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SUMMARY 

 

 

Agricultural land in South Africa is under increasing pressure to produce more food from an 

ever-shrinking land base, as more land is being converted to non-productive uses. Additional 

to these pressures, is the concept of land reform and strategic land acquisition, aimed at 

agrarian transform within the rural landscape. It is estimated that less than 15% of South Africa 

is suitable for dryland cultivation. Consequently, the sustainable utilisation of these scarce 

resources and preservation of agricultural land is of paramount importance, to ultimately 

ensure some measure of national food security in the years to come. Agricultural land 

evaluation is a critical tool that can achieve this goal. Unfortunately, in recent decades the 

development of revised or novel land evaluation methodologies has stalled for South African 

farm-level assessments, the scale at which land release decisions are made. Further, the 

relationship between productivity and individual land assessment attributes has not been 

adequately quantified or incorporated into contemporary local assessment procedures.  

 

It is envisaged that this study would influence and help guide in-field methodologies, as well 

as draft legislation and best-practice strategies, with a view of both standardising and 

improving agricultural land assessment techniques. By emphasising the importance of 

agricultural land and the accurate assessment thereof, this research also aims to increase our 

understanding of production-based approaches at an operational scale, though the novel 

combination of traditional approaches and use of newer technologies. It is anticipated that this 

improved understanding will be employed to not only protect more agricultural land, which 

may have been undervalued by historical methods, but also as an intuitive assessment tool to 

highlight the yield gap between potential and actual production levels. 

 

A review of pertinent literature identified the need for local verification studies to evaluate the 

performance of land assessment methodologies currently used in industry. To address this, 

five methods were verified using land assessment polygons in a commercial production 

environment, in the Province of KwaZulu-Natal, South Africa. The resultant classifications, 

derived from 225 soil observations, were compared to actual land use and precision yields 

achieved by dryland maize and soybean, across five growing seasons (2016 - 2020). By 

comparing land use with broad arability, four of the five land assessment methods were found 

to adequately classify arable land. Additionally, land evaluation polygons, linked to dryland 

precision maize and soybean yields can provide a general overview of method performance. 

However, it was concluded that yield performance and variation, across land evaluation 
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methods and classes, is only explicit on or near a soil observation point where measurements 

are taken. Accordingly, seasonal variograms for maize and soybean were developed, to 

establish a representative yield buffer around individual soil observation points. This, along 

with yield normalisation strategies were employed, to improve verification procedures across 

multiple growing seasons.  

 

To determine crop productivity drivers, significant land assessment attributes inter alia slope, 

effective rooting depth, soil texture, soil group and soil wetness limitations were analysed 

against maize and soybean yields. It was found that the two crops respond differently to 

individual land assessment attributes and these differences should be taken cognisance of in 

new, crop-specific land evaluation methodologies and weighted accordingly. 

 

In an attempt to improve productivity-based land classification 78 attributes; derived from land 

assessment methodologies, digital terrain analysis, the pedological survey and soil colour 

spectrophotometry were collated. From these attributes, three new approaches, one based 

on biophysical scoring criteria and two based on machine learning, were developed across 

two commercial farming operations, in northern KwaZulu-Natal. These new methodologies 

were then tested on three separate commercial operations, located in different regions of the 

province.  

 

The biophysical scoring classification generally outperformed machine learning models and 

was particularly accurate when classifying observations associated with either extremely poor 

or extremely advantageous soil and terrain attributes. The transferability of the models to other 

regions, with different resources produced mixed results, highlighting the need for wider 

calibration in some instances. The study also found that the new productivity-based 

approaches can have useful applications in commercial farm management, where crop 

specific classification can identify underperforming areas and yields gaps, which can be 

ringfenced for appropriate interventions.  

 

The newly developed biophysical scoring classification was used to demonstrate the utility of 

these approaches in broader agricultural land release applications. The study found the new 

approaches better reflect production potential and should be used to supplement existing 

methodologies in land release assessments. Ultimately, the application of these production-

based approaches can assist the land assessor to better classify the production potential of 

the land, as well as the decision-making authority to justify preserving more land for 

agricultural purposes. 
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OPSOMMING 

 

 

Landbougrond in Suid-Afrika is onder toenemende druk om meer voedsel van 'n steeds 

krimpende grondbasis te produseer, aangesien meer grond na nie-produktiewe gebruike 

omgeskakel word. Bykomend tot hierdie druk is die konsep van grondhervorming en 

strategiese grondverkryging, gemik op agrariese transformasie binne die landelike landskap. 

 

Daar word beraam dat minder as 15% van Suid-Afrika geskik is vir droëlandverbouing. 

Gevolglik is die volhoubare benutting van hierdie skaars hulpbronne en bewaring van 

landbougrond van kardinale belang, om uiteindelik 'n mate van nasionale voedselsekerheid in 

die komende jare te verseker. Landbougrond evaluering is 'n kritieke instrument wat hierdie 

doelwit kan bereik. Ongelukkig het die ontwikkeling van hersiene of nuwe grondevaluering 

metodologieë in die afgelope dekades vir Suid-Afrikaanse plaasvlak-assesserings, die skaal 

waarop besluite oor grondvrystelling geneem word, tot stilstand gekom. Verder is die 

verwantskap tussen produktiwiteit en individuele grondbeoordeling eienskappe nie voldoende 

gekwantifiseer nie, en ook nie ingesluit in kontemporêre plaaslike assessering prosedures nie. 

 

Daar word in die vooruitsig gestel dat hierdie studie in-veld metodologieë, sowel as konsep-

wetgewing en beste-praktyk strategieë sal beïnvloed en help rig, met die oog op beide 

standaardisering en verbetering van landbougrond assessering tegnieke. Deur die 

belangrikheid van landbougrond en die akkurate beoordeling daarvan te beklemtoon, poog 

hierdie navorsing ook om ons begrip van produksie gebaseerde benaderings op 'n 

operasionele skaal te verhoog, al is die nuwe kombinasie van tradisionele benaderings en die 

gebruik van nuwer tegnologieë word is missing. Daar word verwag dat hierdie verbeterde 

begrip aangewend sal word om nie net meer landbougrond, wat moontlik deur historiese 

metodes onderwaardeer is, te beskerm nie, maar ook as 'n intuïtiewe assessering instrument 

om die opbrengsgaping tussen potensiële en werklike produksievlakke uit te lig. 

 

'n Oorsig van toepaslike literatuur het die behoefte aan plaaslike verifikasie studies 

geïdentifiseer om die prestasie van grondbeoordeling metodologieë wat tans in die industrie 

gebruik word (removed comma) te evalueer. Om dit aan te spreek, is vyf metodes geverifieer 

deur gebruik te maak van grondevaluering poligone in 'n kommersiële produksie omgewing, 

in die provinsie KwaZulu-Natal, Suid-Afrika. Die gevolglike klassifikasies, afgelei van 225 

grond waarnemings, is vergelyk met werklike grond-gebruik en presisie-opbrengste wat deur 

droëland-mielies en sojabone behaal is, oor vyf groeiseisoene (2016 - 2020). Deur 
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grondgebruik met breë bewerkbaarheid te vergelyk, is vier van die vyf grondbeoordeling 

metodes gevind om bewerkbare grond voldoende te klassifiseer. Boonop kan grondevaluering 

poligone, gekoppel aan droëland-presisiemielies en sojaboon opbrengste, 'n algemene oorsig 

van metode prestasie verskaf. Daar is egter tot die gevolgtrekking gekom dat 

opbrengsprestasie en variasie, oor grondevaluering metodes en -klasse heen, slegs eksplisiet 

is op of naby 'n grondwaarnemingspunt waar metings geneem word. Gevolglik is seisoenale 

variogramme vir mielies en sojabone ontwikkel om 'n verteenwoordigende opbrengsbuffer 

rondom individuele grondwaarnemingspunte te vestig. Dit, tesame met opbrengs 

normalisering strategieë, is aangewend om verifikasie prosedures oor verskeie groei seisoene 

te verbeter. 

 

Om oesproduktiwiteit drywers te bepaal, is beduidende grondbeoordeling eienskappe, onder 

andere helling, effektiewe worteldiepte, grondtekstuur, grondgroep- en grondnat beperkings, 

ontleed teen mielie- en sojaboon opbrengste. Daar is gevind dat die twee gewasse verskillend 

reageer op individuele grondbeoordeling eienskappe en hierdie verskille moet in nuwe, 

gewas-spesifieke grondevaluering metodologieë in ag geneem word en dienooreenkomstig 

geweeg word. 

 

In 'n poging om produktiwiteit-gebaseerde grondklassifikasie te verbeter 78 eienskappe; 

afgelei van grondevaluering metodologieë, digitale terrein analise, die pedologiese opname 

en grondkleur spektrofotometrie is saamgestel. Uit hierdie eienskappe is drie nuwe 

benaderings, een gebaseer op biofisiese telling kriteria en twee gebaseer op masjienleer, 

ontwikkel oor twee kommersiële boerdery bedrywighede, in die noorde van KwaZulu-Natal. 

Hierdie nuwe metodologieë is toe getoets op drie afsonderlike kommersiële bedrywighede, 

geleë in verskillende streke van die provinsie. 

 

Die biofisiese punte-klassifikasie het oor die algemeen beter as masjienleer-modelle presteer 

en was besonder akkuraat wanneer waarnemings geassosieer met óf uiters swak óf uiters 

voordelige grond- en terrein kenmerke geklassifiseer is. Die oordraagbaarheid van die 

modelle na ander streke, met verskillende hulpbronne, het gemengde resultate opgelewer, 

wat die behoefte aan wyer kalibrasie in sommige gevalle beklemtoon. Die studie het ook 

bevind dat die nuwe produktiwiteit gebaseerde benaderings nuttige toepassings in 

kommersiële plaasbestuur kan hê, waar gewas-spesifieke klassifikasie onderpresterende 

gebiede en opbrengsgapings kan identifiseer, wat afgesper kan word vir toepaslike ingrypings. 

 

Die nuut ontwikkelde biofisiese punte-klassifikasie is gebruik om die nut van hierdie 

benaderings in breër landbougrond-vrystelling toepassings te demonstreer. Die studie het 
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bevind die nuwe benaderings weerspieël produksie potensiaal beter en moet gebruik word 

om bestaande metodologieë in grondvrystelling evaluerings aan te vul. Uiteindelik kan die 

toepassing van hierdie produksie gebaseerde benaderings die grond beoordelaar help om die 

produksie potensiaal van die grond beter te klassifiseer, asook die besluitneming gesag om 

die behoud van meer grond vir landbou doeleindes te regverdig. 
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1. INTRODUCTON 

 

 

One of the greatest threats facing food security in South Africa is the loss of agricultural land 

to non-productive land uses (Newby et al., 2018). A spatial analysis undertaken by the 

National Department of Agriculture, Forestry and Fisheries (DAFF) in 2011 estimates that 3 

million hectares of agricultural land has already been lost to urban and mining developments, 

with more agricultural land being lost each year (DAFF, 2016a). This problem is further 

exacerbated by a growing population and a greater demand for foodstuffs, with an estimated 

7 million more mouths to feed in South Africa by 2030 (United Nations, 2019). Consequently, 

commercial farmers will need to sustainably produce more food from an ever-shrinking land 

base.  

 

Coupled with the threat of unsustainable land use change, is the concept of land reform and 

strategic land acquisition, aimed at agrarian transform within the rural landscape. While the 

difficulties of land reform are well documented (Cloete, 1992; Kotze and Basson, 1993; 

Beehner, 2006), there is renewed interest in policy transformation and ultimately constitutional 

amendments, in the hopes of rectifying historical imbalances, while not impacting upon the 

Nation’s ability to meet its food security requirements. 

 

Land as a resource is frequently undervalued by a wide range of scientists as well as by spatial 

planners and policy makers (Davidson, 2002). It is estimated that less than 14% of South 

Africa’s land surface is suitable for dryland cropping and of this area, only 3% is land of high 

potential (Smith, 2006). The sustainable utilisation of these scarce resources and preservation 

of agricultural land is thus of paramount importance in South Africa to ensure some measure 

of national food security in the years to come. Agricultural land evaluation is a critical tool that 

can achieve this goal by classifying and ultimately recommending an appropriate farming 

system (Camp et al., 1995). 

 

Land requires evaluation, as it is not equal and varies in physical, social, economic and 

geographic properties (Rossiter, 1996). Further, land can be evaluated and classified in 

innumerable ways, based on different factors and for different purposes and objectives 

(Tesfagiorgis, 2004). When placed within an agricultural context, land evaluation involves 

undertaking and interpreting natural resource surveys of climate, soil, terrain and vegetation, 

in terms of requirements and realistic land use options (FAO, 1976). Further, van Niekerk 

(2010) considers land evaluation an integral part of land use planning to ultimately support 

sustainable land use management.  
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In terms of land evaluation methodologies and tools, there are a myriad available to planners, 

technical specialists and scientific advisors who work in agricultural and natural environments. 

As the field of land evaluation expands and becomes more interdisciplinary, the development 

and availability of new tools equally increases and diversifies (van Diepen et al., 1991) 

Consequently, land evaluation approaches come in many forms, ranging from frameworks 

(e.g. FAO, 1976) and manuals (Scotney et al., 1991) to computer-based models (Rossiter & 

Wambeke, 1997) or simply GIS layers and spatial databases (e.g. DAFF, 2018) from which 

data can be extracted. The Food and Agricultural Organisation (FAO) alone, provides links to 

over 30 individual tools, which fall under its Land Resource Planning Toolbox umbrella 

(www.fao.org). In addition, there are also many country specific and regionalised methods, 

which aim to provide more relevant results through the development and utilisation of locally 

adapted models and input datasets.  

 

Over recent decades, rapid anthropogenically driven land use change and urbanisation have 

triggered a need to critically examine land assessment methodologies (Beek, 1978). However, 

many local and international agricultural land evaluation methods still being utilised today, 

were developed decades ago without receiving further revisions or updates. For example, the 

South African Land Capability System was last revised in 1991, to incorporate changes 

introduced by the now outdated Taxonomic Soil Classification System (SCWG, 1991). The 

need for regular revision of land assessment methodologies is widely acknowledged (e.g. FAO, 

2007 and Laker, 2004), with even the developers of the South African system stating that 

“further research and understanding of the environment will lead to more dynamic and 

automatic land evaluation systems that will replace the simplistic approach presented” (Scotney 

et al., 1991). Unfortunately, no revised nor novel land evaluation methodologies have recently 

been released for South African farm-level assessments. Ultimately, regular scientific 

validation, review and advancement is critical, to ensure the methods being utilised in practice 

are accurate and serve their intended purpose, which to identify and preserve important 

agricultural resources. 

 

1.1 Rationale 

 
There is a need for accurate and reliable agricultural land assessment methodologies, 

particularly in South Africa, where competition for land is high (Akinyemi and Mushunje, 2019; 

Simpson et al., 2019). To substantiate release, a change of land use or subdivision of 

agricultural land, the National Department of Agriculture, now part of DALRRD: Department of 

Agriculture, Land Reform and Rural Development, requires that an Agro-Ecosystems report 
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be compiled, which includes a polygon based, farm-level survey and agricultural assessment 

(DAFF, 2018b).  

 

Current methods of evaluation, such as land capability order, class, subclass, or unit rely on 

predefined soil-physical and terrain related properties to delineate the landscape into relatively 

homogenous polygons of similar limitation or production potential (Scotney et al., 1991). 

Although there is a wide range of both international and locally calibrated evaluation methods, 

available to South African land assessment practitioners, their accuracy and validity has not 

been sufficiently tested in a local production environment. Further, the relationship between 

productivity and individual land assessment attributes, has not been quantified nor 

incorporated into contemporary assessment procedures.  

 

1.2 Aims and Objectives 

 

It is envisaged that this study would influence and help guide in-field methodologies, as well 

as draft legislation and best-practice strategies, with a view of both standardising and 

improving agricultural land assessment techniques. By emphasising the importance of 

agricultural land and the accurate assessment thereof, this research aims increase to our 

understanding of production-based approaches at an operational scale, though the novel 

combination of traditional approaches and use of newer technologies. It is anticipated that this 

improved understanding will be employed to not only protect more agricultural land, which 

may have been undervalued by historical methods, but also as an intuitive assessment tool 

for farmers to highlight the yield gap between actual and potential production levels. To realise 

these primary aims the following research objectives were developed: 

 

1. Explore pertinent literature and legislation surrounding agricultural land assessment 

and where applicable, highlight challenges and the need for review. 

2. Assess if soil and land assessment approaches, currently being practised in industry, 

reflect actual land utilisation and production levels. 

3. Investigate and quantify the relationship between individual land assessment attributes 

and productivity.  

4. Develop novel, locally calibrated procedures for use in a specific commercial 

production environment. 

5. Test the utility and robustness of these approaches in different locales and for different 

applications.  
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1.3 Thesis Outline 

 

This thesis consists of seven chapters. This first introductory chapter is followed by a literature 

review, which presents an overview of the key concepts surrounding agricultural land 

assessment and evaluation. The importance of proper land use planning, as well as a 

summary of pertinent land policies in South Africa provides an initial framework for the study. 

A review of prominent international evaluation frameworks and assessment methods is 

included, along with a review of regionalised methods designed for South Africa. Finally, the 

need for revised and more dynamic systems is presented.  

 

Chapter 3 deals with the verification of land assessment polygons in a commercial production 

environment. The resultant classifications, derived from five different land assessment 

methodologies, were verified using actual land use and precision yields achieved by dryland 

maize and soybean across five growing seasons (2016 - 2020).  

 

Chapter 4 builds on the previous verification exercise by focussing on land assessment 

classification at a point scale. Seasonal variograms for maize and soybean were developed, 

in order to establish a representative yield buffer around individual soil observation points. 

This, along with yield normalisation strategies were employed, to improve verification 

techniques. Key land assessment attributes were identified and compared to maize and 

soybean performance, with the view of developing new production-based methodologies. 

 

Chapter 5 begins with the incorporation of new land assessment attributes; derived from digital 

terrain analysis, the pedological survey and soil colour spectrophotometry. Three new 

approaches, two based on machine learning and one using biophysical scoring criteria, were 

developed using soil and terrain attributes and their relationship to crop productivity. These 

new methodologies were then tested on three separate commercial operations, located in 

different regions of the KwaZulu-Natal Province. The utility of these approaches in broader 

agricultural land release applications and commercial farm management completes the 

chapter. 

 

Chapter 6 provides an integrated discussion, where the major findings of this research are 

contextualised within broader international literature and research. 

 

The thesis concludes with Chapter 7, which incorporates the general conclusions and 

recommendations from the study, as well as the possibilities for future work. 
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2. LITERATURE REVIEW 

 

 

2.1 Introduction 

 
To effectively explore the concepts surrounding agricultural land evaluation and assessment 

a subset of literature has been selected, based on its relevance to the following questions: 

 

1. What is land and land use? 

2. What is agricultural land evaluation and why is it important? 

3. What subject-specific terminology is commonly used within the field of land evaluation? 

4. What are the Governmental legislative policies, which guide agricultural land 

management, land assessment and planning in South Africa? 

5. What are the primary methods used to assess agricultural land internationally? 

6. What are the primary methods used to assess agricultural land in South Africa? 

7. Do South African land assessment methods need to be reviewed and updated? 

 

2.2 What is Land and Land Use? 

 

Land is a finite and precious resource, whose use and function is multi-faceted; providing food, 

shelter and a basis for development (Verheye, 2009).  Due to these complexities, land should 

not be viewed simply as “soil” and should rather include the overarching physical environment 

(FAO, 1976).  

 

More recently the Food and Agriculture Organisation (FAO) accepts the more holistic definition 

of “land”, as provided by The United Nations (1994), “as a delineable area of the earth’s 

terrestrial surface, encompassing all attributes of the biosphere immediately above or below 

this surface including those of the near-surface climate, the soil and terrain forms, the surface 

hydrology (including shallow lakes, rivers, marshes and swamps), the near-surface 

sedimentary layers and associated groundwater reserve, the plant and animal populations, 

the human settlement pattern and physical results of past and present human activity 

(terracing, water storage or drainage structures, infrastructure, buildings, etc.).”  

 

This broad definition places more emphasis on the environmental aspects of land and 

importantly takes into account anthropogenic influences (FAO, 2007). These anthropogenic 

influences manifest themselves as a particular land use which is the application of human 
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control on natural systems, in order derive a benefit from it (Sys, 1985). Examples of major, 

single land uses include rainfed and irrigated agriculture, grassland, forestry and recreation 

(FAO, 1976).  

 

The term “land use” is synonymous with anthropogenic activities, which are directly connected 

to land, utilising its natural resources, or having an impact on it (DAFF, 2016). The increasing 

demand for food (Schiefer et al., 2016)  has led to the agricultural sector being a major driver 

of land use change, with an estimated 30% increase in arable land expansion in Sub-Saharan 

Africa between 1961 and 2005 (Nkonya et al., 2012). Ultimately a change in land use will often 

require a land assessment evaluation, in order substantiate such change (FAO, 2007).  

 

2.3 What is Agricultural Land Evaluation and why is it Important? 

 

Stability in agricultural production and the conservation of limited resources, particularly in 

South Africa, can be achieved through the appreciation of the natural factors governing 

production and the implementation of sustainable land use systems (Smith, 2006). Agricultural 

land evaluation is a critical tool, which can assess these natural factors and recommend 

appropriate land uses. Specifically, Verheye (2009) defines land evaluation as a tool or 

technique that “assesses the performance of land based on a more or less systematic analysis 

of the physical land conditions and on the impact these have on present and alternative land 

use systems.” The land evaluation process is purpose driven and can be carried out at various 

scales; ranging from global and national level assessments through to detailed farm 

evaluations, all with different levels of quantification (Eliasson, 2007). Further, the evaluation 

process is an estimation or predication of potential use (Dent and Young, 1981; Rossiter, 

1996) that should provide reliable scientific data and viable land use options, but does not in 

itself, determine the changes to be effected (FAO, 1976; Verheye, 2009). This process usually 

includes a form of soil-based survey and interpretation thereof, with aim of improving land use 

planning and decision making  (Sonneveld et al., 2010; Manikandan et al., 2013).  

 

Land evaluation has principally developed from soil survey interpretation and land 

classification (Beek, 1978). Furthermore, from both a historic perspective, as outlined in van 

Diepen et al. (1991), and within the context of this study, it is this soil and land resource survey, 

which draws the greatest attention. However, Sys (1985) importantly notes that soil and land 

resource surveys form only one aspect in the overarching field of land evaluation, which 

includes inter alia socio-economic, developmental and human resource factors.  
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Ultimately, when implemented within a holistic decision-making framework, agricultural land 

evaluation can optimise land use, reduce environmental degradation and improve productivity, 

all of which contributes towards long-term and sustainable food security (Smith, 2006; Bryant, 

2017). 

 

2.4 What Terminology is Commonly used within the Field of Land Evaluation? 

 

Within the field of agricultural land evaluation, a number of subject-specific terms are 

commonly used and these terms should be pre-defined, in order to reduce misinterpretation.  

 

2.4.1 Land capability 

 

Land capability is an interpretive method of land classification and evaluation, which is 

determined by the combined effects of soil, terrain and climate (Scotney et al., 1991). It is a 

hierarchical classification that was originally developed to assist farmers with planning and 

conservation practices, where hazard of use is highlighted and the control of soil erosion 

prioritised (van Diepen et al., 1991). According to Smith (2006) land capability is concerned 

with the wise use of land in order for it to produce both economically and sustainability under 

explicit uses and treatments. The primary objective of this classification is the systematic 

arrangement of land to indicate its most intensive long-term use as well as its associated 

permanent hazards (Scotney et al., 1991).  

 

The eight-class land capability classification method, developed by Klingebiel and 

Montgomery (1961) of the USDA, is the most well-known system and has served as a basis 

for many other attempts (Scotney, 1971; van Diepen et al., 1991; Schoeman et al., 2002;). 

Wherein a land capability class, groups land units with similar potentials and limitations 

(Schoeman et al., 2002). 

 

The USDA method is viewed as a classical land capability approach and generally does not 

provide crop specific ratings, nor does it consider the dynamic nature of soil fertility in its 

classification (Klingebiel and Montgomery, 1961; Scotney et al., 1991). Adaptation of the 

USDA method, for use in other countries are numerous and include England, Wales and 

Scotland (Bibby & Mackney, 1969), New Zealand (New Zealand Ministry of Works, 1969) and 

India (Dahake, 1971). Other regionalised adaptions include Land Capability Classification for 

Tasmania (Hawkins, 1989), West Australia (Wells & King, 1989) and KwaZulu-Natal, South 

Africa (Camp et al., 1998). 

Stellenbosch University https://scholar.sun.ac.za



 

8 
 

From a National perspective, A System of Soil and Land Capability Classification for 

Agriculture in South Africa, was compiled by a task team appointed by the multilateral technical 

committee for Agriculture and Environment Affairs (Scotney et al., 1987) (Scotney et al. 1987). 

The system was later revised in 1991 to incorporate changes introduced by Taxonomic Soil 

Classification System, released in the same year (Scotney et al., 1991). A more detailed 

overview of both USDA Land Capability as well as South Africa’s regionalised method is 

provided in Sections 2.6.2 and 2.7.2. 

 

2.4.2 Land suitability  

 

The term land suitability is most associated with the FAO Framework for Land Evaluation 

(1976),  (cf Section 2.6.1).  By definition, “land suitability is the fitness of given piece of land 

for a defined land use, with the degree of suitability being determined by the relationship 

between benefits and required inputs associated with that use” (FAO, 1976; Scotney et al., 

1991). For example a tract of land may be highly suited for grain production but not suitable 

for the production of vegetables, due to the inputs required to obtain a beneficial yield (DAFF, 

2018a). The land suitability criteria, as used in the example above, depends on the criteria for 

optimal use, with the most utilised criteria being maximum benefit and minimum losses (Beek, 

1978). 

 

A synthesised definition provided by (Rossiter, 1996), outlines the quantification and 

expression of land suitability in order to indicate land use fitness. In this he provides two 

options in terms of suitability expression, the first is on a continuous scale of “goodness” (e.g. 

0 to 100) and the other a set of discrete classes, ranging from “completely suited” to 

“completely unsuited”. In land suitability evaluation there is no “good” or “bad” land but only 

appropriate or inappropriate land uses (Eliasson, 2007), this is a major departure from land 

capability-based approaches.  

 

2.4.3 Agricultural potential 

 

Agricultural production potential is generally considered to be determined by physical land 

factors inter alia the quality of the soil, availability of water and the prevailing climate 

(Haverkort, 1988). Smith (2006) defines agricultural potential as “a measure of possible 

productivity per unit area and unit time, achieved through specific management inputs at farm 

level and is largely determined by the interaction of climate, soil and terrain.” This potential 

can be linked to a range of beneficial land uses for given crop, for example maize, or veld 

type for primary production (DAFF, 2016).  
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2.5 What are the Governmental Legislative Policies which Guide Agricultural Land 

Management, Land Assessment and Planning in South Africa? 

 

This section summarises pertinent land policies in South Africa and provides an initial 

legislative framework for the study.  

 

2.5.1 The Subdivision of Agricultural Land Act  

 

The Subdivision of Agricultural Land Act (SALA), commonly referred to as Act 70 of 1970, is 

enacted legislation to control the subdivision, and connection therewith, the use of agricultural 

land in South Africa (Republic of South Africa, 1970). The primary purpose of the Act is to 

prevent the fragmentation of agricultural land into non-viable economic units. The Act is also 

used to protect agricultural land from non-productive land uses through unsustainable land 

use change, such as the expansion of residential developments onto farmland. SALA 

essentially provides a measure of legislative control in order protect agricultural land and the 

production thereof. 

 

One of the core issues in the Act and subsequent amendments is the actual definition of 

“Agricultural Land”. In terms of the Act (Republic of South Africa, 1970:1) all land in South 

Africa is agricultural land except: 

 

• “land situated under the jurisdiction of a local council, for example a municipality, or 

local board such as village management board, or health committee, land included in 

Ordinances and specified land excluded by the Minister in the Government Gazette.; 

or 

• land which forms part of any area subdivided in terms of the Agricultural Holdings 

(Transvaal) Registration Act, 1919 (Act No. 22 of 1919); or 

• land which is a township as defined in section 102(1) of the Deeds Registries Act, 1937 

(Act No. 47 of 1937), but excluding a private township; or 

• any state-owned land or any land held in trust by the State or a Minister for any other 

person; or 

• any land that the Minister has excluded from the Act by notice in the Government 

Gazette.” 
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It is also important to note that the exemptions listed above also include land held by 

Traditional Councils, such as the Ingonyama Trust Board, which has jurisdiction over nearly a 

third of rural land in the Province of KwaZulu-Natal (CLS, 2015). Servitudes and land owned 

by parastatals such as Eskom and Transnet are excluded from provisions outlined in SALA.  

 

Critically SALA prohibits a number of related actions on agricultural land on which it applies. 

This includes the “subdivision of agricultural land, the transfer of agricultural land into 

undivided shares, leasing of agricultural land for longer than ten years, the establishment or 

extension of a development area or area under local jurisdiction and the development of a 

land use scheme on agricultural land” (Republic of South Africa, 1970:3). SALA, where 

applicable, is also used to specifically control the release of farmland to a non-agricultural use. 

The potential release is done on application-by-application basis, for each individual farm 

portion, where the impact of losing that particular farm portion is ultimately assessed by the 

National Department of Agriculture with advisory recommendations emanating from their 

Provincial counterparts.  

 

SALA is a polarising piece of legislation and has received notable criticism from a legislative, 

applicability and planning perspective (e.g. Brink, 2015). Many quarters see SALA as a 

hindrance to rural development and land reform, a vital issue in South Africa’s new social and 

political landscape (Ramothar et al., 2021). An application for sub-division or a change of land 

use is often associated with long application lead times, which slows development and delays 

land reform projects. SALA also lacks a comprehensive set of norms and standards, which 

can lead to inconsistent decisions and lengthy appeals. Furthermore, SALA is often in conflict 

with more contemporary planning legislation (e.g. Formal Township Establishment Act of 

1991, Physical Planning Act of 1991, Development Facilitation Act of 1995 and finally the 

encompassing Spatial Planning and Land Use Management Act of 2013).   

 

These problems and aforementioned issues regarding the broad definition of agricultural land 

culminated in SALA being repealed by the Subdivision of Agricultural Land Repeal Bill of 1997, 

which was assented into a law in September of 1998. Critically the repeal comes with the 

provision and that it will only come into effect on a date fixed by the President by proclamation 

in the Gazette (Republic of South Africa, 1997). This proclamation has yet to occur, resulting 

in SALA still currently being utilised by the national Department of Agriculture (Collett, 2009). 

The major reason for the delay is that there is currently no suitable legislation to replace SALA, 

although the Preservation and Development of Agricultural Land Bill (cf Chapter 2.5.5) is 

envisioned to ultimately repeal SALA.  
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2.5.2 The Conservation of Agricultural Land Act  

 

The Conservation of Agricultural Land Act of 1983 (CARA) was assented to law in April 1983 

and came into effect on the 1st of June the following year (Republic of South Africa, 1983). 

This Act repealed a number of Acts and associated amendments including the Weeds Act (Act 

42 of 1937) and the Soil Conservation Act (Act 76 of 1969). From an agricultural perspective 

CARA is a critical piece of legislation as it directly addresses the sustainable use and 

protection of agricultural resources. CARA aims to conserve the natural resources of the South 

Africa, particularly within the agricultural, non-urban, landscape. The objectives of the Act are 

specifically to provide “for the conservation of the natural agricultural resources by the 

maintenance of the production potential of land, by the combating and prevention of erosion 

and destruction of the water sources, and by the protection of the vegetation and the 

combating of weeds and invader plants” (Republic of South Africa, 1983). 

 

At its heart, the Act provides control measures, backed by a detailed suite of regulations 

(Republic of South Africa, 2001) for a wide range natural resource issues inter alia veld 

management, weed and erosion control, sustainable grazing, fire use, water resource 

protection and rehabilitation. From a land perspective CARA provides specific controls for the 

cultivation of virgin soil, the utilization and cultivation of land and the irrigation of land. 

 

As per the Act, virgin soil is defined as soil that has not been previously cultivated or has not 

been actively cultivated for ten consecutive years, land meeting these criteria cannot be 

broken without official approval. Approval of cultivation of virgin land is granted after review 

process, which could include the digging of soil observation pits to assess the lands inherent 

potential to cultivated agriculture. The Act also limits the maximum permissible slope which 

can be cultivated. This ranges between 12% and 20%, depending on the locality and inherent 

soil properties (Republic of South Africa, 1983).  

 

The Act also empowers the overseeing Authority to issue directives to non-compliant land 

owners in the form of fines and/or imprisonment. On face value the Act and control regulations 

provide significant protection to agricultural resources however the key to all legislation is its 

implementation and enforcement. Unfortunately, the lack of functioning Conservation 

Committees and shortage of Resource Auditors means that non-compliance is rarely punished 

and ultimately it is the resource base that suffers through degradation (Collett, 2009).  

 

There is however, some overlap between the CARA and the regulations National 

Environmental Management Act, 107 of 1998, including the transformation of virgin land, 
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which includes cultivation. Collett (2009) notes that this duplication of responsibilities needs to 

be addressed and this remains the case. 

 

2.5.3 The National Environmental Management Act 

 

The National Environmental Management Act (NEMA), Act 107 of 1998, and various 

amendments provides for co-operative environmental governance in South Africa (Republic 

of South Africa, 1998, 2008).. The Act offers a holistic framework, detailed guidelines, 

procedures and enforceable regulations in order to allow for sustainable environmental 

management. 

 

According to the Act, “everyone has the right to have the environment protected through 

reasonable legislative measures that prevent pollution and degradation, promote conservation 

and secure ecological sustainable development” (Republic of South Africa, 1998, 2008). 

Although not strictly agricultural legislative, NEMA, due to its holistic nature and overarching 

jurisdiction does provide a certain level of protection to important agricultural resources such 

as soils, indigenous vegetation, agricultural land, wetlands and peat soils. The Act is backed 

by three Listing Schedules for various activities. Activities listed in the Schedules requires 

Environmental Authorisation prior to the commencement of the activity. Activities that pertain 

to agricultural resources include soil excavation, clearance of indigenous species, 

transformation of land, alteration of virgin soil and land development, where the land was 

previously used for agriculture. NEMA acknowledges CARA and when properly enforced can 

provide a suitable level of protection to soil and vegetative resources from degradation.  

 

2.5.4 The Spatial Planning and Land Use Management Act 

 

The Spatial Planning and Land Use Management Act (Act 16 of 2013), SPLUMA, provides a 

framework for all spatial and land use management in South Africa. SPLUMA aims to reduce 

the historical uncertainty and ambiguity that surrounds land use planning in South Africa’s 

complex urban and rural landscape (Republic of South Africa, 2013). SPLUMA promotes both 

integrated planning at all levels of Government, while also achieving constitutional 

imperatives, such as environmental protection, protection of property rights and the right to 

sufficient food and water. From an agricultural perspective SPLUMA does provide some 

protection to agricultural land, including land under the control of Traditional Authorities, where 

Act 70 of 1970 does not have jurisdiction. Further, SPLUMA is founded on a number of sound 

planning principles including spatial sustainability, where special consideration is given to the 
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protection of prime and unique agricultural land as well as its sustainable use (Republic of 

South Africa, 2013). 

 

When SPLUMA was enacted it repealed a number of parallel planning legislations and 

included the repealing of the Removal of Restrictions Act (84 of 1967), Physical Planning Act 

(88 of 1967), Less Formal Township Establishment Act (113 of 1991), Physical Planning Act 

(125 of 1991) and the Development Facilitation Act (Act 67 of 1995). However, and importantly 

from an agricultural perspective, SPLUMA did not repeal Act 70 of 1970. Both pieces of 

legislation are thus in effect and are often in direct conflict with each other, when being applied 

to a common application. An example of this is that SPLUMA requires Municipalities to create 

“wall to wall” land use schemes, which includes land regulated by Act 70 of 1970. Act 70 in-

turn, does not allow land use schemes to be placed on agricultural land, thus creating a 

paralysed feedback loop. These planning conflicts have placed ever increasing pressure on 

the National Department of Agriculture to replace the problematic Act 70 of 1970 with 

legislation that is more compatible with contemporary planning legislation. This has culminated 

in the development of the Preservation of Agricultural Land Bill. 

 

2.5.5 Preservation and Development of Agricultural Land Bill 

 

The Draft Preservation of Agriculture and Development of Agricultural Land Bill (PDALB) was 

released for comment in 2016 and once enacted will fully repeal SALA, (Act 70 of 1970). The 

primary aim of the Bill is to provide for the protection of agricultural land. The Bill and 

underlying regulations are far more detailed than its precursor and not only covers agricultural 

subdivision and change of land use but also provides additional rules, norms and standards, 

institutional frameworks, dispute mechanisms and coordinated planning guidelines. The Bill 

also attempts to reduce conflicts with existing planning legislation while increasing the scope 

of its applicability, especially in areas where SALA was not applicable. Further the Bill states 

that if there is conflict the PDALB will prevail if the conflict directly concerns the management 

and development of agricultural land (DAFF, 2016). Critically the Bill recognises that it is in 

the National interest to preserve and, promote the sustainable use and development of 

agricultural land. Further, it recognises that high value agricultural land is rare, is under 

developmental pressure and that it is in the best interest to have agricultural land protected 

(DAFF, 2016). 

 

PDALB importantly provides detailed definitions, pertaining to critical terms used in agricultural 

planning, which have in the past caused significant confusion and conflicting legal viewpoints. 

This includes definitions pertaining to, inter alia; “agricultural land”, “agricultural potential”, 
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“high value agricultural land” and “unique agricultural land”. Clarity and consistency of use of 

these terms, which are often used interchangeably, allows for improved classification and 

regulation development (DAFF, 2016). 

 

PDALB also provides guidance in terms of agricultural land classification “where the Minister 

of Agricultural may establish a system of land capability classification, within an appropriate 

land evaluation framework, for determining the physical capability of land at national, regional 

and local scale”. This evaluation is aimed at classifying land in order to determine its most 

intensive long-term use. Along with physical capability the Minister may determine agricultural 

land zones according to its suitability for a variety of agricultural activities (Section 8.1, Para 

1-3, DAFF, 2016).  

 

The Draft Bill also stipulates that high level Agricultural Plans be created at Municipal level to 

ensure important agricultural areas are ring fenced and protected from non-productive land 

uses. This protection can culminate with a particular area being deemed a Protected 

Agricultural Area, which will make release of agricultural land, to other land uses, within this 

protective buffer extremely difficult. The proclamation of a Protected Agricultural Area will have 

the same binding effect as they do with Ecological Conservation Areas, where protection is 

actually reflected on the land’s title deed. 

 

In terms of an application for farm subdivision or change of land use the Bill stipulates that an 

agro-ecosystem report, which complies with certain standard should be compiled. This report 

will include a land evaluation in terms of land capability and suitability, the impact of the 

development application on surrounding farmland as well impact on landscape character. All 

with the aim to retain productive land, reduce fragmentation and safeguard food security. The 

finalisation of the land evaluation framework, methodology for farm level capability and 

suitability assessment as well the agro-ecosystem report will fall to the Minister of Agriculture 

when the Bill is enacted. This is a critical point as a suite of robust and scientifically based 

methodologies for farm evaluation will need to be available for consideration. To date there is 

still no approved National Framework or norms and standards for the submission, 

consideration and approval/rejection of application for subdivision and/or change in land use 

of agricultural land. This leads to an uncoordinated and inconsistent approach to decision 

making across various governmental departments (DAFF, 2016).  

 

Ultimately, current governmental and legislative failures are leading to the loss of both 

productive and potentially productive agricultural land, decreasing overarching agricultural 

sustainability and the degrading its resource base. 
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2.5.6 Status Quo: Applicable Legislation 

 

At this point in time although repealed, SALA is still in effect as there is no ratified piece of 

legislation to replace it. Despite the contestation surrounding the definition and demarcation 

of “Agricultural Land” the Constitutional Court ruled that national control over agricultural land 

remains in place despite the creation of transitional councils (Constitutional Court of South 

Africa 2008; Collett, 2008) with this mandate falling to Department of Agriculture. SALA is thus 

still utilised to control the subdivision and use of agricultural land in South Africa. CARA and 

NEMA are both in effect and apply beyond the bounds of what is deemed “Agricultural Land”. 

CARA and NEMA both aim to preserve environmental integrity and its natural resources 

though regulation of activities. SPLUMA is also active legislation, which acknowledges the 

need to protect prime and unique agricultural resources. SPLUMA cannot be completely 

adhered to due to its non-compatibility with SALA, often creating a paralysed feedback loop 

(cf Section 2.3.4). There is thus a need for the development of new legislation to replace SALA, 

with PDALB being the forerunner to do this. PDALB, when enacted, will completely repeal 

SALA with the aim to reduce legislative conflicts and also provide more holistic protection for 

agricultural resources in South Africa. Recent legislative policy, proposed through the PDALB 

(2016), aims to establish a broad framework to classify rainfed agricultural land according to 

the most intensive long-term use thereof determined by the interaction of climate, soil and 

terrain. This proposed framework intends to include methods for “determining physical 

capability at national, regional and local scales” PDALB (2016). 

 

Ultimately, contemporary and reliable land evaluation methodologies are critical to support 

land and agricultural related legislation, whose primary aim should be to accurately 

classify, delineate and protect valuable and unique resources for sustainable food 

production and security.  

 

2.6 What are the Primary Methods used to Assess Agricultural Land Internationally? 

 

There is no single or universal method, which is suitable for all land assessment applications 

(Beek, 1978; Rossiter, 1994). Thus, the selection of the most appropriate tool, or suite of tools, 

is therefore paramount to obtain the most accurate and relevant results. There are, however, 

selection criteria which can narrow ones focus and assist to provide a smaller set of suitable 

methods to choose from. The evaluation objective, the scale of applicability, and the field of 

study can all be used to eliminate tools, which are not suited for a particular application 

(Rossiter, 1994; Eliasson, 2007).  
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For the purposes of this review it is impractical to evaluate all available land assessment 

methods and tools. Therefore a total of six tools were selected based, on the following criteria, 

which chiefly correspond to the objectives of this research: 

➢ The tool must be a non-regionalised model or assessment framework, which aims to 

provide a predominately soil based evaluation of non-irrigated cropland with an 

applicability scale which includes site, farm or landscape level assessments. 

This criteria eliminates tools such land degradation methods, tools for purely irrigated or non-

cropping land uses such as forestry and rangelands. Regionalised methods which are non-

transferable or methods that are only applicable to a scales ranging from Global to District 

level were also excluded. Many of the tools reviewed in Sections 2.6.1-2.6.6 were originally 

developed decades ago, however they provide a sound basis for agricultural land evaluation.  

2.6.1 FAO Framework for Land Evaluation and associated land use guidelines  

 

In the early 1970’s, a need for some form of global standardisation and transferability, in the 

field of land evaluation, had been emphasised (Beek, 1978). This standardisation came in the 

form of a Framework for Land Evaluation, which was developed through a consultative 

approach, by the FAO and published in FOA Soils Bulletin 32 (FAO, 1976). The Framework 

presented in this Bulletin was not an evaluation system per se, but rather a set of principles 

and concepts, which can form the basis of an area-specific evaluation methodology, with 

global applicability (FAO, 1976). These broad principles were further advanced in more 

detailed land evaluation publications and guidelines for specific land uses including Rainfed 

Agriculture (FAO, 1983). These land use specific Guidelines sit midway between the broad 

Framework for Land Evaluation and the more detailed region specific manuals and include 25 

land qualities which should be considered when evaluating land for rainfed agriculture  (FAO, 

1983). 

 

The Framework for Land Evaluation is based on the concept of land suitability, where land 

should be assessed and classified based on specific kinds of sustainable use. A 

multidisciplinary approach, which includes contextualising economic and social issues, is also 

demanded, as well as comparisons of more than one kind of use (FAO, 1976). The Framework 

provides two analytical approaches to land classification, namely the parallel and two-stage 

approach. The parallel approach analyses both the physical and socio-economic aspects 

concurrently. While, the more pragmatic two-stage approach, evaluates the lands physical 

potential in the first stage, followed by an economic and social analysis, in the second (FAO, 

1976). Verheye (2009) suggests that although both approaches have their own unique 
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advantages, in reality the two-stage approach has been applied more often, as the need for 

physical potential evaluation is inevitable and is ultimately more quantifiable, than socio-

economic factors. Furthermore, he concludes that often land assessment is finalised at the 

physical evaluation stage, without conducing the secondary social or economic analysis.  

 

After initial surveys and consultations, land is classified via the suitability of various land uses, 

by matching and comparing these uses, with their differing requirements and limitations, to 

land mapping units and their associated land qualities. The level of detail associated with the 

resulting suitability classification is flexible and is dependant on the objectives and scale of the 

land evaluation process. The Framework provides four levels of detail, via a hierarchical 

classification, ranging from broad Suitability Orders through to the detailed Suitability Units 

(Rossiter, 1994). Suitability Order for example, simply has two classes namely S and N, S 

denotes that specific land portion is suitable for a particular land use, while N denotes that it 

is not suitable.  

 

Although, the Framework has not gained much traction in South Africa it has been successfully 

applied in various countries and regions across the globe, and for a multitude of land uses. 

Early applications of the Framework include evaluations in annual and perennial crop 

production in Brazil, oil palm production in Surinam and land utilisation type in Kenya as 

presented in FAO (1976) and  Beek (1978), more recent national applications and assessment 

include Zambia (Chinene, 2007) and Iran (Bagheri Bodaghabadi et al., 2015). Technical 

advances in computing, simulation modelling, remote sensing and GIS have all contributed 

towards automating and advancing the original Framework. Examples include the Automated 

Land Evaluation System: ALES (Rossiter, 1988 and 1990) GIS based crop-land suitability 

analysis using neural networks (Bagherzadeh et al., 2016) and soil site suitability analysis 

through geo-statistics (Mandal et al., 2020). 

 

While, the Framework for Land Evaluation is recognised as one of most important and widely 

used FAO methodologies, in the field of land resource management (FAO, 2007; Rossiter, 

2009), it is not without its limitations. A detailed review by Van Diepen et al. (1991) highlights 

a number of operational and philosophical constraints surrounding the original Framework. 

Perceived Framework deficiencies and more recent paradigm shifts in land evaluation,  

culminated in the writing of a discussion paper entitled “Land Evaluation: Towards A Revised 

Framework” (FAO, 2007), which details various shortcomings and potential changes, which 

could assist in updating the Framework in order to include more ecological based concerns 

and technological advancements. At this time no updated FAO Framework or guidelines have 
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been published but founding principles and associated guidelines should be considered an 

important reference document for all land evaluation practitioners.  

 

2.6.2 Agricultural Land Evaluation and Site Assessment  

 

Agricultural Land Evaluation and Site Assessment (LESA), originally released in 1981, is an 

analytical framework developed by the United States Department of Agriculture, Natural 

Resources Conservation Service (USDA: NRCS) to determine the quality of agricultural land 

for productive land uses as well as their agricultural economic viability (USDA, 2011). The 

system is designed to be transparent, defensible, repeatable and adaptable enough to 

accommodate different environments and local situations  (Qian et al., 2021). Further, it was 

developed to assist decision makers when comparing two sites based on their agricultural 

value  (Pease and Coughlin, 1996). LESA has been applied in a number of States, regions 

and counties across the United States of America (Steiner et al., 1987), examples of state-

wide available LESA systems are California, Delaware, Hawaii and Connecticut.  

