
A georeferencing method for an open-pit mine

surveying radar

by

Emile Francois Rossouw

Thesis presented in partial fulfilment of the requirements for

the degree of Master of Science in Engineering at Stellenbosch

University

Department of Electrical and Electronic Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Supervisor: Dr. G-J van Rooyen

Co-supervisor: Mr A. Joubert

April 2011

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained

therein is my own, original work, and that I am the owner of the copyright thereof (unless

to the extend explicitly otherwise stated) and that I have not previously in its entirety or

in part submitted it for obtaining any qualification.

Signature: .

E.F. Rossouw

Date: .

Copyright © 2011 Stellenbosch University

All rights reserved.

i

Abstract

A georeferencing method for an open-pit mine surveying radar

E.F. Rossouw

Department of Electrical and Electronic Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: M.ScEng

April 2011

Ground-based mobile mine survey radars are much more common now than they were a

few years ago. Their ever growing popularity instigated the need for streamlining their

operating procedures. One such a procedure is that of georeferencing the radar within the

mine coordinate frame. Mine surveying radars have traditionally been georeferenced using

a triangulation technique called survey resectioning, a time consuming process where both

models are placed within the common coordinate frame by tying the models together with

known targets or beacons. Survey resectioning requires surveying knowledge as well as

access to a theodolite, an expensive high precision optical instrument used for measuring

horizontal and vertical angles to the known targets. It is also sometimes necessary for this

procedure to be performed in extreme weather conditions. Due to the limitations mentioned,

this alignment method is not always practical or accurate if not performed correctly by the

operator. In this thesis we investigate a new georeferencing scheme for ground-based mobile

mine surveying radar, using a software-implementable three-dimensional model alignment.

The scheme considers alignment complexity of four degrees of freedom and requires only

an estimated radar position for complete convergence. The new scheme is tested on data

previously georeferenced using the existing method.

ii

Samevatting

A georeferencing method for an open-pit mine surveying radar

E.F. Rossouw

Department of Electrical and Electronic Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Tesis: M.ScEng

April 2011

Die gewildheid van grondgebaseerde mobiele myn-radars is vinnig wêreldwyd aan die toe-

neem. Hulle word veral in oopgroef-myne aangetref. Hierdie snelgroeiende gewildheid het dit

genoodsaak om hul roetiene-gebruiksprosedures te vereenvoudig. ’n Voorbeeld van ’n vereen-

voudigde prosedure is om die radar makliker binne die myn-koördinaatstelsel te posisioneer.

Dit is van uiterste belang dat hierdie prosedure so vinnig en akkuraat as moontlik moet

geskied. Voorheen is hierdie radar-eenhede deur middel van ’n omslagtige driehoeksmet-

ingstegniek geposisioneer (dikwels in ongunstige weersomstandighede). Hierdie tegniek (ge-

noem landmetingskorrelasie), is ’n proses waar die radar-eenheid in die myn se koördinaats-

telsel geposisioneer word deur middel van bekende punte of bakens. Landmetingskorrelasie

vereis boonop van die gebruiker om landmetingskennis te hê asook om duur en ingewikkelde

toerusting soos ’n teodoliet te gebruik. ’n Teodoliet word algemeen gebruik vir die opmeting

van horisontale- en vertikale hoeke na bekende punte. Bogenoemde beperkinge van landmet-

ingskorrelasie het tot gevolg dat die moontlikheid van verkeerde posisionering bestaan indien

die oprerateur onervare is. Die proses kan ook lank neem. In hierdie studie word ’n nuwe

radarposisioneringsproses ondersoek wat deur middel van drie-dimensionele modelbelyning

geimplementeer word as ’n rekenaarprogram. Die proses neem vier grade van vryheid in

ag, en benodig slegs ’n benaderde posisie van die radar-eenheid vir konvergensie. Die nuwe

proses is getoets op bestaande data wat deur middel van die landmetingskorrelasie-metode

belyn was.

iii

Acknowledgements

I would like to thank those who helped make this thesis possible:� My university supervisor, Dr. Gert-Jan van Rooyen, for your enthusiasm and believe

towards my research. Your keen error-spotting eye and invaluable guidance made all

the difference. You are a great supervisor!� Anton Joubert, whom without this thesis would not have been possible. You selflessly

gave your time when it was not expected of you. Your insight and uncompromising

dedication as an engineer will inspire me always. You are a true mentor.� Everybody at Reutech, including Prof. van der Walt, Johan Bras and Jaco Loots who

helped to make this study possible.� My parents, whom never even once asked“How long still...?” Your affectionate support

and understanding will forever be appreciated.� To my loving girlfriend Nadine, who always cheered me up when nothing seemed to

make sense anymore. Your support means the world to me.

