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Machine learning is a strategic technology that can have an important effect on business, as 

it is able to perform tasks efficiently that were previously only performed by humans. When 

implementing this technology in the relevant business processes and utilising it effectively, 

users have to understand both it as well as other aspects have to be considered. It was found 

that one area that is well suited to the adoption of machine learning, is accounting. In addition, 

prior research has shown a need for accounting users to be educated in machine learning as 

part of their professional training. Therefore, the aim of this study was to enhance users’ 

understanding of machine learning technology specifically in the performance of accounting 

processes. 

A grounded theory methodology was employed to identifying the accounting tasks machine 

learning could perform, to describe how machine learning functions and to identify the risks, 

benefits and limitations associated with the technology. Finally, steps and considerations 

when implementing machine learning technology in the accounting process were provided. 

The findings of this research are that the user has a key role to play when using machine 

learning technology in the accounting processes and thus has to understand the technology, 

the risks and limitations, as well as the benefits of the technology. The risks discussed relate 

not only to machine learning technology but also to all the components that enable the 

functioning of the technology to ensure alignment with the accounting process goals. 

Based on these findings, this research presents the user considerations and steps to take 

when implementing machine learning in selected accounting processes. These can be used 

to identify areas that may require attention when a business is adopting machine learning. 

One important consideration is the implementation of adequate data governance. This is 

because most of the risks identified for machine learning technology are data risks. Further 

research could therefore be directed at developing a data governance framework for machine 

learning technologies. 

ABSTRACT 
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OPSOMMING 

Masjienleer is 'n strategiese tegnologie wat 'n belangrike uitwerking kan hê op besigheid, 

aangesien dit take doeltreffend kan uitvoer wat voorheen net deur mense uitgevoer is. 

Wanneer hierdie tegnologie in die toepaslike besigheids prosesse geïmplementeer en 

doeltreffend benut word, moet gebruikers dit verstaan en verskeie ander aspekte oorweeg. 

Daar is bevind dat Rekeningkunde een area is wat goed geskik is vir die aanneming van 

masjienleer. Daarbenewens, het vorige navorsing bevind dat rekeningkundige gebruikers 

opgelei moet word in masjienleer as deel van hul professionele opleiding. Die doel van hierdie 

studie was dus om gebruikers se begrip van masjienleertegnologie te verbeter, spesifiek in 

die uitvoering van rekeningkundige prosesse. 

'n Gefundeerde teorie navorsingsmetodologie is gebruik om die rekeningkundige take wat 

masjienleer kan uitvoer te identifiseer, te beskryf hoe masjienleer funksioneer en om die 

risiko's, voordele en beperkings wat met die tegnologie verband hou, te identifiseer. Ten slotte 

is stappe en oorwegings tydens die implementering van masjienleertegnologie in die 

rekeningkundige proses verskaf. 

Die bevindinge van hierdie navorsing is dat die gebruiker 'n sleutelrol speel wanneer 

masjienleertegnologie in die rekeningkundige prosesse gebruik word en dus moet die 

gebruiker die tegnologie, die risiko's en beperkings, sowel as die voordele van die tegnologie 

verstaan. Die risiko's wat bespreek word, hou nie net verband met masjienleertegnologie nie, 

maar ook met al die komponente wat die funksionering van die tegnologie moontlik maak om 

belyning met die doelwitte van die rekeningkundige proses te verseker. 

Op grond van hierdie bevindinge, bied hierdie navorsing die gebruikersoorwegings en die 

stappe om te neem wanneer masjienleer in geselekteerde rekeningkundige prosesse 

geïmplementeer word. Hierdie oorwegings en stappe kan gebruik word om areas te 

identifiseer wat aandag benodig wanneer 'n besigheid masjienleer implementeer. Een 

belangrike oorweging is die implementering van voldoende databeheer, aangesien die 

meeste van die risiko's wat vir masjienleertegnologie geïdentifiseer is, data-risiko's is. Verdere 

navorsing kan dus gerig word op die ontwikkeling van 'n data-beheerraamwerk vir 

masjienleertegnologieë. 
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Chapter 1: Introduction 
 

1.1 Background 
In order to maintain a competitive advantage, Gartner Inc. advises that companies should 

examine the business impacts of strategic technologies, which may indicate a need to adjust 

business models and operations. Failure to examine these technologies may mean the loss 

of a competitive advantage (Cearly, Walker & Burke, 2016). One such strategic technology 

is machine learning, a branch of artificial intelligence. Machine learning has enabled many 

tasks that would previously have been performed by humans to be efficiently and accurately 

completed by a computer. 

 

Cearly et al. (2016) state that machine learning technologies have been developed to assist 

systems to appear to understand, learn, predict and adapt. They have the potential to 

operate with little or no human guidance, which surpasses that of traditional rule-based 

algorithms. Accordingly, by implementing machine learning technologies, business may 

benefit from an increase in productivity and accuracy as well as substantial cost savings. 

 

The data science needed to create machine learning systems is complex and most 

businesses will therefore choose to acquire packaged machine learning applications rather 

than developing their own (Cearly et al., 2016). However, despite the complexity, 

management must understand the unique characteristics of machine learning technology to 

ensure that it is correctly implemented and aligned with the desired business outcomes 

(Gillion, 2017:3). 

 

The financial division of a business is one of the areas that could benefit from the application 

of machine learning, specifically the area of accounting. In considering the training given to 

professional accountants, PwC (2015:16) recognises the need for undergraduate 

accounting programmes to include advanced topics on machine learning as part of the 

curriculum. Of the various artificial intelligence skills that PwC (2015:16) recommends, 

Sutton, Holt and Arnold (2016:68) argue that machine learning is a key stream of artificial 

intelligence for application in accounting.  

 

This study addresses the need to assist users to understand machine learning technologies, 

specifically in the area of accounting, as explained in the next section. 

Stellenbosch University  https://scholar.sun.ac.za



 

2 
 

1.2 Research focus 
In this section, the research problem, research aim, research questions and research 

objectives will be addressed. 

 

Machine learning techniques can assist accounting users in their decision-making. Although 

there are many types of machine learning techniques, they can be divided into two 

categories, namely, predictive techniques and explanatory techniques. The type of 

technique used will depend on the decision being made. For example, predictive techniques 

are able to predict outcomes that are based on patterns learnt by the machine learning 

model from the data although these patterns are often not explained to, or seen by, the user. 

Predictive machine learning techniques are more complex than explanatory machine 

learning techniques, which identify factors that are causally related to an outcome (Sainani, 

2014:841; Sutton et al., 2016:69). 

 

A lack of ability on the part of the accounting decision maker to discriminate between 

explanatory and predictive machine learning technologies when deciding which alternative 

to use and rely on indicates a need for machine learning research in accounting (Sutton et 

al., 2016:69). Assisting accounting decision makers to understand machine learning 

technologies and the issues that require consideration when implementing them would help 

to promote the application of these technologies in accounting and stimulate the need for 

research on these technologies. 

 
Bräuning, Hüllermeier, Keller, & Glaum (2016:296) emphasised the importance of 

understandability and model simplicity in machine learning. Understanding the technology 

and the associated benefits and risks will assist users to select one that is appropriate to 

their needs. It will also make them aware of the issues to consider and the steps to take 

when implementing and using these technologies. Accordingly, the aim of this research is 

to enhance users’ understanding of machine learning technology specifically in carrying out 

accounting processes. 

 

To achieve this aim, the research focused on three accounting processes, identifying the 

tasks involved in each process. These three accounting processes were selected as they 

cover some of the main processes in the traditional record-to-report process which is 

illustrated in Figure 1. These tasks were cast as problems in the accounting processes that 
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machine learning technology could solve. Subsequently, machine learning technologies 

were identified that could be applied to the identified tasks.  

 

In order to achieve the research aim, three research questions were formulated for this 

study. Research objectives were then in turn set for each research question. The research 

questions and the corresponding research objectives, as well as the sections in which the 

respective findings are discussed, are indicated in Table 1. 

 

Table 1: Research questions and corresponding research objectives 

Research questions Research objectives Findings 
1. Which machine learning 

technologies can be applied 
to existing accounting 
processes? 

To outline the components of the 

accounting processes. 

Section 2.2; 

Section 2.3; 

Section 2.4 

To identify the tasks that machine 

learning technology can perform. 

Section 3.8 

To identify the machine learning 

technologies that can be applied to 

the accounting process tasks. 

Section 3.8 

2. How does the machine 
learning technology function 
and what are the risks and 
benefits associated with the 
technology? 

To explain how the machine learning 

technology functions. 

Section 3.3; 

Section 3.4;  

Section 3.5 

To identify risks, benefits and 

limitations associated with the 

machine learning techniques. 

Chapter 4 

3. What are the considerations 
and steps to take when 
implementing and using 
machine learning 
technologies? 

To explain the role of the user when 

using the machine learning 

technology to address identified 

risks. 

Section 5.2  

To identify the steps to take when 

implementing machine learning 

technology to ensure alignment with 

accounting process goals. 

Chapter 5 
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1.3 Research design and methodology 
As the research questions focus on gaining theoretical insights in order to develop a method 

for understanding the technology in an accounting context, the research design will be 

exploratory. An exploratory research design allows for the development of a grounded 

picture of the phenomena as well as the development of tentative theories or hypotheses 

(USC Libraries, n.d.). 

 

A grounded theory methodology was employed to address the research problem. This is a 

methodology that is used to develop a theory, in this case theory about emergent 

technologies where there is not, as yet, an established theory (Sutton, Reinking & Arnold, 

2011:46). Bryant (2002:35) argues in this regard that the grounded theory method is 

particularly suited to information systems technology research and highlights the mandate 

of research to develop both an understanding of discovered facts and adequate models for 

specified purposes. Furthermore, this method aligns with the aim of this research, namely, 

to enhance accounting users’ understanding of machine learning technology. 

 

The research was both qualitative in nature (Creswell, 2009:4) and non-empirical, as the 

existing literature was synthesised (Torraco, 2005:357) to achieve the objective of improving 

the understanding of this technology with respect to accounting tasks. An integrative 

literature review was therefore performed with the aim of enhancing user understanding of 

machine learning, specifically with regard to its application in accounting. 

 

The literature review relied on Scopus, EBSCOhost, IEEE and AAA digital library databases 

(Sutton et al., 2016:64), as well as available publications in the form of books, accredited 

journals and academic work on machine learning, including publications specifically in the 

field of finance. 

 

As a starting point, the three accounting processes selected were investigated to determine 

which components presented problems that could be solved by machine learning. These 

problems are presented as tasks. 

 

Having provided an overview of the selected accounting processes and tasks, the research 

identified various machine learning techniques that could be applied to perform the tasks 

described. This was done by identifying the learning problem, being the task that the 

machine learning needs to be able to perform (Someren & Urbancic, 2006:363), for each 

Stellenbosch University  https://scholar.sun.ac.za



 

5 
 

accounting task and then identifying the different types of machine learning technique to 

address each learning problem and explaining their capabilities. 

 

The research then considered how machine learning techniques were already being used 

in accounting practice to address the identified tasks. Where no machine learning had yet 

been applied in practice, suitable machine learning techniques were identified in the 

research. When evaluating the available machine learning technologies, it was evaluated in 

the context of the different technologies that encompass artificial intelligence. A link was 

now presented between accounting processes and machine learning techniques. 

 

Having selected the machine learning techniques to apply to the tasks identified in the 

accounting processes, the functioning of the applicable machine learning technology was 

explained. This was followed by a discussion of the risks, benefits and limitations associated 

with these technology that was grounded in the principals of King IV. Finally, in response to 

these identified risks, benefits and limitations, the issues to be considered when 

implementing the technology and the steps to take when using the technology were 

identified. 

 

1.4 Research motivation 
Bailey and Pearson (1983:532) identify a number of factors that influence user satisfaction 

when using new information technology products. These factors include understanding the 

system, the perceived usefulness of the system, and the congruence between what the user 

wanted and what the product provided.  

 

More specifically, to assist users in deciding which machine learning techniques to apply, 

an understanding of the strengths and weaknesses of these techniques in the context of 

business is useful (Bose & Mahapatra, 2001:211). Therefore, users hoping to exploit the 

advantages of machine learning in their accounting processes would benefit from an 

understanding of the technology, its benefits and its applications, as well as the issues to 

consider and the way that the user can responds to the identified risks.  

 

This research will address the need for research into strategic technologies, namely 

machine learning, and the need to assists users in understanding the technology. Assisting 

users to understand the technology will hopefully encourage them to consider implementing 

machine learning when a problem arises that machine learning could address. 
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1.5 Research scope 
The focus of this research will be on the following specific processes in accounting: 

1. Translation of manual and electronic documents into accounting software information 

2. Reconciliation of financial information 

3. Preparation of management accounts 

 

1.6 Limitation of research 
The research does not intend to address all the areas of accounting in which machine 

learning intervention is possible; it will only address the three accounting processes that 

have been identified. Only those tasks for which a suitable machine learning technology 

could be found at the time of this research were addressed. Furthermore, the research will 

only consider machine learning technologies appropriate for addressing the identified 

problem types in the accounting process and therefore does not intend to present an 

exhaustive list of machine learning technologies.  

 

Considerable research has been performed in the areas of machine learning applied to 

auditing and the detection of fraud using such technologies, therefore these areas were not 

considered for this research. 

 

In order to achieve the objective of understanding the machine learning technologies, the 

design and functioning of each technology will be explained. In doing so, the research is 

limited to explaining the design and functionality of the technology for the purposes of 

understanding it and identifying the associated risks, benefits and limitations. Therefore, this 

is not explained at the technical level required to develop the technology. 

 

The risks and benefits identified for the machine learning technology will be those that are 

unique to the technology and not those that pertain to the environment in which machine 

learning operates such as database or accounting software risks or risks pertaining to 

supporting technologies such as cloud platforms. Hence, these risks and benefits are not 

addressed in this research. 
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1.7 Organisation of the research 
The research consists of six chapters.  

 

Chapter 2 identifies the various accounting processes that will be addressed and outlines 

the tasks involved in these processes. This assists in outlining the areas that can be 

addressed by machine learning technology.  

 

Chapter 3 provides an overview of the machine learning techniques available to perform the 

tasks identified in the accounting processes. The chapter also provides an understanding of 

the way machine learning technology is structured and how machine learning techniques 

work. This chapter further discusses which techniques are currently applied to accounting 

process tasks and which tasks could be applied to the identified accounting processes tasks 

as based on the existing research. 

 

Chapter 4 explains the risks, benefits and limitations of machine learning technologies.  

 

Chapter 5 formulates the guidelines for implementing machine learning technologies in the 

accounting context. 

 

Chapter 6 concludes with a summary of the main findings of the study for consideration by 

users when implementing machine learning technology in an accounting context. 
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Chapter 2: Accounting processes and accounting tasks 
 

2.1 Introduction 
The aim of this study was to enhance users’ understanding of machine learning technologies 

specifically in the performance of accounting processes. This chapter provides a description 

of the three accounting processes that were selected, and highlights the tasks involved in 

each of these processes. The purpose of the chapter, then, is to investigate the tasks 

performed in each accounting process and the technology that is currently being employed 

in the process and, finally, to describe the tasks. The tasks which could be performed by 

machine learning are presented in chapter 3 section 3.8.  

 

To gain an understanding of the accounting processes, numerous services offered by 

financial process software providers were considered. There is a paucity of published 

research on applications that employ machine learning techniques. While the reason for this 

is unclear, it is speculated that it may be due to a lack of reporting on such applications, as 

a result of the unwillingness to reveal these applications for competitive reasons (Amani & 

Fadlalla, 2017:39). 

 

The three accounting processes identified for this research were broken down into a number 

of tasks, each representing a certain sphere of the administrative activity. After identifying 

the different tasks, specific consideration was given to identifying which technology was 

used in each accounting process. Krutova and Yanchev (2014:13) indicate that the 

technology applied in an accounting process entails a sequence of measures that assist in 

the introduction of resources at the input phase, the processing of the resources and the 

production of different levels of information sets at the output.  

 

Once the technology was identified, it was important to identify the data and the structure of 

the data available for the task, as the data needed to be appropriate for machine learning 

techniques (Fedyk, 2016). The choice of machine learning technique was based partly on 

the differences in data characteristics or data type (Someren & Urbancic, 2006:371). 
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Accordingly, the product of the current chapter is the layout of the tasks performed in the 

three accounting processes selected, together with an understanding of the supporting 

technologies identified as useful for enabling machine learning techniques to be applied and 

the structure of the data available in each accounting process. These will be used to identify 

the relevant machine learning techniques in chapter 3.  

 

The research is set out in accordance with the traditional record-to-report process, as 

illustrated in Figure 1. In line with this, firstly, the manual and electronic documents are 

translated into accounting information, secondly, financial information is reconciled, and 

finally, management accounts are prepared. 

 

 
Figure 1: The traditional record-to-report process (Deming, n.d.:7) (Adapted)  
 
Figure 1 above shows that the record-to-report process commences with the external 

information sources, which are covered in section 2.2, followed by account reconciliations, 

which are addressed in section 2.3, then journal entries and month-end closure, and finally 

analysis and reporting are performed, which are addressed in section 2.4. This study does 

not address the performance of compliance and control procedures. 

 

2.2 Translation of manual and electronic documents into accounting information 
The first process to be addressed is the translation of manual and electronic documents into 

accounting information. The purpose of converting documents into a digital form is to enable 

businesses to analyse the documented data efficiently and more affordably. In pursuance 

of this purpose, the process of detecting, extracting and processing data from documents 

needs to be efficient and accurate (Ming, Liu & Tian, 2003:489; Rhodes & Wheat, 2015:1). 

The efficiency and accuracy of the process may be increased by incorporating machine 

learning techniques. 

 

 

External
Information

Sources

Account 
Recon-

ciliations

Journal 
Entry

Month-End 
Close Analysis Reporting

Compliance
& Control

(Section 2.2) (Section 2.3) (-----------------------Section 2.4-----------------------------) (-----N/A-----) 
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2.2.1 Breaking down the translation of documents into tasks 
This section describes each of the tasks in the process of translating documents into 

accounting information. Various documents need to be translated into electronic information 

for accounting purposes. An example of this process is illustrated in Figure 2 (Ming et al., 

2003:490) for a supplier invoice. 

 

 
Figure 2: Flow chart of tasks using a bill recognition system as an example (adapted 

from Ming et al., 2003:490) 
 

In Figure 2 the tasks in the documentation translation process are set out in the order in 

which the software or user performs them. The tasks are discussed in more detail as follows: 

 

Task 1. Input: Documents such as invoices are uploaded into the translation software in the 

form of a paper document which is either scanned or loaded electronically, for example in 

the form of an email attachment (Kohlmaier, Hess & Klehr, 2006:1). The document format 

will affect the structure of the available data as described in section 2.2.3. 

 

Task 2. Pre-processing and standardisation: Documents are pre-processed prior to data 

extraction. Various algorithms, which are described in section 2.2.2, are applied to correct 

the images and then standardising techniques are applied to these images, which include 

Input 

↓ 

Pre-processing and standardisation 

↓ 

Document features extraction 

↓ 

                                                                Known type? → No → Update form feature library 

      ↓ Yes 

          Form data field extraction and data recognition 

↓ 

       Validation of document data 

↓ 

Export: Processing and storage of data 

Task 1: 

Task 2: 

Task 3: 

Task 4: 

Task 5: 

Task 6: 

Task 7: 
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standardising the page size, page orientation, font, text size, colour, element positioning, 

page numbering, margins, column size, watermarks, line numbering and page breaks 

(Rhodes & Wheat, 2015:0029).  