 

LESA consists of two separate components, namely Land Evaluation (LE) and Site 

Assessment (SA), providing systematic and objective methods to quantify sites by agricultural 

importance (FAO, 2021). This dual rating approach is common to all LESA models, however 

the individual factors that  are selected can vary considerably, to meet spatially specific needs 

and conditions (California Department of Conservation, 1997). The land evaluation (LE) 

process within LESA revolves around soil survey outcomes, where soils are given area-

specific ratings and grouped from best to worst suited, for a stated agricultural use. The site 

assessment component (SA) alternatively identifies non-soil related factors, that influence the 

quality of the land for agricultural use. These selected factors are also subsequently graded 

to meet the needs and objectives of the local assessment method (USDA, 2011). Site 

assessment factors include limitations to agricultural productivity, development pressures, and 

factors measuring other public values (Southeastern Wisconsin Regional Planning 

Commission, 2007). The ratings for each component are then aggregated to provide an overall 

agricultural value of the site for the specified agricultural use, such as cropland, forest land or 

rangeland. Both the LESA handbook (USDA, 2011) and guidebook (Pease and Coughlin, 

1996), were developed to assist in creating area specific LESA systems. Both documents 

stress the need for local participation from planners, extension officers, agricultural scientists 

and farmers, in order to create a local LESA committee and ensure local input and buy-in. 

 

From a cropland specific perspective LESA stresses the need for an integrated approach to 

the land evaluation component, where a combination of accepted methodologies is ideally 
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applied, rather than a relying on an individual method. Accepted methodologies for land 

evaluation as provided in LESA handbook (USDA, 2011) and guidebook (Pease and Coughlin, 

1996) include: 

 

• Land Capability Classification, based on the classical eight class USDA approach, 

identifies the degree of agricultural limitation inherent in soils of the study area (cf 

Chapter 2.4.1, 2.7.2 and 2.7.3). Additional soil-based limitations are usually designated 

through the use of capability sub-classes, for example Class II e, would be defined 

Land Capability Class II, due to soil erosion limitations 

• Soil Productivity Ratings, considers soil productivity in terms of predicted yield for a 

specified indicator crop(s), which is commonly grown on the study area, e.g. maize. 

This rating is often used as a dual indicator, for not only soil productivity but potential 

economic returns. Soil productivity ratings are similar to the ultimate aim of the 

KwaZulu-Natal ecotope concept which links soil properties to crop specific yields (cf 

Chapter 2.7.4). 

• Soil Potential Ratings, indicate the relative quality of a given soil based on the 

previously determined soil productivity ratings, as described above. The locally 

established standard yield for a specified indicator crop(s) is compared with the costs 

associated with overcoming inherent soil limitations as well as any continuing 

limitations, such as soil fertility corrections (cf Chapter 2.6.5).   

• Important Farmland Classification, standardises national criteria and definitions, which 

in turn allows local planners to consider overarching national efforts to protect prime 

and unique resources. This classification provides a consistent basis for comparing 

land in different areas. The minimum soil-based criteria to achieve the designation of 

“prime farmland” is very specific and includes limits such as minimum soil depths, 

permissible soil acidity, soil permeability ranges and even permissible soil 

temperatures. 

 

Once the most appropriate land evaluation method or suite of methods are selected and 

applied for the study area, they are subsequently rated, along with the selected site 

assessment factors using a numerical scoring system. For example, if land capability 

classification was selected then Class I land, with no significant limitations, could equate to a 

score of 100 for this specific land evaluation factor. These ratings are then assigned a relative 

weight to recognise differing factor importance. Finally, these weighted scores for all selected 

land evaluation and site assessment factors, are tallied to obtain an overall LESA score, to 

which thresholds are assigned to assist land use decisions (Southeastern Wisconsin Regional 
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Planning Commission, 2007; FAO, 2021).  A site with a high LESA score indicates that is 

important from an agricultural perspective and a proposed change in land use would not likely 

be granted from planning authorities.   

 

In 2006, the American Farmland Trust recognised the LESA system as the best agricultural 

land suitability tool available in the United States, which allows users to evaluate agricultural 

importance and encouraged dialogue between a diverse groups of stakeholders. The Trust 

did however acknowledge some drawbacks linked to the system, which include the extended 

time taken to develop and field-test a usable system, scoring inconsistencies and the need for 

regular re-evaluation. 

 

From a South African perspective, where natural resource diversity is high, the flexibility of the 

LESA system is attractive as well as its integration of multiple land evaluation methodologies. 

This integration reduces the risk of an over-dependence on single land evaluation method, 

which may not be applicable in all situations. However, the lack of detailed soil information at 

local level in South Africa may be problematic as outlined by van Zijl and Botha (2016), 

particularly when developing soil ratings across large areas and for multiple crops. 

 

2.6.3 Fertility Capability Classification 

 

The Fertility Capability System (Buol, 1972; Sanchez et al., 1982, 2003), commonly 

abbreviated to FCC, is a technical land soil evaluation system which aims to group soils based 

on the physical and chemical limitations they present for agronomic production and 

management. According to the developers of the system, FCC attempts to “bridge the gap 

between soil classification and soil fertility”.  

 

FCC focuses on quantifiable plant growth parameters in both the top- and subsoil and consists 

of three categorical levels: type (topsoil texture), substrata type (subsoil texture) and modifiers 

(15 defined parameters) (FAO, 2020). Type and substrata type are relatively self-explanatory 

and are limited by either plough layer depth in the topsoil or by specified depths. The third 

categorical level is defined by 15 unique abbreviated modifiers, which include both physical 

and chemical criteria. Physical modifiers include, for example, the presence of gleyed 

(wetness) or vertic (structural) characteristics. While chemical modifiers include, criteria 

relating to low cation exchange capacity, salinity and aluminium toxicity. The parameters 

provided in FCC are strictly defined and correspond with quantitative limits provided by either 

the USDA Soil Taxonomy classification system (USDA, 1975) or the FAO-Unesco Legend of 

the Soil Map of the World (FAO-Unesco, 1974) 

Stellenbosch University https://scholar.sun.ac.za



 

21 
 

Soils are ultimately assigned an FCC code, where type and substrata type are presented in 

capital letters while modifiers are listed in lower-case, with the most prominent modifier 

appearing first. For example many well-drained soils (oxisols) would be assigned an FCC code 

of C a e I k which is defined as a clayey soil associated with aluminium toxicity, low cation 

exchange capacity, high Phosphorous fixation and low Potassium Reserves (Sanchez et al., 

1982). Later publications, relating to FCC, also include an interpretation of the various 

classification codes which aids to managing the various limitation presented (Buol, 1986).  

 

The FCC, although developed in the tropics (Buol, 1972) has been widely used and evaluated 

in other climatic areas (Sanchez et al., 1982, 2003). These evaluations showed that the FCC 

system is a useful tool for relating physical and fertility limitations to crop yield responses in a 

wide variety of soils and crops. One of the limitations of this method that it does not take terrain 

variability into account.  

 

From a South African perspective this classification has some potential in terms of local 

application. Primarily as the classification can be specifically adapted, where existing modifiers 

and their associated limits are calibrated to local conditions or new local quantitative modifiers 

are introduced to the system. However, the concept of continually changing fertility levels in a 

typical crop production environment needs to be developed further, to make this a reliable 

method in land use change or release applications. 

 

2.6.4 The Storie Index and Revised Storie Index Soil Rating 

 

The Storie Index, developed by Professor Earl Storie at the University of California, is an 

adaption of his previous work which developed An Index for the Rating of Agricultural Value 

of Soils in the 1930’s. The Index is a semi-quantitative soil rating method and evaluates a 

land’s potential utilisation and productive capacity (Storie, 1978). The last version of the 

original Storie Index was published in 1978 and is widely used, particularly in the State of 

California in the United States of America (USA), where it was developed. 

 

The Index uses four characteristics to which percentage values are assigned, with 100% being 

the highest possible score. The four characteristics used in the Index are: Factor A, the rating 

of the soil profile characteristics; Factor B, the texture of the soil surface; Factor C, the slope 

of the land and finally Factor X, the rating of other soil and terrain features including drainage, 

alkalinity, fertility levels, acidity, erosion and microrelief. The four factors are then multiplied 

together, with an equal weighting, to calculate the Storie Index. In California the method is 
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supported by further sub-divisions in terms of soil profile groups and soil gradings, with the 

intention to improve method accuracy and its interpretation (Storie, 1978). 

 

The original Storie Index, is a comparatively simplistic land evaluation method, so far as that 

its factors are relatively easy to determine. The Index does, however, have a number of 

fundamental issues. For example if one wants apply the method outside California, then new 

rating tables are required, with local calibration for soil type factors and soil grading groupings. 

Further drawbacks of the method include that it is predominately used in irrigated land use 

scenarios and that the ratings are highly subjective, depending on evaluator’s background and 

experience (FAO, 2020). These problems reduce the overall reliability and repeatability of the 

Index which has given rise to the development of the Revised Storie Index (O’Geen & 

Southard, 2005; O’Geen et al., 2008). 

 

The Revised Storie Index attempts to reduce individual user bias by developing an overarching 

model to calculate the ratings digitally. The model is based on combinations of discrete and 

fuzzy logic functions to obtain more reliable scores for the factors associated with the Storie 

Index (O’Geen & Southard, 2005). The Revised Storie Index uses the National Information 

Soil System (NASIS), an American computerised database of soil information, as its primary 

input. The NASIS-derived Index is seen as a rapid and non-bias method of converting soil 

survey data to The Storie Index Ratings (O’geen et al., 2008). Although an improvement, the 

lack of transferability of the revised method, outside the NASIS coverage, remains a major 

drawback for potential international users and applications.  

 

2.6.5 Soil Potential Ratings  

 

Soil Potential Ratings (SPR) is a land evaluation approach, which has been refined for use by 

the Natural Resource Conservation Service (NRCS) within the USDA. The procedural method 

is detailed in Part 621 of its National Soil Survey Handbook, Title 430, with the latest 

amendments to the method being published in 2018 (USDA, 2019). SPR is essentially a class-

based rating system that provides an indication of the relative quality of a soil, for a defined 

use, as compared with other soils within a specified area. Five generic classes are provided 

for comparative rating of soil potential: very high, high, medium, low and very low. However, 

the final number of classes used depends on the range of potentials in an area, with more 

homogenous areas requiring fewer classes (USDA, 2019). SPR can be developed for any 

geographic are, regardless of scale of unit of mapping. SPR has been developed to evaluate 

not only agricultural uses, such as cultivation, but also non-productive land uses such as 

dwellings and septic tanks. However for the purposes of this review its focus, in terms of SPR, 
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will be its application in an agronomic environment. As per the NRCS Handbook SPR 

considers the following when assigning a rating:  

(1) Locally established yield or level of performance; 

(2) The relative cost of applying modern technology to minimize the effects of any soil 

restrictions; 

(3) The adverse effects of continuing limitations, if any, on social, economic, or 

environmental values (USDA, 2019,  621-A.1). 

 

The aforementioned rating classes are based on a numerical Soil Production Index (SPI) for 

each soil for a specified crop. The SPI is expressed by the equation: 

 

𝑆𝑃𝐼 = 𝑃 − (𝐶𝑀 + 𝐶𝐿)                       (Eq. 2-1)

     

Where: 

P = Index of performance or yield as a locally established standard 

CM = Index of costs of corrective measures to minimize the effects of soil limitations 

CL = Index of costs resulting from continuing limitations (USDA, 2020, 621-A.5). 

 

The index for each soil is normalised, generally between 0 and 100, against the average yield 

from the most productive soil in the study area. SPR differs from other traditional evaluation 

procedures as it uses observed yields, in combination with relative production costs, as 

indicators for soil productivity (van Diepen et al., 1991). This is an important factor as even 

though two soils may have the same yield, their SPR may differ due to differences in 

establishment or maintenance costs. CM and CL, the cost indices, are general in nature and 

can be based on percentage of the cost, where highly detailed economic analyses are not 

required (USDA, 2019). Corrective measures can also be once off or continuous such as the 

need for fertilizer application over and above the normal rate. 

 

Critically ratings for a particular use are established for a specific area and thus ratings cannot 

be reliably transferrable to other areas, where criteria may differ. The ratings should be used 

principally for planning purposes as well as to provide an indication of relative soil suitability 

rather than a recommendation for soil or land use. In this regard, they can assist land use 

planners to prioritise areas, which need to remain under agriculture (Rossiter, 1994).  

 

The development of a reliable set SPR area requires significant data and including the 

collection of soil data, long term yield data, performance levels as well as costs associated 

with establishment and typical corrective measures. The SPR method should be seen more 
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as a guiding framework and is not a tool that can be used “out-the-box” or in a previously 

unstudied area without significant input from specialists and land users. Its development and 

continued application is also an iterative process where the performance and cost indices can 

be adjusted over time.  

 

The procedures used for rating soil potentials allow for maximum flexibility however, the 

benefit of flexibility comes with the cost subjectivity. All parts of the SPR system are locally 

derived, thus its actual ratings can be subjectively adjusted and even the soil rankings can be 

influenced by the weighting given to the costing indices versus the performance index 

(Rossiter, 1994). This subjectivity can lead to inconsistent rankings across different areas. 

Ultimately, SPR are also not a standalone product, but should be used to supplement other 

classifications and interpretations (USDA, 2019). 

 

2.6.6 Visual Soil Assessment  

 

Visual Soil Assessment (VSA) is a scoring approach based on the visual evaluation of key soil 

and plant performance indicators of soil quality (FOA, 2020). The supporting VSA 

documentation, presented in a 504-page field guide published by the FAO, is an adaption from 

the original methodology developed by Shepherd et al. (2008). The rationale for a visual 

approach is that many soil properties, particularly physical soil properties present themselves 

through visual indicators. These indicators can be reliably identified infield with little training 

and equipment. Further advantages of VSA is that it is both a rapid and economical approach 

to evaluate soil quality, especially when compared to more quantitative approaches (e.g. 

laboratory analysis). Research has shown that many visual indicators are closely correlated 

to quantitative indicators of soil quality (FOA, 2020). 

 

Unique VSA guides (FOA, 2008) have been developed for both broad land cover categories 

(annual crops, pastures and orchards) as well as some individual crops (maize, olive orchards, 

vineyards and wheat). Indicator scoring and their weighting varies depending on the land cover 

category or specific crop being assessed. The visual indicators of soil quality used in the VSA 

include soil texture, soil structure, soil colour, soil smell, degree mottling, presence of 

earthworms, potential rooting depth, surface ponding, surface crusting, surface relief and 

signs of soil erosion. These indicators are scored, weighted, ranked and summed to provide 

an overarching soil quality index. This index is used to class the soil as either poor, moderate 

or good in terms of soil quality for that particular land cover or crop. Soils with good VSA scores 

will generally give the best yields with the lowest establishment and operational costs  (FOA, 

2008). 
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With the exception of soil texture, the aforementioned soil indicators are dynamic, i.e. capable 

of changing under different management strategies and land uses. Regular assessments are 

required to gain insight into how these dynamic soil quality indicators are changing over time 

(FOA, 2008) 

 

Within a South African context, the relatively simple, economical and rapid nature of the VSA 

methodology is a seen as a major positive. However, the lack of local verification studies, 

which compare VSA scoring to soil properties and actual productivity has curtailed its local 

application.  

 

2.7 What are the primary methods used to assess agricultural land in South Africa? 

 
2.7.1 Historical background 

 

The 1923 Drought Investigation Report authored by Heinrich du Toit found that inadequate 

land assessment was one of the primary reasons for the notable degradation of the natural 

resources in South Africa (du Toit, 1923). Over the years the need for proper assessment of 

agricultural land has seen development of various systems. 

 

Schoeman et al. (2002) states the E.C.M Code, first document by Loxton (1962), is the earliest 

formal system developed for South Africa, from a land capability perspective. The E.C.M code 

refers to erosion hazard, soil climate and mechanical limitations and was used in the author’s 

implied soil-survey procedure for farming planning. The concept of agricultural land evaluation, 

through the use of land capability, was further developed and tested by Ludorf (1970) and 

(Scotney, 1971). At that time no single method was being used, but rather individual, 

regionalised methods, leading to confusion between users  (Laker, 2004). A review by (Van 

Niekerk, 1983) found that there was no formal or coordinated national effort to develop a 

standardised approach to land capability evaluation in South Africa as cited in Laker (2004). 

Ultimately, a standardised approach to land capability in South Africa was required. 

 

2.7.2 South African land capability 

 

To meet the need for a universal capability approach to land evaluation, A System of Soil and 

Land Capability Classification for Agriculture in South Africa was compiled by a task team 

appointed by the multilateral technical committee for Agriculture and Environment Affairs 

(Scotney et al., 1987). The system was later revised in 1991 (Scotney et al., 1991) to 
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incorporate changes introduced by Taxonomic Soil Classification System, released in the same 

year (SCWG, 1991).  

 

Like many other regionalised adaptions, the South African system is based on the USDA Land 

Capability Classification System developed by Klingebiel and Montgomery (1961). It is a good  

example of a maximum-limitation classification system, as defined by de la Rosa and van 

Diepen (2002) as it “combines soil, terrain and climate factors to classify land in terms of its 

intrinsic hazards and best sustainable, long-term use” (van Zijl et al., 2020). It recognises eight 

land capability classes, with Class I being the most favourable for arable land uses, while 

Class VIII has the greatest limitations, which preclude its use from commercial agricultural 

production (Schoeman & Scotney, 1987). These eight classes can also be grouped according 

to broad land utilisation, where classes I-IV denotes arable land, IV-VII grazing land and class 

VIII being reserved for wildlife and conservation. It assumed that soils suited for intensive uses 

such as crop production, Classes I-IV, would also be suitable for less intensive land uses such 

as grazing. 

 

The system is broad and can be used throughout South Africa but does contain a number of 

important assumptions, which limit its usefulness and applicability. The South African system 

was specifically developed for rainfed agriculture applications and classifies land on its present 

limitations and is not crops specific. Good land management and the requisite soil conservation 

measures is also assumed, while fertility status and economic factors do not form part of the 

assessment process (Schoeman & Scotney, 1987). 

 

The South African system uses two terrain factors, five soil factors and one climatic factor, 

with the least favourable factor ultimately determining the Land Capability Class for a given 

piece of land. This is classification is achieved using an elimination key (Table 2-1). 

 

Table 2-1 Elimination key to Soil and Land Capability Classes (replicated from Scotney et al., 1991) 

SOIL 

CAPABILITY 

CLASS 

TERRAIN 

FACTORS 
SOIL FACTORS 

CLIMATIC 

FACTORS 

LAND 

CAPABILITY 

CLASS 
Erosion 

Hazard 

Flood 

Hazard 

Effective 

Depth 
Texture 

Internal 

Drainage 

Mechanical 

Limitations 
Other 

1 E 1 F 1 D 1 T 1 W 1 M 1 O 1 C 1 I 

2 E 2 F 2 D 2 T 2 W 2 M 2 O 2 C 2 II 

3 E 3 F 3 D3 

 

 

 

T 3 

W 3 M 3 O 3 C 3 III 

4 E 4 F 4 D 4 W 4 M 4 O 4 C 4 IV 

5 E 5 

 

F5 

 

D 5 

 

W 5 

M 5 

 

O 5 

C 5 V 

6 E 6 M 6      

     C 6 

VI 

7 E 7 M 7 VII 

8 E 8 M 8 VIII 
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Erosion and flood hazards are used to characterise terrain hazards and incorporate slope, soil 

and wind erodibility, flood frequency and flood duration. Soil factors include depth, textural and 

wetness limitations, hazards linked to stone and bedrock exposures, the presence of erosion, 

slope limitations to mechanical implements as well tillage and salinity limitations.  

 

Climatic criteria, within the growing season, incorporate rainfall, evaporation, minimum and 

maximum temperatures as well as limitations linked to frost, wind and hail hazards. When 

assessing climatic factors, the system provides a dual approach, whereby permanent terrain 

and soil factors can be used to define soil capability, while with the addition of climatic factors 

can then be used to determine land capability (Scotney et al., 1991). However, the authors 

recommend the use of the overarching land capability classification in rainfed production 

environments, while soil capability can be used to comparatively rate soil capability of different 

areas.  

 

The major benefit emanating from this system was that its development allowed a locally 

calibrated and standardised approach to land capability assessments in South Africa. Further, 

positives related to the method’s relatively simple evaluation procedure as well as its 

nationwide applicability. These positives are also at the heart of the system’s deficiencies. A 

review by Laker (2004), found the system was too general and does not provide guidelines for 

different land utilisation types. Further, Schoeman et al. (2002), states that the South African 

System was never tested or refined and serious inconsistencies remained uncorrected.  

 

2.7.3 KwaZulu-Natal’s land capability system 

 

KwaZulu-Natal (KZN) is a diverse Province in terms of soil, terrain and climate (Camp et al., 

1995). Consequently, many broad nationalised land classification systems, such as the South 

African Land Capability, do not always provide consistent results along steep environmental 

gradients as often encountered in KZN. In order to improve its usefulness and reliability, a 

more regionalised land capability method was developed and refined for KZN by the Natural 

Resources Section at Cedara (Camp et al., 1995, 1998; Smith, 2006). Similarly, to the USDA 

and South African Land Capability Systems, the KZN Land Capability recognises eight land 

capability classes.  

 

The KZN method stresses the need to acknowledge the role of overriding climatic conditions 

when assessing the significance of soil characteristics (Smith, 2006). For this reason three 

separate flow charts or decision trees are presented (an example is provided in Figure 2-1), 

which cater for high-, medium- and low-rainfall Bioresource Groups within KZN (Camp et al., 
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1998; Smith, 2006). Class breaks for the various land capability criteria, such as slope and 

effective depth, differ depending which flow chart is applicable. In lower rainfall areas such as 

the Dry Zululand Thornveld or Sandy Bushveld natural vegetation cover or crop cover is 

reduced and therefor criteria for the classification of slope, soil texture and soil depth are more 

stringently applied (Smith, 2006). The flow charts also have the advantage of being more user 

friendly and importantly illustrate how important class breaks are in the finally land capability 

classification. For example, with all other criteria remaining static, a slope change of a single 

percent, from 2 to 3%, in drier regions will result in a lower land capability class.  

 

 
Figure 2-1 Capability class determination guidelines for low rainfall BioResource Groups in KwaZulu-
Natal (replicated from Smith, 2006 as adapted from Camp et al. 1998) 

 

The completion of the correct flow chart provides an initial land class, which then needs to be 

modified based on wetness, permeability, rockiness and soil surface crusting limitations to 

provide the final land capability class (Camp et al., 1998). Although flow chart selection is 

based on broad climatic conditions, climate capability downgrades are only considered as part 

of the land potential classification, this is a significant divergence between the KZN method 

and the South African Land Capability Classification. 

 

If so required, the land capability class can then be subsequently matched with the overriding 

climate capability of the study site in order to achieve the land potential classification. The KZN 

system uses a modified version of the climate capability classes as presented by Scotney et 

al. (1991), cf Chapter 2.7.2. 

 

Although this regionalised approach shows refinement, compared to the South African 

System, many faults still exist. The first is the issue of class breaks and classification 

downgrading severity, which have serious implications to the final classification. For example, 

an agricultural field in a high rainfall area, with a 4 % slope, can no longer be considered land 
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capability class I. A lack of detailed verification and re-calibration studies, in different parts of 

the KZN Province, is also considered a fault associated with this method. 

 

2.7.4 Kwazulu-Natal Ecotope Classification 

 

The term ecotope has its roots in landscape ecology and is defined as the smallest 

ecologically-distinct unit in a landscape, where further subdivision will have no significance 

(Smith, 2006; Ellis, 2011). In terms of South African agricultural land assessment the ecotope 

concept has been used in KwaZulu-Natal agricultural planning for over four decades, first 

being described by Schoeman & Macvicar (1978). Within this agricultural context, an ecotope 

is described as unit of land, defined in terms of soil functional group, texture, depth, wetness, 

slope and soil surface characteristics (Camp, 1999). An ecotope is thus associated with low 

environmental and spatial variation, such that relative uniformity exists in terms of land use 

options, agricultural yield and production techniques (Smith, 2006).  

 

The ecotope boundaries are identified by using soil, terrain and climatic characteristics and 

can be refined using aerial imagery (Camp et al., 1998). An Ecotope Norming Exercise 

undertaken by the Natal Region of the Department of Agriculture and Fisheries in (1982).  

states that an ecotope is a resource classification unit, intended to assist in agricultural 

decision making including: 

 

• which agricultural enterprises can or should be practised; 

• how these enterprises are best and sustainably undertaken; and  

• what yields are likely under defined management conditions.  

 

The ecotope planning unit also lies at the heart of The Bioresource Programme of KwaZulu-

Natal (BRUP), which is a computerised natural resource inventory tool for the Province (Camp, 

1999). The BRUP utilises a code to define soil and crop ecotopes: 

 

Soil Functional Group. Topsoil Clay (%). Effective Soil Depth (mm). Slope (%). Rockiness 

 

A soil ecotope is defined by all 5 characters (e.g. B.1.2.a.0), while a crop ecotope, used to 

estimate suitability and yields, only requires the first 3 characters (e.g. B.1.2), as shown in 

Table 2-2. Soil forms as defined in both Binomial and Taxonomic Classification Systems have 

been converted to soil functional group. Soils within a particular group share similar potential 

and functionality from an agronomic perspective. For example Group B: Well and Moderately 
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Drained Soils (Ferrasols) consists of inter alia Hutton, Clovelly, and Griffin soil forms, which 

under the same management will produce similar crop yields (Smith, 2006). 

 

Table 2-2 Defining Properties Ecotope Classification (adapted from Camp et al., 1998; Smith, 2006) 

Ecotope Classification 

Soil Functional Group Code Topsoil Texture Code 

Deep humic soils A > 35 % clay 1 

Well and Moderately drained Soils B 15-35 % clay 2 

Unconsolidated sediments C < 15 % clay 3 

Mottled and moderately drained soils D Effective Depth  

Mottled and poorly drained soils E > 800 mm 1 

Black (Margalitic) soils F 500 – 800 mm 2 

Black (Margalitic) poorly drained soils G 300 – 500 mm 3 

Young soils H 200 – 300 mm 4 

Gleyed soils I < 200 mm 5 

Duplex soils J Slope  

Soft and/or hard carbonates K 0 – 3 a 

Dorbank L 4 – 12 b 

Man-made soils M 13 – 15 c 

Organic soils O 16 – 20 d 

Podzols Z 21 – 40 e 

Rockiness  > 40 x 

No mechanical limitations 0 
  

Many stones but ploughable 1     

Large stones and boulders, unploughable 2     

Very shallow soil on rock or lack of soil 3   
 

Soil ecotopes are unique so far as they can describe a land unit’s status in terms of both 

capability and suitability. Figure 2-2, schematically shows how a soil ecotope fits within the 

greater land capability categories. It illustrates that the ecotope is an example of a land 

capability unit, the finest scale available for land capability evaluations. Ecotope classification 

is not simply a land capability unit but can also be combined with crop requirements and thus 

can also be used to define land suitability and potential yields. This duality is a great advantage 

of this classification method.  

 

This duality is further utilised within the BRUP by combining crop ecotopes, climatic inventories 

and local crop models, developed by Smith (2006; 1997) to estimate typical yields for a variety 

of field crops, cultivated pastures and commercial timber plantations. Laker (2004) is of the 

opinion that although some ecotope studies have been undertaken the concept probably 

received much less attention than it should have. He further advocates the use of the ecotope 

to facilitate knowledge transfer at a farm level. To this day farm assessments and associated 

production recommendations, conducted by the KwaZulu-Natal Department Agricultural and 
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Rural Development, continue to use soil and crop ecotopes as basis for resource mapping 

and planning. 

 

 

Figure 2-2 A schematic representation of land capability categories (after New Zealand Ministry of 
Works, 1969; Scotney et al., 1991) 
 

 
2.7.5 Spatial land capability approaches in South Africa 

 

Advances in Geographic Information Systems (GIS) has correspondingly led to in an increase 

in spatially-related applications and assessments across all scientific fields, including 

agriculture and land management (Andreev, 2020). Land evaluation is naturally linked to some 

form of spatial analysis and thus GIS should play an integral role in methodological 

development, data management and information processing (Kollias et al., 1999). In South 

Africa two major projects have been completed with the aim of developing a national spatial 

land capability product.  

 

The first, undertaken by Schoeman et al. (2002) of the Agricultural Research Council: Institute 

for Soil, Climate and Water (ARC: ISCW), and commissioned by the National Department of 

Agriculture, aimed to develop a workable land capability system for South Africa. The primary 

objectives of the project were to develop, test and document mental models for deriving and 

presenting land capability and translate these mental models into algorithms (Schoeman et 

I II III IV V VI VII VIII

B11 B12 D11 D22 E11 E12 H13 H34

The land capability subclass is a grouping of units which have the same broad kind of 

limitation or conservation problem

The land capabilty unit (ecotope) is a grouping of soil mapping units which have similar use 

potential. It combines those units capable of producing similar crops, with similar 

management practices and requiring similar conservation treatment. There is no standard 

description of land capability units

ORDER

CLASS

SUBCLASS

UNIT

A B C D

Erosion (e) Wetness (w) Climate (c) Soil Properties (s)

The land capability order is a grouping of capability classes reflecting a very general 

assessment of arability and agricultural potential

The land capability class is a grouping of units of land with the same broad degree of 

limitation or potential

Stellenbosch University https://scholar.sun.ac.za



 

32 
 

al., 2002). This work culminated in a report and seamless digital land capability spatial layer 

for South Africa. The final product is a classical eight-class land capability evaluation system 

that is conservation-orientated and utilizes existing broad national soil, terrain and climate 

databases (Laker, 2004).  According to DAFF (2018) the products generated by the Schoeman 

et al. (2002) can only be used at scale of 1:250 000 and is not deemed suitable for detailed 

delineation nor for assisting in decision making relating to capability or potential of agricultural 

resources. Laker (2004) had earlier come to a similar conclusion, that uncertainties relating to 

the input data and class determination restricts the ultimate use of the product to very general, 

land capability assessments at regional or national scale only.  

 

The limitations associated with the work of Schoeman et al. (2002) led the National 

Department of Agriculture’s Directorate of Land Use and Soil Management (DLUSM), to 

embark on a new process to refine this initial spatial land capability layer for South Africa. The 

Land Capability Evaluation and Classification for South Africa Project was initiated in 2014, 

with the initial spatial products being released, two years later, in 2016. This refinement aimed 

to allow for improved decision-making pertaining to the identification and preservation of high 

potential agricultural land (DAFF, 2018). Its spatial methodology made use of a three-tier data 

architecture to produce an agriculturally driven land capability evaluation model comprising of 

15 land capability classes at usable scale of between 1:50 000 and 1:100 000 (Collett, 2019). 

This 15-class system is a departure from the classical eight land capability classes (Klingebiel 

& Montgomery, 1961) and has an inverted scoring system where class 1 is the lowest and 

poorest capability class and class 15 is the highest or best possible value. The system 

generally uses land capability class 7 as the break between arable and non-arable land uses 

but this can differ, based on the user’s local knowledge (Collett, 2021). According to the user 

documents provided DAFF (2018) the refined spatial product utilises a complex weighting 

system of soil, terrain and climatic variables (Figure 2-3). Soil related variables contribute 30% 

towards the final land capability classification and were mostly extracted from modal profiles 

collected during the land-type survey. Climate capability factors contribute 40% of the final 

weighting and are based on data extracted from the South African Atlas of Climatology and 

Agrohydrology (Schulze, 1997). The terrain capability contributed 30% of the final weighting 

and terrain related attributes were generated from the 90 m SRTM (Shuttle Radar Topography 

Mission) digital elevation model. 
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Figure 2-3 Land Capability Evaluation Schematic Model (DAFF, 2018) 
 

 

The resulting spatial product is user-friendly and does provide national, agriculturally related 

data in a single repository. However, there are limitations associated with the weighted 

methodology utilised in this system. The country of South Africa is both complex and diverse 

in terms natural resource potential (DAFF, 2018)  and thus a weighting system, which attempts 

to encapsulate this diversity in its entirety, often leads to important or “unique” agricultural 

land, on the fringe, of the weighting spectrum being misclassified. This is highlighted in wheat 
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growing areas of the Western Cape, where actively cultivated land is often classified as non-

arable due to the winter rainfall regime. Similar disjuncts were found in Northern KwaZulu-

Natal where active cropland was classified in very low, non-arable, capability classes. A 

regionalised weighting-system could potentially overcome these limitations.  

 

The premise behind the 15-class system was to provide more detail for planners and allow for 

improved decision-making. However, even post-hoc analysis performed by the National 

Department, aggregates the 15 classes into a more manageable 9-class system (e.g. (Collett, 

2019), this secondary aggregation is indicative of redundant classes within the original 

dataset.  

 

The summarised results provided in the DAFF Report (2018) indicates that of the 69.89% of 

the KwaZulu-Natal Province falls in Land Capability Class 7 or above, essentially this model 

predicates that 70% of the Province is potentially arable. This is considerably higher than 

41.80% estimated by Schoeman et al. (2002) as well as other regional estimates, where only 

16% of land is considered suitable for annual cultivation and an additional 8% for permanent 

crops (KZNDARD, 2018). The broad scale of the input data, particularly in terms the soil and 

terrain co-variants could also be seen as a potential source of arability overestimation, 

particularly at local level. Further, due to the intricate methodology employed, the ultimate 

spatial product and its associated weighting system cannot to be adapted or replicated by 

other developers or users, when more detailed or new soil information becomes available. 

 

2.8 Do South African Land Assessment Methods Need to be Reviewed and Updated? 

 

In recent decades, scientific innovation and research have increased our understanding of 

agricultural systems, their components and their management (Jung et al., 2021). Coupled 

with this increased understanding is the great advancement in technology used in agricultural 

and natural resource management such as precision agriculture (e.g. Cisternas et al., 2020), 

remote sensing (e.g. Huang et al., 2018), GIS (e.g. Ustaoglu et al., 2021) as well as computer 

aided modelling and machine learning (e.g. Jagtap et al., 2021). These advances should be 

incorporated into methodologies to ultimately improve land classification and evaluation.  

 

Section 2.7.5 highlights the South African spatial products, which have recently been 

developed using newer technologies, but this has not translated into revising or developing 

new in-field land evaluation methodologies, particularly at farm level. This is critical as only 

farm level, land evaluation assessments are used by the National Department of Agriculture 
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to determine if land should remain under the auspices of agriculture or be released to a non-

productive land use (DAFF, 2018).  

 

The recent release of the third South African soil classification system in 2018 (SCWG, 2018), 

was seen as an ideal opportunity to update antiquated land assessment methodologies, as 

many use soil classification as a raw input into their models (e.g. land capability and ecotope 

classification). A recent review by van Zijl et al. (2020), which this study contributed towards, 

investigated the implications of the new soil classification system on users and related 

methodologies. This research found that existing agricultural land classification methods will 

require significant revision to appropriately align with the new soil classification framework, 

which has now been endorsed as the new, official classification system for South Africa.  

 

Along with the aforementioned technological improvements and revisions to the soil 

classification system, proposed legislation is also contributing to the need to update land 

evaluation assessment methodologies and frameworks. PDALB, (cf Section 2.5.5), explicitly 

refers to the establishment of a system of land capability classification, within an appropriate 

land evaluation framework, for determining the physical capability of land at national, regional 

and local scale. Current methodologies would need to be revised and updated in order to meet 

these legislative requirements.  

 

2.9 Conclusions 

 

In this Chapter, the primary concepts relating to agricultural land assessment and evaluation 

were introduced. To effectively explore these concepts seven key questions were developed 

and the following conclusions drawn: 

 

Agricultural land evaluation is a critical process in land use management and when 

implemented effectively can improve decision-making, optimise land use, reduce 

environmental degradation and improve productivity. 

  

South Africa has a number of sound legislative policies and Acts, which aim to promote the 

sustainable use of agricultural resources. However, significant legislative overlap and 

paralysis exists, which has triggered an uncoordinated and inconsistent approach to decision 

making across various governmental departments. These administrative and legislative 

failures are leading to a loss of critical agricultural land and the degradation of the resource 

base.  
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South Africa is characterised by natural resource diversity. Consequently, no single or 

universal method should be relied upon to evaluate all possible scenarios emanating from 

agriculturally based assessment and land use planning. Although there is a wide range of both 

international and locally calibrated evaluation methods available to land assessment 

practitioners, there appears to be an overreliance on land capability-based methodologies in 

South Africa.  

 

There is a need for local verification studies, to analyse the performance of land assessment 

methodologies currently been practiced in industry. Additionally, local assessment 

methodologies, particularly at farm level, are in need of revision to incorporate recent 

pedological revisions, legislative requirements and address the current challenges facing both 

land use planners and agricultural scientists. These methodologies should, where applicable, 

incorporate newer technologies such GIS, precision agriculture, terrain analysis and machine 

learning.  
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3. VERIFICATION OF LAND ASSESSMENT POLYGONS IN A 

PRODUCTION ENVIRONMENT  

 

 

3.1 Introduction 

 

Recent legislative policy, proposed through the Preservation and Development of Agricultural 

Land Bill (PDALB), aims to establish a broad framework to classify rainfed agricultural land 

according to the most intensive long-term use thereof, determined by the interaction of climate, 

soil and terrain (DAFF, 2016). This proposed framework intends to include methods for 

determining physical capability at national, regional and local scales. Presently the South 

African Land Capability System (Scotney et al., 1991), produced to standardise the approach 

to evaluating agricultural land in South Africa, remains the default methodological approach. 

However, its limitations in terms of applicability, methodological inaccuracies and lack of in-

field testing have attracted criticisms (e.g. Schoeman et al., 2002; Laker, 2004). 

 

More recently alternative land assessment methods developed, both locally and abroad, are 

gaining greater attention and implementation (e.g. Shepherd et al., 2008 DAFF, 2018a). There 

is, however, an absence of local, in-field verification studies, for these assessment methods 

in order to determine if they are performing adequately, particularly in a production 

environment. Indeed, one of the major shortcomings of local land assessment methods, as 

identified by both Laker (2004) and Schoeman et al. (2002), is the lack of verification studies. 

 

The aims of this Chapter are therefore to determine if soil and land assessment techniques, 

currently being practised in industry, reflect actual land utilisation and production levels. To 

achieve this, five land assessment methods were selected: 

1. A System of Soil and Land Capability Classification for Agriculture in South Africa 

(Scotney et al., 1991), hereafter referred to as “RSA LC”;  

2. The KwaZulu-Natal Land Capability System (Camp et al., 1998; Smith, 2006),”, 

hereafter referred to as “KZN LC”; 

3. KwaZulu-Natal Ecotope Classification (Schoeman & Macvicar, 1978; Camp et al., 

1998) hereafter referred to as “Ecotope”; 

4. Soil Visual Assessment (VSA) for Maize (Shepherd, 2010) and Annual Field Crops 

(Shepherd et al., 2008) ; and 

5. National Department of Agriculture Forestry and Fisheries National Capability Digital 

Product (DAFF, 2018a), hereafter referred to “DAFF LC”. 
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Importantly, all the selected methods can be applied “out-the-box” without the need for local 

calibration or modification. Due to their distribution, production outputs and key contributions 

to food security (Statistics South Africa, 2020), Maize (Zea mays) and Soybean (Glycine max) 

were selected as the focus crops of this study. Further, only dryland fields formed part of this 

analysis, irrigated lands were excluded as they have their own system of assessment and 

evaluation. Finally, the survey methodology, observation density and data collected follow the 

prescribed standards as outlined by the National Department of Agriculture (DAFF, 2018b). 

 

The performance of each method is assessed through two procedures. First, the arability 

results, from the five land assessment methods, are compared to the distribution of actual land 

use. Second, the final land assessment classification polygons are compared to actual 

productivity, using precision yields across five growing seasons, between 2015 and 2020.  

 

3.2 Materials and Methods 

 

3.2.1 Study area 

 

The study area is located near the town of Bergville in the northern region of the Tugela 

Catchment, KwaZulu-Natal (Figure 3-1 a-c). The study area is positioned between Woodstock 

Dam, forming its western boundary, and the R74 road to the east.  

 

The area extends from 28o 38’ 5.8” S; 29o 07’ 45.2” E to 28o 41’ 14.7” S; 29o 12’ 56.5” E and 

covers some 1 956 ha. The surveyed farming enterprise, known as FCL Farming, is a typical 

mixed commercial farming enterprise for the region. The study area encompasses land from 

16 farm portions and in terms of land use combines dryland and irrigated cultivation of maize 

and soybean, on a three-year rotation, as well as grazing of livestock on both natural veld and 

improved pastures (Figure 3-2).  

 

Approximately 75% of the survey area is under currently or previously cultivated land or 

pastures, the balance is predominately natural veld and wetland areas. The natural vegetation 

pattern is classified as Moist Transitional Tall Grassveld (Camp, 1999). 
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Figure 3-1 Location of the Study area – (a) Location within southern Africa (b) Location within the 
Province of KwaZulu-Natal (c) Regional Locality Map (Background Layers provided by ESRI, 2021) 
 

 

Figure 3-2 Land Use Map 

(a) 

(b) 

(c) 
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The survey area falls entirely within BioResource Unit (BRU) WXc5 (Woodstock) and includes 

land types Ab208 and Db261 (Camp, 1999; Land Type Survey Staff, 1976-2006). “WX” in the 

Bioresource code denotes a mean annual rainfall of between 801 and 900 mm, while the “c” 

denotes an upland area with an altitude of between 901 and 1400 m. In terms of climate, 

Camp (1999) classifies this area as having a Class C5 within the Province of KwaZulu-Natal. 

This Provincial classification is based on the ratio of annual precipitation to annual A-pan 

evaporation in combination with mean September, June and annual temperatures (Smith, 

2006). Within the provincial context, a C5 climate rating, is described as climate that has a 

restricted growing season due to low temperatures, frost and/or moisture stress (Camp, 1999). 

The area has a summer rainfall regime (Table 3-1) with 83% of Mean Annual Precipitation 

falling between October and March. Suitable, adapted winter crops can only be grown through 

the application of supplementary irrigation.  

 

Mean daily temperatures range from 23 oC in summer to 12 oC in winter (Figure 3-3). On 

average, 15 days of heavy frost is expected during early autumn and late winter (Camp, 1999). 

More spatially relevant rainfall was obtained from on-site rain gauges in order to link actual 

seasonal rainfall variation to crop productivity (cf Chapter 3.5). 

 
Table 3-1 Climate Summary for the Study Area (Camp, 1995 and Schulze, 1997) 

 

 

The study area is underlain by a mix of geological materials of the Karoo Super Group. The 

parent material is mainly shale, siltstone and sandstone of the Estcourt Formation (Beaufort 

Group); sandstone; maroon, green and blue mudstone of the Tarkastad Formation, alluvium 

and small areas of dolerite (ENPAT, 2002). 

 

In terms of broad soil patterns, the area can be characterised by having both upland and 

lowland duplex soils e.g. Valsrivier and Sepane Forms (Solonetz and Luvisols) within a plinthic 

catena ranging from freely drained red and yellow apedal soils (Acrisols and Ferralsols) in the 

mid-slopes grading into grey plinthic soils (Plinthosols) on the foot and toe slopes. 

Unit Annual Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Median Rainfall mm 696 131 123 100 36 11 3 2 11 23 61 84 111

Mean Rainfall mm 824 162 139 98 40 13 9 7 23 49 68 92 124

Mean Average Daily 

Temp
o
C 18.4 22.7 23.1 21.5 18.3 14.8 12.3 12.5 14.6 17.8 19.6 21.3 22.5

Mean Minimum Daily 

Temp
o
C 9.4 15.1 15.4 13.7 9.7 4.9 1.6 1.9 4.6 8.1 10.9 12.9 14.3

Mean Maximum Daily 

Temp
o
C 27.4 30.3 30.9 29.4 27 24.7 23 23.1 24.6 27.5 28.3 29.8 30.7

Relative Daily Humidity % 56 65 61 66 62 59 41 44 47 49 57 57 62

A-Pan Evaporation mm 1900 216 179 163 125 105 92 103 138 171 190 196 222
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The elevation ranges from 1175 to 1300 m above sea level with rolling terrain (Figure 3-3 a). 

The major topographic feature in the region is the large mesa landform, located to the 

northeast of the study area, with its southerly slopes falling within the study area (Figure 3-3 

b). The study area generally slopes in a south-westerly direction towards Woodstock Dam and 

is characterised by incised drainage channels and channelled valley-bottom wetland systems, 

which feed directly into Woodstock Dam. 

 

 

Figure 3-3 Topographic Features – (a) Elevation Map (b) Slope Class Map (Developed from DEMSA2) 

 

3.2.3 Soil and land assessment surveys 

 

Land assessment surveys and associated soil sampling took place predominantly over the 

winter of 2016. Smaller, supplementary surveys were conducted between 2017 and 2019. 

During these surveys, a total 225 soil observation points were collected, equating to a sample 

density of one observation per 8.6 ha (Figure 3-4). Most observations were conducted using 

soil pits dug to at least 1.5 meters or refusal, while small proportion were collected by 

confirmatory auger holes. All observation points were classified using the Soil Classification, 

A Taxonomic System for South Africa (SCWG, 1991), however all horizons were fully 

described to convert this Taxonomic Classification to the new South African Classification 

(SCWG, 2018), which was not formally recognised at the initiation of this project.  

 

Sampling positions and densities were based on norms and standards produced by both 

National and Provincial Agricultural Departments for agricultural land assessment (DAFF, 

2018b). It is a purposive sampling approach using expert knowledge, current land use, slope 

and topographic positions. At each sampling point the following information was collected: 

(b) (a) 
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• General: Spatial position, land use, crop type, geology, soil sample reference numbers 

and general comments; 

• Terrain: Terrain position, unit and slope class (via Abney level); 

• Soil Classification: Horizon name, horizon thickness and colour, soil form and family; 

and 

• Land Assessment Attribute Data: Total soil depth, effective depth, topsoil clay 

content, permeability of B1 Horizon, soil structure type and grade, wetness 

classification, soil crusting, rockiness, soil erosion type and severity as well as method 

specific land assessment attributes.  

 

This information was collected using handheld Trimble GeoXT GPS Units with on-board 

Terrasync Software (www.trimble.com), to record positions and the associated attribute data 

using customised data dictionaries. All recorded positions were downloaded, differentially 

corrected, and exported as shapefiles using Trimble GPS Pathfinder Office software.  

 

 

Figure 3-4 Soil observation points across the study area. 
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3.2.3 Land assessment methods and polygon generation 

 

This polygon-based study analyses the final classification of each land assessment method, 

for example land capability class for RSA LC or aggregated soil quality index in the case of 

VSA. For the RSA LC, KZN LC, Ecotope Classification and both VSA methods, all soil 

observation points were reclassified, based on each method’s unique land assessment 

criteria. An example of this secondary classification process for KZN LC and Ecotope Crop 

Classification is provided in Figure 3-5.  

 

RSA LC classes were determined using the standardised methodology, as outlined in the 

systems manual (Scotney et al., 1991) where land is grouped into one of eight classes with 

the same broad degree of limitation or potential. The determined overarching National climate 

capability, Class III, was included in order to reach a final land capability classification for this 

National method, taking into consideration climate is relevant in terms of LC classification in 

this case, as it assesses rainfed crop production where the climatic potential is restrictive, as 

recommended by Scotney et al. (1991). 

 

The KZN LC classes were determined using the flow chart provided in Smith (2006) as 

adapted from Camp et al. (1998). The study area falls within a “moist” climatic Bioresource 

Group and thus this specific flow chart was used to determine both land class and land 

capability. In the KZN LC method only broad climatic conditions are considered in terms of 

land capability classification (cf Chapter 2.7.3). Initial land classes were adjusted based on 

permeability, wetness, rockiness and surface crusting to achieve the final KZN LC 

classification. KZN crop ecotopes were determined using soil functional group, topsoil texture 

and effective rooting depth as outlined in Camp et al. (1998) and Smith (2006). 

 

Individual VSA scores and overarching soil quality index were determined for maize production 

using the maize specific scoring and weighting system, as outlined in Shepherd (2010).  The 

more generic annual field crops scoring and weighting system was used in respect to soybean 

production (Shepherd et al., 2008). Individual visual soil quality indicators were scored, ranked 

and aggregated to determine the soil quality index and assessment class for both maize and 

soybean production. 

