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Abstract 

By 2031, South African primary ore gold grades are forecasted to decline to the gold grades expected 

in mine tailings resources. Furthermore, the reprocessing of mine tailings does not require the costly 

excavation and size reduction unit operations necessary for primary ore resources. Mine tailings can 

therefore be viewed as a secondary gold resource. Hazardous pollutants and acid mine drainage 

(AMD) emanating from Witwatersrand stockpiled tailings dams affect human and ecosystem health. 

Potential exists to valorise mine tailings to the circular economy as construction raw materials and 

mine backfill. Sequestration of toxic compounds from mine tailings is however necessary to avert 

the promotion of environmental impacts up the consumer value chain. Process flowsheets proposed 

in literature for gold recovery from mine tailings have neglected the evaluation of life cycle impacts 

of technologies that need to be evaluated before they can be presumed to be “green” alternatives.  

Life cycle assessment (LCA) was identified as an environmental impact assessment tool for 

assessment of ecological impacts of gold recovery process flowsheets. Outotec® HSC chemistry 

and Thinkstep’s GaBi® was identified as software solutions to conduct LCA with the ReCiPe® 2016 

life cycle impact assessment (LCIA) methodology. LCA for gold recovery from mine tailings 

successfully identified environmental hotspots in process flowsheets. The LCA model predicted that 

the thiosulphate flowsheet reduced environmental impacts for 18 out of 19 impact categories 

compared to the cyanide flowsheet, apart from freshwater consumption impact category. Electricity 

consumption during cyanide destruction and emissions from the conventional cyanide flowsheet 

were recognized as reasons for the increased environmental impacts compared to the thiosulphate 

flowsheet. Suggestions to further reduce environmental impact based on LCA results were made. 

Cyanide and thiosulphate leaching process flowsheet solutions were identified for recovery of gold 

and ammonium diuranate (yellow-cake uranium) from a hypothetical scenario of West Rand, 

Witwatersrand mine tailings resource. Environmental impact of mine tailings was reduced. Sulphides 

and uranium in mine tailings were reduced from 0.18% to 0.03% (82% reduction) and from 

54.9 g/tonne to 13.0 g/tonne respectively (75% reduction), thereby decreasing environmental 

impacts related to acid mine drainage and uranium radionuclide emissions. The processes proposed 

reduce heavy metal emissions and are not compliant with National Environmental Management: 

Waste act 2008 (Act No. 59 of 2008) (NEMA) for the protection of water resources. The exceptions 

are manganese and copper emissions for the thiosulphate flowsheet and manganese, copper and 

lead emissions for the cyanide flowsheet. Subsequent mine tailings remediation strategies are 

necessary to render mine tailings inert according to NEMA.  LCA provides a basis for environmental 

impact assessment, but social- and economic- assessments are necessary to determine the viability 

of process flowsheets proposed and ensure sustainable development in the mineral processing 

industry.  
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Opsomming 

In Suid-Afrika word die goudgraad van primêre goudertshulpbronne voorspel om te verminder na 

die goudgraad in mynuitskothulpbronne teen 2031. Verder vereis die herprosessering van 

mynuitskot nie die duur uitgrawings en grootte reduksie eenheidsbedrywighede wat nodig is vir 

primêre ertshulpbronne nie. Mynuitskot kan daarom gesien word as ’n sekondêre goudhulpbron. 

Gevaarlike besoedeling en suurmyndreinering (AMD) wat van Witwatersrand se opgegaarde 

uitskotdamme vloei affekteer mens- en ekosisteemgesondheid. Potensiaal bestaan om mynuitskot 

te valoriseer na die sirkulêre ekonomie as roumateriaal vir konstruksie en mynterugvulsel. 

Sekwestrasie van toksiese samestellings van mynuitskot is egter noodsaaklik om die bevordering 

van die omgewingsimpak by die verbruikerswaardeketting op, te verhoed. Prosesvloeikaarte 

voorgestel in literatuur vir goudherwinning van mynuitskot het die evaluasie van lewensiklusimpakte 

van tegnologieë nagelaat wat geëvalueer moet word voor hulle aangeneem kan word as “groen” 

alternatiewe. 

Lewensiklus assessering (LCA) is geïdentifiseer as ’n omgewingsimpak assessering instrument om 

goudherwinningsprosesvloeidiagramme se ekologiese impakte te assesseer. Outotec® HSC 

chemie en Thinkstep se GaBi® is geïdentifiseer as oplossings vir sagteware om LCA met die 

ReCiPe® 2016 lewensiklus impak assessering (LCIA) metodologie uit te voer. LCA vir 

goudherwinning van mynuitskot het omgewingsbrandpunte in prosesvloeidiagramme suksesvol 

geïdentifiseer. Die LCA-model het voorspel dat die tiosulfaatvloeidiagram omgewings impakte vir 18 

uit 19 impak kategorieë verminder het, in vergelyking met die sianiedvloeidiagram, afgesien van die 

impak kategorie van varswaterverbruik. Elektrisiteitverbruik gedurende sianiedverwoesting en uitlaat 

van die konvensionele sianiedvloeidiagram is herken as redes vir die verhoging van omgewings 

impakte in vergelyking met die tiosulfaatvloeidiagram. Voorstelle om omgewingsimpak verder te 

verminder gebaseer op LCA-resultate is gemaak. 

Sianied- en tiosulfaatlogingprosesvloeidiagram oplossings is geïdentifiseer vir die herwinning van 

goud- en ammoniumdiuranaat (geelkoekuraan) van ’n hipotetiese scenario van Wes-Rand, 

Witwatersrand se mynuitskothulpbronne. Die omgewingsimpak van mynuitskot is verminder. 

Sulfiede en uranium in mynuitskot is verminder van 0.18% tot 0.03% (82% vermindering) en van 

54.9 g/ton tot 13.0 g/ton onderskeidelik (75% vermindering), en daarby is die omgewingsrisiko’s 

verwant aan suurmyndreinering en uraan radionuklied-emissies, verlaag. Die prosesse voorgestel 

verminder swaar metaal emissies en voldoen gedeeltelik aan die Nasionale Omgewingsbestuur: 

Afval akte 2008 (Akte no. 59 van 2008) (NEMA) vir die beskerming van waterhulpbronne. Die 

uitsonderings is mangaan- en koper emissies vir die tiosulfaatvloeidiagram en mangaan-, koper- en 

lood emissies vir die sianiedvloeidiagram. Daaropvolgende mynuitskotremediëringstrategieë is 

nodig om mynuitskot inert te maak volgens NEMA. LCA verskaf ’n basis vir omgewingsimpak 

assessering, maar sosiale- en ekonomiese assesserings is nodig om lewensvatbaarheid van 
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voorgestelde prosesvloeidiagramme te bepaal, en volhoubare ontwikkeling in die 

mineraalprosesseringindustrie te verseker. 
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1 INTRODUCTION 

1.1. Background 

South Africa’s supply of mineral resources to the world has led to the accumulation of mine waste, 

referred to as mine tailings, since the inception of the mineral processing industry in South Africa. 

Mine tailings are the solid waste effluent from extractive metallurgical operations that are deposited 

in geotechnical structures called tailings dams (Lyu et al., 2019).  Gold mining waste accounts for 

47% of the mineral waste in South Africa and is therefore the largest source of solid waste pollution 

in South Africa (Adler et al., 2007, cited Department of Water Affairs and Forestry, 2001). Valuable 

minerals may be present in mine tailings owing to shortcomings of technology used when run of 

mine ore was first processed. Alternatively, precious metals were occluded within refractory minerals 

and therefore at the time of run of mine ore processing it was uneconomical to recover. Mine tailings 

may be reprocessed to recover valuable minerals when economically feasible. Otherwise it is 

stockpiled while mine houses are accountable for managing ecological and structural risks posed by 

tailings dams. The historical decline in gold grades of primary ore resources in South Africa has 

increased the rate of tailings emissions per functional unit of gold manufactured. The management 

of risks associated with tailings dams is an externalised cost that influences the profitability of mine 

house operations within a competitive market. Therefore, there is a requirement for solutions to 

minimise risks associated with mine tailings.  

The decline in gold grade of primary ores and the accompanying increase in tailings emissions, 

increases harmful emissions to the environment as well. The ecological impacts associated with 

mine tailings include the leaching of toxic substances to the environment through a phenomenon 

called acid mine drainage (AMD) along with the aeolian transmission of pollutants by wind erosion 

of tailings dams. The pollutants emanating from tailings dams affect fauna and flora while posing a 

hazard to human health and safety in nearby settlements. An example of such an instance is in 

Wonderfonteinspruit region in Randfontein, South Africa where gold and uranium mining operations 

have polluted of surface and ground water resources. This Wonderfonteinspruit contamination has 

had adverse effects on ecosystems and people dependant on these resources (Winde, 2010; Winde 

and Sandham, 2004). The aforementioned ecological challenges establish a requirement for 

minimisation and sequestration of pollutants from mine tailings.  

The mitigation of the hazards mentioned, relies on the implementation of approaches that reduce 

the quantity of mining waste that reports to tailings dams. To reduce the quantity of mine tailings, 

opportunities for industrial symbiosis have been identified for the use of mine tailings as feedstock 

for the manufacture of other products. There is consensus between authors that mine tailings can 

be used to produce products for the construction industry such as bricks, stone-paper, cement 

additives and aggregates in road construction along with ceramics for consumer use and backfill for 

decommissioned mines. Backfill is a cemented paste made from mine tailings used to provide 
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ground support to prevent rock falls and rock burst in mines while providing a safe mode for mine 

tailings disposal thereby inhibiting the migration of heavy metals and acid mine drainage to above 

ground ecosystems (Malatse and Ndlovu, 2015; Matinde, 2018; Qi and Fourie, 2019; Sibanda and 

Broadhurst, 2018).  Unfortunately, toxic and radioactive substances first need to be removed from 

mine tailings to render the solid waste inert before any products are manufactured from tailings or 

reintroducing tailings to the ecosphere (Sibanda and Broadhurst, 2018). This is imperative to prevent 

promoting the environmental impacts of mine tailings into the consumer value chain where it can 

affect other ecosystems and the general population.  

In South Africa, the gold grade of primary ore resources is approaching the nominal gold grades  in 

tailings dams in the Witwatersrand region (discussed in section 2.1). There is an opportunity for the 

gold industry to pursue recovering value from tailings as a secondary gold resource. In light of the 

legacy of pollution by the gold mining industry, the South African government has implemented 

stringent regulations on the metallurgical industry concerning social and environmental impacts that 

these businesses may have on the environment and surrounding communities (Dale, 1997; 

Department of Minerals and Energy, 1997). This therefore introduces an opportunity to identify 

extractive metallurgical technologies that reduce overall environmental impacts compared to 

conventional technologies.  

Quantitative information related to the environmental impacts of process technologies are required 

to develop economically and environmentally sustainable solutions. Life cycle assessment is an 

environmental impacts assessment tool for evaluating ecological consequences of technology from 

raw material manufacture through to product use and product disposal. LCA has seen limited 

implementation in the metallurgical industry and this work will endeavour to contribute to the 

academic body of knowledge in the field of gold recovery from the secondary gold resource of mine 

tailings. LCA has been implemented as an environmental impact assessment (EIA) tool in the ISO 

14 000 series for reducing environmental burdens of products and services in industry. Therefore, 

more studies in this field can allow stakeholders in the metallurgical industry to make informed 

decisions about mineral processing technologies.  

1.2. Research questions 

1. What existing technologies are available for gold recovery from mine tailings?  

2. What processes can be developed to recover minerals of interest and reduce environmental 

impacts posed by toxic compounds in mine tailings in the West Rand, Witwatersrand region 

of South Africa?  

3. How does the life cycle environmental impacts of technologies in processes proposed affect 

the overall process environmental sustainability?   
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1.3. Problem statement 

The amassed reservoirs of mine tailings are the largest single source of pollution in South Africa. 

The transfer of toxic substances from tailings dams into the environment may cause irreparable harm 

to ecosystems and their ability to support life. Containment strategies are the predominant approach 

to mitigate the environmental impacts associated with mine tailings. This challenge is not constrained 

to South African mining activities but to all anthropogenic mining activities worldwide. Unfortunately, 

the rehabilitation of mine tailings to render them inert is a costly endeavour for mining houses 

especially if no economic benefit can be gained from such an initiative.   

In South Africa, the average head grade (concentration of gold in ore) of primary gold ores has been 

declining leading to reduction in production of gold in South Africa. This trend has stimulated a trend 

in mineral processing research to recover gold from secondary sources such as mine tailings. 

Minerals of interest (MOI) are embedded within tailings because inefficient, low-recovery process 

have been used in the past to recover MOI’s. But new technological advances have made it possible 

to overcome low-recovery challenges that were previously faced (Syed, 2012). Therefore, the mining 

industry requires process solutions for high recovery of gold from low grade and complex ores that 

conventional process flowsheets from earlier plants in history could not recover. These new 

processes, however, need to ensure that the waste streams produced reduce the environmental 

burdens associated with mining operations when compared to conventional processes. The 

performance objectives of the new process need to be aligned with rendering mining waste streams 

inert so that the waste streams, particularly mine tailings, can be used in other industries thereby 

reducing the quantities of mine tailings that need to be managed. 

1.4. Research aims and objectives 

Using the West Rand, Witwatersrand region as a case study, the aim of this study is to identify 

opportunities to maximise the recovery of valuable minerals from mine tailings. In parallel, 

approaches to reduce the quantity of toxic environmental contaminants and precursors in mine 

tailings will be identified. Therefore, a supporting aim of this project is to reduce environmental 

impacts of mine tailings. 

The following objectives need to be realised to aid in achieving the aim:  

1. Collate mineralogical and geochemical data on mine tailings from literature  

2. Develop process flowsheets to recover value and mitigate environmental impacts of mine 

tailings. 

3. Quantify environmental impact of identified processes using Life Cycle Assessment (LCA) 

4. Comparison of environmental impacts of identified processes that yields the lowest 

environmental impact 
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5. Identify opportunities to reduce short- and long-term effects of recommended processes with 

the purpose of developing sustainable processes.  

1.5. Scope and limitation 

This project will be conducted within the following scope of limitations: 

1. A hypothetical scenario of mineralogical and geochemical composition of mine tailings from 

the West Rand, Witwatersrand region of South Africa will form the basis for the process 

design. Comprehensive data for gold deportment in literature for the West Rand, 

Witwatersrand region is limited and therefore information from different studies are collated 

to create a hypothetical scenario.  

2. Secondary mineralogical and geochemical data will be used to create a representative 

sample of the composition of tailings dams in the West Rand, Witwatersrand region. The 

sampling error, bias, reliability, and validity of the secondary data can thus only be assessed 

based on information quoted within literature sources. 

3. The environmental impacts of the processes developed will form the basis of process 

recommendations and not social and economic impacts. The methodology for Life Cycle 

Assessment has been standardised as part of ISO 14 000 series to only account for 

environmental impacts and not social and economic impacts (ISO, 2006a).  

4. Environmental impact of capital goods manufacture will not be considered.  

5. The life cycle impact assessment methodology will not include the optional steps of 

normalisation and grouping and weighting as quoted in ISO 14 040.  

1.6. Thesis outline 

This work will be presented in the following manner: 

Chapter 1: Introduction – overview of the background, problem statement, research question, aims 

and objectives of this work. 

Chapter 2: Literature review – characterisation and composition of gold mine tailings, to develop a 

representative sample of tailings dams within the West Rand, Witwatersrand region and understand 

gold deportment as an input into process flowsheet development. Evaluation of gold recovery unit 

processes to formulate flowsheets for optimum recovery of gold that minimise environmental 

consequences.  

Chapter 3: Methodology – explanation of the methodology that will be followed to realise the aims 

and objectives.   

Chapter 4: Process development and description – summary of reagents, process conditions and 

areas of concern for each unit process in the process flowsheets proposed  
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Chapter 5: Results and discussion – reporting and evaluation of results obtained 

Chapter 6: Conclusions and recommendations – collate findings compiled at the current stage of the 

research.  
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2 LITERATURE REVIEW 

2.1. South African gold industry and the legacy of mine tailings 

Since 1990, the South African gold production rate has decreased by 85% to 90 tonnes per annum 

in 2019 and forfeited its position to China as the world leader in gold manufacturer in 2008 (CEIC, 

2019). This is attributed to the decline in gold grade of primary ores mined from the earth as depicted 

in Figure 2-1. Figure 2-1 also displays an exponential trendline for average gold grade in South Africa 

along with a line representing average gold grade in South African tailings dams (represented in 

Figure 2-2)  of 0.7 g/tonne as determined from the tailings dams investigated in the current study. 

Extrapolation of the exponential trendline in Figure 2-1 reveals an intersection with the line 

representing the assumed tailings grade in the year 2044. This signifies that primary gold ore 

resources purity will decline until mine tailings become an economically viable alternative resource.  

 

Figure 2-1: Decline in average gold head grade in primary ore resources in South Africa [Adapted 
from: (Chamber of Mines South Africa, 2017, 2011; Minerals Council South Africa, 2013; Neingo 

and Tholana, 2016)] 

In 1997, Gold mine tailings accounted for 47% (220 million tonnes) of the solid waste pollution in 

South Africa (Adler et al., 2007, cited Department of Water Affairs and Forestry, 2001). Assuming 

an average head grade of 0.7 g/tonne, along with 90% gold recovery from process this equates to 

138 tonnes of pure gold can be recovered from mine tailings. At the current gold price of 

ZAR 1 034 347.52 per kg on 7 September 2020, this equates to a market value of ZAR 143 billion that 
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is essentially captured within discarded waste (GoldPrice.Org, 2020). Tailings dams at the higher end 

of the distribution, such as the Crown mine (marker 17 in Figure 2-2) with a gold head grade of 3.91 

g/tonne,  already exceed the nominal grades from primary ores depicted in Figure 2-1. Therefore, 

the large quantity of tailings together with the gold grades present within them demonstrate the 

potential of gold mine tailings to be a secondary gold resource in South Africa. Paired with this, there 

is an opportunity to reduce the environmental impacts of gold mine tailings.  Figure 2-2 illustrates 

the location of a non-exhaustive list of gold mine tailings dams in the Witwatersrand region of South 

Africa reported in literature. The  mineralogical details of tailings dams in Figure 2-2 are summarised 

in Appendix C and Appendix D.  

 

Figure 2-2: Location of tailings dams and gold head grades for which geochemical and 
mineralogical data is available in literature 

2.2. Environmental impact of gold mine tailings 

During the service life of a mine, the tailings are stockpiled where they pose a great environmental 

impact owing to the hazardous materials that are contained within mine tailings. The tailing stockpiles 

remain untouched unless an opportunity arises for the reprocessing of tailings for the recovery of 

valuable minerals or use of backfill for decommissioned mines. Many of the tailing’s reservoirs in the 

Witwatersrand have not been processed for more than a century and the impacts associated with 

Stellenbosch University https://scholar.sun.ac.za



8 

the pollutants has increased with time such as the impact of acid mine drainage run-off  (Fashola et 

al., 2016; Naicker et al., 2003; Venkateswarlu et al., 2016). Table 2-1 demonstrates that the 

concentration of carcinogens and acute toxic metals (i.e. arsenic, copper, nickel, vanadium) in the 

West Rand, Witwatersrand region are high (complete dataset summarised in Appendix C). 

Communities and ecosystems in close proximities to tailings dams are at risk of exposure to 

pollutants. Research has shown that heavy metal contamination from gold mines are at the levels 

where residents in adjacent communities can develop cancer if the food sources are contaminated 

by tailings dams dusts (Fashola et al., 2016; Kamunda et al., 2016a; Maseki, 2017; Ngole-Jeme and 

Fantke, 2017).  An explanation of how the mineralogical data in Table 2-1 was gathered will follow 

in section 2.3. 

Table 2-1: Average pollutant concentration (mg/kg) of tailings dams West Rand region in 
Witwatersrand Basin compared to regulatory soil screening values for protection of land and water 
resources.  

Pollutant 

(mg/kg) 

West rand, 

Witwatersrand 

Maximum concentration 
b 

% above regulatory limit 

Cr 225 46 000 n/a 

Cyanide - 14 n/a 

As 78.1 5.8 1247% 

Mn 1982 740 168% 

Cu 42.2 16 164% 

U 54.9 23a 139% 

Pb 24.8 20 24% 

Ni 96.6 91 6% 

Zn 65.5 240 n/a 

Hg 0.2 0.93 n/a 

Co 25 300 n/a 

Cd 0.51 7.5 n/a 

V 5.89 150 n/a 

-: No data available Red values = above regulation limit; Green values = compliant.  

n/a: Not applicable 
a : (Canadian Council of Ministers of the Environment, 2007)  
b: (Department of Environmental Affairs, 2014) 

 
The South African environmental regulations do not stipulate any guidelines for uranium mass 

concentrations (in mg/kg) within soils but instead require site based activity concentration 

measurements using broad energy germanium (BEGe) detectors with radioactive waste being 

regulation by the National Nuclear Regulator (Department of Environmental Affairs, 2014; Kamunda 

et al., 2016b). The Canadian environmental regulations has, however, established a limit of 23 mg/kg 

for uranium in soils designated for agricultural and residential use, which the West Rand tailings 

dams exceed by 130% (Table 2-1) (Canadian Council of Ministers of the Environment, 2007). There 

is consensus among researchers that uranium has leached from tailings dams in the Randfontein 
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and Wonderfonteinspruit areas and has caused radionuclide contamination of water bodies 

(Coetzee et al., 2006; Winde, 2010; Winde and Sandham, 2004). Once water resources are 

contaminated, the health of fauna, flora and people who use polluted water resources are affected.  

Collapsing tailings dams is another inherent risk that accompany the stockpiling of mine waste. 

Tailings dam failures cause the loss of life, destruction of villages and desolation of the affected 

ecosystems. The tailings dams failure in Merriespruit during 1994 is an example of a notable failure 

that has affected South Africa (Van Niekerk and Viljoen, 2005). The mitigation of tailings dams 

collapsing and associated environmental impacts is dependent on the proper design, monitoring and 

management of these geotechnical structures. But this is only a containment strategy for the 

environmental impacts and does not reduce nor eliminate the risk. 

In literature, containment strategies for managing the environmental impact of mine tailings is often 

employed. Examples include lining of tailings dams, ground cover and using tailings as backfill. 

Direct treatment technologies to remove toxic substances from tailings, such as “soil-washing”, are 

costly while phytoremediation technologies are not employed on a large scale owing to a technology 

shortage of selective, hyperaccumulator plants  (Arab and Mulligan, 2018; Nemutandani et al., 2006; 

Odoh et al., 2019; Rösner and van Schalkwyk, 2000). The aforementioned approaches are useful 

for addressing the environmental and health impacts of older, inherited tailings dams. It does not, 

however, address the root cause of the problem which is to prevent the discharge of tailings 

exceeding the regulatory limits from mining operations.   

In addition to this, research has demonstrated that in South Africa there is a loop-hole around the 

externalised costs associated with mine closure whereby larger corporations sell mines to smaller, 

less-well-resourced companies who then inherit the problems associated with the management of 

non-compliant tailings (Bainton and Holcombe, 2018; van Druten, 2017; Watson and Olalde, 2019). 

The implementation of sustainable countermeasures and the enforcement of legislation requires a 

collaborative effort from civil society, industry and the government to prevent the formation of non-

compliant tailings emissions. The researcher acknowledges that environmental concerns caused by 

tailings dams are an inherited problem from malpractice in the past. But as the average gold head 

grade in South Africa declines to the point where secondary resources become a viable source of 

gold and other minerals, there is an opportunity to reduce and mitigate the long-term environmental 

impacts of mine tailings as well.  

2.3. Characterisation of West Rand, Witwatersrand region gold 
mine tailings 

The mineralogical composition of gold mine tailings can vary significantly depending on 

characteristics of the excavated ore, extraction regime followed, the efficiency of the prior extraction 

cycle and the age of the tailings reservoir. Proper characterisation of gold associations with minerals 
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is imperative to develop and optimise processes for efficient gold recovery. In this work, a case study 

of a hypothetical tailing’s dam in West rand region of the Witwatersrand basin was made using 

descriptive statistics.  Descriptive statistics, especially when using an arithmetic mean, has the flaw 

that outliers may skew data and the arithmetic mean is not representative of the entire population for 

this case study. Mineralogical surveys of specific tailings reservoirs as described in section 3.1 can 

be used to verify the results reported in literature, but this was beyond the scope of the present study. 

Gold deportment and diagnostic studies are process mineralogical tools used to develop process 

flowsheets and to optimise desired metal recovery from ore resources. Limited gold deportment and 

diagnostic leaching studies have been reported in literature for tailings dams in the Witwatersrand 

region. XRD data is summarised in Table 2-2 along with trace elemental data in Table 2-3 and Table 

2-4 for the West Rand, Witwatersrand region case study. The information from the individual 

literature sources are summarised in Appendix A to Appendix D.  

Table 2-2: Collation of X-ray Diffraction (XRD) data of tailings dams of West Rand, Witwatersrand 
region in South Africa compiled from literature [Collated from (Janse van Rensburg, 2016; Ngole-
Jeme and Fantke, 2017)]  

Mineral Mass (%) 

Quartz  58.5 

Pyrophyllite  24.9 

Mica  5.8 

Aluminite 3.8 

Kaolinite/Chlorite  2.8 

Serpentine 2.0 

Gypsum  1.3 

K-feldspar/ Rutile  0.9 

Table 2-3: Summary of combustion analysis tailings dams of West Rand, Witwatersrand region in 
South Africa compiled from literature [Collated from:(Janse van Rensburg, 2016) ] 

 
Sulphide  Sulphate  Total sulphur  Total carbon  

Concentration 
(Mass %) 

0.5 0.3 0.8 0.26 

Table 2-4: Summary of trace elemental data by ICP-MS/OES (units g/tonne) tailings dams of West 
Rand, Witwatersrand region in South Africa compiled from literature [Collated from:(Janse van 
Rensburg, 2016; Kamunda et al., 2016; Mphinyane, 2018)] 

Fe 16850 Cr 225.2 U 54.9 Ag 5.88 Sb 0.56 

Al 15010 Ni 96.6 Na 53.6 Rb 4.63 Cd 0.51 

Ca 7166 P 95.6 Cu 42.2 Bi 4.09 Au 0.28 

Mg 2846 Th 82.8 Co 25 Se 3 Be 0.28 

Mn 1982 Ba 82.4 Pb 24.8 Mo 2.4 Hg 0.2 

Ti 651.5 As 78.1 Sr 11.5 Pd 1.73 Tl 0.15 

K 554.9 Zn 65.5 V 5.89 B 0.73 Pt 0.01 
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XRD data (Table 2-2) does not identify auriferous sulphide minerals in tailings (e.g. pyrite, pyrrhotite 

etc.), while the presence of sulphides and sulphates was observed in combustion analysis (Table 

2-3 and Table 2-4). A possible explanation for this could be the oxidation of auriferous sulphide 

minerals in tailings dams over time resulting in an amorphous crystal structure  (Bhakta and Arthur, 

2002; O’Connor and Dunne, 1991). Since XRD only detects crystalline and not amorphous phases 

of minerals, the sulphide minerals may not have been detected in low concentrations in the studies 

reviewed when compiling mineralogical data for the West Rand region. In a study on run of mine ore 

resources in the West rand, pyrite (FeS2) accounted for over 97% of the sulphides and uranium 

minerals present consisted of 65.3% uraninite (UO2) and 34.7% brannerite (UTiO2) (Mngoma, 2012). 

Thus, the sulphides in the ore resource Table 2-3 was assumed to be only pyrite and the uranium 

composition was assumed to be the same as the run of mine ore as found in the study by Mngoma 

(2012). 

Janse van Rensburg (2016) conducted lab scale, diagnostic leaching experiments on Witwatersrand 

region mine tailings to estimate the maximum gold recovery that may be attained in different unit 

processes. In this study, it was assumed that the cyanide diagnostic leaching results can be applied 

to non-cyanide lixiviants as well. This decision was justified by the fact that the diagnostic leaching 

steps decompose gangue minerals that encapsulate gold to be able to expose them to the lixiviant. 

This assumption can be verified by repeating the diagnostic leaching experiments with lixiviants that 

are promising alternatives to cyanide. This is a gap in literature that needs to be concluded for 

accurate process development on Witwaterstand mine tailings resources.  

Figure 2-3 summarised the diagnostic leaching results along with guidelines from Lorenzen and Van 

Deventer (1993) and Lorenzen (1995) on which types of minerals may be digested at each stage of 

the evaluation.  Janse van Rensburg (2016) substituted the hydrofluoric acid leaching step to 

determine gold occluded in silicate minerals as recommended by Lorenzen (1995) in favour of 

estimation by difference. This may introduce a discrepancy in the results obtained and verification 

with another analytical technique could reduce the uncertainty of the results.  For example, 

QEMSCAN analysis or a hydrofluoric acid leaching step may be used to verify if 19.8% of gold is 

associated with quartz minerals (Figure 2-3 and Figure 2-4) since silica quartz makes up the bulk of 

the West Rand, tailings ore mineralogy as summarised in Table 2-2. 
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(7) Direct 

cyanidation Feed

(8) Carbon-in-

leach (CIL) Feed

(9) HCl Pre-

treatment + CIL

(10) HNO3 Pre-

treatment  + CIL

(11) Roasting + 

CIL

Free milling gold

Residue (8)

Feed 

sample

Residue (9)

Residue (10)

(6) Flotation with 

potable water

(5) Gravity 

concentration: 

Knelson concentrator

Gold occluded in carbonaceous 

material

Gold occluded in HNO3 

digestible material (e.g. pyrite, 

arsenopyrite, marcasite)

Gold occluded HCl digestible 

material (e.g. Pyrrhotite, calcite, 

dolomite, galena, goethite, 

calcium carbonate, calcine, 

hematite, ferrites)

Preg-robbed gold

Recovery of gold and sulphide 

via flotation

(1) XRD
Bulk chemistry / mineralogical 

analysis

(2) ICP-OES Trace elemental analysis

Residue (11) Gold occluded in silicates

(12) H2SO4 

Leaching Feed at 

20 ºC

Uranium recovery

Recovery of gold by gravity 

concentration

Diagnostic tool Results gained
West Rand, WITS 

Tailings Test Result

Recovery Gold:

 15% 

Recovery Gold:

56%

Recovery Sulphides: 

90% 

Recovery Gold:

 58% 

Recovery Gold:

1.5%

Recovery Gold:

 11.3% 

Residual Gold:

 19.8% 

Recovery Uranium:

 63% 

Recovery Gold:

 7.3% 

Recovery Gold:

 1.5% 

(3) Fire assay

(4) Combustion 

analysis

Gold head grade (g/tonne)

Total carbon, Total sulphur, 

Total sulphide, Total sulphate

Gold head grade:

 0.35 g/tonne 

Table 2-3

Table 2-2

Table 2-4

 

Figure 2-3: Diagnostic procedure and results of west rand, Witwatersrand mine tailings samples 
[Adapted from: (Janse van Rensburg, 2016; Lorenzen, 1995; Lorenzen and Van Deventer, 1993)] 
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Figure 2-4: Diagnostic leach results of West Witwatersrand tailings dam samples. [Adapted from 
(Janse van Rensburg, 2016)] 

The diagnostic leaching results reveal that 58% of gold is free-milling (Figure 2-4) and the ore 

resource can be considered as moderately refractory according to La Brooy's et al. (1994) definition 

of refractoriness of gold ores. HCl digestible minerals represented in Figure 2-3 labile sulphides (e.g. 

𝑃𝑏𝑆, 𝐸𝑒(1−𝑥)𝑆 (𝑥 = 0 − 0.17)), carbonates (𝐶𝑂3
2−) or iron oxides (e.g. 𝐹𝑒2𝑂3) that encapsulates gold 

within the tailings. These minerals may be decomposed by an acid pre-treatment step to recover the 

11.3% of gold in carbonate minerals. Chlorine is a gold lixiviant therefore using hydrochloric acid 

may cause gold-halide complexes to report to the leachate and another gold recovery step will be 

required. Alternatively, sulphuric acid (not a gold lixiviant) may be considered for acid leaching and 

has the benefit that sulphuric acid leaches uranium as well. The recovery of uranium as a by-product 

will be necessary to prevent harmful radionuclide emissions.  

Oxidative pre-treatment technologies may be required to liberate the 7% of gold within HNO3 

digestible minerals which can be sulphides and carbonaceous minerals (Figure 2-3). For the 

remaining 4% of gold locked within preg-robbing and carbonaceous mineralogy (Figure 2-3) require 

passivation of the preg-robbing minerals through chlorination, roasting, biological oxidation or the 

addition of specialised blanking agents to inhibit preg-robbing effects on gold recovery. Preg-robbing 

refers to the phenomenon occurring during leaching operations whereby precious metal complexes 

(specifically gold in this context) are adsorbed onto gangue minerals constituents of the ore, such as 

carbonaceous matter or other impurities, such as clays and elemental carbon. (Adams and Burger, 

1998; Afenya, 1991; Dimov and Hart, 2016; Rees and van Deventer, 2000).  
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The balance of gold (19.8%) was associated with quartz minerals which can be liberated through 

grinding (Coetzee et al., 2010). Grading analysis data for West Rand mine tailings was not 

encountered in literature, therefore run-of-mine ore data from the West Rand was consulted to 

determine the particle size required for gold liberation from quartz minerals (depicted in Figure 2-5). 

The West Rand mine tailings has a particle size distribution of P80 = 106 μm which indicates that only 

3.5% of gold occluded in quartz was liberated during the process of run-of-mine gold ore. Therefore, 

additional comminution is necessary to liberate gold occluded within quartz. The prior processing of 

gold mine tailings is an important consideration in subsequent tailings flowsheet development for 

gold recovery. Considering that the particle size distribution (PSD) of West rand tailings is P80 = 

106 μm , when a P80 = 75 μm is recommended to ensure sufficient gold liberation prior to cyanidation 

(Coetzee et al., 2010; La Brooy et al., 1994) implies that prior processing focussed on recovery of 

coarse gold particles in higher size fractions was prioritised.  

 

Figure 2-5: Grading analysis - gold distribution by particle size fraction for a run-of-mine, primary 
gold ore resource [Adapted from: (Mngoma, 2012) ] 

There is consensus between authors that Knelson® concentrator is an effective gravity separation 

technology for gold recovery. Gravity separation operations for gold recovery are more economical 

and reduce the size of downstream unit processes for gold recovery. Placing three or more Knelson® 

gravity concentrators in series may allow for close to 100% gold recovery as demonstrated in the 

work by Meza et al. (1994). This solution may be impractical owing to increased capital and operating 

costs (Gül et al., 2012; Laplante et al., 1995).  
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Gravity separation scouting tests conducted by Janse van Rensburg (2016) indicate that only 15% 

of gold by mass can be recovered using a Knelson® gravity concentrator from the West rand tailings 

ore body. It is unfortunate that the West Rand tailings are not amenable to gravity concentration 

techniques especially considering the low gold grade of 0.27 g/tonne is very low. Based on this 

information, gravity separation is not a viable process option for gold recovery for the tailing’s 

feedstock considered in this study. The aforementioned results by Janse van Rensburg (2016)   

needs to be verified by heavy liquid separation as recommend by Coetzee et al. (2011) to determine 

if other gravity separation technologies can improve gold recovery.  

Surface water supplied by Rand water was used in the gold and sulphide flotation trials conducted 

by Janse van Rensburg (2016) without the addition of collectors, activators, depressants or frothers 

(i.e. natural flotation). The potential sulphide and gold recoveries of 90% and 54% by mass 

respectively, reported in Figure 2-3. Literature on flotation used in tailings reprocessing plants in 

Witwatersrand region of South Africa report sulphide and gold recoveries of 85% and 46% 

respectively with the addition of flotation reagents (the reagent scheme employed is discussed in 

section 2.4.4) (O’Connor and Dunne, 1994, 1991). The discrepancy in results from aforementioned 

literature sources may be attributed to variations in tailings mineralogy since a time period of 15 

years transpired between studies. The conservative sulphide and gold recoveries of 85% and 46% 

respectively was used in the present study to align with commercial plant data and to not base a 

study on data collected from a controlled laboratory environment.  

Ambient condition sulphuric acid leaching trials revealed a 63% uranium recovery for West Rand 

mine tailings in the diagnostic leaching experiments conducted by Janse van Rensburg, (2016). The 

experimental conditions can be optimised for improved uranium recovery as recommend in the work 

by Lottering et al. (2008) by increasing leaching temperature to 40 - 60 °C, introducing an oxidising 

agent such as manganese dioxide (MnO2) and increasing sulphuric acid consumption.  Uranium 

recovery provides an opportunity for an additional value stream while reducing radionuclide 

emissions to the environment. 

2.4. Process flowsheet development 

2.4.1. Gold recovery flowsheets 

Tailings reclamations plants for the recovery of gold have been commissioned in the Witwatersrand 

region. Figure 2-6 and Figure 2-7 illustrate gold recovery flowsheets proposed in literature for East 

Rand Gold Company (ERGO) and Driefontein. In South Africa, gold mining operations are separated 

into the initial gold recovery from ore to produce a crude gold bullion (gold purity ≈ 60%) by mine 

houses, followed by subsequent refining to a pure gold bullion (gold purity minimum 99.5%) by 

refineries (Auerswald and Radcliffe, 2005; Feather et al., 1997; Rapson, 1992). Hence, the gold 

recovery flowsheets in Figure 2-6 and Figure 2-7 exclude refining operations. The ERGO plant is 
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one of the largest gold-from-tailings plants in South Africa, while the Driefontein operation was a pilot 

plant study conducted by Fleming et al. (2010). 

The flowsheets for gold mine tailings represented in Figure 2-6 and Figure 2-7 have the following 

features in common:  

• flotation for gold and sulphide recovery 

• production of yellow-cake uranium using sulphuric acid leaching 

• cyanide as the gold lixiviant combined with activated carbon circuits for gold recovery 

• flotation tailings subjected to carbon-in-leach cyanidation and gold recovery to increase gold 

recovery 
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Figure 2-6: ERGO tailings reclamation process flowsheet [Adapted from: (Bosch, 1987; Marsden 
and House, 2006)] 

 

Figure 2-7: Driefontein tailings reclamation pilot plant flowsheet [Adapted from: (Fleming et al., 
2010)] 
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The remaining sections of this chapter will compile a repository of unit processes that may be used 

in the recovery of value from tailings. This was done by summarising recent findings to maximise 

gold recovery from tailings in commercial processes and identify approaches to address the 

challenges of recovering value and reducing environmental impacts of mine tailings.   

2.4.2. Comminution 

Comminution is the practice of size reduction of ores to attain desired particle size distribution for 

mineral recovery operations. Examples of these are: coarse material jaw crushers (1m > P80>100 

mm), intermediate material autogenous or semi-autogenous mills (SAG) (100mm > P80> 20mm), fine 

material (20mm > P80> 30μm) ball mill, vertical roller mill, hammer mill, jet mill, ultrafine grinding 

(P80>20 μm) with IsaMill (Adams, 2016; Ellis and Gao, 2003; González-Anaya et al., 2011; Marsden 

and House, 2006; Orumwense and Forssberg, 1992). The balance of gold (19.8%) is occluded with 

quartz minerals which can be liberated through ultrafine grinding (Coetzee et al., 2010). The mine 

tailings feedstock has already been exposed to comminution, therefore regrinding of the bulk tailings 

feedstock was not recommended and would be costly. Ultrafine grinding is, however, reserved for 

grinding flotation concentrates to increase downstream process efficiency by increasing the surface 

areas exposed on particles.  

Literature comparing ultrafine grinding of flotation concentrates (at P80 = 10µm) to sulphide oxidation 

technologies (i.e. roasting, pressure oxidation and biological oxidation) have concluded that ultrafine 

grinding provided the best metallurgical and economical results for gold recovery from high grade 

ores (94 g/tonne gold) (Ellis and Gao, 2003). Conversely, evidence in literature of sulphide oxidation 

technologies achieving greater than 99% decomposition of sulphide along with greater than 95% 

gold recovery has been reported (discussed in section 2.4.5) (Fomenko et al., 2013; Runkel and 

Sturm, 2009; Thomas and Pearson, 2016; van Niekerk, 2015). Therefore, including an additional 

unit process for ultrafine grinding of sulphide concentrate was not considered in flowsheet 

development. Furthermore, sulphide oxidation renders the residual mineral porous that permits 

penetration by lixiviant to access gold that was not liberated before oxidation (Chan et al., 2015; 

González-Anaya et al., 2011; Runkel and Sturm, 2009).     

A disadvantage of ultrafine grinding is that sulphide minerals, which are precursors to acid mine 

drainage (AMD), are not converted to an inert form and report to solid waste emissions from mining 

process. Furthermore, lixiviant consuming effects of sulphides may increase reagent consumption 

costs during leaching. AMD is a significant environmental problem associated with mine tailings 

therefore sulphide oxidation technologies was prioritised above ultrafine grinding since 

environmental impact is a priority in this study. The economic versus environmental trade-off of 

process technologies is an important design consideration that plays a role in determining whether 
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technology will be implemented or not. The economic feasibility of flowsheets is beyond the scope 

of this study but remains an important decision-making criterion.  

2.4.3. Uranium leaching and recovery 

Alkaline and acidic uranium leaching technologies have both been employed commercially. Alkaline 

leaching operations are preferred in operations where acid-digestible minerals (as summarised in 

Figure 2-3) result in excessive reagent consumption during acidic leaching (Youlton and Kinnaird, 

2013). The destruction of gangue minerals during acidic leaching can liberate occluded gold, a 

process known as reverse leaching. A 3-4% gold recovery increase was observed in the work by 

Lottering et al. (2008) following sulphuric acid leaching. The economic feasibility of uranium recovery 

is dependent on the market demand for this commodity. Therefore, although uranium recovery helps 

to reduce environmental impact of mine tailings the economic feasibility of the additional unit 

processes needs to be quantified and proven.   

In literature, uranium recovery from leach liquors occurs predominantly by solvent extraction. The 

selection of extraction agent was based on a study on low-grade uranium ores investigating the 

extraction efficiency of common extraction agents within the uranium processing industry are ranked 

in descending order as: tri-n-octylamine > di(2-ethylhexyl) phosphoric acid > trioctylphosphine oxide 

> tributylphosphate > triethylamine. Following stripping of organic phase, a “yellow-cake” product of 

either ammonium or sodium diuranate is precipitated using ammonia or sodium chloride respectively 

(Kiegiel et al., 2017; Sole et al., 2011; Zhu and Cheng, 2011).  

2.4.4. Flotation 

Flotation is the practice of separating desired minerals from gangue within a pulp based on their 

hydrophobicity. Reagents such as collectors, activators, depressants and frothers alter the surface 

chemical properties of minerals such that desired minerals are rendered hydrophobic and report to 

the concentrate while undesired minerals are rendered hydrophilic and report to the tailings. 

O’Connor and Dunne (1991) compiled a summary of flotation conditions and reagents used by 

various tailings reclamation plants in South Africa (tabulated in Table 2-5). President Brand reagent 

scheme achieved the highest sulphide and gold recoveries of the tailing reclamation sites in Table 

2-5 of 85% and 46 % respectively. When the uranium market price was high, the simultaneous 

flotation of pyrite, gold and uranium was practiced by ERGO and President Brand using the flotation 

reagent conditions in Table 2-5 which yielded flotation recoveries of 86% sulphur, 54% gold and 20% 

uranium for ERGO (Lloyd, 1981; Ruhmer et al., 1977). Table 2-5 summarises a later study done by 

O’Connor and Dunne (1991) where ERGO sulphide and gold recoveries dropped to 77% and 40%  

respectively. The  difference in the results may be attributed to composition differences in the tailings 

samples evaluated owing to the 10 year time period between the studies, and the results of the most 

recent empirical data was considered in this study.  
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Table 2-5: Pyrite flotation empirical data and reagents from South African tailings reclamation plants [Adapted from: (O’Connor and Dunne, 1991)] 

Plant Head grade 
Recoveries 

(%) 

Feed 

Particl

e size 

Pulp 

density 

Reside

nce 

time 

 

Collectors 
Activators 

 

Depressant 

 

Frother 

 

 

pH 

 % S 
Au 

(g/t) 
S Au  

% < 75 

µm  
       

Ergo 1.0 0.56 77 40 73 45 22 

85 g/t 

NaMBTa 

10 g/t DTPb 

35 g/t CuSO4  
8 g/t Acrol ® 

J2P 350 c 

17 g/t Dowd ® 

200 
3.8 

Free 

State 

Geduld 

1.0 0.45 85 42 75 37 29 
85 g/t 

NaMBT 
30 g/t CuSO4  

40 g/t Acrol ® 

J2P 350 

21 g/t 

Senfroth ®e 
3.8 

President 

Brand 
1.0 0.35 85 46 70 40 19 

85 g/t 

NaMBT 
40 g/t CuSO4  

40 g/t Acrol ® 

J2P 350 

35 g/t Dow ® 

200 
3.8 

President 

Steyn 
1.2 0.3 80 42 57 40 25 

95 g/t 

NaMBT 
55 g/t CuSO4  

40 g/t Acrol ® 

J2P 350 

25 g/t Dow ® 

200 
3.8 

Crown 

Mines 
0.5 0.55 60 20 10 45 24 

30 g/t 

NaMBT 
- - 

10 g/t 

Senfroth ® 
3-6 

a: NaMBT - Sodium Mercaptobenzothiazole 
b: DTP – Dithiophosphate 
c: Acrol® J2P 350 – Trademarked chemically modified guar gum 
d: Dow® 200 - Trademarked methoxy polypropylene glycols 
e: Senfroth – Variant not specified.  
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2.4.5. Oxidative pre-treatment 

Pre-treatment processes are often required to liberate gold particles encapsulated within gangue 

minerals. These minerals consume excess lixiviant or are preg-or leach- robbing minerals that 

adsorb gold during leaching operations thereby reducing gold recovery.  