 
 
Task 3. Document features extraction: The components of the documents are translated 

by identifying the document template and the document schema. The schema identifies the 

different elements of information which are to be extracted from the document while the 

template sets out how the information is physically arranged in the document. Based on the 

identified template, the system will then have a set of rules for locating the information for 

each schema in the document (Sorio, 2013:25). 

 
The data is extracted from the documents and converted to an electronic format using 

Optical Character Recognition (OCR) (Kohlmaier et al., 2006:1; Rhodes & Wheat, 

2015:0031). Accordingly, the document features may trigger algorithms which label 

identifiable data elements. For example, the presence of the words “Invoice number” may 

trigger the string of numbers following that header to be labelled as invoice number 

(Kohlmaier et al., 2006:1). The technology used to perform the data and features extraction 

is described in section 2.2.2. 

 

Additionally, the document translation software may extract other types of data from the 

document, for example the metadata, which identifies the document creator, time created, 

document file size, creation date and any modification dates, type of text in the file, version, 

font, name, and other data. These elements can be used as a database navigation key 

(Rhodes & Wheat, 2015:5). 

 

Task 4. Form type feature library which includes document type recognition and 
classification: A library, knowledge repository or set of template-specific extraction rules 

may be kept of known document types, for which particular content, structure, form or other 

attributes have been established. Using the library, the document translation software can 

automatically determine where to find relevant data on a given document based on the 

document data type recognised (Ming et al., 2003:493; Sorio, 2013:27; Rhodes & Wheat, 

2015:0036).  

 

Stellenbosch University  https://scholar.sun.ac.za



 

12 
 

The document type can be determined by the document translation software based on the 

extracted identifiable data elements such as the schema and the template by considering 

known document types in the form type feature library as described.  

 

If, however, the document is an unknown type, the extracted results are displayed and the 

results need to be confirmed manually item by item. In this way, the user can train the system 

to identify and extract the key data. These features are subsequently stored in the form-type 

feature library. These stored rules are then able to interpret future documents from the same 

source (Ming et al., 2003:490; Kohlmaier et al., 2006:2; Sorio, 2013:23).  

 

Task 5. Form data field extraction and data recognition: Once the document type is 

established, the document translation software determines where to locate important data 

on the given document (Ming et al., 2003:493; Rhodes & Wheat, 2015:0036). Thus the 

software is able to present structured data from the extraction, because it is able to 

determine which data is important and how that data should be recognised. For example, 

the identifying elements in an invoice, such as an invoice number, enable the software to 

identify the document as an invoice and process the data as invoice data (Kohlmaier et al., 

2006:2). 

 

Task 6. Validation of document data: The software tests the validity, accuracy and 

completeness of the data by means of validation tests. These are, for example, able to 

ascertain whether there are inconsistencies between paired documents such as purchase 

orders and supplier invoices, or whether the invoice is a duplicate invoice. Error detection 

may then prompt the user to process the invoice manually (Kohlmaier et al., 2006:1,2).  

 

Task 7. Processing and storage of data: After the data extraction process, the user is 

shown the structured dataset generated. This interface may be interactive to allow entries 

in the generated dataset to be edited manually if necessary (Rhodes & Wheat, 2015:9). The 

user then confirms the data, and the interpreted data is converted into a file which is saved 

in a database in a specific document format such as Extensible Mark-up Language (XML), 

although there are various other documents formats that could be used (Rhodes & Wheat, 

2015:0068). XML is a standard data exchange format with many variations, which makes 

the data structure complex (Lee, Tsatsoulis & Perry, 2009:1). 
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2.2.2 Technology used in document translation 
Certain technologies can be greatly improved by incorporating machine learning techniques. 

The technologies identified in the document translation process are set out in accordance 

with the various tasks identified in section 2.2.1.  

 

Task 1. Input: The technology employed to upload electronic documents include scanners, 

image capturing devices such as digital cameras and a variety of software, producing 

electronic documents in diverse formats.  

 

Task 2. Pre-processing and standardisation: Images may be corrected by means of a 

trembling process to reduce noise in the image, and image angle testing may be conducted 

to correct for any slant in handwritten words or in entire images. This technology improves 

the data extraction task (Ming et al., 2003:490-492). 

 

Task 3. Document features extraction: Once documents are standardised, recognisable 

elements such as text, numbers and special characters can be automatically detected using 

optical character recognition (OCR) (Rhodes & Wheat, 2015:2).  

 

OCR is a technique used to convert scanned documents into computer readable text 

(Larsson & Segerås, 2016:5). The three basic principles applied to OCR for recognising 

objects include integrity, purposefulness and adaptability (Emmanuel & Nithyanandam, 

2014:439; ABBYY Technologies, n.d.). The last-mentioned, adaptability, may be assisted 

by the program being able to learn by itself, as enabled by machine learning. 

 

Task 4. Form-type feature library which includes document type recognition and 
classification: The document type may be recognised based on its form using image 

classification, which sorts documents by appearance or pattern. This may incorporate 

machine learning techniques. Text classification can be used to classify the document type 

based on content, and both statistical and semantic text analysis are employed to classify 

text content (ABBYY, 2017). 

 

The system can be trained to process flexible or irregular document layouts by incorporating 

machine learning techniques together with natural language processing (NLP) (ABBYY, 

2017). NLP converts human language into a format that computers are able to recognise 

and use (Collobert & Weston, 2008:160). 
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Task 5. Form data field extraction and data recognition: Template-specific extraction 

rules are algorithms which enable the system to extract information from documents. These 

rules predict which field a specific data item refers to, for example a particular item may be 

the invoice number field and another the date field (Sorio, 2013:17). 

 

Case-based reasoning, based on previous cases, can be used to decide which techniques 

to use to extract the data fields (Hamza, Belaïd & Belaïd, 2007:327; Larsson & Segerås, 

2016:8). Watson (1999:307) describes case-based reasoning as a method which attempts 

to solve cases by using solutions observed in similar previous cases. 

 

Task 6. Validation of document data: As with any data input, the accuracy of the data will 

need to be verified. Arithmetic validation rules can be applied to ensure the accuracy of the 

data (OCREX, 2017). In addition, machine learning can be used to determine whether the 

data from the document is correct, as demonstrated by Larsson and Segerås (2016:37). 

 
Task 7. Processing and storage of data: Bose and Mahapatra (2001:212) indicate that 

data warehousing technology enables the organisation and storage of large amounts of 

financial information in a form that can be analysed using machine learning techniques . 

 

The classification of the problems or tasks that can be addressed by machine learning, as 

well as the description of the specific techniques available for use, are described in chapter 

3 section 3.8. 

 

2.2.3 Data available in document translation 
Printed documents may have weak structures caused by the placement of the text on the 

page. This has to be addressed using template specific extraction rules. Other documents 

may be in electronic and structured formats such as XML, from which the information in the 

document can be easily determined (Sorio, 2013:13).  

 

Documents, and therefore the data used in training machine learning technology, are easily 

accessible and the input data either already exists in digital form or it can be easily digitised 

(SMACC, 2017:6). However, variations in the components of data input indicate the need 

for solutions to be adaptable. This consideration is discussed in chapter 5 section 5.4.1. 
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2.3 Reconciliation of financial information 
This section will address the second accounting process, which is the reconciliation of 

financial information. The purpose of the account reconciliation process is to verify the 

integrity of a business’s account balances. An example of the process is illustrated in 

Figure 3. 

 
Figure 3: Tasks in the reconciliation accounting process (adapted from BlackLine, 
2014) 

 

These tasks will be performed for all the reconciliations a business has to perform as part of 

its overall financial reporting process and will depend on the industry in which the business 

operates and the nature of the transactions. Not all reconciliations are financial, for example 

businesses may require industry-specific reconciliations, but these will still support the 

reporting process (Trintech, 2017). Table 2 (Trintech, 2017) presents a summary of different 

types of reconciliation. 

 

 

 

 

Task 3: Matching 

Task 4: Exceptions identified 

Task 5: Exceptions investigated 

Task 6: Corrective action 

Task 7: Documentation 

↓ 
Task 1: Data preparation 

Task 2: Comparison 
↓ 

↓ 

↓ 

↓ 

↓ 
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Table 2: Types of reconciliation  

Category Type of reconciliation 
Bank reconciliations Bank accounts 

Credit cards 

Gift cards 

Currencies 

Other reconciliations Inventory 

Supplier statements 

Goods receipt invoice receipt 

Suspense accounts 

System to system 

Intercompany 

Payroll 

Inventory 

Industry specific reconciliations Airliners (bag drop) 

Insurance (policy) 

Hospital (patient count) 

Source: Adapted from Trintech (2017)  
 

2.3.1 Breaking down the account reconciliation process into tasks 
BlackLine (2014), a company which is endorsed by SAP for its accounting automation 

software, describes the account reconciliation process. The tasks performed in the account 

reconciliation process are as follows: 

 

Task 1. Data preparation: Data is collected and processed into an appropriately 

comparable format, which depends on the technology employed to perform the comparison. 

 

Task 2. Comparison: The transactional data contained in the account balance and the 

information produced by an independent system are compared. For example, for the bank 

general ledger account, a comparison is made between the information contained in the 

general ledger bank account and the information as per the bank statements, which are 

produced by an independent system. 
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Task 3. Matching: Transactional data records contained in the one set of information are 

matched to the corresponding record in the second set of information. These records are 

linked and marked as reconciled, verifying the integrity of the data. 

 

Task 4. Exceptions identified: Discrepancies are identified where differences are detected 

between the data being compared in each set of information, or where data available in one 

system has no corresponding data in the other system.  

 

Task 5. Exception investigation: The discrepancies identified are investigated by 

scrutinising the origin of the data records and inspecting the supporting sources for the 

existing data in order understand the cause of the discrepancies. 

 

Task 6. Corrective action: Once the cause of discrepancies is determined, corrective 

action is taken. This may involve making journal entries to correct balances or transactional 

errors. 

 

Task 7. Documentation: The investigation process is documented together with the 

corrective action and any supporting documentation, after which all of this information is 

stored for audit purposes.  

 

2.3.2 Technology used in the account reconciliation process 
The technologies required in the reconciliation process are set out in accordance with the 

different tasks identified in section 2.3.1. 

 

Task 1. Data preparation: The datasets that are compared may be imported from a variety 

of sources, including accounting software packages, enterprise resources planning (ERP) 

software (described in section 2.4.2), external platforms such as banking or supplier 

platforms or data converted from scanned manually generated documents (BlackLine, 

2014). The technology used in the preparation of data is discussed in section 2.2.2 above. 

 

Task 2 and 3. Comparison and matching: Technologies employed to perform data 

matching have included record linkage approaches. These record linkage approaches 

include rules-based approaches, which rely on heuristics. However, the drawback of this 

method is that heuristics developed for one application are not likely to work for another. For 

automated reconciliation, deep learning and statistical methods are recommended (Chew & 
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Robinson, 2012:326). The problems that can be addressed with machine learning are 

described in chapter 3 section 3.8. 

 
Task 4 to 7. Exception investigation, correction and documentation: The software will 

produce a report displaying both the unmatched and the matched items (Chew, 2014:2). 

The user will have to investigate, correct and document any unmatched items. 

 

2.3.3 Data available in the account reconciliation process 
An account reconciliation will consist of two transaction datasets, each of which may be 

from a different source and in a different format (Chew, 2014:1). Before the software can 

perform a reconciliation, the transactional data must be converted into the correct format. 

 

2.3.3.1 Sources of data 
Financial datasets may be sourced from the entity’s own ERP system, accounting software 

package, or other internal system, while other datasets may comprise third-party 

documents, such as bank statements and supplier statements obtained from external 

platforms such as those of banks and suppliers (BlackLine, 2014). 

 

2.3.3.2 Data format 
The data, namely, the transactions being reconciled, consist of a set of transaction features. 

These transaction features may comprise only one data field or may be separated into a 

number of fields. The features represent the information that makes up the transaction and 

enables the software to distinguish one transaction from another. For example, the feature 

may comprise the transaction description, transaction date, account number or transaction 

value, represented as separate fields or one single field, depending on the source from 

which the data is obtained (Chew, 2014:3). 

 

The data in each dataset may appear in a structured format such as categorical or 

continuous data or it may be in an unstructured format, with free-form text. Free-form 

transaction descriptions mean that the descriptions are at the user’s discretion and not 

limited by a category such as an account number or invoice number, thus making this 

unstructured format more difficult to reconcile as result of the variation (Chew & Robinson, 

2012:324). 
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2.4 Preparation of management accounts 
The final process to be addressed is the preparation of management accounts. Management 

accounts are a summary of a business’s accounting data which is prepared for the firm’s 

management. The purpose of preparing management accounts is to provide information 

that can assist management with decision-making (Whittington, 2007:198; Gorbunova & 

Bochkarev, 2011:25). An example of the process is illustrated in Figure 4. 

 

 
Figure 4 Tasks in the management reporting process (adapted from DBASS Chartered 
Accountants, 2014) 

 

Management accounts have three components, namely, financial reporting, performance 

measurement and cost planning (Cokins, 2013:27). Figure 5 illustrates the different 

components and gives examples of the different types of report that make up each 

component, in line with Trigo, Belfo and Estébanez (2014:120). 

 

The reports contained in management accounts may be either descriptive and retrospective, 

providing an overall view of the business’s historical performance, or they may be predictive 

Task 3: Account allocation 

Task 4: Report templates 
selection 

Task 5: Posting of key journals 

Task 6: Period selection 

Task 7: Report generation 

Task 8: Report descriptions 

↓ 

Task 1: Set up of the chart of 
accounts 

Task 2: Validation of data 
↓ 

↓ 

↓ 

↓ 

↓ 

↓ 
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and prospective, making use of historical data to predict future events (Amani & Fadlalla, 

2017:35; Appelbaum, Kogan, Vasarhelyi & Yan, 2017:36). The differences inherent in the 

reports affect the tasks involved in their preparation.  

 

 
Figure 5: The components of management accounts (adapted from Cokins, 2013:27)  

 

Business needs may vary, and small businesses in particular are unlikely to produce all the 

reports mentioned here. Those that are produced would be dependent on management’s 

decision-making needs (CPA Australia Ltd, 2011:4). 

 

2.4.1 Breaking down the management accounts reporting process into tasks 
The first set of reports included in the management accounts is the financial reports, which 

are generated using internal data (Appelbaum et al., 2017:35). In order to produce an 

accurate set of financial reports, the process followed in the Sage Line 50 software was 

considered (DBASS Chartered Accountants, 2014). The tasks included in the preparation 

of financial reports are as follows: 

 

Reporting 

Financial reporting 

Performance 
measurement 

Cost planning • Transaction 
processing 

• Accounts payable 
• Accounts receivable 
• Costing of goods sold 
• Inventory valuation 
 

• Variance reports 
• Budget vs. actual 
• Profitability 
• Cash flow 

management 
• Key personnel 

indicators 
 

• Budgeting 
• Forecasting 
• What-if analysis 
• Analysis of strategic 

options 
• Benchmarking 
• Strategic management 

accounting 
• Business risk 

management 

Management reporting 
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Task 1. Set up of the chart of accounts: The chart of accounts (COA) is an organised 

listing of the individual accounts that are used to record transactions and make up the 

reporting lines of the ledger system. The COA therefore provides the structure for 

classification of financial information. Classification structures will vary from company to 

company. Management accounts could, for example, break down financial information into 

underlying segments such as departments, products, employees, geographical locations, 

projects and customers (Cooper & Pattanayak, 2011:3). 

 

Task 2. Validation of data: The data used to prepare the management accounts must be 

accurate, valid and complete. Therefore, prior to preparing the accounts, all transactions 

should be posted and reconciliations performed as described in sections 2.2 and 2.3 above. 

 

Task 3. Account allocation: The transactions used in preparing the reports may be stored 

in a database and will need to be allocated to the specific chart of accounts by the user. The 

account allocation will be based on the nature of the transaction.  

 
Task 4. Report templates selection: Reporting templates may be used in the preparation 

of management accounts. These are templates used for creating financial reports with 

predefined fields and formats. The templates can be predefined or blank and customisable 

(Roy, 2005:3). 
 

Task 5. Posting of key journals: Period end journals may need to be posted, including for 

example wage journals, stock journals, prepayments and accrual journals. 

 

Task 6. Period selection: The period for which the management accounts are prepared is 

selected. 

 

Task 7. Report generation: The reports that make up the management accounts are 

produced by summarising the transactions for each reporting line in accordance with the 

chart of accounts mapped onto reporting templates. 

 
Task 8. Report descriptions: Notes and descriptions may be added to the quantitative 

information contained in the management accounts to assist users’ understanding of the 

information. 
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Next, performance measurement is carried out using insights and inferences, as well as 

analysis of the processes or events that have taken place, to evaluate corporate 

performance. This process uses mainly internal data, although some external data such as 

industry benchmark information is also used to process cost analysis reports.  

 

Cost planning reports are subsequently produced using both the financial reports and the 

analysis performed. Among other things, these cost planning reports forecast the future 

business performance, determine a budget to achieve the desired forecast and evaluate 

strategic options (Appelbaum et al., 2017:35).  

 

2.4.2 Technology used in the management accounts reporting process 
In this section, the technologies required for preparing the management accounts are 

discussed in line with the various tasks identified in section 2.4.1. In this process, technology 

is used to prepare the data, carry out the matching, produce the report of any exceptions 

identified and process any corrective actions. 

 

User guidelines are discussed in chapter 5. As part of these guidelines, section 5.5 

discusses the investment in technology required to enable the use of machine learning 

techniques. This section identifies those technologies that may enable the use of machine 

learning techniques in reporting. 

 

Management accounts can be prepared either using information from the business’s 

accounting information system or extracting it from the accounting module of a larger 

enterprise resource planning application.  

 
An accounting information system (AIS) is an application which works together with other 

information technology systems to record accounting transactions. An AIS collects, stores 

and processes financial and accounting data which then used to prepare reports for use by 

management; data may also include nonfinancial transactions that may impact the 

processing of financial transactions (Belfo & Trigo, 2013:537). 

 
An enterprise resource planning (ERP) system is an information system that integrates 

resources, business process activities and information. It consists of various modules, of 

which accounting is one. The processes performed in the accounting module include the 
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creation of a chart of accounts, posting to journals and the generation of financial statements 

(Adhitama, Sarno & Sarwosri, 2016:20). 

 

An ERP system enables management to access the operational data required for decision-

making and business control (Appelbaum et al., 2017:31). 

 
Extensible Business reporting language (XBRL) assists in the integration of applications. 

XBRL, a XML-based language, is a global standard for communicating business information. 

Accordingly, its use will ensure interoperability, thus allowing accounting information 

systems be more integrated with other systems. This is important as the automation of 

management accounting reporting will be dependent on the level of integration of the 

different applications producing information for the reports (Belfo & Trigo, 2013:542).  
 
Natural language generation (NLG) used in producing report descriptions is a 

technology that converts structured data into written or spoken language. By incorporating 

an inference engine, the NLG system can perform tasks like summarising large amounts of 

data, explaining why datasets change, and making recommendations (Yseop, 2017:6). 
 

2.4.3 Data available in the management reporting process 
During the analysis of the document translation and reconciliation processes, the 

recommended format identified for data was XBRL. The Companies and Intellectual 

Property Commission (CIPC) acknowledges that XBRL can be used to integrate back-end 

processes in companies when automating the preparation of financial statements 

(Companies and Intellectual Property Commission, 2017b).  

 

The CIPC is the central government agency in South Africa responsible for the registration 

of all companies. The CIPC indicates that the use of XBRL enables the automatic verification 

of compliance by means of a validation engine, with the aim of improving the efficiency and 

accuracy of the reporting process (Companies and Intellectual Property Commission, 

2017b). 

 

Big data may enable the preparation of more complex reports as it ensures sufficient data 

for making decisions. Big data can consist of data gathered inside the business – because 

this data is usually stored in a database it is generally structured – and external data, which 

is gathered from outside the business. External data is generally unstructured and therefore 
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often requires analytical tools to extract the information required for decision-making 

(Appelbaum et al., 2017:35). 

