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ABSTRACT 

Power grids are facing significant challenges today. Their primary purpose is to provide energy 

that is reliable, affordable, environmentally friendly and available at the push of a button. The 

historical power grid based on large, fossil fuel based, centralised power stations is shifting 

towards a smart grid based on distributed, low carbon power stations. The smart grid of the 

future is required to be able to adapt and optimise itself in real-time. Demand response is 

expected to play a major role in balancing supply and demand in future, especially for systems 

with high penetration of renewable energy. It is important that consumers take an active role in 

managing their energy consumption and performance. 

This project focusses on evaluating the potential for demand response in the coal mining 

industry. The high-level mining processes are reviewed with the view to identify viable demand 

response assets, i.e. electrical load components that can respond significantly to a demand 

response event. A detailed analysis of operating parameters and electrical energy consumption 

profiles of the various mining processes are conducted for six mines, representing both open-

pit operations and underground operations. The results indicate that the coal processing plants, 

draglines and the underground sections represent viable demand response assets. 

Historical, current and potential demand response events were analysed to characterise the 

frequency and durations of typical demand response events. These events include pricing based 

events, voluntary participation programmes, emergency load curtailment and extreme load 

curtailment. These scenarios were considered both with and without a solar photovoltaic plant 

on the consumer side of the grid. 

Regression models, which allow energy consumption to be predicted based on production 

throughput, were developed for each of the demand response assets. Simulations were 

conducted to determine the hourly production plan for the demand response assets, with the 

objective to minimise energy costs. The simulations were limited by the historic operational 

constraints and the energy constraints, based on the four typical demand response scenarios. 

The simulations were done for both the MegaFlex and critical peak day tariffs. The results of 

the simulations indicate that the demand response scenarios could be theoretically 

accommodated by adjusting production planning while meeting the monthly production 
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throughput. In many cases, potential energy costs savings and production increases may be 

realised.  

The need for demand response in the future power grid is clear. It will require changes from 

governments, utilities and consumers as a crucial first step. The solution is driven by people, 

behaviour and processes rather than technology. Demand response is, however, further enabled 

by the advances in smart grids, data analytics, processing power of modern computers and 

distributed energy resources. The time is apt to develop a clear demand response strategy for 

South Africa as part of the introduction of smart grid concepts.  
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OPSOMMING 

Kragstelsels ondergaan tans groot uitdagings. Hul hoofdoel is om energie te voorsien wat 

betroubaar, bekostigbaar, omgewingsvriendelik en beskikbaar is met die druk van 'n knoppie. 

Die historiese kragstelsel wat gebaseer is op groot, fossiel brandstof, gesentraliseerde 

kragstasies is besig om verskuif na ‘n slim netwerk, gebaseer op verspreide, lae koolstof 

kragstasies. Die slim netwerk van die toekoms sal homself in reële tyd kan aanpas en optimeer. 

Daar word verwag  dat vraagrespons 'n belangrike rol gaan speel in die balans van voorsiening 

en aanvraag in die toekoms, veral vir stelsels met ‘n hoë penetrasie van hernubare energie. Dit 

is belangrik dat verbruikers 'n aktiewe rol neem in die bestuur van hul energieverbruik en 

prestasie. 

Hierdie projek fokus op evaluering van die potensiaal van vraagrespons in die steenkool 

mynbedryf. Die hoë-vlak mynbou prosesse word hersien met die doel om lewensvatbare 

vraagrespons bates te identifiseer, m.a.w. die bates wat beduidend kan reageer op 'n 

vraagrespons gebeurtenis. 'n Gedetailleerde ontleding van bedryfstelsel parameters en 

elektriese energieverbruik profiele van die verskillende myn prosesse word uitgevoer vir ses 

myne, wat beide oop groef en ondergrondse operasies behels. Die resultate dui daarop dat die 

steenkool verwerkingsaanlegte, draglines en die ondergrondse seksies lewensvatbare 

vraagrespons bates verteenwoordig. 

Historiese, huidige en potensiële vraagrespons gebeure is ontleed ten einde frekwensie en 

duurtes van tipiese vraagrespons gebeurtenisse te bepaal. Hierdie gebeurtenisse sluit prys 

gebaseerde gebeure, vrywillige deelname programme, nood las inperking en uiterste las 

beperking in. Hierdie scenario’s is oorweeg beide met, en sonder 'n sonkrag fotovoltaïese aanleg 

aan die verbruiker kant van die netwerk. 

Regressie modelle, wat toelaat dat die energieverbruik voorspel kan word gebaseer op die 

produksie deurset, is vir elk van die vraagrespons bates ontwikkel. Simulasies is uitgevoer om 

die uurlikse produksie plan vir die vraagrespons bates te bepaal, met die doel om die koste van 

energie te minimaliseer. Die simulasies is beperk deur die historiese operasionele beperkings 

en die energie beperkings, gebaseer op die vier tipiese vraagrespons scenario’s. Die simulasies 

is vir beide die MegaFlex en kritiese piek dagtariewe gedoen. Die resultate van die simulasies 

toon aan dat die vraagrespons scenario’s teoreties geakkommodeer kan word deur produksie 
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beplanning aan te pas, terwyl die maandelikse produksie deurset gehandhaaf kan word. In baie 

gevalle kan potensiële energie koste besparings en produksie toenames verwesenlik word. 

Die behoefte vir vraagrespons in die toekomstige kragnetwerk is duidelik. Dit sal veranderinge 

vereis van regerings, kragvoorsieners en verbruikers as 'n belangrike eerste stap. Die oplossing 

word deur mense, gedrag en prosesse eerder as deur tegnologie gedryf. Vraagrespons word 

nietemin verder bevorder deur die vooruitgang in slim netwerke, data analise, die verwerkings 

vermoë van moderne rekenaars en verspreide energiebronne. Daar bestaan tans ‘n goeie 

geleentheid om ‘n duidelike strategie te ontwikkel vir vraagrespons wat deel vorm van die 

bekendstelling van slim netwerk konsepte in Suid-Afrika. 
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1. Project motivation and description 

1.1. Introduction 

“Machinery that gives abundance has left us in want [1]”. In the last couple of centuries, we 

have become reliant and accustomed to having abundant and cheap electricity at the push of a 

button. The historical model of having large centralised power stations and a linear power flow 

is becoming outdated in favour of smaller, decentralised, low carbon microgrids [2]. To enable 

this transition, it is necessary to implement new approaches to power systems operations, 

particularly regarding concepts such as power flow, voltage control, system stability, power 

dispatch and energy consumption behaviour [3].   

South Africa’s power system has come under significant pressure in these past few years and 

is faced with significant challenges. These range from generation capacity constraints, a huge 

maintenance backlog, increasing operating costs, lack of financial resources, integration of 

large renewable plants, regulations relating to carbon tax and air quality emissions as well as a 

leadership and a skills vacuum. Constraints in generation and transmission capacities, in 

particular, have given rise to recurring load reduction events in the recent past. 

1.2. Project motivation 

In order the understand the motivation for the project, the current and future challenges of the 

power system are discussed. The potential role of demand response to address these challenges 

is then discussed, together with the demand response initiatives in the coal mining industry. 

1.2.1. Current challenges faced by the power system 

1.2.1.1. Generation constraints and maintenance backlogs 

Various classes of power stations are required to supply the daily energy requirement of the 

country. Baseload power stations normally run at full rated capacity to supply the minimum 

constant load requirement while mid-merit power stations are typically required to supply the 

additional daytime load. Peaking power stations cater for peak period, such as morning and 

evening peak periods, and runs only for a short duration at a more expensive energy rate. 

Renewables power plants, with the exception of hybrid power stations with dispatchable energy 
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storage such as concentrated solar plants, are typically non-dispatching or self-dispatching 

generators that deliver power to the grid when it becomes available [4]. 

The local utility, Eskom, added the majority of its capacity between 1952 to 1996 [5], where 

after 11 years passed before any new capacity was added. In 2007 the utility commissioned 

various open-cycle gas turbines (OCGT) designed to run as peaking stations for eight hours per 

day [6]. Two new coal-fired stations, namely Medupi and Kusile rated at 4 800 MW each, are 

currently under construction. The first baseload coal generation unit from Medupi was added 

in 2015 after about a five-year delay. It is expected that Medupi and Kusile will be fully 

commissioned by 2021 [7], adding 9 564 MW to the grid. Ingula, a peaking pumped storage 

plant rated at 1 332 MW, is planned to be commissioned in 2016. An additional 1 600 MW 

(installed capacity) was also added to the national grid at the end of 2014 [8] through the 

Renewable Energy Independent Power Producer Procurement Programme (REIPPPP) with 

another 3 600 MW planned [9]. Request for proposals was issued in 2015 to secure both coal 

and gas generation from Independent Power Producers (IPPs). 

Although new generation capacity has been and is planned to be added to reduce the medium-

term supply constraints, the decisions for new capacity required for the longer term, as outlined 

in the Integrated Resource Plan (IRP), has been significantly delayed. The IRP aims to achieve 

the right balance between energy security, energy costs, carbon emission reductions, water 

usage, job creation and regional developments [10]. The majority of the existing coal power 

plants will be retiring from 2030 to 2050 [10] and thus the decisions in the IRP are critical for 

long-term energy security, at a reasonable cost. It is estimated that the cost for Medupi will be 

in the region of US$ 2 600 /kW while the planned nuclear build is expected to be 

US$ 8 000 /kW, thus requiring significant future tariff increases.  

The policy to “keep the lights on” on at all cost led to an increase in the power station 

maintenance backlog due to the deferral of maintenance activities [11]. This led to more 

frequent breakdowns and longer maintenance outages. Due to the limited time available for 

maintenance and repairs, partial load losses also increased and units were operated at reduced 

capacity. The utility planned to increase its planned maintenance from 7% to 15%, however, it 

can only reach about 10% due to the constraints of resources such as manpower, spares, 

finances and a narrow reserve margin [12]. 
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1.2.1.2. Emergency load reductions  

Load reduction is achieved by either load curtailment and/or load shedding. Load curtailment 

requires large electricity consumers that are supplied directly by the utility, to reduce their 

electrical load on request by a fixed percentage, compared to their average daytime load. Load 

shedding is the disconnection of consumers from the grid altogether. These consumers may be 

supplied directly by the utility or by a redistributor such as municipalities.   

The first power system emergency since 2008 was declared in November 2013, due to the loss 

of additional generating units and extensive use of emergency reserves. Key Industrial 

Customers (KICs) were requested to curtail their electrical load by a minimum of 10% in 

accordance with NRS048-9. Various emergencies followed on an ad-hoc basis in November 

2013 and in February and March 2014. The first load shedding event since 2008, which affected 

the wider public, occurred on 6 March 2014 and KICs were also requested to curtail load by 

20%. The reasons for the emergency was a multiple unit trip at Kendal power station, reduced 

output from Duvha power station following a conveyor fire in December 2013, depletion of dry 

coal stockpiles which led to reduced output from some units due to wet coal, low water levels 

at the pumped storage schemes and loss of imports from Zimbabwe [13]. Load reductions 

became more frequent towards the latter part of 2014 due to an increase in unplanned outages 

and the collapse of the main coal silo at Majuba power station in November 2014. 

An electricity war room was established in December 2014 to address the electricity challenges 

in the country. The war room was tasked to implement a five-point plan which entails 

implementing the utilities’ maintenance and capacity improvement programme, introducing 

new generation capacity through coal, entering into cogeneration contracts with the private 

sector, introducing power generation from gas and accelerating demand side management [14]. 

Four of the five points in the war room plan focusses on the supply side options and rightly so. 

An enormous amount of pressure is placed on supply side management, i.e. on the utility and 

the government, to reduce maintenance backlogs and add new generation capacity to the grid.  

However, these options require substantial additional funds to build new power stations, 

contract labour and fuel costs for running OCGTs as mid-merit stations. Given the delays 

experienced with the construction of the current new power stations, it is clear that it takes 

several years longer than planned. This translates into higher electricity tariffs for consumers.   
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The last point on the war room plan focussed on accelerating demand side management (DSM). 

This is the least cost option, with shorter time periods to realise the intended benefits. Various 

DSM projects were implemented over the years, with funding mostly provided by the utility. 

These projects focussed on load shifting and energy efficiency with savings of over 

47 000 GWh [15]. More can and needs to be done, however, to ensure the benefits of these 

projects are sustained and new projects are implemented to continually improve electrical 

demand management.  

While some energy efficiency projects do reduce the demand on the grid, energy efficiency 

interventions do not imply that power demand will be lower or better managed at various times 

of the day. The power demand and supply balance is dynamic and is not necessarily considered 

by energy efficiency interventions implemented by individual consumers, with the possible 

exception of not exceeding the notified maximum demand.  

1.2.1.3. Rising energy costs 

Electricity prices in South Africa have soared from 2008 with an average annual increase of 

20% per annum, from 2008 to 2013, compared to an average of 5% per annum between 2000 

to 2007 [16]. One of the significant drivers of the price increases is the extensive use of OCGTs, 

which are being utilised not as peaking stations but more as mid-merit stations due to lack of 

adequate generation capacity. The average fuel cost of running the OCGTs is about R 3 /kWh 

compared to the average utility selling price of R 0.74 /kWh [17]. The expected levelised cost 

for the Medupi, Kusile, and Ingula power stations are expected to be around R 1 /kWh [18]. 

The renewable energy generated from the REIPPPP have resulted in a significant reduction in 

diesel and coal costs in 2014. This reduction is in the region of R 3.64 billion due to displacing 

2.2 TWh with wind and solar energy. Based on the cost of unserved energy, an additional saving 

of R 1.67 billion was achieved through avoided load reductions [19]. 

1.2.2. Future challenges faced by the power system 

1.2.2.1. Implementation of carbon tax 

Many economists and other stakeholders around the world believe that there is only one way to 

combat climate change and that is through the implementation of carbon tax [20]. Imposing this 

additional cost on fossil fuel based energy is to be the primary driver to reduce carbon emissions. 
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Many countries have set ambitious renewable energy targets to further decarbonize their power 

systems [2]. If carbon tax is implemented in South Africa and the utility is eligible for this 

taxation, this cost is expected to be passed through to the consumer. It is estimated to 

R 0.05 c/kWh to the electricity tariff in the first year, after which it escalates at 10% per annum 

until 2020.  

For various deep level mines, the price of electricity represents more than 20% of total 

production costs [21]. Adding the additional cost of carbon tax is making utility electricity 

supply unaffordable, especially due to low commodity prices [21]. Supplemental and 

alternative energy generation solutions are available for large consumers, but most do not have 

the capital to invest in these. Furthermore, signing long-term Power Purchase Agreements 

(PPA) may not be viable or too risky in the current environment.  

1.2.2.2. Increased penetration of renewables 

The rapid developments in renewable energy technologies and reduction in costs to install these 

power plants, make them competitive with utility-supplied grid power for certain consumers. 

For several municipal supplied consumers, the price is at grid parity or even below the utility 

price. For large consumers, directly supplied by the utility, grid parity is not yet reached, but 

these investments do offer some electricity price certainty for the next 15 to 20 years. 

The intermitted nature of renewables causes some problems on the existing grid including 

power quality issues, bi-directional power flow and rapid changes in generation capacity. The 

existing grid was not designed for such dynamic and distributed power plants. Extreme weather 

events, such as periods of extended rain across the country, and natural phenomenon, such as 

solar eclipses, has a significant impact on solar energy generation. This implies that the existing 

grid will need to be modernised to ensure the reliability of energy supply under normal and 

abnormal conditions. 

The challenges described above, if not adequately addressed, cause negative reactions from 

consumers. It creates uncertainty, especially for business, concerning aspects around energy 

security, energy prices and ultimately survival. To an extent, most of these challenges are not 

new but have evolved in scope and urgency. It follows that focused actions, along with 

consistent leadership and transparent communication are required to address them. 
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1.2.3. The potential role of demand response to mitigate power system challenges 

Predicted disrupting technologies may cut out the traditional utilities and allow Independent 

Power Producers (IPPs) or even consumers to offer decentralised generation and dispatchable 

demand, enabled through a digital smart grid [22]. Providing adequate supply at all times, 

especially with increasing penetration of renewable energy technologies, has given rise to huge 

annual electricity tariff increases. Regarding energy management, a systems optimisation 

approach is taken, starting with the end-use requirement as it is the primary driver. This 

approach typically identifies low-cost initiatives with a significant upstream impact. In the 

context of power system optimisation, the least cost option to ensure a balanced grid starts with 

managing the consumer's demand. 

Demand Response (DR) represents a viable DSM strategy in the above context. DR is defined 

by the Federal Energy Regulatory Commission, as the “changes in electric usage by end-use 

customers from their normal consumption patterns in response to changes in the price of 

electricity over time, or to incentive payments designed to induce lower electricity use at times 

of high wholesale market prices or when system reliability is jeopardized” [23].  

DR aims to manage the total demand on the power system in such a way as to reduce load 

during critical periods, typically system peak periods, and possibly increasing load in non-

critical periods. Thereby it addresses the cost of unserved energy, unlocks energy savings and 

carbon emission reductions [2]. In the decentralised power system, DR does not only includes 

changes in consumer’s electrical loads but also includes energy storage and generation behind 

the consumer meter [2]. These are important to include, especially as the power system becomes 

more decentralised with higher renewable energy penetration to balance the grid. The purpose 

of DR is to optimise electricity use on the demand side so that it aids the supply side network 

to meet the required demand in the most efficient manner, both technically and economically. 

Effective DR leads to reduced operating costs for utilities and results in reasonable electricity 

tariff increases for consumers. 

1.2.3.1. Demand response in the coal mining industry  

In the coal mining industry, various initiatives have been implemented to reduce energy 

consumption, reduce demand, reduce carbon emissions and ultimately deliver operational cost 

reductions. Mines are participating in various utility DSM initiatives including projects 
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targeting lighting, ventilation systems, compressors, and pumps. DR activities triggered by peak 

tariff periods remain a largely untapped resource in the coal mining industry as the value of 

saleable production generally, make up for higher electricity prices in the end. However, recent 

declines in commodity prices have triggered large cost reduction plans. It follows that electricity 

tariffs and annual increases now have a more significant impact on operations.  

Another form of DR is when the utility experiences capacity constraints and request load 

curtailment from KICs to keep the grid stable. In 2015, KICs experienced 59 load curtailments 

events totalling 532 hours, as indicated in Figure 1-1. During these events, large equipment 

and/or plants were stopped to reduce electrical demand by 10% or 20% of normal demand. 

 
Figure 1-1. Emergency load curtailment events from 2013 to 2015. 

1.2.3.2. Influencing consumer behaviour 

Electricity usage behaviour is influenced by various factors, which include low electricity prices 

(especially in the past), heavily subsidised domestic consumers, a mindset that electricity is the 

only source of energy for the home, a political policy that everyone is entitled to have electricity 

and massive non-payment and theft [24]. This all leads to inefficient usage of electricity by all 

sectors of consumers. 

The prevailing culture to strive for abundance in electricity supply is steering the industry in 

the wrong direction. In this mindset it is easier to add new capacity, in whatever form, to meet 

demand needs. A more holistic approach is to follow a system optimisation approach involving 
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the entire system, i.e. the end-use requirement (demand side), the distribution system (the grid) 

and then the generation side (supply side power generation) [2]. 

A huge change in mindset is required to address these challenges through the implementation 

of various DR measures, which may include changing processes, adjusting maintenance times 

and working hours, generating supplemental electricity on-site and fuel switching. Energy 

usage needs to become more integrated into the day-to-day operations and will need to include 

DR activities [2]. The best way to achieve this change is through smaller incremental changes. 

This will unfortunately take time, but needs to be done sooner rather than later. A proper DR 

programme needs to cater for both the utility and the consumer needs. It needs to be supported 

by secure, reliable systems and infrastructure, which can provide real-time data and information 

processing.   

1.3. Project description 

The research objectives and research methodology for the project are described below. 

1.3.1. Research objectives 

The project motivation described in sections 1.1 and 1.2 give rise to the following research 

objectives: 

 Develop a DR programme for the coal mining industry that will supplement the current 

energy efficiency strategies to inform mine planning and enable dynamic demand 

changes. 

 Develop models, optimisation methods, and appropriate software systems to implement 

and operate the above DR strategy. 

 Evaluate and analyse the DR programmes’ performance in terms of achieving the 

required load reduction and satisfying the business objectives. 

1.3.2. Research methodology  

The project objectives give rise to the following key research questions: 

 What opportunities does the coal mining industry have to make demand agiler and what 

changes are required to enable DR? 

Stellenbosch University  https://scholar.sun.ac.za



 

9 

 How can operational activities be optimised to allow for the lowest cost impact on mining 

operations and what incentives are necessary to allow DR to be successful? 

 What mindset changes are needed to make DR part of everyday life? 

The research objectives define the fundamental elements of the project. To achieve the 

objectives listed in the previous section, the following research methodology will be used: 

 Conduct a literature review: 

– Review the several DR programmes that are implemented around the world with the 

view to assessing their impacts together with their successes and challenges.  

– Review previous utility DSM and DR initiatives and their implementation in the coal 

mining industry.  

– Review South African load reduction methodologies and load profiles. 

– Review electricity load forecasting models and methods. 

– Review optimisation methods that may be implemented to perform DR prioritisation.  

– Review the requirements and challenges surrounding technology to enable DR 

involving smart metering. 

– Review the various methodologies used for measurement and verification (M&V) of 

DR activities as well as their application, as there may be different approaches needed 

for different consumers or processes.  

 Review the various mining processes: 

Mining processes vary not only for the different commodities but also for the same 

commodity. An open-pit operation, for example, has different equipment, challenges, and 

products compared to an underground operation. It is, therefore, important to understand 

the process flow, constraints, commodity, product and electrical demand associated with 

the individual cases. 

 Model current electrical demand and develop forecasting models: 

Based on the mining process review and use of available historic data, the electrical 

demand can be modelled and used for forecasting demand based on certain inputs, which 

will typically include production plans and maintenance activities. 
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 Simulate various DR events using historic data using various optimisation methods: 

Various simulations can be conducted on past load curtailment events to quantify demand, 

energy reductions, and the associated cost savings. Using forecasting data from the utility, 

it is possible to highlight typical constraints for particular periods in the future and 

simulate what the benefits will be if DR is triggered for such periods. It is important also 

to quantify the impact on the business if it is opting for DR on that day compared with a 

normal production day. This will give an indication of the possible incentives that may 

be required to allow for a wider adoption of DR in the operations.  

1.4. Overview of thesis document 

This thesis is structured into seven chapters. 

 Chapter 1 presented the project overview, motivation, and description along with the 

research objectives of the study. 

 Chapter 2 presents a literature review on the main components of this study, namely: 

– basic economics of power systems and the drivers for DR; 

– concepts and interlinkages of DR; 

– DR in the global context and the South African context; 

– M&V methodologies; 

– challenges and opportunities relating to DR; 

– data analysis, modelling and optimisation techniques; and 

– software platforms that are available to be used. 

 Chapter 3 describes the national load profiles for summer and winter and defines the four 

typical demand response scenarios that should be catered for. Detailed analysis of the 

various scenarios is performed to determine the frequency and duration of DR events.  

 Chapter 4 gives an overview of the mining process for both underground and open-pit 

operations. It further describes the general risks related to electricity and defines the scope 

and boundaries for this project. A detailed study is made on the load profile of the 

operations included and the DR assets are identified. 