2.4.5.1. Pyrometallurgical roasting  

Pyrometallurgical roasting involves exposure of sulphide and carbonaceous gangue minerals to 

oxygen at elevated temperatures (450-820 ºC) resulting in their decomposition into their respective 

oxides. The off gases are emitted during pyrometallurgical roasting such as sulphur dioxide (SO2) 

and carbon dioxide (CO2) along with particulate solids such as arsenic trioxide (As2O3). Scrubbing 

units and electrostatic precipitators are placed downstream of roasting equipment to sequester 

harmful emissions. Sulphur oxide emissions may be captured within a scrubber for the in-situ 

manufacture of sulphuric acid if economically viable. (Lottering et al., 2008; O’Connor and Dunne, 

1994, 1991; Runkel and Sturm, 2009).  

2.4.5.2. Pressure oxidation (POX) 

The Driefontein tailings reclamation pilot plant achieved 99% sulphide oxidation of flotation 

concentrate in a pressure oxidation (POX) autoclave conditions of an oxygen partial pressure at 0.68 

MPa and temperatures between 190 – 230 °C for 1 hour. One historical challenge of pressure 

oxidation is the conversion of iron sulphide minerals to basic iron sulphate (Fe(OH)SO4) which 

dissociates above pH 7 to form sulphuric acid. Sulphuric acid affects pH control and increases 

reagent consumption in leaching operations. In cyanide flowsheets, if pH descends below pH 10 

there is a risk of toxic hydrogen cyanide gas evolution and can be detrimental to human health. 

Sulphuric acid formation can be mitigated by neutralisation (Chan et al., 2015; Fleming et al., 2010; 

Thomas, 1991). Gold recovery is higher during acid POX than alkaline POX (Gertenbach, 2016; 

Gorain et al., 2016). Acidic POX is amenable to high sulphide ores because of the autogenous 

production of sulphuric acid. Alkaline POX is preferred when ores have high carbonate contents 

(Gorain et al., 2016; Thomas and Cole, 2005; Thomas and Pearson, 2016).  

2.4.5.3. Biological oxidation 

Dew et al. (1997) concluded that bio-oxidation of sulphide minerals is more economically feasible 

than pressure oxidation and roasting. Cost of technologies are ranked in Table 2-6 from cheapest to 

most expensive. This is promising bearing in mind the low head grade of gold in mine tailings.  

Table 2-6: Relative cost comparison for oxidation plants compared to BIOX® process [Adapted from: 
(Dew et al., 1997)] 

 Capital expenditure Operating costs 

BIOX® biological oxidation 1.00 1.00 

Pyrometallurgical roasting 1.92 1.11 

Pressure oxidation 2.38 1.14 
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A drawback of biological process is the slow reaction kinetics. Attia & El-Zeky (1989) reported a 

residence time of 28 days for 98% pyrite bio-oxidation with Thiobacillus ferrooxidans of a flotation 

concentrate produced from mine tailings. In the BIOX® process, the residence time was reduced by 

inoculation with multiple bacterial strains (Thiobacillus ferrooxidans, Thiobacillus thiooxidans, 

Leptospirillum ferrooxidans). In the Biox® process,  90% sulphide oxidation  residence time of 5 days 

is required for arsenopyrite and 11 days for pyrite (Dew et al., 1997). Heap bio-oxidation of low-grade 

tailings (1.3-3.4 g/t gold) process followed by cyanide leaching has been commissioned at Newmont 

and reported a 58% gold recovery.  Unfortunately, the slow kinetics of bio-oxidation only permitted 

38% gold liberation from pyrite (Bhakta and Arthur, 2002). Non-cyanide lixiviant trials were 

conducted at the same plant in 2017 and concluded that thiourea was ineffective at gold leaching 

while ammonium thiosulphate was recommended as a cyanide alternative (Roberto, 2017).  

The slow reaction kinetics (i.e. residence time of 11 days to achieve 90% sulphide oxidation for 

biological oxidation compared to 1 hour for 99% sulphide oxidation during pressure oxidation), robust 

process control requirements to maintain optimum process conditions and sensitivity of bacteria to 

pollutants such as chlorine and arsenic can reduce the plant throughput.  Several bio-oxidation units 

operated in parallel will be required to remove this unit process as a bottleneck. Bio-oxidation was 

therefore not considered for sulphide oxidation technology in flowsheet development. 

2.4.6. Leaching 

Leaching is a hydrometallurgical process that involves the dissolution of soluble metals captured 

within the ore. Cyanide is commonly applied in industry as lixiviant for gold recovery, but ecological 

toxicity of cyanide has established a research field into alternative lixiviants. Unfortunately, 

alternative lixiviants are costly, require high concentrations for optimum gold leaching, unstable 

under certain conditions or research progress has not met criteria for profitable industrialisation 

(Ospina-Correa et al., 2018; Syed, 2012).  

2.4.6.1. Cyanide and Thiosulphate 

Cyanide is favoured for gold recovery (equation [2-1]) today because it is a well understood reaction 

system while being highly selective for gold and silver leading to profitable gold recovery (Dorin and 

Woods, 1991). Some disadvantages include toxicity, slow dissolution kinetics of gold and excessive 

lixiviant consumption owing to presence of gangue minerals such as sulphides and base metals that 

form more stable complexes than with gold. The presence of sulphides in the gangue cause 

passivation of solid gold surfaces reducing gold recovery. Challenges with sulphide passivation may 

be overcome by feeding cyanide in excess, lead nitrate addition to enhance gold dissolution kinetics, 

oxygen enrichment of the pulp or upstream destruction of cyanide consuming minerals. These 

approaches need to be assessed for their economic and environmental feasibility (Adams, 2016; 

Aylmore, 2016; Dorin and Woods, 1991; La Brooy et al., 1994; Marsden, 2006; Muir and Aylmore, 

2004).  
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4𝐴𝑢° + 8𝑁𝑎𝐶𝑁(𝑎𝑞) + 𝑂2(𝑔) + 2𝐻2𝑂 → 4𝑁𝑎𝐴𝑢(𝐶𝑁)2(𝑎𝑞) + 4𝑁𝑎𝑂𝐻(𝑎𝑞) [2-1] 

The gold leaching kinetics of thiosulphate in aqueous alkaline solutions with dissolved oxygen is 

slow at normal temperature and pressure (NTP) conditions (Naito et al., 1970). A reaction system 

consisting of an oxidant (e.g. Cu2+ or Fe3+ ions) along with an oxidant stabiliser (e.g. ammonia, 

polyamine ligands paired with copper, oxalate paired with iron) is required to catalyse the dissolution 

of gold. Strict control of process parameters is required to prevent reduction in process efficiency by 

the oxidation of thiosulphate into polythionates that compete with gold for adsorption onto activated 

carbon or resins during recovery (Muir and Aylmore, 2004). 

Ammoniacal copper–thiosulfate reaction system in solution and can be described by the following 

system of equations (Abbruzzese et al., 1995; Wan, 1997):  

𝐴𝑢 + 5𝑆2𝑂3
2− + 𝐶𝑢(𝑁𝐻3)4

2+→ 𝐴𝑢(𝑆2𝑂3)2
3− + 4𝑁𝐻3 + 𝐶𝑢(𝑆2𝑂3)3

5− [2-2] 

4𝐶𝑢(𝑆2𝑂3)3
5− + 16𝑁𝐻3 + 𝑂2 + 2𝐻2𝑂 →  4𝐶𝑢(𝑁𝐻3)4

2+ + 4𝑂𝐻− + 12𝑆2𝑂3
2− [2-3] 

In an effort to identify leaching conditions that yielded reduced thiosulphate consumption, Lampinen 

et al. (2015) achieved 89% gold recovery of pressure oxidised flotation concentrate from a leaching 

solution consisting of 0.2 M 𝑆2𝑂3
2− , 0.2 M 𝑁𝐻3, and 0.1 g/L Cu at operating conditions of 30 °C, 30 

mass% solids under continuous air sparging of 0.2 L/min. Strict process controls are required to 

maintain ammonia and oxygen concentrations and Eh – pH conditions in the leach solution when 

applied commercially to deter passivation of gold surfaces by copper sulphate and sulphur (Aylmore 

and Muir, 2001; Birich et al., 2019; Gökelma et al., 2016).  

Ammonia contributes to eutrophication in aquatic environments and therefore additional unit 

processes are required for ammonia destruction before discharge to the ecosphere. Laboratory 

investigations of other non-ammoniacal systems are summarised in Table 2-7.  Commercialised 

processes by Barrick Goldstrike have opted for non-ammoniacal thiosulphate leaching (Choi, 2016; 

Choi et al., 2013). Thiosulphate is environmentally inert, however, the polythionate decomposition 

products increase the chemical oxygen demand in aquatic ecosystems therefore oxidation of 

polythionates into sulphate is required before discharge (Aylmore and Muir, 2001). Thiosulphate is 

an alternative lixiviant to cyanide that has been applied commercially (flowsheet depicted in Figure 

2-8) to treat double refractory gold ores at Newmont and Barrick gold manufacturers to achieve a 

gold recovery of 79.6% (Choi, 2016; Muir and Aylmore, 2004).  

Table 2-7: Summary of non-ammoniacal thiosulphate gold leaching systems 

Reagent system Reference Commer-
cialised 

Oxygen-thiosulphate (Choi et al., 2013; Sitando et al., 
2015) 

Yes 

Oxygen saturated - Thiosulphate - Copper  (Sitando et al., 2015) No 
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Reagent system Reference Commer-
cialised 

Copper ammonia thiosulphate (Birich et al., 2019) No 

Air-saturated cyanide solution (Sitando et al., 2015) No 

Copper organic amines (Feng and van Deventer, 2011) No 

Iron -ethylenediaminetetraacetic acid (EDTA) (S. Zhang et al., 2005) No 

Iron oxalate (Chandra and Jeffrey, 2005) No 

Alkaline oxygenated thiosulphate (Zhang and Nicol, 2003) No 

Alkaline oxygenated thiosulphate with Copper (Zhang and Nicol, 2005) No 

Oxygen thiosulphate thallium (Csicscovszki and Salminen, 
2011; Bek and Shevtsova, 2012). 

No 
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Figure 2-8: Barrick-Goldstrike thiosulphate leaching - gold recovery flowsheet for run of mine ore 
[Adapted from: (Choi, 2016)] 

2.4.6.2. Glycine, Halides, Thiourea and Thiocyanate 

Glycine (NH2-CH2-COOH) based leaching systems (equation [2-4] adapted from Tauetsile et al., 

2019a) are currently being explored in literature as an environmentally friendly novel lixiviant for gold, 

copper and silver. Glycine is an amino acid species therefore a bioavailable resource within aquatic 

environments and can be decomposed by natural attenuation (Wheeler et al., 1977). Glycine ions 

are also more stable than thiosulphate and there is potential to recycle glycine solutions which is 
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beneficial from a resource consumption perspective. The current progress of glycine leaching 

technology is research into carbon adsorption that has proven that metal-glycinate complexes have 

a stronger affinity for activated carbon compared to metal-cyanide complexes (Tauetsile et al., 

2019a, 2019b). At lab scale, electrodeposition-redox replacement (EDRR) technology for gold-

glycinate system reported 88% and 35% gold recovery from synthetic pregnant solutions and real 

pregnant solutions respectively. The low gold recovery from real pregnant solutions was attributed 

to competing dissolved metal ion species that deposit on cathode preferentially to gold. Further 

research into  EDRR reaction mechanisms for gold recovery from real solutions together with 

process optimisation studies are required in literature before technology can be promoted to pilot 

and commercial trials (Altinkaya et al., 2020). Seaman et al. (2019) developed a GlyCatTM pilot scale 

plant with glycine leaching technologies for gold and copper recovery from 10-15 g/t gold ore 

resources. The flowsheets in the study by  Seaman et al. (2019) only demonstrated gold and copper 

recovery up to carbon adsorption. Therefore, research into viable eluants, optimum process 

conditions for carbon elution and gold recovery from pregnant leach solutions using technologies 

such as electrowinning and cementation still need to be demonstrated in literature. Glycine lixiviant 

systems will therefore not be considered for gold flowsheet development in this work (Eksteen et al., 

2018; Oraby and Eksteen, 2015, 2014).  

2𝐴𝑢 + 4𝑁𝐻2𝐶𝐻2𝐶𝑂𝑂𝐻 + 2𝑂𝐻
− + 𝑂2 → 2[𝐴𝑢(𝑁𝐻2𝐶𝐻2𝐶𝑂𝑂)2]

− + 3𝐻2𝑂 [2-4] 

 
Birich et al., (2019) conducted gold dissolution kinetics studies that concluded that the dissolution 

rate of gold in halides arranged in descending order of dissolution rate is: aqua regia > iodine > 

bromine > cyanide. Iodine/iodide leaching systems have only been explored in lab-scale 

investigations. To date, no commercial processes have utilised this system owing to the cost of 

iodine relative to cyanide. In-situ bromine leaching processes at lab-scale have been investigated 

for gold leaching but have not been proven on pilot and commercial scale (Sousa et al., 2018). 

Bromine as a gold lixiviant has not seen further development into commercial applications. Aqua 

regia (3:1 HCl: HNO3 ratio) was employed for gold leaching before the advent of cyanide (equation 

[2-5] adapted from (Syed, 2012)). The drawbacks of chlorine leaching systems include: poor gold 

selectivity, costly infrastructure to contend with low pH conditions and evolution of toxic chlorine gas 

that is an environmental and human health hazard.  High reagent consumption is another 

disadvantage since aqua regia dissolves gangue minerals, precious metals and base metals. This 

increases downstream recovery demands to isolate desired precious metals from leachate 

(Baghalha, 2012; Birich et al., 2019; Sousa et al., 2018; Syed, 2012).  

𝐴𝑢 + 11𝐻𝐶𝑙 + 3𝐻𝑁𝑂3 → 2𝐻𝐴𝑢𝐶𝑙4 + 3𝑁𝑂𝐶𝑙 + 6𝐻2𝑂 [2-5] 

 
The Kell-gold hydrometallurgical leaching process for high-grade, run-of-mine ore containing 

platinum group metals has been demonstrated at pilot plant scale and relies on pressure oxidation, 

heat treatment and leaching with hydrochloric acid. The results of this study are misleading since 
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aqua regia decomposes gangue minerals, base metals and precious metals while cyanide can only 

dissolve free-milling gold in the ore. This process is therefore not selective of metals of interest in 

low-grade ore resources. Furthermore, no recommendations were made for downstream recovery 

processes required to isolate precious metals from leachate. Insufficient evidence has been 

presented in support of the Kell-Gold process to be considered as a viable technology for gold 

recovery from low-grade tailings (Adams et al., 2015; Liddell et al., 2019).  

Thiourea (𝐶𝑆(𝑁𝐻2)2) is an organo-sulphur compound that is less toxic than cyanide, but it is under 

investigation as a potential carcinogen. Thiourea has seen limited commercial application and is 

predominantly considered for gold recovery (equation [2-6] adapted from (Syed, 2012)) from stibnite 

(𝑆𝑏2𝑆3) concentrates. Newmont concluded that thiourea was ineffective for gold recovery owing to 

large ore particle size (P80 = 1.27 cm) during a commercial scale trial on heap bio-oxidation followed 

by thiourea gold recovery. Thiourea requires an acidic medium (pH 1.4 to 1.8) and oxidants such as 

iron (III), hydrogen peroxide and ozone to create the high solution potentials required for gold 

dissolution. The predominant reasons for poor adoption of thiourea technology is the specialised 

materials of construction required to contend with low pH environment and high lixiviant consumption 

owing to decomposition to formamidine disulphide, elemental sulphur and dicyanamide [CN(NH2)] 

that do not form complexes with gold. (Bhakta and Arthur, 2002; Deng and Liao, 2002; Dunne et al., 

2009; Hiskey, 1984; La Brooy et al., 1994; Örgül and Atalay, 2002; Syed, 2012).  

𝐴𝑢 + 2𝐶𝑆(𝑁𝐻2)2 → 𝐴𝑢(𝐶𝑆[𝑁𝐻2]2)2
+ + 𝑒− [2-6] 

Thiocyanate (𝑆𝐶𝑁−) in combination with Fe (III) at pH 1-2 has been demonstrated on lab-scale for 

gold dissolution (equation [2-7] adapted from (Aylmore, 2016)) but not commercialised. Thiocyanate 

produces intermediates ((𝑆𝐶𝑁)3
− and (𝑆𝐶𝑁)2) that form complexes with gold. Thiocyanate is more 

stable to oxidation than thiourea and there is consensus among authors that thiocyanate is a more 

effective lixiviant for gold than thiourea and comparable to that of cyanide leaching systems. Lab 

scale investigation on run-of-mine and concentrate ores along with pilot-plant demonstrations of 

thiocyanate leaching systems are required to account for the commercial viability of thiocyanate as 

a cyanide alternative. In addition to no evidence of industrial manufacture of gold, thiocyanate has a 

Globally Harmonized System of Classification and Labelling of Chemicals (GHS) classification as 

acutely toxic to humans and long term hazard to aquatic environments and therefore will not be 

considered in this study.  (Gökelma et al., 2016; Hilson and Monhemius, 2006; Li et al., 2012; 

National Library of Medicine, 2020; Syed, 2012). 

𝐴𝑢 + 4𝑆𝐶𝑁− + 3𝐹𝑒3+ → 𝐴𝑢(𝑆𝐶𝑁)4
− + 3𝐹𝑒2+ [2-7] 

 

2.4.6.3. Conclusions 

The lixiviant options for gold process flowsheets that have been demonstrated on a commercial scale 

is cyanide and thiosulphate. Synergistic glycine cyanide leaching systems are another viable 
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leaching alternative but require process development for carbon elution and subsequent recovery of 

gold from pregnant leach solutions. Commercial chlorine lixiviants systems focused on aqua regia 

in the past. Although chlorine lixiviants have a high gold leaching rate, they are not selective for gold.  

Considering the low gold head grades of mine tailings, high chlorine lixiviant consumption can be 

expected while downstream processing demands to isolate precious metals from base metals will 

be greater. The Kell-gold process has been demonstrated at pilot scale, but this technology still 

needs to be demonstrated to produce crude bullions of platinum group metals. This work will focus 

on flowsheet development for cyanide and thiosulphate gold recovery processes. Cyanide is the 

classic gold lixiviant that has been proven worldwide while thiosulphate is the leading contender for 

an environmentally friendly lixiviant that has been implemented commercially. 

2.4.7. Solution purification 

2.4.7.1. Carbon adsorption and elution 

Cyanide leaching of gold ores followed by carbon adsorption and elution have been employed for 

free-milling gold recovery operations worldwide. Carbon-in-Leach processes are preferred in 

applications with low-grade pregnant solutions and when the ore source contains a large quantity of 

preg-robbing minerals  (La Brooy et al., 1994; Marsden, 2006). Amidst the landscape of declining 

gold ore grades, the recent research on carbon adsorption focuses on approaches to improve gold 

recovery by investigating alternative activated carbon sources that yield improved gold recovery and 

elution together with process optimisation to reduce operational cost (Khosravi et al., 2017; Snyders 

et al., 2013; Syed, 2012). With reference to carbon elution technologies (Table 2-8) employed in 

industry, Anglo American Research Laboratory (AARL) and Pressure Zadra carbon elution 

processes are commonly employed while the Micron research process is used selectively in South 

African and Australian plants (Marsden and House, 2006).  

Table 2-8: Summary of carbon elution process conditions employed in industry [Adapted from: 
(Marsden and House, 2006)]. 

 Pre-

treatment 

Elution 

agent 

Temper

ature 

(°C) 

Press

ure 

(kPa) 

Time 

(hour

s) 

Maximum 

gold 

concentra-

tion (mg/L) 

Zadra 
(Zadra, 1950) 

- 10 g/L NaOH 
1-2 g/L NaCN 

90-100 101.3 36-72 150 

AARL  
(Davidson and 
Duncanson, 1977) 

20-50 g/L 
NaOH 
10-20 g/L 
NaCN 

Deionized 
H2O 

110-120 170-
200 

8-14 1500 

Murdoch 
University  
(Muir et al., 
1985a)  

80% 
acetonitrile 
(aqueous) 

20-40% 
acetonitrile 
2g/L NaOH 
10g/L NaCN 

25-70 101.3 8-14 1500-6000 
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Micron Research 
(Muir et al., 
1985b) 

20-50 g/L 
NaOH 
50-100 g/L 
NaCN 

60% - 80% 
Methanol 
(aqueous) 

60-80 101.3 8-80 300 

 
Based on the study by  Muir et al. (1985b), within 1 hour, the percentage of gold eluted from carbon 

achieved by different elution procedures is ranked as Micron AN > Micron MeOH > AARL > Zadra. 

A reduced elution time period increases plant productivity, but the typical residence times for gold 

leaching is 12-48 hours. Carbon elution therefore will not be a process bottleneck when compared 

to leaching residence times. The AARL elution procedure elutes gold to the same levels as the 

Micron AN process within 6 hours elution time and has been commonly employed in flowsheets in 

South Africa. The decision for carbon elution process is therefore mainly based on economic 

considerations and the influence on gold loading capacity as summarised in Table 2-8. Thus the 

AARL elution procedure was employed along with carbon adsorption for the cyanide flowsheet in 

this study (Marsden and House, 2006; Muir et al., 1985a; Stange, 1999).  

Acid washing with a 1-5% HCl solution prior to elution and reactivation is required to remove 

adsorbed organic materials and calcium that promotes gold complex adsorption to carbon. HCl 

corrodes reaction vessels and HNO3 may be used as an alternative, but oxidation and deactivation 

of carbon occurs when HNO3 is used requiring carbon inventories to be replenished more frequently 

(Stange, 1999).The activity of carbon deteriorates with each cycle of gold adsorption and elution and 

reactivation is required to maximise recovery of gold from pregnant solutions. Activated carbon is 

regenerated by live steam heating to 650-750 ºC in non-oxidising atmosphere (Marsden and House, 

2006; Muir et al., 1985b; Stange, 1999).  

2.4.7.2. Resin adsorption – cyanide leaching systems 

The advantages and disadvantages of resin adsorption are summarised in Table 2-9 for cyanide 

leaching systems.  

Table 2-9: Evaluation of the advantages and disadvantages of resin when compared to activated 
carbon as an absorption agent (Collated from: Adams, 2016; Fleming and Cromberget, 1984; Green 
et al., 2002) 

Advantages Disadvantages 

Higher equilibrium gold loading rates of 

aurocyanide complexes (therefore smaller 

sized processes).  

Specialised resins are expensive 

Reduced susceptibility to poisoning by organic 

compounds (e.g. flotation reactants, solvents 

etc.) 

Low selectivity for aurocyanide complexes 

compared to base metal cyanides complexes. 

Does not require thermal regeneration unit 

process (reducing capital and operating 

expenses)  

Resin particles are smaller than carbon. 

Retaining high cost resins in process requires 

investment retain them during filtration (i.e. 
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Advantages Disadvantages 

acquisition and maintenance of narrow 

aperture sieves). 

High recovery of gold in pre-robbing, leach-

robbing and refractory ore pregnant solutions.  

Resins have a lower density than carbon, 

therefore increased agitation costs are 

required to maintain suspension in solution.  

Resin elution can occur at ambient conditions 

while carbon elution needs to be conducted at 

elevated temperatures and pressures (120 – 

130 °C) increasing operating costs.  

Complex multi-stage elution process to desorb 

base metals from resin before eluting gold.  

Calcium carbonate has a greater affinity for 

carbon than resin. Therefore acid-washing 

treatment unit process will not be required 

following RIP adsorption. 

Some elution reagents are expensive and have 

high consumption rates (e.g. thiourea 

irreversibly decomposes during the process).  

Hematite, shales, clay category minerals 

reduce gold loading on carbon to a greater 

extent than it hampers adsorption on resin.  

 

For a typical mine tailings pregnant solution of 0.5 g/L gold in solution as determined by Green et al. 

(2002), an increase of 28% more gold is adsorbed on resin compared to activated carbon (Table 

2-10). This increase in gold adsorption by resins may be compensated for by increasing the carbon 

inventory. Furthermore, gold selectivity on resins is poor (ratio of gold to metals: 0.14 in Table 2-10)  

and this increases downstream processing requirements to isolate gold from low-value base metals. 

The most significant disadvantage of resin adsorption over carbon is the low gold-selectivity and 

greater reagent cost compared to activated carbon. 

Table 2-10: Comparison of Minix® to activated carbon as adsorption agent in pregnant solutions 
during counter-current plant campaigns [Adapted from: (Green et al., 2002)] 

Adsorbent % increase gold adsorbed 
on resin compared to 
carbon 

Au/Ma 

High grade solution initial concentration 

Minix®  
98.4% 

0.64 

Carbon 0.97 

Standard solution initial concentration 

Minix®  
44.1% 

0.56 

Carbon 0.90 

Tailings solution initial concentration 

Minix®  
28.8% 

0.14 

Carbon 0.64 
a: Gold adsorption to total metal adsorption on loaded resin ratio. Indication of gold selectivity of 
resin. 
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2.4.7.3. Recovery of thiosulphate complexes from pregnant solutions 

Activated carbon reports poor gold loadings for gold-thiosulphate complexes  (𝐴𝑢(𝑆2𝑂3)2
3−). Gold 

recovery from ammoniacal-thiosulphate solutions with activated carbon from 51.6 g gold/tonne run 

of mine ore reported a maximum gold recovery of 43% at a carbon concentration of 60 g/L (1 hour 

adsorption) and was improved to 95% with 120 g/L carbon (6 hour adsorption) (Abbruzzese et al., 

1995). Aylmore and Muir's (2001) interpretation of Abbruzzese et al.'s (1995) results conclude that 

the gold-carbon loadings are too poor to justify an economically viable process despite the high-

grade ore being processed. Research on thiosulphate complex recovery from leach solutions 

focusses on the implementation of strong-base, ion exchange resins (with quaternary ammonium 

functional groups) in commercial processes over cementation and solvent extraction technologies. 

Barrick-Goldstrike has commissioned a gold recovery process with Purolite® A500C resin. 

Amberjet® 4200 resin systems were able to achieve 99% gold recovery while being more selective 

for gold than copper when compared to Purolite® A500C resin (Table 2-11). Dong et al. (2017) 

commented that most resins available were designed for 𝐴𝑢(𝐶𝑁)2
− complexes. Therefore, a gap in 

literature exists for resin technology development that are selective for 𝐴𝑢(𝑆2𝑂3)2
−3 (Ahlatci et al., 

2017; Aylmore and Muir, 2001; Choi, 2016; Dong et al., 2017; Grosse et al., 2003; Xu et al., 2017; 

Yu et al., 2015).  

Table 2-11: Gold recovery of different strong base ion exchange resins from ammoniacal - 
thiosulphate pregnant solutions [Adapted from: (Grosse et al., 2003)] 

Resins [𝑺𝟐𝑶𝟑
𝟐−] 

(M) 

[NH3] (M) pH %Au [Au]/[Cu] 

a 

Reference 

A500C 
(Purolite) 

0.05 M 0.1 M 8.0 99.5 0.034 
(Ferron et al., 
1998) 

AV-17-10P 
0.5 M 0.5 M 5 – 11 94.2 - 

(Kononova et al., 
2001) 

Amberjet® 
4200 0.05 M 0.8 M 8 – 9.5 >99.4 2.39 (O’Malley, 2002) 

Amberjet® 
4200 0.05 M 0.2 M 9.5 99 - 

(Nicol and 
O’Malley, 2002) 

IRA-400 
(R&H) 1.0 M 0.1 M 9 – 12 94.7 - 

(Mohansingh, 
2000) 

Dowex (Dow) 
- - - 76 - 

(Mohansingh, 
2000) 

a: Gold to copper selectivity ratio on resin         -: No data available 

 
Resins are not selective for gold as demonstrated in section 2.4.7.2 therefore multistage elution is 

recommended to separate base metals from precious metals. Table 2-12 summarises elution 

schemes proposed in literature. The trithionate-sulphite system is the only system implemented 

commercially by Barrick Gold  while the rest are laboratory and pilot plant trials (Choi, 2016; Choi et 

al., 2015).  

Stellenbosch University https://scholar.sun.ac.za



30 

Table 2-12: Resin elution systems for gold and copper elution  

 Copper Elution Gold Elution Refer-

ence  

1 Thiosulphate 

[𝑆2𝑂3
2−]: 0.5 M 

Copper elution: 100% Ambient 

conditions. Eluant flowrate: 5 BV/h*. 

Bed volumes:14 

Trithionate and sulphite 

[𝑆3𝑂6
2−]: 0.2 M and [𝑆𝑂3

2−]: 0.1 M 

Gold elution: 100%. Ambient 

conditions. Eluant flowrate: 5 BV/h*. 

Bed volumes:13. 

(Jeffrey 

et al., 

2010) 

2 Thiosulphate 

[𝑆2𝑂3
2−]: 0.5 M 

Copper elution: 100% Ambient 

conditions. Eluant flowrate: 5 BV/h*. 

Bed volumes:14 

Sodium chloride and sulphite 

[𝑁𝑎𝐶𝑙]: 2 M and [𝑆𝑂3
2−]: 0.1 M 

Gold elution: 100%. Ambient 

conditions. Eluant flowrate: 2 BV/h*. 

Bed volumes: 8. 

(Jeffrey 

et al., 

2010) 

3 Thiosulphate 

[𝑆2𝑂3
2−]: 0.5 M 

Copper elution: 100% Ambient 

conditions. Eluant flowrate: 5 BV/h*. 

Bed volumes:14 

Nitrate and sulphite 

[𝑁𝑂3
−]: 1 M and [𝑆𝑂3

2−]: 0.1 M 

Gold elution: 100%. Ambient 

conditions. Eluant flowrate: 2 BV/h*. 

Bed volumes: 6. 

(Jeffrey 

et al., 

2010) 

4 Thiosulphate elution.  

[𝑆2𝑂3
2−]: 150 g/L (1.33 M) 

Copper elution: 99.9%. Ambient 

conditions.  Eluant flowrate: 2 BV/h*. 

Bed volumes: 4.  

Thiocyanate elution 

[𝑆𝐶𝑁−] : 100 g/L (1.72 M) 

Gold elution: 99.5%. Ambient 

conditions. Residence time: 2-4 hours. 

pH 6-8 (natural). Eluant flowrate: 2 

BV/h*. Bed volumes: 6. 

(Fleming 

et al., 

2003) 

5 Thiosulphate elution.  

[𝑆2𝑂3
2−]: 150 g/L (1.33 M) 

Copper elution: 99.9%. Ambient 

conditions.  Eluant flowrate: 2 BV/h*. 

Bed volumes: 4. 

Polythionate  

[𝑆3𝑂6
2−]: 40 g/L (0.21 M) and [𝑆4𝑂6

2−]: 

80 g/L (0.36M) 

Gold elution: 99.4%. Ambient 

conditions. pH: 1.5 (natural). Eluant 

flowrate: 2 BV*/h. Bed volumes: 8. 

(Fleming 

et al., 

2003) 

6 Thiosulphate elution.  

[𝑆2𝑂3
2−]: 150 g/L (1.33 M) 

Copper elution: 99.9%. Ambient 

conditions.  Eluant flowrate: 2 BV/h*. 

Bed volumes: 4. 

Trithionate 

[𝑆3𝑂6
2−]: 200 g/L (1.04 M) 

Gold elution: 99.8%. Ambient 

conditions. pH: 6-8 (natural). Eluant 

flowrate: 2 BV/h*. Bed volumes: 8. 

(Fleming 

et al., 

2003) 

7 Ammonia.  

[𝑁𝐻3]: 2 M 

Copper elution: 90%. Ambient 

conditions. Eluant flowrate: 5 BV/h*. 

Bed volumes: 30. 

Ammonium nitrate. 

[𝑁𝐻4𝑁𝑂3]: 2 M 

Gold elution: 90%. Ambient conditions. 

Eluant flowrate: 5 BV/h*. Bed volumes: 

30. 

(Nicol 

and 

O’Malley, 

2002) 

 
For copper elution, thiosulphate is an effective eluant in three separate studies and has been 

implemented commercially at Barrick Gold (Table 2-12) and was recommend for the thiosulphate 

flowsheet in this work. Ammonia poses an environmental burden and requires water treatment 

before release to environment and was not considered in this work (Choi, 2016; Choi et al., 2015). 

Thiocyanate and ammonium nitrate eluants for gold elution pose an environmental impact and needs 

to be destroyed before discharge to the ecosphere and therefore was not considered in this work 
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(Muir and Aylmore, 2004; Syed, 2012). Sodium chloride accumulates in the leaching unit process 

and therefore introduces an additional impurity into the process. Sodium chloride elution does have 

the benefit that resin regeneration is not required since chlorides are readily displaced by metal 

complexes on ion exchange resins. Sodium chloride-sulphite elution has not been demonstrated 

commercially and therefore was not considered (Jeffrey et al., 2010).   

Trithionate and tetrathionate eluants can be generated in-situ thereby reducing the costs associated 

with raw material acquisition. Furthermore, thiosulphate waste streams may be recycled to 

manufacture eluant. The drawback of tri- and tetra- thionate elution is that resin regeneration is 

required since polythionates adhere more strongly to ion exchange resin than precious metal 

complexes (Fleming et al., 2003). The natural degradation of thiosulphate to produce polythionates 

is a drawback of thiosulphate leaching systems. Therefore, resin elution and regeneration allow an 

opportunity to firstly manage polythionate build up in the leaching- and elution- circuit. In addition, 

converting polythionates back to thiosulphate reduces thiosulphate resource consumption. 

Excessive thiosulphate reagent consumption is one of the predominant reasons for not implementing 

thiosulphate over cyanide as a lixiviant in flowsheets. Following the above discussion, entry 1 in 

Table 2-12 was recommended for gold elution and has been demonstrated commercially (Choi, 

2016; Choi et al., 2015). 

2.4.7.4. Conclusion  

For the cyanide flowsheet, carbon adsorption and AARL elution technology for gold recovery was 

selected. The basis for the decision was the poor selectivity of gold in resin systems which requires 

a multiple-step elution process. The costs associated with additional unit processes along with 

additional by-product streams that need to be scavenged for value or disposed of increases 

downstream processing requirements. For the thiosulphate flowsheet, Amberjet® 4200 ion 

exchange resin recovery from pregnant solutions was recommended owing to the poor gold recovery 

by carbon adsorption technologies which require uneconomical carbon inventories to improve gold 

recovery. Resin adsorption is followed by multi-stage elution (entry 1 in Table 2-12). Resins 

commercially available are not selective for  𝐴𝑢(𝑆2𝑂3)2
−3 complexes. Thus, there is a demand in 

literature for ion exchange resins that are tailored to adsorption of 𝐴𝑢(𝑆2𝑂3)2
−3 complexes.  

2.4.8. Recovery 

Following leaching unit processes, gold needs to be recovered from the pregnant solution. Zinc 

precipitation and electrowinning are technologies employed commercially to recover gold from 

solution and will be discussed in this section.  

2.4.8.1. Zinc Precipitation 

Recommended zinc precipitation process conditions are summarised in Table 2-13. Dissolved 

oxygen concentration and soluble sulphide in the pregnant leach solution should be minimised and 
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free NaCN concentration be maintained to prevent the formation of passivating zinc hydroxide and 

zinc sulphide layer on zinc surfaces. The passivation of zinc surfaces reduces precipitation efficiency 

and thereby increasing zinc powder consumption. The maximum dissolution of zinc occurs at NaCN 

concentration of 0.1 to 0.3 g/L within the pH range pH 10.5 to 11.2. Free cyanide levels exceeding 

the recommended range causes dissolution of zinc within the reaction solution and increases zinc 

consumption. The addition of lead nitrate increases redox potential by 0.2 V in the positive direction 

creating favourable cathodically charged, redox conditions for the precipitation of precious metals 

on zinc surfaces (Fleming, 1992). The lead polarized regions on zinc particles inhibit the formation 

of zinc hydroxide thereby allowing the entire surface of the particle to be used for precipitation 

(Adams, 2016; Chi et al., 1997; Mpinga et al., 2015; Nicol et al., 1979). The presence of silver cyanide 

complexes in solution reduces the maximum loading capacity for gold on activated carbon leading 

to reduced gold recovery. Therefore, in pregnant leach solutions, where the fineness (silver: gold 

ratio) exceeds 2 or 3:1 Merrill-Crowe zinc precipitation is favoured over carbon adsorption and 

recovery.  

Table 2-13: Summary of recommended zinc precipitation process conditions for optimum recovery 

  Reference (Wartenweiler, 

1949) 

(Chi et al., 

1997) 

(Adams, 2016) (Mpinga et al., 

2014) Property 

Dissolved oxygen 
concentration 

0.5 - 1.3 mg/L 0.5 mg/L 1 ppm < 1 ppm 

Cyanide 
concentration 

- 100 - 300 mg/L 150 - 200 mg/L 150 ppm 

Zinc concentration - - 2 - 4 kg zinc per 
metal of interest 

precipitated 

1.5 - 3.4 times 
stoichiometric 
requirement 

Soluble sulphide - - 20 mg/L - 

Lead nitrate - 10-15 mg/L 0 - 0.2 kg per kg 
zinc 

- 

Temperature  - - - 60 °C 

 

2.4.8.2. Electrowinning 

Electrowinning of metals follows the elution step of resins and activated carbon. Aqueous eluates 

are subjected to an induced voltage within an electrochemical cell whereby redox reactions occur 

resulting in the reduction of metals at the cathode. For electrolytes with low gold concentrations 

compared to base metals, the co-deposition of base metals occurs on the cathode. If copper to gold 

ratio exceeds 4:1 in the electrolyte, copper cyanide complexes will deposit preferentially on cathodes 

over gold-cyanide complexes. Furthermore, the qualitative assessment of gold adhesion to the 

stainless steel (SS 304) cathodes revealed that the adhesion of gold to cathodes increased in 

electrolytes with high copper concentration (Steyn and Sandenbergh, 2004). This occurrence 

complicates the subsequent refining operations to produce a pure gold bullion, since copper cannot 

be recycled effectively during hydrometallurgical refining operations (Sole and Paul, 1986). In 
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addition, during Miller chlorination refining, copper chlorides have a higher boiling point than other 

base metal chlorides and therefore increases energy requirements to purify gold bullion (Auerswald 

and Radcliffe, 2005) . Marsden and House (2006) recommend zinc cementation over electrowinning 

for gold recovery when copper concentrations in pregnant solutions exceed 100 – 200 ppm.  

For thiosulphate leaching systems, electrowinning has been favoured over cementation and solvent 

extraction for gold recovery. Electrowinning has been used in the commercial flowsheet proposed 

by Choi (2016). In lab-scale studies in literature on recovery of gold from eluted resins and carbon 

98-99% gold recovery was achieved after electrowinning (Abbruzzese et al., 1995; Aylmore and 

Muir, 2001; Marsden and House, 2006; Steyn and Sandenbergh, 2004; Sullivan and Kohl, 2019). 

2.4.8.3. Conclusions 

For the West Rand tailings feedstock, the silver to gold ratio is 21:1, therefore there is a strong 

likelihood that the silver to gold ratio will exceed 2:3 to 1 in the pregnant leach solution. Zinc 

precipitation technology was thus recommended over carbon adsorption for the main gold recovery 

stream for cyanide flowsheet (Adams, 2016; Bosch, 1987; Marsden and House, 2006). The copper 

to gold ratio is 150:1 in the feedstock (Table 2-3) and may exceed the 4:1 copper to gold ratio in the 

pregnant leach solution, a criteria recommended by Steyn and Sandenbergh (2004).  Based on this, 

zinc cementation was selected over electrowinning for gold recovery from pregnant leach solution in 

the cyanide flowsheet. For the thiosulphate flowsheets, after dual-stage elution of loaded resins, 

electrowinning was recommended. Dual-stage elution minimises copper reporting to the 

electrowinning circuit and improves overall crude gold bullion purity.    

2.4.9. Calcination and smelting 

Calcination follows cementation operations to oxidise lower value base metals to their respective 

oxides. This allows the lower value metals to report to the slag phase during smelting operations, 

thereby producing a higher value crude bullion and reduces the sizing requirements of upstream unit 

processes. Calcination control parameters of excess oxygen and temperature (600-700 °C) are 

optimised to ensure precious metals are not oxidised which result in process loss (Nicol et al., 1987). 

Smelting produces a crude gold bullion between 1 200-1 400 °C that is a precious metal alloy 

(Adams, 2016; Marsden and House, 2006). The crude bullion produced is a gold metal alloy of 

approximately 60% gold by mass depending on precious and base metals present in the ore 

feedstock. In South Africa mine houses sell crude bullion to Rand Refinery to produce a pure gold 

bullion with minimum 99.5% gold by mass for niche applications or to 99.99% by mass for use as a 

monetary commodity (Auerswald and Radcliffe, 2005; Sole, 2007). This work focussed on 

technologies for gold extraction from mine tailings and therefore the system boundary was drawn up 

until the production of a crude gold bullion to align with the practices in South Africa of mine houses 

selling crude gold bullions to the Rand refinery. 
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2.4.10. Effluent treatment 

The effluent of gold recovery processes to tailings dams contains toxic substances that need to be 

removed to comply with environmental regulations. In flowsheets that rely on cyanide as a lixiviant 

for gold recovery, cyanide needs to be removed or recovered before discharge to tailings dams. In 

applications where the tailings will be used for backfilling of decommissioned mines, the 

complexation using iron precipitation (with 𝐹𝑒𝐶𝑙3 or 𝐹𝑒𝑆𝑂4) to capture cyanide species as 

environmentally benign precipitate Prussian blue [𝐹𝑒4(𝐹𝑒(𝐶𝑁)6)3]. Iron precipitation does not reduce 

cyanide concentrations in effluent water to below 5 mg/L and therefore is not suitable for applications 

where cyanide waste streams are discharged to the environment. Unfortunately, Prussian blue is 

unstable in alkaline environments (pH > 7) and dissociates back to ferrocyanide complexes 

(𝐹𝑒(𝐶𝑁)6
4− and 𝐹𝑒(𝐶𝑁)6

3−). With iron precipitation, cyanide is not destroyed but merely captured and 

the potential for cyanide release still exists if effluent tailings and water is transferred to an alkaline 

environment. The context of the current work is to minimise cyanide in the process effluent streams 

and to allow tailings solids to be used as a raw material within the circular economy for aggregate, 

bricks and ceramics. Thus, iron precipitation as a cyanide removal technology merely contains the 

environmental burden it does not reduce environmental impact and will not be viable as a process 

solution unless the application for depleted mine tailings is for mining backfill (Adams, 1992; Mudder 

et al., 2001; SGS Mineral Services, 2005). 

 Kuyucak & Akcil (2013) reviewed cyanide removal technologies for extractive mineral processes 

and concluded that alkaline chlorination is the traditional process technology for cyanide destruction 

in gold flowsheets. Alkaline chlorination decomposes cyanide species to carbon dioxide and nitrogen 

which are bio-available products along with sodium chloride as a by-product. Carbon dioxide may 

contribute to greenhouse gas emissions, but it is a bioavailable resource that can be captured 

through natural attenuation therefore alkaline chlorination reduces the environmental impact of 

cyanide. One notable drawback of alkaline chlorination is that ferrocyanide complexes cannot be 

destroyed through alkaline chlorination and therefore this technology needs to be combined with iron 

precipitation to complement this technology. Iron precipitation ensures strong cyanide metal species 

are not bioavailable provided the environment pH does not become alkaline. Furthermore, the 

intermediates of the alkaline chlorination are toxic and therefore process control measures need to 

be implemented to ensure reaction completion. Free chlorine in solution is another challenge, 

therefore aeration and polishing ponds can be implemented after treatment to ensure complete 

conversion of reagents. The use of sodium hypochlorite is favoured over chlorine gas owing to the 

occupational health and safety risk of chlorine gas (Botz et al., 2016; Mudder et al., 2001).   

Recent research has focused on the implementation of SO2/Air, biological and hydrogen peroxide 

cyanide destruction technologies and has been employed in commercial plants. The SO2/Air process 

is viable; however, strict process control is required therefore the ease of use of this technology to 
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ensure cyanide destruction still requires optimisation research before it can be considered mature 

enough for implementation. Cyanide destruction such as hydrogen peroxide, INCO SO2/Air, Caro’s 

acid and ozonation treatment have the same flaw of not being able to destroy ferrocyanide 

complexes therefore iron precipitation needs to be recommended for these processes as well.  

(Breuer and Hewitt, 2020; Kuyucak and Akcil, 2013).  

Thiosulphate is considered environmentally benign, but thiosulphate can decompose to polythionate 

species under reducing conditions and can cause oxygen depletion in aquatic ecosystems. 