 

2.5 Conclusion 
This chapter described the three accounting processes, as well as the tasks performed in 

each process, the supporting technologies that would enable the inclusion of machine 

learning techniques in the process and the data available in the respective accounting 

processes.  

 

An understanding of the tasks performed is the key to identifying the areas that can be 

addressed by machine learning technology. Each of the tasks that can be addressed using 

machine learning techniques will present a learning problem. Their machine learning 

solutions will be identified in chapter 3 and will be organised in the same sequence as the 

identified tasks. 
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Chapter 3: Overview of machine learning 
 
3.1 Introduction 
Having identified the different tasks in the accounting processes in chapter 2, this chapter 

describes the tasks that are considered problem areas and which are to be addressed by 

machine learning technology. The chapter also considers areas where machine learning 

techniques may be employed to enhance the capabilities of existing technologies in the 

respective processes (identified in chapter 2).  

 

The objectives of this chapter of the study are to describe the components of the machine 

learning technology and the different machine learning techniques, as well as to identify the 

learning problems that machine learning techniques can address and that can be applied to 

each of the identified learning problems. This is in line with one of the research objectives 

of this study: to identify machine learning techniques that can be applied to the tasks in the 

accounting process. 

 

The first section, section 3.2, provides a context for machine learning, which is considered 

important in view of the aim identified for this study, namely, to enhance users’ 

understanding of machine learning technology specifically in the performance of accounting 

processes.  

 

The next section provides a description of the types of machine learning and the 

components of a machine learning architecture. Various machine learning techniques are 

then described and, in conclusion, the final section indicates the learning problems that can 

be applied to these techniques.  

 

The machine learning techniques identified in this chapter are then discussed in more detail 

in chapter 4, where the risks and benefits associated with the specific machine learning 

techniques are described, as well as the risks, benefits and limitations of machine learning 

technology. These identified risks, benefits and limitations are then used in chapter 5 to 

formulate guidelines for implementing machine learning technology in an accounting 

context. 
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3.2 Context and framework of machine learning 
Machine learning is one of the technologies that can be used in the accounting process to 

assist in the automation of tasks. Tools used in automation can be divided into different 

classes, namely, rules-based automation (robotic), knowledge-based cognitive intelligence 

and artificial intelligence. Combining artificial intelligence tools such as machine learning 

with robotic tools can automate the processing of unstructured inputs from beginning to end 

(Everest Group, 2014:11).  

 

Machine learning is a subset of artificial intelligence, where patterns in data are learnt and 

applied in a changing environment. The technology does not require all possible situations 

to be known during development. Machine learning can be used in two ways: to detect the 

patterns that explain a process, known as explanatory machine learning technology, and to 

make predictions; this is known as predictive machine learning technology (Ayodele, 

2010a:2; Sainani, 2014:841). 

 

Machine learning technology is able to predict solutions or detect patterns despite 

uncertainty. This differs from knowledge-based systems which can only solve problems 

using stored knowledge and facts, as well as heuristics and other elements such as models 

and known patterns provided by human experts (Valavanis, Kokkinaki & Tzafestas, 

1994:114).  

 

Figure 6 (Sutton et al., 2016:62) illustrates the different branches of artificial intelligence and 

therefore provides the context of machine learning in relation to other artificial intelligence 

technologies. 
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Figure 6: The artificial intelligence tree: the many branches of artificial intelligence 
application (adapted from Sutton et al., 2016:62)  

 

It is important to be able to distinguish between the different artificial intelligence 

technologies, as different technologies may be able to address different user needs in 

business processes (Everest Group, 2014). However, knowledge-based systems are 

beyond the scope of this study. 

 

Having provided a context for machine learning technology, the different types of machine 

learning technique are discussed in the next section. This is intended to contribute to 

understanding the framework for machine learning technology and was considered 

important, as non-expert users of machine learning techniques do not usually understand 

the terms that distinguish the different types of machine learning (Someren & Urbancic, 

2006:366). 

 

3.3 Types of machine learning algorithm 
Having provided the context for machine learning within the field of artificial intelligence, as 

well as a description of the different components of machine learning technology, this 

section describes the different types of machine learning algorithm. The different machine 

learning types are distinguished by considering the objective of the algorithm, how the 

machine learning algorithm learns, as well as the structure and volume of the data used for 

learning (Ayodele, 2010:19; Castle, 2018:1). 

Artificial Intelligence 
And 

Intelligent Systems 

Machine 
Learning 

3.3 
 

Knowledge-Based 
Systems 

(Not addressed) 

Supervised 
Learners 

3.5  

Unsupervised 
Learners 

3.6 
 

Classifiers 
3.5.1 

 Predictors 
3.5.2 

 Dual use 
3.5.3  

 
Pattern Detection 

3.6.1 
 Clustering 

3.6.2 
 

Intelligent Decision Support System 

Expert Systems 
Intelligent Decision Aid 

 

Intelligent Agents 

Semi-supervised 
Learners 

3.7 
 

Stellenbosch University  https://scholar.sun.ac.za



 

28 
 

Supervised learning algorithms require training. The algorithm is trained by using a labelled 

dataset which consists of examples of input data as well as the labels which indicate 

predicted targets or output data. Labels assist the algorithm in determining which features 

are important. The algorithm then generalises the training set by mapping the inputs to the 

correct responses, which enables it to produce output for new inputs (Ayodele, 2010:19; 

Castle, 2018:1; Larsson & Segerås, 2016:11; Marsland, 2009:6; SMACC, 2017:9).  

 
Unsupervised learning algorithms do not require training. The input data is unlabelled, 

meaning the predicted values are not provided, which may be because they are unknown. 

The algorithm needs to determine the links between the inputs provided to identify patterns 

or commonalities that can be used to categorise new data or solve problems (Ayodele, 

2010:19; Larsson & Segerås, 2016:11; Marsland, 2009:6; SMACC, 2017:9). 

 

Semi-supervised learning algorithms are trained using a combination of labelled and 

unlabelled data to generate an appropriate function. The labelled portion indicates patterns 

which may exist, while the unlabelled data, usually the larger portion of the data, is used to 

establish perceived or unknown patterns for the data (Ayodele, 2010:19; Castle, 2018:1). 

 

Having described the different machine learning technique types, the machine learning 

architecture is described in the next section. The architecture provides an overview of the 

components of the machine learning technology, including the different areas required to 

create a machine learning model that supports the use of the machine learning techniques.  

 

3.4 Machine learning architecture 
This section describes the different components of the machine learning architecture. This 

architecture will be adapted to the needs of the machine learning model as determined by 

the type of machine learning techniques used for a given task.  The different machine 

learning techniques are subsequently described in the next section. 

 

Gartner recommends that the following five functional areas be included in the machine 

learning architecture: data acquisition, data processing, data modelling, execution and 

deployment (Sapp, 2017:19). These areas are illustrated in Figure 7 which diagrammatically 

demonstrates the machine learning architecture. 
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Figure 7: Machine learning architecture (adapted from Sapp, 2017:20)  

 

The functional areas illustrated in Figure 7 of the machine learning architecture are 

described by Sapp (2017:21) as follows: 

 

Area 1: Data acquisition 
Encompasses the collection and preparation of data for processing from a variety of sources 

and ensures that the data is reliable and adaptable for processing. 

 

Area 2: Data processing including feature analysis 
This area normalises and transforms the data into a structure suitable for machine learning. 

In addition, training sets and testing sets are selected in this area. A training set is a dataset 

which is used by the algorithm to identify relationships (Dataiku, 2017:5), while a testing set 

is a dataset used to assess whether the algorithm functions as desired. Feature analysis is 

performed to assess which features of the data are required for training the machine learning 

algorithm.  

  

Area 3: Model Engineering 

Area 4: Execution 

Area 5: Deployment 

Area 1: Data 
acquisition 

Area 2: Data processing 
(feature engineering) 

• ERP databases 
• Mainframe 
• Devices 

Data ingestion 
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algorithms Experimentation 
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Stellenbosch University  https://scholar.sun.ac.za



 

30 
 

Area 3: Data modelling 
This area includes the selection of the machine algorithms and the adaptation of the 

algorithm to the identified learning problems.  

 

Area 4: Execution 
In this area the prepared data and the machine learning algorithm are brought together to 

train the machine learning algorithm, test the model and then make any necessary changes 

to the algorithm to ensure that the machine learning model operates in a way that addresses 

the learning problem. 

 

Area 5: Deployment 
In this area the outputs of the machine learning model are made available for use in the 

applicable business applications or are stored as data to be used in reporting for example. 

 

Having described the different machine learning technique types and the machine learning 

technology architecture, the different machine learning techniques available to address the 

learning problems identified in the form of accounting tasks are described in the next section. 

 

3.5 Description of the supervised learning techniques 
Descriptions of each of the machine learning techniques are provided in sections 3.5 to 3.7. 

The techniques are organised by learning problem type, as shown in Figure 6 of section 3.2. 

In describing the different machine learning techniques, the term “features” in data science 

refers to the independent variables or predictor variables (Dataiku, 2017:5).  

 

The techniques described are applied to the learning problems in section 3.8. The benefits 

and limitations of the different machine learning techniques are identified in chapter 4 section 

4.7. This section describes the various supervised learning techniques, starting with 

classification algorithms. 

 

3.5.1 Classification algorithms 
Classification algorithms are supervised learners, and therefore their development consists 

of a two-step process consisting of training and testing. During training, the algorithm maps 

class labels to data features. These features can predict the class labels of new data by 

learning from a training dataset that will consist of a set of data records and associated class 
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labels for each record. Once trained, the accuracy of the classifier is assessed by testing its 

ability to predict classes using the test dataset (Chadha & Singh, 2012:51). 

 

The different supervised classification algorithms can be separated into three different types 

of technique, namely, logic-based techniques, perceptron-based techniques and statistical 

techniques (Kotsiantis, 2007:251). These are presented in Figure 8. 

 

 
Figure 8: Types of classification machine learning technique (adapted from Kotsiantis, 
2007:251) 

 

Logic-based techniques use acquired knowledge from examples to classify data (Lopez De 

Mantaras & Armengol, 1998:99), whereas according to Kotsiantis (2007:254), perceptron-

based techniques are based on the ability of a perceptron to determine the weights to assign 

to each identified feature and calculate the appropriate class using the features and 

assigned weights. 

 

Also of importance here is Kotsiantis' (2007:257) description of statistical techniques as 

those techniques that make use of a probability model to determine the probability that an 

instance belongs to a particular class. The first of the techniques to be described will be the 

logic-based technique of the decision tree. 

 
3.5.1.1 Logic-based: decision trees 
The decision tree consists of nodes, each containing a question which relates to a particular 

feature. The algorithm starts at the root node, determines which features are present for that 

root node question and the, depending on the answer, moves on to the next node. The 
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information required to train these decision trees takes the form of instances, which consist 

of a set of features. 

The instance moves along the branches to assess different features at each node, ending 

at a leaf node. A leaf node is a group of features that are labelled as a particular class; the 

instance is then classified using the label assigned to that particular leaf (Kotsiantis, 

2007:251; Marsland, 2009:133; Thomassey & Fiordaliso, 2006:410). 

 

The decision tree may be considered as a set of if–then statements or rules. These rules 

are determined by the algorithm based on the training set (Samoil, 2015:35). Table 3 

provides an example of a training set to which a decision tree can be applied. 

 

Table 3: An example of a decision tree training set  

Features Class 

Ft1 Ft2 Ft3 Ft4 Label 

a1 a2 a3 a4 Yes 

a1 a2 a3 b4 Yes 

a1 b2 a3 a4 Yes 

a1 b2 b3 b4 No 

a1 c2 a3 a4 Yes 

a1 c2 a3 b4 No 

b1 b2 b3 b4 No 

c1 b2 b3 b4 No 

(Adapted from Kotsiantis, 2007:251) 
 

Figure 9 presents an example of a decision tree for the training set example in Table 3 

above. In the decision tree structure, the features are considered one at a time, followed by 

the assignment of a class or the consideration of another feature. 
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Figure 9: An example of a decision tree (adapted from Kotsiantis, 2007:251)  

 
As can be seen from Figure 9 above, the classification consists of a number of decisions 

which occur at each node, ending at the leaf node. The leaf node does not require a decision 

but rather assigns the instance to the particular class label (Narasimha Murty & Susheela 

Devi, 2011:127). A more advanced decision tree is the C4.5 algorithm, which is described 

below. 

 

3.5.1.2 Logic-based: C4.5 decision trees 
In producing the ID3 decision tree algorithm, the basic decision tree algorithm is adapted to 

ensure that the correct features are selected at each stage of the tree. The ID3 algorithm 

ranks features in such a way that the more informative features are closer to the root. This 

is measured using “entropy”, a term used to describe how informative a feature is 

(Thomassey & Fiordaliso, 2006:410). 

 

The ID3 algorithm is further adapted to the C4.5 decision tree algorithm by pruning it to 

reduce the number of nodes without losing the ability to classify the instance. There are two 

types of pruning, prepruning and post pruning. Prepruning tries to determine when to stop 

building branches by assessing at which point enough features have been considered to 

reasonably classify the case without requiring further branches.  

 

Post pruning takes place after an entire tree has been built, thus branches are removed at 

the end. C4.5 uses post pruning, because it takes an ID3 tree, converts it into a set of if–
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then rules and subsequently prunes certain conditions if the accuracy of the rules is 

increased without them (Marsland, 2009:143; Thomassey & Fiordaliso, 2006:410).  

 

3.5.1.3 Logic-based: random forests  
This model consists of a number of decision trees, each composed of a subsample of 

features, and is usually weaker than a full decision tree. The average, or the weighted 

average, of the trees is determined and used to perform the classification, effectively 

combining the power of the individual trees which often produces a higher quality result 

(Bucheli & Thompson, 2014:4; Dataiku, 2017:7). 

 

3.5.1.4 Logic-based: transfer learning decision forests 
This model uses random forests, as described above, where the knowledge produced can 

subsequently be applied or transferred to a given target task. This generates a classifier that 

can be used to exploit the knowledge from other tasks to improve the ability of the classifier 

to perform a target task (Goussies, Ubalde, Fernandez & Mejail, 2014:4312). 

 

3.5.1.5 Perceptron-based: neural networks 
A neural network can provide prediction and classification solutions and is discussed in 

section 3.5.3.2. 

 

3.5.1.6 Statistical: Naïve Bayes 
The Naïve Bayes algorithm is a probabilistic model which determines the probability of 

different classes or outcomes, based on previously encountered examples. These examples 

are identified in the training data. For an instance or event that has been classified, the 

algorithm calculates the probability of each identified feature present in the instance and 

these probabilities are multiplied with each other for all possible classes or outcomes. The 

class or outcome with the highest probability is chosen, being the most likely outcome 

(Larsson & Segerås, 2016:12).  

 

The Naïve Bayes algorithm is derived from the Bayesian theorem and assumes that the 

features in the instance are independent, which implies that the value of the features do not 

influence one another. When considering multiple features, the Naïve Bayes algorithm is a 

more simplified algorithm than the Bayesian theorem (Marsland, 2009:171). 
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The Bayesian theorem is used to calculate the probability of an event based on previous 

knowledge of the probability of an event. The algorithm determines the probability of the 

occurrence of, for example, event A, when having observed event B, taking into account the 

likelihood of event B being present when event A is observed, as well as the probabilities of 

event A and event B as follows: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 

 

The variables in the above algorithm are as follows: 

• P(A|B) is the probability of occurrence of event A, given that event B (evidence) 

occurred 

• P(A) is the prior probability of event A 

• P(B|A) the conditional probability or likelihood of the occurrence of event B, given 

event A 

• P(B) is the prior probability of the occurrence of event B (Chadha & Singh, 2012:52; 

Samoil, 2015:16).  

 

This algorithm can be used in a normal classification problem where there are multiple 

classes, say C1, C2, …, Ck. Naïve Bayes calculates the conditional probability, that is, the 

probability of a feature conditional on the observed features of an object with a set of multiple 

features (observed features) such as x1, x2, …, xn belonging to a particular class Ci.  

 

The algorithm calculates the probability of the class, given the observed features, by 

multiplying the probability of the features by the probability of the class, using the Bayes 

theorem as follows (Narasimha Murty & Susheela Devi, 2011:93): 

 

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) =
𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝐶𝐶𝑖𝑖) ∗ 𝑃𝑃(𝐶𝐶𝑖𝑖)

𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
 

 

To illustrate how this would be used to classify something based on its features, the example 

of classifying vegetables adapted from Larsson and Segerås (2016:12) is provided. Table 4 

contains the training data followed by an example of the observed features and how they 

are used to classify the vegetables using Naïve Bayes. 
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Table 4: Naïve Bayes training data  

Vegetable class Long Not Long Purple Not Purple Total 
Tomato 5 24 3 26 29 

Brinjal 14 4 16 2 18 

Total 19 28 19 28 47 

Source: Adapted from Larsson & Segerås (2016:12)  
 

To classify an unknown vegetable having the observed features or evidence Long and Not 

Purple, the probability of each respective vegetable given the features will need to be 

calculated, as shown in formula (1) and formula (2). 

 

 𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�∗𝑃𝑃�𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�∗𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)∗𝑃𝑃(𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

  (1) 

𝑃𝑃(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�∗𝑃𝑃�𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�∗𝑃𝑃(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)∗𝑃𝑃(𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

  (2) 

 

The probabilities calculated in formula (1) and formula (2) will be compared, and the highest 

probability will be selected as the chosen vegetable. 

 

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
5
29� ∗26 29� ∗29 47�
19

47� ∗28 47�
= 0.0954

0.2408
= 0.3961 (1) 

 

𝑃𝑃(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑛𝑛𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
14

18� ∗2 18� ∗18 47�
19

47� ∗28 47�
= 0.0331

0.2408
= 0.1374 (2) 

 

Therefore, a long and not purple vegetable will most likely be a tomato based on the 

probability of the prior observed evidence using Bayes theorem and assuming that the 

features are independent. 

 

3.5.1.7 Statistical: Bayesian belief networks (BBN) 
Like the Naïve Bayes algorithm, a Bayesian belief network is modelled on the Bayesian 

theorem. However, in contrast to the Naïve Bayes algorithm which assumes that features 

are independent, a Bayesian belief network takes into consideration the probabilistic 

dependencies among features (Heckerman, 2008:33; Narasimha Murty & Susheela Devi, 

2011:97). 
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Bayesian belief networks plot these probabilistic relationships using a graphical model. The 

graph presents a network of nodes, one for each feature, which are connected by lines going 

in a specific direction. The one feature needs to be present for the possibility of the other, 

therefore they are causally linked and the graph indicates this parent–child relationship. This 

graph is known as a directed acyclic graph (Witten, Frank, Hall & Pal, 2016:340) and is 

illustrated in Figure 10.  

 

 
 
Figure 10: A Bayesian belief network showing causal relationships between events 
(adapted from Heckerman, 2008:45)  
 
The model takes these dependencies into consideration by determining the joint probability 

of causal features. This is done by using the product rule, which states that the probability 

of both event A and event B is the probability of event A, given B multiplied by the probability 

of B (Witten et al., 2016:337). 

 

∴ 𝑃𝑃(𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵) ∗ 𝑃𝑃(𝐵𝐵) 

 

By using this product rule and taking into account the causal relationship between features, 

the joint probability distribution for a set of features can be determined. The Bayesian belief 

network is able to identify conditional independencies; for example, D is conditionally 

independent of E in Figure 10. Therefore, the conditional probability of event D, given events 

A, B and E, will be as follows: 

 

𝑃𝑃(𝐷𝐷|𝐴𝐴,𝐵𝐵,𝐸𝐸) = 𝑃𝑃(𝐷𝐷|𝐴𝐴,𝐵𝐵). 