 

The overarching “Land Capability” layer, determined from soil, terrain and climate attributes 

as provided in the DAFF digital mapping product was extracted for the study area (DAFF, 

2018b). This extracted raster dataset was subsequently simplified to land assessment 

polygons. 
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Once a final classification was determined and mapped for all survey points and for each 

applicable method, the points were upscaled to land assessment polygons as per the survey 

norms and standard as recommended by DAFF (2018b). Polygon delineation was based 

either on soil boundaries and/or topographic breaks, depending on which method was being 

applied.  

 

For all spatial related analyses ArcGIS 10.5 (ESRI, 2016) was employed and this included 

inter alia, polygon generation, geoprocessing, delineation classification and mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 An example of the Secondary Land Assessment Classification Process for KwaZulu-Natal 
Ecotope and Land Capability Classification (Soil Profile Photo: SCWG, 1991) 

 

3.2.4 Arability analysis and agreement analysis  

 

The polygon maps, generated from the five land assessment methods, were simplified into 

two classes, namely arable and non-arable. Ecotope and VSA methods were not specifically 

designed to classify arability, thus classification breaks were developed for this purpose (Table 

3-2). Existing agriculture infrastructure, placed on potentially arable land, such as housing or 

sheds, did not contribute to non-arable class.  

 

 

 

 

Slope 7% 

Soil Form and Family Avalon 
1100 

Soil Functional Group D 

Effective Depth 900 mm 

Topsoil Clay Content 28% 

Permeability Class 4 

Crusting Moderate 

Rockiness Zero 

Wetness Class W1 

Ecotope D.2.1 

KZN LC Class II 

(1) Soil Observation 

Point 

(2) Soil and Land  
Attribute Data 

(3) Land Assessment  
Classification 
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Table 3-2 Arability classification breaks for each land assessment method 

Method Arable Classes Non-Arable Classes 

RSA Land Capability 
 
 

I - IV 
 
 

V - VIII 
 
 

KZN Land Capability 
 

I - IV 
 

V - VIII 
 

 
Ecotope Classification 
 

 
Crop Ecotopes suitable for dryland 
maize, soybean or improved pasture 
 

 
Crop Ecotopes unsuitable for dryland 
maize, soybean or improved pasture 
 

 
DAFF Land Capability 
 
 

7 - 11 
 

1 - 6 
 

VSA Maize and Annual 
Field Crops 
 

“Medium” and “High” Aggregated Soil 
Quality Index 
 

“Low” Aggregated Soil Quality Index  
 
 

 

To more accurately compare modelled arability to land utilisation, all polygon maps were 

converted to a 50 m grid, where the majority land use or modelled arability was used to assign 

its classification. These standardised grids were then used as part of a confusion matrix 

agreement analysis between actual land use and modelled arability as produced by the five 

assessment methods.  

 

A confusion matrix is a machine learning and statistical classification method whose aim is to 

visualise the performance of a supervised learning algorithm (Brownlee, 2016). Each 

confusion matrix was identically constructed, resulting in four classes where the Top Left value 

is True Positive, Bottom Right is True Negative, Top Right is False Positive and the Bottom 

Left is False Negative (Table 3-3). First, the resulting confusion matrixes were used to spatially 

indicate where modelled arability differed to actual land use across the study area. Second a 

statistical analysis was conducted using a set of confusion matrix indices, including 

Classification Accuracy, Misclassification Rate, Classification Precision, Classification 

Sensitivity and the Matthews Correlation Coefficient (MCC). 

 

Table 3-3 Confusion Matrix structure used in land arability classification 
                           
                    Actual 
  
 
  Predicted 

 
Actual Positive 

 
Actual Negative 

 

  Predicted Positive True Positive (TP) False Positive (FP) 

  Predicted Negative False Negative (FN) True Negative (TN) 
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The compilation of the various confusion matrixes allows for additional statistical metrics to 

be extracted. The first is Classification Accuracy (CA) which is defined as  

 

𝐶𝐴 =
(𝑇𝑃+𝑇𝑁)

𝑛
                         (Eq. 3-1) 

  

Where 𝑇𝑃 is True Positive and TN is True Negative and 𝑛 is the total count across all classes.  

 

The inverse of Classification Accuracy is Misclassification Rate (MR) or False Positive Rate 

which is defined as 

 

𝑀𝑅 =
(𝐹𝑃+𝐹𝑁)

𝑛
                     (Eq. 3-2) 

 

Where 𝐹𝑃 is False Positive and 𝐹𝑁 is False Negative and 𝑛 is the total count across all classes. 

These two statistics provide a measure of classification accuracy and error.  

 

Classification precision (Eq 3-3) indicates what proportion of arable predications were in fact 

correct, a land assessment method that produces no False Positives has a Precision score of 

1.0.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
             (Eq. 3-3) 

 

Classification sensitivity, also known as recall (Eq 3-4) is the probability that a land 

assessment method correctly predicts an actual true value.  In this case when a pixel was 

cultivated did the land assessment model predict that it was arable.  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
                   (Eq. 3-4) 

 

An overarching performance coefficient was calculated from the six Confusion Matrixes. 

Matthews Correlation Coefficient (MCC) (Eq. 3-5) incorporates all the individual matrix values 

to statically evaluate how well the classification performed as compared to a randomly 

generated classification.  

 

Matthews Correlation Coefficient (MCC) = 
𝑇𝑃 ×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)    
                        (Eq. 3-5) 
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3.2.5 Precision yield data collection and processing  

 

Seasonal precision yield data was collected by a John Deere Combine Harvester mounted 

with a continuous precision yield monitor (GS23:2630). A review by Lyle et al. (2014) suggests 

studies on continuous yield monitors report an accuracy of between 93 and 99.5% but are 

dependent on amongst other factors monitor brand, calibration and environmental conditions. 

The harvester offers onboard automatic calibration but is manually calibrated through the use 

of a weigh wagon. Mass point precision yield data was extracted, processed and exported 

using a combination of John Deere Apex Software 3.85 and more recently its successor John 

Deere Operations Centre (www.deere.com). Yield data was subsequently exported to ArcGIS 

for further processing and cleaning.  

 

Commercial yield mapping systems have been in operation since 1992 and all require some 

level of post-processing to remove data artefacts and reduce error (Blackmore & Moore, 

1999). Post processing of exported yield data included data screening and removal (e.g. 

Simbahan & Dobermann, 2004; Sun et al., 2013) which included removing unreasonable and 

distribution outliers and positional errors. Data removed were generally near major field edges, 

erroneous points caused by harvester re-routing, duplicate positions or points collected when 

the yield monitor was off.  

 

Five years of yield data for growing seasons 2015-16, 2016-17, 2017-18, 2018-19 and 2019-

20, for both dryland maize and soybean, were collected and processed to dry yield mass per 

hectare. Commercial farms in the region generally use a three-year rotation for maize and 

soybean, with two maize cycles followed by a soybean crop. This ratio is however adaptable, 

depending on overriding grain prices and climate forecasts. Other crops or areas under 

irrigation were not included in this assessment. For this study, yield results were analysed 

across the five years seasons as well as on an individual season-by-season basis to determine 

the impact of rainfall on yield variation across soil groups and terrain units. On average 

680 000 individual cleaned yield points for maize and soybean were analysed every season. 

These yield points were then spatially joined to the pertinent land assessment polygon 

classifications. 

 

3.2.6 Statistical software and methods 

 

A combination of Microsoft Excel 365, Microsoft Access 365, IBM SPSS (IBM, 2021) and 

Statisica (TIBCO Software Inc., 2018) were used to manage and statistically analyse the large 

precision yield datasets and land assessment outputs.  
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To determine if any statistically significant differences exist between land evaluation classes 

and crop yield, the data was subjected to several statistical analyses. First, the test of 

homogeneity of variances was used to determine if the level of variance for crop yield is 

constant across the land evaluation classes of a specific method. If the assumption of 

homogeneity was not violated then a one-way ANOVA, the Analysis of Variance, was 

employed at a significance level of 95% (α = 0.05). The ANOVA determines if there is 

significant yield difference across the various classes and if this difference exists then either 

a Tukey HSD or Tamhane (for unequal variances) post hoc test, for multiple comparisons, 

was employed to identify exactly which classes differed significantly from each other 

(p=<0.05).  

 

If the test of homogeneity of variance was violated then non-parametric tests, including the 

Independent Median and Kruskal-Wallis Tests, were employed to determine any significant 

yield differences. Yield differences for individual classes were further explored by employing 

Dunn’s post hoc pairwise comparison using for multiple tests (α = 0.05). The resulting pairwise 

significance was not adjusted using the Bonferroni adjustments, as this study did not meet the 

specific conditions where adjustments should be considered, as reported by Armstrong  

(2014). In his review, Armstrong (2014). states that Bonferroni adjustments should only be 

considered in very particular situations if: 

“(1) a single test of the 'universal null hypothesis' (Ho) that all tests are not significant is 

required, (2) it is imperative to avoid a type I error, and (3) a large number of tests are carried 

out without preplanned hypotheses”. This is supported by earlier work undertaken by 

(Perneger, 1998) who concluded that the persistent use of Bonferroni adjustments “are at 

best, unnecessary and, at worst, deleterious to sound statistical inference”. Consequently, 

adjusted significance values were avoided during the pairwise comparison for non-parametric 

tests. 

 

3.3 Results and Discussion  

  

The results for this Chapter are divided into three sections. The first investigates the 

generation of land assessment polygons, for each of the five assessment methods. The 

second examines the relationship between actual land utilisation and modelled land use, 

through an arability and agreement analysis. The final analysis compares land assessment 

polygons to dryland maize and soybean yield, to assess the relationship between land 

assessment classification and actual productivity.  
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3.3.1 Land assessment polygon maps 

 

Six land assessment polygon maps were generated from the five land assessment methods 

(Figure 3.6a-f). The result from the RSA LC classification produced a total of four classes 

(Figure 3-6a), with two arable classes identified. The majority of the study area falls within 

Land Capability Class III and covers 62% of the surveyed area.  

 

Class III land is considered to be of moderate potential with severe permanent limitations that 

restrict land use and intensity of crop production (Scotney et al., 1991). The consolidation of 

a wide variety of soil forms across multiple terrain units, into two arable classes, highlights the 

significant aggregation of this classification method, where the most limiting land capability 

factor between soils, terrain and climate is used to determine the final land capability class. 

Although this farm is a successful commercial operation, no areas were classified as Land 

Capability Class I or II, which are considered to be potentially, highly productive. This is 

primarily due to inherent partiality of the system towards soil conservation rather than 

production potential (Laker, 2004; DAFF, 2018a). 

 

The KZN LC Classification produced a total of six classes (Figure 3-6b). Areas with more 

favourable soil and terrain properties for crop production correspond to Class II, which covers 

52% of the study area. Similarly, to the National system the regionalised KZN method does 

not classify any areas as Land Capability Class I. Wetland areas are divided into Classes V(a) 

and V(b), which provides an improved delineation between seasonal and permanently wet 

areas. Classes III and IV, are generally located along the foot slope of the mesa landform, in 

the northeast, as well as in the lower lying areas central areas. 

 

Compared to the other methods, the Ecotope Classification produced the most classes, with 

29 unique crop ecotope classes (Figure 3-6c) based on a combination of soil functional group, 

topsoil clay and effective depth. The ecotope classification is generally recognised as the land 

capability unit classification, which is the finest realistic classification resolution possible (New 

Zealand Ministry of Works, 1969; Camp et al., 1995). The resulting map (Figure 3-6c) is colour 

coded to match with the various soil functional groups. For example, the differing shades of 

green correspond to the well-drained soils with differing clay contents and effective depths.  
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Figure 3-6 Land assessment polygon classification maps – (a) RSA Land Capability Classification (b) 
KZN Land Capability Classification (c) KZN Ecotope Classification colouration based on broad 
functional grouping (d) VSA Maize Classification (e) VSA Annual Field Crops Classification (f) DAFF 
Digital Land Capability. 
 

(a) (b) 

(c) (d) 

 (e) (f) 
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Generally deep, well-drained soils are located along gentle sloping, upland areas (Figure 

3-6c). Conversely, mottled and poorly drained soils, shown in the various shades of blue, 

correspond to area associated with areas with a fluctuating water table and wetness 

limitations. Duplex soil groups (Solonetz and Luvisols) are located in both upland and lowland 

areas, with the majority associated with effective soil depth between 300 and 500 mm. The 

identified soil and ecotope patterns correspond well to the descriptions provided in the broader 

BRUP inventories (Camp, 1999). 

 

Both VSA methods (Figure 3-6d and e) provide analogous results, where most of the surveyed 

area was classified as “Good” from a soil quality perspective. VSA for Maize classifies 60% of 

the study area as “Good” for maize production, 18% is considered “Moderate” and the 

remaining 22% is seen as “Poor”. Similarly, VSA for Annual Field Crops classifies 58% of the 

study area “Good” for soybean production, 25% is considered “Moderate” and the remaining 

17% is seen as “Poor”. This spatial similarity is somewhat expected as there is a significant 

overlap between the soil quality indicators used for each method (Shepard et al., 2008; 

Shepard, 2010). Generally, apedal soils, located on mid-slope, were classified as “Good” for 

both maize and annual field crops.  

 

The DAFF LC Classification classifies the study area into seven classes, ranging from class 

11 (high) to class 05 (low). Class 10 (moderate – high) is the dominant class covering 45% of 

the study area. The resulting map, shown in Figure 3-6 (f) indicates that resolution of the data, 

used to create this layer (90 m x 90 m grids for terrain and soils variables), is not fine enough 

to accurately classify and provide continuity between local wetlands and drainage features. 

The method also appears fairly course, in terms resolution, and aggregates heterogeneous 

areas into single land capability classes.  

  

3.3.2 Arability and agreement analysis  

 

The arability analysis (Figure 3-7) provides a comparative overview between modelled 

arability and actual land utilisation across the study area (Figure 3-2). In terms of land 

utilisation, 77% of the total study area is cultivated, while the remaining 23% is non-cultivated, 

virgin land. All the land assessment methods indicate that more than 77% of the study area is 

arable, in effect the landowner is not fully utilising all the viable arable land for cultivation. If a 

method provided arability results well below actual cultivation rates, it would indicate the 

landowner was cultivating in, what method would consider, unsuitable areas. Even in a 

commercial environment, full utilisation of potentially arable land is difficult, due to operational 

practicalities and management specific objectives. For example, some areas currently under 
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virgin veld, could be ploughed and sustainably cultivated but are currently being utilised for a 

management specific purpose, in this case the remaining veld plays a critical role in grazing 

and livestock rotation. Admittedly, land use, particularly in modified agricultural systems, is a 

function of anthropogenic influence and as such, it cannot be viewed as a perfect reference 

or baseline indicator, but in this instance, it does provide a satisfactory departure point to judge 

modelled arability performance.  

 

In terms of overall arability, the RSA and KZN LC methods provide nearly identical results; 

respectively indicating that 86% and 87% of the study area is potentially arable (Figure 3-7). 

This result is expected as both methods use similar slope and soil related class breaks to 

determine broad arability. Arability, in terms Ecotope classification for maize, soybean and 

pastures indicate that 84% of the study area is suitable for at least one of these land use 

options. Equally, the Ecotope classification deems the remaining 16% of land unsuitable. 

These unsuitable areas correspond to soils with shallow effective rooting depths and more 

marginal soil functional groups. These arability figures, provided by the infield ecotope 

classification, are significantly higher than estimated arability in the corresponding BRUP 

inventories, where only 55% of the larger, encompassing Bioresource Unit is considered 

suitable for annual cropping (Camp, 1999). Ultimately, when placed with a regional context, 

the study area should be considered above average, in terms of arability and cropping 

potential. 

 

 

Figure 3-7 Modelled arability for each land assessment method compared to broad actual land 
utilisation  
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VSA results for Maize indicate that 78% of the land is classified as either “Good” or “Moderate” 

in terms of soil quality for maize production. This increases to 84% for potential soybean 

production using the non-crop specific scoring criteria associated with annual field crops. 

Comparing the scoring and class breaks for VSA Maize with VSA Annual Crops reveals that 

for a particular soil to be considered “Poor” for maize production it must score less than 37%, 

equating to a soil quality index of less than 20 out of a possible 54 points (Shepherd, 2010). 

While for generic annual fields crops this score drops to 31% or less than 15 out of a possible 

48 points (Shepherd et al., 2008). For a soil to be considered “Good” for maize production it 

must score greater than 69%, while the same soil only requires a score greater than 63 % to 

be considered “Good” using the annual crops scoresheet. Essentially the soil quality class 

breaks for Annual Crops, in this case soybean production, are more forgiving and thus an 

increase in potential arability is expected when compared to that of Maize. 

 

The digital DAFF LC layer indicates that virtually the entire study area (98%) is suitable for 

arable agriculture, with only 2% of the study area being classified as non-arable. This method 

fails to classify the majority of limiting soil and terrain features at a local scale, thus 

overestimating potential arability. The combination of a course 90 m x 90 m digital elevation 

model resolution (SRTM) and low density of regional soil observation points, used to derive 

the terrain and soil indices, which ultimately inform the DAFF land capability classification, are 

not sufficiently accurate determine arability at a local scale in this context.  

 

The graphed results (Figure 3-7)  were mapped to spatially highlight areas of modelled arability 

across the study (Figure 3-8). The polygon maps produced from the five assessment methods 

were rasterised and reclassified into two distinct classes, arable and non-arable, as per Table 

3-2. This rasterization process was performed at a grid size of 50 m x 50 m and produced a 

total of 7 836 pixels for each assessment method. The resulting maps are provided in Figure 

3-8 (a-f). The RSA LC, KZN LC, Ecotope Classification and VSA methods all spatially 

designate similar areas of non-arability, which include low wetland lying areas, shallow duplex 

soils, drainage lines and steeper areas (Figure 3-8 a-e).  

 

The broad arability map for the DAFF LC layer (Figure 3-8 f) provides a spatial context to the 

results shown in Figure 3-8. The DAFF classifies virtually the entire study area as suitable for 

arable agriculture, with only small areas in the central and southern portions being highlighted 

as non-arable, spatially confirming the limitations highlighted in results of modelled arability 

(Figure 3-7), where local non-arable features are not classified correctly.  
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Figure 3-8 Arability classification maps – (a) RSA Land Capability Classification (b) KZN Land Capability 
Classification (c) KZN Ecotope Classification (d) VSA Maize Classification (e) VSA Annual Field Crops 
Classification (f) DAFF Digital Land Capability  
  

 

(a) (b) 

(c) (d) 

 (e) (f) 
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To spatially determine areas of agreement and disagreement the gridded arability maps, for 

each method, were compared to actual gridded land utilisation for the study area. The result 

of this comparative analysis was summarised by six confusion matrices, which assess the 

accuracy of each classification method against the two land utilisation classes. Ultimately six 

agreement maps, unique to each of the land assessment methods (Figure 3.9 a-f), spatially 

represented these matrixes.  

 

A True Positive, representing a match between modelled arable and cultivation, dominates 

most of the study area as cultivation is the dominant land use. These areas are found on 

gentle to moderate slopes with good soils for arable agriculture.  

 

True Negatives, representing a match between modelled non-arable and a non-cultivated land 

use, are found in low lying wetland areas, steeper areas, drainage lines and marginal soils 

with shallow effective rooting depths. Again, the RSA LC, KZN LC, Ecotope Classification and 

VSA methods all provide similar results in this True Negative Class (Figure 3-8 a-e). DAFF LC 

(Figure 3-8 f) has virtually no areas classified as True Negatives due to the overwhelming bias 

towards predicted arability. 

 

False Positives, represent areas which are modelled as arable but are in fact non-cultivated. 

These are generally areas which could, in reality be cultivated but are left fallow for 

management reasons, for example additional grazing areas for livestock. In this study, land 

classified as False Positives generally indicates where actual land use is not in fact a good 

indicator for potential arability.  

 

One positive emanating from this noted disjuncture, is that these areas are delineated 

relatively consistently for four of the five methods, excluding DAFF Land Capability. Ultimately 

adding to our confidence in RSA LC, KZN LC, Ecotope, VSA Maize and VSA Annual Crops 

(Figure 3-8 a-e) to model potential arability. Conversely, DAFF LC has significant areas 

classified as False Positive, far exceeding realistic potential arability (Figure 3-8 f). This result 

corresponds to the overarching Provincial arability results provided in DAFF (2018), where 

nearly 70% of the KwaZulu-Natal Province is classified as land capability class 7 and above, 

far exceeding other Provincial arability estimates (Schoeman et al., 2002; Smith, 2006). 
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Figure 3-9 Agreement Maps based on confusion matrix results – (a) RSA Land Capability Classification 
(b) KZN Land Capability Classification (c) KZN Ecotope Classification (d) VSA Maize Classification (e) 
VSA Annual Field Crops Classification (f) DAFF Digital Land Capability 

 

(a) (b) 

(c) (d) 

 (e) (f) 
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Finally, a False Negative represents where the model predicts a non-arable land use but is in 

fact cultivated. These areas are generally found in marginal production areas, where some 

inherent soil or topographic limitation exists but is cultivated regardless, with some risk to yield 

loss. These can include localised areas associated with significant limitations such as shallow 

rock shelves and shallow ground water but are still cultivated as part of the larger field, as it is 

impractical to ringfence these small areas from a management perspective. This again   

highlights the role of anthropogenic land use and management’s influence on the overall 

accuracy of this arability analysis. Alternatively, the model could simply be wrong, leading to 

a misclassification of arability. 

 

The compilation of the various confusion matrixes, allows for additional statistical metrics to 

be extracted, including CA, MR, precision and sensitivity per land assessment method (Eq. 3-

1 – 3.5). These resulting metrics are summarised in Table 3-4 and indicate that the KZN Land 

Capability method has the highest CA with 85.21%. Similarly, RSA Land Capability and 

Ecotope Classification methods obtained classification accuracies of 84.41% and 83.15%, 

respectively. 

 

Table 3-4 Classification accuracy (CA), misclassification rate (MR), precision, sensitivity and Matthews 
Correlation Coefficient (MCC) per land assessment method 

Method CA (%) MR (%) Precision (%) Sensitivity (%) MCC 

RSALC 84.41 15.59 86.19 95.25 0.59 

KZN LC 85.21 14.79 86.25 96.40 0.64 

Ecotope 83.15 16.85 86.22 93.30 0.53 

VSA Maize 78.73 21.27 86.25 86.49 0.39 

VSA Annual FC 81.70 18.30 85.84 91.63 0.47 

DAFF LC 76.62 23.38 77.80 97.95 -0.03 

 

VSA for annual field crops has a marginally better CA than the VSA Maize, due to its slightly 

more generic scoring system. DAFF LC has the highest MR of all the methods assessed with 

23% of pixels being misclassified, again suggesting its course inherent resolution leads to an 

increase in MR across the study site.  

 

Statistics in terms of classification Precision and Recall were also provided in (Table 3-4). 

Classification Precision is the ratio of positive predicted values to actual true values. In other 

words when the land assessment model predicted arable compared to non-arable, how often 

was it actually cultivated. RSA Land Capability, KZN Land Capability, Ecotope Classification 

and VSA all obtained high Precision scores, of approximately 86%. The DAFF Land Capability 
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layer had a lower Precision value of 77.8%, meaning that only 77.8% of the land the model 

predicted as arable was in fact cultivated.   

 

Classification Recall is the probability that a land assessment method correctly predicts an 

actual true value. In this case when a pixel was cultivated did the land assessment model 

predict that it was arable. All assessment methods scored well in this regard (> 86%). The 

DAFF Land Capability scored predictably high (> 97%) due to the over predication of arable 

land.  

 

Finally, an overarching performance coefficient was calculated from the six Confusion 

Matrixes. Matthews Correlation Coefficient (MCC) (Eq. 3-5) incorporates all the individual 

matrix values to statically evaluate how well the classification performed as compared to a 

randomly generated classification. MCC is generally considered the best performance 

coefficient to use in confusion matrix (binary applications) especially when compared to 

Cohen’s kappa (Delgado & Tibau, 2019) and F1 Score (Chicco & Jurman, 2020). The MCC 

returns values between -1 and +1. A result of -1 represents a total disagreement between 

predicted arability and cultivation, 0 is no better than a random predication and +1 score 

represents a perfect prediction.  

 

The accuracy classification results using the MCC (Table 3-4) show that KZN LC classification 

is the best performing arability classification when comparing to actual land use with a 

coefficient score of 0.64. MCC can be interpreted similarly to Pearson Correlation Coefficient 

where a scores between 0.4 and 0.69 are considered a strong positive relationship (Mukaka, 

2012). Therefore, the coefficient scores of RSA LC, KZN LC, Ecotope and both VSA methods 

represent a strong positive relationship to actual land use. The DAFF LC method scores are 

very close to 0 and this is considered to have negligible relationship or no agreement (Mukaka, 

2012) between predicated arability and actual land use.  

 

The arability analysis indicates that the KZN LC method was consistently the best performer. 

It achieved the highest CA, precision, recall and MCC of all the land evaluation methods 

tested. Its performance, in terms of arability prediction, is linked directly to the most 

fundamental objective, common to all land capability-based methods, which is to determine 

the lands most basic intensive use (Smith, 1997). Essentially, the performance of the KZN LC 

should be expected, as this is what the method was designed to achieve, predict broad land 

use within the confines of KwaZulu-Natal Province. The nationalised land capability system, 

RSA LC, similarly performed well but whose broader class breaks and factors, compared to 

that of the KZN system, slightly reduced its CA and overarching MCC scores. This again, 
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should be expected from a broader, nationalised system. The Ecotope classification and both 

VSA methods are not necessarily designed for ability assessments but with some adaptions, 

in terms, arability breaks, performed adequately.  

 

Overall, the KZN LC slightly outperforms RSA LC, ecotope and both VSA classification but all 

five methods performed well and could be confidently used in future arability assessments in 

similar environments. Results from the DAFF LC digital product indicates a severe 

overestimation of arability and based on the various analyses should not be used for farm 

level arability assessments. This result mirrors the Provincial results as provided by DAFF 

(2018a) which indicates that of the 69.89% of the KwaZulu-Natal Province is potentially arable. 

This is considerably higher than the 41.80% estimated by Schoeman et al. (2002)  as well as 

other regional estimates, where only 16% of land in KZN is considered suitable for annual 

cultivation and an additional 8% for permanent crops (KZNDARD, 2018). The primary intended 

use of the DAFF spatial product is regional land use planning, for both local and district 

municipalities within a holistic areas based approach (Collett, 2019, 2021). At municipal level, 

ringfencing contiguous agricultural land is of paramount importance and thus an 

overestimation of potential arability should not necessarily be seen in a negative light as it 

should safeguard more and fragment less agricultural land. However, these results indicate 

DAFF LC is not a reliable indicator of arability at local scale and should not be used for farm 

planning. 

 

3.3.3 Land assessment polygons and productivity  

 

The aim of this final section of results, is to compare land assessment classification polygons 

to maize and soybean yield and determine if their resultant land classification is related to 

actual crop productivity.  

 

3.3.3.1 Productivity contextualisation 

  

It is important to first contextualise the production levels of the study area. The farm portions 

under analysis should be considered the benchmark, in terms of commercial crop production. 

Already, the arability analysis (cf Chapter 3.3.2) reveals that 84% of the study area is arable, 

significantly higher than the regional average of 55% (Camp, 1999). Management, fertilisation 

and variety selection are all optimised, in an attempt to maximise yields and the commercial 

operation used in this study is viewed as one of the most successful in the region. This is 

reflected in the significantly higher yields obtained, across the study, during the five-year 

analysis period (2016-2020), when compared to Provincial and National yield averages. 
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According to Maize and Soybean Quality reports produced by The South African Grain 

Laboratory (SAGL, 2015-20), the year-on-year farm average for dryland maize is some 61% 

above Provincial average and 95% above the National average over the analysis period1. 

While the year-on-year farm average for dryland soybean production is 16% above Provincial 

average and 70% above the National average. Based on these comparisons, the study area 

should be considered extremely favourable, in terms of actual productivity and potential. 

 

3.3.3.2 Rainfall and dryland productivity 

  

This analysis only investigates dryland fields thus seasonal rainfall, within the growing season 

(October and March), becomes a critical factor when assessing yield performance both inter- 

and intra-annually. Figure 3-10 (a and b), compares the annual average maize and soybean 

yield to the total seasonal rainfall, as recorded by an on-farm rain gauge. A correlation analysis 

over the five seasons reports a significant 0.86 correlation (α = 0.9) between maize yield and 

seasonal rainfall and a 0.97 correlation (α = 0.95) between soybean yields. The analysis 

indicates that both maize and soybean yields are dependent on rainfall depth. Year-on-year, 

across the five seasons, it requires an average of 66 mm of seasonal rainfall to produce one 

tonne of maize per hectare of land. Comparatively, it requires an average of 204 mm of 

seasonal rainfall per tonne of soybean. National maize guidelines (du Plessis, 2003) reports 

a maize yield of 3.1t/ha-1 requires between 350 and 450 mm of rain per annum, this suggests 

the yields reported in the study area are significantly above water use norms used Nationally. 

 

Based on long-term rainfall records for Bioresource Unit Wxc5 (Schulze, 1997; Camp, 1999), 

2016 and 2019 harvests are considered dry years, 2017 and 2018 are marginally wet and 

2020 is considered average (Figure 3-10). Notably, the 2019 season also received very late 

rainfall with over 60% of the season’s rain falling in the last two months of the growing season, 

negatively impacting yields.  

 

Over the five year period the average yield obtained from all yield observations was 9.7 t.ha-1 

for maize and 2.9 t.ha-1 for soybean. For wet (2017 and 2019) and the average (2020) seasons 

the average dryland yield obtained increased to 10.7 t.ha-1 for maize and 3.2 t.ha-1 for soybean. 

While in the two drier seasons (2016 and 2019) the average yields dropped to 6.8 t.ha-1 for 

maize and 2.4 t.ha-1 for soybean, equating to  an average decrease of 30% for maize yield 

and 17% for soybean yield (Figure 3-10). These results are akin to those reported by Wang et 

al. (2020), who reviewed long term climate and yield studies, between 1961 and 2017, across 

 
1 Average maize yield was calculated by area weighting white and yellow maize production as reported by SAGL (2015-2020) 
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China. The findings of these comparative studies, indicate that during severe drought years, 

yield losses doubled for soybean but increased more than four-fold in maize crops. Essentially 

soybean appears to be a more drought resistant crop, compared to that of maize. 

 

 
Figure 3-10 Seasonal rainfall (mm) compared to (a) dryland maize yield (t.ha-1) and (b) dryland soybean 
over five growing seasons 

 

3.3.3.3 Rainfall and crop planting ratios 

 

Forecasted seasonal rainfall, prior to planting, plays a significant role in the ratio of maize to 

soybean planted in the forthcoming season. Commercial farmers in this region have adapted 

to seasonal forecasting, by reducing the amount of maize, compared to that of soybean, 

planted in a predicted dry year, in an attempt to mitigate against yield losses.  

 

For the study area, in forecasted drier years, the ratio between the amount of maize and 

soybean planted, is relatively equal while in wetter years the ratio is approximately 4:1 in 

favour of maize production. A crop distribution and yield overview map for 2018, a wet year, 

is provided in Figure 3-11 (a) as well as a dry year in 2019 in Figure 3-11 (b), illustrating this 

adaption strategy. 

(b) (a) 
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Figure 3-11 Maize and Soybean crop distribution and yield overview for (a) 2018 (wet year) and (b) 
2019 a dry year 

 

 

3.3.3.4 Land assessment methods versus productivity across five growing seasons 

 

To analyse the performance, of each of the five land assessment methods, their resulting land 

assessment classifications were spatially joined to processed annual maize and soybean 

yields, for the five growing seasons, between 2016 and 2020. Importantly, the analyses 

presented below are based on polygon delineation, thus the average yield differs marginally 

across the various methods. Two seasons, 2016 and 2018 were selected for additional 

analyses, due to their differing rainfall regimes; the 2016 season recorded below average 

rainfall while above average rainfall was recorded for the 2018 season. Ultimately, the tables 

provide an overview of classification performance across all five growing seasons, while the 

box and whisker plots allow seasonal trends to be highlighted.  

 

➢ South African Land Capability Classification  

The primary objective of land capability classification is to arrange land, based on its most 

intensive use and indicate its permanent hazards, however its classification should also 

provide a basis for soil productivity and allow for the identification of high potential agricultural 

land (Scotney et al., 1991). 

 

For maize RSA LC Class III, the highest land capability classification observed in the study 

area also produced the highest yields, some 2.06% above the average yield (Table 3-5). The 

remaining three classes (IV, V and VI) all produced below average yields across the five-year 

period. The results indicate there is a significant difference (p = 0.014) in the distribution of 

(a) (b) 
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average maize yield across the four classes with significant differences in average maize 

yields between RSA LC Class III and the non-arable classes V (p=0.034) and VI (p=0.012). 

There was also a significant difference RSA LC Class IV and VI (p=0.035). The results for 

maize presented in Table 3-5 broadly indicate that RSA LC classification does relate to actual 

maize production, with yield decreasing with increasing RSA LC class. One would expect 

yields to decrease as one moves to lower land capability classes, with non-arable classes 

producing significantly less than arable ones. This is indeed the case with the performance 

between Class III land being statistically different from non-arable classes. However, a 

statistically significant yield difference particularly between arable RSA LC classes (III and IV), 

would indicate an improved correlation between class breaks and productivity. 

 

Table 3-5 Average dryland maize yield performance per South African Land Capability Class polygons 
over five growing seasons (2016-2020). The same letters indicate statistically insignificant differences 
in yield (p>0.05). 
RSA Land 

Capability Class 
n 

Average Maize 
Yield (t.ha-1) 

Standard 
Deviation 

% Difference Between Class and 
Method Average Yields 

III 341 9.53a 2.36 2.06 

IV 151  9.23ab 2.61 -1.22 

V 26  8.16bc 3.21 -12.65 

VI 11 7.75c 2.01 -17.08 

 

In terms of soybean (Table 3-6), a one-way ANOVA analysis revealed no significant difference 

in soybean yield across the four RSA LC classes (p=0.413). With average soybean yields only 

varying 0.13 t.ha-1 across the four capability classes, with RSA LC Class III actually being the 

poorest performer across the five growing seasons.  

 
Table 3-6 Average dryland soybean yield performance per South African Land Capability Class 
polygons over five growing seasons (2016-2020). The same letters indicate statistically insignificant 
differences in yield (p>0.05). 
RSA Land 

Capability Class 
n 

Average Soybean 
Yield (t.ha-1) 

Standard 
Deviation 

% Difference Between Class and 
Method Average Yields 

III 241 2.70a 0.72 -1.46 

IV 149 2.81a 0.69 2.55 

V 23 2.78a 0.77 1.46 

VI 6 2.93a 0.81 6.93 

 

Although, both maize and particularly soybean do not show a statistically significant 

differences between yield and all RSA LC Classes, they do provide some important trends. 

For maize, yields consistently decrease as land capability deteriorates. Further, maize crops 

harvested within areas considered “arable” by the RSA LC classification, outperformed those 

areas classified as “non-arable”. With non-arable areas producing below average maize 

yields, across the five growing seasons. For soybean, yields tended to increase in lower 
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capability classes, with non-arable areas producing above average yields across the five 

growing seasons. This suggests that, even though RSA LC is not considered crop specific, 

RSA LC class breaks may be better suited to maize production compared to that of soybean. 

Soybean is also seen to be more robust when planted in areas considered to be marginal, by 

the RSA LC Classification. This is supported by a general consensus that soybeans are more 

resilient than maize growing in suboptimal soil conditions (DAFF, 2010). Both maize and 

soybean performed well above the national yield average in areas considered non-arable, 

suggesting that the RSA LC system's arability classification breaks may be too conservative 

in this environment. 

 

Box and whisker plots (Figure 3-12 a-d) summarise maize and soybean yield performance for 

the dry 2016 and wet 2018 seasons. A broad comparison between the seasons shows a 

relative yield increase, across all classes, from the dry 2016 to the wet 2018 season for both 

maize and soybean, which is attributed directly to increased rainfall (cf Chapter 3.3.3.2).  

 

For maize the 2016 season (Figure 3-12 a) shows a steady decrease in maize yields between 

RSA LC Classes III (7.1 t.ha-1), IV (6.4t .ha-1) and V (6.0 t.ha-1). However, the post hoc tests 

indicates, that even though there is a decrease in yields across these classes the difference 

is not statistically significantly (p=<0.720). The above average yield of 8.4 t.ha-1, achieved in 

RSA LC Class VI in 2016 emanates from a single polygon and this value is most likely  an 

outlier. For the wet 2018 season (Figure 3-13 b) maize yields were relatively constant for 

classes III, IV and VI, with no statistically significant difference between the average yields 

achieved. A post hoc test found that the average maize yield for 2018 was only significantly 

lower in RSA LC Class VI when compared to yields achieved in RSA LC Class III (p=0.01) 

and IV (p=0.03). This significant drop in yields in Class VI in the wet 2018 season is mostly 

attributed to waterlogging. Class VI areas are dominated by wetlands and drainage lines, 

which become saturated during these wetter seasons, ultimately decreasing yields. Kaspar et 

al. (2004), whose study focused on the relationship of maize and soybean yields to soil and 

terrain properties, similarly reported crop yields were negatively affected in closed depressions 

and low-lying areas in wet years. 

 

The results for soybean (Figure 3-12 c and d) do not provide any clear trends in terms of 

production versus RSA LC Class, with yields often increasing in poorer capability classes. 

Again, suggesting that the RSA LC classification and associated class breaks are more suited 

to maize production than that of soybean. Further there is no statically significant difference in 

soybean yield across the RSA LC Classes in 2016 (p=0.119) and in 2018 the only significant 

yield difference was between RSA LC Class III and Class IV (p=0.022). This result again 
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suggests that expected yield trends do not apply to soybean in this production environment 

when using the RSA LC classification system at polygon level.  

 

 

Figure 3-12 Box and Whisker Plots per South African Land Capability Class for (a) 2016 (low rainfall) 
Dryland Maize Yield (b) 2018 (high rainfall) Dryland Maize Yield (c) 2016 Dryland Soybean Yield (d) 
2018 Dryland Soybean Yield. The same letters indicate statistically insignificant differences in yield 
(p>0.05). (+) Denotes classes not included in the ANOVA analysis due to lack of observed samples. 
 

 

Notably, across all actively cultivated land, only four capability classes were classified using 

the RSA LC system, consisting of two arable (III and IV) and two non-arable classes (V and 

VI), while a total of seventeen individual soil forms and four primary slope units were 

encountered during the resource surveys, exhibiting a wide variety of limiting layers, soil 

textures, permeabilities and depths. Yet, four land capability classes are able to encapsulate 

this diversity, across all actively cultivated land. This indicates significant aggregation of soil 

related properties during the classification process, which may mask more subtle relationships 

between contributing factors and yield.  
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As highlighted previously, in the polygon and arability results (cf Chapters 3.3.1 and 3.3.2), 

one of the most concerning aspects of the RSA LC system is the lack of Class I and II land 

identified during classification process, especially, if one compares the farm yields against 

Provincial and National averages (cf Chapter 3.3.3.1). This is an extremely productive farm, 

and absence of Class I and II lands highlights the problems with RSA LC in that it is too severe 

in terms of class downgrades, which in this case may not reflect actual productivity. This has 

ramifications with regards to land release applications via Act 70 of 1970, where productivity 

potential may detrimentally be trumped by soil conservation and hazard limitations. 

 

➢ KwaZulu-Natal Land Capability Classification  

The KZN LC classification (Table 3-7), provides a total of five capability classes for the farm 

which includes one additional arable class (II), compared to that of the RSA LC classification. 

However, similarly to the National methodology, no Class I land could be identified. As 

aforementioned, the results should ideally demonstrate a steady decrease in yields, as one 

moves into poorer capability classes. The ANOVA analysis indicates there is significant 

difference (p=<0.001) in maize yields across the KZN LC Classes, over the five growing 

seasons (Table 3-7).  This trend is clearly evident for maize production across the delineated 

KZN LC polygons, with yields decreasing from Class II through to Class VI (Table 3-7). Class 

II is the best performer across the five growing seasons, yielding nearly 6% above the average 

yield and was found to be significantly different to classes IV, V(a) and VI. Class II is also the 

most dominate class in terms of spatial coverage, with 49% of cultivated polygons falling into 

this capability class. Only capability Classes II and III achieved above average yields, while 

Classes IV, V(a) and VI achieved below average yield. KZN LC Classes V(a) and VI, which 

are considered non-arable, both obtained below average yields of -14.35 and -20.74% 

respectively.  

 

The overall results for maize indicate that the KZN LC method is performing adequately, with 

yields steadily decreasing with land capability class with significant yield differences between 

most arable and non-arable classes.  However, when compared to the national average, the 

yield performance for maize in these non-arable areas is still high, again suggesting that the 

arability breaks associated for land capability classification are too conservative in this 

production environment. 
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Table 3-7 Average dryland maize yield performance per KZN Land Capability Class polygons over five 
growing seasons (2016-2020). The same letters indicate statistically insignificant differences in yield 
(p>0.05). 

KZN Land 
Capability Class 

n 
Average Maize 
Yield (t.ha-1) 

Standard 
Deviation 

% Difference Between Class and 
Method Average Yields 

II 235 9.53a 2.31 5.90 

III 56  9.16ab 2.43 1.78 

IV 174  8.60bc 2.66 -4.33 

V(a) 15 7.70bc 2.03 -14.35 

VI 25           7.13c 2.72 -20.74 

 

The five-year summary for soybean yields per KZN LC Class, is provided in Table 3-8. Unlike 

the results for maize, there is little distinction in soybean yield performance across all land 

capability classes with than 0.12 t.ha-1 separating the five delineated classes. This was 

confirmed by a one-way ANOVA analysis which indicated that there is no statically significant 

difference in soybean yield across the five KZN LC classes (p=0.744). Class II land, the 

expected top performer, produced below average a yields across the five growing seasons. 

With the poorer rated lands, Classes IV, V(a) and VI lands, producing above average yields.  

 

Table 3-8 Average dryland soybean yield performance per KZN Land Capability Class polygons over 
five growing seasons (2016-2020). The same letters indicate statistically insignificant differences in 
yield (p>0.05). 

KZN Land 
Capability Class 

n 
Average Soybean 

Yield (t.ha-1) 
Standard 
Deviation 

% Difference Between Class and 
Method Average Yields 

II 143 2.64a 0.76 -2.17 

III 43 2.65a 0.73 -1.77 

IV 145 2.76a 0.84 2.23 

V(a) 14 2.70a 0.74 0.06 

VI 23 2.75a 0.58 2.01 

 

The box and whisker plot for maize production, in the dry 2016 season (Figure 3-13 a), best 

illustrates the anticipated trends, where yields generally decrease with capability class. A one-

way ANOVA analysis indicates there is significant difference (p=<0.001) in 2016 maize yields 

across the KZN LC Classes, with yields in KZN LC Class II being significantly higher than the 

yields obtained in Classes IV and VI. While the yields obtained in the wetland class, V(a) was 

not significantly different, suggesting physical limitations, not associated with severe wetness 

limitations, are more pronounced during low rainfall years. In the higher rainfall season (Figure 

3-13 b), there were no statistical difference between maize yields across three arable classes 

(KZN LC Classes II-IV). However, the two non-arable classes, V(a) and VI were found to be 

significantly different from the arable classes, using the non-parametric Kruskal-Wallis Test. 

The wetland class, V(a), in particular is linked to a significant decrease in maize yields for 

2018 season (>3.0 t.ha-1). This yield decrease is most likely due to soil saturation and 
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associated waterlogging associated with an above average rainfall season. Similarly, local 

production guidelines recognise that soils prone to waterlogging result in poor maize yield 

(CADI, 1993). 

 

The soil component of both the KZN and RSA LC classifications is based primarily on physical 

soil properties and these properties generally become more pronounced and limiting during 

drier cycles, resulting in lower maize yields. The 2018 season with higher rainfall appear to 

mask these physical soil limitations with consistent maize yields (>10 t.ha-1) being achieved in 

the land capability classes II (KZN LC) and  III (RSA LC). Guo et al.  (2012) reported similar 

results for cotton yields where yield and soil properties had a stronger correlation in drier years 

compared to years with above average rainfall. 

 

 

Figure 3-13 Box and Whisker Plots per Kwa-Zulu Natal Land Capability Class for (a) 2016 (low rainfall) 
Dryland Maize Yield (b) 2018 (high rainfall) Dryland Maize Yield (c) 2016 Dryland Soybean Yield (d) 
2018 Dryland Soybean Yield. The same letters indicate statistically insignificant differences in yield 
(p>0.05). (+) Denotes classes not included in the ANOVA analysis due to lack of observed samples. 
 

 

The soybean results for 2016 and 2018 (Figure 3-13 c and d), are akin to that of the National 

classification, where yields do not vary considerably across land capability classes, with yields 
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often increasing in poorer capability classes. The yield variation was confirmed by a one-way 

ANOVA analysis which indicated that there is no statically significant difference in soybean 

yields across all KZN LC Classes in either the dry 2016 (p=0.93 a) or wet 2018 (p=0.95) 

seasons. 

 

➢ KwaZulu-Natal Land Crop Ecotope Classification and Productivity 

When compared to traditional land capability classification, evaluating the relationship 

between crop productivity and ecotope class is more complex, due to the number of classes 

generated during the land evaluation process. Table 3-9 and Table 3-10, summarise the yield 

performance of each ecotope class, over the five growing seasons, for maize and soybean. 

Importantly, crop ecotopes linked to fewer than 10 individual polygons or containing fewer than 

2 000 individual yield points, over the five growing seasons, were omitted due to insufficient 

data.  

 

One of the advantages of the ecotope classification is that it can link to yield data through the 

BRUP and its associated yield models (Smith, 1997; Camp, 1999). Predicted maize and 

soybean yields were extracted from the BRUP inventories, allowing additional performance 

metrics to be calculated, unique to the ecotope classification. These results are provided in 

the final column of Table 3-9 and 3-10. 

 

The polygon results for maize (Table 3-9) indicate that top two performing ecotopes across 

the five seasons are Ecotope D23 and B11. Ecotope D23 is a mottled and moderately drained 

profile (e.g. plinthosol), containing between 15 and 35% topsoil clay, with an effective depth 

of between 300 and 500 mm, predominately due to wetness limitations. Although it is often 

seen as a limiting factor in the land evaluation process the presence of soil wetness indicators, 

at sufficient depths can also benefit dry land crop production, particularly in the more arid part 

of South Africa or during times of drought (Camp et al., 1995). While, Ecotope B11 is a well-

drained profile also containing greater 35% topsoil clay, with an effective depth of greater than 

800 mm. This ecotope is considered a high potential soil, with very few physical limitations 

(Camp et al., 1998). In this environment, topsoils with higher clay contents (>35%), overlying 

well drained apedal subsoils are generally high producing due to their favourable water holding 

characteristics (Camp et al., 1995).  

 

Over the five-year period the average yield varied between Ecotope Classes (p=0.008) Well 

and moderately drained ecotopes (soil groups B and D) were the highest performers, with the 

top seven performing ecotopes emanating from these groups and all producing above average 

yields. These soils typically have an apedal subsoil horizon, underlying a weakly structured 
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topsoil with greater than 15% clay content. This combination of soil properties is considered 

optimal for maize production, as outlined in the maize production guidelines for South Africa 

(du Plessis, 2003). In terms of yield differentials across the various ecotopes, the most 

significant differences occur between Poorly Drained Soils (Group E) and Duplex Soils (Group 

J) and the well and moderately drained (Groups B and D). Poorly drained ecotopes (e.g. E23), 

and duplex soils (e.g. J22) consistently produced below average yields. In the case of Ecotope 

E23 this is most likely due to intermittent waterlogging, while for Ecotope J22 the subsoil is 

characterised by a marked enrichment of clay in the subsoil, limiting rooting depths (Fey, 

2010). 