 In Chapter 5, a detailed data analysis is performed on the identified DR assets, from 

Chapter 4. The primary driver for the electricity consumption was found to be production 

and a regression model was built for each DR asset.   
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 Chapter 6 combines all the components into a production scheduling simulation. Using 

the regression models from chapter 5, the demand for each DR asset can be estimated 

based on the production. The various DR scenarios are used as constraints in the model. 

The simulations determine whether the DR constraints can be accommodated while still 

achieving the business objectives. The impacts on electricity costs, production volumes, 

and DR incentives are quantified. 

 Chapter 7 contains the conclusion and recommendation for further work. 
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2. Literature review 

2.1. Overview of the chapter 

This literature review focuses on the drivers, concepts, interlinkages and requirements of DR 

programmes. The following aspects are discussed: 

 basic economics of electricity pricing; 

 DR drivers, concepts, and interlinkages; 

 DR programmes in the global context; 

 DR programmes in the South African context; 

 the challenges and opportunities associated with DR programmes; 

 the software requirements associated with a DR programme; and 

 statistical analysis and optimisation methods used in a DR programme. 

2.2. Basic economics of electricity pricing 

In markets with perfect competition, economic theory says that there is an efficient allocation 

of resources when the marginal utility of consumption equals the marginal costs of supply, i.e. 

p* and q* as shown in Figure 2-1 [25]. The supply curve is constructed by ranking generators 

from lowest to highest marginal operating costs [25]. As the curve moves more toward the limit 

of the available capacity, the cost of electrical energy tends to increase as a result of the use of 

higher cost peaking power stations. The demand curve slopes downward as the marginal value 

of additional consumption are declining with additional consumption [25]. The pricing curves 

represent a snapshot for a given period. Thus, utilities may have a forecast for the day-ahead 

but also use an updated hourly curve based on the current system status. 
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Figure 2-1. Equilibrium price and quantity in a perfectly competitive market [25]. 

The changes in how consumers demand power and at what time of day vary per sector. 

Therefore, the demand curve may shift left or right, affecting the quantities consumed and 

pricing, as shown in Figure 2-2. The availability of generation units and/or the transmission 

network, shifts the supply curve up or down. If there is a high penetration of renewables, the 

supply curve may change rapidly over short periods. 

 
Figure 2-2. Changes in demand and supply of electricity [25]. 

2.3. Demand response overview 

2.3.1. Drivers for demand response 

In recent years, energy infrastructure has struggled to keep up with rapidly increasing demand, 

especially during the system peak times. In a power system, the supply must match the demand 

in real-time. This means adequate generation should always be available. It, however, is not 
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possible to store large quantities of electricity economically. The cost of generation also varies 

significantly depending on the technology employed and fuel source used.  

Peak periods last for short intervals but can lead to supply capacity constraints. Other than the 

peak times, general increases in demand in certain areas may cause localised or national 

interruptions. There may not be enough generation capacity available in that area and/or the 

transmission or distribution network is not able the handle the demand. Capital investments to 

construct peaking power stations are huge and they are only utilised for short durations. The 

fuel costs associated with these peaking power stations may be expensive as well. If consumers 

reduce demand on the system during constrained periods, however, the utility does not need to 

construct and operate more peaking power stations.  

Looking ahead, especially with higher penetration of renewable energy that is fuelled by 

aggressive carbon emission reduction goals [26], the need for DR is set to become a critical 

factor to ensure grid stability [2][27]. As the penetration of renewables increase, the grid needs 

to respond quickly to changes in daily conditions but also need to be able to ride out longer 

weather systems that can last several days and natural phenomena such as solar eclipses. It is 

estimated that the costs to manage the UK’s balancing services are set to double within five 

years due to an increase of renewable generation, which is eventually passed the consumer [28]. 

In essence, DR allows the existing grid to be optimised by controlling the electrical demand in 

real-time and in this way it acts as electricity storage and/or a virtual peak power station [2][26]. 

DR does not require extensive capital investments, can be implemented quickly and has zero 

carbon emissions. 

2.3.2. Defining demand response 

DR, according to the Federal Energy Regulatory Commission (as in Chapter 1), is defined as 

the “changes in electric usage by end-use customers from their normal consumption patterns 

in response to changes in the price of electricity over time, or to incentive payments designed 

to induce lower electricity use at times of high wholesale market prices or when system 

reliability is jeopardized” [23]. Nordel similarly defines DR as a voluntary, temporary 

adjustment of electricity demand in response to a price signal or a reliability-based action [29]. 

It includes the following [29]:  
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 short-term (capacity) or medium-term (energy) constraints; 

 a price signal that comes from the power market, regulating power market after a call 

from the System Operator (SO), balancing markets, ancillary services markets or from 

tariffs; 

 reliability-based actions from the SO or distribution companies and can be activated 

manually or automatically; and 

 distributed generation in consumption areas. 

 

The typical components of DR can be diagrammatically summarised as shown in Figure 2-3 

[30]. It can be classified into dispatchable and non-dispatchable DR. The non-dispatchable leg 

is made of pricing signals, i.e. time-of-use (TOU), critical peak and real-time pricing. The 

dispatchable leg is made up of components relating the power system reliability, e.g. load 

control and generation, and economics, e.g. bidding in energy markets and incentives for load 

buy-backs. Critical peak pricing is seen as both dispatchable and non-dispatchable as the SO 

determines when critical peak days are declared [30]. 

 
Figure 2-3. The typical components of DR [30]. 
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2.3.3. Typical criteria for demand response success 

There are typically four high-level criteria for successful DR: 

 there should be a willing consumer; 

 the load should be available to be reduced; 

 reliable and accurate interval metering data should be available in real-time; and 

 there should be a benefit to the consumer. 

The first criteria in DR are to have consumers that are willing to participate in DR programmes. 

Most programmes are based on voluntary participation [27], which generally works best in 

practice. Under certain conditions, however, this participation may become mandatory to 

ensure grid stability. Load reductions are one of the most common forms of DR [2]. Consumers 

with flexible loads who are subjected to TOU tariffs, mostly participate in DR programmes by 

responding to higher pricing during peak periods to lower electricity costs [2].  

The second criteria are that the load should be available or operational for it to be curtailed 

when needed. The loads identified for DR are referred to as DR assets (DRA) [31]. The typical 

DRA usage hours are from 20 to 100 hours per year. The DRAs typically consists of non-

essential loads that can be curtailed, loads that can be shifted to other times during the day 

and/or distributed generation [27]. The DRAs may be an aggregation of various metered loads. 

Consumers may participate by either manually reducing load or by using automated systems. 

Automated systems are preferred by utilities as more consumers participate [2]. It requires less 

effort on both sides and provides more precise and predictable load reductions [2].  

The third criteria are to have reliable and accurate metering and communications in place for 

the identified DRAs [26]. The utility usually requires interval data to be available in real-time 

to measure the reduction. The use of revenue-quality meters is preferred, but non-revenue class 

meters may be accepted if they meet the minimal accuracy levels [26][31]. This concept is 

important, as the participant will receive payment based on the metering data. 

The fourth criteria are to define the benefit for the participating consumer. Other than 

responding to pricing signals on tariffs, participating consumers may be paid on an incentive 

basis [27]. The incentive involves a fixed charge to be on standby throughout the year and an 

additional payment on each DR event. Participants can earn from 5% to 25% back on their 

annual electricity costs [26]. 
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2.3.4. General demand response activation process 

The utility will decide based on the current system status and forecasted demand if a load 

change, generally a reduction, is required. This is typically done a day-ahead basis and in real-

time [27]. If a load reduction is required, it is requested from the participating consumers. The 

participants either would have been offered a price for a reduction in the day-ahead or real-time 

markets or would be participating at an agreed fixed incentive rate [31]. 

The participating consumers will receive a notification from the utility to reduce the load. A 

participant will consider the current load and operating schedules and then either accept or reject 

the request if a voluntary arrangement applies [31]. This highlights two current challenges for 

effective DR, namely that there is not automated feedback to the utility and that operating 

schedules are relatively static [26]. If rejected, the participant will notify the utility of the 

decision and may be penalised depending on the agreement in place [31]. If the request is 

accepted, load control activities will be initiated, either manually or automated, for the required 

duration after which normal operations may resume [26][31]. 

This process allows for DR to be implemented if the constraints are known ahead of time. For 

example, in California, the SO implements DR during the hottest summer days between 12:00 

to 18:00 due to the increased usage of air conditioning units [2]. Weather forecasts may assist 

for heating and cooling loads, however, this does not cater for real-time constraints on the 

system. 

2.3.5. Benefits of demand response programmes 

The value-creating benefits of DR are summarised in Table 2-1. The three elements are market 

efficiency, system reliability and volatility of prices and quantities [25].  The advances made in 

terms of computing power, modelling and communication infrastructure makes DR more 

attractive to optimise electrical networks [2].  
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Table 2-1. The benefits of demand response [25]. 

Stakeholders Short-term Long-term 

Consumer 
Expression of preferences 
Lower prices 
Lower price volatility 

Risk management 
Customer services 
Security of supply (price) 

Producer/Investors Lower volatility Insurance values 
Lower hedging costs 

System Operator System reliability 
Grid stability Security of supply 

Society Market functionality 
Market power mitigation 

Resource exploitation 
Option value 
Security of supply (level) 
Externalities 

 

One of the operational benefits of DR is that it can provide energy security by controlling the 

demand in real-time [2][26]. Certain loads, such as heating and cooling loads, may be switched 

off for short periods with no immediate impacts on processes or human comfort [2]. This 

reduces the requirement for generating units to run at part load conditions to cater for variations, 

leading to reduced costs and fewer operating cycles [2]. 

Adding new generating capacity to the electrical network is a costly and timely process [7] and 

does not address the power system inefficiencies. This may lead to periods where generating 

units may only be required for short periods and idling the rest of the time as spinning reserves, 

in the case of baseload power generation units [2]. Alternatively, it may lead to running flexible, 

but expensive, peaking power stations for extended periods [2]. With DR, only the required 

baseload capacity will be added and peaking power generation units will be utilised as a last 

resort. With the reduction of inefficient fossil fuel based power generation, a further benefit is 

a reduction in carbon emissions [2][27]. 

DR has considerable economic benefits, not only for utilities but also for consumers. As 

mentioned above, deferring the capital investment of new power generation capacity and 

reducing cycling, leads to significant benefits for both parties [2]. This implies lower electricity 

tariff increases for the consumer. Enabling real-time pricing for consumers, especially those on 

flat rate tariffs, will further increase the economic benefits for them [2].   
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2.4. Demand response interlinkages 

There are several interlinked concepts that are part of DR. The two most relevant links, i.e. the 

smart grid and distributed generation, are discussed below. 

2.4.1. The link with the smart grid 

The purpose of the smart grid is to develop a self-optimising grid that enables effective and 

automated DR [26]. In a smart grid, digital technologies are applied to the grid to enable real-

time, two-way communications between utilities, consumers and distributed generation [23]. It 

further enables implementation of real-time pricing, availability of real-time data to consumers 

and utilities, improving grid reliability and reducing costs [27]. DR is certainly a major driver 

to implement the smart grid.  

The smart grid allows for consumers to better manage their electricity usage through real-time 

data being available and being able to receive and respond to a DR signal [27], whether it be 

pricing or capacity related. By implementing real-time tariffs, it allows the utility to offer cost 

reflective tariffs to consumers. It thereby ensures that the costs for generating units, that at 

dispatched at that specific time, are catered for. This is of particular interest in the South African 

context to recover costs quicker and avoid tariff increases that recover these costs years later. 

2.4.2. The link with distributed generation 

Distributed generation (DG) are smaller scale generation units, referred to as distributed energy 

resources (DER), that are located near loads that consume power [3]. DERs can include small 

gas or coal generation units, solar PV, wind, fuel cells and storage devices [3]. DERs can be 

located anywhere in the generation, transmission and distribution networks. This requires bi-

directional energy flows and various grid interconnections to ensure the power system can be 

balanced [26].  

The advantages of DERs is that there are minimal transmission losses, it improves power 

system reliability and reduces carbon emissions of the power system, depending on the 

technology and fuel source [3]. The DERs, in many cases, are located behind the consumer’s 

meter and is used for backup purposes [26]. They are also used to respond to tariff pricing 

signals if the cost of running the DERs is less than that of the current tariff price. The main 

disadvantage of DERs is the intermittency associated with the renewables plants and the 
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potential higher cost of electricity as compared to the grid supply [3]. DR will have a major role 

to play to maintain stability in microgrids, which integrate the various DERs [3], particularly 

when there is a high penetration of renewables [26][27].  

2.5. Demand response in the global context 

DR has been in operation around the world for several years [2], perhaps under different names 

and for different reasons. DR programmes historically focussed on the needs of the utilities and 

not the consumers. There appears to be renewed interest in DR mostly due to rising growth, 

especially in consumer electronics, low-cost power electronics and information technology 

infrastructure [32]. This, together with penetration of renewables and its intermittent nature, is 

leading to narrower reserve margins on existing power systems as a capital investment into 

large new power stations are deferred and/or smaller power stations cannot keep up with 

demand. DR can make a tremendous contribution to achieving energy savings, carbon emission 

reductions, and consumer cost savings. DR is a consumer-centred programme and may provide 

an alternative revenue stream for consumers, over and above the previously mentioned benefits. 

As an example, a total of US $2.2 billion was earned by US businesses and households that 

participated in their DR programmes [33].  

2.5.1. Demand response in the United States 

A brief overview of DR in the United States is given and two case studies are discussed. 

2.5.1.1. Overview 

In the United States, the Federal Energy Regulatory Commission was required to develop a 

National Action Plan on Demand Response [23]. The three objectives of the plan, published in 

2010, was to identify the technical assistance that the various states needed to enable them to 

maximise the amount of DR resources, design and identify the requirement for a national 

communication programme, including customer education on DR, and to develop or identify 

analytical tools, information, model contracts and other supporting information that may be 

needed [23]. 

To provide technical assistance to the various states, a panel of experts was assembled to inform 

them of products, technologies, incentives and the costs and benefits of such programmes [23]. 

The various practical aspects of DR implementation were to be addressed through conducting 
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or sponsoring research [23]. National and regional forums were established to provide 

information to the various stakeholders [23]. A multifaceted research-based communications 

programme was established to communicate directly to large industrial and commercial 

consumers, a local strategy targeted at commercial and residential consumers and direct 

outreaches to states, policymakers, and partners [23]. 

For development, enhancement and dissemination of tools and materials, a web-based 

clearinghouse was developed with the latest research, information, and analysis on DR [23]. 

Existing analytical tools and methods were used and developed to expand current programmes 

[34]. It was also used to aid the creation of new programmes, advance DR to support operations 

of consumers and enable consumers to participate better in the programmes [34]. 

Part of the FERC’s mandate is to provide an annual report on DR and advanced metering [23]. 

In the 2015 report, it was noted that penetration of advanced meters continues to increase, 

starting at 4.7% in 2007 to 36.3% in 2014 [35]. It was found that the amount of potential peak 

reduction varies across years, states and customer classes and that classification of DR loads 

need to be defined properly, certified and monitored continually [35]. 

A study from the South-Central Partnership for Energy Efficiency as a Resource group found 

that the state of Texas in the United States could have saved US$ 200 million in five days in 

2012 and 2013 if it had implemented DR on those specific days [36]. The savings were based 

on the available supply curves for those days and modelling DR in 500 MW blocks, ranging 

from US$ 300 to US$ 1 000 per MWh (the energy market cap was US$ 9 000 per MWh in 

2015). The current system has a US$ 50 million cap on its current DR programme, called 

emergency response service. It is clear that DR is used as an emergency measure and that the 

full potential is not yet realised. 

2.5.1.2. Salt River Project case study 

The Salt River Project (SRP) operates or participates in 11 major power plants and it has been 

a pioneer in terms of time-based pricing and prepayment since 1980 [37]. It ensures consumer 

satisfaction by embedding choices into its culture and programmes [37]. Smart meters are 

further expanding the potential for both established and new programmes, having reached a 

smart meter penetration of 86% in May 2012 [37]. The top five lessons learnt by the SRP, in 

terms of DR, can be summarised as follows [37]: 
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 make the programmes easy, simple and voluntary and allow participants to change their 

contribution or opt out at any point; 

 pricing programmes should help people to develop new daily habits and routines; 

 offer prepayment to all consumers to allow them to manage their cash flow; 

 assist consumers to decide which programmes fits their specific situation and address 

their concerns; and 

 deployment of smart metering can expand existing programmes and allow new 

programmes to be developed. 

SRP had a load cycling programme in the 90’s where consumer equipment was cycled on and 

off for short periods [37]. However, consumers prefer to be in control and rather respond to the 

pricing signal [37]. With advancements in technologies that will allow for remote cycling, there 

may be potential to re-evaluate the programme [37]. Many of the pricing DR pilot programmes 

have indicated that consumers respond to price signals, especially when enabled by automation 

[37]. 

2.5.1.3. ISO New England case study 

Independent System Operator (ISO) New England was established in 1997 after the energy 

market was deregulated in 1996 [38]. The purpose of ISO New England is to operate the 

regional power system, administer the wholesale markets and plan for the future power system 

to meet the demand for the next ten years [38]. In 2014, ISO New England had a total generating 

capacity of 31 000 MW consisting of 44% natural gas, 34% nuclear and a 9% renewable 

contribution, with a maximum all-time winter peak demand of 22 818 MW recorded on 15 

January 2004 [38]. ISO New England launched their first demand response programme in 2001 

[27] and had a 100 MW signed up by 2003. This increased to 500 MW by 2005 [38]. In 2014, 

DR contributed 700 MW of capacity while energy efficiency initiatives provided 1 400 MW of 

capacity [39].  

One of the main challenges faced by ISO New England relates to the penetration of renewable 

energy sources [40]. The remote location of wind generators, in particular, poses a challenge in 

the sense that the network in these areas is not adequate sized to deal with the large power 

generation [40]. Solar PV plants that are installed behind the consumer’s meter, provide a 

challenge to system planning and response, as these are not dispatchable by the ISO or 

sometimes the ISO is not even aware of these plants [40]. These challenges will continue to 
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increase as renewable energy prices continue to fall and pressure increases to decarbonise the 

grid [41]. 

The ISO offers a day-ahead and real-time DR programmes. The consumer may register DRAs 

which can reduce demand from 8:00 to 18:00 on weekdays, is at least capable of a 100 kW 

demand reduction and has the required metering and communication equipment in place [31]. 

The DRAs may be an aggregation of metered consumers and may include DERs [31]. Data 

needs to be sent to the ISO in real-time at 5-minute intervals [31]. The meter can be the same 

meter that the distribution company uses for billing. i.e. a revenue class meter with an accuracy 

of +/- 0.5% [31]. If it is not the same meter used for billing, then either a revenue class meter 

or a non-revenue class meter with an accuracy of +/-2%, certified by the manufacturer, is 

required [31]. Regular testing and calibration of meters need to be done at the cost of the 

consumer, including an annual independent certification of the accuracy and precision of both 

the meter and the meter communication systems [31]. The ISO may periodically audit the 

facility to check the metering, communication system, records and witness demand reduction 

activities [31].    

Participants must submit a DR offer in terms of a single price in $/MWh, capped at 

$1 000 /MWh, and a single demand reduction amount in MW to the nearest 0.1 MW [31]. 

Participants may submit a single offer for each of their DRAs for the real-time market [31]. For 

day-ahead offers, the participants must submit an offer before the deadline the previous day and 

may not change the DR offer after that [31]. Each participant is required to establish a DR 

baseline prior to submitting a DR offer [31]. 

2.5.2. Demand response in Europe 

A brief overview of DR in Europe is given and a case study is discussed. 

2.5.2.1. Overview 

Reviewing the DR experiences in Europe, it was found that the two biggest obstacles were 

demand inelasticity due to lack of policy in designing TOU tariffs to influence demand use and 

limited participation due to slow roll-out of technical infrastructure, such as smart meters, that 

will facilitate better participation [32]. The study derived four major observations, namely that 

the total amount of DR was rather low in recent years, load management forecasts increased 
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during recent years, most existing DR initiatives consisted of interruptible programmes and that 

a significant number of countries did not consider DR in the system and network planning [32]. 

In a report published in 2014, Smart Energy Demand Coalition defined ten guidelines for 

enabling DR participation and categorised those in four criteria: involve consumers, create 

products, develop M&V requirements and ensure fair payment [33].   

In Europe, the main barrier to involving consumers is the legislative process where demand is 

not accepted as a resource or the legislative process that does not allow direct access to 

consumers [33]. From a South African perspective, this may not be a problem for consumers 

supplied by the utility directly, with the proper agreements in place, but may be a barrier for 

consumers supplied via municipalities as this affects their revenue stream. This highlights the 

need for consumers to understand the bigger picture of DR [2] and see it as an additional 

revenue stream.  

One of the other significant challenges for DR is enabling two-way communication between 

the utility and the consumer [33]. The smart grid is seen as one of the requirements to enable 

the full potential of DR. Smart metering devices, however, tend to be costly, especially when 

deployed on a large scale. It is estimated that at least 80% of European consumers will be 

equipped with smart meters by 2020 [42]. In the European context, M&V does not exist yet for 

several countries and no transparent and standardised methodology is used [33]. Proper M&V 

methodologies are essential to ensure that demand reductions are measured objectively for each 

consumer, while also catering to their specific needs.  

Managing fair payment and risk is where many DR programmes tend to get derailed. In the 

European study, it was noted that the penalties for non-compliance are adequate and fair, but 

that payment for DR is less than the cost of generation, compared MW to MW [33].  

2.5.2.2. Sweden 

The Swedish SO, Svenska kraftnät (SvK), according to local law, is responsible for ensuring 

that there is enough reserve capacity, referred to as the strategic reserve, available in situations 

where there is a constrained supply and is referred to as the strategic reserve [43]. In 2014/2015 

SvK procured 1 346 MW of strategic reserves, consisting of a 720 MW generation component 

and a 626 MW as DRA components [43]. 
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For participation in the demand side portion of the strategic reserve, the participant must be 

connected to the Swedish grid and have a minimum DRA of 5 MW in a given area [43]. The 

DRA must be able to be activated in 30 minutes or less, with a duration of at least 2 hours and 

the time to restart the DRA cannot exceed 24 hours [43]. The participant must continually offer 

bids of at least 5 MW on the balancing market [43]. The DRA may consist of a group of 

different loads that need to be in the same area or zone [43]. The participants must report to the 

state of the DRA on a regular basis and inform the SO should it become unavailable [43]. There 

remains a significant potential for various industries to participate in the DR programme. Areas 

for improvement are to educate industrial consumers to understand the opportunities better, 

simplifying administration and improving the administration process [43].  

2.6. Demand response in the South African context 

An overview is given on the typical national load profiles for South Africa, together with a 

discussion of current DR initiatives, i.e. tariff signals, emergency load reductions and voluntary 

DR programmes. 

2.6.1. Overview of the national load profiles 

The typical winter and summer load profiles for the local grid are shown in Figure 2-4. The off-

peak times, i.e. 22:00 to 5:00, have a similar profile for winter and summer and demand ranges 

between 23 to 25 GW. The summer profile is a flatter curve during the day. The summer 

evening peak is about 1.5 GW higher than the average daily consumption and occurs around 

20:00. Although the flatter profile is relatively constant, it presents a challenge in the sense that 

when the power system is constrained, it is typically for the entire day. This implies load 

curtailment and/or shedding for the whole day. 
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Figure 2-4. Average daily load profiles for the weekdays of 2015, based on one-minute interval 

data. The summer period is for the low demand season, September to May, and the winter 

period is for the high demand season, June to August [44]. 

