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Summary 
 

Resorcinarenes are macrocyclic products formed from the condensation of aldehydes (aliphatic or aromatic) and 

resorcinol and have been used in a wide range of applications since their first synthesis. Applications include: 

HPLC stationary phases for the separation of pyrimidine bases, racemic drugs and isomers, the selective 

extractions of lanthanides and actinides, as molecular receptors, catalysis, NMR chiral shift agents, GC 

separations and as starting materials for the synthesis of macrocyclic compounds (e.g. cavitands and carcerands) 

to name but a few. The use of resorcinarenes in catalysis is still quite new and unexplored, while catalysis using 

calix[4]arenes, a related macrocycle, has been widely studied. In this thesis it was attempted to synthesise a C2v 

symmetric resorcinarene precursor that could be further functionalised to form distal bidentate ligands for 

coordination to transition metals. These compounds would then ultimately be used in catalytic testing, 

especially for Pd catalysed C-C bond formation. 

 

A dibromo resorcinarene precursor was synthesised starting from resorcinarene, using methodology developed 

by Shivanyuk. This molecule was functionalised with a small range of different electrophiles using lithium 

halogen exchange methodology, although low yields were returned for the expected distal resorcinarene 

compounds. Other methods of functionalisation of the resorcinarene, using an anionic ortho-Fries 

rearrangement and the reduction of a dinitrile resorcinarene to amine and aldehyde functionalities proved 

unsuccessful. 

 

Using a dithioether resorcinarene a di-nuclear coordination compound was formed with Pd(II). This compound 

was tested for catalytic activity with a Heck reaction, showing low yields for the coupling of styrene with 

bromobenzene.  
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Opsomming 
 

Resorsinarene is makrosikliese produkte wat gevorm word deur die kondensasie van aldehiede (alifaties of 

aromaties) met resorsinol en word in ‘n verskeidenheid van toepassings gebruik sedert hulle eerste sintese. 

Tipiese voorbeelde sluit in: stationêre fases vir die HPLC-skeiding van pirimidien-basisse, rasemiese 

farmaseutiese middels en isomere, die selektiwe ekstraksie van lantaniede en aktiniede, molekulêre reseptore, 

katalise, chirale verskuiwingsreagense vir KMR spektrometrie, GC-skeidings en as uitgangverbindings vir die 

sintese van ander makrosikliese verbindings (bv. kavitande en karserande). Die gebruik van resorsinarene in 

katalise is ’n splinternuwe onontginde veld. In teenstelling hiermee is calix[4]areen, ’n verwante makrosikliese 

verbinding, baie meer bestudeer en vir katalise gebruik. Die doel van hierdie tesis was om ’n C2v simmetriese 

uitgangstof te sintetiseer wat verder gefunksionaliseer kan word om distale, bidentate ligande vir koordinasie 

met oorgangsmetale te lewer. Daar is beplan om die katalitiese eienskappe van die komplekse te toets, veral vir 

Pd-gekataliseerde C–C-koppelings reaksies.  

 

Deur gebruik te maak van ’n protokol wat deur Shivanyuk ontwikkel is, is ’n dibromo-resorsinareen 

gesintetiseer uit resorsinareen. Verskillende elektrofiele is in ’n litium-halogeen uitruilreaksie gebruik om ’n 

beperkte verskeidenheid nuwe ligande te sintetiseer wat verskillende funksionele groepe besit. Ongelukkig was 

die opbrengste aan distale ligande baie laag en ander metodes is dus ook ondersoek om die funksionalisering te 

bewerkstellig. ’n Anioniese orto-Fries herrangskikkingsreaksie en die reduksie van ’n dinitriel-resorsinareen om 

amien- en aldehiedfunksies te lewer, was ook onsuksesvol. 

 

Die reaksie tussen ‘n Pd(II) sout en ‘n ditioeter-gederivatiseerde resorsinareen het ‘n koordinasie verbinding met 

twee metaalkerne gelewer. Hierdie kompleks is deur middel van ‘n Heck-koppelingsreaksie vir katalitiese 

aktiwiteit getoets, maar het lae opbrengste gelewer in die koppeling van stireen en bromobenseen.  
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Introduction 

1.1 Review of Resorcinarene Chemistry 

Resorcinarenes (Figure 1.1) are macrocyclic products formed from the condensation of aldehydes 

(aliphatic or aromatic) and 1,3-dihydroxybenzene (resorcinol). The first recorded synthesis of 

resorcinarenes was in 1872 by Adolf von Baeyer, in his studies on the condensation of phenol-type dyes 

with aldehydes in acidic media.1 The correct structure of these compounds was proposed in 1940 by 

Niederl and Vogel,2 and confirmed in 1968 by Ertdman et al. using single crystal X-ray diffraction.3, 4 

These compounds are known by a host of trivial names which includes calix[4]resorcinarenes,5 Högberg 

compounds,6 octols7, 8 and recently resorcinarenes became the staple term used in the literature.9  

Resorcinarenes have been used in a wide range of applications since their first synthesis. Applications 

include: HPLC stationary phases10-15 for the separation of pyrimidine bases,13 racemic drugs10 and 

isomers,11, 14 the selective extractions of lanthanides and actinides,16-24 as molecular receptors,25-36 NMR 

chiral shift agents,37, 38 GC separations39, 40 and as starting materials for the synthesis of macrocyclic 

compounds (e.g. cavitands and carcerands) to name but a few.41-43 A few reviews on different aspects of 

these molecules have been published, 44-50 with the early review of Timmerman being a good general 

introduction to these molecules.50 

 

Figure 1.1. General Structure of Resorcinarenes (R=aliphatic/aromatic) 

1.1.1 Synthesis of Resorcinarenes 
The synthesis of resorcinarenes can be achieved in high yields using a simple one-pot reaction. The 

general method entails the condensation of an aldehyde (aromatic or aliphatic) with resorcinol in an acidic 

alcoholic medium after which the cyclic product crystallises out of solution; depending on the aldehyde 

used, different reaction conditions are needed for optimum product formation.8 In some cases it is also 

necessary to add water to the mixture to facilitate the crystallisation process.51 The simplicity of this is 

that the product can be collected by filtration and purified using recrystallisation. In the late 1980’s Cram 
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et al. reported a methodical study on the influences of functional groups on the aldehyde and resorcinol in 

the synthesis of resorcinarenes.8 It was shown that using deactivating groups (e.g. NO2, Br) on the 2 

position in resorcinol lead to no cyclic products being formed. This was also the case when using very 

bulky aldehydes or aliphatic aldehydes with functionalities too close to the reaction centre e.g. glucose or 

ClCH2CHO.8, 52 

Alternative methods of synthesising these compounds were also developed over the past few years, since 

using the standard method hindered the formation of certain products, for example those of partially 

alkylated resorcinol units.52 Most of these alternative methods use Lewis acids to perform the 

condensation. Examples of this include the condensation of benzaldehyde with resorcinol,53 the treatment 

of 2,4-dimethoxybenzyl alcohol with trifluoroacetic acid,54 a tetrameric condensation of 2,4-

dimethoxycinnamates,55-57 and an condensation using 2 equivalents of BF3·OEt2 in anhydrous 

dichloromethane.58, 59  

More recent methods include a condensation of aldehydes with electron withdrawing groups on the 2 

position of resorcinol in alkaline conditions,60 microwave assisted synthesis using either mineral acids or 

a Keggin type 12-tungstophosphoric acid61 and a solvent free synthesis by grinding the aldehyde and 

resorcinol together with a catalytic amount of p-toluenesulfonic acid.62 This variety of methods indicates 

the flexibility and wide range of products that can be formed by a simple reaction under various 

conditions. 
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Scheme 1.1. General synthesis of resorcinarenes: R = aliphatic or aromatic 
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1.1.2 Mechanism of Resorcinarene Condensation 

 

Scheme 1.2. Proposed mechanism for resorcinarene condensation according to the work of Weinelt and 

Schneider. 

In 1991 Weinelt and Schneider proposed a mechanism for the acid-catalysed formation of resorcinarenes 

under homogeneous conditions (Scheme 1.2).52 For this they chose to study the condensation of 

resorcinol and ethanal in a methanol/HCl solution. Using high-field 1H NMR spectroscopy they could 

follow the build-up of intermediate oligomers and rings and could quantitatively assign these. 

Under the reaction conditions the electrophile stems not from the aldehyde, but from the rapidly formed 

dimethyl acetal B. It was ascertained that the formation of the tetrameric F occurred via sequential 

additions of B with resorcinol units to form intermediate oligomers C-E or higher polymerisation 

compounds with more than four resorcinol units. These higher polymers are present in concentrations of 
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up to 45% at intermediate reaction times, but largely disappeared towards the end due to the condensation 

reaction being reversible. The dimers C and trimers D can be followed and assigned in the reaction, but 

no tetramers F were found on the NMR time scale in sufficiently high yields, due to the fast cyclisation of 

the tetramer. The fast cyclisations could be explained by the conformation that the tetramer adopts. The 

tetramer folds itself in such a way as to maximise the amount of hydrogen bonds that the different 

phenolic groups can form. This ensures that the two ends of the tetramer are close to one another and it is 

cyclised rapidly by B. It was also found that all intermediate compounds were found as resorcinol and not 

as hydroxyethyl units at the terminal positions, which was attributed to the fast reaction of such 

benzhydrols under the acidic conditions used.63  

Kinetic studies showed that the chain growth and depolymerisation occurs quite fast and that cyclisation 

occurs faster than ring opening. This and the fact that under homogeneous conditions the resorcinarene 

tetramer is insoluble in the reaction media, forces the equilibrium to the far right and results in high yields 

of product. 

1.1.3 Conformational Aspects of Resorcinarenes 
Due to the non-planarity of resorcinarenes they can exist in many different isomeric forms. The 

stereochemistry of these molecules is generally defined as a combination of three stereochemical 

elements:  

 

Figure 1.2. The five principle symmetrical arrangements that resorcinarens can adopt. 
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1) The conformation of the macrocyclic ring which can adopt five principle symmetrical arrangements. 

These include a crown (C4v), boat (C2v), chair (C2h), saddle (D2d) and diamond (Cs) conformations (Figure 

1.2).  

2) The relative configuration of the substituents at the methylene bridges giving all cis (ccc), cis-trans-cis 

(ctc), cis-cis-trans (cct) and cis-trans-trans (ctt) arrangements (Figure 1.3). 

3) The individual configuration of the substituents at the methylene bridges which, in conformations of 

the macrocycle with C symmetry, may be either axial or equatorial. 

Although a great many combinations can be formed from these three elements only four stereoisomers 

have been found experimentally.50 These were investigated in detail by various groups using dynamic 

NMR and X-ray diffraction studies of resorcinarenes and their octaester derivatives.8, 51, 64-66 

 

Figure 1.3. The relative configurations that the substituents on the methylene bridges can adopt. 

1.2 Functionalisation of Resorcinarenes 

Resorcinarene molecules have two zones that could be accessed for functionalisation, namely the upper 

and lower rim of the molecule (Figure 1.4). Functionalisation of the lower rim usually begins from an 

already functionalised aldehyde;67-70 These reactions will not be covered in this review. The upper rim of 

the molecule also exhibits two possible sites for chemical modifications: the phenolic groups and the 

ortho positions of the resorcinol moiety. For this review we will focus on the functionalisation of the 

ortho positions on the resorcinarene with special reference to selective methods of forming distal 

functionalised products. 

 

Figure 1.4. Representation of the different areas of functionalisation on a resorcinarene  
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1.2.1 Electrophilic Aromatic Substitution 
Owing to the presence of two electron donating phenolic groups the ortho position of the resorcinarene is 

highly activated for electrophilic aromatic substitution reactions. One of the easiest methods of 

functionalising this is by bromination with N-bromosuccinimide (NBS) returning the tetrabrominated 

product in up to 80% yield (Scheme 1.3).7 

 

Scheme 1.3 Bromination of resorcinarenes. Reagents and reaction conditions: a) NBS, 2-butanone 

The Mannich reaction, also known as �-aminoalkylation, is one of the main reactions employed in 

functionalisation of resorcinarenes and is a very flexible and essential method of forming carbon-carbon 

bonds.71 This method relies on the reaction of amines (ammonia, primary, secondary) with aldehydes 

(mostly formaldehyde) on CH-acidic compounds. These reactions can be base- or acid-catalysed and 

yields depend greatly on the reagents used.  

 

Scheme 1.4. Typical example of an aromatic Mannich reaction. Reagents and reaction conditions: a) 

HNR2, formaldehyde, H+/OH- 
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The first example of this reaction on resorcinarenes was performed by Matsushita in 1993 (Scheme 1.5).72 

Mannich reactions with primary and secondary amines were performed in the presence of formaldehyde 

to form tetra-substituted resorcinarenes in good yields. It was also found that the primary amines reacted 

in a second Mannich-type reaction to form 1,3-dioxazine rings (product b in Scheme 1.5) with one of the 

phenolic hydroxyl groups. This was followed by an increasing number of publications using this 

methodology and especially in the synthesis of chiral resorcinarenes of which only a few are referenced 

here.9, 73-77  

 

Scheme 1.5. Matsushita’s functionalisation of resorcinarenes with the Mannich reaction using various 

secondary (a) and primary (b) amines.  

1.2.2 Synthesis of distal-functionalised resorcinarenes 
In 1997 Konishi reported a selective distal bromination of resorcinarenes using two equivalents of NBS in 

methyl ethyl ketone (product in Figure 1.5).78 However, other authors reported that this method was not 

entirely effective in producing distal products in high yields as originally published.78-80 

 

Figure 1.5. Product from Konishi’s selective bromination 

An earlier method of selective synthesis was attempted by the group of Reinhoudt in 1996 (Scheme 

1.6).81 A tetramethyl resorcinarene cavitand was brominated using a free radical process with AIBN and 

NBS. This tetrakis(bromomethyl) product was allowed to react with less than four equivalents of 

potassium phthalimide to form a general statistical mixture of products that could be separated by column 
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chromatography. This was the first example of the formation of a distally substituted cavitand, without 

loss of functionality on the other two positions. 

Various groups also reported that by using triply bridged resorcinarene skeletons, the different rates of 

reactivity of the bromines on these rings could be used to functionalise the molecule. These reactions are 

generally low yielding and need a lot of tailoring to obtain the final product.82-84 

The poor selectivities obtained in this approach would not suffice for our use and two other, more 

effective, methods will be introduced. Due to the importance of each method in this work a short 

overview of the chemistry will be given followed by the uses of it on resorcinarenes. 

 

X1 X2 X3 X4 Yield (%) 

phth phth phth phth 2 

phth Br Br Br 8 

phth Br phth Br 25 

phth phth Br Br 12 

phth phth phth Br 28 

 

Scheme 1.6. Reinhoudt’s synthesis of distal resorcinarenes in refluxing toluene using two equivalents of 

potassium phthalimide.  
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1.2.2.1 Selective lithium-halogen exchange-an overview85 

In the late 1930’s Wittig and Gilman described the use of lithium reagents to synthesise aryllithium 

intermediates via a lithium-halogen exchange reaction.86-89 This discovery prompted Gilman to use this 

reaction as a method of introducing electrophiles onto aryls in a regiospecific manner (Scheme 1.7).89 

 

Scheme 1.7. Simplified synthesis of a new product through lithium-halogen exchange (step 1) and 

quenching with an electrophile (step 2). (X=halogen, R=alkyl/aryl, E+=electrophile) 

Subsequent studies on aryl compounds brought three important features of these reactions to the fore:90, 91  

1) The litium-halogen exchange reaction is an equilibrium process favouring the formation of a less basic, 

stable organolithium. This meant that nBuLi could be used to form organolithiums from aryl halides at 

low temperature, due to the reaction of the formed aryllithium being slow with the BuX.92 

2) The rate of the reaction is significantly influenced by the aryl halide used for the exchange reaction. 

Aryl iodides and bromides are the most useful, with the iodide exchange occurring faster than the 

bromine-lithium exchange. Aryl chlorides and fluorides tend to rather deprotonate (ortholithiate),85 

leaving benzyne intermediates, than undergoing exchange and thus making them not suitable for use in a 

system where an exchange reaction is needed.93, 94 Some instances of chlorine-lithium exchange on vinyl 

carbons have been shown to occur if there are other halogens to stabilise the resultant vinyllithium.95 

Therefore the order of the rate of exchange is as follows; ArI > ArBr > ArCl >> ArF. 

3) Performing these reactions in ethereal solvents accelerates the exchange, even at temperatures close to 

the freezing point of diethyl ether and tetrahydrofuran. This fast reaction allows the exchange to be 

favoured over deprotonation and the formation of by-products.  

 

Scheme 1.8. Polar mechanism of aryllithium formation via the ate complex 

The mechanism by which exchange reactions proceed can be through either one of two possiblilities; a 

radical mechanism,96, 97 or one involving a nucleophilic substitution at the halogen with an ate complex as 

an intermediate (Scheme 1.8).98-100 Studies have shown that aryl halides tend to react via an ate complex, 
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primary alkyl iodides via a polar mechanism, secondary alkyl iodides reacts via both mechanisms and 

alkyl bromides via a radical mechanism.101  

 

Scheme 1.9. Larsen’s selective functionalisation on calix[4]arene 

In 1996 Larsen et al.102 reported a selective lithium-halogen exchange reaction on tetrabrominated 

calix[4]arenes (Scheme 1.9). They demonstrated that by using two equivalents (and in some cases an 

excess) of nBuLi as lithiating agent, followed by electrophilic quench, they could selectively synthesise 

the distal functionalised calix[4]arene product in high yields and purity (61-93% depending on 

electrophile and starting material).  

This same concept was also applied on resorcinarene molecules by Sherburn.79, 103, 104 A tetrabromo 

resorcinarene cavitand was treated with 2.1 equivalents of nBuLi at −78 °C in tetrahydrofuran and 

quenched after 15-20 minutes with a variety of electrophiles (DMF, methyl iodide, iodine, methanol, 

etc.), to produce the distal functionalised product in good yields (60-71% depending on the electrophile 

used). They also found that the proximal product was formed in low yields with a ratio of distal to 

proximal being 8:1. This was interesting, since the calix[4]arene example gave exclusively the distal 

product. With this method mono-functionalised products were also furnished selectively to produce some 

interesting supramolecular products.105 

 

Scheme 1.10. Sherburn’s selective lithium-halogen exchange reaction 

In 2007 Kleinhans et al.,106 systematically investigated the Sherburn methodology applied to a flexible 

resorcinarene system (Scheme 1.11). During the study only one instance was found where the selective 

distal functionalisation of flexible resorcinarenes was achieved by Mattay in 2004.107 This reaction was 

performed using nBuLi and methyl chloroformate as one of the functionalisation steps. The reaction 
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returned a yield of 48%, but no mention was made about by-products or any difficulty in the course of the 

synthesis, which was in contrast to what was found in the course of the Kleinhans study. This synthesis 

was also used in another paper by Mattay, attaching Kemp’s triacid to the resorcinarene skeleton. 108 

In the Kleinhans study, using an octamethoxy tetrabromo resorcinarene, optimization was performed with 

nBuLi at different temperatures and in different reaction solvents, using methanol as an electrophile. The 

optimised reaction conditions were found to mimic those that Sherburn found for his system, namely 

using 2.2 equivalents of lithiating agent at −78 °C in tetrahydrofuran. The lithiating reactions revealed a 

remarkable solvent and temperature effect, with reactions in diethyl ether and toluene proceeding slower 

than in tetrahydrofuran. It was found that lower yields for the distal functionalised products (c in Scheme 

1.11) and a greater spread of the other functionalised products, with the best ratio of proximal to distal 

(b:c in Scheme 1.11) being about 1:5. This demonstrated that a flexible resorcinarene system could be 

used as a basis for selective functionalisation with an exchange reaction. The lower yields and selectivity 

were attributed to greater steric interference of the flexible methoxy goups.  

 

Product X1 X2 X3 X4 

a Br Br Br H 

b Br Br H H 

c Br H Br H 

d Br H H H 

e H H H H 

 

Scheme 1.11. Selective synthesis of distal products on a flexible resorcinarene system  
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If these methods on the resorcinarenes were compared to the reaction with the calix[4]arene it is clear that 

they are at a disadvantage. In the case of the resorcinarenes a spread of products is seen if more than 2.2 

equivalents of lithium base is used, whereas with the calix[4]arene exclusively distal products are formed 

even at great excesses of base used. The lithium halogen exchange reaction however is a vital cog in the 

functionalisation of resorcinarenes due to the ease at which a wide range of electrophiles, with different 

functionalities, can in theory be easily introduced. 

1.2.2.2 Selective Acylation 

In 1994 Shivanyuk et al.109 published a paper on the selective functionalisation of resorcinarenes (Scheme 

1.12). They found that by treating resorcinarenes with four equivalents of a variety of phosphoryl groups 

that they could regioselectively protect the four phenols of the two resorcinol moieties opposite each 

other.109 In 1995 this method was extended to the use of sulfonyl groups and in both cases the formed 

products were of C2v-symmetry.110  

 

Scheme 1.12. Shivanyuk’s regioselective functionalisation of resorcinarenes. (R = alkyl, X= various 

acylating agents) 

Two factors made this reaction very attractive: 

 1) the partially protected product precipitated out of the solution if the correct combination of 

solvent and base was used. It was found that if triethylamine and acetonitrile were used in most cases that 

the product precipitated out as the hydrochloric triethylammonium salt complexed with the resorcinarene 

product.111 This was however not the case for all products, since resorcinarenes with pendant chains 

longer that seven carbons did not precipitate out. In resorcinarenes with short alkyl pendant groups 

changing the solvent to tetrahydrofuran caused the formation of a mixture of partial protected 

resorcinarenes. Arnott has shown that by using tetrahydrofuran as solvent resorcinarenes with undecyl 

chains could also be selectively protected and separated with column chromatography.77  

 2) the partially acylated resorcinarenes could be selectively functionalised by electrophilc 

substitutions, bromination or �-aminoalkylation, on the unfunctionalised aromatic rings of the molecule, 

since these aryl rings have a higher reactivity than the di-protected rings (Scheme 1.13). 

The drawback to all this was that the yields were generally very low (20-55%) and that as the unprotected 

aromatic rings were functionalised the protecting groups, in the case of the sulfonyl and phosphoryl 

groups, could not be removed which meant that the products could not be further developed.109-112 This 
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problem was solved by the use of acid chlorides.112 It was demonstrated that various aroyl and heteroaroyl 

chlorides, as well as benzyl chloroformate, formed C2v-symmetrical products under the same reaction 

conditions. This gave a method of forming an interesting array of C2v resorcinarene products by using the 

reactivities of the newly formed products. Options include electrophilic substitution followed by 

deprotection of the resorcinarene or using a different protection group on the free phenol groups and then 

removing the original group. Extensive use of these methods, or variation on these have been used by 

Arnott76, 77, 113, 114 Reinhoudt115 and Puddephatt116 to synthesise C2v resorcinarenes for their individual 

needs.  

 

Scheme 1.13. Selective functionalisiation of the resorcinarene skeleton using electrophilic substitution 

reactions a) Mannich conditions or b) Bromination. (R= alkyl, X= various acylating 

agents, Y= Mannich product/ -Br). 

1.3 Coordination Chemistry and Catalytic Capabilities of 

Resorcinarenes 

The coordination chemistry and subsequent catalytic application of resorcinarenes, although extensive, 

are not as well developed as that of calix[4]arenes. Reviews on this subject demonstrate the fact that 

resorcinarenes are not used to their full potential, whereas calix[4]arenes have a wide range of 

application.49, 116, 117 For this part of the review we will focus on just the resorcinarene coordination 

chemistry and especially the coordination of transition metals in forming bridged compounds between the 

donating ligands in forming distal products. Catalysis using resorcinarenes will also be discussed.  