iv

Contents

Declaration i

Abstract ii

Samevatting iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xii

List of Abbreviations xiii

List of Symbols xv

1 Introduction 1

1.1 Motivation and topicality of this work . 1

1.2 Contributions . 3

1.3 Thesis overview . 3

2 Existing alignment algorithms 5

2.1 Introduction . 5

2.2 Correcting rigid body motion . 5

2.3 The best distance metric for alignment . 8

2.4 Least squares estimation of the rigid body parameters 8

2.5 The methods of correspondence . 9

2.5.1 Closest point correspondence . 9

2.5.2 Normal shooting correspondence . 10

2.5.3 Conclusion . 11

v

CONTENTS vi

2.6 Resampling of a meshed surface . 11

2.7 Repeated application of rigid body correction 12

2.8 Prealignment . 13

2.9 Reducing alignment processing time . 18

2.10 A special alignment case . 19

2.11 Data sets used in the study . 20

2.11.1 Digital terrain model . 20

2.11.2 Synthetic map . 20

2.12 Conclusion . 21

3 System design 22

3.1 Introduction . 22

3.2 Establishing a baseline of typical spatial differences 24

3.2.1 Introduction . 24

3.2.2 Notation . 25

3.2.3 Prealigned comparison . 25

3.2.4 Triangle corner point correspondence test 27

3.2.5 Projected resampling correspondence test 31

3.2.6 Conclusion . 34

3.3 Rigid body motion estimation . 34

3.3.1 Introduction . 34

3.3.2 The estimation algorithm . 34

3.3.3 Realignment test . 37

3.3.4 Conclusion . 40

3.4 Iterative correspondence alignment . 40

3.4.1 Introduction . 40

3.4.2 The effect of iterative alignment . 41

3.4.3 Conclusion . 46

3.5 Synthetic map tessellation methods . 46

3.5.1 Introduction . 46

3.5.2 Triangulated irregular network meshing 46

3.5.3 Efficient meshing methods using two-dimensional Delaunay triangu-

lation . 48

3.5.4 Proposed method comparison . 52

3.5.5 Conclusion . 53

3.6 Point control with map resampling . 53

3.6.1 Introduction . 53

3.6.2 Bounded edge projected resampling 54

CONTENTS vii

3.6.3 Point control example . 57

3.6.4 Conclusion . 58

3.7 A global alignment scheme . 58

3.7.1 Introduction . 58

3.7.2 Synthetic maps . 58

3.7.3 Prealignment algorithm . 60

3.7.4 An overview of the algorithm . 60

3.7.5 The algorithm in mathematical steps 65

3.7.6 The algorithm steps explained in pseudocode 70

3.7.7 Conclusion . 71

3.8 A complete radar georeferencing scheme . 71

3.8.1 Introduction . 71

3.8.2 The effect of position and heading error 71

3.8.3 Correcting rigid body motion for four degrees of freedom only 73

3.8.4 The full georeferencing scheme . 74

3.8.5 Convergence and successful alignment 76

3.8.6 Conclusion . 76

4 System implementation 77

4.1 Introduction . 77

4.2 Development methodology . 77

4.3 Requirement specification . 78

4.3.1 SM on DTM alignment . 78

4.3.2 SM on SM alignment . 79

4.4 Design . 79

4.5 Construction . 82

4.6 Integration . 87

4.7 Testing . 88

4.8 Conclusion . 89

5 System testing 90

5.1 Introduction . 90

5.2 Global alignment tests . 90

5.2.1 Test results . 91

5.2.2 Test results . 97

5.3 Full alignment tests . 98

5.3.1 Introduction . 98

5.3.2 Test results . 102

CONTENTS viii

5.4 Conclusion . 103

6 Conclusions and recommendations 104

6.1 Research results . 104

6.1.1 Project objectives . 104

6.2 Further work . 105

6.3 Summary . 106

Bibliography 107

A Gram–Schmidt Jacobi iterative method A–1

A.1 Introduction . A–1

A.2 The proposed method . A–1

A.3 Conclusion . A–2

B Accelerating closest point correspondence B–3

B.1 Introduction . B–3

B.2 Linear closest point . B–3

B.3 kd-tree space partitioning . B–5

B.4 Conclusion . B–7

List of Figures

2.1 The correspondence mapping between two 2D point sets. 9

2.2 Correspondence established using a closest point search. 10

2.3 Correspondence established using normal shooting. 11

2.4 Curve resampling improves alignment. 12

2.5 Convergence to the nearest local minimum. 13

2.6 An image rotated by 35 degrees. 14

2.7 The amplitude components of the two images. 15

2.8 The amplitude components of the image. 15

2.9 The maximum peaks of the radial projections. 16

2.10 A typical triangulated irregular network (TIN). 20

2.11 A rendered image of a synthetic map (SM). 21

3.1 A high level flow diagram. 22

3.2 Two seperate coordinate frames. 25