The winter profile has two distinct peaks, i.e. the morning peak and the significantly larger 

evening peak. The morning peak is generally manageable, but the evening peak presents a big 

challenge for the utility as the load increases by 3 GW from 17:00 to 18:00, reaching a peak 

that is about 4 GW higher that the daily average. This implies the possibility of load curtailment 

and/or shedding from 16:00 to 22:00 in the winter period when the power system is constrained. 

In winter, the utility generally implements load shedding first and if further reductions are 

required, call on KICs for load curtailment. Another challenge is to maintain grid stability 

during stage 3 and 4 load shedding and/or curtailment, when large sections of power are shifted 

on a rotational basis.  

The steep increase in consumption, especially during winter, will be further impacted by the 

penetration of grid-connected solar PV plants. These solar PV installations aid in power 

generation during the day and thereby mitigating diesel usage by OCGTs, if there are power 

system capacity constraints. As the sun sets, however, it leaves a gap in capacity that must be 

met by other generation sources. Not only is there a gap, but it also requires a rapid increase in 

generation over a short period. This is referred to as the duck curve [45]. In this situation, solar 

integrated storage (SIS) can play a role to reduce the rate of change and flatten out his transition 

as shown in Figure 2-5 [45].  
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Figure 2-5. Distribution feeder modelled after the duck curve indicating the impact of solar PV 

with and without solar integrated storage (SIS) [45]. 

Integration of grids connected solar PV, without integrated storage, on the demand side does 

not lead to an increase in evening peak demand, however, the utility will see and will need to 

respond to the rapid increase in load. As a DR measure, a benefit for KICs would be to move 

evening load to midday or to store solar energy during the day and discharge the energy during 

the evening peak period, when the peak electricity pricing applies. 

2.6.2. Electricity tariffs as a demand response signal 

A brief overview is given of the utilities’ existing TOU MegaFlex tariff and the proposed 

critical peak day tariff.  

2.6.2.1. Existing MegaFlex tariff 

There are various TOU tariffs on offer from the utility for different sized consumers [46]. The 

majority of large consumers are on a TOU tariff called MegaFlex. MegaFlex comprises of three 

TOU periods, namely peak, standard and off-peak [46]. There is also a seasonal component for 

the high and low demand seasons, as per Table 2-2 [46]. The energy price for the high demand 

season peak periods is about 280% more expensive than the average cost. This is used as a DR 

pricing signal for large consumers to reduce consumption [46]. This peak period aligns with the 

national profile peak times in winter, as shown in Figure 2-4 [46]. It has been moved one hour 

earlier from 2015, for the high demand season, to better align with the system peak demand 

period [46]. 
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Table 2-2. MegaFlex TOU periods per season [46]. 

Day of the week TOU period Low Demand Season Hours High Demand Season 
Hours 

Weekdays 
(excluding public 

holidays) 

Off-peak 00:00 to 06:00 00:00 to 06:00 

Standard 06:00 to 07:00 - 

Peak (morning) 07:00 to 10:00 06:00 to 09:00 

Standard 10:00 to 18:00 09:00 to 17:00 

Peak (evening) 18:00 to 20:00 17:00 to 19:00 

Standard 20:00 to 22:00 19:00 to 22:00 

Off-peak 22:00 to 24:00 22:00 to 24:00 

Saturdays 

Off-peak 00:00 to 07:00 00:00 to 07:00 

Standard 07:00 to 12:00 07:00 to 12:00 

Off-peak 12:00 to 18:00 12:00 to 18:00 

Standard 18:00 to 20:00 18:00 to 20:00 

Sundays Off-peak 00:00 to 24:00 00:00 to 24:00 
 

The different TOU periods can also be presented graphically in a heat map, as per Figure 2-6. 

The shift in the peak periods during the high demand season can be observed as well as the 

applicable periods for weekdays, Saturdays, Sundays and public holidays.  

 
Figure 2-6. Heat map of the TOU periods for 2015, based on the MegaFlex tariff.  
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2.6.2.2. Proposed critical peak day pricing 

The utility has been piloting a Critical Peak Day (CPD) tariff based on the MegaFlex TOU tariff 

[47]. Such tariffs have been proven internationally to reduce the load on the declared CPDs, 

when the power system is extremely constrained [27][47]. It is achieved by significantly 

increasing electricity pricing on CPDs, i.e. 20 days a year from 06:00 to 22:00. The tariff offers 

reduced pricing on normal days, i.e. the remaining 345 days of a year. The lower tariff prices 

for normal days are expected to yield an energy cost saving of between 17% to 23% [47]. The 

days are predetermined by the utility and consumers are notified at least a day ahead [47]. The 

tariff is said to be designed to be revenue neutral for the average consumer, implying that if no 

DR activities are initiated on CPDs, the annual cost would be almost similar to an average cost 

of that consumer on a MegaFlex tariff [47]. No penalties are charged if consumers do not 

respond on a CPD. 

2.6.3. Load reduction practices during system emergencies 

Following the load shedding in 2008, which the country, in general, was unprepared for, the 

NRS048 part 9 standard was developed to address load reduction practices, system restoration 

practices, and the management of critical load and essential load requirements under a variety 

of system emergencies [48]. These emergencies range from extreme weather events, sabotage 

and vandalism, failure of networks or generating units, limited supply capacity and unforeseen 

events [48]. For these emergencies, NRS048-9 defines four stages of load reduction 

requirements, as summarised in Table 2-3 [48]. 

Table 2-3. National load reduction requirements under system emergencies [48]. 

Stage Reduction required for  
load shedding customers 

Reduction required for  
load curtailment customers 

1 1 000 MW (typically 5% of national demand) 
10% reduction in normal 
demand profile 

2 2 000 MW (typically 10% of national demand) 

3 3 000 MW (typically 15% of national demand) 15% reduction in normal 
demand profile 

4 4 000 MW (typically 20% of national demand) 20% reduction in normal 
demand profile 
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In the 2010 version of NRS048-9, there were some gaps, one of them being that the normal 

demand profile for KICs as not properly defined. This led to confusion in certain situations, 

especially if operations were already operating below their normal demand usage and they were 

requested to reduce further. In the 2016 revision, the normal demand profile for a KIC and how 

curtailment will be measured are better defined [48]. A half-hourly curtailment baseline (CBL) 

profile will be established for every day of the week based on historic usage [48]. It will be 

scaled up or down to match the actual load based on the average of two half hours, a half hour 

before the event [48]. This reference point may be moved up to three hours back as indicated 

in Figure 2-7 [48].  

 
Figure 2-7. An example of how load curtailment will be measured against a scaled Consumer 

Baseline (CBL) in accordance with NRS048 part 9 [48]. 

While NRS048-9 provides an essential lever to manage demand in emergencies, it was not 

meant to be implemented for sustained periods. By integrating these emergency situations in a 

DR programme, it will allow informed decision-making and ensure equal participation across 

operations with the lowest cost impact from a consumer’s perspective.  

2.6.4. Utility demand response programmes 

The utility has had various DR programmes in the past; the best known is Demand Market 

Participation (DMP). DMP was initially aimed at large industrial customers, with load 

reductions in the order of 10 to 30 MW, to voluntary reduce load to balance the supply when 
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required [49]. The programme had both a standby payment and a dispatched payment based on 

a measured load reduction. To manage these various interruptible loads, the utility established 

a Virtual Power Station (VPS), which allows these loads to be dispatched in a similar fashion 

as its own generating capacity and exceeded 800 MW at the end of 2011 [50].   

More recently, the utility launched initiatives under the DR name, one of which included a hard-

wired DR programme in which, participating consumers would reduce load between 17:00 and 

20:00 during every evening winter peak in 2013 and 2014, paid at a rate of R 1.20 and 

R 1.25 /kWh, respectively. This programme ended in 2014 as the TOU periods for winter 

months were moved one hour earlier in 2015 to align with system peak demand.  The peak 

period tariff was seen as an appropriate DR signal.  

A DR aggregation pilot study was done in 2011/2012 focussed on aggregating loads from 

smaller industrial and commercial consumers [49]. The pilot study was targeting 500 MW by 

the winter of 2012, with a total estimated potential to reach 2 500 MW [49].  

2.7. Measurement and verification of demand response programmes 

A brief overview of measurement and verification methodologies are discussed in this section. 

2.7.1. FERC guideline on measurement and verification 

In the FERC guideline, M&V is addressed in two contexts, settlement and impact estimation 

[51]. The settlement relates to the demand reduction an individual or group of programmes 

achieve and the determination of the financial payment to be received or penalties to be claimed 

[51]. Impact estimation relates to the total demand reduction that has been achieved or projected 

to be achieved for an entire programme, used for planning purposes [51]. The M&V process is 

essential to design cost-effective DR programmes. It provides accurate payment to consumers 

for participation, enhances the ability to predict the impact of DR and provides fairness and 

transparency [51]. 

As with energy efficiency, it is not possible to directly meter load reductions. Instead, the actual 

load needs to be compared to a theoretical load that would have been present if there was no 

DR signal. It is recommended that the baseline be adjusted or scaled to improve accuracy and 

reduce bias by matching the load a few hours before a DR event [51]. The baselining method 

should be based on a load simulation to determine the estimation of the error [51]. This 
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estimation error is critical to ensure conservative financial payments are made [51]. The 

baseline should contain all normal operating conditions of a particular consumer and there 

should be a distinction between dispatched and non-dispatched days [51]. For highly variable 

loads the predictability element should be explored, typically with the aid of additional 

information from the consumer and using regression analysis [51]. 

To estimate the impact on a wider basis, various other tools may be employed, such as 

individual or pooled regression analysis, matching non-event days to the current event day, 

using additional consumer data and experimental design simulations [51]. To limit 

manipulation of the baseline by consumers, M&V methodologies should include data from 

similar days during a similar operational profile [51]. Random checks are also performed and 

perverse patterns are investigated [51]. Advance notice of scheduled shutdowns is important to 

ensure the availability of DRAs [51]. 

2.7.2. AEIC white paper on measurement and verification 

The Association of Edison Illuminating Companies (AEIC) published a white paper on DR 

M&V, listing methodologies to be used for both individual impact estimation as well as mass 

market impact estimation [30]. For individual impact estimation, four baseline methodologies 

were considered, namely: comparison to the previous day, average daily usage, using a proxy 

day and using a regression model [30]. Additionally, more complex engineering algorithms can 

also be used [30]. Each one of these methodologies come with their own advantages and 

disadvantages as listed in Table 2-4 [30]. Various methodologies exist to answer the question 

“what would a consumers’ load have been”, however, it depends highly on the consumers’ load 

profile, i.e. the consumers’ internal processes [30].  
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Table 2-4. Pros and cons of various baseline methodologies for DR [30]. 

Methodology Advantages Disadvantages 

Previous Day 

Most likely the same usage pattern 
as the event day. 
Easy method for a customer to 
understand. 

Does not take into account the 
effects of weather or other drivers on 
load. 
The need for a baseline adjustment. 

Average Daily Usage 

Easy method for a customer to 
understand. 
Averaging takes out the variability in 
load for the days used to create the 
average day. 

An average load shape created from 
multiple day load shapes will not 
totally capture the usage pattern for 
an event day. 
The need for a baseline adjustment. 

Proxy Day Matches a day based on defined 
variables uniform with event day. 

Finding a day based on the defined 
variables. 
The need for a baseline adjustment. 
There might not be a day to use as 
the proxy day. 

Regression Model The concept of variable relationship 
is easy to understand. 

Customer understanding of the 
process used. 
Selecting the correct variables to use 
in the model. 

 

2.7.3. Consumer considerations for measurement and verification 

It is important to analyse the consumer’s load profiles and determine the best method to 

establish a baseline. A few key questions should be asked, namely: 

 Should the baseline be static and dynamically scaled? 

 What is the operating profile i.e. daily, seven-day or monthly and seasonal variations?  

 What are the main drivers for the process and how can they change?  

 How are unplanned maintenance, breakdowns, weather and reduced demand handled? 

2.8. Demand response challenges and opportunities 

The challenges and opportunities relating to effective DR are discussed. They include: 

 production process constraints; 

 cybersecurity concerns; 

 consumer education and engagement; 

 modelling assumptions; and 

 the use of appropriate DR standards. 
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2.8.1. Production process constraints 

DR is seen as competing with business objectives that result in a loss of production and income. 

Certain production processes take time to start and stop and production costs may increase if 

processes start and stop frequently. Restarting a process or equipment after a stoppage may 

present a risk in terms of reliability, especially in older processes. Certain processes are linked 

and may have a delayed impact, days, weeks or even months later [29]. 

There may be industries with high load factors, which consist of a large number of baseload 

loads. The majority of these loads are critical for safety, such as in the deep level mines, which 

may limit participation. There may be limited stockpile or buffer capacity available in the 

production process, which may limit participation or the duration thereof. The price of 

electricity compared to total operating cost may present another challenge. If the electricity cost 

is low compared to other components, it may not be worthwhile to participate due to the low 

value to be gained [2]. Another aspect to consider is the impact on personnel during a DR event, 

especially if it affects production. Labour costs are typically fixed in most cases. Personnel 

should be able to do productive work; such as carry out maintenance or attend training. 

DR events may occur at irregular intervals which make planning for production and 

maintenance a challenge. Sometimes a DR may occur at an inconvenient time during the 

production schedule which may have a larger impact on the business. It remains a challenge to 

motivate production personnel, that are being measured against production, to participate in DR. 

2.8.2. Cybersecurity concerns 

With the advances in the smart grid comes the added threat of cyber security concerns. The five 

most important challenges are [52]: 

 the large amount of sensitive customer data that is transmitted; 

 a greater number of remotely controllable devices; 

 poor physical security of a big portion of these devices; 

 the use of the Internet Protocol as a communication standard; and 

 a greater number of stakeholders that the grid will rely on for smooth operation. 

The successful implementation of the smart grid, and therefore DR, depends on open and secure 

infrastructure [52]. It also brings together various stakeholders from different disciplines to 

ensure smooth operation [52]. The legislative framework needs to support the development of 
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the smart grid to ensure the roles and responsibilities are allocated to the relevant parties in 

terms of ownership, possession and access to data [52]. 

2.8.3. Consumer education and engagement 

Consumer engagement is essential to ensure that smart grids are economical and sustainable in 

the long term [52]. Most consumers do not understand the need for DR and in many cases, are 

not even aware of how much electricity they consume [2]. To ensure DR is successful, 

consumers must understand the benefits to them and trust in the reliability and security of the 

smart grid [52]. That will make them more willing to change their habits and pay for products 

and services [52].  

Tied to smart metering is the implementation of TOU or real-time tariffs for commercial and 

residential consumers. With the greater availability of data of the various sectors of consumers, 

better products and services can be tailored to suit both the consumer and the utility [52]. 

Studies have shown that increasing consumer awareness around their energy consumption, even 

on a flat rate, can realise a 7% to 14% reduction in consumption [2]. On the other hand, for 

certain smaller consumers, the cost of electricity is small compared to other operating costs and 

may lead to no change in consumption [2]. This is especially true for residential consumers, 

where there are many competing priorities. A study of 400 households in New Zealand found 

that even with TOU tariffs, consumer’s heating loads were still present during peak periods [2]. 

In certain cases, some consumers showed an asymmetric response, with little reduction in peak 

periods and a significant increase in off-peak periods [2].  

Even if consumers do participate, it may not be every event or the same amount of load. It is 

also unrealistic to expect consumers to track real-time pricing continuously [27]. Thus, 

responding to TOU or real-time pricing does not guarantee an adequate DR, which makes a 

case for automated DR [2]. This enables a more reliable and predictable DR [2], however, this 

comes at a cost. It will require more metering and control equipment to be installed and 

maintained, as well as more data to process. The consumer still cannot be removed at this level. 

The consumer is still required to be engaged to ensure the equipment or appliance is switched 

on for a DR to be achieved [2]. 
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2.8.4. Modelling assumptions 

A significant challenge for DR is the lack of experience in the full potential application thereof 

as well as modelling assumptions that are made [2]. The first assumption is based on the 

economics of DR. Looking at the various studies [2] and from experiences within South Africa, 

it is clear that not all consumers respond to TOU pricing. There are many other driving factors 

for consumers to take into account, other than just considering electricity costs. 

The grouping together of various DRAs presents another challenge as they are typically diverse 

[2]. It may include curtailable production, weather driven loads, renewables and energy storage 

units. Each of these has different characteristics and constraints that are typically not catered 

for, implying that the models used may be flawed or misleading [2][53]. Detailed models are 

needed to model the characteristics of the various DRAs more accurately. To ensure an 

appropriate DR, these models also need to be continuously updated and information fed back 

to the utility or SO [26]. The amount and duration of the DR can then be better estimated before 

the event, rather than relying on having a predefined DR which can only be verified after the 

event [26].  

2.8.5. Use of appropriate demand response standards 

Most of the technical and computing challenges have been addressed and solutions are available. 

The lack of proper standards and common systems that integrate DRAs is now the greater 

challenge [2]. OpenADR, a US-based alliance initiative, is an open and standardised way for 

utilities and SOs to communicate DR signals with each other as well as their consumers using 

a common language over any existing IP-based network [26][54]. Their mission is to foster the 

development, adoption and compliance of OpenADR standards through education, training, 

testing and certification [54]. Various states in the US use the OpenADR standard, with 

California utilities having enrolled over 250MW of automated DR [26]. 

An implementation guide has been released for OpenADR 2.0 to guide utilities to deploy DR 

programmes that utilise it [55]. It allows for communicating DR related messages between 

utilities and consumers and assist manufacturers of equipment to incorporate this standard to 

enable this exchange [26][55]. The guide contains templates for the following DR programmes 

[55]: 
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 critical peak pricing; 

 capacity bidding programme; 

 thermostat programme or direct load control; 

 fast DR dispatch or ancillary services programme; 

 electric vehicle DR programme; and 

 distributed energy resources programme. 

With all these challenges mentioned above, it makes it difficult to build a proper business case 

for DR programmes, as there are many uncertainties that are not yet clarified. DR programmes 

need to be designed and adapted to the target consumers and will be a combination of forecasted 

programmes, e.g. day-ahead, and real-time programmes [27]. 

2.9. Data analysis, modelling and optimisation methods 

In this study, both descriptive and inferential statistics were used for data analysis. Descriptive 

statistics refers to methods for summarising data in graphs and numbers, while inferential 

statistics are methods used for decisions and predictions [56].  

2.9.1. Descriptive statistics using histograms 

A histogram is one of the preferred methods to visualise a quantitative variable by displaying 

the frequencies or relative frequencies (density) of the possible outcomes to form a distribution 

[56].  Typically, when using continuous variables, the values need to be grouped into intervals 

or bins to form the bars, which are of the same size [56]. The size of the intervals is important 

as one may lose detail if the intervals are too big or have too much detail when the intervals are 

too small [56]. There is no right way to define these intervals, but it should be suitable to provide 

enough detail for the specific analysis at hand [56].  

Numerical summaries are used to describe the centre of the distribution, using the mean, median 

and/or mode as well as the variability of the distribution [56].  The shape of the distribution of 

data in the histogram affects these numerical summaries and is essential to interpret the results 

correctly [56]. The interquartile range is used as a measure of variability and as a means to 

detect potential outliers [56]. This is best visualised with a box-and-whisker plot, which lacks 

some detail compared to a histogram [56]. It is also useful to compare different groups of data 

to each other [56]. 
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2.9.2. Inferential statistics 

Probability is the key method for conducting inferential statistics and making conclusions about 

populations based on sample data [56]. A function can be fitted to the distribution of data in a 

histogram called the probability density function (PDF) and it is used to predict the probability 

that a certain value will lie within a certain confidence interval [56]. The standard deviation of 

a probability distribution is the variability from the mean value [56].  

2.9.3. Linear regression 

Regression analysis is used to determine the association between a dependent variable and an 

independent variable (or many variables) and to predict the dependent value based on the 

independent variable [57]. This is visualised using a scatter plot where various data points are 

used and the independent variable is plotted on the x-axis and the dependent variable is plotted 

on the y-axis. A straight-line approximation of the relationship between the dependent and 

independent variable is assumed together with some implicit random error [57] and is defined 

by the regression model: 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 +  𝜀𝜀 (2.1) 

where y is the dependent variable, x is the independent variable, β0 is the intercept, β1 is the 

slope of the line and ε is the random error. Estimates for the intercept and slope are found from 

a representative sample of data that contains data for all or most operating conditions. The 

regression estimates for a predicted value (y-hat) is given as: 

 𝑦𝑦� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 (2.2) 

where b0 is an estimate of β0 and b1 is an estimate of β1 based on sampled data. The error is 

then: 

 𝑒𝑒 = 𝑦𝑦 − 𝑦𝑦� (2.3) 

The coefficients of the regression line may have a range of values, however, the line that is 

chosen will minimise the sum of square errors and is referred to as least-squares regression [57]. 

A regression model assumes that the errors are independent, the errors are normally distributed, 

the errors have a mean of zero and the errors have a constant variance [57]. Thus, the residual 

error is evaluated using residual diagnostic plots. A residual versus fitted plot is used to inspect 
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the residuals, which should be randomly spread with no apparent patterns forming [58]. If the 

residuals do follow a pattern, then the error changes with the predicted y value and is called 

heteroscedasticity [58]. This violates the assumption of the regression analysis being performed. 

A normal Q-Q plot is used to plot the standardised residuals to check for normality [58]. 

These plots are also useful for identifying possible outliers where certain residuals have much 

larger values, both positive and negative, than the majority of the residuals. A residual versus 

leverage plot is used to determine the leverage or influence of outliers on the regression line 

using Cook’s distance [58].  The higher the residual, leverage (more than 2 × number of 

coefficients (k) / number of observations (n)) and Cook’s distance (larger than 1), the more 

influential an observation is on the regression line [58].  

There are six key statistics to determine the precision and reliability of the regression model 

[59]. They are [59]: 

 precision measured by the standard error of the estimate; 

 goodness of fit using the R2; 

 statistical reliability using the F-statistic; 

 statistical reliability of each independent variable using the t-value; 

 reliability of precision, meaning constant variance; and 

 non-independence of the errors using the Durbin-Watson statistic. 

To calculate the coefficients, the sum of squares for x, y and x × y needs to be determined as 

follows [60]: 

 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 =  Σ(𝑥𝑥 − �̅�𝑥)2 (2.4) 

 𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦 = Σ(𝑦𝑦 − 𝑦𝑦�)2 (2.5) 

 𝑆𝑆𝑆𝑆𝑥𝑥𝑦𝑦 = Σ(𝑥𝑥 − �̅�𝑥)(𝑦𝑦 − 𝑦𝑦�) (2.6) 

where n is the number of observations, x-bar is the mean of the x values and y-bar is the mean 

of the y values. The slope (b1) and the intercept (b0) can then be calculated using: 

 𝑏𝑏1 =
𝑆𝑆𝑆𝑆𝑥𝑥𝑦𝑦
𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥

 (2.7) 

 𝑏𝑏0 = 𝑦𝑦� − 𝑏𝑏1. �̅�𝑥 (2.8) 
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The significance of each coefficient b0 and b1 needs to be determined to ensure that they are 

different from zero using the t-tests [58]. The t-values of each coefficient is calculated as: 

 𝑡𝑡0 =  
𝑏𝑏0 − 0
𝑆𝑆𝑆𝑆𝑏𝑏0

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡1 =  
𝑏𝑏1 − 0
𝑆𝑆𝑆𝑆𝑏𝑏1

 (2.9) 

where 𝑆𝑆𝑆𝑆𝑏𝑏0 = � 𝑆𝑆𝑆𝑆𝑆𝑆 
𝑎𝑎 − 𝑘𝑘 − 1 .�

1
𝑎𝑎 +

�̅�𝑥2

𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑏𝑏1 = �

𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥� − 𝑏𝑏12

𝑎𝑎 − 𝑘𝑘 − 1  (2.10) 

where SEb0 and SEb1 are the standard errors for the coefficients. Thus, if the p-value is less than 

the required significance level, it indicates high significance. The significance test for t0 is often 

meaningless as there is no natural interpretation of the intercept, except to consider an intercept 

of zero [58]. 