1.3.1 Coordination chemistry of resorcinarenes 
Resorcinarenes have been utilised as ligands for coordination chemistry through all three of their 

constituent parts; the lower rim, functionalisation of the phenolic groups and the ortho position on the 

aromatic rings. All three of these areas will be dealt with briefly with relevant examples so as to show the 

different modes of bonding for these molecules and especially in the formation of distal coordinated 

compounds.  

1.3.1.1 Lower rim 

The use of the lower rim of resorcinarenes in coordination chemistry is very limited in the literature. 

Resorcinarenes with long pendant thioalkyl groups (G-J in Figure 1.6) have been shown to form stable 
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monolayers on gold surfaces and show good potential as sensors.118, 119 In the case of G the gold 

monolayer showed a marked increase in the absorption of polar compounds (e.g. vitamin C) from dilute 

solutions.119  

 

Figure 1.6. Resorcinarenes with long pendant thioalkyl groups and their formation of monolayers on 

gold surfaces  

In 2001 Dalcanale et al., utilised resorcinarenes, with different nitrogen donors on the lower rim, in an 

attempt to study the self-assembly of these with different transition metal precursors in a study towards 

the selective formation of dimeric complexes.69 These functionalities included cyano (K) and pyridyl 

groups (L-N) with different lengths of tether carbon chains (Figure 1.7). 

 

Figure 1.7. The lower rim functionalised resorcinarene ligands used by Dalcanale. 
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To study the formation of linear Ag(I) complexes K was synthesised in an attempt to gauge if dimers or 

oligomers would form on complexation with these metals. 1H NMR spectroscopy and ESI-MS confirmed 

the formation of a polymeric product with the Ag(I) salts and this was attributed to the lower rim aromatic 

groups being slightly tilted and not linear as expected. In an effort to force the formation of dimers (two 

ligand molecules with one metal centre) the aromatic nitrile groups were exchanged with pyridine groups 

attached to different lengths of carbon tethers to form �-isonicotinoyl tails L and N. L was reacted with 

Ni(II), Pd(II) and Ag(I) metal precursors form octahedral, square planar and a linear dinuclear 

coordination motif with each metal respectfully. Interestingly the Pd(II) exhibited a trans coordination 

with two �-isonicotinoylpropyl groups and in the process catalysed the hydrolysis of the ester bonds of 

the other two opposite pyridine rings in the presence of a trace amount of water (see N1 in Figure 1.8).69  

 

Figure 1.8. Examples of the different modes of coordination using Dalcanale’s ligands M and N. In N1 

the alkyl chains are drawn as looping single bonds to simplify the structure. 

Using a shorter and more rigid ligand L with metal precursors that have fixed cis coordination also did 

not produce the target dimers. These only afforded dinuclear intramolecular products with Pt(II) and 

Pd(II) metals. Dimerisation was achieved by using bidentate pyridyl ligand M with a Pd(II) precursor (see 

M1 in Figure 1.8). 

These are not the sole examples of complexation through the lower rim of resorcinarenes, but do give the 

best example of the type of coordination that can be formed. A few more examples are given for the 

interested reader.120-122 

1.3.1.2 Phenolic groups 

As with the coordination to the lower rim of resorcinarenes a wide variety of methods of coordination to 

the phenol groups occur. The two most used are through direct coordination to the oxygen of the phenol 
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group or by adding another functionality to it that could coordinate on its own. One of the most intriguing 

methods of coordination occurs through the metalation of the phenol groups themself. In 1998 Jones 

demonstrated the successful isolation of mono-, di-, tri- and tetranuclear metallocycles from the reaction 

of tetrahexylresorcinarene with a molybdenum precursor [Mo(NO)(Tp)I2] [Tp− = hydrotris(pyrazol-1-

yl)borate] that could be successfully separated using column chromatography (O as example of the tetra-

nuclear metallocycle in Figure 1.9).123 The formed metallocycles contain the redox-active [Mo(NO)]3+ 

centre and showed in electrochemical studies that the reduction behaviour depended on the number and 

geometric arrangement of the centres present. Inclusion studies with cations showed no definite 

complexation, but these complexes demonstrted some hydrogen-bonding with different deuterated 

solvents in a 1H NMR spectroscopy study.123  

In their study of macrocyclic polyhapto organic ligands, Munakata,124 used resorcinarenes, calix[4]arenes 

and calix[6]arenes to synthesise new Ag(I) complexes based on cation � interactions. The reaction of 

tetramethylresorcinarene with AgClO4 resulted in the formation of a product that showed coordination 

through the hydroxyl groups of the phenol as adjudged by IR spectroscopy. X-ray diffraction of a single 

crystal revealed two symmetry related metal centres, each coordinated through the two phenol groups on 

opposite aromatic rings and one �1-aromatic ring of the resorcinarene (P in Figure 1.9). A fourth 

coordination is supplied by a benzene molecule to form a distorted tetrahedral geometry around the Ag(I) 

metal centre. This distal formed coordination is one of the only ones found in resorcinarene chemistry. 

The formed molecular cavity showed no inclusion of solvents or counter ions (e.g. ClO4
-) and it was 

postulated that these counter ions block off the complexes so that no guest molecules can enter the host.  

 

Figure 1.9. Examples of the coordination of the phenol groups of resorcinarene direct to metal centres. 

O is the tetra-nuclear example of Jones’s work and P that of Munataka.  

Another method of enhancing the coordination of metals through the phenol groups is by attaching 

sufficient functional groups, usually phosphorous and nitrogen containing groups, to it. Phosphocavitands 

are an interesting application of this, but will not be reviewed.116, 125 Attention will however be given to 

the seminal work of Puddephatt et al. in the creation of a vast range of different coordination motifs using 

phenylphosphonite and thiophosphinate based moieties, which was discussed in a recent review.116 Due to 
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the depth and breath of the work three examples will be discussed to show the wide range of coordination 

possibilities. 

The reaction of an octopus-like resorcinarene ligand, with eight phosphinite groups, with a platinum(II) 

precursor formed a tetrabidentate ligand with four metal centres. Due to different cis or trans coordination 

to the phosphorus atom, four possible structures could be formed. Molecular modelling and the high 

degree of symmetry in 31P NMR spectroscopy indicated that complex Q, the cis coordination on the same 

aryl ring, was the most likely product (Figure 1.10). Using a gold(I) precursor with the same ligand 

produced an octa-nuclear product.126 Using Shivanyuk’s selective protection methodology ligands were 

synthesised that contained phosphinite groups on opposite resorcinol moieties (Figure 1.10). These 

interacted with a wide range of transition metals to form different coordination motifs which almost 

always included either a form of bridging between the opposite aryl rings or a linear bonding on the same 

ring between the phosphorous donors.127-129 Due to the large bite angle between the two donors on the 

same ring no chelation of a single metal ion occurred. They are however well suited to bind two metals 

that are connected with a bridging ligand with complexes formed with Ag(I) and Hg(II) metals showing 

tetrahedral geometry, and that of the rhodium(I) having planar geometry (R in Figure 1.10) The atypical 

syn arrangement of the phosphinite groups is imposed by the geometry of the parent ligand, thus leading 

to the unusual stereochemistry of the complexes.127, 129 Interestingly bridging between opposite aryl rings 

also lead to cluster compounds of Ag(I) or Cu(I) halide salts (S in Figure 1.10).128  

 

Figure 1.10. Examples of coordination compounds formed from functionalisation of the phenol groups. 
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Similar results were recorded when thiophosphonate groups were used as chelating agents. T was formed 

from the reaction of a tetrakis(thiophosphonate) resorcinarene with PdCl2. The rigid, square planar di-

nuclear Pd(II) compound is formed through a chloride bridge between opposite aromatic groups and no 

easy exchange between the coordinated and uncoordinated donor groups could be observed.130 As with 

the functionalisation to the lower rim these examples are not the only ones found in literature, but they do 

pertain to what we envisaged for our target compounds. Other examples are given for the interested 

reader.131-135 

1.3.1.3 Ortho position 

In supramolecular chemistry the synthesis of molecular cages and container molecules from 

resorcinarenes and calix[4]arenes is widely studied due to their unique encapsulation properties.136-141 The 

molecules are generally formed by the self assembly of two or more molecules of resorcinarene with 

transition metals, in the process encapsulating solvents, counter ions or in some cases even fullerenes. 136-

141 An example of these cage molecules synthesised by Dalcanale et al.,136 can be seen in Figure 1.11. 

These robust cage molecules where synthesised using square-planar cis metal bis(triflate), M(dppp)X2 [X 

= BF4
-, PF6

-] or M(dppp)(CH3COO)2 metal precursors of Pd(II) and Pt(II) and a tetracyano cavitand. The 

example U is of a Pt(dppp) bis(triflate) precursor. The crystal structure revealed that the Pt(II) centres 

showed a slightly distorted square planar geometry and that the coordinating nitrile groups are not axial as 

predicted, but slightly bent towards the Pt(II) centre. The data also revealed the inclusion of the triflate 

ion, seen as the dark ellipsoid in U.136  

 

Figure 1.11. Examples of coordination compounds formed through the ortho position of resorcinarenes. 

In U the ellipsoid shows the enclosed triflate ion. V is a drawing from the proposed 

molecular calculation data for the compound synthesised by Danil de Namor. 

Central to our investigation was the synthesis of transition metal complexes of resorcinarenes where the 

donating ligand functionality was attached to the aromatic ring, thus forming a bidentate ligand complex 
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with the metal atom in the centre of the bowl of the molecule. Examples of this could not be found in the 

literature, but there were some examples where coordination of this kind occurred if the functionality was 

removed one carbon from the aromatic ring.142, 143 Danil de Namor used 1H NMR spectroscopy, 

conductometric and calorimetric measurements of the reaction of a range of cations on a distal and fully 

functionalised ethylthiomethyl resorcinarene.142, 143 They revealed that in the case of the partially 

functionalised resorcinarene a 1:1 (ligand:metal) complex of could be formed with Hg(II) in propylene 

carbonate and with Ag(I) in methanol. In the case of the Hg(II) a 1:2 complex was formed when the 

reactions were performed in other solvents. Molecular calculation studies predicted the conformation of 

the Ag(I) complex as V in Figure 1.11, with the Ag(I) atom being ligated by both of the thioether groups 

to form a bidentate complex.142 Similarly Korovin established using spectroscopic and elemental analysis 

that his tetra(diethyl)aminomethyl functionalised resorcinarene formed a 1:1 complex with ytterbium.144 

In both cases no physical evidence is given about the possible coordination of the metal centre and we can 

only speculate to the form of the bonding. 

By using the ortho position on the bowl, multi-nuclear complexes can be formed using various 

functionalities. These complexes are benefitted by the structural rigidity of the resorcinarene, which if 

correctly used, provide a basis where the metal centres can be quite close to one another. This, along with 

a bowl that is known for its molecular recognition abilities, can produce the possibility of a good catalysis 

base. Two different examples will be dealt with to illustrate the practical use of these compounds. In 1999 

Beer used bypyridal derived groups to form Ru(II) complexes (W in Figure 1.12). These complexes 

showed an affinity as anion receptors, with a preference of carboxylate ions.145 No detail is however given 

about the coordination of the metal centres to these ligands. In 2000 Harrison formed four 

bis(pyridylmethylamine) groups on the resorcinarene.146 Coordination with Cu(II) salts formed a tetra-

nuclear complex (X in Figure 1.12) with each of the Cu(II) centres structurally different due to the 

different forms of hydrogen and acetate coordination to the metals as well as the individual conformations 

of the bis(pyridylmethylamine) groups around the ring.146 This compound and others formed from Zn(II) 

and Fe(III) were used with success as anion transports in polymer imbedded membranes.147  

 

Figure 1.12. Examples of multi-nuclear complexes formed from resorcinarenes 
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From these few examples it is clear that although a lot of interesting work in coordination chemistry has 

been performed with resorcinarenes, there is still a lot to investigate. In the next section we will be 

looking at the use of resorcinarenes in catalysis and especially in C-C bond forming reactions. 

1.3.2 Catalysis using Resorcinarenes 
The use of resorcinarenes in catalytic reactions is a subject that is not that well studied thus far. This is in 

stark contrast to the amount of research performed using calix[4]arenes. One only has to look at the work 

of Matt et al. on calix[4]arenes to see that the use of these molecules, especially in C-C forming reactions, 

holds much promise as future catalyst (included are selected references from the vast amount of work 

performed by them).148-152 

The use of resorcinarenes as catalysts can be roughly divided into two separate ideas and therefore of 

functionalisation of these molecules. The first idea uses the resorcinarene as a basis onto which functional 

groups are placed in a logical manner to facilitate catalysis. The second idea draws some inspiration from 

nature and more specifically enzymes. The concave bowl structure of resorcinarenes allows for molecular 

recognition and this is used as a docking station for small molecules, along with carefully placed 

functional groups within the bowl to facilitate bonding and catalysis. A recent review of Rebek explains 

the use of resorcinarenes in this manner.46 A few examples of both ideas will be explained in briefly, 

especially looking at the formation of C-C bonds.  

 

In 2002 Rebek tested the use of a structurally rigid cavitand in a palladium catalysed allylic alkylation of 

dimethyl malonate with various substrates (Figure 1.13).134 This system showed good yields in forming 

the necessary products (38-96% yields), but suffered from long reaction times of 2-6 days till completion. 

In contrast to this the same products were formed in two hours in 78-91% yield by a model ligand. Using 

competition experiments it was observed that the resorcinarene based ligand showed a remarkable degree 

of substrate specifity, which would justify further studies on this system.  

 

Figure 1.13. The structurally rigid cavitand used by Rebek for palladium catalysed allylic alkylations 
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Various authors have also exploited the reaction of chiral resorcinarenes, predominantly formed by the 

Mannich type reactions, with dialkylzinc on benzaldehyde to induce chirality in the product (Figure 

1.14).76, 77, 113, 114, 153  

Using a variety of chiral bridged resorcinarenes (Y as example in Figure 1.14) as ligands in the catalysis 

of this reaction, Arnott could produce satisfying yields for the alkylation reactions but the introduction of 

chirality in the benzaldehyde was quite low, with ee’s of 12-51%.76, 77, 113, 114 Mechanistic studies of this 

reaction however indicated that the catalysis could possibly be performed in the cavity formed by the 

functionalisation.114 In a later study by Heaney, using a simpler resorcinarene system (Z as example in 

Figure 1.14), ee’s of 25-73% could be achieved.153 These systems show positive results, but still don’t 

compare well with other systems where ee’s > 95% are often achieved.154  

 

Figure 1.14. Chiral introduction on benzaldehyde with dialkylzinc using chiral resorcinarene ligands Y 

and Z as examples. 

In a recent report Matt formed two coordination complexes of a tetraphosphine resorcinarene ligand with 

Ru(II) and Pd(II) precursors (Figure 1.15).155 The ligand was tested for catalytic capability in a Heck 

reaction of various aryl bromides with styrene in DMF with different bases and palladium sources. The 

optimum Pd/ligand ratio was found to be 1:1, when Cs2CO3 was used as base and Pd(OAc)2 as metal 

precurser, with a conversion of 100%. The use of a higher or lower metal/ligand ratio resulted in trace or 

low percentages of product being formed. 

 

Figure 1.15. Matt’s tetraphosphine ligand 
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These few examples show the direction in which the research in using resorcinarenes as ligands for 

catalytic reactions is moving. Other examples include the use of resorcinarenes as phase transfer catalysts 

in various reactions,156, 157 in the Wacker oxidation,28 as organocatalyst158 and in the hydrolysis of 

phosphorus acid esters159 to name but a few.  

1.4 Conclusion 

The aim of this review was to introduce the reader to some of the general aspects of resorcinarene 

chemistry, especially in the light of the selective synthesis of resorcinarene compounds for use as 

potential ligands. Although a lot of work has been performed on this subject it is still in its infancy as a 

research area and offers some interesting and challenging work still to be performed. 

1.5 Objectives of this study  

The synthesis of resorcinarene coordination compounds is well documented in the literature, especially 

from a cavitand starting point. There is however not a lot of focus put on the use of these compounds as 

catalytic agents in reactions. To add to this there is no indication of complexes where the ligand atom is 

attached to the ortho position of the aromatic rings of the resorcinarene. Most complexes are formed by 

functional groups further away from the aromatic ring.  

For this study it was decided to investigative the formation of coordination compounds of resorcinarenes 

starting from a flexible system on the ortho position. It was believed that this system would allow enough 

freedom in the resorcinarene ring to form a distal, bidentate ligand as seen in Figure 1.16 with the metal 

atom in the centre of the ring, as been shown in calix[4]arenes.152 This system would then be used to 

observe if catalysis is possible through the use of the Heck reaction and, if possible, to determine the 

centre of the catalytic reaction.  

 

Figure 1.16. The target distal resorcinarene ligand and metal compounds. 

To synthesise these distal compounds, a C2v symmetric precursor was needed. Earlier work in the 

selective synthesis of flexible resorcinarenes applying the methodology of Sherburn revealed that this 

method does form the distal product, along with a range of other functionalised products, but not in very 

good yields. It was envisaged to synthesise a C2v symmetrical starting compound using the methology of 

Shivanyuk, that could then be further functionalised using lithium halogen exchange. This method of 
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functionalisation allows for the formation of a wide range of functionalities (P, S, N, O) functionalities on 

the resorcinarene rings, with a diphosphine ligand as the main aim (Figure 1.16). These could then be 

used for coordination compounds and study of the catalytic behaviour of these compounds. 
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C h a p t e r  2  

Synthesis of a Distal Functionalised Resorcinarene  

2.1 Introduction 

As described in chapter 1, the efficient synthesis of distally functionalised resorcinarenes has been 

achieved in a number of ways in the literature of which we investigated two in detail. The first method, 

the distally-selective lithium-halogen exchange reaction as described by Sherburn et al.,1-3 was 

extensively covered in chapter 1. Work using this methodology on non-rigid resorcinarene systems was 

fully investigated in our group and the findings are also covered sufficiently in the same chapter.  

The second method consists of a selective tetra-acylation reaction to form a resorcinarene with C2v-

symmetry, a concept first described in 1995 by Shivanyuk et al.4-7 Another methodology that could also 

be mentioned is the regioselective distal di-bromination of resorcinarenes with two equivalents of N-

bromosuccinimide in methyl ethyl ketone as performed by Konishi et al.8 However, other authors showed 

that this method was not entirely effective in producing distal products in high yield.3, 9, 10 In this chapter 

Shivanyuk’s methodology to synthesise distally functionalised resorcinarenes is described.  

2.2 Synthesis of a Distal Di-bromoresorcinarene 

Synthesis of the resorcinarene 1 (Scheme 2.1) was achieved using a different approach to the original 

aqueous alcohol, acid-catalysed reaction as reported by Cram.11 Using a variant of a synthesis by Botta et 

al.,12, 13 a suspension of resorcinol and butanal in dichloromethane at 0 °C, was slowly treated with a 

Lewis acid, boron trifluoride etherate (BF3·Et2O). The mixture was stirred for 26 hours at room 

temperature and an orange-red precipitate formed. The precipitate was filtered off, washed with 

dichloromethane and dried under vacuum to furnish the propyl-footed resorcinarene 1 in 73% yield.  

 

Scheme 2.1: Synthesis of resorcinarene 1. Reagents and reaction conditions: a) Butanal, DCM, 

BF3•Et2O, 0 °C�rt  
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1H NMR spectroscopy and melting point determination confirmed the successful synthesis of 

resorcinarene 1.11 Inspection of the 1H NMR spectrum reveals that resorcinarene 1 is in a bowl 

conformation and is of C4v-symmetry.11, 14, 15  

The following step was the regioselective protection of resorcinarene 1 with benzyl chloroformate (Cbz-

Cl) according to the protocol reported by Shivanyuk (Scheme 2.2).6 Benzyl chloroformate was chosen 

since the benzylcarbonate could be easily removed by catalytic hydrogenation over palladium supported 

on carbon (Pd/C); this has been successfully used previously by Shivanyuk6 and Arnott et al.,10, 16 in their 

regioselective protections of resorcinarenes.  

Resorcinarene 1 was stirred in acetonitrile at room temperature with 4 equivalents of triethylamine and 

benzyl chloroformate (Cbz-Cl) for 48 hours. The white precipitate (2·2Et3NHCl) that formed was 

collected by filtration and washed with cold acetonitrile after which it was taken up in 1M HCl and 

extracted into dichloromethane. Final purification of tetraCbz-resorcinarene 2 was achieved by 

recrystallization from a dichloromethane-ethanol mixture to form fine powdery white crystals. As 

reported by Shivanyuk,6 this reaction is very low yielding, with the highest yield obtained at 27% and 

average yields being around 17-21%. This step was a very atom costly step; however the regioselective 

control and ease of purification that it brings to the synthesis is crucial for the selective formation of 

distal functionalised resorcinarenes. Analysis of the reaction mixture filtrate by tlc showed a complex 

mixture of partially acylated intermediates that could not be separated by column chromatography. 

 

Scheme 2.2. Regioselective protection of resorcinarene 1. Reagents and reaction conditions: a) Cbz-Cl, 

Et3N, CH3CN, rt  

The tetraCbz-resorcinarene 2 was fully characterised by NMR, IR, melting point and mass spectroscopy. 

Investigation of the 1H and 13C NMR spectra of the tetraCbz-resorcinarene 2 confirms the C2v-symmetry 

of the molecule. This can be seen by four singlets in the aromatic region (see Figure 2.1), all integrating 

for two protons (5.94, 6.67, 6.92 and 7.12 ppm); a singlet signal (6.71 ppm) accounting for the four 

phenolic protons; a broad triplet (4.33 ppm) for the four benzylic methine protons and finally a single set 

of signals integrating for 20 protons, forming a multiplet (7.30-7.36 ppm) for the Cbz group. The 1H 

NMR spectrum of resorcinarene 2 run at 50 °C showed increased resolution of the spectra, but no further 

information could be gained from this. IR spectroscopy of the molecule revealed very broad bands and 

confirms the introduction of the carbonate group (1759 cm-1) and the free hydroxyls (3426 cm-1). Due to 
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the broadness in the thin film IR of 2 no conclusions could be drawn to the degree of intramolecular 

hydrogen bonding in the molecule as noted by others.6 High resolution mass spectroscopy also indicated 

a peak at 1193.4918 accounting for (M+H)+.  

N-Bromosuccinimide (NBS) is conventionally used to selectively brominate the tetraprotected 

resorcinarene.4, 6 It was however decided to perform the bromination reaction using molecular bromine. 

Three equivalents of a 1 M solution of bromine in glacial acetic acid were added slowly to a solution of 

tetraCbz-resorcinarene 2 dissolved in dry dichloromethane at −78 °C, and the reaction carefully 

monitored by tlc. It was found that adding another equivalent of the bromine reagent after 30 minutes and 

then leaving it to stir to completion (~ 30 minutes) afforded the best yields. After an aqueous work-up, 

purification was performed using flash column chromatography and recrystallization from a 

dichloromethane-ethanol mixture to yield the dibromo-tetraCbz resorcinarene 3 in yields of up to 80% 

(Scheme 2.3).  

 

Scheme 2.3. Bromination of resorcinarene 2. Reagents and reaction conditions: a) Br2, AcOH, DCM, 

−78 °C. 

The dibromo-tetraCbz resorcinarene 3 could be fully characterised by NMR, IR, melting point and mass 

spectroscopy. The 1H NMR spectra (Figure 2.1) of the product revealed some interesting differences to 

that of the tetraCbz precursor. In the aromatic region only three singlets (each integrating for two protons, 

at 6.53, 7.08 and 7.11 ppm) can be observed, thus indicating that distal bromination had occurred. The 

singlet that accounted for the four phenolic protons had shifted upfield to 5.22 ppm. This could be 

explained that although the negative inductive effect of the bromine should make the phenolics more 

acidic (and therefore move downfield), the positive resonance effect (�-electron donation through 

overlapping orbitals) of the bromine makes the phenolic hydrogens more basic and they thus move 

upfield. 