Hydrogen peroxide is used extensively in industrial and domestic wastewater treatment to reduce 

biological oxygen demand (BOD) and chemical oxygen demand (COD).  Ammonia gas has the same 

class of threshold limiting value for air emissions as hydrogen cyanide gas (14 mg/m3) and in aquatic 

environments is in the same category as chlorine. Ammonia decomposes to form nitrates in aquatic 

ecosystems leading to eutrophication and groundwater pollution (Ahmad, 2012; Ilyas and Lee, 2018; 

Muir and Aylmore, 2004). 

Barrick Goldstrike relied on non-ammoniacal thiosulphate leaching and recycled thiosulphate by 

reverse osmosis water treatment of thickened tailings overflow (flowsheet illustrated in Figure 2-8) 

to create a permeate. The permeate is subjected to thiosulphate regeneration to recover 

thiosulphate. Within the closed flowsheet, the thiosulphate and polythionate are decomposed to 

sulphate (𝑆𝑂4
2−) which is precipitated as gypsum (CaSO4.2H2O) thereby mitigating the emission of 

harmful thiosulphate by-products to the ecosphere. Reverse osmosis (RO) is a costly water 

treatment technology and requires microfiltration water treatment technology of feed to prevent 

fouling of RO membranes. Barrick gold reported RO membrane fouling as a bottleneck to operate at 

design capacity of gold recovery plant (Choi, 2016; Choi et al., 2013).  

For the cyanide flowsheet, a combination process of alkaline chlorination and iron precipitation with 

ferrous sulphate was recommended for the cyanide process flowsheet. The basis for this 

recommendation is its abundance in the commercial gold processing industry while breaking down 

free-, WAD- and strong- cyanide complexes to environmentally inert chemical species and the 

ferrocyanide unaffected by chlorination is converted to Prussian blue by iron precipitation. For the 

thiosulphate reverse osmosis was recommended for water treatment to recover thiosulphate, 

reducing freshwater consumption and emission of thiosulphate as sulphate and gypsum to the 

ecosphere from the flowsheet. The use of non-ammoniacal thiosulphate system has the benefit of 

not requiring ammonia destruction unit processes and thiosulphate can be regenerated thereby 

reducing overall thiosulphate consumption.      

2.5. Environmental impact assessment tools 

The present study endeavours to evaluate the environmental impacts of process flowsheets. This 

requires environmental impact assessment (EIA) tools to quantify the environmental consequences 
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as illustrated in Table 2-14. Loiseau et al. (2012) conducted a qualitative review of EIA tools and 

summarised which territories in the scope of life cycle thinking are addressed by specific tools. The 

qualitative framework rates each EIA tool on a scale from “-” (tool does not address criteria) to “+++” 

(the criterion is comprehensively covered by tool).  

From Table 2-14 it is clear that there isn’t a single EIA tool that addresses all the life cycle thinking 

criteria strongly. This research project would benefit from a thorough inventory of pollutants, resource 

usage, water usage, greenhouse gas emissions, and a strong focus on life cycle thinking along with 

a robust, well-established methodological framework that is supported within research and industrial 

application. The qualitative assessment in Table 2-14 indicates that the only EIA that ranks the 

highest based on the framework developed by Loiseau et al. (2012) is life cycle assessment. 

Emergy, Ecological footprint, Physical input – output table EIA tools are next in line for consideration, 

but the focus on pollutants, greenhouse gas emissions needs to be improved and the methodologies 

need to be standardised universally to be considered for this study.  

A limitation of LCA methodology is that it only considers the environmental impacts of the elementary 

inputs and outputs of a defined system boundary and does not offer an account of the resource 

usage efficiency for the system boundary. The optimisation of resource usage is an important design 

criterion when developing chemical processes and is an opportunity for improvement in the LCA 

methodology. Exergetic life cycle assessment  (ELCA) incorporates the EIA tool of exergy analysis 

to assess the thermodynamic efficiency of individual unit processes and thereby accounting for the 

efficient utilisation of resources with two additional performance criteria, namely the life cycle 

irreversibility and exergy loss (Amini et al., 2007; Cornelissen and Hirs, 2002; Gößling-Reisemann, 

2008) 
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Table 2-14: Qualitative assessment of environmental assessment methods [Reproduced and modified from: (Loiseau et al., 2012)] 

 Environmental impact assessment tools 

Key features and Criteria HERA EF MFA SFA PIOT ENA Exergy Emergy LCA 

Formalisation 

Methodological 

Framework 

+++ ++ ++ + + + ++ ++ +++ 

System modelling 

Life cycle thinking - + + - +++ +++ + +++ +++ 

Inventoried flows 

Non-renewable resources - - +++ ++ ++ ++ +++ +++ +++ 

Renewable resources - ++ ++ - ++ ++ ++ +++ + 

Water resources - - + - ++ ++ + ++ ++ 

Land use - +++ - - + - + + + 

Greenhouse gas 

emissions 

- ++ ++ - ++ + + + +++ 

Pollutant emissions +++ - + +++ + + + + +++ 

Indicators provided 

Multi-criteria assessment - ++ ++ - ++ + ++ ++ +++ 

Spatial differentiation +++ + - ++ - - + + ++ 

Usability 

Feasibility + ++ ++ + + + + + ++ 

Understanding + +++ ++ ++ ++ + + + + 

Total + (out of 36) 11 19 18 11 19 15 17 21 27 

Abbreviations for EIA tools: HERA: Human and environmental risk assessment; EF: Ecological footprint; MFA: Material flow analysis; SFA: 

Substance flow analysis; PIOT: Physical input – output table; ENA: Ecological network analysis;  
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2.6. Life cycle assessment (LCA) 

LCA is a quantitative modelling tool employed to assess the potential environmental impacts during 

the manufacture of products by evaluating the inputs and outputs of processes assimilated to yield 

a product. LCA has a focus on reducing environmental impacts of the entire life cycle of products by 

employing a “cradle-to-grave” EIA philosophy to account for the full life cycle impacts of a product 

as opposed to the “gate-to-gate” philosophy. The “gate-to-gate” perspective allows product 

manufacturers to disregard the environmental impacts related to resource manufacture, product use 

and disposal and only accounts for 35% of environmental impacts related to product manufacture. 

The “cradle-to-gate” perspective is another partial LCA that considers ecological impacts from 

resource extraction to the factory gate before dispatch to customer. Therefore, usage and final 

disposal is excluded from system boundary and has a 67% as compared to a “cradle-to-grave” 

detailed LCA in the “cradle-to-gate” perspective. The “gate-to-grave” perspective only considers the 

downstream environmental impacts of the use and disposal phases related to the main product 

produced (Awuah-Offei and Adekpedjou, 2011; Guinée et al., 2011; Hunt et al., 1998; Klöpffer and 

Grahl, 2014; Rebitzer et al., 2004).  

2.6.1. LCA methodology 

A description of the methodology for LCA is illustrated in the diagram below (Pennington et al., 2004; 

Rebitzer et al., 2004):  

Goal and Scope 
Definition

Inventory 
analysis

Impact 
Assessment

Interpretation

LIFE CYCLE ASSESSMENT FRAMEWORK

- Product development and 
improvement
- Strategic planning
- Public policy making
- Marketing
- Other

Direct applications

 

Figure 2-9: LCA stages [Adapted from: (ISO, 2006b)] 

Where the following definitions apply to Figure 2-9: 

1. Goal and scope definition: Definition of the intention of the study, assumptions, product/system 

boundaries, selection of impact categories, target audience, and confidentiality rating 
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2. Life cycle inventory analysis (LCI phase): Collection of inventory data for inputs (e.g. raw 

material, energy, water resources requirements, etc.), outputs (e.g. major products and by-

products), and waste (e.g. air, water and land emissions, and waste streams)  

3. Life cycle impact assessment phase (LCIA): the compulsory steps of classification and 

characterisation involves the translation of elementary inputs and output data from LCI phase 

into respective indicators that contribute to impact categories. The optional steps of normalisation 

involve relating LCIA results to a baseline to a reference while grouping and weighting involves 

the qualitative or semi-quantitative approach of ranking LCIA results in order of importance  

4. Life cycle interpretation phase: Discussion of outcomes from LCI and LCIA phases of study 

as a basis for decision making based on criteria established during the scoping phase. 

The optional LCIA steps of grouping and weighting is a subjective approach determined by the LCA 

practitioner as to which impact categories are most relevant to the LCA study. This practice is 

contested in the scientific community since the basis for grouping and weighting is qualitative and 

the methodologies employed for this have not been standardised. For this reason, according to the 

ISO 14 040 framework, LCA results that are disclosed to public must exclude any deductions and 

conclusions made based on the results obtained through grouping and weighting of impact 

categories. There are also some ethical implications where impact categories may be 

misrepresented and omitted through grouping and weighting and thereby resulting in incorrect and 

fraudulent conclusions being made (ISO, 2006b; Pennington et al., 2004). According to Segura-

Salazar et al. (2019), the normalisation, grouping and weighting steps have been ignored in many 

mining LCA’s. For these reasons, normalisation, grouping and weighting shall be excluded from the 

scope of this work.  

LCIA methodologies are tailored to specific geographical locations, time periods, industries, or 

strongly focused on specific environmental impact categories while having weak predictions for other 

impact categories and therefore require further development (Hauschild et al., 2013). In literature, 

there is no universal LCIA methodology that can be applied to all contexts. The philosophies, 

assumptions, and uncertainties employed when developing models and characterisation factors vary 

greatly between LCIA methodologies for the same chemical species.  The ReCiPe® 2016 LCIA 

methodology groups characterisation factors into 3 distinct perspectives to account for different 

assumptions and decisions regarding uncertainties in the estimation of the characterisation factors. 

These cultural perspectives are named Individualistic, Hierarchist, and Egalitarian perspectives. In 

the present study, the LCIA results for the ReCiPe® Hierarchist perspective were employed because 

there is consensus within the scientific community concerning the chronological period and credibility 

of the impact pathways proposed that contribute to the calculation of environmental indicators 

(Huijbregts et al., 2016). 
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LCA modelling is based on a cause-and-effect chain between the effects of anthropogenic activities 

on the environment as illustrated in Figure 2-10. LCA results can be reported at either midpoint or 

endpoint level along the cause-and effect-chain. Midpoint impact assessment reflects the change 

that emissions cause to targeted systems in the ecosphere such as the increase of pollutants in 

water, land and air environments. Endpoint impact assessment predicts the ultimate effect that the 

collective changes to habitats have on the overall ecosystem such as reduction in quality of human 

life, extinction of fauna and flora and depletion of non-renewable resources. Midpoint analysis is 

more detailed but requires LCA domain knowledge. While endpoint analysis has fewer impact 

categories but facilitates communication of environmental impacts by expressing results in terms of 

three key areas of protection. The statistical uncertainty of endpoint results is higher since data 

shortages and assumption made accumulate as one progresses down the LCA cause-and-effect 

chain. A combination of midpoint and endpoint reporting modes is recommended in literature to 

appeal to a variety of audiences both knowledgeable about LCA and for those who only require an 

overview (Bare et al., 2000; Hauschild et al., 2013; Huijbregts et al., 2017) 

Cause and effect chain

Emission

e.g. Discharge from 

anthropogenic 

activity

Fate
e.g. Pollutant into 

ground water

Effect on target 

system 
e.g. Aquatic 

species population 

decline

Damage 
e.g. Species 

extinction

Exposure 

e.g. Increase in 

pollutant in lake

Midpoint Endpoint
  

Figure 2-10: LCA cause-and-effect chain indicating the areas that midpoint and endpoint analysis 
report [Adapted and modified from: (Klöpffer and Grahl, 2014; Rebitzer et al., 2004) 

2.6.2. LCA use in the mineral processing industry 

In an attempt to standardise LCA practices within the mining industry, Segura-Salazar et al. (2019) 

conducted a review of LCA practices and identified that the ReCiPe® LCIA methodology is frequently 

applied in mineral processing for predicting all impact categories other than climate change. The 

ReCiPe® LCIA methodology was also used in LCA studies on gold mining from primary gold ore 

resources conducted by Abadías Llamas et al.(2019), Chen et al. (2018) and Elomaa et al. (2019). 

In 2016, the ReCiPe® LCIA methodology has been updated to account for shortcomings therefore 

the developers endeavour to update this methodology based on current research relating to LCA 

(Hauschild et al., 2013; Huijbregts et al., 2016). Therefore, to aid in comparison of results with 

literature data and to align with the approach followed in the mineral processing industry the 

ReCiPe® 2016 LCIA methodology will be used in this work. 

Table 2-15 presents the incidence of LCA studies related to the mining industry when a query was 

conducted using specific keywords on the Compendex database. This indicates that less than 3% 

of the studies are related to the mining discipline and less than 0.1% is dedicated to the gold mining 

discipline. Awuah-Offei and Adekpedjou (2010) conducted a similar database search and reports 
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that 0.84% of studies conducted are related to the mining industry. This suggests that there is a low 

frequency of environmental life cycle, systems thinking methodology being applied to process design 

of mining processes in academic literature. An alternative perspective may be that LCA’s are 

proprietary information and aren’t disclosed, other EIA tools are used, or the methodology has 

specific limitations that has rendered its application to the mining industry ineffective(Awuah-Offei 

and Adekpedjou, 2011; Segura-Salazar et al., 2019).  

Table 2-15: Results for keywords related to Life Cycle Assessment in the mining industry on 
database search of Compendex database conducted. 

Database Keyword (s) Results  Percen-

tagea 

Compendex 

(Engineering 

Village) 

“Life Cycle Assessment” 33 487 - 

“Life Cycle Assessment” AND “Mining” 1 107 3.31 

“Life Cycle Assessment” AND “Mining” NOT “Data” 737 2.20 

“Life Cycle Assessment” AND “Mining” NOT “Data” 

AND “Gold” 

29 0.09 

a: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑜𝑟 [𝐾𝑒𝑦𝑤𝑜𝑟𝑑 (𝑠)] 𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑛 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑜𝑟  Life cycle assessment" 𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑛 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
 × 100.  

Based on the aforementioned information, more LCA’s need to be conducted within the mineral 

processing discipline to understand what deficiencies are present in the methodology. LCA’s for gold 

recovery processes from mine tailings have not been conducted and is an area where this work 

contributes to the academic body of knowledge. Considering that LCA has been adopted into the 

ISO 14 000, LCA could benefit mine houses in complying with global standards to aid stakeholders 

in gaining confidence in their business operations. 

2.7. Process modelling 

The benefit of a modelling approach is that it allows the evaluation of many different process 

flowsheet solutions. The disadvantages of the modelling approach are that the results obtained are 

subject to the accuracy, reliability and validity of the databases used and the inventory data gathered. 

It is the responsibility of the researcher to ensure due diligence and that limitations are documented 

in the relevant sections of the work (section 3.4.4). HSC Sim® and GaBi®  software has been used 

in literature for process modelling to generate inventory data and assess the environmental aspects 

of processes (as summarised in Table 2-16). This methodological approach is promising and will be 

used to achieve the objectives in this study. 
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Table 2-16: Summary of papers using HSC Sim® together with GaBi® for conducting life cycle 
assessment 

Study Reference 

Life Cycle Assessment of Metallurgical Processes Based on Physical 

Flowsheet Models 

(Reuter et al., 

2016) 

A thermodynamic-based life cycle assessment of precious metal recycling 

out of waste printed circuit board through secondary copper smelting 

(Ghodrat et al., 

2017) 

Simulation-based exergy, thermo-economic and environmental footprint 

analysis of primary copper production 

(Abadías Llamas 

et al., 2019) 

Process simulation and gate-to-gate life cycle assessment of 

hydrometallurgical refractory gold concentrate processing 

(Elomaa et al., 

2020) 

 

2.8. Conclusions 

More comprehensive inventory of geochemical and mineralogical data of South African tailings dams 

are necessary as outlined by authors quoted in this section. This will aid in prioritising the most 

lucrative projects for mine tailing’s reclamation for minerals of interest along with the tailings dams 

that pose high environmental burden.  This data can be the initiating point for stakeholders in the 

mineral processing industry to identify opportunities and develop solutions to ensure the resilience 

of this industry by chartering a course of action when market demands for minerals are favourable. 

Action plans for tailings dams that pose a large high environmental threat need to be established for 

at a minimum the containment of exposure to prevent the spread of toxic substances beyond the 

tailings dams.   

Specifically, more comprehensive gold deportment studies are necessary for accurate flowsheet 

development to specific mineral phases for Witwatersrand mine tailings. Particle size fraction grading 

analysis data of mine tailings of gold recovery below 53 μm along with additional diagnostic leaching 

tests and QEMSCAN analysis is necessary in literature to verify if gold is associated within silica 

quartz matrix. Heavy liquid separation and gravity separation trials are necessary to rule out gravity 

separation techniques as flowsheet alternatives. The ideal of developing a process flowsheet for 

100% gold recovery has the disadvantage of increasing capital and operational expenditure and 

owing to the low gold grade in tailings resources, it may render proposed flowsheet unprofitable. 

Therefore, the process flowsheet development in the next section needs to prioritise gold recovery 

in the following order: free-milling gold > gold in silicates > gold in carbonates > gold in sulphides > 

gold in preg-robbing minerals > gold in carbonaceous minerals.  

There is a shortage in literature of commercially employed alternatives to ultra-fine grinding to 

liberate gold occluded in finer particle size fractions of quartz minerals below 75 µm. Minerals such 

as quartz have a mineral hardness of 7 on the Mohr scale and require energy intensive processes 

to liberate occluded minerals.  The economically feasible, technological capability to liberate finely 
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disseminated gold within minerals below 75 µm will allow access to 11.8% of gold occluded in silicate 

minerals. 
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3 METHODOLOGY 

This chapter explains the methodological framework employed for the development- and 

assessment of- environmental impacts of processes to achieve the aim of reducing ecological 

impacts while recovering value from mine tailings (as illustrated in Figure 3-1).  A mineralogical 

survey of tailings dams in the case study region was performed to identify potential value streams 

and environmental impacts of mine tailings (discussed in section 3.1). The mineralogical data was 

then evaluated to identify baseline processes in literature as the current state of art employed in 

commercialised processes to meet the aim of this study. Mass and energy balances were conducted 

for the proposed baseline flowsheet followed by life cycle assessment (LCA) to quantify the 

environmental impacts of technology currently employed in industry for recovery of value from mine 

tailings. After the baseline environmental impact of the conventional process was established, an 

alternative flowsheet was developed based on literature to identify opportunities to further reduce 

environmental impacts. The simulation and LCA results of both flowsheets were compared against 

one another and environmental regulations to identify the process that minimises the burden to the 

environment. Opportunities to further reduce environmental impact of the process flowsheets 

proposed were identified for and an account of emissions to ecosphere provided.  
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Figure 3-1: Methodological framework for project 
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3.1. Case study  

Process flowsheet design requires mineralogical data of the mine tailings to determine the sequence 

of unit processes that will yield the greatest recovery of a mineral of interest (MOI). The 

characteristics of mine tailings varies depending on run-of-mine ore composition, process flowsheet 

used to recover MOI on the first-pass recovery, reagents used and the age of the tailings dam. A 

literature survey was conducted to source mineralogical data as depicted in Figure 3-2 to understand 

the deportment of minerals of interest and quantifying environmental impact of mine tailings by 

assessing results for compliance with National Environmental Management: Waste act 2008 (Act 

No. 59 of 2008) (NEMA)(Department of Environmental Affairs, 2014). In this work, a case study 

approach was used to create a hypothetical sample as a process feedstock which consists of West 

Rand, Witwatersrand region mine tailings. A case study approach has the benefit of tailoring a 

process flowsheet solution to a specific region where mine tailings have similar properties. The 

methodology employed in this work may be followed as a framework for other regions provided the 

mineralogical information for the mine tailings are known.  
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Figure 3-2: Flow diagram of mineralogical and geochemical data that will be considered for 
process flowsheet developed for mine tailings in Witwatersrand region [Adapted from: (Coetzee et 

al., 2010; Lorenzen, 1995)] 

3.2. Process flowsheet development 

By 2031, South African’s secondary ore resource of mine tailings may have higher gold grades than 

primary ore resources as discussed in section 2.1 and illustrated in Figure 2-1. The short timeline 

until 2031 requires the prioritisation of gold recovery technologies that have been proven in pilot 

plant studies and commercial manufacturing campaigns over technologies that are still in laboratory 

scale development. A literature review was conducted of the available technologies for gold recovery 

from mine tailings to propose a baseline process for gold recovery along with an alternative process 
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for environmentally friendly gold recovery. The baseline process was developed from literature 

information concerning commercial gold recovery from mine tailings resources in South Africa with 

similar mineralogy to the case study region considered in this work.  

3.3. Process simulation and modelling 

Outotec® HSC chemistry 9.4 (HSC Sim®), a simulation package that allows the computation of 

mineral processing and thermodynamic properties for minerals, was used to conduct mass and 

energy balances on identified process flowsheets. HSC Sim®, allows the user to construct static 

models that allow calculations on chemical systems taking chemical reactions and equilibrium 

compositions but not reaction kinetics into account. The shortcoming of the software to model 

reaction kinetics was overcome by sourcing empirical data from literature for metallurgical unit 

processes (Outotec, 2018). 

The HSC Sim® simulation module distinguishes between hydrometallurgical and pyrometallurgical 

unit processes. The hydrometallurgical module is selected if a defined set of chemical reactions 

within the process unit is being modelled. The pyrometallurgical module relies on the user 

understanding the effluent species being formed from literature and HSC Sim® relies on allocating 

elemental distributions such that the mass and energy balance is satisfied.  HSC Sim® also has the 

functionality of modules for common mineral processing unit operations that have been developed 

by Outotec (2018). This allows for the input of fundamental chemical engineering parameters if this 

empirical data is available to determine chemical and physical properties of effluent streams leaving 

unit process modules. In this study, equilibrium chemical compositions of effluent streams from unit 

processes was calculated by using the following approaches (in descending order of preference): 

user-defined empirical data from literature, using the Gibb’s equilibrium functionality in HSC Sim® 

that determines equilibrium compositions through Gibbs’ Energy minimisation methodology or 

reaction stoichiometry (Outotec, 2018; White et al., 1958). The availability of empirical data in 

literature for the ore resource used in this case study was a limitation and where possible the was 

sourced or reasonable assumptions made and discussed in chapter 4.  

3.4. Life cycle assessment 

The environmental impacts of process flowsheets were modelled using Life cycle assessment (LCA) 

with Thinkstep’s GaBi® software. Material and energy balances were conducted with Outotec HSC 

Chemistry 9® to calculate inventory data not available in GaBi®. HSC Sim® has an LCA evaluation 

module that allows the elementary inputs and outputs to be exported to GaBi®. This involves 

associating the elementary flows (inputs and outputs) in HSC Sim® flowsheet with species in GaBi® 

to represent the respective elementary flows. Once exported to the GaBi® environment, the 

selections made in HSC Sim® need to be verified to determine if an alternative species exists that 

is a more accurate representation of the elementary flow. 
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3.4.1. Goal and scope 

A “cradle-to-gate” LCA study was conducted for production of a crude gold bullion from mine tailings. 

In South Africa, “gold-from-ore” manufacturers produce crude gold bullion as a product. The crude 

bullion is sold to the Rand Refinery for production of a pure gold bullion (Auerswald and Radcliffe, 

2005). The system boundaries together with distinction between background and foreground 

processes for the cyanide and thiosulphate flowsheets is illustrated in Figure 5-1 and Figure 5-2 

respectively. A thorough process description for both flowsheets was provided in chapter 4. Mine 

tailings which make up the feed are a waste stream and thus the “zero-burden assumption” was 

used in this study. This assumption is commonly made in LCA’s on waste streams and states that 

the waste stream does not carry the environmental consequences of upstream processes along with 

it into the subsequent system boundary (Ekvall et al., 2007).  

The functional unit for this study was defined as 1 kg of gold manufactured at steady state conditions 

for calculation of environmental indicators. The choice in functional unit was made since the context 

of this study considers mine tailings as a source of value. Furthermore, the target audience of this 

study (investors, community members and policy developers) will be able to relate to results 

expressed in terms of a commodity (i.e. gold) whose price drives economic decisions globally. LCA 

studies in literature on gold recovery from primary ore resources have also made this functional unit 

selection. Therefore, the results of this study can then be compared to studies with similar system 

boundaries (Chen et al., 2018; Elomaa et al., 2020; Norgate and Haque, 2012). A gap in literature 

for LCA’s conducted for gold recovery from mine tailings as a resource has been noted. A mass 

allocation procedure has been used in this study and refers to the procedure whereby LCA 

environmental impacts are attributed to product outputs from the system boundary using their mass 

as basis for calculating the weighted average of life cycle indicators. Gold was the primary product 

and life cycle impacts were not attributed to by-products produced. The ReCiPe® 2016 life cycle 

impact assessment (LCIA) methodology with the Hierarchist cultural perspective that was used in 

this study (discussed in section 2.6.1).  The environmental impact categories that were investigated 

in this study are summarised in section 5.2.1. 

3.4.2. Life cycle inventory (LCI) for flowsheets 

The life cycle inventory is a database of raw material, energy, product and emissions from the defined 

system boundary for an LCA study (Rebitzer et al., 2004). The methodology for the compilation of 

the LCI was summarised in  section 2.6 and section 3.3. The condensed LCI for the cyanide and 

thiosulphate leaching flowsheet is summarised in Table 3-1 and Table 3-2 respectively. The 

extended LCI for the proposed flowsheet can be found in Appendix K. 
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Table 3-1: LCI for cyanide leaching process (presented per function unit – 1 kg gold produced) 

Input Quantity Unit Output Quantity Unit 

Activated carbon 2,711.5 kg 
Alamine® 336 (Proxy: Hexamethylene diamine 
(HMDA)) 45.9 kg 

Alamine® 336 (Proxy: Hexamethylene 
diamine (HMDA)) 45.9 kg Ammonia 192.5 kg 

Ammonia 192.5 kg Ammonium diuranate 51.1 kg 

Calcium carbonate 61,299.5 kg Arsenic trioxide [Emissions to air] 3.8 kg 

Calcium hydroxide 51,562.9 kg Arsenic trioxide [Product] 378.3 kg 

Compressed air 121,563.6 Nm3 Carbon dioxide  69,843.0 kg 

Copper sulphate 466.7 kg Dodecanol 76.4 kg 

Dodecanol 76.4 kg Gold 1.0 kg 

Dow® 200  205.0 kg Nitrate  9,089.7 kg 

Electricity 5,736,465.1 MJ Nitrogen 
566,720,775.

5 kg 

Ferrous sulphate 395.1 kg Oxygen 41,148.0 kg 

Gold  1.3 kg Kerosene 1,219.2 kg 

Hydrochloric acid 3,440.5 kg Sodium chloride 10,579.4 kg 

Iron (II) oxide 3,889.5 kg Solids emissions (grouped) 12,299,751.0 kg 

Kerosene 1,219.2 kg Sulphur dioxide  4.0 kg 

Lead nitrate  23,841.0 kg Sulphuric acid 30,843.6 kg 

Manganese dioxide 578.1 kg Water (waste water, untreated)  16,607,772.4 kg 

Potassium permanganate 335.6 kg Water recycle  10,618,084.0 kg 

Process Steam (from hard coal) 1,119,579.1 MJ Water vapour  18,847.6 kg 

Sodium cyanide 112,355.3 kg    

Sodium hydroxide 2,604.3 kg    

Sodium hypochlorite 13,478.7 kg    

Sodium Mercaptobenzothiazole 1,025.1 kg    

Sulphuric acid 12,658.4 kg    

Tailings Feed 12,092,202.8 kg    

Thermal energy (MJ)  1,051.0 MJ    
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Input Quantity Unit Output Quantity Unit 

Water (desalinated; deionised)  16,626,620.0 kg    

Water recycle 10,618,084.0 kg    

Zinc powder 303.2 kg    

 

Table 3-2: LCI for thiosulphate leaching process (presented per function unit – 1 kg gold produced) 

Input Quantity Unit Output Quantity Unit 

Alamine® 336/Amberjet® 4200 (Proxy: 
Hexamethylene diamine (HMDA)) 1,394.7 kg 

Alamine® 336/Amberjet® 4200 (Proxy: 
Hexamethylene diamine (HMDA)) 1,394.7 kg 

Ammonia 192.4 kg Ammonia 192.4 kg 

Calcium carbonate 62,161.8 kg Ammonium diuranate [Product] 51.1 kg 

Compressed air 3,542.2 Nm3 Carbon dioxide 27,275.1 kg 

Copper sulphate  444.5 kg Dodecanol [Organic emissions to fresh water] 76.4 kg 

Dodecanol 76.4 kg Dow® 200 205.0 kg 

Dow® 200 205.0 kg Gold 1.0 kg 

Electricity 1,570,973.9 MJ Manganese dioxide 48,481.4 kg 

Ferrous sulphate 395.0 kg Nitrogen 37,031.8 kg 

Hydrated Lime 120.9 kg Oxygen 9,258.0   

Hydrogen peroxide  4,996.8 kg Kerosene 1,218.84 kg 

Iron oxide 3,888.3 kg Silver 14.7 kg 

Kerosene 1,218.8 kg Sodium Mercaptobenzothiazole 1,024.8 kg 

Manganese dioxide 577.9 kg Solid emissions from flowsheet 12,073,599.5 kg 

Mine tailings feed 12,092,202.8 kg Sulphuric acid  30,834.6 kg 

Oxygen 37,290.9 kg Water (desalinated; deionised)  15,535,783.2 kg 

Potassium permanganate  222.2 kg Water recycle 9,932,713.8 kg 

Sodium hydroxide 2,644.0 kg    
Sodium Mercaptobenzothiazole 1,024.8 kg    

Sodium sulphide 3,442.8 kg    

Sodium sulphite 816.6 kg    

Sodium thiosulfate 23,237.5 kg    
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Input Quantity Unit Output Quantity Unit 

Sulphuric acid 12,110.6 kg    

Thermal energy 131,441.9 MJ    

Water (desalinated; deionised) 15,535,783.2 kg    

Water recycle 9,932,713.8 kg    
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3.4.3. Methodology for determination of category indicators 

The LCA methodology involves conducting a life cycle inventory (LCI) in HSC Sim® which is 

exported to GaBi® for life cycle impact assessment (LCIA) to evaluate environmental impact of 

elementary inputs and outputs. This approach does not allow the contribution analysis of 

contributions to impact categories by specific unit processes and chemical species. To overcome 

this, a supplementary LCIA was conducted simultaneously in Microsoft Excel® for the gold recovery 

flowsheets identified. This involved exporting ReCiPe® 2016 characterisation factors from the GaBi® 

database along with the flowsheet LCI to calculate the contribution of individual chemical species to 

environmental impact categories using equation [3-1] adapted from Pennington et al. (2004) where 

“s” represents a specific chemical species on the LCI. The accuracy of the results of the LCIA 

conducted in Microsoft Excel® was compared against the LCIA results output by GaBi® as a control 

measure.  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =  ∑𝐶ℎ𝑎𝑟𝑎𝑐𝑒𝑡𝑒𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟(𝑠)

𝑠

× 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑠) [3-1] 

This approach allows the traceability to understand the quantitative impact of specific chemical 

species emitted to the ecosphere on environmental impact categories. The origin of the chemical 

species can then be traced back to the unit process where the chemical species was produced. This 

allows the assessment of individual unit processes on environmental impacts. This also allows the 

identification of opportunities to reduce environmental impacts within a process flowsheet or areas 

where environmental impacts are elevated (i.e. environmental “hotspots”).  

3.4.4. Data shortages and data requirements 

Datasets for background processes are quintessential for development of an LCA, since the datasets 

for foreground processes contribute to less than 5% of the life cycle environmental impacts (Steubing 

et al., 2016). The GaBi® professional database did not include all the datasets required to complete 

an LCA for the flowsheets developed. The life cycle indicators of missing datasets background 

processes were accounted for by manually constructing the missing datasets in GaBi® from 

literature. The manufacturing processes, chemical reactions and assumptions made for the 

development of each manually created dataset is discussed in this section.  

Iron oxide is used in combination with manganese dioxide to form Fe3+ ions to leach uranium from 

ore. Reagent grade iron oxide used in the pigment industry is produced through the neutralisation 

and calcination of ferrous sulphate at 300 °C as represented by equations [3-2] and [3-3] (Hayashi, 

2012). Mass and energy balances were constructed in HSC Sim® which was then exported to GaBi® 

to create the iron oxide background process dataset. The LCIA results may be underestimated and 

accuracy of the LCA results affected when predicting the life cycle impacts associated with iron oxide 

manufacture.  

2𝐹𝑒𝑆𝑂4 + 4𝑁𝑎𝑂𝐻 → 2𝑁𝑎2𝑆𝑂4  + 2𝐹𝑒(𝑂𝐻)3  + 3𝐻2 [3-2] 
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2𝐹𝑒(𝑂𝐻)3
∆
→ 𝐹𝑒2𝑂3 + 3𝐻2𝑂 [3-3] 

Manganese dioxide (MnO2) is used as an oxidising agent during uranium leaching. Electrolytic 

manganese dioxide is prepared by calcining pyrolusite ores at 700-950 °C followed by sulphuric acid 

leaching (H2SO4 concentration = 50 g/L) at 80 °C for 3 hours to produce an electrolyte containing 

manganese sulphate (MnSO4). The manganese dioxide is then recovered from electrolyte by 

electrowinning followed by subsequent neutralisation and filtration steps to neutralise residual acid  

(Biswal et al., 2015). A background dataset for the manganese dioxide was created in GaBi® and 

HSC Sim® to account for the environmental indicators associated with this species from the process 

described. The LCIA results may be underestimated and accuracy of the LCA results affected when 

predicting the life cycle impacts associated with manganese dioxide manufacture. 

Potassium permanganate (KMnO4) is an oxidising agent used during effluent water treatment for 

arsenic removal. Potassium permanganate is synthesised by charging  MnO2 to a solution of 

concentrated potassium hydroxide (KOH) solution (70-90% by mass) 200-350 °C which is then 

isolated by filtration (equation [3-4]) (Reidies, 2000). The potassium hydroxide required in equation 

[3-4]  is manufactured by the electrolysis of potassium chloride (equation [3-5]) (Schultz et al., 2000). 

Background processes for potassium permanganate and potassium hydroxide are not part of the 

GaBi® professional database and therefore they were developed in GaBi® and HSC Sim® to 

complete the dataset to model gold metallurgical processes. The LCIA results may be 

underestimated and accuracy of the LCA results affected when predicting the life cycle impacts 

associated with potassium permanganate and potassium hydroxide manufacture. 

𝑀𝑛𝑂2 +  2𝐾𝑂𝐻 + 0.5𝑂2 →𝐾2𝑀𝑛𝑂4   + 𝐻2𝑂 [3-4] 

𝐾𝐶𝑙 +  2𝐻2𝑂 → 2𝐾𝑂𝐻 + 𝐶𝑙2 +𝐻2  [3-5] 

Sodium mercaptobenzothiazole (Na-MBT) was recommended as a flotation collector. The active 

component 2-mercaptobenzothiazole is produced by reacting aniline with carbon disulphide (CS2) 

and sulphur at 3.1 MPa and between 250-300 °C (Equation [3-6]). The resulting 2-

mercaptobenzothiazole which is then neutralised with sodium hydroxide to produce sodium 

mercaptobenzothiazole (Lay et al., 2000).  Carbon disulphide background process datasets are not 

present in GaBi® professional database but have been developed by  Kunene (2014) (Table 3-3) as 

part of their LCA investigation into xanthate salt manufacture. A background dataset was constructed 

in GaBi® and HSC-Sim® for sodium mercaptobenzothiazole with the aforementioned information. 

Primary data from literature was used for the development of the carbon disulphide background 

process dataset therefore the estimation of life cycle impacts for carbon disulphide may be accurate. 

The dataset created for sodium mercaptobenzothiazole may, however, underestimate life cycle 

impacts associated with its manufacture and affect the accuracy of the LCIA results.  
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+ 𝐶𝑆2 + 𝑆    
250−300 ℃
→         

 

+𝐻2𝑆 

 

[3-6] 

Table 3-3: LCA background dataset for 1 tonne of CS2 manufacture [Adapted from: (Kunene, 2014) 

Description Unit Quantity per tonne CS2 

manufactured 

Inputs Energy Electricity GJ 0.81 

Steam, net GJ 6.54 

Fuel gas GJ 7.51 

Materials Water net m3 1.38 

Nitrogen m3 13.1 

Natural gas kg 224 

Sulphur kg 882 

Outputs Waste Effluent m3 0.56 

Solid waste kg 1.86 

Hazardous waste kg 2.40 

Emissions SO2 kg 40.5 

CO2 kg 362 

Product CS2 tonne 1.00 

An LCA for activated carbon manufacture from coconut shells was conducted by Arena et al. (2016) 

and the life cycle inventory data is summarised in Table 3-4. Activated carbon from coconut shells 

is most widely used for gold recovery from cyanide liquors and therefore the inventory data in Table 

3-4 is appropriate for developing a background dataset for activated carbon (Khosravi et al., 2017; 

Yalcin and Arol, 2002). Primary data from literature was used to calculate the life cycle impacts of 

this dataset therefore the LCA results for this dataset may be accurate. 

Table 3-4: LCA background dataset for 1 tonne of activated carbon manufacture [Adapted from: 
(Arena et al., 2016)] 

Inputs and outputs Units Quantity  

Input Resources consumption of activated carbon production process 

Coconut shells that could have been used as 

biofuel 

kg 0 

Electric energy (Indonesian energy mix)  MJ 2 160 

Output Air emissions of activated carbon production process 

Carbon dioxide, biogenic (kg) kg 6 460 

Water kg 4 220 

Oxygen kg 880 

Nitrogen kg 19 000 

Carbon monoxide g 2 440 

Nitrogen oxides, as NO2 g 1 830 

Stellenbosch University https://scholar.sun.ac.za



54 

Dust (g) g 61 

Tar (as Naphthalene) kg 3.9 

Activated carbon product tonne 1 

In the cyanide flowsheet, lead nitrate was recommended in zinc cementation to improve gold 

recovery. Lead nitrate manufacture predominantly occurs through the reaction of lead oxide with 

nitric acid. Unfortunately, lead oxide does not have background datasets in GaBi® professional 

database. Therefore, an alternative mechanism for lead nitrate manufacture was used to create a 

dataset which involves the reaction of lead with nitric acid (equation [3-7])(Lewis, 2007). Since the 

primary manufacturing means for lead nitrate production was not used to create the required dataset 

in HSC Sim® and GaBi®, the life cycle impact of this process may be underestimated and therefore 

affect the accuracy of LCIA results reported.  

𝑃𝑏 + 2𝐻𝑁𝑂3 (𝑎𝑞)  → 𝑃𝑏(𝑁𝑂3)2 + 2𝐻2(𝑔) [3-7] 

Copper sulphate was recommended as an activator in flotation for both flowsheets and a catalyst in 

thiosulphate leaching is manufactured as a by-product of copper electrolysis and no background 

dataset exists in GaBi® professional database for copper sulphate. The correct approach for the 

creation of background process datasets for by-products is to allocate a fraction of the life cycle 

impacts of the main product (i.e. copper) to the by-product (i.e. copper sulphate) through mass or 

economic allocation. Mass or economic allocation of LCA results refers to the procedure whereby 

life cycle impacts of by-products are calculated based on a weighted average of the mass or 

economic value of a by-product relative to the main product (Hauschild et al., 2013; Pennington et 

al., 2004).  The research of copper production processes was beyond the scope of this study and 

therefore a background dataset was constructed for copper sulphate based on equation [3-8]. A 

background dataset was therefore constructed for copper sulphate in GaBi® and HSC Sim® based 

on equation [3-8] for copper sulphate formation during electrowinning of copper followed by 

evaporation to produce a copper sulphate pentahydrate product (Lossin, 2001). The background 

process dataset created for copper sulphate may overestimate the life cycle impacts of copper 

sulphate and affect the accuracy of the LCIA results. The overestimation of life cycle impacts is 

because the GaBi® dataset to produce pure copper was used as an input to create the dataset for 

copper sulphate. Therefore the life cycle impacts may be inflated since the full life cycle impacts of 

pure copper was carried forward to the creation of the copper sulphate dataset (equation [3-8]).  

𝐶𝑢 + 𝐻2𝑆𝑂4  + 5𝐻2𝑂 → 𝐶𝑢𝑆𝑂4 ∙ 5𝐻2𝑂 + 𝐻2(𝑔) [3-8] 

Sodium sulphite (Na2SO3) is used in the thiosulphate flowsheet as a reagent in gold elution from ion 

exchange resin to produce a gold-rich pregnant solution. Sodium sulphite may be manufactured by 

the sparging of sulphur dioxide through aqueous sodium hydroxide solution at 60-80 °C (equation 

[3-9]) followed by crystallisation to isolate the salt (Barberá et al., 2000). The background process 

datasets for sodium sulphite was not present in the GaBi® professional database and therefore 
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datasets were developed in HSC Sim® and GaBi® using the aforementioned literature information. 

The accuracy of the LCA results may be affected owing to the underestimation of the life cycle 

indicators of sodium sulphite.   

𝑆𝑂2(𝑔) + 2𝑁𝑎𝑂𝐻 → 𝑁𝑎2𝑆𝑂3 +𝐻2𝑂 [3-9] 

Sodium sulphide (Na2S) is used for the regeneration of thiosulphate in the thiosulphate flowsheet to 

convert polythionates to thiosulphate. Sodium sulphide is produced through the reaction of sodium 

sulphate with carbon at 1 100°C (equation [3-10]) (Lange and Triebel, 2000). 70% of sodium 

sulphate production is derived from natural sources and 30% as a by-product of the Mannheim 

process involving the reaction of so at 600-700°C (equation [3-11]) (von Plessen, 2000). The primary 

data for the development of a background LCA dataset for sodium sulphate could not be identified 

in literature, therefore the Mannheim process (equation [3-11]) was used instead. Background 

process datasets for sodium sulphide and sodium sulphate are not part of the GaBi® professional 

database and therefore datasets were constructed for both species using HSC Sim® and GaBi®. 

The life cycle indicators for sodium sulphide and sodium sulphate may be underestimated and the 

accuracy of the LCA results affected.  

𝑁𝑎2𝑆𝑂4(𝑠) + 2 𝐶(𝑠) → 𝑁𝑎2𝑆 + 2𝐶𝑂2 [3-10] 

𝑁𝑎𝐶𝑙 + 𝐻2𝑆𝑂4 →𝑁𝑎2𝑆𝑂4(𝑠) + 𝐻𝐶𝑙 [3-11] 

Dow®200 is a polypropylene glycol methyl ether recommended as frother for flotation in this work 

(Wiese and Harris, 2012). The monomer unit propylene glycol methyl ether is synthesised from 

propylene oxide and methanol over a  calcium oxide catalyst at 120 °C for 5 hours (equation [3-12]) 

(Zhang et al., 2005). A background dataset for the monomer was created in GaBi® and HSC Sim® 

for the monomer species as estimation of the environmental indicators of the polymer Dow®200. A 

background dataset for methanol was not available and therefore ethanol was used instead as a 

proxy. Several assumptions were used to create the dataset to construct the Dow®200 dataset and 

the environmental indicators may be underestimated affecting the accuracy of the LCA results 

reported.  

𝐶𝐻3𝑂𝐻 + 𝐶𝐻3𝐶𝐻𝐶𝐻2𝑂 
𝐶𝑎𝑂
→   𝐶𝐻3𝐶𝐻(𝑂𝐻)𝐶𝐻2𝑂𝐶𝐻3 

[3-12] 

The dodecanol background dataset is required to calculate environmental indicators for uranium 

solvent extraction and is not included in the GaBi® professional database. Dodecanol belongs to the 

“fatty alcohol” chemical family and is a derivative produced from coconut oil (Falbe et al., 2000).  

Background process datasets for raw materials required to manufacture dodecanol are also not 

included in the GaBi® professional database and therefore a dodecanol background process dataset 

could not be created in GaBi®. In order to account for environmental impacts of the dodecanol 

background process, “C16-18 fatty alcohol from palm oil” was assumed to be the closest proxy for 

dodecanol.  Dodecanol is a 12-carbon atom fatty alcohol derived from natural sources therefore the 
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selection of the “C16-18 fatty alcohol from palm oil” background process dataset as a proxy was a 

good representation for dodecanol since it belongs to the same chemical family. This assumption 

may report inaccurate life cycle indicators associated with dodecanol manufacture and affect the 

accuracy of the LCA results reported.  

Ferric chloride (FeCl3), used during arsenic removal process to capture arsenic as scorodite 

(FeAsO4.2H2O) in both flowsheets, background dataset was not present in the GaBi® professional 

database. Iron (II) sulphate (FeSO4) was used as a proxy to represent the life cycle impacts 

associated with ferric chloride. This assumption may underestimate the life cycle indicators linked to 

ferric chloride manufacture and affect the accuracy of the LCA results reported. 

Trademarked products were recommended during process flowsheet development. Amberjet® 4200 

and Alamine® 336 are proprietary strong base resins used for gold recovery and uranium recovery 

respectively. The molecular structure of Amberjet® 4200 resin consists of a styrene divinylbenzene 

copolymer with a trimethyl ammonium functional group (C22H28NCl), while  Alamine® 336 is an amine 

with the IUPAC name N,N-dioctyl-1-octanamine (C24H51N) (Friess, 2016; Grosse et al., 2003; Nicol 

and O’Malley, 2002). The manufacturing processes of these species are the intellectual property of 

the parent companies that hold the intellectual property and therefore the manufacturing processes 

for the materials would not be part of the GaBi® professional database. It was decided to use 

“Hexamethylenediamine” (C6H16N2) as a proxy to represent these species. This is the only species 

in the GaBi® professional database that has a hydrocarbon backbone with amine functional groups 

and was therefore the only proxy that could be selected. The life cycle indicators associated with 

Alamine® 336 and of Amberjet® 4200 may be underestimated since the proxy selected has a shorter 

carbon backbone without alkyl functional groups and will reduce the accuracy of the LCA results 

reported. 