3.3 A typical SM is far less detailed than a DTM. 26

3.4 The test spatial difference histograms. 30

3.5 A geometric comparison between points. 31

3.6 The RMS spatial differences graphed against grid spacings. 33

3.7 A right handed coordinate system. 35

3.8 Two cuboid data sets, before and after alignment. 38

3.9 The alignment of the set with added noise. 39

3.10 Incorrect alignment because of non-correspondence between points. 40

3.11 The flow chart for motion parameter estimation. 41

3.12 A three-dimensional view of two point sets prior to alignment. 43

3.13 A graph of the RMS spatial difference during each iteration of the alignment. . 43

3.14 The data sets from Figure 3.12 after correct alignment. 44

3.15 The data sets from Figure 3.12 after incorrect alignment. 45

3.16 A graph depicting the RMS spatial difference for the incorrect alignment. . . . 45

3.17 The terrestrial laser’s meshing formation. 46

ix

LIST OF FIGURES x

3.18 Delaunay triangulation ensures that thin and small angled triangles are avoided. 47

3.19 Two-dimensional Delaunay triangulation is applied to the projected components. 49

3.20 A model rotated according to the principal components. 49

3.21 A model surface triangulated from the survey origin viewpoint. 52

3.22 Resampling ensures uniform point dispersion. 53

3.23 A bounding grid is created around each facelet. 55

3.24 A DTM resampled using four different grid spacings. 57

3.25 A scan region is defined by a trapezium shape. 59

3.26 The scan region is aligned with the model of the mine slope. 60

3.27 A vector drawn from the first to the last point in synthetic map point set D. . 61

3.28 A SM with difference in height indicated by the vertical vector zdcross
. 62

3.29 A SM with vector dcross drawn from the first to the last point in the set. . . . 62

3.30 The points in the template set are evaluated according to the conditional. . . . 63

3.31 Points d1 and dND
are corrected in heading. 64

3.32 The newly estimated centre must be within a certain radial tolerance. 64

3.33 A scan region viewed from the radar origin. 66

3.34 The difference in radar position is determined. 69

3.35 SMs are resolved in spherical coordinates. 72

3.36 The error in distance due to misalignment. 72

3.37 A flowchart describing the alignment process. 75

4.1 The two applications needed for the study share a common set of functions. . . 82

4.2 The flowchart of the sm2sm application. 84

4.3 The flowchart of the sm2dtm application. 86

4.4 MapDisplay, an OpenGL viewer application used for viewing models. 88

5.1 Global alignment test A, before alignment. 91

5.2 Global alignment test A, after alignment. 91

5.3 Global alignment test B, before alignment. 92

5.4 Global alignment test B, after alignment. 92

5.5 Global alignment test C, before alignment. 93

5.6 Global alignment test C, after alignment. 93

5.7 Global alignment test D, before alignment. 94

5.8 Global alignment test D, after alignment. 94

5.9 Global alignment test E, before alignment. 95

5.10 Global alignment test E, after alignment. 95

5.11 Global alignment test F, before alignment. 96

5.12 Global alignment test F, after alignment. 96

LIST OF FIGURES xi

5.13 Global alignment test G, before alignment. 97

5.14 Global alignment test G, after alignment. 97

5.15 The spatial differences of test A. 99

5.16 The spatial differences of test B. 99

5.17 The spatial differences of test C. 100

5.18 The spatial differences of test D. 100

5.19 The spatial differences of test E. 101

5.20 The spatial differences of test F. 101

5.21 The spatial differences of test G. 102

B.1 A typical DTM rendered using triangle facelets and resampled points. B–4

B.2 A two-dimensional kd-tree example. B–6

List of Tables

3.1 The properties of the DTMs used in the spatial difference test. 27

3.2 The properties of SMs used in the spatial difference test. 27

3.3 The results of the spatial difference comparison using triangle corner point

correspondence. 29

3.4 The improvement in RMS spatial difference when using resampled correspon-

dence. 34

3.5 The motion parameter errors which remain after alignment. 38

3.6 The motion parameter error for different noisy sets after alignment. 39

3.7 The mean maximum and minimum angles. 52

