2) and Staphylococcus (n = 4) genera,
respectively.

Specimen features, such as participant age at specimen
collection, 16S rRNA gene copy numbers and read counts
as proxy for sequencing reproducibility
We determined the reproducibility of sequenced profiles
among technical repeats included in our dataset. We cal-
culated a R2 value for each of the duplicate sequencing
profiles (n = 73) present in our dataset, three R2 values
for each of the triplicate sequencing profiles (n = 27),
and six R2 values for each of the quadruplicate sequen-
cing profiles (n = 54). Overall, sequencing reproducibility
was high across the entire dataset [median R2 = 0.992
(IQR: 0.951–0.999)]. Sequencing profiles generated from

(See figure on previous page.)
Fig. 4 Participant age at specimen collection, read counts and alpha diversity relative to specimen biomass for no template controls (Primestore,
n = 35) and technical repeats (n = 209). a Scatter plot of participant age at specimen collection b read counts following bioinformatic
processes and c Shannon diversity indices (alpha diversity) at OTU-level in relation to specimen biomass (16S rRNA gene copies/μl) plotted on
loge scale. Vertical pink shaded area highlights 16S rRNA gene copies/μl < 500
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Fig. 5 Logarithm of ratio-transformed data (log-ratio) biplots in relation to participant age at specimen collection, 16S rRNA gene copies/μl and
read counts following bioinformatic processing. Data points are coloured according to a participant age at specimen collection (in days), b 16S
rRNA gene copies/μl and c read counts available for downstream analyses. Technical repeats (n = 209) are represented using filled circles. No
template controls (Primestore, n = 35) are represented using filled triangles
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within-run technical repeats (n = 86) were more repro-
ducible compared to those from between-run repeats
(n = 123) [median R2 = 0.999 (IQR: 0.991–1.000) vs 0.982
(IQR: 0.942–0.997)].
We further investigated whether participant age at

specimen collection, 16S rRNA gene copy numbers or
read counts could identify sequencing profiles with re-
duced reproducibility (R2 values < 0.90), and hence could
be used to identify specimens which should be excluded
from analysis. Our results showed associations between
participant age at specimen collection (in days), 16S
rRNA gene copy numbers (copies/μl) and read counts
with R2 values (Fig. 7 a-c). Specimens with R2 values <
0.90 were collected at a median of 16 days of age (IQR:
0–54), produced 101 16S rRNA gene copies/μl (IQR:
14–355) and 3357 reads (IQR: 1113–9211). In compari-
son, specimens with R2 values > 0.90 were collected at a
median of 153 days of age (IQR: 55–240), yielded 5476
16S rRNA gene copies/μl (396–23,231) and 11,891 reads
(IQR: 5456–20,045) (Additional file 6).
In summary, low biomass technical repeats - repre-

sented by low 16S rRNA gene copy numbers (< 500

copies/μl) - produced fewer reads and were primarily
collected during the first 2 weeks of life. These speci-
mens tended to have higher alpha diversity, produce
more OTUs (including “spurious OTUs”) and had less
reproducible sequencing profiles. In addition, the major-
ity of low biomass technical repeats clustered with Pri-
mestore when assessing beta-diversity.

Improved quality of 16S rRNA gene datasets is attainable
via the decontam R package for identification of
“potential contaminants”
We aimed to validate two in silico approaches
(“NTConly” and “NTC + decontam”) to identify potential
contaminants from bacterial profiles generated from
technical repeats (NP and IS specimens processed in du-
plicate, triplicate or quadruplicate) (Table 1, Table 2).
Prior to analysis, we denoised the dataset consisting of
35 Primestores and 209 technical repeats by removing
249 of the 1252 OTUs identified as “spurious OTUs”
across the dataset. We included technical repeats with >
500 16S rRNA gene copies/μl measured from their tem-
plate (n = 148) as true biological specimens (based on

Fig. 6 Bacterial composition in no template controls (Primestore, n = 35) and low biomass technical repeats (n = 209). a Dendogram representing
unsupervised hierarchical clustering distances are based on Bray Curtis dissimilarity indices calculated at OTU-level. The dendogram is colour-
coded based on specimen type (Primestore: darkturquoise; technical repeats: deeppink). b Differences between Primestore and technical repeats
are shown at genus-level, with colour-codes representing phylum-level classification (Shades of blue: Proteobacteria, shades of red: Firmicutes).
Genera with proportions < 1% in each of the specimens are grouped together as “Other” and shown in grey. c Most abundant genera within
each the specimens, specimen type, participant age at specimen collection (in days) and 16S rRNA gene copy numbers (copies/μl) are
summarised at the bottom of the Fig. A-N-P-R: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium
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Fig. 7 Associations between reproducibility and a participant age at specimen collection, b 16S rRNA gene copy numbers, and c read counts.
Reproducibility is measured by coefficient of determination (R2) values, calculated by comparing proportions of each OTU present between
technical repeats. Horizontal blue bars highlight R2 values > 0.90. Different shades of vertical blue bars represent a < 7, < 14, < 30, < 60 days; b <
100, < 500, < 1000 copies/μl; and c < 2000, < 4000, < 6000, < 8000 and < 10,000 reads; respectively. For b and c, each set of technical repeats had
two 16S rRNA gene copy number/read count measures shown as two points connected by a horizontal line on the X-axis
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results reported in the previous section). The “NTConly”
approach designates an OTU as a “potential contamin-
ant” when it is detected across both Primestore (n = 35)
and technical repeats (n = 148) [16, 18, 19, 28]. The
“NTC + decontam” approach designates an OTU as a
“potential contaminant” via implementation of the
decontam package in R [29]. We identified potential
contaminants via the “NTC + decontam” approach based
on 1) their frequency as a function of the specimen bio-
mass; and 2) their prevalence in true biological speci-
mens (n = 148) compared to Primestore (n = 35).