Acrol®J2P 350 is a guar gum, polysaccharide consisting of mannose and galactose moieties used 

as a depressant during flotation (Voragen et al., 2000). The GaBi® professional database does not 

include any food and beverage products manufactured from renewable resources and therefore a 

suitable background process to represent Acrol®J2P could not be identified nor created in GaBi® 

as a proxy. In the absence of a suitable proxy it was decided to neglect the contribution of this 

species to the LCA because of the small amount of this species used in the flowsheet. The life cycle 

impacts associated with the manufacture of Acrol®J2P 350 was therefore not accounted for in the 

LCA and the environmental impacts of the flowsheets proposed are underestimated where this 

species is concerned.  

Dithiosulphate (Na3PS2O2) is a promoter in gold flotation and is produced by the reaction of 

phosphorous pentasulphide (P2S5) with sodium hydroxide (equation [3-13]). Phosphorous 

pentasulphide is produced by the reaction of molten sulphur and phosphorous at 280-515 °C in the 
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presence of molten phosphorous pentasulphide followed by distillation to isolate Phosphorous 

pentasulphide (Bettermann et al., 2000). The raw materials required for the Dithiosulphate does not 

exist in the GaBi® professional database therefore the construction of a background dataset could 

not be conducted. A representative species with background datasets that has a chemical structure 

akin to dithiosulphate could not be identified. In the absence of a suitable proxy it was decided to 

neglect the contribution of this species to the LCA because of the small amount of this species used 

in the flowsheet. The life cycle impacts of this species are therefore not represented in this study and 

the corresponding environmental impacts of the proposed flowsheets.  

𝑃2𝑆5 + 6𝑁𝑎𝑂𝐻 → 𝑁𝑎3𝑃𝑆2𝑂2 +𝐻2𝑆 + 2𝐻2𝑂 [3-13] 

Complete sulphur recovery is not obtained during flotation and has potential to generate sulphuric 

acid in the depleted tailings effluent (a phenomenon known as acid mine drainage (AMD)). The 

ReCiPe® 2016 LCIA methodology used in this work does not calculate environmental indicators for 

sulphur, sulphide or pyrite emissions but indicators for sulphuric acid emissions are estimated 

(Huijbregts et al., 2016). Therefore, to account for life cycle impacts of acid mine drainage the 

reaction system in equations [3-14] to [3-18] was created as a unit process in HSC Sim® for both 

flowsheets (Singer and Stumm, 1970; Tutu et al., 2008). The complete oxidation of pyrite to sulphuric 

acid was assumed and therefore the life cycle impacts of AMD may be overestimated since only 

sulphide minerals where oxygen and water concentrations are enough to meet the stoichiometric 

requirements (i.e. in oxidation zone of mine tailings) will be converted to sulphuric acid (Naicker et 

al., 2003). 

𝐹𝑒𝑆2(𝑠) + 3.5 𝑂2(𝑔) + 𝐻2𝑂 → 𝐹𝑒
2+(𝑎𝑞) + 2𝐻+(𝑎𝑞) + 2𝑆𝑂4

2−(𝑎𝑞) [3-14] 

𝐹𝑒2+(𝑎𝑞) + 0.25 𝑂2(𝑔) + 𝐻
+(𝑎𝑞) → 𝐹𝑒3+(𝑎𝑞) + 0.5𝐻2𝑂  [3-15] 

𝐹𝑒𝑆2(𝑠) + 14𝐹𝑒
3+(𝑎𝑞) +  8𝐻2𝑂 → 15𝐹𝑒

2+(𝑎𝑞) + 2𝑆𝑂4
2−(𝑎𝑞) + 16𝐻+(𝑎𝑞)  [3-16] 

𝐹𝑒3+(𝑎𝑞) + 3𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3(𝑠) + 3𝐻
+(𝑎𝑞) [3-17] 

2𝐻+(𝑎𝑞) + 𝑆𝑂4
2−(𝑎𝑞) → 𝐻2𝑆𝑂4(𝑎𝑞) [3-18] 

No GaBi® professional database background datasets exist for the effluent water treatment of mining 

wastewaters. Primary data from reverse osmosis and wastewater treatment plants commissioned at 

tailings reclamation facilities are required to develop accurate background datasets for wastewater 

treatment of mining effluent water discharges. For exercises such as these, however, this data is not 

readily available and is a literature gap for comprehensive metallurgical LCA’s to be conducted for 

mining wastewater treatment.   Background datasets for the reverse osmosis water treatment and 

wastewater treatment of municipal water do, however, exist in the GaBi® professional database and 

therefore were used as a proxy for mining wastewater treatment. Pre-treatment processes such as 

cyanide destruction and arsenic removal were included in the proposed flowsheets to bring the 

effluent water discharge stream from the flowsheets closer to an approximation of the input to 

municipal wastewater treatment.  This may improve the accuracy of the assumption made for 

selecting the aforementioned effluent water treatment proxies. The environmental impacts 
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associated within mining wastewater treatment may be underestimated and affect the reliability of 

the LCA results.  

Arsenic trioxide (As2O3) is a harmful emission to environment from the pyrometallurgical roasting 

and was not accounted for in any of the impact categories in the ReCiPe® 2016 LCIA methodology. 

Other LCIA methodologies such as the CML 2001 LCIA database have derived characterisation 

factors for As2O3. As2O3 ecological burden was accounted for by comparing arsenic emissions to 

ecosphere against environmental regulation specifically NEMA: Air Quality Act (Act No.29 of 2004).    

Another point of discussion is that of uranium. Within the ReCiPe® LCIA, the fate models used to 

derive characterisation factors for radionuclides make the assumption of a 100 000-year time 

horizon. Therefore, there are no characterisation factors for uranium within the Individualist (time 

horizon: 20 years) and Hierachist approaches (time horizon: 100 years). The characterisation factors 

for uranium isotopes are only considered under the Egalitarian perspective (time horizon: 100 000 

years) as summarised in the work from Huijbregts et al. (2016) in Table 3-5. Therefore, for certain 

chemical species an analysis in the Individualist or Egalitarian perspectives needs to be adopted to 

account for their environmental impacts.  

Table 3-5: Uranium radionuclide characterisation factors at midpoint level for the ReCiPe 2016 LCIA 
methodology  [Adapted from:  (Huijbregts et al., 2016)] 

Radionuclides Cultural perspectives 

Individualist Hierarchist Egalitarian 

Emissions to air 

U-234 

U-235 

U-238 

- 

- 

- 

- 

- 

- 

5.82 

1.27 

0.491 

Emissions to fresh water 

U-234 

U-235 

U-238 

- 

- 

- 

- 

- 

- 

0.145 

0.136 

0.136 

Environmental regulation was consulted to assess if the uranium concentration in depleted tailings 

emissions was compliant. The South African National environmental management: Waste act 2008 

does not report emissions limits for uranium emissions to rehabilitated land (Department of 

Environmental Affairs, 2014). Therefore, Canadian environmental regulations were consulted 

instead for uranium emissions to the ecosphere (Canadian Council of Ministers of the Environment, 

2007). 

In instances where background datasets for raw materials were developed in HSC Sim® along with 

GaBi® only the material and energy requirements to produce the species were considered. 

Therefore, the associated material and energy costs to separate the desired species from waste 

products such as transport, separation, packaging and refining were not considered. This implies 
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that the background datasets developed are incomplete but represent an estimation of the material 

and energy requirements to produce the desired species. These assumptions were made because 

the scope of the present study was to thoroughly develop metallurgical processes for gold 

manufacture and not to develop background process datasets for the raw materials required for gold 

manufacture. These assumptions result in an underestimation of the life cycle impacts of the created 

datasets and reduce the overall life cycle impacts associated with a unit process and the overall 

flowsheet presented. The contribution of assumptions made to create the background datasets on 

the LCA results was quantified in a sensitivity analysis. The sensitivity analysis determines the extent 

to which LCA results are influenced by an input to the LCA study and will be discussed in section 

5.2.2.   

Some environmental impacts of background datasets developed in this work may not be accounted 

for in the results. Additionally, the downstream environmental consequences of the developed 

species were not calculated since extensive toxicological research and modelling are required to 

develop characterisation factors for species and is beyond the scope of this work. Data limitations 

due to emissions from the foreground process have minimal impact on the overall LCA results. 

According to Steubing et al. (2016), the background process datasets account for 99% of the 

environmental indicators during an LCA investigation and therefore the omission of the foreground 

process impacts are low. As discussed in 2.6.2, LCA’s in the field of mining only account for 3.3% of 

the academic journal entries in the Compendex database and the data shortages discussed in this 

section may be one of the reasons for the low representation. LCA is a developing field and 

researchers within the field improve the databases that software is based on regularly (Huijbregts et 

al., 2017; Steubing et al., 2016). Despite the data shortages, the information gleaned from datasets 

that are available in the GaBi® professional database provide meaningful information about the life 

cycle environmental impacts of products and processes. Furthermore, identification of environmental 

hotspots in processes is a valuable design tool for minimising the life cycle environmental impacts 

of a process. A retrospective commentary of the use of LCA as a design tool is discussed in section 

5.3.   
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4 PROCESS FLOWSHEET DEVELOPMENT AND DESCRIPTION  

The outcome of objective two of this work is presented in this chapter which collates all the findings 

from literature in the previous sections to propose gold recovery flowsheets. The scenario of a 

hypothetical tailings dam mineralogy was considered, and process design decisions were made to 

develop two process flowsheets for the recovery of gold along with opportunities to reduce the 

environmental impact of mine tailings. Specifically, a cyanide flowsheet (Figure 4-1) as a baseline 

for the traditional process for gold recovery and a thiosulphate flowsheet (Figure 4-2) as a 

prospective environmentally friendly alternative process for gold recovery was proposed. The basis 

for the flowsheets developed focussed on technology that has been demonstrated for commercial 

gold recovery and therefore is technologically feasible. This chapter lists assumptions, reagent 

concentrations and process conditions to provide a thorough process description of each unit 

process recommended. This information was used to develop process simulations conducted in HSC 

Sim® to build the life cycle inventory (LCI) which was used to assess the environmental 

consequences associated with each process flowsheet through life cycle assessment (LCA). LCA 

provides an objective platform for the assessment of technologies proposed in literature against the 

current state of the art employed in industry. In this chapter, only the main reactions occurring in unit 

processes are reported with the extended reaction systems considered in HSC Sim® being reported 

in Appendix I. 

The flowsheets proposed have unit processes that are in common with one another since the 

cyanide flowsheet formed the basis for design of the thiosulphate flowsheet. The main differences 

between the flowsheets are in the oxidative decomposition of sulphide flotation concentrate, the gold 

leaching lixiviant and accompanying recovery unit processes and finally how the residual lixiviant is 

managed to prevent lixiviant discharge to the ecosphere. For the cyanide flowsheet (Figure 4-1), 

sulphide roasting was recommended followed by cyanide leaching and gold recovery by carbon 

adsorption together with zinc cementation and finally smelting to produce a crude gold bullion. The 

residual cyanide was destroyed, and arsenic removed from the tailings as scorodite before the solid 

waste emissions were discharged to the ecosphere and wastewater is subjected to wastewater 

treatment. For the thiosulphate flowsheet (Figure 4-2), pressure oxidation was proposed for sulphide 

mineral oxidation followed by precious metal thiosulphate leaching and recovery by ion-exchange 

resin adsorption and elution to produce a pregnant leach solution. The pregnant leach solution is 

then electrowon and smelted to produce a crude gold bullion. The residual thiosulphate lixiviant is 

recovered from the spend leach liquor through reverse osmosis water treatment and thiosulphate 

lixiviant regenerated to reduce overall lixiviant consumption. 
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Figure 4-1: Process flow diagram of cyanide leaching flowsheet of the foreground process 
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Figure 4-2: Process flow diagram of thiosulphate leaching flowsheet of the foreground process 
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4.1. Process Feed 

This chapter collates all the findings from literature in the previous sections to propose flowsheets 

for the recovery of value and reduction of environmental impacts of mine tailings. Two process 

flowsheets were developed (cyanide flowsheet represented in Figure 4-1 and a thiosulphate 

flowsheet illustrated in Figure 4-2), and this section provides a thorough process description, lists 

assumptions and provides process descriptions and reagents used in unit processes. This 

information forms the basis of the process simulations conducted in HSC Sim® to develop the life 

cycle inventory which will be used to assess the environmental consequences associated with each 

process flowsheet and each unit operation chosen.  

Table 4-1: Process feed assumption for tailings reclamation plant 

Property Value Reference 

Solids feed rate (tons per day) 50 000 (Marsden and House, 

2006) 

Slurry Density (kg/m3) 1.45  

Gold head grade (g/tonne)  0.28 (Table 2-2) 

Plant availability (%) 95% Assumption 

Operating days per year 320 Assumption 

Plant operating hours per day 24 Assumption 

Feed composition  Summarised in Table 2-2 and Table 

2-3 

- 

 

4.2. Flotation  

Flotation of reclaimed tailings was recommended to produce a high value concentrate containing 

gold, sulphide minerals and uranium thereby reducing the size and processing requirements of 

downstream recovery operations. Oxidation of sulphide minerals in tailings dams causes the 

passivation of reactive surfaces and therefore conditioning of the pulp within an acidic medium is 

required before flotation (O’Connor and Dunne, 1991). The environmental impact of flotation is 

associated with the reagents used and electricity consumed. The West Rand tailings contain 25% 

pyrophyllite (Table 2-2), which is hydrophobic and can report to the concentrate and thus a 

depressant was recommended (Cabassi et al., 1983). Together with the copper sulphate activator, 

dithiophosphate (DTP) functions as a gold promotor to increase gold recovery (Grund et al., 2000; 

Lloyd, 1981; Ruhmer et al., 1977).  
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Table 4-2: Flotation process conditions for west rand mine tailings  

Reagents c Process conditions c Recoveries  

Collectors: 85 g/t NaMBTa and 10 g/t 

DTP b 

Activators: 40 g/t CuSO4 

Depressant: 40 g/t Acrol® J2P 350 

Frother: 35 g/t Dow® 200 

pH modifier: Sulphuric acid  

Temperature: 25 °C 

Pressure: 101.3 kPa 

pH: 3.8 

Pulp density: 40% by 

mass. 

Residence time: 19 

minutes 

Mass pull: 3.5% 

Sulphur: 85% c 

Gold: 46% c 

Uranium: 20% d 

 

a: NaMBT: Sodium Mercaptobenzothiazole b: DTP:  Dithiophosphate  
c: (O’Connor and Dunne, 1991)  d: (Lloyd, 1981) 

 

4.3. Uranium leaching and recovery  

By removing uranium from mine tailings as a value stream the impact associated with ionising 

radiation and carcinogenic emissions in depleted tailings is reduced. There is consensus among 

authors that acid leaching followed by solvent extraction is the preferred mode for recovery of 

uranium from low-grade ores. The use of manganese dioxide as an oxidising agent for uranium 

leaching will however increase manganese in the effluent. The tailings feed is already non-compliant 

with environmental regulation for manganese as summarised in Table 2-1 therefore there is an 

economic and environmental trade-off when improving uranium recovery efficiency. An alternative 

is the use of pressure leaching for uranium recovery, but this is a high cost operation reserved for 

high-grade, complex uranium ores. The South Uranium plant in South Africa recovers uranium from 

ore deposits containing a uranium grade of 450 g/tonne. In the present study, the mine tailings 

uranium grade was 54.9 g/tonne (Table 2-1). Therefore the uranium grade in the feedstock in this 

study is too low to consider high cost technologies such as pressure leaching (Edwards and Oliver, 

2000; Sole et al., 2011; Zhu and Cheng, 2011).  

Table 4-3: Uranium sulphuric acid leaching reactions for both process flowsheets 

Progress 

(%) 

Chemical Reaction 

100 𝐹𝑒2𝑂3 + 5𝐻2𝑆𝑂4(𝑎𝑞) + 𝑀𝑛𝑂2

→ 2𝐹𝑒3+(𝑎𝑞) + 𝑀𝑛2+(𝑎𝑞) + 5𝑆𝑂4
2−(𝑎𝑞) + 5𝐻2𝑂 

[4-1] 

84.8 𝑈𝑂2 + 2𝐹𝑒
3+(𝑎𝑞) + 3𝐻2𝑆𝑂4(𝑎𝑞)

→ 𝑈𝑂2(𝑆𝑂4)3
4−(𝑎𝑞) + 2𝐹𝑒2+(𝑎𝑞) + 6𝐻+(𝑎𝑞) 

[4-2] 

84.8 𝑈𝑇𝑖2𝑂6 + 2𝐹𝑒
3+(𝑎𝑞) + 7𝐻2𝑆𝑂4(𝑎𝑞)

→ 2𝐹𝑒𝑆𝑂4 +  2𝑇𝑖𝑂𝑆𝑂4 + 𝑈𝑂2(𝑆𝑂4)3
4−(𝑎𝑞) + 10𝐻+(𝑎𝑞) + 𝐻2𝑂 

[4-3] 

100 𝐶𝑎𝐶𝑂3(𝑠) + 𝐻2𝑆𝑂4(𝑎𝑞) → 𝐶𝑎𝑆𝑂4(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂  [4-4] 

0 𝐹𝑒𝑆2 + 14𝐹𝑒
3+(𝑎𝑞) + 8𝐻2𝑂 →  2𝐹𝑒

2+(𝑎𝑞) + 2𝑆𝑂4
2−(𝑎𝑞) + 16𝐻+(𝑎𝑞)   [4-5] 
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Table 4-4: Uranium leaching process conditions  

Reagents a Process conditions a Extent of reactions a 

𝑀𝑛𝑂2 consumption: 4 

kg/tonne dry solids 

𝐹𝑒2𝑂3 consumption: 5 

kg/tonne dry solids 

𝐻2𝑆𝑂4 consumption: 25 

kg/tonne dry solids 

Temperature: 60 °C 

Pressure: 101.3 kPa 

Residence time: 20-24 hours b 

Pulp density: 40% by massb 

pH: 1.5b 

Redox potential (SHE): greater 

than 450 mV b 

𝑈𝑂2 and 𝑈𝑇𝑖2𝑂6 leaching 

extent: 84.8% 

a: (Lottering et al., 2008)  b: (Janse van Rensburg, 2016) 

The extents of reaction in Table 4-3 (full reaction scheme in Appendix I) were assumed to be 100% 

as a conservative estimate and to represent a scenario of maximum reagent consumption. It was 

assumed that all sulphides and liberated gold report to subsequent oxidative pre-treatment 

processes and not to the leachate.  The decomposition of pyrite was accounted for in subsequent 

oxidative treatment unit processes and not by acid leaching as defined by equation [4-5]. The 

presence of brannerite (𝑈𝑇𝑖2𝑂6) makes the uranium ore complex and requires elevated temperature, 

oxidising agent and more severe acidic conditions along with longer residence time (20-24 hours) to 

achieve up to 84.8% uranium recovery (Gilligan and Nikoloski, 2017, 2015; Lottering et al., 2008).  

To recover the uranium, the leachate from acid leaching was subjected to solvent extraction with tri-

n-octylamine (trademarked name Alamine 336®) in the organic phase using the reagents and 

process conditions summarised in Table 4-5 and Table 4-6 respectively to produce ammonium 

diuranate. Dilution of the leachate to 5% sulphuric acid by mass was implemented to maintain the 

uranium extraction efficiency of tri-n-octylamine at 98% (Kiegiel et al., 2017). 5% bleed stream of 

organic phase and stripping medium was recommended to prevent the accumulation of 

contaminants in the solvent extraction and stripping circuit.  

Table 4-5: Uranium solvent extraction reactions for both process flowsheets 

Progress 

(%) 

Chemical Reaction 

100 2𝐶24𝐻51𝑁 + 𝐻2𝑆𝑂4(𝑎𝑞) → [(𝐶24𝐻51𝑁𝐻)2 𝑆𝑂4 ] [4-6] 

98 2[(𝐶24𝐻51𝑁𝐻)2 𝑆𝑂4 ]  +  𝑈𝑂2(𝑆𝑂4)3
4−(𝑎𝑞)

→  {[(𝐶24𝐻51𝑁𝐻)4]
4+[𝑈𝑂2(𝑆𝑂4)3]

4−} + 2𝑆𝑂4
2−(𝑎𝑞) 

[4-7] 
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Table 4-6: Uranium solvent extraction process conditions  

Reagents a Process conditions a Recoveries a 

𝐻2𝑆𝑂4 mass concentration = 5% 

Aqueous/organic volume ratio = 1:1 

Organic phase composition: 0.2 M tri-

n-octylamine in kerosene   

Temperature: 25 °C  

Pressure: 101.3 kPa 

Uranium extraction 

efficiency: 98% a 

a:(Kiegiel et al., 2017) 

Following the simulations in HSC Sim®, it was observed that an 8 000% stoichiometric excess of tri-

n-octylamine was proposed in literature for uranium solvent extraction when using the process 

conditions in Table 4-6. The literature recommendations were based on uranium being recovered as 

the main product and not a by-product from uranium primary ores. Furthermore, molybdenum and 

vanadium was recovered along with uranium when using tri-n-octylamine as a solvent and may 

occupy the solvent functional groups thereby reducing uranium solvent extraction efficiency 

(Edwards and Oliver, 2000; Sole et al., 2011; Zhu and Cheng, 2011). Therefore, the excess reagent 

recommendations in literature were followed to ensure the maximum recovery of uranium since only 

20% of uranium was recovered during flotation and reduce the environmental impacts related to 

uranium. Tri-n-octylamine is recycled within the solvent extraction circuit therefore only the 5% bleed 

stream is replenished in the flowsheet.    

Following solvent extraction, the organic phase was stripped with ammonium sulphate and ammonia 

to recover uranium. The optimum process conditions and stripping reactions are summarised in 

Table 4-7 and Table 4-8 respectively, along with ammonium diuranate precipitation conditions in 

Table 4-9. The efficiency of uranium stripping with ammonium sulphate was improved by increasing 

concentration of stripping agent and maintaining pH below pH 5 which prevents the formation of an 

emulsion and the premature precipitation of uranium diuranate. Ammonium sulphate was recycled 

to the stripping stage to reduce reagent consumption.  

Table 4-7: Uranium stripping and precipitation reactions for both process flowsheets 

Progress 

(%) 

Chemical Reaction 

99.9 {[(𝐶24𝐻51𝑁𝐻)4]
4+[𝑈𝑂2(𝑆𝑂4)3]

4−} + 2(𝑁𝐻4)2𝑆𝑂4

→ (𝑁𝐻4)4𝑈𝑂2(𝑆𝑂4)3 + 2{[(𝐶24𝐻51𝑁𝐻)2]
2+𝑆𝑂4

2−} + 2𝐻2𝑆𝑂4 

[4-8] 

100 2(𝑁𝐻4)4𝑈𝑂2(𝑆𝑂4)3 +  6𝑁𝐻4𝑂𝐻 → (𝑁𝐻4)2𝑈2𝑂7 + 6(𝑁𝐻4)2𝑆𝑂4 + 3𝐻2𝑂 [4-9] 
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Table 4-8: Uranium stripping process conditions  

Reagents a,b Process conditions a,b Extent of reaction 

[(𝑁𝐻4)2𝑆𝑂4]: 2.0 𝑀  

𝑁𝐻3 gas to maintain pH maintained at 

pH 4.4 - 4.6 

pH: 4.4 - 4.6 

Temperature: 25 °C 

Pressure: 101.3 kPa 

Number of stripping stage: 

5 

Stripping efficiency: 66%b 

a:(Zhu and Cheng, 2011) b: (Morais and Gomiero, 2005) 

Table 4-9: Ammonium diuranate precipitation process conditions  

Reagents Process conditions Extent of reaction 

𝑁𝐻3 gas to maintain pH maintained at 

7.2 – 7.4 

pH: 7.2-7.4 

Temperature: 35 °C 

Pressure: 101.3 kPa 

100% precipitation 

ammonium diuranate 

a:(Ford, 1993)  

 

4.4. Oxidative pre-treatment of flotation concentrate 

Following uranium extraction, the solids filtered off after acid leaching is transferred to oxidative pre-

treatment to decompose lixiviant robbers, preg-robbing and other host minerals that gold is occluded 

within. Oxidative pre-treatment is the point of departure where the proposed process flowsheets for 

cyanide and thiosulphate leaching differ. 

4.4.1. Pyrometallurgical roasting 

As discussed in 2.3, the sulphide concentrate consists predominantly of pyrite (FeS2). For the 

cyanide flowsheet (Figure 4-1), a single stage, circulating fluidised bed (CFB) roasting was 

recommended since arsenic concentration in feed was less than 1% by mass. At greater than 1% 

arsenic a dual stage CFB is recommended in literature. CFB has the benefit of increased sulphur 

and carbon oxidation, greater specific throughput and more uniform temperature control when 

compared to the conventional bubbling fluidised bed roasting equipment (Hammerschmidt et al., 

2016; Runkel and Sturm, 2009). Following roasting, the solids (referred to as the calcine) are cooled 

within an air cooler followed by a quenching vessel to reach the process temperature and pulp 

density required for subsequent gold leaching process. HSC Sim® has a pyrometallurgical module 

that relies on Gibbs energy minimisation to estimate the composition of the effluent species as 

discussed in section 3.3. For the inputs listed in Table 4-10, 100% conversion of sulphide, carbon 

and arsenic to sulphur dioxide, carbon dioxide and arsenic trioxide respectively was reported in the 

simulations.  
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Table 4-10: Pyrite roasting oxidation process conditions  

Process conditions Reaction extent 

Temperature: 640 °C b 

Excess oxygen: 5%b 

Average solid residence time: 30 minutes b 

Sulphide oxidation: 100% 

Carbon oxidation: 100%  

a: (Runkel and Sturm, 2009)   b: (Hammerschmidt et al., 2016) 

The off-gases of pyrometallurgical roasting are first cooled to 300 °C in a heat exchanger in the form 

of a waste heat boiler to generate superheated steam or an evaporative cooler with water depending 

on the plant’s demands. The cooled off-gases are fed to a hot electrostatic precipitator to separate 

99% solids, including hazardous arsenic trioxide, from the gas stream before being fed to the SOx 

scrubbing units (Hammerschmidt et al., 2016; Thomas and Cole, 2016). Wet limestone flue gas 

desulphurisation is the technology most widely employed in industry for SO2 extraction. Forced 

oxidation methods (i.e. direct injection of air into the liquor) can achieve up to 99% desulphurisation 

compared to natural oxidation methods where 90% desulphurisation is achieved. Forced oxidation 

also allows for conversion of SOx to gypsum product at sufficient quality to be used in the gypsum 

drywall industry thereby contributing to the circular economy (Córdoba, 2015a; Koralegedara et al., 

2019a; Srivastava and Jozewicz, 2001a).  

Table 4-11: Flue gas desulphurisation reactions for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

99 𝐶𝑎𝐶𝑂3(𝑠) + 𝑆𝑂2(𝑔) + 2𝐻2𝑂(𝑎𝑞) → 𝐶𝑎𝑆𝑂3 ∙ 2𝐻2𝑂(𝑎𝑞) + 𝐶𝑂2(𝑔)  [4-10] 

90 2𝐶𝑎𝑆𝑂3 ∙ 2𝐻2𝑂(𝑎𝑞) + 𝑂2(𝑔) → 2𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂(𝑠) [4-11] 

Table 4-12: Flue gas desulphurisation process conditions  

Process conditions a Reaction extent 

CaCO3 feed: stoichiometric quantity to achieve 

99% 𝑆𝑂2 sequestration 

O2 feed: air feed rate required to achieve 90% 

𝐶𝑎𝑆𝑂3 ∙ 2𝐻2𝑂 to 𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂 conversion 

pH: 5.5 to 6.5a 

𝑆𝑂2sequestration: 99% a 

𝐶𝑎𝑆𝑂3 ∙ 2𝐻2𝑂 to 𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂 conversion: 

90%a 

a:(Córdoba, 2015b; Koralegedara et al., 2019b; Srivastava and Jozewicz, 2001b)  

 

4.4.2. Pressure oxidation 

The upstream acid leaching step benefited the pressure oxidation process through the removal of 

carbonates. Carbonates consume oxygen and evolve CO2 reducing oxygen utilisation and oxygen 

overpressure in the autoclave (Chan et al., 2015). The reactions and process conditions to oxidise 

sulphides and liberate gold are summarised in Table 4-13 (full reaction scheme in Appendix I)  and 

Table 4-14.  
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Table 4-13: Pressure oxidation reaction for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

99 𝐹𝑒𝑆2 + 3.5𝑂2(𝑔) + 𝐻2𝑂 → 2𝐹𝑒𝑆𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) [4-12] 

100 2𝐹𝑒𝑆𝑂4(𝑎𝑞) + 2𝐻2𝑆𝑂4(𝑎𝑞) + 𝑂2(𝑔) → 2𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻2𝑂 [4-13] 

100 2𝐴𝑠 + 1.5𝑂2(𝑔) + 2𝐻2𝑂 + 2𝐹𝑒𝑆𝑂4(𝑎𝑞) + 2𝐻2𝑆𝑂4(𝑎𝑞) + 𝑂2(𝑔)

→ 2𝐹𝑒𝐴𝑠𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) 

[4-14] 

26 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻2𝑂 → 2𝐹𝑒(𝑂𝐻)𝑆𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) [4-15] 

67 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 3𝐻2𝑂 → 𝐹𝑒2𝑂3(𝑠) + 3𝐻2𝑆𝑂4(𝑎𝑞) [4-16] 

0 2𝐹𝑒2(𝑆𝑂4)3 + 14𝐻2𝑂 →  2𝐻3𝑂𝐹𝑒3(𝑆𝑂4)2(𝑂𝐻)6 + 𝐻2𝑆𝑂4 [4-17] 

Table 4-14: Pressure oxidation process conditions  

Process conditions a Reaction extent 

Temperature: 230 °Ca 

Residence time: 2 hours 

Pulp density: 30% 

Oxygen partial pressure: 690 kPa 

Sulphide oxidation: 99%a 

Iron distribution of discharge a 

𝐹𝑒2𝑂3(𝑠) : 67% 

𝐹𝑒(𝑂𝐻)𝑆𝑂4 : 26% 

𝐹𝑒2(𝑆𝑂4)3 : 7% 
a:(Fleming, 2010)b

: (Gertenbach, 2016) 

Following pressure oxidation, goethite, basic iron sulphate, jarosite and sulphuric acid by-products 

need to be removed to minimise impact on downstream processes. The elevated temperature 

neutralisation process converts basic iron sulphate and jarosite to hematite (equation [4-19]) instead 

of goethite (𝐹𝑒𝑂(𝑂𝐻)) or iron (III) hydroxide (𝐹𝑒(𝑂𝐻)3(𝑠)) (equation [4-22] and [4-23]) (which is a 

precursor to jarosite and goethite formation). Hematite production is favoured at temperatures above 

100 °C and goethite is produced at temperatures between 60-100 °C (Fleming, 2010). Process 

conditions are summarised in Table 4-15, Table 4-16 and Table 4-17. Iron oxyhydroxides such as 

goethite and jarosite inhibit gold recovery through “preg-borrowing” a phenomenon whereby 

reversible adsorption of precious metals, especially silver, occurs (Chan et al., 2015). Furthermore, 

these species increase pulp viscosity of leaching liquors that inhibit mass transfer during gold 

leaching. The elevated temperature neutralisation process also allows the use of low-cost 

neutralisation agents such as limestone to negate the effects of basic iron sulphate, ferric sulphate 

and goethite  (Brittan, 2008; Fleming, 2010; Thomas, 1991; Venter et al., 2004; Zhang and Peng, 

2015).  

Table 4-15: Hot cure process and neutralisation reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

90 2𝐹𝑒(𝑂𝐻)𝑆𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) → 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻2𝑂 [4-18] 

100 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 3𝐶𝑎𝐶𝑂3 → 𝐹𝑒2𝑂3(𝑠) + 3𝐶𝑎𝑆𝑂4(𝑠) + 3𝐶𝑂2 [4-19] 

100 𝐻2𝑆𝑂4(𝑎𝑞) + 3𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑆𝑂4(𝑠) + 𝐻2𝑂 + 3𝐶𝑂2(𝑔) [4-20] 

0 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 3𝐶𝑎𝐶𝑂3 + 3𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3(𝑠) + 3𝐶𝑎𝑆𝑂4(𝑠) + 3𝐶𝑂2(𝑔) [4-21] 
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0 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 14𝐻2𝑂 + 2𝐻3𝑂𝐹𝑒3(𝑆𝑂4)2(𝑂𝐻)6 + 5𝐻2𝑆𝑂4 [4-22] 

0 2𝐻3𝑂𝐹𝑒3(𝑆𝑂4)2(𝑂𝐻)6 + 𝐻2𝑆𝑂4 → 2𝐹𝑒2(𝑆𝑂4)3 + 14𝐻2𝑂 [4-23] 

Table 4-16: Hot cure process conditions for thiosulphate leaching flowsheet 

Reagents a Process conditions a Reaction extent  

𝐶𝑎𝐶𝑂3 addition to maintain pH > 2  Temperature: 100 °C 

Pressure: 101.3 kPa 

Residence time: 12 hours  

pH: pH > 2  

Conversion of 𝐹𝑒(𝑂𝐻)𝑆𝑂4 

to 𝐹𝑒2(𝑆𝑂4)3 : 90%a 

a:(Chan et al., 2015; Fleming, 2010) 

Table 4-17: Neutralisation process conditions for thiosulphate leaching flowsheet 

Reagents Process conditions Reaction extent 

𝐶𝑎𝐶𝑂3 addition to maintain pH > 7 pH: pH > 7 𝐹𝑒2(𝑆𝑂4)3, 𝐻2𝑆𝑂4 

neutralisation: 100% 

Assumptions 

1. Complete conversion of 𝐹𝑒2(𝑆𝑂4)3 and 𝐻2𝑆𝑂4 by neutralisation with calcium carbonate by 

ensuring solution pH is above pH 7 to form hematite (Table 4-17).  

2. No jarosite (𝐻3𝑂𝐹𝑒3(𝑆𝑂4)2(𝑂𝐻)6) is formed during pressure oxidation and is represented by 

its precursor basic iron sulphate in the system (equation [4-17]). During the elevated 

temperature neutralisation process the assumption is made that jarosite is converted to basic 

iron sulphate (equation [4-23]) and subsequently hematite (equation [4-19]) if conditions in 

Table 4-16 and Table 4-17 are met (Fleming, 2010).  

4.5. Cyanide gold leaching circuit and recovery 

Following quenching of the roasted calcine emanating from pyrometallurgical roasting (Figure 4-1), 

a slurry is formed  to create a pulp for gold leaching using the cyanide-in-pulp (CIP) leaching mode. 

The flotation tailings were subjected to carbon-in-leach (CIL) processes for gold recovery of free-

milling while the remaining gold is occluded within quartz, sulphide, carbonate and carbonaceous 

minerals. The extents of reaction and process conditions are summarised in Table 4-18 (full reaction 

scheme in Appendix I)  and Table 4-19 respectively.  

Table 4-18: Cyanide leaching reaction for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

96.71/58.15 4𝐴𝑢° + 8𝑁𝑎𝐶𝑁(𝑎𝑞) + 𝑂2(𝑔) + 2𝐻2𝑂 → 4𝑁𝑎𝐴𝑢(𝐶𝑁)2(𝑎𝑞) + 4𝑁𝑎𝑂𝐻(𝑎𝑞) [4-24] 
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Table 4-19: Cyanide leaching process conditions   

Reagents Process conditions Recoveries  

𝑁𝑎𝐶𝑁 consumption = 1.1 kg/tonne dry 

solids c 

𝐶𝑎(𝑂𝐻)2 consumption to maintain pH 

10.5 = 4 kg/tonne c 

CIL activated carbon inventory = 

1kg/tonne dry solidsd 

Dissolved oxygen 

concentration: 8 ppm a 

pH > 10.5 

Temperature: 25 °C b,c,d 

Pressure: 101.3 kPa b,c,d 

Pulp density: 50% by 

massd 

Residence time: 12-48 

hours d 

Roasted calcine precious 

metal and base metal 

recovery: 96.71% c 

Flotation tailings precious 

metal and base metal 

recovery: 58.15% c 

a:(Deschênes et al., 2010)  b:(Anderson, 2016)  c:(Janse van Rensburg, 2016) 
d: (Stange, 1999) 

Although the particle size of tailings is P80 = 106 μm (optimum particle size for cyanidation is P80 = 

75 μm), the empirical data provided in the diagnostic leaching study by Janse van Rensburg (2016) 

reflect empirical gold recovery data for the tailings resource being investigated in this study. Gold 

recovery during cyanidation leaching is 96.7% and 58.2% (Table 4-19) for sulphide roasting calcine 

and flotation tailings respectively.    

Metal cyanide complexes are grouped into strong, moderate and weak categories based on their 

stability constants. Equilibrium stability constants were used to determine which metal cyanide 

species were likely to report to the pregnant leach solution. Metal cyanide complexes with stability 

constants greater than the stability constant of 𝑍𝑛(𝐶𝑁)4
2− were considered during simulations 

(equilibrium stability constants are summarised in Table 0-15 in Appendix J).  These base, precious 

and heavy metals are more likely to consume reagents during cyanidation- and zinc cementation- 

processes and report to downstream operations for gold recovery.   

4.5.1. Carbon elution and generation and regeneration 

After the cyanide leaching of flotation tailings in the cyanide flowsheet (Figure 4-1), acid washing 

with hydrochloric acid (Table 4-20) was recommended to dissolve gangue minerals that have 

adsorbed to activated carbon. The adsorbed gangue minerals reduce active sites available for 

precious metal complex adsorption and certain cations (e.g. Ca2+ , Na2+, K+) deter the elution of gold 

from carbon since gold-cyanide complexes form bonds with cations that adhere strongly to carbon. 

Elution with reagents and process conditions in Table 4-21 follows for desorption of metal-cyanide 

complex from activated carbon. Carbon regeneration to restore gold adsorption capacity of activated 

carbon inventory takes place in a rotary kiln with process conditions stipulated in Table 4-22. 

Following the elution and regeneration steps, the carbon is screened at 0.8 mm and replenished with 

fresh carbon to minimise precious metal discharge to tailings dam. An elution efficiency of 91.4% is 

assumed based on empirical data reported in literature (Snyders et al., 2015, 2013; Stange, 1999).  

Stellenbosch University https://scholar.sun.ac.za



72 

Table 4-20: Acid washing process conditions  

Reagents a Process conditions a 

Aqueous 𝐻𝐶𝑙 mass concentration: 3% by 

mass.  

Temperature: 25 °C 

Pressure: 101.3 kPa 
a: (Stange, 1999) 

Table 4-21: Carbon elution process conditions  

Reagents a Process conditions a Extent  

Deionised water feed with 𝑁𝑎𝐶𝑁 and 

NaOH at the following mass 

concentrations:  

𝑁𝑎𝐶𝑁: 20 g/L  

𝑁𝑎𝑂𝐻: 35g/L 

Temperature = 110 °C 

Pressure = 185 kPa 

Residence time = 14 hours 

Precious metal and base 

metal elution: 91.4%b 

a: (Davidson and Duncanson, 1977; Snyders et al., 2013; Stange, 1999)     b: (Muir et al., 1985b) 

Table 4-22: Carbon regeneration process conditions  

Reagents Process conditions 

Live steam carbon regeneration Temperature: 750 °C a 

a: (Stange, 1999)  

 

4.5.2. Zinc cementation 

The pregnant leach solution emanating from cyanidation leaching and carbon elution was passed 

through a Crowe vacuum, deaeration column to reduce dissolved oxygen that consumes zinc 

(equation [4-26). Lead nitrate aids in increasing gold recovery in zinc cementation as discussed in 

section 2.4.8.1. Deaeration was not required for CIL eluted streams because of the oxygen 

consumption by cyanide in these solutions (Marsden and House, 2006; Walton, 2005). Nevertheless, 

deaeration was recommended to prevent excessive zinc consumption and passivation caused by 

zinc hydroxide (equation [4-26]) resulting in the reduction of precious metal recovery. Following 

precipitation (process conditions  and reactions in Table 4-23  and Table 4-24 (full reaction scheme 

in Appendix I)), a plate and frame filter press separates the high value precipitate from the barren 

solution (Adams, 2016). Mercury is an occupational health hazard and toxic to the environment. 

Mercury retorting is necessary at concentrations above 0.5% mercury and would follow zinc 

cementation to prevent promoting mercury up the gold value chain (Marsden and House, 2006). 

Fortunately, the zinc precipitated sludge contains less than 0.001% mercury therefore a mercury 

retort furnace was not recommended in the cyanide flowsheet. In addition to this, the concentration 

of mercury in the mine tailings feedstock complies with environmental regulation before processing 

(Table 2-1 in section 2.2) and therefore the sequestration of mercury was not required in both 

flowsheets.   
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Table 4-23: Deaeration process conditions  

Process conditions a 

Pressure:  3-10 kPa (absolute) to meet dissolved oxygen concentration 

Dissolved oxygen concentration effluent: < 1 ppm 
a:(Adams, 2016) 

Table 4-24: Zinc cementation reaction for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 𝑍𝑛° + 2𝐴𝑢(𝐶𝑁)2
−(𝑎𝑞) → 2𝐴𝑢° +  𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞)  [4-25] 

0 2𝑍𝑛° + 𝑂2(𝑔) + 2𝐻2𝑂 →  2𝑍𝑛(𝑂𝐻)2(𝑠) [4-26] 

Table 4-25: Zinc cementation process conditions  

Reagents a Process conditions a 

Zn stoichiometric excess: 1.5 times 

Free cyanide concentration: 150 ppm 

Lead nitrate addition: 0.2 kg/kg zinc 

Dissolved oxygen concentration: < 1 ppm 

Temperature: 60 °C 

Pressure: 101.3 kPa 

Residence time:  
a: (Mpinga et al., 2014) 

Assumptions 

1. The formation of 𝑍𝑛(𝑂𝐻)2(𝑠) was neglected owing to the removal of oxygen during 

deaeration (Table 4-23).  

2. The zinc stoichiometric excess was enough to completely precipitate all metal cyanide 

complexes in solution.  

3. Zinc precipitate moisture content of 50% by mass after filter press filtration (Adams, 2016).  

4.6. Thiosulphate gold leaching and recovery 

The pressure oxidised concentrate and the flotation tailings was subjected to resin-in-leach (RIL) 

thiosulphate leaching to simultaneously leach and recover precious metals from the liquor.  Table 

4-26  summarises the chemical reactions considered for precious metal recovery (full reaction 

scheme in Appendix I) and the process conditions are summarised in Table 4-27. Following the 

discussion in section 2.4.7.3, Amberjet® 4200 strong base ion exchange resin was chosen to 

achieve 99% gold adsorption. Strong base ion exchange resins have an affinity for thiosulphate 

complexes in the following order: Au > Pb >> Ag > Cu >> Zn. Therefore, gold displaces other metals 

on the resin (Grosse et al., 2003; O’Malley, 2002). The formation of polythionates produced during 

the degradation of thiosulphate can displace gold thiosulphate complexes (equation [4-29])  on the 

resin therefore the formation of polythionates needs to be minimised. An ion exchange resin 

concentration of 0.01 g/L in the RIL liquor was recommended in literature (Zhang and Dreisinger, 

2003). After HSC Sim® simulations, it was revealed that a stoichiometric resin concentration of 9.66 
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g/L and 1.73 g/L was required for precious metal recovery from the pressure oxidised concentrate 

and flotation tailings respectively (Table 4-27). The increase in resin concentration was to 

compensate for copper, silver, tetrathionate and trithionate adsorption onto resin from the leaching 

liquor.  