3.8 The diameter coverage of a 2.5 degree antenna beam at different ranges. 73

4.1 The software implementation has the following source files. 82

4.2 A list of batch scripts used for system testing. 89

5.1 The results of the prealignment tests A to G. 98

5.2 The results for tests using the full alignment scheme. 103

5.3 The percentage of improvement for the tests compared. 103

B.1 The processing times of the closest point correspondence algorithm. B–5

B.2 The processing times of the correspondence algorithms. B–6

xii

List of Abbreviations

3D Three dimensional

ADS Abstract data structure

BTS Binary tree structure

CPC Closest point correspondence

CSV Comma seperated variable

DEM Digital elevation model

DLL Dynamically linked library

DTM Digital terrain model

DXF Drawing exchange format

FMCW Frequency modulated continuous wave

GIS Geographic information system

GPS Global positioning system

GPU Graphics processing unit

ICA Iterative correspondence alignment

ICP Iterative closest point

LAPACK Linear algebra package

MinGW Microsoft GNU for Windows

MS Mean squared

PDF Probability density function

xiii

LIST OF ABBREVIATIONS xiv

Radar Radio detection and ranging

RF Radio frequency

RMS Root mean square

SM Synthetic map

STL Standard template library

SVD Singular value decomposition

TIN Triangulated irregular network

List of Symbols

N The set of natural numbers

Nk The set of natural numbers≤ k

Z The set of integers

Zk The set of integers≤ k

R The set of real numbers

p Vector

p = (x, y, z) p as a three-dimensional vector

P = {pi} Point set

NP The number of points in set P

x Scalar

In Identity matrix of dimension n Ö n

AT The transposition of matrix A

|A| The determinant of matrix A

R A rotation matrix

Rx A 3 Ö 3 rotation matrix

A ⊆ B A is a subset of B

A ⊂ B A is a proper subset of B

A × B The Cartesian product of A and B

a ∨ b The logical disjunction operator

a ∧ b The logical conjunction operator

‖p‖ The Euclidean norm of vector p

atan2 (y, x) A variant arctangent function

random (P) Elements of P are randomly permutated using a uniform

distribution

min (P) Function which selects the element with the lowest value

max (P) Function which selects the element with the highest value

xv

LIST OF SYMBOLS xvi

modulo (a, b) The modulus of a using divisor b

cart2sph (x, y, z) Function which converts three-dimensional Cartesian co-

ordinates into spherical coordinates

delaunay2D (X,Y) Function which applies two-dimensional delaunay trian-

gulation

unwrap (A) Function which removes 2π jumps from the elements in

A

F [l] The Fourier transform of l

ctolerance The allowable tolerance between the calculated centre

and the estimated centre

rtolerance The allowable tolerance between the estimated centre and

template set corner points

ztolerance The allowable height difference tolerance of the height

components of the template set cornet points

Chapter 1

Introduction

1.1 Motivation and topicality of this work

Ground-based mobile mine survey radars are much more common now than they were a few

years ago [1]. They are considered to be extremely useful survey instruments, having the

ability to construct a 3D model of an open pit mine within minutes [1].

Radars operate on the following principle: a radio-frequency (RF) signal is transmitted

from the radar’s antenna and is reflected by any object in the radar’s beam (e.g. an aircraft

or a mountain) (e.g. [2], [3]). A small amount of the reflected RF energy returns to the

receiving antenna. The round-trip time is proportional to the range of the target. By moving

the antenna in fixed angular steps, and sampling the target echo at each step, a radar range

image (also known as a synthetic map (SM) [1]) can be built up. The SM models the target

area when converted into Cartesian coordinates as a 3D point cloud. These models will be

our data sets.

All open pit mines have their own coordinate system in which mine features, survey

points and maps are represented. The radar resolves targets using its own local coordinate

system, unaware of where it is within the mine coordinate system. A georeferencing method

is required to transform the radar coordinate system into the mine coordinate system [1].