 

The conditional probability for each node X will be calculated as the joint probability of the 

parent events, that is, P(X|Parent events (X)), therefore excluding conditional 

independencies (Heckerman, 2008:45; Witten et al., 2016:343).  

 

A 

D E 

B C 
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Having established a Bayesian belief network, the probabilities of causal events can be 

determined or inferred using the probabilities of the observed events, taking into account 

only the joint probabilities and excluding the conditional independencies (Heckerman, 

2008:46).  

 

3.5.1.8 Statistical: K-nearest neighbour (kNN) 
The nearest neighbour algorithm classifies instances or patterns according to the nearest 

known neighbour class by finding similarities in the instance being classified to patterns or 

features in the training set (Narasimha Murty & Susheela Devi, 2011:48). The k-nearest 

neighbour algorithm is derived from this nearest neighbour algorithm. 

 

For the k-nearest neighbour algorithm, instead of only one nearest neighbour being detected 

by the algorithm, more than one to the amount of k nearest neighbours may be detected. 

The nearest neighbours detected may then indicate that the instance being classified is near 

to more than one class. The class for which the majority of nearest neighbours are identified 

will then be the class to which the instance is classified.  

 

Figure 11 illustrates a linear example of a k-nearest neighbour classification. Where k is 3, 

three of the nearest neighbours will be identified. Instance P can therefore be correctly 

classified as belonging to the circles class, as the majority of the nearest neighbours are 

circles. If the basic nearest neighbour algorithm was used, then P would have been 

incorrectly classified in the class of the stars, even though point number 5 is an outlier 

(Narasimha Murty & Susheela Devi, 2011:51). 

 

 
Figure 11: Accurate classification of P using the k-nearest neighbour algorithm 
(adapted from Narasimha Murty & Susheela Devi, 2011) 
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In the design of the k-nearest neighbour algorithm, an important factor is therefore the value 

of k.  This will need to be an odd value in order to avoid an even split between two classes. 

The k-nearest neighbour algorithm may also be modified to assign a weight to each of the 

nearest neighbours based on their proximity to the instance being classified (Narasimha 

Murty & Susheela Devi, 2011:51). 

 

3.5.1.9 Statistical: support vector machines 
A support vector machine can provide prediction and classification solutions and is 

discussed in section 3.5.3.1. 

 

3.5.2 Prediction algorithms 

3.5.2.1 Conditional random fields 
Where normal classifiers predict only one class at a time, conditional random fields use a 

graphical model to plot many interdependent variables, thus determining the conditional 

distribution for multiple predictions (Sutton & Mccallum, 2007:98; Witten et al., 2016:407). 

According to Sutton and Mccallum (2011:269), conditional random fields are able to predict 

outputs by combining discriminative classification with graphical modelling. 

 

As opposed to a generative model, which determines a joint probability distribution, 

conditional random fields use a discriminative model which calculates only the conditional 

distribution. A conditional distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥) where the probability of outputs 𝑦𝑦 is calculated 

given specific inputs 𝑥𝑥, does not consider the modelling of the probability of the input 𝑝𝑝(𝑥𝑥) 

that would consider all the features dependent on 𝑥𝑥. Discriminative models are therefore 

simpler models than generative models (Sutton & Mccallum, 2011:269).  

 

Conditional random fields can determine the probability of possible label sequences which 

are interdependent given an observation sequence, as recommended by Lafferty, Mccallum 

and Pereira (2001:282) for segmenting and labelling sequence data, thus taking context into 

account when predicting the outputs. This context provides information that contributes to 

predicting the outputs (Witten et al., 2016:406). 

 

For this reason conditional random fields are useful for modelling multifaceted outputs 

consisting of interrelated parts, for example for identifying the parts of a sentence (Sutton & 

Mccallum, 2007:106) or image captioning where the components of the sentence or picture 
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are related and are indicative of what is being classified (Arnab, Zheng, Jayasumana, 

Romera-Paredes, Larsson, Kirillov, et al., 2018:38). 

 

3.5.3 Dual-use algorithms: classification and prediction 

3.5.3.1 Support vector machines 
A support vector machine is a binary classifier that aims to separate data into two classes, 

based on the case features. A set of features that describe one case is known as a vector. 

In order for a support vector machine to perform at its best, the optimal hyper plane needs 

to be identified which separates the two classes of vectors.  

 

The optimal hyper plane would be one which has a maximum margin from each of the 

classes, where this margin is the distance from the hyper plane to the closest vectors in 

each class. This maximum margin is determined by considering the vectors closest to the 

hyper plane in each class. The closest vectors are known as the support vectors. 

 

The support vector machine firstly maps the vectors into a multidimensional (N-dimensional) 

space and then determines the hyperplane which separates the vectors into two classes. 

New instances can then be classified into these two classes (Ayodele, 2010b:25). 

 

Although N-dimensions are used to map vectors, for illustration purposes Ayodele 

(2010b:26) recommends using a two-dimensional example as shown in the Figure 12. In 

the example there are two features for each vector, one represented by the X1 axis and one 

represented by the X2 axis. The vectors are plotted accordingly and each class is 

represented by a shape, resulting in two classes, circles and squares. The maximum margin 

is used to determine the hyperplane, which is at the optimal distance from the support 

vectors.  
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Figure 12: A two-dimensional example of a support vector machine (adapted from 
Ayodele, 2010b:26; Kotsiantis, 2007:261) 

 

Despite the linear hyperplane shown in the two-dimensional figure, support vector machines 

usually create non-linear class boundaries, which increases the possibilities for which the 

support vector machines can be used (Witten et al., 2016:252).  

 

3.5.3.2 Artificial neural networks 
An artificial neural network is a combination of mathematically generated neurons, which 

operate in a similar manner to the human brain. These neurons are each assigned a weight 

based on what the artificial neural network learns, collectively forming part of a mathematical 

function (SMACC, 2017:9).  

 

Narasimha Murty and Susheela Devi (2011:169) describe the functioning of a neuron as 

follows: The neuron receives input from a combination of other neurons, for which each input 

carries a specific weight. The total inputs received are summed by adding all the input values 

adjusted for their respective weights. If the cumulative input exceeds a threshold, the neuron 

will produce an output. Figure 13 illustrates an artificial neuron, where the output value will 

be calculated as follows:  𝑎𝑎 = 𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2 + 𝑥𝑥3𝑤𝑤3. 

 

 
Figure 13: A single neuron (adapted from Narasimha Murty & Susheela Devi, 2011:169)  

Support Vector 
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According to Narasimha Murty and Susheela Devi (2011:169), the training of a neural 

network takes place as follows: 

• Random weights are assigned to every link or neuron in the network. 

• Inputs are given to the artificial neural network for which an output is produced. 

• If the output is correct, then no changes are made to neuron weights. 

• If the output is incorrect, the error is used to adjust the weights in the network and 

the process repeated until the correct output is produced for those inputs. 

 

The structure of the neural network, and therefore the arrangement of the neurons, will 

depend on the learning task and the data available (SMACC, 2017:9). A network consisting 

of an input and an output layer will be able to classify linearly separable classes – this is 

known as a feed-forward network.  

 

For more complex classification, a multilayer network will be required. In addition to an input 

and an output layer, these networks have a hidden layer which enables non-linear 

classification. The structure of this network is illustrated in Figure 14 (Narasimha Murty & 

Susheela Devi, 2011:174). 

 
Figure 14: A multilayer neural network with a hidden layer (adapted from Narasimha 
Murty & Susheela Devi, 2011:174) 

 

The artificial neural network can be used to extract information from unfamiliar documents, 

using its knowledge to determine the probability of the identified information being similar to 

known information. OCR is used to extract the information and the characteristics of the 

information are used to determine what the information is. SMACC (2017:10) provides an 

example of how the artificial neural network extracts information from an invoice, as shown 

in Figure 15. 

 

Input layer 
Hidden layer 

Output layer 
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Figure 15: An artificial network classifying elements of an invoice (adapted from 
SMACC, 2017:10)  

 
Neural networks can be trained using supervised learning, since both the inputs and outputs 

are supplied to the neural network. However, neural networks can also be designed using 

unsupervised learning, which would require self-organisation, as is seen in self-organising 

maps (Hadzic, Dillon & Tan, 2007:225; Kohonen, 1990:1464). 

 

3.5.3.3 Convolutional neural networks 
Convolutional neural networks are explained by Albawi, Mohammed and Al-Zawi (2017:1) 

as a particular type of deep neural network consisting of multiple layers. These layers are 

structured in such a way that the network is able to handle complex data such as images, 

and to classify these images based on the combined features identified by the different 

layers of the network. The data input passes through layers that include convolutional, 

pooling and fully connected layers, resulting in an output.  

 

When classifying an image, a convolutional neural network considers each pixel as an input. 

Unlike in other neural networks, the neurons in the convolutional layer do not connect to all 

the inputs (pixels), they only obtain input from regions in the picture. This is done by breaking 

the image down into smaller pieces, consisting of sets of pixels, and then systematically 

connecting the neurons to these smaller pieces. Therefore the same set of neurons is re-

used to detect portions of the picture piece by piece (Albawi et al., 2017:2; Witten et al., 

2016:438). 

 

The convolutional layer passes each piece of the image through a set of filters where each 

filter looks for different aspects in the image. Different filters detect different features of an 

Invoice example 
 
The invoice company 
Fictitious Street 
Stellenbosch 
19582 
 
Further invoices details XXX 
 

The number 19582 appears on the invoice, what does this 
number mean? 
 
A word above the number: Stellenbosch 19582 
So the word provides context: based on probability it is a 
postal code 
 
Line above: Fictitious Street 
This may be an address, which increases the probability of 
19582 being a postal code 
 
The address is also located below a company name, which 
further increases the probability of it being a postal code. 
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image such as edges and shapes or higher-level features such as faces. Each filter needs 

to be trained to effectively perform its given task, thus these filters are prepared by means 

of supervised learning. 

 

The elements detected in the convolutional layer are then reduced in the pooling layer by 

means of a threshold. As each of the filters are neurons, each neuron will produce a 

weighted output. These outputs will also be analysed systematically by dividing outputs into 

sub-regions. The features in each sub-region with the maximum weighted output will be 

selected by the pooling layer – this is called maximum pooling. In this way the pooling layer 

summarises the outputs of the convolutional layer and makes the features detected more 

robust (Albawi et al., 2017:5; Krizhevsky, Sutskever & Hinton, 2012:4) . 

 

There may be multiple layers of convolution and pooling layers, which each filter and 

measure different aspects such as edges, curves, faces and hands and so on. All successful 

detections are then combined by the fully connected layer, which uses logic to identify the 

image being classified. It is important to note that features in the image cannot be spatially 

dependent. So, for example, in a face detection application, it should not matter where the 

faces are located in the images, the focus is simply on detecting the faces (Albawi et al., 

2017:1). 

 

Figure 16 illustrates the functioning of a convolutional neural network, where the 

convolutional layer interprets sections of the image at a time, followed by a reduction of the 

detections in the pooling layer and then finally a classification of the findings by the fully 

connected layer (Krizhevsky et al., 2012:5; Lawrence, Giles, Tsoi & Back, 1997:103) 
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Figure 16: A high-level diagram of the convolutional neural network used for image 
classification (adapted from Krizhevsky et al., 2012:5; Lawrence et al., 1997:103)  
 
Oquab, Bottou, Laptev and Sivic (2014:1717) indicate that convolutional neural networks 

used to classify images can also be used in combination with other technologies to 

determine document types, when sorting documents by their appearance or patterns.  

 

3.6 Description of unsupervised learning techniques 
Having described the various supervised learning techniques in section 3.5, this section 

describes the relevant unsupervised learning techniques. 

 

3.6.1 Pattern detection 
3.6.1.1 Association rules 
Association rules determine the associative relationships between data, where the 

occurrence of one feature may indicate the possible occurrence of another feature 

(Narasimha Murty & Susheela Devi, 2011:55). Instead of predicting a particular class, 

association rules are able to predict combinations of features and which features are 

commonly associated with each other, irrespective of class (Witten et al., 2016:79). 

 

Association rules need to be measured in order to determine whether they can be relied 

upon, and to do this the coverage of the association rule is considered. This is known as the 

support and thus the accuracy of the association rule is determined, which is called the 

confidence (Witten et al., 2016:79). 
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Berka and Rauch (2010:11) provide an example of how the support and confidence can be 

determined. In the example, 𝑎𝑎 is the number of classes where both 𝑋𝑋 and 𝑌𝑌 are present, 

𝑏𝑏 are the classes where only 𝑋𝑋 is present, similarly 𝑐𝑐 where only 𝑌𝑌 is present and 𝑑𝑑 where 

neither classes have 𝑋𝑋 or 𝑌𝑌.  

 

The support is determined as follows: 

𝑃𝑃(𝑋𝑋 ∧ 𝑌𝑌) =
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑
 

The confidence is determined as 

𝑃𝑃(𝑋𝑋|𝑌𝑌) =
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
 

Usually the support and confidence for the association rule will need to exceed a specified 

minimum threshold for the rule to be considered for pattern detection. Since some 

associations may be indicative of others, often only the strongest rules are selected in order 

to reduce the number of rules (Witten et al., 2016:79). 

 

3.6.2 Clustering 
Clustering is an unsupervised machine learning method which divides instances into groups 

or clusters. The following different groups may be identified:  

 

• Exclusive – each instance belongs to only one cluster. 

• Non-exclusive – one instance may belong to more than one cluster. 

• Probabilistic or fuzzy – there is a certain probability or degree of membership of 

each cluster to which an instance belongs.  

• Hierarchical – instances are divided into high-level broader clusters, each of which 

are refined into smaller subclusters up to individual instances level (Thomassey & 

Fiordaliso, 2006:411; Witten et al., 2016:88). 

 

Clustering is often the first stage of a hybrid approach, which consists of more than one 

machine learning technique. The next stage may be a decision tree or rule set which is 

derived based on the features of the determined clusters, and this rule set then allocates 

new instances to the appropriate clusters (Thomassey & Fiordaliso, 2006:413; Witten et al., 

2016:88). 
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3.6.2.1 Self-organising maps 
Self-organising maps are a form of neural network that uses unsupervised learning. The 

objective of the self-organising map is to produce its own representation or self-organisation 

of the given data, since outputs are not provided (Hadzic et al., 2007:225; Kohonen, 

1990:1464).  

 

According to Ayodele (2010b:37), the self-organising map aims to learn the structure of the 

data by identifying clusters of data and linking similar clusters to each other. This results in 

feature mapping, where neurons representing similar features are located close to each 

other in a network.  

 

In order to form the network, the neurons of self-organising maps are typically organised 

into a two-dimensional grid, with connections between the neurons in the grid (Ayodele, 

2010b:37; Marsland, 2009:208). This forms the output map. The inputs form another layer, 

as is the case with neural networks. Each node in the input layer is fully connected to the 

output map neurons (Ehsani, Quiel & Malekian, 2010:411). This is illustrated in Figure 17. 

 
Figure 17: The self-organising map network (adapted from Hadzic et al., 2007:228)  

 

The objective the self-organising map is to plot input patterns onto a self-organising map. 

Warwick (2012:97) describes the self-organising map model as follows: 

 

1. Self-organising maps start with an untrained map, which consists of any number of 

neutrons arranged in a grid. This grid usually represents two dimensions, even 

though the input patterns are usually more highly dimensional than 2D, so a self-

organising map enables dimensionality reduction (Kohonen, 1998:1; Marsland, 

2009:208). 

 

Input Layer Output map layer 
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2. Between the neurons in the network are lateral connections, which means that the 

output from each neuron forms further inputs to each of the other neurons in turn. 

This is in contrast to artificial neural networks where connections only occur between 

the different layers of inputs and outputs and not within the same layer (Marsland, 

2009:208). 

 

3. Each of the signals from the inputs and from the surrounding neurons will have a 

weight attached to them, which may be randomised to begin with between 0 and 1. 

The location of each neuron in the map is important as neurons located close to each 

other need to respond to similar input patterns (Marsland, 2009:210).  

 

4. The self-organising map is organised using competitive learning, where the 

neurons compete to best represent the input data (Ayodele, 2010b:39; Hadzic et al., 

2007:228; Marsland, 2009:210). 

 

5. When a particular input pattern (feature combination) is presented to the algorithm, 

one of the neurons will present an output which is higher in weight than the other 

neurons (different features trigger different weights resulting in an answer for each 

neuron). The neuron with the highest response is considered the winning neuron. 

 

6. The weights of the winning neuron are adjusted so that its weight for that input 

pattern is higher than before. The weights of the neighbouring neurons are also 

adjusted upwards but to a lesser degree for that particular input pattern. The neurons 

therefore adapt to different input patterns, thus ensuring they will be able to recognise 

and classify these input patterns (Kohonen, 2013:52). 

 

7. After various adaptations, neighbouring neurons are organised onto the two-

dimensional map, representing similar features as is required for feature mapping. 

This effectively creates clusters of similar neurons (Kohonen, 1998:1; Marsland, 

2009:208). 

 

8. Each time the self-organising map is presented with an input pattern a specific region 

of the neuron grid will respond. And since neurons are grouped according to their 

similarities for identifying a specific input pattern, by means of feature mapping, the 
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response of a particular region of the neurons will indicate the type of input pattern 

being presented, thus enabling classification or identification of the input. 

 

3.6.2.2 K-means clustering  
K-means clustering divides the data into k number of categories. In order to perform k-

means clustering, the number of clusters, that is k, needs to be specified and a random initial 

central data point (centroid) needs to be selected for each cluster. The data is then grouped 

based on the distance of each data point from the initial centre.  

 

Once initial assignment of data to clusters and distances has been done, the mean distance 

from the central data point for each cluster can be calculated and the centre moved to the 

mean distance point.  

 

The algorithm runs again until the cluster centres no longer need to move (Ayodele, 

2010b:27; Marsland, 2009:196). Figure 18 represents an example of a K-means flow 

diagram (Ayodele, 2010b:28). 

 

 

 
 

Figure 18: An example of K-means follow diagram (adapted from Ayodele, 2010b:28)  
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The steps in a K-means clustering algorithm are as follows: 

1. Choose a value for K. 

2. Determine the centre coordinate or centroid (Takaki, Petersen & Ericson, 2018) for 

each group. 

3. Calculate the distance of each data object from each centroid. 

4. Place data points in clusters based on closest centroid, look at minimum distance. 

5. Calculate the mean distance of cluster from the centroid. 

6. Move the centroids for each group to the mean distance point. 

7. Repeat grouping of clusters, calculation of mean distance, and movement of 

centroids until centroids no longer need to move. 

 
3.7 Description of the semi-supervised learning techniques 
Having described the various unsupervised learning techniques in section 3.6, this section 

describes the relevant semi-supervised learning techniques. 

 

3.7.1 Semi-supervised clustering 
As Jain, Jin and Chitta (2014:1) state, clustering algorithms are unsupervised machine 

learning algorithms that work to find a partition in the dataset. Semi-supervised clustering 

assists the algorithm to find a better quality partition by providing the algorithm with any prior 

knowledge about the data. The clustering algorithm is then guided by the prior knowledge 

to find the partition in the data.  

 

Prior knowledge refers to labelled data, as is required for supervised learning, whereas 

unsupervised learning algorithms function using unlabelled data (Zheng, Zhou, Deng & 

Yang, 2017:7447). The labelled data may indicate constraints such as which data must or 

cannot be clustered together, or prior knowledge may mean increasing or decreasing known 

distances between data points (Bezerra, Mattoso & Xexéo, 2006:88).  