The “NTC + decontam” approach results in less apparent
shifts in sequencing profiles of common nasopharyngeal
colonizers compared to the “NTConly” approach
We identified 386 OTUs as “potential contaminants”
when using the “NTConly” approach (Additional file 7).
In comparison, the “NTC + decontam” approach identi-
fied 115 OTUs as “potential contaminants”, all of which
were also identified using the “NTConly” approach
(Additional file 7). We were able to obtain genus-level
classifications (Additional file 7; Additional file 8) for
76% (294/386) and 75% (86/115) of OTUs identified
from the two approaches, of which the majority [61%
(179/294); 66% (57/86)] were previously reported as po-
tential contaminants [15, 30].
A number of OTUs identified as “potential contami-

nants” using the “NTConly” approach represented species
commonly detected in the nasopharynx (Additional file 7;
Additional file 8). These included OTU_2 (Moraxella cat-
arrhalis), OTU_4 (Escherichia coli), OTU_6 (Staphylococ-
cus aureus), OTU_7 (Haemophilus influenzae), OTU_8
(Streptococcus pneumoniae), OTU_10 (Corynebacterium
spp.), OTU_11 (Pseudomonas aeruginosa), OTU_14 (Lis-
teria monocytogenes), OTU_15 (Acinetobacter baumannii)
and OTU_29 (Neisseria lactamica/Neisseria meningitidis).
Of these, only OTU_4, OTU_11 and OTU_14 were identi-
fied as “potential contaminants” using the “NTC+ decon-
tam” approach.
Following decontamination steps, we generally ob-

served more dispersed shifts in proportions from bac-
teria commonly detected from the nasopharynx using
the “NTConly” as opposed to the “NTC + decontam” ap-
proach (Fig. 8a-e; Additional file 9). For example, we ob-
served complete removal of the Staphylococcus genus
from 95% of specimens positive (n = 104) via the
“NTConly” approach compared to 0% when using the
“NTC + decontam” approach (Fig. 8 d; Additional file 9).
Similarly, the Streptococcus genus was removed from
73% of specimens positive (n = 143) using the
“NTConly” approach compared to 0.7% when using the
“NTC + decontam” approach (Fig. 8e; Additional file 9).
At OTU-level, the “NTC +Decontam” approach better
identified OTU_6 (S. aureus), OTU_8 (S. pneumoniae)

and OTU_1390 (S. anginosus) as potential nasopharyn-
geal colonizers and OTU_23 (S. equi subsp. equi or zooe-
pidemicus) as a potential contaminant
(Additional file 10).

The “NTC + decontam” approach results in improved
removal of “potential contaminants” when compared to the
“NTConly” approach
Figure 9 summarises the per specimen proportions ob-
served for five genera previously reported as “potential
contaminants” prior to and after decontamination (Add-
itional file 9). Both “NTConly” and “NTC + decontam”
approaches completely removed Aquabacterium, Acido-
vorax and Noviherbaspirillum profiles from the majority
(100, 99 and 72%) of specimens positive for these genera
(Fig. 9a-c; Additional file 9). We observed lower propor-
tions for specimens positive for Acinetobacter and Steno-
trophomonas following decontamination using the
“NTConly” compared to the “NTC + decontam” ap-
proach (Fig. 9d-e; Additional file 9). Both Acinetobacter
and Stenotrophomonas have been reported as potential
contaminants at genus-level in 16S rRNA gene sequen-
cing datasets [15, 30], but are also reported as of the
upper airway bacteria [31–33]. When investigating both
Acinetobacter and Stenotrophomonas genera at OTU-
level, we observed that the “NTConly” approach identi-
fied OTU_15 (A. baumannii), OTU_863 (A. johnsonii),
OTU_358 (A. calcoaceticus-A. baumannii complex) and
OTU_56 (S. maltophilia) (Additional file 10) as potential
contaminants, all of which are commonly isolated from
the respiratory tract.
In summary, the “NTConly” approach to decontamin-

ation resulted in larger shifts in proportions of genera
commonly detected from the nasopharynx compared to
using the decontam package implemented through R
software (“NTC + decontam” approach). Furthermore,
the “NTC + decontam” approach better differentiated
likely “true nasopharyngeal bacteria” from “potential
contaminants” at OTU-level compared to the
“NTConly” approach.

Discussion
The complexities of 16S rRNA gene sequencing of low
biomass specimens are increasingly recognised and have
broad applicability [13, 14, 30, 34]. In order to deal with
such complexities, we provide, in a stepwise manner, a
comprehensive overview of several key components of a
quality control process for low biomass 16S rRNA gene
sequencing studies. We highlight the importance of
evaluating DNA extraction protocols prior to the imple-
mentation thereof, and the need to account for potential
effects of different storage buffers used to preserve speci-
mens. We further show the value of determining speci-
men exclusion criteria via the use of optimal sequencing
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Fig. 8 Shifts in profiles of bacterial genera commonly detected from the nasopharynx prior to and following decontamination via two in silico
approaches. Per specimen shifts (n = 148) in bacterial proportions are shown for bacterial genera commonly detected from the nasopharynx: a
Moraxella, b Corynebacterium 1, c Haemophilus, d Staphylococcus and e Streptococcus. Open circles and smoothing splines (representing a factor
of 2x the standard deviation) denote bacterial proportions (Y-axis) for each of the specimens (X-axis). Red: Proportions prior to decontamination;
Blue: Proportions following the removal of “potential contaminants” identified using the “NTConly” approach; Yellow: Proportions following the
removal of “potential contaminants” identified using the “NTC + decontam” approach
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Fig. 9 Shifts in profiles of potential contaminants prior to and following decontamination via two in silico approaches. Per specimen shifts (n =
148) in bacterial proportions are shown for bacterial genera commonly described as “potential contaminants” in 16S rRNA gene sequencing
datasets a Aquabacterium, b Acidovorax, c Noviherbaspirillum, d Acinetobacter and e Stenotrophomonas. Open circles and smoothing splines
(representing a factor of 2x the standard deviation) denote bacterial proportions (Y-axis) for each of the specimens (X-axis). Red: Proportions prior
to decontamination; Blue: Proportions following the removal of “potential contaminants” identified using the “NTConly” approach; Yellow:
Proportions following the removal of “potential contaminants” identified using the “NTC + decontam” approach
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controls and exploratory analyses and highlight the im-
portance of optimized approaches for contaminant iden-
tification and removal in any low biomass 16S rRNA
gene sequencing study. We believe that our specific and
detailed approach to dealing with low biomass respira-
tory tract specimens provides a rigorous method to
assessing and responding to the complexities inherent to
low biomass 16S rRNA gene sequencing experiments in
general.
Prior to the advent of 16S rRNA gene high-