Table 4-26: Thiosulphate leaching reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 𝐶𝑢𝑆𝑂4 + 3𝐶𝑎𝑆2𝑂3(𝑎𝑞) + 𝑂2(𝑔)

→ [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 3𝐶𝑎2+(𝑎𝑞) + 𝑆𝑂4

2−(𝑎𝑞) 

[4-27] 

96.71/58.15 4𝐴𝑢 + [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 8𝐶𝑎𝑆2𝑂3(𝑎𝑞) + 2𝐻2𝑂

→ 4[𝐴𝑢(𝑆2𝑂3)2]
3−(𝑎𝑞) + [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 8𝐶𝑎2+(𝑎𝑞)

+ 4𝑂𝐻−(𝑎𝑞) 

[4-28] 

5 4𝐶𝑎𝑆2𝑂3(𝑎𝑞) + [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 2𝐻2𝑂

→ 2𝑆4𝑂6
2−(𝑎𝑞) + [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 4𝐶𝑎2+(𝑎𝑞)

+ 4𝑂𝐻−(𝑎𝑞) 

[4-29] 

100 2(𝐶22𝐻28𝑁)𝐶𝑙 + 𝐶𝑎𝑆2𝑂3(𝑎𝑞)

→ [(𝐶22𝐻28𝑁)2
2+
𝑆2𝑂3

2−] + 𝐶𝑎2+(𝑎𝑞) + 2𝐶𝑙−(𝑎𝑞) 

[4-30] 

100 2[𝐴𝑢(𝑆2𝑂3)2]
3−(𝑎𝑞) + 3[(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−]

→ 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆2𝑂3
2−(𝑎𝑞) 

[4-31] 

50 2[𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 5[(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−]

→ 2[(𝐶22𝐻28𝑁)5
5+[𝐶𝑢(𝑆2𝑂3)3]

5−] + 5𝑆2𝑂3
2−(𝑎𝑞) 

[4-32] 

Table 4-27: Thiosulphate leaching process conditions for thiosulphate leaching flowsheet 

Reagents Process conditions Recoveries  

Reagent concentrations: 

[𝐶𝑎𝑆2𝑂3] = 0.1 M a,c 

[𝐶𝑢2+] = 2 mM c 

[Amberjet® 4200 Resin] = 9.66 g/L 

and 1.37 g/L for concentrate 

leaching and flotation tailings leach 

respectively 

0.1 𝑀 𝑁𝑎𝑂𝐻  solution to maintain pH 

at pH 10 c 

Temperature: 50 °C a,c 

Pulp density: 35% by massc 

Air sparging rate: 0.1 L/minc 

Pressure: 101.3 kPa 

pH 10 c 

Residence time: 24 hours c 

Gold recovery = 96.71% 

and 58.15% for pressure 

oxidised concentrate and 

flotation tailings 

respectively 

a: (Choi, 2016; Choi et al., 2013)  b:(Janse van Rensburg, 2016)  
c:(Sitando et al., 2020, 2015)  

 
The process conditions and reagents summarised in Table 4-27 were based on the results achieved 

by Lampinen et al. (2015) who reported a gold recovery of  89% for a 32 g/tonne pressure oxidised, 

concentrate. Zhang et al. (2005) proposed the reaction mechanism for oxygen, copper and 

thiosulphate leaching in equations [4-28] and [4-29] which were used. The diagnostic leaching 

empirical data in section 2.3 shows that after pressure oxidation and acid leaching 96.71% gold is 
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liberated and amenable to leaching. The empirical diagnostic leaching data for gold recovery 

reported by Janse van Rensburg's (2016) was selected over the results reported by Lampinen et al. 

(2015). The choice to use Janse van Rensburg's (2016) empirical data best represents the tailings 

resource investigated in this study and accounts for the influence of gangue minerals on gold 

recovery by lixiviants..  

There is potential for metal-thiosulphate complexes with stability constants greater than copper 

(equilibrium stability constants summarised in Table 0-16 in Appendix J) to be stable in the leaching 

liquor and may report to resin recovery circuit to be recovered along with gold. Although the stability 

constants of platinum- and palladium- thiosulphate complexes are strong, they are not 

thermodynamically stable and form S-bridged oligomers that precipitate out of aqueous solution 

(Anthony and Williams, 1993). There is a gap in literature preventing a conclusion on whether 

platinum and palladium thiosulphate complexes can possibly adsorb onto ion exchange resins before 

precipitation occurs. Literature resources that demonstrate evidence of gold-, silver- and copper- 

thiosulphate complex adsorption onto- and elution from- ion exchange resins were sourced (Aylmore 

and Muir, 2001; Aylmore, 2016; Dong et al., 2017; Grosse et al., 2003; Jeffrey et al., 2010). It was 

assumed that only gold-, silver- and copper- thiosulphate complexes would be recovered from the 

thiosulphate leaching liquor. 

Only the influence of thiosulphate (𝑆2𝑂3
2−) decomposition products trithionate (𝑆3𝑂6

2−) and 

tetrathionate (𝑆4𝑂6
2−) were considered in this work. The literature focuses on tri- and tetra-thionate 

adsorption onto ion exchange resins (Fleming et al., 2003; Jeffrey et al., 2010; Jeffrey and Brunt, 

2007). The assumption was therefore made that the impact of higher order polythionates did not 

impact gold dissolution and resin adsorption enough to warrant mention in the literature. 

Furthermore, in the subsequent resin regeneration process, tri- and tetra-thionate were converted 

back to thiosulphate (discussed in section 2.4.7.3). The assumption was thus made that because 

the precursors to higher order polythionates molecules (tri- and tetra-thionate) were converted back 

to thiosulphate, the higher order polynomials would either be converted to sulphate (𝑆𝑂4
2−) or back 

to tri- and tetra-thionate.  

4.6.1. Multi-stage recovery of copper and gold from resin 

Multi-stage elution of the loaded resin followed for the thiosulphate process and began with copper 

elution from resin and then gold elution. Copper is undesirable in the crude gold bullion because it 

increases resource consumption during the subsequent refining operations (Sole and Paul, 1986; 

Steyn and Sandenbergh, 2004).  
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Table 4-28: Copper elution reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

96.9 

 

2[(𝐶22𝐻28𝑁)5
5+[𝐶𝑢(𝑆2𝑂3)2]

5−] + 5𝑆2𝑂3
2−(𝑎𝑞)

→ 5[(𝐶22𝐻28𝑁)2
2+
𝑆2𝑂3

2−] + 2[𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) 

[4-33] 

0.3 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆2𝑂3
2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆2𝑂3

2−] + 2[𝐴𝑢(𝑆2𝑂3)2]
3−(𝑎𝑞) 

[4-34] 

Table 4-29: Copper elution process conditions for thiosulphate leaching flowsheet 

Reagents a Process conditions a Extent of reaction a 

[𝑆2𝑂3
2−]= 0.4 M Temperature: 20 °C 

Pressure: 101.3 kPa 

Bed volumes (BV): 5 

Eluant flowrate: 5 BV/h 

(0.04 m3/h) 

Eluant pH: natural  

[𝐶𝑢(𝑆2𝑂3)3]
5−elution: 

96.9% 

[𝐴𝑢(𝑆2𝑂3)2]
3− elution: 

0.3%  

a:(Choi, 2016; Fleming et al., 2003; Jeffrey et al., 2010)  

 
The recommended gold elution scheme was the in-situ generation of trithionate eluant supplemented 

with sodium sulphite as discussed in section 2.4.7.3 and demonstrated in Table 4-30 (full reaction 

scheme in Appendix I) and Table 4-31. The addition of sulphite reduces the number of bed volumes 

required for complete gold elution while reducing hydrolysis of trithionate to sulphate. Sulphite also 

converts tetrathionate to trithionate by the mechanism in equation [4-35]. The in-situ generation of 

the trithionate eluant is explained in section 4.6.3. The assumption was made that the elution 

mechanism for silver was the same as gold, but this mechanism is not verified and supported by 

evidence in literature.  

𝑆4𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞) → 2𝑆2𝑂3
2−(𝑎𝑞) + 𝑆3𝑂6

2−(𝑎𝑞) [4-35] 

Table 4-30: Gold elution reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆3𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆3𝑂6

2−] + 2[𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[4-36] 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆4𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆4𝑂6

2−] + 2[𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)2]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[4-37] 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆3𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆3𝑂6

2−] + 2[𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[4-38] 
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Table 4-31: Gold elution process conditions for thiosulphate leaching flowsheet 

Reagents a Process conditions a Extent of reaction a 

Aqueous solution* 

[𝑆2𝑂3
2−]: 75 g/L 

[𝑆3𝑂6
2−]:  200 g/L 

[𝑆4𝑂6
2−]:  3.3 g/L 

[𝑆𝑂4
2−]: 103 g/L  

Additional reagents: 

[𝑆𝑂3
2−]: 8.0 g/L 

  

Temperature: 20 °C 

Pressure: 101.3 kPa 

Bed volumes (BV): 8 

Eluant flowrate: 2 BV/h 

Eluant pH: natural (≈ pH 

1.5) 

Gold and silver percentage 

elution: 99.1% 

a:(Choi, 2016; Fleming et al., 2003; Jeffrey et al., 2010) 

*: Eluant composition after in-situ generation of trithionate generation 

 

4.6.2. Ion exchange resin regeneration 

Polythionate species, for example trithionate and tetrathionate, have a stronger affinity for ion 

exchange resins compared to base metal and precious metal complexes and are produced through 

the natural degradation of thiosulphate. This causes the deterioration of the loading capacity of ion 

exchange resins with each sequential loading and elution cycle. At Barrick Goldstrike, sodium 

sulphide solutions have shown success in regeneration of gold loading capacity of resins by up to 

400% through the conversion of tri-and tetra-thionate species to thiosulphate (equations [4-39] to 

[4-41]) with the conditions in Table 4-33 (Choi, 2016; Choi et al., 2013; Fleming et al., 2003; Jeffrey 

et al., 2010).  

Table 4-32: Resin regeneration reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 4[(𝐶22𝐻28𝑁)2
2+
𝑆4𝑂6

2−] + 2𝑆2−(𝑎𝑞) + 6𝑂𝐻−(𝑎𝑞)

→ 4[(𝐶22𝐻28𝑁)2
2+
𝑆2𝑂3

2−] + 5𝑆2𝑂3
2−(𝑎𝑞) + 3𝐻2𝑂 

[4-39] 

100 [(𝐶22𝐻28𝑁)2
2+
𝑆3𝑂6

2−] + 𝑆2−(𝑎𝑞) → [(𝐶22𝐻28𝑁)2
2+
𝑆2𝑂3

2−] + 𝑆2𝑂3
2−(𝑎𝑞) [4-40] 

100 𝑁𝑎2𝑆 → 2𝑁𝑎
+(𝑎𝑞) + 𝑆2−(𝑎𝑞) [4-41] 

Table 4-33: Resin regeneration process conditions for thiosulphate leaching flowsheet 

Reagents a* Process conditions a Extent of reaction a 

Aqueous solution:  

[𝑁𝑎2𝑆]: 120% of the stoichiometric 

excess required to convert 

polythionate to 𝑆2𝑂3
2−   

Temperature: 20 °C 

Pressure: 101.3 kPa 

 

Polythionate to 𝑆2𝑂3
2− 

conversion: 100% 

a:(Fleming et al., 2003) 
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4.6.3. In-situ generation of trithionate eluant for recovery 

The supply of tri- and tetra-thionate species as sodium salts is costly, therefore the in-situ generation 

of the eluant solution as demonstrated in Table 4-34 and Table 4-35 was recommended. Maintaining 

pH between pH 6-8 minimises thiosulphate formation during trithionate production and reducing 

tetrathionate formation (Fleming et al., 2003). The production of sulphate in the recovery and elution 

circuit is then managed through gypsum precipitation of the reverse osmosis concentrate stream 

(Figure 4-2).  

Table 4-34: Gold eluant in-situ generation reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

0.52 2𝑆2𝑂3
2−(𝑎𝑞) + 𝐻2𝑂2(𝑎𝑞) + 2𝐻

+(𝑎𝑞) → 𝑆4𝑂6
2−(𝑎𝑞) + 2𝐻2𝑂 [4-42] 

36.93 3𝑆2𝑂3
2−(𝑎𝑞) + 4𝐻2𝑂2(𝑎𝑞) + 2𝐻

+(𝑎𝑞) → 2𝑆3𝑂6
2−(𝑎𝑞) +  5𝐻2𝑂 [4-43] 

38.05 𝑆2𝑂3
2−(𝑎𝑞) + 4𝐻2𝑂2(𝑎𝑞) → 2𝑆𝑂4

2−(𝑎𝑞) + 3𝐻2𝑂 + 2𝐻
+(𝑎𝑞) [4-44] 

0.75 2𝑆2𝑂3
2−(𝑎𝑞) + 6𝑂𝐻−(𝑎𝑞) → 4𝑆𝑂3

2−(𝑎𝑞) + 2𝑆2−(𝑎𝑞) + 3𝐻2𝑂 [4-45] 

Table 4-35: Gold eluant in-situ generation process conditions for thiosulphate leaching flowsheet 

Reagents a Process conditions a Extent of reaction a 

𝐻2𝑂2 stoichiometric excess: 100% 

[𝑁𝑎𝑂𝐻]: 2.51 g/L 

Temperature: 20 °C 

Pressure: 101.3 kPa 

pH: 6-8 

𝑆2𝑂3
2− to 𝑆4𝑂6

2−: 0.52% 

𝑆2𝑂3
2− to 𝑆3𝑂6

2−: 36.93% 

𝑆2𝑂3
2− to 𝑆𝑂4

2−: 38.05% 

𝑆2𝑂3
2− to 𝑆𝑂3

2−: 0.75% 
a:(Fleming et al., 2003) 

 

4.6.4. Regeneration of thiosulphate lixiviant 

Following the solid-liquid separation of the depleted tailings from the spent leach liquor, the spent 

thiosulphate liquor was treated by reverse osmosis water treatment to produce a thiosulphate-rich 

concentrate stream (Figure 4-2). This stream was divided between the thiosulphate regeneration 

and trithionate generation steps. During the thiosulphate regeneration step, Choi et al. (2015) 

proposed the use of sodium sulphite and sodium sulphide to regenerate thiosulphate from the 

recycled concentrate stream while Fleming et al. (2003) proposed thiosulphate regeneration with 

sodium sulphide and ammonia. There are negative environmental impacts associated with ammonia 

emissions. Therefore, sodium hydroxide was recommended for pH control at conditions summarised 

in Table 4-27 and Table 4-37 as opposed to ammonia as applied in the work by Fleming et al. (2003). 

Based on equation [4-46], the hydroxide ion is the active reagent in tetrathionate conversion to 

thiosulphate. Calcium oxy-hydroxides such as CaO and Ca(OH)2 increase the likelihood of gypsum 

precipitation which causes fouling of equiment in the leaching and elution circuit and thus sodium 

hydroxide was selected over ammonia and calcium oxy-hydroxides for pH control. The sodium 

hydroxide concentration required was determined by mole balances based on the ammonia 

concentration recommended in Fleming et al. (2003).  
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Sulphides in the leaching system can cause precipitation of gold as gold sulphide which will report 

to tailings stream and not be adsorbed onto ion exchange resin. Therefore regeneration of 

thiosulphate should occur in a separate unit process (Nicol et al., 2014; Sitando et al., 2018). The 

process feed of fresh calcium thiosulphate was still required to compensate for the lixiviant losses 

as thiosulphate decomposes to trithionate (𝑆3𝑂6
2−) and sulphate (𝑆𝑂4

2−).  

Table 4-36: Thiosulphate regeneration reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

96.4 4𝑆4𝑂6
2−(𝑎𝑞) + 2𝑆2−(𝑎𝑞) + 6𝑂𝐻−(𝑎𝑞) → 9𝑆2𝑂3

2−(𝑎𝑞) + 3𝐻2𝑂 [4-46] 

51.2 𝑆3𝑂6
2−(𝑎𝑞) + 𝑆2−(𝑎𝑞) → 2𝑆2𝑂3

2−(𝑎𝑞) [4-47] 

100 𝑁𝑎2𝑆 → 2𝑁𝑎
+(𝑎𝑞) + 𝑆2−(𝑎𝑞) [4-48] 

100 𝑁𝑎𝑂𝐻 → 𝑁𝑎+(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞) [4-49] 

Table 4-37: Thiosulphate regeneration process conditions for thiosulphate leaching flowsheet 

Reagents a Process conditions a Extent of reaction a 

[𝑁𝑎2𝑆]: 100% stoichiometric 

requirement to convert 𝑆4𝑂6
2− and 

𝑆3𝑂6
2− to  𝑆2𝑂3

2−. 

[𝑁𝑎𝑂𝐻]: 2.51 g/L 

Temperature: 25 °C 

Pressure: 101.3 kPa 

pH: 8 

𝑆4𝑂6
2− 𝑡𝑜 𝑆2𝑂3

2− [Equation 

[4-46]]: 96.4% a 

𝑆3𝑂6
2− 𝑡𝑜 𝑆2𝑂3

2− : 51.2% a 

a: (Fleming et al., 2003) 

 

4.6.5. Electrowinning of gold from thiosulphate pregnant solution 

Following gold elution, electrowinning onto woven stainless-steel cathodes at low current densities 

of 5A/m2 to recover precious metals from the eluate was recommended. The low current density 

enables gold bullion detachment following electrowinning (Adams, 2016). An assumption was made 

that the eluate was recirculated through the electrowinning cycle until complete electrodeposition of 

precious metals occurred.  The sulphite elution system produces a [𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)]
3− complex that 

deters the formation of gold sulphide precipitate that inhibit electrodeposition of precious metals onto 

the cathode. The increased stability of the [𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)]
3− complex compared to  [𝐴𝑢(𝑆2𝑂3)2]

3− 

was proposed as the main reason for deterring the formation of gold sulphide precipitates in literature 

(Jeffrey et al., 2010). An assumption was made that neither thiosulphate decomposition (equation 

[4-52]) nor parasitic reactions (equation[4-53] to [4-55]) at the electrode took place in the 

electrowinning cell. Although in practice, these reactions consume the operating current and reduce 

current efficiency and corrode the anode.  

Table 4-38: Electrowinning reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 [𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)2]
3−(𝑎𝑞) + 𝑒− → 𝐴𝑢° + 𝑆2𝑂3

2−(𝑎𝑞) + 2𝑆𝑂3
2−(𝑎𝑞) [4-50] 

100 [𝐴𝑔(𝑆2𝑂3)(𝑆𝑂3)2]
3−(𝑎𝑞) + 𝑒− → 𝐴𝑔° + 𝑆2𝑂3

2−(𝑎𝑞) + 2𝑆𝑂3
2−(𝑎𝑞) [4-51] 
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0 𝑆2𝑂3
2−(𝑎𝑞) + 6𝑂𝐻−(𝑎𝑞) → 2𝑆𝑂3

2−(𝑎𝑞) + 3𝐻2𝑂 + 4𝑒
− [4-52] 

0 4𝑂𝐻−(𝑎𝑞) → 2𝐻2𝑂 + 𝑂2(𝑔) + 4𝑒
− [4-53] 

0 2𝐻2𝑂 + 2𝑒
− → 𝐻2(𝑔) + 2𝑂𝐻

−(𝑎𝑞) [4-54] 

0 𝑂2(𝑔) + 2𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻−(𝑎𝑞) [4-55] 

 

4.7. Formation of crude gold bullion 

4.7.1. Cyanide flowsheet  

After zinc cementation, calcination followed which was described in section 2.4.9.  The zinc 

precipitate was calcined in an air circulated furnace maintained at 750 °C and 5% excess oxygen to 

convert base metals to their respective oxides as determined by Gibbs Energy minimisation in HSC 

Sim® (Adams, 2016; Marsden and House, 2006). Following calcination, a crude gold bullion was 

produced by smelting at 1 300 °C with the low-value metal oxides reporting to the slag phase.  

4.7.2.  Thiosulphate flowsheet  

After electrowinning onto stainless steel cathodes in the thiosulphate flowsheet, high pressure water 

jets are used to detach gold from the cathode forming a gold bullion-sludge. The bullion sludge was 

smelted at 1 300 °C to produce a crude gold bullion (Adams, 2016). 

4.8. Wastewater treatment 

4.8.1. Cyanide leaching flowsheet 

For the cyanide flowsheet (Figure 4-1), the solid waste emissions from cyanide leaching along with 

the filtrate separated from precious metal zinc precipitated sludge is routed for effluent treatment. 

Specifically, cyanide destruction and arsenic removal first need to be completed before wastewater 

can be discharged to wastewater treatment. The chemical reactions and process conditions for 

cyanide destruction is summarised in Table 4-39 (full reaction scheme in Appendix I) and Table 4-40 

respectively. Alkaline chlorination together with iron precipitation was recommended for cyanide 

destruction. None of the cyanide destruction technologies in literature can break down strong 

ferrocyanide complexes (e.g. 𝐹𝑒(𝐶𝑁)6
3−) and the solution recommended in literature was to 

precipitate and capture ferrocyanide complexes as inert Prussian blue (𝐹𝑒4(𝐹𝑒(𝐶𝑁)6)3) through iron 

precipitation (equation [4-58]) (as discussed in section 2.4.10). Ferrocyanide destruction presents a 

gap in literature that requires additional investigation to ensure zero cyanide emissions to 

environment. It is a requirement of alkaline chlorination that solution pH must exceed pH 10 to 

completely convert harmful cyanogen chloride (𝐶𝑁𝐶𝑙) to cyanogen (𝐶𝑁𝑂−). Cyanide is broken down 

to nitrogen and carbon dioxide (equation [4-57]), when the chlorine concentration in solutions 

exceeds the stoichiometric requirement for complete destruction of cyanide of 2.73 grams 𝐶𝑙2 per 

gram of 𝐶𝑁−(referred to as “breakpoint chlorination”). Sodium hypochlorite solution was 

recommended as the chlorine reagent to mitigate the health impacts associated with using toxic 

chlorine gas as a reagent (Botz et al., 2016; Kuyucak and Akcil, 2013; Mudder et al., 2001).  
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Table 4-39: Cyanide destruction reaction for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 𝐶𝑁−(𝑎𝑞) + 𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝐶𝑁𝑂−(𝑎𝑞) + 𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝑒− [4-56] 

100 2𝐶𝑁𝑂−(𝑎𝑞) + 3𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) + 2𝐻+(𝑎𝑞) + 2𝑒−

→ 𝑁2(𝑔) + 2𝐶𝑂2(𝑔) + 3𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐻2𝑂 

[4-57] 

Table 4-40: Cyanide destruction process conditions for cyanide leaching flowsheet  

Reagents Process conditions Extent of reaction  

𝑁𝑎𝐶𝑙𝑂 solution concentration: 12.5% 

by mass b 

𝑁𝑎𝐶𝑙𝑂 requirement: 5.5 𝐶𝑙2 per gram 

𝐶𝑁− oxidised b 

𝑁𝑎𝑂𝐻 recommended to maintain pH 

at 10.5 

 

pH = 10.5 b 

 

100% for cyanide species 

destruction except for 

ferrocyanide. 

a: (Adams, 1992) b: (Botz et al., 2016)  

Arsenic present in the mine tailings feedstock was non-compliant according to environmental 

regulation (Table 2-1 in section 2.2) and therefore an arsenic sequestration process was 

recommended. For arsenic removal the chemical reactions and process conditions are summarised 

in Table 4-41 and Table 4-42 respectively. Arsenic is first hydrolysed into solution using potassium 

permanganate followed by precipitation with ferric chloride to produce scorodite (FeAsO4) which was 

flocculated to remove it from solution. Scorodite is considered the most stable arsenate compound 

for long term arsenic disposal of arsenic wastes. The industry practice for arsenic trioxide and arsenic 

wastes involves the sequestration and underground storage of wastes to prevent surface exposure 

of arsenic (Adams, 2016; Bowell et al., 1994; Jadhav and Fan, 2001; Swash and Monhemius, 1998; 

Thomas and Cole, 2016). 

Table 4-41: Arsenic removal reactions for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

95 𝐴𝑠 + 3𝐻2𝑂 → 𝐻3𝐴𝑠𝑂3(𝑎𝑞) + 3𝐻
+(𝑎𝑞) + 3𝑒− [4-58] 

100 3𝐻3𝐴𝑠𝑂3(𝑎𝑞) +  2𝐾𝑀𝑛𝑂4

→ 3𝐻2𝐴𝑠𝑂4(𝑎𝑞) + 2𝑀𝑛𝑂2 +𝐻2𝑂 + 𝐻
+(𝑎𝑞) + 2𝐾+(𝑎𝑞)  

[4-59] 

100 𝐹𝑒𝐶𝑙3 +𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3(𝑎𝑞) + 3𝐻𝐶𝑙(𝑎𝑞) [4-60] 

100 𝐻2𝐴𝑠𝑂4(𝑎𝑞) + 𝐹𝑒(𝑂𝐻)3(𝑎𝑞) → 𝐹𝑒𝐴𝑠𝑂4(𝑠) + 2𝐻2𝑂 + 𝑂𝐻
−(𝑎𝑞) [4-61] 

100 4𝐹𝑒𝑆𝑂4 + 3𝐹𝑒(𝐶𝑁)6
3−(𝑎𝑞) → 𝐹𝑒4(𝐹𝑒(𝐶𝑁)6)3(𝑠) + 4𝑆𝑂4

2−(𝑎𝑞) [4-62] 

Table 4-42: Arsenic removal process conditions for cyanide leaching flowsheet  

Reagents Process conditions Recoveries  

𝐾𝑀𝑛𝑂4 concentration = 1.0 g/L a Temperature: 25 °C Arsenic removal = 95% 
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𝐹𝑒𝐶𝑙3 concentration = 405.5 g/Lb 

𝐹𝑒𝑆𝑂4 added to satisfy Fe:CN ratio = 

0.5 by mass c 

Pressure: 101.3 kPa 

pH 5.5 to 6.5 a 

 

a: (Sorlini and Gialdini, 2010)   b: (Hering et al., 1997)  c: (Adams, 1992) 

4.8.2. Thiosulphate leaching flowsheet  

The thiosulphate leaching flowsheet was based on the process by Barrick gold and relies on 

microfiltration, ultrafiltration and reverse osmosis water treatment technologies to treat effluent water 

from thickened tailings. A lixiviant-rich concentrate stream is produced that can be treated with 

sodium sulphite and sodium sulphide to regenerate the thiosulphate lixiviant. The fouling of 

microfiltration and ultrafiltration membranes is a bottleneck in the process flowsheet and prevents 

the process from operating at its design capacity (Choi, 2016).  The permeate water may be reused 

in the process or discharged to surface water systems thereby reducing freshwater consumption of 

the gold recovery process.  

4.9. Heating and agitator energy requirements 

Energy balances were conducted in HSC® Sim on each unit process in the flowsheets developed 

to determine thermal energy and process steam requirements. The heating and cooling 

requirements to maintain temperature set points were transferred to GaBi® for the LCA.  

Tailings reprocessing facilities require large agitation vessels for specific unit processes. With large 

vessels (≈ 380 m3) and where slurry viscosities are less than 0.01 Pa.s, two side-entering impellers 

with hydrofoil impellers were recommended in literature for maintaining solid in suspension in 

applications because they are more economical (Green and Perry, 2007). The slurry density and 

kinematic viscosity for pulps were estimated from literature data reported in Mangesana et al. (2008) 

and Marsden (1962) respectively. At turbulent conditions (𝑁𝑅𝑒 > 10 000) power number remains 

constant. For hydrofoil impellers the power number of 0.3 which can be used to determine the 

agitator electricity consumption. The electricity consumption associated with agitation was calculated 

using the system of equations [4-63] to [4-68] (Green and Perry, 2007; Hall, 2012). Agitation energy 

requirements for each flowsheet are summarised in Table 4-3 and Table 4-4 on the basis of 

processing 50 000 tonnes of ore per day. The calculations for each unit process are tabulated in 

Appendix E. The flotation and electrowinning electricity requirements were based on those reported 

in an LCA study on gold recovery from run-of-mine ore which was 3 kWh per ton ore for flotation and 

3 100 kWh/tonne gold (Norgate and Haque, 2012).  

Tank volume: 𝑉 =
𝜋𝐷𝑇

2𝐻

4
 [4-63] 

𝐻

𝐷𝑇
= 1.125 ∴ 𝐻 = 1.125 × 𝐷𝑇 

[4-64] 

Combine [4-63] and [4-64] and make 𝐷𝑇 the subject to derive [4-65]:  
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Tank diameter: 𝐷𝑇 = √
𝑉

0.28125×𝜋

3
 

[4-65] 

Agitator diameter: 𝐷𝑎 = 0.6 × 𝐷𝑇 [4-66] 

Reynolds number: 𝑁𝑅𝑒 =
𝜌.𝑁.𝐷𝑎

5

𝜇
 [4-67] 

Agitator power: 𝑃 =
𝑁𝑝.𝜌.𝑁

3.𝐷𝑎
5

𝑔𝑐
 

[4-68] 

Figure 4-3: Cyanide flowsheet electricity consumption (kWh) 

Acid Leaching Arsenic removal Carbon Elution 
Carbon in Leach 
(CIL) 

13.6 326 820.0 26.7 46 688.6 

Cyanide leaching 
(concentrate) 

Cyanide Removal 
Reactor De Aeration 

Uranium solvent 
extraction 

84.8 326 820.0 62.6 62.6 

Uranium stripping Zinc Cementation Flotation   

26.7 62.6 16 280.8 
 

Total electricity for cyanide flowsheet (kW) 716 948.84 

Figure 4-4: Thiosulphate flowsheet electricity consumption (kWh) 

Acid Leaching  
Uranium solvent 
extraction Uranium stripping Arsenic removal 

13.6 62.6 62.6 58 360.7 

Collection vessel Copper elution Flash cooling unit Gold Elution 

58 360.7 198.7 198.7 198.7 

Gypsum 
precipitation Hot Cure Process Neutralisation Pressure oxidation  

1 239.7 198.7 198.7 198.7 

Resin in Leach 
(concentrate) 

Resin in Leach 
(tailings) Resin Regeneration Splash Vessel 

630.7 58 360.7 198.7 198.7 

Thiosulphate 
regeneration 

Trithionate 
Manufacture  Flotation  Electrowinning 

1 239.7 198.7 16 280.8 0.93 

Total electricity per unit process (kWh) 196 400.44 

Cyanide flowsheet electricity requirements for agitation is 3.7 times larger than thiosulphate 

flowsheet (indicated in Table 4-3 and Table 4-4). Cyanide destruction and arsenic removal 

collectively accounts for 90% of flowsheet electricity requirements. Before cyanide destruction, the 

merging of slurry effluent streams from gold leaching and zinc cementation to pass through the 

effluent treatment unit processes increased the raw material and electricity requirements. 

Furthermore, a 12.5% aqueous solution of sodium hypochlorite was recommended for cyanide 
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destruction in literature and the dilute raw material stream further increased the liquid volume and 

consequently increased the liquid volume and agitation electricity requirements. 

  

Stellenbosch University https://scholar.sun.ac.za



85 

5 RESULTS AND DISCUSSION 

In this chapter objectives three, four and five will be met by reporting and interpreting HSC Sim® 

simulation and LCA results for the process flowsheets solutions proposed. The goal of this study 

was to identify strategies to recover value from gold mine tailings while reducing the environmental 

impacts of mine waste. The flowsheets developed employ technology that has been demonstrated 

for the commercial manufacture of gold. Technologies that have not matured beyond laboratory 

development were not considered for flowsheet development. Two gold recovery flowsheets were 

identified which include a cyanide flowsheet as the baseline process for gold recovery and a 

thiosulphate flowsheet as an alternative flowsheet. A comparative LCA assessment was conducted 

to identify which process solution minimises environmental burdens associated with gold recovery 

while reducing the environmental impacts of the tailings feedstock. Environmental hotspots in the 

respective processes were identified along with recommendations to reduce environmental impacts 

of processes. Retrospective consideration of LCA as a design tool along with a discussion of the 

significance of this project in terms of its alignment with the United Nations’ sustainable development 

goals (UN SDG) will be discussed after the interpretation of results. 

5.1. Process simulation results and discussion 

The information in the prior section of this work in the flowsheet development has yielded a cyanide 

flowsheet Figure 5-1 and a thiosulphate flowsheet in Figure 5-2. The process flowsheets were 

designed to maximise gold recovery efficiency while identifying solutions to reduce the environmental 

impact of solid waste emissions from gold recovery processes. The techno-economic feasibility of 

the process flowsheets was beyond the scope of this study although both flowsheets have been 

used for commercial recovery of gold. The profitability of a process flowsheets is an imperative 

criterion for the selection of technology for gold recovery. Therefore, a trade-off between economic 

and environmental feasibility needs to be made when developing a process for gold recovery.   
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Figure 5-1: System boundary baseline process (cyanide leaching) 
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Figure 5-2: System boundary of thiosulphate leaching flowsheet 

5.1.1. Solid effluent emissions  

The process simulation results and corresponding discussion of the solid effluent emissions will 

follow in this section. The simulation results of the process flowsheets’ depleted tailings emissions 

and the comparison to environmental regulation for the protection of water resources are listed in 

Table 5-1.  

Table 5-1: Average pollutant concentration (mg/kg) for depleted solids effluent from flowsheets 
compared to regulatory soil screening values for protection of water resources 

Pollutant 

Tailings before 

processing 

(g/tonne) 

Thiosulphate 

flowsheet 

tailings 

(g/tonne) 

Cyanide 

flowsheet 

tailings 

(g/tonne) 

Maximum 

concentration 

(Department of 

Environmental 

Affairs, 2014) 

Sulphide (%) 0.18 0.03 0.03 - 

Cr (mg/kg) 225 85.6 86.7 46 000 

As (mg/kg) 78.1 3.95b 3.95b 5.8 

Mn (mg/kg) 1982 3260 799 740 

Cu (mg/kg) 42.2 18.9 27.4 16 

U (mg/kg) 54.9 13.0 13.6 23a 

Pb (mg/kg) 24.8 9.40 1250 20 

Ni (mg/kg) 96.6 36.6 30.0 91 

Zn (mg/kg) 65.5 24.8 93.8 240 
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Pollutant 

Tailings before 

processing 

(g/tonne) 

Thiosulphate 

flowsheet 

tailings 

(g/tonne) 

Cyanide 

flowsheet 

tailings 

(g/tonne) 

Maximum 

concentration 

(Department of 

Environmental 

Affairs, 2014) 

Hg (mg/kg) 0.2 0.08 0.03 0.93 

Co (mg/kg) 25 9.49 9.39 300 

Cd (mg/kg) 0.51 0.19 0.15 7.5 

V (mg/kg) 5.89 2.23 2.26 150 

-: No data available; Red values = above regulation limit; Green values = compliant.  
a : (Canadian Council of Ministers of the Environment, 2007)  
b: Arsenic in the form of scorodite (FeAsO4.2H2O) was neglected from calculation since this 

species is environmental inert and stable.  

Assessment of the depleted tailings solids from both flowsheets (Table 5-1) were not compliant with 

NEMA environmental regulation (Department of Environmental Affairs, 2014). South African NEMA 

regulation does not account for uranium emissions in concentration terms and is controlled by the 

National Nuclear Regulator in terms of activity concentration limits and therefore Canadian regulation 

was consulted for uranium emissions threshold of 23 mg/kg (Canadian Council of Ministers of the 

Environment, 2007; Kamunda et al., 2016b). The compliance failure was brought about by 

manganese, lead and copper emissions in the tailings. There was, however, an improvement in 

compliance of the depleted solid waste compared to the mine tailings feedstock. This improvement 

was in the form of sulphide removal (83% reduction in sulphur when compared to tailings feed as 

represented in Table 5-1), uranium recovery (75% reduction) and arsenic removal. Furthermore, the 

dilution effect produced by solid precipitates such as gypsum, scorodite, prussian blue 

[𝐹𝑒4(𝐹𝑒(𝐶𝑁)6)3], hematite, goethite, basic iron sulphate and sodium chloride, formed during the 

processes also aided in reducing the effluent concentration of pollutants. Sulphide, uranium and 

arsenic concentrations in the depleted tailings were reduced owing to oxidative pre-treatment, 

uranium recovery and arsenic removal. Therefore, the environmental impact of acid mine drainage, 

arsenic and radionuclide emissions of mine tailings was reduced. 

Additional interventions are required to reduce heavy metals to comply with environmental regulation 

as illustrated in Table 5-1. Literature concerning rehabilitation of the post-mining landscape focuses 

on physical, chemical and biological initiatives to either sequester pollutants or inhibit the migration 

of hazardous pollutants into the ecosphere. Physical strategies involve soil amendments with 

salvaged topsoil or organic materials (e.g. manure, sewage sludge, bio-char etc.). Chemical methods 

include soil washing and raising pH by amending tailings with limestone and dolomite to counteract 

AMD effects. Finally, phytoremediation is a biological intervention where plants and bacteria are 

used to minimise influence of pollutants on ecosphere. Phytoremediation has the potential to remove 

pollutants and restore the soil’s ability to cultivate plants. Furthermore, certain plant species have 
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the potential for phytomining. Phytomining involves the bioaccumulation of metals from tailings 

followed by extractive metallurgical operations on biomass to recover base-, heavy- and precious-

metals as products. Phytomining presents a solution for the sustainable development of the mining 

industry by reducing environmental impacts of mine tailings while generating a revenue stream. The 

recommendation of phytomining was not evaluated in the flowsheets presented but aligns with the 

aims and objectives of this study and is an opportunity to extend the scope of this study (Chaney 

and Baklanov, 2017; Dermont et al., 2008; Festin et al., 2019).  

Although the tailings emissions do not meet the environmental regulation for all land uses, there is 

potential for the tailings to be used as a soil resource in industrial applications. By comparing the 

solid emissions from the flowsheets in Table 5-1 with the extended environmental legislation 

specification in Table 5-2, the depleted tailings emissions can be used as soil resource for industrial 

applications such as aggregate and mining backfill thereby offering a limited contribution to the 

circular economy as long as the region is zoned for industrial use (Sibanda and Broadhurst, 2018). 

Table 5-2: Excerpt from environmental regulation for soil screening values for pollutants in  
rehabilitated land (Department of Environmental Affairs, 2014) 

Pollutants All land uses a Informal 

residential 

Standard 

residential 

Industrial 

Mn 740 740 1 500 12 000 

Cu 16 1 100 2 300 19 000 

Pb 20 110 230 1 900 

Cyanide 14 620 1 200 10 000 
a; protective of the water resource 

 
The environmental regulation for soil quality of rehabilitated land (presented in Table 5-2) has a 

tiered structure arranged in order of increasing stringency: industrial, informal residential, formal 

residential regions and finally regions for the protection of water resources (Department of 

Environmental Affairs, 2014). The solid effluent emissions from the flowsheets was compared to the 

most stringent criteria which is for the protection of water resources. Comparing the solid effluent 

emissions to the most stringent environmental regulation ensures that environmental burdens are 

not promoted to other areas of the South African ecosphere if depleted tailings are destined for use 

within the circular economy as construction materials.  

Elements contributing towards compliance failure in solid emissions (listed in Table 5-1) are 

associated with gold recovery and contaminant (i.e. arsenic) removal.  For the cyanide flowsheet, 

lead emissions increased owing to the use of lead nitrate to improve gold recovery during zinc 

cementation. There is an economic versus environmental trade-off for the use of lead nitrate for 

improvement of gold recovery by cyanidation. For the thiosulphate flowsheet, the increase in 

manganese was attributed to the production of manganese dioxide during arsenic removal unit 

process using potassium permanganate as an oxidant. The optimum thiosulphate leaching 
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conditions require a pulp density of 30% as compared with 50% in cyanide leaching. Thus, the 

subsequent water treatment for arsenic removal in the thiosulphate flowsheet required higher 

potassium permanganate consumption. The control of emissions in both flowsheets investigated 

needs to be managed and suggestions will be presented in the discussion that follows. 

Cyanide destruction needs to be optimised such that all cyanide species are destroyed and not just 

captured within an inert prussian blue [𝐹𝑒4(𝐹𝑒(𝐶𝑁)6)3]. Prussian blue precipitate decomposes above 

pH 7 to liberate ferrocyanide complexes thereby liberating cyanide to the ecosphere (Adams, 1992). 

Ferrocyanide complexes are also not destroyed by alternative cyanide destruction technologies such 

as biological oxidation, hydrogen peroxide, SO2/air with copper catalyst, ferrous sulphate 

complexation, ozonation and Caro’s acid (Breuer and Hewitt, 2020; Kuyucak and Akcil, 2013; Munive 

et al., 2020; Oleson et al., 2005; SGS Mineral Services, 2005). Therefore, research into technology 

for the destruction of iron cyanide complexes is necessary to mitigate cyanide emissions. At present, 

dilution and containment strategies within lined tailings dams are employed in industry to comply 

with regulation.  This approach is merely a containment strategy for cyanide emissions. Using an 

alternative lixiviant that does not produce harmful emissions to the ecosphere, such as thiosulphate, 

is one solution that can prevent the emission of harmful lixiviants to the ecosphere (provided the 

process flowsheet recommended is profitable). The thiosulphate flowsheet had the disadvantages 

of consisting of several costly unit processes and may influence its economic feasibility, such as: 

pressure oxidation, resin adsorption and elution, and reverse osmosis water treatment. In addition 

to this, the chemical reaction mechanisms for thiosulphate leaching are complex require robust 

process control to maintain optimum process conditions for gold recovery.  

5.1.2. Gaseous emissions 

The thiosulphate flowsheet did not emit any hazardous gaseous emissions from the foreground 

process that need to be controlled according to the NEMA: Air Quality Act (Act No.29 of 2004). For 

the cyanide flowsheet, the sulphide roasting gaseous emissions from the foreground process was 

not compliant with the NEMA: Air Quality Act as demonstrated in Table 5-3. Therefore, electrostatic 

precipitation for the removal of arsenic trioxide followed by flue gas desulphurisation for SO2 gas 

sequestration was incorporated into the cyanide flowsheet design. Although the SO2 and particulate 

matter emissions meet environmental regulation in the cyanide flowsheet, the SO2 and arsenic 

trioxide emissions still pollute the ecosphere. In the thiosulphate flowsheet, arsenic was hydrolysed 

and converted to inert scorodite (FeAsO4.2H2O) during pressure oxidation as discussed in 4.4.2. 
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Table 5-3: Comparison of sulphur dioxide emissions from cyanide flowsheet with environmental 

legislation for air emissions (Department of Environmental Affairs, 2010) 

Substance (Units) Before electrostatic 

precipitation and 

SO2 scrubbing 

After electrostatic 

precipitation and 

SO2 scrubbing 

Regulation upper 

limit b 

Particulate matter 

(mg/Nm3 a
) as arsenic 

emissions 

686.5 6.86 20 

Sulphur dioxide (mg/Nm3 

a
) 

105 500 1 055 1200 

a: under normal conditions of 273 K and 101.3 kPa 
b: (Department of Environmental Affairs, 2010) 
c: Red values = above regulation limit; Green values = compliant 

 
Based on these results, pressure oxidation is the superior technology for sulphide mineral oxidation 

to liberate gold and has the benefit of no hazardous emissions to the atmosphere in addition to 

converting sulphide minerals to gypsum and thereby mitigating the impact of acid mine drainage. 

The economic feasibility of implementing pressure oxidation technology for low gold grade, ore 

resources needs to be assessed to ensure a profitable operation can be run with this technology.  

Carbon dioxide emissions from both flowsheets and the implications of greenhouse gas emissions 

will be discussed in section 5.2.1.6. 

5.1.3. Flowsheet evaluation 

The overall gold recovery efficiency was 71.2% for both process flowsheets. The identical gold 

recovery from both flowsheets was attributed to the fact that diagnostic leaching data was used to 

estimate gold recovery based on unit processes employed to break down minerals that occlude gold. 

The gold that could not be recovered by the proposed flowsheets was captured in refractory minerals 

(i.e. gold occluded within quartz, sulphide minerals and carbonaceous matter) that reported to the 

flotation tailings stream and discharged as solid waste effluent. 

In the proposed flowsheets, the flotation tailings reported a low gold grade of 0.12 g/tonne of which 

58% was free-milling gold. Research into flotation technology to improve sulphide and gold recovery 

above 85% and 46% respectively is beneficial to improve gold recovery and further reduce the 

impact of acid mine drainage. The flotation recovery maximisation could potentially eliminate the 

need for leaching of flotation tailings which consumes the bulk of the lixiviant used in both flowsheets. 

As an alternative solution, heap leaching of flotation tailings instead of agitated leaching for leaching 

of free-milling gold may reduce electricity costs brought about by agitation during leaching flotation 

tailings. Heap leaching has been demonstrated at commercial scale for thiosulphate and cyanide 

leaching (Brierley, 1997; Dunne et al., 2009; Roberto, 2017; Wan and Brierley, 1997). The 

disadvantage of heap leaching is the residual lixiviant remaining in depleted tailings that are toxic to 

the environment Therefore, processes to breakdown harmful emissions need to accompany heap 
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leaching solutions. The aforementioned solutions can reduce electricity and lixiviant consumption 

and consequently the life cycle impacts of both flowsheets.  

Cost-effective technologies for the liberation of fine-grained gold in quartz and silicate minerals 

smaller than 75 μm need to be identified and presents a gap in literature. In the present study, 11.8% 

gold was occluded in quartz and at present ultrafine grinding is the only technology available to 

liberate gold in quartz. Unfortunately, the energy cost of comminution required to reduce the particle 

size increases exponentially towards the particle size required for complete liberation of gold and 

may render gold recovery unprofitable (Orumwense and Forssberg, 1992). According to literature, 

ultra-fine grinding is reserved for the treatment of gold concentrates (Coetzee et al., 2010; Corrans 

and Angove, 1991; Senchenko et al., 2016).  

In thiosulphate leaching systems, palladium and platinum form more stable metal-thiosulphate 

complexes than gold. Therefore, there is potential for co-adsorption and elution of palladium and 

platinum metal thiosulphate complexes along with gold. As far as the current study has determined 

there is no evidence of platinum and palladium recovery from thiosulphate liquor with ion exchange 

resins to support this hypothesis, but this may be a basis for a subsequent study.  Undesirable metals 

such as titanium and mercury also form more stable metal-thiosulphate complexes than gold. 

Research is required to minimise the quantity of these metals reporting to the gold eluate before 

electrowinning to increase purity of the crude gold bullion produced from the thiosulphate flowsheet.  