The goodness of fit of the model needs to be determined as well as the confidence level. As a 

starting point, the sum of squares total (SST) is used which measures the total variability in y 

about the mean [57]. The sum of squares error (SSE) measures the variability in y about the 

regression line and then the sum of squares due to regression (SSR) indicated how much of the 

total variability in y is explained by the regression model [57]. The equations are as follows:    

 𝑆𝑆𝑆𝑆𝑆𝑆 =  Σ(𝑦𝑦 − 𝑦𝑦�)2 (2.11) 

 𝑆𝑆𝑆𝑆𝑆𝑆 =  Σ𝑒𝑒2 = Σ(𝑦𝑦 − 𝑦𝑦�)2 (2.12) 

 𝑆𝑆𝑆𝑆𝑆𝑆 =  Σ(𝑦𝑦� − 𝑦𝑦�)2 (2.13) 

 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆  (2.14) 

The coefficient of determination (R2) is the proportion of variability in y that is explained by 

the regression line [57]. It ranges from a value of 0 to 1 and is defined as: 

 𝑆𝑆2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −

𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆 (2.15) 

The correlation summarises the direction, being a positive or negative slope. It measures the 

strength of a linear trend with a value between -1 to +1 [56]. It is worth to note that the data 

must be graphed in a scatter plot to verify the results of the correlation value, as certain cases 

may give a high correlation but may not be representative of the data [56]. 
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The error variance is not known but can be estimated by sample data using the mean squared 

error (MSE): 

 𝑠𝑠2 = 𝑀𝑀𝑆𝑆𝑆𝑆 =  
𝑆𝑆𝑆𝑆𝑆𝑆

𝑎𝑎 − 𝑘𝑘 − 1 (2.16) 

where n is the number of observations in the sample and k in the number of independent 

variables. From the variance, the standard error of the estimate can be determined which is used 

to find interval estimates for both y and the prediction coefficients [56].  

 𝑠𝑠 =  √𝑀𝑀𝑆𝑆𝑆𝑆 (2.17) 

A hypothesis test is performed, using the F-statistic, to determine if there is a linear relationship 

between the independent variable (x) and the dependent variable (y) [57]. The null hypothesis 

is that there is no linear relationship, i.e. β1 = 0. The alternate hypothesis is that there is a linear 

relationship, i.e. β1 ≠ 0 [57]. The F-statistic is based on the MSE and the mean squared 

regression (MSR) and is described by the F-distribution with degrees of freedom from the 

numerator (df1 = k) and denominator (df2 = n – k -1) [57].  

 𝑀𝑀𝑆𝑆𝑆𝑆 =  
𝑆𝑆𝑆𝑆𝑆𝑆
𝑘𝑘  (2.18) 

 𝐹𝐹 =  
𝑀𝑀𝑆𝑆𝑆𝑆
𝑀𝑀𝑆𝑆𝑆𝑆 (2.19) 

Thus, if Fcalculated > Fα,df1,df2 , the null hypothesis is rejected, implying that there is a linear 

relationship between y and x. When the calculated F-value is large, it implies that the 

significance level, i.e. the p-value, will be low indicating that it is unlikely that this would have 

occurred by chance [57]. 

The regression model is constructed on a sample set of data, based on certain conditions. These 

conditions need to be quantified to enable accurate predictions. Confidence intervals provide a 

way of assessing the quality of such predictions. The first is a confidence interval estimate for 

the mean value of a single future value of y corresponding to a chosen value of x [60]. The need 

for a confidence interval is that the predicted value of y may be a range of values for a single 

value of x as is visible on a scatter plot. This confidence interval estimate is defined with a 

confidence level of 1 – α as: 
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 𝑦𝑦�  ± 𝑠𝑠 . 𝑡𝑡𝑛𝑛−2,∝/2 .�
1
𝑎𝑎 +  

(𝑥𝑥 − �̅�𝑥)2

𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥
 (2.20) 

The second is a confidence interval estimate for a single point on the regression line also 

referred to as the prediction interval [60]. The new value of y will be subject to random 

variations and thus the results will always be more uncertain than the mean response [60]. The 

prediction interval can also be used to identify any outliers in the data [60]. The prediction 

interval is defined with a confidence level of 1 – α as: 

 𝑦𝑦�  ± 𝑠𝑠 . 𝑡𝑡𝑛𝑛−2,∝/2 .�1 +
1
𝑎𝑎 +  

(𝑥𝑥 − �̅�𝑥)2

𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥
 (2.21) 

The third is a confidence region based on the whole regression line. This allows confidence 

statements to be made about the predicted y values based on a range of x values [60]. It is 

defined as: 

 𝑦𝑦�  ± 𝑠𝑠 . 2 .𝐹𝐹𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2,∝ .�
1
𝑎𝑎 +  

(𝑥𝑥 − �̅�𝑥)2

𝑆𝑆𝑥𝑥𝑥𝑥
 (2.22) 

A precision interval can also be defined as per equation (2.23) which established the limits of 

which P percent of a large number of measured y values will be, with respect to predicted values 

for a given x value [61]. 

 𝑦𝑦�  ±  𝑡𝑡𝑛𝑛−2,∝/2. 𝑠𝑠 (2.23) 

There are some important aspects to consider when analysing associations between variables. 

The first is to avoid extrapolation of data beyond the observed range of x values that was used 

in the model. The model may not be applicable for values outside the observed range [56]. The 

second is to consider the impact of influential outliers. The purpose is to identify values that are 

regression outliers, i.e. values that impact the R-squared value and thus the regression model 

[56]. The third is that correlation does not imply causation as there may be some other 

explanation for the association [56]. 

Standardised residuals larger than two, larger than three for large data sets, are referred to as 

outliers and may indicate a model failure at that point [62]. This is typically visualised with 
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residual plots. After fitting an initial model, a proper diagnostics need to be performed to 

determine if the fit is not overly determined by a few observations. Influential points are points 

that if omitted from the data set, it would result in a different regression model [62]. One method 

for measuring influence is using Cook’s distance. Cook’s distance measure the difference 

between the fitted values obtained from the full data and the fitted values obtained by deleting 

the i-th observation [62], as per: 

 𝐶𝐶𝐶𝐶 =  
∑ �𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�

2𝑛𝑛
𝑗𝑗=1

𝜎𝜎�2(𝑝𝑝 + 1) , 𝐶𝐶 = 1, 2, …𝑎𝑎 (2.24) 

2.9.4. Non-linear regression 

Many times the simple linear regression in equation (2.2) does not describe the best fit for the 

data provided. In those cases, other models would need to be explored. For a start, a loess 

smoother (locally weighted scatterplot smoother also known as lowess) curve can be applied to 

the data.  The loess smoother does the following [63]: 

 a smoothing parameter, f, ranging from zero to one is selected; 

 the smoothing parameter is multiplied by the sample size (n) to find the f times n nearest 

neighbours for xi; 

 the weighted least squares regression is computed with the points closer to xi having a 

higher weight; 

 the fitted value is then returned at xi, and the steps above repeated for all values of xi; and 

 finally, the points are joined to form a smooth curve. 

A good starting point is to fit both the linear model and loess smoother curve to the scatterplot. 

By examining the loess smoother compared with the linear line, a determination can be made 

if a linear model is a good fit. In some cases, the regression line may be presented better by 

another non-linear model, such as a polynomial model. A second order polynomial model can 

be described as: 

 𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 (2.25) 

Various other models can be used depending on the data and variables, but these do tend to 

increase the complexity. It becomes useful as the model better describes the sample data, 
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however, the meaning of the coefficients may not be easy to interpret [58]. To simplify the 

regression fitting process and use the simple linear regression methods, the various non-linear 

equations can be transformed into linear equations [58]. The quadratic model in equation (2.25) 

can be represented as a multivariate linear regression model [64]: 

 𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥1 (2.26) 

where  𝑥𝑥1 =  𝑥𝑥2 (2.27) 

After the regression has been performed, it can be back-transformed to a quadratic equation 

(2.25). 

2.9.5. Linear programming 

Linear programming is a mathematical technique used to help people plan and make decisions 

about resource allocation [57]. The purpose of linear programming is to either maximise or 

minimise an objective function based on one or more constraints that limit the objective 

function and based on various alternative options that can be chosen from [57]. The objective 

function and constraints are all expressed as linear equations or inequalities [57].   

It is assumed that numbers in the objective function and constraints are known and do not 

change during the period, referred to as certainty [57]. Furthermore, it is assumed that the 

solution result is divisible, i.e. does not need to be whole numbers, and that the solution is non-

negative, i.e. one cannot produce a negative production [57]. The specific problem at hand 

needs to be understood in detail together with the associated constraints and other practicalities 

[57]. In certain cases, however, this solution may affect another part of the business, either up 

or downstream, and thus appropriate stakeholder engagement should be a priority.  

A linear programming problem may produce two or more optimal solutions in certain cases 

[57]. This allows management with flexibility regarding allocation of resources. Linear 

programming assumes certainty, however, in the real world, there are changes that may occur 

that influence the objective function and/or constraints [57]. This calls for a sensitivity analysis 

to be performed to address the “what-if” questions in the solutions [57]. 
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2.9.6. Cluster analysis 

Cluster analysis is a tool to help classify data into certain groups and reveal the relationship 

between the groups [58][65]. It has several applications in various disciplines, including pattern 

recognition, image processing and information retrieval [66]. It is typically used to discover 

energy consumption patterns [65]. 

K-means clustering is a numeric, non-deterministic and iterative method to find clusters [67]. 

The algorithm followings the following steps [67]: 

1. A k number of clusters are chosen which represents the initial centroids. 

2. Each of the data points is assigned to the nearest centroid. 

3. The position of k centroids is recalculated after all the data points have been assigned. 

4. Step 2 and 3 are reiterated until no other distinguished centroid can be found. This 

implies that the intracluster distance is minimised and the intercluster distance is 

maximised. 

The advantages of k-means clustering are that it is computationally fast [65] and it is a simple 

and understandable algorithm [67]. The disadvantages are that it is difficult to determine the 

initial clusters and therefore the k clusters are chosen at the beginning, and the final patterns 

depend on the initial patterns [67]. In order to determine an optimal number of clusters, a v-fold 

cross validation algorithm can be used [68]. The algorithm draws repeated random v samples 

from the data which are used the calculate the predicted classifications, using the predictive 

method [68]. Summary indices are computed to determine the accuracy of the prediction for 

each sample [68]. 

2.10. Software tools 

A brief overview is given of the software tools used for this project. 

2.10.1. Statistical programming using R 

R is a statistical, open source, programming language used for computational statistics, 

visualisation and data science [69]. It has arguably become the most popular language used for 

data science globally because of its ease of use, extensibility and graphical techniques [69]. R 

is the main statistical package that is used to analyse data, develop models and optimise 
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solutions. Table 2-5 lists the R packages that were used for the analysis and simulations in this 

project. 

Table 2-5. R packages used for the analysis and simulations in this project. 

Package Package Package 

base [70] ggplot2 [71] gridExtra [72] 

ggExtra [73] stargazer [74] car [75] 

nlstools [76] scales [77] Rsymphony [78] 

lpSolve [79] lpSolveAPI [80]  
 

To produce the graphical output, the base package [70] was used as well as ggplot2 [71], 

gridExtra [72], ggExtra [73] and scales [77]. The reason for using the additional graphing 

packages was to make several visualisations using the same data and to quickly produce good 

looking visualisations. In addition to the base regression packages, the car [75] and nlstools 

[76] packages were used to provide more tools to evaluate the regression models and provide 

tools for non-linear regression. The regression output was processed with the stargazer [74] 

package which provided a well formatted output. For linear programming, the Rsymphony [78], 

lpSolve [79] and lpSolveAPI [80] packages were used to implement the simulations and to 

confirm similar results. 

2.10.2. Self-service business intelligence using Tableau 

Tableau is described as a package to help people see and understand data [81]. It is a self-service 

business intelligence tool that is fast, flexible, easy to use and aimed at the end user compared 

to traditional business intelligence tools, which relied on specialists setting up reports and the 

user getting a standard fixed report [81]. Tableau is used for some quick data visualisations and 

displaying data to end users. It also integrates with R. 
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3. Methodology to develop a demand response programme and the 

definition of typical demand response scenarios 

The purpose of this chapter is to propose a methodology to develop a DR programme, perform 

analysis on the national load profiles and past emergency load curtailment events, and to define 

typical DR scenarios that need to be considered. 

3.1. Methodology to develop a DR programme 

The flow diagram in Figure 3-1 defines the high-level methodology to develop a DR 

programme. Firstly, the typical DR scenarios are defined. The DRAs are then modelled, 

typically using regression analysis to enable prediction of energy consumption based on 

production. These two processes are then combined to define and run several linear 

programming simulations to optimise electrical consumption while satisfying the business 

objectives, i.e. production volumes. The results are discussed and the next steps are 

recommended.  

 
Figure 3-1. Flow diagram indicating the process to develop a DR programme. 

The rest of this chapter will focus on defining the typical demand response scenarios that will 

need to be catered for on a day-to-day basis. To understand the current main driver for the 

existing DR programmes, a high-level analysis of the national load profiles is needed. 

3.2. Analysis of the typical national load profiles 

The national load profiles for 2015 are presented in Figure 2-4 where the data is shown in one-

minute intervals. By analysing the data further, load duration curves for the summer and winter 

profiles were constructed, as indicated in Figure 3-2 [44]. The load duration curves for both 

winter and summer appears to follow a similar pattern. The peak demand for the average day 

is only present for a short period in both cases. There is a difference in peak demand of 

2.125 GW when comparing winter and summer.  
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Figure 3-2. Load duration curves for summer and winter for 2015 [44]. 

Histograms were constructed, as shown in Figure 3-3, of the average load profiles and it gives 

a better insight into the demand of the country [44]. Most the time, for summer, the demand is 

28.5 GW, which makes sense as the load profile is relatively flat throughout a typical summers 

day. The other peak is at 23 GW, which is mostly the off-peak demand during the late and early 

evening.  

 
Figure 3-3. Histogram plots of summer and winter profiles for 2015 [44]. 

Stellenbosch University  https://scholar.sun.ac.za



 

49 

A similar off-peak demand is present for a typical winter day, but it is slightly less than the 

summer off-peak. The winter peak is significantly more than the summer, as one would expect. 

The range of the peak demand, for winter, is larger than summer and has two distinct modes. 

This can be attributed to the morning and evening peaks. In both cases, the maximum demand 

is only present for short durations. In summer, the maximum demand is about 2.5 GW more 

than the mode and in winter, it is about 3.5 GW more than the second highest mode. Thus, 

typically the utility needs about 2.5 to 3.5 GW of peak reserves. The current OCGTs have a 

capacity of just over 2 GW, which leaves a gap of 0.5 to 1.5 GW, assuming that they have a 

capacity up until the mode of each distribution. 

The winter demand profile shows the DR impact of the TOU pricing signal during the peak 

hours. Figure 3-4 indicates the fall and rise at the start and end of the evening peak time, 

respectively [44]. The winter load profile shows the evening peak response well, but the 

morning peak is not that noticeable. Large industrial customers typically reduce load in winter 

in response to the pricing signal. Residential customers contribute towards the peak reduction 

as well through the Power Alert programme. The Power Alert programme was able to realise 

an average demand reduction of 339 MW during April and June 2014 during evening peak [82]. 

 
Figure 3-4. Zoomed in view of the average winter profile during evening peak for 2015 [44]. 

The demand starts to decrease just before 17:00 as mainly industrial customers start to curtail 

load, however, residential customers start to increase load. The demand increases dramatically 

from 17:00 to 18:00 by about 2.5 GW. The blip at 18:00 may be attributable to the activation 
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of the instantaneous DR participants. As the peak starts to reduce towards 19:00, the end of the 

peak tariff period, there is an increase in demand of 0.429 GW as industrial customers ramp up 

the curtailed loads. The residential load is declining during this period as well, thus the increase 

in demand may be more that the indicated 0.429 GW. 

3.3. Define demand response scenarios 

Based on the research from the literature study and high-level analysis of the national load 

profiles, four DR scenarios can be defined. These are: 

 tariff pricing signals; 

 voluntary participation programmes; 

 emergency load curtailment; and 

 extreme load curtailment. 

The integration of renewables on the consumer side, specifically solar PV, can be considered a 

fifth scenario. However, some consumers may decide to integrate solar PV on their side of the 

grid where as others may choose another option such as wheeling. For this reason, the 

integration of a large solar PV plant was considered separately for each of the scenarios above.  

3.3.1. Tariff pricing signals 

The high demand season always runs from June to August and the peak hours are fixed. This is 

easier to model as it is known, however the production for the entire year needs to be scheduled 

around these three months, which is not always practical. The challenge is even greater when 

production is behind plan before the high demand season starts, which influences the 

opportunity to reduce load.  

The CPD tariff is expected to be simpler to manage since there are only 20 CPDs. The 20 days 

are only communicated a day ahead, which makes planning for them and scheduling of 

production a challenge. 

3.3.2. Voluntary demand response programmes 

For the utility, DR fulfils an important role in terms of energy security and has proven to be a 

cost-effective programme [83]. The utility had 1 249 MW of DR loads signed up as at the end 

of April 2016 [83], however, this does vary according to market conditions that affect 
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consumers. The utility offers four demand response programmes or products, as summarised in 

Table 3-1. These are mainly focussed on large industrial customers [83]. 

Table 3-1. Summary of the utilities’ DR programmes [83]. 

 Instantaneous Self-generation Supplemental Day-ahead* 

Load > 10 MW > 1 MW 
> 500 kW or 10% 

of average load 
(greatest) 

> 500 kW or 10% 
of average load 

(greatest) 

Duration 2x 10 minute 
events /day 

2 – 4 hour event 
per day 

2 – 4 hour event 
per day 

2 – 4 hour event 
per day 

Frequency Average 200 
events /annum 

100 events 
/annum 

150 events 
/annum 

150 events 
/annum 

Notice period Day-ahead before 
15:00 

Day-ahead before 
15:00 

Day-ahead before 
15:00 

Day-ahead before 
15:00 

Dispatch period < 6 seconds 30 minutes 30 minutes Day-ahead before 
15:00 

Standby capacity 
incentive R 22.42 /MW/h  

R 29.12 /MW/h 
(peak) and 

R 12.22 /MW/h 
(off-peak) 

R 0 /MW/h 

Energy reduction 
incentive  R 0 /MWh R 3 000 /MWh R 1 364 /MWh R 1 091 /MWh 

Performance 
measurement 

Dynamic 
customer baseline 

(CBL) 

Dynamic 
customer baseline 

(CBL) 

Dynamic 
customer baseline 

(CBL) 

Dynamic 
customer baseline 

(CBL) 
* Pilot programme in 2016 

 

The first DR programme is the instantaneous product. This is used for large consumer loads 

that can respond within six seconds for a maximum of two 10 minute periods per day. The 

purpose is to temporarily stabilise the power system while other measures are implemented to 

fully stabilise the power system. The second DR programme is the standby generator product 

where consumers are compensated for supplying themselves with electricity, on request from 

the utility [84]. For this programme, the standby generation should be at least 1 MW and should 

be able to operate for at least two hours [84]. Consumers will receive a standby payment and a 

further energy payment up to a maximum of R 3 /kWh, on utilisation [84]. The energy rate 

depends on the fuel source that is to be used,  e.g. gas, diesel, coal, etc. [84]. 
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The third DR programme is the supplemental product for industrial and commercial consumers 

that can reduce their demand by 500 kW or 10% of their average demand, whichever is greater 

[84].  The duration is typically two to four hours a day and the events are limited to a maximum 

of 150 events per year [84]. Notification is given a day-ahead to be on standby for DR the next 

day and the dispatch to reduce load will be 30 minutes prior to the event [84]. The fourth DR 

programme is the day-ahead product which is at the pilot stage. It is similar to the supplemental 

product in terms of DR load, however, consumers are notified and dispatched a day-ahead, 

typically before 15:00 [83]. There is no capacity payment and the energy payment is 80% of 

the supplemental product rate [83]. It is expected that this product will increase consumer 

participation in DR and enable other consumers to patriciate that could not do so previously 

[83]. 

For these DR programmes, the utility will schedule a time to visit the premises for discussion, 

inspection and verification [84]. If satisfied, consumers will be required to sign a legal 

agreement with the utility, register as a vendor to receive payments and allow the utility to 

install and maintain remote metering equipment [84]. 

For the mines included in this project, only the fourth programme will be considered as a DR 

scenario. The DRAs do not qualify for the instantaneous product, both in terms of minimum 

load and dispatch time. The mines do have standby diesel generators for emergencies to run 

critical loads during outages. Some modification will be required if the generators are to 

participate in the standby generator product, as the generators are not currently able to 

synchronise with the grid. They are interlocked to run independently from the grid when the 

main utility supply is isolated. The supplemental product dispatch period may be too short for 

some DRAs to respond in time. The incentive that is being offered may also provide a barrier 

as the incentive may be too low to make it feasible for the mines. The incentive for standby 

generator is expected to cover the costs of running the unit but perhaps not cover the 

maintenance of the units. The supplemental and day-ahead incentives are insufficient to cover 

the loss of revenue, the fixed operating costs or the lost opportunity cost. 

3.3.3. Emergency load curtailment events 

The load curtailment events in this analysis are all the official load curtailment requests that 

were accompanied by the SO declaring a system emergency in terms of NRS048-9. It does not 
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include voluntary reduction requests. The histograms of the frequency of the duration of load 

curtailment events are shown in Figure 3-5, for the last three years. There were only three events 

in 2013 and nine events in 2014, which does not mean much on their own. The majority of the 

events occurred in 2015, up until October.   

 
Figure 3-5. Histograms showing the duration of load curtailment events from 2013 to 2015. 

Various patterns start emerging when comparing the load curtailment histograms. The majority 

of the events lasted between four and six hours, while another local mode of the distribution 

indicates that the second most prevalent duration of events lasted between 12 and 14 hours. The 

first mode can be attributed to load curtailment events that were required to cater for the evening 

peak, while the second mode was more related to baseload capacity constraints. This is 

confirmed by looking at the start time of these events as shown in Figure 3-6. The bar width 

represents the number of events and the height represents the total duration of events that started 

at that particular time. The majority of events started at 17:00 followed by 8:00, which are 

typically whole day constraints.  
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Figure 3-6. Bar plots showing the duration of load curtailment events by day of the week and 

time of day. 

Events that required a 20% reduction occurred mostly during the high demand season from 

17:00 to 22:00, to cater for the average 3.5 GW increase in the evening peak. These events 

typically occurred on a Thursday, when most emergency reserves were depleted, i.e. pumped 

storage power stations, instantaneous DR and voluntary DR. Some events continued to Friday 

or starting earlier on a Wednesday if the reserves were more limited. The events were analysed 

to determine which day of the week is typically more constrained. It can be concluded that 

Thursdays are the most constraint days, with the highest number of events and longest duration. 