throughput sequencing, bacterial DNA extraction plat-
forms have primarily been evaluated based on DNA
yield and purity, DNA shearing, bacterial diversity (using
fingerprinting techniques) and how well DNA from
hard- and easy-to-lyse bacterial cells are represented
(using targeted PCR). Recently, mock community con-
trols have been implemented to further assess the per-
formance of extraction platforms [35, 36]. When
carefully selected, these mock controls may allow for the
evaluation of extraction efficiency, serve to determine
extraction reproducibility, and provide insight into con-
tamination profiles. However, in order evaluate these im-
portant aspects of 16S rRNA gene sequencing, mock
community controls need to represent bacterial commu-
nities expected from the specimen of interest and opti-
mally reflect its biomass. In this study, we used both
high and low biomass bacterial mock community con-
trols to evaluate the performance of two DNA extraction
kits. Overall, specimen biomass had a noticeable impact
on sequencing profiles irrespective of the storage buffer
and DNA extraction method used. These findings, to-
gether with previous reports on breast milk and faecal
16S rRNA gene sequencing profiles [37, 38], emphasise
the importance of careful consideration of the type of
specimen and its biomass when performing these com-
parisons. For example, previous studies have shown that
low biomass breast milk specimens are influenced by
contaminants and the DNA extraction method used
[37], whilst diluted faecal specimen microbiota profiles
are not much affected by contamination but largely im-
pacted by the DNA extraction method used [38]. Our
study showed that specimen biomass is a primary driver
of sequencing profiles, and that the effect of DNA ex-
traction kits become more evident with reduced speci-
men biomass. We further evaluated the effect of
different storage buffers on sequencing profiles as stor-
age buffers from different manufacturers may contain
different levels of endogenous contaminants (contami-
nants introduced during the manufacturing process).
Again, the effect of storage buffers on bacterial mock
community profiles was more apparent among low bio-
mass controls, which further highlights the importance
of careful consideration when selecting NTCs for these
types of studies [30]. If selected carefully, NTCs will

ameliorate the detection and removal of “background
OTUs”, whether inherent to storage buffers, or originat-
ing from cross-contamination between wells [20] or
DNA extraction methods used [37, 38].
In addition to evaluating DNA extraction kits and

storage buffers, 16S high-throughput studies also need
to consider potential “batch effects” between independ-
ent runs. Large-scale experiments processed over long
periods of time are highly susceptible to batch effects in-
troduced by reagents (DNA extraction kits, PCR re-
agents and sequencing kits), laboratory personnel and
laboratory environment [18, 39]. Although downstream
statistical tools have been introduced to correct for
batch effects [40], it is crucial to minimize the probabil-
ity of confounding during wet lab processes. Sources of
variation arising from different biological groups (for ex-
ample, specimens collected at different ages, from cases
and controls, or from intervention and control groups)
should be distributed evenly across different batches to
avoid batch-effect biases. In order to evaluate batch ef-
fects across different runs, researchers need to carefully
consider sequencing controls most suitable for their
study design. Studies have shown that bacterial mock
community controls are not only useful for evaluation of
DNA extraction processes, amplification and sequencing
steps [41–44], but may also provide insight into repro-
ducibility across runs [45]. Although we support the use
of mock community controls for reproducibility assess-
ment [30]; these controls may not accurately represent
inherent features of the biological specimens under
study and should be supplemented with replicate bio-
logical specimens. Our study provides comparisons be-
tween biological specimens repeated within and between
different sequencing runs and highlight their role in im-
proving the quality of 16S rRNA gene sequencing data
generated from low microbial biomass specimens [30].
As expected, our study showed slightly higher reproduci-
bility between specimens repeated within the same runs
compared to specimens repeated across different runs.
However, we found that the biological nature of NP and
IS specimens under investigation had a larger effect on
reproducibility. Biological specimens of low biomass (<
500 16S rRNA gene copies/μl) showed lower sequencing
reproducibility [46]. This also correlated with the age at
which specimens were collected - the majority of speci-
mens with low reproducibility (and low biomass) were
collected during the first 2 weeks of life. The latter is an
important observation as analyses may be biased when
including “early life” specimens without incorporating
the types of quality checks we report here. Hence, the
sole use of bacterial mock communities may not be suf-
ficient to determine reproducibility of low biomass spec-
imens. Of note, correlations between bacterial biomass
and reproducibility measures are only reliable when
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using appropriate quantification tools and we highly rec-
ommend the use of qPCR approaches targeting the 16S
rRNA gene [47]. In support of the latter, studies have
shown a general over-estimation of DNA concentrations
measured by the NanoDrop® ND-1000 Spectrophotom-
eter in comparison to fluorescence-based quantification
methods such as the Qubit [48, 49], whilst fluorescence-
based quantification methods are less accurate than
qPCR approaches – particularly for low biomass speci-
mens [50–52].
Low biomass biological specimens produce less repro-