ATR-IR spectroscopy of resorcinarene 3 revealed two bands at 3508 and 3454 cm-1, indicating that there 

are two different H-bonding modes occurring in the solid state of the molecule. A band at 1744 cm-1, with 

a slight shoulder at 1765 cm-1 indicated the presence of a carbonate C=O. 
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Figure 2.1. 1H NMR spectrum of resorcinarene 2 (bottom) and resorcinarene 3 (top) over the area of 

7.5-4.2 ppm. (*) indicates the phenolic hydrogens.  

The synthesis of resorcinarene 4 was achieved over two steps with no purification in between, since the 

purification of the octamethoxy protected resorcinarene was much easier than that of the deprotected 

resorcinarene 3. The first reaction involved a catalytic hydrogenation over palladium supported on carbon 

to remove the Cbz groups on resorcinarene 3 after which the phenols were protected as methyl ethers 

(Scheme 2.4). 

 
Scheme 2.4. Reagents and reaction conditions: a) (i) H2, Pd/C, EtOH/THF, rt (ii) Me2SO4, K2CO3, 

CH3CN, reflux 

Due to the limited solubility of dibromo-tetraCbz resorcinarene 3 in alcoholic solvents it was dissolved in 

a mixture of dry ethanol and tetrahydrofuran (1:1) and 10 mol% of 10% Pd/C was added to the mixture. 

The addition of tetrahydrofuran helped with the solubility of the intermediates as well as decreasing the 

amount of undesired reduction of the aryl-bromine bond; the only disadvantage to this being the longer 

reaction time. The reaction was capped with a hydrogen balloon and stirred at room temperature until 



Chapter 2: Synthesis of a Distal Functionalised Resorcinarene   

 33 

completion of the reaction as judged by tlc (~24 hours). In some cases it was necessary to add one or 

more equivalents of Pd/C to drive the reaction to completion.  

One critical observation of this was that the reaction was extremely temperature dependant. A reaction 

performed at 37 °C was judged to be complete within four hours whereas one at 17 °C took three days 

until completion. It was however found that if the reaction was gently heated or pure ethanol was used as 

solvent that the aryl-bromine bonds were also rapidly reduced. This could only be ascertained after the 

protection of the free OH groups as methyl ethers.  

The residue was suspended in acetonitrile and dimethyl sulfate (16 equivalents; two equivalents per 

phenol) and potassium carbonate added and the mixture heated under reflux for up to 42 hours. Shorter 

reaction times and less than a two-fold excess of reagents resulted in the formation of a mixture of hepta-

and octamethoxy resorcinarenes. The polarities of the two products were similar on tlc and only 1H NMR 

spectroscopy could confirm the successful synthesis of resorcinarene 4. After work-up and purification 

using flash column chromatography, recrystilization from a dichloromethane-ethanol mixture yielded 

resorcinarene 4, in up to 75% over the two steps (Scheme 2.4). Even after careful chromatography and 

recystallization (twice), of resorcinarene 4 there was still a small amount of mono-bromo resorcinarene 

present in the final product (indicated by * in Figure 2.2). This however did not influence the subsequent 

reactions performed on 4. It was later found that recrystallization from toluene and drying the collected 

crystals at 90 °C under vacuum (1 mmHg) resulted in purer product and better yields in subsequent 

reactions. 

 

Figure 2.2. 1H NMR spectrum of resorcinarene 4. (*) marks the positions where the mono-bromo 

resorcinarene by-product can be seen.   
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Resorcinarene 4 was fully characterised using melting point, 1D and 2D NMR (1H, 13C, HMBC and 

HSQC), IR and mass spectroscopy. Detailed 1H and 13C NMR spectral assignments of this compound 

were needed to understand the conformation that the molecule was adopting, and this in turn would help 

with the determination of the conformations that the future products would adopt. This would give an 

indication of the probability of complex formation with metals. To clarify the NMR assignments a 

method employed by Arnott10 would be used whereby only a part of the molecule was numbered (Figure 

2.3) and described. Thus instead of mentioning the signal for H-2,4,6,8 (see Figure 2.2 for the full 

numbering of dibromo 4) it would be assigned as [2]. The reader is asked to carry out the necessary 

extrapolation.10 

 

Figure 2.3. HSQC NMR of the aromatic region of resorcinarene 4 

The 1H NMR spectrum (Figure 2.2) of dibromo 4 in CDCl3 reveals a symmetrical product with the three 

most important areas those being that of the aromatic region (6.00-7.00 ppm), the methoxy region (3.50-

4.00 ppm) and the signals that account for the methine potons (4.20-4.70 ppm). Using HSQC (for one 

bond H-C couplings) and 1D NMR (1H, 13C) most of the upfield signals could be assigned intuitively 

according to chemical environments and multiplicities. The challenge lay in the correct assignment of the 

three singlets in the aromatic region. It could be seen in the HSQC spectrum that the signals at 6.30, 6.55 

and 6.75 ppm in the 1H NMR correlated with those of 96.3, 125.0 and 126.4 ppm respectively in the 13C 

NMR.  

Investigation of the long range H-C couplings in the HMBC spectrum (Figure 2.4) revealed some 

interesting insights. The protons at 6.30 and 6.75 ppm both showed cross peaks at 156.1 ppm and the 

proton at 6.55 ppm showed a cross peak at 153.6 ppm in the 13C NMR spectrum. The signals at 153.6 and 

156.1 ppm were assigned to either [14] or [34] and the occurrence of two cross peaks to one signal 

indicated that these protons were on the same aromatic ring and could thus be assigned to either [32] or 

[35]. The carbon of the benzylic methines [2] of the resorcinarene ring showed strong cross coupling with 

the proton at 6.75 ppm and weak interactions with the proton at 6.30 ppm. This proton in turn showed 

stronger interaction with the carbon signal of [34], indicating a much shorter coupling. Therefore proton 
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[35] could be assigned to 6.30 ppm and [32] to the signal at 6.75 ppm. This then left the singlet at 6.55 

ppm to be attributed to the proton of [12] due to its coupling with the carbon of [14] and the strong cross 

peaks seen with the carbon signal of [2]. Very weak cross peaks of [12] with an aromatic carbon signal at 

112.5 ppm could also be seen, and thus this signal can be assigned to [15].  

 

Figure 2.4. Selected HMBC spectrum of resorcinarene 4   

The aromatic quaternary carbons attached to [2] can either be assigned to the signals at 136.1 or 124.7 

ppm due to the cross peaks seen in the HMBC spectrum. These assignments were also verified as the 

aromatic attachment carbons due to their long range coupling to the –CH2- hydrogens of the propyl feet. 

The signal at 124.7 ppm showed long range coupling to [35] and could thus be assigned as [33]. This left 

[13] to be assigned to 136.1 ppm in the carbon spectra. With the full NMR spectral assignment performed 

for 4, attention could be given to the conformation that the molecule adopted. 

The conformation of resorcinarenes has been studied in great detail in the literature and was also 

discussed in chapter 1.5, 11, 14, 15, 17, 18 It is clear from these sources that the two signals for the protons on 

the lower rim of the resorcinarene play a very important role in determining the symmetry and therefore 

the conformation of the molecule. This is due to the minimal effect that the nature of substituents on the 

upper rim plays on the chemical shift of these protons.5 Careful examination of the 1H NMR spectrum of 

resorcinarene 2 and 4 reveals that the difference in chemical shifts (��) between the lower rim protons 

stay constant (�� 0.2 ppm between [12] and [32]). This points to a molecule that has C2v symmetry and in 

the boat conformation. This claim can be strengthened due to the similarities in the shapes of the signals, 

especially the triplet that forms for the benzylic methine protons [2]. This implies that the opposite 
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aromatic rings could either be situated axial or equatorial. Due to the deshielding seen in [12] it can be 

assumed that the [1] aromatics (i.e. bromines) are sitting axially and that the [3] aromatics are in an 

equatorial position and the signals more shielded due to the protons lying in the anisotropic region of the 

aromatic rings next to them. 

With the distal dibromo-resorcinarene 4 in hand, functionalisation of the resorcinarene backbone to form 

ligands that could be used in transition metal catalysed reactions could now be pursued. In the following 

chapters the methodology to synthesise these molecules will be explained in greater detail. 
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C h a p t e r  3  

Functionalisation of Distal Resorcinarenes via Lithium-
Halogen Exchange  

3.1 Introduction 

Initial lithium halogen exchange reactions using resorcinarene 4 returned poor yields, with the main 

product being octamethoxy resorcinarene 5. A model study, using 2-bromo-1,3-dimethoxybenzene 6 

(Figure 3.1), was used to investigate reaction conditions for the lithiation reaction, owing to the lengthy 

synthesis time of resorcinarene 4.  

 

Figure 3.1. The model compound 1-bromo-2,6-dimethoxybenzene 6 

3.2 Testing the reactions using model compounds   

3.2.1 Synthesis of model compounds 
The synthesis of 1-bromo-2,6-dimethoxybenzene (Scheme 3.1) was attempted in two steps using 

variations of known literature procedures.1, 2 The first reaction consisted of a protection of the phenols as 

methyl ethers. Thus resorcinol, dimethyl sulphate and potassium carbonate were heated under reflux in 

acetonitrile for two hours and after work-up a yellow oil, the crude product 7, was recovered. The product 

was purified using vacuum distillation (88-92 °C/20 mm Hg). The 1H NMR spectrum revealed that the 

product still contained some dimethyl sulphate and the residue was heated under reflux in methanol and 

potassium carbonate to trap out the last of the impurity. It was later found that passing the oil through a 

small plug of silica gel removed most of the impurities. The final product, 1,3-dimethoxybenzene 7, was 

purified again by distillation and successfully characterized according to 1H NMR spectroscopy.  
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Scheme 3.1. Synthesis of 2-bromo-1,3-dimethoxybenzene 6. Reagents and reaction conditions: a) 

Me2SO4, K2CO3, CH3CN, reflux; b) i) TMEDA, nBuLi, Et2O, 0 °C ii) C2H4Br2, 0 °C� rt.  

Using a literature procedure from MacLachlan et al.,2 6 was subjected to a directed ortho metalation 

(DoM) reaction, using 1,2-dibromoethane as the bromine donor. The dimethoxybenzene was slowly 

added to a mixture of n-buthyllithium in diethyl ether and tetramethylethylenediamine (TMEDA) as the 

metal-chelating co-solvent at 0 °C. After 90 minutes of stirring the 1,2-dibromoethane was added and the 

reaction stirred overnight. After work-up and purification by flash column chromatography and 

recrystalization from ethanol at −20 °C, 2-bromo-1,3-dimethoxybenzene 6 was found in only 13% yield. 

This differed drastically from the 65% that was achieved by the literature procedure.2 Melting point and 
1H NMR spectroscopy confirmed the synthesis. It was however decided to synthesize the product via an 

alternative route. 

 

Scheme 3.2. Alternative synthesis of 7.  Reagents and reaction conditions: a) Br2 (3 equiv), chloroform, 

0 °C� reflux; b) NaOH (2 equiv), Na2S2O3 (2 equiv), MeOH:H2O (1:5); c) Me2SO4, 

K2CO3, CH3CN, reflux  

The three step synthesis (Scheme 3.2) was adapted from known literature methods.3-6 The first step was a 

tribromination of resorcinol as reported by Davis.3 Three equivalents of bromine were added to resorcinol 

in chloroform at 0 °C and the reaction was heated under reflux to remove the HBr. The solution was then 

treated with activated charcoal to remove any impurities. It was found that shaking the crude product up 

in a 10% sodium thiosulfate solution helped with removal of excess bromine and other impurities and 

thus increased the purity of the product. After recrystillisation in chloroform the successful synthesis of 

tribromoresorcinol 8 was confirmed using melting point and 1H NMR analysis.5 Yields of 90% could be 

achieved, whereas the literature reported that yields of up to theoretical amounts could be achieved. 

Secondly, using another procedure by Davis et al.4 two of the bromine atoms on the tribromoresorcinol 

were selectively reduced via pseudo-quinone intermediates to leave 1-bromoresorcinol 9. Thus 

tribromoresorcinol was suspended in a 17% aqueous methanol solution and treated with two equivalents 

of sodium hydroxide and sodium sulfite at room temperature. After an hour’s stirring the reaction mixture 
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was acidified with 1M HCl and extracted into diethyl ether. The product was in most cases pure enough 

to proceed to the next step, although it could be separated with flash column chromatography and 

recrystallized from dichloromethane/petroleum ether. Yields of up to 95% were achieved with this 

reaction. Melting point and 1H NMR analysis confirmed the successful synthesis.6 The last step of the 

synthesis involved protection of the phenols as with methyl ethers to form 6. The bromoresorcinol was 

dissolved in acetonitrile and potassium carbonate and dimethyl sulphate was added to the solution. The 

reaction was heated under reflux for 2.5 hours after which all the starting material was consumed as 

judged by tlc. The reaction was worked-up in H2O and extracted into dichloromethane. After flash 

column chromatography and recrystalization from ethanol at −20 °C, 6 was collected as fine white 

needles in a good yield of 83%. Melting point and 1H NMR analysis confirmed the correct synthesis.2  

3.2.2 Testing lithiation reaction 
In the literature there are a number of instances where functional groups were introduced into the ortho 

position of 1,3-dimethoxybenzene and related systems via DoM chemistry (Scheme 3.3).7-14 The 

introduction of P(III) functionalities onto the ortho position of 2,6-dimethoxybenzene and similar systems 

held relevance to our need to introduce these functionalities onto the resorcinarene scaffold. Therefore the 

work of Wada et al.12, 13 and Shaw et al.7 were given special attention. They demonstrated that this could 

be achieved in fairly high yields (63% and 76% respectively in the case of 1,3-dimethoxybenzene). 

Literature however shows only a few instances where 6 and related systems are used in lithium halogen 

reactions2, 15-17 (see Scheme 3.3) owing to the fact that it is easier to functionalise via DoM chemistry.18 

Most of the lithiation reactions were performed at 0 °C2, 16, 17 or at room temperature15 and the 

electrophilic quench usually at the lithiation temperature. One exception is where the electrophilic quench 

was performed at −78 °C.17 This was seen as problematic, since previous studies in our group have shown 

that higher reaction temperatures produce more unwanted side products in the resorcinarenes.19 This 

phenomenon of by-product formation at elevated reaction temperatures was also noted by Parham,20 in 

his well-known article on lithium-halogen exchange. 

 

Scheme 3.3. The introduction of various functionalities via DoM chemistry. Reagents and conditions: a) 

i) R-Li, TMEDA(optional), solvent (ethers or alkanes), varying temperatures ii) 

Electrophile (E, example SiMe3Cl). 
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It was therefore decided to start with conditions similar to what was found to work best for our 

resorcinarenes.19 Chlorotrimethylsilane (SiMe3-Cl, see Table 3.1) was selected as the first electrophile, 

since this is a large and bulky group and will give an idea of the reaction conditions needed to introduce 

such groups. 

Table 3.1. Conversion of 6 via lithium-halogen exchange reactions 

 

Entry Electrophile(a) a E Product b Yield c 

1 SiMe3Cl - SiMe3 10 19% 

2 MeI - Me 11 42%d 

3 S2Me2 - SMe 12 47% 

4 PPh2Cl - POPh2 13 45% 

a Reaction times, quantities of electrophiles employed and work-up vary b In all reactions 7 was isolated 

as by-product c Yield after column chromatography d Crude 1H NMR was used to determine yield 

 

A standard procedure for this reaction was performed as follows: The model compound 6 was dissolved 

in dry THF and cooled to −78 °C. After about 10 minutes 1.1 equivalents of nBuLi were added and the 

reaction stirred for 10 minutes. The solution usually turned a light yellow colour which only lasted a few 

seconds with the addition of the lithium reagent. The electrophile was added and the reaction mixture 

stirred for 10 minutes at −78 °C, after which it was warmed to room temperature and stirred for another 

10 minutes. The first few reactions were performed on a small scale and only monitored with tlc. After 

work up and separation using preparative tlc or column chromatography the product(s) were investigated 

with the help of NMR spectroscopy (1H and 31P for entry 4) and melting point determination and then 

compared to literature values. It was found that the yield of the product, 1-trimethylsilyl-2,6-
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dimethoxybenzene 10, was about 10%, with most of the material being the protonated compound 7. A 

small amount of other products were formed, but could not be identified due to the small quantities 

recovered. Changing the reaction temperature to 0 °C only resulted in lower yields.  

To test if the electrophile was the problem a simultaneous reaction was performed: for one of them the 

electrophile was passed through basic alumina to neutralize any acid/water byproducts that could have 

formed due to handling of the reagents. The reactions were performed at −78 °C and the lithiation time 

was lengthened to 15 minutes. After the quench with TMS-Cl the reactions were stirred at room 

temperature for 20 hours. The yield of the silated product 10 did not differ between the reactions, but both 

were almost double that of the previous reaction (19% vs 10%), thus showing that longer lithiation and 

exchange times were necessary for a decent yield, although a great deal of protonated product was still 

detected in the reaction mixture. This meant that the reaction was somehow quenched in situ; either by 

the reaction solvent being still wet or by some external air/moisture coming into the reaction set-up. The 

optimization of the reaction was left for a later stage. Using methyl iodide (11) and dimethyl disulfide 

(12) as electrophiles (Table 3.1, entries 2 and 3) also showed unsatisfactory yields, with 12 giving the best 

result at 46% yield after column chromatography. Both these reactions were left for relatively short 

periods (1-4 hours) at room temperature after electrophile quench and longer reaction times did not 

significantly increase the yields. With methyl 11 (entry 2) the yield was determined using 1H NMR 

spectroscopy of the crude reaction mixture owing to the problems encountered in the purification thereof.  

The final electrophile that was tested was diphenylphosphine chloride (entry 4). The reaction mixture was 

left to stir for 18 hours at room temperature after electrophile quench. Tlc after aqueous work-up revealed 

a range of distinctive spots, with three being on the baseline or slightly above it, expectations were that 

the phosphorylated product would be quite non-polar. NMR (1H) analysis of the non-polar products 

showed no sign of electrophile introduction. NMR (31P and 1H) analysis of the polar products showed that 

the more stable phosphine oxide 13 was formed and not the phosphine as was expected. This was verified 

by using 31P NMR, due to the differences in the shifts of the phosphorous atom (−24.86 ppm for the 

phosphine8 and 22.72 ppm for the phosphine oxide21) and the slight differences in the 1H NMR spectrum. 

This confirmed that the phosphorous was introduced into the ortho position of the model compound via 

lithium-halogen exchange and oxidised during the aqueous work up to the phosphine oxide.  
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Scheme 3.4. Attempted synthesis of (2,6-dimethoxyphenyl)diphenylphosphine (top). Reagents and 

reaction conditions: a) i) nBuli (1.1 equiv), THF, −78 °C ii) PPh2Cl (excess), −78 °C � rt 

A review of the literature brought to our attention a possible answer to why our metal exchange reactions 

showed such dismal yields. Resorcinarenes are mostly known for their potent ability to form host-guest 

relationships with a wide array of solvents and molecules.22-32 Initially our thoughts were that heating the 

molecules for an extended time under vacuum would be sufficient to remove all possible solvent, but 

careful review of proton NMR spectra revealed that there were always a small quantity of H2O and 

recrystalization solvents (usually dichloromethane and/or ethanol) present in some of the samples. These 

solvents could react with the aryl-lithiated intermediate compound and quench the reaction before the 

electrophile could be introduced. Two possible methods of solving the problem came to the fore: The first 

method constitutes a process of solvation and de-solvation of the molecules in an azeotropic removal of 

the crystallization solvents with dry reaction solvents that will not interfere with the lithiation reaction.27, 

33-36 The reasoning behind this is that by solvating and de-solvating the molecule the solvents trapped in 

the crystal structure can be removed and replaced with another guest, the reaction solvent. In the second 

method, solutions of the reagent are stirred with a drying agent (NaH in most cases) to remove excess 

water and other solvents.37, 38 One problem with this method is that some electrophiles (e.g. N,N-

dimethylformamide) are prone to disintegration under highly basic conditions and should be treated rather 

with the first method.39 Both methods were tested on bromo 6 with MeI as electrophile (entry 2 Table 

3.1), returning 11 at 80% as the highest yield with the solvation/de-solvation method. 

3.2.3 Testing the model with Grignard methodology  
One of the best known metal-halogen exchange reactions is the Grignard reaction40, 41 which has been 

updated by Knochel et al.,42-44 with their use of so-called “Turbo-Grignards”. Their work concentrates on 
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using simple Grignard reagents complexed with lithium salts (e.g. LiCl) to accomplish the metal-halogen 

exchange reaction, e.g. iPrMgCl·LiCl (Scheme 3.5). The addition of the lithium salts helps to increase 

the reactivity of the Grignard reagent and in some cases Cu(I) complexes are also used to help with the 

introduction of the electrophiles via transmetalation with the magnesiate complex.42 The advantage of 

using this methodology is that the chemistry can be executed at more moderate temperatures, ranging 

from −15 °C to room temperature, and the methodology can be applied to a wide range of functional 

groups.  

 

Scheme 3.5. Preparation of compounds via Knochel’s “Super-Grignards”: Reagents and conditions: a) 

THF, iPrMgCl·LiCl b) Electrophile (FG=functional group = OMe, Br, Cl, F, CN, COOR2). 

Unfortunately attempts to introduce electrophiles onto model 6 via this method or by using standard 

Grignard methodology were not sucessful.45, 46 High percentages of starting material and protonated 7 

were returned after each reaction. It is postulated that the recovery of high amounts of 6 is due to the high 

degree of electron donation from the two methoxy groups ortho to the reaction center, thus making this 

position electron rich and slowing down the exchange reaction drastically. Knochel also remarks that 

introduction of electrophiles on aryl carbon centres are facilitated by an electron withdrawing group ortho 

to the reaction centre; Br/Mg exchanges are also known to be slower that I/Mg, further explaining the 

poor yield.42 The use of electron withdrawing groups in the synthesis of resorcinarenes will be explored in 

chapter 4. 

3.3 Lithiations on the resorcinarene backbone 

To demonstrate that lithium-halogen exchange as a viable method of introducing functionality on 

resorcinarenes a small array of electrophiles was used (Table 3.2). A general representation of the 

reaction was performed as follows: An oven-dried (120 °C) Schlenk flask was cooled under vacuum to 

room temperature. The flask was backfilled with inert gas (argon or nitrogen) and charged with 

resorcinarene 4 and dry, freshly distilled tetrahydrofuran, enough to solvate the precursor. The solvent 

was removed under vacuum and the residue was gently heated for 5-10 minutes while still under vacuum 

and left to cool to ambient temperature. The flask was then refilled with inert gas and the solvation/de-

solvation process was repeated two more times. The dried residue was dissolved in dry tetrahydrofuran 

(0.02 M) and cooled to −78 °C with vigorous stirring. 2.2 equivalents of freshly titrated alkyllithium (in 

most cases nBuLi) were added to the mixture and left to stir for 15 minutes after which an excess of 

electrophile was added to ensure the reaction was driven to completion and that the excess of alkyllithium 
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(if any) was quenched. The reaction solution was warmed to room temperature and further reaction times 

and work-up procedures varied according to the electrophile used. 

Table 3.2. Synthesis of di-functionalised resorcinarenes 14-18 via lithium-halogen exchange from 

resorcinarene 4. 