 

Having described the different machine learning techniques, certain tasks which are 

considered problem areas to be addressed by machine learning are described in the next 

section, together with the applicable machine learning technique that can be applied to each 

of the identified learning problems. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

51 
 

3.8 Tasks that can be addressed by machine learning technology 
In order to achieve the objectives of this section the learning problem for each identified task 

was determined using the findings of prior research. This enabled the identification of the 

machine learning technique that could be applied. The process of selecting machine 

learning techniques to apply to identified problems has been proven to be significantly 

difficult, especially when matching the problems identified with techniques intended to solve 

them (Someren & Urbancic, 2006:365). 

 

The process of matching each problem to the technique to solve it involves firstly 

understanding the task and then defining the learning problem. Identifying the learning 

problem enables a developer to identify the information and algorithm required to address 

the problem (Saitta & Neri, 1998:137; Someren & Urbancic, 2006:366). This process of 

understanding the task and defining the learning problem is crucial as there are often many 

solutions available for addressing a learning problem (Someren & Urbancic, 2006:369). 

 

The different types of learning solutions that are available are defined as follows (Amani & 

Fadlalla, 2017:34): 

• Classification is suitable for mapping data into two or more categories, each with its 

own distinct attributes (Larsson & Segerås, 2016:11). 

• Clustering is suitable for separating data into classes or groups that are similar in 

some meaningful way (Larsson & Segerås, 2016:11). 

• Prediction is suitable for producing a forward-looking numerical prediction 

(forecasting) or non-numerical prediction (classification). 

• Outlier detection is suitable for finding the items or events that significantly deviate 

from the expected pattern or other data considered normal in the dataset. 

 

Having defined the different types of learning solution above, Table 5 sets out the different 

problem areas and then designates the learning solution type for each area. The problems 

are organised by task areas, as described in chapter 2. The key findings of existing machine 

learning techniques identified in research to address the specific learning problem areas are 

then provided.  
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Table 5: Accounting problem types and recommended machine learning techniques  

Description of the learning 
problem 

Solutions to 
the learning 

problem 

Machine learning 
techniques 

Source 

Translation of manual and electronic documents into accounting information 
Task 3. Document features extraction 
OCR requires adaptability, a 

characteristic which can be 

enabled by means of machine 

learning. 

Classification Transfer learning decision 

forests  

ABBYY 

Technologies, 

(n.d.); Goussies et 

al. 2014:4309) 

Task 4. Document type recognition and classification( 
Image classification can be 

used to detect the document 

type, which can be enhanced 

by means of machine learning. 

Classification • Convolutional neural 

networks 

• New document class: k-

nearest neighbour 

• Similar known 

documents: support 

vector machine 

ABBYY (2017); 

Oquab et al. 

(2014:1717); 

Sorio (2013:23); 

Sorio, Bartoli, 

Davanzo & 

Medvet 

(2010:187); 

Witten et al. 

(2016:523) 

Irregular document layout 
classification using NLP 

combined with machine 

learning to train the system to 

process flexible or irregular 

document layouts. 

Classification Convolutional neural 

networks 

ABBYY (2017); 

Chen, Wang, Fan, 

Sun, & Satoshi 

(2015:436) 

Text classification is used to 

classify text, using both 

statistical and semantic text 

analysis. 

Clustering • Parallelisation 

MapReduce k-nearest 

neighbour 

• Semi-supervised 

clustering 

ABBYY (2017); 

Du (2017:195); 

Zhang, Tang, & 

Yoshida, 

(2015:152) 

 

Task 6. Validation of document data 

Validation of document 
information can apply 

machine learning to determine 

Classification • Naïve Bayes 

• Support vector machine 

Larsson & 

Segerås 

(2016:33) 
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Description of the learning 
problem 

Solutions to 
the learning 

problem 

Machine learning 
techniques 

Source 

whether the extracted data 

from the document is correctly 

classified or not. 

Removing of duplicate 
entries and linking 
documents may be achieved 

by using approximate string 

matching, making use of 

machine learning for string 

classification. 

Classification  • Naïve Bayes 

• Decision trees 

• Support vector machine 

• Artificial neural network 

Amtrup,  

Thompson, Kilby 

& Macciola, 

(2015:24); 

Larsson & 

Segerås 

(2016:18); De 

Leone & Minnetti 

(2015:2); Samoil 

(2015:16) 

Reconciliation of financial information 
Task 3. Matching 
Matching records or record-
linkage has been performed 

using a variety of machine 

learning techniques.  

Classification • Naïve Bayes 

• Decision trees 

• Support vector machine 

• Artificial neural network 

Chew & Robinson 

(2012:328); 

Samoil (2015:16) 

Preparation of management accounts 
Task 3. Account allocation 
Account allocation may be 

performed by incorporating 

machine learning, which learns 

to predict the account allocation 

based on probability and can 

recommend which accounts to 

post to. 

 

Classification 

and 

clustering 

Classification: 
Naïve Bayes 

 

Clustering: 
K-means clustering 

Random forests 

 

Bengtsson & 

Jansson 

(2015:40); Brady 

Leider, Resnick,  

Natalia Alfonso & 

Bishai 

(2017:354); 

SMACC 

(2017:12); Takaki 

& Ericson 

(2018:1) 

Task 7. Report generation 
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Description of the learning 
problem 

Solutions to 
the learning 

problem 

Machine learning 
techniques 

Source 

Error detection in financial 
data and fraud detection can 

be performed by incorporating 
machine learning to identify 

irregularities in datasets. 

Classification

Outlier 

detection and 

clustering 

 

Classification:  

• Bayesian belief network 

and a decision table 

• Naïve Bayes hybrid 

model  

Outlier detection:  

• Association rules 

Clustering:  

• K-means clustering 

• Self-organising maps 

Ahmed, 

Mahmood & Islam 

(2016:283); Alpar 

& Winkelsträter 

(2014:2261); 

Hajek & 

Henriques 

(2017:146); 

Kokina & 

Davenport 

(2017:117) 

 

 

 

Task 8. Report descriptions 
Report descriptions may 

incorporate machine learning 

techniques in natural language 

generation technologies to 

enable a reasoning process to 

be applied to the reported data 

and thus produce required 

explanations in natural 

language. 

Prediction Conditional random fields Gardent & Perez-

Beltrachini 

(2017:15); 

Lafferty et al. 

(2001:283); 

Yseop (2017:7) 

Tasks pertaining to performance measurement 
Forecasting performance 
reports can be prepared using 

predictive analytics, which may 

employ machine learning 

algorithms. These predictive 

analytics can be used for 

forecasting the business’s 

financial performance. 

Prediction • Support vector machine 

• Artificial neural network 

• C4.5 decision trees 

• Bayesian belief network 

Appelbaum et al. 

(2017:36) 

Source: Own observation 
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Table 5 above demonstrates which accounting processes tasks can be performed or 

assisted by machine learning techniques. These techniques were described in sections 3.5, 

3.6 and 3.7 of this chapter. It is clear from this table that there may be more than one method 

available to address a specific task. It is important to note that in certain instances a 

combination of methods may be selected (Someren & Urbancic, 2006:380). 

 

3.9 Conclusion 
This chapter provided a context, framework and recommended architecture for machine 

learning technology, as well as a description of the functioning of various machine learning 

techniques that can be applied to the different accounting tasks.  

 

The functioning of the different machine learning techniques was described as this 

contributes to accounting users’ understanding of machine learning technologies and it 

supports users in understanding the limitations of such technologies. These limitations are 

discussed in chapter 4 and, it is hoped, will ultimately assist users in selecting machine 

learning technologies that are appropriate for their needs. 

 

The findings in this chapter were presented as a table, indicating the different tasks to which 

the various machine learning techniques can be applied and the accompanying machine 

learning techniques that are available to perform these tasks. The benefits of these 

techniques and the limitations to their use will be discussed in chapter 4 section 4.7. 

 

Chapter 4 also describes the risks, benefits and limitations of the use of machine learning 

technology in an accounting context. Subsequently, guidelines for implementing machine 

learning technology in an accounting context, taking into account these risks and benefits, 

are provided in chapter 5. 
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Chapter 4: Risks, benefits and limitations when implementing machine learning 
 
4.1 Introduction 
Chapter 3 placed the different machine learning techniques in context and discussed which 

of the techniques could be applied to the accounting tasks identified in chapter 2. In this 

chapter the risks, benefits and limitations of machine learning technology, as well as the 

benefits and limitations of the identified machine learning techniques, are discussed. 

 

This chapter identifies the risks, benefits and limitations in relation to machine learning in 

line with King IV (Institute of Directors of Southern Africa (IODSA), 2016:30), which states 

that while risks may be negative they also inherently present certain opportunities, which 

could support the business in achieving its objectives. The principles of King IV were 

therefore considered in preparing this chapter.  

 

This chapter is structured in terms of the stages of the software development life cycle and 

the data science life cycle, both of which were considered when evaluating the different 

risks, benefits and limitations of machine learning, as according to Sapp (2017:15), the data 

science life cycle often overlaps with machine learning. Furthermore, the stages of this 

combined life cycle in which the accounting user has to be involved were considered.  

 

The findings of this chapter, being a summary of the risks, benefits and limitations of 

machine learning and the life cycle stages in which the accounting users need to be involved, 

are addressed in chapter 5, where guidelines for implementing the machine learning 

techniques in an accounting context are provided.  

 

4.2 Machine learning technology risks pertaining to the accounting objectives 
Gillion (2017:8) states that in all businesses the objective of accounting processes is to 

produce high quality accounting information for decision-making. As part of identifying the 

risks in the planning phase of the life cycle, the objectives of the technology were considered 

within the context of the accounting process, that is, the accounting objectives.  

 

The framework selected for identifying the accounting objectives was the Conceptual 

Framework for Financial Reporting, as approved by the International Accounting Standards 

Board (2018:6). This framework describes the objectives of financial reporting by providing 
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a description of the qualitative characteristics of financial information produced by the 

accounting processes (International Accounting Standards Board, 2018:14).  

 

4.2.1 Qualitative characteristics for financial reporting 
In addition to providing a description of the fundamental qualitative characteristics, the 

framework describes the factors that enhance these characteristics. These qualitative 

characteristics and factors are described in this section and, for the purposes of this study, 

are designated the accounting objectives. The applicable risks, benefits and limitations of 

each objective when using machine learning technology to produce the financial information 

are identified in section 4.2.2. 

 

Objective 1: Relevance. Information needs to be relevant to the decisions users are 

making. Information influences decisions if it can be used to predict future outcomes or to 

confirm prior evaluations. 

 

Objective 2: Materiality. Information is material if ignoring it or misstating it could affect 

decisions. Materiality will be determined by the nature or the magnitude of the information 

and materiality will be unique to every business. 

 

Objective 3: Faithful representation. Information must represent the substance of the 

matter being presented and not just the form. To do this the information should be complete, 

neutral and free from error.  

 

Objective 4: Comparability. Accounting information needs to be comparable and enable 

users to identify the similarities and differences in information. Consistency helps to achieve 

this goal.  

 

Objective 5: Verifiability. The information needs to be able to be verified in some way, 

either by direct observation or by being able to recalculate the outputs using the known 

inputs and methods used. 

 

Objective 6: Timeliness. Information needs to be available to users in time to be able to 

make the required decisions.  
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Objective 7: Understandability. Information needs to be presented and classified clearly 

and concisely.  

 

Objective 8: Cost vs benefit. The framework also takes into account the cost constraint 
of useful financial information, as opposed to the benefits to the user. 

 

In the next section, each of the identified accounting objectives for the applicable risks, 

benefits and limitations of machine learning are identified. 

 

4.2.2 Machine learning risks and benefits per accounting objective 
The risks and limitations that affect the respective objectives are presented in Table 7 and 

are organised according to the accounting objectives; if a risk pertains to more than one 

objective, both objectives are noted. The risks  the applicable type of consideration has been 

indicated in the “Type of consideration” column. The identified risks and limitations are 

addressed using user considerations in chapter 5. 

 

Table 6: Machine learning risks mapped to accounting objectives 
Objective 
number 

Risk Source Type of 
consideration 

1 

(Relevance) 

The risk that irrelevant data is included in 

the dataset. This may be due to outliers, 

which are values which are far removed 

from other observations in the data. 

These increase the risk of misleading 

representations. 

Brownlee 

(2013:1) 

Data 

1 & 2 

(Relevance & 

Materiality) 

The risk that outliers are relevant to 

decision-makers and not identified as 

relevant by the machine learning model. 

This could impact decision-making. 

Brownlee 

(2013:1) 

Model 

2 & 3 

(Materiality & 

Faithful 

Representation) 

The limitation relating the fact that 

machine learning uses probability to 

identify patterns used to make 

predictions. This means there is always a 

margin of error in the predictions made by 

the machine learning model. 

 

Ayodele 

(2010a:2); 

Sainani 

(2014:841); 

Vihinen 

(2012:3) 

 

Model 
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Objective 
number 

Risk Source Type of 
consideration 

The risk that the predictive accuracy of 

the machine learning model is not 

applicable to the task, such as is the case 

when using the information for 

compliance tasks. 

Gillion 2017:7) 

2 & 3 

(Materiality & 

Faithful 

Representation) 

The risk that the machine learning 

algorithm is inaccurate owing to 

insufficient data for training. 

Burrell 

(2016:5) 

Training set 

3 

(Faithful 

Representation) 

The risk that important features are 

missing from the training data, resulting in 

not all relevant features being considered 

when executing solutions. 

 

Similarly, missing features in the input 

data may inhibit model performance. 

Amani & 

Fadlalla 

(2017:47); 

Barreno, 

Nelson, 

Joseph & 

Tygar 

(2010:126) 

Feature 

selection 

3 

(Faithful 

Representation) 

The risk that there are errors in the data 

used to train the machine learning 

algorithm, which may result in incorrect 

processing and outputs. 

 

Similarly, if the data integrity of inputs is 

not maintained it may have a negative 

impact on the model. 

Appelbaum et 

al. (2017:40); 

Gillion 

(2017:9); 

Sculley, Holt, 

Golovin, 

Davydov, 

Phillips, 

Ebner, 

Chaudhary, 

Young, et al.  

(2015:2500) 

Data 

 

3 

(Faithful 

Representation) 

The limitation relating to the fact that 

machine learning algorithms adopt bias 

to generalise the data, as well as the risk 

of machine learning algorithms adopting 

societal bias. This increases the risk of 

errors or misleading results. 

Dietterich & 

Kong (1995:2); 

Gillion 

(2017:7) 

 

Algorithm; 

Feature 

selection 
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Objective 
number 

Risk Source Type of 
consideration 

4 

(Comparability) 

The limitation relating to the fact that 

machine learning models struggle to 

transfer solutions from one learning 

problem to another, thus limiting 

consistency of information.  

The Royal 

Society 

(2017:30) 

Model 

4 

(Comparability) 

The limitation posed by changes in 

prediction behaviour owing to changes in 

feature weights when further features are 

taught to the machine learning algorithm. 

 

The risk that changes in algorithm 

behaviour cannot be monitored owing to 

complex or incorrect design. 

Sculley et al. 

(2015:2495) 

 

Model 

5 & 7 

(Verifiability & 

Understand-ability) 

The limitation relating to the fact that 

users are unable to understand how 

information is generated by the machine 

learning technology owing to the 

complexity of the algorithms, thus making 

information difficult to verify.  

 

This also highlights the limitation of 

interpretability, as the knowledge that 

machine learning uses or discovers in 

order to perform its tasks may not always 

be available to users. 

Ayodele 

(2010a:2); 

Sainani 

(2014:841); 

The Royal 

Society 

(2017:30) 

Model 

6 

(Timeliness) 

The risk of increased learning times for 

machine learning models as the size and 

complexity of the datasets increase.  

Ghanem 

(2012:161) 

Model 

7 

(Understandability) 

The risk that the users do not understand 

how the machine learning algorithm 

functions and processes information 

owing to a lack of technical skills. 

Burrell 

(2016:4) 

User 

 
 

8 

(Cost vs benefit) 

The risk of costs exceeding the financial 

benefits to the business, since machine 

learning requires advanced data 

Gillion 

(2017:9); Sapp 

(2017:13) 

Infrastructure 
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Objective 
number 

Risk Source Type of 
consideration 

integration tools and infrastructure, which 

may present significant costs to the 

business to acquire. 

 

 

Source: Own observation 

Having identified the relevant machine learning risks and limitations, the benefits of machine 

learning organised by accounting objective are presented in Table 8. Some benefits address 

more than one accounting objective, in which case both objectives are noted. 

 

Table 7: Machine learning benefits per accounting objective 
Objective 
number 

Benefits Source 

1 & 7 

(Relevance & 

Understand-

ability) 

Machine learning is able to provide the user with valuable 

information that they would otherwise not have had 

access to. The technology is also able to learn which 

information is relevant to users.  

Sapp (2017:12) 

2 & 3 

(Materiality & 

Faithful 

Representation) 

Machine learning models can be programmed to include 

error checks, thus reducing the possibility of omitting 

information or possible misstatements of information. 

Sorio (2013:51) 

2 & 3 

(Materiality & 

Faithful 

Representation) 

By automating accounting information processing, the risk 

of human error will be eliminated; this will increase the 

accuracy of information and reduce the risk that material 

information is misstated or incomplete. 

Aberdeen Group 

(2017:2) 

4 

(Comparability) 

Automation models such as machine learning can 

execute repeated tasks consistently, thus ensuring better 

comparability of the information produced by the tasks. 

Gillion (2017:6); 

Ventana Research 

(2016:7) 

6 

(Timeliness) 

Machine learning can process data more efficiently than 

previous data tools were able to, thus making useful 

information available faster and improving the business’s 

ability to respond to information. 

Aberdeen Group 

(2017:3); Sapp 

(2017:12)  

8 

(Cost vs 

benefit) 

Machine learning will reduce the number of manual tasks 

required in a process which will save users time. It also 

increases the efficiency of processing and supports better 

decision-making. This will leading to cost savings. 

Gorbunova & 

Bochkarev 

(2011:33) 

Source: Own observation 

Stellenbosch University  https://scholar.sun.ac.za



 

62 
 

 

The above findings in relation to the risks, limitations and benefits of machine learning will 

be further expanded upon for other areas of the machine learning technology life cycle. The 

risks and limitations identified were mapped to the machine learning life cycle components. 

These components of the machine learning architecture and the specific risks to consider 

for each component are described in the next section. 

 

4.3 Technology governance of the machine learning life cycle 
When preparing this chapter, principle 12 of King IV (Institute of Directors of Southern Africa 

(IODSA), 2016:41) was considered in particular. This requires businesses to govern 

technology in a way that supports the business in achieving its objectives. Accordingly, this 

principle supports one of the stated objectives of this study, namely, to identify the steps to 

take when implementing machine learning technology so as to ensure alignment with the 

goals of the accounting process. 

 

The aim of information technology governance, as described by Alreemy, Chang, Walters 

and Wills (2016:907), is to ensure compatibility between the goals of the business and a 

satisfactory level of risk with the use of the emerging technologies. In order to achieve this 

aim, Alreemy et al. (2016:907) highlighted COBIT 5 as a framework which could be used to 

implement technology governance. 

 

The COBIT 5 framework assists businesses in achieving governance objectives and IT 

enterprise management. COBIT 5 (ISACA, 2012:19) expands on the traditional software 

development life cycle stages that need to be managed. The stages that COBIT 5 describes 

are plan, design, build or acquire and implement, use or operate, evaluate or monitor, and 

lastly, update or dispose.  

 

The technology life cycle stages together with the software development life cycle stages 

are illustrated in Table 6. Sapp (2017:17) states that a slightly adapted life cycle is required 

when developing machine learning to enable more of a focus on model evaluation and 

tuning, and therefore the traditional software development life cycle has been adapted. 