ducible sequencing profiles compared to high biomass
specimens as a result of contaminant profiles originating
from reagents or the laboratory environment [15–18],
and from neighbouring high biomass specimens [20].
Cross-contamination between wells may be minimised
by the use of individual tubes as opposed to plates dur-
ing DNA extraction and amplification processes, whilst
reagent contaminants introduced during amplification
processes may be reduced by PCR master mix decon-
tamination protocols [53, 54]. However, these precau-
tionary steps may still need to be supplemented with in
silico identification and removal of contaminants when
dealing with low biomass specimens. In order to opti-
mally identify and apply in silico decontamination to se-
quencing datasets, NTCs need to be selected carefully
[16, 55]. As endogenous NTC contaminant profiles are
introduced to very low biomass biological specimens
during the process of specimen collection and storage,
neat storage buffers should be processed alongside bio-
logical specimens. In the event that storage buffers are
not used to preserve specimens, the DNA extraction kit
lysis buffer could be implemented as NTC during the
process of DNA extraction. If DNA extraction kit lysis
buffer is used as NTCs, it is recommended that the lysis
buffer is exposed to items used during specimen collec-
tion (such as collection tubes, swabs, scoops, etc.) prior
to the process of DNA extraction. The use of water as
NTCs during DNA extraction steps is not recom-
mended, as it may introduce external contaminant pro-
files which are not representative of the specimens or
the DNA extraction kit [56–58]. Both exogenous and
endogenous contaminant profiles present in NTCs add
to the complexity of in silico contaminant identification
as they may differ across batches of specimens collected,
batches of reagents ordered, batches of DNA extractions
and batches of library preparation. This highlights the
importance of including a good representative of NTCs
with each sequencing project - starting with specimen
collection and ending with downstream in silico
analyses.
Our study further showed that the in silico approach

taken to identify and remove potential contaminants is
just as important as identifying and including a good

representative of NTCs during specimen collection,
DNA extraction, library preparation and sequencing
steps. We compared decontamination results from a
widely used method in which all OTUs present in NTCs
are flagged as contaminants and removed from biological
specimens [16, 18, 19, 28] (“NTConly” approach) to a
more sophisticated method using the decontam package
[29] (“NTC+ decontam” approach). To date, few studies
have performed these types of comparisons, especially in
relation to respiratory tract specimens. In addition, we
evaluated these two in silico decontamination processes
by subtracting the maximum proportion of each OTU
identified as a contaminant among NTCs, as opposed to
the complete removal thereof. The decontam package [29]
provides a statistical classification method for identifying
contaminants derived from biological profiles based on
their DNA concentrations [17, 18, 21, 35, 59]. This ap-
proach appeared to perform well on our dataset which
showed clear trends between specimen biomass, diversity,
reproducibility and the frequency of spurious OTUs. Our
results showed that the identification of potential contam-
inants from NTCs without the decontam package
(“NTConly” approach) more frequently identified bacteria
commonly isolated from the nasopharynx as potential
contaminants [15, 60, 61]. In contrast, the decontam pack-
age allowed for better discrimination between likely “true”
and “contaminant” profiles at OTU-level, e.g., OTUs
representing S. equi [62] but not S. pneumoniae, were
identified by the “NTC+ decontam” approach. This em-
phasises the importance of investigating sequencing data
below genus-level resolution [using OTUs or amplicon se-
quence variants (ASVs)] in addition to genus-level analysis
when considering potential contaminants. The result ob-
tained for OTU_56 (S. maltophilia) and others, for ex-
ample OTU-358 (A. calcoaceticus-A. baumannii
complex), OTU-1390 (S. anginosus group) and OTU_863
(A. johnsonii), further highlight potential risks of using a
relative abundance threshold to remove low abundant
reads in silico [35]. All above-mentioned OTUs had less
than 100 reads sequenced per specimen, however, may
represent rare features truly present in biological speci-
mens [31–33, 63]. Also, by randomly setting thresholds to
remove only low abundant reads from the dataset will not
remove abundant contaminants which poses higher risks
for downstream analysis interference. Finally, our results
do not support the use of a “blacklist” approach to remove
reads or taxa previously reported as common contami-
nants [21, 22]. For example, at genus-level, Streptococcus,
Staphylococcus, Haemophilus, Corynebacterium, Acineto-
bacter and Stenotrophomonas have all been listed as po-
tential contaminants by previous reports [15, 30], but are
also common indigenous bacteria of the nasopharynx.
There are several limitations to this study. In the first

section of our paper, only two DNA extraction kits were
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evaluated which do not represent the current assortment
of kits available for DNA extraction from biological
specimens. In addition, these kits were not selected for
evaluation based on their aptness to extract DNA from
low biomass specimens, but rather based on the fact that
they were readily available for use in our laboratory. Fur-
ther, limited numbers of repeats were included as mock
controls during the evaluation of extraction methods. In
the second section of our paper, we primarily included
NP specimens to validate sequencing performance with
limited numbers of IS specimens included for repeat
processing. Finally, in the last section of our paper, we
only assessed two in silico approaches for the identifica-
tion of “potential contaminants”. We did not investigate
the use of tubes as opposed to plates during DNA ex-
traction and amplification steps, nor did we investigate
PCR master mix decontamination protocols [53, 54]
prior to amplification and sequencing.

Conclusions
We have described a stepwise approach to ensuring reli-
able, reproducible results from 16S rRNA gene sequen-
cing of low biomass respiratory specimens. In our
approach, we 1) investigate the performance of DNA ex-
traction kits and the use of different storage buffers on
low and high biomass mock community controls; 2) in-
clude relevant NTCs representing potential background
OTUs present in biological specimens that undergo the
same processing steps as biological specimens; 3) ac-
count for batch effects by including adequate sequencing
controls; 4) establish specimen exclusion criteria based
on reproducibility measures and clustering patterns as
functions of specimen biomass, demographic data (such
as “participant age at specimen collection”), and/or read
counts; 5) denoise sequencing data by removing spurious
OTUs; and 6) explore different in silico approaches to
best correct for contamination. We show the value of
detailed exploratory analyses of sequencing controls to
identify and reduce experimental error.

Methods
We processed NP and IS specimens included in this
study over a total of eleven sequencing runs as part of a
study nested within the Drakenstein Child Health Study
(DCHS) [26]. The DCHS is a population-based birth
cohort study in a peri-urban area of South Africa which
investigates the role of low biomass NP and IS micro-
bial communities in the development of lower respira-
tory tract infection or wheezing illness during infancy
and childhood. Different types of analyses, extraction
and sequencing controls were included to address the
three objectives of this study. A reference guide to
DNA extraction kits, storage buffers/no template con-
trols, bacterial mock communities, technical repeats

and decontamination approaches used in this study is
provided in Table 1.