 

Entry Electrophile (a) a E Product b Yield c 

1 SiMe3Cl - SiMe3 14 15% 

2 MeI - Me 15 37% 

3 S2Me2 - SMe 16 70% 

4 PPh2Cl - POPh2 17 <10% 

5 ClCO2Me - CO2Me 18 68% 

a Reaction times, quantities of electrophiles employed and work-up may vary b In all reactions 

octamethoxy 5 was isolated as well as the mono-substituted products c Highest yield obtained after 

purification 

 

All new products were characterised using NMR (1H, 13C and 31P for entry 4), mass and IR spectroscopy 

as well as melting point determination. In the case of the mono-functionalised by-products some could 

only be partially characterised due to separation problems. 

Initially, reactions were warmed to room temperature after electrophile quench, stirred for an hour and 

finally quenched with water or 1M HCl. Low yields of the target resorcinarenes were achieved, with 

octamethoxy 5 and mono substituted products 14a-18a being the most abundant. The reactions were then 

left for longer after the electrophile quench, usually overnight (~20 hours), and gradually better yields 

were achieved for most of the products. With secondary alkyl lithium reagents (sBuLi, iPrLi) longer 

lithiation times were needed to form the intermediate lithiated product, but no significant increases in 
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yields were seen and therefore all the reactions were performed with nBuLi. An attempted exchange 

reaction in diethyl ether met with failure due to the limited solubility of resorcinarene 4 in the solvent. 

The yields for the reactions were relatively low, except in the cases of 16 and 18. When using big, bulky 

eletrophiles such as TMS-Cl and PPh2Cl a large amount of the mono-functionalised product formed, even 

when all precautions were followed to avoid this. This could possibly point to a scenario where as soon as 

the first electrophile is introduced onto the resorcinarene, it inhibits or slows down the reaction of the 

second electrophile reacting with the lithiated intermediate. This would then allow a smaller electrophile 

(e.g. H2O) to react with the available reactive centre. In an effort to purify the disilyl 14 by 

recrystallisation the molecule broke up and formed mainly the protonated resorcinarene 5. This is quite 

unusual, since resorcinarene compounds are normally considered to be quite stable. 

The synthesis and purification of the diphosphine oxide 17 proved to be a very taxing undertaking. It was 

known from the synthesis of the model 13 that the product of the resorcinarene would probably also be 

oxidised to the phosphine oxide. This would not be such a problem, since there are methods to reduce the 

phosphine oxide to the corresponding phosphine using silane reagents.47 In an effort to halt the process 

degassed solvents and reagents were used throughout the synthesis, to no avail. The reaction suffered the 

formation of mainly protonated, monophosphine oxide 17a and the by-products of the reaction of the 

excess diphenylphosphine chloride with the alkyllithium, making purification by column chromatography 

very difficult. This led to the product only being partially characterised and yields calculated from crude 
1H NMR spectroscopy. An effort to extract the product using crystallisation and solubility techniques 

were also not successful. Owing to the low yields and time consuming purification it was decided not to 

further investigate the reaction.a In stark contrast to this, other studies in our group using DoM chemistry 

to selectively introduce functionality on the resorcinarene, revealed the synthesis of the diphosphine 

resorcinarene in low yields after purification by column chromatography. Reasons for this are unknown 

and are currently being investigated. 

The introduction of a carbonyl moiety on the resorcinarene also proved to be troublesome. Solid carbon 

dioxide (forms a carboxylic acid) and dimethylformamide (forms an aldehyde on work-up) were used but 

not with any great success, owing to formation of mainly protonated and mono-functionalised products 

and the difficulty in purification of the polar compounds. This problem was overcome by using methyl 

chloroformate which can be transformed to the carboxylic acid, alcohol or aldehyde if needed. 

Analysis of the �� of the aromatic protons on the lower rim of the resorcinarenes with 1H NMR 

spectroscopy revealed them to be of C2v symmetry, with 17 forming a slightly distorted boat shape. The 

analysis of the 1H NMR spectra of 16 revealed some differences to those of the other products and it was 

postulated that this compound could sit in another conformation. To verify the structure of this, a crystal 

                                                
a In the last week of writing this thesis an effort to characterise a by-product of the reaction was attempted, which 
resulted in 17 being synthesised in 50% yield. 
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structure of the dithioether 16 was obtained from a crystal grown by the slow evaporation of methanol 

and dichloromethane (Figure 3.2).  

The crystal structure of 16 was solved as two molecules in the asymmetric unit. These molecules were not 

related by symmetry operators and are unique. Only one of the structures is shown in Figure 3.2 for 

clarity. From the structure it can be observed that the two thioether functionalised aromatic rings are lying 

in the plane of the cavity, with the ring containing S7A in a more upright position and thus forming a 

slightly distorted boat shape. The two unfunctionalised aromatic rings also lie at a slightly distorted angle 

from the vertical plane. This was not what was expected, especially since the conformation of the 

dibromo has the functionalised rings in the axial position. 

 

Figure 3.2 Views of the single x-ray crystal structure of resorcinarene 16. All hydrogens were 

removed for clarity. Colours: grey = carbon, purple = sulfur and red = oxygen. Only 

selected numbering is shown for the molecule. a) and b) are side views, and c) is a view 

from above, down the cavity.  

The functionalisation of the resorcinarene backbone using lithium halogen exchange was not as 

successful as was expected, although we were able to introduce different functionalities on our backbone. 

The low yields and problems incurred with the separation of the products suggested that another better 
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method should be found in which the number of by-products would be decreased and a simple 

purification of the products obtained. Failure to synthesise the diphosphine target compound dampened 

the further studies of the resorcinarene compounds. It was however decided to investigate other means of 

functionalisation of the distal resorcinarene and these exploits will be described in chapter 4. 
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C h a p t e r  4  

Further Functionalisation of Resorcinarenes 

4.1 Introduction 

It was clear that the selective functionalisation of the upper rim of resorcinarenes using lithium-halogen 

exchange proved to be a difficult methodology. This prompted an investigation into other methodologies 

to introduce functional groups onto the upper rim of resorcinarenes, keeping in mind that the 

functionalities should be useful as coordination sites for metals. The two methods discussed here are the 

anionic ortho-Fries rearrangement1 and the Rosenmund-von Braun cyanation.2-5 

4.2 Anionic ortho-Fries Rearrangement 

As a result of the low yields being attributed to the electron donating methoxy groups on the 

resorcinarene it was questioned what the effect would be if electron withdrawing groups were used 

instead. Snieckus remarked in a review that these groups should exhibit schizophrenic properties, 

meaning that they should be a good coordination site for the alkyllithium, but not electrophilic enough to 

react with the base.6 

tert-Butoxycarbonyl (Boc) was selected to be the protecting group for the phenols, since the chemistry7-9 

of this compound is well understood and it has been used as a protecting group on resorcinarenes 

previously.10-13 What needed to be kept in mind is that the Boc and other acyl groups can rearrange under 

certain lithiation reaction conditions via the well known anionic ortho-Fries rearrangement. Indeed a great 

deal of work in this area has been reported by Snieckus et al.6 This rearrangement would also be 

beneficial, since this would allow a method to functionalise the resorcinarene skeleton using orthogonal 

protection and deprotection chemistry, allowing for further structural modifications. It was first decided to 

use model compounds to test the scope the reaction and smooth out any possible problems before the 

reaction was attempted on a resorcinarene. 

4.2.1 Synthesis of a Boc-protected model compound    
To synthesise the Boc-protected model compound 19 (Scheme 4.1) a modified procedure of Nishibuko et 

al. was followed.10 Bromoresorcinol 9 was dissolved in pyridine and triethylamine added as base. The 

pyridine had two functions in the reaction: that of solvent as well as an acyl-transfer agent. After about 15 

minutes of stirring at room temperature, di-tert-butyl dicarbonate was added and the yellow coloured 

reaction mixture stirred for 18 hours. The reaction mixture was added to water and extracted with 

chloroform. The organic phases were washed with 1M HCl to wash out the pyridine and triethylamine. 
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After the solvent was removed under vacuum the resulting brown oil was purified by flash column 

chromatography to yield an off white viscous oil. It was observed that if the product was retained too long 

on the SiO2 column it started to deprotect the molecule, attributed to the slight acidity of the SiO2 gel. 

After 5 days on a high vacuum pump (0.1 mmHg) the oil solidified, yielding diBoc 19 in 85% yield. 

Attempts to further purify the compound by recrystallisation were met with failure. 

 

Scheme 4.1. Synthesis of the di-Boc protected model 19: Reagents and reaction conditions: a) Et3N, 

pyridine, rt ii) Boc2O, rt. b) i) Et3N, DMAP (0.05 equiv), DCM, rt ii) Boc2O, rt 

Due to pyridine’s toxicity another procedure was found to protect 9 (Scheme 4.1, reaction conditions b). 

By exchanging the pyridine for 4-dimethyl aminopyridine (DMAP), a better acyl-transfer agent which 

could be used in catalytic amounts, and dichloromethane used as solvent. Bromoresorcinol 9, 

triethylamine and DMAP (0.05 equiv) were dissolved in dichloromethane at room temperature and di-

tert-butyl dicarbonate was added after 15 minutes. The yellow coloured reaction was stirred at room 

temperature for about 18 hours after which it was worked up using successive acid and base washes. The 

product was purified by flash column chromatography to yield an off white oil. This oil also solidified 

after a few days on a high vacuum pump returning a yield of 85%. 

DiBoc 19 was fully characterised by NMR (1H, 13C), mass and IR spectroscopy. 1H NMR analysis of the 

aromatic region revealed a triplet at 7.31 ppm accounting for one proton. This was assigned to the proton 

para to the bromine. A doublet at 7.10 ppm, accounting for two protons was assigned to the two hydrogen 

atoms meta to the bromine groups. One other signal, a singlet at 1.54 ppm, accounting for 18 protons was 

assigned to the two tert-butyl groups. 13C NMR (150.3 ppm) and IR (1766 cm-1) signals confirmed the 

introduction of the carbonate carbons as well as the symmetry in the molecule. 

4.2.2  Testing of the Boc Model  
To test the Boc model a lithium-halogen exchange reaction was performed, using nBuLi and methyl 

iodide as electrophile (Scheme 4.2).  
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Scheme 4.2. Testing of diBoc 19 with lithium-halogen exchange: Reagents and reaction conditions: a) i) 

nBuLi, THF, −78 °C, ii) MeI, −78 °C� rt. b) i) nBuLi, THF, −78 °C, ii) Sat. NH4Cl, −78 

°C� rt. 

DiBoc 19 was dissolved in tetrahydrofuran and cooled to −78 °C. 1.1 equivalents of the alkyllithium were 

added to the solution and this was stirred for 15 minutes, after which methyl iodide was added. The 

reaction solution was warmed to room temperature and stirred for 30 minutes. After work-up in acidified 

water and dichloromethane the tlc revealed two new spots. One slightly less polar than 19 and one very 

faint more polar spot. The mixture was purified by column chromatography to give the main product as a 

yellow oil. 

The 1H NMR (Figure 4.1) spectrum of the main product revealed that the desired methylated product did 

not form and that some sort of protonated compound was obtained. The t-butyl groups of the new 

compound were split into two singlets, and there was a very acidic proton at 11.39 ppm and a less 

symmetrical aromatic region. The aromatic region contained a triplet at 7.37 ppm and two doublet of 

doublets at 6.23 and 6.88 ppm. This product appeared to be consistent with a metal promoted anionic 

ortho-Fries rearrangement. Mass spectra of the compound could not clearly identify the product due to 

the other possibilities being constitutional isomers. 
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Figure 4.1.  1H NMR spectrum of the unknown product after the lithiation reaction on 19. An expanded 

view of the aromatic region is given to show the fine coupling in the molecule. 

To establish if the product was the protonated compound the reaction was repeated, only this time it was 

quenched with a saturated solution of ammonium chloride (Scheme 4.2). The result of this reaction was 

identical, thus confirming that the electrophile was not introduced and that the product was the rearranged 

product. 

 

Scheme 4.3. Reaction of the unknown products with the acylation protection methodology: Reagents and 

reaction conditions: a) i) Et3N, DMAP (0.05 equiv), DCM, rt ii) Boc2O, rt 

A literature search revealed that these metal promoted Fries rearrangements occur quite easily under the 

conditions that were used for lithiation;14-16 in 2001 Reinhoudt et al. demonstrated that by using DoM 

chemistry they could simultaneously perform four anionic-Fries rearrangements to introduce carbamate 

functionalities on the upper rim of a resorcinarene.17 As final verification that this had happened the 
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unknown compound was subjected to the protection methodology as was used on 9 (Scheme 4.3). 

Following work-up and flash column chromatography a yellow oil was separated that solidified on 

standing. 1H NMR analysis revealed very symmetrical, tri-substituted aromatic signals with two signals in 

the aromatic region. The two signals, a triplet at 7.41 ppm and doublet at 7.11 ppm closely resembled the 

signals of the brominated compound. Investigation of the t-butyl region revealed two singlets at 1.58 ppm 

and at 1.55 ppm integrating for 27 protons. This suggested that the solidified oil was the di-Boc protected 

rearrangement product which was confirmed by mass spectronomy. It is thus now known that the 

rearranged product 20(a) (Scheme 4.2) formed in an excellent yield of 91%, and not the protonation of 

19. The triBoc 21 was obtained in an 89% yield. This reaction gave a method to introduce carboxylic 

groups in high yields onto the resorcinarene. Thinking ahead, the reactivity of these remaining Boc-

groups would be a problem for further functionalisation of the resorcinarenes. It was decided therefore to 

test methodology to replace them with more inert groups; e.g. methoxy groups on the phenol ring. 

Deprotection (Scheme 4.4) of the molecule was first attempted using a procedure by Hansen.9 Stirring 21 

in THF with 3M HCl showed no desired product, even if the reaction was heated under reflux overnight. 

An alternative method where trifluoroacetic acid (TFA) is used to remove the Boc groups was persued.7, 9 

21 was dissolved in dichloromethane and treated with excess of TFA at room temperature and the 

reaction progress monitored by tlc. After two hours tlc revealed that all the starting material was 

consumed and a new spot on the baseline emerged. The solution was taken up in ethyl acetate and 

neutralized with a 10% solution of sodium bicarbonate, care being taken to keep the pH at about 7.  

 

Scheme 4.4. Synthesis of methyl 2,6-dimethoxybenzoate 22 via deprotection of 21. Reagents and 

reaction conditions: a) i) TFA (excess), DCM, rt ii) Me2SO4, K2CO3, CH3CN, reflux  

Due to the high polarity of the compound it was decided to forego purification and protect the phenols 

and carboxylic acid as methyl ethers and ester (Scheme 4.4). Thus, the crude mix of the deprotection step 

was suspended in acetonitrile and an excess of potassium carbonate and dimethyl sulfate was added. The 

reaction was heated under reflux for 18 hours after which a standard work-up was performed resulting in 

a yellow-brown oil. Tlc after the reaction revealed a lot of by-products and a 1H NMR spectrum was 

obtained to see if any product was in the crude mixture. The 1H NMR spectrum revealed the main product 

to be 22, with small amounts of impurities on the baseline and revealed the now characteristic triplet and 

doublet of the tri-substituted aromatic ring as well as two singlets more upfield. The triplet at 7.30 ppm 
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and the doublet at 6.57 ppm showed a significant shift upfield, due to the electron donating methoxy 

groups. The singlets at 3.92 and 3.83 ppm, the methyl ester and methoxy protons, corresponded to three 

and six protons respectively and the spectrum corresponded well with the literature values for methyl 1.3-

dimethoxybenzoate 22.18 With the chemistry worked out for the necessary transformations on the model 

compounds it was decided to attempt this on a resorcinarene. 

4.2.3 Testing the anionic ortho-Fries rearrangement on resorcinarenes 
To test the rearrangement on the resorcinarenes, dibromo tetraCbz resorcinarene 3 was chosen as the 

starting material, since it would impart the necessary C2v-symmetry that was needed to introduce the 

distal functionalisation on our molecules.  

 

Scheme 4.5. Synthesis of resorcinarene 23 (Z = -Cbz): Reagents and reaction conditions: a) i) Et3N, 

DMAP (0.05 equiv), DCM, rt ii) Boc2O, rt 

Resorcinarene 3 was subjected to both the acylation methodologies used for the model compounds, but it 

was found again that following the DMAP procedure resulted in the work-up and purification being 

simpler. 3 was dissolved in dichloromethane and treated with four equivalents of triethylamine and 0.05 

equivalents of DMAP at room temperature (Scheme 4.5). After 15 minutes Boc2O (five equivalents) was 

added and the reaction mixture left to stir for 24 hours after which tlc analysis showed the complete 

consumption of starting material. After work-up and purification through column chromatography the 

resultant yellow foam was recrystallised from an ethanol/dichloromethane mixture to yield fine yellowish 

crystals of dibromo diBoc tetraCbz resorcinarene 23 in 86% yield. Characterisation using 1H NMR 

spectroscopy was hampered due to the extremely broad signals especially in the aromatic region. This 

was attributed to the slow free rotation of the eight carbonate groups on the resorcinarene upper rim. It 

was however possible to verify the introduction of the t-butyl groups at 1.48 ppm. IR spectroscopy 

indicated the disappearance of the hydroxyl peaks found in 3’s spectrum as well as the appearance of a 

new carbonyl stretch at 1759 cm-1. Mass spectroscopy returned a peak at 1768.5 which correlated to 

M+H2O, thus giving proof for the formation of the product 23.  

In an attempt to cause the ortho-Fries rearrangement, 23 was dissolved in THF and treated for 20 min 

with nBuLi at −78 °C, after which the reaction was quenched with a saturated ammonium chloride 

solution (Scheme 4.6). After warming the reaction mixture to room temperature it was worked-up and tlc 

revealed two new spots. This was expected since two diastereomers could result depending on which one 
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of the Boc groups reacted with the aryllithium intermediate (Figure 4.2). Flash column chromatography 

was not suitable to separate the products and thus preparative tlc was used. Although the products were 

separated successfully no clear evidence could be gained of what products were formed using 1H NMR 

spectroscopy. The spectra of both of these molecules revealed the same broad and featureless aspects as 

that of the starting material, the only indication that something happened were the now broad signals in 

the region of 1.20-1.60 ppm where the t-butyl groups were expected. 

As with the model study, it was decided to transform these groups to other simpler functionalities so that 

the spectroscopic identification of these products might be easier. The mixture of A and B should form 

one product if the t-butyl and Cbz groups are removed and replaced by methyl ethers. Throughout the 

transformations the reactions were followed by 1H NMR spectroscopy and tlc to determine if the 

reactions were successful.  

 

Figure 4.2. The two possible diastereomers that can be formed after the anionic-Fries rearrangement on 

resorcinarene 23 (Z = -Cbz).  

The synthetic steps taken can be followed in Scheme 4.6. To make the transformations easier to follow 

the resorcinarene ring was simplified to the two core rings that are attached and drawn out as a flat 2D 

drawing (the rearrangement reaction is shown as only one Boc group rearranging). 

 

Scheme 4.6. Synthesis and transformations of the products of the anionic ortho-Fries rearrangement on 

resorcinarene 23. Reagents and reaction conditions: a) i) nBuLi, THF, −78 °C ii) Sat. 

NH4Cl, −78 °C� rt b) TFA (excess) DCM, rt c) Me2SO4, K2CO3, CH3CN, reflux d) i) H2, 

Pd/C, THF:EtOH (1:1), rt ii) Me2SO4, K2CO3, CH3CN, reflux 
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The t-butyl groups were first removed using excess TFA in dichloromethane at room temperature. After a 

standard work-up an orange solid was obtained. The 1H NMR spectrum of the crude product showed that 

the t-butyl groups were successfully removed, but it was not possible to separate the products owing to 

their very polar nature.  

To see if purification could be performed the products were heated under reflux in acetonitrile with an 

excess of dimethyl sulfate and potassium carbonate to protect the phenols and carboxylic acid. After 24 

hours all the starting material was consumed according to tlc, but a plethora of new spots (products) 

formed. These were also not separated with chromatography and a crude 1H NMR spectrum of the 

product showed the introduction of the methoxy groups (3.37-3.88 ppm), but no clear identification could 

be made. Arnott et al. commented that in an effort to protect their C2v-symmetrical acylated 

resorcinarenes (tetraCbz and tetratoluenate) with methoxy groups resulted in a range of products that 

could be explained by a rearrangement of the –Cbz groups on the phenols of the resorcinarenes and that 

this could explain the range of products that were formed.20  

For the last transformation the –Cbz groups were removed using catalytic hydrogenation over palladium 

on carbon and the resulting products again protected as methyl ethers. The four products of the last step 

were separated by column chromatography and 1H NMR spectra were taken. These revealed that distal 

substituted compounds were formed, but due to the relative low amounts that was recovered it was 

decided not to pursue this method any further since it had become too cumbersome a method for 

functionalisation. 

4.3 Rosenmund-von Braun Cyanation 

One of the biggest challenges for this project was to functionalise the resorcinarene backbone with a wide 

range of functional groups. Amines21-23 and Schiff bases24 are very important ligand functionalities in 

transition metal chemistry and it was decided to investigate if resorcinarenes could be selectively 

functionalised with these (Figure 4.2). One method to introduce amines on resorcinarenes is through the 

well known Mannich reaction as used for example by Shivanyuk11, 25-27 and Arnott.20, 28, 29 It was 

considered that nitrile groups might be an appropriate targets.19 The nitrile has been previously introduced 

onto resorcinarenes: in work by Chen et al.30-32 and by various groups in their research into forming 

transition metal cavitand cages.33-35 However no subsequent transformations of the nitrile groups have 

been reported. 

 

Figure 4.3. Target amine and Schiff base resorcinarenes 
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4.3.1 Synthesis of dicyano resorcinarene precursor 
Dicyano resorcinarene 24 was synthesised using a procedure by Chen et al.31 Dibromo resorcinarene 4 

was dissolved in dry N,N-dimethylformamide and eight equivalents of copper(I) cyanide were added. 

This mixture was heated under reflux for 23 hours after which it was cooled to room temperature and 

treated with iron(III) chloride in concentrated HCl for 1 hour to help with the isolation of the nitrile 

compounds. It is known that the resulting nitriles form complexes with the cuprous halide byproducts that 

are formed in the reaction. These complexes are soluble in N,N-dimethylformamide and to decompose 

them various methods have been employed.4 The iron(III) in concentrated HCl oxidized the Cu(I) in the 

reaction mixture to Cu(II) which is more soluble in water and facilitates the work up.4 The Fe(III) in turn 

is reduced to Fe(II) and this could also be removed in the water layer during work up. At this point 

extreme care had to be taken since HCN gas is given off in the process. The green solution was extracted 

into chloroform and after work up 24 was recovered by column chromatography in 50% yield. The 

product was recrystallised in boiling ethanol and this formed fine white crystals.  

 

Scheme 4.7. Synthesis of dicyano resorcinarene 24 via Rosenmund-von Braun cyanation: Reagents and 

reaction conditions: a) i) CuCN, DMF, reflux ii) FeCl3, conc. HCl b) i) CuCN, DMF, 

microwave ii) FeCl3, conc. HCl 

The literature also reports the use of microwave technology in the synthesis of cyano aromatic 

compounds.36, 37 One advantage of using microwave assisted reactions is that solvents can be heated to a 

temperature higher than their boiling point since the reactions are performed in sealed vessels. It is also 

important to use solvents with a high dielectric constant. N,N-dimethylformamide and N-

methylpyrrolidinone are seen as excellent solvents for use in these reactions owing to them being 

exemplary in all of the above conditions.37 These circumstances cause reactions to be finished in 

relatively shorter times than what would normally be the case. Availability of a microwave reactor caused 

us to explore the optimisation of the reaction using this technology (Table 4.1).  
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Table 4.1. Optimisation of the Rosenmund-von Braun cyanation on resorcinarene 4 using microwave 

technology. Other reaction conditions can be seen in Scheme 4.7. 