However, this is as the consumer sees it. The utility view will be different as well as the view 

of voluntary DR participants. Saturdays and Sundays also stand out as high duration days and 

these are typically whole day events to allow the pump storage schemes to be replenished over 

the weekend. This supports the finding why Mondays to Wednesdays typically have lower 

events and durations. Demand is usually lower over Fridays, which explain lower events and 

durations. However, emergency reserves have been used by Thursday, which then still requires 

load curtailment to maintain grid stability. 
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From this analysis, it can be said that the most load curtailment events typically occurred on 

Thursdays, from 17:00 to 22:00. The other typical events took place on Saturdays and Sundays, 

from 08:00 to 20:00. The majority of the events required a 10% load reduction. This scenario 

makes it difficult to model due to the random nature of these events. The event may be a once 

off or may last various sequential days. 

3.3.4. Extreme load curtailment  

This is an alternative scenario to emergency load curtailment. Instead of declaring an 

emergency and requesting all consumers to curtail load, this scenario considers extreme load 

curtailment from willing consumers to bare minimum load at a negotiated rate. This rate is not 

to be compared with running peaking power stations, such as the OCGTs, but rather the cost of 

unserved energy. This will prompt the particular consumer to negotiate a rate that will reflect 

the cost of unserved energy specifically for their business. This will allow the utility to maintain 

power system stability, reduce negative impacts on the economy, avoid negatively affecting 

small businesses and residential consumers and maintain a good public image.  

These events are expected to be for short periods, i.e. one to three days, about four times per 

annum and would be events that potentially affect the entire country. It may be requested as a 

result of a multiple unit trip at a power station or in future when large weather systems move 

over the country that affects renewable energy generation. Another typical application will be 

during natural phenomena events, such as a solar eclipse, which affect generation output for a 

few hours. The effect of such an event, which occurred on 1 September 2016, on solar PV 

power generation is shown in Figure 3-7. The solar eclipse affected the solar PV generation 

from about 9:00 to 13:00 as compared to the previous day which was a clear sunny day. 
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Figure 3-7. Grid-connected solar PV power generation during a solar eclipse.  

3.3.5. Integration of solar PV on the consumer side 

Each of the above scenarios excluded the impact of integrated solar PV on the consumer side. 

Higher penetration of grid-connected solar PV at a mine site creates a localised challenge for 

both the mine and the utility. Thus, each scenario will be considered without and with integrated 

solar PV on the consumer side.  

Sudden changes in solar PV output requires the local grid to be stiff enough to supply, 

potentially, enormous amounts of power in a short period. Some form of short-term storage will 

be beneficial to smooth out this rapid transition, however, the power will still need to be 

supplied by the grid. Electrical faults, solar PV module damage, rain and overcast days for 

prolonged periods, imply that the mine will depend more on the grid to supply power, especially 

if large solar PV plants are installed. This may be a challenge if the mine has expanded with the 

supplemental generation provided by solar PV and now they may exceed their notified 

maximum demand and incur penalties or cause an electrical trip. It implies that an additional 

DR measure is needed to ensure that the internal mine grid remains balanced, as the solar 

generation various across different times of the day. Thus, the utility will see the same load 

profile as before as the mine has internally balanced to supply and demand.   
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4. Electricity consumption and characterisation in the coal mining industry 

This chapter describes the open-pit and underground coal mining processes and identifies the 

potential DRAs. Each DRA’s electrical usage is characterised as well as the resulting load 

profiles for each mine, for the total grouped by the type of mining operation and for the total 

sample of mines selected. An analysis is also performed on a grid connected solar PV plant that 

is on the mine’s side of the grid. 

4.1. Coal mining process 

The environmental context for this project is focussed on the coal mining process, including 

beneficiation. The mining process starts with a geological model that is based on extensive 

exploration drilling data. The geological exploration data culminates in the production of a 

strategic mine plan. Dependent mainly of the depth of the coal, it is decided to use the open-pit 

mining method for coal that is closer to the surface or the underground mining method for coal 

that is uneconomical to mine from the surface. The blocks are then prioritised based on various 

factors and then scheduled for mining. 

4.1.1. Open-pit mining process 

The typical open-pit mining process is graphically represented in Figure 4-1. The activities 

commence with the removal of topsoil (mineral-rich layer for rehabilitation) and subsoil 

(weathered material), followed by pre-stripping to prepare the area for the drilling rig. This is 

achieved through the use of diesel vehicles. 
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Figure 4-1. A graphical representation of the open-pit mining process [85]. 

Holes are then drilled to the top of coal and blasted to loosen the overburden material.  The 

overburden material is mechanically excavated by the dragline (electrically driven) to expose 

the coal, where after the coal is drilled and blasted. The coal referred to as run-of-mine (ROM) 

coal, is loaded onto trucks (diesel driven) by shovels (electric and/or diesel driven) and 

transported to the plant via conveyors. 

4.1.2. Underground mining process 

The typical underground mining process is graphically represented in Figure 4-2. Development 

typically involves sinking shafts for access and ventilation, developing the initial mining panels 

and installing infrastructure and services. Large ventilation fans are installed to provide fresh 

air for personnel underground, dilute flammable and noxious gases and control the temperature. 
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Figure 4-2. A graphical representation of the underground mining process [85]. 

The mining activities commence with the continuous miner (CM) cutting the coalface with a 

rotating drum. The coal is then loaded into the back of the CM to a shuttle car or battery hauler, 

which transports the coal to a feeder. The feeder roughly sizes the coal and loads it onto the 

underground conveyors. The underground conveyor network transports the ROM coal out via 

a shaft conveyor, typically into a surface silo. From the silo, it is then transported to the plant 

via overland conveyors for processing. 

4.1.3. Coal washing process 

A typical coal washing plant is graphically represented in Figure 4-3. Depending on the specific 

mine, the plant may or may not have a stockpile to store or stack ROM coal before it is 

processed. When the coal is ready to be processed, it is reclaimed from the ROM stockpile and 

fed into the plant via a series of conveyor belts. The plant typically consists of various modules 

running in parallel. The ROM coal goes through washing module that contains a series of sizing 

screens to separate the coal from the fine material. It then undergoes dense medium separation, 

which removes contaminants, such as stones and soils, from the coal to produce a refined 

saleable product. The saleable product is stacked out on a stockpile that is later reclaimed and 

Stellenbosch University  https://scholar.sun.ac.za



 

60 

sent via conveyors to the load-out station. From here, it is loaded onto trains and/or trucks to be 

dispatched to customers. 

 
Figure 4-3. A graphical representation of the Grootegeluk coal beneficiation plant [86]. 

4.2. Energy risks in the coal mining industry  

There are five major risks to the industry from an energy perspective, namely energy security, 

the rising cost of energy, carbon tax, legal compliance and reputation. They can be summarised 

as follows: 

 Energy security: It relates to the inability of the utility to supply electricity reliably at all 

times. Possible diesel shortages, which may affect OCGTs and internal diesel emergency 

generators and equipment, are also considered. 

 The rising cost of energy: Diesel prices are linked to the international price of oil and can 

be volatile. Electricity prices have increased significantly and are set to continue to 

increase above inflation for the next decade. 

 Carbon tax: Carbon tax is planned to be introduced in 2017. This will add additional costs 

to fossil fuels based energy sources, both coal and diesel. When considering constructing 

fossil fuel based DERs, this needs to be accounted for. 
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 Legal compliance: Future requirements include submission of five-year energy 

management and Greenhouse Gas (GHG) management plans with annual progress reports. 

This includes reporting of verified energy consumption and savings as well as GHG 

emissions data. 

 Reputation: Organisations are under more pressure, from both internal and external 

stakeholders, to ensure they adequately address sustainability issues, particularly relating 

to climate change. Investors are also applying pressure to see the real impacts of 

sustainability projects. 

4.3. Electricity consumption analysis 

In this section, the scope and boundaries of the project are defined within the coal mining 

industry. The DRAs characteristics together with the resulting load profiles for the mines are 

discussed in detail.   

4.3.1. Scope and boundaries 

The boundaries for this project include six coal mining operations in the Mpumalanga province, 

consisting of three open-pit mines and three underground mines. Only the direct mining 

activities are included in the analysis and loads, such as villages, are excluded. The equipment, 

systems or processes that contribute significantly toward power consumption are of interest for 

DR activities, i.e. DRAs. A schematic representation of the included mines and DRAs are 

shown in Figure 4-4. Open-pit mines are numbered from one to three, while the underground 

mines are numbered from four to six. The DRAs for each mine are numbered by starting with 

the mine number as the first identifier, e.g. Plant 2.1 is the plant associated with Mine 2. 
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Figure 4-4. Schematic representation of the mines included in this project including the 

individual DRAs. The greyed out sections are excluded from the scope. 

In open-pit mining, the DRAs are the draglines and the plants. The draglines are at the beginning 

of the mining process that exposes the coal and any issue affecting the draglines may impact 

the rest of the process, depending on the duration. The draglines have the advantage that they 

can be stopped and started quickly.  

For underground mining, the DRAs are the plants, underground (UG) sections and the 

ventilation fans. The ventilation fans are critical for safety, run 24 hours a day, seven days a 

week and is governed by strict regulations. The ventilation fans are not considered a curtailable 

load in the coal mining context. Even on maintenance days the mines still need ventilation to 

prevent the build-up of flammable gases. The underground sections are literally at the coalface, 

thus any issue that causes them to stop may affect the rest of the process. UG sections 4.1 are 

excluded due to their small overall impact and distributed locations.  

The plants, in most instances, have some form of stockpile or buffer capacity that can be utilised, 

however, the start-up and shutdown times tend to be around 30 minutes to two hours. The silos 

in the process may also add some buffer capacity but not for long durations. Mine 5 has a small 

integrated solar PV plant, Solar plant 5.1, that was analysed and scaled up for simulation 

purposes.  

4.3.2. Electrical load profiles and characterisation of consumption for the 
demand response assets 

The initial starting point was to analyse each of the individual DRAs for each mine. The focus 

is this section was on the plants, draglines and UG sections. Plant capacity does vary across the 
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mines, but the process and equipment are similar, with newer plants being more energy efficient. 

The draglines are of similar capacity as well as the UG sections, only varying in the number of 

sections included. 

The average weekly load profile for Plant 4.2 is shown in Figure 4-5. On Mondays, Tuesdays 

and Thursdays, the plant is not producing at full capacity which implies either maintenance is 

being carried out on the plant modules or it is stopped due to low ROM stockpiles. The plant 

completely stops on Sundays, thus resulting in a much lower baseload compared to when the 

plant is not producing at full capacity. The 10th and 90th percentile graphs were overlaid on 

Figure 4-5 to indicate the variation in load and it is a significant variation. There is always a 

baseload present on the plant.   

 
Figure 4-5. Average weekly load profile of Plant 4.2 for 2015. 

A similar analysis was done for Dragline 1.1 as shown in Figure 4-6. The dragline operates 

mostly at full load when moving overburden. It operates slightly below full load when 

relocating, or walking. When maintenance is being carried out, or it is idling for short periods, 

consumption ranges from 0 to 0.6 MW. The 10th and 90th percentile lines are overlaid as well 

to indicate the variation. It indicated that these is a baseload when operating, but no baseload 

when completely on stop. 
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Figure 4-6. The average weekly load profile of Dragline 1.1 for 2015. 

The average load profile for Mine 6, including UG sections 6.1, is shown in Figure 4-8. From 

the load profile, is can be shown that the mine does not produce on Sundays and morning 

maintenance activities are carried out on Tuesdays and Thursdays. The baseload and most of 

the load in the 10th percentile can be attributed to the main ventilation fans, Fans 6.1, that run 

continually. 

 
Figure 4-7. The average weekly load profile of Mine 6, including UG sections 6.1 for 2015. 

The average load profiles provide some good information about how the plants, draglines and 

UG sections typically operate. For DR, the real-time demand per hour is of greater importance 
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for the purpose of reducing demand. By analysing the demand with the aid of histograms, a 

better estimate of the real-time demand can be gained.  

The histogram for Plant 4.2 is shown in Figure 4-10. From this analysis, it is shown that the 

average demand understates the real-time demand, which is closer to 6.25 MW, i.e. the first 

mode. The histogram excludes the data for Saturdays and Sundays because the plant winds 

down from Saturday afternoon. The second mode of 1.75 MW, indicates that the plant stops 

regularly, mainly due to maintenance activities or low ROM stockpiles. The demand, however, 

never gets to zero except for the odd electrical outage. It can also be seen from the dip in the 

middle that the plant does not completely stop for maintenance. Typically, one module at a time 

is stopped and the rest of the plant continues to operate. Thus, a short-term demand reduction 

can realise 3 MW while a long-term demand reduction can realise 4.5 MW. Figure 4-9 shows 

the histograms for all the other plants and similar bimodal distribution can be observed. 

 
Figure 4-8. Histograms for Plant 4.2 (weekdays only) for 2015. 
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Figure 4-9. Histogram of demand for all the plants (weekdays only) for 2015. 

For Dragline 1.1, the average demand again understates the real-time demand, which is closer 

to 2.75 MW, as shown in Figure 4-10. The histogram indicates that there are times when the 

dragline is completely switched off. Thus, the short- and long-term demand reduction for the 

dragline that can be realised is 2.75 MW. 
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Figure 4-10. Histograms for Dragline 1.1 (full week) for 2015. 

Only Dragline 1.1 is metered separately and it differs from Draglines 2.1, 2.2 and 2.3. For this 

reason, data was analysed for draglines that are of a similar capacity to Draglines 2.1, 2.2 and 

2.3 and that will be used to estimate the curtailable load, similarly to that of Dragline 1.1 above. 

The results are shown in Figure 4-11 and indicate similar distributions to Dragline 1.1, with the 

higher capacity draglines, Dragline 2.1 and 2.2, having a higher demand. 

 
Figure 4-11. Histogram of demand for all the draglines (full week) for 2015. 

The histograms for Mine 5 and Mine 6 are shown in Figure 4-12. It can be observed that they 

have bi-modal distributions, similar to the plants. The first and the highest mode is an indication 

of the baseload that is due maintenance activities. Mine 5 operates full time, with a rotating 

maintenance shift compared to Mine 6 which does not produce on Sundays and does 
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maintenance at the same time. This explains the significant difference in the first mode. The 

second mode occurs at maximum production for all shifts. It is important to note that these 

includes the ventilations which explain the constant baseload. 

 
Figure 4-12. Histogram of demand for all the mines (full week) for 2015. 

By using the various histograms for the plants, draglines and mines, an accurate estimate can 

be made of the potential demand contribution that each of the DRAs are able to provide. For 

the plants and the mines, this will typically be the difference between the modes, while for the 

draglines it will be the highest mode, excluding zero. Table 4-1 lists the DRAs for each mine 

and indicates the estimated load that can be curtailed for each DRA. The total potential 

curtailable load is 31.75 MW. 
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Table 4-1. Full curtailable load of each DRA. 

Mine DRA Curtailable 
Load [MW] Comments 

Mine 1 Plant 1.1  2.50  Individually metered. 
Dragline 1.1  2.75  Individually metered. 

Mine 2 Plant 2.1  1.50  Individually metered. 
Dragline 2.1  3.00  Metered on pit feeder. 
Dragline 2.2  3.00  Metered on pit feeder. 
Dragline 2.3  2.50  Metered on pit feeder. 

Mine 3 Plant 3.1  0.75  Individually metered. 
Mine 4 Plant 4.1  2.25  Metered with a portion of the underground workings. 

Plant 4.2  4.50  Individually metered. 
Mine 5 UG sections 5.1 3.50    Plant is linked to underground with no buffer capacity. 
Mine 6 UG sections 6.1 5.50 Only underground sections with a storage silo on surface. 

TOTAL 31.75   
 

4.3.3. Electrical load profiles and characterisation of consumption for the 
integrated solar PV plant 

Mine 5 has a 90 kWp grid connected, fixed solar PV plant, Solar plant 5.1. The solar plant feeds 

in solar energy into the internal mine electrical grid to supply power to the office block. The 

heat map in Figure 4-13 shows the solar energy generated in 2015. Data loss can be clearly 

identified by clear green lines, e.g. during February.  

 
Figure 4-13. Heat map of solar energy generated by Solar plant 5.1, for 2015.  
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The longer daylight hours during summer is clearly visible as well as the contraction in the 

middle of the graph for winter months. During the winter months, the output is more stable, 

indicated by the smoother transitions in colour, as there are clearer skies in winter. The outputs 

in some of the winter days are affected by fog in the Mpumalanga area, as can be seen with 

green bars for part of the morning. For the summer months, the abrupt changes in output are 

also visible, as there are not many smooth transitions of colour. This is highlighted in Figure 

4-14, which shows the erratic nature of solar power generated for a couple of days in January 

2015. The main cause is cloud cover, generally more in the afternoons.  

 
Figure 4-14. Solar power generated on 7, 10, 12 and 20 January 2015. 

As larger solar plants get integrated into the internal mine grid, this erratic nature may present 

a problem depending on the local grid availability and stability [27]. The graphs show the 

integrated hourly values, which does smooth out some of the intermittency. Some form of short-

term energy storage would be preferred, especially for large systems, to reduce the spikes and 

have smoother transitions. However, this kind of storage will typically be measured in minutes 

to be cost effective. This may solve potential power quality problems; however significant 

power output changes will still need to be addressed. The solar plant is small in comparison 

with the total power requirement of the mine and thus does not have a major impact in terms of 

energy reduction and maximum demand. It does, however, provide useful data on how a larger 

plant will typically operate in a similar geographic location.  
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Looking closer at two days of winter solar generation, illustrated in Figure 4-15, it can be seen 

that on a clear day, with clean panels, an almost perfect bell curve is generated, as is the case 

on 17 June 2015. A couple of days later on 29 June 2015, the peak output is lower and the shape 

is deformed. The lower out may be explained either by the solar irradiance or the cleanliness of 

the panels. The deformation of the shape, from 7:00 to 11:00, is due to heavy fog on that 

particular day that reflects the sun’s light. As soon as the fog lifts, the panels get the full sunlight 

and start generating more energy. This is important from a DR perspective as this loss in power 

will need to be catered for when the plants become larger and there are other network 

constraints. The different daily output needs to be considered in terms of impact on the overall 

power consumption as well as the impact of fog in winter. 

 
Figure 4-15. Solar power generated on 17 and 29 June 2015. 

Some specific examples were highlighted that need to be accounted for in future DR 

programmes. To better account for these events on various days, a cluster analysis was 

performed on the daily data for 2015, using the Statistica data mining software. The purpose of 

the cluster analysis is to group similar energy generation days together to get a better 

understanding of the pattern of generation and define typical DR events that need to be catered 

for in future. The data was split into the individual days, as cases, and the hours from 5:30 to 

19:30 was used as the variables. The k-means algorithm was chosen and Euclidean distances 

were used. To determine the optimum number of clusters, the v-fold cross-validation algorithm 

[68] was used with 50 folds, a minimum number of clusters of two, a maximum number of 
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clusters of 25 and classification error rate change of less than 1%. The optimal number of 

clusters were found to be seven, as indicated in the results in Figure 4-16.  

 
Figure 4-16. Graph indicating the cost sequence of the v-fold cross-validation algorithm to 

determine the optimal number of clusters. 

The sequence in which these clusters occur during the year provides some context to describe 

the average generation profiles over the period. The sequence of the clusters is shown in Figure 

4-17. It indicates a strong seasonal trend, with clusters 3, 5 and 7 mainly in autumn, winter and 

spring and clusters 1, 2, 4 and 6 occurring in summer, autumn and spring. 

 
Figure 4-17. The sequence of the various cluster groupings for each day in 2015.  
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The average solar generation per cluster is shown in Figure 4-18 together with the actual daily 

solar generation power curves which belong to those clusters.  

 
Figure 4-18. The average solar generation per cluster is shown in black together with the actual 

daily solar generation curves that belong to that cluster. 

Clusters 2 and 3 are almost perfect bell shapes with similar peak generation, however, the tails 

do differ. Cluster 3 starts generating a little later and stops a little sooner than cluster 2, 
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suggesting that it is more likely generation during the winter periods. This is confirmed in 

Figure 4-17 where it typically occurs in the winter but also extends towards some parts of 

autumn and spring. Cluster 1 is more related to full day rain and cloud cover in the summer, 

while cluster 6 is related to afternoon rain and/or cloud cover that is typically observed. Cluster 

7 represents more the winter period with the narrower bell curve as well as the effect of morning 

fog. The lower output may also suggest that the PV panels were perhaps covered with dust, due 

to the dry winter period. 

The average clustered generation profiles give valuable information on the changes that will be 

required in terms of demand, while the sequence gives an indication of when the demand will 

be reduced. The other factor to consider is the frequency that these clusters occur. In Figure 

4-19 the frequency of days included in each cluster is presented in the bar graph. Clusters 1, 4, 

5 and 7 are the most important as their lower generation will have a bigger impact on the 

demand of the mine. The reduced output occurs for 156 days of the year, however, cluster 7, 

which counts for 87 days, is a 16% reduction from a clear day. Clusters 1 and 5 is about a 60% 

reduction in generation compared to a clear day. 

 
Figure 4-19. Frequency per cluster of days in 2015. 

4.3.4. The resulting electrical load profiles and characterisation of consumption 
for mines 

The average demand of each mine for 2015 is shown in Figure 4-20, along with the critical 

loads, i.e. the ventilation fans and a water treatment plant. It is worth to note that the general 

trend is that the older the mine is, the higher the power consumption will be. This is because 

when mining starts, the plants are nearby and there are short conveyors and electrical 

reticulation. As mining progresses over time, the distance becomes greater and more ventilation 
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and infrastructure is required to produce similar tonnes. The overall average is just over 56 MW, 

but the averages can be misleading, especially if low load factors are involved. The critical 

loads run at a fairly fixed load, at 7.7 MW, thus the rest of the load is mainly variable.  

 
Figure 4-20. Average demand per mine for the 2015 period. 

Analysis of the individual average weekly load profiles of each mine, as shown in Figure 4-21, 

allows characterisation of each mine. Mine 1, 2 and 3 operate 24/7 while mine 4, 5 and 6 start 

to wind down on Saturday afternoons and do not produce on Sundays. This highlights the 

danger of use averages, especially with low load factor mines that do not operate the entire 

week. Some clear patterns emerge that highlights daily morning maintenance for the 

underground mines, which is a couple of hours in duration. There are also longer maintenance 

periods, which lasts until the afternoon and can generally be attributed to the plants. Most of 

the maintenance occurs on Thursdays, followed closely by Tuesdays.  
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Figure 4-21. Average weekday load profiles for each mine for 2015. 

4.3.5. The resulting electrical load profiles and characterisation of consumption 
for all the mines 

The load profiles for each of the six mines were combined to produce a heat map as shown in 

Figure 4-22. The heat map allows the visualisation of the hourly data for 2015 in one view. The 

colour range is from green to red, which represents the total demand from low to high. The 

lowest value is 17 099 kW, which indicates the minimum baseload of all the mines combined 

and a maximum demand of 83 163 kW. The biggest portion of the baseload is the ventilation 

fans for the three underground mines. The combined peak demand occurs mostly in the off-

peak period between 20:00 and 06:00, as indicated by the red blocks. 