 

The combination of the two different life cycles was done to ensure that all possible areas 

of the machine learning technology were considered when identifying the different risks, 

benefits and limitations. As one of the stated objectives of this study is to explain the role of 
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the user when using the machine learning technology to address identified risks, Table 6 

also indicates which tasks of the data science life cycle accounting users need to be involved 

in, as recommended by Sapp (2017:16). 

 

Table 8: Technology life cycle user involvement  

Technology 
life cycle 

Data science life 
cycle stage 

Task 
User 

involved 

Related risks, 
benefits & 
limitations 

Plan 

1. Problem 

understanding 

Determine problem objective  
Section 4.2 

Define success criteria  
Assess constraints  Sections 4.4 

and 4.5 
2. Data 

understanding 

Assess available data  
Obtain data (access)  Section 4.10 

Explore data  

Section 4.4 

Design 

3. Data 

preparation 

Filter data  

Clean data  

Training & testing set selection  

4. Modelling 
Select algorithm  

Sections 4.4; 

4.6; 4.7 and 

4.9 
Build/acquire 

Build model  

5. Evaluation of 

results 

Select/train model  

Validate/test/tune model  

Use and 

Evaluate 

Explain model  Sections 4.7 

and 4.8 

6. Deployment 

Deploy model  

Monitor Monitor and maintain  Sections 4.4; 

4.5; 4.9 and 

4.10 
Update/dispo

se 

Terminate 
 

Source: Adapted from Sapp (2017:16)  
 

The planning and design phases require the identification of the accounting objectives and 

technology architecture (Suer, ITIL & Nolan, 2015:1). The risks relating to these objectives 

are described in section 4.2. The risks relating to the technology architecture are described 

in section 4.4.  

 

When training the machine learning model during the build/acquire phase, one of the key 

requirements is the capabilities of the infrastructure (Sapp, 2017:26). Therefore the risks 

relating to the business infrastructure are described in section 4.5 and the specific risks 
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when acquiring the machine learning technology are described in section 4.6. For the use 

and evaluate phase, the benefits and limitations of the different machine learning techniques 

are described in section 4.7 and the user-related risks are described in section 4.8.  

 

Security risks for the monitor and maintain phase are described in section 4.10 and further 

monitoring risks are described in sections 4.4 and 4.5. Maintenance risks are described in 

section 4.9 and finally, the update/dispose phase is addressed in section 4.10 as part of 

security risks. 

 

4.4 Machine learning architecture risks 
This section describes the risks pertaining to the identified components of the machine 

learning architecture that the user must consider. The different machine learning 

architecture components were described in chapter 3 section 3.4. For ease of reference, 

Figure 7 in chapter 3 section 3.4 is repeated as Figure 19.  

 

 
Figure 19: Machine learning architecture (copy of Figure 7) (adapted from Sapp, 
2017:20) 

 

The component specific risks for each area, as illustrated above, are provided in Table 9 

and are grouped by component. 

Area 3: Model engineering 
Area 4: Execution 

Area 5: Deployment 

Area 1: Data 
acquisition 

Area 2: Data processing 
(feature engineering) 

• ERP databases 
• Mainframe 
• Devices 

Data Ingestion 
Stream processing 

platform 
 

Batch data 
warehouse 

Pre-processing data 
↓ 

Feature selection 
↓ 

Training set 
↓ 

Testing set 

Machine learning 
algorithms 

Experimentation 
↓ 

Testing 
↓ 

Tuning 
↓ 

Execution Data storage 
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Table 9: Machine learning architecture risks 

Identified 
components 

Component specific risks Source 

Area 1: Data acquisition and Area 2: Pre-processing 

Data ingestion The risk that the input data source is unstable. Obtaining 

input from other systems may be convenient but if not 

monitored there may be unexpected changes in the 

quality of the input data over time. 

Sculley et al. 

(2015:2496) 

 

The risk that important features are missing from the 

input data.  

Amani & Fadlalla 

(2017:47) 

Area 2: Data processing (feature engineering) 
Pre-processing 
of data 

The risk of errors in the training data used to train the 

model. 

Breck, Polyzotis, 

Roy, Whang & 

Zinkevich (2018:1) 

The risk of errors in the input data remaining undetected, 

thus affecting the quality and the integrity of the data and 

the outputs. 

Appelbaum et al., 

(2017:40; Gillion 

(2017:9); Sculley 

et al. (2015:2500)  

Feature 
engineering 
(feature 
analysis and 
selection) 

The risk that input features that have little modelling 

benefit are included in the training data. These features 

may increase the sensitivity of the technology to 

changes in the inputs, even though they could be 

excluded with no disadvantages. This is known as 

overfitting. 

Hawkins (2004:1); 

Sculley et al. 

(2015:2496) 

 

 

The risk that features selected lead to discriminatory 

predictions or outcomes.  

Sapp (2017:13) 

 

The risk that important features are missing from the 

training data. 

Amani & Fadlalla 

(2017:47) 

Sample 
selection: 
training set 

The risk that the training set is not large enough. This 

may result in some necessary features not being 

represented in the training set or a possible class 

imbalance where the training set represents a large 

number of one class and very few of the other class. 

Japkowicz & 

Stephen 

(2002:435) 
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Identified 
components 

Component specific risks Source 

The risk of the unethical use of data for training or use 

that infringes on privacy when using confidential data to 

train machine learning technology. 

Gillion (2017:9) 

Sample 
selection: 
testing set 

Risk that real-world data is unavailable for testing 

purposes. 

Ahmed et al. 

(2016:278) 

Area 3: Model engineering 
Algorithm and 
model 

The risk that the algorithm has adopted inappropriate 

bias. This increases the risk of errors. Bias is however 

necessary in order to be able to generalise beyond the 

training data.  

Dietterich & Kong 

(1995:11) 

 
 

The risk that the algorithm type applied is unable to 

discover the required pattern. The model is therefore not 

appropriate for the identified learning problem. 

Someren & 

Urbancic 

(2006:371) 

The risk that changes in algorithm behaviour cannot be 

monitored owing to complex or incorrect design. 

Sculley et al. 

(2015:2494) 

The risk that the machine learning models are not 

achieving the desired business objectives, as these 

change, and therefore that the model is not adaptable to 

changing business needs. 

Amani & Fadlalla 

(2017:48); Gillion 

(2017:7); Sapp 

(201718) 

Area 4: Execution 
Experimentation 
(training) 

The risk that the company is unable to process training 

or experimentation owing to immense computer and 

storage requirements. 

Sapp (2017:6) 

 

Testing The risk that errors in the algorithm go undetected owing 

to users not being involved in testing. In the case of 

accounting tasks, it would be accounting users not being 

involved in the testing of the accounting machine 

learning models. 

Gillion (2017:10) 

 

The risk that incorrect assessment measures are used 

to determine the adequacy of the machine learning 

model. 

Amani & Fadlalla 

(2017:47) 

Tuning The risk of overfitting the algorithm, where a machine 

learning model is too closely linked to the actual training 

data from used to train it. 

Witten et al. 

(2016:286). 
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Identified 
components 

Component specific risks Source 

Execution 
 
 
 

The risk that processing power and hardware are not 

able to meet execution needs.  

Gillion (2017:9); 

Sapp (2017:26) 

The risk of overreliance on models and the tasks 

performed by machine learning.  

Gillion (2017:7) 

 

Area 5: Deployment 
Data storage The risk that the output may be used by the incorrect 

systems or unauthorised users, presenting a security 

risk. 

Sculley et al. 

(2015:2495) 

Interoperability of the machine learning technology with 

the business applications providing the inputs or 

applications using the outputs. 

Daecher & Schmid 

(2016:42) 

Source: Own observation 

 

While considering the risks relating to the machine learning architecture, risks pertaining to 

the company system that supports this architecture were also identified. These include data 

availability, interoperability, processing power and hardware requirement risks. Accordingly, 

the next section, which assesses business infrastructure risks, considers the machine 

learning business support system . 

 

4.5 Business infrastructure risks when building machine learning models 
This section describes the risks relating to the business infrastructure when building and 

integrating machine learning technology into the accounting processes. Two different ways 

were identified to integrate the technology into the accounting processes. Firstly, businesses 

could decide to develop machine learning solutions for specific accounting processes 

themselves (Gillion, 2017:9). Alternatively, the technology could be integrated into the 

enterprise accounting software. This is generally done by the software service provider and 

sometimes without the user realising it (Sapp, 2017:9). The specific risks pertaining to 

acquiring machine learning technology from a service provider are described in section 4.6. 

 

According to The Royal Society (2017:48), an environment which allows for the effective 

use of data will be crucial to enabling machine learning, as the technology requires large 

amounts of data to create the machine learning methods and to train the machine learning 

systems and such large amounts of data require complex infrastructure. An example of the 
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business infrastructure components required to support machine learning and data 

availability is given in Figure 20 (Sculley et al., 2015:2497). 

 
Figure 20: Machine learning support infrastructure (adapted from Sculley et al., 
2015:2497) 

 

Figure 20 illustrates some of the components that business infrastructure required to support 

machine learning should have. The business will also need to consider the risks related to 

such an infrastructure platform. The risks attached to each element of the infrastructure 

platform are discussed below. 

 

4.5.1 Configuration of machine learning architecture  
Configuration determines how data is selected (data collection), the features used (feature 

extraction), algorithm settings (machine learning code) and verification methods (data 

verification). There is a risk that configuration options have been incorrectly selected, leading 

to errors (Sculley et al., 2015:2499). Specific configuration errors relate to the risks identified 

for the different machine learning architecture components already described in section 4.4. 

 

4.5.2 Interoperability of analysis tools  
The risk that other data analytics platforms and the selected machine learning framework 

are not interoperable (Sapp, 2017:13). 

 

4.5.3 Serving architecture 
Machine learning algorithms require extensive computing power and data management 

capabilities, therefore the risks that may need to be considered regarding the serving 

architecture of the business are as follows: 

  

Configuration 

Data 
collection 

Feature extraction 

Data verification 

Machine 
learning 

code 

Process 
management 

tools 

Machine 
resource 

management 

Analysis tools Serving 
infrastructure 

Monitoring 
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• Data management capabilities 
The risk that the architecture is not able to supply the required large and varying 

amounts of data (Sapp, 2017:12). This in turn presents two more risks, namely, that 

the amount of data available is insufficient and that the data is not managed 

adequately to enable it to be used by the machine learning technology. 

 

• Computing power 
The risk that the architecture does not have adequate processing power (Sapp, 

2017:13). 

 

• Scalability 
The risk that the infrastructure is not scalable to accommodate the changing business 

needs, including the needs of the machine learning model (Corless, De Villiers, 

Garibaldi & Norton, 2018:6). 

 

• Flexibility 
The risk that the infrastructure is not flexible enough to accommodate the changing 

learning patterns and processing demands of the machine learning model (Sapp, 

2017:18). 

 

• High costs of modernising core systems 
The risk of disruption and high costs to the business resulting from the need to update 

or replace core systems to support machine learning technology, as these systems 

enable the underlying data and processes on which the machine learning technology 

relies (Buchholz, Jones & Krumkachev, 2016:49). 

 

4.5.4 Monitoring 
There is a risk that the infrastructure does not support the monitoring of the machine learning 

models (Sapp, 2017:18). 

 

4.6 Acquiring machine learning from a service provider 
Certain risks and benefits need to be considered when acquiring machine learning enabled 

software or obtaining machine learning tools or pre-trained models from a service provider. 
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Such risks may include the following: 

• The software purchased may not meet business-specific needs, especially where 

there are regulatory requirements for accounting (Gillion, 2017:9). 

• Software developers may not develop specialist accounting tasks if the market 

demand for such products is low (Gillion, 2017:9). 

• Off-the-shelf models may still require significant computing power, depending on the 

model (Sapp, 2017:34). 

• Professionals who purchase machine learning algorithms may not have the basic 

understanding of machine learning technology to use the technology effectively to 

achieve the business objectives (Sapp, 2017:13). 

• Outsourced models may be maliciously trained, for example the backdoored neural 

network described by Gu, Dolan-Gavitt and Garg (2017:1), which performs badly on 

specific attacker-chosen inputs, thus posing a security risk. 

 

Benefits may include: 

• The skills barrier to incorporating machine learning into a business presented by 

purchased software is significantly lower (Sapp, 2017:13). 

• Fewer integration challenges are experienced compared to the in-house 

development of machine learning technology (Sapp, 2017:35). 

• Implementation costs are lower, especially when considering infrastructure risks as 

described. 

 

4.7 The benefits and limitations of various machine learning techniques 
Specific benefits and limitations were identified for each of the machine learning techniques 

described in chapter 3. The findings are presented in Table 10.  

 

Table 10: Benefits and limitations of respective machine learning techniques 

Machine 
learning 
technique 

Benefits Limitations Research 

Decision 

trees 

(section 

3.5.1.1) 

• Easy to interpret 

 

• Bias towards a certain 

category  

• Overfitting  

Marsland 

(2009:133); 

Thomassey & 

Fiordaliso 

(2006:410); Samoil 
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Machine 
learning 
technique 

Benefits Limitations Research 

• Too simple a model for 

complex data 

(2015:35, 42); 

Dataiku (2017:7) 

C4.5 decision 

trees 

(section 

3.5.1.2) 

• Can process data with 

missing features 

• Can process continuous 

feature values by using 

thresholds to create 

value intervals 

• Pruning may lead to loss of 

accuracy 

Dataiku (2017:7) 

Samoil (2015:17) 

Random 

forests 

(section 

3.5.1.3) 

• Greater performance 

than individual decision 

trees 

• Quick to train 

• Difficult to interpret 

• Overfitting 

Dataiku (2017:7) 

Naïve Bayes  

(section 

3.5.1.6) 

• Performs well in multi 

class prediction 

• Where variables are 

independent it performs 

better than other 

classification models and 

less training data is 

required 

• The algorithm is scalable 

and can adapt additional 

features  

• The algorithm assumes 

that features are 

independent, while this is 

unlikely 

• If a feature has a category 

which was not observed in 

training dataset, then a 

zero probability will be 

assigned to that category, 

thus resulting in the 

algorithm not being able to 

make a prediction, known 

as zero frequency. 

Samoil (2015:10) 

 

Witten et al. 

(2016:99); Samoil 

(2015:16); Larsson & 

Segerås (2016:34) 

Bayes belief 

network 

(section 

3.5.1.7) 

• Can handle missing data 

• Provides knowledge 

about causal 

relationships between 

variables 

• Provides a method for 

avoiding data overfitting 

• Complex calculations are 

required to train the 

network, which are 

expensive and take time 

• Highly dependent on the 

prior knowledge used to 

assume prior probabilities 

Heckerman 

(2008:33); 

Niedermayer 

(2008:128) 
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Machine 
learning 
technique 

Benefits Limitations Research 

k-nearest 

neighbour 

(kNN) 

(section 

3.5.1.8) 

• Handles database noise 

or outliers better than a 

nearest neighbour 

algorithm by considering 

more than one item to 

determine a class  

• Poor interpretability 

• Complex which makes it 

slow 

Kotsiantis 

(2007:263); Witten et 

al. (2016:87, 136, 

141)  

Conditional 

random fields 

(section 

3.5.2.1) 

• Can make predictions 

despite haphazard 

complex features in the 

input sequence 

• These discriminative 

models are more suited 

than other techniques 

where there are 

overlapping features 

• Trade-off between large 

feature datasets, which 

are more accurate but 

require more memory to 

store and increased risk of 

overfitting  

Witten et al. (2016); 

Sutton & Mccallum 

(2007:282); Sutton & 

Mccallum (2007:293) 

Support 

vector 

machines 

(section 

3.5.3.1) 

• Reduced risk of 

overfitting 

• Data training is simple 

• In the case of large 

datasets, it is able to 

simplify the problem 

• Poor interpretability Kotsiantis 

(2007:263); 

Karamizadeh, 

Abdullah, Halimi, 

Shayan & 

Rajabi(2014:65); 

Witten et al. 

(2016:257) 

Artificial 

neural 

networks 

(section 

3.5.3.2) 

• Very effective at handling 

complex tasks 

• Poor interpretability 

• The process is extremely 

computing intensive and 

requires modern, powerful 

computers  

Kotsiantis, 

(2007:263); 

Dataiku (2017:7); 

SMACC (2017:9) 

 

Convolutional 

neural 

networks 

(section 

3.5.3.3) 

• Ideal for image 

recognition 

• Takes a long time to train 

• Poor interpretability 

Dataiku (2017:7) 
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Machine 
learning 
technique 

Benefits Limitations Research 

Association 

rules 

(section 

3.6.1.1) 

• Association rules can be 

assessed by the 

coverage and accuracy 

of the rule; assisting 

decision-making on 

which rules to use 

• The number of rules 

discovered may be 

excessive 

• The algorithm takes a long 

time to produce outputs 

Witten et al. 

(2016:79); 

Kaur (2014:2322) 

Self-

organising 

maps 

(section 

3.6.2.1) 

• Easy to understand • The neural networks 

process is extremely 

computing intensive and 

requires modern, powerful 

computers  

• Need a value for every 

dimension of the map so it 

is difficult to obtain 

adequate data 

Ayodele (2010b:46); 

SMACC (2017:9) 

K-means 

clustering 

(section 

3.6.2.2) 

• Simple and effective 

method of clustering. 

• Difficult to determine the 

correct number of clusters, 

therefore this algorithm will 

need to be run a number of 

times to get the correct 

number, taking lots of time 

Ayodele (2010b:30); 

Witten et al. 

(2016:144) 

Semi-

supervised 

clustering 

(section 

3.7.1) 

• More accurate than 

unsupervised clustering 

• The rate at which these 

algorithms function is 

highly dependent on the 

size of the available 

labelled data  

Zheng et al. (2017) 

Source: Own observation 

 

The benefits and limitations presented in Table 10 were used to identify how these machine 

learning techniques address the accounting objectives identified in section 4.2.1. Table 11 

presents the constraints and benefits of the different machine learning techniques and maps 

these to the different accounting objectives, based on the definition of these as provided in 

section 4.2.1. The table also indicates in which accounting tasks the different machine 

learning techniques can use, as identified in table in chapter 3 section 3.8. 

Stellenbosch University  https://scholar.sun.ac.za



 

74 
 

 
Table 11: Benefits and limitations of machine learning techniques mapped to objectives 

Machine learning 
techniques 

Benefits 
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Limitations  
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Tasks in the accounting 
process  

(Chapter 3 section 3.8) 
Transfer learning 

decision forests and 

random forests 

• Greater 

performance than 

individual decision 

trees 

Materiality & 

faithful 

representation 

• Poor 

interpretability 

Verifiability & 

Understandability 
• Adaptability of OCR 

• Account allocation  

• Fast training Timeliness • Overfitting Relevance 

Support vector machine • Reduced risk of 

overfitting 

Relevance • Poor 

interpretability. 