Run CuCN equiv Time (min) Temp (°C) Yielda 

1 8 25 200 10 % 

2 8 30 210 42 % 

3 8 35 210 52 % 

4 4 60 210 60 % 

5 8 45 210 87 % 

a Yield after column chromatography   

 

It is clear from the above table that a longer reaction time and four equivalents of Cu(I) salt per bromine 

were needed to ensure a successful reaction. Shorter reaction times and using less Cu(I) were not as 

successful, even in the case of run 4 where the reaction time was lengthened to one hour. As seen from 

the above table the best reaction conditions were at 210 °C for 45 minutes and using 8 equivalents of 

copper(I) cyanide. What was found in later reactions with these conditions is that the dryer the N,N-

dimethylformamide, the better the yields were.  

Dicyano 24 was characterised using 1D and 2D NMR (1H, 13C, HSQC and HMBC), IR and mass 

spectroscopy, as well as melting point determination. IR spectroscopy revealed an absorption at 2229 cm-1 

giving a clear indication of the introduction of the cyano group as well as a signal at 115.1 ppm in the 13C 

NMR spectrum typical of an aryl-CN. 2D NMR spectroscopy was used to fully characterise the molecule 

and to determine the conformation of the molecule. C2v symmetry was assigned to 24, but due to the 

formation of a slight doublet of doublets at 4.47 ppm it would be assumed that it is in a slightly distorted 

boat shape.  

4.3.2 Attempted synthesises of amine and Schiff base resorcinarenes 

4.3.2.1 Amine Synthesis 

With 24 in hand it was decided to first synthesise a di-amine resorcinarene. There is a fair amount of 

literature reporting the reduction of  nitrile groups and it was decided to find a method that did not need 
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high pressure catalytic hydrogenations or expensive coordination compounds to perform the 

transformations.19 

The first method that was chosen was the reduction of nitriles to amines using sodium borohydride and 

transition metal salts, with the most important ones being those of Co(II), Ni(II) and Al(III).38-40 These 

metals form a fine black precipitate of metal borides (Co2B in the case of Co(II)) due to the breakdown of 

the borohydride which in turn produces hydrogen in situ. These reactions are mostly performed in 

alcoholic solvents with stoichiometric amounts of metal salts and an excess of sodium borohydride (2-10 

equiv). It has been shown that ethereal and coordinating solvents cause the reaction to slow down and 

form secondary products.39, 40 

Dicyano 24 and two equivalents of anhydrous nickel(II) bromide were added to dry ethanol and the 

solution cooled to 0 °C. To the mixture were added six equivalents of sodium borohydride in two 

portions. The reaction turned black almost instantaneously after addition and hydrogen gas was evolved. 

After warming to room temperature the reaction solution was examined after 30 minutes and tlc analysis 

revealed only starting material, with a small spot on the baseline. The reaction mixture was left to stir and 

tested again after a further 60 minutes passed. Tlc of the reaction again revealed no product formation and 

the reaction was stopped and worked up. This result was also found if the reaction was left to stir for 20 

hours at room temperature. Considering that this could be due to 24 being sparely soluble in ethanol, the 

reaction solvent was changed to a 1:1 mixture of ethanol and tetrahydrofuran. This also resulted in no 

product formation after 20 hours and the reaction was stopped. Changing the metal to cobalt(II) chloride 

hexahydrate also returned similar results, even after using more equivalents (four�eight) of metal salt 

and of sodium borohydride (20�40) and heating under reflux for 24 hours. Catalytic hydrogenation at 

atmospheric pressure using palladium over carbon and hydrogen also did not result in any new products. 

Reduction of the dicyano 24 was then attempted using lithium aluminium hydride. Dicyano 24 was 

dissolved in tetrahydrofuran and the solution was added to six equivalents of lithium aluminium hydride 

in tetrahydrofuran at room temperature. The reaction was heated under reflux for three hours after which 

it accidently went dry due to a leak in the reaction setup. The solid was worked up and tlc of the reaction 

revealed mostly starting material and a small spot on the baseline. The reaction was repeated, this time 

using 10 equivalents of reducing agent. The reaction was heated under reflux for 10 hours after which it 

was left to stir at room temperature overnight (for a further 18 hours) to ensure that it did not go dry 

again. Returning to the reaction it was revealed that the solution had taken on a gel-like consistency and 

would not change even on heating. The reaction was quenched and worked up. Tlc revealed no starting 

material and a spot on the baseline. This was moved up in more polar elution solvents to indicate three 

new spots. Due to their polarity it was decided to acetylate the products to see if it would not be easier to 

recover and separate via chromatographic methods. The products were dissolved in dichloromethane and 
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cooled to 0 °C. DMAP (0.1 equiv), pyridine (10 equiv) and acetic anhydride (10 equiv) were added to it 

and the reaction was stirred at room temperature for 20 hours.  

After work up the products were analysed using 1H and 13C NMR spectroscopy to investigate if the acetyl 

groups were introduced onto the resorcinarene. Both of these methods indicated that the acetylation did 

occur, with signals in the region of 169-171 ppm and at 1.90-2.10 ppm in the 13C and 1H NMR spectra 

respectively. The 1H NMR spectrum reveals the formation of a major product that is distally substituted 

and also contains a doublet at 4.34 ppm that is indicative of the prochiral sp3 carbon that is attached to the 

amine. Separation of the products proved difficult with column chromatography and it was decided to 

leave this reaction, owing to the practical difficulties encountered. 

4.3.2.2 Schiff base synthesis 

For the synthesis of the Schiff bases the reduction of the nitrile to an aldehyde was necessary. Dicyano 24 

was stirred in dichloromethane with four equivalents of diisobutyl aluminium hydride at −78 °C for six 

hours after which it was worked up. Tlc indicated only starting materials and a small amount of another 

product. The reaction was repeated in tetrahydrofuran, unfortunately with the same result even after 

warming and stirring at room temperature for 24 hours. At this point the attempts to transform the nitrile 

groups on the resorcinarene were not further pursued.  

It is evident from these results that relatively harsh conditions are needed to transform these groups on the 

resorcinarenes. This stands in contrast with simpler systems where reactions are completed in relative 

short times and at ambient temperatures.38-40 Although a clear answer to why this is the case is not 

evident, the size of the macrocycle should be taken into reckoning, as well as possible interactions of the 

ring(s) with the reducing agents and therefore influencing the transition states and mechanisms. One 

argument that could also be included is the possible deactivation of the nitrile group through resonance in 

the aromatic ring. It is reasoned that the both of the methoxy groups can donate, through resonance, 

electrons onto the carbon of the nitrile group, thus making it less electrophilic and thus less reactive to 

reduction. 

 

Scheme 4.8. Possible delocalisation of electrons in the resorcinarene ring that could reduce the reactivity 

of the nitrile resorcinarene 24. 
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With the synthesis of the possible resorcinarene ligands completed attention was given to the formation of 

coordination compounds with transition metals. The study of the coordination and testing of the 

compounds’ catalytic capabilities will be the focus of the next chapter. 
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C h a p t e r  5  

Resorcinarene Metal Complexes and their Catalytic 
Activity 

5.1 Introduction 

The formation of metal complexes of resorcinarenes was dealt with in detail in chapter 1. Owing to our 

inability to introduce phosphine, amine or Schiff bases onto our resorcinarenes in high yields we were left 

with very little choice for a model to study the possible distal coordination of metals in resorcinarenes. 

Because of the thioether moieties attachment to the resorcinarene skeleton, dithioether 16 was the only 

ligand that fitted our initial criteria and this was then used as a model for our complexation study. The 

crystal structure that we had for this compound would also give us something to compare the coordination 

structures between the different complexes. Dicyano 24 was not regarded for these studies due to their 

axial complexation and cavitand cage formation as demonstrated by the work of Dalcanale et al.1 

5.2 Synthesis of a Resorcinarene Metal Complex 

5.2.1 Thioether Coordination Chemistry 
Transition metal complexes of thioether ligands have been studied intensively since the beginning of 

coordination chemistry.2-7 Neutral thioether moieties are generally considered as being sp3-hybridized and 

thus having two lone pairs of electrons through which coordination can take place. The most common 

coordination is through one pair of electrons (terminal), although some cases of both donating (i.e. 

bridging) are known.3 The sulfur atom of thioethers is considered soft and therefore bonds strongly to soft 

metals (e.g. palladium). They are seen as weak �-donors as well as weak �-acceptor ligands via the �* 

orbitals of the S-X bond, this last attribute contributes greatly to the strength of the sulfur-metal bond. The 

trans-effect of sulfur ligands is considered higher than that of nitrogen and oxygen-based ligands but is 

found to be lower than phosphine ligands.2  

Coordination of metals to dissymmetric sulfur ligands (e.g. RSR') form a new stereogenic centre at the 

sulfur, but because of their low inversion barrier (10-15 kcal mol-1), owing to pyramidal inversion, there 

is little control of the formed configuration. Sulfur ligands however are easier to store, handle and 

synthesise than most phosphine ligands and are therefore an attractive option for use in catalysis. 

5.2.2 Complex Synthesis 
For the formation of resorcinarene complexes it was decided to use simple metal salts of Pd(II), Ni(II), 

Pt(II) and Ag(I) in different metal to ligand ratios and reaction conditions (Scheme 5.1). Owing to the 
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2006 and 2008 reports of Danil de Namor et al.8, 9 the coordination of Ag(I) to resorcinarene 16 was first 

investigated. 

 

Scheme 5.1. Proposed formation of bidentate distal coordination compounds with resorcinarene 16: 

Reagents and reaction conditions: a) Metal salt (M), various reaction conditions 

To a solution of 16 in dichloromethane was added one equivalent of silver perchlorate and the mixture 

stirred in a darkened flask for 30 minutes at room temperature. The mixture was filtered over Celite and 

the filtrate solvent removed in vacuo. The 1H NMR spectrum revealed only starting material. Due to 

concerns over solubility, the reaction was reattempted in tetrahydrofuran as solvent. The silver salt was 

dissolved in acetonitrile and added to the darkened flask and the reaction mixture stirred for three hours. 

The mixture was then worked up as previously to form a whitish solid. A small sample of the crude 

product was investigated with the use of 1H NMR spectroscopy (Figure 5.1, bottom spectra). 

Investigation of the spectra revealed some very interesting features. 

 

Figure 5.1. 1H NMR spectra of the crude resorcinarene silver complex (bottom) and the dithioether 16 

(top).  
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The downfield shift of the signal for the thioether-methyl (from 2.32 to 2.68 ppm) indicated that 

coordination with the Ag(I) salt occured through the S moiety. It is also interesting to note that there was 

only one signal, which suggests that both of the thioethers bonded in the same manner, justifying a distal 

bidentate coordination. This is also supported by the fact that only one equivalent of metal salt to the 

resorcinarene ligand was used. Shifts in the methoxy, methine and aromatic regions revealed a 

configuration change in the resorcinarene, with the thioether functionalised resorcinol units moving into 

an axial orientation and the other two rings lying in an equatorial orientation giving it a slightly distorted 

boat configuration. This also supports the formation of a bidentate bonded resorcinarene ligand. 

Unfortunately repeated attempts to grow diffraction quality crystals for X-ray diffraction proved 

unsuccessful and further attempts at characterisation of the complex ended in failure, possibly due to the 

instability of the silver complex. 

Anhydrous nickel(II) bromide was investigated next. One equivalent of salt dissolved in methanol was 

added to 16 in tetrahydrofuran at room temperature. After 40 minutes the greenish solution turned to an 

orange-brown suspension and this was stirred at room temperature for 20 hours. The mixture turned a 

light yellow colour overnight and the reaction was worked up by filtration and the solvent of the filtrate 

was removed in vacuo. The yellow residue did not dissolve in dichloromethane, but did with the addition 

of methanol to the solution. When a NMR sample of the product was prepared in deuterated acetone an 

insoluble substance precipitated out of solution deterring the characterisation of the compound. As with 

the Ag salt repeated attempts to grow crystals for X-ray diffraction failed due to decomposition of the 

product, returning 16 and the metal salt. 

The synthesis of platinum complexes also proved to be unsuccessful. For the initial studies potassium 

tetrachloroplatinate(II) was used as the platinum precursor. Resorcinarene 16 and one equivalent of the 

platinum salt were refluxed in toluene for 24 hours returning a pink precipitate. The precipitate was 

filtered off and the solvent of the colourless filtrate was removed in vacuo. Analysis revealed this as 

quantitative recovery of the starting ligand. The reaction was performed again, only this time in 

tetrahydrofuran with the metal salt dissolved in water with the addition of a few drops of concentrated 

HCl. Precipitation of a black solid occurred immediately and the reaction was discontinued. The reaction 

was also attempted using a two phase system, with the metal salt dissolved in water and the ligand in 

dichloromethane, with no result. A more organic, solvent soluble and labile precursor, 

bis(dimethylsulfide)platinum(II)chloride (SMe2)2PtCl2 25, was synthesised in 75% yield according to the 

procedure published by Roodt.10 Stirring the Pt precursor with ligand 16 in dichloromethane for 24 hours 

and longer at room temperature also did not produce any complexed compounds. This was confirmed by 
1H NMR spectroscopy of the crude product and the fact that the two compounds crystallised out 

separately after work-up.  
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Finally the synthesis of a palladium(II) resorcinarene complex was attempted. Based on the synthesis of 

coordination complexes of various metals by Puddephatt et al.,11 one equivalent of palladium chloride 

was stirred with resorcinarene 16 in dichloromethane at room temperature for 24 hours. After filtering 

through Celite and careful washing with dichloromethane the filtrate was evaporated to leave a yellow-

brown residue. This residue was dissolved in dichloromethane and layered with pentane and left to 

crystallise in a fridge at −15 °C. After three days small brown crystals formed and these were collected by 

filtration. The amount of material recovered was very little in each case and this was used to characterise 

the complex. 

 

Figure 5.2. 1H NMR spectra of the palladium chloride complex of resorcinarene 16 (top) and the 

dithioether 16 (bottom) in CDCl3. Dichloromethane is present as a possible adduct in all the 

spectra. 

The 1H NMR spectrum (Figure 5.2) of the crystals in CDCl3 revealed similar features to that of the crude 

NMR spectrum of the silver complex. From the more downfield signal for the thiomethyl ether at 2.55 

ppm it was concluded that coordination of the complex was through the S atoms. The aromatic region 

also indicated significant shifts for the three aromatic signals, suggesting a change in the conformation of 

the parent ligand to a distorted boat, with the thiomethyl functionalised rings being in an axial position. 

Of surprise and concern was the disappearance of a signal for four of the methoxy groups (12 protons). 

The one signal at 4.01 ppm integrated for 12 protons only and therefore half of the total amount expected. 
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A very broad signal at 3.58 ppm was observed and it was suspected that this could be the missing 

methoxy groups due to some form of restricted rotation causing it to appear as a broad hump. 2D NMR 

(HSQC, HMBC, COSY) did not help in finding the lost signals.  

To investigate our hypothesis a sample of the complex was subjected to variable temperature 1H NMR 

spectroscopy (Figure 5.3). The sample in CDCl3 was warmed in steps of 10 °C from 20 °C to 50 °C (the 

safe maximum temperature for CDCl3 in the spectrometer) and spectra were recorded after each step. As 

the NMR sample was warmed a gradual change could be seen in the region of the broad signal. At 50 °C 

a obvious signal could be observed, (see blocked part in Figure 5.3) which integrated for the expected 12 

protons. As for the rest of the spectrum there were no changes, only the resolution of some of the signals 

increased.  

 

Figure 5.3. Variable temperature 1H NMR spectra of the palladium complex of 16. The block shows 

the formation of the lost signal owing to the increase in resolution of the spectra as the 

temperature is increased stepwise (�10 °C) from 20 °C (bottom) to 50 °C (top).  
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It was expected that the compound would exist in two conformations (Figure 5.4) at low temperatures due 

to the relative position that the thioethers’ methyl groups could be found in: a more symmetrical C2-

conformation, with both methyl groups on the same side, and a more unsymmetrical Cs-conformation, 

with the methyl groups on different sides.  

 

Figure 5.4. The possible two different conformations that the resorcinarene complex could adopt. 

The 1H NMR sample was cooled in steps of 10 °C from 20 °C to −50 °C to investigate if the coordination 

compound’s different conformations could be isolated (Figure 5.5).  

 

Figure 5.5. Variable temperature 1H NMR spectra of the palladium complex of 16. Temperature was 

decreased in 10 °C steps from 20 °C (top) to −50 °C (bottom). 

Analysis of the 1H NMR spectra indicated the appearance of new signals as the sample was cooled. The 

broad signal of the methoxy groups disappeared and at about 0 °C reappeared as two signals: one near the 

thioether signal at 2.97 ppm and the other with the other methoxy signals at 3.96-4.11 ppm. As the sample 

is cooled down further the methoxy signals are resolved into three major signals and some smaller ones. 

In the aromatic region this also becomes apparent with the formation of five major signals for the 
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aromatic protons as well as three (two clear and one hidden under the signal at 6.27 ppm) minor signals. 

The benzylic methine protons, whose signals could generally be used as an aid in pointing out a certain 

symmetry elements, was revealed as two multiplets, one major and the other one as a minor product.  

The ratio of the different conformations could be calculated as 6:1 from the relative integration between 

the major and minor signals (seen as * in Figure 5.6) for the comparative chemical signals. The minor 

signals showed a more symmetrical orientation and could thus be assigned to a possible C2-conformation, 

while the major signals were assigned to the more unsymmetrical Cs-configuration (Figure 5.4). 

 

Figure 5.6. 1H NMR spectrum of the coordination compound at −50 °C. (*) indicates the minor 

product.  

Mass spectroscopy of the compound only returned the molecular ion peak for the parent ligand 16 and IR 

could not shine any further light on the composition of the complex. The original crystals were however 

large enough to perform X-ray diffraction studies. 

5.2.3 Crystal Structure of Complex 
The crystal structure (see Figure 5.7) of the complex did not show the distal coordination of one metal 

centre, but the thioether moieties bonded distally with two Pd centres via a chloride bridge (�-Cl)2, to 

form a 16e- Pd2Cl2(�-Cl)2 unit. This was in accordance with what Puddephatt found with the coordination 

of Pd salts in his work on thiophosphinato-based resorcinarenes.11 This also explained the low yields of 
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the reaction and subsequent reactions with two equivalents of the palladium salt returned an increase in 

the yield of the reaction to 70%.  

 

Scheme 5.2. Synthesis of resorcinarene 26: Reagents and reaction conditions: a) PdCl2 (2 equiv.), DCM, 

rt 

 

Figure 5.7. Views of the single X-ray crystal structure of resorcinarene 26. All hydrogens and solvents 

of crystallisation (dichloromethane) were removed for clarity. Colours: grey = carbon, 

purple = sulfur, red = oxygen, yellow = chlorine and light blue = palladium. In c) only 
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selected numbering is shown for the molecule. All atoms are shown as thermal ellipsoids 

(50% probability). 

Table 5.1. Selected bond lengths (Å) and angles (°) for resorcinarene 26. Numbering can be seen in 

Figure 5.7 (c). 

Pd1-S1 2.2711(8)  Pd2-S2 2.2653(8) 

Pd1-Cl1 2.2718(8)  Pd2-Cl2 2.2725(7) 

Pd1-Cl3 2.3494(7)  Pd2-Cl3 2.3446(7) 

Pd1-Cl4 2.3418(8)  Pd2-Cl4 2.3363(8) 

     

S1-Pd1-Cl1 86.68(3)  S2-Pd2-Cl2 87.97(3) 

S1-Pd1-Cl4 169.33(3)  S2-Pd2-Cl4 171.30(3) 

Cl1-Pd1-Cl4 90.38(3)  Cl2-Pd2-Cl4 90.74(3) 

S1-Pd1-Cl3 97.38(3)  S2-Pd2-Cl3 96.00(3) 

Cl1-Pd1-Cl3 175.89(3)  Cl2-Pd2-Cl3 175.22(3) 

Cl4-Pd1-Cl3 85.51(3)  Cl4-Pd2-Cl3 85.74(3) 

 

Interestingly the crystal structure revealed that the molecule crystallised in the more symmetrical 

conformation, which was shown as the minor product in the low temperature 1H NMR experiments (see 

Figure 5.4). This could possibly be due to the symmetrical product being more crystalline, thus as it starts 

to crystallise out it forces the molecules around it into a similar conformation. The crystal structure also 

indicated the inclusion of 1.5 parts of dichloromethane in the structure and according to existing 

knowledge this is the first reported case of a distally coordinated metal complex of resorcinarenes with 

functionality on the ortho position of the resorcinarene ring. 

 

The molecular structure of 26 adopted a slightly distorted boat conformation with the two non-bonding 

rings lying equatorial and the two bonding rings sitting in an axial orientation, validating the information 
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gained from the 1H NMR spectrum. Both of the palladium centres display a somewhat distorted square 

planar geometry, with the angles around Pd1 [85.51(3) - 97.38(3)°] and Pd2 [85.74(3) - 96.00(3)°] 

differing very slightly, as seen from the bond angles in Table 5.1. The bond angles for S1-Pd1-Cl4 and 

S2-Pd2-Cl4 [169.33(3) and 171.30(3)°] as well as those of Cl1-Pd1-Cl3 and Cl2-Pd2-Cl3 [175.89(3) and 

175.22(3)°] are also below 180°, further indicating the distortion. This distortion is not only around the 

metal centres but can also be seen in the whole of the molecular structure as seen in Figure 5.7 (b). This 

distortion of Pd2Cl2(�-Cl)2L2 complexes is also mentioned by other authors.11, 12 It is also clear that the 

lengths of the Pd-Cl bonds of the terminal chlorines (Pd1-Cl1 [2.2718(8) Å] and Pd2-Cl2 [2.2725(7) Å]) 

are shorter than those for the bridging chlorines (Pd1-Cl3 [2.3494(7) Å] and Pd2-Cl3 [2.3446(7) Å]). 

Pd1-S1 [2.2711(8) Å] and Pd2-S2 [2.2653(8) Å] have nearly identical bond lengths which are shorter 

than those of Pd1-Cl4 [2.3418(8) Å] and Pd2-Cl4 [2.3363(8) Å], thus clearly indicating the greater trans 

influence of the thioether than the chlrorine ligands.  

5.3 Catalysis 

With resorcinarene palladium complex 26 in hand it was decided to test if this compound would exhibit 

some form of catalytic activity using the Mizoroki-Heck reaction (also known as the Heck reaction).13, 14 

Sulfur and thioether ligands have previously been used with good success in these reactions and 

especially when used in asymmetric C-C coupling reactions.4-7, 15-17 To study the catalysis reaction it was 

decided to use bromobenzene and styrene as the arylhalide and vinylic reagents (Table 5.2). The products, 

geminal- and trans-stilbene, can be identified and quantified using 1H NMR spectroscopy, since there is a 

difference in the chemical shifts of the alkene protons (7.14 ppm trans and 5.49 ppm geminal).  

To dry degassed N,N-dimethylformamide (5 ml) was added bromobenzene (2.5 mmol), styrene (2 mmol), 

base (4 mmol) and the catalyst precursor 26. The reaction mixture was warmed to a 120 °C and the 

reaction followed by tlc, withdrawing 20 �l aliquots with a syringe, and using a standard for the trans-

stilbene as guide to product formation. The reaction was stopped after a set time, filtered through Celite. 

The filtrate was extracted into dichloromethane from an aqueous solution. After the solvent was removed 

the crude product was loaded on a column and separated using flash column chromatography. The 

products could be carefully dried under vacuum and were analysed using 1H NMR spectroscopy in 

CDCl3.  
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Table 5.2. Results from the testing of resorcinarene 26 in Heck catalysis. Reagents and Conditions: a) 

bromobenzene (2 mmol), styrene (2.5 mmol), base (4 mmol), 26a, DMF, 120 °C. 