Stellenbosch University  https://scholar.sun.ac.za



 

77 

 
Figure 4-22. Total demand for all six mines for 2015 represented in a heat map. 

The green stripes that stand out indicate the days when the demand was at baseload levels. 

These are mostly on public holidays, as is the case at the beginning of January and during April. 

In October, there is a band of green for 10 days and this was due to industrial action that affected 

all the mines. This indicates the baseload requirement in terms of health and safety due to 

ventilating underground mines, pumping water and general lighting.  

There appears to be a general pattern that emerges. Demand is high from 00:00 to 06:00, then 

there is a reduction between 06:00 and 09:00. The demand appears to pick-up from 09:00, but 

not reaching maximum levels in most cases. After 20:00, the demand is mostly at maximum 

until 23:00. The 06:00 to 09:00 period is typically maintenance time for most mines, which 

explains the significantly lower demand. The maximum demand, indicated by the bright red 

colour, appears to have reduced slightly from the end of March. The rest of the year’s maximum 

demand is less than it was in the first quarter of 2015, indicated by the dimmer red colour April 

onwards. This was mainly due to slightly lower production volumes from most of the mines. 

The critical loads for the six mines are mostly ventilation fans as well as a water treatment plant 

that runs the whole year. From the heat map in Figure 4-23, it can be seen that the critical loads 

consume a fixed amount of baseload power, due to the fairly constant red colour. Critical loads 

are just over 9 MW. From Figure 4-22,  the baseload was about 17 MW of which 9 MW can be 

attributed to metered critical loads. That leaves another baseload component of about 8 MW. 

This is expected to consist of loads such as pumping, auxiliary fans, lighting and office blocks.  
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Figure 4-23. Total critical load demand for all six mines for 2015 represented in a heat map. 

The average weekly load profile for 2015 is shown in Figure 4-24, together with the critical 

loads. The 10th and 90th percentile lines are also overlaid to give an indication of the variation 

in load. 

 
Figure 4-24. Average weekday load profile for the six mines including the critical loads. 
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The low load factor for the coal mines is in contrast with the deep level gold and platinum mines, 

which usually have a high load factor due to high baseload equipment. This implies that a 

significant portion of the electricity usage is linked to production as the main driver. Seeing that 

there are not any refrigeration plants or heat involved in the processes, the temperature will not 

be a significant driver of electricity usage.  

A weekday pattern emerges which varies in intensity. As from the heat map in Figure 4-22, the 

change in demand can be observed when the morning maintenance period commences, with 

changes of 10 to 20 MW during this period. After the maintenance period, there is a gradual 

increase in demand throughout the day. Demand tapers down on Saturday and appears relatively 

constant on Sundays, which is due to the shift patterns at some of the mines, as mentioned.  

4.4. Electricity costs for the mines 

An important aspect of DR is the current and projected electricity prices. This will impact 

voluntary participation programmes, tariff based signals as well as if one wishes to implement 

DERs on-site to counter the current electricity price. However, from a business aspect, the other 

costs in the business also need to be considered, such as labour and raw materials. That may 

mean that a mine will rather produce in a peak tariff period than reduce demand if the overall 

benefit favours that scenario.  

The average electricity costs per year for the six mines was analysed and compared with the 

mining industry average [16] and shown in Figure 4-25.  The historic costs indicate that the 

cost for the six mines is 25.5% higher than the mining industry average. This is probably due 

to their lower load factors, their demand ramping up through the evening peak, as evident in 

the load profiles, and minimal load shifting initiatives as compared to deep-level mines. 

Forecasted prices are based on industry projections, the growth of the economy and the need to 

get to cost reflective tariffs within five years. The future projections provide a view to helping 

structure DR incentives and assist in compiling a cost-benefit analysis.  
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Figure 4-25. Average annual historic and forecasted electricity pricing. 

4.5. Demand response initiatives in the coal mining industry 

The current DR initiatives that are implemented for the six mines are discussed in this section. 

4.5.1. Tariff based demand response initiatives 

The “beat the peak” initiative aims to reduce the cost of the winter peak tariff rates, i.e. the high 

demand season based on a tariff pricing signal. The mines are on the utilities’ MegaFlex tariff. 

The tariff rate in the high demand season peak is about 2.8 times more than low season. Figure 

4-26 indicates that the average normalised cost for electricity is 47% more in the high demand 

season. The energy consumption is relatively constant, with the impact of the holidays in 

January, April and December being visible as well as the industrial action in October. The 

energy consumption is higher during the high demand season. From an open-pit mine 

perspective, there is no or minimal rain that effects operations in the pit during winter and from 

an underground perspective, there are no or minimal lightning events during winter. It may also 

be an indication of an organisational cycle, which is a consequence of production pressure, to 

ensure annual business plan production volumes can be met. It can be stated that the mines 

minimally respond to the DR tariff signal and does not reduce peak demand significantly. 
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Figure 4-26. The normalised cost of electricity versus consumption for 2015 with the high 

demand season highlighted. 

Mine 4 has responded to the DR tariff signal in 2015 with the aim to reduce electricity costs. 

Plant 4.2, in particular, managed to save 14.6% in 2015 by running the plant optimally. Figure 

4-27 breaks down the various components of the saving of that plant. It included an energy 

saving intervention as well as a DR initiative.  

 
Figure 4-27. Energy cost saving estimation for responding to the DR pricing signal for Plant 4.2 

during the high demand season in 2015. 

The cost associated with DR was conservatively estimated to be 4.5% for the three months. The 

plant’s capacity exceeded the ROM coal coming from the underground sections. A decision 
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was made to stop the plant and build the ROM stockpile. The plant would run as soon as a 

significant ROM stockpile was available to ensure the plant can operate at full capacity for an 

extended period and avoided the peak periods when possible. 

4.5.2. Emergency load curtailment 

The load curtailment events are visualised in Figure 4-28, which excludes load shedding events, 

although they do overlap most of the time. A clear pattern emerges that is tied back to the typical 

national load profiles in Figure 2-4. During the summer months, the event period matched 

closely with the flatter profile and during winter the event period was matched to the high 

evening peak. 

 
Figure 4-28. Heat map of load curtailment events for 2015. 

 

  

0%        10%         20% 
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5. Develop regression models for demand response assets 

The purpose of this chapter is to develop regression models for the DRAs to predict their 

electrical demand based on their production. This enables the characterisation of these DRAs 

by building more detailed models [2]. Only daily production values and the direct operating 

hours are available. This will be used to calculate an average tonne per hour value for each day 

and then matched to the hourly electricity consumption. 

5.1. Methodology used for the regression analysis 

The initial step in the regression analysis process is to prepare the raw data for analysis. The 

data preparation process is shown in Figure 5-1. The electricity data is captured at half-hourly 

intervals, aligned with the utilities’ billing intervals, while the production data is captured daily. 

The electricity half hours needed to be rolled up into daily values, taking into consideration 

when the daily production values are captured. That is, some mines measure production from 

21:00 the previous day to 21:00 the current day. The data was also combined in one file from 

two SQL server databases.  

 
Figure 5-1. Data preparation flow diagram to prepare raw data for regression analysis. 

The statistical software, R, was used to perform the regression analysis. The regression analysis 

flow diagram is in Figure 5-2, as adapted from [62], describes the process flow for the 

regression analysis R script. 
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Figure 5-2. Regression analysis flow diagram that is used for modelling of DRAs. 

The methodology used to in the regression analysis is summarised as follows: 

Step 1. The objective for each regression is stated and relevant variables are identified. The 

available data is collected and placed into comma separated files for analysis in R, as shown in 

Figure 5-1. 

Step 2. An initial scatter plot analysis is performed on the data set. A loess model plot is fitted 

together with a linear model for reference. A 2D-contour plot is overlaid to show the density of 

the data points. Possible outliers are identified based on standardised residuals greater than the 

absolute number of two and the standardised residuals are plotted.  

Step 3. The possible outliers are investigated and omitted if there is a sound reason to do so. 

The reasons for removal of outliers is recorded in the data file. Another scatterplot analysis is 

performed with both loess and linear methods. A histogram is produced if the 2D-contour plots 
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show distinct groupings. Further data analysis is performed to identify the different factors if 

the distribution is not normal.  

Step 4. Once the data analysis is complete, an appropriate model is then fitted, informed by the 

loess model, and the parameters recorded. The R2 values are checked as well as the Significance 

of F, for the regression model. The p-values for the independent variables are checked to be 

significant. The model uncertainty is quantified and recorded. A full set of diagnostic plots is 

generated which include residuals versus fitted values, normal Q-Q, scale location and residuals 

versus fitted. 

Step 5. Based on the diagnostic plots from step 4, the models are accepted if it satisfies the 

requirements. If there are data points that do not fall within the requirements, they are further 

investigated and removed if appropriate. The final scatter plots are then generated, along with 

their diagnostics plots, and the final parameters recorded.  

5.2. Model used for the regression analysis 

For all the regression models that will follow, a second order polynomial was found to provide 

the best fit for the data sets. The rationale will be discussed in the sections that will follow. It is 

important to note that the model is only representative within the bounds of the sampled data 

set. The generalised regression equation is: 

 𝑦𝑦 =  𝑎𝑎 + 𝑏𝑏.𝑥𝑥 + 𝑐𝑐.𝑥𝑥2 (5.1) 

where y is the predicted energy consumption in kWh, x the production tonnes and a, b and c the 

regression coefficients. 

5.3. Regression analysis for the plants 

Following the methodology in section 5.1, the initial scatter plots were constructed for the plants, 

as indicated in Figure 5-3 and Figure 5-4. From this initial analysis, it can be seen that linear 

models, the blue lines, do not describe the relationship between energy consumption and 

production adequately. The loess models, the red lines, tend not to be close to a linear line. The 

2D-contour plots indicate the density of the data points while the red points indicate possible 

outliers, based on the loess models.  
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Figure 5-3. Initial scatter plot analysis for Plant 4.1 identifying possible outliers based on the 

loess model. 

  

  
Figure 5-4. Initial scatter plot analysis for Plants 1.1, 2.1, 3.1 and 4.2 identifying possible outliers 

based on the loess model. 

The standardised residuals for each plant are shown in Figure 5-5, based on the loess model. 

All residuals greater than +2 or -2 were highlighted to indicate that these may be possible 
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outliers that need to be investigated. Some of the other possible outliers were not picked up in 

the residual plots. One such example is when there are zero production and zero energy 

consumption. This cannot be as there is always a baseload present for the plants, which is 

typically at least lighting loads, offices and the control room, as indicated in the histograms in 

Figure 4-9. The only way for electricity consumption to be zero is if there is a power outage for 

the whole day or if metering data is missing. 

  

  

 

 

Figure 5-5. Initial standardised residual plots for the plants identifying possible outliers based on 

the loess model. 

Another example is the two outliers in Figure 5-4 for Plant 2.1, which are almost double the 

maximum production. They were not picked up by the residual plot as the loess model was 
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fitted through those points. On closer inspection, is was found that the production data for those 

two days were captured twice, in different fields. When the data was retrieved, the sum of the 

two was taken, where normally only one field is used to capture production data.  

The other possible outliers were investigated and the majority of them were confirmed to be 

outliers. One common cause was that production data for certain days was not captured, leading 

to high energy consumption with zero production, as shown in Figure 5-4 for Plant 4.2 and 

Plant 2.1. The second most common cause was metering errors, mainly for Plant 3.1 in Figure 

5-4, where abnormally high energy consumption was recorded for a couple of consecutive days. 

The cause was a change at the substation when new current transformers were installed. 

Another minor cause was missing metering data, either for the whole day or a significant part 

of the day. 

After the possible outliers had been investigated, they were either removed or corrected as 

appropriate. Another scatter plot analysis was performed to confirm the use of non-linear 

models. On visual inspection, there are more outliers that were not corrected or removed from 

the previous analysis. There also still exist two distinct groupings based on the 2D-contour 

diagrams.  There appear to be two different populations in the data set, one for the non-

productive period, i.e. when there is zero production, and the productive period which 

represents the entire range of production. The data was split into these two groupings and 

histograms were constructed, as shown in Figure 5-6.  

The histogram plots in Figure 5-6, matches with the bi-modal distribution observed in Figure 

4-9. The data can now be separated into the two distinct groupings for further analysis. These 

simple histogram plots reveal various opportunities for improvement in operational control, 

which will lead to improvement in energy performance. The non-productive period indicates a 

relatively wide distribution of energy consumption when there is no production, which would 

be good to investigate to reduce demand and energy consumption during these periods. For the 

productive period, the operating range for each plant can be observed. From a production and 

energy efficiency point of view, the productive period histogram should resemble more closely 

to that of Plant 4.1, 1.1 and 3.1, i.e. negatively skewed distributions. That will maximise 

production and ensure the plant is run at its best efficiency point, i.e. rated capacity. Several 

factors may influence this requirement of a negatively skewed distribution and may result in a 

more normal distribution such as Plant 4.2 and 2.1. For example, if there is not enough 
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production from the mining operations to run the plants at rated capacity for a sufficiently long 

period of time. This presents an opportunity for DR by utilising the ROM stockpile capacity. 

This may also be valuable during a CPD, allowing the mine to produce but the plant to be on 

stop. Activities can then be planned for extended maintenance for the plant on such a CPD.  

  

  

 

 

Figure 5-6. Histograms of energy consumption for the plants, grouped into non-productive and 

productive data sets. 

Stellenbosch University  https://scholar.sun.ac.za



 

90 

Another factor to consider in the future will be DR events, such as idling the plant or running 

only some modules during peak tariff periods. This will require more detailed data to be 

captured as the productive period distribution may become bi-modal as well. 

Another scatter plot analysis was performed, using only the productive period data. After 

analysis of the loess model, a second-order polynomial was fitted to the data as it closely 

resembled the loess model. The first regression diagnostic plots were produced for each plant, 

with Figure 5-7 showing regression plots for Plant 4.1.  

 
Figure 5-7. First regression diagnostic plots for Plant 4.1. 

The residual versus fitted plot appears to be random with no distinct pattern, however, there are 

a couple of data points that are highlighted as outliers. The normal q-q plot shows an almost 

straight line with some flaring occurring at the tails as normal. Data point 95, however, is not 

close the line and is highlighted in all the plots. It also has high leverage in the regression model 

as indicated. After removal of this influence point, a final scatter plot was constructed with 

another set of diagnostic plots and the model parameters was recorded. The final regression 

diagnostic plots for Plant 4.1 is shown in Figure 5-8, with the other plots for the other plants 

located in Appendix A. The plots indicate that the model is a good fit for the data. It can be 
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further improved by gathering more detailed data, however, it will make the model more 

complicated. For this analysis, it is deemed sufficient.  

 
Figure 5-8. Final regression diagnostic plots for Plant 4.1. 

The final scatter plots are shown in Figure 5-9, with the blue lines indicating the linear model, 

the red lines the loess model and the green lines the fitted model.  

Stellenbosch University  https://scholar.sun.ac.za



 

92 

  

  

 

 

Figure 5-9. Final regression models after removal of outliers for the plants. 

The model parameters are shown in Table 5-1 for the productive period for plants and all 

coefficients were found to be significant, i.e. all coefficients had a p-value < 0.01. The 

parameters for the non-productive period is shown in Table 5-2. 
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Table 5-1. Regression model parameters for the productive period for the plants. 

Parameters Plant 1.1 Plant 2.1 Plant 3.1 Plant 4.1 Plant 4.2 

a  52 406.52***   57 476.86***   23 094.08***   51 906.08***   53 715.87***  

b  5.64***   6.05***   3.05***   6.58***  8.92***  

c  -0.000110***   -0.000150***   -0.000066***   -0.000107***   -0.000193***  

Observations  342   291   272   270   272  

R-square  0.78   0.57   0.83   0.74   0.83  

Residual 
Standard Error 

 7 385.53   10 640.30   4 153.49   9 225.60   9 292.91  

F Statistic  599.55***   192.25***   637.82***   375.96***  667.46***  

Note:  Significance at p = 0.1, p = 0.05 and p = 0.01 are denoted by '*', '**' and '***' respectively. 

 

Table 5-2. Regression model parameters for the non-productive period for the plants. 

Parameters Plant 1.1 Plant 2.1 Plant 3.1 Plant 4.1 Plant 4.2 

Mean  37 816.04   39 273.05   20 111.87   27 524.84   38 421.03  

Median  36 595.00   30 713.75   20 669.00   25 802.00   38 667.50  

Mode  49 161.50   26 303.00   5 553.00   18 699.50   42 912.50  

Observations  13   50   62   64   77  

Standard Error  5 714.32   17 513.55   6 585.43   6 118.36   7 390.18  
 

5.4. Regression analysis for the draglines 

The analysis for the draglines, shown in Figure 5-10, shows similarly to the plants that a linear 

model, the blue lines, do not describe the relationship between energy consumption and 

production adequately. Note that the analysis for Dragline 2.1 is identical to Dragline 2.2, as 

they use the same data set, but it is included for completeness. The scatter plots indicate a wide 

range of variation around the regression line.  
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Figure 5-10. Initial scatter plot analysis for the draglines identifying possible outliers based on 

the loess model.  

The standardised residuals for each dragline are shown in Figure 5-11, based on the loess model. 

All residuals greater than +2 or -2 were highlighted to indicate that these may be possible 

outliers that need to be investigated. It was a bit of a challenge to determine outliers for the 

draglines as they do tend to “walk” or relocate from time to time, which implies that energy 

consumption may be more than normal for a particular production volume. Data for the 

relocation activities were not readably available. However, the major factor will be based on 

production volumes.  

An example of possible outliers are when there is zero production, the energy consumption 

ranges from zero to a significant amount of energy consumption. When the dragline is switched 

off, it can consume zero energy, however, if it is idling there may be a small amount of energy 

being consumed. The larger values may indicate longer relocation activities or days when the 

production tonnages were not recorded. The possible outliers were investigated and the 

minority of them could be confirmed to be outliers. These were mainly confirmed metering 

errors and days when the production was not captured correctly.  
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Figure 5-11. Initial standardised residual plots for the draglines identifying possible outliers 

based on the loess model. 

After the possible outliers had been investigated, they were either removed or corrected as 

appropriate. Another scatter plot analysis was performed to confirm the use of non-linear 

models. On visual inspection, there are more outliers that were not corrected or removed from 

the previous analysis. There also still exist two distinct groupings based on the 2D-contour 

diagrams.  There appear to be two different populations in the data set, similarly as was found 

on the plant analysis, one for the non-productive period, i.e. when there is zero production, and 

the productive period which represents the entire range of production. The data was split into 

these two groupings and histograms were constructed, as shown in Figure 5-12. A possible third 

population may be when the draglines are relocating, however not enough data is available to 

take that into consideration at this stage. 
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Figure 5-12. Histograms of energy consumption for the draglines, grouped into non-productive 

and productive data sets. 

The histogram plots in Figure 5-12, matches with the bi-modal distribution observed in Figure 

4-11. The data can now be separated into the two distinct groupings for further analysis. These 

simple histogram plots reveal various opportunities for improvement in operational control, 

which will lead to improvement in energy performance. Particularly the non-productive period 

of Dragline 2.1, indicates a relatively high energy consumption in the second bin. This may be 

due to the dragline idling for extended periods or excessive relocations, but will need the be 

investigated further. For the productive period, a negatively skewed distribution is preferred to 

maximise efficiency, such as is the case for Dragline 1.1. The wider distributions for Draglines 

2.1, 2.2 and 2.3 probably include more relocation activities. 

The opportunity for DR is relatively limited as the draglines can either be on or off, however, 

this has a direct impact on the production process as the draglines remove the overburden before 

the coal can be mined. This may be useful to exploit on a CPD depending on production 
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planning, but load shifting during the TOU peak periods may be more viable as they are for 

shorter durations.  

Another scatter plot analysis was performed, using only the productive period data. After 

analysis of the loess model, a second-order polynomial was fitted to the data as it closely 

resembled the loess model. The first regression diagnostic plots were produced for each dragline, 

with Figure 5-13 showing regression plots for Dragline 1.1.  

 
Figure 5-13. First regression diagnostic plots for Dragline 1.1. 

The residual versus fitted plot appears to be random with no distinct pattern, however, there are 

a couple of data points that are highlighted as outliers. The normal q-q plot shows an almost 

straight line with some flaring occurring at the tails as normal. However, the low tail does vary 

significantly from the straight line. Most of the data points that were identified are related to 

the lower tail. After removal of some of the justified influence points, a final scatter plot was 

constructed with another set of diagnostic plots and the model parameters was recorded. The 

final regression diagnostic plots for Dragline 1.1 is shown in Figure 5-14, with the other plots 

for the other draglines located in Appendix A. The plots indicate that the model is a fairly good 

fit for the data, except for the lower tail indicated in the normal q-q plot. For this analysis, it is 

deemed sufficient.  
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Figure 5-14. Final regression diagnostic plots for Dragline 1.1. 

The final scatter plots are shown in Figure 5-15, with the blue lines indicating the linear model, 

the red lines the loess model and the green lines the fitted model.  
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Figure 5-15. Final regression models after removal of outliers for the draglines. 

The model parameters are shown in Table 5-3 for the productive period for plants and all 

coefficients were found to be significant, i.e. all coefficients had a p-value < 0.01. The 

parameters for the non-productive period is shown in Table 5-4. 

Table 5-3. Regression model parameters for the productive period for the draglines. 

Parameters Dragline 1.1 Dragline 2.1 Dragline 2.2 Dragline 2.3 

a  14 276.06***   -979.78   -979.78   12 160.19***  

b  1.79***   3.04***   3.04***   1.30***  

c  -0.000016***   -0.000033***   -0.000033***   -0.000010***  

Observations  350   204   204   293  

R-square  0.63   0.47   0.47   0.74  

Residual Std. Error  7 431.70   8 712.64   8 712.64   7 492.72  

F Statistic  301.29***   88.85***   88.85***   420.13***  

Note:  Significance at p = 0.1, p = 0.05 and p = 0.01 are denoted by '*', '**' and '***' respectively. 
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Table 5-4. Regression model parameters for the non-productive period for the draglines. 

Parameters Dragline 1.1 Dragline 2.1 Dragline 2.2 Dragline 2.3 

Mean  13 252.21   5 064.00   5 064.00   4 763.19  

Median  16 344.75   4 275.00   4 275.00   2 002.50  

Mode  -     4 044.00   4 044.00   17 936.50  

Observations  12   156   156   50  

Standard Error  8 357.43   4 684.51   4 684.51   7 429.13  
 

5.5. Regression analysis for the underground sections 

For the analysis of the two mines’ underground sections, the total energy consumed versus total 

production was used as detailed sub-metering was not available per section. The process flow 

for these mines also allowed for it, as they have no significant storage or stockpiles between the 

mining and plant activities. The scatter plot analysis for the two underground sections is shown 

in Figure 5-16 and it shows that a linear model, the blue lines, appears to almost describe the 

relationship between energy consumption and production adequately. However, when 

compared with the loess models, the red lines, the ends tend to change the model to be non-

linear.  

  
Figure 5-16. Initial scatter plot analysis for the underground sections 5.1 and 6.1 identifying 

possible outliers based on the loess model. 

The standardised residuals for each mine are shown in Figure 5-17, based on the loess model. 

All residuals greater than +2 or -2 were highlighted to indicate that these may be possible 

outliers that need to be investigated. Again, some of the outliers at zero production may have 

been missed as the ventilation fans run continuously and do consume a significant amount of 

baseload energy. This typically indicates days were metering data was missing. 
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Figure 5-17. Initial standardised residual plots for underground sections 5.1 and 6.1 identifying 

possible outliers based on the loess model. 