Verifiability & 

Understandability 
• Image classification 

• Validation of document 

information 

• Forecasting performance 

• Removing of duplicate entries 

and linking documents 

• Matching records or record-

linkage 

• Data training is 

simple 

Understandability 

• Simplifies the 

problem 

Understandability 

Convolutional neural 

networks 
• Ideal for image 

recognition 

NA • Poor 

interpretability 

Verifiability & 

Understandability 
• Irregular document layout 

classification using NLP 

k-Nearest neighbour • Adaptable to outliers Faithful 

representation 
• Poor 

interpretability 

Verifiability & 

Understandability 
• Image classification 
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Machine learning 
techniques 

Benefits 
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Limitations  
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Tasks in the accounting 
process  

(Chapter 3 section 3.8) 

• Complex which 

makes it slow 

Timeliness • Text classification 

Semi-supervised 

clustering 
• More accurate than 

unsupervised 

clustering 

Materiality & 

Faithful 

representation 

• Training rate may 

be slow 

Timeliness • Text classification 

Naïve Bayes • Multi-class 

prediction 

Comparability • Requires 

independent 

variables 

Faithful 

representation 
• Validation of document 

information 

• Removing of duplicate entries 

and linking documents 

• Matching records or record-

linkage 

• Account allocation  

• Error detection in financial 

data and fraud detection 

• Excellent classifier 

for independent 

variables 

Faithful 

representation 
• Training set 

sensitive 

Materiality & 

faithful 

representation 

• The algorithm is 

scalable and 

adaptable 

Comparability 

Artificial neural network • Handles complex 

tasks effectively 

Relevance • Poor 

interpretability 

Verifiability & 

Understandability 
• Removing of duplicate entries 

and linking documents 

• Matching records or record-

linkage 

• Forecasting performance 

• Computing 

intensive 

Cost saving 
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Machine learning 
techniques 

Benefits 
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Limitations  
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Tasks in the accounting 
process  

(Chapter 3 section 3.8) 
Bayesian Belief 

network  
• Can handle missing 

data 

Relevance & 

Materiality 
• Computing 

intensive. 

 

Cost saving • Error detection in financial 

data and fraud detection 

• Forecasting performance 

• Provides knowledge 

about causal 

relationships 

between variables 

Relevance & 

Understandability 

• Provides a method 

for avoiding data 

overfitting 

Relevance • Dependent on the 

prior knowledge 

Materiality & 

Faithful 

representation 

Association rules • Association rules 

can be assessed by 

the coverage and 

accuracy of the rule, 

assisting decision-

making on which 

rules to use 

Verifiability & 

Understandability 
• Excessive output Relevance • Error detection in financial 

data and fraud detection 

• Requires lots of 

time 

Timeliness 

K-means clustering • Simple and effective 

method of clustering 

Understandability • Requires lots of 

time 

Timeliness • Account allocation 

• Error detection in financial 

data and fraud detection 
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Machine learning 
techniques 

Benefits 
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Limitations  
(section 4.7) 

Accounting 
objective 

(section 4.2) 

Tasks in the accounting 
process  

(Chapter 3 section 3.8) 
Self-organising maps • Easy to understand Understandability • Computing 

intensive  

Cost saving • Error detection in financial 

data and fraud detection 

• Requires 

adequate data 

Materiality & 

Faithful 

representation 

Conditional random 

fields 
• Manages 

haphazardly 

complex features 

Relevance • Trade-off 

between 

accuracy which 

requires memory 

and overfitting 

Relevance & 

Faithful 

representation 

• Report descriptions 

• Suited to 

overlapping features 

Faithful 

representation 

C4.5 decision trees • Can process data 

with missing 

features 

Relevance & 

Materiality 
• Pruning may lead 

to loss of 

accuracy 

Faithful 

representation 
• Forecasting performance 

• Can process 

continuous values 

Relevance 

Source: Own observation 
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The table enables the user to consider the accounting objectives and assess the constraints 

of the technology. This forms part of the accounting user’s role when implementing and 

using machine learning technology (Sapp, 2017:16). 

 

4.8 User-related risks 
This section describes the risks related to the users of machine learning technology. Certain 

user risks have already been identified when examining other stages of the machine learning 

life cycle. In addition to these risks and benefits, further areas will be addressed in this 

section.  

 

The user-related risks that have already been identified are the following: 

• The risks relating to users not having the necessary technical skills and interpretability 

of machine learning algorithms as linked to accounting objective 7 in section 4.2.2. 

• The risk that errors in the algorithm go undetected owing to accounting users not 

being involved in testing (Gillion, 2017:7), as identified in section 4.4.  

• The risk of societal and unethical or discriminative biases in the machine learning 

model owing to bias in the training data (Gillion, 2017:7), as identified in section 4.4. 

 

Apart from these risks, there may be further risks related to the users of machine learning 

technology in the accounting process. These include the following: 

• The risk of overreliance on machine learning models because the limitations of the 

machine learning models are not understood (Gillion, 2017:7; Vihinen, 2012:3). 

• The risk that accounting users are unable to adapt to the new ways of thinking 

required for machine learning, leading to value loss for the business as users are 

unable to utilise the machine learning capabilities (Gillion, 2017:10). 

 

4.9 Maintenance risks 
• The risk that the desired functioning of the machine learning model is not maintained 

owing to changes in the model caused by input data (Sculley et al., 2015:2500). This 

may be the result of a lack of monitoring of the changes in the machine learning 

model. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

79 
 

• As described in section 4.4, there is a risk that the machine learning models are not 

updated regularly to remain relevant to the changing business environment (Amani 

& Fadlalla, 2017:48). 

 

• The risk of significant maintenance costs owing to the complexities that machine 

learning models present. Furthermore, maintenance is not only has to be performed 

on the machine learning code but also on the entire machine learning system, as data 

influences and changes the machine learning model (Sculley et al., 2015:2494). 

 

4.10 Security risks 
Barreno et al. (2010:126) suggest that from a machine learning security perspective, the risk 

is that an attacker may attempt to use the adaptive aspect of a machine learning model to 

cause problems. This would generally be achieved by targeting the data used by the 

machine learning model. The following security risks were identified: 

 

• Erroneous data not detected leading to errors 
If malicious false negative input data is processed by the machine learning model it 

could lead to the production of erroneous information, thus affecting the integrity of 

the information available to the accounting user. For example, the data features could 

be set up in such a way that the algorithm is unable to classify the data as erroneous 

and thus processes it as correct. 

 

• System compromise 
Risk of unauthorised access entering the system via viruses from input false negative 

data. 

 

• Corruption of model during training 
Risk of malicious data disrupting the machine learning process training with false 

positive data, causing the machine learning model to operate in a manner that differs 

from the objectives set by the accounting user; for example, causing the algorithm to 

classify correct data as incorrect or irrelevant. 
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• Disruption of service attack 

Risk of malicious data disrupting the operation of the machine learning model, in most 

cases with false positive data, also known as a denial of service attack. This may take 

the form of the machine learning model receiving an overwhelming amount of false 

data to the point that the algorithm is unable to process all the false inputs, resulting 

in downtime of the system. 

 
• Eavesdropping on training data 

Risk of an attacker eavesdropping on all network traffic while the learner gathers 

training data, thus being able to determine which data the business has available for 

training purposes. 

 

Apart from the security risks posed by malicious attackers, further security risks may include: 

• Data protection rights 
Risks surrounding privacy of data used in training machine learning algorithms, where 

non-authorised users have access to sensitive information (Gillion, 2017:9), as well 

as risks related to infringing data protection requirements (European Union, 2018:3). 

 

• Data ownership risks 
Risks pertaining to access to sensitive data or data not owned by the company that 

is legally protected, as a variety of data is necessary for training machine learning 

models. This may include data that the user or service provider may not necessarily 

own (The Royal Society, 2017:49). 

 

• Acquiring machine learning software 
Security risks identified in the machine learning model supply chain are described as 

part of the risks that are present when acquiring machine learning technology from a 

service provider in section 4.6. 

 

• Application and software risks  

Security risks relating to the application or system in which the machine learning 

model operates. These include policy enforcement risks, confidentiality risks, access 

control risks and data transmission risks. These risks are however not unique in a 

machine learning environment (Demchenko, De Laat & Membrey, 2014:110). 
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• Secure disposal of assets 
The risks that machine learning technology is not securely disposed of or terminated 

at the end of its useful life, which may lead to unauthorised access to data (ISACA, 

2012:165) or unintended code behaviour, where a machine learning code is not 

properly removed from the system (Sculley et al., 2015:2498). 

 

Apart from the possible security risks, machine learning can also hold benefits for security. 

The ability to adapt to changing and complex situations has meant that machine learning 

has also become a fundamental tool for computer security (Barreno et al., 2010:121). 

 

4.11 Conclusion 
This chapter identified the risks, benefits and limitations associated with machine learning 

and specific machine learning techniques as identified in chapter 3. The risks were mapped 

to each stage of the technology life cycle, thus indicating where user involvement was 

required. These risks include risks relating to achievement of the accounting objectives, 

machine learning architecture risks, business infrastructure risks, user-related risks and 

security risks.  

 

On the other hand, the benefits identified included ways in which machine learning could 

assist the user in achieving the accounting objectives. The limitations of machine learning 

in regard to achieving the accounting objectives were also described. In addition, the 

benefits and the limitations of the different machine learning techniques identified in chapter 

3 were discussed.  

 

The findings of this chapter, namely, the risks, benefits and limitations of machine learning 

technology, especially in an accounting context, are used in chapter 5 to develop guidelines 

for implementing machine learning techniques in an accounting context. A summary of the 

identified risks per category and the relevant guidelines presented in chapter 5 are listed in 

Table 12.
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Table 12: Identified risks and relevant user considerations 

Risk category 
Accounting 
objective 

Risk Consideration 
Guideline 
section 

Data ingestion  Unstable input data source Monitor stability of input data 5.4.2 

Data ingestion Faithful 
representation Missing features in input data Monitor quality of input data and user 

involvement in preparation of data 5.4.2 

Pre-processing data Faithful 
representation Errors in input data Monitor quality of input data and user 

involvement in preparation of data 5.4.2 

Pre-processing data Faithful 
representation Errors in the training data Data validation techniques on training 

data 5.4.2 

Pre-processing 
data/security 

Faithful 
representation 

Data integrity, privacy and data 
protection Access controls 5.4.2 

Model Relevance & 
Materiality Impact of outliers Users to specify when outliers are 

relevant 5.4.1 

Feature selection Faithful 
representation Redundant features in the data. 

Enquire which features have been 
included and perform leave-one-feature-
out training 

5.4.3 

Feature selection Faithful 
representation 

Discriminatory features or 
unethical data in training set 

Enquire which features have been 
included and remove or filter 
discriminatory features 

5.4.3 

Feature selection Faithful 
representation Missing features in training data Enquire about feature selection 

techniques and analysis tools 5.4.3 

Training and testing 
set 

Materiality & 
Faithful 
representation 

Insufficient real-world data for 
training and testing Synthetic data and data preparation tools 5.4.3 

Algorithm Faithful 
representation Incorrect bias Bias will need to be assessed by 

technical professionals 5.4.4 

Algorithm/ 
maintenance Comparability Undetected changes in behaviour Enquire about monitoring mechanisms 5.4.4 

Model  Does not address learning 
problem 

There needs to be a degree of 
repeatability or structural pattern in the 
learning problem 

5.4.1 
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Risk category 
Accounting 
objective 

Risk Consideration 
Guideline 
section 

Model Verifiability & 
Understandability 

Complex algorithm affecting 
interpretability 

Model certification and input to output 
mappings 5.4.1 

Model/ maintenance  Not adaptable to changing 
business needs Regular recalibration of model 5.4.1 

Model Comparability Solutions not transferable to new 
problems Improve model interpretability 5.4.1 

Model 
Materiality & 
Faithful 
representation 

Predictive accuracy of the model Confidence levels or probability 
measurements 5.4.1 

Model  Scalability of the model Consider incorporating cloud 
technologies 5.4.1 

Model/ maintenance Cost vs benefit Monitoring and maintenance 
costs of the model 

Real-time monitoring and automated 
responses and obtaining independent 
assurance as well as appropriate system 
design 

5.4.1 

Model and 
experimentation Timeliness Long training and operating times 

Enquire about operating times and 
volume of transactions that model can 
process 

5.4.1 

Tuning/testing  Overfitting 
Separate dataset for testing and 
evaluation of the model as well as cross-
validation techniques 

5.4.5 

Training  Undetected accounting errors in 
model 

Accounting users should be involved in 
testing 5.4.5 

Testing/ user risk  User not involved in testing Accounting users should be involved in 
testing 5.4.5 

Testing  Incorrect assessment measures 
Testing environment should mimic real 
environment and guaranteed 
performance levels 

5.4.5 

Execution  Overreliance on models Be aware of limits of the model. 5.4.1 
Experimentation/ 
infrastructure  Insufficient storage Consider cloud technology 5.5 
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Risk category 
Accounting 
objective 

Risk Consideration 
Guideline 
section 

Experimentation/ 
infrastructure/ service 
provider 

 Insufficient processing power Ensure adequate on-site power or use of 
cloud technology 5.5 

Infrastructure Cost vs benefit High costs of adoption Cost-benefit analysis 5.5 
Data storage/ security  Unauthorised access to output Settings, encryption, read only rights 5.7 
Data storage/ 
infrastructure  Interoperability Update data analytic architectures and 

define data and service standards 5.5 

Infrastructure  Incorrect configuration options 
selected Adopting good configuration principles 5.5 

Infrastructure  Insufficient supply of data 

Agreements with external parties, 
assessing external data quality and data 
analytics architectures and investment in 
enabling technologies 

5.5 

Infrastructure  Not scalable or flexible Modernise infrastructure and consider 
cloud technologies 5.5 

Infrastructure Cost vs benefit Outdated core systems leading to 
costs of updating Cost-benefit analysis 5.5 

Infrastructure  Lack of monitoring of machine 
learning model 

Ask technical professionals about 
monitoring capabilities of the model and 
obtaining independent assurance 

5.5 

Using service provider  Does not meet accounting needs 
Use reputable suppliers and select 
providers that interoperate with multiple 
frameworks 

5.5.1 

Using service provider  Unavailable in the market Users perform cost-benefit analysis 
before in-house development 5.5.1 

Using service 
provider/ security 

Faithful 
representation Security risks such as backdoors 

Use reputable suppliers, integrity in 
transit guarantees and machine learning 
models come with digital signatures, 
independent assurance and the use of a 
service level agreement 

5.5.1 
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Risk category 
Accounting 
objective 

Risk Consideration 
Guideline 
section 

Using service 
provider/ user risks Understandability Insufficient technical skills to 

understand model Train users in machine learning basics 5.6 

User risks  Unethical or discriminative 
models 

Enquire which features have been 
included and remove or filter 
discriminatory and unethical features 

5.4.3 

User risks  Overreliance on models Be aware of the limits of the model 5.4.1 

User risks  Users not adaptable leading to 
value loss 

Accountants need to adapt their thinking 
and improve their communication skills 5.6 

Security Faithful 
representation Unauthorised access-viruses Virus detection system 5.7 

Security Faithful 
representation Malicious training data Incorporate identification capabilities into 

algorithm 5.7 

Security  Denial of service attack Machine learning adaptive security 5.7 

Security Faithful 
representation Access to training data Access controls 5.7 

Security  Data privacy and protection Access controls 5.4.2 

Security  Data protection risks where not 
owned by company 

Access controls, encryption, scanning of 
data for threats and read-only rights 

5.4.2 & 
5.7 

Security/ terminate/ 
maintenance  Inadequate disposal of data or 

assets 
Secure disposal of data and review 
codes to identify unnecessary codes 5.7 

Source: Own observation
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Chapter 5: Guidelines for implementing machine learning in an accounting 
context 

 

5.1 Introduction 
In chapter 4 the risks, benefits and limitations when implementing machine learning were 

identified. These findings are used to achieve a further objective of this study, namely, to 

identify the steps to take when implementing machine learning technology to ensure 

alignment with the goals of the accounting process. 

 

As determined in chapter 4, principle 12 of King IV (Institute of Directors of Southern Africa 

(IODSA), 2016:41) requires businesses to govern technology in a way that supports the 

business in achieving its objectives. Therefore, the findings of chapter 4 together with the 

principles of King IV will be used to develop guidelines for implementing machine learning 

technology in the accounting processes.  

 

To achieve the objective, this chapter is structured in the form of steps that users could take 

when implementing machine learning technology. These steps are aligned to the stages of 

the data science life cycle as described in section 4.3 of chapter 4. The first step involves 

assigning the responsibility for implementing machine learning technology and for the 

governance of the technology. The second step requires users to consider the impact of the 

machine learning technology on the accounting objectives. This is important as the 

accounting objectives are in fact the goals of the accounting process. 

 

The third step involves users considering different aspects of the machine learning 

architecture, while the fourth step requires users to consider the various requirements of the 

business infrastructure. The fifth step involves determining user requirements and the final 

step involves the consideration of security requirements. 

 

5.2 Step 1: Assigning responsibility for implementing machine learning 
technology 

According to King IV (Institute of Directors of Southern Africa (IODSA), 2016:62), those 

responsible for the governance of the business should set the direction for technology 

governance. This may include drawing up a policy that describes the direction of the 

businesses approach to the technology and incorporates plans for managing the risks 
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surrounding machine learning technology as part of the business’s risk management 

procedures.  

 

The responsibility for implementing the technology can then be delegated to management. 

When users develop their own machine learning models or acquire software packages that 

incorporate machine learning technology, the associated risks will need to be addressed. 

 

When considering the role of the user in implementing machine learning technology, there 

are certain tasks in the data science life cycle that Sapp (2017:16) recommends accounting 

users be involved in. These tasks are listed in Table 6 in section 4.3. An extract of this table 

is provided as Table 13, where the tasks that users need to be involved in are mapped to 

the user considerations section. 

 

Table 13: Sections applicable to accounting user tasks in data science life cycle 

Task 
Accounting 

user 
involvement 

Related risks, 
benefits & 
limitations 

Consideration type 
Relevant 
section 

Determine problem 

objective  Section 4.3 
Accounting 

objectives 
5.3 

Define success 

criteria  Section 4.3 
Testing 

5.4.5 

Assess constraints 
 

Sections 4.4 and 4.5 

Sections 4.4 and 4.5 

Machine learning 

technique limitations 
5.3 

Assess available 

data  
Data 

5.4.2 

Explore data  
Section 4.4 

Section 4.4 

Data 5.4.2 

Training & testing set 

selection  
Feature selection 

5.4.3 

Explain model  Sections 4.7 and 4.8 Model 5.4.1 

Monitor and maintain  Sections 4.4; 4.5; 4.9 

and 4.10 

Infrastructure 5.5 

Terminate  Security 5.7 

Source: Own observation 

 

Table 13 will assist users to understand their role in implementing machine learning 

technology and what they should consider when addressing the identified risks. The sections 

that follow present these considerations and the guidelines that address the identified risks. 
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Table 12 in chapter 4 section 4.11 provides a summary of the identified risks per category 

and the relevant guideline section. 

 

5.3 Step 2: Consider the accounting objectives 
Risks are assessed based on their significance to the accounting users in terms of the 

specific processes the machine learning technology will be used for. The most significant 

risks for the purposes of user considerations are those that affect the achievement of the 

accounting objectives. The risks identified in chapter 4 section 4.2.2 pertaining to the 

accounting objectives may have their origin in the machine learning architecture or the 

machine learning model or they may be user related.  

 

Table 7 in chapter 4 section 4.2.2 indicates the type of consideration pertaining to each risk. 

When considering the accounting objectives, users need to take into account the specific 

risks and benefits described in chapter 4 section 4.2.2, as well as the benefits and limitations 

of the machine learning techniques, as described in chapter 4 section 4.7. Table 11 in 

chapter 4 section 4.7 maps the respective benefits and limitations of the different machine 

learning techniques to the accounting objectives for each accounting task. 

 

In general, accounting tasks are suited to machine learning owing to the following 

accounting attributes, as described by SMACC (2017:6): 

• Financial information has an organised data structure. 

• Data inputs such as invoices and bank accounts are readily available. 

• Data inputs are easy to transform into a digital form. 

• Accounting has rules that must be followed for the verification of data. 

• Accounting lends itself to the processing time that is sometimes required for 

processing that uses machine learning. Outputs do not have to be instantly available, 

rather they should be available in a timely manner. 