 

Run Base Pd (mmol) Time (h) Yield (%)b 

1 Et3N 0.02 4 0 

2 Et3N 0.02 72 5 

3 Et3N 0.05 6 7 

4 NaOAc 0.05 6 8 

5 Et3N 0.05 30 6 

a Ligand half of Pd (mmol) b Total yield of products after column chromatography  

 

When 26 was added to the mixture it turned a light brown colour and as the reaction progressed the colour 

darkened to a deep mahogany. As the reaction was followed on tlc the significant formation of Pd black 

could be observed, thus indicating that there was considerable metal leaching in the reaction. This could 

possibly be due to the effective monodentate thioether ligands not being able to stabilise the Pd(0) that 

was formed during the reaction mechanism. In reports by other authors it was mentioned that they have 

encountered the problem with metal leaching in their use of thioether ligands, but not to the effect that 

was experienced in this study.18, 19 

From the data in Table 5.2 it was clear that resorcinarene 26 was not an effective catalyst, with the best 

result being that of run 4 where sodium acetate was used as base. What was interesting was the relatively 

constant yield that was achieved for runs 3-5. This constitutes a turn over number of about three mol 

product.mol cat-1 which is rather dismal. From the limited amount of product recovered it was also 

observed by 1H NMR spectroscopy that the major product was trans-stilbene and only a trace amount of 

gem-stilbene could be seen in the 1H NMR spectra of run 4.  

Although our reaction was very selective in the formation of trans-stilbene at low catalyst loading it was 

decided to leave the reaction as such and not to continue with testing of the compound’s catalytic 
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capabilities. Higher catalyst loadings would mean higher yields, but it was felt that this model would tend 

towards becoming a stoichiometric reaction and not catalytic as was desired. 
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C h a p t e r  6  

Conclusions and Future Work 

6.1 Conclusions 

In conclusion, the successful synthesis of a small range of distally functionalised resorcinarenes was 

achieved using a variety of methods, starting from a selectively synthesised di-bromo precursor using the 

methodology of Shivanyuk. The preferred synthetic route, using a lithium halogen exchange, proved to be 

troublesome. This was attributed to the formation of protonated by-products and the difficulty in 

purifying the products. 

In an effort to investigate the effect of other protecting groups on the exchange reaction on the 

resorcinarene, an anionic ortho-Fries rearrangement occurred with the Boc protecting group. Elaboration 

of the resorcinarene skeleton was attempted using this rearrangement, but with little success. Using a di-

nitrile resorcinarene (via the Rosenmund-von Braun cyanation of the di-bromo resorcinarene) to 

synthesise di-amine and aldehyde resorcinarenes also met with no success.  

For the study of the coordination of the distal resorcinarenes with transition metals di-thioether 

resorcinarene was used as a model. Attempts to coordinate Ni(II) and Pt(II) metal failed, but a tentative 

product was formed with Ag(I). Using a Pd(II) precursor we were able to synthesise the first reported 

case of a distally coordinated metal complex of resorcinarenes with functionality on the ortho position of 

the resorcinarene ring. This di-nuclear, chlorine bridged resorcinarene was tested for catalytic activity 

using a Heck reaction. Low yields were returned for the coupling of styrene with bromobenzene, but the 

product of the reaction was almost exclusively that of the trans-stilbene. Thus we could show that these 

types of resorcinarene coordination compounds show some catalytic capabilities and should be further 

studied in an effort to build on the current knowledge. 

6.2 Future work 

Therefore, this project has opened up a wide area of different possible research areas into the synthesis of 

selectively functionalised resorcinarenes and their uses, of which a few of these will be mentioned in 

closing. 

6.2.1 Pincer ligands1 
Preliminary studies were also performed on the synthesis of pincer-type ligands using resorcinarenes 

(Figure 6.1). Using resorcinarene 3 it was envisaged to form two metal centre reactive sites distal to each 

other. This should allow these molecules to act as stable platforms for catalytic reactions. It was found 
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that the molecule could be phosphorylated on the phenol groups, but the introduction of the Pd(0) 

precursor could not be achieved. This was possibly due to the steric crowding in the molecule. When the 

reaction was performed the other way around no products were formed as well. Further studies need to be 

performed, starting from a simple resorcinarene and then moving to more complicated systems, since this 

could lead to the formation of a reaction platform with four possible reactive sites for catalysis (Figure 

6.1). 

 

Figure 6.1. A pincer type resorcinarene ligand with four reactive sites (M=transition metal, R= 

R’=alkyl/aryl, X= Halide/other leaving group). 

6.2.2 Ortholithiation 
As mentioned in chapter 3 the use of DoM chemistry in selective synthesis of C2v-symmetrical 

resorcinarenes is also an active research area in our group (Scheme 6.1). The main advantage of this 

method is the relative ease of synthesising the precursor, the octamethoxy resorcinarene, thereby 

improving the total atom cost of the reaction as a whole. Initial studies have shown that the selectivity of 

the distal to the proximal product can be adjusted using different alkyllithiums and reaction temperatures, 

with a maximum of 5:1 for distal to proximal. The drawback of this reaction is the formation of a wide 

range of products that needs to be separated with chromatographic methods. 

 

Scheme 6.1. The use of DoM chemistry to selectively introduce functionality on the resorcinarene 

6.2.3 Sulfoxide ligands 
The use of sulfoxide ligands in transition metal chemistry is well documented.2 In an attempt to 

synthesise sulfoxide ligands on resorcinarenes, the thioether resorcinarene were reacted with two 

equivalents of m-CPBA. The reaction returned two products, a di-sulfoxide and a mono-sulfoxide 

resorcinarene as a minor product. Initial studies point to a form of chirality transfer through the molecule 

in the oxidation process, due to the fact that the di-sulfoxide was obtained as only one diastereomer. 
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Studies into the mechanism behind the formation of this, and the possible use of the molecule as a ligand 

for asymmetric catalysis will be attempted in the future. 
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C h a p t e r  7  

Experimental 

7.1 General Procedures 

All chemicals used were bought from Merck or Aldrich. Tetrahydrofuran, pentane, diethylether and 

toluene were dried over sodium wire/sand and distilled under nitrogen with benzophenone as an indicator. 

Dichloromethane and acetonitrile were distilled over calcium hydride under nitrogen. Other reagents were 

purified according to standard procedures.1, 2 The molarity of nBuLi was determined using a method as 

described in the literature.3 

All reactions were performed under anhydrous conditions and nitrogen or argon atmosphere, unless stated 

otherwise. Low temperature reactions were performed in a Dewar using dry ice in acetone (−78 °C), ice 

in water (0 °C) or a slurry of ethanol, sodium chloride and ice (−20 °C). Microwave reactions performed 

in a Biotage Initiator microwave reactor. 

All 1H, 13C and 31P nuclear magnetic resonance spectra were obtained using a 300 MHz Varian VNMRS 

(75 MHz for 13C), a 400 MHz Varian Unity Inova (100 MHz for 13C) or a 600 MHz Varian Unity Inova 

(150 MHz for 13C). Chloroform-d and was used as standard solvent, unless otherwise stated. Chemical 

shifts (�) were recorded using the residual chloroform peaks (� 7.26 in 1H NMR and � 77.0 in 13C NMR) 

or the residual DMSO peaks (� 2.50 in 1H NMR and � 39.5 in 13C NMR) in DMSO-d6, as reference. 31P 

NMR was referenced to neat H3PO4 (� 0 ppm). All chemical shifts are reported in ppm and all 

resorcinarene spectra were obtained at 25 °C, unless otherwise stated.  

All chromatography was performed using either (or a combination of) petrol ether, ethyl acetate, 

methanol and dichloromethane. Thin layer chromatography (tlc) was carried out on aluminium backed 

Merck silica gel 60 F254 plates. Visualization was achieved with UV lamp, iodine vapour or by spraying 

with a Cerium Ammonium Molybdate solution (CAM) and then heating. Preparative layer 

chromatography (PLC) was performed on Precoated PLC Merck silica gel F254 plates. All column 

chromatography was carried out with Merck silica gel 60 (particle size 0.040-0.063 mm).  

Melting points were obtained using a Gallenkamp Melting Point Apparatus and are uncorrected. Infrared 

spectra were obtained using a Nexus Thermo-Nicolet FT-IR instrument using thin film solutions of 

chloroform or dichloromethane on NaCl plates, or using the ATR. High resolution mass spectrometry was 

performed by the CAF (Central Analytical Facility) Institute at Stellenbosch University using a Waters 

API Q-TOF Ultima spectrometer. Routine mass spectronomy was performed using a Waters API Quattro 

Micro spectrometer. In both cases ESI+ was used as ionisation method.  
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7.2 Compounds 

14,16,34,36,54,56,74,76-Octahydroxy-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (1)4 

 

Resorcinol (8.26 g, 75 mmol) was dissolved in dry dichloromethane (250 ml). The solution was cooled to 

0 °C and butanal (6.76 ml, 75 mmol) was added. Boron trifluoride diethyl ether complex (19.4 ml, 153 

mmol) was added slowly over a period of 30 minutes, via a syringe pump, to the solution and the reaction 

was allowed to warm to room temperature, and left stirring for 26 hours. The solution formed a red 

colour, with a light pink precipitate. The resulting precipitate was filtered off and washed with 

dichloromethane to yield a light pink product. The precipitate was dried on high vacuum for 12 hours to 

leave the tetrapropyl resorcinarene 1 (8.97 g, 73%). 

Mp >350 °C(dec) (Water/Ethanol), (Lit.4 m.p. >360 °C); 1H NMR (DMSO–D6, 400 MHz, 25 °C): � = 

0.89 (t, J = 7.3 Hz, 12H, –(CH2)2CH3), 1.19 (sxt, J = 7.3 Hz, 8H, –CH2CH2CH3), 2.08 (m, 8H, –

CH2CH2CH3), 4.22 (t, J = 7.9 Hz, 4H, H–2,4,6,8), 6.14 (s, 4H, H–12,32,52,72), 7.24 (s, 4H, H–15,35,55,75), 

8.92 (s, 8H, Ar–OH). 

 

34,36,74,76-Tetra(benzyloxycarbonyloxy)-14,16,54,56-tetrahydroxy-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (2) 

 

Resorcinarene 1 (1.98 g, 3 mmol) was dissolved in dry acetonitrile (30 ml) at room temperature and to 

this mixture was added triethylamine (1.68 ml, 12 mmol) and the resulting pink suspension was stirred for 

20 minutes after which benzyl chloroformate (1.70 ml, 12 mmol) was added. The solution turned light 

red/orange within 5 minutes and the reaction was left stirring for 48 hours at room temperature. The 

resulting light pink precipitate was collected via filtration and washed with cold portions of acetonitrile. 

The precipitate was taken up in 1M HCl (25 ml) and extracted with dichloromethane (4×30 ml), the 

organic phases combined and dried over anhydrous magnesium sulfate. The drying agent was filtered off 
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and the solvent removed under reduced pressure to leave a fine white solid, the tetraCBz resorcinarene 2 

(0.94 g, 27%). 

Mp 170 °C (dichloromethane/petroleum ether); Rf = 0.13 (ethyl acetate/petroleum ether, 2:3); IR (film): 

3426, 2956, 2871, 1759, 1620, 1493, 1267, 1224, 911, 736 cm–1; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 

0.89 (t, J = 7.3 Hz, 12H, –(CH2)2CH3), 1.13–1.22 (m, 4H, –CH2CH2CH3), 1.29–1.40 (m, 4H, –

CH2CH2CH3), 1.74–1.83 (m, 4H, –CH2CH2CH3), 1.92–2.00 (m, 4H, –CH2CH2CH3), 4.33 (br t, J = 7.3 

Hz, 4H, H–2,4,6,8), 5.21–5.27 (m, 8H, H–2'), 5.94 (s, 2H, H–15,55), 6.67 (br s, 2H, H–35,75), 6.71 (s, 4H, 

Ar–OH), 6.92 (s, 2H, H–12,52), 7.12 (s, 2H, H–32,52), 7.3–7.36 (m, 20H, Ph); 13C NMR (CDCl3, 100 

MHz, 25 °C): � = 14.1 (–(CH2)2CH3), 20.9 (–CH2CH2CH3), 35.0 (C–2,4,6,8), 37.4 (–CH2CH2CH3), 70.9 

(C–2'), 102.9 (C–15,55), 115.1 (C–12,52), 118.6 (C–32,72), 124.1 (C–31,33,71,73), 127.9 (C-35,75), 128.6 

(Ph), 134.5 (Ph), 136.2 (C–11,13,51,53), 146.0 (C–34,36,74,76), 153.6 (C–1'), 153.9 (C–14,16,54,56); MS 

(ESI+): m/z (%) = 1211 (100) [M+H2O]+, 1193 (22) [M]+; HRMS–ESI+: m/z [M+H]+ calcd for 

C72H73O16: 1193.4899; found: 1193.4918. 

 

34,36,74,76-Tetra(benzyloxycarbonyloxy)-15,55-dibromo-14,16,54,56-tetrahydroxy-2,4,6,8-tetrapropyl-

1,3,5,7(1,3)-tetrabenzenacyclooctaphane (3)  

 

Resorcinarene 2 (2.04 g, 1.7 mmol) was dissolved in dry dichloromethane (85.5 ml) and cooled to −78 

°C. To this solution was added, via a dropping funnel, a solution of 1M bromine in acetic acid (6 ml, 6 

mmol). The reaction was stirred for 30 minutes after which another equivalent of the 1M bromine in 

acetic acid (1.7 ml, 1.7 mmol) was added and the reaction was stirred for another 30 minutes until 

completion (monitored with tlc). The reaction mixture was quenched with a 10% sodium thiosulfate (w/v, 

60 ml) solution and warmed to room temperature. The reaction mixture was neutralized with a 10% 

sodium carbonate (w/v, 100 ml) solution, carried over to a separatory funnel and the organic phase 

separated. The water layer was extracted with dichloromethane (3×60 ml), the organic phases combined 

and dried over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent removed 

under reduced pressure to leave yellow-orange foam (2.31 g, >100%). The product was purified using 

flash column chromatography (silica gel eluting with ethyl acetate: petroleum ether 3:17 followed by 

ethyl acetate: petroleum ether 1:4). The resulting product was recrystallized in petroleum 

ether/dichloromethane to yield fine pale white crystals of dibromo-tetraCBz-resorcinarene 3 (1.85 g, 

80%). 
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Mp 220 °C (dichloromethane/petroleum ether); Rf = 0.56 (ethyl acetate/petroleum ether, 2:3); IR (ATR): 

3508, 3454, 2956, 2871, 1765, 1744, 1610, 1214, 971, 696 cm–1; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 

0.88 (t, J = 7.3 Hz, 12H, –(CH2)2CH3), 1.14–1.24 (m, 4H, –CH2CH2CH3), 1.28–1.37 (m, 4H, –

CH2CH2CH3), 1.71–1.80 (m, 4H, –CH2CH2CH3), 1.88–1.97 (m, 4H, –CH2CH2CH3), 4.33 (t, J = 7.6 Hz, 

4H, H–2,4,6,8), 5.22 (s, 4H, Ar–OH), 5.30 (m, 8H, H–2'), 6.53 (s, 2H, H–35,75), 7.08 (s, 2H, H–12,52), 

7.11 (s, 2H, H–32,72), 7.34–7.47 (m, 20H, Ph); 13C NMR (CDCl3, 100 MHz, 25 °C): � = 13.9 (–

(CH2)2CH3), 20.7 (–CH2CH2CH3), 35.8 (C–2,4,6,8), 37.4 (–CH2CH2CH3), 70.5 (C–2'), 100.6 (C–15,55), 

115.4 (C–35,75), 120.2 (C–31,33,71,73), 123.6 (C–12,52), 126.8 (C–32,72), 128.6 (Ph), 128.7 (Ph), 128.8 

(Ph), 134.8 (Ph), 135.5 (C–11,13,51,53), 146.4 (C–34,36,74,76), 149.2 (C–14,16,54,56), 153.8 (C–1'); MS 

(ESI+): m/z (%) = 1368.33 (100) [M+NH4]+; HRMS–ESI+: m/z [M+NH4]+ calcd for C72H74O16NBr2: 

1366.3374; found: 1366.3375. 

 

15,55-Dibromo-14,16,34,36,54,56,74,76-octamethoxy-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (4)  

 

To a mixture of Resorcinarene 3 (1.80 g, 1.3 mmol) in ethanol/THF (1:1 v/v, 75 ml) was added Pd/C 

(10%, 0.138 g, 0.13 mmnol) and a hydrogen-filled balloon connected. The mixture was stirred at room 

temperature in a waterbath for 24 hours after which another equivalent of Pd/C (10%, 0.138 g, 0.13 

mmnol) was added and stirred until completion as monitored by tlc (24 hours). The mixture was filtered 

over a Celite plug and washed with ethanol and THF. The solvent was removed under reduced pressure to 

leave a solid (1.22 g, >100%). 

The solid and potassium carbonate (3.31 g, 24 mmol) were suspended in dry acetonitrile (40 ml) and 

dimethyl sulfate (2.29 ml, 24 mmol) was added. The solution was heated to reflux for 42 hours. The 

reaction was stopped and cooled to room temperature. The solvent was removed under reduced pressure 

and the resulting solid added to H2O (50 ml) and extracted with dichloromethane (3×50 ml). The organic 

layers were combined and dried over anhydrous magnesium sulfate. The drying agent was filtered off and 

the solvent removed under reduced pressure to leave an orange solid. The product was purified using 

flash column chromatography (silica gel eluting with dichloromethane followed by dichloromethane: 

methanol 99:1). The resulting product was recrystallized in boiling ethanol to yield white crystals (0.94 g, 

75% over 2 steps). 
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Mp 209–210 °C (ethanol/dichloromethane); Rf = 0.62 (ethyl acetate/petroleum ether, 2:3); IR (ATR): 

2933, 2871, 1613, 1582, 1237, 1081, 1037 cm–1; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 0.93 (t, J = 7.3 

Hz, 12H, –(CH2)2CH3), 1.34 (m, 8H, –CH2CH2CH3), 1.82 (m, 8H, –CH2CH2CH3), 3.60 (s, 12H, Ar–

OCH3), 3.68 (s, 12H, Ar–OCH3), 4.51 (t, J = 7.4 Hz, 4H, H–2,4,6,8), 6.30 (s, 2H, H–35,75), 6.55 (s, 2H, 

H–12,52), 6.75 (s, 2H, H–32,72); 13C NMR (CDCl3, 100 MHz, 25 °C): � = 14.2 (–(CH2)2CH3), 21.2 (–

CH2CH2CH3), 36.5 (C–2,4,6,8), 37.5 (–CH2CH2CH3), 55.6 (Ar–OCH3), 60.3 (Ar–OCH3), 96.3 (C–35,75), 

112.5 (C–15,55), 124.7 (C–31,33,71,73), 125.0 (C–12,52), 126.4 (C–32,72), 136.1 (C–11,13,51,53), 153.6 (C–

14,16,54,56), 156.1 (C–34,36,74,76); MS (ESI+): m/z (%) = 944.3 (100) [M+NH4]+; HRMS–ESI+: m/z 

[M+NH4]+ calcd for C48H66O16NBr2: 942.3155; found: 942.3160. 

 

14,16,34,36,54,56,74,76-Octamethoxy-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (5)  

 

By-product formed during resorcinarene reactions. 

Mp 272–274 °C (dichloromethane); Rf = 0.55 (ethyl acetate/petroleum ether, 1:1); IR (ATR): 2950, 2867, 

1608, 1508, 1292, 1038, 814 cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � = 0.92 (t, J = 7.3 Hz, 12H, –

(CH2)2CH3), 1.26–1.38 (m, 8H, –CH2CH2CH3), 1.77–1.84 (m, 8H, –CH2CH2CH3), 3.60 (s, 24H, Ar–

OCH3), 4.48 (t, J = 7.5 Hz, 4H, H–2,4,6,8), 6.32 (s, 4H, H–15,35,55,75), 6.63 (s, 4H, H–12,32,52,72); 13C 

NMR (CDCl3, 75.5 MHz, 25 °C): � = 14.3 (–(CH2)2CH3), 21.2 (–CH2CH2CH3), 35.1 (C–2,4,6,8), 37.1 (–

CH2CH2CH3), 56.2 (Ar–OCH3), 97.1 (C–15,35,55,75), 126.1 (C–11,13,31,33,51,53,71,73), 126.3 (C–

12,32,52,72), 155.8 (C-14,16,34,36,54,56,74,76); MS (ESI+): m/z (%) = 786.49 (100) [M+NH4]+, 769.47 (20) 

[M]+; HRMS–ESI+: m/z [M+H]+ calcd for C48H65O8: 769.4679; found: 769.4681. 

 

2-Bromo-1,3-Dimethoxybenzene (6)  

 

6 was synthesised from two different starting materials. Method 1 was performed according to a literature 

procedure.6  
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Method 1: To dry diethylether (40 ml) was added TMEDA (0.05 ml, 0.30 mmol) and the mixture was 

cooled to 0 °C. nBuLi (20.5 ml of a 1.47M solution in hexane, 30 mmol) was added dropwise to the 

solution over a 10 minute period. The solution was stirred for an additional 10 minutes, after which 1,3-

dimethoxybenzene 7 (4.0 ml, 30 mmol) was added slowly and stirred for 1,5 hours at 0 °C. 1.2-

Dibromoethane (10.4 ml, 120 mmol) was added dropwise over a period of three hours and the reaction 

was warmed to room temperature and stirred overnight (20 hours). To the reaction mixture was added 

H2O (40 ml) and conc. H2SO4 (0.1 ml) and the organic phase separated. The organic layer was washed 

with H2O (2×20 ml), dried over anhydrous magnesium sulfate. The drying agent was filtered off and the 

solvent removed under reduced pressure to leave an orange solid. The product was purified using flash 

column chromatography (silica gel eluting with ethyl acetate: petroleum ether 1:19). The resulting 

product was dissolved in boiling ethanol and placed in a refrigerator at −20 °C. White crystals of 7 

precipitated out of solution. The crystals was collected by filtration, washed with cold ethanol and dried 

to yield 6 (847 mg, 13%).  

Method 2: 2-Bromo-1,3-dihydroxybenzene 9 (2.66 g, 14 mmol) and potassium carbonate (7.74g, 56 

mmol) were suspended in dry acetonitrile (100 ml) and dimethyl sulfate (5.35 ml, 56 mmol) added. The 

solution was heated to reflux for 2.5 hours. The reaction was stopped and cooled to room temperature. 

The solvent was removed under reduced pressure and the resulting light green solid added to H2O (120 

ml) and extracted with dichloromethane (4×75 ml). The organic layers were combined and dried over 

anhydrous magnesium sulfate. The drying agent was filtered off and the solvent removed under reduced 

pressure to leave a light yellow solid. The product was purified using flash column chromatography 

(silica gel eluting with petroleum ether followed by petroleum ether:ethyl acetate 9:1) leaving a white 

solid (2.82 g, 92%). The resulting product was recrystallized in boiling ethanol and placed in a 

refrigerator at −20 °C. White crystals of 6 precipitated out of solution. The crystals were collected by 

filtration, washed with cold ethanol and dried to yield 7 (2.54 g, 83%). Characterisation in both methods 

corresponded to literature values.6 

Mp 92 °C (Ethanol), (Lit.6 m.p. 91 °C); 1H NMR (CDCl3, 300 MHz, 25 °C): � = 3.91 (s, 6H, –OCH3), 

6.59 (d, J = 8.4 Hz, 2H, H–4,6), 7.24 (t, J = 8.4 Hz, 1H, H–5). 