The premise of this work is to georeference a mobile mine surveying radar using a three-

dimensional model alignment algorithm. Existing alignment algorithms are to be investi-

gated as possible solutions to our problem, ensuring that the algorithm ultimately chosen

converges to alignment within minutes of operation time, provides a heading accuracy of

2 degrees and an absolute position accuracy of 6 metres, considers surfaced and unsur-

faced models, is implementable in a non-interpreted programming language without the use

of platform-specific third-party libraries, is implementable as a cross-platform application,

compatible with Microsoft Windows XP and Red Hat Linux and is implementable while

easily accommodating possible integration with existing GNU C++ and Delphi 7 software.

1

CHAPTER 1. INTRODUCTION 2

The heading and absolute positions accuracies were chosen based on the radar’s antenna

beamwidth as well as the user required accuracy in general.

Model alignment has long been a key problem in the fields of computer vision, robotics

and surveying and can be explained as follows: given two free-form 3D models, estimate the

optimal rigid body motion which best aligns the models, minimising the distance between

them. By aligning the 3D model sourced from the radar to an already existing model

covering the same mine area, we indirectly determine the position and heading of the radar

as well as how to merge all points into a common coordinate frame. This is useful, because

having all surveyed points – irrespective of how they were sourced – in a common coordinate

frame is much more intuitive than having them spatially uncorrelated [1]. Mine surveying

radars have traditionally been georeferenced using a triangulation technique called survey

resectioning [1], a time consuming process where both models are placed within the common

coordinate frame by tying the models together with known targets or beacons. Survey

resectioning requires surveying knowledge as well as access to a theodolite, an expensive

high precision optical instrument used for measuring horizontal and vertical angles to the

known targets. Due to the limitations, this alignment method is not always practical or

accurate if not performed correctly by the operator.

The problem addressed by this study is that of georeferencing a ground-based mobile

mine surveying radar using a software-implementable geometric algorithm. The position

and heading of the radar is determined by aligning a radar range image (also known as

a synthetic map (SM)) with an already georeferenced three-dimensional (3D) model. The

algorithm which will align two models, one obtained from the mine surveying radar, to a

template model referenced within a common mine coordinate frame. The template model

will typically be sourced from another sensory device such as terrestrial laser scanner (or

manual global positioning system (GPS) measurements) and will be referenced within the

common coordinate frame. The template model could also have been sourced from a survey-

ing radar, where the points have previously been placed in the common coordinate frame.

We present a practically implementable algorithm useful for this alignment problem. The

algorithm allows for three degrees of translation freedom as well as one degree of rotation

freedom, requiring only an estimated radar position for full alignment. The algorithm will

overcome the existing shortcomings of radar georeferencing which are that it [1] is time

consuming, requires physical user interaction, requires expensive hardware namely a total

station (theodolite), cannot be done remotely and sometimes needs to be performed under

extreme weather conditions.

Currently many general alignment algorithms exist. Some of their shortcomings are that

they take too long to align models, require prealignment prior to alignment, are difficult to

implement, sometimes only work for surfaced models and are often too generalised in the

CHAPTER 1. INTRODUCTION 3

sense that they sometimes consider unnecessary complexity [1].

The subject of literature covered in this study includes point cloud and surface alignment

as well as other useful geometric algorithms. We first investigate studies related to motion

parameter estimation between corresponding models (e.g. [4], [5], [6], [7]). We then cover

least squares estimation of motion parameters between models including the very influential

iterative closest point (ICP) algorithm introduced by Besl and McKay [7]. Then we consider

studies showing methods of establishing correspondence between models which are different

in size (e.g. [7], [6]). Next we consider the resampling of surface models and how that it

is useful in model aligment [4]. We also cover the effect of repeated motion estimation and

alignment [7]. Many existing alignment algorithms require models to be prealigned. We

consider different methods of prealignment (e.g. [8], [9], [10]). Next we consider ways of

reducing computational time during alignment using optimised data storage (e.g. [4], [7],

[11]). We also cover studies which addressed issues such as special alignment cases [12].

Lastly we consider the different types of data sets used in the study.

1.2 Contributions

In accomplishing the objectives, a number of contributions were made:� The development of a software implementable alignment scheme which does not require

full prealignment, useful for georeferencing a mine surveying radar.� The development of a resampling scheme to control the number of points used to

represent a 3D model and for obtaining the maximum accuracy out of surfaced models

through surface resampling.