 

Across all ecotopes the maize yield recorded was consistently higher, than the predicted yield 

benchmark provided in the BRUP inventories (Table 3-9). For higher potential ecotopes (B 

and D soil groups), this difference varied between 13 and 113%. Effectively, the modelled 

yield provided in the BRUP inventories, is significantly under estimating yields compared to 

what is currently being achieved in commercial environments. The crop yield models used in 

the BRUP were developed by Smith (1997) and have not been significantly updated to take 

into account recent genetic improvements and technological advancements, such as precision 

agriculture, which are currently being applied. Egli (2008) reports significant yield gains in 

recent times for of both maize and soybean, these gains need to be incorporated into local 

yield models. All ecotopes considered to be unsuitable for maize production by the BRUP, 

generally due to depth restrictions, all produced below average yields.  

 

Table 3-9 Average dryland maize yield performance per crop ecotope class polygons over five growing 
seasons (2016-2020), (>2000 yield points and >10 individual polygons). The same letters indicate 
statistically insignificant differences in yield (p>0.05). Dotted lines separate primary soil groups. 

Crop Ecotope 
Class# 

n 
Average Maize 
Yield (t.ha-1) 

Standard 
Deviation 

% Difference Between 
Class and 

Method Average Yields 

% Difference Between 
Class and BRU 

Benchmark Yield 

B11 20  10.37ab 2.25 6.92 31.29 

B21 79   9.72ab 2.26 0.18 34.97 

B22 36   9.83ab 2.33 1.33 51.22 

B23 13    9.19ab 2.91 -5.21 58.53 

D11 21 10.30ab 2.34 6.16 43.02 

D21 65    9.70ab 2.08 0.02 12.82 

D22 66     9.34b 2.33 -3.75 60.97 

D23 15  10.67a 2.60 10.03 113.40 

E22 12     8.95b 2.20 -7.74 108.12 

E23 63    8.69b 2.75 -10.45 0.00* 

J23 34    8.93b 2.42 -7.96 0.00* 

J24 12    7.87b 3.06 -18.91 0.00* 
# Ecotope Code consists of Soil Functional Group. Topsoil Clay Content Class. Effective Depth Class 
*  Denotes ecotopes which are deemed unsuitable for soybean production in the BRUP Inventories 
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The polygon soybean results indicate that five-year average yields are more evenly distributed 

across a wide range of crop ecotopes (Table 3-10). Consequently, there was no statistically 

significant difference between soybean yield and ecotope (p=0.164). This unpredictability in 

terms of performance is further highlighted, where the top three performing ecotopes, all come 

from different soil groupings.  

 

Although statistical significance could not be determined some important trends were 

observed. Deep, well drained soils (Group B) performed poorly while ecotopes traditionally 

considered limiting, from a cropping perspective, performed well. For example ecotope J24, 

which is characterised by a strongly structured, clay enriched subsoil horizon (planosols), 

underlying a less structured topsoil with shallow effective soil depth of between 200 and 300 

mm deep, produced above average yields. Pedocutanic and prismacutanic B horizons are 

typically classified in this ecotope grouping and whose associated soil structure grade is often 

considered limiting to root growth and water movement. However, the growing guidelines for 

soybean states that soybeans are generally better adapted to heavier soils and better able to 

utilise water at lower soil depths than most other crops, including maize (DAFF, 2010). 

Similarly, a study by Cox et al. (2003), investigating the relationship between soil properties 

and soybean yield, reported that higher clay contents resulted in higher yields, across three 

fields.  

 

Ecotope E24, a poorly drained soil, is the poorest performer in terms of soybean yield and this 

result is reflected in the Soybean growing guidelines for South Africa (DAFF, 2010). This 

guideline reports that maximum seed yield is possible where water in the root zone is kept 

above 50% plant-available, while waterlogged conditions, as one would expect for gleyed 

soils, will have a negative effect on the crop yield (DAFF, 2010). 

 

As with maize, comparing actual soybean yields to the modelled BRUP inventories indicates 

all arable ecotopes are producing well above BRUP benchmarks. Ultimately, the yield results 

indicate the crop models for both maize and soybean in the BRUP require revision to better 

reflect current production norms.  

 

The ecotope box and whisker plots, for maize and soybean production, for the 2016 and 2018 

seasons are provided in Figure 3-14 a-d. For maize production in a low rainfall year (Figure 

3-14 a), the median yield for all soil functional groups is below 9 t.ha-1. There are significant 

yield differences in both the 2016 (p=0.026) and 2018 (p=0.001). Yields, generally correspond 

to the long-term trends (Table 3-10), where well drained and mottled soils (Soil Groups B and 

D) are the highest performers. However, soils within these groups, with shallower effective 
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depths (300 – 500 mm), are associated with lower yields in this low rainfall year. In a drier 

year, such as 2016, deeper profiles allow roots access to larger water reserves, thereby 

alleviating water stress under dryland conditions (Shepherd, 2010). 

 

Table 3-10 Average dryland soybean yield performance per Crop Ecotope Class polygons over five 
growing seasons (2016-2020), (>2000 yield points, >10 polygons). The same letters indicate statistically 
insignificant differences in yield (p>0.05). Dotted lines separate primary soil groups. 

Crop Ecotope 
Class # 

n 
Average 
Soybean 

Yield (t.ha-1) 

Standard 
Deviation 

% Difference Between 
Class and 

Method Average Yields 

% Difference Between 
Class and BRU 

Benchmark Yield 

B11 13 2.58a 0.78 -4.18 3.10 

B21 54 2.67a 0.73 -0.74 16.09 

B22 35 2.43a 0.83 -9.56 21.64 

B23 14 2.92a 0.73 8.51 62.17 

D11 14 2.94a 0.50 9.14 17.44 

D21 27 2.77a 0.55 2.82 2.44 

D22 54 2.49a 0.85 -7.29 38.55 

D23 11 2.74a 0.83 1.85 71.23 

E23 55 2.99a 1.15 11.07 0* 

E24 10 2.35a 0.65 -12.82 0* 

J23 37 2.71a 0.71 0.78 0* 

# Ecotope Code consists of Soil Functional Group. Topsoil Clay Content Class. Effective Depth Class 
*  Denotes ecotopes which are deemed unsuitable for soybean production in the BRUP Inventories 

 

Both the Soil Groups D and E soil perform well in a drier year, where a fluctuating water table, 

found close to the surface, acts as reservoir for the plant roots. Duplex soils, Soil Group J, 

associated with a strongly-structured subsoil horizon, perform poorly in a dry year, as these 

clay soils restricted water abstraction from plant roots (Asgarzadeh et al., 2010). In a wetter 

season, (Figure 3-14 b), yield performance across ecotopes is not as definitive, with virtually 

all soil groups attaining a median yield of greater than 10 t.ha-1. Generally, functional Soil 

Groups B and D are still the top performers, however clay content and effective depth do not 

appear to influence yield significantly. However, waterlogging and associated yield loss in the 

gleyed ecotope EI4 was significant in a wet season when compared to higher yield ecotopes. 

 

In a dry year (Figure 3-14c), the non-parametric Kruskal-Wallace Test indicates a significant 

(p=0.005) difference in soybean yield across the Ecotope Classes. Crop Ecotope I24 is the 

top performer, this Ecotope is a poorly drained soil with signs of wetness, in most cases a soft 

plinthic B subsoil, very close to the surface. The effective depth is estimated to be between 

200 and 300 mm deep. The yield performance is unexpectedly high, as even in a dry year 

surface ponding and a water logging is a distinct possibility. Compared to maize, duplex and 

strongly structured soils (Group J) performed above average production levels for soybean for 

both the dry 2016 and wet 2018 seasons.  
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In wet 2018 season (Figure 3-14d) Soil Group B, well drained profiles, are the poorest 

performers, particularly the shallow variants (B22 and B23). The employed ad hoc tests for 

multiple comparisons could find a significant difference between soybean yield and Ecotope 

Class. However, the results do indicate that in a wet year the expected trends are almost 

perfectly inverted with well drained and moderately drained soils groups being the poorest 

performers, and the more physically limiting E and J functional groups performing significantly 

above expectations. The seasonal results for soybean do not follow expected yield trends as 

outlined in the BRUP inventories. In terms of general trends, first one would expect yields to 

be highest within the B and D soil groups and taper off within the more physically limiting the 

E, H, and J soil groups. Second, within a particular soil group, yields should respond to 

changes in topsoil clay and effective depths. Finally, different soil groups should respond to 

changes in rainfall, for example mottled and poorly drained soils should fare better in lower 

rainfall seasons (Figure 3-14 a and c), while a high rainfall year should correspond to water 

logging and potential yield loss (Figure 3-14 b and d).  

  

Figure 3-14 Box and Whisker Plots per Ecotope Class for (a) 2016 Dryland Maize Yield (b) 2018 Dryland 
Maize Yield (c) 2016 Dryland Soybean Yield (d) 2018 Dryland Soybean Yield. The same letters indicate 
statistically insignificant differences in yield (p>0.05). (+) Denotes classes not included in the ANOVA 
analysis due to lack of observed samples. 
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➢ Visual Soil Assessment and Productivity 

The results of the Visual Soil Assessments, undertaken in the study area, provide an indication 

of both soil quality and potential plant performance (Shepherd, 2010). The field guides for 

maize (Shepherd, 2010) and annual field crops (Shepherd et al., 2008), state that higher 

scoring soils will generally be in better condition and soils with “Good” VSA scores will, by in 

large, give the best production performance. 

 

The average dryland yield performance of maize, per VSA class, is provided in Table 3-11. 

Over 64% of the actively cultivated polygons, across the five growing seasons, fall within the 

“Good” VSA class, the highest class possible. This indicates that the VSA scoring 

methodology for maize is able to determine that the majority of the cultivated soils on this farm 

are of high potential, matching the farms actual high productivity benchmark. These soils also 

produced the highest yields of the three VSA classes and performed slightly above the farm 

average (3.4%). The results of the one-way ANOVA indicate a statistically significant result 

(p=0.01), with the Tukey HSD post hoc test showing that the “Good” VSA class yielded 

significantly more maize when compared to the “Moderate” (p=0.040) and “Poor” (p=0.004) 

classes. This result shows that the VSA indicators for maize are linked to actual production 

performance when using large-scale polygons.  

 

Table 3-11 Average dryland maize yield performance per Visual Soil Assessment Class polygons over 
five growing seasons (2016-2020). The same letters indicate statistically insignificant differences in 
yield (p>0.05). 

VSA Class n 
Average Maize 

Yield (t.ha-1) 
Standard 
Deviation 

% Difference Between 
Class and 

Method Average Yields 

Good 308 9.61a 2.47 3.40 

Moderate 84 8.85b 2.66 -4.82 

Poor 87 8.61b 2.69 -7.37 
 

 

The soybean yield performance, per VSA class, over the five seasons is provided in Table 

3-12. A one-way ANOVA analysis revealed no significant difference in soybean yield across 

the three VSA classes (p=0.142). The “Moderate” and “Poor” soil quality classes, for soybean, 

are the highest performers, with both classes scoring above average yields, across the five 

seasons. However, similarly to RSA LC, KZN LC and Ecotope Classifications, there is little 

distinction in soybean yield performance across the various classification methodologies, with 

only 0.26 t.ha-1 separating the three VSA classes. The results also indicate that, compared to 

maize (36%), soybean is generally planted on more marginal soils in terms measurable soil 

quality for annual crops, with nearly half of the planted soybean falling within a polygon 

classified as either “Moderate” and “Poor” in terms of soil quality.  
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Table 3-12 Average dryland soybean yield performance per Visual Soil Assessment Class polygons 
over five growing seasons (2016-2020). The same letters indicate statistically insignificant differences 
in yield (p>0.05). 

VSA Class n 
Average Soybean 

Yield (t.ha-1) 
Standard 
Deviation 

% Difference Between 
Class and 

Method Average Yields 

Good 184 2.76a 0.78 -2.09 

Moderate 115 2.83a 0.81 0.69 

Poor 41 3.02a 0.82 7.45 

 

Box and whisker plots (Figure 3-15 a-d) summarise both maize and soybean yield 

performance for the 2016 and 2018 seasons, across the three VSA Classes. The results are 

consistent with the other land evaluation methodologies, where the maize yields in the dry 

2016 season (Figure 3-13 a), best illustrate the anticipated trends, with yields decreasing with 

VSA Class. However, in this case the VSA classification also indicates that for the 2018 

season there is also significant difference in maize yields with the yields produced within the 

“Good” Class being significantly higher than the yields in “Poor” soil quality class. As with 

previous land evaluation methodologies the higher rainfall experienced in the season 2018 

may mask various soil physical limitations. Consequently, the negative impact of 

determinantal physical characteristics, such as those linked to textural or structural problems 

will be lessened, ultimately reducing yield variation across the VSA classes. 

 

The expected yield trends are not present in either of the 2016 or 2018 soybean harvests 

(Figure 3-15 c and d). The seasonal soybean results indicate an inverse relationship between 

yield and visual soil quality indicators with yields increasing significantly between the “Good” 

and “Poor” VSA Classes for both the 2016 (p=0.021) and 2018 (p=0.001) seasons. The 

comparative seasonal results and yield trends, between maize and soybean, suggest the 

scoring system, designed specifically for Maize (Shepherd, 2010) is more capable than the 

more generic annual field cropping scoring system (Shepherd et al., 2008), as used for 

soybean. 

 

Ideally, from a farm management perspective, soils which fall within the “Poor” or “Moderate” 

VSA classes would be identified and suitable interventions prescribed. These interventions 

would hopefully improve soil quality attributes and ultimately improve yield performance. The 

consequence of the “Poor” class achieving the highest soybean yield suggests that spending 

money on soil quality improvements does not always equate to yield improvements, 

essentially, sending a message to farmers that “Poor” quality soils are able to perform as well 

or better as “Good” quality ones, increasing the hesitancy of applying expensive remediations 

to improve or sustain soil quality. Improvements could include subsoil drainage, incorporation 
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of additional organic matter and maintenance of good cover. This may have detrimental effects 

on long-term sustainability and ultimately increase land degradation. 

 

 

Figure 3-15 Box and whisker plots per Visual Soil Assessment Class for (a) 2016 (low rainfall) dryland 
maize yield (b) 2018 (high rainfall) dryland maize yield (c) 2016 dryland soybean yield (d) 2018 dryland 
soybean yield. The same letters indicate statistically insignificant differences in yield (p>0.05). 

 

 

➢ DAFF DIGITAL LAND CAPABILITY AND PRODUCTIVITY 

Although consisting of many more contributing attributes, the DAFF digital land capability 

classification, is based on the same premise as the classical eight-class systems, but whose 

rating is expanded to fifteen classes and inverted. This inversion translates to a classification 

where the higher the capability class the more production potential. Table 3-13 provides a 

summary of the average maize yield for all relevant DAFF LC across the five growing seasons.  

 

A total of seven DAFF LC classes occurs in the study area, however nearly 70% of actively 

cultivated areas fall within classes 9, 10 and 11 Moderate to High and High. The highest 

yielding classes are 5 (Low) and 6 (Low to Moderate). However, the low number of contributing 

polygons, in these specific land capability classes, may be influencing these results and not 
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adequately reflecting production potential. A one-way ANOVA indicates there is no significant 

difference between maize yields and DAFF LC classification across all classes. Overall, there 

is no clear relationship or trends between DAFF LC Class and maize production across the 

five growing seasons, with less than a 10% maize yield differential, across all observed 

classes.  

 

Table 3-13 Average dryland maize yield performance per Department of Agriculture, Forestry and 
Fisheries Land Capability Class polygons over five growing seasons (2016-2020). The same letters 
indicate statistically insignificant differences in yield (p>0.05). 

DAFF Land 
Capability Class 

n 
Average Maize 
Yield (t.ha-1) 

Standard 
Deviation 

% Difference Between 
Class Yield and Farm 

Average Yield 

5 Low 12 9.60a 2.11 7.37 

6 Low - Moderate 16 9.78a 2.35 9.37 

7 Low - Moderate 37 8.64a 2.71 -3.44 

8 Moderate 81 8.47a 2.74 -5.34 

9 Moderate - High 160 8.72a 2.72 -2.53 

10 Moderate - High 52 8.73a 2.74 -2.46 

11 High 129 9.54a 2.61  6.62 

 

The five-year results for soybean (Table 3-14), are akin to the maize results, whereby the 

majority of contributing polygons (>67%) come from DAFF LC Classes 9, 10 and 11. Only 

0.34 t.ha-1
 separates the highest and lowest yielding class and these low yield differentials and 

makes performance analysis difficult. This is confirmed by a one-way ANOVA which found no 

significant yield difference (p=0.804) between the seven DAFF LC Classes.  

 

Table 3-14 Average dryland soybean yield performance per Department of Agriculture, Forestry and 
Fisheries Land Capability Class polygons over five growing seasons (2016-2020). The same letters 
indicate statistically insignificant differences in yield (p>0.05). 

DAFF Land 
Capability Class 

n 
Average Maize 

Soybean (t.ha-1) 
Standard 
Deviation 

% Difference Between 
Class Yield and Farm 

Average Yield 

5 Low 9 2.67a 0.64 -0.41 

6 Low - Moderate 14 2.65a 0.62 -0.99 

7 Low - Moderate 28 2.43a 0.60 -9.33 

8 Moderate 58 2.63a 0.72 -1.84 

9 Moderate - High 120 2.77a 0.92 3.21 

10 Moderate - High 40 2.66a 0.73 -0.73 

11 High 63 2.69a 0.77 0.47 

Box and whisker plots (Figure 3-16 a-d) summarise both maize and soybean yield 

performance for the 2016 and 2018 seasons, across the seven DAFF LC class. Similarly, to 

the five year analysis no definitive trends can be observed between crop production and DAFF 

LC Classes in either a dry (2016) or wet year (2016). For maize the yield difference across all 
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DAFF LC Classes was significant, for both 2016 (p=0.019) and 2018 (p=0.49), but the post 

hoc tests could only provide a significant yield difference between two arbitrary classes (Figure 

3-16 i-ii). 

 

For soybean no significant difference between yield and the DAFF LC Classes could 

established for either 2016 or 2018 (Figure 3-16 iii-iv). As similarly stated in the arability 

exercise (cf Chapter 3.3.2) the combination of a course digital elevation model resolution and 

a low density of regional soil observation points, which are used to derive these DAFF LC 

Classes, appear not to be sufficiently accurate to determine maize or soybean production 

levels at a farm scale. 

 

 

Figure 3-16 Box and Whisker Plots per Department of Agriculture, Forestry and Fisheries Land 
Capability Class for (a) 2016 (low rainfall) Dryland Maize Yield (b) 2018 (high rainfall) Dryland Maize 
Yield (c) 2016 Dryland Soybean Yield (d) 2018 Dryland Soybean Yield. The same letters indicate 
statistically insignificant differences in yield (p>0.05). (+) Denotes classes not included in the ANOVA 
analysis due to lack of observed samples. 
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3.3.3.5 Assessment Deficiencies  

 

One of the most highlighted land evaluation deficiencies, identified by the literature review (cf 

Chapter 2.7), is the absence of local verification studies. This polygon-based analysis followed 

the recommended methodology for land evaluation in South Africa (DAFF, 2018), wherein soil 

observation densities and soil survey standards were adhered to. However, during the course 

of the verification exercise three factors were considered limiting.  

 

First, is the lack of practical validation metrics, which can be employed to effectively evaluate 

the performance of the various methodologies. Ultimately in this analysis, land use and crop 

productivity, were selected as the primary validation metrics. Both, however, are significantly 

influenced by anthropogenic factors, which detract from the overall accuracy of the analysis.  

 

Second, not all of the selected land assessment methodologies were developed to specifically 

determine arability or crop productivity performance. Consequently, some of the model 

deficiencies, identified through these validation processes should be expected.  

 

Third, land evaluation polygons are generally delineated from soil maps, which in turn are 

created by upscaling soil point observations. In this analysis, yield points were linked to 

resulting land evaluation polygons, however yield performance and variation can only be 

explained at or near the observation point. As one moves away from each observation point, 

differing yield drivers cannot reliability be determined or analysed. This deficiency is addressed 

in Chapter 4. 

 

3.4 CONCLUSIONS 

 

The aim of this Chapter was to determine whether any of the five unique land evaluation 

methodologies selected, could adequality reflect actual land utilisation and production levels 

at polygon level.   

 

The arability analysis indicates that the KZN LC method was consistently the best performer. 

This methods performance, in terms of arability prediction, is expected as this method was 

designed for this exact purpose, wherein climate, soil and terrain variables are combined to 

classify land into broad capability class, within the confines of the KwaZulu-Natal Province. 

Although KZN LC slightly outperforms RSA LC, ecotope and both VSA classifications all four 

methods performed well and could be confidently used in future arability assessments in this 

production environment. The arability results for the DAFF LC digital product indicates a 
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severe overestimation of arability and based on the various analyses and performance 

indicators, this method should not be applied in future farm level arability assessments. 

 

The analysis comparing land assessment polygons to maize and soybean yields, produced 

mixed results but important principles emerged. 1) Seasonality does influence the relationship 

between land classification and yield, with physical factors becoming more apparent in drier 

years. 2) A single land evaluation class, often dominates the sample distribution, making 

deductions difficult. 3) The analysis highlights the danger of utilising non-crop specific 

methodologies, as results and seasonal trends differ significantly between maize and 

soybean. 4) Maize yields had stronger relationship to land evaluation polygons, compared to 

that of soybean where significant yield differences were rarely established 5) The highest 

maize yields generally corresponded to the best land evaluation class or class with highest 

cropping potential. 6) Although, the ecotope methods produced significantly more classes, 

greater detail could be extracted from the resulting classification. 6) Modelled yields based on 

ecotope classification and BRUP inventories consistently underestimate yields and these 

models should be updated to reflect contemporary varieties and management. 7) Long term 

yield studies tend to average out and mask important trends, leading to small yield differentials 

between land evaluation classes. 8) All land evaluation methodologies and associated 

verification metrics have limitations. Both should be established and quantified so that the 

most suitable method(s) are applied, under the correct conditions and ultimately provide the 

most accurate and reliable results to decision makers. 9) Finally, land evaluation polygons, 

linked to precision yields can provide a general overview of method performance. However, 

yield performance and variation, across land evaluation methods and classes, is only explicit 

on or near a soil observation point where measurements are taken. Thus, a point-based 

verification of land assessment methodologies is required to better understand the drivers 

affecting crop performance. 
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4. VERIFICATION OF LAND ASSESSMENT RESULTS AND 

INDIVIDUAL ATTRIBUTES THROUGH BUFFERED POINT YIELD 

ANALYSIS  

 

 

4.1 Introduction 

 

A fundamental aim of many land evaluation methodologies is to provide an indication of 

agricultural potential, specifically in terms of crop productivity (Mueller et al., 2010). 

Methodologies come in many forms; inter alia numeric rating schemes, such as Soil Potential 

Ratings (USDA, 2011) simple categorical data, as provided by many land capability systems 

as well as crop specific suitability classifications linked to crop yield models, such as the KZN 

Ecotope Classification (Camp et al., 1998; Smith, 2006).  

 

Yield, usually expressed by the amount of crop harvested per unit area, is recognised as the 

most commonly used indicator to assess agricultural productivity (Diskin, 1997; Wineman et 

al., 2019). Merits of crop yield as an indicator include its ease of calculation, widespread 

applicability and intuitive interpretation (Reynolds et al., 2015). Accordingly, crop yield is 

recurrently used to benchmark the performance of various production-based models viz. 

agricultural (e.g. Pakawanich et al., 2020), food security (e.g. Nicholson et al., 2021), 

agronomic (Rodrigues et al., 2022) and land assessment models (e.g. USDA, 2011). Still, the 

use of crop yield as benchmark indicator is not without its complications with a review by 

Klompenburg et al. (2020) finding its use and prediction as one of the most challenging 

problems within the field of Precision Agriculture (PA). Nevertheless, it is widely recognised 

that the “crop is the best sensor of its environment” (e.g. Legg and Stafford, 1998). 

Consequently, crop yield remains an important indicator whose accurate quantification 

represents the complex relationship between soil, climate, terrain and management.  

 

Crop yield measurement, through the use of precision yield monitors, provides an accurate 

measure of production performance in an agricultural environment (Lyle et al., 2014). The 

output from a yield monitor is a high-density point data file with thousands of observations per 

hectare (Córdoba and Balzarini, 2021). Comparing this resolution to that of a typical land 

assessment survey a clear disjunction becomes apparent. Land assessment variables, 

particularly those related to soil properties are collected at a point scale through the use of 

representative soil pits and augers, at a typical scale of one observation per ten hectares 

(DAFF, 2018). Therefore, it is unrealistic to assume the scale and associated results of a 

Stellenbosch University https://scholar.sun.ac.za



 

82 
 

typical land evaluation survey can account for all inter- and intra-field yield variability. Nor is it 

reasonable for a land evaluator to conduct a precision level soil survey when undertaking a 

land release application, terms of Act 70 if 1970. However, the use of technologies associated 

with PA, such as high-resolution yield should be applied to validate, refine and ultimately 

improve land evaluation methodologies.  

 

In Chapter 3, land evaluation procedures were verified by linking thousands of individual yield 

points to land evaluation polygons, across five growing seasons. These polygons were 

delineated primarily from soil observation points and major terrain breaks. The observed soil 

points were interpolated (upscaled), either through conventional pedological mapping or 

spatial interpolation technique within a GIS interface, to ultimately create polygon layers of 

various land assessment methods. Regardless of what interpolation technique is applied, all 

upscaling processes, are associated with spatial predication and uncertainty (Phillips & Marks, 

1996). The concept of spatial autocorrelation is fundamental in spatial analysis (Getis, 2008) 

and is based on the premise that geographic elements, which are located closer together are 

generally more alike than those located farther apart (Sadler et al., 1998). Consequently, yield 

points located closer to the soil observation would be more correlated than located further 

away. One of the conclusions, emanating from the analysis undertaken in the previous chapter 

is that the use of large polygons, delineated primarily from soil and terrain properties, 

contained significant spatial variability. This variability masked some important trends and 

drivers, within each resultant land evaluation polygon layer. This conclusion is supported by 

detailed research undertaken by Hattingh (2018), which found that South Africa soils exhibit 

significant spatial variability at both the macro- and micro-scale levels because of the 

interaction of soil and topographical properties. To reduce spatial variability and more 

accurately verify land assessment methods, their individual components and isolate land 

evaluation-based productivity drivers, a point-based approach should be applied. The use of 

a point-based approach will also eliminate errors related to interpolation, whereby only 

measured locations are utilised to drive the verification process, ultimately increasing 

verification accuracy. Consequently, the aims of the Chapter are to: 

 

1. Determine a spatially relevant yield buffer for maize and soybean harvests, in order to 

calculate a representative yield, for each measured soil observation point; 

2. Normalise the annual yield of maize and soybean harvests to improve comparability 

analyses across multiple growing seasons; 

3. Assess the performance of pertinent land assessment methodologies using 

representative maize and soybean yield buffers; and 
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4. Analyse the performance of individual land assessment factors to inform the 

development of new productivity-based approaches for land evaluation. 

 

4.2 Materials and Methods 

 

4.2.1 Study area, soil survey, land assessment classification and yield data 

 

The same study site, soil survey points, land assessment classification methods and yield 

data, as provided in Chapter 3, were used as the basis for this point-based verification study.  

 

4.2.2 Buffer determination and yield extraction  

 

To determine a spatially representative yield, a circular buffer with a radius of 30 m, was initially 

created around each soil observation point, within ArcGIS 10.5 (ESRI, 2016). In long-term 

experiments investigating spatial yield relationships, Sadler et al. (1998), concluded that 

significant differences in yield measurements may occur in distances as short as 10 m. 

Consequently, this 30 m buffer was considered large enough to incorporate the optimum buffer 

size, which was expected to fall well within this initial buffer. Processed precision yield points 

(cf Chapter 3.2.5), across the five growing seasons (2016-2020), for both dryland maize and 

soybean, were subsequently extracted using this 30 m buffer. The co-ordinates of each yield 

point, within the buffer, was determined, as well as the distance between each extracted yield 

point and the soil observation point, which lies at centre of each individual buffer. The yield 

semivariance, an autocorrelation statistic, was calculated for each yield point using the R 

Statistical Package (R Core Team, 2013) and defined as (e.g. Robertson, 2008): 

 

 𝛾(ℎ) = [
1

2𝑁(ℎ)
] Σ [𝑧𝑖 − 𝑧𝑖+ℎ] 2            (Eq. 4-1) 

    

Where:  

𝛾(ℎ)  =  semivariance for interval distance class h;  

𝑧𝑖 = measured sample value at point i;  

𝑧𝑖+  =  measured sample value at point i+h; and  

𝑁(ℎ)  =  total number of sample couples for the lag interval h.  

 

The median value of individual yield points was used to summarise and provide a single, 

representative yield value for each soil observation. The median value was selected as it 

provided an improved relationship between yield semivariance and distance across the 30 m 
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buffer, compared to that of the mean. Individual semivariograms, comparing median crop yield 

semivariance with distance, were developed for each soil observation point. These were 

subsequently aggregated to develop an average semivariogram for each of the five seasons. 

Importantly the purpose of the semivariance analysis is not to model at unsampled locations 

but rather present, using experimental semivariograms, the spatial relationship between crop 

yield and the soil observation point. Consequently, spatial interpolation via kriging and 

associated model fitting did not form part of the analysis. 

 

A secondary analysis, for validation purposes, calculated the mean and median yields and 

associated standard deviations, at varying distance intervals within the 30 m buffer, for both 

maize and soybean across the five seasons.  

 

After determining the representative yield buffer, through the semivariogram analysis the yield 

points falling within this smaller buffer were extracted. However, before being used as an input 

in further analyses, each individual yield buffer was manually examined and extracted buffers 

exhibiting problems, such as extreme yield variability, missing harvester passes or containing 

edge effects, were removed.  

 

4.2.3 Yield normalisation 

 

To improve comparability across growing seasons and reduce yield variation caused by 

differing varieties, planting populations densities and abnormal factors, the representative 

yield calculated for each observation point was normalised. Normalisation is a commonly used 

data pre-processing technique which minimises bias, removes outliers and improves the 

classification performance of predictive models (Singh & Singh, 2020, 2022). Dryland maize 

and soybean yield data were normalised to obtain Standardised Normal Values (SNV), on an 

annual basis, using the following formula, as adapted from Ingeli et al. (2015): 

 

𝑆𝑁𝑉 =
(𝜇1/2 − �̅�)

𝑆𝐷
 

                                         (Eq. 4-2) 

Where: 

𝑆𝑁𝑉  =  standardised normal values 

𝜇
1/2

 =  median yield within the soil buffer 

�̅� = arithmetic mean of the obtained annual yield  

𝑆𝐷 = standard deviation of the obtained annual yield 
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SNV, which can also be expressed as a percentage, results in an intuitive yield normalisation 

where below average yields are given negative values and above average yields positive 

values.  

 

4.2.4 Assigning land assessment points a representative yield  

 

Rather than upscaling point land classification data into polygons (cf Chapter 3.3.3) this 

assessment investigates land assessment classification at a point scale. Each relevant soil 

observation point was classified using each of the five land assessment methods and assigned 

a representative yield, across the five growing seasons, using a predetermined representative 

yield buffer.   

 

4.2.5 Individual land evaluation attributes 

 

Land evaluation methodologies use a combination of soil, terrain and climatic attributes to 

assess land performance, in terms of its requirements and potential use (FAO, 1976). 

Ultimately, individual factors are combined to develop an overall classification. A one-way 

ANOVA or where applicable, the non-parametric Kruskal-Wallis test, were employed to 

determine if any individual land assessment attributes were associated with any significant 

yield differences across its specified classes. For example the analysis investigated whether 

maize yield significantly varied across effective rooting depth classes. Based on this analysis, 

pertinent individual land evaluation factors were compared to maize and soybean yields to 

highlight important relationships and trends. 

  

4.2.6 Statistical software and methods 

The same statistical software and methods (cf Chapter 3.2.6.) used to determine statistical 

significance between crop yield and various land evaluation classes, were used in for this 

point-based verification study.  
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4.3 Results and Discussion 

 

4.3.1 Buffer size optimisation and representative yield extraction 

 

Across the five growing seasons each initial 30 m buffer, surrounding an individual soil 

observation point, contained an average of 224 yield points for maize and 243 yield points for 

soybean. Examples of typical yield variation patterns, within the initial 30 m buffer, are 

provided in Figure 4-1 (a-c).  

 

Figure 4-1 (a) illustrates an ideal yield variation pattern where the observed yield is relatively 

constant throughout the 30 m buffer and there is no missing data nor abnormalities. In this 

example any distance, within the buffer could be selected to aggregate yield points and 

calculate a representative yield.  

 

Figure 4-1 Examples of yield variation patterns within a 30 m buffer created around a soil observation 
point – (a) an example of an ideal yield variation pattern (b) an example of two distinct areas with 
differing yields (c) an example of significant yield variability and a strip of no yield observations due to 
a contour bank 

¯

(a) (b) 

(c) 
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Figure 4-1 (b) is example which illustrates two distinct yield areas, within the 30 m buffer, the 

eastern and southern portions record yields of between 5 and 7.5 t.ha-1, while the western side 

records consistently higher yields, of above 10 t.ha-1. The soil observation point is located in 

the lower yielding area and thus all soil and land evaluation properties will correspond to this 

yield level. The increased yield in the western half cannot be explained by this soil observation 

point, thus selecting a buffer over 10 m in this example will decrease the correlation between 

land evaluation properties and yield.  

 

Figure 4-1 (c) illustrates an inconsistent yield pattern, where yields vary considerably across 

the buffer and yields on the outer edge of the buffer cannot be described by the soil 

observation point. The initial 30 m buffer also contains a contour bank, which is not planted to 

crops and is not representative of the soil observation point. If this contour bank was included 

in the final analysis it would again decrease the correlation between land evaluation properties 

and yield.  

 

Aggregated experimental semivariograms, comparing observed median crop yield 

semivariance with distance from a soil observation point, are provided in Figure 4-2. Typically 

a semivariogram is used to characterise the degree of spatial correlation present in data 

(Boroumand et al., 2018).  In this instance a semivariogram was also applied to determine an 

optimum yield buffer size, in order to extract a representative yield value for each soil 

observation point.  

 

Compared to soybean the average semivariance for maize was considerably higher, due to 

the higher crop yields achieved as well as the greater variation in maize yield values. However, 

both crops show similar trends with observed yields varying across the 30 m buffer, with the 

average semivariance increasing rapidly within the first 4 to 6 m of the soil observation point 

and stabilising thereafter. Over the five growing seasons, the average semivariance 

consistently levels out at approximately 8 m from the soil observation point for both maize and 

soybean. This distance, known as the range of the semivariogram, is the maximum distance 

of spatial autocorrelation (Xiaohu et al., 2016). Essentially this range distance incorporates 

the maximum yield variability and thus an 8 m buffer, around each soil observation point was 

used to extract a representative crop yield for both maize and soybean. 
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Figure 4-2 Experimental semivariograms of observed median dryland maize and soybean yields across 
each of the five growing seasons 
 

 

An example of this 8 m buffer is shown in Figure 4-3. On average, across the five growing 

seasons, this 8 m buffer includes a total of 17 individual yield points for maize and 18 for 

soybean. This 8 m buffer was confirmed using an additional analysis, where average median 

yields and associated standard deviations were calculated at varying distance intervals within 

the 30 m buffer, for both maize and soybean across the five seasons. The results of this 

analysis are provided in Appendix A and indicate that median crop yields stabilise at 8 m from 

a soil observation point while standard deviations consistently increase with distance.  
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Figure 4-3 An example of an 8 m buffer around a soil observation point with individual yield points 

 

Median maize and soybean yields, around each soil observation point, were extracted from 

the 8 m buffer and compared to annual farm yields (Figure 4-4). Crop yields extracted from 

the 8 m buffer are highly correlated to the farm average, calculated from all observed yield 

points for both maize (R2 =0.9986) and soybean (R2 =0.9794). This is an indication that the 

sampling density, soil observation placement and yield extracted from the 8 m buffer are 

representative of the yield obtained across the study area. Having a representative sample 

allows one to conduct secondary analyses and make conclusions that are representative for 

the population from which the sample is taken (D’Exelle, 2014). 

 

Figure 4-4 Farm and buffered point average yields for maize and soybean (2016-2021) 
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4.3.2 Yield normalisation 

 

The results of the yield normalisation are provided in Figure 4-5 (a-d) where positive SNV 

represent an above average yield, while negative SNV represent a below average yield. The 

difference between SNV and zero indicates the magnitude deviation from the average yield. 

Each line in Figure 4-5 represents a soil observation point linked to median yield extracted 

using the 8 m buffer.  

 

The influence of lower rainfall on crop yields is highlighted in Figure 4-5 (a and c) where SNV 

for both maize and soybean are generally below zero in 2016 and 2019. Both timelines were 

developed by combining all maize and soybean yields, within the 8 m buffer, across the five 

years and then normalising the data using the five year average yields and standard 

deviations. Although yield variation across multiple seasons is clearly observed this approach 

to yield normalisation has its limitations, where in drier seasons (2016 and 2019) virtually all 

soils produced below average yields, when compared to the five-year average.  

 

Essentially soils which are traditionally considered to have a high potential would still be linked 

to negative SNV, a below average yield when compared to the entire five-year period. This 

limitation is overcome by normalising each year individually; using its annual mean and 

standard deviation, and then combining each year to create the five-year timeline (Figure 4-5 

b and d). Annual normalisation not only provides equal importance to each growing season 

but also allows soils, which perform well even in low yielding years to be recognised as such. 

Further, annual normalisation allows for consistently above or below average performers to 

highlighted, ultimately providing a level playing field for soil and land assessment attribute 

comparisons across muliple growing seasons. The equal contribution of features within a 

dataset is important and ultimately improves statsitical processes (Singh & Singh, 2020). 

Stellenbosch University https://scholar.sun.ac.za



 

91 
 

 

 

 

Figure 4-5 SNV of the median crop yield value extracted from all 8 m soil observation buffers between 
2016 and 2020 for - (a) combined maize yields normalised using five-year averages (b) combined 
annual normalised maize yields (c) combined soybean yields normalised using five-year averages (d) 
combined annual normalised maize yields 

 

 

 a) 

 b) 

 c) 

 d) 
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4.3.3 Land assessment classification and buffered point yield 

 

Rather than repeat the results and discussion presented in Chapter 3.3.3.4 which compares 

to productivity to the five selected land assessment methods, this section focuses on the 

changes caused by buffered point yield extraction and the yield normalisation. For ease of 

reference all the Tables presented in this section include the polygon average yields and 

significance lettering as determined in Chapter 3.3.3.4.  

 

4.3.3.1 South African Land Capability Classification  

 
The average dryland yield performance of maize per RSA LC class is provided in Table 4-1. 

Overall, maize yields decrease with land capability class, which indicates that RSA LC 

classification is related to maize production. Of the 418-point observations for maize, 83% of 

these are located on land classified as RSA LC Class III, with this class also producing above 

average normalised values. Observation points classed Class IV produced below average 

yields in terms of SNV with an average of -27%, while Class V, deemed non-arable, achieved 

an average SNV of -97% achieved across the five years. 

 

A one-way ANOVA (α = 0.05) found that there a statistically significant difference in median 

and normalised maize yield between RSA LC Classes III and IV (p=0.035). Although no 

statistically significant difference between arable (III and IV) and non-arable (V) classes could 

be established, 80% of the observation points located in this capability class contained below 

average SNV for maize yields. The low number of observed sample points (n=5) within RSA 

LC Class IV may be the cause for the non-significant result. The low sample count reduces 

the statistical power of the ANOVA, which may reduce the detection of realistic differences 

(Larson, 2008). 

 

The application of buffered point yield has improved the yield differentials across capability 

classes, when compared land capability polygons (Chapter 3.3.3.4), increasing from 1.37    

t.ha-1 for polygons to 2.31 t.ha-1 when using a buffered soil points. While the low land capability 

ratings remain the primary concern, the results indicate that the RSA LC classification can 

reasonably distinguish between maize production levels. 

 

Similarly, to maize, 78% of all soybean observations were located on land classified as RSA 

LC Class III (Table 4-2). However, unlike maize yields, soybean yields do not predictably 

decrease with land capability class. A one-way ANOVA indicates there no significant 

difference in soybean yield across the RSA LC classes for either average median (p = 0.727) 
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or SNV (%) soybean yields (p = 0.095). The results reiterate the finding, that even though RSA 

LC is not considered crop specific, RSA LC assessment factors and class breaks may be 

better suited to maize production compared to that of soybean.  

 
Table 4-1 Average median maize yield, standard deviations and average SNV per South African Land 
Capability Class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column. 

RSA Land 
Capability Class 

Buffered Point  
n 

Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

III 345 10.04a 6.67 a 9.53a 

IV 68 9.24b -26.74 b  9.23ab 

V 5 7.73ab -96.52 ab  8.16bc 

 

 
Table 4-2 Average median soybean yield, standard deviations and average SNV per South African 
Land Capability Class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column. 

RSA Land 
Capability Class 

Buffered Point  
n 

Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

III 186 2.79a 6.12 a 2.70a 

IV 52 2.83a -24.48 a 2.81a 

V 2 3.23 a 67.21 a  2.78a 

 

 

4.3.3.2 KwaZulu-Natal Land Capability Classification  

 

The average dryland yield performance of maize per KZN LC class is provided in Table 4-3. 

Both average median and SNV for maize indicate a decrease in yields with increasing KZN 

LC class, with Class II consistently producing above average yields, across the five growing 

seasons. Comparing the average point and polygon yield results, shows the yield differentials 

across the four classes are larger in yields extracted from the buffered points. This suggests 

the polygons are providing a more generalised average, which is expected due the differences 

in scale. However, the significance between the KZN LC classes is the same between average 

buffered point yield, average SNV and average polygon yield, where the average value was 

significantly different (p=0.016) between KZN LC Class II and IV only. Land capability class V 

land was excluded from the ANOVA and subsequent post hoc tests as it only included single 

sample.  

 

The results comparing KZN LC classes to soybean yield is provided in Table 4-4. The ANOVA 

analyses reveal no significant difference in soybean yield across the KZN LC classes for either 

average median (p=0.564) or SNV (%) (p=0.270). Although no significant differences could 

be identified in KZN LC Classes the average SNV (%) does show that normalised soybean 
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yields do decrease consistency with capability class. Class II land was the highest performing 

in terms of SNV, while land classified as non-arable (Class V) obtained a SNV for soybean 

yield of -92.18 %. This is an example where normalised yields can improve our understanding 

of crop performance where average yield cannot.  

 

Table 4-3 Average median maize yield, standard deviations and average SNV per KZN Land Capability 
Class over five growing seasons (2016-2020). The same letters indicate statistically insignificant 
differences (p>0.05) per column. (+) Indicates the class was not include in ANOVA analysis due to lack 
of observed samples 

KZN Land 
Capability Class 

Buffered Point  
n 

Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

II 291 10.12a 7.87a 9.53a 

III 44 9.51ab -5.72ab  9.16ab 

IV 82 9.27b -22.76b  8.60bc 

V 1 7.44+ -172.62+ 7.70bc 

 

Table 4-4 Average median soybean yield, standard deviations and average SNV per KZN Land 
Capability Class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column. (+) Indicates the class was not include in ANOVA analysis 
due to lack of observed samples 

KZN Land 
Capability Class 

Buffered Point  
n 

Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

II 147 2.76 a 7.87 a 2.64a 

III 34 2.88 a -1.96 a 2.65a 

IV 58 2.88 a -17.21 a 2.76a 

V 1 2.69+ -92.18+ 2.70a 

 

 

4.3.3.3 KwaZulu-Natal Land Ecotope Classification  

 

As alluded to in Chapter 3.3.3.4, evaluating the relationship between crop productivity and 

ecotope class is more complex, due to the high number of classes generated during the land 

evaluation process. Consequently, only crop ecotopes linked to 10 or more soil observations 

were used to compare maize and soybean yield variation, over the five growing seasons. 

However, the yield results for all classified ecotopes are presented in Appendix B. 

 

For maize, only deeper (>800 mm), well drained (Group B) and mottled (Group D) ecotopes 

produced above average yields in terms of SNV, across the five seasons (Table 4-5). While 

all poorly drained soils (Group I) and duplex (Group J) ecotopes consistently produced below 

average maize yields in terms of SNV. A one-way ANOVA analysis was not performed on the 

average median maize yield as the test of homogeneity of variances was significant, thus the 
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non-parametric Kruskal-Wallis Test was employed to test if the distribution of maize yield is 

the same across all ecotopes. The Kruskal-Wallis Test found that there is a significant 

difference (p = 0.023) in the distribution of average median maize yield across classes, with 

crop ecotope B11, a deep well drained soil with greater than 35% topsoil clay, producing 

significantly more yield than the other ecotopes. The ANOVA for SNV for maize yields also 

found a significant difference between individual ecotopes classes (p=0.004), with duplex soils 

(J23), producing significantly less yields than ecotope B11.  

 

Table 4-5 Average median maize yield, standard deviations and average SNV per Ecotope Class over 
five growing Seasons (2016-2020). The same letters indicate statistically insignificant differences 
(p>0.05) per column.  

KZN Ecotope* 
Buffered 

Point 
n 

Buffered Point Avg. Median 
Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon 
Avg. Yield 

(t.ha-1) 

B11 23 11.24a 56.61a  10.37ab 

B21 107 10.33b 13.43a   9.72ab 

B22 18 9.51b -38.24a   9.83ab 

D11 30 9.99b 14.94a 10.30ab 

D21 79 10.07b 10.39a    9.70ab 

D22 47 9.36b -19.82a     9.34b 

E22 10 8.40b -55.44a     8.95b 

E23 19 9.57b -10.73a    8.69b 

J23 14 8.79b -61.84b    8.93b 

*Ecotope Code consists of Soil Functional Group. Topsoil Clay Content Class. Effective Depth Class 

 

For soybean the results indicate that neither average median (p = 0.210) or SNV (p = 0.126) 

of soybean yield varied significantly across crop ecotopes. However, shallower soils (<800 

mm) in soils groups A, B and J all produced below average yields in terms of SNV.  

 

As with the land capability classifications presented above, the use of buffered points has 

increased the yield differentials across ecotope classes, when compared to polygon derived 

averages for both maize (1.01 t.ha-1) and soybean (0.19 t.ha-1). 
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Table 4-6 Average median soybean yield, standard deviations and average SNV per Ecotope Class 
over five growing Seasons (2016-2020). The same letters indicate statistically insignificant differences 
(p>0.05) per column. 

KZN Ecotope* 
Buffered 

Point 
n 

Buffered Point Avg. Median 
Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon 
Avg. Yield 

(t.ha-1) 

B11 11 2.98 a 24.90 a 2.58a 

B21 49 2.84 a 27.51 a 2.67a 

B22 17 2.52 a -51.14 a 2.43a 

D11 14 2.82 a 9.34 a 2.94a 

D21 27 2.79 a 7.65 a 2.77a 

D22 34 2.62 a -12.38 a 2.49a 

E23 10 3.27 a 14.96 a 2.99a 

J23 13 2.60 a -30.15 a 2.71a 

*Ecotope Code consists of Soil Functional Group. Topsoil Clay Content Class. Effective Depth Class 

 

 

4.3.3.4 Visual Soil Assessment  

 

The average dryland yield performance of maize per VSA class is provided in Table 4-7. Both 

median and normalised maize yields decrease with VSA Class, with the “Poor” VSA Class 

producing 54% less maize yield than average. There was a significant difference (p = 0.011) 

in median yield with both the “Good” and “Moderate” VSA Classes being significantly higher 

than the “Poor” class. While for the SNV for maize yield indicates that there is a statistically 

significant difference between VSA Class Good and Poor (p = 0.02), while there was no 

statistically significant difference between other VSA Classes.  