Extraction and sequencing controls
In summary, each of the eleven sequencing runs
processed as part of the study nested within the
DCHS [26] consisted of four 96-well plates. We in-
cluded controls for DNA extraction (“extraction con-
trols”) (Tables 1 and 2) and other downstream
processes including PCR amplification, library prepar-
ation and sequencing steps (“sequencing controls”)
(Tables 1 and 2).

Extraction controls
We addressed the first objective of our study by includ-
ing four bacterial mock communities as extraction con-
trols across two of the eleven sequencing runs (Table 2).
We used ZymoBIOMICS™ Microbial Community Stand-
ard bacterial cells (Catalog No. D6300, Zymo Research
Corp., Irvine, CA, United States) (“Zymobiomics-Cells”)
to generate the four bacterial mock communities (Table
2, Additional file 1). According to the manufacturer’s
specifications, Zymobiomics-Cells consist of three gram-
negative bacteria within the phylum Proteobacteria
[Pseudomonas aeruginosa (theoretical composition in
terms of 16S rRNA gene abundance: 4.6%), Escherichia
coli (10%) and Salmonella enterica (11.3%)] and five
gram-positive bacteria within the phylum Firmicutes
[Lactobacillus fermentum (18.8%), Enterococcus faecalis
(10.4%), Staphylococcus aureus (13.3%), Listeria monocy-
togenes (15.9%) and Bacillus subtilis (15.7%)].
Zymobiomics-Cells were mixed with two storage buffers
[PrimeStore® Molecular Transport medium (“Primes-
tore”) [64, 65] and a medium containing skim milk, tryp-
tone, glucose, and glycerine (“STGG”)], to further
evaluate the effect of different storage buffers on 16S
rRNA gene sequencing profiles generated from two
DNA extraction methods. Primestore is used as a stor-
age buffer for NP and IS specimens collected for mo-
lecular testing by the parent DCHS study [65], whilst
STGG is widely used to preserve NP specimens intended
for culture [65, 66] and has also been used for 16S rRNA
gene sequencing [67]. In order to limit reagent batch ef-
fects, we respectively pooled Primestore and STGG buffers
with corresponding batch numbers prior to their use.
We generated two bacterial mock communities by sus-

pending 900 μl of Zymobiomics-Cells in 3600 μl of each
of the storage buffers, respectively (Additional file 1).
These bacterial mock communities represented high bio-
mass bacterial communities (“Zymobiomics-Primestore-
high” and “Zymobiomics-STGG-high”) (Table 2, Add-
itional file 1). We further made a 1-in-104 fold dilution
of each of the two high biomass bacterial mock commu-
nities (Table 2, Additional file 1), each representing low
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biomass bacterial communities (“Zymobiomics-Primes-
tore-low” and “Zymobiomics-STGG-low”). High and low
biomass bacterial mock communities were included to
evaluate the effect of bacterial biomass on resultant bac-
terial profiles following the use of two DNA extraction
methods (Table 2, Additional file 1).
Using two extraction methods (automated and man-

ual), we extracted DNA in triplicate from each of the
four bacterial mock communities (Zymobiomics-Primes-
tore-high, Zymobiomics-STGG-high, Zymobiomics-
Primestore-low and Zymobiomics-STGG-low). In prep-
aration for DNA extraction using the automated
method, we vortexed the bacterial mock communities
for 5 s and transferred 400 μl of homogenised bacterial
mock communities to ZR BashingBead™ Lysis Tubes
containing 0.5 mm bashing beads (catalogue no. ZR
S6002–50, Zymo Research Corp., Irvine, CA, United
States). We performed a mechanical off-board lysis step
at 50 Hz for 5 min using the TissueLyser LT™ (Qiagen,
FRITSCH GmbH, Idar-Oberstein, Germany). We centri-
fuged the lysate at 10000 rpm for 1min and loaded
250 μl of the supernatant onto the QIAsymphony® SP in-
strument (Qiagen, Hombrechtikon, Switzerland) for
DNA extraction. We used the DSP Virus/Pathogen Mini
Kit® (catalogue no. 937036, Qiagen GmbH, Hilden,
Germany) (“Kit-QS”) to carry out automated extractions
of DNA with the elution volume set to 60 μl. For manual
DNA extractions, we followed the manufacturer’s in-
structions as outlined by the ZymoBIOMICS DNA
Miniprep Kit (catalogue no. ZR D4300, Zymo Research
Corp., Irvine, CA, United States) (“Kit-ZB”). We vor-
texed the bacterial mock communities for 5 s and trans-
ferred 250 μl of homogenised bacterial mock
communities to ZR BashingBead™ Lysis Tubes contain-
ing a mix of 0.1 and 0.5 mm bashing beads (catalogue
no. ZR S6012–50, Zymo Research Corp., Irvine, CA,
United States) together with 750 μl ZymoBIOMICS™
Lysis Solution as per manufacturer’s instructions. We
performed a mechanical lysis step at 50 Hz for 5 min
using the TissueLyser LT™ (Qiagen, FRITSCH GmbH,
Idar-Oberstein, Germany) before continuing with the
manual extraction steps as outlined by the manufac-
turer’s protocol. We eluted the DNA in a final volume
of 100 μl as per manufacturer’s recommendations. We
processed neat Primestore and STGG as no template ex-
traction controls (Table 2) alongside the four bacterial
mock communities using the two methods described
above. All NTC extraction aliquots were obtained from
the respectively pooled Primestore and STGG buffers
used to generate the bacterial mock communities. This
was done to limit reagent batch effects as the primary
aim was to determine the effect of different storage
buffers and bacterial biomass on extraction profiles
using two DNA extraction kits.