1.3 Thesis overview

A literature study is provided in Chapter 2. We consider the various existing alignment

algorithms. They are carefully scrutinised for complexity, ease of implementation, time of

convergence and algorithm prerequisites.

In Chapter 3, the plausibility of the study is tested. Included in the chapter is the

design of the alignment system and the limitations which have to be overcome. Some of the

limitations of the problem present themselves. Firstly, models which are not prealigned tend

to fail convergence during iterative correspondence alignment. We show how this limitation

can be overcome with a new unique global alignment (also referred to as prealignment)

algorithm. Secondly, points in the point set are sometimes unevenly distributed. We show

how this limitation can be overcome by using surface resampling. Thirdly, sometimes it

CHAPTER 1. INTRODUCTION 4

is preferred for discrete point clouds to be surfaced. We show how this limitation can be

overcome by a set of Delaunay triangulation algorithms.

Chapter 4 covers the software implementation of the design described in Chapter 3.

Chapter 5 is devoted to testing the system. Testing is performed on the new global

alignment algorithm as well as the system as a whole.

The concluding chapter, Chapter 6, summarises the achievements of this work and sug-

gests further research topics.

Chapter 2

Existing alignment algorithms

2.1 Introduction

In the chapter to follow, we look at various studies related to 3D model alignment. We cover

the following useful concepts:� The correction of motion between two models.� Cost functions as a way to evaluate alignment progess and termination.� Least squares estimation of motion parameters.� How to establish point correspondence between models.� The resampling (or interpolation) of surface models.� The effect of repeated correspondence alignment.� The different prealignment methods for iterative correspondence alignment (ICA).� How to reduce computational time during alignment.� Special alignment cases.� The properties of the data sets used in the study.

2.2 Correcting rigid body motion

In the past, several efforts have been made concerning the registration or alignment of 3D

point clouds. The alignment of models involves the minimisation of the spatial difference

between them. One model remains stationary (template set), whereas a second model

(search set) is manouvered spatially to best align with the first model. In order to minimise

5

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 6

this difference, the search set is repositioned to best align with the template set. Many

authors (see e.g. [5], [6], [7], [4]), describe the problem of aligning rigid 3D point clouds (or

models), as the estimation of the translation movement, as well as the movement due to

rotation, often referred to as the rigid body motion parameters.

The rigid motion parameters are used to construct an acute transformation function,

which aligns the search set with the template set. There are various ways of expressing this

transformation. Arun and Blostein [5] use rotation matrix R and vector T to define the

rotation and translation of one point p as

p̂ = Rp + T

where R is an orthonormal 3 Ö 3 rotation matrix and column vectors p̂,p and T are of

size 3 Ö 1. Rotations done via a rotation matrix are a fairly common method of trans-

formation, but have certain disadvantages. Others (see e.g. [7], [4]) have chosen to make

use of quarternions to define a rotation transformation. Quarternions (also known as Euler

parameters) extend the complex number system into four dimensions. Euler showed that

any rotation can be described by a rotation of a certain magnitude about a fixed axis. This

means that the full space of 3D rigid body rotations can be described in four dimensions.

A valid quarternion set describes the axis of rotation as a 3D vector and a magnitude of

rotation.

A quaternion rotation transformation of magnitude β around fixed axis

n =
(

xn, yn, zn

)

can be described as

R = (q2
4 − qTq)I3 + 2qqT + 2q4K (q)

=

(q2
4 + q2

1 − q
2
2 − q

2
3) 2 (q1q2 − q3q4) 2 (q1q3 + q2q4)

2 (q1q2 + q3q4) (q2
4 − q

2
1 + q2

2 − q
2
3) 2 (q2q3 − q1q4)

2 (q1q3 − q2q4) 2 (q2q3 + q1q4) (q2
4 − q

2
1 − q

2
2 + q2

3)

where

q =

q1

q2

q3

q4

=

[

sin
(

β

2

)

n

cos
(

β

2

)

]

=

[

q

q4

]

and

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 7

K (q) =

0 −q3 q2

q3 0 −q1

−q2 q1 0

.

Quaternions, and quaternion algebra provide certain advantages over transformation us-

ing rotation matrices: The representation of a quaternion set requires only 4 scalars instead

of 9, as in the case with rotation matrices, making it a more compact form. The quaternion

transformation is not susceptible to gimbal lock, a condition where the rotation of a rigid

body cannot be completed in a smooth continuous motion. Quarternion transformations

are also far less susceptible to round-off errors.