 
The average dryland yield performance of soybean per VSA class is provided in Table 4-8. 

One-way ANOVA analyses reveal no significant difference in soybean yield across the VSA 

classes for either average median (p=0.358) or SNV (%) soybean yields (p=0.340). Although 

no significant differences could be identified in VSA Classes the average SNV (%) does show 

that normalised soybean yields do decrease consistently with VSA. Soils classified as “Good”, 

in terms of soil quality, were the highest performing in terms of SNV, while soils classified as 

“Poor” obtained a SNV for soybean yield of -30.16 %.  

 

Overall, although not all yield variation, in terms of SNV, was statistically significant the VSA 

Classes did produce predictable yield trends for maize and soybean. Further, as previously 

noted in other methods the yield differentials across the classes are higher where the yields 

were extracted using the buffered point rather than the more generalised polygon layer.  
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Table 4-7 Average median maize yield, standard deviations and average SNV per Visual Soil 
Assessment class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column.  

VSA Class 
Buffered Point  

n 
Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

Good  297 10.10a 8.43a 9.61a 

Moderate 88 9.67a -8.13ab 8.85b 

Poor 33 8.51b -54.19b 8.61b 

 

Table 4-8 Average median soybean yield, standard deviations and average SNV per Visual Soil 
Assessment class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column.  

VSA Class 
Buffered Point  

n 
Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

Good  173 2.78 a 5.21 a 2.76a 

Moderate 53 2.94 a -9.03 a 2.83a 

Poor 14 2.67 a -30.16 a 3.02a 

 

 

4.3.3.5 DAFF Digital Land Capability  

 

The average dryland yield performance of maize per DAFF LC class is provided in Table 4-9. 

Only the soil observations classified as DAFF LC Classes 10 (moderate-high) and 11 (high) 

obtained positive normalised yield values across the five growing seasons, with 67% of all soil 

observations falling within the DAFF LC Class 10 (moderate-high). The results indicate that 

across the seven DAFF LC class only two, 8 (moderate) and 11 (High), produced significant 

variation (p=0.029) in terms average median yield. Similarly, only classes 5 (low) and 11 (high) 

were significantly different (p=0.017) when comparing average SNV for maize yields. There 

was no statistically significant difference across the remaining DAFF LC Classes.  

 

The average dryland yield performance of soybean per DAFF LC class is provided in Table 4-

10. Soil observations classified as DAFF LC Classes 5, 9, 10 and 11 obtained positive 

normalised yield values across the five growing seasons. The above average performance of 

Class 5 land appears to be a misnomer, which is highlighted by the high standard deviation 

obtained in this class.  One-way ANOVA analyses reveal no significant difference in soybean 

yield across the DAFF LC classes for either average median (p=0.308) or SNV for soybean 

yields (p=0.073). 

 

Broadly, the DAFF LC classes were somewhat related to maize and soybean yields with 

normalised yield values producing more predictable trends, where the highest normalised 
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yield being found in classes 10 (moderate-high) and 11 (high). However, of the five selected 

land assessment methods the DAFF LC is unique insofar as it is not based on point 

observations but rather is an existing digital layer, at a 90 m resolution. The purpose of the 8 

m buffer was to better relate yield to land assessment factors at a point scale. This is not the 

case for the DAFF LC dataset, where this yield buffer is still being related to a larger 90 m 

grid, even more so when the scale of the underlying soil and climate layers are considered. 

The differing spatial scales between points and grided pixels is highlighted in Atkinson et al. 

(2010) where more variation exists in the larger spatial element, in this case the DAFF LC 

digital layer. Atkinson et al. (2010) further advocates that some form of upscaling of the point 

data should be performed before comparisons are made. Consequently, the utility of the DAFF 

LC product and supporting spatial layers, at a point scale, is questionable. 

 

Table 4-9 Average median maize yield, standard deviations and average SNV per DAFF Land 
Capability class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column.  

DAFF Land Capability  
Class 

Buffered Point  
n 

Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

5 Low 7 8.08ab -98.42b 9.60a 

6 Low - Moderate 2 9.22ab -76.92ab 9.78a 

7 Low - Moderate 11 9.09ab -28.51ab 8.64a 

8 Moderate 18 8.51b -48.67ab 8.47a 

9 Moderate - High 68 9.91ab -4.77ab 8.72a 

10 Moderate - High 278 9.95ab 3.63ab 8.73a 

11 High 34 10.61a 39.63a 9.54a 

 

Table 4-10 Average median soybean yield, standard deviations and average SNV per DAFF Land 
Capability class over five growing seasons (2016-2020). The same letters indicate statistically 
insignificant differences (p>0.05) per column.  

DAFF Land Capability  
Class 

Buffered Point  
n 

Buffered Point Avg. 
Median Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

Polygon Avg. 
Yield (t.ha-1) 

5 Low 4 2.90 a 40.67 a 2.67a 

6 Low - Moderate 2 2.22 a -88.38 a 2.65a 

7 Low - Moderate 8 2.21 a -74.85 a 2.43a 

8 Moderate 11 2.56 a -57.65 a 2.63a 

9 Moderate - High 49 2.86 a 3.33 a 2.77a 

10 Moderate - High 146 2.84 a 4.81 a 2.66a 

11 High 20 2.82 a 19.12 a 2.69a 
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4.3.3.6 Summary  

 

This results section focused on the use of median and normalised yields extracted from 

representative buffers around soil observation points. Importantly, the application of buffered 

points and normalised yields do not resolve the problems inherent in the various classification 

systems, such as severe downgrading, scaling issues and factor aggregation (Chapter 3.3.2 

and 3.3.3). Rather, these techniques provide the best opportunity for the methods to be linked 

directly to crop productivity. Ultimately, the application of a more spatially representative yield 

resulted in greater yield differentials between classes and less yield generalisation. While the 

use of SNV for maize and soybean yields also provided greater insight into yield variability 

and performance across the various land assessment methodologies.  

 

4.3.4 Individual land assessment attributes in a production environment 

 

The use of a more spatially relevant yield buffer was found to improve the link between crop 

productivity and land classification (cf Chapter 4.3.3). Correspondingly, land evaluation 

methods need to be disaggregated into their individual components, to not only reduce the 

impact of factor aggregation but allow for the improved identification and analysis of key yield 

drivers in this production environment. Consequently, the results presented below drill down 

and focus on individual land assessment components and investigates their relationship to 

actual maize and soybean production, across the five growing seasons. Moreover, the utility 

of pertinent land attributes is discussed within the context of developing new productivity-

based approaches, with the view of supplementing existing methodologies. 

 

The significance levels (p) for each land assessment attribute for maize and soybean is 

provided in Table 4-11. A total of 25 attributes were determined to have significant (α = 0.05) 

yield variation across their specific attribute classes. For maize, 21 factors were identified 

compared to only 4 for soybean, indicating that even at this detailed level of analysis the 

factors influencing soybean productivity are far more difficult to determine. A summary of the 

pertinent land assessment factors is provided in Table 4-12 and further analysed in Sections 

4.3.4.1 – 4.3.4.6. It should be noted that some non-significant results were included in these 

sections to illustrate the impact of various attributes and associated classes on the two 

different crops.   
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Table 4-11 Individual land assessment attributes and their associated significance levels of SNV for 
maize and soybean yields 

Method / Dataset Attribute / Factor Maize p Soybean p Reference 

 Soil Texture < 0.001* 0.500  

 Soil Structure 0.020* 0.527  

 Soil Porosity 0.020* 0.530  

 Soil Mottling 0.014* 0.505  

Visual Soil Assessment for Soil Colour 0.119 0.522 Shepherd et al. (2008); 

Maize and Field Crops Earthworm Presence # # Shepherd (2010) 

 Soil Smell 0.145 n/a  

 Soil Rooting Depth 0.020* 0.031*  

 Soil Ponding < 0.001* 0.017*  

 Soil Crusting 0.803 0.211+  

 Soil Erosion 0.224 0.500  

DAFF Digital Land Soil Capability 0.07 0.423  

Capability Terrain Capability 0.08 0.573 DAFF (2018a) 

 Climate Capability # #  

 Erosion Hazard 0.002* 0.440  

 Flood Hazard 0.109 0.010*  

 Effective Soil Depth 0.014* 0.464  

 Soil Texture 0.002* 0.024* Scotney et al. 

RSA Land Capability Internal Drainage 0.023* 0.525+ (1991) 

 Mechanical Limitations 0.037* 0.608  

 Other Limitations 0.128 0.252+  

 Climatic Factors # #  

 Slope Class 0.049* 0.757  

 Topsoil Texture 0.038* 0.530  

 Effective Rooting Depth 0.028* 0.363  

KZN Land Capability Upper Soil Permeability < 0.001* 0.108 Camp et al. (1998); 

 Wetness Limitations 0.133 0.463 Smith (2006) 

 Soil Crusting 0.803 0.127  

 Rockiness 0.032* 0.218  

 Soil Group < 0.001* 0.632  

 Topsoil Clay Content 0.038* 0.530 Camp et al. (1999); 

KZN Ecotope Effective Soil Depth < 0.001* 0.064 Smith (2006) 

 Slope 0.049* 0.757  

 Rockiness 0.032* 0.218  

* Denotes a significant variation in yield within that particular attribute (α = 0.05) 
+ Denotes the use of the non-parametric Kruskal-Wallis Test where the homogeneity of variance was violated 
#  Denotes were ANOVA or non-parametric tests were not employed due to lack of classes 
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Table 4-12 A summary of significant land assessment factors  

Land Assessment 
Factor 

Description Common to  Reference 

Slope  

 

The percentage of inclination of the land relative to the horizontal as determined by 
an infield Abney Level. Influences soil erosion potential and arability. 

KZN LC, 

KZN Ecotope, 

DAFF LC 

 

Camp et al. (1995, 1998); 
Smith (2006) 

Erosion Hazard A compound land assessment factor incorporating slope, leaching status, soil 
erodibility and the textural difference between top- and subsoil horizons. 

 

RSA LC 

 

Scotney et al. (1991) 

Flood Hazard A general estimate of both the frequency and duration of flooding events based on 
the interpretation of soil properties and supplementary evidence.  

 

RSA LC 

 

Scotney et al. (1991) 

Effective Soil Depth 

 

Is the depth of soil to which plant roots could potentially penetrate before reaching 
a barrier to root growth. Barriers to root growth include physical or chemical soil 
properties. An important dry land soil property effecting moisture supply to crops. 

RSA LC, KZN LC, 

KZN Ecotope 

VSA  

 

Shepherd et al. (2008); 

Shepherd (2010); 

Camp et al. (1998); 

 

Soil Texture Defines the size of soil particles and refers to the relative proportion between sand, 
silt and clay.  Plays an important role in determining water availability, aeration, 
drainage, workability and nutrient supply. Is often estimated infield using ball and 
thread methods. 

RSA LC, KZN LC, 

KZN Ecotope, 

VSA, DAFF LC 

 

Scotney et al. (1991); 

Shepherd et al. (2008); 

Shepherd, (2010) 

 

Soil Rockiness /  

Mechanical 

Limitations 

 

The estimated proportion of stones, rocks and bedrock exposures which could 
influence tillage operations. Rockiness also influences infiltration and the 
cultivatable soil surface. For RSA LC slope and erosion is combined with rockiness 
to create the compound mechanical limitation factor.  

RSA LC, KZN LC, 

KZN Ecotope 

 

Scotney et al. (1991); 

Camp et al. (1995, 1998); 

Smith, (2006) 

 

Soil Functional Group Soil profiles were classified using the Taxonomic Soil Classification System (SCWG, 
1991) and reclassified to soil functional groups, where soils within a particular group 
will produce similar yields. 

 

KZN Ecotope Smith, (2006); 

Camp et al. (1998); 

 

Soil Structure A general estimate of soil structure ranging from fine aggregates to course soil clods. 
Structure influences aeration, infiltration, nutrient supply and root penetration.   

VSA Shepherd et al. (2008); 

Shepherd, (2010) 
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Soil Porosity Is closely linked to soil structural properties, influencing aeration and drainage. 
Porosity is estimated by visually inspecting the soil aggregates to estimate the size 
and distribution of soil pores. 

VSA Shepherd et al. (2008); 

Shepherd, (2010) 

 

Wetness Limitation / 

Internal Drainage /  

Surface Ponding 

Provides an indication the depth of hydromophic soil properties including the 
presence mottling and gleying. This factor provides an indication of waterlogging 
internal drainage characteristics and risk of surface ponding. 

RSA LC, KZN LC, 

KZN Ecotope, 

VSA  

Camp et al., 1998; 

Shepherd et al., 2008; 

Shepherd, 2010 

 

Subsoil Permeability Subsoil permeability provides an indication of the rate of water absorption and 
movement through the soil. It is measured infield by recording the time it takes for 
water to be absorbed into either the face of the soil pit or into a clod of soil. This rate 
is converted into a permeability class ranging from 1 (Impermeable) to 7 (Extremely 
Rapid). 

KZN LC, VSA Camp et al., 1995; Smith, 
1997 
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4.3.4.1 Terrain Factors: Erosion hazard, slope and flood hazard 

 

Four terrain factors were found to have a significant impact on yield variation across the five 

seasons. For maize, the erosion hazard factor, sourced from the RSA LC, and slope classes 

common to both the KZN LC and Ecotope methods were found have significant impact on 

yield variation (Table 4-11). While for soybean, only the classes associated with the flood 

hazard factor, were found have a significant relationship to yield. 

 

The erosion hazard factor is a compound land assessment factor, unique to the RSA LC 

system (Scotney et al., 1991). Unlike, in the KZN LC classification, which uses slope as a 

direct input, the National system combines slope, leaching status, soil erodibility and the 

textural difference between the top and subsoil horizons to classify land on its overarching 

erosion hazard (Table 4-12). Erosion hazard ultimately combines with the flood hazard factor 

to create the two terrain factor considered in the National classification (Scotney et al., 1991). 

Jenny (1941) identifies topography (relief) as one of the five factors of soil formation and it has 

been established that topography influences (micro)climatic and meteorological 

characteristics, drainage, runoff and spatial distribution of vegetative cover (Florinsky, 2012). 

Consequently, topography and its associated variability influences the spatial distribution of 

soil properties (Rabia et al., 2021). Five different erosion hazard classes were identified in the 

study area, ranging from Class E1, land with low water and/or wind erosion hazard to Class 

E5, land with high water and wind erosion hazard when cultivated (Figure 4-6). 

 

 

 

Figure 4-6: SNV Yield and RSA LC Erosion Hazard Classes for (a) Maize and (b) Soybean. The same 
letters indicate statistically insignificant differences in yield (p>0.05). + Denotes classes excluded from 
ANOVA due to low sample numbers. Erosion hazard ratings increase in severity from Class E1 (Low 
Erosion Hazard) through to Class E5 (High Erosion Hazard) 

 

 (b)  (a) 
a 

ab ab ab b 

a 
a 

a a 

+ 
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Maize yields (Figure 4-6 a) were, on average, 25% higher in the more favourable erosion 

hazard class 1, while SNV generally decreased steadily with erosion hazard class, reflecting 

a negative relationship between productivity and slope and soil erodibility potential. However, 

these results are not always transferrable to soybean (Figure 4-6 b). Instead, the results 

illustrate an often-inverse relationship, with soybean yield rather increasing with erosion 

hazard classes E2 and E5. This suggests that land evaluation factors, in terms of their 

weighting and importance, are not consistent across different crop types. A study by Leuthold 

et al. (2022), investigating terrain and yield relationships, similarly concluded that terrain 

drivers differed for each crop type.  

 

Slope, as a single factor is commonly used as a topographic attribute in land evaluation 

methodologies, such as in the KZN LC and KZN Ecotope. Within the field of land assessment 

slope is important when considering soil conservation measures such as terracing and contour 

banks and plays a critical role in terms mechanisation, where steeper slopes reduce its 

potential application (Sys, 1985). Slope and associated topographic features has also been 

found to influence crop yields (e.g. Franz et al., 2020; Guo et al., 2012; Kaspar et al., 2003). 

The results obtained at FCL farming, comparing slope with maize normalised yield, similarly 

indicate that slope percentage influences production (Figure 4-7).  For both crops the SNV are 

positive for slopes between 3 and 6% but drop off significantly where slopes approach 12%. 

Maize, however, exhibits a stronger relationship within moderate slopes, where SNV reached 

5% above average yield compared to only 2% for soybean. Whereas soybean yields suffered 

more than twice the relative yield loss, when grown on steeper gradients, compared to that of 

maize. The results indicate that steeper gradients (>8%) showed a negative correlation to 

production across the five growing seasons for both maize and soybean. This observation 

corresponds to the work of Marques da Silva and Silva (2008) who also observed negative 

correlations between maize yield and slope, while Leuthold et al. (2022) found that that 

soybean yield was similarly negatively correlated to slope gradient. It was noted that even 

though the results for soybean were not statically significant, they do provide important 

information regarding yield performance which could influence future productivity-based 

assessment approaches. 

 

The results obtained at FCL also indicate the relationship between slope and yield is not linear, 

yields do not decrease linearly from flat areas (<3%) to steeper areas (>8%). A trend line fitted 

by a polynomial function performed significantly better than the linear based function for both 

maize (Figure 4-7 a) and soybean (Figure 4-7 b). Although these trends may be influenced by 

ordinal data and associated binning as highlighted by Liddell & Kruschke (2018), the 

recognition of non-linear production drivers is important for future land assessment systems. 
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Figure 4-7: SNV Yields and Midpoint of KZN LC Slope Classes for (a) Maize and (b) Soybean 

 

The results comparing slope classes to yield (Figure 4-7) also provide an insight into yield 

dynamics that is not often considered in local evaluation systems, which predominately uses 

terrain to determine the level of soil conservation inventions required (e.g. Manson et al., 1995; 

Scotney et al., 1991; Smith, 1997). For example, in very flat areas (<3%) which is generally 

considered the best land for arable land use practices (Camp et al., 1998), the yield SNV are 

in fact negative, indicating below average crop yields for both maize (Figure 4-7 a) and 

soybean (Figure 4-7 b). In this production environment flat areas are restricted to very 

particular topographical positions such hilltops and bottomlands. These areas typically contain 

soils which inherently restrict crop growth, where flat bottomlands are a mix of duplex and 

poorly drained soils, while flat hilltops are dominated by shallow soils, with parent rock close 

to the surface. Comparably, Kravchenko and Bullock (2000) reported that various terrain 

variables, including slope, impacted maize and soybean yield but only when crops were grown 

in extreme topographical locations, such as depressions or eroded hilltops. Additional studies, 

comparing maize and soybean yields with slope, could determine if these trends are localised 

or extended to different locales. Alternatively, the incorporation of more advanced terrain 

classification could potentially delineate these particular topographical positions. 

 

The results comparing flood hazard class to soybean productivity (Figure 4-8) indicate that 

yields significantly decrease in areas associated with a high risk of frequent flooding with long 

durations of water inundation (Scotney et al., 1991). Flood hazard classification in the RSA 

LC is a broad estimation based on soil properties, vegetation and onsite flooding evidence. 

However, it is stated in Scotney et al. (1991) that the flood hazard ratings do not provide a 

high degree of accuracy. Accordingly, this factor could be improved by employing a terrain 

unit classification (e.g. Jasiewicz & Stepinski, 2013), to more consistently identify flood prone 

areas.   

 (a)  (b) 
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Figure 4-8: SNV Yield and RSA LC Flood Hazard Classes for Soybean. The same letters indicate 
statistically insignificant differences in yield (p>0.05). Flood hazard ratings increase in severity from 
Class F1 (No flood hazard) through to Class F4 (Frequent and long flood hazard) 

 

Overall, the results for terrain attributes found that by combining interrelated factors, for 

example where RSA LC combines slope, leaching status, soil erodibility and textural contrast, 

novel trends between a particular crops and land evaluation factors can established. Further, 

slope and terrain related factors can be used to not only determine soil conservation 

requirements but also crop production potential. Finally, newer technologies such as terrain 

classification could be employed to improve less reliable factors and improve the link between 

terrain and production. 

 

4.3.4.2 Effective soil depth, rockiness and mechanical limitations 

 

As with slope gradient, effective soil depth is commonly used in land evaluation methodologies 

with Le Roux et al. (2013) considering soil depth the most import property of soil bodies, when 

evaluating land. Due to the nature of agricultural land evaluation, its methodologies are 

generally limited to a small pool of assessment factors, which tend to be practical and easy to 

measure during an in-field resource survey. Consequently, methodologies often share 

common land evaluation attributes, but differ in terms of the number classes and class breaks 

used in each method. This can be seen in Table 4-11, where effective rooting depth, derived 

from different methodologies, were found to incorporate significant maize yield variation, 

indicating that both the method of determination and associated class breaks are important 

when assessing its relative impact on productivity. Indeed, the ANOVA results indicate that 

crop yields were significantly impacted by effective soil depth, with the class breaks presented 

in the VSA methodology providing significant results for both maize and soybean (Table 4-

11).  

 

a 

a 

ab 
b 
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Effective soil depth is the depth to which plant roots can penetrate and determines water and 

nutrient availability to crops and it greatly influences soil and land capability (Scotney et al., 

1991). In turn water availability is recognised as a major determinant of crop yield, when water 

supply is suboptimal, crop growth and yield is similarly reduced (Singh et al., 2012). Shepherd 

(2010) similarly recognises that in drier periods, deeper soils allow plant roots to access 

greater water reserves, thereby reducing water stress in non-irrigated crops. Importantly, 

effective rooting depth includes both physical and chemical layers which restrict root growth. 

Common subsoil horizons considered limiting to plant roots included strongly structured 

cutanic horizons, lithocutanic horizons and hydromorphic horizons. 

 

To assess the impact of effective rooting depth the midpoint of the effective soil depth classes, 

provided by the VSA and KZN Ecotope methods were compared to SNV of maize and 

soybean yield across the five growing seasons (Figure 4-9). Additionally, continuous 

(unclassed) effective soil depths were compared to the same yield data (Figure 4-9 b), to 

analyse the difference between classed and continuous soil depth data.  

 

The results for maize (Figure 4-9 a) shows a positive, near linear relationship (R2=0.952) 

between VSA soil classes depth and yield. The fitted linear trendline estimates that effective 

soil depths greater than 750 mm will result in an above average maize yield. Shallower 

effective depths, illustrate a near perfect linear decrease in yield performance, with yields 

decreasing from -23.14% at 500 mm to -48.64% for 300 mm depths. When the class breaks 

from the KZN Ecotope method (Figure 4-9 b) are compared maize yield, the linear relationship 

decreases to R2=0.758. Indicating that subtle changes in depth breaks can play a large role 

in determining the significance between individual land assessment factors and maize 

productivity.  

 

The results for soybean (Figure 4-9 c) also indicates a positive linear relationship (R2=0.679) 

between VSA depth classes and yield, however this relationship is not as strong as the 

corresponding maize data. SNV for soybean approaches above average values (SNV>0) at 

effective soil depths of 500 mm but then decreases between 500 and 700 mm and finally 

records above yields at depths greater than 800 mm. The class breaks associated with KZN 

Ecotope (Figure 4-9 d) show similar results with a positive linear relationship (R2=0.705) 

between Ecotope depth classes and yield. Indicating the subtle class breaks between the two 

methods are not as important for soybean classification in this environment. 
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The results for both maize and soybean indicate that yields generally increase with effective 

depth. This corresponds to the general consensus among land evaluation methodologies, that 

increasing soil depths increase water and nutrient supply and ultimately crop production 

(Camp et al., 1998; Scotney et al., 1991; Smith, 2006). For both maize and soybean, soil 

depths greater than 750 mm resulted in above average yields. This depth is similar to the two 

broad depth categories i.e. deep (>700 mm) and shallow (<700 mm) as provided by Sadras 

and Calvinõ (2001), whose on-farm research investigated soybean profitability across differing 

soil depths. 

 

 

 
 
Figure 4-9 Average SNV for yield and effective soil depth for (a) Maize using the midpoint and maximum 
depth of the KZN Ecotope stipulated depth classes (b) Maize using continuous soil depths (c) Soybean 
using the midpoint and maximum depth of the VSA Annual Field Crops stipulated depth classes (d) 
Soybean using continuous soil depths  

 

This research also found the average rate of grain yield reduction, with decreasing soil depth, 

was largest in maize and smallest in soybean, which was also observed in this study for soil 

depths between 400 and 600 mm. Locally, the Cedara Agricultural Development Institute 

(CADI) used two primary soil depth breaks for maize production in KwaZulu-Natal on most soil 

types, namely at 300 and 700 mm (CADI, 1993). While also stating that high-potential maize 

soil should allow rooting to 750 mm or more, which are similar to the results observed in this 

study.  

 (b)  (a) 

 (c)  (d) 
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Although the classed data (Figure 4-9) provided a better correlation with maize yields, the 

continuous data (Figure 4-10 a and b) provides greater insight into yield variability, particularly 

at shallower soil depths. Spatial variability research by Muller (2004) as cited by Hattingh 

(2018) also reported that shallower soils increased the inter-annual variability of rainfed yields 

due to more frequent and severe water stress periods during key agronomic stages for yield 

formation. Conversely, the high variability observed at deeper depths could be influenced by 

the low observation count at specific depths (e.g. 1 250 mm).  

 

 

Figure 4-10 Average SNV for yield and effective soil depth for (a) Maize using continuous soil depths 
and (b) Soybean using continuous soil depths  

 

Numerous research studies have shown that both minimum and optimum rooting depths vary 

depending on the crop grown (Kirkham et al., 1998; Sadras and Calvinõ, 2001), however many 

land evaluation methods, particularly land capability such as RSA LC and KZN LC, do not 

provide crop specific rooting depths. Even the methodology produced for VSA (Shepherd, 

2010; Shepherd et al., 2008), which differentiates maize and field crops, uses the same depth 

classes for each scoring system. The results from this study indicate that maize and soybean 

crops respond differently to effective soil depths and these differences should be taken 

cognisance of in crop-specific land evaluation methodologies. The data also highlights 

importance of class breaks in land evaluation systems. 

 

4.3.4.3 Soil texture and topsoil clay content 

 

An estimation of soil texture is common to all selected land assessment methodologies, and 

four of them found that soil texture significantly impacts maize yields, while only the soil 

textural classes, presented in the RSA LC, significantly impacted soybean yields (Table 4-11). 

Two different textural classifications, from two different land assessment methods were used 

to compare the influence of soil texture on maize and soybean yield.  

 (a) 

 

 (b) 
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For maize the VSA scoring system provided the most significant ANOVA results (p <0.001) 

and produced four classes with scores ranging from 2 “Good” to 0.5 “Poor” (Figure 4-11 a). 

The VSA methodology allocates the highest score of 2 to a soil with a silt loam texture, while 

a soil with clay loam texture score 1.5 (Shepherd, 2010). Soils with either a silt loam or clay 

loam topsoil texture produced above average yields and although the yields between these 

classes were not significantly different, clay loams produced the highest maize yields of more 

than 15% above average. Based on the textural description provided by Shepherd (2010) the 

clay loam consists of finer material creating a sticker feel which provide more favourable water 

holding characteristics in this environment, compared to the silt loam. Soils with topsoil 

textures of either loamy silt or sandy loam scored a 1 within the VSA classification and 

produced significantly below average yields when compared to soils with a clay loam topsoil. 

These soils are associated with less than 20% clay and poorer water holding characteristics 

(Schulze, 1995). Accordingly, crops growing in these soils may be susceptible to water stress, 

particularly during extended drier periods (Camp et al., 1995). Silty clay and clay topsoil 

textures were the poorest performers in terms of maize yields (Figure 4-11 a) and are 

considered to have, as per generic growing guidelines, “air and moisture regimes that are sub-

optimal for maize production” (du Plessis, 2003). These topsoils generally contain high clay 

contents (> 55%) and are characterised by poor water permeability, low total porosity, 

waterlogging and high compaction rates, all reducing maize yield potential (Anikwe, 2000). 

These unfavourable characteristics combined to significantly depress maize yields (-53%) 

compared to silt loam and clay loam topsoils.  

 

Notably, compared to the VSA methodology, the textural classes provided in the broader KZN 

Ecotope classification are far easier to determine in-field, yet still provide a significant 

(p=0.038) result in terms of soil texture and maize yield variability (Table 4-11). Consequently, 

the ease of measurement should also be taken cognisance of, when developing new 

production-based approaches. 

 

The topsoil texture classification as used in the RSA LC classification was found to significantly 

impact soybean yield (Table 4-11). In RSA LC Classification textural groups are first defined 

by general erodibility / textural grouping on basis of soil form and family (Scotney et al., 1991). 

Once the soil group has been established texture charts using the proportion of sand, silt and 

clay is used to define the textural group. Consequently, textural groups can include topsoils 

with both high clay and high sand contents depending on initial soil group. However, texture 

group 1 should be seen as the most advantageous for arable agriculture, followed by texture 

group 2 and finally group 3. Textural groups 1 and 2 were highest performers in terms of 
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soybean yield, with both groups producing above average yields (Figure 4-11 b). In this 

environment textural group 2 generally corresponded to non-duplex soils with clay contents 

above 40%. Although the topsoil clay contents were high the yields produced on these topsoil 

was approximately 20% above average, this aligns with production guidelines as published by 

DAFF (2010) which states that soybean perform better on heavier textured soils, compared to 

other crops. Textural class 3, generally high clay topsoils but within the highly erodible soil 

group, performed significantly poorer than the other two textual classes, greatly suppressing 

yields.  

 

 

 

Figure 4-11 Average SNV for yield across  various soil texture class for (a) Maize using the VSA Scoring 
System where 2 is “Good”, 1.5 is “Moderately Good”, 1 is “Moderate” and 0.5 is “Moderately Poor” (b) 
Soybean using the RSA LC Textural Classes. The same letters indicate statistically insignificant 
differences in yield (p>0.05). 

 

Overall, the results for topsoil texture indicate that maize and soybean yield both vary with 

texture and that differing classification methods encapsulates this variation better than others. 

Moreover above average yields were associated with textural classes that provided a 

balanced water and air regime and suffered in heavily textured topsoils.   

 

4.3.4.4 Soil functional groups, structure and porosity 

 

The one-way ANOVA found significant differences (p<0.001) between maize yield between at 

least two soil functional groups (Table 4-11). Although a statistically significant yield variation, 

between soybean and soil functional groups, was not found soybean performance were also 

included in this section to assist in comparative analysis between the two crops.  

 

The soil functional groups, as provided by the KZN Ecotope classification, were compared to 

SNV of maize and soybean yield across the five growing seasons (Figure 4-12). The KZN 

 (a)  (b) 

ab

a 

bc c
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a

 b
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Ecotope classification uses soil functional group as the primary break in its classification and 

soils within a particular functional group share similar potential and functionality from an 

agronomic perspective (Camp et al., 1995) for example, Group B incorporating well and 

moderately drained soils, which under the same management, should produce similar crop 

yields (Smith, 2006). Local guidelines indicate the most suitable soil for maize is one with 

“favourable morphological properties, good internal drainage and an optimal moisture regime” 

(du Plessis, 2003). Similarly, Provincial guidelines indicate that soils types producing 

satisfactory maize yields will usually produce good soybean yields (Department of Agricultural 

Development, 1990). Crop performance for both maize and soybean are similar for Functional 

Groups B, D (mottled and moderately drained soils), E (mottled and poorly drained soils) and 

H (young soils). Functional Group B was the only soil group which produced above average 

yields for both maize (+13% SNV) and soybean (+11% SNV). More notable differences were 

observed in soil groups, which are generally considered poor from an agronomic perspective, 

namely Soil Groups H, Group I (Gleyed Soils) and Group J (Duplex Soils). Maize yields were, 

substantially more depressed when grown in these soil groups, compared to that of soybean 

(Figure 4-12). Due to the relative low sample numbers in Groups H and I, only Group J soils 

were found to be statistically different to the yields achieved in Groups B and D. 

 

Figure 4-12 SNV yield per soil functional group for maize and soybean, where B is well and moderately 
drained soils, D is mottled and moderately drained soils, E is mottled and poorly drained soils, H is 
young soils, I is gleyed soils and J is duplex soils 
 
 

Soils falling into functional Group I, are dominated by redoxymorphic features, such as mottling 

and gleying, which develop due to prolonged saturation (DWAF, 2008). Typically, these soils 
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are saturated for significant periods within the wet season and waterlogging, due to poor 

drainage, is common. Local production guidelines recognise that soils prone to waterlogging 

result in poor maize yield (CADI, 1993). Soybean is also susceptible to waterlogging but once 

established is more tolerant to this limitation (DAFF, 2010). Over the five-year analysis period 

an average of 70% of the seasonal rainfall fell in the second half of the growing season. 

Suggesting that the soybean crops were already well established prior to significant 

waterlogging and thus yield losses were minimised. 

 

Observed normalised soybean yields, although below average (-28%), were also less 

impacted when grown in duplex soils (Group J), compared to that of maize (-54%). Duplex 

soils are characterised by a marked enrichment of clay in the subsoil (Fey, 2010). In South 

Africa it is commonly acknowledged that soybeans, due to their combination of a long tap root 

and shallower lateral roots, are generally better adapted to heavier soils compared to most 

other crops, including maize (DAFF, 2010).  

 

The one-way ANOVA results also indicate that soil porosity and soil structure both significantly 

influence maize yields (Table 4-11). It was determined however, that the scoring classification 

of both these soil attributes were strongly linked to soil functional group. For example for 96% 

of soils associated with good structure and porosity characteristics, a score of 2 in the VSA 

(Shepherd et al., 2008; Shepherd, 2010), were found in the well-drained functional group 

(Group B). Further, 100% of duplex soils (Group J) were associated with poor porosity and 

structural scores. Consequently, an overarching attribute such soil functional group can be 

used as an accurate proxy for a number of soil related attributes, reducing the number of 

attributes that need to be directly measured and scored in-field, saving time and reducing 

duplication. These potential benefits should be taken cognisance of when developing new 

productivity-based approaches. 

 

4.3.4.5 Soil Wetness, internal drainage and surface ponding  

 

Soil wetness classification provides an indication of drainage and is common to land 

assessment methodologies (Table 4-11). The presence of soil wetness indicators, observed 

surface ponding or internal drainage limitations are all used in land evaluation methodologies 

to highlight waterlogging risk to agronomic crop production. The soil wetness attribute groups 

soil profiles based on the depth to and prominence of redoxymorphic features, such as 

mottling and gleying, which develop due to prolonged saturation (DWAF, 2008). The closer 

these indicators are to the soil surface the higher risk of waterlogging in normal or above 

average rainfall years. Waterlogging and associated yield loss is crop dependant, with many 
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field and in particular orchard crops being highly susceptible to phytophthora, root rot (Smith, 

2006).  

 

The soil wetness limitations such as degree of mottling and surface ponding provided by the 

VSA produced the most significant values according to the one-way ANOVA. The presence, 

abundance and colour of mottles as provided by the VSA classifications, were compared to 

SNV of maize and soybean yield across the five growing seasons (Figure 4-13 a and b). As 

with soil functional group soybean yields were not statistically significant correlated to soil 

mottling but were again included for comparative analysis. Both crops show similar trends, 

where the highest yields (+10% SNV) were observed where no mottles were present. These 

soils are well drained, with no signs of wetness within the soil profile.  

 

  

Figure 4-13 SNV Yield and abundance of soil mottles for (a) Maize and (b) Soybean 

 

 

Yields decrease where the soil profile has many (10-20%) fine and medium orange and grey 

mottles as described by Shepherd, (2010) and Shepherd et al. (2008). Both maize and 

soybean yields are close average (SNV=0) in this wetness class. Soils with profuse mottling 

(>50%) of medium and course orange and particularly grey mottles significantly depressed 

maize yields, when compared to the drier classes (Figure 4-13). Maize yields produced -52% 

SNV in this wetness class, while soybean yields only decreased to -7% SNV. Yields are lowest 

in this class, which include soils that are wet for long periods of the year with mottling and 

gleying close to the surface. The differing yield responses to drainage limitations reaffirm that 

land evaluation factors and their associated class breaks are not consistent between maize 

and soybean and ultimately each crop should be assessed separately.  

 

 (a)  (b) 

  a

 a  b

  a

  a   a
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Similar trends were evident when the degree of surface ponding was compared to maize and 

soybean yields with yield decreasing with increased surface ponding (Figure 4-14). However, 

the difference between classes and SNV for maize and soybean was significantly different in 

the “significant ponding” class. To accurately determine surface ponding, areas need to be 

visually inspected after heavy rains (Shepherd, 2010). Consequently, the reliable 

measurement of surface ponding becomes problematic for land assessors, where it may not 

be practical to visit or survey a farm after heavy rains. However, areas classified as having 

significant ponding were isolated to certain topographical areas, such as hollows and 

depressions. Accordingly, the link between production and ponding, could be improved by 

employing terrain unit classification, to more conveniently and reliably identify areas prone to 

surface ponding.    

 

  

Figure 4-14 SNV Yield and KZN LC Wetness Class for (a) Maize and (b) Soybean 

 

➢ A note on soil wetness 

Although it is often seen as a limiting factor in land evaluation process the presence of soil 

wetness indicators, at sufficient depths can also benefit dry land crop production, particularly 

in the more arid part of South Africa or during times of drought (Camp et al., 1995). In this 

landscape notable soil wetness or internal drainage restrictions typically manifest themselves 

as either a moderately drained soft plinthic (Plinthosols) or poorly drained gleyed (Gleysols) 

horizons. Soft plinthic horizons, found at sufficient depths and underlying a freely drained 

subsoil horizon (e.g. Avalon Soil Form) are prized by grain farmers in the Highveld of South 

Africa as crop roots can tap into the water stored in the lower parts of the profile (Fey, 2010). 

However, unlike the drier parts of Highveld, which only receive between 500-600 mm of mean 

annual rainfall, the study area receives over 820 mm (Camp, 1999). Consequently, the benefit 

of this subsoil “reservoir” is not as apparent, even in drier seasons, where only soils without 

mottles produced above average yields for both maize and soybean (Figure 4-13). This was 

a 
a b 
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also confirmed in Chapter 3.3.3.4, where the highest obtained yields in 2016, a drought year, 

were on well-drained profiles.  

 

4.3.4.6 Subsoil Permeability 

 

Subsoil permeability provides an indication of the rate of water movement through the upper 

subsoil. Changes in subsoil permeability, as defined in KZN LC, was found to cause significant 

maize yield variation (Figure 4-15). An ideal permeability lies between “excessively rapid”, 

where drainage is excessive and “impermeable”, where drainage is impeded by either rock or 

very strong structure (Smith, 2006). The study area did not produce permeability timings below 

4 seconds, which is considered “rapid” or 1 second which is considered “very rapid”.  

 

 

Figure 4-15 SNV Yield and KZN LC Subsoil permeability class for Maize and Soybean 

 

Overall, yields decreased as subsoil permeability rates slowed, as water movement became 

more restricted by more impermeable subsoil horizons (Figure 4-15). A permeability rate of 

between 4 to 8 seconds is considered “Good” and produced the highest yields for both maize 

(+10%) and soybean (+13%). Although both crops follow the same decreasing yield trend with 

slower permeability rates, only maize showed statistically significant yield variation between 

the “Good” and the “Restricted” (p=0.002) as well as “Severely Restricted” (p<0.001) 

permeability classes.  Further, maize yields were more suppressed in the restricted (-35%) 

and severely restricted (-64%), when compared to soybean, -26% and -38% respectively. This 

mirrors the results found in the functional soil group and textural comparisons, where duplex 
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soils similarly depressed maize yield compared to that of soybean (cf Sections 4.3.4.3 and 

4.3.4.4)  

 

4.3.3.7 Summary  

 

This results section focused on individual land assessment attributes, which were found to 

significantly impact maize and soybean yields. The results indicate that maize and soybean 

crop respond differently to individual land assessment attributes and these differences should 

be taken cognisance of in land evaluation methodologies. Further, the analyses also allowed 

the impact of key production drivers to be quantified using normalised yield values, across five 

growing seasons. This method of quantification has potential to be used in attribute importance 

rating and weighting. Additionally, methodological issues such as compound and holistic 

attributes, ease of attribute measurement, class break significance, attribute reliability and the 

potential use of newer technologies such as terrain analysis, were introduced with the of view 

incorporating these findings into new production-based land evaluation approaches.  

 

4.4 Conclusions 

 

This chapter focused on the verification of land assessment methodologies using a 

representative yield buffer around each soil observation point. Experimental variograms over 

five growing seasons were used to determine that an 8 m circular buffer, around each 

observation point, was suitable for representative yield extraction for both maize and soybean. 

Yields across the five growing seasons were normalised to create an intuitive classification for 

both maize and soybean. These representative SNV for maize and soybean yields were used 

to assess the performance for the five-year analysis period and following conclusion drawn: 

1) The analysis reiterates the danger of utilising non-crop specific methodologies, as results 

differ significantly between maize and soybean. 2) Maize yields had stronger relationship to 

land assessment methods, compared to that of soybean 3) The highest maize yields generally 

corresponded to the best land evaluation class or class with highest cropping potential. 4) The 

application of a yield buffer around a soil observation point improved yield differentials across 

classes and reduced yield generalisation associated with land assessment polygons. 5) 

Although a significant difference between soybean and land assessment classes was not 

observed yield normalisation provided an improved insight into crop performance. 6) 

Importantly no method could statistically (α = 0.05) separate yields across all assessment 

classes. Further, no land assessment classification could adequately account for soybean 

yield variation.  
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Pertinent individual factors used in land assessment were selected and compared to maize 

and soybean performance across the five growing seasons. Significant yield variation across 

individual factor classes was more common for maize, compared to that of soybean. A strong 

relationship between slope and crop performance could be obtained using polynomial-based 

regression, for both maize and soybean. Maize, however, exhibits a stronger relationship 

within moderate slopes, where SNV reached 5% above average yield compared to only 2% 

for soybean. Whereas soybean yields suffered more than twice the relative yield loss, when 

grown on steeper gradients. The results for terrain attributes also found that by combining 

interrelated factors, novel trends between a particular crop and land evaluation factors can be 

established. Further, slope and terrain related factors can be used to not only determine soil 

conservation requirements but also crop production potential. 

 

A number of soil attributes were found to impact crop performance inter alia effective soil 

depth, soil texture, soil functional group, soil wetness indicators and subsoil permeability. A 

positive linear relationship was observed for both maize and soybean against the midpoint of 

VSA and KZN Ecotope soil depth classes. For maize the fitted linear trendline estimates that 

effective soil depths greater than 750 mm will result in an above average maize yield. SNV for 

soybean approaches above average values (SNV>0) at effective soil depths of 500 mm but 

then decreases between 500 and 700 mm and finally records above yields at depths greater 

than 800 mm. The results for continuous soil depth and yield provided a far poorer linear 

correlation with significant variation for all recorded soil depths for both maize and soybean. 

Soil textures with balanced water and air regime produced the highest yields, while heavier 

textured topsoil significantly suppressed maize yields. In terms of functional soil groups, both 

maize and soybean yield performance is similar within Groups B (well and moderately drained 

soils), D (mottled and moderately drained soils), E (Mottled and poorly drained soils) and H 

(young soils. More notable differences were observed in soil groups, which are generally 

considered extremely poor from an agronomic perspective, namely Group I (Gleyed Soils) and 

Group J (Duplex Soils). Maize yields in particular were, substantially more depressed when 

grown in these soil groups, compared to that of soybean. In terms of soil wetness (internal 

drainage limitations) both crops show similar trends, where highest yields observed where no 

mottles were present within 1.5 m of the soil surface. Crop performance was negatively 

affected as drainage limitations increased, with maize being more sensitive to wetness 

indicators close to the surface. Similar yield suppression trends were also evident in the 

subsoil permeability results, where maize yields were more suppressed in the restricted and 

severely restricted when compared to soybean.  
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The results of the individual factor analysis indicate that maize and soybean crops respond 

differently to individual land assessment attributes and these differences should be taken 

cognisance of in crop-specific land evaluation methodologies. Finally, methodological issues 

such as compound and holistic attributes, ease of attribute measurement, class break 

significance, attribute reliability and the potential use of newer technologies such as terrain 

analysis, were introduced with the of view incorporating these findings into new production-

based land evaluation approaches.
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5. DEVELOPMENT AND EVALUATION OF NEW PRODUCTIVITY-

BASED APPROACHES FOR AGRICULTURAL EVALUATION IN           

KWAZULU-NATAL, SOUTH AFRICA 

 

 

5.1 Introduction 

 

The primary objective of land evaluation is to ensure the sustainable management of land, its 

properties and potential for the direct benefit of society (FAO, 2007). As the human population 

continues to rise there will be increasing pressure on the agricultural sector to produce more 

food on an ever-shrinking land base. Thus, it is imperative that land with sufficient production 

potential is accurately identified, effectively utilised and protected for agricultural use (Collett, 

2009). Furthermore, land evaluation needs to shift away from basic classification to 

approaches that are able to quantify and a predict land productivity performance (Rossiter, 

1996).  

 

The first step in effectively evaluating and predicting agricultural productivity performance is 

to identify and assess the factors that influence it (Viana et al., 2021). A parametric approach 

to land evaluation can achieve this objective by identifying, scoring and weighting pertinent 

land characteristics (Sys, 1985). Parametric evaluation systems can also account for 

interactions, between the selected factors, through addition or multiplication of single-factor 

indexes (de la Rosa & van Diepen, 2002). Parametric approaches have successfully been 

used in land evaluation for decades (e.g. Riquier et al., 1970; Storie, 1978) and continue to 

play an important role to this day, where they are used in soil productivity ratings (e.g. USDA, 

2011), cf Section 2.6.2. Importantly parametric methods allow for the integration of both 

qualitative and quantitative approaches to form hybrid land evaluation systems (Mugiyo et al., 

2021). However, the limitations of parametric approaches are well documented with Van 

Diepen et al. (1991) indicating that many parametric indices are developed with no verification 

other than expert judgement. Further, Dalal-Clayton & Dent (1993) found that parametric 

indices are subjective and their scoring logic is difficult is trace. To overcome these limitations 

yet retain the benefits of an accessible and user-friendly scoring system, the biophysical 

relationship between crop yield and evaluation attributes were used to drive the selection, 

scoring and weighting of land assessment attributes. This hybrid approach, hereafter referred 

to as the Biophysical Scoring Classification (BSC), lies between a pure parametric approach 
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and more complex biophysical land evaluation models, as defined by Rossiter (2003) and 

Bouma (1999).  

 

Traditionally, expert knowledge, empirical models and conventional statistical methods have 

been applied to improve our understanding of the factors influencing agricultural production, 

however these methods may not fully incorporate non-linear behaviour or complex interactions 

(Viana et al., 2021). To address these limitations Machine Learning (ML), a branch of artificial 

intelligence has recently emerged as an alternative to more conventional methods (Rodriguez-

galiano & Chica-rivas, 2014). In the past decade ML based methodologies have been applied 

across all scientific disciplines, but specifically from a soil science perspective ML is primarily 

data-driven to develop soil-environmental associations using training samples (Zhang et al., 

2021). Ließ et al. (2021) further acknowledges that ML based algorithms are suitable for use 

in pedometric applications as they are able to derive knowledge and extract soil-landscape 

relation from complex datasets. Ultimately, ML techniques enable computers the ability to 

learn without the need for explicit programming and is a particularly effective technique in the 

fields of data analytics, system modelling and prediction  (Taluja & Thakur, 2018).  

 

In Chapter 3, existing systems such as the South African Land Capability System and the 

regionalised KwaZulu-Natal Land Capability System were found to be effective in delineating 

potentially arable areas. However, the relationship between land classification and actual 

productivity, at both a polygon or buffered point scale, has been identified a notable limitation 

(cf Chapters 3 and 4). These limitations coupled with demand to update assessment 

methodologies, in order to incorporate newer technologies, has ultimately created a need to 

develop new, crop specific productivity-based systems to compliment arability assessments. 