This section concludes objective two of this work which was to identify process flowsheets for value 

recovery from hypothetical mine tailings of the West Rand region. The next steps involve the collation 

of a life cycle inventory followed by life cycle assessment of the two process options that have been 

proposed and to assess the environmental impacts of both flowsheets.  
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5.2. Life cycle assessment (LCA) 

5.2.1. Life cycle impact assessment (LCIA) 

Objectives three and four will be addressed in this section, which involves quantifying the 

environmental impacts of the proposed flowsheets through LCA to identify a process that yields 

reduced environmental impacts for gold recovery from mine tailings.  The LCA results were 

interpreted by means of comparative analysis followed by a sensitivity analysis for each flowsheet 

as described in the work by Segura-Salazar et al. (2019). The comparative analysis between the 

cyanide and thiosulphate flowsheets involved two levels. Firstly, a contribution analysis of LCA 

results using midpoint and endpoint impact categories was done to identify environmental hotspots 

in background and foreground processes along with emissions to the ecosphere. The background 

process evaluation assesses the cradle-to-gate upstream environmental impacts associated with 

the manufacture of raw material and energy resources utilised in the proposed flowsheets. The 

foreground process analysis groups environmental impacts according to the unit processes in a 

flowsheet to identify where environmental hotspots are concentrated in the flowsheet and associated 

with specific technology selections as a basis for process design decisions. The environmental 

assessment of direct emissions from foreground process to ecosphere quantifies and ranks the 

ecological impact of chemical species in process waste streams. The second level of the 

comparative analysis involved a comparison of the baseline gold recovery technology of cyanide 

leaching with an alternative lixiviant system, namely thiosulphate. The purpose of the second level 

of comparative analysis will determine which flowsheet results in reduced environmental 

consequences overall. In both levels of comparative analysis, an account of the environmental 

impacts of the current state-of-the-art for gold recovery from tailings was provided along with 

opportunities to further reduce environmental impacts will be identified in this section.  

5.2.1.1. Hotspot analysis for background processes 

The LCIA results for both flowsheet options are summarised in Table 5-4. The thiosulphate flowsheet 

generates a reduced environmental burden for 18 out of 19 environmental impact categories except 

for freshwater consumption when compared to the cyanide flowsheet and will be discussed further 

in the ensuing sections. The background processes reflect the life cycle impacts associated with raw 

material and energy requirements of the flowsheets proposed. The contribution of background 

processes for the cyanide and thiosulphate processes are summarised in Figure 5-3 and Figure 5-4 

respectively.  
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Table 5-4: LCIA midpoint impact category results (results expressed per 1 kg gold (functional unit) 

 Impact category Abbreviation 
Thiosulphate 
leaching Cyanide leaching Units 

Climate change, default, excl biogenic carbon  CC (non-biogenic) 763,917.92 2,684,671.06 kg CO2 eq. 

Climate change, incl biogenic carbon  CC (Biogenic) 764,666.03 2,702,139.00 kg CO2 eq. 

Fine Particulate Matter Formation  FPM 1,658.76 5,522.95 kg PM2.5 eq. 

Fossil depletion FD 2,267,884.61 3,804,331.79 kg oil eq. 

Freshwater Consumption FW, consump. 15,196.25 9,631.59 m3 

Freshwater ecotoxicity FW, ecotoxi. 56,693.34 104,714.36 kg 1,4-DB eq. 

Freshwater Eutrophication  FW, eutroph. 47.34 680.62 kg P eq. 

Human toxicity, cancer  Htox, cancer 346.94 339,554.10 kg 1,4-DB eq. 

Human toxicity, non-cancer  Htox,non-cancer 318,132.47 15,303,601.14 kg 1,4-DB eq. 

Ionizing Radiation  IR 4,594.28 10,822.17 Bq C-60 eq. to air 

Land use Land use 5,216.27 14,737.50 Annual crop eq.·y 

Marine ecotoxicity  Marine, Ecotox. 21,633.21 83,269.12 kg 1,4-DB eq. 

Marine Eutrophication  Marine, Eutroph 54.71 9,003.09 kg N eq. 

Metal depletion Metal Deplete.  38,903.78 82,014.34 kg Cu eq. 

Photochemical Ozone Formation, Ecosystems Photo Ozone, eco 2,497.70 8,610.59 kg NOx eq. 

Photochemical Ozone Formation, Human Health  Photo Ozone, human 2,492.72 8,596.52 kg NOx eq. 

Stratospheric Ozone Depletion  Strato Ozone Deplet. 0.18 0.77 kg CFC-11 eq. 

Terrestrial Acidification  Ter. Acidify 5,391.55 17,958.77 kg SO2 eq. 

Terrestrial ecotoxicity  Ter. Ecotox. 194,003.52 975,687.40 kg 1,4-DB eq. 
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Figure 5-3: Contribution of background processes to each impact category for cyanide leaching flowsheet  
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Figure 5-4: Contribution of background processes to each impact category for thiosulphate leaching flowsheet 
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Electricity was the majority contributor for 9 out of 19 impact categories for the cyanide flowsheet 

and 9 out of 19 impact categories for the thiosulphate flowsheet (Figure 5-3 and Figure 5-4) and was 

linked to agitation requirements for process vessels (as discussed in section 4.9). Electricity 

consumption for cyanide flowsheet was higher than the thiosulphate flowsheet because of agitation 

requirements required for cyanide destruction and arsenic removal (section 4.9). Chlorine gas may 

be used as an alternative to 12.5% aqueous sodium hypochlorite to reduce the amount of water 

introduced, provided safety measures are employed to mitigate occupational health and 

environmental impacts. The biological treatment, hydrogen peroxide or SO2/Air (i.e. INCO process) 

cyanide destruction technologies also need to be evaluated to ascertain if these technologies will 

reduce electricity consumption and life cycle environmental impacts. In summary, the requirement 

for lixiviant destruction in the cyanide flowsheet increases the electricity requirements causing a 

corresponding increase in life cycle environmental impacts. By recycling and regenerating lixiviant 

in the thiosulphate flowsheet, the requirement for lixiviant destruction was avoided.  

The environmental implications of electricity production in both flowsheets may be reduced by 

incorporating more renewable energy resources into the electricity grid mix  (Pehnt, 2006). In South 

Africa 90% of electricity is generated from coal. Considering the rising electricity costs in South 

Africa, incorporating more renewable energy resources may reduce the operating costs linked with 

electricity consumption and increase the profitability of processes (IEA, 2017; Votteler and Brent, 

2017). The South African government has encouraged partnerships with the Department of Minerals 

and Energy to increase the renewable energy adoption thereby reducing the strain on the national 

electricity grid. Considering the large land occupied by mines there is potential for a hybrid electricity 

grid supply by introducing more solar photovoltaic, onshore wind and geothermal energy plants  

(Department of Minerals and Energy, 2002) The realisation of a return on investment for 

implementing renewable energy will however be dependent on the service life of the mine. Therefore, 

until the initial investment cost is recovered, the commissioning of renewable energy may increase 

the unit cost of electricity and a cost-benefit analysis needs to be conducted on hybrid electricity 

supplies for mine operations.  

Wastewater treatment greatly affected 5 out 19 impact categories for cyanide flowsheet (Figure 5-3) 

and 3 out of 19 impact categories for the thiosulphate flowsheet (Figure 5-4). According to GaBi® 

professional database, in the cyanide leaching flowsheet the wastewater treatment dataset produces 

a sludge that consists of nitrogen, phosphorous and potassium (represented as N, P2O5, K2O). The 

activated sludge may be used as a mineral fertiliser in agriculture to reduce the environmental 

impacts on human toxicity, freshwater and marine eutrophication or incinerated as a thermal energy 

source for the water treatment plant. The incinerated ash is a base metal ore resource of copper, 

iron, zinc, lead and aluminium (Karri et al., 2018; Sphera Solutions GmbH, 2020).  
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In the thiosulphate leaching circuit, reverse osmosis (RO) water treatment produced a concentrate 

that was recycled in the process. In the reverse osmosis dataset modelled in GaBi®, the concentrate 

stream is discharged to municipal wastewater treatment which in turn produced an incinerated ash 

(containing base and heavy metals) and activated sludge that may be used as a mineral fertiliser as 

discussed above. Therefore, the environmental impacts related to RO water treatment are 

overestimated for the thiosulphate flowsheet since the concentrate stream was recycled to 

regenerate thiosulphate and return to the gold leaching process steps. 

Water consumption in the water scarce region of South Africa has led to the government introducing 

a water resource management charge and establish benchmarks for water reuse and recycle on 

mining industries to reduce freshwater consumption. Therefore technology solutions that reduce 

freshwater consumption will be favoured (Gunson et al., 2012; Letsoalo et al., 2007; Mudd, 2007; 

Naicker et al., 2003). The cyanide flowsheet consumed half the amount of freshwater when 

compared to the thiosulphate flowsheet (Table 5-4). This may be attributed to the 30% pulp density 

required for thiosulphate leaching compared to 50% pulp density in the cyanide flowsheet required 

for optimum gold leaching. Furthermore, wastewater treatment results in a negative contribution to 

the freshwater consumption impact category in Figure 5-3 and Figure 5-4 because of treated water 

produced as a product of wastewater treatment processes. The GaBi® datasets for wastewater 

treatment was not developed for mining industry and therefore the reverse osmosis (RO) water 

treatment dataset does not result in a large negative contribution when compared to the wastewater 

treatment dataset (275% versus 18% versus reduction in freshwater consumption Figure 5-3 and 

Figure 5-4 respectively). There is potential that more treated water can be produced through RO 

water treatment although this needs to be proven during the development of GaBi® datasets for 

wastewater treatment of mining wastewater specifically. In industry, additional approached to  reduce 

mine freshwater consumption such as: ore pre-concentration, evaporation reduction by cover tanks, 

thickeners and tailings ponds along with filtered tailings disposal can aid in reducing water 

consumption by 74% (Gunson et al., 2012). These strategies were not considered in this study but 

are worthwhile mentioning as freshwater consumption reduction strategies.  

The land occupied by flowsheets was not considered in this LCA. Therefore, land use reflected in 

LCA results is linked to land occupied to supply raw material and energy resources to the proposed 

flowsheets. The resources required for the thiosulphate flowsheet occupied 2.8 times less land when 

compared to the cyanide flowsheet (Table 5-4). This was linked to the life cycle impacts of sodium 

cyanide manufacture (as illustrated in Figure 5-3) and the large electricity consumption required for 

cyanide destruction and arsenic removal as discussed in this section.   

5.2.1.2. Hotspot analysis on unit processes  

An analysis of unit processes in the flowsheets can aid in identifying opportunities to reduce 

environmental impacts. The contribution per unit process within the cyanide and thiosulphate 
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flowsheets are summarised in Figure 5-5 and Figure 5-6 respectively. In the cyanide flowsheet 

(Figure 5-5), the leaching of flotation tailings, the depleted tailings emissions to the ecosphere along 

with cyanide destruction and arsenic removal accounted for the bulk of the environmental impacts 

(in descending order of environmental impact). For the thiosulphate flowsheet (Figure 5-6), arsenic 

removal, flotation tailings gold leaching, depleted tailings emissions to ecosphere, flotation, acid 

leaching and uranium recovery contribute to most of the environmental impacts of this flowsheet (in 

descending order of environmental impact). 

The leaching of flotation tailings increased gold recovery from 44.5% to 71.2%, therefore leaching of 

flotation tailings increased the revenue generated from the process although an economic evaluation 

needs to determine if this improvement is profitable. In both flowsheets, leaching of flotation tailings 

for precious metal recovery increased the overall life cycle impacts. The large mass flowrate of the 

flotation tailings stream compared to the flotation concentrate stream means that the lixiviant 

consumption and agitation electricity requirements increased to maintain optimum lixiviant conditions 

for gold leaching. Consequentially, the increased lixiviant consumption increases overall life cycle 

impact of background processes associated with lixiviant production.  

Life cycle impacts can be reduced by minimising lixiviant consumption through process optimisation 

and lixiviant regeneration and recycling. Alternatively, lixiviants can be selected that have reduced 

life cycle environmental impacts. Based on the LCIA results demonstrated in Table 5-4, the 

thiosulphate flowsheet proposed was a viable replacement for cyanide leaching. The environmental 

benefits held by the thiosulphate flowsheet is brought about by the reduced life cycle impacts 

inherent with thiosulphate leaching technology and the reduction in lixiviant consumption by recycling 

and regenerating lixiviant. 
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Figure 5-5: Cyanide flowsheet unit process contribution to each impact category 
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Figure 5-6: Thiosulphate flowsheet unit process contribution to each impact category
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Table 5-5: Endpoint LCIA results (functional unit on functional unit 1kg gold) for cyanide and thiosulphate flowsheets 

Cyanide flowsheet Thiosulphate flowsheet 

Impact category [Unit] Magnitude Impact category [Unit] Magnitude 

Human Health [DALY] 13.1 Human Health [DALY] 2.57 

Ecosystem quality [species.yr] 2 368 Ecosystem quality [species.yr] 2 368 

Resource scarcity [$] 91 374 Resource scarcity [$] 29 213 

Table 5-6: Contributional analysis and ranking of unit processes by endpoint LCIA results (functional unit on functional unit 1kg gold) 

Endpoint impact categories [units] 

Human Health [DALY] Ecosystem quality [species.yr] Resource scarcity  [$] 

1 
Cyanide Wastewater 
treatment 

7.33 1 Uranium leaching and recovery 2 368 1 Cyanide Gold Leaching 45 345 

2 
Cyanide Lixiviant 
management 

3.32 2 Uranium leaching and recovery 2 368 2 Cyanide lixiviant management 11 068 

3 Cyanide Gold Leaching 1.28 3 Cyanide lixiviant management 7.66E-03 3 Thiosulphate Gold Leaching 10 225 

4 Wastewater treatment 1.27 4 Cyanide Wastewater treatment 7.54E-03 4 Cyanide Wastewater treatment 9 934 

5 Thiosulphate Gold Leaching 0.73 5 Cyanide Gold Leaching 3.61E-03 5 
Thiosulphate Wastewater 
treatment 

7 884 

6 Cyanide Gold Recovery 0.30 6 
Thiosulphate Wastewater 
treatment 

3.09E-03 6 Cyanide Gold Recovery 2 289 

7 Flotation 0.22 7 Thiosulphate Gold Leaching 1.89E-03 7 Flotation 2 170 

8 Flotation 0.22 8 Cyanide Gold Recovery 8.61E-04 8 Flotation 2 169 

9 Sulphide Roasting 0.13 9 Flotation 5.42E-04 9 Uranium leaching and recovery 1 812 

10 Pressure oxidation 0.10 10 Flotation 5.42E-04 10 Uranium leaching and recovery 1 811 

11 
Uranium leaching and 
recovery 

0.06 11 Sulphide oxidation 3.88E-04 11 Thiosulphate management 1 053 

12 
Uranium leaching and 
recovery 

0.05 12 Sulphide oxidation 3.07E-04 12 Thiosulphate Gold Recovery 1 000 

13 Thiosulphate management 0.05 13 
Thiosulphate Lixiviant 
management 

1.23E-04 13 Pressure oxidation 875 

14 Thiosulphate Gold Recovery 0.02 14 Thiosulphate Gold Recovery 6.83E-05 14 Sulphide Roasting 416 
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As discussed in section 2.6.1, endpoint analysis reduces complexity of analysis by predicting the 

ultimate effect of emissions on only three key areas of protection as summarised in Table 5-5. The 

human health category reflects the shortening of human life leading to premature death brought 

about by disease and disability caused by pollution of the ecosphere. Ecosystem quality refers to 

the extinction of fauna and flora species because of influence of pollutants on habitat contamination 

and destruction. Finally, the resource scarcity category reflects the loss of non-renewable resources 

such as fossil fuels and minerals. The endpoint analysis information was further stratified in Table 

5-6 to rank unit processes according to how the life cycle impact affect the key areas of protection 

from highest to lowest. This ranking system allowed gold processing technologies to be compared 

against one another (cyanide technologies in blue and thiosulphate technologies in green).  

The impact on ecosystem quality for both flowsheets was equal (i.e. 2 368 species.yr in Table 5-5)  

because dodecanol emissions (used as an additive during uranium solvent extraction) to ecosphere 

account for more than 99% of contribution to ecosystem quality impact category for both flowsheets. 

Dodecanol emissions management will be discussed in section 5.2.1.5 along with other emissions 

to ecosphere.  

Based on the ranking system in Table 5-6, for impact on ecosystem quality, the cyanide flowsheet 

resulted in 2.3 times more impact for gold leaching and recovery, 4.7 times more impact for effluent 

treatment and lixiviant management and 1.26 times more impact for sulphide oxidation when 

compared to thiosulphate flowsheet.  For the human health category, the cyanide flowsheet resulted 

in 2.1 times more impact for gold leaching and recovery, 4.7 times more impact for effluent treatment 

and lixiviant management and 1.3 times more impact for sulphide oxidation when compared to 

thiosulphate flowsheet (as summarised in Table 5-6). For impact on resource scarcity, the cyanide 

flowsheet resulted in 4.2 times more impact for gold leaching and recovery and 2.4 times more 

impact for effluent treatment and lixiviant management when compared to thiosulphate flowsheet 

(as summarised in Table 5-6). Sulphide roasting, however, results in 0.48 times less impact on 

resource scarcity than pressure oxidation.  

The general trend in Table 5-6 using endpoint analysis was that the thiosulphate flowsheet unit 

processes results in diminished environmental impacts for the three areas of protection human 

health, ecosystem quality and resource scarcity. The reduction in resource scarcity of sulphide 

roasting compared to pressure oxidation is attributed to the CaCO3, oxygen and heating 

requirements for pressure oxidation. Therefore, the trade-off for a reduction in environmental impacts 

that benefit human health and ecosystem quality is that more resources are consumed to employ 

pressure oxidation to decompose sulphide minerals. Aspects and impacts related to air quality from 

sulphide oxidation processes was discussed in section 5.2.1.3 along with other emissions to 

ecosphere. The environmental impact of effluent treatment and lixiviant management in the cyanide 

flowsheet was exacerbated by cyanide destruction and arsenic removal technologies requiring a 
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dilute solution of 12.5% sodium hypochlorite together with the electricity consumption for agitation 

(as discussed in section 5.2.1.1). The increased environmental impacts for gold leaching and 

recovery in the cyanide flowsheet was brought about by the life cycle impacts of raw materials and 

electricity consumption during cyanide leaching as indicated in Table 5-4. The recycling and 

regeneration of lixiviant in the thiosulphate flowsheet aids in reducing the raw material consumption 

which is evidenced by the resourced scarcity impact category in Table 5-4. 

Table 5-7: Gold leaching and recovery contributional analysis of endpoint results for thiosulphate 
and cyanide flowsheets 

 

Thiosulphate flowsheet Cyanide flowsheet 

Human 
Health 
[DALY] 

Ecosyste
m quality 
[species.yr
] 

Resource 
scarcity 
[$] 

Human 
Health 
[DALY] 

Ecosyste
m quality 
[species.yr
] 

Resource 
scarcity 
[$] 

Raw 

materials 

0.13 4.40E-04 6 363 0.85 2.64E-03 44 851 

Electricity 

and utility 

0.66 1.51E-03 1 988 0.74 1.85E-03 3 029 

Total 0.79 1.95E-03 8 351 1.65 4.49E-03 47 880 

The proposed cyanide flowsheet does not include cyanide regeneration (Figure 5-1). Including the 

regeneration and recycling of cyanide in Figure 5-1 may have been a less biased comparison when 

comparing it to a flowsheet where thiosulphate was regenerated. Cyanide recovery technologies 

have been demonstrated in commercial processes such as acidification-volatilisation and 

regeneration (AVR) (Kuyucak and Akcil, 2013). Only 50% cyanide recovery can be achieved in 

practice and the evolution of hydrogen cyanide gas requires strict occupational health and safety 

controls (Eksteen et al., 2018). Therefore, cyanide recovery processes were not incorporated into 

gold recovery flowsheets in literature and the baseline flowsheet also did not consider this. It should 

be noted that recycling and recovering cyanide will reduce cyanide consumption and reduce the 

resource requirements for cyanide destruction (specifically reagents and electricity required for 

agitation). By reducing resource consumption, the corresponding environmental impacts that are 

linked to resources are also reduced. The opportunity for reduction of environmental impacts through 

cyanide recycling and regeneration was not proven in this study and the benefit needs to be 

compared with the cost of additional resource requirements that accompany the additional unit 

process of cyanide recycling and regeneration.   

5.2.1.3. Hotspot analysis on emissions to ecosphere 

The life cycle impact of emissions to ecosphere from the foreground process for both flowsheets was 

calculated in Microsoft Excel® as explained in section 3.4.1. The LCIA midpoint results of emissions 

to ecosphere from each flowsheet is summarised in Table 5-8 with the percentage contribution of 

each emission to environmental impact categories stratified for the cyanide and thiosulphate 
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flowsheets in Figure 5-7 and Figure 5-8 respectively. Only the 11 out of 19 impact categories were 

affected by direct emissions from foreground processes were listed in Table 5-8. For comparison, 

an LCIA was conducted on a “No action” scenario where the mine tailings were left undisturbed and 

not subjected to processing by the flowsheets developed to assess how the flowsheets affect the 

environmental burden of mine tailings.   

Table 5-8: LCIA midpoint impact assessment results for emissions to ecosphere for flowsheets 
(results expressed per 1 kg gold (functional unit) 

Impact category No action 

Thiosulphate 

leaching Cyanide leaching 

CC (non-biogenic) (kg CO2 eq.) 0.00 27,275.13 69,842.99 

CC (Biogenic) (kg CO2 eq.) 0.00 27,275.13 69,842.99 

FPM (kg PM2.5 eq.) 0.00 0.00 1.15 

FW, ecotox. (kg 1,4-DB eq.) 79,333.99 56,617.40 63,432.32 

FW, eutroph. (kg P eq.) 34.34 44.25 44.26 

Htox, cancer (kg 1,4-DB eq.) 5,373.12 13.76 1,263.13 

Htox,non-cancer (kg 1,4-DB eq.) 1,593,145.87 289,581.72 2,027,323.97 

Marine, Ecotox. (kg 1,4-DB eq.) 18,155.40 21,410.52 27,417.42 

Marine, Eutroph (kg N eq.) 0.00 46.19 682.48 

Ter. Acidify (kg SO2 eq.) 0.00 0.00 3.96 

Ter. Ecotox. (kg 1,4-DB eq.) 5.75E-05 3.23E-05 3.24E-05 

The thiosulphate flowsheet reduced emissions to the ecosphere for 9 out of 11 impact categories in 

Table 5-8 compared to the cyanide flowsheet, while the impact to the remaining two impact 

categories was equal. When compared to the “No action” scenario, the thiosulphate flowsheet 

reduced the burden to freshwater ecotoxicity by 28% through sulphide mineral removal, human 

toxicity (non-cancer) by 99% and human toxicity through arsenic (cancer) by 81% through arsenic 

removal. Although the cyanide flowsheet also incorporated the aforementioned unit processes, the 

additional emissions by reagents fed increased environmental impact. Unfortunately, the flowsheets 

proposed caused an increase in environmental impacts for the remaining impact categories when 

compared to the “No action” scenario. The origins of these impacts will be explained in the ensuing 

sections addressing impacts on human health, aquatic and terrestrial ecosystems and atmosphere 

(sections 5.2.1.4 to 5.2.1.6).  
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Figure 5-7: Cyanide flowsheet emissions to ecosphere from foreground process contribution to each impact category 
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Figure 5-8: Thiosulphate flowsheet emissions to ecosphere from foreground process contribution to each impact category 
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5.2.1.4. Process impact on human health 

The human toxicity impact category quantifies the cause-and-effect relationship between the 

emission of pollutants on the health of the general population (Huijbregts et al., 2016). Following on 

from the discussion in section 2.2, literature has reported that communities near mine tailings dams 

in the Witwatersrand region are at risk of developing cancer and non-cancer related health 

complications because of radionuclide and heavy metal aeolian emissions. The risk is exacerbated 

for subsistence farmers who cultivate food to support their families in these regions (Kamunda et al., 

2016a; Ngole-Jeme and Fantke, 2017; Tutu et al., 2008). Therefore, hazardous emissions from 

process flowsheets need to be minimised to ensure that mineral processing activities do not affect 

the health of the general population.  

  

Figure 5-9: Life cycle human toxicity (cancer) and (non-cancer) impact category results for 
proposed flowsheets 

In an analysis at background process level, the thiosulphate flowsheet resulted in environmental 

impacts that are three- and two- orders of magnitude less for human toxicity (non-cancer) and human 

toxicity (cancer) impact categories respectively when compared to the cyanide flowsheet  (Figure 

5-9). For the cyanide flowsheet, the emissions from wastewater treatment contributed to 99% and 

86% of the life cycle impacts to human toxicity (cancer) and human toxicity (non-cancer) impact 

categories respectively. Opportunities for how this may be managed was discussed in section 

5.2.1.1.  At foreground process level, in the cyanide flowsheet lead (Pb) emissions to industrial soil 

contributed towards 100% and 75% of the effects to the human toxicity (cancer)  and human toxicity 

(non-cancer) impact categories respectively (Figure 5-7).Zinc emissions accounted for 15% of 

human toxicity (non-cancer) impact category contributions (Figure 5-7).  
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The origin of lead and zinc was the addition of lead nitrate and powdered zinc during precious metal 

recovery during zinc cementation. A cost-benefit analysis of lead nitrate as a performance additive 

for gold recovery is necessary to determine if externalised costs associated with environmental 

pollution and depleted tailings management can be justified by the gold recovery improvement. The 

assumption of 1.5 times the stoichiometric requirement of zinc powder fed during the zinc 

cementation unit process has flagged zinc as a hazardous emission. The stoichiometric excess 

allowed optimisation of precious metal cementation and compensates for base and heavy metals 

being preferentially cemented (Marsden and House, 2006). Opportunities to recover zinc and lead 

before it reports to the tailings dam may aid in reducing the contribution of zinc and lead emissions 

to human toxicity impact categories.  

Alternatively, electrowinning may be considered for gold recovery for cyanide flowsheet since it was 

not flagged to have a large environmental impact for the thiosulphate flowsheet in the midpoint level 

assessment of unit processes Figure 5-6 (section 5.2.1.2). Furthermore, thiosulphate gold recovery 

unit processes (including electrowinning) was ranked 10th in Table 5-6 for endpoint level human 

health and ecosystem quality areas of protection. The aforementioned results were observed 

because the electricity consumption for electrowinning was calculated on the assumption of 3 100 

kWh/tonne gold from Norgate and Haque (2012) (as stated in section 4.9). Therefore, the electricity 

consumption for electrowinning was negligible compared to upstream unit processes in the 

thiosulphate flowsheet (section 4.9). There is, however, a trade-off in terms of the purity of the crude 

gold bullion that can be formed owing to the co-deposition of copper on the cathode along with gold 

which increases upstream refining process demands to remove copper and form a 99.99% pure gold 

bullion as discussed in 2.4.8.2. Despite this, electrowinning does have the potential environmental 

benefit of not liberating hazardous emissions to the ecosphere as was the case with zinc 

cementation. The life cycle impacts of electrowinning for cyanide flowsheet was not evaluated in this 

study and a supplementary study needs to be done to provide evidence of hypothesised benefit.   

The thiosulphate process reduced environmental impact on human toxicity compared to the “No 

action” scenario for solid effluent emissions from foreground process because of the arsenic removal 

unit process which captured arsenic as scorodite (FeAsO4.2H2O) as mentioned in section 5.2.1.3. 

At foreground process level for the thiosulphate flowsheet, the hazardous emissions (i.e. lead, 

barium, zinc and cadmium) represented for human toxicity in Figure 5-8 were all present in the 

tailings feedstock therefore the environmental burden of these species was not reduced compared 

to the “No action” scenario. Although barium, vanadium and zinc contribute to human toxicity 

indicators in the LCIA results, the solid waste emissions complied with environmental regulation for 

the protection of water resources in Table 5-1. Except for lead, manganese and zinc both flowsheets 

reduced the environmental impact of the gold mine tailings feedstock through the dilution effect and 
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process interventions. Additional processing of solid effluent emissions, for example 

phytoremediation, is required to reduce burden to human toxicity as discussed in section 5.1.1. 

5.2.1.5. Process impact on aquatic and terrestrial ecosystems 

Freshwater-, marine- and terrestrial- ecotoxicity impact categories reflects the effect emissions will 

have on fauna and flora that reside within these ecosystems (Huijbregts et al., 2017). The idealised 

goal of mining operations is to extract beneficial materials from the earth while ensuring that the 

surrounding ecosystem is returned to the condition before the mine was commissioned. 

Unfortunately, the impact of mining activities may result in habitat destruction, biodiversity loss and 

in severe cases irreversible damage to ecosystems caused by acid mine drainage (Fashola et al., 

2016; Naicker et al., 2003; Ngole-Jeme and Fantke, 2017).  

 

Figure 5-10: Influence on life cycle freshwater, marine and terrestrial toxicity impact categories by 
proposed flows sheets for gold recovery from mine tailings 
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flowsheet by 12% and 28% respectively while the influence on terrestrial ecosystem was equal as 

summarised in Table 5-8 of section 5.2.1.3. 

In the cyanide flowsheet, the background processes of electricity and zinc powder manufacture 

accounted for 54% and 30% of the life cycle impacts on terrestrial ecotoxicity. Electricity consumption 

for the cyanide flowsheet was 3.7 times larger than for the thiosulphate flowsheet (for which an 

explanation was presented in section 5.2.1.1) hence the large disparity reported for terrestrial 

ecotoxicity burden for the cyanide flowsheet. The environmental impact of zinc cementation as a unit 

process was increased by the life cycle impacts associated with zinc powder manufacture. As 

discussed in section 5.2.1.4, electrowinning may be considered as an alternative to zinc cementation 

to reduce effect on terrestrial ecosystems for the cyanide flowsheet. The drawback of this 

recommendation is that the crude gold bullion purity may have to be sacrificed because of copper 

plating preferentially to gold during electrowinning as discussed in section 2.4.8.2. 

For the thiosulphate flowsheet, emissions from the foreground process represented 99% and 100% 

of the influence on marine- and freshwater- ecotoxicity respectively while electricity accounted for 

80% of the environmental indicators on terrestrial ecotoxicity (Figure 5-4). The emissions from the 

thiosulphate foreground process that were major contributors to freshwater- and marine- ecotoxicity 

impact categories were chromium and sulphuric acid (Figure 5-8).  

Metals in solid waste emissions from both flowsheets that were highlighted by the LCA to affect 

human health and ecotoxicity include chromium, zinc, lead, barium, cadmium and mercury (Figure 

5-7 and Figure 5-8). The evaluation of solid emissions against environmental regulation in Table 5-1 

in section 5.1.1, revealed that manganese and copper emissions from the thiosulphate flowsheet; 

and lead, manganese and copper emissions from the cyanide flowsheet were non-compliant. When 

comparing LCA results with environmental regulation for solid waste emissions one may conclude 

that chromium, zinc, cadmium and mercury emissions are not of concern because they were 

compliant during the evaluation in Table 5-1. Additional interventions, such as phytoremediation, are 

required to sequester metals from mine tailings and render mine tailings benign to the environment 

(as discussed in section 5.1.1). Influence of phytoremediation was not tested in this study but is 

offered as a suggestion to reduce life cycle environmental impacts.  

Manganese emissions originates from manganese dioxide used as an oxidant during uranium 

leaching and potassium permanganate used as an oxidant during arsenic removal in both 

flowsheets. For the arsenic removal unit process, the environmental burden of manganese may be 

reduced by investigating the life cycle impact of alternative oxidants to potassium permanganate 

such as chlorine dioxide, sodium hypochlorite and monochloramine (Sorlini and Gialdini, 2010). A 

cost-benefit analysis of using manganese dioxide for uranium recovery needs to be done to 

determine if the environmental impacts can be justified by the improvement in uranium recovery. 
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Lead emissions to ecosphere originated from lead nitrate used as a zinc cementation reagent to 

increase gold recovery in the cyanide flowsheet. A cost-benefit analysis evaluating the trade-offs 

between the improvements to gold recovery that lead nitrate offers and ecological impacts of lead 

for human and ecosystem health is necessary (as discussed in section 5.2.1.4). Evidence to support 

the aforementioned proposals to reduce environmental impacts was not determined in this study and 

are offered as suggestions for subsequent studies. 

Sulphuric acid produced from residual sulphide in solid waste emissions from both flowsheets were 

highlighted as a hazard to freshwater- and terrestrial- ecotoxicity (Figure 5-7 and Figure 5-8). The 

flowsheet solutions proposed reduced the impact of acid mine drainage by 83% (discussed in section 

5.1.1). Improvements in flotation technology to increase sulphide mineral recovery beyond 85% may 

be considered to further reduce environmental impacts of sulphuric acid produced during acid mine 

drainage. This recommendation has the added benefit of increasing gold recovery since 7.27% of 

gold is occluded within sulphide minerals (as discussed in section 2.3). The acid mine drainage 

potential of the solid effluent emissions should first be quantified to ascertain if flotation technology 

improvements for sulphide recovery are necessary.  

  

Figure 5-11: Influence on life cycle freshwater and marine and eutrophication impact categories 
by flowsheets for gold recovery from mine tailings 

Freshwater- and marine- eutrophication reflects the rise in nutrients, specifically nitrogen and 
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the thiosulphate process (Figure 5-11).  
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In the cyanide flowsheet, the wastewater treatment emissions of activated sludge along with the 

emissions from the activated carbon dataset created are the most notable contributors to 

eutrophication (Figure 5-3). The activated sludge emanating from wastewater treatment may be used 

as agricultural fertiliser for energy crops or incinerated to provide thermal energy and is an 

opportunity to reduce environmental impact as discussed in section 5.2.1.1. Activated carbon 

background dataset was created from data reported by Arena et al. (2016) (as discussed in section 

3.4.4.). Tar produced as a by-product of activated carbon manufacture accounted for 75% of for 

marine eutrophication impact (Figure 5-3). Sourcing of activated carbon from ISO 14 000 certified 

suppliers that minimise environmental impact may aid in reducing marine eutrophication burden for 

the cyanide flowsheet.  

Ammonia (uranium recovery reagent) emissions from both flowsheets contribute to marine 

eutrophication while phosphorous present in the tailings feedstock added to the eutrophication 

burden in freshwater resources (Figure 5-7 and Figure 5-8). Furthermore, nitrate emissions from 

lead nitrate use in the cyanide flowsheet increases marine eutrophication burden (Figure 5-7). 

Although the land-locked region of the Witwatersrand is 575 kilometres from the nearest ocean, the 

life cycle impact of these emissions needs to be managed since surface- and ground-water systems 

can transport hazardous species to marine ecosystems. Struvite (NH4MgPO4·6H2O) chemical 

precipitation has been used in semi-conductor and animal processing industries remove nitrogen 

and phosphorous from wastewaters (Altinbaş et al., 2002; Karri et al., 2018; Ryu et al., 2008). The 

function of the ammonia bleed stream was to prevent accumulation of waste products in recycle 

streams. The requirement for a bleed stream should be re-evaluated owing to the environmental 

burden of ammonia discharge. Sodium chloride precipitation may be used as an alternative to 

ammonia precipitation with the disadvantage of reducing purity of the yellow-cake uranium produced 

by 10% U3O8 (Zhu and Cheng, 2011). The recommendations of struvite chemical precipitation for 

ammonia and phosphorous removal along with sodium chloride precipitation to produce sodium 

diuranate was not evaluated in this study but is offered as a suggestion for supplementary studies.  

Dodecanol (additive used to improve uranium recovery during solvent extraction) bleed streams to 

the ecosphere was flagged as a burden to ecosystem quality in section 5.2.1.2. The environmental 

impacts associated with dodecanol (a fatty alcohol) emissions may be reduced by incinerating 

dodecanol to produce COx and methane by-products to mitigate hazard of exposure to aquatic 

ecosystems (Choi and Watanabe, 2012). The incineration of bleed streams was not incorporated 

into proposed flowsheets but is a possible solution to reduce environmental impacts.  Dodecanol is 

in-soluble in water therefore physical sequestration of dodecanol from aqueous streams with organic 

phase adsorbents such as activated carbon with soil adsorption coefficient (Koc) values > 7700 is 

quintessential. Adsorption is then followed by incineration of the carbon once adsorption capacity 

has been reached is required (National Center for Biotechnology Information, 2020). A cost-benefit 
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analysis for the use of dodecanol in uranium recovery needs to be conducted to ascertain if there is 

a significant improvement in uranium recovery considered the environmental impact it poses to 

ecosystem quality.  

5.2.1.6. Process impacts on atmosphere and ionising radiation 

Fine particulate matter represents the risk for human respiratory morbidity caused by aerosols (finely 

dispersed liquids and solids in the air). Ionising radiation refers to the effects of radionuclides on the 

ecosystem such as the carcinogenic effects on human and animal life. Finally, terrestrial acidification 

reflects the shift in optimum acidity of soils for plant species because of the effects of acid rain 

brought about by atmospheric emissions of sulphates, nitrates and phosphates (Huijbregts et al., 

2017). 

 

Figure 5-12: Effect on life cycle fine particulate matter, ionizing radiation and terrestrial acidification 
impact category for process flowsheets proposed 

The thiosulphate flowsheet has reduced impact compared to the cyanide flowsheet for fine 

particulate matter formation (3.3 times), ionising radiation (2.3 times) and terrestrial acidification (3.3 

times) as illustrated in Figure 5-12. The ecological impacts for fine particulate matter and terrestrial 

acidification were linked to electricity consumption in both flowsheets (Figure 5-3 and Figure 5-4). 

The reduced impacts by the thiosulphate flowsheet to the impact categories in Figure 5-12 was 

because of agitation electricity requirements for cyanide destruction and arsenic removal before 

wastewater treatment (as discussed in section 5.2.1.1). Ionising radiation is linked to nuclear power 

being incorporated into electricity grid mix for a specific region (Huijbregts et al., 2017). This may be 
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minimised by incorporating renewable electricity production into the electricity grid as discussed in 

section 5.2.1.1. 

Photochemical ozone formation refers to tropospheric ozone which affects human and animal 

respiratory health causing chronic obstructive pulmonary diseases while stratospheric ozone 

depletion is representative of the increase in ultraviolet-B radiation leading to human health related 

concerns such as melanoma and cataracts (Huijbregts et al., 2017). The cyanide flowsheet produced 

3.4 times the amount of photochemical ozone emissions and 4.2 times the quantity of stratospheric 

ozone emissions compared to the thiosulphate flowsheet (Figure 5-13 in combination with Table 

5-4).  This large difference between flowsheets was brought about by the background processes of 

sodium cyanide and electricity manufacture as resource requirements for CIL leaching of flotation 

tailings together with the cyanide destruction and arsenic removal processes (Figure 5-3). Electricity 

production was also the major contributor to these impact categories for the thiosulphate flowsheet 

(Figure 5-4). The effect on these impact categories may be managed by employing environmentally 

friendly technologies for electricity and lixiviant production, with an emphasis on photochemical 

ozone emission minimisation. The recommendation of the thiosulphate flowsheet minimised the 

impacts to human and animal health caused by photochemical ozone emissions and ozone layer 

destruction.  

  

Figure 5-13: Effect on photochemical ozone formation and stratospheric ozone depletion for 
process flowsheets proposed 
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Figure 5-14: Influence on life cycle climate change impact categories of proposed flowsheets for 
gold recovery from mine tailings 

In response to South Africa’s commitment to reduce greenhouse gas emissions by 34% in 2020 and 

by 42% in 2025 under the Copenhagen accord, the National Development Plan and draft Carbon 

Tax Act policies have been implemented in South Africa to combat the burden of climate change 

(Department of Environmental Affairs, 2011; Republic of South Africa, 2019). Considering South 

Africa’s dependency on electricity from coal, the mining industry may benefit from adopting strategies 

to reduce electricity consumption and corresponding greenhouse gas emissions to avoid 

implications of the carbon tax act on the profitability of their operations.  

The greenhouse gas emissions to the ecosphere for the thiosulphate flowsheet was 3.5 times less 

than the cyanide flowsheet (Table 5-4). For the thiosulphate process, electricity consumption 

accounted for more than 78% of the contributions to climate change (Figure 5-4). For the cyanide 

flowsheet, electricity and sodium cyanide manufacture accounted for 86% of the contributions to this 

impact category (Figure 5-3). This observation stems from the fact that the cyanide flowsheet 

required 3.7 times more electricity for agitation to maintain optimum conditions for hydrometallurgical 

processes, specifically cyanide destruction and arsenic removal (as discussed in section 5.2.1.1). 

The leaching of flotation tailings required large quantities of lixiviant and electricity consumption for 

optimum gold recovery and to maintain solids in suspension because of the large mass flowrate of 

solids originating from flotation. In both flowsheets, the increased lixiviant and electricity consumption 

was necessary for leaching of flotation tailings to improve overall gold recovery from 44.5% to 71.2%. 
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In summary, the thiosulphate flowsheet offers an opportunity for mine houses to reduce greenhouse 

gas emissions compared to the conventional cyanide flowsheet proposed. Incorporating renewable 

energy into the electricity grid of mines may further reduce the greenhouse gas emissions (as 

discussed in section 5.2.1.1) and consequently is an opportunity to avoid penalties associated with 

the Carbon Tax Act.   

5.2.2. Sensitivity analysis 

Sensitivity analysis involves an assessment of the influence of methods, inputs and assumptions on 

the LCA model to identify the most influential parameters in the model and reduce the parameters 

required for uncertainty analysis (Björklund, 2002). A scenario analysis was adopted for sensitivity 

analysis in this study and has been employed by other researchers in the field of gold process LCA 

(Chen et al., 2018; Elomaa et al., 2020, 2017; Norgate and Haque, 2012; Segura-Salazar et al., 

2019). The scenarios considered in the sensitivity analysis and the variations from the base case 

are summarised in Table 5-9.  

Table 5-9: Scenarios concerned for sensitivity analysis for the flowsheets developed 

Scenario number Change implemented 

S1 +10% increase in electricity consumption from base case 

S2 +10% increase in Lixiviant consumption from base case 

S3 +10% increase effluent to wastewater treatment from base case 

S4 Electricity grid change to EU-28: Electricity grid  

S5 +25% increase in reagent consumption for created datasets 

Of the process hotspots that were identified in section 5.2.1, electricity (S1), lixiviant consumption 

(S2) and wastewater treatment (S3) accounted for the bulk of the contributions to the LCA results. 

Therefore, it was decided to assess the effect a 10% change from base case values would have on 

the environmental impact of processes. The results of scenarios S1, S2 and S3 for the cyanide and 

thiosulphate flowsheet are illustrated in Figure 5-15 and Figure 5-16 respectively. From Figure 5-15 

and Figure 5-16 it can be seen that there is a sizeable correlation between electricity consumption 

and the environmental impact categories. Any approaches to reduce the electricity usage can benefit 

human health and help improve ecosystem quality areas of protection in both flowsheets. Increasing 

lixiviant consumption in both flowsheets results in opposing effects on land use and ionising 

radiation. Increasing effluent water treatment discharge from the cyanide flowsheets results in 29%  

reduction in freshwater consumption impact category. This is attributed to water treatment allowing 

freshwater to re-enter the ecosystem.   
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Figure 5-15: Cyanide flowsheet sensitivity analysis (10% change from base case)  
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Figure 5-16: Thiosulphate flowsheet sensitivity analysis (+10% change from base case)
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Owing to the correlation of the LCA results with electricity consumption, the selection of an electricity 

grid (S4) less reliant on coal and with more renewable energy was selected to investigate the impact 

that the electricity grid mix has on the LCA results. Since most of the datasets used in the LCA model 

were developed based on primary data from the European Union (EU), the “EU-28” electricity grid 

was selected for comparison with the South African (RSA) electricity grid. As demonstrated in Figure 

5-17, there was a reduction in environmental impacts for 10 out of 19 impact categories. The changes 

may be explained by the combination of electricity generation technologies used in RSA and the EU 

displayed in Figure 5-18 and Figure 5-19 respectively. The reduction in the 10 impact categories 

highlighted was attributed to RSA’s dependency on fossil fuel coal (90%) resulting in greenhouse 

gas emissions and environmental pollution. The increase in ionising radiation was brought about by 

the 25% dependency on nuclear power by the EU versus 5% in RSA. The radionuclide emissions 

associated with nuclear energy results in an increase between 200% and 300% from the base case 

in carcinogenic effects on the ecosphere. The land use impacts are inherent with the requirements 

of the technology and the number of plants in commission within a country. The environmental 

impacts associated with electricity generation in RSA and EU electricity grids may be circumvented 

by incorporation of more renewable energy technologies into the electricity grid as discussed in 

5.2.1.1. 