Some methods [13] of motion estimation make use of dual quartenions. This is done

so that the transformation can be handled as a homogeneous function. Zhang [4] de-

scribes a full rigid transformation using dual quaternions s =
[

s1 s2 s3 s4

]T

and

q =
[

q1 q2 q3 q4

]T

as

Rp + T = W (q)T
s + W (q)T

Q (q)p

where

W (q) =

q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4

,

Q (q) =

q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

.

Despite the differences in transformation method, we prefer the rotation matrix method

of transformation. Transformations using a rotation matrix are more intuitive and conver-

sion into homogeneous coordinates makes for unnnecessary overhead. Also, the rounding

errors made due to trigonometric functions are insignificant. The possibility of gimbal lock

is also very small given that the correction of rotation will mostly be for only one Euler

angle.

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 8

2.3 The best distance metric for alignment

In order to determine the progress in alignment, a metric is needed to measure the spatial

difference between the template and the search model. This quantitive spatial difference

will determine the quality of the fit. Besl and McKay [7], as well as Zhang [4] recommend

using the mean-square Euclidean distance between models as a cost function to determine

the quality of alignment. This metric is sensitive to outliers giving large errors more weight

compared to small errors. Also, compared to root mean squared distances, mean squared

distance is less expensive computationally.

2.4 Least squares estimation of the rigid body

parameters

Least squares is an estimation method for overdetermined systems. Least squares means

that the overall solution minimises the sum of the squares of the errors made in solving

every single equation of the system. Arun and Blostein [5] estimate the motion parameters

R and T by minimising a cost function

Γ2 =

N
∑

i=1

∥

∥

∥
p

′

i − (Rpi + T)
∥

∥

∥

where pi is a point from the search set and p
′

i is a point from the template set. They suggest

maximising the trace of (RH) (where H is the decoupled correlation matrix between the

sets) using singular value decomposition (SVD). The optimal rotation is formed by the

multiplication of the unitary matrices of the decomposition. Horn’s [14] estimation of the

optimal rotation is similar. He, however, also estimates a scaling factor by minimising the

cost function

Γ2
s =

N
∑

i=1

∥

∥

∥
p

′

i − (sRpi + T)
∥

∥

∥
.

Scaling is not a factor for our specific problem, and hence shall not be considered. Horn’s

method also differs by using eigendecomposition, as apposed to SVD, to estimate the optimal

rotation. He finds the rotation matrix which maximises function

Υ =

N
∑

i=1

p
′

i · (Rpi) . (2.1)

Besl and McKay [7] similarly estimate the ideal rotation by maximising (2.1) because it

represents the dot product sums of all vectors in the sets. When the sets are ideally rotated,

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 9

the dot product sums will be maximised [14]. This ideal rotation will result in an overall

system solution which minimises the sum of the squares of the errors, based on Arun and

Blostein’s minimising cost function. For our final implementation we use Besl and McKay’s

estimation method since we only require the maximum eigenvector. Decomposition of the

maximum eigenvector is easier to implement than full SVD decomposition. We use an

iterative Jacobi method to estimate the maximum eigenvector. See Appendix A for more

detail.

2.5 The methods of correspondence

Many of the motion estimation algorithms presented (see e.g. [5], [14], [13], [15]), only work

when the template and the search set are of the same size and when the correspondence

between point sets are known. That is to say, there is an one-to-one mapping for the points

in the template set to that of the points in the search set (Figure 2.1). Non-correspondence

is when that mapping is unknown.

Search set

Tem plate set

Figure 2.1: The correspondence mapping between two 2D point sets is indicated by the dotted

lines in this figure. Note how the sets are of the same size, and differ only by spatial rotation and

translation.

Obtaining correspondence between a template and search set is not always trivial, es-

pecially if the search set is a spatial subset of the template set. We consider two popular

correspondence methods, namely closest point correspondence and correspondence through

normal shooting.

2.5.1 Closest point correspondence

We consider the simple case of aligning two curve point sets (Figure 2.2(a)). The template

set has roughly double the number of points when compared to the search set. Obtain-

ing the rigid body parameters will be extremely difficult considering that we do not know

which points from the template set to pair with the points in the search set. Besl, McKay

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 10

and Zhang ([7], [4]) suggest picking correspondence based on spatial similarity. Correspon-

dence is established by a closest point search between the points in the search set and the

template set. They consider a template set point closest to a search set point to be the

best possible association. Figures 2.2 (a) and (b) show the sets before and after closest

point correspondence. This method works well if models are relatively well aligned prior to

alignment.