 

When a user has established that the learning problem is suited to machine learning and 

the objectives a set by the accounting users, there will be additional steps in the form of 

considerations and controls that users will have to put in place in order to implement machine 

learning in the accounting process. These steps are expanded on in the following sections. 
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5.4 Step 3: Consider the machine learning model and architectural components 
This section sets out the user considerations pertaining to the various components of the 

machine learning architecture. Most of the risks that affect the achievement of the 

accounting objectives are risks pertaining to components of the machine learning 

architecture. These risks include the machine learning model, data considerations, feature 

selection, the training set and algorithm considerations and testing, as set out in Table 7 of 

chapter 4 section 4.2.2. 

 

This section is organised according to the different machine learning architecture 

components and their respective considerations. 

 

5.4.1 Machine learning model considerations 
The considerations listed below will need to be taken into account by accounting users when 

asking technical professionals about the machine learning model. 

 

• The limits of the model  
Gillion (2017:7) recommends that users be aware of the limits of the model to ensure 

that these models are not overly relied on and that human involvement is retained in 

the accounting decision processes. 

 

• The predictive accuracy of the model 
One control to assist users in understanding the predictive accuracy of a machine 

learning model and the implications for decision-making would be to provide explicit 

confidence levels or a measure of the probability of the model outputs (Gillion, 

2017:7; Vihinen, 2012:3). 

 

• The impact of outliers on the model  
Users should specify whether outliers are relevant in the task being performed, such 

as in error detection in task 7 of the preparation of management accounts as 

described in chapter 2 section 2.4.3. 
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• Adaptability of the model to new problems  

The Royal Society (2017:30) suggests that improving the interpretability of the model 

will increase the possibility of being able to transfer the model between learning 

problems.  

 

• The interpretability of the model  
The Royal Society (2017:94) makes the following recommendations to address the 

problem of interpretability: 

o Model certification – this would indicate the competence of the machine 

learning model. 

o Input to output data mappings – this would indicate the influence of the 

different inputs on the outputs. 

 

• The adaptability of the model to changing business needs  

Amani and Fadlalla (2017:48) recommend that models be recalibrated regularly to 

ensure that they remain valid and are able to perform the required tasks over time. 

 

• Model training and operating times 
To address risks related to timeliness, users will need to ask technical professionals 

about the speed at which the model operates, the volume of transactions the model 

can process and the training time required to train the model.  

 

• The scalability of the model 
Sapp (2017:2) recommends that to assist model scalability, cloud-based capabilities 

be incorporated when designing machine learning models. This is because the cloud 

platform has elastic characteristics that assist in scaling algorithms. 

 

• Appropriateness of the machine learning approach 
The learning problem will need to have a certain amount of repeatability or a 

structured pattern in order to be suited to machine learning (Gillion, 2017:7; Someren 

& Urbancic, 2006:371). 
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• Monitoring requirements 
Users will want to ask technical professionals about capabilities for monitoring the 

machine learning models (Sapp, 2017:18). Sculley et al. (2015:2500) recommend 

real-time monitoring of the entire machine learning system and state that an 

automated response is important to sustain the reliability of the system.  

 

The following specific items will need to be monitored by users, based on the risks 

identified in chapter 4: 
o Unauthorised access to the machine learning model 

o Unauthorised or malicious data being processed by the machine learning 

technology 

o Quality of input data 

o Errors and exceptions 

o Outliers 

o Algorithm changes. 

 

• Assurance requirements 
The business may consider periodic independent assurance on the effectiveness of 

the machine learning model, including where the technology is provided by a service 

provider (Institute of Directors of Southern Africa (IODSA), 2016:63). 

 

• Maintenance costs 
Maintenance costs may be high as a result of a number of factors, including but not 

limited to configuration problems, changes in features or data changes affecting 

algorithm performance and data dependencies. Ensuring that a system is adequately 

designed and monitored can reduce unnecessary maintenance costs caused by 

these risk factors (Sculley et al., 2015:2494). 

 

5.4.2 Data considerations 
Data considerations pertain to risks such as errors in training or input data, missing features 

in the input data, the impact of outliers and risks relating to unstable input data sources. 

Specific considerations and possible controls users can employ to address the identified 

data risks are described below.  
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To address the risk of errors in the training data, Breck et al. (2018:2) recommend using 

data validation techniques to monitor the data quality. Similarly, Sculley et al. (2015:2500) 

recommend that in order to maintain a well-functioning system, some input data should be 

tested to address the risk of errors, changes in the data or incomplete data. 

 

In addition, it may be necessary to monitor the stability of the input data, especially in 

situations where data is produced by other machine learning algorithms. This may happen, 

for example, when integrating machine learning into the various accounting processes 

(Sculley et al., 2015:2496). 

 

Accounting users may need to be directly involved in managing the inputs or outputs of 

machine learning models, such as exception-handling or preparation of the data inputs 

(Gillion, 2017:10). Users may also need to enquire about the input data sources required to 

use the model. This data could come from a number of sources and may be structured or 

unstructured (Sapp, 2017:6). 

 

Lastly, adequate controls will need to be put in place for the governance of data, including 

access controls to maintain the integrity of input data and to protect privacy rights (Sapp, 

2017:23). 

 

5.4.3 Feature selection and training and testing set considerations 
Feature selection and training set risks include risks of redundant, discriminatory and 

unethical or missing features. In addition, there is the risk of insufficient data for training 

leading to an imbalance of features.  

 

To identify redundant or discriminatory features, users may want to ask technical 

professionals which features have been selected to train algorithms to perform the 

accounting tasks and use their accounting knowledge to determine whether those features 

are relevant. To be able to perform this function users may require an understanding of 

machine learning techniques (Gillion, 2017:10). 

 

Sapp (2017:23) also recommends that users should try and remove features affecting 

privacy or ethical rights from the dataset used to train machine learning models. This can be 

done by filtering data that may infringe on privacy rights or support unethical predictions. 
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Furthermore, there may be undetected unnecessary features in the data set which can be 

addressed by evaluations where leave-one-feature-out trainings are done (Sculley et al., 

2015:2496). Users may also need to ask technical professionals about the feature selection 

techniques, variable clustering, and analysis tools used to ensure that no important features 

are missing from the training data set (Amani & Fadlalla, 2017:47). 

 

Data for training may also be insufficient, in which case Ahmed et al. (2016:285) recommend 

the use of synthetic data to train models. Furthermore, to ensure that data is available for 

machine learning models, users may want to consider obtaining self-service data 

preparation tools to support technical professionals in preparing and manipulating data 

(Sapp, 2017:23). 

 

5.4.4 Algorithm considerations 
Algorithm considerations will be based on the identified risks, which included incorrect 

algorithm bias and undetected changes in algorithm behaviour. Accounting users may not 

be directly involved in addressing these risks but they will still need to consider the risks and 

ensure that they are addressed by technical professionals. 

 

Accounting users may want to ask about the way changes in algorithm behaviour are 

monitored, including the available detection mechanisms and whether these have been 

taken into consideration in the model design (Sculley et al., 2015:2494). 

 

Lastly, in order to avoid errors, appropriate data tools may need to be employed to detect 

and diagnose overly strong, weak or inappropriate biases in the machine learning algorithm 

(Dietterich & Kong, 1995:11). 

 

5.4.5 Testing considerations 
The main risks regarding testing considerations are that the wrong assessment measures 

are used to test the machine learning model and that errors go undetected because 

accounting users are not involved in testing the model. There is also the risk of overfitting, 

where the machine learning model predictions are too closely linked to the specific training 

data used to train it. 

 

With regard to testing the machine learning models, Gillion (2017:10) recommends that 

accountant users should be involved in training and testing the models and possibly in 

Stellenbosch University  https://scholar.sun.ac.za



 

94 
 

auditing the machine learning algorithms. In addition, Sapp (2017:27) recommends that the 

testing environment should be as close to the real environment as possible. 

 

Users will need to ask technical professionals about how and whether the credibility of the 

model has been assessed to address overfitting. If overfitting is addressed during the 

development of the machine learning model, it will require the tuning of the model and cross 

validation methods, as well as the use of a large dataset separate from the training or testing 

data (Witten et al., 2016:286). 

 

The Royal Society (2017:112) recommends asking technical professionals about the 

guaranteed minimum level of performance of the model, which could be achieved by 

including the theoretically worst possible observable data during the training phase. 

 

5.5 Step 4: Consider infrastructure needs 
In order to support the machine learning architecture, the machine learning infrastructure 

which supports the architecture will need to be considered. The risks identified in this regard 

are insufficient storage, insufficient processing power, high adoption costs, lack of 

interoperability, and insufficient supply of data, scalability and flexibility and lack of 

monitoring capabilities. Based on the identified business infrastructure risks, users should 

consider the following infrastructure requirements: 

 

• Enabling technologies 
In chapter 2, various technologies were identified that would enable the use of, or 

could be combined with, machine learning technologies in the accounting processes. 

Users should consider whether investing in these technologies is necessary to be 

able to use machine learning technology in the desired processes. 

 

• The storage requirements of the model 
One option that enables that economical storage of data is cloud computing; 

however, it does expose the business to additional risks that are outside the scope 

of this study (Richins, Stapleton, Stratopoulos & Wong, 2017:74). 

 

• Processing power and hardware requirements 

Businesses will need the correct infrastructure in terms of hardware and processing 

power to ensure that machine learning processing can be properly executed. This will 
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infrastructure will depend on how advanced the machine learning technology is and 

may mean ensuring that the business has enough power on the premises or obtain 

the service from a cloud service provider (Gillion, 2017:9; Sapp, 2017:26). 

 

• The financial effects of adopting a machine learning model 
The business will need to perform a cost-benefit analysis to assess the economic 

benefits of replacing existing processes with machine learning technology, and 

thereby assess the business case for adopting machine learning. This will depend on 

whether users develop the technology in house or purchase the technology as part 

of accounting software (Gillion, 2017:9). 
 

• Interoperability of data analytics architecture  
Sapp (2017:1) recommends updating data analytics architectures to support data 

preparation for machine learning algorithms and to ensure adequate data supply and 

interoperability. 

 

• Standards that assist interoperability 
Daecher and Schmid (2016:42) recommend defining data and service standards to 

help ensure interoperability when implementing new technology in a business. 

 

• Sufficient data supply 
Accounting users will need to consider new ways of accessing data. The Royal 

Society (2017:49) highlights the need for users to enter into agreements with external 

parties to access the data required for machine learning models. Furthermore, users 

may need to monitor the quality of data obtained from external sources. 

 
• Configuration requirements 

For configuration, Sculley et al. (2015:2499) recommend that there are certain 

principles of good configuration in machine learning systems that should be adhered 

to, including enabling transparency with regard to number of features used, data 

dependencies, detection of unused settings, and controls to ensure that omissions or 

errors are detected. Finally, a full code review of the system configuration should be 

performed.  
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• Scalable and flexible infrastructure 
When a business is considering the adoption of machine learning technology and in 

ensuring its infrastructure is scalable and flexible, Corless et al. (2018:8) maintain it 

should continually modernise its infrastructure to incorporate the use of cloud 

technologies (Sapp, 2017:19).  

 

• Integration requirements. 
To integrate the technology into the existing system, Sapp (2017:13) highlights the 

need for businesses to have data integration tools and to ensure they have a 

thorough data integration strategy. 

 

5.5.1 Service provider and purchased machine learning considerations 
The risks of purchasing machine learning technology from a service provider include the risk 

that the technology required to meet business needs is not available, as well as the inherent 

security risks when using such technology.  

 

In situations where certain specialised accounting products are not supplied by service 

providers in the market, it may be that the cost of producing the product exceeds the benefit 

of solving the business problem. In such cases, users will need to perform a cost-benefit 

analysis before developing in-house solutions (Gillion, 2017:9). 

 

Users should also ensure that reputable software suppliers are chosen, especially when  

regulatory or legal requirements, as required with accounting information, are at issue 

(Gillion, 2017:9). 

 

When selecting a machine learning platform provider, users need to ensure that they select 

one than interoperates with multiple frameworks as this will assist the business in 

incorporating additional machine learning business solutions as these become available 

(Sapp, 2017:2). 

 

Even if a reputable service provider is chosen, there are still security risks posed by 

malicious attackers on outsourced machine learning technology. This emphasises the need 

to (Gu et al., 2017:11) 

o ensure that the channels used to obtain machine learning technology provide 

guarantees of integrity in transit 
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o ensure that repositories require the use of digital signatures for the machine learning 

models. 

 

Businesses will also need to consider assurance requirements such independent evaluation 

of service providers’ internal control environments. Furthermore, business may want to have 

a service level agreement in place to set out the responsibilities of the service provider in 

terms of errors, upgrades, downtime, security and integration. This would support the 

achievement of the King IV recommendation, which requires the performance of and risks 

related to outsourced service providers to be managed (Institute of Directors of Southern 

Africa (IODSA), 2016:62). 

 

5.6 Step 5: Consider user requirements 
Users also need to be aware of their own requirements when implementing machine 

learning technology, especially when considering the risks related to interpretability, errors 

not being detected and overreliance on machine learning models. Gillion (2017:10) 

recommends the following considerations be taken into account with regard to user 

requirements: 

 

• The skills required by accountants may need to be adapted to machine learning. 

Although accountants will not be able to train machine learning models, which 

requires a deep understanding and knowledge of machine learning techniques, they 

may need a basic understanding of machine learning to be able to perform their role 

when working with experts. 

 

• Furthermore, Gillion (2017:10) recommends that accountants should change their 

way of thinking, improve their critical thinking skills and communication abilities and 

become more adaptable to change. 

 

5.7 Step 6: Consider the security requirements 
The considerations and recommendations below address the security requirements for 

machine learning and are focused mainly on data governance and protection, as most of 

the security risks identified for machine learning technology pertain to malicious data.  

 

• Best practices for data protection may need to be included in a governance policy 

(“Considerations for senstive data within machine learning datasets”, 2017). 
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• Barreno et al. (2010:134) recommend the following defences when considering the 

security of machine learning technology: 

o Identify the components of the system to which access needs to be controlled, 

such as the training data, feature selection and model code, and ensure there are 

adequate access controls to sensitive technology resources (Oracle Corporation, 

2018:5).  

o Limit the feedback and therefore the output from the machine learning model to 

which unauthorised users have access. 

o Build resilience into the learning algorithm to identify contaminated training data 

or input data; in some cases increasing the complexity of the learning algorithm 

may defend against security attacks. 

o A virus detection system may be able to reduce the risk of a virus infection. 

 

• Ensure adequate security considerations are in place when acquiring machine 

learning technology from a service provider, as described in section 5.5.1. 

 

• Adequate controls surrounding the governance of data need to be in place, including 

access controls to maintain data integrity and to protect privacy rights on sensitive 

data (Sapp, 2017:23). 

 

• For sensitive data where ownership of the data is at risk, there may be settings that 

enable safe data sharing and use (The Royal Society, 2017:51). These settings may 

include encrypting sensitive data fields, processes that scan for sensitive and risky 

data and providing certain users with read-only rights (“Considerations for sensitive 

data within machine learning datasets”, 2017).  

 

• For data disposal, controls must ensure that machine learning technology is 

adequately disposed of or data securely deleted at the end of its useful life (ISACA, 

2012:165). In addition, users must ensure that machine learning code is periodically 

examined to determine any unnecessary code that can be removed (Sculley et al., 

2015:2498). 
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• The Oracle Corporation (2018:5) recommends identifying potential security risks 

through alerts from system and application logs, as these indicate user activities and 

changes in security configurations. 

 
• Users should be allowed the minimal rights and permissions required to complete 

their required actions (Oracle Corporation, 2018:5). 

 

• Finally, users may want to consider incorporating machine learning-based adaptive 

intelligence into their internal control environment as part of their risk assessment 

procedures and internal controls to provide an intelligent security framework (Oracle 

Corporation, 2018:10). 

 

5.8 Conclusion 
The guidelines presented in this chapter provided the various considerations to be made 

when implementing machine learning technology, based on the risks, benefits and 

limitations identified in chapter 4. These guidelines can assist users in determining whether 

to proceed with implementing machine learning technology, as well as in aligning the 

technology to the accounting process goals, and highlight the user’s role when implementing 

this technology.
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Chapter 6: Conclusion 
 
Prior research has shown a developing need for users to obtain an understanding of 

machine learning. For professional accountants, PwC (2015:16) even recommends that 

undergraduate accounting programmes should include advanced topics on machine 

learning as part of the curriculum. 

 

The aim of this study was to enhance users’ understanding of machine learning technology 

specifically in the performance of the accounting processes. This was achieved by 

identifying the accounting tasks that machine learning could perform and describing how 

this technology functions, as well as the risks, benefits and limitations associated with 

machine learning, including those that have a specific impact on the achievement of the 

accounting objectives. Based on the risks identified, steps to take when implementing 

machine learning technology in the accounting process were developed. 

 

This study focused on three accounting processes, namely, the translation of manual and 

electronic documents into accounting information, the reconciliation of financial information 

and the preparation of management accounts. As demonstrated in chapter 2, these 

processes consist of numerous tasks, many of which are enabled by existing technologies. 

Without the capabilities of these technologies, much of the functionality of machine learning 

could not be utilised.  

 

Having identified the accounting tasks, certain of these tasks presented learning problems 

to which machine learning techniques could provide a solution. Chapter 3 discussed the 

learning problems that could be addressed by machine learning, as well as the different 

machine learning techniques available to address these problems. It was shown that there 

may often be more than one machine learning technique available to address a learning 

problem and, in certain cases, the most beneficial solution may even be a combination of 

various machine learning techniques.  

 

Subsequently, each of the functions of the relevant machine learning techniques was 

discussed with the aim of providing accounting users with an understanding of them. The 

design and functionality of the technology was explained not only for the purpose of 

understanding it but also for identifying the associated risks, benefits and limitations. It is, 
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however, important here to bear in mind that the technology was not explained at the 

technical level required to develop the technology.  

 

The study then considered the risks, benefits and limitations of the machine learning 

technology. In trying to assist users in understanding the technology, chapter 4 considered 

the risks and benefits of each of the machine learning techniques and mapped those to the 

different accounting objectives as determined by the Conceptual Framework for Financial 

Reporting, as approved by the International Accounting Standards Board. These risks were 

summarised and linked to the relevant user considerations. The majority of the risks 

identified in chapter 4 were data risks, which included risks pertaining to data ingestion, pre-

processing of data, impact on the machine learning model, feature selection, the training 

and testing set, infrastructure requirements, data security risks, and termination and 

maintenance risks. 

 

Finally, the identified risks, benefits and limitations were used to develop guidelines for 

accounting users when implementing and using machine learning technology, including the 

areas where user involvement is required. The findings of chapters 4 and 5 have shown that 

users would need to give broader consideration to other components in addition to the actual 

machine learning model. One important broader consideration was the user requirements, 

which once again highlighted and confirmed the need for users to have an understanding of 

the technology, thus re-establishing the motivation for this study. 

 

When evaluating the considerations and possible options that users have available to 

address the identified risks, it was interesting to note that in certain instances machine 

learning technology gives rise to risks and is also able address the risk. For example, in the 

case of security risks, as described in chapter 4, users could consider incorporating machine 

learning-based adaptive intelligence in their security framework (Oracle Corporation, 

2018:10). 

 

In summary, the user has a key role to play when implementing and using machine learning 

technology in the accounting processes and should be equipped with an understanding of 

the technology and the risks and limitations, as well as the benefits of using the technology. 

In doing so, consideration should be given not only to machine learning technology but also 

to addressing the risks pertaining to all the components that enable the functioning of the 

technology in order to ensure alignment with the accounting process goals.  
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Further research which may be of value is the adaptation of a data governance framework 

applicable to machine learning technology. It should be noted that this study has just 

emphasised the need for adequate data governance and provided data governance 

considerations. Further research may therefore be required to assess the impact on an 

existing business when implementing machine learning in its current accounting processes 

and applying the steps provided in this research. There may also be a need to assess the 

impact of machine learning on the accounting profession by considering specific case 

studies of companies that have adopted the technology. 
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