1,3-Dimethoxybenzene (7)5  

 

To a dark-brown suspension of resorcinol (5.50 g, 50 mmol) and potassium carbonate (27.6 g, 200 mmol) 

in dry acetonotrile (200 ml) was added dimethyl sulfate (19 ml, 200 mmol). The solution was warmed to 
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reflux and monitored with tlc till completion (2 hours). The solvent was removed under reduced pressure 

and the resulting orange oil was added to H2O (100 ml), 1M HCl (40 ml) and extracted with 

dichloromethane (5×50 ml). The organic layers were combined and dried over anhydrous magnesium 

sulfate. The drying agent was filtered off and the solvent removed under reduced pressure to leave an 

orange oil. Vacuum distillation (88-92 °C/20 mmHg) afforded a colourless oil. 1H NMR spectroscopy 

revealed dimethyl sulfate still present in the product. Final purification was achieved by flash column 

chromatography (silica gel eluting with ethyl acetate: petroleum ether 1:9) followed by vacuum 

distillation to afford 6 as a colourless oil (5.18 g, 75%). 1H NMR spectroscopy conformed to literature 

values. 

1H NMR (CDCl3, 400 MHz, 25 °C): � = 3.80 (s, 6H, –OCH3), 6.47 (t, J = 2.4 Hz, 1H, H–2), 6.51 (dd, J = 

8.2, 2.3 Hz, 2H, H–4,6), 7.20 (t, J = 8.2 Hz, 1H, H–5). 

 

1,3,5-Tribromo-2,4-dihydroxybenzene (8)6, 7   

 

8 was synthesised from an adapted literature procedure.6 Resorcinol (3.30 g, 30 mmol) was suspended in 

chloroform (50 ml) and cooled to 0 °C. A solution of bromine (4.6 ml, 90 mmol) in chloroform (8 ml) 

was added via dropping funnel to the solution over 25 minutes, after which it was left stirring at 0 °C for 

15 minutes. The dark orange reaction was warmed to reflux until no hydrogen bromide developed. The 

reaction mixture was cooled to room temperature. Activated charcoal (1.00 g) was added and the reaction 

stirred for 30 minutes after which it was filtered off over a plug of Celite. The solution was added to 10% 

sodium thiosulfate (w/v, 50 ml) solution in a separatory funnel and the organic phase extracted. The 

aqueous phase was further extracted with chloroform (2×50 ml), the organic phases combined and dried 

over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent removed under 

reduced pressure to leave a white crystalline solid. The solid was recrystallized in chloroform to yield 

tribromoresorcinol 8 (9.37 g, 90%). 

Mp 109 °C (chloroform), (Lit.6 m.p. 111 °C); 1H NMR (CDCl3, 300 MHz, 25 °C): � = 5.93 (s, 2H, Ar–

OH), 7.61 (s, 1H, Ar–H). 

 

 

2-Bromo-1,3-dihydroxybenzene (9)8, 9   
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9 was synthesised from an adapted literature procedure.8, 9 Aqueous methanol (54 ml, 16.7% v/v) was 

added to tribromoresorcinol (3.77 g, 10.9 mmol) and stirred at room temperature. To the solution a 

mixture of sodium sulphite (2.74 g, 21.7 mmol) and sodium hydroxide (0.868 g, 21.7 mmol) in distilled 

H2O (54 ml) was added dropwise over 20 minutes. The resulting light yellow solution was stirred for 1 

hour at room temperature. The solution was acidified with 1M HCl and extracted with diethyl ether (4×50 

ml). The organic phases were combined and dried over anhydrous magnesium sulfate. The drying agent 

was filtered off and the solvent removed under reduced pressure to leave 2-bromo-1,3-dihydroxybenzene 

9 as a whitish solid (1.97 g, 95%). The purity of the solid was suitable enough to proceed with the next 

step without further purification, as judged by 1H NMR.9 

1H NMR (CDCl3, 300 MHz, 25 °C): � = 5.36 (s, 2H, Ar–OH), 6.61 (d, J = 8.2 Hz, 2H, H–4,6), 7.12 (t, J = 

8.2 Hz, 1H, H–5). 

 

Standard lithiation protocol for model compounds 

Dry, freshly distilled tetrahydrofuran (0.1 M) was added to model 7 in a reaction vessel, fitted with a 

stirrer bar, purged under an anhydrous nitrogen atmosphere. The resulting solution was cooled to −78 °C 

and stirred for 10 minutes. To this solution nBuLi (1.1 equivalents, molarity 0.97-1.5 M solution in 

hexanes) was added and left stirring for 15 minutes at −78 °C. The solution was quenched with an 

electrophile at −78 °C and left stirring for 5 minutes after which it was allowed to warm to room 

temperature. Length of stirring at room temperature, work-up and purification varies for each 

electrophile. 

 

1,3-Dimethoxy-2-trimethylsilylbenzene (10) 

 

To 7 (184.4 mg, 0.848 mmol) was added tetrahydrofuran (8 ml). After cooling to −78 °C, nBuLi (0.61 ml, 

0.85 mmol, 1.39 M solution in hexane) was added. After 15 minutes trimethylsilyl chloride (0.16 ml, 1.27 
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mmol) was added and the reaction warmed to room temperature and stirred overnight (18 hours). The 

reaction was quenched with a sat. NH4Cl solution (5 ml), added to H2O (15 ml) and extracted with 

dichloromethane (3×15 ml). The organic phases were combined and dried over anhydrous magnesium 

sulfate. The drying agent was filtered off and the solvent removed under reduced pressure to leave a 

yellow oil. Purification was achieved using preparative tlc (ethyl acetate: petroleum ether 1:9) to leave the 

silated 10 as an oil that hardens on standing (23 mg, 19%). 1H NMR spectroscopy data corresponded with 

literature values.10 

1H NMR (CDCl3, 300 MHz, 25 °C): � = 0.28 (s, 9H, –Si(CH3)3), 3.75 (s, 6H, –OCH3), 6.50 (d, J = 8.2 

Hz, 2H, H–4,6), 7.27 (t, J = 8.2 Hz, 1H, H–5). 

 

1,3-Dimethoxy-2-methylbenzene (11)  

 

To 7 (133.8 mg, 0.61 mmol) was added tetrahydrofuran (6 ml). After cooling to −78 °C, nBuLi (0.68 ml, 

0.67 mmol, 0.99 M solution in hexane) was added. After 15 minutes methyliodide (0.13 ml, 2.0 mmol) 

was added and the reaction warmed to room temperature and stirred for four hours. The reaction was 

quenched with H2O (15 ml) and extracted with ethyl acetate (3×15 ml). The organic phases were 

combined and dried over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent 

removed under reduced pressure to leave a colourless oil. The yield of the methylated 11 was determined 

using crude 1H NMR spectroscopy owing to the trouble in purification of the reaction product (40 mg, 

42%). Characterisation data corresponded with literature values.11  

1H NMR (CDCl3, 400 MHz, 25 °C): � = 2.16 (s, 3H, Ar–CH3), 3.86 (s, 6H, –OCH3), 6.58 (d, J = 8.2 Hz, 

2H, H–4,6), 7.16 (t, J = 8.2 Hz, 1H, H–5). 

 

1,3-Dimethoxy-2-methylthiylbenzene (12)  
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To 7 (170.0 mg, 0.78 mmol) was added tetrahydrofuran (8 ml). After cooling to −78 °C, nBuLi (0.87 ml, 

0.86 mmol, 0.99 M solution in hexane) was added. After 15 minutes dimethyl disulfide (0.30 ml, 3.4 

mmol) was added and the reaction warmed to room temperature and stirred for four hours. The reaction 

was quenched with H2O (15 ml) and extracted with ethyl acetate (3×20 ml). The organic phases were 

combined and dried over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent 

removed under reduced pressure to leave a white solid. Final purification was achieved by flash column 

chromatography (silica gel eluting with ethyl acetate: petroleum ether 1:9) to leave a white solid, the 

thioether 12 (67 mg, 47%). Characterisation data corresponded with literature values.12 

Mp 78–79 °C (ethanol), (Lit.12 m.p. 81-82 °C) ; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 2.37 (s, 3H, –

SCH3), 3.90 (s, 6H, –OCH3), 6.58 (d, J = 8.4 Hz, 2H, H–4,6), 7.24 (t, J = 8.4 Hz, 1H, H–5). 

 

(1,3-Dimethoxyphenyl)diphenylphosphine oxide (13)  

 

To 7 (99.5 mg, 0.46 mmol) was added tetrahydrofuran (5 ml). After cooling to −78 °C, nBuLi (0.51 ml, 

0.50 mmol, 0.99 M solution in hexane) was added. After 15 minutes diphenylphosphine chloride (0.28 

ml, 1.5 mmol) was added and the reaction warmed to room temperature and stirred overnight (17 hours). 

The reaction was quenched with 1M HCl (5 ml), H2O (15 ml) added and extracted with ethyl acetate 

(3×15 ml). The organic phases were combined and dried over anhydrous magnesium sulfate. The drying 

agent was filtered off and the solvent removed under reduced pressure to leave a grey oil. Final 

purification was achieved by flash column chromatography (silica gel eluting with ethyl acetate: 

petroleum ether 3:7 followed by ethyl acetate: petroleum ether 1:1 followed by ethyl acetate) to leave a 

white solid, the phosphine oxide 13 (70 mg, 45%). Characterisation data corresponded with literature 

values.13 

1H NMR (CDCl3, 400 MHz, 25 °C): � = 3.31 (s, 6H, –OCH3), 6.48 (dd, J = 8.4, 4.3 Hz, 2H, H–4,6), 

7.33–7.43 (m, 7H, H–5,Ph), 7.66–7.71 (m, 4H, Ph); 31P NMR (CDCl3, 161.5 MHz, 25 °C): � = 22.7. 

 

Standard lithiation protocol for resorcinarenes 

An oven-dried (120 °C) Schlenk flask was cooled under vacuum to room temperature. The flask was 

backfilled with inert gas (argon or nitrogen) and charged with resorcinarene 4 and dry, freshly distilled 
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tetrahydrofuran, enough to solvate the precursor. The solvent was removed under vacuum and the residue 

was heated with an industrial heat-gun for 5-10 minutes while still under vacuum and left to cool to 

ambient temperature. The flask was then refilled with inert gas and the solvation/de-solvation process was 

repeated two more times. The dried residue was dissolved in dry tetrahydrofuran (0.02 M) and cooled to 

−78 °C with vigorous stirring. 2.2 equivalents of freshly titrated nBuLi (molarity 0.97-1.5 M solution in 

hexanes) were added to the mixture and left to stir for 15 minutes after which an excess of electrophile 

was added. The reaction was warmed to room temperature and further reaction times and work-up 

procedures vary according to the electrophile used. 

 

14,16,34,36,54,56,74,76-Octamethoxy-15,55-bis(trimethylsiliyl)-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzencyclooctaphane (14)  

14,16,34,36,54,56,74,76-Octamethoxy-15-trimethylsiliyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (14a) 

 

Resorcinarene 4 (119 mg, 0.13 mmol) was dissolved in tetrahydrofuran (6.5 ml). After cooling, nBuLi 

(0.29 ml, 0.28 mmol, 0.99 M solution in hexane) was added. The reaction was quenched with 

trimethylchlorosilane (0.18 ml, 1.41 mmol), warmed to room temperature and stirred for four hours. A 

sat. NH4Cl solution (5 ml) and H2O (15 ml) was added and the product extracted into ethyl acetate (3×20 

ml). The organic phases were combined and dried over anhydrous magnesium sulfate. The drying agent 

was filtered off and the solvent removed under reduced pressure to leave a white solid. Final purification 

was achieved by flash column chromatography (silica gel eluting with ethyl acetate: petroleum ether 1:9) 

to leave a white solid, the disilyl 14 (18 mg, 15%) Attempts to purify through recrystallization failed due 

to the molecule disintegrating. 

Rf = 0.84 (ethyl acetate/petroleum ether, 2:3); 1H NMR (CDCl3, 400 MHz, 25 °C): � = 0.26 (s, 18H, –

Si(CH3)3), 0.88 (t, J = 7.3 Hz, 12H, –(CH2)2CH3), 1.22–1.33 (m, 8H, –CH2CH2CH3), 1.75–1.87 (m, 8H, –

CH2CH2CH3), 3.34 (s, 12H, Ar–OCH3), 3.68 (s, 12H, Ar–OCH3), 4.51 (t, J = 7.4 Hz, 4H, H–2,4,6,8), 

6.38 (s, 2H, Ar–H), 6.78 (s, 2H, Ar–H), 6.19 (s, 2H, Ar–H). 

14a was separated as a by-product (32 mg, 30 %). 
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Rf = 0.76 (ethyl acetate/petroleum ether, 2:3); 1H NMR (CDCl3, 400 MHz, 25 °C): � = 0.29 (s, 9H, –

Si(CH3)), 0.89 (t, J = 7.3 Hz, 6H, –(CH2)2CH3), 0.92 (t, J = 7.3 Hz, 6H, –(CH2)2CH3), 1.26–1.37 (m, 8H, 

–CH2CH2CH3), 1.80–1.84 (m, 8H, –CH2CH2CH3), 3.19 (s, 6H, Ar–OCH3), 3.54 (s, 6H, Ar–OCH3), 3.71 

(s, 6H, Ar–OCH3), 3.72 (s, 6H, Ar–OCH3), 4.44–4.50 (m, 4H, H–2,4,6,8), 6.21 (s, 1H, Ar–H), 6.40 (s, 

2H, Ar–H), 6.49 (s, 2H, Ar–H), 6.85 (s, 1H, Ar–H), 6.93 (s, 1H, Ar–H). 

 

14,16,34,36,54,56,74,76-Octamethoxy-15,55-dimethyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (15) 

14,16,34,36,54,56,74,76-Octamethoxy-15-methyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (15a) 
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Resorcinarene 4 (106 mg, 0.12 mmol) was dissolved in tetrahydrofuran (6 ml). After cooling, nBuLi 

(0.26 ml, 0.25 mmol, 0.99 M solution in hexane) was added. The reaction was quenched with methyl 

iodide (0.1 ml, 0.75 mmol), warmed to room temperature and stirred overnight. H2O (15 ml) was added 

and the product extracted into ethyl acetate (3×20 ml). The organic phases were combined and dried over 

anhydrous magnesium sulfate. The drying agent was filtered off and the solvent removed under reduced 

pressure to leave a white solid. Final purification was achieved by flash column chromatography (silica 

gel eluting with ethyl acetate: petroleum ether 1:9 followed by ethyl acetate: petroleum ether 3:17 

followed by ethyl acetate: petroleum ether 1:3) to leave a white solid, the dimethyl 15 (34 mg, 37%). 

Rf = 0.38 (ethyl acetate/petroleum ether, 1:3); IR (film): 2954, 2869, 1612, 1583, 1298, 1203, 1037, 910 

cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � = 0.92 (t, J = 7.3 Hz, 12H, –(CH2)2CH3), 1.31–1.37 (m, 8H, 

–CH2CH2CH3), 1.78–1.84 (m, 8H, –CH2CH2CH3), 2.06 (s, 6H, Ar–CH3), 3.37 (s, 12H, Ar–OCH3), 3.70 

(s, 12H, Ar–OCH3), 4.53 (t, J = 7.5 Hz, 4H, H–2,4,6,8), 6.39 (s, 2H, H–35,75), 6.58 (s, 2H, H–12,52), 6.72 

(s, 2H, H–32,72); 13C NMR (CDCl3, 100 MHz, 25 °C): � = 9.8 (Ar–CH3), 14.2 (–(CH2)2CH3), 21.2 (–

CH2CH2CH3), 35.6 (C–2,4,6,8), 37.7 (–CH2CH2CH3), 55.8 (Ar–OCH3), 59.8 (Ar–OCH3), 96.1 (C–35,75), 

123.1 (C–15,55), 123.5 (C–31,33,71,73), 126.5 (H–32,72), 126.7 (H–12,52), 133.0 (C–11,13,51,53), 155.4 (C–

14,16,54,56), 155.6 (C–34,36,74,76); MS (ESI+): m/z (%) = 815 (50) [M+H2O]+, 797 (100) [M]+. 

15a was separated as a by-product (27 mg, 30%). 
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Rf = 0.29 (ethyl acetate/petroleum ether, 1:3); IR (film): 2953, 2869, 1610, 1583, 1466, 1299, 1039, 911 

cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � = 0.89–0.94 (m, 12H, –(CH2)2CH3), 1.26–1.40 (m, 8H, –

CH2CH2CH3), 1.73–1.88 (m, 8H, –CH2CH2CH3), 2.04 (s, 3H, Ar–CH3), 3.12 (s, 6H, Ar–OCH3), 3.49 (s, 

6H, Ar–OCH3), 3.76 (s, 2×6H, Ar–OCH3), 4.47 (t, J = 7.6 Hz, 2H), 4.54 (t, J = 7.5 Hz, 2H), 6.15 (s, 1H, 

Ar–H), 6.40 (s, 2H, Ar–H), 6.43 (s, 2H, Ar–H), 6.81 (s, 1H, Ar–H), 6.92 (s, 1H, Ar–H); 13C NMR 

(CDCl3, 100 MHz, 25 °C): � = 10.1, 14.3, 21.2, 35.0, 35.6, 35.8, 37.2, 37.4, 37.7, 55.3, 55.8, 56.3, 59.4, 

59.8, 95.0, 96.3, 123.0, 123.4, 124.2, 126.1, 126.6, 127.1, 127.3, 132.4, 133.0, 155.3, 155.6, 155.7, 155.8; 

MS (ESI+): m/z (%) = 801 (35) [M+H2O]+, 783 (100) [M]+. 

 

14,16,34,36,54,56,74,76-Octamethoxy-15,55-dimethylthiyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (16) 

14,16,34,36,54,56,74,76-Octamethoxy-15-methylthiyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (16a) 

 

Resorcinarene 4 (350 mg, 0.38 mmol) was dissolved in tetrahydrofuran (19 ml). After cooling, nBuLi 

(0.84 ml, 0.83 mmol, 0.99 M solution in hexane) was added. The reaction was quenched with dimethyl 

disulfide (0.15 ml, 1.66 mmol), warmed to room temperature and stirred overnight. H2O (15 ml) was 

added and the product extracted into ethyl acetate (3×30 ml). The organic phases were combined and 

dried over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent removed 

under reduced pressure to leave a white solid. Final purification was achieved by flash column 

chromatography (silica gel eluting with ethyl acetate: petroleum ether 3:22 followed by ethyl acetate: 

petroleum ether 3:17 followed by ethyl acetate: petroleum ether 1:3) to leave a white solid. Final 

purification was achived by recrystallisation in ethanol/dichloromethane to yield the dithioether 16 (228 

mg, 70%). 

Mp 208–209 °C (ethanol/dichloromethane); Rf = 0.64 (ethyl acetate/petroleum ether, 2:3); IR (ATR): 

2952, 2930, 2869, 1611, 1582, 1409, 1296, 1010, 915, 812 cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � = 

0.93 (t, J = 7.4 Hz, 12H, –(CH2)2CH3), 1.29–1.37 (m, 8H, –CH2CH2CH3), 1.78–1.84 (m, 8H, –

CH2CH2CH3), 2.33 (s, 6H, –SCH3), 3.59 (s, 12H, Ar–OCH3), 3.64 (s, 12H, Ar–OCH3), 4.54 (t, J = 7.6 

Hz, 4H, H–2,4,6,8), 6.35 (s, 2H, H–35,75), 6.69 (s, 2H, H–12,52), 6.71 (s, 2H, H–32,72); 13C NMR (CDCl3, 
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75.5 MHz, 25 °C): � = 14.2 (–(CH2)2CH3), 18.1 (–CH2CH2CH3), 21.2 (Ar–SCH3), 35.9 (C–2,4,6,8), 37.7 

(–CH2CH2CH3), 55.7 (Ar–OCH3), 60.4 (Ar–OCH3), 96.3 (C–35,75), 122.9 (C–15,55), 125.6 (C–

31,33,71,73), 128.9 (C–12,52), 126.3 (C–32,72), 134.6 (C–11,13,51,53), 155.8 (C–14,16,54,56), 157.2 (C–

34,36,74,76); MS (ESI+): m/z (%) = 878.47 (100) [M+NH4]+; HRMS–ESI+: m/z [M+NH4]+ calcd for 

C50H72O8NS2: 878.4699; found: 878.4676. 

16a was separated as a by-product (58 mg, 19%) 

Rf = 0.61 (ethyl actate/petroleum ether, 2:3); 1H NMR (CDCl3, 400 MHz, 25 °C): � = 0.90 (m, 12H, –

(CH2)2CH3), 1.28–1.45 (m, 8H, –CH2CH2CH3), 1.73–189 (m, 8H, –CH2CH2CH3), 2.30 (s, 3H, Ar–SCH3), 

3.24 (s, 6H, Ar–OCH3), 3.49 (s, 6H, Ar–OCH3), 3.77 (s, 2×6H, 2×Ar–OCH3), 4.44–4.56 (m, 4H, H–

2,4,6,8), 6.15 (s, 1H, Ar–H), 6.34 (s, 2H, Ar–H), 6.44 (s, 2H, Ar–H), 6.92 (s, 1H, Ar–H), 6.93 (s, 1H, Ar–

H). 

 

14,16,34,36,54,56,74,76-Octamethoxy-15,55-bis(diphenylphosphine oxide-2,4,6,8 

tetrapropyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (17) 

14,16,34,36,54,56,74,76-Octamethoxy-15-diphenylphosphine oxide-2,4,6,8- 

tetrapropyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (17a) 

 

Resorcinarene 4 (141 mg, 0.15 mmol) was dissolved in tetrahydrofuran (8 ml). After cooling, nBuLi 

(0.34 ml, 0.33 mmol, 0.99 M solution in hexane) was added. The reaction was quenched with 

diphenylphosphine chloride (0.13 ml, 0.70 mmol), warmed to room temperature and stirred overnight. 

H2O (15 ml) was added and the product extracted into ethyl acetate (3×30 ml). The organic phases were 

combined and dried over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent 

removed under reduced pressure to leave a white solid. Final purification was achieved by flash column 

chromatography (silica gel eluting with ethyl acetate: petroleum ether 3:7 followed by ethyl acetate: 

petroleum ether 2:3 followed by ethyl acetate: petroleum ether 3:2 followed by ethyl acetate: petroleum 

ether 3:1 followed by ethyl acetate) to leave a white solid (14 mg, 8%).  

IR (film): 3057, 2955, 2870, 1612, 1300, 1200 cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � = 0.86 (t, J = 

7.2 Hz, 12H, –(CH2)2CH3), 1.18–1.38 (m, 8H, –CH2CH2CH3), 1.61–1.69 (m, 4H, –CH2CH2CH3), 1.81–
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1.91 (m, 4H, –CH2CH2CH3), 3.34 (s, 12H, Ar–OCH3), 3.69 (s, 12H, Ar–OCH3), 4.26 (dd, J = 8.4, 6.2 Hz, 

4H, H–2,4,6,8), 6.08 (s, 2H, Ar–H), 6.40 (s, 2H, Ar–H), 7.18 (s, 2H, Ar–H), 7.34–7.84 (m, 20H, Ph); 13C 

NMR (CDCl3, 75.5 MHz, 25 °C): � = 14.2, 20.9, 36.0, 37.6, 55.1, 62.7, 96.4, 118.0, 119.3, 122.6, 126.1, 

127.5, 127.7, 128.5–128.7, 130.2, 130.3, 131.5–131.8, 132.3, 136.3, 137.6, 137.7, 137.8, 156.4, 159.4; 31P 

NMR (CDCl3, 121.5 MHz, 25 °C): � = 20.97; MS (ESI+): m/z (%) = 1170 (100) [M+H]+ 

17a was separated as a mixture of products and could not be characterised. 