Other possible outliers are those that are particularly far from the regression line, such as is the 

case with some data points of underground sections 5.1 specifically. Those specific points were 

due to metering errors caused by changes in the electrical network. The possible outliers were 

investigated and the majority of them could be confirmed to be outliers. These were mainly 

confirmed metering errors and days when the production was not captured correctly. 

After the possible outliers had been investigated, they were either removed or corrected as 

appropriate. Another scatter plot analysis was performed to confirm the use of non-linear 

models. On visual inspection, there are more outliers that were not corrected or removed from 

the previous analysis. There also still exist two distinct groupings based on the 2D-contour 

diagrams.  There appear to be two different populations in the data set, again similarly to that 

of the plants and draglines, one for the non-productive period, i.e. when there is zero production, 

and the productive period which represents the entire range of production. The data was split 

into these two groupings and histograms were constructed, as shown in Figure 5-18.  

The histogram plots in Figure 5-18, are similar to the other bi-modal distributions observed. 

The data can now be separated into the two distinct groupings for further analysis. These simple 

histogram plots reveal various opportunities for improvement in operational control, which will 

lead to improvement in energy performance. The non-productive period indicates a relatively 

wide distribution of energy consumption when there is no production, which would be good to 

investigate to reduce demand and energy consumption during these periods.  
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Figure 5-18. Histograms of energy consumption for the underground sections, grouped into non-

productive and productive data sets. 

For the productive period, the operating range for each mine can be observed. From a 

production and energy efficiency point of view, the productive period histogram should 

resemble a more negatively skewed distribution, rather than the almost normal distributions 

observed.  Various factors may influence this requirement of a negatively skewed distribution. 

For example, these two mines have various underground sections which contribute to the 

overall production and energy consumption and thus, describes the normal distributions that are 

observed. Never the less, this may be a significant opportunity.  

This presents an opportunity for DR as well, as some sections can be stopped to reduce demand, 

however, this has a direct impact on the production process. The first buffer capacity is the silo 

on the surface, but this is limited in terms of capacity. This will not be useful to exploit on a 

CPD, but rather for load shifting during the TOU peak periods. Another scatter plot analysis 

was performed, using only the productive period data. After analysis of the loess model, a 

second-order polynomial was fitted to the data as it closely resembled the loess model. The first 

regression diagnostic plots were produced for each mine, with Figure 5-19 showing regression 

plots for underground sections 6.1.  
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Figure 5-19. First regression diagnostic plots for the underground sections 6.1. 

The residual versus fitted plot appears to be random with no distinct pattern, however, there are 

a couple of data points that are highlighted. The normal q-q plot shows an almost straight line 

with some flaring occurring at the tails as normal. The data point with the highest leverage was 

the day that record production was recorded. This point was not removed as it forms part of the 

data set.  

The final scatter plot was constructed with another set of diagnostic plots and the model 

parameters were recorded. The final regression diagnostic plots for underground sections 6.1 is 

shown in Figure 5-20, with the other plots for the other mine is located in Appendix A. The 

plots indicate that the model is a good fit for the data. It can be further improved by gathering 

more detailed data, however, it will make the model more complicated. For this analysis, it is 

deemed sufficient.  
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Figure 5-20. Final regression diagnostic plots for the underground sections 6.1. 

The final scatter plots are shown in Figure 5-21, with the blue lines indicating the linear model, 

the red lines the loess model and the green lines the fitted model.  

  
Figure 5-21. Final regression models after removal of outliers for the underground sections 5.1 

and 6.1. 

The model parameters are shown in Table 5-5 for the productive period for plants and all 

coefficients were found to be significant, i.e. all coefficients had a p-value < 0.01. The 

parameters for the non-productive period is shown in Table 5-6. 
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Table 5-5. Regression model parameters for the productive period for the underground 

sections. 

Parameters UG sections 5.1 UG sections 6.1 

a  127 191.84***   97 177.28***  

b  5.76***   4.59***  

c  -0.000117***   -0.000028***  

Observations  283   266  

R-square  0.52   0.85  

Residual Std. Error  11 715.17   9 378.61  

F Statistic  150.70***   744.81***  

Note:  Significance at p = 0.1, p = 0.05 and p = 0.01 are denoted by '*', '**' and '***' respectively. 

 

Table 5-6. Regression model parameters for the non-productive period for the 

underground sections. 

Parameters UG sections 5.1 UG sections 6.1 

Mean  136 405.78   76 201.24  

Median  139 759.42   76 768.00  

Mode  100 914.36   61 626.00  

Observations  59   83  

Standard Error  17 571.92   8 532.51  
 

5.6. Recommendations for improving the regression models 

In this chapter, regression models were developed to predict daily energy consumption, given 

a specific level of production, for the five plants, four draglines and two underground sections. 

To further improve the accuracy of all the regression models, hourly data should be used to 

develop the models. For the draglines, more data needs to be collected about the relocation 

activities and included as an additional relevant variable. For the underground sections, sub-

metering is recommended to isolate those DRAs for analysis. 
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6. Develop and simulate a scheduling program 

The purpose of this chapter is to develop a scheduling simulation program for production. The 

various DR scenarios, from chapter 3, are used as constraints to production scheduling, first 

individually and then combined. The regression models, from chapter 5, are used to estimate 

the electrical load based on production. The estimated electrical load profile is then compared 

with the base case load profile to determine the DR impact. The energy costs, production 

volumes and incentives are quantified for each simulation. 

6.1. Purpose of the scheduling program 

A linear programming approach was taken to schedule production. The benefits of linear 

programming lie in the scalability and efficiency in finding optimal solutions, which enables it 

to be used for online applications [26]. Linear programming was applied to a surface coal mine 

in China to maximise profits by optimising production [87]. Most of the factors for coal 

production can be based on linear models or can be transformed into linear models [87].  

Linear programming is similarly applied for the scheduling program to produce an hourly 

production plan for each of the DRAs that satisfies the objective function to reduce electricity 

costs as well as taking into consideration various operational and energy constraints. A similar 

optimisation problem was simulated to model DR and distributed generation, but from the point 

of view to minimise the costs on the distribution side [53]. Once the production volumes have 

been established, these are plugged into the regression models to predict the estimated energy 

(or power) consumption for that hour. These, in turn, gets plugged into the TOU costing model 

to determine the predicted energy costs. 

The scheduling program produces an hourly production schedule, on a monthly basis, i.e. a 

defined time horizon. The schedule is flexible as the model can be re-run, however practically, 

the time horizon may be fixed from one to two weeks to allow scheduling of business resources 

[53]. There is also a risk that production targets may not be met for the month if significant 

operational or energy constraints are included. The statistical software, R, was used to 

implement the scheduling program. 
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6.2. Setting up a linear programming model 

The sections that follow describe the definition of the linear programming problem including 

the objective functions, operating constraints and energy constraints.  

6.2.1. Defining the objective functions 

The purpose of this DR programme is to ensure production targets are met, electricity costs are 

kept as low as possible and other constraints can be accommodated. The objective function for 

this optimisation problem is to minimise the cost of electrical energy for all the DRAs. Thus, 

the TOU unit electricity cost, for each hour, forms part of the objective function taking into 

account the low and high seasons, weekends and public holidays. A TOU model was developed 

for 2015 to address all the requirements mentioned and only considers energy-related costs, e.g. 

TOU rates and subsidies. An alternative objective function is based on the CPD pricing of 

electricity. The 20 CPDs were selected based on the days in the year with the highest electricity 

for simulation purposes.  

The process to define the objective functions are shown in the flow diagram in Figure 6-1. The 

dates and times were split into their components to allow them to be matched with the lookup 

tables for the various components. Public holidays were classified either as Saturdays or Sunday, 

according to the utility tariff guide for 2015. 

 
Figure 6-1. Flow diagram describing how the objective functions were defined. 
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The objective functions are mathematically described in this section and the operational and 

energy constraints in the following two sections. The symbols and description used in the 

equations are listed in Table 6-1 with the corresponding units. 

Table 6-1. List of symbols and descriptions for linear programming equations. 

Symbol Description Symbol Description 

ECM Energy Cost for MegaFlex [ZAR] j DRA 

ECC Energy Cost for CPD [ZAR] n number of DRAs 

TM TOU rate for MegaFlex [ZAR/kWh] PM Monthly production target [tonnes] 

TC TOU rate for CPD [ZAR/kWh] EL Energy Limit [kWh] 

ER Energy Rate of DRA [kWh/tonne] i hours 

PR Production Rate [tonne/hour] mh hours in the month 
 

To include all 11 DRAs in the optimisation problem, the objective functions needed to be 

serialised for the month. That means the first set of hourly production rates (𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ) are 

related to the energy consumption rate (𝑆𝑆𝑆𝑆𝑗𝑗) of the first DRA (j=1), at the TOU pricing for 

MegaFlex (𝑆𝑆𝑀𝑀𝑖𝑖) for that hour (i). The second set of hourly production rates (𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ), in 

the same equation, are related to energy consumption rate (𝑆𝑆𝑆𝑆𝑗𝑗) of the second DRA (j=2), but 

at the same TOU pricing rate for MegaFlex (𝑆𝑆𝑀𝑀𝑖𝑖 ) for that hour (i). Mathematically, the 

objective function for the MegaFlex tariff can be defined as: 

 𝑚𝑚𝐶𝐶𝑎𝑎𝐶𝐶𝑚𝑚𝐶𝐶𝑠𝑠𝑒𝑒 𝑆𝑆𝐶𝐶𝑀𝑀 = ���𝑆𝑆𝑀𝑀𝑖𝑖 ×𝑆𝑆𝑆𝑆𝑗𝑗  ×𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ

𝑚𝑚ℎ

𝑖𝑖=1

�
 𝑛𝑛

𝑗𝑗=1

 (6.1) 

The objective function for the CPD tariff is similarly defined, only changing the applicable 

TOU pricing rate (𝑆𝑆𝐶𝐶𝑖𝑖) for CPDs and non-CPDs, as follows: 

 𝑚𝑚𝐶𝐶𝑎𝑎𝐶𝐶𝑚𝑚𝐶𝐶𝑠𝑠𝑒𝑒 𝑆𝑆𝐶𝐶𝐶𝐶 = ���𝑆𝑆𝐶𝐶𝑖𝑖 ×𝑆𝑆𝑆𝑆𝑗𝑗  ×𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ

𝑚𝑚ℎ

𝑖𝑖=1

�
 𝑛𝑛

𝑗𝑗=1

 (6.2) 
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6.2.2. Defining the operating constraints  

The regression models developed in chapter 5 are based on daily values because the historic 

data for production is only down to a daily level. However, for optimisation and scheduling 

purposes, at least hourly values are needed to be able to apply the TOU rates and the various 

grid constraints at particular times. The hourly energy consumption was estimated by dividing 

the baseload coefficient, a in equation (5.1), by 24, the hours in a day. The other production 

related coefficients, b and c, are kept as is as they are based on the production volumes. By 

solving the regression models for x, i.e. production, an estimate of the hourly production 

volumes can be made, given the actual energy consumption for that hour. The following 

equation was used: 

 𝑥𝑥 =
−𝑏𝑏 ± �𝑏𝑏2 + 4𝑐𝑐(𝑦𝑦 − 𝑎𝑎)

2𝑐𝑐  (6.3) 

The hourly production that was produced gave values related to the fitted regression model only, 

meaning that the variability observed in the scatterplot analysis in chapter 5 was not present in 

the data and thus, the sum of total production did not match the actual values. Therefore, these 

calculated values were used for the production constraints. Another consideration is that the 

models are based on second order polynomials and when solving x for a given y, there are two 

possible answers due to the shape of the curve as per equation (6.3). For all the cases, the 

positive equation provided the correct answers as the range of the model is only in that specific 

range of the curve. The hourly production values, per hour for 2015, for each plant, dragline 

and mine were estimated using the equation and method above. The process is visualised in the 

flow diagram in Figure 6-2. 
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Figure 6-2. Flow diagram describing how the operational constraints were defined. 

The output was used to estimate the hourly production profile to determine the maximum 

average hourly production rate. The average of the largest 300 data points, for each of the DRAs, 

were used and is indicated in Table 6-2. This maximum hourly production rate was the first 

operating constraint to be included as the DRAs cannot produce more than this rate of 

production in a given hour. It is set up as an integer constraint with values from zero to the 

maximum hourly production rate for that particular DRA. 

Table 6-2. Estimated maximum average hourly production rates. 

DRA Maximum production rate 
[tonnes/hour] DRA Maximum production rate 

[tonnes/hour] 

Plant 1.1 585 Dragline 1.1 1 457 

Plant 2.1 434 Dragline 2.1 1 343 

Plant 3.1 890 Dragline 2.2 1 343 

Plant 4.1 523 Dragline 2.3 1 903 

Plant 4.2 476 UG sections 5.1 1 022 

  UG sections 6.1 975 
 
Additionally, the running hours of each DRA were also determined for 2015. The times the 
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particular hour (1) or if no production is possible for that hour (0). The final operating constraint 

is a sum total of production per DRA that needs to be greater or equal to the total production of 

2015. The purpose is the ensure that at least the same amount of production is achieved in each 

month. It can be slightly greater but needs to remain within the production plan. This was also 

limited by the objective functions, which aimed to minimise electricity costs and thus opted to 

produce the minimum production volumes. In future, the budgeted production figures for the 

year can be used. 

The monthly operational constraints are defined as the sum of each of the hourly production 

rates for the month (𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ), for a particular DRA (j), that must be greater or equal to 

the monthly production volumes (𝑃𝑃𝑀𝑀𝑗𝑗). In is described mathematically as: 

 ���𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ

𝑚𝑚ℎ

𝑖𝑖=1

�
 𝑛𝑛

𝑗𝑗=1

≥ 𝑃𝑃𝑀𝑀𝑗𝑗 (6.4) 

6.2.3. Defining the energy constraints  

The various energy constraints are based on the DR scenarios from chapter 3. The DR pricing 

signals are built into the objective functions to ensure minimum energy costs are incurred. The 

actual energy consumption for 2015 was used as a reference. The baseload was subtracted from 

the actual consumption to leave only the variable component, i.e. the productive period, and is 

profile is defined as S0. For each of the scenarios, the required demand response was subtracted 

from S0, thereby limiting the energy that can be consumed in that hour. The process is 

visualised in Figure 6-3. The energy constraints are discussed in more detail below, under each 

of the simulation scenarios. 
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Figure 6-3. Flow diagram describing how the energy constraints were defined. 

To define the energy constraints for each hour in the month (mh), the hourly production rate 

(𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ) for that particular hour (i), for each DRA (j), was multiplied by the energy rate 

for those DRAs (𝑆𝑆𝑆𝑆𝑗𝑗). The sum of these values, for each DRA for a particular hour (i), was 

constrained to the energy limit (𝑆𝑆𝐸𝐸𝑚𝑚ℎ) for that particular hour (i). The energy limits (𝑆𝑆𝐸𝐸𝑚𝑚ℎ), 

for that hour (i), were based on the load profiles that were developed using the DR scenarios. 

The hourly energy constraints can be mathematically described as follows: 

 ���𝑆𝑆𝑆𝑆𝑗𝑗  ×𝑃𝑃𝑆𝑆𝑖𝑖+(𝑗𝑗−1)×𝑚𝑚ℎ

𝑛𝑛

𝑗𝑗=1

�
𝑚𝑚ℎ

𝑖𝑖=1

 ≤ 𝑆𝑆𝐸𝐸𝑚𝑚ℎ (6.5) 

6.3. Simulations 

The linear programming optimisation simulation scenarios were defined and the simulations 

ran. The process flow diagram for running the simulations are shown in Figure 6-4. The 

prepared data, production schedules, production volumes and energy constraints were loaded 

and the variables defined. The objective functions, operational constraints and energy 

constraints were constructed and loaded into the optimisation algorithm. The simulations were 

run and checked if optimal solutions were found. The user was informed of the outcome. If an 

optimal solution was found, the results were recorded in a file. 
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Figure 6-4. Flow diagram describing the linear programming optimisation process. 

Twelve different scenarios were devised for the optimisation simulations, as shown in Figure 

6-5. The simulations were conducted without an integrated consumer side solar plant (S2.x) 

and with an integrated consumer side solar plant (S3.x). More detail on each scenario is 

described in the following sub-sections. 

 
Figure 6-5. Diagram of the various DR simulations that were performed. 
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6.3.1. The base case simulation (S0) 

The base case is based on the actual historic performance of 2015 to serve as a reference point. 

Both the standard MegaFlex tariff was used as well as the CPD tariff. For the CPD tariff, the 

20 days with the total highest energy consumption between 6:00 and 22:00 was chosen as CPDs 

to present the worst case scenario. These CPDs were fixed on these selected days for all the 

other simulation scenarios. The required DR is shown in Figure 6-6, which for the base case is 

zero. 

 
Figure 6-6. The demand response required, i.e. change in MW, for the base case simulation, 

measured against the actual hourly demand of 2015.  

The resulting load profiles from the simulation, for both the MegaFlex and CPD tariffs, are 

shown in Figure 6-7. The base case simulation does describe the actual operating and energy 

constraints as expected, with the October industrial action period clearly visible. The CPDs are 

also visible in the first part of the year, deviating significantly from the MegaFlex profile. The 

simulation results do differ from the actual load profiles and costs due to modelling errors and 

the optimisation. However, the behaviour of the base case scenario does respond correctly and 

thus, is deemed adequate to serve as a basis for comparison for all the other scenarios.  
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Figure 6-7. Base case simulation load profiles for MegaFlex and CPD. 

6.3.2. Optimised base case simulation (S1) 

The optimised base case is based only on the operating constraints of 2015 with the objective 

to minimise electricity costs. No energy constraints were considered in this simulation.  

 
Figure 6-8. The demand response required, i.e. change in MW, for the optimised base case 

simulation, measured against the actual hourly demand of 2015. 

The simulation results indicate that when the DRAs operate at maximum production, their 

combined demand is just over 120 MW, as shown in Figure 6-9. The energy costs are 

significantly lower for both tariffs in this simulation. However, it should be noted that the 
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simulation only considers energy pricing, which typically accounts for 75% of the utility 

account. The demand pricing, which accounts for around 20% of the utility account are not 

considered.  

 
Figure 6-9. Optimised base case simulation load profiles for MegaFlex and CPD. 

The other caution with this scenario is that the DRAs are assumed to be able to stop and start 

for short intervals. In many cases, this is not practical, efficient or economical. The optimisation 

opportunity still exists, but it is expected to be somewhere between the optimised base case and 

the base case. 

Figure 6-10 shows heat maps of the change in the load profile compared to the base case for 

both the MegaFlex and CPD tariffs. The red colour (the positive values) indicate the DR, i.e. a 

reduction in the load profile compared to the base case. Production is scheduled mainly out of 

the TOU peak periods and out of CPDs. The heat maps also indicate that during these periods, 

all production is stopped, which ties in with the caution above that this may not be practical. 
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Figure 6-10. Simulation results for the change in the demand compared to the base case for 

MegaFlex and CPD, for the optimised base case simulation. 

6.3.3. Simulations with and without solar PV 

The last energy constraint is based on the 2015 historic performance of the Solar plant 5.1 and 

the results of the cluster analysis from Chapter 4. For these simulations, the solar plant was 

scaled up to a 9 MW plant and only the changes in generation output, between 8:00 and 16:00 

were considered in the simulations. The average of clusters 1 and 2 was used as a reference and 

the remaining clusters were subtracted to determine the amount of DR required for the scaled 

up solar plant, as shown in Figure 6-11. The frequency of these DR changes was based on 

historic data, as indicated in Figure 4-19. The required DR is indicated on the heat map in Figure 

6-12. 
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Figure 6-11. Difference in the scaled-up power generation for the various clusters based on the 

average generation of clusters 1 and 2, which are almost perfect bell curves.  

 
Figure 6-12. Heat map of the integrated solar plant DR requirement for simulations S3.x. 

6.3.4. Fixed demand simulation (S2.1 and S3.1) 

In this scenario, the demand limit was fixed so that the total demand of the combined DRAs do 

not exceed 100 MW. The purpose is to simulate a smoother operating profile for the year, 

thereby limiting the peaks and troughs in the load profile. The required DR is shown in the heat 

maps in Figure 6-13. As indicated, significant production changes need to be made during the 

year to accommodate the fixed demand limit. 
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Figure 6-13. The demand response required, i.e. change in MW, for the fixed demand 

simulation, measured against the actual hourly demand of 2015. 

The simulated load profiles, in Figure 6-14, shows the smaller demand range throughout the 

year. To achieve the required production, most of the DRAs need to run at maximum capacity.  
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Figure 6-14. Fixed demand simulation load profiles for MegaFlex and CPD. 

Figure 6-15 shows heat maps of the change in the load profiles compared to the base case for 

both the MegaFlex and CPD tariffs. The red colour (the positive values) indicate the DR, i.e. a 

reduction in the load profile compared to the base case. As expected, the TOU peak tariff 

periods are avoided as well as the CPDs. However, due to the duration of the CPDs, not all of 

them can be adequately responded to as they are constrained by the operating hours and 

production volumes. It also appears that there is more flexibility towards the second half of the 

year to better initiate a DR. 
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Figure 6-15. Simulation results for the change in the demand compared to the base case for 

MegaFlex and CPD, for the fixed demand simulation. 

6.3.5. Voluntary demand response participation simulation (S2.2 and S3.2) 

This simulation used the same operating constraints as the base case, with the addition that the 

energy constraints included voluntary DR participation. 150 weekdays, from Monday to 
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Thursday, were randomly selected and the two hours was aligned to the evening peak hours. 

The total energy consumption for those periods was be limited to 10% below the actual load 

profile, as indicated in Figure 6-16. 

 
Figure 6-16. The demand response required, i.e. change in MW, for the voluntary participation 

simulation, measured against the actual hourly demand of 2015.  

The simulation load profiles, as shown in Figure 6-17, do indicate the rapid responses to the 

DR participation events, but is somewhat lost in the noise due to the load factor. The results 

indicate a slightly lower energy costs in all cases, but also a slight drop in production compared 
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the base case. The slight savings in energy cost may not be worth the loss of profit from the 

additional production volumes if there is adequate demand for the coal. 

 

 
Figure 6-17. Voluntary participation simulation load profiles for MegaFlex and CPD. 

Figure 6-18 shows heat maps of the change in the load profiles compared to the base case for 

both the MegaFlex and CPD tariffs. The red colour (the positive values) indicate the DR, i.e. a 

reduction in the load profile compared to the base case. The two-hour voluntary participation 

can be clearly identified in all cases. However, for the MegaFlex tariff, there is a lesser response 

in the first part of the year which is limited by the operational constraints. The DR for the CPDs 

is also limited by the operational constraints. 
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Figure 6-18. Simulation results for the change in the demand compared to the base case for 

MegaFlex and CPD, for the voluntary DR participation simulation. 

The simulated DR values are shown in Figure 6-19 together with the running total of the 

expected DR incentive. The results indicate that a total DR incentive of around R 1.3 million 
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and R 2 million may be realised for the MegaFlex and CPD tariff options, respectively. When 

including the integrated solar plant, the incentive amounts are slightly higher. 

 
Figure 6-19. Simulated demand response during voluntary DR participation together with the 

cumulative incentive that may be realised. 