It is therefore envisioned that the new approaches will be used to improve our understanding 

and classification of arable land classes. 

 

The focus of this Chapter is the development of new productivity-based assessment 

approaches using a more traditional scoring approach and contemporary ML technologies. 

These approaches aim to assist professional agricultural assessors, in a particular production 

environment, to make more informed decisions. With the aim to assist in the decision relating 

to whether a farm should remain under the protective auspices of Act 70 of 1970 (Republic of 

South Africa, 1970) or be released to a non-productive land use. Consequently, these 

approaches need to be geared towards the practical needs of a typical agricultural assessor. 

As such the proposed methods should consist of soil, terrain and climate attributes that can 

be rapidly determined during a pedological survey or in the case of terrain layers or climatic 
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data, made available for easy access via digital channels. Assessment attributes that require 

extensive precision sampling, laboratory analysis or secondary modelling should be avoided.   

 

Consequently, the objectives of the chapter are therefore to: 

1. Compile a suite of land evaluation attributes from pertinent methodologies and 

introduce new attributes based on terrain modelling, soil colour spectrophotometry and 

infield pedological assessments. 

2. Link land evaluation attributes to maize and soybean yields in a specific commercial 

production environment, across multiple growing seasons. 

3. Develop novel, productivity-based land evaluation approaches to broadly predict land 

performance for maize and soybean. 

4. Test the applicability and robustness of these approaches in different locales. 

5. Demonstrate the utility of these approaches in broader agricultural land release 

applications. 

 

5.2 Materials and Methods 

 

5.2.1  Study area for model building and initial testing 

 

The study area used in the model building process incorporates FCL Farming, the same 

farming area used in Chapters 3 and 4, but also includes additional farm portions owned and 

managed by Zunckel Farming (Figure 5-1). Both FCL and Zunckel commercial farming 

operations are located in the same BRU (Wxc5), which indicates that factors such as soil type, 

climate, altitude, terrain form and vegetation are relatively homogenous across the delineated 

unit (Camp, 1999). Thus, the broad climatic, geological, terrain and soil patterns as provided 

in Chapter 3.2.1 for FCL farming are also applicable for study area used in the overarching 

model building process.  

 

The surveyed area extends from 28o 36’ 08.94” S; 29o 15’ 27.24” E to 28o 42’ 30.12” S; 29o 

10’ 46.45” E and covers some 3 638 ha. Both farming enterprises are typical of the region 

combining dryland and irrigated cultivation of maize and soya, on a three-year rotation, as well 

as grazing of livestock on both natural veld and improved pastures. Both are intensively 

managed and considered to be highly productive operations. The reason for including multiple 

farming enterprises in the model building process was twofold. First, was to reduce the impact 

of farm specific properties or management factors. Second, it allows for the inclusion of 

additional soil observations, increasing sample counts particularly in more spatially 
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constrained landscape units and soil types, with hope of creating more robust relationships 

between yields and land evaluation attributes. 

 

 

Figure 5-1: Location of the model building study area – (a) Location within southern Africa (b) Location 
within the Province of KwaZulu-Natal (c) Regional locality map and soil observation points for the 
Bergville survey area (Background Layers provided by ESRI, 2021) 

 

5.2.2  Study areas: model verification 

 

Three spatially explicit verification areas (Figure 5-2), hereafter referred to as Newcastle, 

Blood River and Luneburg, were selected to assess the performance of the new land 

assessment approaches, developed in the Bergville area.  

 

The selection of suitable verification sites was restricted to where chief commercial dryland 

maize and soybean growing areas in KwaZulu-Natal, directly coincide with the existence of 

suitable precision yield data. Ultimately the availability of suitable precision yield data in terms 

of record length, extent and reliability, was identified as the primary limitation in terms of model 

verification area selection.  

 

The three verification areas are similar to the Bergville farms, in that they are all mixed 

commercial farming operations, associated with high levels of land management and are 

(a) 
(c) 

(b) 
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considered to be regional benchmark farms in terms actual crop production. However, 

according to the overarching BRU reports areas (Camp, 1999) each verification area varies in 

terms of  climatic, topographic, broad soil patterns and expected yield (Tables 5-1 and 5-2). 

This heterogeneity will test the robustness and spatial transferability of the classification and 

prediction models derived from the Bergville data. 

 

 
 
Figure 5-2: Location of the verification areas – (a) Location within southern Africa (b) Location within 
the Province of KwaZulu-Natal (c) Regional locality map and soil observation points for the Luneburg 
survey area (d) Regional locality map and soil observation points for the Newcastle survey area (e) 
Regional locality map and soil observation points for the Blood River survey area (Background Layers 
provided by ESRI, 2022) 
 

(a) (b) (c) 

(e) (d) 
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A climatic summary table (Table 5-1) compares rainfall, temperature, and evaporation across 

the various study areas. The Luneberg verification area (Figure 5-2c) encompasses three non-

contiguous farm portions near the KwaZulu-Natal and Mpumalanga Provincial boundary. 

Compared to the other study areas, the Luneberg verification area is considered to be both 

cooler and wetter, on average experiencing 1.5 oC less daily average temperatures and 

receiving nearly 100 mm more mean annual rainfall compared to that of Bergville area (Table 

5-1). On average, the Luneberg verification area also receives the lowest heat units of all the 

study sites. A summary of broad soil, terrain and cropping potential, extracted from the 

overarching BRU report, is provided in Table 5-2. The Luneberg area has the largest elevation 

range of all the study areas and is predominately characterised by rolling terrain with slopes 

of between 5-12%. Camp (1999) considers the Luneberg area “good” for general crop 

production and predicts highest average crop yields across the four study areas, 6.0 t.ha-1 for 

dryland maize and 3.1 t.ha-1 for dryland soybean. Ultimately the Luneberg study area was 

ranked first in terms of broad production potential of the four study areas (Table 5-2). 

 

Table 5-1 Climate summary for the Bergville model building area and three verification sites near 
Newcastle, Blood River and Luneburg (Camp, 1999 and Schulze, 1997) 

 

 

The Newcastle verification area (Figure 5-2d) is located near Chelmsford dam within the WXc1 

BRU. “WX” in the Bioresource codes denotes mean annual rainfall of between 801 and 900 

Unit Area Annual Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Bergville 696 131 123 100 36 11 3 2 11 23 61 84 111

Median mm Newcastle 698 141 117 85 36 10 1 3 8 27 66 88 116

Average Rainfall Blood River 630 114 87 70 35 12 4 3 8 28 68 91 110

Luneburg 774 136 109 96 43 13 2 2 7 30 80 116 140

Bergville 824 162 139 98 40 13 9 7 23 49 68 92 124

Mean mm Newcastle 843 160 115 82 47 15 11 8 26 39 88 110 142

Average Rainfall Blood River 793 131 106 83 47 21 13 15 17 44 82 105 129

Luneburg 918 147 123 88 57 23 12 14 18 52 106 132 146

Bergville 18.4 22.7 23.1 21.5 18.3 14.8 12.3 12.5 14.6 17.8 19.6 21.3 22.5

Mean Average Daily oC Newcastle 17.5 21.7 21.5 20.3 17.5 14.4 11.7 11.8 14.2 17.4 18.4 20.1 21.3

 Temperature Blood River 17.1 20.9 20.7 19.9 17.2 14.4 12.0 12.0 14.0 16.9 17.8 19.1 20.3

Luneburg 16.6 20.5 20.3 19.5 16.7 14.0 11.4 11.6 13.5 16.1 17.5 18.6 20.0

Bergville 167 301 283 264 159 56 0 0 50 144 205 249 295

Heat Units Newcastle 143 270 238 226 135 43 0 0 37 132 167 213 257

(Base 13) Blood River 129 245 216 214 126 43 0 0 31 117 149 183 226

Luneburg 118 233 204 202 111 31 0 0 16 93 140 168 217

Bergville 21.0 26.4 25.0 22.6 19.1 15.8 14.1 14.7 16.7 19.9 22.3 25.0 29.8

Mean Daily Solar MJ/m2/day Newcastle 18.8 22.9 21.3 20.2 17.5 14.8 13.3 14.0 15.6 18.1 19.5 21.5 26.6

Radiation Blood River 18.4 22.6 21.3 19.9 17.0 14.4 13.1 13.7 15.4 17.8 18.8 20.6 26.2

Luneburg 18.5 22.4 21.3 19.9 17.2 14.8 13.4 14.0 15.8 18.0 19.0 20.4 26.1

Bergville 1900 216 179 163 125 105 92 103 138 171 190 196 222

A-Pan mm Newcastle 1864 204 171 160 126 107 94 105 141 169 186 189 212

Evaporation Blood River 1827 197 166 159 129 109 95 106 142 164 177 179 204

Luneburg 1862 201 169 160 128 109 96 107 145 169 186 184 208
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mm, while the “c” denotes an upland area with an altitude of between 901 and 1400 m (Table 

5-1). This BioResource unit (BRU) is analogous to the broad rainfall and altitude ranges found 

in the Bergville area. However, on average the Newcastle verification area is associated with 

lower daily average temperatures, fewer sunshine hours and heat units compared to the 

Bergville area (Table 5-1). The broad soil patterns for the overarching BRU indicates that the 

Newcastle area has the highest proportion of high potential and annual cropping soils of all 

the study areas and a high potential for crop production (Camp, 1999). 

 

The Blood River verification area (Figure 5-2 e) is located near the town of Vryheid and falls 

within BioResource Unit Vc4, indicating an upland site within an average mean annual 

precipitation of between 750 – 800 mm. When compared to the other study areas, the Blood 

River verification area receives the lowest annual rainfall. The Blood River verification site also 

experiences, on average, lower daily temperatures and heat units as well as fewer sunshine 

hours compared to the model building Bergville area. The broad soil patterns also indicate that 

the Blood River area has the lowest proportion of both high potential and annual cropping soils 

(Camp, 1999). Consequently, the Blood River study area is ranked last (4) in terms of 

production potential of the four study areas (Table 5-2).  

 

Rainfall data for the three verification farms was obtained from representative rain gauges, 

which area maintained and operated by the Agricultural Research Council (ARC). Seasonal 

rainfall patterns, between 2017 and 2020 across the three verification areas (Figure 5-3) were 

similar to those observed in Bergville area (Figure 3-10). 

 

Table 5-2 Broad terrain, soil and production potential summary for the Bergville model building area 
and three verification sites near Newcastle, Blood River and Luneburg (Camp, 1999) 

 Bergville Newcastle Blood River Luneburg 

BRU WXc5 WXc1 Vc4 Yc2 

Altitude Range (m) 1107-1473 1192-1418 989-1562 961-1738 

Terrain Rolling Rolling Rolling Rolling 

Dominant Slope (%) < 5 < 5 5-12 5-12 

High Potential Soils (%) 22.7 48.9 22.2 47.6 

Annual Cropping Soils (%) 55.0 62.3 38.6 53.4 

Avg. Maize Yield (t.ha-1) 5.0 6.0 4.8 6.7 

Avg. Soybean Yield (t.ha-1) 2.2 2.7 2.2 3.1 

BRU Production Potential Good High Good High 

Production Potential Rank 3 2 4 1 
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Where the 2018 season received above rainfall, 2019 season received below average rainfall 

while the 2020 was average season in terms of rainfall received. This consistent pattern of 

seasonal rainfall variation across the model building and verification areas improves the 

comparability of crop performance across the various regions. This pattern is also taken 

cognisance of in the annual yield normalisation process, which provides a level playing field 

for soil and land assessment attributes comparisons across muliple growing seasons (cf 

Chapter 4.2.2). 

 

 

Figure 5-3 Seasonal rainfall (October – March) and average long-term rainfall for the three verification 
areas across three growing seasons (Schulze, 1997) 

 

5.2.3  Soil and land assessment surveys 

 

For the model building area near Bergville, land assessment surveys and associated soil 

sampling took place predominantly over the winter of 2016 and 2020 (Figure 5-1). Smaller, 

supplementary surveys were conducted between 2017 and 2019. The verification areas 

(Figure 5-2) were surveyed during the winter of 2021 Observation points were located using 

a purposive sampling approach using expert knowledge, current land use, slope and 

topographic positions.  

 

Most observations were conducted using soil pits dug to at least 1.5 meters or refusal, while 

a small proportion were collected by confirmatory auger holes. All observation points were 
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classified using the Soil Classification, A Taxonomic System for South Africa (Soil 

Classification Working Group, 1991).  

 

At each sampling point the following information was collected: 

• General: Spatial position, land use, crop type, geology, soil sample reference numbers 

and general comments; 

• Infield Terrain Characteristics: Terrain position, unit and slope class (via Abney 

level); 

• Soil Classification: Horizon name, horizon thickness and colour, soil form and family;  

• Land Assessment Attribute Data: Total soil depth, effective depth, topsoil clay 

content, permeability of B1 Horizon, soil structure type and grade, wetness 

classification, soil crusting, rockiness, soil erosion type and severity as well as method 

specific land assessment attributes; and 

• Topsoil Samples: A topsoil sample was extracted for colour spectrophotometry 

analysis 

 

This information was collected using handheld Trimble GeoXT GPS Units with on-board 

Terrasync Software (www.trimble.com), to record positions and the associated attribute data 

using customised data dictionaries. All recorded positions were downloaded, differentially 

corrected, and exported as shapefiles using Trimble GPS Pathfinder Office software.  

 

5.2.4 Precision yield data collection and processing  

 

Seasonal precision yield data was collected from continuous precision yield monitors for both 

FCL and Zunckel Farming operations, near Bergville. For FCL Farming five years of yield data, 

from 2015 through to 2020, for both dryland maize and soyabean, were collected, cleaned 

and processed to provide dry yield mass per hectare. For Zunckel Farming three years of 

precision yield data for growing seasons 2017-18, 2018-19 and 2019-20 was available and 

yields for these years were similarly collected and processed. Obtained yields for both 

operations were aggregated to provide a single model building yield file representing the 

Bergville production area for the five growing seasons. 

 

As with the model building area in Bergville, seasonal precision yield data was collected for 

each of the three verification farms located near Bloodriver, Luneberg and Newcastle. For all 

verification areas three years of precision yield data for growing seasons 2017-18, 2018-19 

and 2019-20 was extracted, cleaned and processed. 
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All cleaned and processed yield data, for both the model building and verification areas, were 

then extracted using the 8 m circular yield buffer around each soil observation point, as 

previously determined in Chapter 4 (cf Chapter 4.2.2 and 4.3.1). The annual median yield 

value for each buffer was calculated and normalised to a provide a Standard Normalised Value 

(SNV) as outlined in Chapter 4.3.2 and 4.3.2. Finally, a binary yield classification was 

undertaken where SNV>0 for maize and soybean were classified as above average yields, 

while SNV<0 were classified as below average. 

 

5.2.5 Assessment attributes  

 

A total of 78 land assessment attributes were collated to analyse their relationship and 

influence on soybean and maize productivity. A schematic diagram (Figure 5-4) provides an 

overview of the major attribute subdivisions and how they relate to soil, terrain and climatic 

factors. Many of the assessment attributes come from the five land assessment methods 

utilised in Chapters 3 and 4. Other major attribute sources include DEM derived products from 

the ALOS 30 m model, soil colour spectrometry as well as other infield observations such as 

soil structure and soil classification information.  

  

Figure 5-4 Assessment attribute schematic highlighting the various data sources and their relationship 
to soil, terrain and climate factors 

 

The inclusion of new assessment attributes was based on the findings in Chapter 4.3.4, which 

compared crop productivity to individual land assessment attributes. For example attributes 
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emanating from digital terrain classification and analysis were introduced to potentially find 

new or stronger correlations between productivity and terrain attributes.  

 

5.2.5.1 Attributes and factors derived from land assessment methods 

 

A total of 48 attributes were extracted from the Visual Soil Assessment (VSA) methods, the 

National Department of Agriculture Forestry and Fisheries National Capability Digital Product 

(DAFF LC), South African Land Capability system (RSA LC), Kwazulu-Natal Land Capability 

(KZN LC) and KwaZulu-Natal Ecotope Classification (Ecotope). Almost all the attributes 

extracted from these assessment methods is categorical data and stored in the form of 

individual scores, tallies or text (Table 5-3). The data collection methodology for the various 

assessment methods is provided in Chapter 3.2.3. 

 

Table 5-3 Assessment attribute and factors derived from land assessment methods 
Method / Dataset Attribute / Factor Type Unit Reference 

 Soil Texture Score Integer  

 Soil Structure Score Integer  

 Soil Porosity Score Integer  

 Soil Mottling Score Integer  

 Soil Colour Score Integer  

 Earthworm Presence Score Integer Shepherd et al.  

 Soil Smell Score Integer (2008); 

Visual Soil Assessment for  Soil Rooting Depth Score Integer Shepherd (2010) 

Maize and Field Crops Hardpan Presence Score Integer  

 Soil Ponding Score Integer  

 Soil Crusting Score Integer  

 Soil Erosion Score Integer  

 Soil Quality Score Tally Integer  

 Soil Quality Description Class Text  

 Land Capability Score Integer  

 Soil Capability Score Integer  

DAFF Digital Land Capability Terrain Capability Score Integer DAFF (2018a) 

 Climate Capability Score Integer  

 Land Capability Description Class Text  

 Erosion Hazard Class Integer  

 Flood Hazard Class Integer  

 Effective Soil Depth Class Integer  

 Soil Texture Class Integer  

 Soil Erodibility Group Class Integer Scotney et al.  

RSA Land Capability Internal Drainage Class Integer (1991) 

 Mechanical Limitations Class Integer  

 Other Limitations Class Integer  

 Climatic Factors Class Integer  

 Soil Capability Class Class Integer  

 Land Capability Class Class Integer  

 Slope Class Class Text  

 Topsoil Texture Class Range  

 Effective Rooting Depth Class Range  

KZN Land Capability Upper Soil Permeability Class Integer Camp et al. (1995); 

 Wetness Limitations Class Text Smith (2006) 
 Soil Crusting Class Integer  

 Rockiness Class Integer  
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Method / Dataset Attribute / Factor Type Unit Reference 

 Land Class Class Integer  

KZN Land Capability Land Capability Class Integer Camp et al. (1995); 

 Climate Class Class Integer Smith (2006) 

 Land Potential Class  Integer  

 Soil Group Class Text  

 Topsoil Clay Content Class Integer  

 Effective Soil Depth Class Integer Camp et al. (1998);  

KZN Ecotope Slope Class Text Smith (2006) 

 Rockiness Class Integer  

 Crop Ecotope Class Text  

 Full Ecotope Class Text  

 

 

5.2.5.2 Soil colour spectrophotometry  

 

Pedology is a branch of science in which the colour is an essential element and assists to both 

classify and distinguish between specific soil properties (Pegalajar et al., 2020). During field 

surveys it was noted that topsoil bleaching was often an indicator of subsoil wetness. Similar 

observations were made by Clarke et al. (2020), where topsoil bleaching was found to be 

hydrologically driven in summer rainfall areas, such as this one. In the previous Chapter (cf 

Chapter 4.3.4) it was confirmed that subsoil wetness has influence on dryland yields, 

consequently it was conjectured that topsoil colour and bleaching status could be an indicator 

of yield potential.  

 

To determine topsoil soil colour Munsell soil colour charts (Munsell Colour Company, 1975) 

were utilised by matching soil samples with standardised colour chips. However, this 

traditional method is commonly associated with inaccuracies (Marqués-mateu et al., 2018). 

To reduce user error, samples were extracted for spectrophotometry analysis in order to more 

consistently classify soil colour and determine its impact of maize and soybean yields. Topsoil 

samples were extracted to determine Munsell Soil Colour, bleaching status and spectral 

reflectance (Table 5-4) using a Konica Minolta CM-600d spectrophotometer (Minolta, Osaka, 

Japan) and associated methodology as detailed in Clarke et al. (2020). The bleaching status 

of a topsoil was determined using the E horizon colour specifications, as outlined in Taxonomic 

Soil Classification System for South Africa (SCWG, 1991), where a soil considered bleached 

if it has “grey” matrix colours within particular colour range. A lightness index (L_D65_) was 

also included in the comparative yield analysis. 
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Table 5-4 A summary of soil colour spectrophotometry attributes 

Method / Dataset Attribute / Factor Type Unit Reference 

 
 
 
Soil Colour  
Spectrometry 

Munsell Soil Colour Class Text Munsell Colour Company 
(1975) 
 

Bleaching Status Class Text Soil Classification Working 
Group (1991) 
 

Soil Colour  
Lightness (L_D65_) 

Index Integer Clarke et al. (2020) 

 

5.3.5.3 The digital elevation model and terrain covariates 

 

A Digital Elevation Model (DEM), with a 30 m resolution, was sourced from the Advanced 

Land Observing Satellite (ALOS) global surface model (Japan Aerospace Exploration Agency, 

2021). The ALOS 30 m DEM was selected as it is freely available and presents lower error 

rates than other respective digital surface models (Nikolakopoulos, 2020). The DEM was used 

as the base raster to create the various terrain covariates through the use of the System for 

Automated Geoscientific Analyses (SAGA) software programme (Conrad et al., 2015). The 

list of selected terrain attributes, their unit of measurement and brief attribute description is 

provided in Table 5-5. The terrain attributes were selected based on their potential to either 

directly influence crop performance or pertinent soil properties. 
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Table 5-5 A summary of terrain attributes derived from the 30 m ALOS DEM 

Terrain Attribute Unit Description Reference 

Elevation [m] Elevation above sea level as set by the ALOS 30 m DEM. Japan Aerospace Exploration 

Agency (2021) 

 

Aspect [deg] Degrees clockwise direction from North that a slope faces. Moore et al. (1993) 

Aspect [rads] Radians clockwise direction from North that a slope faces. Conrad et al. (2015) 

Slope [%] The percentage of inclination of the surface relative to the horizontal. Tesfa et al. (2009) 

Slope [deg] The angle of inclination of the surface relative to the horizontal. Conrad et al. (2015) 

Topographic Wetness Index [index] Steady state wetness index as a function of slope and upstream contributing area per unit 

width orthogonal to the flow of direction.  

 

Green et al. (2007); Guo et al. 

(2019)  

Relative Slope Position [index] The position of an observation point relative to the ridge and valley of a slope, with a value 

of 0 for the bottom of the valley and 1 for the top of the ridge. 

 

Guo et al. (2019) 

Terrain Ruggedness Index [index] A quantitative measure of topographic heterogeneity. Riley et al. (1999) 

Terrain Position Index [index] Algorithm derived index used to measure topographic slope positions and to 

automate landform classifications. 

 

De Reu et al. (2013) 

Profile Curvature [m-1] The curvature of the surface in the direction of maximum slope. Moore et al. (1993) 

Plan Curvature 
[m-1] The curvature of the surface perpendicular to the direction of the maximum slope. Moore et al. (1993) 
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Figure 5-5 The ten most common landform elements classified by geomorphons (Jasiewicz and Stepinski, 2013) 

 

 

 

Slope Length Factor [dimensionless] A dimensionless factor providing an indication of slope length and steepness. Böhner and Selige (2006) 

 

Geomorphon Unit [dimensionless] Terrain classification using a pattern recognition algorithm based which delineates the 

landscape into the 10 most common landform elements (Figure 5-5). 

Conrad et al. (2015); Jasiewicz 

and Stepinski (2013) 

 

Convergence Index [index] An index which represents the agreement of the aspect direction of surrounding cells with 

the theoretical matrix direction. 

 

Kiss, (2004) 

Flow Accumulation Index [index] A wetness index as a function of slope and upstream contributing cells. Marques da Silva and Silva 
(2008) 
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5.2.5.4 Other Infield Attributes 

 

Other infield attributes commonly recorded at each observation point were also included in the 

list of attributes (Table 5-6). This includes important attributes like unclassed effective and 

pedological soil depths, soil classification information, soil structural attributes and infield 

terrain unit classification based on the five-unit slope model (Camp et al., 1995).  

 

Table 5-6 A summary of other infield attributes 

Method / Dataset Attribute / Factor Type Unit Reference 

 Seasonal Rainfall Depth mm  

 Terrain Unit Class Text  

 Topsoil Depth Depth mm  

 Soil Form Class Text Soil Classification  

 Soil Family Class Integer Working Group 

 Pedological Depth Depth mm (1991) 

Other Infield Effective Depth Depth mm  

 Topsoil Clay Range %  

 Soil Structure Grade Text  

 Soil Structure Size Text  

 Soil Structure Type Text  

 Soil Form and Family Class Text  

 

 

5.2.5.5 The issue of climate 

 

The influence of climate was taken into account by using climate capability ratings from RSA 

LC, the broad BioResource Group (BRG) from the KZN LC as well as seasonal rainfall 

(Figures 3-10 and 5-3). However, due to the nature of the climatic data all observation points, 

within a particular region, are allocated the same climatic ratings for all years, while rainfall 

depth only varies across growing seasons. Consequently, climatic factors cannot be used to 

determine intra-seasonal yield variation. The use of climate as a determinate in land 

assessment is a contentious issue, with Scotney et al. (1991) indicating a consensus to use 

climate as a criterion in  the RSA LC system was never reached by either the Task Team nor 

the wider range of specialists during system development and testing.  

 

For this research, the approach of Camp et al. (1998) and Smith, (1997) was adhered to, 

where climatic factors were not directly incorporated into the assessment methodologies but 

is rather seen as an overarching factor, which can be used as secondary criterion of overall 

land potential. Further, these production-based approaches are envisioned to be used as 

supplementary assessment method to typical land capability assessment where climate 
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capability has already been included to determine broad arability. Consequently, climatic 

factors would be considered as part of the overarching land evaluation process. 

 

5.2.6 Crop productivity classification and prediction models 

 

This section focuses on the development of three new crop productivity-based approaches for 

use in land evaluation.  

 

5.2.6.1 Machine learning models 

 

Two ML methods were selected to develop novel maize and soybean models for the Bergville 

area, namely Random Forest (RF) and Support Vector Machines (SVM). These approaches 

were selected based on the data available for the model building process as well as the 

successful application of these methods in soil related research (e.g. Hengl, 2009; Kovačević 

et al., 2010). The selection is further supported by Padarian et al. (2019), who through analysis 

of published articles, found that between 2015 and 2020 RF and SVM were the most dominant 

ML methods used in soil science applications.  

 

The RF approach (Breiman, 2001) is a supervised, ensemble ML technique, which uses 

decision trees to provide effective predictions for a variety of a applications involving soil 

properties or classification. RF is a collection of decision trees working together. As a 

predictive tool it is able to identify empirical relationships between randomly selected 

covariates and the target variable using internal cross-validation through the use of these 

multiple decision trees (Makungwe et al., 2021).  

 

The selected SVM approach (Vapnik, 1995) is also a supervised ML methodology commonly 

used in binary classification and prediction by optimally separating classes by a line, plane or 

hyperplane (Est´evez et al., 2022). SVM is an algorithm for maximizing a particular 

mathematical function based on a given set of data (Noble, 2006). This ML technique has 

used widely in soil science applications viz. soil health (Wilhelm et al., 2022), soil quality (Liu 

et al., 2016), soil classes (Kovačević et al., 2010) and soil properties (Bayat et al., 2020).  

 

The contribution of Mr Stephan van der Westhuizen, from the University of Stellenbosch, is 

acknowledged for his role in the development and testing of the two ML models. The R 

Statistical Package (R Core Team, 2013) was used to develop both the RF and SVM models 

using binary classification, with the goal of predicting above average Standardised Normal 

Values (SNV) for maize and soybean yields. Of the total observations for Bergville, 592 for 
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maize and 352 for soybean, 80% were used to train the ML models while 20% were used for 

local testing. Both the RF and SVM models were trained using a 10-fold cross-validation with 

five repeats each and the developed models were assessed again using a 10-fold cross-

validation procedure.  

 

To assess ML models the classification accuracy, specificity, sensitivity and the area under 

the receiver operating characteristic (ROC) curve (AUC) were used as performance metrics. 

A ROC is a probability curve with sensitivity (true positive rate) on the y-axis and 1- specificity 

(false positive rate) on the x-axis, while AUC represents the degree separability from the ROC 

and is an indication of how well the model is able distinguish between classes (Narkhede, 

2018). AUC is a single measure, between 0 and 1, that provides an overarching metric of ML 

model performance, which exhibits a number of desirable properties and should be used in 

preference to overall accuracy for the evaluation of ML algorithms (Bradley, 1997). The higher 

the AUC, the better the model is at distinguishing between observations with above and below 

average SNV of maize and soybean yield. Generally, the model with the best performance 

has a curve with the largest AUC value, of between 0.5 and 1.0 (Chen et al., 2018; Hong et 

al., 2018). An AUC value of  less than 0.5 indicates the model is performing worse than a 

random classifier, while an AUC value of 1 represents a perfect prediction (Yesilnacar & Topal, 

2005). Classification accuracy, specificity and sensitivity have been defined in Chapter 3.2.4, 

as part of the binary land use classification. 

 

5.2.6.2 The biophysical scoring classification  

 

To generate two crop specific classifications, influential land assessment factors were 

determined, selected and weighted for both maize and soybean. First, each of the 78 individual 

attributes were assessed using a combination of statistical analyses, to determine their 

relationship to crop productivity. For categorical data, which forms the majority of the data, the 

significance of yield variation was assessed using a one-way ANOVA or where applicable, the 

non-parametric Kruskal-Wallis test, as outlined in Chapter 3.4.4, while the significance of 

continuous data was assessed using the Pearson Correlation Coefficient. Where duplicate 

attributes, common to multiple methods (e.g. texture and effective rooting depth) were 

identified, factors inter alia ease of measurement, class break significance, and attribute 

reliability, as outlined in Chapter 4.3.4, were used to guide final attribute selection. This 

process is advocated by Sys (1985) where the number contributing factors should be 

minimised to avoid the duplication of similar factors. 
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Yield differences between classes, within each selected attribute, were then used to determine 

its score and subsequent weighting. Classes within significant attributes were generally 

deemed to impact productivity if the SNV values were approximately 10%, where the SNV 

value was either positive or negative. A negative SNV indicates that the attribute or particular 

class is causing a reduction in yields. An example of this is wetness class, where a higher 

class is an indication of higher probability of waterlogging and reduced yields.  Conversely, a 

positive SNV indicates that a particular attribute is associated with above average yields, for 

example deeper effective soils depths. Positive and negative scores were then assigned to 

the selected attributes. While in some instances a zero, or neutral score was assigned to 

particular classes within a land assessment factor, which in the class itself was not significantly 

impacting yields. In most cases the classes, within the selected attribute were weighted, 

wherein multiple positive and negative scores were assigned to classes that considerably 

impacted yield performance. For example severely restrictive subsoils scored a -2 as they 

greatly suppressed yields. As a general rule positive and negative SNV values of around 20%, 

where assigned a double weighting while SNV values of 30% were assigned a triple weighting. 

Where applicable individual classes, with similar SNV, were merged to create a single scoring 

class.  

 

An example of the scoring and weighting processes is provided in Figure 5-6. In this example 

soil crusting was found to be a significant determinate of soybean yield. The classes within 

the soil crusting attribute were then compared to normalised soybean yields to determine their 

scoring (+/-) and weighting. In this instance crusting classes t0 (no crusting) and t1 (moderate 

crusting) were combined and assigned a score of +1 (SNV = +9.3), while t2 (extreme crusting), 

a negative influence on yield was assigned a score of -2 (SNV = -19.1).  

 

 

Figure 5-6: Example of scoring methodology using SNV soybean yield and KZN LC Crusting Classes. 
The numbers above the bars represent the score assigned to each crusting class.  

+1 

-2 
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To produce the final scoring classification the scores were tallied for the selected crop specific 

factors. For both maize and soybean, scores below 1 were classed as negative, below 

average for crop production, while scores greater than 1 were assigned a positive 

classification. This crop specific binary classification of either positive or negative scoring 

performance was compared to above and below SNV yield values for both maize and 

soybean. To assess the performance of these binary classifiers, typical performance metrics 

were determined, including classification accuracy, specificity, sensitivity and the Matthews 

Correlation Coefficient as defined in Chapter 3.2.4.  

 

5.2.7 Statistical Software and Methods 

 

A combination of Microsoft Excel 365, Microsoft Access 365, IBM SPSS (IBM, 2020), Statisica 

(TIBCO, 2018) and R (R Core Team, 2013) were used to manage and statistically analyse the 

large precision yield datasets and method performance.  

 

5.3 Results and Discussion 

 

5.3.1 Machine learning results for the Bergville model building area  

 

The 78 land assessment attributes were used as inputs in the RF and SVM ML, with aim of 

predicting above and below average SNV for maize and soybean yields in the Bergville model 

building area. A total of 80% of maize and soybean observations were used to develop the 

models while the remaining 20% were retained to test the model performance. The result of 

this model testing process, for the various performance metrics, is provided in Table 5-7, which 

are averaged results of the 10-fold cross-validation for both RF and SVM. Individual ROC 

curves were created for both models and every fold for both maize and soybean, creating a 

total of 40 ROC curves from which average ROC and AUC was calculated. Figure 5-7 provides 

a sample of 5 of the ROC curves used in this process for both RF and SVM.     

 

Table 5-7 Machine learning results for the Bergville area for maize and soybean using Random Forest 
(RF) and Support Vector Machines (SNV) 

Crop Model Accuracy Sensitivity Specificity       AUC 

Maize RF 57.2 73.6 39.9 0.67 

Maize SVM 56.7 71.3 41.1 0.64 

Soybean RF 65.3 69.0 61.2 0.76 

Soybean SM 63.0 64.4 62.0 0.74 
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The two different ML approaches provided differing results for maize and soybean yields 

(Table 5-8). Both ML approaches were able to predict soybean yields more accurately than 

maize. RF obtained the highest classification accuracy of 65.3% for soybean, compared to 

57.3% for maize. Both ML methods consistently scored higher in specificity than sensitivity, 

indicating that the models are better predicting above average yields for maize and soybean. 

AUC, which provides general predictive ability of the model, indicates that the RF model is 

superior to SVM for both crops. The RF model achieved an AUC of 0.67 maize and 0.76 

soybean, indicating soybean yield performance was easier to predict than maize.   

 

One of the outputs from the RF model is a list of the top features selected in the model building 

process in the Bergville area. For maize (Table 5-8) the flood hazard factor from the RSA LC 

method was found to be the most important attribute. Of the top ten features, four were 

sourced from ALOS DEM covariates including elevation, slope, terrain position and flow 

accumulation. The selection of these terrain attributes along with the flood hazard factor 

indicates that low-lying areas with significant water accumulation influence yield performance.  

 

 

Figure 5-7 A sample of five individual ROC curves from the cross-validation process for (left to right) 
RF Maize (Red), SVM Maize (Blue), RF Soybean (Dark Red) and SVM Soybean (dark blue)  
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The top features for soybean RF model (Table 5-9) differ significantly from the selected maize 

features. Only two attributes are shared between maize and soybean namely elevation and 

unclassed effective rooting depth, indicating that crop specific yield drivers differ and 

evaluation methods using universal attributes for all crops will tend to be less accurate (e.g. 

Camp et al., 1998).  

 

Table 5-8 Top features selected by the RF model for Maize production in the Bergville area 

Rank   Attribute / Factor Unit / Type Source 

1   Flood Hazard Class RSA LC 

2   Elevation m ALOS DEM 

3   Effective Rooting Depth mm Survey (unclassed) 

4   Slope Degree ALOS DEM 

5   Terrain Position Index Index ALOS DEM 

6   Soil Permeability Class KZN LC 

7   Visual Soil Assessment Score Tally VSA Maize 

8   Flow Accumulation Integer ALOS DEM 

9   Rockiness Class Ecotope 

10   Sterkspruit 2100 Soil Form / Family Soil Classification 

 

Table 5-9 Top features selected by the RF model for Soybean production in the Bergville area 

Rank   Attribute / Factor   Unit    Source 

1   Aspect  Radians ALOS DEM 

2   Relative Slope Position Index ALOS DEM 

3   Soil Colour Reflectance Integer Spectrophotometer 

4   Soil Smell Class VSA Soybean 

5   Elevation m ALOS DEM 

6   Effective Depth mm Survey (unclassed) 

7   Profile Curvature Integer ALOS DEM 

8   Grey Soil Colours Class Spectrometer 

9   Crop Ecotope B22 Class KZN Ecotope 

10   Convergence Index  Index ALOS DEM 
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5.3.2 Biophysical scoring classification development and testing for the Bergville 

model building area  

 

5.3.2.1 Development of a maize productivity classification scoring system using a 

biophysical scoring classification 

 

Three terrain and four soil factors, including one compound soil factor, were selected to create 

the maize BSC (Table 5-10). These six factors were then scored and weighted using yield 

differential within each attribute (Table 5-11). 

 

Table 5-10 Selected attributes for the maize biophysical scoring classification 

Attribute / Factor Attribute Group p        Source 

Geomorphon Unit Terrain < 0.001*        ALOS DEM 

Slope Terrain 0.041*        Infield Survey 

Primary Aspect  Terrain 0.006*        ALOS DEM 

Surface Rocks Soil 0.022*        KZN LC 

Soil Mottling Soil 0.010*        VSA: Maize 

Crop Ecotope  Soil < 0.001*        KZN Ecotope 

Soil Permeability Soil 0.001*        KZN LC 

 

In terms of terrain, geomorphon unit, infield slope and cardinal aspect were found to 

significantly impact maize yields. Of the ten geomorphons, six specific units, generated from 

the ALOS 30m DEM, were found to consistently influence maize yields within the 80% 

classification dataset. Depressions, valleys and summits were associated with reduced yields 

and were assigned a negative score. Depressions and valley units are associated with 

wetness limitations while Summit Units are often shallower in term of effective rooting depths. 

Conversely footslopes, shoulders and flat geomorphons units were assigned a positive score 

due to their consistently favourable production output. The remaining geomorphon units were 

given a neutral score of 0, as these units had a low impact on normalised maize yields across 

the five growing seasons.  

 

Actual infield slope measurements were used in the scoring system to score the impact of 

slope gradient on maize yields. Gently sloping land at elevated landscape positions tended to 

produce above yields, however this was negated by flat areas adjacent to major drainage 

areas, thus slopes of between 0 and 3% were given a neutral score of 0. Slopes of between 

3 and 8% within the assessment area are generally associated with deeper, well drained soils 

and thus a score of +1 was given to this slope class. Finally, steeper areas of over 8%, 
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associated with increased runoff and erosion were given a negative score of -1. Aspect 

(degrees) derived from the ALOS DEM was converted to the four cardinal directions. North 

facing slopes were found to have consistently higher yields in this particular landscape and 

thus a +2 score was assigned to all north facing slopes.  

 

Table 5-11 Maize biophysical scoring classification 

 

 

For maize Relative Slope Position (RSP) and Terrain Position Index (TPI) were also found to 

be significantly correlated to maize yields using the Pearson Correlation Coefficient, where 

yields decreased with increasing index values. For RSP maize yields decreased towards the 

valley bottom, where RSP values neared 0. However, this yield trend was more accurately 

represented by the geomorphon classification, where low lying areas were automatically 

identified and delineated, without the need to create subjective class breaks for a continuous 

terrain variable. Consequently, neither RSP nor TPI were included in the final maize BSC. 

However, for ease of reference correlation values between crop yields and all continuous 

terrain attributes, is provided in Appendix C. 
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In terms of soil factors surface rocks, soil wetness class, crop ecotope and subsoil permeability 

were selected for maize BSC for the Bergville model area. The presence of surface rocks, 

periodic wetness and either overly restrictive or overly rapid permeabilities were consistently 

detrimental to production and were scored negatively, while well drained soils and soils with 

favourable permeability characteristics were scored positively.  

 

Crop ecotope, consisting of soil functional group, topsoil clay and effective rooting depths were 

found to be important contributing factors to maize production. To reduce scoring complexity 

this compound attribute was given preference to individual attributes. Generally, crops grown 

in well, moderately drained and poorly drained soils, with sufficient rooting depths were 

associated with higher yields. While young, gleyed and duplex soils performed poorly across 

the five growing seasons and were given negative scores. Potential overfitting, in terms of 

localised scoring did occur in some instances where standardised yields increased in what 

would be considered traditionally “poorer” ecotopes and shallower depth classes and this 

could lead to inconsistent translation in other production areas. No significant relationships 

could be found between soil colour, bleaching and crop yields using the methods associated 

with the BSC. 

 

5.3.2.2 Testing the maize biophysical scoring classification 

 

Of the 591 maize observations obtained in the Bergville area, 20% or 118 observations were 

randomly selected across both farming enterprises and removed from the model building and 

classification process. These 118 observations were subsequently used to test the accuracy 

of the locally generated BSC.  

 

Of the 118 observations 55% had a positive or above average SNV for dryland maize, while 

45% had a below average standardised yield. The BSC developed for maize production in the 

Bergville area (Table 5.11), indicates that 78% of the observations had a combination of terrain 

and soil attributes that should provide an above average yield, a maize classification score of 

greater than 0, indicating that the resources in the Bergville area are advantageous for dryland 

maize production. This is supported by the fact that annual maize production across the two 

farming enterprises is consistently higher than those achieved at a Provincial and National 

level. Annual crop quality reports produced by The Southern African Grain Laboratory (SAGL) 

between 2016 and 2020 indicates the average maize production for KwaZulu-Natal was 5.68 

t.ha-1 and 4.73 t.ha-1 for South Africa (SAGL, 2016a – 2020a), compared to 9.5 t.ha-1 across 

the Bergville assessment area for the same 5-year period. Ultimately, FCL and Zunckel 
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Farming enterprises are producing 167% more than the Provincial average and 202% more 

than the National average.  

 

The high-performance resource base, from which these yields are achieved, is mirrored in 

resulting dryland maize classification scores (Figure 5-8). The graph summarises the average 

SNV of dryland maize yield per scoring class across the 118 test observations using the maize 

scoring criteria in Table 5-10. The results show that the average classification score, achieved 

across the observations was +2.8, again suggesting above average growing conditions.  

 

The maize scoring classification (Figure 5-8) produced a total of four “negative” classes with 

classification scores ranging from -3 to 0. It is anticipated that these classes will produce below 

average yields while the ten positive scoring classes, with scores ranging from 1 - 10, are 

expected to produce above average yields. The results achieved almost match these 

expectations, with all negative classes producing below average yields and all but one positive 

class producing above average yields. Class 1, the poorest positive class obtained an average 

SNV of -5%, this result indicates that areas with relatively average terrain and soil resources 

are difficult to predict in terms of actual production performance with small yield variations 

negatively influencing classification accuracy.    

 

 

Figure 5-8 Average SNV maize yield achieved in each maize biophysical classification scoring class for 
the Bergville area  
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If the classification is working adequately then standardised yield values should increase with 

maize scoring class, meaning lowest yields should be obtained in Class -3, while highest yields 

should be obtained in Class 10. The results shown in Figure 5-8 illustrates this expectation, 

with the lowest average SNV indeed occurring in the lowest scoring class with the highest 

SNV occurring in the highest maize scoring class. This indicates that the biophysical 

classification system, produced for the Bergville area, can highlight extreme terrain and soil 

factors that cause both very low and very high maize high yields. Finally, the results in Figure 

5-8 illustrates that obtained SNV yields follow a S-Shape, typical of a cubic polynomial function 

with SNV scores being close to 0 for the maize scoring classes between -1 and 2, this shape 

is caused by the normally distributed maize yield data, with most of the yield data falling within 

one standard deviation. Consequently, the yield performance within these classes will 

generally be the most difficult to predict. A correlation analysis, using Pearson 2-tailed 

correlation found that both average median yield and average SNV were significantly 

correlated, to the biophysical scoring classification, at a 0.001 significance level. Average 

median yield produced a 0.302 correlation with maize scoring class, while average normalised 

produced a 0.404 correlation. These results indicate that the classification is performing 

adequately.   

 

Figure 5-9 summarises the binary classification accuracy in each maize scoring class. Overall, 

the classification accuracy for 118 test observations was 65%. A correct prediction occurs 

either when a positive maize class (1 - 10) corresponds to an above average SNV yield value 

(SNV>0), or when a negative maize class (-3 - 0) corresponds to a negative SNV yield value 

(SNV<0). As suggested the BSC system was most accurate at either end of the maize scoring 

classification, with a 78% classification accuracy for classes -3 and -2 and classes between 6 

and above. While binary accuracy was reduced in moderate scoring classes with a total 54% 

of the misclassifications occurring in 4 classes between -1 and 2. This again highlights the 

difficultly of yield performance predication in areas associated with average terrain and soil 

factors. Lower classification accuracies obtained in Classes 4 and 5 could be a reflection of 

non-physical soil properties impacting crop performance or a poor model fit for these types of 

areas.  
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Figure 5-9 Classification accuracy achieved in each biophysical maize classification scoring class for 
the Bergville area. Average classification accuracy is indicted by the dotted line.   
 
 

The 14 individual maize scoring classes were combined into a binary classification. Classes -

3 – 0 were combined into a single class, named “Negative Maize Class” while classes 1 – 10 

where combined into the “Positive Maize Class”. The average dryland yield performance of 

maize within this binary classification is provided in Table 5-12. The average median maize 

yield was significantly different (p = 0.003) across the two classes with observations with a 

positive maize scoring classification of producing 1.84 t.ha-1 more maize. Correspondingly, 

observations with a positive maize scoring classification had a significantly higher average 

SNV (p < 0.001) across the five growing seasons. Observations obtaining a negative maize 

score also obtained a negative average SNV for maize, averaging 52% lower. These results 

indicate that the maize BSC is able predict below and above average yield performance in this 

production environment.  

 

Table 5-12 Average median maize yield, standard deviations and average SNV per maize prediction 
class using the biophysical scoring classification 

Maize Classification 

Prediction 
n 

Avg. Median Yield 

(t.ha-1) 

SD of Avg. 

Median Yield 
Avg. SNV (%) 

Positive Maize Score 92 10.49a 1.30 0.21a 

Negative Maize Score 26 8.65b 1.10 -0.52b 
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The confusion matrix for dryland maize BSC system is provided in Table 5-13, and its 

associated performance metrics are provided in Table 5-14. The system has a classification 

accuracy rate of 65%, with most correct classifications occurring where a positive maize score 

corresponded with an above average yield. Of the 41 individual misclassifications 34 occurred 

where the terrain and soil factors combined to predict an above average SNV yield result, 

where in fact a below average SNV was recorded. Only 7 of 118 (6%) observations were 

classified as a False Negative, where negative maize scores lead to above average yield 

performance. In this case a False Negative is soil whose production performance is 

underestimate by the BSC. This low occurrence should be viewed as an improvement on more 

conservative classification methods, such as RSA where land is often downgraded to lower 

capability classes greatly underestimating crop performance.  

 

Table 5-13 Confusion matrix results for the maize biophysical scoring classification at Bergville 

Bergville Maize Actual Positive SNV Actual Negative SNV Total 

Positive Maize Score 58 34 92 

Negative Maize Score 7 19 26 

Total 65 53 118 

 

Classification Precision is the ratio of positive predicted values to actual true values (Table 5-

14). The BSC resulted in a Precision value of 63%, meaning that only 63% of the observations 

classed as a having positive maize score did in fact produce above average yields. The 

method scored well in terms of Classification Recall (89.2%), which is the probability that the 

maize scoring system correctly predicts an actual true value. This again suggests that the 

scoring system can distinguish between low and high yielding areas. Finally, the maize BSC 

achieved an MCC of 0.30, which indicates a moderate model performance in terms of 

prediction (Mukaka, 2012). 