 

Figure 5-17: Change in environmental impact when EU-28: Electricity grid mix is applied instead of 
ZA: Electricity grid 
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Figure 5-18: Contribution of different energy generation techniques to the South African Electricity 
grid (Dataset: ZA: Electricity Grid) [Adapted from: (Sphera Solutions GmbH, 2020)] 

 

Figure 5-19: Contribution of different energy generation techniques to the 28 countries in the 
European Union Electricity grid (Dataset: EU-28: Electricity Grid mix) [Adapted from: (Sphera 

Solutions GmbH, 2020)] 
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Table 5-10: Sensitivity analysis on datasets created for the cyanide flowsheet (25% change from base case) 

  
Activated 
carbon  

Copper 
sulphate  

Ferrous 
sulphate 
(dissolve
d)  

Dodecan
ol 

Hexamet
hylene 
diamine 
(HMDA)  

Lead 
nitrate  

Mangane
se 
dioxide 

Potassiu
m 
permang
anate  

Propylen
e glycol 
methyl 
ether 
acetate  

Sodium 
Mercapto
benzothi
azole  

CC (non-biogenic) 0.014% 0.001% 0.001% 0.002% 0.027% 0.258% 0.046% 0.014% 0.021% 0.027% 

CC (Biogenic) 0.176% 0.001% 0.001% -0.001% 0.027% 0.266% 0.045% 0.014% 0.021% 0.027% 

FPM 0.025% 0.073% 0.002% 0.002% 0.003% 0.104% 0.041% 0.011% 0.003% 0.029% 

FD 0.002% 0.001% 0.000% 0.000% 0.008% 0.050% 0.008% 0.003% 0.010% 0.012% 

FW, consump. 0.028% 0.002% 0.001% 0.005% 0.028% 25.261% 0.040% 0.014% 0.018% 0.045% 

FW, ecotoxi. 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

FW, eutroph. 0.000% 0.000% 0.000% 0.000% 0.000% 0.001% 0.000% 0.000% 0.000% 0.000% 

Htox, cancer 0.010% 0.000% 0.000% 0.000% 0.000% 0.001% 0.000% 0.000% 0.000% 0.000% 

Htox,non-cancer 0.000% 0.000% 0.000% 0.000% 0.000% 0.003% 0.000% 0.000% 0.000% 0.000% 

IR 0.008% 0.005% 0.002% 0.004% 0.007% 0.299% 0.053% 0.032% 0.006% 0.025% 

Land use 0.055% 0.003% 0.008% 0.000% 0.023% 0.029% 1.030% 0.277% 0.016% 0.027% 

Marine, Ecotox. 0.000% 0.000% 0.000% 0.000% 0.000% 0.001% 0.000% 0.000% 0.000% 0.000% 

Marine, Eutroph 18.694% 0.000% 0.000% 0.000% 0.000% 0.001% 0.000% 0.000% 0.000% 0.000% 

Metal Deplete.  0.000% 0.000% 0.002% 0.000% 0.000% 0.012% 0.035% 0.010% 0.001% 0.000% 

Photo Ozone, eco 0.031% 0.001% 0.001% 0.001% 0.008% 0.185% 0.036% 0.010% 0.007% 0.009% 

Photo Ozone, human 0.031% 0.001% 0.001% 0.001% 0.008% 0.184% 0.036% 0.010% 0.007% 0.009% 

Strato Ozone Deplet. 0.010% 0.002% 0.001% 0.031% 0.204% 3.130% 0.025% 0.008% 0.016% 0.084% 

Ter. Acidify 0.021% 0.077% 0.002% 0.001% 0.002% 0.103% 0.041% 0.011% 0.003% 0.030% 

Ter. Ecotox. 0.048% 0.003% 0.001% 0.004% 0.011% 1.091% 0.065% 0.018% 0.013% 0.023% 
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Table 5-11: Sensitivity analysis on datasets created for the thiosulphate flowsheet (25% change from base case) 

 

Copper 
sulphate 

Iron 
oxide 

Do-
decanol 

Hexame-
thylene 
diamine  

Mangane
se 
dioxide  

Propy-
lene 
glycol 
methyl 
ether 
acetate  

Sodium 
Mercapto
-
benzothi
azole  

Sodium 
sulphide  

Sodium 
sulphite  

Potas-
sium 
perman-
ganate 

CC (non-biogenic) 0.005% 0.212% 0.005% 0.572% 0.160% 0.075% 0.094% 0.243% 0.026% 0.032% 

CC (Biogenic) 0.005% 0.212% -0.002% 0.572% 0.160% 0.075% 0.094% 0.243% 0.026% 0.032% 

FPM 0.236% 0.162% 0.008% 0.051% 0.140% 0.009% 0.097% 0.129% 0.007% 0.025% 

FD 0.002% 0.034% 0.000% 0.079% 0.014% 0.016% 0.021% 0.026% 0.004% 0.003% 

FW, consump. 0.000% 0.334% 0.002% 0.048% 0.012% 0.005% 0.013% 0.005% 0.045% 0.003% 

FW, ecotoxi. 0.000% 0.002% 0.000% 0.001% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

FW, eutroph. 0.000% 0.088% 0.002% 0.007% 0.001% 0.002% 0.003% 0.003% 0.011% 0.000% 

Htox, cancer 0.009% 0.777% 0.146% 0.430% 0.050% 0.080% 0.107% 0.093% 0.096% 0.011% 

Htox,non-cancer 0.002% 0.045% 0.003% 0.073% 0.011% 0.014% 0.021% 0.024% 0.005% 0.002% 

IR 0.010% 1.322% 0.009% 0.093% 0.124% 0.014% 0.059% 0.103% 0.175% 0.050% 

Land use 0.008% 0.869% 0.000% 0.394% 2.902% 0.044% 0.077% 0.242% 0.066% 0.516% 

Marine, Ecotox. 0.000% 0.010% 0.000% 0.008% 0.002% 0.002% 0.003% 0.003% 0.001% 0.000% 

Marine, Eutroph 0.001% 0.043% 0.001% 0.089% 0.007% 0.008% 0.020% 0.015% 0.004% 0.002% 

Metal Deplete.  0.000% 0.076% 0.000% 0.006% 0.073% 0.001% 0.001% 0.001% 0.000% 0.014% 

Photo Ozone, eco 0.002% 0.113% 0.004% 0.174% 0.123% 0.025% 0.031% 0.112% 0.011% 0.023% 

Photo Ozone, human 0.002% 0.112% 0.004% 0.163% 0.123% 0.023% 0.030% 0.111% 0.011% 0.023% 

Strato Ozone Deplet. 0.008% 0.332% 0.131% 5.210% 0.106% 0.069% 0.358% 0.132% 0.041% 0.023% 

Ter. Acidify 0.250% 0.166% 0.002% 0.051% 0.140% 0.009% 0.102% 0.127% 0.007% 0.025% 

Ter. Ecotox. 0.010% 0.457% 0.014% 0.253% 0.252% 0.052% 0.088% 0.107% 0.059% 0.046% 
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Data shortages were encountered while conducting the LCA. Specifically, the background process 

datasets for some raw materials used in the flowsheets were not part of the GaBi® professional 

database and were created as discussed in section 3.4.4. The influence of the created datasets on 

the LCIA results need to be investigated. A 25% change to the base case raw material input value 

for both flowsheets were made and the influence on environmental impact categories are depicted 

in Table 5-10 and Table 5-11 for the cyanide and thiosulphate flowsheets respectively.  

For the cyanide flowsheet, freshwater consumption for lead nitrate and marine eutrophication 

associated with activated carbon production were sensitive to raw material input changes. The 

accuracy of the LCA can be improved by verifying the results reported by the created datasets with 

purchased datasets developed by GaBi®. For the remaining datasets, the impact categories that are 

affected by greater than 0.5% when a 25% change is made from the base case are highlighted in 

red in Table 5-10 and Table 5-11.  The LCIA results were therefore not greatly impacted by the 

assumptions made when creating additional datasets.  

5.3. Life cycle assessment as a design tool 

LCA facilitates quantifying upstream and downstream environmental impacts of process flowsheets. 

Comparisons of environmental impacts of process flowsheets and unit processes can be completed, 

with the provision that the system boundaries and functional unit selections are identical. 

Comparative LCA’s that conduct hotspot analysis on background processes, unit process and 

effluent streams where a baseline process is used for comparison are particularly insightful. 

Strategies can be developed to address hotspots by developing processes to remove or render 

harmful species benign, selection of raw materials and minimisation of energy usage.  

The methodology employed provided design criteria to assess and identify opportunities to reduce 

the life cycle environmental impact associated with gold recovery technologies. Life cycle thinking is 

important since most environmental impact assessments (EIA’s) focus on the gate-to-gate and local 

ecological impacts of anthropogenic activities. The ecosphere is, however, an interconnected global 

system. Tools that assess the global (i.e. upstream and downstream) ecological impacts of specific 

process technologies within commercialised processes offers a big-picture perspective of the 

ecological consequences of engineering designs (Morrison-Saunders and Pope, 2013; Pope et al., 

2004; Tukker, 2000). This therefore provides an objective platform for the assessment of “green”-

technologies proposed in literature against conventional technologies employed in industry.  

There are examples of LCA being used as a design tool for gold manufacture from primary ores in 

literature. Elomaa et al. (2019, 2017) used LCA as a design tool to investigate environmental footprint 

associated with different ore oxidation and leaching unit processes for gold recovery. Other studies 

have used LCA to provide quantitative insight on the environmental impacts of energy policy, 

determine the impact of ore resources (e.g. refractory versus non refractory) and the impact of unit 
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process selection for gold recovery (Chen et al., 2018; Li et al., 2014; Norgate and Haque, 2012).  

Considering these few examples along with the EIA review conducted in section 2.5, there is support 

for LCA within the academic- and metallurgical- community as a holistic EIA. In a globalised world 

during the Anthropocene, evaluations of how decisions affect the global ecosystem are necessary 

to support the ecosystem in regulating the effects of anthropogenic activities (Birich et al., 2019).  

Background process environmental impacts account for 99% of environmental indicators calculated 

(Steubing et al., 2016). This may present a bias towards selection of raw materials, minimisation of 

energy usage and the selection of energy resources to reduce the overall life cycle impact of a 

process. This finding is relevant considering that local communities and environments are affected 

by the impact of direct emissions that make small contributions to the overall LCA results. Therefore, 

supplementing LCA results with local environmental regulations in addition to conducting an analysis 

on emissions from foreground processes is necessary.  

Data availability is a key challenge in conducting LCA’s as a design tool. The LCA practitioner needs 

to construct background process datasets for raw material manufacture from literature information. 

The link to missing background process datasets is complete when the practitioner has moved up 

the raw material supply chain to meet up with background process datasets that are present in the 

LCA software databases. Effluent stream to ecosphere hotspot analysis was particularly challenging 

if the effluent species are not present in the LCA database available to practitioners. For effluent 

species not available in the database, one course of action is to use a decomposition product or a 

species belonging to the same chemical family as a substitute.  

The environmental impact of effluent species related to the mining industry such as thiosulphate, 

arsenic trioxide, Prussian blue, scorodite, sulphides and sulphur do not have characterisation factors 

in the ReCiPe ® 2016 database. The full scope of environmental impacts is not completely 

accounted for with regards to acid mine drainage (AMD) which releases sulphuric acid to the 

ecosphere. This challenge can be overcome by modelling a process for AMD within the system 

boundary of the LCA study. There is consensus among authors that an LCIA methodology for the 

mineral processing industry is required (Awuah-Offei and Adekpedjou, 2011; Segura-Salazar et al., 

2019). Some researchers in the mining industry have even developed their own methodologies such 

as “LICYMINTM” by Durucan et al. (2006) to address impacts of processes related to the metallurgical 

industry.  

The aforementioned approaches introduce a margin for error in the results of the study because the 

development of LCA databases for process and chemical species datasets are conducted by large 

research institutions who have access to more resources and information than an individual 

practitioner. Examples of this is the work done by Huijbregts et al.(2016) and Steubing et al.(2016) 

to develop the ReCiPe® and Eco-invent® LCIA methodologies. The field of LCA is addressing the 
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shortcomings of databases to include more species and update the libraries as human technology 

overcomes environmental issues (Ayres, 1995; Freidberg, 2018; Huijbregts et al., 2017; Steubing et 

al., 2016).  

A techno-economic assessment is required to supplement the LCA results presented in this study. 

This work has also highlighted opportunities to reduce environmental impacts but are unfavourable 

towards product recovery. Examples of this include the recommendation of a stoichiometric excess 

of zinc and reagents such as lead nitrate to increase gold recovery or the use of dodecanol and 

ammonia for uranium recovery. The economic benefit needs to be compared with the environmental 

consequences along with the cost of additional unit processes required to break down toxic 

compounds before release to the ecosphere. This type of analysis would enable an evaluation of the 

gold cut-off grade required to ensure the profitability of the unit processes proposed while minimising 

the environmental consequences. This is where life cycle sustainability analysis (LSCA) provides a 

framework to assess economic, environmental and social aspects associated with a product that can 

be used by the metallurgical industry for sustainable mining and resource management while 

incorporating the principles of life cycle thinking (Fauzi et al., 2019; Gorman and Dzombak, 2018; 

Guinée, 2015; Heiskanen, 2002; Petit-Boix et al., 2017).  

5.4. Project alignment with UN Sustainable development goals 

The work conducted in this project supports the United Nations Sustainable Development Goals (UN 

SDG) by presenting solutions that reduce the extent to which mining operations affect the 

environment and communities (UN SDG 12).  Mine tailings have not been rendered inert, but the 

potential for acid mine drainage has been reduced by removing sulphide minerals and reduction of 

uranium as a source of radionuclides. This supports biodiversity by reducing impact for aquatic, 

marine and terrestrial ecosystems by reducing the impact of acid mine drainage and carcinogenic 

effects of caused by radionuclide pollution and arsenic (UN SDG 14 and 15). UN SDG’s 14 and 15 

are further supported but employing green chemistry and green technology solutions that reduce the 

life cycle impact of mining technology on the ecosphere. Ideally the goal should be to strive towards 

a reality where the ecosystem is restored to the same or better condition after mine closure. The 

climate action goal (UN SDG 13) was addressed by identifying gold recovery processes that reduce 

greenhouse gas emissions over the cradle-to-gate life cycle and opportunities were highlighted to 

further reduce the burden of climate change. Consulting recent literature on gold mining activities to 

support the development of processes for treating mining solid waste supported the industry, 

innovation and infrastructure goal (UN SDG 9) together with sustainable cities and communities’ 

goal (UN SDG 11). The aforementioned goals were addressed by identifying process technologies 

that reduced environmental footprint of mining activities while identifying mineral revenue streams. 

Furthermore, valorising a waste stream for value in light of the declining gold industry in South Africa 

helps to ensure the longevity of the gold industry while sustaining employment opportunities in the 
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gold sector and thereby supporting the decent work and economic growth goal (UN SDG 8). This is 

especially relevant in the context of the South African gold mining industry where gold from primary 

ore mines are approaching the gold cut-off grades to be able to operate profitable businesses (United 

Nations, 2019). By addressing these UN SDG’s, this work has benefited the mining industry 

presenting solutions to promote environmental and societal well-being while generating revenue and 

thereby a more sustainable industry (Rockström et al., 2009). 
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6 CONCLUSIONS AND RECOMMENDATIONS 

The aim of this study was to identify processes for the recovery of value and reduction of 

environmental impacts of gold mine tailings in the West Rand, Witwatersrand region. The 

significance of this study was twofold.  Firstly, to reduce the environmental impacts related to 

stockpiled mine tailings which is the largest single source of pollution in South Africa. Secondly to 

identify revenue streams in mine tailings to support reducing environmental impact of mine tailings 

in light of the declining head grade of primary gold ore resources. The objectives of this study listed 

in section 1.4 were achieved and key findings for each objective will be summarised in this chapter.  

6.1. Conclusions 

Mineralogical and geochemical data was compiled for tailings dams within the West Rand, 

Witwatersrand region to create a hypothetical tailings dam scenario thereby completing the first 

objective in this study. The heavy metal concentrations in hypothetical tailings were not compliant 

with regulation for protection of water resources according to National Environmental Management: 

Waste act 2008 (Act No. 59 of 2008) (NEMA)(Department of Environmental Affairs, 2014).  For the 

mine tailings ore resource considered the gold grade was 0.28 g/tonne of which 58% gold was free 

milling while the rest of gold is captured in refractory minerals.    

The second objective involved identifying process flowsheets for recovering value and reducing 

environmental impacts and was achieved. Two process flowsheets were developed for gold recovery 

from mine tailings: a conventional gold recovery flowsheet employing cyanide leaching and an 

alternative process employing thiosulphate leaching. Thiosulphate was identified as an 

environmentally friendly replacement to cyanide that has demonstrated evidence that the technology 

is mature enough for commercial gold recovery. Cost-effective technologies for liberation of 11.8% 

gold occluded in quartz minerals could not be identified in literature.  

Following mass and energy balances in HSC Sim®, both flowsheets proposed reported a gold 

recovery of 71.2% with the depleted solid emissions reporting a gold grade (dry basis) of 0.02 g/t 

and 0.03 g/t for thiosulphate and cyanide flowsheet respectively. The residual gold was occluded 

within quartz minerals smaller than P80 of 106 μm. Sulphide and uranium concentrations in the 

depleted tailings were reduced from 0.18% to 0.03% and from 54.9 g/t to 13.0 g/t respectively by the 

flowsheets proposed. Cyanide and thiosulphate solid emissions were not compliant with NEMA 

therefore mine tailings was not rendered inert for protection of water resources. Cyanide flowsheet 

solid emissions were non-compliant for lead, manganese and copper while thiosulphate flowsheet 

solids emissions were non-compliant for manganese and copper. The solid emissions from 

flowsheets may, however, be used in regions zoned as industrial according to NEMA.  
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A cradle-to-gate life cycle assessment of the proposed flowsheets was conducted to quantify the life 

cycle environmental impacts of flowsheets and identify the process that yielded the lowest 

environmental impact to complete the third and fourth objective of this study. The thiosulphate 

flowsheet had a reduced life cycle impact for 18 out of 19 midpoint impact categories when compared 

to the cyanide flowsheet apart from freshwater consumption impact category. The freshwater 

consumption was lower in the cyanide flowsheet because a pulp density of 50% was required for 

gold leaching in the cyanide flowsheet compared to 30% in the thiosulphate flowsheet and the 

wastewater treatment models selected in GaBi® were for municipal wastewater treatment and not 

mining wastewater treatment. At endpoint level, the thiosulphate flowsheet had reduced ecological 

impact on the human health and resource scarcity endpoint impact categories while the ecosystem 

quality was equal in both flowsheets because of dodecanol (an additive used during uranium solvent 

extraction) emissions to ecosphere.   

Hotspot analysis on LCA results allowed the contributional analysis and prioritisation of contributions 

to environmental impact categories of background processes, unit process and emissions to 

ecosphere. For both process flowsheets, backgrounded processes accounted for the bulk of life 

cycle environmental impacts specifically electricity production, lixiviant manufacture, activated 

sludge generation during wastewater treatment and depleted tailings emissions to the ecosphere. 

Cyanide destruction and arsenic removal unit processes account for the bulk of the life cycle impacts 

for cyanide flowsheet because of the large water inventory introduced by recommending 12.5% by 

mass aqueous sodium hypochlorite solution as reagent for cyanide destruction.  The dilute sodium 

hypochlorite solution increased water inventory and consequently increased agitation electricity 

consumption by 3.65 times compared to thiosulphate flowsheet. Leaching of flotation tailings 

increased gold recovery from 44.5% to 71.2% but increases the life cycle impacts of both flowsheets 

owing to increased reagent and electricity consumption to maintain optimum gold leaching conditions 

to compensate for the large mass flow rate of solids originating from flotation tailings stream. 

Concerning sulphide roasting technologies, pressure oxidation yielded no harmful emissions from 

foreground process to ecosphere compared to sulphide roasting. Technologies for SO2 gas and 

arsenic trioxide sequestration from sulphide roasting off-gases only achieve 99% removal of these 

hazardous emissions and therefore the consequences of these emissions have the potential to 

accumulate in the environment over time. 

The thiosulphate flowsheet resulted in reduced impact to human health over the entire life cycle by 

two orders of magnitude when compared to cyanide flowsheet. This discovery was attributed to 

activated sludge discharge from wastewater treatment along with zinc and lead nitrate emissions to 

ecosphere that was recommended to increase gold recovery during zinc cementation which 

culminated in an increase in zinc and lead emissions to ecosphere. The thiosulphate flowsheet offers 
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a solution to reduce the human health impacts associated with gold recovery from mine tailings when 

compared to the conventional cyanide flowsheet.  This finding is relevant owing to the burdens that 

radionuclides and heavy metals present in Witwatersrand tailings dams have posed to human health 

as reported in literature (Kamunda et al., 2016a; Ngole-Jeme and Fantke, 2017; Tutu et al., 2008). 

The proposed flowsheets benefited the aquatic and terrestrial ecosystems by removing sulphide 

mineral and uranium and therefore reduced the impact of acid mine drainage and radionuclide 

pollution by 83% and 75% respectively. A drawback for both processes was activated sludge release 

from wastewater treatment along with the emissions of ion exchange resins, ammonia and organic 

phase used during uranium recovery that negatively affected aquatic ecosystems. The thiosulphate 

flowsheet has a 46%, 74% and 80% reduction of burdens towards freshwater-, marine- and 

terrestrial-toxicity impacted categories compared to the cyanide flowsheet. The thiosulphate 

flowsheet also reduced the impact of eutrophication by one order of magnitude compared to the 

cyanide flowsheet. The cyanide flowsheets failure was attributed to the increased environmental 

burden of activated sludge released from wastewater treatment, activated carbon production, zinc 

powder manufacture together with the environmental consequences of 3.7 times larger electricity 

consumption compared to thiosulphate flowsheet. The thiosulphate flowsheet has greater potential 

to restore the ecosystem to its original state compared to cyanide flowsheet. This supports the mining 

industry in reducing externalised cost for environmental rehabilitation during mine closure.  

The thiosulphate flowsheet yielded at least two times less influence on environmental impact 

categories that represent the atmosphere compared to the cyanide flowsheet. Specifically, these 

impact categories were: fine particulate matter, ionising radiation, terrestrial acidification, 

photochemical ozone formation and stratospheric ozone depletion. This finding was attributed to 

electricity consumption for cyanide flowsheet being 3.7 times larger than the thiosulphate flowsheet 

because of cyanide destruction and arsenic removal unit processes.  This discovery is essential 

since air quality is linked to human and ecosystem health and ensuring that effects of terrestrial 

acidification does not render arable land incapable of supporting plant life.  Furthermore, the impact 

on climate change by the thiosulphate flowsheet was three times less when compared to the cyanide 

flowsheet because of the reduced electricity consumption. Considering that the South African 

government has imposed a Carbon tax, mine houses may need to look towards solutions to reduce 

greenhouse gas emissions to avoid penalties which may affect the profitability of their operations. 

Based on the conclusions drawn from the life cycle assessment on key areas of protection, the 

thiosulphate flowsheet was the more environmentally sustainable process for gold recovery from 

mine tailings. A supplementary finding that evolved from achieving the third objective, was that LCA 

was an effective design tool for comparative assessments on environmental impacts of process 

flowsheets provided that the system boundaries and functional units are identical and the LCIA 
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methodology accurately accounts for background processes and emissions. National environmental 

regulation for the case study region should be consulted during hotspot analysis for emissions to 

ecosphere during the LCA to determine if highlighted emissions require intervention or not. The 

present study has revealed that there are database gaps for background processes, raw materials 

and emissions specific to the metallurgical industry and were documented in section 3.4.4. LCA can 

effectively account for environmental efficiencies of elementary flows at the system boundary but the 

process and resource usage efficiency of each process inside the system boundary was not 

accounted for.  

6.2. Recommendations 

The fifth objective of identifying improvements to further reduce environmental impacts in both 

flowsheets was realised. The recommendations listed in this section were not incorporated into the 

proposed flowsheets. The recommendations are, however, considerations for future work that holds 

similar aims and objectives as the present study. The environmental impacts of background 

processes such as the upstream electricity production and lixiviant manufacture may be achieved 

by implementing green technologies to reduce environmental impacts such as the use of renewable 

energy electricity production, manufacturers limiting emissions to environment and valorising waste 

streams to produce inert by-products. The ecological impacts of activated sludge from wastewater 

treatment can be minimised by repurposing activated sludge as fertiliser for agriculture and energy 

crops. 

Research into improving flotation technology for mine tailings to increase sulphur, uranium and gold 

recoveries above 85%, 46% and 20% respectively is needed to improve gold recovery, reduce 

lixiviant consumption and reduce impact of acid mine drainage and radionuclide pollution. 

Furthermore, investigations into low-cost technologies as an alternative to ultrafine grinding for 

liberating fine-grained gold within quartz minerals (P80<106 μm) is necessary to increase gold 

recovery. The reagents used create species that increase the environmental impact of solid 

emissions from flowsheets. A cost-benefit analysis of these reagents needs to be concluded to 

understand if the environmental impact of using these reagents have a significant improvement on 

product recovery to justify their inherent environmental impact. 

An investigation into reducing the environmental impacts of the organic phase for uranium recovery, 

ion exchange resins and ammonia needs to be concluded. An opportunity was identified for ammonia 

sequestration through struvite chemical precipitation, while the organic phase of uranium recovery 

and non-viable ion exchange resin bleed streams may be passed through high-performance 

activated carbon adsorption followed by incineration. The environmental impacts of using sodium 
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chloride for yellow-cake uranium precipitation as opposed to ammonia needs to be investigated to 

identify if this is an opportunity for environmental impact reduction.   

The life cycle impact of alternative cyanide- destruction and -recovery technologies need to be 

investigated to determine if there is potential to further reduce environmental impact of cyanide 

flowsheet. Examples of these technologies include biological treatment, SO2/air or H2O2 cyanide 

destruction technologies and acidification, volatilisation and re-neutralisation (AVR) cyanide 

recovery technology. An evaluation of the environmental impacts of electrowinning compared to zinc 

cementation for cyanide flowsheet gold recovery needs to be conducted. This recommendation 

stems from the human and ecosystem health concerns related to the zinc cementation unit process. 

This is a design trade-off where the purity of crude gold bullion produced must be weighed against 

the potential environmental benefit. Alternatively approaches to recycle zinc and lead nitrate in gold 

recovery processes should be investigated to identify opportunities to mitigate the environmental 

impact associated with zinc cementation.  

The solid emissions from the process flowsheets proposed were non-compliant with NEMA. 

Therefore, subsequent processing, such as phytoremediation, is required to remove pollutants from 

tailings to render the tailings environmentally benign. Phytoremediation of depleted mine tailings has 

been demonstrated commercially to reduce pollutants in mine tailings and generate bio-ore for 

precious and base metal recovery. Identifying opportunities for profitable metal recovery enables 

remediation activities to fund themselves and therefore strives towards the goal of economic and 

environmental sustainability of the mineral processing industry (Chaney and Baklanov, 2017; 

Nkrumah et al., 2018; Sheoran et al., 2009).  

Incomplete gold deportment studies were found in literature for mine tailings dams in South Africa to 

support accurate process flowsheet development. Specifically, a thiosulphate diagnostic leaching 

step should be included to test the assumption used in this work that thiosulphate may be used as a 

direct replacement for cyanide and achieve the same gold recoveries. This enables an empirical 

understanding of the association of gold with minerals and challenges to gold recovery for a specific 

ore resource.  It was forecasted that the gold grade of the secondary ore resource of mine tailings 

will exceed primary ore gold grades by approximately 2031. Therefore, comprehensive gold 

deportment data will support research into process development to support the longevity of the gold 

industry in South Africa and quantify the economic value in mine tailings.  

Shortcomings in the methodology used was identified as presented in section 6.1. Literature has 

noted the need for the development of an LCIA methodology specific to the metallurgical industry to 

account for environmental aspects and impacts of processes and chemical species related to the 

mining operations (Awuah-Offei and Adekpedjou, 2011; Segura-Salazar et al., 2019). Accuracy and 
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reliability of the LCA results in this study can be improved by developing background datasets and 

emissions fate models based on primary data together with conducting uncertainty analysis on 

inputs. Exergetic life cycle assessment (ELCA) allows the evaluation of thermodynamic efficiency of 

the individual unit processes and the overall flowsheet offering insight into the consumption and 

depletion of natural resources. The addition of ELCA will therefore further support reducing life cycle 

environmental impacts by optimising resource utilisation efficiency in processes (Amini et al., 2007; 

Cornelissen and Hirs, 2002; Gößling-Reisemann, 2008).  

Exploring the environmental impacts of gold recovery flowsheets is beneficial.  An analysis of the 

economic feasibility of the proposed flowsheets is, however, an important criterion for the design of 

recovery of value from low gold grade mine tailings processes. The thiosulphate flowsheet includes 

costly unit operations such as pressure oxidation, resin adsorption and elution, thiosulphate 

regeneration and reverse osmosis water treatment. A supplementary study needs to be conducted 

to determine the economic viability of the process flowsheets identified for gold recovery from West 

Rand mine tailings. Environmental sustainability was the focus of this work. But the economic and 

social aspects related to this case study could be investigated in a future study through life cycle 

cost analysis and social life cycle assessment respectively. This will aid in ensuring that a process 

is developed that addresses the core elements of a sustainable process and aid in developing a 

framework for life cycle sustainability assessment which is a continuation of the work done within the 

field of life cycle assessment.    
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APPENDICES 

Appendix A XRF Data  

Table 0-1:Collation of XRF data from literature sources for Witwatersrand region  

Reference  (Abegunde et al., 2016) 

(Malatse and 

Ndlovu, 2015) 

GMaps ID  (G-14)  N/A  

GPS Location  26°07' 49.1"S 27°45' 51.7"E  N/A  

GPS Location (DMS)  -26.130 297, 27.764 361     

GPS Location (DD)        

Units mg/kg mg/kg 

Element        

SiO2  84,34 77,7 

Al2O3  6,45 10,2 

Fe2O3  3,03 4,51 

CaO  0,52 1,93 

MgO  0,4 1,79 

Na2O  0,34 0,61 

K2O  0,24 1,19 

MnO  0,09 0,05 

TiO2  0,06 0,47 

P2O5  0,04 - 

Cr2O3  0,03 0,45 

SO3  - 0,91 

P2O3  - 0,09 

ZrO2  - 0,03 

NiO  - 0,02 

SrO  - 0,02 

As2O3  - 0,01 

ZnO  - 0,01 

CuO  - 0,01 

U3O8  - 0,01 

Co2O3  - 0,01 

Pb2O  - 0,00 
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Appendix B XRD Data   

Table 0-2: Collation of XRD Data from literature references for Witwatersrand region, South Africa.  

 
Reference  (Rudzani et al., 2017) (Nengovhela et al., 2007)  (Fashola et al., 2016) 

Place  Nestor  

Glynn  

Lydenburg  Brakpan   Knights  Edenvale  Roodepoort  Klerksdorp  Krugersdorp  Krugersdorp  Krugersdorp  

GMap tag  (G-7)  (G-7)  (G-8)  (G-9)  (G-10)  (G-11)  (G-12)  (G-26)  (G-27)  (G-28)  

                        

26º 7' 56'' S 

and 27º 48' 

13''E  

26º 8'  

34" S and 27º 48' 

28'' E  

26º 7' 40" S and 

27º 48' 57"E  

GPS Location  

-24.91444, 

30.74036  

-24.91444, 

30.74036  

-26.34493, 

28.31827  

-26.20112, 

28.18184  

-26.14136, 

28.16094  

-26.0615, 

27.85727  

-26.90477, 

26.69444  

-26.131610, 

27.794888  

-26.142778, 

27.807778  

-26.127782, 

27.818273  

Jarosite [KFe3+
3(OH)6(SO4)2]  4,07 62,4 1,00 1,33 1,00 1,00 1,50 - - - 

Calcite [CaCO3]  0,44 19,8 - - - - - - - - 

Kaolinite/Chlorite [Al₂Si₂O₅(OH)₄]  0,99 11,8 - - - - - 5 - 1 

Mica [KAl3Si3O10(OH)2]  9,12 2,20 9,50 9,75 6,33 5,33 5,50 13 3 3 

Gypsum [CaSO4]  1,76 2,20 0,25 - - - - < 1 - - 

Gibbsite [Al(OH)3]  0,44 2,11 - - - - - - - - 

Goethite  0,44 1,83 - - - - - - - - 

Quartz [SiO2]  70,2 0,37 80,5 70,3 69,3 64,7 71,0 27 84 70 

Hematite[ CaMg(CO3)2] / Geothite  3,63 0,37 - - - - - - - - 

Pyrite [FeS2]  3,52 0,37 0,50 1,00 1,00 - 1,50 - - - 

Dolomite [CaMg(CO3)2]  3,30 0,37 - - - - - - - - 

Plagioclase [(Na,Ca)(Si,Al)4O8]  3,19 0,37 - - - - - - - - 

K-feldspar/ Ruthile [KAlSi3O8]/[TiO2]  0,55 0,28 0,75 1,00 1,00 1,00 - - - 1 

Chloritoid [ (Fe,Mg,Mn)2Al4Si2O10(OH)4]  - - - 9,50 15,0 19,7 2,25 - - - 

Chlorite [ClO2]  - - 7,25 8,25 6,67 5,00 3,00 - - - 

Pyrophyllite [Al2Si4O10(OH)2]  - - - - - 5,67 16,5 55 12 26 

Clay  - - 0,00 - 1,00 - - - - - 
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Appendix C ICP-MS Data   

Table 0-3:Collated table of ICP-MS Data from literature references for Witwatersrand region, South Africa.  

Reference (Mphinyane, 2018) 
(Tutu et 
al., 2009) 

(Rudzani et al., 
2017) (Maseki, 2017) (Kamunda et al., 2016b) 

Gmap Code  (G-6)  (G-3)  (G-5)  (G-4)  (G-1)  (G-2)  (G-13)  (G-7)  (G-7)  (G-15)  (G-16)  (G-17)  (G-18)  (G-19)  (G-20)  (G-21)  (G-22)  (G-23)  (G-24)  (G-25)  

Units  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  ppm  ppm  ppm  ppm  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  mg/kg  

Elements                                          

Be  0.090064 0.461396 0,4949 0,0639 0,3098 0,1214 - - - - - - - - - - - - - - 

B  - 0.728 7,558 - 3,12 2,314 - - - - - - - - - - - - - - 

Na  59.28 47.8972 722,2 292,5 50,74 180,1 - - - - - - - - - - - - - - 

Mg  1332.24 706.16 >15500 15350 4502 410 - - - - - - - - - - - - - - 

Al  4284.8 3759.08 13880 8338 8071 3231 - - - - - - - - - - - - - - 

P  44.0232 147.16 140,6 144,2 143,4 72,37 - - - - - - - - - - - - - - 

K  251.732 858 5725 2774 1746 1387 - - - 19700 21000 10670 2200 - - - - - - - 

Ca  224.952 17472 41580 7109 340,2 2485 - - - - - - - - - - - - - - 

Ti  30.2848 224.12 879,6 468,4 41,32 41,9 - - - - - - - - - - - - - - 

V  5.8656 5.9124 77,3 35,1 16,67 7,218 - 140 82 - - - - - - - - - - - 

Cr  45.2712 30.4616 364,3 517,3 97,95 38,79 - 172 140 410 550 230 120 441.52 270.76 77.50 104.17 97.50 861.67 98.18 

Mn  65.728 4880.2 1082 120,9 190,5 96,06 - - - 205 220 325 160 - - - - - - - 

Fe  8517.6 11055.2 48470 24870 20170 11380 - - - 40500 42200 44800 21300 - - - - - - - 

Co  2.16112 44.1064 32,14 47,04 20,87 14,23 - - - - - - - 33.68 31.76 30.00 21.67 21.67 28.33 11.82 

Ni  9.5108 75.192 292,4 438,9 59,61 28,02 - 53 66 106 60 76 16 131.04 115.08 152.50 99.83 125.83 68.33 91.82 

Cu  18.5692 63.596 60,97 43,98 34,59 31,68 - 154 30 - - - - 46.78 45.48 46.25 55.83 47.50 36.67 19.09 

Zn  14.0712 216.268 104,1 41,19 132,9 39,58 - 73 150 40 30 70 30 46.15 51.95 82.50 60.00 48.33 48.33 21.82 

As  40.534 106.86 243,4 2171 14,23 84,22 - 599 1471 150 140 90 110 94.17 115.19 71.33 73.18 67.08 65.17 69.69 

Se  0.466388 5.538 0,5924 0,3672 0,6034 0,8845 - - - - - - - - - - - - - - 

Rb  1.29376 7.9716 37,83 22,62 10,71 8,029 - - - - - - - - - - - - - - 

Sr  3.3384 19.76 220,7 20,83 2,939 14,77 - - - - - - - - - - - - - - 

Mo  0.369928 4.43768 0,9741 0,5326 0,8115 2,894 - - - - - - - - - - - - - - 

Pd  0.059904 3.4008 0,5149 0,0805 0,1507 0,2008 - - - - - - - - - - - - - - 

Ag  1.29272 10.4676 5,148 0,6655 1,935 3,342 - - - - - - - - - - - - - - 

Cd  0.01469 4.26712 0,0975 0,0499 1,01 0,2458 - - - 0,1 0,08 1,52 5,67 0.05 0.05 0.05 0.04 0.05 0.05 0.05 

Sb  0.479284 0.65052 0,6466 85,36 0,8245 1,725 - - - - - - - - - - - - - - 

Ba  12.1576 152.568 346,7 113,5 18,19 36,64 - - - - - - - - - - - - - - 

Pt  
0.001296

88 
0.012162

8 - - 0,0038 0,0022 - - - - - - - - - - - - - - 

Au  0.224536 0.26026 0,2379 0,3785 0,0963 0,3115 - - - 0,52 0,72 3,91 1,3 - - - - - - - 

Hg  1.1648 0.255944 1,333 0,6952 0,1419 0,6461 - - - - - - - 0.13 0.13 0.06 0.07 0.06 0.10 0.06 

Tl  
0.016801

2 0.276068 0,4743 0,2349 0,1233 0,1324 - - - - - - - - - - - - - - 

Pb  9.3496 180.024 68,21 42,01 16,05 47,65 - 54 37 16 11 27 24 8.85 10.22 2.31 2.96 3.31 1.58 4.32 

Bi  0.51116 7.6596 0,7085 0,2971 0,3077 1,945 - - - - - - - - - - - - - - 

Th  2.45596 163.124 0,7322 1,012 9,646 28,13 20,2 - - - - - - - - - - - - - 

U  1.495 104.312 0,534 0,2336 14,41 40,76 46,5 - - 8 7 16 16 - - - - - - - 
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Appendix D List of tailings dam literature for Witwatersrand 

region   

Table 0-4: Summary of type of data available for tailings dams in literature 

No Tailings dam (sample depth) XRD ICP-

MS/ 

OES 

XRF Reference 

G-1 New Machavie- Black Reef (2.4 

m) 

 x  (Mphinyane, 2018) 

G-2 New Machavie – Shale (2.4 m)  x  (Mphinyane, 2018) 

G-3 Dominion Reef (2.4 m)  x  (Mphinyane, 2018) 

G-4 Klein Letaba (2.4 m)  x  (Mphinyane, 2018) 

G-5 Louise Moore (2.4 m)  x  (Mphinyane, 2018) 

G-6 Crown Mine (2.4 m)  x  (Mphinyane, 2018) 

G-7 Glynn Lynderberg (10m) + 

Nestor Mine (4m) 

x x  (Rudzani et al., 2017) 

G-8 Brakpan (10 m) x   (Nengovhela et al., 2007) 

G-9 Knights (10 m) x   (Nengovhela et al., 2007) 

G-10 Edenvale (10 m) x   (Nengovhela et al., 2007) 

G-11 Roodepoort (10 m) x   (Nengovhela et al., 2007) 

G-12 Klerksdorp (10 m) x   (Nengovhela et al., 2007) 

G-13 Jupiter, Germiston  x  (Tutu et al., 2009) 

G-14 Mogale tailings dam (10 m)  x x (Abegunde et al., 2016) 

G-15 Springs (0.15 m)  x  (Maseki, 2017) 

G-16 Elsburg Tailing complex (0.15 

m) 

 x  (Maseki, 2017) 

G-17 Crown mine 2 (0.15 m)  x  (Maseki, 2017) 

G-18 Valkfontein (0.15 m)  x  (Maseki, 2017) 

G-19 Carltonville 1 (0.05 m)  x  (Kamunda et al., 2016a) 

G-20 Carltonville 2 (0.05 m)  x  (Kamunda et al., 2016a) 

G-21 Carltonville 3 (0.05 m)  x  (Kamunda et al., 2016a) 

G-22 Carltonville 4 (0.05 m)  x  (Kamunda et al., 2016a) 

G-23 Carltonville 5 (0.05 m)  x  (Kamunda et al., 2016a) 

G-24 Carltonville 6 (0.05 m)  x  (Kamunda et al., 2016a) 

G-25 Carltonville 7 (0.05 m)  x  (Kamunda et al., 2016a) 

G-26 Krugersdorp 1 (0.15 m) x x  (Ngole-Jeme and Fantke, 

2017) 

G-27 Krugersdorp 2 (0.15 m) x x  (Ngole-Jeme and Fantke, 

2017) 

G-28 Krugersdorp 3 (0.15 m) x x  (Ngole-Jeme and Fantke, 

2017) 
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Appendix E Agitation energy calculations 

Table 0-5: Thiosulphate flowsheet agitation electricity calculations 

Parameters 

Acid 
Leachin
g  

Uranium 
solvent 
extractio
n 

Uranium 
strippin
g 

Arsenic 
removal 

Collecti
on 
vessel 

Copper 
elution 

Flash 
cooling 
unit 

Gold 
Elution 

Gypsum 
precipita
tion 

Hot 
Cure 
Process 

Neutrali
sation 

Pressur
e 
oxidatio
n (P.O.) 

Resin in 
Leach 
(concent
rate) 

Resin in 
Leach 
(tailings) 

Resin 
Regener
ation 

Splash 
Vessel 

Thiosulp
hate 
regener
ation 

Trithion
ate 
Manc 

Volume (m3/h) 6.18 20.70 14.78 3511.52 3876.21 30.78 42.09 48.66 122.16 42.55 32.12 32.27 83.60 3511.52 30.99 17.83 122.25 27.68 

Tank volume (m3) 10.00 25.00 25.00 380.00 380.00 50.00 50.00 50.00 150.00 50.00 50.00 50.00 100.00 380.00 50.00 50.00 150.00 50.00 

Number of tanks 1.00 1.00 1.00 9.24 10.20 0.62 0.84 0.97 0.81 0.85 0.64 0.65 0.84 9.24 0.62 0.36 0.81 0.55 

Number of tanks 
(Rounded) 1.00 1.00 1.00 10.00 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.00 1.00 1.00 1.00 1.00 

Agitator type 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

Side 
entering 
axial 
fluidfoil 
agitator 

D(Tank) (m) 2.25 3.05 3.05 7.55 7.55 3.84 3.84 3.84 5.54 3.84 3.84 3.84 4.84 7.55 3.84 3.84 5.54 3.84 

D(agitator) (m) 1.35 1.83 1.83 4.53 4.53 2.30 2.30 2.30 3.32 2.30 2.30 2.30 2.90 4.53 2.30 2.30 3.32 2.30 

H(Tank) (m) 2.53 3.43 3.43 8.49 8.49 4.32 4.32 4.32 6.23 4.32 4.32 4.32 5.44 8.49 4.32 4.32 6.23 4.32 

Agitator Speed 
(rpm) 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 

Density (kg/m3) 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 

Viscosity (Pa.s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Re (-) 
1.892E+

05 
8.711E+

05 
8.711E+

05 
8.125E+

07 
8.125E+

07 
2.766E+

06 
2.766E+

06 
2.766E+

06 
1.726E+

07 
2.766E+

06 
2.766E+

06 
2.766E+

06 
8.780E+

06 
8.125E+

07 
2.766E+

06 
2.766E+

06 
1.726E+

07 
2.766E+

06 

Np (-) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

Impeller power 
(kWh) 13.59 62.57 62.57 5836.07 5836.07 198.65 198.65 198.65 1239.65 198.65 198.65 198.65 630.69 5836.07 198.65 198.65 1239.65 198.65 

Number of tanks 1.00 1.00 1.00 10.00 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.00 1.00 1.00 1.00 1.00 

Total electricity per 
unit process(kW) 13.59 62.57 62.57 58360.71 58360.71 198.65 198.65 198.65 1239.65 198.65 198.65 198.65 630.69 58360.71 198.65 198.65 1239.65 198.65 

Total electricity for 
agitators (kWh) 

180118.7
6 

 

Flotation 
electricity 
(kWh) 16280.75 

 

Electrowi
nning 
electricity 
(kWh) 0.93 

           
Total Electricity 
(kWh) 

196400.4
4 
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Table 0-6: Cyanide flowsheet agitation electricity calculations 

Parameters 
Acid 
Leaching 01 

Arsenic 
removal 

Carbon 
Elution 

Carbon in 
Leach (CIL) 

Cyanide 
leaching 2 

Cyanide 
Removal 
Reactor De Aeration 

Uranium 
solvent 
extraction 

Uranium 
stripping 

Zinc 
Cementation 

Volume (m3/h) 6.18 21239.24 12.32 2853.83 26.08 21238.94 24.71 20.70 14.78 24.98 

Tank volume (m3) 10 380 15 380 30 380 25 25 15 25 

Number of tanks 1 55.89 1 7.51 1 55.89 1 1.00 1 1.00 

Number of tanks (Rounded) 1 56 1 8 1 56 1 1 1 1 

Agitator type 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

Side entering 
axial fluidfoil 
agitator 

D(Tank) (m) 2.25 7.55 2.57 7.55 3.24 7.55 3.05 3.05 2.57 3.05 

D(agitator) (m) 1.35 4.53 1.54 4.53 1.94 4.53 1.83 1.83 1.54 1.83 

H(Tank) (m) 2.53 8.49 2.89 8.49 3.64 8.49 3.43 3.43 2.89 3.43 

Agitator Speed (rpm) 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 19.17 

Density  (kg/m3) 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 

Viscosity (Pa.s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Re (-) 1.892E+05 8.125E+07 3.718E+05 8.125E+07 1.180E+06 8.125E+07 8.711E+05 8.711E+05 3.718E+05 8.711E+05 

Np (-) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

Impeller power (kWh) 13.59 5836.07 26.71 5836.07 84.79 5836.07 62.57 62.57 26.71 62.57 

Number of tanks 1 56 1 8 1 56 1 1 1 1 

Total electricity per unit process(kW) 13.59 326820.00 26.71 46688.57 84.79 326820.00 62.57 62.57 26.71 62.57 

Flotation (kW) 16280.75 
         

Total electricity for agitators (kW) 716948.84 
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Appendix F Sample calculations 

An example for the calculation of agitation requirements for zinc cementation reaction vessel:  

Tank volume: 𝑉 =
𝜋𝐷𝑇

2𝐻

4
 [4-63] 

𝐻

𝐷𝑇
= 1.125 ∴ 𝐻 = 1.125 × 𝐷𝑇 

[4-64] 

Combine [4-63] and [4-64] and make 𝐷𝑇 the subject to derive [4-65]:  

Tank diameter: 𝐷𝑇 = √
𝑉

0.28125×𝜋

3
 

[4-65] 

The volume in the vessel as determine by HSC Sim® simulation = 24.98 m3/h. The tank 

volume required is 25 m3
 per vessel and therefore 1 vessel are require to meet the 

residence time requirements for cementation.  