 

14,16,34,36,54,56,74,76-Octamethoxy-15,55-dimethoxycarbonyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (18) 

14,16,34,36,54,56,74,76-Octamethoxy-15-methoxycarbonyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (18a) 

 

Resorcinarene 4 (154 mg, 0.17 mmol) was dissolved in tetrahydrofuran (8.5 ml). After cooling, nBuLi 

(0.37 ml, 0.36 mmol, 0.99 M solution in hexane) was added. The reaction was quenched with methyl 

chloroformate (0.10 ml, 1.10 mmol), warmed to room temperature and stirred overnight. H2O (15 ml) was 

added and the product extracted into ethyl acetate (3×25 ml). The organic phases were combined and 

dried over anhydrous magnesium sulfate. The drying agent was filtered off and the solvent removed 

under reduced pressure to leave a white solid. Final purification was achieved by flash column 

chromatography (silica gel eluting with ethyl acetate: petroleum ether 3:17 followed by ethyl acetate: 

petroleum ether 1:4 followed by ethyl acetate: petroleum ether 1:3) to leave a fine white solid, the 

dimethoxy carbonyl (100 mg, 68%).  

Mp 272–273 °C (ethyl acetate/petroleum ether); Rf = 0.45 (ethyl acetate/petroleum ether, 1:1); IR (ATR): 

2951, 2868, 1726, 1612, 1467, 1202, 918 cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � = 0.91 (t, J = 7.3 

Hz, 12H, –(CH2)2CH3), 1.28–1.40 (m, 8H, –CH2CH2CH3), 1.71–1.89 (m, 8H, –CH2CH2CH3), 3.52 (s, 

12H, Ar–OCH3), 3.73 (s, 12H, Ar–OCH3), 3.93 (s, 6H, –COOCH3), 4.45 (dd, J = 8.5,6.3 Hz, 4H, H–

2,4,6,8), 6.24 (s, 2H, H–35,75), 6.53 (s, 2H, H–12,52), 6.93 (s, 2H, H–32,72); 13C NMR (CDCl3, 75.5 MHz, 

25 °C): � = 14.1 (–(CH2)2CH3), 21.2 (–CH2CH2CH3), 35.8 (C–2,4,6,8), 37.6 (–CH2CH2CH3), 52.4 (–

COOCH3), 55.5 (Ar–OCH3), 62.0 (Ar–OCH3), 96.4 (C–35,75), 122.5 (Ar–C), 123.8 (Ar–C), 126.2 (Ar–
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C), 127.6 (Ar–C), 135.5 (C–11,13,51,53), 152.9 (C–14,16,54,56), 156.2 (C–34,36,74,76), 168.0 (–COOCH3); 

MS (ESI+): m/z (%) = 903 (100) [M+NH4]+, 886 (30) [M]+ 

The mono methoxy carbonyl 18a was partially characterised from crude 1H NMR spectroscopy, due to 

problems separating this from octamethoxy 5. The yield was adjudged to be about 20% for this compound 

from the crude NMR. 

Rf = 0.60 (ethyl acetate/petroleum ether, 1:1); IR (film): 1730 cm–1; 1H NMR (CDCl3, 300 MHz, 25 °C): � 

= 0.88–0.95 (m, 12H, –(CH2)2CH3), 1.26–1.38 (m, 8H, –CH2CH2CH3), 1.77–1.85 (m, 8H, –CH2CH2CH3), 

3.29 (s, 6H, Ar–OCH3), 3.55 (s, 6H, Ar–OCH3), 3.72 (s, 2×6H, 2×Ar–OCH3), 3.85 (s, 3H, –COOCH3), 

4.47–4.51 (m, 4H, H–2,4,6,8), 6.26 (s, 1H, Ar–H), 6.32 (s, 2H, Ar–H), 6.44 (s, 2H, Ar–H), 6.83 (s, 1H, 

Ar–H), 6.96 (s, 1H, Ar–H) 

 

2-Bromo-1,3-di(tert-butyl carbonate) benzene (19) 

 

1-Bromo-2,6-dihydroxybenzene (1.96 g, 10.3 mmol) was dissolved in dry dichloromethane (35 ml). To 

this solution was added triethylamine (3.16 ml, 22.7 mmol) and 4-dimethyl aminopyridine (0.064 g, 0.516 

mmol) and the resulting solution was stirred for 15 minutes at room temperature. Di-tert-butyl 

dicarbonate (6.76g, 31 mmol) was added in two portions to the reaction and the solution was left to stir at 

room temperature for 18 hours. The solution was then washed with 1M HCl (2×45ml), saturated sodium 

bicarbonate, H2O and brine (60 ml). The organic phase was dried over anhydrous magnesium sulfate, the 

drying agent was filtered off and the solvent removed under reduced pressure to leave a yellow brown oil 

(5.24 g, >100%). The product was purified using flash column chromatography (silica gel eluting with 

ethyl acetate: petroleum ether 1:9) to leave an off-white oil, which solidified after 5 days on a high 

vacuum pump to yield the diBoc 19 (3.40 g, 85%). 

Rf = 0.48 (ethyl acetate/petroleum ether, 1:4); IR (film): 2983, 2936, 1766, 1588, 1371, 1144, 948, 858 

cm–1; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 1.54 (s, 18H, –C(CH3)3), 7.10 (d, J = 8.2 Hz, 2H, H–4,6), 

7.31 (t, J = 8.2 Hz, 1H, H–5); 13C NMR (CDCl3, 100 MHz, 25 °C): � = 27.4 (–C(CH3)3), 84.1 (C–2'), 

111.5 (C–1), 120.7 (C–4,6), 128.0 (C–5), 149.4 (C–1,3), 150.3 (C–1'); MS (ESI+): m/z (%) = 406.09 (68) 

[M+NH4]+; HRMS–ESI+: m/z [M+NH4]+ calcd for C16H25NO6Br: 406.0865; found: 406.0872. 
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tert-Butyl-1-(tert-butoxycarbonyloxy)-3-hydroxybenzoate (20) 

 

DiBoc 19 (715 mg, 1.84 mmol) was dissolved in dry tetrahydrofuran (10 ml) and cooled to −78 °C. To 

the solution was added nBuLi (1.85 ml, 2.76 mmol, 1.49 M in hexane) and the reaction stirred for 15 

minutes. Sat. NH4Cl (5 ml) was added to the reaction and the solution was warmed to room temperature 

and left to stir for an hour. To the reaction was added H2O (20 ml) and extracted with dichloromethane 

(3×25 ml). The organic phases were combined and dried over anhydrous magnesium sulfate. The drying 

agent was filtered off and the solvent removed under reduced pressure to leave a brown oil. Final 

purification was achieved by flash column chromatography (silica gel eluting with ethyl acetate: 

petroleum ether 1:19 followed by ethyl acetate: petroleum ether 1:9) to leave a yellow oil, the rearranged-

diBoc 20 (520 mg, 91%).  

Rf = 0.57 (ethyl acetate/petroleum ether, 1:4); IR (film): 2982, 2935, 1759, 1665, 1276, 1154, 977 cm–1; 
1H NMR (CDCl3, 300 MHz, 25 °C): � = 1.55 (s, 9H, –C(CH3)3), 1.62 (s, 9H, –C(CH3)3), 6.62 (dd, J = 

8.1,1.2 Hz, 1H, Ar–H), 6.88 (dd, J = 8.5,1.2 Hz, 1H, Ar–H), 7.32–7.39 (m, 1H, A–H), 11.38 (s, 1H, Ar–

OH); MS (ESI+): m/z (%) = 328 (100) [M+NH4]+, 311 (5) [M+H]+, 102 (58) [CO2C4H10]+; HRMS–ESI+: 

m/z [M+Na]+ calcd for C16H22O6Na: 333.1314; found: 333.132. 

 

tert-Butyl-2,6-bis(tert-butoxycarbonyloxy)benzoate (21) 

 

The rearranged diBoc (567 mg, 1.81 mmol) was subjected to the protection methodology used to 

synthesise 19; with 4-dimethyl aminopyridine (11 mg, 0.09 mmol), triethylamine (0.28 ml, 2.00 mmol) 

and di-tert-butyl dicarbonate (480.15 mg, 2.20 mmol) in dichloromethane (7 ml). The product was 

purified using column chromatography (silica gel eluting with ethyl acetate: petroleum ether 1:19 

followed by ethyl acetate: petroleum ether 1:9) to yield a yellow oil that hardens slowly on standing (659 

mg, 89%). 
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Rf = 0.52 (ethyl acetate/petroleum ether, 1:4); IR (film): 2982, 2936, 1766, 1725, 1613, 1227, 1081, 864 

cm–1; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 1.54 (s, 18H, –OC(CH3)3), 1.57 (s, 9H, –COOC(CH3)3), 

7.10 (d, J = 8.3 Hz, 2H, H–4,6), 7.40 (t, J = 8.3 Hz, 1H, H–5); MS (ESI+): m/z (%) = 4.28 (100) 

[M+NH4]+; HRMS–ESI+: m/z [M+NH4]+ calcd for C21H34O8N: 428.2284; found: 428.2304. 

 

Methyl 1,3-dimethoxybenzoate (22)  

 

To a solution of the reprotected 20 (659 mg, 1.60 mmol) in dichloromethane (7 ml) was added 

trifluoroacetic acid (6.2 ml, 80 mmol) and stirred for two hours at room temperature. The mixture was 

added to H2O (10 ml), ethyl acetate (20 ml) and the pH adjusted to ~7 using a sat. sodium bicarbonate 

solution. The organic layer was separated. The aqueous layer was further extracted using ethyl acetate 

(2×25 ml), the organic layers combined and washed with H2O (25 ml) and brine (25 ml). The organic 

phase was dried over anhydrous magnesium sulfate, the drying agent was filtered off and the solvent 

removed under reduced pressure to leave an orange solid (250 mg, >100%). This was used as is in the 

next reaction.   

The crude product and potassium carbonate (1.38 g, 10 mmol) were suspended in dry acetonitrile (30 ml) 

and dimethyl sulfate (0.91 ml, 10 mmol) was added. The solution was heated to reflux for 18 hours. The 

reaction was stopped and cooled to room temperature. The solvent was removed under reduced pressure 

and the resulting solid added to H2O (25 ml) and extracted with ethyl acetate (3×30 ml). The organic 

layers were combined and dried over anhydrous magnesium sulfate. The drying agent was filtered off and 

the solvent removed under reduced pressure to leave an orange oil. The product was purified using flash 

column chromatography (silica gel eluting with ethyl acetate: petroleum ether 1:9 followed by ethyl 

aceate: petroleum ether 1:1) to leave a white solid (238 mg, 75%). 1H NMR spectroscopy corresponded to 

literature values.14 

1H NMR (CDCl3, 300 MHz, 25 °C): � = 3.82 (s, 6H, –OCH3), 3.91 (s, 3H, –CO2CH3), 6.56 (d, J = 8.5 Hz, 

2H, H–4,6), 7.29 (t, J = 8.4 Hz, 1H, H–5). 
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34,36,74,76-Tetra(benzyloxycarbonyloxy)-15,55-dibromo-14,16,54,56-tetra(tert-butoxycarbonyloxy)-

2,4,6,8-tetrapropyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (23) 

 

To a mixture of resorcinarene 3 (2.35 g, 1.74 mmol) in dichloromethane (12 ml) was added triethylamine 

(0.97 ml, 6.96 mmol) and 4-dimethyl aminopyridine (31.9 mg, 0.261 mmol) the dark green solution was 

stirred for 15 minutes at room temperature. Di-tert-butylcarbonate (1.90 g, 8.70 mmol) was added and the 

solution stirred at room temperature for 24 hours. To the reaction mixture was added H2O (70 ml), 1M 

HCl (10 ml) and dichloromethane (70 ml) and the organic phase extracted. The aqueous phase was further 

extracted with dichloromethane (3×30 ml) and the organic phases collected. The organic phase was 

washed with 1M HCl, saturated sodium bicarbonate, H2O and brine (30 ml) and dried over anhydrous 

magnesium sulfate. The drying agent was filtered off and the solvent removed under reduced pressure to 

leave a dark orange foam. The product was purified using flash column chromatography (silica gel 

eluting starting with ethyl acetate: petroleum ether 1:9 followed by ethyl acetate: petroleum ether 1:4). 

The resulting product was recrystallized in ethanol/dichloromethane to yield fine light yellow crystals 

(2.62 g, 86%). 

Mp 176–178 °C (ethanol/dichloromethane); Rf = 0.55 (etyl acetate/petroleum ether, 3:7); IR (ATR): 2954, 

2871, 1759, 1497, 1219, 1141, 1056, 886, 773 cm–1; 1H NMR (CDCl3, 300 MHz, 50 °C): � = 0.86–0.91 

(m, 12H, –(CH2)2CH3), 1.25–1.35 (m, 8H, –CH2CH2CH3), 1.44–1.48 (m, 36H, –C(CH3)3), 1.85–1.92 (m, 

8H, –CH2CH2CH3), 4.41 (t, J = 7.3 Hz, 4H, H–2,4,6,8), 5.02–5.22 (m, 8H, H–2'), 6.64, 6.80, 6.95–6.98 

(br s, 6H, Ar–H), 7.27–7.49 (m, 20H, Ph); 13C NMR (CDCl3, 75.5 MHz, 50 °C): � = 13.8, 20.8, 20.9, 

27.6, 36.7, 36.7, 37.0, 70.2, 83.5, 113.6, 116.5, 125.2, 126.0, 128.3, 128.3, 128.4, 128.6, 131.9, 135.1, 

135.2, 145.8, 146.1, 147.5, 147.8, 149.8, 152.7; MS (ESI+): m/z (%) = 1768 (100) [M+H2O]+, 893 (22) 

[M+H2O]+; HRMS–ESI+: m/z [M+H2O]+ calcd for C92H104O25Br2: 1766.5233; found: 1768.5247. 

 

15,55-Dicyano-14,16,34,36,54,56,74,76-octamethoxy-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (24) 
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Resorcinarene 4 (500 mg, 0.54 mmol) and copper(I) cyanide (387 mg, 4.32 mmol) were added to dry 

N,N-dimethylformamide (11 ml) and placed in a microwave reactor at 210 °C for 45 minutes. The 

reaction was allowed to cool to room temperature and added to a mixture of iron(III) chloride (1.40 g, 

8.64 mmol), H2O (25 ml) and conc. HCl (15 ml) and the green solution was stirred for an hour. The 

mixture was extracted with chloroform (6×30 ml), the organic phases combined and washed with H2O 

(30 ml) and brine (30 ml). The organic phase was dried over anhydrous magnesium sulfate. The drying 

agent was filtered off and the solvent removed under reduced pressure to leave a yellow solid. The 

product was purified using flash column chromatography (silica gel eluting starting with ethyl acetate: 

petroleum ether 3:7 followed by ethyl acetate: petroleum ether 2:3) to leave a white solid. The resulting 

product was recrystallized in ethanol/dichloromethane to yield fine white crystals (387 mg, 87%). 

Mp 230–231 °C (ethanol); Rf = 0.18 (ethyl acetate/petroleum ether, 2:3); IR (ATR): 2952, 2867, 2229, 

1614, 1578, 1203, 1035 cm–1; 1H NMR (CDCl3, 400 MHz, 25 °C): � = 0.94 (t, J = 7.3 Hz, 12H, –

(CH2)2CH3), 1.27–1.45 (m, 8H, –CH2CH2CH3), 1.66–1.75 (m, 4H, –CH2CH2CH3), 1.83–1.93 (m, 4H, –

CH2CH2CH3), 3.52 (s, 12H, Ar–OCH3), 3.96 (s, 12H, Ar–OCH3), 4.47 (dd, J = 8.4, 6.6 Hz, 4H, H–

2,4,6,8), 6.21 (s, 2H, H–35,75), 6.62 (s, 2H, H–12,52), 6.90 (s, 2H, H–32,72); 13C NMR (CDCl3, 100 MHz, 

25 °C): � = 14.2 (–(CH2)2CH3), 21.0 (–CH2CH2CH3), 35.5 (C–2,4,6,8), 37.3 (–CH2CH2CH3), 55.4 (Ar–

OCH3), 61.6 (Ar–OCH3), 96.2 (C–35,75), 99.8 (C–15,55), 115.1 (–CN), 123.3 (C–31,33,71,73), 125.9 (H–

32,72), 131.0 (H–12,52), 135.8 (C–11,13,51,53), 156.3 (C–14,16,54,56), 158.6 (C–34,36,74,76); MS (ESI+): m/z 

(%) = 836 (100) [M+H2O]+, 819 (30) [M+H]+; HRMS–ESI+: m/z [M+H]+ calcd for C50H63N2O8: 

819.4584; found: 819.4589. 

 

(cis/trans)-Bis(dimethylsulfide) platinum(II) chloride (25)15  

 

The compound was synthesised using a literature procedure.15 Potassium tetrachloroplatinate(II) (150 mg, 

0.36 mmol) was dissolved in H2O (6 ml) and stirred at room temperature. To the mixture was added 

dimethyl sulfide (0.16 ml, 2.16 mmol) and warmed to 80 °C for one hour. The yellow solution was cooled 

to room temperature, added to H2O (10 ml) and extracted into dichloromethane (4×15 ml) until the 

aqueous layer was colourless. The organic phases were combined and dried over anhydrous magnesium 

sulfate. The drying agent was filtered off and the solvent removed under reduced pressure to leave a 

yellow solid (105 mg, 75%). This solid was judged to be pure enough to continue as is from 1H NMR 

spectroscopy.15  
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1H NMR (CDCl3, 300 MHz, 25 °C): � = 2.47 (t, JPt-H = 41.4 Hz, 12H, cis–[PtCl2(SMe2)2]), 2.58 (t, JPt-H =  

49.2 Hz, 12H, trans–[PtCl2(SMe2)2]). 

 

S,S'-{14,16,34,36,54,56,74,76-octamethoxy-15,55-dimethylthiyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane}-bis[palladium chloride(�2-chlorine)2] (26) 

 

To resorcinarene 16 (75 mg, 0.087 mmol) dissolved in dry dichloromethane (3 ml) was added 

palladium(II) chloride (30.5 mg, 0.174 mmol) and the resulting brown reaction mixture stirred for 24 

hours at room temperature. The solution was filtered through Celite and carefully washed with 

dichloromethane. The solvent was evaporated and the brown solid was re-dissolved in dichloromethane, 

layered with pentane and placed in a refrigerator at −15 °C. After a few days small brown crystals formed 

and were collected by filtration and dried to give the dipalladium complex 26 (74 mg, 70%). 

Mp 239–243 °C(dec) (dichloromethane/pentane); IR (ATR): 2949, 2869, 1610, 1581, 1288, 1160, 966, 

816 cm–1; 1H NMR (CDCl3, 400 MHz, 50 °C): � = 0.88 (t, J = 7.3 Hz, 12H, –CH2CH2CH3), 1.16–1.27 

(m, 8H, –CH2CH2CH3), 1.82 (q, J = 7.5 Hz, 8H, –CH2CH2CH3), 2.55 (s, 6H, –SCH3), 3.60 (br s, 12H, 

Ar–OCH3), 4.00 (s, 12H, Ar–OCH3), 4.67 (t, J = 7.5 Hz, 4H, H–2,4,6,8), 6.35 (s, 2H, H–32,72), 6.61 (s, 

2H, H–35,75), 7.57 (s, 2H, H–12,52); 13C NMR (CDCl3, 100 MHz, 50 °C): � = 13.9 (–CH2CH2CH3), 21.0 

(–CH2CH2CH3), 23.6 (–SCH3), 35.7 (C–2,4,6,8), 38.2 (–CH2CH2CH3), 55.7–55.9 (Ar–OCH3), 62.1, 95.3 

(C–35,75), 115.9 (C–11,13,51,53), 125.8–125.9 (C–32,72), 126.8 (C–31,33,71,73), 132.6 (C–12,52), 155.6 (C–

34,36,74,76), 157.8 (C–14,16,54,56). 

 

7.3 Crystal Structures 

A single crystal was covered in a small amount of paratone oil and mounted on a glass fibre. X-ray 

intensity data were collected at 100 K on a Bruker SMART APEX CCD with 1.75 kW graphite 

monochromated Mo radiation. The detector to crystal distance was 60 mm. Data were collected by omega 

scans. The data were scaled and reduced using the APEXII software suite. Unit cell dimensions were 

refined on all data and the space group was assigned on the basis of systematic absences and intensity 

statistics. The structure was solved and refined using SHELX97.16 Hydrogen atoms are placed in 
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calculated positions and included in the model during later stages of the refinement. The program X-

SEED,17 an interface to SHELX, was used during the structure solution and refinements. 

 

14,16,34,36,54,56,74,76-Octamethoxy-15,55-dimethylthiyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane (16) 

 

Empirical formula  C50H68O8S2 

Formula weight  861.16 

Temperature (K)  100(2) 

Wavelength (Å)  0.71073 

Crystal system  triclinic 

Space group  P-1 

Unit cell dimensions (Å, °)  a = 15.6205(10)  α =  68.2220(10) 

 b = 16.9158(11) β =  76.8050(10) 

 c = 20.1948(13) γ =  72.5700(10) 

Volume (Å3) 4686.3(5) 

Z  4 

Calculated density (g cm-3) 1.221 

Absorption coefficient (mm-1) 0.166 

F000 1856 

Crystal size (mm3) 0.53 × 0.44 × 0.22 

θ range for data collection (°) 1.10 to 27.92 

Miller index ranges -20 ≤ h ≤ 20, -22 ≤ k ≤ 22, -26 ≤ l ≤ 25 

Reflections collected 52712 

Independent reflections 20234 [Rint = 0.0285] 

Completeness to θmax (%) 90.0 

Max. and min. transmission 0.9637 and 0.9173 

Refinement method Full-matrix least-squares on F2 
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Data / restraints / parameters 20234 / 0 / 1101 

Goodness-of-fit on F2 1.050 

Final R indices [I > 2σ(I)] R1 = 0.0629, wR2 = 0.1670 

R indices (all data) R1 = 0.0819, wR2 = 0.1866 

Largest diff. peak and hole (e Å-3) 2.506 and -0.440 

 

S,S'-{14,16,34,36,54,56,74,76-octamethoxy-15,55-dimethylthiyl-2,4,6,8-tetrapropyl-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane}-bis[palladium chloride(�2-chlorine)2] (26)  

 

Empirical formula  C51.50H71Cl7O8Pd2S2 

Formula weight  1343.15 

Temperature (K)  173(2) 

Wavelength (Å)  0.71073 

Crystal system  triclinic 

Space group  P-1 

Unit cell dimensions (Å, °) a = 13.4931(11)  α =  81.372(1) 

 b = 14.4968(12) β =  84.347(1) 

 c = 15.5364(12) γ =  70.855(1) 

Volume (Å3) 2834.5(4) 

Z  2 

Calculated density (g cm-3) 1.574 

Absorption coefficient (mm-1) 1.088 

F000 1374 

Crystal size (mm3) 0.23 × 0.21 × 0.15 

θ range for data collection (°) 1.50 to 28.15 

Miller index ranges -17 ≤ h ≤ 16, -19 ≤ k ≤ 19, -19 ≤ l ≤ 19 

Reflections collected 32160 
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Independent reflections 12633 [Rint = 0.0321] 

Completeness to θmax (%) 91.0 

Max. and min. transmission 0.8538 and 0.7879 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12633 / 0 / 686 

Goodness-of-fit on F2 1.026 

Final R indices [I > 2σ(I)] R1 = 0.0359, wR2 = 0.0783 

R indices (all data) R1 = 0.0549, wR2 = 0.0867 

Largest diff. peak and hole (e Å-3) 0.797 and -1.035 
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