 

Table 5-14 Classification performance metrics for the maize biophysical scoring classification at 
Bergville 

Metric Result 

CA (%) 65.3 

MR (%) 34.7 

Precision (%) 63.0 

Sensitivity (%) 89.2 

Specificity (%) 33.9 

MCC 0.30 
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5.3.2.3 Development of a soybean productivity classification scoring system using a 

biophysical scoring classification 

 

As with maize, soybean crop performance was assessed using a BSC approach. However, 

for soybean the soil and terrain factors driving production differ (Table 5-15), as well as their 

respective scoring and weights (Table 5-16). 

 

Table 5-15 Selected attributes for the soybean biophysical scoring classification 

Attribute / Factor Attribute Group p        Source 

Basic Terrain Unit Terrain  0.048*        Infield Survey 

Soil Functional Group Soil 0.044*        KZN Ecotope 

Effective Rooting Depth Soil 0.002*        Reclassed from Infield Survey 

Soil Texture Soil 0.007*        RSA LC 

Soil Crusting  Soil 0.046*        KZN LC 

Soil Permeability Soil 0.004*        KZN LC 

 

In terms of terrain attributes the five-unit terrain model, recorded infield, along with RSP, Flow 

Accumulation and Aspect (radians) were all found to be significant in determining soybean 

yield. When converted to cardinal directions the aspect results were found to be insignificant. 

Of the three remaining significant terrain attributes, the basic five-unit terrain model was 

preferred in the final soybean BSC as it is a more holistic terrain attribute with predefined class 

breaks. Again, for reference, correlation values between crop yields and all continuous terrain 

attributes, is provided in Appendix C. 

 

The basic terrain unit model which segments the landscape into five discrete units was found 

to significantly impact yields in four of this units, rests, scarps, footslopes and valley bottoms. 

The valley bottom unit, associated with significant water accumulation and flooding risk 

achieved an average SNV of -37% and were consequently assigned a score of -3. Footslopes, 

associated with moderate water accumulation, consistently produced above average yields 

and were assigned of +1. Generally, units higher in the landscape produced below average 

yields and were scored accordingly, with the crest and scarp unit significantly depressing 

yields and were assigned a score of -2.  

 

In terms of significant soil attributes crusting and permeability along with soil functional group, 

soil texture and effective rooting depth, were selected. However, unlike maize these factors 

were scored separately to more accurately assess soybean production (Table 5-16). Higher 

yielding soil groups including well drained, alluvial and moderately drained soils, were 

assigned a positive scoring classification.  
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Table 5-16 Soybean biophysical scoring classification 

 
 

Young and duplex soils, all associated with severe physical soil limitations, were assigned a 

score of -2. Of the observations containing theses soils groups, 75% produced below average 

yields across the five growing seasons. Three classes of effective rooting depths were created 

from the unclassed rooting depth attribute. Only depths of more than 750 mm were assigned 

a positive score while moderate depths, 450 - 750 mm and effective depths of less than 450 

mm were given a score of -1 and -2 respectively. Finally, severe physical characteristics linked 

to soil textural group 3, restrictive permeabilities as well as extreme surface crusting were 

assigned negative scoring classifications. While soil textural classes 1 and 2 topsoils, “good” 

subsoil permeabilities and non-severe crusting were assigned positive scores. 

 

To produce the final soybean BSC the scores were tallied across the six individual factors. 

Like maize and in terms of the binary classification, scores below 1 were classed as negative 

for soybean production, while scores greater than 1 were assigned a positive classification.  

 

5.3.2.4 Testing the biophysical soybean productivity classification scoring system 

 

Of the 351 soybean observations obtained in the Bergville area, 20% were randomly selected 

and excluded from the model building and classification process, in order to test the accuracy 

of the locally generated classification. Of the 70 testing observations 46% produced a negative 

SNV, while 54% obtained positive SNV over the five-year assessment period. Conversely, the 

BSC predicted that of the 70 test observations, 70% should produce above average yields. 
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While only 30% of the test observations were predicted to produce below average yields. This 

result is 8% lower than that of the maize BSC, but still suggests the resource base in Bergville 

is weighted towards higher yielding crop production. The yields achieved in Bergville, when 

compared to Provincial and National averages, again support this observation. With the 

soybean yields achieved at Bergville being 128% more than the Provincial dryland average of 

2.49 t.ha-1 and 189% more than National average 1.69, as per SAGL Reports across the five-

year period (SAGL, 2017b-2020b).  

 

The results of the soybean BSC (Table 5-16) versus SNV soybean yield is presented in Figure 

5-10. Across the testing observations a total of fourteen different scores were recorded, seven 

negative (-14 - 0) and seven positive (1 - 7). Of the seven negative classes all seven produced 

below average SNV for soybean, the yields decreased relatively constantly from class -14 to 

0. The three lowest classes (-14, -10 and -4) also produced the high classification accuracies, 

in terms of binary classification with a perfect 100% accuracy (Figure 5-11). Of the seven 

positive classes (>0), six produced above yields with classes 5, 6 and 7, being the top yield 

performers. These classes, associated with conducive soil and terrain properties for soybean 

production all produced high CA, of over 75%. 

 

 

 

Figure 5-10 Average SNV soybean yield achieved in each soybean classification scoring class for the 
Bergville area  
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Like maize, biophysical soybean classification binary accuracy was reduced in moderate 

scoring of between -2 and 3 (Figure 5-11). Again, highlighting the difficultly of yield 

performance prediction in areas associated with average terrain and soil factors. However, on 

the whole SNV for soybean production followed the expected trend where yields were below 

average in the negative scoring classes and above average in the positive scoring classes. 

This was confirmed by a correlation analysis using Pearson 2-tailed correlation found that both 

average median yield (0.370) and average SNV (0.504) were significantly correlated, to the 

soybean BSC, at a 0.001 significance level. These results should also be viewed context, 

given the difficulty of traditional land assessment methods (Chapter 4), to predict soybean 

performance in this production environment.  

 

 

Figure 5-11 Classification accuracy achieved in each soybean classification scoring class for the 
Bergville area. Average classification accuracy is indicted by the dotted line.  
 

The 14 individual soybean scoring classes, based on the scoring of the selected soil terrain 

factors, were combined into a binary classification, labelled “Negative Soybean Class” and 

“Positive Soybean Classes”. The average dryland yield performance of soybean within this 

binary classification is provided in Table 5-17. The average median soybean yield was 

significantly different (p = 0.022) across the two classes, with observations with a positive 

soybean scoring classification producing 0.5 t.ha-1 more than it negative counterparts. 

Correspondingly, observations with a positive soybean BSC had a significantly higher average 

SNV (p < 0.003) across the five growing seasons, combining to produces yields 28% above 

average. While observations obtaining a negative soybean score averaged some 37% lower, 
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over the five growing seasons. These results indicate that the soybean BSC is able predict 

below and above average yield performance in this production environment. These significant 

yield differences achieved across these classes should be viewed as a significant 

improvement on traditional approaches (cf Chapter 4.3.3).  

 

Table 5-17 Average median soybean yield, standard deviations and average SNV per soybean 
prediction class using the biophysical scoring classification 

Soybean 

Classification 

Prediction 

n 
Avg. Median Yield 

(t.ha-1) 

SD of Avg. 

Median Yield 
Avg. SNV (%) 

Positive SNV 49 3.20a  0.91 27.93a 

Negative SNV 21 2.70b 0.77  -37.37b 

 

The confusion matrix for dryland soybean BSC is provided in Table 5-18 and its associated 

performance metrics are provided in Table 5-19. The system has a classification accuracy 

rate of 65.7%, with most correct classifications occurring where a positive soybean score 

corresponded with an above average yield. Of the 24 individual misclassifications 72% 

occurred where the terrain and soil factors combined to predict an above average SNV yield 

result, where in fact a below average SNV was recorded. In these instances, the crop yield 

performance is below the predicted resource potential.  

 

Only 10% of observations were classified as a False Negative, where negative soybean 

scores led to above average yield performance. In this case a False Negative is soil whose 

production performance is underestimated by the BSC approach. As with the maize 

classification, this low occurrence should be viewed as an improvement on more conservative 

classification methods, such as the RSA LC. 

 

Table 5-18 Confusion matrix results for the biophysical dryland soybean classification at Bergville 

Bergville Soybean Actual Positive SNV Actual Negative SNV Total 

Predicted Positive SNV 32 17 49 

Predicted Negative SNV 7 14 21 

Total 39 31 70 

 

In terms of Precision, 65.3% of the observations classed as a having positive soybean score 

did in fact produce above average yields (Table 5-19). The method scored well in terms of 

Classification Sensitivity (82.1%), which is the probability that the soybean scoring system 

correctly predicts an actual true value. Like the parametric maize classification this high 

Sensitivity suggests that soybean scoring system can distinguish between low and high 
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yielding areas. Finally, the parametric soybean system achieved an MCC of 0.29, which is 

considered to be moderate in terms model performance (Mukaka, 2012). 

 

Table 5-19 Classification performance metrics for the biophysical dryland soybean classification at 
Bergville 

Metric Result 

CA (%) 65.7 

MR (%) 34.3 

Precision (%) 65.3 

Sensitivity (%) 82.1 

Specificity (%) 45.2 

MCC 0.29 

 

 

5.3.2.5 Contextualising maize and soybean classification performance using 

biophysical scoring classification 

 

In agricultural land assessment there is a need to contextualise the findings of the 

classification system or model. An assessed portion of land should not only be viewed in 

isolation but also compared to land and crop performance at a regional, Provincial and/or 

National scale. Unfortunately, reliable regional yields were not available and thus Provincial 

and National yields from SAGL (2016-2020), were used to judge crop and farm performance 

from a Provincial and National perspective (Tables 5-20 and 5-21).  

 

As previously stated, the FCL and Zunckel Farming enterprises which comprise the model 

building area, produce on average,167% more maize than the Provincial average and 202% 

more than the National average. Similarly, soybean yields achieved in the model building area 

produced 128% more than the Provincial dryland average and 189% more than the National 

average over the five growing seasons. In order to contextualise land and crop performance 

the Provincial and National yield averages were used to benchmark the BSC for maize and 

soyabean. 

 

Confusion matrixes (Table 5-20) were compiled using the annual Provincial and National 

averages between 2016 and 2020 and compared to the binary BSC for maize and soybean. 

The lower yields achieved at both a Provincial and National level greatly increases the count 

of above average yield observations in the Bergville area. When benchmarked against 

Provincial yields 111 of 118 (94%) of Bergville maize observations are above the Provincial 

average while 98% are above the National average. A similar increase occurs in soybean 
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benchmarking with all but one observation being below the National soyabean average. This 

benchmarking skews both True Positive and False Negative counts, while almost removing 

False Positive and True Negative counts (Table 5-21). This ultimately results in a higher 

classification accuracy as both maize and soybean BSC approaches assigned above average 

scores to the local terrain and soil resources. 

 

When benchmarked against Provincial and National crop averages the classification accuracy 

improves from approximately 65% at farm level to between 69 and 78% for both maize and 

soybean (Table 5-21). Along with classification accuracy, precision is also improved using 

Provincial and National yield benchmarking, compared to locally achieved yield averages and 

highlight the significant production potential of the Bergville farms. Unfortunately, the 

benchmarking process also skews the number of True Positive and False Negative 

occurrences resulting in decreases in both Sensitivity and MCC values. A regionally 

determined yield benchmark for both maize and soybean, could see improved classification 

accuracies without comprising the overall model performance. The importance of 

benchmarking and spatial contextualisation is further discussed for the three verification 

areas. 

 
Table 5-20 Set of confusion matrixes using Provincial and National Yield Averages. Bracketed figures 
show changes in counts from farm level results 

KZN Maize Above Average Yield Below Average Yield Total 

Positive Maize Score 88 (+30) 4 (-30) 92 

Negative Maize Score 23 (+16) 3 (-16) 26 

Total 111 7 118 

RSA Maize Above Average Yield Below Average Yield Total 

Positive Maize Score 91 (+33) 1 (-33) 92 

Negative Maize Score 25 (+18) 1 (-18) 26 

Total 116 2 118 

KZN Soybean Above Average Yield Below Average Yield Total 

Positive Maize Score 46 (+14) 6 (-11) 52 

Negative Maize Score 14 (+7) 4 (-10) 6 

Total 60 10 70 

RSA Soybean Above Average Yield Below Average Yield Total 

Positive Maize Score 47 (+15) 2 (-15) 49 

Negative Maize Score 20 (+13) 1 (-13) 21 

Total 67 3 70 
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Table 5-21 Performance metrics for various confusion matrixes for maize and soybean yields at farm, 
Provincial and National levels 

 
Maize 

Farm 

Maize 

KZN 

Maize 

RSA 

Soybean 

Farm 

Soybean 

KZN 

Soybean 

RSA 

CA (%) 65.3 77.1 78.0 65.7 71.4 68.6 

Precision (%) 63.0 95.7 98.9 65.3 88.5 95.9 

Sensitivity (%) 89.2 79.3 78.4 82.1 76.7 70.1 

Specificity (%) 33.9 42.9 50.00 45.2 40.0 33.3 

MCC 0.30 0.13 0.09 0.29 0.13 0.02 

 

 

5.3.3 Performance assessment of biophysical scoring classification and machine 

learning models for dryland maize in three different verification areas   

 

A total of 234 observation points, across the three verification areas, were used to verify the 

performance of the BSC as well as the RF and SVM machine learning models. The three 

selected verification farms all produced above average maize yields, when compared to the 

Provincial and National records (Table 5-22). Newcastle produced the highest yields, followed 

by Bloodriver and Luneburg, which averaged less than 8 t.ha-1 across the three verification 

seasons. Based on the broad climatic and resource potential extracted from the BRU reports 

(Camp, 1999), Luneburg should be highest performer of the three verification areas, however 

local soil and terrain conditions may be limiting production potential.   

 
Table 5-22 Summary of Provincial and National dryland maize yield performance compared to the three 
verification areas at Bloodriver, Luneberg and Newcastle  

Year 

Bloodriver 

 Maize Yields 

(t.ha-1) 

Luneburg 

Maize Yields 

(t.ha-1) 

Newcastle 

Maize Yields 

(t.ha-1) 

Provincial 

Maize Yields 

(t.ha-1) 

National  

Maize Yields 

(t.ha-1) 

2018 9.04 8.79 9.03 5.82 4.80 

2019 7.05 7.82 8.04 5.63 4.34 

2020 8.12 6.18 9.37 5.79 5.46 

Average 8.07 7.60 8.81 5.75 4.87 

 

The verification process again utilises binary classification, using farm specific yields, to 

assess model performance. For the BSC approach, a correct prediction occurs either when a 

positive maize classification corresponds to an above average SNV yield value (SNV>0), or 

when a negative classification corresponds to a negative SNV yield value (SNV<0). For the 

machine learning models its performance is based on the accuracy of the model to predict an 

above average yield event as well as to classify the probability of both the above below 
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average event.  A summary of the performance of the three approaches, across the three 

verification areas, is provided in Tables 5-23- 5-25.  

 

Overall, the Random Forest model achieved the highest accuracy across the three verification 

areas. The prediction accuracy of 56.8% is almost identical to the accuracy achieved in the 

Bergville model building area of 57.2%. The BSC was second best approach in terms of 

accuracy and achieved an overall accuracy of 53%, some 12% lower than the accuracy 

achieved in Bergville. The SVM model was not only the poorest overall performer for maize 

binary yield prediction but also for each individual verification area (Table 5-25). It also 

produced the lowest classification performance metrics of the three approaches. Thus, the 

remainder of the results section for maize will focus on the performance of the RF Model and 

maize BSC.   

 

Both the RF model and BSC performed well at Bloodriver with prediction accuracies of 66% 

and 71%, respectively. Overarching performance indicators for both approaches, MCC for the 

biophysical classification and AUC for the RF model, were also the highest of the three 

verification areas. Both approaches also had high specificity values, which is the proportion of 

true negatives that are correctly predicted by the model, in this case below average maize 

yields. Most of the misclassifications occurred when the models incorrectly predicted a below 

average yield. This results in lower sensitivity values of 52% for RF and 56% for the maize 

BSC and were the lowest achieved across the verification farms. This error produces False 

Negative which is a Type II error, whereby the model or classification is underestimating the 

actual land performance. In terms of land assessment this type of error should be avoided as 

you are undervaluing land potential. A longer assessment period, incorporating more seasonal 

variation, as well as addition samples could determine if this error is consistently occurring, 

which may require local calibration of the method. 

 

Table 5-23 Summary of performance metrics for the maize biophysical scoring classification for the 
three verification areas   

Overall Bloodriver Luneburg Newcastle 

n 234 44 68 122 

CA (%) 52.6 70.5 57.4 43.4 

Precision (%) 54.6 87.5 56.5 47.8 

Sensitivity (%) 66.4 56.0 74.3 66.2 

Specificity (%) 36.7 89.5 39.4 17.5 

MCC 0.03 0.47 0.15 -0.18 
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Table 5-24 Summary of performance metric for the Maize Random Forest Model for the three 
verification areas 

 Overall Bloodriver Luneburg Newcastle 

n 234 44 68 122 

CA (%)  56.8 65.9 54.4 54.9 

Sensitivity (%) 79.2 52.0 77.1 90.7 

Specificity (%) 31.2 84.2 30.3 14.0 

AUC 0.47 0.73 0.53 0.41 

 

Table 5-25 Summary of performance metric for the Maize Support Vector Machine Model for the three 
verification areas 

 Overall Bloodriver Luneburg Newcastle 

n 234 44 68 122 

CA (%)  46.1 56.8 52.9 38.5 

Sensitivity (%) 66.1 28.0 31.4 27.3 

Specificity (%) 28.8 94.7 75.8 50.8 

AUC 0.49 0.63 0.59 0.43 

 

More insight into the performance of the biophysical maize scoring classification across the 

three verification areas is provided in Figures 5-12a-c. and 5-13a-c. The Bloodriver verification 

area (Figure 5-12a) shows that all negative scoring classes produced below average yields, 

indicating that the biophysical maize classification can accurately determine limiting soil and 

terrain factors, which consistently produce negative SNV maize yields. The scoring distribution 

for Bloodriver ranged from -4 and 3. While 40% of observations were classified as negative in 

terms the maize scoring classification. These results indicate that soil and terrain factors are 

poorer in Bloodriver than at Bergville and the other two verification areas. These poorer 

baseline resources are also highlighted in the BRU overviews (Table 5.2). In terms of 

classification accuracy, the BSC was generally lowest on either end of the scoring 

classification, where scoring classes -4 and 3 achieved accuracies of near 50%. The low 

accuracies associated with the -4 scoring class, consists of sandy and poorly drained soils, 

whose combination was not found extensively in the model area building. To improve 

prediction accuracies in the Bloodriver area these specific ecotopes may require further 

calibration with localised yield data.  
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Figure 5-12 Average SNV maize yield achieved in each maize classification scoring class for - (a) 
Bloodriver (b) Luneburg and (c) Newcastle 

 

The Luneburg area produced moderate prediction accuracies of 54% for RF model and 57% 

for the BSC (Tables 5-23 and 5-24). Both approaches produced low specificity values for 

Luneberg, where less than 40% of true negative were correctly predicted by either model. The 

MCC for biophysical maize classification drops from 0.30 for model building Bergville area to 

0.15 for Luneburg. While AUC similarly drops for the RF model from 0.67 in Bergville to 0.53 

for Luneberg, reducing the confidence in transferability of both approaches.  Figures 5-12b 

and 5-13b indicate that average SNV maize yield across the biophysical scoring classes and 

associated classification accuracies are erratic, further reducing the successful transferability 

of the Bergville models to Luneburg. Only three of the five negative scoring classes contain 

below average yields (Figure 5-12b), while accuracies achieved in the high scoring classes 

(3-7) are below 60% (Figure 5-13b). Expected trends such as increasing SNV with scoring 

class and high prediction accuracies at both ends of the scoring spectrum are not observed 

with the Luneburg data. This indicates that the physical terrain and soil drivers as well as the  

associated scoring system are not performing adequately and significant local calibration may 

be required for this production area.  

 

(a) 

(c)

(b) 
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Figure 5-13 Average classification accuracy achieved in each maize classification scoring class for - (a) 
Bloodriver (b) Luneburg and (c) Newcastle. The dotted line represents average classification accuracy 
across all scoring classes 

 

One of the potential reasons for poor model performance at Luneburg is that from an 

overarching climatic and potential perspective the Luneberg area is significantly different to 

both Bergville and the other two verification areas. The Luneburg verification area is both 

cooler and wetter and on average receives the lowest heat units of all the study sites (Table 

5-1). For the three verification seasons between 2017 and 2020 the Luneberg area 

consistently received more rainfall than either Bergville, Bloodriver and Newcastle. The 

comparison between yield in high and low rainfall years (Section 3.3.3.4) indicates that 

physical properties generally, on which both these approaches are based, became more 

pronounced during drier cycles. While higher rainfall appeared to mask these physical soil 

limitations, which may in all likelihood be occurring in Luneberg.  Guo et al.  (2012) reported 

similar results for cotton yields where yield and soil properties had a weaker correlation in 

wetter years. Due to higher rainfall many of the physical soil and terrain drivers and scoring 

criteria will differ in the Luneberg area. Ultimately, to improve model performance and better 

assess farm level yield variation a regionalised model or modified BSC may need to be 

developed in the Luneberg area. 

 

(b) (a) 

(c) 
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The Newcastle area appears to be a challenging area for the both the BSC and RF model, 

resulting in low prediction accuracies and poor performance metrics (Tables 5.23 and 5.24). 

The BSC produced an accuracy of less than 50% and -0.18 MCC, indicating the scoring was 

negatively correlated to yield (Table 5-23). The AUC for the RF model was 0.41, the lowest of 

the three verification areas and indicating the models are performing worse than a random 

classification. The metrics extracted from the confusion matrixes indicate that Newcastle 

produced specificity values of less than 20%, meaning both models could not predict True 

Negative events. For the biophysical maize classification nearly 70% of the misclassifications 

were False Positives, meaning the model predicted above average yields but a below average 

SNV was observed.  

 

Even though the overarching performance metrics, MCC and AUC, for both approaches are 

poor in Newcastle, the BSC approach is performing as expected in certain aspects. For 

example, when maize scoring classes is compared to average normalised yield (Figure 5-12c) 

extreme negative scoring classes, -6 and -5 produce, negative yields at high classification 

accuracies (Figure 5-13c). While moderate scoring classes -1, 0 and 1, associated with 

average soil and terrain scores are erratic and the most difficult to predict. These are expected 

trends based on the Bergville model building results. Further, the maize BSC produces eight 

positive maize scoring classes and only 4 negative classes and predicts that 90 of 122 

observations will produce above average yield. A similar ratio to the Bergville area, which is 

associated terrain and soil properties suited to high yielding maize production.  

 

The source of the poor classification performance is in the high maize scoring classes (>4), 

where terrain and soil properties should produce significantly above average yields (Figure 5-

12c). These observations are located on moderate slopes and are dominated by deep, well 

and moderately drained apedal soils with favourable water holding characteristics, yet across 

these five classes the average SNV for maize production is -23%. These soils do not have 

any physical limitations and are traditionally given the highest potential ratings in terms of 

maize production (Camp, 1999). Essentially crop performance is well below expected land 

potential.  

 

To investigate the source of this disjuncture soil samples were extracted at 0-10 cm, 30 cm 

and 50 cm depths for the affected soils. Of the 35 observations, within these high scoring 

maize classes, 28 contained at least one sample depth where acid saturations exceeded 20%, 

the highest Permissible Acid Saturation level in maize (Manson et al., 2017). When acid 

saturations exceed 20%, crop performance is diminished and yields reduced. The average 

acid saturation in the affected soils was 36%, ranging from a maximum of 55% to a minimum 
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of 29% with the most common depth exceeding PAS being 30 cm. Based on this analysis the 

maize BSC is performing adequately in Newcastle, but whose accuracy is compromised by 

poor soil fertility management. 

 

The classification and models for Bergville and verified at Bloodriver, Luneburg and Newcastle 

were developed under assumption that these commercial operations are performing at high 

level where fertility and management are optimised and yields maximised. This assumption 

allows for physical properties to be the major determinant in yield variation. Yet, for Newcastle 

acid saturation, which can easily be ameliorated through by liming is the major yield 

determinant across many high potential soils. The necessary absence of chemical and 

management factors is a definite drawback to this approach but does provide an unexpected 

application of these physically based models and classifications in commercial environments. 

Whereby high scoring soils, with consistently low SNV, can easily be identified for 

management and chemical interventions. 

 

5.3.4 Performance assessment of biophysical scoring classification and machine 

learning models for dryland soybean in three different verification areas   

 

A total of 72 observation points, across the three verification areas, were used to assess the 

performance of the biophysical classification system as well as the RF and SVM machine 

learning models. Table 5-26 provides an annual yield summary for the three verification areas 

as well as Provincial and National soybean yields achieved during the assessment period. 

Over the year assessment period the Bloodriver and Luneburg farms produced well above 3 

t.ha-1 well above the Provincial soybean average of 2.58 t.ha-1. While Newcastle produced a 

mixed set of production results, when compared to Provincial averages. In 2018 Newcastle 

produced below average yields, did not plant soybean in 2019 and produced well above 

average yields in 2020. The three selected verification farms all produced above average 

soybean yields, when compared to the Nationally recorded yields (Table 5-26).  

 

Table 5-26 Summary of Provincial and National dryland soybean yield performance compared to the 
three verification areas at Bloodriver, Luneberg and Newcastle  

Year 

Bloodriver 

Soybean Yields 

(t.ha-1) 

Luneburg 

Soybean Yields 

(t.ha-1) 

Newcastle 

Soybean Yields 

(t.ha-1) 

Provincial 

Soybean 

Yields (t.ha-1) 

National 

Soybean 

Yields (t.ha-1) 

2018 2.99 3.80 1.84 2.85 1.83 

2019 3.32 3.42 n/a 2.35 1.45 

2020 3.90 2.65 3.40 2.55 1.63 

Average 3.40 3.29 2.62 2.58 1.64 
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As with maize, soybean performance was assessed using the BSC along with the machine 

learning RF and SVM models, developed at the Bergville model building area. A summary of 

the performance of the three approaches, across the three verification areas, is provided in 

Tables 5-27 - 5-29. Overall, the soybean BSC approach produced higher accuracies than the 

two machine learning models (Table 5-27). A performance comparison between the two 

machine learning models, using prediction accuracy and AUC, indicates that generally the 

SVM model (Table 5-29) was superior across the verification areas, compared to the RF model 

(Table 5-28). However, in certain locations and in particular assessment metrics the RF Model 

did outperform the SVM. For example, the RF model in Newcastle recorded a higher accuracy 

and specificity. This highlights the fact that the performance of machine learning models may 

be both crop specific and location specific, when used within land assessment applications.  

 

Table 5-27 Summary of performance metrics for the soybean biophysical scoring classification for the 
three verification areas  

Soybean Farm Overall Bloodriver Luneburg Newcastle 

n 72 15 43 14 

CA (%) 58.3 73.3 48.8 71.4 

Precision (%) 58.2 75.0 51.2 60.0 

Sensitivity (%) 82.1 90.0 73.9 100 

Specificity (%) 30.3 40.0 20.0 50.0 

MCC 0.14 0.35 -0.07 0.55 

 

Table 5-28 Summary of performance metric for the Soybean Random Forest Model for the three 
verification areas 

Soybean Farm RF Overall Bloodriver Luneburg Newcastle 

n 72 15 43 14 

CA (%) 44.4 26.7 46.5 57.1 

Sensitivity (%) 53.8 30.0 65.2 50.0 

Specificity (%) 33.3 20.0 25.0 62.5 

AUC 0.46 0.59 0.44 0.46 

 

Table 5-29 Summary of performance metric for the Soybean Support Vector Machine Model for the 
three verification areas 

Soybean Farm SNV Overall Bloodriver Luneburg Newcastle 

n 72 15 43 14 

CA (%) 52.8 40.0 60.4 42.9 

Sensitivity (%) 82.1 60.0 95.7 66.7 

Specificity (%) 18.2 0.0 20.0 25.0 

AUC 0.52 0.68 0.53 0.46 
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The performance of the three methods in the Bloodriver verification area produced mixed 

results (Tables 5-27 – 5-29). The BSC for soybean performed well, correctly predicting 11 of 

the 15 observations, resulting in a classification accuracy of 73.3%, a higher accuracy than 

produced in Bergville model building area. The method also scored well, in terms of precision, 

sensitivity and overarching MCC (Table 5-27). The biophysical soybean classification 

produced two negative classes and of these two only one produced below average yields 

(Figure 5-14a).  

 

 
 
Figure 5-14 Average SNV soybean yield achieved in each biophysical scoring class for - (a) Bloodriver 
(b) Luneburg and (c) Newcastle 

 

Classification accuracies in Bloodriver were high in the extreme scoring classes (-4, 4 and 6) 

an indication the BSC can accurately identify both extremely poor and extremely 

advantageous soil and terrain conditions (Figure 5-15a). Only one of the four misclassifications 

were a result of a False Negative event, where yield performance was underestimated by the 

BSC, resulting in a sensitivity value of 90%. This misclassification occurred on a mottled, 

sandy soil with effective rooting depths limited by the occurrence of hydromorphic features. 

Bloodriver is the driest verification area, consequently this poorly drained soils may not be as 

limiting as in wetter parts of the Province.  Thus, a regional calibration of these soils will be 

required to improve classification accuracies. The Machine Learning models did not perform 

(a) (b) 

(c) 
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well in this environment with prediction accuracies below 50% and very low specificity results, 

an indication that both models could not accurately classify negative events. Ultimately, the 

results indicate that the soybean machine learning models are not directly transferable to this 

environment without additional calibration. 

 

For the Luneberg area the SVM model was the best performer, but only achieved a moderate 

accuracy of 60% and low AUC of 0.53 (Table 5-29). The SVM model produced extremely high 

sensitivity values of 96%, indicating the model was able to detect above average soybean 

yields to a high degree of very accuracy.  However, the SVM model as well as the BSC (Table 

5-27) and RF model (Table 5.28), all scored poorly in terms of classification specificity, which 

in this case, is the ability of the method to correctly identify observations with below average 

SNV for soybean yields. This poor model performance linked to low specificity is further 

illustrated in Figure 5-15b which summarises yield performance for each biophysical 

classification scoring class, where four of the six negative scoring classes produce above 

average yield values. This leads to very lower classification accuracies for observations with 

below average yields, Figure 5-15b.  

 

The BSC approach produced an MCC of -0.1 which indicates there is very little agreement 

between the soybean scoring and actual yield performance (Table 5-27). As with maize, the 

performance metrics for biophysical soybean classification suggest that a difference in 

overarching climatic variables, associated with the Luneburg area, are not sufficiently taken 

cognisance of in the physical soil and terrain drivers and scoring criteria. This severely reduces 

the transferability of the Bergville biophysical classification to the cooler and wetter Luneburg 

area. Ultimately, to improve model performance and better assess farm level yield variation a 

regionalised model or modified BSC may need to be developed in the Luneberg area. 
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Figure 5-15 Average classification accuracy achieved in each soybean classification scoring class for - 
(a) Bloodriver (b) Luneburg and (c) Newcastle. The dotted line represents average classification 
accuracy across all scoring classes 

 

For the Newcastle area the biophysical classification was the best performer, producing a 

classification accuracy of 71% and a MCC of 0.55 (Table 5-27), which is considered as a 

strong positive relationship between soybean scoring classification and normalised soybean 

yield (Mukaka, 2012). The biophysical classification was able to successfully classify all below 

average yield observations (Figure 5-15c). All misclassifications were caused by above 

average terrain and soil factors producing below average soybean yields. With biophysical 

soybean scoring classes 3 and 4, producing below average yields (Figure 5-14c). Low 

classification accuracies in high scoring classes are an indication that yields may have been 

reduced by non-physically related factors such as poor soil fertility management, incorrect 

variety selection or incorrect planting dates.  

 

In terms of the machine learning methods RF was the marginally better performer, producing 

a classification accuracy of 57.2% but a low AUC of 0.46. A major source of model error is 

related to the 50% sensitivity metric for the RF model, which indicates that the model can only 

predict an above average yield event on every second occasion (Table 5-28). Based on the 

AUC values the ML models developed at Bergville are not transferrable to Newcastle without 

additional calibration.   
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5.3.5 Machine learning verification: contextualising maize and soybean classification 

performance  

 

As previously undertaken for Bergville (Section 5.3.2.5), Provincial and National yield 

averages were used to benchmark and contextualise model performance for three verification 

areas. This was achieved by adjusting the above and below average binary yield classification 

by subtracting the seasonal Provincial and National yield averages (SAGL, 2018- 2020), from 

the observed yield point rather than the seasonal farm average. In many instances this 

benchmarking can substantially increase above average yield counts and equally improve 

prediction accuracy and other assessment metrics. To illustrate the impact of this 

benchmarking the RF model for maize and the SVM model for soybean were assessed using 

the Provincial and National Yield averages (Tables 5-30 – 5-33).  

 

The aim of both ML models is to predict an above average yield event using a suite of attributes 

at a particular location. At a farm level, where average seasonal farm yields are used, this a 

far more difficult task. Essentially the model predicts whether a particular observation will 

produce an above average farm yield. At this level of predication, the RF model only obtains 

an average accuracy of 56.8% across the three verification farms.  If the prediction goal posts 

are shifted to predict whether the same observation will produce above average yields from a 

Provincial perspective, then the model has much greater chance of obtaining a true prediction, 

as most actual yield observations are above average Provincial yields (Table 5-30).  

 

Table 5-30 Summary of performance metrics for the Maize Random Forest Model for the three 
verification areas using KwaZulu-Natal Yield Benchmarks. Changes in values compared to farm level 
yields are bracketed. 

 Overall Bloodriver Luneburg Newcastle 

n 234 44 68 122 

CA 

 
74.3  

(+17.5) 
  

45.5 
(-20.4)  

67.6 
(+13.2) 

88.5 
(+33.6) 

Sensitivity 
77.4  
(-1.8) 

  

40.0 
(-12.0) 

74.1 
(-3.0) 

92.7 
(+2.0) 

Specificity 
50.0  

(+18.8) 
  

100.0 
(+15.8) 

30.0 
(-0.3) 

50.0 
(+36.0) 

AUC 
0.91 

(+0.44) 
0.96 

(+0.23) 
0.87 

(+0.34) 
0.92 

(+0.51) 

 

The chance of a successful prediction is even higher if the prediction benchmark is set to a 

National yield average (Table 5.31). For example, for the 234 total maize yield observations, 

across the three verification farms, only 16 observations were below average. Essentially the 

ML models will predict, to a very high degree of accuracy, that a particular observation will 
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produce a yield above the National average. This can be clearly observed in the Newcastle 

area when the prediction level is set using a National average (Table 5.31). Based on the 

areas advantageous resources in terms a soil, terrain and climatic properties, for maize 

production, the RF model can, at a 91.8% accuracy, predict that an observation will produce 

an above average National yield. This prediction accuracy however, even when using National 

yields, is far lower in more marginal areas such as Bloodriver. 

 

Table 5-31 Summary of performance metrics for the Maize Random Forest Model for the three 
verification areas using the National Yield Benchmark. Changes in values compared to farm level yields 
are bracketed. 

 Overall Bloodriver Luneburg Newcastle 

n 234 44 68 122 

CA  
 

76.9 
(+20.1)  

40.9 
(-25.0) 

73.5 
(+19.1) 

91.8 
(+36.9) 

Sensitivity  

 
77.5 
(-1.7) 

  

38.2 
(-13.9) 

75.8 
(-1.3) 

92.9 
(+2.2) 

Specificity  
68.8 

(+37.6) 
  

100.0 
(+15.8) 

50.0 
(-19.7) 

75 
(+61.0) 

AUC 
0.97 

(+0.5) 
0.97 

(+0.24) 
0.93 

(+0.40) 
0.99 

(+0.58) 

 

Similar prediction trends occur in the soybean results for the SVM ML. Where prediction 

accuracies are significantly increased at a Provincial and National yield benchmarks (Tables 

5-32 and 5-33) for Bloodriver and Luneburg, high yielding soybean farms but reduced in 

Newcastle where yields were erratic. The results indicate that RF and SVM ML models 

produced at Bergville can be used to assess other high potential resource areas, with the aim 

of determining whether they will produce above average Provincial and National averages.   

 
Table 5-32 Summary of performance metrics for the Soybean Support Vector Machine Model for the 
three verification areas using KwaZulu-Natal Yield Benchmarks. Changes in values compared to farm 
level yields are bracketed. 

Soybean KZN SNV Overall Bloodriver Luneburg Newcastle 

n 72 15 43 14 

Accuracy 

 
66.7  

(+13.9) 
  

66.7 
(+26.7)  

81.4 
(+21.0) 

21.4 
(-21.5) 

Sensitivity 
83.0  
(-0.9) 

  

71.4 
(+11.4) 

91.7 
(-4.0) 

33.3 
(-33.4) 

Specificity 
21.2 

(+3.0) 
  

0 
(0) 

28.6 
(+8.6) 

18.2 
(-6.8) 

AUC 
0.78 

(+0.26) 
0.97 

(+0.29) 
0.87 

(+0.34) 
0.13 

(+0.33) 
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Table 5-33 Summary of performance metrics for the Soybean Support Vector Machine Model for the 
three verification areas using National Yield Benchmarks. Changes in values compared to farm level 
yields are bracketed. 

Soybean RSA SNV Overall Bloodriver Luneburg Newcastle 

n 72 15 43 14 

Accuracy 

 
80.6 

(+27.8) 
  

73.3 
(+33.3)  

93.0 
(+32.6) 

50.0 
(+7.1) 

Sensitivity 
84.6 

(+2.5) 
  

73.3 
(+13.3) 

92.7 
(-3.0) 

66.7 
(0) 

Specificity 
42.9 

(+24.7) 
  

NA 
100 

(+80) 
20 

(-5.0) 

AUC 
0.93 

(+0.41) 
1.0 

(+0.32) 
1.0 

(+0.47) 
20.0 

(+0.11) 

 

 

5.3.6 Biophysical scoring classification versus machine learning  

 

Based on the various performance metrics the BSC approaches generally outperformed the 

ML models for both maize and soybean, particularly where farm yields were used to 

benchmark model performance. The BSC approach also allow for greater insight into crop 

performance and their inter-relationship with soil and terrain factors. Conversely the ML 

models are more of a black box approach, which is based purely on input data, not whether it 

makes “practical” sense e.g. aspect measured in radians was selected as the top attribute for 

soybean production, while flood hazard rating was the top attribute for maize production. This 

view of ML models in soil-landscape relations is shared by Rossiter (2018) who asserts that 

pure ML models often ignore pedological knowledge and can produce results that are difficult 

to interpret, misleading and wrong.  

 

Both crop specific biophysical approaches used thirteen land assessment attributes (Tables 

5.10 and 5.14), with soil group, effective depth, texture and permeability class being common 

to both methods. Out of the selected attributes only the geomorphons and aspect layers will 

need to be produced digitally, the remainder of the attributes can be determined infield, as 

part of a traditional land assessment survey. Whereas, if the SVM models were to be 

practically implemented all the attributes used in the model development would need to be 

collected during each survey, which is not feasible for a typical land assessor.  

 

Overfitting of data from model building area for both the BSC approach and ML was identified 

as problem. Overfitting attributes to region-specific conditions reduces transferability of the 

models to other locales.  
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5.3.7 The application of the new biophysical productivity methods as part of a more 

holistic approach to agricultural land assessment  

 

The previous sections focused on BSC and ML model development and their performance at 

a farm level. From a utility perspective, the new approaches need to have not only farm level 

relevance, in terms of yield performance but should also supplement and compliment land 

assessment analysis, ultimately informing release applications in terms of Act 70 of 1970. The 

BSC approach for maize and soybean was selected to demonstrate how these new 

approaches can be used to assess arable land in release applications. 

 

Agricultural professionals who assess farms for possible release are often faced with a 

scenario where the current land use either is not actively cultivated or does not correlate to its 

actual potential, such low intensity grazing on arable land. In these situations, the agricultural 

significance of the farm is based solely on the results of the selected land assessment 

methodology as the intensive land use is not being applied and production performance is not 

available. In South Africa the RSA LC (Scotney et al., 1991) remains the standard 

methodological approach to assess land at a farm scale (cf Chapter 2.7.2).   

 

A summary of RSA LC classification for all soil observations located within arable classes, 

across both the model building and verification areas is provided Table 5-34. The arable land 

classified across the various farms is a mix of Class III and IV land. According to the RSA LC 

manual (Scotney et al., 1991) land in capability class III “has severe permanent limitations that 

restrict the choice of alternative uses and the intensity of crop production and is of moderate 

potential”. While land in Class IV is defined as having “very severe permanent limitations”, its 

use is for cultivated crops is “largely restricted” and is only suitable for “occasional cultivation”. 

Based on yield results presented in the previous result sections the land capability 

classifications and associated descriptions do not convey the true message of the high 

production potential of these farms but rather focuses on their negative land characteristics.  

 

Table 5-34 Soil observations per South African land capability class  
RSA LC 

Class 

Bergville Bloodriver Luneburg Newcastle 

n % n % n % n % 

III 234 71 0 0 46 81 45 96 

IV 96 29 20 100 11 19 2 4 

 

If these farms were virgin areas with no history of cultivation or yield records could the land 

assessor fully justify keeping these arable areas for agricultural production given the land 
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capability classification results (Table 5-34) and associated definitions? Similarly, given the 

land capability results and definitions can the decision-making authority (DALRRD) justify the 

preservation of these agricultural lands if the proposed development is socially beneficial, for 

example rural housing for a previously disadvantaged community or an economically 

significant development, such as a new industrial park?  

 

Land release statistics (Table 5-35), as published in the Draft Policy Document for the 

Preservation and Development of Agricultural Bill (DAFF, 2015),  suggests not. The statistics 

indicate that up until 2011, the highest proportion, a total of nearly 2 million hectares, or 54% 

of all agricultural land released to non-productive uses comes from the exact land capability 

classes identified in the survey areas, Classes III and IV. Further illustrating that these classes 

are the most at risk to land use change and as an assessment method land capability alone, 

cannot adequately protect agricultural land. 

 

Table 5-35 Summary of agricultural land permanently converted to non-agricultural land uses per Land 
Capability Class up to the year 2011, as replicated from DAFF (2015) 

 

 

To better answer these questions both the land assessor and the decision-making authority 

require supplementary approaches such as the new BSC, to better reflect production and 

ultimately make more informed decisions regarding the release of agricultural land.  

 

In order to convert the BSC from a farm specific method to a broader land assessment method 

a yield based cut off score was determined from the model building area in Bergville. The 

annual KZN average maize yield between 2016 and 2020 was selected as an aggressive 

benchmark for farm viability in the Bergville area. In spite of this high benchmark only 7% of 

the observations, in cultivated areas, produced maize yields below this benchmark. For 

soybean this increases to 20% for all point observations when using the average soybean 

yields as a benchmark. These percentages where then used to guide the selection of specific 

biophysical scores for the model building area.  
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For maize a score equal to and less than -2 incorporated the lowest 7% of the observations, 

while a -3 score for soybean incorporated the lowest 20% soybean of the observations. In this 

instance observations obtaining a score equal or less than these values were considered to 

be marginal for commercial dryland maize or soybean crop production. For comparability 

these scores were then used to classify all soil observation points surveyed in dryland areas, 

considered arable by the RSA LC classification. 

 

The results for maize (Table 5-36) provide a far more realistic picture of agricultural potential 

for the study areas. For Bergville, Luneberg and Newcastle the vast majority (> 84%) of soil 

observations scored above -2 in terms of the maize scoring classification. Indicating that over 

84% of arable soils are considered viable for commercial maize production using the selected 

Provincial benchmark. Bloodriver, which has far poorer soil resources for maize production 

still indicates that 60% of arable areas are considered commercially viable. For soybean, these 

ratios actually increase, with over 80% of all soil observation across the three verification farms 

being commercially viable for soybean production (Table 5-37). Importantly, these values 

would all increase if National yield averages or an economically determined break-even 

benchmark was implemented. This example however demonstrates how a production-based 

approach assessment method can more realistically convey actual agricultural value. It also 

demonstrates that the new BSC approaches are adaptable to various assessment scenarios.   

 

Table 5-36 Summary of selected biophysical maize scores for all arable, dryland soil observations 
Biophysical 

Maize Score 

Bergville Bloodriver Luneburg Newcastle 

n % n % n % n % 

≤ -2 30 9 8 40 9 16 5 11 

> -2 300 91 12 60 48 84 42 89 

 

Table 5-37 Summary of selected biophysical soybean scores for all arable, dryland soil observations 
Biophysical 

Soybean Score 

Bergville Bloodriver Luneburg Newcastle 

n % n % n % n % 

≤ -3 79 24 3 15 10 18 1 2 

> -3 251 76 17 85 47 82 46 98 

 

When placed within the context of an agricultural assessment for a land release application, 

the BSC should be used as supplementary assessment to better reflect production potential. 

The proposed assessment methodology and workflow diagram is provided in Figure 5-16. 

This stepwise workflow diagram indicates that production-based approaches, such as these, 

should be applied after broad suitability and arability has been established using climate, soils 
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and terrain. If the proposed workflow process is applied at FCL Farming in Bergville the 

assessment report would state the following: 

 

“Of the total assessment area, 86% is considered arable using soil, terrain and climate 

capability as outlined in the RSA LC system. Of these arable area 91% is considered viable 

for commercial maize production, while 76% is considered viable for commercial soybean 

production.”  

 

Compared to the earlier class descriptions associated with the RSA LC this new description, 

linked to the results of the BSC approaches, assists both the land assessor to better classify 

the production potential of the land, as well as the decision-making authority to justify 

preserving more land for agricultural purposes in these threatened capability classes. 

 

Stellenbosch University https://scholar.sun.ac.za



 

174 
 

 

 

Figure 5-16 Proposed agricultural assessment process diagram 
 

 

 

 

 

(1) Land Assessment Planning 

• Consider purpose of survey, 

scale and observation density, 

land use and irrigation status 

• Undertake a desktop 

assessment to establish broad 

terrain, soil and climatic 

characteristics 

• Determine broad crop suitability 

using BRU Programme or digital 

database (e.g. Digital Land 

Capability) 

(2) Infield Survey 

• Undertake land use verification 

and scale dependant soil and 

resource survey 

• Collect attribute data  

• If available gather supplementary 

data collection 

(e.g. yield records, farm rainfall) 

(3) Soil and Attribute Mapping 

• Soil point and polygon map 

development 

• Attribute mapping (e.g. effective 

rooting depth) 

• Create or extract pertinent terrain 

layers (e.g. Geomorphons) 

(4) Dryland Arability Assessment 

• Use an appropriate method to 

determine broad arability based on 

soil, terrain and climate attributes 

(e.g. RSA LC or KZN LC) 

• Delineate and map arable and non-

arable areas 

• Attribute data collection 

• Supplementary data collection if 

available 

(e.g., yield records, farm rainfall) 

(5) Crop Specific Assessment 

• Select key crops based on broad 

crop suitability   

• Undertake crop specific scoring for 

identified arable areas 

• Use an appropriate score benchmark 

to determine and delineate unviable / 

marginal areas 

(6) Reporting and recommendations 

• Provide summary a report including 

spatial information outlining arability 

and crop specific assessment 

• Compile recommendations with 

regards to preservation or release of 

the assessed land. 
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5.3.8 Additional applications: Addressing the yield gap and removing low potential 

areas from production 

 

The primary aim of this Chapter was to develop methods to enhance our understanding of 

land performance and crop specific production drivers, ultimately improving our decision-

making processes with regards to the release or protection of agricultural land. However, the 

methods developed for this purpose have also had useful supplementary applications in the 

commercial farming environment. First, a well distributed landscape soil survey, using a 

sample density of approximately 1:10 ha, can provide an accurate representation of farm 

performance, reducing the need of expensive precision scale surveys. Second, the 

combination of normalised yield values and crop-specific, physically based evaluation 

systems, such as the BSC, can be used to identify underperforming areas and yield gaps. A 

yield gap is defined as the difference between maximum land potential, using the best 

available crop genetics and technologies, and actual productivity (Godfray et al., 2010). In a 

given climatic area crop performance is influenced by a variety of factors including soil fertility, 

physical soil and land attributes as well as overarching land management (Nkurunziza et al., 

2020).  