The diameter of the tank can then be calculated: 𝐷𝑇 = √
𝑉

0.28125×𝜋

3
 

𝐷𝑇 = √
25 𝑚3

0.28125 × 𝜋

3

 

𝐷𝑇 = 3.05 𝑚 

 

 

The agitator diameter can be calculated using the tank dimeter calculated using [4-65] 

Agitator diameter: 𝐷𝑎 = 0.6 × 𝐷𝑇 

𝐷𝑎 = 0.6 × (3.05 𝑚) 

𝐷𝑎 = 1.83 m 

 

[4-66] 

Density and viscosity of the slurry was determined based on results reported by 

Mangesana et al. (2008) and Marsden (1962) as discussed in section 4.9 

Reynolds number: 𝑁𝑅𝑒 =
𝜌.𝑁.𝐷𝑎

5

𝜇
 

𝑁𝑅𝑒 =
(1.45 

𝑘𝑔
𝑚3
 ). (1). (1.83 𝑚)5

(8.38 × 10−3𝑃𝑎. 𝑠)
 

𝑁𝑅𝑒 = 8.71 × 10
5  

 

 

𝑁𝑅𝑒 > 10 000 therefore turbulent flow to ensure solid particles remain in suspension and 

for hydrofoil impellers a power number (𝑁𝑝) of 0.3 (Green and Perry, 2007; Hall, 2012). 

[4-67] 
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𝑔𝑐 = 1 for metric units. 2 impellers were recommended since slurry viscosity is less 

than 0.01 Pa.s as discussed in section 4.9 (Green and Perry, 2007; Hall, 2012) 

Agitator power: 𝑃 =
𝑁𝑝.𝜌.𝑁

3.𝐷𝑎
5

𝑔𝑐
 

𝑃 =
(0.3). (1.45 

𝑘𝑔
𝑚3
). (19.17 

𝑟𝑒𝑣
𝑚𝑖𝑛)

3. (1.83 m)5

(1
𝑚
𝑠2
∗ 1000)

 

𝑃 = 62.57 kWh 

 

[4-68] 
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Appendix G GaBi® Flowsheet screenshots 

 

Figure 0-1: GaBi® plan for cyanide leaching flowsheet LCA 
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Figure 0-2: GaBi® plan for thiosulphate leaching flowsheet LCA 
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Appendix H HSC Sim® Flowsheet screenshots 

 

Figure 0-3: HSC Sim® Cyanide flowsheet (Part A: Flotation, Carbon-in-Leach, Uranium recovery, Pyrometallurgical roasting, Effluent gas scrubbing).  
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Figure 0-4: HSC Sim® Cyanide flowsheet (Part B: Gold cyanide leaching and zinc cementation recovery, calcination and smelting).  
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Figure 0-5: HSC Sim® Cyanide flowsheet (Part C: Cyanide destruction and arsenic removal).  
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Figure 0-6: HSC Sim® complete thiosulphate flowsheet  
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Appendix I Extended chemical reaction tables for HSC Sim ® 

simulations 

Table 0-7: Uranium sulphuric acid leaching reactions for both process flowsheets 

Progress 

(%) 

Chemical Reaction 

100 𝐹𝑒2𝑂3 + 3𝐻2𝑆𝑂4(𝑎𝑞) → 2𝐹𝑒
2+(𝑎𝑞) + 3𝑆𝑂4

2−(𝑎𝑞) + 3𝐻2𝑂 [0-1] 

100 2𝐹𝑒2+(𝑎𝑞) + 𝑀𝑛𝑂2 + 2𝐻2𝑆𝑂4(𝑎𝑞)

→ 2𝐹𝑒3+(𝑎𝑞) + 𝑀𝑛2+(𝑎𝑞) + 2𝐻2𝑂 + 2𝑆𝑂4
2−(𝑎𝑞) 

[0-2] 

100 𝐻2𝑆𝑂4(𝑎𝑞) → 2𝐻
+(𝑎𝑞) + 𝑆𝑂4

2−(𝑎𝑞) [0-3] 

84.8 𝑈𝑂2 + 2𝐹𝑒
3+(𝑎𝑞) → 𝑈𝑂2

2+(𝑎𝑞) + 2𝐹𝑒2+(𝑎𝑞) [0-4] 

100 𝑈𝑂2
2+(𝑎𝑞) + 𝑆𝑂4

2−(𝑎𝑞) → 𝑈𝑂2𝑆𝑂4 [0-5] 

84.8 𝑈𝑇𝑖2𝑂6 + 2𝐹𝑒
3+(𝑎𝑞)+ 3𝑆𝑂4

2−(𝑎𝑞) → 2𝐹𝑒𝑆𝑂4 +  2𝑇𝑖𝑂2 + 𝑈𝑂2𝑆𝑂4 [0-6] 

100 𝑇𝑖𝑂2 +𝐻2𝑆𝑂4(𝑎𝑞) → 𝑇𝑖𝑂𝑆𝑂4 +𝐻2𝑂 [0-7] 

100 𝑈𝑂2𝑆𝑂4 + 2𝑆𝑂4
2−(𝑎𝑞) → 𝑈𝑂2(𝑆𝑂4)3

4−(𝑎𝑞) [0-8] 

100 𝐶𝑎𝐶𝑂3(𝑠) + 𝐻2𝑆𝑂4(𝑎𝑞) → 𝐶𝑎𝑆𝑂4(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂  [0-9] 

0 𝐹𝑒𝑆2 + 14𝐹𝑒
3+(𝑎𝑞) + 8𝐻2𝑂 →  2𝐹𝑒

2+(𝑎𝑞) + 2𝑆𝑂4
2−(𝑎𝑞) + 16𝐻+(𝑎𝑞)   [0-10] 

Table 0-8: Pressure oxidation reaction for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

99 𝐹𝑒𝑆2 + 3.5𝑂2(𝑔) + 𝐻2𝑂 → 2𝐹𝑒𝑆𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) [0-11] 

100 2𝐹𝑒𝑆𝑂4(𝑎𝑞) + 2𝐻2𝑆𝑂4(𝑎𝑞) + 𝑂2(𝑔) → 2𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻2𝑂 [0-12] 

100 2𝐴𝑠 + 1.5𝑂2(𝑔) + 2𝐻2𝑂 → 2𝐻𝐴𝑠𝑂2(𝑎𝑞) [0-13] 

100 2𝐻𝐴𝑠𝑂2(𝑎𝑞) + 2𝐹𝑒𝑆𝑂4(𝑎𝑞) + 2𝐻2𝑆𝑂4(𝑎𝑞) + 𝑂2(𝑔)

→ 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻3𝐴𝑠𝑂4(𝑎𝑞) 

[0-14] 

100 2𝐻3𝐴𝑠𝑂4(𝑎𝑞) + 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) → 2𝐹𝑒𝐴𝑠𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) [0-15] 

26 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻2𝑂 → 2𝐹𝑒(𝑂𝐻)𝑆𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) [0-16] 

67 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 3𝐻2𝑂 → 𝐹𝑒2𝑂3(𝑠) + 3𝐻2𝑆𝑂4(𝑎𝑞) [0-17] 

0 2𝐹𝑒2(𝑆𝑂4)3 + 14𝐻2𝑂 →  2𝐻3𝑂𝐹𝑒3(𝑆𝑂4)2(𝑂𝐻)6 + 𝐻2𝑆𝑂4 [0-18] 

Table 0-9: Hot cure process and neutralisation reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

90 2𝐹𝑒(𝑂𝐻)𝑆𝑂4(𝑎𝑞) + 𝐻2𝑆𝑂4(𝑎𝑞) → 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 2𝐻2𝑂 [0-19] 

100 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 3𝐶𝑎𝐶𝑂3 → 𝐹𝑒2𝑂3(𝑠) + 3𝐶𝑎𝑆𝑂4(𝑠) + 3𝐶𝑂2 [0-20] 

100 𝐻2𝑆𝑂4(𝑎𝑞) + 3𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑆𝑂4(𝑠) + 𝐻2𝑂 + 3𝐶𝑂2(𝑔) [0-21] 

0 𝐹𝑒2(𝑆𝑂4)3(𝑎𝑞) + 3𝐶𝑎𝐶𝑂3 + 3𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3(𝑠) + 3𝐶𝑎𝑆𝑂4(𝑠) + 3𝐶𝑂2(𝑔) [0-22] 

0 2𝐻3𝑂𝐹𝑒3(𝑆𝑂4)2(𝑂𝐻)6 + 𝐻2𝑆𝑂4 → 2𝐹𝑒2(𝑆𝑂4)3 + 14𝐻2𝑂 [0-23] 
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Table 0-10: Cyanide leaching reaction for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

96.71/58.15 𝐴𝑢° + 2𝐶𝑁−(𝑎𝑞) → 𝐴𝑢(𝐶𝑁)2
−(𝑎𝑞) + 𝑒− [0-24] 

96.71/58.15 𝑂2(𝑔) + 2𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻−(𝑎𝑞) [0-25] 

100 𝑁𝑎𝐶𝑁 → 𝑁𝑎+(𝑎𝑞) + 𝐶𝑁−(𝑎𝑞) [0-26] 

58.15 𝑃𝑑° + 4𝐶𝑁−(𝑎𝑞) → 𝑃𝑑(𝐶𝑁)4
2−(𝑎𝑞) + 2𝑒− [0-27] 

58.15 𝑁𝑖° + 4𝐶𝑁−(𝑎𝑞) → 𝑁𝑖(𝐶𝑁)4
2−(𝑎𝑞) + 2𝑒− [0-28] 

58.15 𝐶𝑢° + 4𝐶𝑁−(𝑎𝑞) → 𝐶𝑢(𝐶𝑁)4
3−(𝑎𝑞) + 𝑒− [0-29] 

58.15 𝐶𝑑° + 4𝐶𝑁−(𝑎𝑞) → 𝐶𝑑(𝐶𝑁)4
2−(𝑎𝑞) + 2𝑒− [0-30] 

58.15 𝐹𝑒° + 6𝐶𝑁−(𝑎𝑞) → 𝐹𝑒(𝐶𝑁)6
3−(𝑎𝑞) + 3𝑒− [0-31] 

58.15 𝑍𝑛° + 4𝐶𝑁−(𝑎𝑞) → 𝑍𝑛(𝐶𝑁)4
2−(𝑎𝑞) + 2𝑒− [0-32] 

58.15 𝐻𝑔° + 4𝐶𝑁−(𝑎𝑞) → 𝐻𝑔(𝐶𝑁)4
2−(𝑎𝑞) + 2𝑒− [0-33] 

58.15 𝑃𝑡° + 4𝐶𝑁−(𝑎𝑞) → 𝑃𝑡(𝐶𝑁)4
2−(𝑎𝑞) + 2𝑒− [0-34] 

58.15 𝐶𝑜° + 6𝐶𝑁−(𝑎𝑞) → 𝐶𝑜(𝐶𝑁)6
3−(𝑎𝑞) + 3𝑒− [0-35] 

58.15 𝐴𝑔° + 2𝐶𝑁−(𝑎𝑞) → 𝐴𝑔(𝐶𝑁)2
−(𝑎𝑞) + 𝑒− [0-36] 

Table 0-11: Zinc cementation reaction for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 𝑍𝑛° + 2𝐴𝑢(𝐶𝑁)2
−(𝑎𝑞) → 2𝐴𝑢° +  𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞)  [0-37] 

100 𝑍𝑛° + 𝑃𝑑(𝐶𝑁)4
2−(𝑎𝑞) → 𝑃𝑑° +  𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-38] 

100 𝑍𝑛° + 𝑁𝑖(𝐶𝑁)4
2−(𝑎𝑞) → 𝑁𝑖° +   𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-39] 

100 𝑍𝑛° + 𝐶𝑢(𝐶𝑁)4
3−(𝑎𝑞) →  𝐶𝑢° +  𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-40] 

100 𝑍𝑛° + 𝐶𝑑(𝐶𝑁)4
2−(𝑎𝑞) →  𝐶𝑑° +  𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-41] 

100 1.5𝑍𝑛° + 𝐹𝑒(𝐶𝑁)6
3−(𝑎𝑞) → 𝐹𝑒° +  1.5𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-42] 

100 𝑍𝑛° + 𝐻𝑔(𝐶𝑁)4
2−(𝑎𝑞) → 𝐻𝑔° +   𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-43] 

100 𝑍𝑛° + 𝑃𝑡(𝐶𝑁)4
2−(𝑎𝑞) → 𝑃𝑡° +   𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-44] 

100 𝑍𝑛° + 𝐶𝑜(𝐶𝑁)6
3−(𝑎𝑞) → 𝐶𝑜° +   𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-45] 

100 𝑍𝑛° + 2𝐴𝑔(𝐶𝑁)2
−(𝑎𝑞) → 2𝐴𝑔° +   𝑍𝑛(𝐶𝑁)4

2−(𝑎𝑞) [0-46] 

0 2𝑍𝑛° + 𝑂2(𝑔) + 2𝐻2𝑂 →  2𝑍𝑛(𝑂𝐻)2(𝑠) [0-47] 

Table 0-12: Thiosulphate leaching reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 𝐶𝑎𝑆2𝑂3 → 𝐶𝑎
2+(𝑎𝑞) + 𝑆2𝑂3

2−(𝑎𝑞) [0-48] 

100 𝐶𝑢𝑆𝑂4 + 3𝑆2𝑂3
2−(𝑎𝑞) → [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 𝑆𝑂4
2−(𝑎𝑞) [0-49] 

100 𝐶𝑢(𝑠) + 3𝑆2𝑂3
2−(𝑎𝑞) → [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 𝑒− [0-50] 

100 [𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 𝑂2(𝑔) → [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) [0-51] 

96.71/58.15 4𝐴𝑢 + [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 8𝑆2𝑂3

2−(𝑎𝑞) + 2𝐻2𝑂

→ 4[𝐴𝑢(𝑆2𝑂3)2]
3−(𝑎𝑞) + [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 4𝑂𝐻−(𝑎𝑞) 

[0-52] 
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Progress 

(%) 

Chemical Reaction 

96.71/58.15 4𝐴𝑔 + [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 8𝑆2𝑂3

2−(𝑎𝑞) + 2𝐻2𝑂

→ 4[𝐴𝑔(𝑆2𝑂3)2]
3−(𝑎𝑞) + [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 4𝑂𝐻−(𝑎𝑞) 

[0-53] 

5 4𝑆2𝑂3
2−(𝑎𝑞) + [𝑂2 ∙ 𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 2𝐻2𝑂

→ 2𝑆4𝑂6
2−(𝑎𝑞) + [𝐶𝑢(𝑆2𝑂3)3]

5−(𝑎𝑞) + 4𝑂𝐻−(𝑎𝑞) 

[0-54] 

100 2(𝐶22𝐻28𝑁)𝐶𝑙 + 𝑆2𝑂3
2−(𝑎𝑞) → [(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−] + 2𝐶𝑙− [0-55] 

100 2[𝐴𝑢(𝑆2𝑂3)2]
3−(𝑎𝑞) + 3[(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−]

→ 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆2𝑂3
2−(𝑎𝑞) 

[0-56] 

100 2[𝐴𝑔(𝑆2𝑂3)2]
3−(𝑎𝑞) + 3[(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−]

→ 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑔(𝑆2𝑂3)2]

3−] + 3𝑆2𝑂3
2−(𝑎𝑞) 

[0-57] 

50 2[𝐶𝑢(𝑆2𝑂3)3]
5−(𝑎𝑞) + 5[(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−]

→ 2[(𝐶22𝐻28𝑁)5
5+[𝐶𝑢(𝑆2𝑂3)3]

5−] + 5𝑆2𝑂3
2−(𝑎𝑞) 

[0-58] 

100 𝑆4𝑂6
2−(𝑎𝑞) + [(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−] → [(𝐶22𝐻28𝑁)2
2+𝑆4𝑂6

2−] + 𝑆2𝑂3
2−(𝑎𝑞) [0-59] 

100 𝑆3𝑂6
2−(𝑎𝑞) + [(𝐶22𝐻28𝑁)2

2+
𝑆2𝑂3

2−] → [(𝐶22𝐻28𝑁)2
2+𝑆3𝑂6

2−] + 𝑆2𝑂3
2−(𝑎𝑞) [0-60] 

100 𝐶𝑎2+(𝑎𝑞) + 𝑆𝑂4
2−(𝑎𝑞) → 𝐶𝑎𝑆𝑂4(𝑠) [0-61] 

Table 0-13: Gold elution reactions for thiosulphate leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆3𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆3𝑂6

2−] + 2[𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[0-62] 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆4𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆4𝑂6

2−] + 2[𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)2]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[0-63] 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑢(𝑆2𝑂3)2]

3−] + 3𝑆3𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆3𝑂6

2−] + 2[𝐴𝑢(𝑆2𝑂3)(𝑆𝑂3)]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[0-64] 

49.55 2[(𝐶22𝐻28𝑁)3
3+[𝐴𝑔(𝑆2𝑂3)2]

3−] + 3𝑆4𝑂6
2−(𝑎𝑞) + 2𝑆𝑂3

2−(𝑎𝑞)

→ 3[(𝐶22𝐻28𝑁)2
2+
𝑆4𝑂6

2−] + 2[𝐴𝑔(𝑆2𝑂3)(𝑆𝑂3)2]
3−(𝑎𝑞)

+ 2𝑆2𝑂3
2−(𝑎𝑞) 

[0-65] 
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Table 0-14: Cyanide destruction reaction for cyanide leaching flowsheet 

Progress 

(%) 

Chemical Reaction 

100 𝐶𝑁−(𝑎𝑞) + 𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝐶𝑁𝑂−(𝑎𝑞) + 𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝑒− [0-66] 

100 2𝐶𝑁𝑂−(𝑎𝑞) + 3𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) + 2𝐻+(𝑎𝑞) + 2𝑒−

→ 𝑁2(𝑔) + 2𝐶𝑂2(𝑔) + 3𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐻2𝑂 

[0-67] 

0.00068 𝐻2𝑂 → 𝐻
+(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞) [0-68] 

100 𝑁𝑎𝐶𝑁 → 𝑁𝑎+(𝑎𝑞) + 𝐶𝑁−(𝑎𝑞) [0-69] 

100 𝑍𝑛(𝐶𝑁)4
2−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝑍𝑛 + 𝐶𝑁𝑂−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙(𝑎𝑞) + 2𝑒− [0-70] 

100 𝑃𝑑(𝐶𝑁)4
2−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝑃𝑑 + 4𝐶𝑁𝑂−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙(𝑎𝑞) + 2𝑒− [0-71] 

100 𝑁𝑖(𝐶𝑁)4
2−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝑁𝑖 + 4𝐶𝑁𝑂−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙(𝑎𝑞) + 2𝑒− [0-72] 

100 𝐶𝑢(𝐶𝑁)2
−(𝑎𝑞) + 2𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝐶𝑢 + 2𝐶𝑁𝑂−(𝑎𝑞) + 2𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝑒− [0-73] 

100 𝐶𝑑(𝐶𝑁)4
2−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝐶𝑑 + 4𝐶𝑁𝑂−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙(𝑎𝑞) + 2𝑒− [0-74] 

100 𝐻𝑔(𝐶𝑁)4
2−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝐻𝑔 + 4𝐶𝑁𝑂−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙(𝑎𝑞) + 2𝑒− [0-75] 

100 𝐶𝑜(𝐶𝑁)6
3−(𝑎𝑞) + 6𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝐶𝑜 + 6𝐶𝑁𝑂−(𝑎𝑞) + 6𝑁𝑎𝐶𝑙(𝑎𝑞) + 3𝑒− [0-76] 

100 𝑃𝑡(𝐶𝑁)4
2−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 𝑃𝑡 + 4𝐶𝑁𝑂−(𝑎𝑞) + 𝑁𝑎𝐶𝑙(𝑎𝑞) + 2𝑒− [0-77] 

100 𝐹𝑒(𝐶𝑁)6
4−(𝑎𝑞) + 4𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 4𝐹𝑒(𝐶𝑁)6

3−(𝑎𝑞) + 𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐻2𝑂 [0-78] 

100 4𝐹𝑒𝑆𝑂4 + 3𝐹𝑒(𝐶𝑁)6
3−(𝑎𝑞) → 𝐹𝑒4(𝐹𝑒(𝐶𝑁)6)3(𝑠) + 4𝑆𝑂4

2−(𝑎𝑞) [0-79] 
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Appendix J Thiosulphate and cyanide equilibrium stability 

constants 

Table 0-15: Equilibrium stability constants for metal cyanide complexes 

Cyanide 

complex 

Stability 

constant 

(log β) 

Cyanide 

complex 

Stability 

constant 

(log β) 

Cyanide 

complex 

Stability 

constant 

(log β) 

𝐶𝑜(𝐶𝑁)6
3− 64 a 𝑁𝑖(𝐶𝑁)4

2− 30.22 c 𝐶𝑜(𝐶𝑁)6
3− 19.1 a 

𝐴𝑢(𝐶𝑁)4
− 56 a 𝐶𝑢(𝐶𝑁)4

3− 23.1 c 𝐶𝑑(𝐶𝑁)4
2− 17.92 c 

𝑃𝑑(𝐶𝑁)4
2− 51.6 b 𝐶𝑢(𝐶𝑁)3

2− 21.66 c 𝐶𝑑(𝐶𝑁)3
− 16.65 c 

𝐹𝑒(𝐶𝑁)6
3− 43.6 c 𝐴𝑔(𝐶𝑁)3

2− 21.40 c 𝐶𝑢(𝐶𝑁)3
2− 16.26 c 

𝑃𝑡(𝐶𝑁)4
2− 41 b 𝐴𝑔(𝐶𝑁)4

3− 20.8 c 𝑍𝑛(𝐶𝑁)3
− 16.05 c 

𝐴𝑢(𝐶𝑁)2
− 39.3 a 𝐴𝑔(𝐶𝑁)2

− 20.48 c   

𝐹𝑒(𝐶𝑁)6
4− 35.4 c 𝑍𝑛(𝐶𝑁)5

3− 20.17 a   

𝐻𝑔(𝐶𝑁)2 32.8 d 𝑍𝑛(𝐶𝑁)4
2− 19.62 c   

a :(Sillen et al., 1964) cited by (Wang and Forssberg, 1990) 
b: (Muir and Ariti, 1991) cited by (Mpinga et al., 2014) 
c: (Smith and Martell, 1989) cited by (Wang and Forssberg, 1990) 
d: (Miltzarek et al., 2002) 

Table 0-16: Equilibrium stability constants of metal thiosulphate complexes of metal ions  

Metal thiosulphate 

complex 

Stability constant 

(log β) 

Metal thiosulphate 

complex 

Stability constant 

(log β) 

𝑃𝑡(𝑆2𝑂3)4
6− 43.6 a 𝐶𝑑(𝑆2𝑂3)4

6− 7.10 c 

𝑇𝑖(𝑆2𝑂3)4
6− 41.1 a 𝑃𝑏(𝑆2𝑂3)4

6− 6.2 c 

𝑃𝑑(𝑆2𝑂3)4
6− 34.9 a 𝑍𝑛2(𝑆2𝑂3)2 5.84 c 

𝐻𝑔(𝑆2𝑂3) 33.6 a 𝑁𝑖(𝑆2𝑂3) 2.06 c 

𝐴𝑢(𝑆2𝑂3)2
3− 28 b 𝐶𝑜(𝑆2𝑂3) 2.05 c 

𝐴𝑔(𝑆2𝑂3)2
3− 14.2 a 𝑀𝑛(𝑆2𝑂3) 1.99 a 

𝐶𝑢(𝑆2𝑂3)3
5− 13.6 a 𝑀𝑔(𝑆2𝑂3) 1.99 a 

𝐹𝑒(𝑆2𝑂3)2
− 8.72 a 𝐹𝑒(𝑆2𝑂3)3

3− 1.98 a 

𝑃𝑏(𝑆2𝑂3) 8.30 a 𝐶𝑎(𝑆2𝑂3) 1.90 a 
a:Cited by (Grosse et al., 2003)  b:(Sullivan and Kohl, 2019)  c:(Smith and Martell, 1989) 
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Appendix K Extended life cycle inventory (LCI) for LCA on process flowsheets  

Table 0-17: Complete and extended life cycle inventory for cyanide flowsheet (functional unit 1kg gold) 

Input Quantity #a TFb Output Quantity #a TFb 

Activated carbon [Organic intermediate products] 2,711.5 kg X 
Aluminium [Inorganic emissions to industrial 
soil] 69,522.8 kg * 

Aluminium [Non renewable elements] 69,522.8 kg   
Aluminium silicate [Inorganic intermediate 
products] 1,420,598.0 kg * 

Aluminium silicate [Inorganic intermediate products] 1,420,598.0 kg   
Aluminium sulphate [Inorganic intermediate 
products] 4,216,797.8 kg * 

Aluminium sulphate [Inorganic intermediate 
products] 4,216,797.8 kg   Ammonia [Inorganic emissions to fresh water] 192.5 kg * 

Ammonia [Inorganic intermediate products] 192.5 kg X Antimony [Heavy metals to industrial soil] 2.6 kg * 

Antimony [Non renewable elements] 2.6 kg   Arsenic [Heavy metals to industrial soil] 0.0 kg * 

Arsenic [Non renewable elements] 361.8 kg   Arsenic trioxide [Heavy metals to air] 3.8 kg * 

Barium [Non renewable elements] 381.4 kg   Arsenic trioxide [Product] 378.3 kg * 

Beryllium [Non renewable elements] 3.4 kg   Barium [Inorganic emissions to industrial soil] 381.4 kg * 

Bismuth [Non renewable elements] 18.9 kg   
Beryllium [Inorganic emissions to industrial 
soil] 3.4 kg * 

Boron [Non renewable elements] 1.3 kg   Bismuth [Non renewable elements] 18.9 kg * 

Cadmium [Non renewable elements] 2.4 kg   Boron [Inorganic emissions to industrial soil] 1.3 kg * 

Calcium [Non renewable elements] 33,169.6 kg   Cadmium [Heavy metals to industrial soil] 2.1 kg * 

Calcium carbonate (> 63 microns) [Minerals] 61,299.5 kg X 
Cadmium oxide [Inorganic intermediate 
products] 0.3 kg * 

Carbon [Organic intermediate products] 12,035.3 kg   Calcium [Inorganic emissions to industrial soil] 6,635.9 kg * 

Chromium [Non renewable elements] 1,042.9 kg   Calcium hydroxide [ecoinvent long-term to air] 4,178.4 kg * 

Cobalt [Non renewable elements] 115.9 kg   
Carbon (unspecified) [Organic emissions to 
industrial soil] 135.55 kg * 

Compressed air [Mechanical energy] 121,563.6 Nm3 X Carbon dioxide [Inorganic emissions to air] 69,843.0 kg * 

Copper [Non renewable elements] 195.4 kg   Chromium [Heavy metals to industrial soil] 1,155.7 kg * 

Copper sulphate [Inorganic intermediate products] 466.7 kg X Cobalt [Heavy metals to industrial soil] 115.9 kg * 

Electricity [Electric power] 5,736,465.1 MJ X Copper [Heavy metals to industrial soil] 30.3 kg * 
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Input Quantity #a TFb Output Quantity #a TFb 

Fatty alcohol (C16-18) [Valuable substances] 76.4 kg X Copper sulphate [Inorganic emissions to air] 466.7 kg * 

Feldspar (aluminium silicates) [Non renewable 
resources] 1,028,185.1 kg   

Cyanide (unspecified) [Inorganic emissions to 
air] 0.0 kg * 

Ferrous sulphate (dissolved) [Inorganic intermediate 
products] 395.1 kg X Dodecanol [Organic emissions to fresh water] 76.4 kg * 

Gold [Non renewable elements] 1.3 kg   
Feldspar (aluminium silicates) [Non renewable 
resources] 1,028,487.3 kg * 

Gypsum (natural gypsum) [Non renewable 
resources] 59,995.1 kg   Gold [Heavy metals to industrial soil] 0.5 kg * 

Hexamethylene diamine (HMDA) [Organic 
intermediate products] 232.0 kg X Gold [Metals] 1.0 kg X 

Hydrated lime dry slaked [Minerals] 51,562.9 kg X Gypsum [Waste for recovery] 183,666.8 kg * 

Hydrochloric acid (100%) [Inorganic intermediate 
products] 3,440.5 kg X 

Hexamethylene diamine (HMDA) 
[Hydrocarbons to sea water] 45.9 kg * 

Iron [Non renewable elements] 78,056.3 kg   Hydroxide [Inorganic emissions to fresh water] 0.0 kg * 

Iron oxide (II-oxide) [Inorganic intermediate 
products] 3,889.5 kg X Iron [Heavy metals to industrial soil] 6,556.7 kg * 

Kerosene [Refinery products] 1,219.2 kg X 
Iron oxide [Hazardous non organic waste for 
disposal] 115,284.3 kg * 

Lead [Non renewable elements] 114.7 kg   Lead [Heavy metals to industrial soil] 14,885.1 kg * 

Lead nitrate (Pb(NO3)2) [Plastics] 23,841.0 kg X 
Magnesium [Inorganic emissions to industrial 
soil] 13,178.6 kg * 

Magnesium [Non renewable elements] 13,178.5 kg   Magnesium silicate [Minerals] 2,391,232.9 kg * 

Magnesium silicate [Minerals] 2,391,232.9 kg   Manganese [Heavy metals to industrial soil] 9,174.5 kg * 

Manganese [Non renewable elements] 9,174.5 kg   
Manganese dioxide [Inorganic intermediate 
products] 12,527.9 kg * 

Manganese dioxide [Inorganic intermediate 
products] 578.1 kg X Mercury [Heavy metals to industrial soil] 0.3 kg * 

Mercury [Non renewable elements] 0.9 kg   Mercury [Metals] 0.6 kg * 

Molybdenum [Non renewable elements] 11.1 kg   Molybdenum [Heavy metals to industrial soil] 11.1 kg * 

Nickel [Non renewable elements] 447.2 kg   Nickel [Heavy metals to industrial soil] 447.2 kg * 

Palladium [Non renewable elements] 8.0 kg   Nitrate [Inorganic emissions to fresh water] 9,089.7 kg * 

Phosphorus [Non renewable elements] 1,024.8 kg   
Nitrogen (atmospheric nitrogen) [Inorganic 
emissions to air] 566,720,775.5 kg * 
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Input Quantity #a TFb Output Quantity #a TFb 

Platinum [Non renewable elements] 0.0 kg   Oxygen [Inorganic emissions to air] 41,148.0 kg *  

Potassium [Non renewable elements] 2,569.2 kg   Palladium [Metals] 3.8 kg   

Potassium permanganate [Inorganic intermediate 
products] 335.6 kg X Palladium scrap [Waste for recovery] 3.4 kg * 

Propylene glycol methyl ether acetate (PGMEA) 
[Organic intermediate products] 205.0 kg X 

Paraffin oil [Organic emissions to industrial 
soil] 1,406.5 kg * 

Pyrite [Non renewable resources] 37,050.1 kg   
Phosphorus [Inorganic emissions to 
agricultural soil] 1,024.8 kg * 

Quartz sand (silica sand; silicon dioxide) [Non 
renewable resources] 2,708,349.8 kg   Platinum [Metals] 0.0 kg   

Rubidium [Non renewable elements] 21.5 kg   
Potassium [Inorganic emissions to industrial 
soil] 2,569.2 kg * 

Selenium [Non renewable elements] 13.9 kg   
Quartz sand (silica sand; silicon dioxide) [Non 
renewable resources] 2,708,349.8 kg * 

Silver [Non renewable elements] 27.2 kg   Rubidium [Inorganic emissions to fresh water] 21.5 kg * 

Sodium cyanide [Inorganic intermediate products] 112,355.3 kg X Selenium [Heavy metals to industrial soil] 13.9 kg * 

Sodium hydroxide (100%; caustic soda) [Inorganic 
intermediate products] 2,604.3 kg X Silver [Heavy metals to industrial soil] 11.8 kg * 

Sodium hypochlorite [Inorganic intermediate 
products] 13,478.7 kg X Silver [Metals] 15.5 kg   

Sodium Mercaptobenzothiazole [Plastics] [Plastics] 1,025.1 kg X 
Sodium [Inorganic emissions to agricultural 
soil] 45,986.2 kg * 

Special high grade zinc [Metals] 303.2 kg X 
Sodium chloride (rock salt) [Inorganic 
emissions to fresh water] 8,855.4 kg * 

Steam (MJ) [steam] 1,119,579.1 MJ X Sodium hydroxide [ecoinvent long-term to air] 0.0 kg * 

Strontium [Non renewable elements] 53.5 kg   
Sodium hypochlorite [Inorganic emissions to 
industrial soil] 0.0 kg * 

Sulphuric acid (100%) [Inorganic intermediate 
products] 12,658.4 kg X 

Strontium [Inorganic emissions to industrial 
soil] 53.5 kg * 

Tantalum [Non renewable elements] 0.7 kg   
Sulphate [Inorganic emissions to industrial 
soil] 5,980.9 kg * 

Thermal energy (MJ) [Thermal energy] 1,051.0 MJ X Sulphur dioxide [Inorganic emissions to air] 4.0 kg * 

Thorium [Non renewable elements] 383.3 kg   
Sulphuric acid [Inorganic emissions to 
industrial soil] 30,843.6 kg * 

Titanium [Non renewable elements] 3,016.5 kg   Tantalum [Heavy metals to fresh water] 0.7 kg * 
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Input Quantity #a TFb Output Quantity #a TFb 

Uranium, in ground [Uranium (resource)] 254.4 kg   Thorium [Heavy metals to industrial soil] 383.3 kg * 

Vanadium [Non renewable elements] 27.3 kg   Titanium [Heavy metals to industrial soil] 3,016.5 kg * 

Water (desalinated; deionised) [Operating materials] 16,607,772.4 kg X 
Uranium [Radioactive emissions to fresh 
water] 2,452,818,319.6 Bq * 

Water (waste water, untreated) [Production residues 
in life cycle] 10,618,084.0 kg   

Uranium, fuel grade, 2291 GJ per kg [Uranium 
products] 51.1 kg   

Zinc [Metals] 1,155.7 kg   Vanadium [Heavy metals to industrial soil] 27.3 kg * 

        
Water (waste water, untreated) [Production 
residues in life cycle] 27,207,008.7 kg * 

        Water vapour [Inorganic emissions to air] 18,847.6 kg * 

        Zinc [Heavy metals to industrial soil] 1,459.0 kg * 

        

Total 39,608,380.9 kg Total 39,611,069.5 kg 

% Error 0.0068 %     
a:# = units        b: TF: Tracked flows 
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Table 0-18: Complete and extended life cycle inventory for thiosulphate flowsheet (functional unit 1kg gold) 

Input Quantity #a TFb Output Quantity #a TFb 

Aluminium [Non renewable elements] 69,502.3 kg   Aluminium [Inorganic emissions to industrial soil] 69,502.3 kg * 

Aluminium silicate [Inorganic intermediate 
products] 1,420,180.7 kg   Aluminium silicate [Inorganic intermediate products] 1,420,180.7 kg * 

Aluminium sulphate [Inorganic intermediate 
products] 4,215,558.9 kg   Aluminium sulphate [Inorganic intermediate products] 4,215,558.9 kg * 

Ammonia [Inorganic intermediate products] 192.4 kg X Ammonia [Inorganic emissions to fresh water] 192.4 kg * 

Antimony [Non renewable elements] 2.6 kg   Antimony [Heavy metals to industrial soil] 2.6 kg * 

Arsenic [Non renewable elements] 361.7 kg   Arsenic [Heavy metals to industrial soil] 0.0 kg * 

Barium [Non renewable elements] 381.3 kg   Barium [Inorganic emissions to industrial soil] 381.3 kg * 

Beryllium [Non renewable elements] 3.4 kg   Beryllium [Inorganic emissions to industrial soil] 3.4 kg * 

Bismuth [Non renewable elements] 18.9 kg   Bismuth [Non renewable elements] 18.9 kg * 

Boron [Non renewable elements] 1.3 kg   Boron [Inorganic emissions to industrial soil] 1.3 kg * 

Cadmium [Non renewable elements] 2.4 kg   Boron [Non renewable elements] 1.3 kg * 

Calcium [Non renewable elements] 33,169.6 kg   Cadmium [Heavy metals to industrial soil] 2.4 kg * 

Calcium carbonate (> 63 microns) [Minerals] 62,161.8 kg X Calcium [Inorganic emissions to industrial soil] 33,169.6 kg * 

Carbon [Organic intermediate products] 12,035.3 kg   
Carbon (unspecified) [Organic emissions to industrial 
soil] 12,035.3 kg * 

Chromium [Non renewable elements] 1,042.6 kg   Carbon dioxide [Inorganic emissions to air] 27,275.1 kg * 

Cobalt [Non renewable elements] 115.8 kg   Chromium [Heavy metals to industrial soil] 1,042.6 kg * 

Compressed air [Mechanical energy] 3,542.2 Nm3 X Cobalt [Heavy metals to industrial soil] 115.8 kg * 

Copper [Non renewable elements] 195.3 kg   Copper [Heavy metals to industrial soil] 195.3 kg * 

Copper sulphate [Inorganic intermediate 
products] 444.5 kg X Copper sulphate [Inorganic emissions to air] 444.5 kg * 

Electricity [Electric power] 1,570,973.9 MJ X Dodecanol [Organic emissions to fresh water] 76.4 kg * 

Fatty alcohol (C16-C18) [Valuable substances] 
(Dodecanol proxy) 76.4 kg X 

Feldspar (aluminium silicates) [Non renewable 
resources] 1,028,185.1 kg * 

Feldspar (aluminium silicates) [Non renewable 
resources] 1,028,185.1 kg   Gold [Heavy metals to industrial soil] 0.3 kg * 

Ferrous sulphate (dissolved) [Inorganic 
intermediate products] 395.0 kg X Gold [Metals] 1.0 kg X 

Gold [Metals] 1.3 kg   Gypsum [Waste for recovery] 117,041.0 kg * 
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Input Quantity #a TFb Output Quantity #a TFb 

Gypsum [Waste for recovery] 59,977.5 kg   

Hexamethylene diamine (HMDA) [Organic 
intermediate products] [Alamine® 336/Amberjet® 
4200 Proxy] 1,394.7 kg * 

Hexamethylene diamine (HMDA) [Organic 
intermediate products] [Alamine® 336/Amberjet® 
4200 Proxy] 1,394.7 kg X Iron [Heavy metals to industrial soil] 78,033.4 kg * 

Hydrated Lime [Minerals] 120.9 kg X Iron oxide [Hazardous non organic waste for disposal] 15,824.3 kg * 

Hydrogen peroxide (100%) [Inorganic 
intermediate products] 4,996.8 kg X Lead [Heavy metals to industrial soil] 114.7 kg * 

Iron [Non renewable elements] 78,033.4 kg   Magnesium [Inorganic emissions to industrial soil] 13,174.7 kg * 

Iron oxide (II-oxide) [Inorganic intermediate 
products] 3,888.3 kg X Magnesium silicate [Minerals] 2,390,530.4 kg * 

Kerosene [Refinery products] 1,218.8 kg X Manganese [Heavy metals to industrial soil] 9,174.5 kg * 

Lead [Non renewable elements] 114.7 kg   Manganese dioxide [Inorganic intermediate products] 48,481.4 kg * 

Magnesium [Non renewable elements] 13,174.7 kg   Mercury [Heavy metals to industrial soil] 0.9 kg * 

Magnesium silicate [Minerals] 2,390,530.4 kg   Molybdenum [Heavy metals to industrial soil] 11.1 kg * 

Manganese [Non renewable elements] 9,174.5 kg   Nickel [Heavy metals to industrial soil] 447.0 kg * 

Manganese dioxide [Inorganic intermediate 
products] 577.9 kg X Palladium scrap [Waste for recovery] 0.0 kg * 

Mercury [Non renewable elements] 0.9 kg   Paraffin oil [Organic emissions to industrial soil] 1,406.1 kg * 

Molybdenum [Non renewable elements] 11.1 kg   Phosphorus [Inorganic emissions to agricultural soil] 442.5 kg * 

Nickel [Non renewable elements] 447.0 kg   Potassium [Inorganic emissions to industrial soil] 2,568.5 kg * 

Oxygen gaseous [Inorganic intermediate 
products] 37,290.9 kg X 

Potassium permanganate [Inorganic intermediate 
products] 0.0 kg * 

Palladium scrap [Waste for recovery] 0.0 kg   
Propylene glycol methyl ether acetate (PGMEA) 
[Organic intermediate products] [Dow® 200 ] 205.0 kg * 

Phosphorus [Non renewable elements] 1,024.8 kg   
Quartz sand (silica sand; silicon dioxide) [Non 
renewable resources] 2,707,554.1 kg * 

Potassium [Non renewable elements] 2,568.5 kg   Rubidium [Inorganic emissions to fresh water] 21.4 kg * 

Potassium permanganate [Inorganic intermediate 
products] 222.2 kg X Selenium [Heavy metals to industrial soil] 13.9 kg * 

Propylene glycol methyl ether acetate (PGMEA) 
[Organic intermediate products] [Dow® 200 ] 205.0 kg X Silver [Heavy metals to industrial soil] 11.8 kg * 

Pyrite [Non renewable resources] 37,050.09 kg  Silver [Metals] 15.5 kg   
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Input Quantity #a TFb Output Quantity #a TFb 

Quartz sand (silica sand; silicon dioxide) [Non 
renewable resources] 2,707,554.1 kg   Sodium [Inorganic emissions to industrial soil] 0.0 kg * 

Rubidium [Non renewable elements] 21.4 kg   Sodium Mercaptobenzothiazole [Plastics] [Plastics] 1,024.8 kg * 

Selenium [Non renewable elements] 13.9 kg   Sodium sulphate [Inorganic emissions to fresh water] 0.0 kg * 

Silver [Non renewable elements] 27.2 kg   Strontium [Inorganic emissions to industrial soil] 53.5 kg * 

Sodium hydroxide (100%; caustic soda) 
[Inorganic intermediate products] 2,644.0 kg X Sulphur [Inorganic emissions to industrial soil] 0.0 kg * 

Sodium Mercaptobenzothiazole [Plastics] 
[Plastics] 1,024.8 kg X Sulphuric acid [Inorganic emissions to industrial soil] 30,834.6 kg * 

Sodium sulphide [Inorganic intermediate 
products] 3,442.8 kg X Thorium [Heavy metals to industrial soil] 383.2 kg * 

Sodium sulphite (Na2SO3) [Intermediate products] 816.6 kg X Titanium [Heavy metals to industrial soil] 3,015.6 kg * 

Sodium thiosulfate [Inorganic intermediate 
products] 23,237.5 kg X 

Uranium, fuel grade, 2291 GJ per kg [Uranium 
products] 51.1 kg  

Strontium [Non renewable elements] 53.5 kg   Uranium, in ground [Uranium (resource)] 84.7 kg * 

Sulphuric acid (100%) [Inorganic intermediate 
products] 12,110.6 kg X Vanadium [Heavy metals to industrial soil] 27.3 kg * 

Tantalum [Non renewable elements] 0.7 kg   Water (desalinated; deionised) [Operating materials] 15,535,783.2 kg * 

Thermal energy (MJ) [Thermal energy] 131,441.9 MJ X 
Water (waste water, untreated) [Production residues 
in life cycle] 9,932,713.8 kg * 

Thorium [Non renewable elements] 383.2 kg   Zinc [Heavy metals to industrial soil] 303.2 kg * 

Titanium [Non renewable elements] 3,015.6 kg           

Uranium, in ground [Uranium (resource)] 254.3 kg           

Vanadium [Non renewable elements] 27.3 kg           

Water (desalinated; deionised) [Operating 
materials] 15,535,783.2 kg X         

Water (waste water, untreated) [Production 
residues in life cycle] 9,932,713.8 kg           

Zinc [Non renewable elements] 303.2 kg           

        

Total 37,709,479.3 kg Total 37,699,128.4 kg 

% Error 0.027 %     
a:# = units        b: TF: Tracked flows 
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