Sequencing controls
We allocated six wells per 96-well plate to sequencing
controls during each of the eleven sequencing runs. Se-
quencing controls included “bacterial mock community
DNA”, “technical repeats” and “no template controls”
(“NTCs”) (Table 2). Technical repeats and NTCs were
used to address the second and third objectives of our
study.
Bacterial mock community DNA are commercially

available pre-extracted genomic DNA mixtures from
bacterial communities which did not undergo DNA ex-
traction in our laboratory. We included a minimum of
one of two types of bacterial mock community DNA
controls per 96-well plate across the eleven runs: 1) 1-
in-10 fold dilutions of HM-783D (BEI Resources,
NIAID, NIH as part of the Human Microbiome Project,
Manassas, VA, USA) (“BEI-DNA”) and 2) 1-in-10 fold
dilutions of ZymoBIOMICS™ Microbial Community
DNA Standard (catalogue no. D6305, Zymo Research
Corp., Irvine, CA, United States) (“Zymobiomics-DNA”)
(Table 2). HM-783D represents a staggered mixture of
genomic DNA from 17 genera (theoretical 16S rRNA
gene composition: Pseudomonas aeruginosa (2.2%),
Escherichia coli (21.9%), Rhodobacter sphaeroides
(21.9%), Clostridium beijerinckii (2.2%), Streptococcus aga-
lactia, S. mutans and S. pneumoniae (24.1%), Staphylococ-
cus aureus and S. epidermidis (24.1%), Bacillus cereus
(2.2%), Acinetobacter baumannii (0.2%), Neisseria meningi-
tidis (0.2%), Lactobacillus gasseri (0.2%), Listeria monocyto-
genes (0.2%), Helicobacter pylori (0.2%), Propionibacterium
acnes (0.2%), Enterococcus faecalis (0.02%), Bacteroides
vulgatus (0.02%), Actinomyces odontolyticus (0.02%) and
Deinococcus radiodurans (0.02%) [27]). ZymoBIOMICS™
Microbial Community DNA Standard represents an even
mixture of genomic DNA from eight genera (theoretical
16S rRNA gene composition: previously described for
Zymobiomics-Cells in the DNA extraction section above).
For the purpose of this study, we only report on data from
BEI-DNA (n = 3) and Zymobiomics-DNA (n = 8) processed
in the same sequencing runs as the bacterial mock commu-
nities used to compare DNA extraction methods.
Zymobiomics-DNA was used as a reference when evaluat-
ing two DNA extraction methods.
Technical repeats refer to DNA extracts from NP and

IS specimens, randomly selected for repeat amplification
and sequencing across the eleven runs (Table 2). We ex-
tracted DNA from all NP and IS specimens processed
across the eleven runs using the automated extraction
platform and Kit-QS, as described above. We randomly
selected a single biological specimen’s DNA extract from
any of the 90 biological specimens processed per 96-well
plate for repeat amplification and sequencing (“within-
run repeats”). We further randomly selected a single bio-
logical specimen’s DNA extract from any of the 360

Claassen-Weitz et al. BMC Microbiology          (2020) 20:113 Page 20 of 26



biological specimens processed per run for repeat ampli-
fication and sequencing on an independent sequencing
run (“between-run repeats”). Technical repeats were
used to validate 16S rRNA gene sequencing data from
low biomass specimens and to investigate decontamin-
ation processes.
In addition to technical repeats, we selected neat Pri-

mestore extracted using Kit-QS (processed alongside NP
and IS specimens) as NTCs. The latter was included as
NTCs due to the fact that NP and IS specimens col-
lected for molecular analyses in the DCHS parent study
(also included as technical repeats in this study) are
stored in Primestore and extracted using Kit-QS [65].
We processed a minimum of one Primestore per 96-well
plate, but only included Primestores with 16S rRNA
gene quantification data for downstream analysis (Table
2). All Primestores included in this study underwent
DNA extraction, PCR amplification, library preparation
and sequencing steps alongside technical repeats. Pri-
mestores processed across the eleven sequencing runs
were used to evaluate the quality of 16S rRNA gene se-
quencing data and to correct for potential contamination
inherent to 16S rRNA gene sequencing. For the purpose
of comparing different extraction methods, we also in-
cluded Primestore and STGG extracts (each extracted in
triplicate using Kit-QS and Kit-ZB) processed alongside
extraction controls (Table 2).

Amplicon library preparation and Illumina sequencing
We measured DNA yield and purity from extraction and
sequencing controls using the NanoDrop® ND-1000. We
further determined total bacterial load present in extrac-
tion and sequencing controls using a previously de-
scribed qPCR method targeting the 16S rRNA gene [47].
We amplified the V4 hypervariable region of the 16S

rRNA gene using a two-step amplification approach
[68]. A total of 7 μl of DNA from all extraction and se-
quencing controls was included as template during the
first PCR. During the second PCR, we used 7 μl of the
PCR product from the first PCR as template to add
adapters, barcodes, 12–15 staggered nucleotides and
priming regions [68]. PCR conditions and modified
primers used in the two-step amplification approach
have previously been published [68, 69].
We purified amplicons by adding Agencourt® AMPure®

XP PCR Purification solution (catalogue no. A63881,
Beckman Coulter, CA, USA) to amplicons from the sec-
ond PCR at a 0.65:1 (bead:amplicon) ratio [68]. We used
agarose gel electrophoresis and the GloMax®-Multi De-
tection System (Promega Corporation, Madison, WI,
USA) together with the QuantiFluor® dsDNA System
(catalogue no. E2670, Promega Corporation, Madison,
WI, USA) to verify and quantify amplicons. Following
quantification of amplicons, we pooled amplicons from

each run (384 wells per run) at 70 ng and purified the
pool using Agencourt® AMPure® XP PCR Purification
solution at a 1:1 ratio. We quantified the purified pool
using the Qubit® Fluorometer (Invitrogen, Life Tech-
nologies, CA, USA) and Qubit™ dsDNA BR Assay Kit
(catalogue no. Q32850, Invitrogen, Life Technologies,
CA, USA). We loaded a total of 7000 ng of the purified
pooled library on a 1.6% agarose gel and performed elec-
trophoresis at 35 Voltz for 30 min, 40 Voltz for 45 min,
70 Volts for 180 min and 50 Voltz for 60 min. Purifica-
tion of the excised 16S library using the QIAquick Gel
Extraction kit (QIAgen, MA, USA) followed agarose gel
electrophoresis [68].
For each of the eleven runs, we quantified libraries