 

Soil fertility and land management factors, such as planting dates and variety selection are 

reasonably dynamic with Omer et al., (2018) finding significant seasonal difference in nitrate-

nitrogen, extractable potassium and extractable phosphorus contents. However, physical soil 

and land attributes, such as slope, soil type, soil texture and effective rooting depth are 

relatively static. It is these static physical attributes that provide a baseline for production 

potential, which actual productivity can be measured against, the intension of highlighting soil 

fertility and land management factors that potentially could be depressing crop yields. Section 

5.3.3 highlights the applicability of yield gap analysis in Newcastle survey area, where high 

potential areas identified by the physically based maize scoring system was able to ring fence 

areas which consistently underproduced. In this case unaddressed subsoil acidity was found 

to be the primary cause of the yield gap, resulting in loss of maize yields of approximately 4 

t/ha-1, across 80 ha of affect field, over the three seasons. The estimated average maize grain 

price across the three seasons was R 2 400.00 per tonne (SAGL, 2018a-2020a), equating to 

a total loss of income of R 768 000.00 (+/- USD $ 46 000) across the 80 ha. The application 

of the newly developed scoring system, with a comparatively rapid and inexpensive survey, 

can certainly assist commercial farmers to identify underperforming areas and close the yield 

gap. 
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Another application of the maize and soybean BSC approaches is to highlight areas where 

extreme physical limitations reduce SNV to such an extent that they should be removed from 

production. This has already been successfully applied to FCL Farming in Bergville, where a 

seasonal break-even yield was established and used as an input into the SNV calculations. 

All consistently negative SNV observations, representing areas which fail to meet the break-

even yield were highlighted and where practical to do so, were removed from production.  

 

These two examples show how these newly developed BSC approaches are applicable in real 

world scenarios and are already benefiting commercial farmers.  

 

5.4 Conclusions 

 

A suite of 78 land evaluation attributes, collated from various sources, were linked to maize 

and soybean yields in the Bergville area, across multiple growing seasons. Three new, 

productivity-based land evaluation approaches using a BSC, RF and SVM were developed 

and tested on three verification farms, located across northern KZN.  

 

The following conclusions were drawn with regards the model development and their 

performance at a farm level: 1) Attribute selection differed between both the approaches and 

the selected crops. 2) The BSC generally outperformed ML models. 3) The performance of 

the ML models varied between regions and crops and neither ML model was consistently the 

best performer. 4) The BSC approach was able to identify observations associated either 

extremely poor or extremely advantageous soil and terrain attributes, these conditions were 

associated with high CA rates. 5) The transferability of the models to other regions with 

different resources produced mixed results, highlighting the need for wider calibration in some 

instances. 7) Poor soil fertility and overarching land management, which was assumed to 

optimised at this production level, can override physical soil and terrain attributes in terms of 

being the primary yield determinate, detracting from the utility of these approaches 8) Farm 

specific yield performance can be contextualised by using provincial and national benchmarks, 

which can increase specific model performance metrics such CA.  

 

The new productivity-based approaches can also have useful applications in the commercial 

farm management, where the crop specific biophysical scoring approaches can identify 

underperforming areas and yields gaps, which can be ringfenced for appropriate interventions.  
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The application of the new productivity-based biophysical approaches can be used to 

supplement and compliment agricultural assessments as part of potential land release 

applications, in terms of Act 70 of 1970. The use of BSC for maize and soyabean 

demonstrated that defined scoring benchmarks better reflect production potential across the 

survey areas. Ultimately, the application of these production-based approached can assist the 

land assessor to better classify the production potential of the land, as well as the decision-

making authority to justify preserving more land for agricultural purposes. 
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6. AN INTEGRATED DISCUSSION OF KEY RESULTS 

 

 

This chapter provides an integrated discussion, where the major findings of this research are 

contextualised within broader international literature and research. For the purposes of 

discussion three key result areas have been expanded, namely the verification of land 

assessment methods, the analysis of individual land assessment attributes in a production 

environment and the development of the biophysical and machine learning models. 

 

6.1 Verification of land assessment methods 

 

The lack of recent verification studies investigating the performance of land evaluation 

methodologies, both locally and internationally, was identified as a major knowledge gap 

during the literature review. This research selected five land evaluation methods and 

compared their resulting classifications to land use and productivity at a farm scale. From a 

local perspective this study is the first of its kind. Internationally, comparative studies of this 

nature are also rare, with many having taking place decades ago (e.g. Anderson, 1987), with 

no studies being done at both a polygon and point scale nor at this level of detail, making 

direct comparisons difficult. It is far more common for a single method, such as VSA to be 

compared to actual field measurements or against a single alternative technique (e.g. 

Leeuwen et al., 2018; Emmet-Booth et al., 2019).  

 

Model evaluation via verification and validation is universally acknowledged as being a critical 

process to provide a technically defensible basis and ultimately support the decision making 

process, in this case the release of agricultural land (Thacker et al., 2004). Therefore, this 

verification study should be viewed as a crucial first step in an overarching review of traditional 

land assessment methodologies in South Africa. 

 

6.2  Analysis of individual land assessment attributes in a production environment 

 

In Chapter 4, pertinent individual land assessment attributes such as slope and soil depth, 

were compared to maize and soybean production performance across five growing seasons. 

The results indicate that maize and soybean crops respond differently to individual land 

assessment attributes and that generally maize was more sensitive to poorer growing 

conditions than soybean.   
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From a physiological perspective maize differs significantly from soybean and thus one should 

expect differing crop specific responses to stress. Soybean is a nitrogen fixing legume which 

uses C3 photosynthetic pathways, while maize is an annual grass which uses C4 

photosynthetic pathways, C4 plants have approximately 50% higher photosynthesis efficiency 

than those of C3 plants (Wang et al., 2012). Maize is also taller and if root growth is 

unrestricted will extend approximately 1.5 m laterally and downwards to 2.0 m or deeper (du 

Plessis, 2003). Soybean rooting system combines both shallow lateral roots as well as a long 

tap root which can extend to 1.5 m, this rooting systems improves the plant’s resilience when 

planted in heavier textured soils as well as during dry spells, and is ultimately able to utilise 

water at deeper soil depths compared to maize (DAFF, 2010).  

 

This study found that seasonal rainfall and total crop yield were highly correlated (cf Chapter 

3.3.3.2), thus any individual factor influencing plant available water would likely influence crop 

yield e.g. soil texture and effective rooting depth (cf Chapter 4.3.4). Water related stress, is 

caused by extended dry spells and is further exacerbated by certain soil properties, such as 

shallow effective soil depths or high clay content soils. This combination of factors ultimately 

reduces plant available water, with international literature finding that soybean is resilient in 

these water scarce conditions. For example Wang et al. (2020), who reviewed long term 

climate and yield studies between 1961 and 2017, across China, found that during severe 

drought years yield losses were double for maize compared to that of soybean (cf Chapter 

3.3.3.2). Comparative work done by Antonio et al. (2013) also found that maize genotypes 

were more affected by water related stress than soybean genotypes. Both these studies 

correlate to the findings of this research that found soybean plants more resilient to water 

related stress, caused by soil properties, than maize.  

 

Waterlogging is one factor which causes plant stress due to hypoxia rather than water-based 

restriction. In terms of waterlogging this research found that maize is also more sensitive to 

waterlogging and low soil permeabilities. This result again correlates to international tolerance 

guidelines as presented by Ransom & Mattern (2011) who rank soybean as a more tolerant 

crop to waterlogging stress, when compared to maize. 

 

Additional to water related stress there have been numerous international studies that 

investigate the relationship between maize and/or soybean yield and soil and terrain 

properties. However, many of these studies only investigate a single crop (Silva & Silva, 2008; 

Takoutsing et al., 2016) and virtually all comparative studies, akin to this research, are done 

across very small areas < 30 ha  (e.g. Kaspar et al., 2003; Kaspar et al., 2004; Marques da 

Silva & Alexandre, 2005), rather than the hundreds of hectares covered in this project.  
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Importantly, this research also combines both topographic and soil attributes, where many 

other studies focus on either soil or terrain attributes.  

 

In terms of terrain, slope was found to significantly impact crop yields. The results obtained in 

this study indicate that steeper gradients (>8%) showed a negative correlation to production 

across the five growing seasons for both maize and soybean. This observation corresponds 

to the work of Marques da Silva and Silva (2008) who also observed negative correlations 

between maize yield and slope, while Leuthold et al. (2022) also found that that soybean yield 

was similarly negatively correlated to slope gradient. Other pertinent terrain attributes, such 

as erosion and flood hazards, which were also investigated, are locally derived compound 

factors, which makes direct comparison with international literature difficult.  

 

Like terrain, there many studies comparing soil properties to maize and/or soybean yield. 

However, this study is unique insofar as it only focuses on physical soil properties linked to 

pertinent land assessment methodologies. Other studies in this research area combine both 

physical and chemical soil properties. For example Kaspar et al. (2004) uses a combination 

of A horizon depth, carbonate depth, pH, coarse sand, sand, silt, clay, organic C, N, Fe, K, P, 

and Zn. Importantly, this research is focussed on attributes that can be rapidly determined for 

use in agricultural land assessment, consequently assessment attributes that require 

extensive precision sampling, laboratory analysis or secondary modelling were avoided.  

 

6.3  Development of biophysical and machine learning models 

 

In this study three models, two ML models and one biophysical model were developed to 

predict crop performance using a suite of 78 land evaluation attributes. These models are 

novel for farm level land evaluation in South Africa and outside the discussions already 

provided in Chapter 5, a comparison with wider literature is difficult. However, The Revised 

Storie Index for Use with Digital Soil Information (O’geen et al., 2008), similarly uses a physical 

driven approach where fertility is ignored but utilises rating curves for attributes such as slope, 

depth and texture, rather than the productivity-based biophysical scoring classification used 

in this study. Critically this revised index uses a multiplicative scoring system and does not 

include micro-relief features, features which this research has found to significantly influence 

yield at a farm level.  

 

Although direct comparisons with wider literature is difficult it remains important to determine 

where these models’ fit within accepted international frameworks. An adapted framework 

presented by Bouma (1999), provides a three dimensional conceptual arrangement to 
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categorise land evaluation methods (Figure 6-1). In this framework the first two dimensions 

on the horizontal plane are (1) the degree of computation, ranging from qualitative to 

quantitative; (2) the descriptive complexity of the model, ranging from empirical to mechanistic; 

while the third dimension, represented by the vertical axis, is the scale of the processes being 

modelled (Rossiter, 2003).  

 

 

Figure 6-1 A conceptual framework to classify land evaluation models (Bouma, 1999) 

 

When, applying this framework the models developed in this study would fall under the “K3” 

type models, which can be applied at a farm scale (i + 2). According to Rossiter (2003), K3 

models are empirical but quantitative where statical relations between yield and pre-

determined attributes are established using large datasets and should only be used within the 

area of calibration. This K3 classification and scale of application are viewed as suitable 

descriptions for the methods developed in this research. 

 

The farm level applicability of these methods is an important feature of this research as it 

ultimately aims to supplement farm level assessments, the scale at which release applications 

are made in South Africa. This differs from other land evaluation studies which are generally 

applied at much larger scales (e.g. Gruszczyński & Gruszczyński, 2022)  and are often built 

on national databases (e.g. Hudson & Birnie, 2000). The lack of productivity based land 
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assessment  methodologies at a farm scale is recognised by Mueller et al. (2010), whose 

review concluded that “a common internationally applicable method providing field soil 

productivity ratings is required but does not exist”. It is hoped that this research will assist in 

this regard. 

 

Although the newly developed models and their proposed sphere of application is unique to 

this research, all applied methodologies are founded on sound and accepted scientific 

research. Consequently other crop specific models, following a similar methodology could be 

developed, ultimately improving the spatial applicability, versatility and comprehensiveness of 

these new production-based approaches in South African land evaluation. 
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7. GENERAL CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH  

 

 

Agricultural land in South Africa is under pressure, to not only produce more food to meet 

population growth rates but is also threatened by unsustainable land use change, to non-

productive uses. To ensure pertinent agricultural land is preserved for food, fibre and fuel 

production, assessment methods need to be geared for such purposes. Unfortunately, in 

recent decades the development of revised or novel land evaluation methodologies has stalled 

for South African farm-level assessments, the scale at which land release decisions are made. 

Ultimately, regular scientific validation, review and advancement is critical, to ensure the 

methods being utilised in practice reflect actual agricultural production levels and serve their 

intended purpose. 

 

7.1 Aims and objectives revisited 

 

The primary aims of this research, as outlined in the introductory chapter are as follows: 

 

1. Explore pertinent literature and legislation surrounding agricultural land assessment 

and where applicable, highlight challenges and the need for review. 

2. Assess if soil and land assessment approaches, currently being practised in industry, 

reflect actual land utilisation and production levels. 

3. Investigate and quantify the relationship between individual land assessment attributes 

and productivity.  

4. Develop novel, locally calibrated procedures for use in a specific commercial 

production environment. 

5. Test the utility and robustness of these approaches in different locales and for different 

applications. 

 

The achievement of these aims and objectives is provided in below. 

 
To address the first objective, a detailed literature review was undertaken to explore the 

primary concepts relating to agricultural land assessment and evaluation. The review found 

that agricultural land evaluation is a critical process in land use management and when 

implemented effectively can improve decision-making, optimise land use, reduce 

environmental degradation and improve productivity. Further, South Africa has a number of 
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sound legislative policies and Acts, which aim to promote the sustainable use of agricultural 

resources. However, significant legislative overlap and paralysis exists, which has triggered 

an uncoordinated and inconsistent approach to decision making across various governmental 

departments. These administrative and legislative failures are leading to a loss of critical 

agricultural land and the degradation of the resource base.  

 

South Africa is characterised by natural resource diversity. Consequently, no single or 

universal method should be relied upon to evaluate all possible scenarios emanating from 

agriculturally based assessment and land use planning. The review of pertinent literature also 

found that there is a need for local verification studies, to analyse the performance of land 

assessment methodologies currently been practiced in industry. Additionally, local 

assessment methodologies, particularly at farm level, require revision to incorporate recent 

pedological revisions, legislative requirements and address the current challenges facing both 

land use planners and agricultural scientists.  

 

To achieve objective two, five unique land evaluation methodologies were selected to assess 

whether they could adequality reflect actual land utilisation and production levels using land 

assessment polygons. By comparing land use with broad arability it was determined that the 

regionally calibrated KZN LC method was consistently the best performer. Along with the KZN 

LC, it was determined that the RSA LC, KZN ecotope and both VSA classifications could also 

be used in future arability assessments in this environment. However, the DAFF LC digital 

product severely overestimated arability and it was recommended this method should not be 

applied in future farm level arability assessments. 

 

It was found that land evaluation polygons, linked to dryland precision maize and soybean 

yields can provide a general overview of method performance. This production-based analysis 

also determined that seasonal variation of rainfall influences the relationship between land 

classification and yield, with physical factors becoming more apparent in drier years. The 

analysis highlights the danger of utilising non-crop specific methodologies, as results and 

seasonal trends differ significantly between maize and soybean. Further, maize yields had 

stronger relationship to land evaluation polygons, compared to that of soybean where 

significant yield differences were rarely established. It was concluded that yield performance 

and variation, across land evaluation methods and classes, is only explicit on or near a soil 

observation point where measurements are taken. Thus, a point-based verification of land 

assessment methodologies is required to better understand the physical drivers affecting crop 

performance. 
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Experimental variograms over five growing seasons were used to determine that an 8 m 

circular buffer, around each soil observation point, was suitable for representative yield 

extraction for both maize and soybean. To account for seasonal variation, yields across the 

five growing seasons were also normalised to create an intuitive Standardised Normal Values 

for both maize and soybean. This point-based approach generally improved the relationship 

between land assessment classification and production. Importantly the analysis reiterated 

the danger of utilising non-crop specific methodologies, as results differed significantly 

between maize and soybean. Overall, maize yields had stronger relationship to the various 

land assessment classifications, compared to that of soybean with the highest maize yields 

generally corresponded to the best land evaluation class or class with highest cropping 

potential. Importantly no method could statistically separate yields across all assessment 

classes. Further, no method could adequately account for soybean yield variation.  

 

To address objective three, highly influencing individual factors used in land assessment were 

determined and compared to maize and soybean performance across the five growing 

seasons. Significant yield variation across individual factor classes was more common for 

maize, compared to that of soybean. The results for terrain attributes found that by combining 

interrelated factors, novel trends between particular crops and land evaluation factors can be 

established. Further, slope and terrain related factors can be used to not only determine soil 

conservation requirements but also crop production potential. Effective soil depth, soil texture, 

soil functional group, soil wetness and subsoil permeability were all found to impact crop 

performance. The results of the individual factor analysis indicate that maize and soybean 

crops respond differently to individual land assessment attributes and these differences should 

be taken cognisance of in crop-specific land evaluation methodologies. Methodological issues 

such as compound and holistic attributes, ease of attribute measurement, class break 

significance, attribute reliability and the potential use of newer technologies such as terrain 

analysis, were introduced with the of view incorporating these findings into new production-

based land evaluation approaches. 

 

To address objective four a suite of 78 land evaluation attributes, collated from various sources 

were used to develop three new productivity-based, land evaluation approaches using 

Biophysical Scoring Classification (BSC), Random Forests and Support Vector Machines. The 

study found that attribute selection differed between the three approaches as well as the two 

selected crops.   

 

To achieve objective five these newly developed approaches were tested on three verification 

farms, located across northern KwaZulu-Natal. The study found that the performance of the 
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Machine Learning (ML) models varied between regions and crops and neither ML model was 

consistently the best performer. The BSC generally outperformed ML models and was 

particularly accurate when classifying observations associated with either extremely poor or 

extremely advantageous soil and terrain attributes. The transferability of the models to other 

regions, with different resources produced mixed results, highlighting the need for wider 

calibration in some instances. A deficiency of the methodological approach was identified 

where the soil fertility and overarching land management, which was assumed to optimised at 

this production level, can override physical soil and terrain attributes in terms of being the 

primary yield determinate. The study found that the new productivity-based approaches can 

also have useful applications in commercial farm management, where the crop specific 

biophysical approaches can identify underperforming areas and yields gaps, which can be 

ringfenced for appropriate interventions.  

 

Finally, the newly developed BSC was used to demonstrate the utility of these newly 

development approaches in broader agricultural land release applications. The study found 

these new approaches better reflect production potential across the various survey areas and 

should be used to supplement existing methodologies in land release applications. Ultimately, 

the application of these production-based approaches can assist the land assessor to better 

classify the production potential of the land, as well as the decision-making authority to justify 

preserving more land for agricultural purposes. 

 

7.2 Recommendations for future research 

 
Although this research was able address some of the issues surrounding agricultural land 

evaluation in South Africa many more exist.  

 

Although it has limitations, like all land evaluation systems, the South African System Land 

Capability needs to be updated to take cognisance of the new Soil Classification System 

(SCWG, 2018). The primary purpose of the land capability is to determine broad arability and 

soil conservation requirements. This is still critical for both agricultural land assessment and 

the conservation of soil resources. Similarly, the KZN Ecotope method and associated soil 

functional groups need to be updated based on the new soil forms in the new Soil 

Classification. Appendix D includes the first attempt at classifying the new soil forms into soil 

functional groups. This initial classification still requires further refinement to take into account 

the recognition of deeper soil materials.  
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This research focused on maize and soybean, however other crops are also important from a 

food security and/or economic perspective. Scoring criteria, following a similar methodology 

outlined in this study for important crops inter alia wheat, dry beans and sugarcane, should be 

undertaken. These could be used to supplement agricultural assessments, in applicable 

production environments. Additional research, aimed at developing a contemporary land 

degradation index, could also be used as a supplementary assessment methodology to 

ensure vulnerable resources are not comprised. As the popularity of precision agriculture 

increases so will the spatial extent of precision yield data and its associated record length. 

More yield data, stretching across more growing seasons will allow scoring criteria to be 

refined and reduce regional overfitting. 

 

For this research terrain is linked back to soil point observation and buffered yield. However, 

products derived from digital elevation model products can also be used at a landscape level, 

increasing the amount of yield points included in terrain analysis. Research investigating 

separate spatial scales for soil and terrain data could improve yield correlations.  

 

Compared to traditional land assessment methodologies, ML and Digital Soil Mapping (DSM) 

is still in their relative infancy. It is recommended that additional ML and DSM research be 

applied in the field of both pedology and land assessment. Finally, the lack of precision yield 

data was identified as a significant bottleneck for model development and verification. This 

could be overcome by applying remote sensing technologies, such as the Sentinel-derived 

Products (www.sentinel-hub.com), to estimate yields in areas not serviced by precision 

harvesters. 
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APPENDIX A:  

YIELD BUFFER RESULTS USING AVERAGE MEDIAN YIELD AND ASSOCIATED STANDARD DEVIATIONS AT 

VARYING DISTANCE INTERVALS 

 

 

Distance (m) n
Avg. Median 

Yield

Std. 

Deviation
n

Avg. Median 

Yield

Std. 

Deviation
n

Avg. 

Median 

Yield

Std. 

Deviation
n

Avg. Median 

Yield

Std. 

Deviation
n

Avg. Median 

Yield
Std. Deviation

5 6 7.68 0.64 8 10.72 1.09 7 11.5 0.6 5 6.77 0.45 6 10.55 0.68

6 9 7.93 0.83 12 10.84 1.16 9 11.4 0.8 8 7.11 0.52 9 10.45 0.82

7 12 8.12 1.16 15 10.88 1.24 13 11.4 0.8 10 7.26 0.61 13 10.45 0.89

8 17 8.10 1.23 20 10.91 1.35 17 11.4 0.9 13 6.92 0.71 16 10.44 1.02

9 21 8.07 1.35 26 10.88 1.41 22 11.5 0.9 17 6.54 0.77 19 10.72 1.07

10 25 8.06 1.37 32 10.87 1.43 26 11.4 0.9 22 6.62 0.79 23 10.68 1.06

11 31 7.97 1.35 38 10.86 1.45 32 11.4 1.0 26 6.65 0.88 29 10.67 1.10

12 37 7.90 1.37 46 10.94 1.46 37 11.4 1.0 31 6.62 0.94 34 10.70 1.18

13 43 7.90 1.48 53 10.91 1.51 44 11.4 1.0 35 6.63 1.00 41 10.75 1.20

14 49 7.87 1.45 61 10.94 1.55 50 11.4 1.0 40 6.62 0.97 49 10.79 1.20

15 58 7.90 1.49 70 10.87 1.58 58 11.4 1.0 46 6.50 0.95 55 10.83 1.26

20 104 7.73 1.65 121 10.94 1.64 102 11.3 1.1 82 6.33 1.02 99 10.94 1.52

25 163 7.65 1.60 189 10.93 1.65 158 11.3 1.3 127 6.24 1.03 150 10.98 1.79

30 231 7.63 1.62 271 10.82 1.77 225 11.3 1.5 179 6.18 1.13 217 11.00 1.80

Distance (m) n
Avg. Median 

Yield

Std. 

Deviation
n

Avg. Median 

Yield

Std. 

Deviation
n

Avg. 

Median 

Yield

Std. 

Deviation
n

Avg. Median 

Yield

Std. 

Deviation
n

Avg. Median 

Yield
Std. Deviation

5 5 2.25 0.24 8 3.34 0.32 6 3.26 0.21 5 2.53 0.20 11 3.24 0.31

6 7 2.28 0.27 11 3.36 0.43 10 3.34 0.24 7 2.47 0.23 15 3.22 0.31

7 10 2.34 0.30 16 3.30 0.44 14 3.36 0.27 9 2.50 0.26 20 3.21 0.35

8 13 2.43 0.34 20 3.23 0.44 18 3.42 0.27 12 2.50 0.28 27 3.21 0.41

9 18 2.32 0.35 25 3.20 0.44 21 3.42 0.25 16 2.50 0.30 34 3.22 0.41

10 21 2.34 0.35 30 3.18 0.47 24 3.44 0.25 21 2.49 0.30 43 3.20 0.41

11 26 2.30 0.38 36 3.25 0.47 31 3.44 0.27 26 2.50 0.31 53 3.17 0.40

12 32 2.26 0.42 43 3.28 0.47 36 3.45 0.26 29 2.47 0.32 62 3.20 0.44

13 36 2.24 0.43 51 3.26 0.52 43 3.45 0.26 34 2.48 0.32 74 3.18 0.47

14 42 2.21 0.44 60 3.31 0.53 51 3.48 0.28 40 2.49 0.34 86 3.15 0.50

15 46 2.22 0.44 68 3.29 0.53 60 3.43 0.31 47 2.54 0.36 101 3.21 0.53

20 84 2.21 0.47 118 3.18 0.60 104 3.47 0.39 81 2.56 0.41 175 3.20 0.66

25 126 2.24 0.50 180 3.14 0.64 164 3.52 0.54 123 2.59 0.47 275 3.19 0.70

30 179 2.27 0.51 257 3.17 0.65 232 3.48 0.54 172 2.55 0.52 377 3.19 0.71

Maize

Soybean

2016 2017 2018 2019 2020

2016 2017 2018 2019 2020
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APPENDIX B:  

CROP ECOTOPE RESULTS FOR ALL BUFFERED YIELD POINTS  

(FCL FARMING) 

 

Average median maize yield and average SNV per Crop Ecotope Class over five growing Seasons 
(2016-2020).  

KZN Ecotope* 
Buffered 

Point 
n 

Buffered Point Avg. Median 
Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

B11 23 11.24  56.61 

B12 6 10.98  38.10 

B13 3 10.38  46.35 

B21 107 10.33  13.43 

B22 18 9.51  -38.24 

B23 9 8.97  -28.20 

D11 30 9.99  14.94 

D12 4 10.74  44.80 

D13 5 9.83  11.90 

D21 79 10.07  10.39 

D22 47 9.36  -19.82 

D23 3 10.81 70.94 

E11 3 10.90 68.04 

E12 4 9.01 -48.12 

E13 8 10.26 45.00 

E22 10 8.40 -55.44 

E23 19 9.57 -10.73 

E24 4 9.97 -19.35 

H13 3 7.55 -125.29 

H22 2 7.55 -93.79 

I13 1 7.03 -194.35 

I24 1 7.44 -172.62 

J13 4 8.36 -87.55 

J22 3 8.30 -16.44 

J23 14 8.79 -61.84 

J24 8 8.52 -36.76 

*Ecotope Code consists of Soil Functional Group. Topsoil Clay Content Class. Effective Depth Class 
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Average median soybean yield and average SNV per Ecotope Class over five growing Seasons (2016-
2020).  

KZN Ecotope* 
Buffered 

Point 
n 

Buffered Point Avg. Median 
Yield (t.ha-1) 

Buffered Point 
Avg. SNV (%) 

B11 11 2.98  24.90  

B12 4 3.26  102.43  

B13 2 2.58  -7.91  

B21 49 2.84  27.51  

B22 17 2.52  -51.14  

B23 9 2.98  -10.87  

D11 14 2.82  9.34  

D12 1 1.9 -90.53 

D13 4 2.65  -60.81  

D21 27 2.79  7.65  

D22 34 2.62  -12.38  

D23 3 3.22  112.72  

E11 2 2.53  -30.63  

E12 3 3.16  25.55  

E13 8 3.33  23.12  

E22 8 2.97  -26.83  

E23 10 3.27  14.96  

E24 6 2.48  -65.67  

H13 2 2.07  -87.05  

H22 2 3.56  42.12  

I13 1 2.43 27.10 

J13 1 1.86 -112.50 

J22 5 2.68  -22.14  

J23 13 2.60  -30.15  

J24 4 3.11  -8.14  

*Ecotope Code consists of Soil Functional Group. Topsoil Clay Content Class. Effective Depth Class 
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APPENDIX C:  

CORRELATIONS BETWEEN CROP YIELD (SNV) AND  

TERRAIN ATTRIBUTES 

 

 

 

Maize Yield 

(SNV)

Elevation Aspect 

(Rads)

Slope 

Length 

Factor

Aspect 

(Degrees)

Flow 

Accumulati

on

Convergen

ce Index

Planform 

Curve

Profile 

Curve

Relative 

Slope 

Position

Slope 

(Degrees)

Slope 

(Percent)

Terrain 

Roughness 

Index

Terrain 

Position 

Index

Terrain 

Wetness 

Index

Pearson 

Correlation

1 0.055 -0.022 -0.054 -0.002 -0.067 0.022 -0.055 0.052 .130** -0.050 -0.059 -0.074 -.141** -0.007

Sig. (2-

tailed)

0.229 0.629 0.238 0.966 0.145 0.635 0.229 0.259 0.005 0.278 0.202 0.106 0.002 0.878

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

0.055 1 .150** -0.055 .120** -.142** .148** 0.078 .147** .467** 0.005 -0.087 -.102* 0.056 -.127**

Sig. (2-

tailed)

0.229 0.001 0.234 0.009 0.002 0.001 0.089 0.001 0.000 0.913 0.059 0.027 0.227 0.006

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.022 .150** 1 -0.043 .621** -0.067 -0.063 0.023 0.061 0.027 -0.009 -0.009 -0.017 -0.057 0.038

Sig. (2-

tailed)

0.629 0.001 0.347 0.000 0.143 0.170 0.616 0.183 0.555 0.847 0.847 0.718 0.214 0.415

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.054 -0.055 -0.043 1 .092* -0.031 -.216** -.122** -.163** -.122** .750** .726** .680** -.180** -0.061

Sig. (2-

tailed)

0.238 0.234 0.347 0.046 0.497 0.000 0.008 0.000 0.008 0.000 0.000 0.000 0.000 0.182

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.002 .120** .621** .092* 1 -0.084 -0.027 0.085 0.051 0.013 .181** .172** .231** 0.008 -.170**

Sig. (2-

tailed)

0.966 0.009 0.000 0.046 0.068 0.555 0.065 0.272 0.773 0.000 0.000 0.000 0.856 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.067 -.142** -0.067 -0.031 -0.084 1 -.117* -.115* -0.056 -.094* -0.021 -0.053 -0.065 -0.063 0.005

Sig. (2-

tailed)

0.145 0.002 0.143 0.497 0.068 0.011 0.013 0.222 0.041 0.654 0.254 0.160 0.170 0.914

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

0.022 .148** -0.063 -.216** -0.027 -.117* 1 .723** .319** .133** -.134** -.117* -.122** .326** -.092*

Sig. (2-

tailed)

0.635 0.001 0.170 0.000 0.555 0.011 0.000 0.000 0.004 0.004 0.011 0.008 0.000 0.045

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.055 0.078 0.023 -.122** 0.085 -.115* .723** 1 .206** 0.047 0.073 0.074 0.079 .286** -.225**

Sig. (2-

tailed)

0.229 0.089 0.616 0.008 0.065 0.013 0.000 0.000 0.312 0.113 0.110 0.087 0.000 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

0.052 .147** 0.061 -.163** 0.051 -0.056 .319** .206** 1 .330** -0.078 -.169** -.155** .246** -.108*

Sig. (2-

tailed)

0.259 0.001 0.183 0.000 0.272 0.222 0.000 0.000 0.000 0.090 0.000 0.001 0.000 0.019

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation
.130** .467** 0.027 -.122** 0.013 -.094* .133** 0.047 .330** 1 0.029 -0.034 -0.054 0.050 -.209**

Sig. (2-

tailed)

0.005 0.000 0.555 0.008 0.773 0.041 0.004 0.312 0.000 0.527 0.454 0.237 0.278 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.050 0.005 -0.009 .750** .181** -0.021 -.134** 0.073 -0.078 0.029 1 .833** .779** .126** -.579**

Sig. (2-

tailed)

0.278 0.913 0.847 0.000 0.000 0.654 0.004 0.113 0.090 0.527 0.000 0.000 0.006 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.059 -0.087 -0.009 .726** .172** -0.053 -.117* 0.074 -.169** -0.034 .833** 1 .944** 0.027 -.345**

Sig. (2-

tailed)

0.202 0.059 0.847 0.000 0.000 0.254 0.011 0.110 0.000 0.454 0.000 0.000 0.553 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.074 -.102* -0.017 .680** .231** -0.065 -.122** 0.079 -.155** -0.054 .779** .944** 1 0.037 -.338**

Sig. (2-

tailed)

0.106 0.027 0.718 0.000 0.000 0.160 0.008 0.087 0.001 0.237 0.000 0.000 0.427 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation
-.141** 0.056 -0.057 -.180** 0.008 -0.063 .326** .286** .246** 0.050 .126** 0.027 0.037 1 -.422**

Sig. (2-

tailed)

0.002 0.227 0.214 0.000 0.856 0.170 0.000 0.000 0.000 0.278 0.006 0.553 0.427 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Pearson 

Correlation

-0.007 -.127** 0.038 -0.061 -.170** 0.005 -.092* -.225** -.108* -.209** -.579** -.345** -.338** -.422** 1

Sig. (2-

tailed)

0.878 0.006 0.415 0.182 0.000 0.914 0.045 0.000 0.019 0.000 0.000 0.000 0.000 0.000

N 473 473 473 473 473 473 473 473 473 473 473 473 473 473 473

Terrain 

Wetness 

Index

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Maize Correlations: Terrain Attributes 

Maize Yield 

(SNV)

Elevation

Aspect 

(Rads)

Slope 

Length 

Factor

Aspect 

(Degrees)

Flow 

Accumulati

on

Convergen

ce Index

Slope 

(Degrees)

Slope 

(Percent)

Terrain 

Roughness 

Index

Terrain 

Position 

Index

Planform 

Curve

Profile 

Curve

Relative 

Slope 

Position
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Soybean 

Yield (SNV)

Elevation Aspect 

(Rads)

Slope 

Length 

Factor

Aspect 

(Degrees)

Flow 

Accumulati

on

Convergen

ce Index

Planform 

Curve

Profile 

Curve

Relative 

Slope 

Position

Slope 

(Degrees)

Slope 

(Percent)

Terrain 

Roughness 

Index

Terrain 

Position 

Index

Terrain 

Wetness 

Index

Pearson 

Correlation

1 -0.091 -.177** -0.009 0.002 -.171** 0.046 0.087 -0.080 -.177** -0.016 0.024 0.028 0.038 -0.074

Sig. (2-

tailed)

0.128 0.003 0.881 0.973 0.004 0.447 0.148 0.182 0.003 0.793 0.692 0.637 0.531 0.219

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

-0.091 1 .256** 0.051 .281** -.186** 0.032 0.051 0.096 .541** 0.106 0.044 0.047 0.094 -.199**

Sig. (2-

tailed)

0.128 0.000 0.390 0.000 0.002 0.597 0.398 0.108 0.000 0.077 0.458 0.429 0.116 0.001

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation
-.177** .256** 1 -0.075 .612** -0.020 -0.010 -0.021 .119* 0.077 0.005 -0.017 -0.029 -0.007 -0.029

Sig. (2-

tailed)

0.003 0.000 0.209 0.000 0.739 0.869 0.732 0.046 0.195 0.939 0.773 0.630 0.905 0.626

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

-0.009 0.051 -0.075 1 0.076 -.129* -.185** 0.003 -.127* -0.095 .772** .726** .659** -.124* -.168**

Sig. (2-

tailed)

0.881 0.390 0.209 0.203 0.030 0.002 0.961 0.033 0.111 0.000 0.000 0.000 0.038 0.005

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

0.002 .281** .612** 0.076 1 -.188** -0.046 0.060 0.064 .136* .178** .188** .229** 0.026 -.220**

Sig. (2-

tailed)

0.973 0.000 0.000 0.203 0.002 0.440 0.315 0.286 0.023 0.003 0.002 0.000 0.664 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation
-.171** -.186** -0.020 -.129* -.188** 1 .149* -0.025 0.030 -.139* -.168** -.212** -.249** -.126* .317**

Sig. (2-

tailed)

0.004 0.002 0.739 0.030 0.002 0.012 0.677 0.618 0.020 0.005 0.000 0.000 0.034 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

0.046 0.032 -0.010 -.185** -0.046 .149* 1 .698** .325** 0.043 -.147* -.130* -0.077 .329** 0.017

Sig. (2-

tailed)

0.447 0.597 0.869 0.002 0.440 0.012 0.000 0.000 0.473 0.014 0.030 0.199 0.000 0.776

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

0.087 0.051 -0.021 0.003 0.060 -0.025 .698** 1 .190** -0.072 .131* .123* .156** .354** -.191**

Sig. (2-

tailed)

0.148 0.398 0.732 0.961 0.315 0.677 0.000 0.001 0.227 0.028 0.039 0.009 0.000 0.001

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

-0.080 0.096 .119* -.127* 0.064 0.030 .325** .190** 1 .158** -0.071 -.169** -.148* .245** 0.009

Sig. (2-

tailed)

0.182 0.108 0.046 0.033 0.286 0.618 0.000 0.001 0.008 0.233 0.004 0.013 0.000 0.881

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation
-.177** .541** 0.077 -0.095 .136* -.139* 0.043 -0.072 .158** 1 0.031 -0.028 -0.023 .129* -.210**

Sig. (2-

tailed)

0.003 0.000 0.195 0.111 0.023 0.020 0.473 0.227 0.008 0.602 0.639 0.702 0.031 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

-0.016 0.106 0.005 .772** .178** -.168** -.147* .131* -0.071 0.031 1 .823** .766** .184** -.658**

Sig. (2-

tailed)

0.793 0.077 0.939 0.000 0.003 0.005 0.014 0.028 0.233 0.602 0.000 0.000 0.002 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

0.024 0.044 -0.017 .726** .188** -.212** -.130* .123* -.169** -0.028 .823** 1 .933** 0.109 -.435**

Sig. (2-

tailed)

0.692 0.458 0.773 0.000 0.002 0.000 0.030 0.039 0.004 0.639 0.000 0.000 0.067 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

0.028 0.047 -0.029 .659** .229** -.249** -0.077 .156** -.148* -0.023 .766** .933** 1 .130* -.450**

Sig. (2-

tailed)

0.637 0.429 0.630 0.000 0.000 0.000 0.199 0.009 0.013 0.702 0.000 0.000 0.030 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

0.038 0.094 -0.007 -.124* 0.026 -.126* .329** .354** .245** .129* .184** 0.109 .130* 1 -.416**

Sig. (2-

tailed)

0.531 0.116 0.905 0.038 0.664 0.034 0.000 0.000 0.000 0.031 0.002 0.067 0.030 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Pearson 

Correlation

-0.074 -.199** -0.029 -.168** -.220** .317** 0.017 -.191** 0.009 -.210** -.658** -.435** -.450** -.416** 1

Sig. (2-

tailed)

0.219 0.001 0.626 0.005 0.000 0.000 0.776 0.001 0.881 0.000 0.000 0.000 0.000 0.000

N 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281

Terrain 

Wetness 

Index

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Soybean Correlations: Terrain Attributes 

Soybean 

Yield (SNV)

Elevation

Aspect 

(Rads)

Slope 

Length 

Factor

Aspect 

(Degrees)

Flow 

Accumulati

on

Convergen

ce Index

Slope 

(Degrees)

Slope 

(Percent)

Terrain 

Roughness 

Index

Terrain 

Position 

Index

Planform 

Curve

Profile 

Curve

Relative 

Slope 

Position
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APPENDIX D:  

PROPOSED FUNCTIONAL GROUPS (FG) FOR THE 2018 SOIL 

CLASSIFICATION SYSTEM FOR SOUTH AFRICA 

 

 

FUNCTIONAL GROUP CODE 

Deep humic soils A 

Well and Moderately drained Soils B 

Unconsolidated sediments C 

Mottled and moderately drained soils D 

Mottled and poorly drained soils E 

Black (Margalitic) soils F 

Black (Margalitic) poorly drained soils G 

Young soils H 

Gleyed soils I 

Duplex soils J 

Soft and/or hard carbonates K 

Dorbank L 

Man-made soils M 

Organic soils O 

Podzols Z 

 
PEAT TOPSOIL 

Topsoil 

Horizon 
Subsoil Horizon Subsoil Horizon Form Code FG 

Peat 

Gley   - Mfabeni Mf O 

Albic  - Nhlangu Nh O 

Soft Carbonate - Muzi Mz O 

Hard Rock  - Kromme Ko O 

 
ORGANIC TOPSOIL 

Topsoil 

Horizon 
Subsoil Horizon Subsoil Horizon Form Code FG 

Organic 

 

Gley  - Champagne Ch O 

Albic  Gley  Manguzi Mg O 

Soft Carbonate - Makhasana Mh O 

Hard Rock  - Didema Dd O 

 
VERTIC TOPSOIL 

Topsoil horizon Subsoil Horizon Subsoil Horizon Form Code FG 

Vertic 

 

Gley - Rensburg Rg G 

Pedocutanic (thick)  Glen Gl F 

Soft Carbonate Gley Zondereinde Zo G 

Soft Carbonate  Hard Carbonate Nietverdiend Nv F 

Soft Carbonate Lithic Bakwena Bk F 

Hard Carbonate  - Waterval Wv F 

Alluvium (thick)  Mkuze  Mk F 

Lithic - Arcadia Ar F 

Hard Rock  - Rustenburg Rs F 
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MELANIC TOPSOIL 

Topsoil horizon Subsoil Horizon Subsoil Horizon Form Code FG 

Melanic 

 

Gley - Willowbrook Wo G 

Red Structured Lithic  Stanger St F 

Pedocutanic  Gleyic  Lauriston Lr G 

Pedocutanic Alluvium Potsdam Pd F 

Pedocutanic Lithic Darnall Da F 

Pedocutanic (thick)  Bonheim Bo F 

Neocutanic (thick)  Marolong Ml F 

Soft Carbonate - Steendal Sn F 

Hard Carbonate - Immerpan Im F 

Alluvium (thick)  Inhoek Ik F 

Lithic  - Mayo My F 

Hard Rock  - Milkwood Mw F 

 
HUMIC TOPSOIL 

Topsoil 

Horizon 
Subsoil Horizon Subsoil Horizon Form Code FG 

Humic 

 

Yellow-Brown Apedal Gleyic Dartmoor Dm A 

Yellow-Brown Apedal Red Apedal Kranskop Kp A 

Yellow-Brown Apedal Soft Plinthic Eland El A 

Yellow-Brown Apedal Lithic  Longtom  Lg A 

Yellow-Brown Apedal (thick) Magwa Ma A 

Red Apedal Gleyic  Highmoor Hm A 

Red Apedal Soft Plinthic Netherley Ne A 

Red Apedal Lithic Gangala Ga A 

Red Apedal (thick)  Inanda Ia A 

Neocutanic Soft Plinthic Umvoti Um A 

Neocutanic Lithic Henley He A 

Neocutanic (thick)  Sweetwater Sr A 

Lithic - Nomanci No A 

Hard Rock  - Graskop  Gp A 

 

ORTHIC TOPSOIL 

Topsoil horizon Subsoil Horizon Subsoil Horizon Form Code FG 

Orthic 

 

 

Gley - Katspruit Ka I 

Albic Gley Kroonstad Kd I 

Albic Yellow-brown Apedal Constantia  Ct B 

Albic Red Apedal Shepstone Sp B 

Albic Neocutanic Vilafontes Vf B 

Albic Soft Plinthic Longlands Lo E 

Albic Hard Plinthic Wasbank Wa E 

Albic 
Podzol/Unconsolidated material with 

wetness 
Lamotte Lt 

P 

Albic Podzol/ Lithic Houwhoek Hh P 

Albic Podzol Concordia Cc P 

Albic Prismacutanic Estcourt Es J 

Albic Pedocutanic Klapmuts Km J 

Albic Neocarbonate Kinkelbos Kk K 

Albic Lithic  Cartref Cf H 

Albic Hard Rock Iswepe  Is H 

Albic (thick)  Fernwood Fw C 

Yellow-Brown Apedal Gleyic Pinedene Pn D 

Yellow-Brown Apedal Red Apedal Griffin Gf B 

Yellow-Brown Apedal Soft Plinthic Avalon Av D 

Yellow-Brown Apedal Hard Plinthic Glencoe Gc D 
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Yellow-Brown Apedal Soft Carbonate Molopo Mp K 

Yellow-Brown Apedal Hard Carbonate Askham Ak K 

Yellow-Brown Apedal Lithic  Clovelly Cv K 

Yellow-Brown Apedal Hard Rock Carolina Ca B 

Yellow-Brown Apedal (thick) Ermelo  Er B 

Red Apedal Gleycutanic Bloemdal Bd D 

Red Apedal Soft Plinthic Bainsvlei Bv D 

Red Apedal Hard Plinthic Lichtenburg Lc D 

Red Apedal Soft Carbonate Kimberley Ky K 

Red Apedal Hard Carbonate Plooysburg Py K 

Red Apedal Dorbank Garies Gr L 

Red Apedal Lithic  Nkonkoni  Nk B 

Red Apedal Hard Rock Vaalbos Vb B 

Red Apedal (thick)  Hutton Hu B 

Red Structured Lithic  Magudu Md B 

Red Structured Hard Rock Nshawu Ns B 

Red Structured (thick)  Shortlands Sd B 

Soft Plinthite Gleyic Westleigh We E 

Hard Plinthite -  Dresden Dr E 

Podzol 
Unconsolidated material  

with wetness 
Witfontein  Wf 

P 

Podzol Lithic Groenkop Gk P 

Podzol (thick)  Pinegrove Pg P 

Prismacutanic  Gleyic Idutywa Id J 

Prismacutanic Pedocutanic Heilbron Hb J 

Prismacutanic Alluvium  Utrecht Ut J 

Prismacutanic Lithic  Sandile Sa J 

Prismacutanic Hard Rock Cookhouse Ck J 

Prismacutanic (thick)  Sterkspruit Ss J 

Pedocutanic Gleyic Sepane Se J 

Pedocutanic Alluvium Queenstown  Qt J 

Pedocutanic Lithic Swartland Sw J 

Pedocutanic Hard Rock Spioenberg Sb J 

Pedocutanic (thick)  Valsrivier Va J 

Neocutanic Gleyic  Tukulu  Tu D 

Neocutanic Neocarbonate  Makgoba Mb K 

Neocutanic Soft Carbonate Etosha  Et K 

Neocutanic Hard Carbonate Gamoep Gm K 

Neocutanic  Gypsic  Soutvloer Sv K 

Neocutanic Dorbank Oudtshoorn  Ou L 

Neocutanic Alluvium  Quaggafontein Qf B 

Neocutanic Unconsolidated material with wetness Tshiombo Ts D 

Neocutanic Lithic  Tubatse  Tb B 

Neocutanic Hard Rock Bethesda Be B 

Neocutanic (thick)  Oakleaf  Oa B 

Neocarbonate Soft Carbonate Addo Ad K 

Neocarbonate Hard Carbonate Prieska Pr K 

Neocarbonate Gypsic Sendelingsdrif  Sf K 

Neocarbonate Dorbank Trawal Tr K 

Neocarbonate Alluvium  Motsane Mt K 

Neocarbonate Unconsolidated material with wetness Montagu Mu K 

Neocarbonate Lithic  Burgersfort  Bg K 

Neocarbonate Hard Rock Hofmeyr Hf K 

Neocarbonate (thick)  Augrabies Ag K 

Soft Carbonate  Unconsolidated material with wetness Kolke Ko K 

Soft Carbonate Hard Carbonate Olienhout Oh K 

Soft Carbonate Gypsic Koiingnaas  Ks K 

Soft Carbonate - Brandvlei Br K 

Hard Carbonate - Coega Cg K 
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Gypsic - Rooiberg Ro K 

Dorbank - Knersvlakte Kn L 

Alluvium (thick)  Dundee Du C 

Regic Sand (thick)  Namib Nb C 

Lithic  - Glenrosa Gs H 

Hard Rock   - Mispah Ms H 
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