6.3.6. Emergency load curtailment event simulation (S2.3 and S3.3) 

Constraints for load curtailment events was limited to a random selection of 25 Thursdays of 

which 20 days were for a 10% reduction for 6 hours and 5 days were for a 20% reduction for 4 

hours, below the actual total demand. The other constraints were for 5 weekends, Saturday and 

Sunday, for a 10% reduction for 12 hours, below the actual total demand. These are visually 

indicated in the heat maps in Figure 6-20. 
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Figure 6-20. The demand response required, i.e. change in MW, for the emergency load 

curtailment simulation, measured against the actual hourly demand of 2015.  

The simulation results, shown in Figure 6-21, indicate a slight decrease in energy cost for the 

MegaFlex tariff while the CPD also significantly impacted. However, in both tariffs periods, 

production is much higher than the base case with the integrated solar plant.  
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Figure 6-21. Emergency load curtailment simulation load profiles for MegaFlex and CPD. 

The main reason for the increase in the MegaFlex tariff is related to the increased production 

during other peak times to achieve the required production volumes. The CPD tariff is neutral 

due to response on CPDs and lower energy costs during other periods. Figure 6-22 shows heat 

maps of the change in the load profiles compared to the base case for both the MegaFlex and 

CPD tariffs. The red colour (the positive values) indicate the DR, i.e. a reduction in the load 

profile compared to the base case. It indicates that the events are responded to, however, the 

production is shifted to adjacent day TOU peak and CPD periods to achieve the production 

requirements. 
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Figure 6-22. Simulation results for the change in the demand compared to the base case for 

MegaFlex and CPD, for the emergency load curtailment simulation. 

6.3.7. Extreme load curtailment simulation (S2.4 and S3.4) 

The extreme load curtailment simulation consisted of the following events, occurring from 5:00 

to 22:00 each day: 
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 two one-day events; 

 one two-day event; and 

 one three-day event. 

These events were defined using the cluster analysis of Solar plant 5.1 and selecting the four 

worst solar generation events in the year. The required DR is visually represented in the heat 

maps in Figure 6-23. 

 
Figure 6-23. The demand response required, i.e. change in MW, for the extreme load 

curtailment simulation, measured against the actual hourly demand of 2015. 
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The simulation results, shown in Figure 6-24, indicate a slight increase in energy cost for the 

MegaFlex tariff while the CPD is not significantly impacted. However, in both tariffs periods, 

production is slightly lower than the base case.  

 

 
Figure 6-24. Extreme load curtailment simulation load profiles for MegaFlex and CPD. 

Figure 6-25 shows heat maps of the change in the load profiles compared to the base case for 

both the MegaFlex and CPD tariffs. The red colour (the positive values) indicate the DR, i.e. a 

reduction in the load profile compared to the base case. It indicates that the extreme events are 

responded to, however, it resulted in a significant production change for January. The DR for 

November is not as severe as anticipated, mainly due to possible additional production capacity.  
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Figure 6-25. Simulation results for the change in the demand compared to the base case for 

MegaFlex and CPD, for the extreme load curtailment simulation. 

The simulated production losses were calculated for these four events and are shown in Figure 

6-26. This, however, includes total tonnes from all the DRAs. Analysis of these tonnes revealed 

that 60.7% were tonnes associated with the draglines, i.e. overburden material, and 39.3% were 
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related to ROM tonnes for the plants and UG sections. Factoring in a conservative 50% yield, 

i.e. saleable coal, only 19.6% of the tonnes shown in Figure 6-26 can be classified as a loss. 

The simulation indicates that this can be accommodated without production loss, due to other 

factors in a real case, this is potentially the lost saleable coal or at least the opportunity loss. 

 
Figure 6-26. The potential production losses due to the extreme load curtailment events. 

When such events are requested in future from the utility, without declaring an official 

emergency, it is expected that the consumer may bid in a DR offer. This bid depends on several 

factors including were the DRAs scheduled for production, how long these events are in 

duration and the potential income loss to the organisation or at least, the fixed operating cost 

for the organisation that would be incurred. The reduction in energy cost is not considered as a 

benefit, as the energy needs to be used at another stage to make up the production volumes. 

From several annual reports of various coal mining companies, it was found that the average 

export thermal coal price for 2015 was US$ 55 /tonne and the average unit costs were 

US$ 39 /tonne. These values were converted to ZAR using an exchange rate or R 13.15 /US$. 

The energy (kWh) that was avoided during these events were calculated by comparing the 

required load profile with the actual load profile (S0), this taking into account, general activities 

such as maintenance. A high-level calculation was then conducted to determine a range of 

possible DR bids for the six coal mines in this project. The highest bid amount was estimated, 

based on loss of income, using the following equation: 
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 𝐷𝐷𝑆𝑆𝐷𝐷𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 =
𝑆𝑆𝑎𝑎𝑆𝑆𝑒𝑒𝑎𝑎𝑏𝑏𝑆𝑆𝑒𝑒 𝑐𝑐𝑐𝑐𝑎𝑎𝑆𝑆 𝑆𝑆𝑐𝑐𝑠𝑠𝑡𝑡 (𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒𝑠𝑠) ×𝑆𝑆𝑥𝑥𝑝𝑝𝑐𝑐𝐸𝐸𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑆𝑆 𝑝𝑝𝐸𝐸𝐶𝐶𝑐𝑐𝑒𝑒 (𝑍𝑍𝑍𝑍𝑆𝑆)

𝑆𝑆𝑎𝑎𝑒𝑒𝐸𝐸𝐸𝐸𝑦𝑦 𝑎𝑎𝑎𝑎𝑐𝑐𝐶𝐶𝑎𝑎𝑒𝑒𝑎𝑎 (𝑘𝑘𝑘𝑘ℎ)
 (
𝑍𝑍𝑍𝑍𝑆𝑆
𝑘𝑘𝑘𝑘ℎ

) (6.6) 

The lower bid was based to cover unit cost, using the following equation: 

 𝐷𝐷𝑆𝑆𝐷𝐷𝑢𝑢𝑛𝑛𝑖𝑖𝑢𝑢 𝑖𝑖𝑖𝑖𝑐𝑐𝑢𝑢 =
𝑆𝑆𝑎𝑎𝑆𝑆𝑒𝑒𝑎𝑎𝑏𝑏𝑆𝑆𝑒𝑒 𝑐𝑐𝑐𝑐𝑎𝑎𝑆𝑆 𝑆𝑆𝑐𝑐𝑠𝑠𝑡𝑡 (𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒𝑠𝑠)×𝑈𝑈𝑎𝑎𝐶𝐶𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡 (𝑍𝑍𝑍𝑍𝑆𝑆)

𝑆𝑆𝑎𝑎𝑒𝑒𝐸𝐸𝐸𝐸𝑦𝑦 𝑎𝑎𝑎𝑎𝑐𝑐𝐶𝐶𝑎𝑎𝑒𝑒𝑎𝑎 (𝑘𝑘𝑘𝑘ℎ)
 (
𝑍𝑍𝑍𝑍𝑆𝑆
𝑘𝑘𝑘𝑘ℎ

) (6.7) 

The potential bid offer may be even lower, depending on what just the fixed costs are for the 

DRAs. The potential DR bid offers were calculated for each event day and shown in Figure 

6-27. The bids range from R 3.80 /kWh to R 6.55 /kWh, with not much difference between the 

MegaFlex and CPD tariffs. These bids are only high-level estimations and depend on external 

factors such is the export thermal coal price, the exchange rate and energy avoided. 

 
Figure 6-27. The range of estimated demand response rates for the selected mines. The lower 

range is to cover to operating unit costs while the higher range is the rate to cover loss of income. 

6.3.8. Combined demand response simulation (S2.5 and S3.5) 

The combined DR simulation consists of the following: 

 voluntary DR participation (as in subsection 6.3.5); 

 only the 20% reductions for load curtailment (as in subsection 6.3.6) as the voluntary 

participation in DR above negates the requirement to reduce load by 10%; and 

 the extreme load curtailment events (as in sub-section 6.3.7). 
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The resulting DR heat maps are shown in Figure 6-28. It is clear that the evening peak voluntary 

DR and 20% load curtailment events are separated from the integrated solar PV plant. 

 
Figure 6-28. The demand response required, i.e. change in MW, for the combined simulation, 

measured against the actual hourly demand of 2015.  

The simulated load profiles are indicated in Figure 6-29. The results indicate, that for both 

tariffs, the energy cost is slightly lower than the base case scenario, while the production is 

significantly impacted. The production impact is mainly due to the load curtailment events and 

voluntary DR participation. 
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Figure 6-29. Combined simulation load profiles for MegaFlex and CPD. 

Figure 6-30 shows heat maps of the change in the load profiles compared to the base case for 

both the MegaFlex and CPD tariffs. The red colour (the positive values) indicate the DR, i.e. a 

reduction in the load profile compared to the base case. The 10% DRs is clearly visible during 

the evening TOU peak periods, but the integrated solar PV is less visible due to the variation in 

the change. The green stripes indicate that more energy needs to be used adjacent to the CPDs 

to achieve production requirements. 
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Figure 6-30. Simulation results for the change in the demand compared to the base case for 

MegaFlex and CPD, for the combined simulation. 

The simulated DR values are shown in Figure 6-31 together with the running total of the 

expected DR incentive. The results indicate that a total DR incentive of around R 1.3 million 
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and R 2.5 million may be realised for the MegaFlex and CPD tariffs, respectively. The 

incentives are slightly higher with the integrated solar plant. 

 
Figure 6-31. Simulated demand response during voluntary DR participation together with the 

cumulative incentive that may be realised. 

6.4. Summary of simulation results 

The results of the simulations are summarised in Table 6-3 for the MegaFlex tariff and in Table 

6-4 for the CPD tariff. The tables indicate both the energy cost and total production volumes as 

well as the percentage change of each scenario with respect to the base case scenario.  
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Table 6-3. Summary of simulation results for the MegaFlex tariff. 

Simulation Energy Cost 
[ZAR] 

% change in 
energy cost 

Production 
[tonnes] 

% change in 
production 

S0 Base case R 457 329 096 0.0% 55 051 118 0.0% 

S1 Optimised base case R 432 233 475 -5.5% 59 750 182 8.5% 

S2.1 Fixed demand R 444 717 580 -2.8% 59 750 182 8.5% 

S3.1 Fixed demand  
with solar PV R 456 325 710 -0.2% 54 902 348 -0.3% 

S2.2 Voluntary participation R 458 541 715 0.3% 55 018 882 -0.1% 

S3.2 Voluntary participation  
with solar PV R 454 754 538 -0.6% 54 314 985 -1.3% 

S2.3 Load curtailment R 454 074 757 -0.7% 54 168 888 -1.6% 

S3.3 Load curtailment  
with solar PV R 444 768 216 -2.7% 59 750 182 8.5% 

S2.4 Extreme load reductions R 456 302 582 -0.2% 54 902 175 -0.3% 

S3.4 Extreme load reductions 
with solar PV R 458 526 277 0.3% 55 018 709 -0.1% 

S2.5 Combined simulation R 454 777 091 -0.6% 54 314 836 -1.3% 

S3.5 Combined simulation  
with solar PV R 454 022 960 -0.7% 54 168 739 -1.6% 

 
For the MegaFlex tariff, energy costs did not increase significantly in any of the simulations, 

while the optimised base case (S1), fixed demand without solar PV (S2.1) and load curtailment 

with integrated solar PV (S3.3) showed significant savings against the base case (S0). For the 

integrated solar PV scenarios, it is worth to note that the energy costs exclude the generated 

solar energy that offsets the energy from the utility, which may influence the benefit either way 

and it also excludes potential carbon taxation on grid electricity.  

Production decreased in the voluntary DR participation with solar PV (S3.2), load curtailment 

(S2.3) and both combined scenarios (S2.5 and S3.5), which may negate the energy cost saving 

if the product could have been sold. However, the additional DR incentive payments will also 

need to be considered. The fixed demand and optimised base case indicate potential synergies 

where energy cost can be reduced while increasing production output.  
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Table 6-4. Summary of simulation results for the CPD tariff. 

Simulation Energy Cost 
[ZAR] 

% change in 
energy cost 

Production 
[tonnes] 

% change in 
production 

S0 Base case R 465 742 422 0.0% 55 051 118 0.0% 

S1 Optimised base case R 432 233 475 -7.2% 59 750 182 8.5% 

S2.1 Fixed demand R 452 234 464 -2.9% 59 750 182 8.5% 

S3.1 Fixed demand  
with solar PV R 463 816 774 -0.4% 54 902 348 -0.3% 

S2.2 Voluntary participation R 465 570 641 0.0% 55 018 882 -0.1% 

S3.2 Voluntary participation  
with solar PV R 463 091 331 -0.6% 54 314 985 -1.3% 

S2.3 Load curtailment R 461 081 737 -1.0% 54 168 888 -1.6% 

S3.3 Load curtailment  
with solar PV R 452 244 515 -2.9% 59 750 182 8.5% 

S2.4 Extreme load reductions R 463 906 669 -0.4% 54 902 175 -0.3% 

S3.4 Extreme load reductions 
with solar PV R 465 597 595 0.0% 55 018 709 -0.1% 

S2.5 Combined simulation R 463 132 283 -0.6% 54 314 836 -1.3% 

S3.5 Combined simulation  
with solar PV R 461 088 556 -1.0% 54 168 739 -1.6% 

 
For the CPD tariff, energy costs did not increase significantly for any of the simulations, while 

the optimised base case (S1), fixed demand without solar PV (S2.1), load curtailment with and 

without integrated solar PV (S2.3 and S3.3) and the combined simulation with solar PV (S3.5) 

showed significant savings against the base case (S0). The production was similarly affected as 

in the MegaFlex tariff. 

Table 6-5 compares the total energy cost for both the MegaFlex and CPD tariffs for all scenarios. 

The results indicate that the CPD tariff results in an average increase in energy cost of 1.7%, 

with the exception of the optimised base case simulation (S1), which shows no significant 

change. The optimised base case only had operating constraints and the simulation was able to 

shift more energy out of the peak and critical periods.  
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Table 6-5. Summary of simulation results, comparing the MegaFlex and CPD tariffs. 

Simulation MegaFlex Energy 
Cost [ZAR] 

CPD Energy Cost 
[ZAR] 

% change in 
energy cost 

S0 Base case R 457 329 096 R 465 742 422 1.8% 

S1 Optimised base case R 432 233 475 R 432 233 475 0.0% 

S2.1 Fixed demand R 444 717 580 R 452 234 464 1.7% 

S3.1 Fixed demand  
with solar PV R 456 325 710 R 463 816 774 1.6% 

S2.2 Voluntary participation R 458 541 715 R 465 570 641 1.5% 

S3.2 Voluntary participation  
with solar PV R 454 754 538 R 463 091 331 1.8% 

S2.3 Load curtailment R 454 074 757 R 461 081 737 1.5% 

S3.3 Load curtailment  
with solar PV R 444 768 216 R 452 244 515 1.7% 

S2.4 Extreme load reductions R 456 302 582 R 463 906 669 1.7% 

S3.4 Extreme load reductions 
with solar PV R 458 526 277 R 465 597 595 1.5% 

S2.5 Combined simulation R 454 777 091 R 463 132 283 1.8% 

S3.5 Combined simulation  
with solar PV R 454 022 960 R 461 088 556 1.6% 

 
From the various simulations, it can be concluded that the MegaFlex tariff is the better tariff to 

remain on, based on the current operating methodologies. It consistently resulted in the lower 

energy costs when compared to the CPD tariff. The CPDs are not fixed as in the simulations, 

which makes them unpredictable and a challenge to plan. 

Secondly, the optimised base case and fixed demand simulations have the biggest potential in 

terms of energy cost reduction and production output, however, does include very limited DR. 

These also are theoretical numbers, which mean that operating methodologies need to change 

significantly. The full potential may not be practical to realise, but it is a good indication of the 

range of the improvement opportunity.  

Finally, in all the simulations, the operating constraints ensured that monthly production 

volumes met the required targets, at least theoretically. The slight changes in production 

indicate the difference from the base case. Thus, production should not be used as a limiting 
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factor not to consider the DR scenarios presented. The additional income for DR incentives and 

savings from integrated solar plants can further strengthen the business base for DR. At the very 

least, the DR incentive should cover the premium of integrated solar PV generation costs, as it 

is not yet at grid parity on the MegaFlex tariff. This results in lower carbon emissions which 

imply that less carbon tax will be paid, once it is implemented.   
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7. Conclusion and recommendation 

This chapter provides an overview of this project, makes recommendations and suggests further 

research areas. 

7.1. Overview 

DR is playing a big part in utilities around the world and is set to become even bigger, enabled 

by the smart grid and the increase in penetration of DERs. South Africa has already started on 

this journey and has several DR programmes running in the industrial sector, mainly the larger 

consumers. The smaller industrial, commercial and residential sectors remain largely untapped 

but have great potential. The stability of the national grid will depend on larger integration of 

DR into all sectors. 

The benefits of DR are improved energy security, cost-reflective tariffs and more integration of 

DERs, including renewable energy sources. DR is required to drive the transition from a 

centralised power system to a decentralised, low carbon power system. Technology, data 

analytics and computing enable the smart grid, opening the door for effective and automated 

DR. There are however some significant challenges that need to be addressed and lessons to be 

learnt to realise the full potential of DR. 

Various mines in the coal mining industry were used to quantify the potential for DR in the 

sector and included a mix of both open-pit and underground mines. Each of the typical process 

flows was discussed as well as a thorough analysis of their electrical energy usage and costs. 

This led to the identification of DRAs as well as a discussion around the typical operating 

characteristics of each and current DR initiatives. 

Four typical DR scenarios were constructed, namely tariff pricing signals, voluntary DR 

initiatives, emergency load curtailment events as well as extreme load curtailment events, each 

considered on their own and with the integration of a grid connected solar PV plant. A detailed 

analysis of each of the scenarios resulted in identifying characteristics of typical DR events and 

what to expect from these events in terms of the number of events and the duration thereof. 

Detailed regression models for each of the DRAs was developed to enable accurate prediction 

of energy consumption based on their given production rates and volumes. The exploratory data 
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analysis also highlighted the fact that a good understanding of the process is crucial as well as 

good data management practices. 

Finally, all of the elements were combined into a scheduling simulation where hourly 

production was planned for the entire year. The simulations were based on the 2015 operating 

hours and the energy constraints from the various DR scenarios. The objective was to minimise 

energy costs, based on both the MegaFlex and CPD tariffs. 

The simulation results showed that the appropriate DR objectives can be achieved, while still 

achieving the required production volumes. In many cases, the total energy costs can also be 

reduced slightly. While this may not be seen as significant, the ability to respond to DR events 

and still meet production targets and energy budgets is significant. Not to mention other benefits 

related to carbon tax when using low carbon DERs.  

The MegaFlex tariff provided the lowest energy costs when compared to the CPD tariff and 

thus, is still the preferred tariff, based on the 2015 operating conditions. The results also showed 

a potential of reduced energy cost and increased production, using the optimised base case. 

While this is theoretical, at least some of this potential can be unlocked with operational control 

and thus, typically requires no or little capital investment. The extreme load curtailment event 

scenario was also highlighted as a future alternative to emergency load shedding and 

curtailment. These short-term events, such as multiple unit trips, extreme weather and natural 

phenomena, can potentially be accommodated and the utility or SO may ask consumers to offer 

a DR bid. The potential bid ranges were estimated to give an indication of the cost that may be 

involved and this is business specific. 

The results highlighted the need for a change in mindset, behaviour and technology. To achieve 

optimal DR and minimise energy costs, a review of the operating methodology is required as 

well as the time when production is scheduled. The operating methodologies should holistically 

include not only safety, production and costs, but also energy security, energy performance and 

carbon emission reductions. 

Technology also has a major role to play. After a review of the operating methodologies, the 

case can be made to include proper automation systems to respond to DR events and the 

inclusion of DERs. Secondly, the use of the correct data analytics and optimisation techniques, 
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for planning and scheduling, are crucial to ensure that operations are running optimally and 

meet the required business objectives, which now includes energy and carbon emission 

requirements. 

7.2. Recommendation 

From the simulation results, it is clear that there is a potential for DR in the coal mining industry. 

The recommendation is to design and implement a pilot DR programme in a working mine. 

The first step would be to gain commitment from management to ensure that DR is aligned with 

their business objectives and that they will drive the implementation by allocating the required 

resources. Next, a more detailed review of the identified DRAs need to be conducted with 

operating and maintenance personnel. The scope and boundaries need to be defined and linked 

to the measurement plan as well as data quality assurance. The regression models need to be 

redone based on hourly production values and hourly energy consumption to give more accurate 

predictions. A central scheduling module needs to be designed with an easy user interface where 

the actual hourly data will be fed into as well as provide the facility to enter the operating and 

energy constraints and support monitoring of activities. 

Looking outside of the coal mining industry, opening up the grid to various IPPs would provide 

an excellent opportunity to secure energy and run a more efficient power system. However, 

with limited DR and insufficient processes in place, it presents a greater risk to energy security. 

The landscape is changing fast and it needs to be embraced by putting the required processes 

in place. A good starting point, to enable widespread effective DR in South Africa, would be to 

form a technical committee with stakeholders from all sectors. A standard for DR needs to be 

developed and/or adopted to allow interoperability of various DR systems. This will also need 

to be aligned with the requirements of the smart grid and cyber security.  

There is a vast amount of data that is generated on a daily basis by the local utility and industry. 

Making non-sensitive data openly available, opens the doors for many researchers, specialists 

and amateur data scientists to provide insight into how to make the power system more efficient.   

Unemployment is a major issue in South Africa. The decentralisation of the grid will provide 

an opportunity for local employment, not only for construction but more importantly operation 

and maintenance of infrastructure. This enables communities to service their own microgrids. 

The skills development needs should form part of the overall DR strategy.  
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7.3. Further research 

To enable an efficient and stable power system, it would be useful to understand, in more detail, 

the difficulties utilities face to maintain grid stability and how they are responding to the rapid 

change in the power generation and distribution sectors. This research is essential to enable the 

transition for the utilities to ensure they can meet their objectives and are not left behind with 

stranded assets. 

It would also be beneficial to understand how various other sectors operate and how they can 

contribute towards DR. Each sector has some common requirements and constraints, but often 

the specific constraints linked to an individual operation may have a bigger impact on how it 

can respond to DR. In this project, production was the primary relevant variable affecting 

energy consumption but in other processes, weather and other variables may come into play. It 

is essential to look outside of the operational boundaries and determine what synergies with 

other local stakeholders can be beneficial for both parties and the greater community of South 

Africa. 
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APPENDIX A. Regression diagnostic plots 

A.1. Final regression plots 

 
Figure A-1. Final regression diagnostic plots for Plant 1.1. 

 
Figure A-2. Final regression diagnostic plots for Plant 2.1. 
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Figure A-3. Final regression diagnostic plots for Plant 3.1. 

 
Figure A-4. Final regression diagnostic plots for Plant 4.1. 
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Figure A-5. Final regression diagnostic plots for Plant 4.2. 

 
Figure A-6. Final regression diagnostic plots for Dragline 1.1. 
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Figure A-7. Final regression diagnostic plots for Dragline 2.1. 

 
Figure A-8. Final regression diagnostic plots for Dragline 2.2. 
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Figure A-9. Final regression diagnostic plots for Dragline 2.3. 

 
Figure A-10. Final regression diagnostic plots for UG sections 5.1. 
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Figure A-11. Final regression diagnostic plots for UG sections 6.1. 
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