and determined their fragment sizes using the KAPA Li-
brary Quantification Kit (catalogue no. KK4844, KAPA
Biosystems, Boston, MA, USA) and the Agilent DNA
1000 kit (Agilent Technologies, CA, USA), respectively.
We diluted libraries to 4 nM using Buffer EB (Qiagen,
Hilden, Germany), after which we denatured and neu-
tralized libraries using 0.2 N NaOH and HT1
hybridization buffer. Over the span of eleven sequencing
runs, we gradually increased library concentrations with
each run (ranging between 4 pM and 7 pM per library)
to reach optimal flow cell loading concentrations. Each
sequencing run contained the PhiX internal sequencing
control spiked at 15%. We loaded denatured libraries
onto the MiSeq Reagent Kit v3 (600-cycle) (Illumina,
San Diego, CA, USA) and performed sequencing on the
Illumina® MiSeq™ platform as per manufacturer’s in-
structions [70, 71].

Bioinformatic steps
We used FastQC and MulitQC packages [72, 73] to as-
sess sequence quality of FASTQ files. We merged
paired-end sequence reads and performed quality filter-
ing using the UPARSE algorithm in USEARCH version
10.0; whereby UPARSE merge_fastq (fastq_maxdiff set
to 3) and UPARSE filter_fastq (sequences truncated to
250 bp and fastq_maxee set to 0.1) commands were
used, respectively [74]. We used USEARCH10 sortbysize
[75] to de-replicate sequences occurring more than once;
USEARCH10 cluster_otus (clustering radius set to 3)
[75] to cluster sequences into operational taxonomic
units (OTUs), USEARCH10 uchime2_ref tool [75] to re-
move chimeras; and USEARCH10 usearch-global [75] to
determine OTU counts. We used the USEARCH10
uchime2_ref tool for further chimera detection and re-
moval in addition to the USEARCH10 cluster_otus com-
mand as it provides a reference for common chimeric
sequences, considering the low biomass nature of speci-
mens included in our study. We used the Quantitative
Insights Into Microbial Ecology (QIIME 1.9.0) suite of
software [76] to assign taxonomy (using SILVA database
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[77, 78] and a sequence similarity set to 97%) via the
RDP classifier method [79] and the assing_taxonomy.py
command [76]. The Nextflow tool [80] was used to loop
the bioinformatics processing workflow.

Data analysis
We used R software version 3.5.1 and RStudio software
version 1.1.456 [81] for data analysis and visualisation.
Prior to analyses, we transformed count data to compos-
itional data [82–84]. We conducted all analyses at OTU-
level.
In order to evaluate the effect of two DNA extraction

methods (Kit-QS and Kit-ZB) on 16S rRNA gene bacter-
ial profiles, we compared sequencing profiles from DNA
extracts from high and low biomass bacterial mock com-
munities and no template controls (NTCs). Each of
these sets of controls were generated using two storage
buffers (Primestore and STGG). We used Principal Co-
ordinate Analysis of beta diversities such that the dis-
tances between points approximate the beta diversity
between each pair. We conducted Permutational Multi-
variate Analysis of Variance (PERMANOVA) using the
function adonis from the package vegan [85] on beta di-
versities with 1000 permutations. We further evaluated
the performance of the two DNA extraction methods by
comparing how efficiently they extract hard- and-easy-
to-lyse bacteria in relation to the reference profile
(Zymobiomics-DNA). Since the data is compositional,
the isometric logratio transformation (ilr) was applied
with the [pivotCoord] function in the R package rob-
Compositions [86] such that the bacteria of interest rep-
resented the pivot coordinate. This result in the data
being represented in an equivalent Euclidean space
where single factor analysis of variance (ANOVA) is per-
formed, and Tukey Honest Significant Difference simul-
taneous confidence intervals computed.
We evaluated the quality of 16S rRNA gene sequen-

cing data from low biomass specimens by comparing
OTU-level profiles [including alpha diversity (Shannon
diversity index [87])] generated from technical repeats
and Primestore]. We investigated correlations between
specimen biomass and specimen features including par-
ticipant age at specimen collection, read counts and
alpha diversity. Lambda scaled [88] logarithm of ratio-
transformed data (log-ratio) biplots (incorporating data
adjusted in a Bayesian context to remove zeros [89–91]),
were used to compare bacterial profiles obtained from
technical repeats and Primestore. The [vegdist] function
offered by the vegan package [85] in R was used to cal-
culate the Bray Curtis dissimilarity index [92–95] re-
quired for complete linkage (furthest neighbour)
clustering analyses. The [hclust] function offered by die
stats package [81] in R was used to perform unsuper-
vised agglomerative clustering analysis at OTU-level. We

calculated sequencing reproducibility [coefficient of de-
termination in linear regression analysis (R2)] by com-
paring the proportions of each OTU present in a
specimen to proportions present in their technical re-
peats [96].
We addressed two in silico approaches to correct for

potential contamination inherent to 16S rRNA gene se-
quencing using technical repeats and Primestore in three
steps. The first step entailed denoising of the dataset.
We removed “spurious OTUs” (defined as OTUs with <
5 reads across all sequenced technical repeats and Pri-
mestore) from the dataset. During the second step, we
removed biological specimens with 16S rRNA gene copy
numbers < 500/μl as these low biomass specimens pro-
duced sequencing profiles with poor reproducibility. The
16S rRNA gene copy number cut-off of < 500/μl was
based on data generated by this study (summarised in
the previous section), which corresponds with findings
from previous reports [46]. Following steps 1 and 2, we
compared two in silico approaches (“NTConly” and
“NTC +Decontam”) for identifying “potential contami-
nants” from the dataset generated. Using the “NTConly”
approach, we compared all OTUs sequenced from Pri-
mestore to those sequenced from technical repeats. If
we observed a match between OTUs present in both
Primestore and technical repeats, we referred to these
OTUs as “potential contaminants”. We subtracted the
maximum proportions of each contaminant OTU
present in Primestore from technical repeats. The sec-
ond approach, “NTC +Decontam”, used the decontam
package in R [29] to identify potential contaminants. We
implemented the isContaminant function [29] and a
combination of the “frequency- and prevalence-based
methods” offered by the decontam package [29]. The
“frequency-based method” identifies contaminants based
on the frequency of each OTU as a function of the con-
centration of specimen biomass. The “prevalence-based
method” offered by the decontam package identifies con-
taminants based on the prevalence of each OTU in true
positive (biological) specimens versus the prevalence in
NTCs [29]. Following the identification of potential con-
taminants using the decontam package, we subtracted
the maximum proportions of each contaminant OTU
present in Primestore from technical repeats.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12866-020-01795-7.

Additional file 1. Four bacterial mock communities used to evaluate
the effect of DNA extraction methods, storage buffers and bacterial
biomass on 16S rRNA gene sequencing profiles. Zymobiomics-
Primestore-high and Zymobiomics-Primestore-low: ZymoBIOMICS™ Micro-
bial Community Standard bacterial cells in DNA/RNA Shield™ (Zymobio-
mics-Cells) suspended in PrimeStore® Molecular Transport medium
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(Primestore); Zymobiomics-STGG-high and Zymobiomics-STGG-low:
Zymobiomics-Cells suspended in skim-milk tryptone glucose glycerol
transport medium (STGG).

Additional file 2. Operational taxonomic units (OTUs) sequenced from
bacterial mock community DNA controls. Manufacturers’ specified versus
observed OTU composition from BEI-DNA (A-B) and Zymobiomics-DNA
(n = 8) (C-D) mock controls. Panels A and C represent OTUs from bacterial
genera detected at mean proportions of > 0.5% from BEI-DNA (A) and
Zymobiomics-DNA (C), respectively. Panels B and D represent OTUs from
bacterial genera detected at mean proportions of < 0.5% from BEI-DNA
(B) and Zymobiomics-DNA (D), respectively. Bacterial genera in grey font
are expected in the bacterial mock community DNA controls but missing
from the profiles generated in our laboratory. Bacterial genera in red font
are not expected in mock community DNA. OTUs in red font are not
expected in mock community DNA or unclassifiable at species-level.
Bacterial genera are colour-coded according to the phylum to which they
belong (Shades of red: Firmicutes; shades of blue: Proteobacteria; shades
of yellow: Actinobacteria; olivegreen: Bacteroidetes; seagreen:
Cyanobacteria; purple: Deinococcus-Thermus and grey: unclassified).

Additional file 3. Bacterial composition of Zymobiomics-DNA (n = 8)
compared to Zymobiomics-Primestore-high (n = 6) and Zymobiomics-
STGG-high (n = 6). The two high biomass mock communities,
Zymobiomics-Primestore-high and Zymobiomics-STGG-high, represent
triplicate extractions using two extraction methods (blue filled circles: Kit-
QS and red filled circles: Kit-ZB). Zymobiomics-DNA (darkgreen filled
circles) were included to validate sequencing profiles generated using
the two extraction methods. Unsupervised hierarchical clustering
distances are based on Bray Curtis dissimilarity indices calculated at OTU-
level. Differences between bacterial mock controls are shown at genus-
level, with colour-codes representing phylum-level classification (Shades
of blue: Proteobacteria, shades of red: Firmicutes). Genera with proportions
< 1% in each of the specimens are grouped together as “Other” and
shown in grey.

Additional file 4. Differences between hard-and-easy to lyse bacterial
profiles from Zymobiomics-DNA (n = 8) and extracts from high bacterial
mock community controls [Zymobiomics-Primestore-high (n = 6) and
Zymobiomics-STGG-high (n = 6)] using Kit-QS and Kit-ZB. A) The Tukey
Honest Significant Difference simultaneous confidence intervals
calculated at OTU-level indicate whether bacterial profiles extracted from
high biomass bacterial mock community controls using Kit-QS and Kit-ZB
differ significantly from Zymobiomics-DNA, and B) between Kit-QS and
Kit-ZB. Confidence intervals computed on the isometric logratio
transformation (ilr) scale indicates statistical significance at a 5%
significance level when it excludes zero. Blue confidence intervals:
significant findings for Kit-QS; Red confidence intervals: significant
findings for Kit-ZB.

Additional file 5. Sequencing output from technical repeats (n = 209)
stratified by 16S rRNA gene copy numbers and participant age at
specimen collection.

Additional file 6. Sequencing reproducibility is associated with
participant age at specimen collection, 16S rRNA gene copy numbers
and read counts.

Additional file 7. Genus-level classification of OTUs identified as
potential contaminants using “NTConly” and “NTC + decontam” in silico
approaches.

Additional file 8. Summary of FASTA sequences for each OTU classified
in the dataset.

Additional file 9. OTU- and genus-level proportions prior to (“No
decontamination”) and after removing contaminants identified using two
in silico (“NTConly” and “NTC + decontam”) approaches.

Additional file 10. Shifts in OTU-level proportions prior to and following
the removal of “potential contaminants” using two in silico approaches
for contaminant identification. Per specimen shifts (n = 148) in bacterial
proportions are shown for eight OTUs classified as four genera A)
Staphylococcus, B) Streptococcus, C) Acinetobacter and D)
Stenotrophomonas. Open circles and smoothing splines (representing a
factor of 2x the standard deviation) denote bacterial proportions (Y-axis)

for each of the specimens (X-axis). Red: Proportions prior to
decontamination; Blue: Proportions following the removal of “potential
contaminants” identified using the “NTConly” approach; Yellow: Propor-
tions following the removal of “potential contaminants” identified using
the “NTC + decontam” approach.
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