Template set

Search set

(a)

Template set

Search set

(b)

Figure 2.2: (a) Two misaligned curve point sets. (b) Correspondence between curve sets based

on a nearest neighbour search.

2.5.2 Normal shooting correspondence

Chen and Medioni [6] suggest a more elaborate method to address correspondence. Their

method, unlike closest point correspondence, can only be applied to meshed surface model

sets. The search set’s points are projected orthogonally onto the template set. The positions

where surface normals successfully intercepted the model are used to determine the closest

point associated with the original search set point (Figure 2.3). This method ensures that

correspondence is made in a unified direction and favours alignment of very smooth surface

models. Testing successful interception of mesh polygons is computationally expensive,

especially when the meshes consist of elaborate polygon structures. This method, like

closest point correspondence, works best when the models are reasonably aligned prior to

alignment.

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 11

Search set
Template set
Search set surface normals
Template set surface normals

Figure 2.3: With normal shooting the surface normals are projected orthogonally onto the tem-

plate set in order to establish correspondence.

2.5.3 Conclusion

We have compared two methods of correspondence in the previous sections. The one most

useful to this study is the closest point correspondence algorithm. It can be applied to both

surfaced and unsurfaced models. It can also be easily optimised by using specialised data

structures as described in Appendix B [4]. For the purposes of aligning a mine surveying

radar, closest point correspondence will be the best correspondence method, since the radar

only exports unsurfaced sets.

2.6 Resampling of a meshed surface

The concept of resampling for alignment is discussed by Zhang [4]. His algorithm focusses

on alignment of 3D curves, but is still very much applicable to the problem 3D model

alignment. He suggests that when closest point correspondence is used, that resampling of

the curves leads to better alignment accuracy. We show a graphical example taken from

[4]. Figure 2.4 (a) shows two 2D lines. The black points are the vertices which connect

the lines. These points will form the template set. If those lines are resampled, then they

form two new points shown as white points circled in black. From the template set, we also

sample the search set marked by crosses instead of circles. The aim is to align the template

and the search set with the best possible accuracy. Figure 2.4 (b) shows the result of the

alignment when just the original control points were availible for correspondence. Figure

2.4 (c) shows the result of the alignment when the newly sampled points were also used as

possible correspondence points. The alignment is more accurate, matching the original more

closely than the alignment shown in (b). We describe a resampling method for surfaced 3D

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 12

(a) (b) (c)

Figure 2.4: Figures taken from Zhang [4], which illustrate the improved matching through resam-

pling. (a) The original sets when perfectly aligned. (b) Without resampled points, correspondence

is only possible to the original control points. (c) The accuracy of the alignment is improved when

there are points available for correspondence.

models in Chapter 3.

2.7 Repeated application of rigid body correction

Chen and Medioni [6] describe an algorithm which improves alignment through multiple

repetitions of motion parameter estimation and transformation. Besl and McKay [7] describe

the same algorithm, commonly referred to as iterative closest point (ICP) alignment. They

also supply a proof that iterative alignment provides monotonically improving convergence

of the spatial difference between sets. The process is repeated until the change in spatial

difference falls below a certain threshold. Besl and McKay present the following algorithm:

1. Compute the closest point correspondence between the template and the search set.

2. Estimate the motion parameters between the search set and the newly defined subset

from the template set which is the closest points.

3. Apply the transformation (constructed from the motion parameters) to the search set.

4. Terminate the alignment when the change in spatial difference falls below a certain

threshold.

5. Repeat from step 1.

A drawback to iterative alignment is that the search set needs to be reasonably aligned with

the template set prior to alignment for it to converge to the correct local minimum. During

closest point correspondence, only the nearest points will be considered for alignment, and

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 13

Figure 2.5: A graphic taken from Zhang [4]. Iterative correspondence alignment converges to the

closest local minimum, which is not neccessarily the optimal one.

so convergence to a distant (but possibly correct) local minimum is very unlikely (Figure

2.5).

For this reason, prealignment of models is still an active research topic. The section

to follow covers some of the attempts that have been made to the handle the problem of

prealignment before iterative correspondence alignment.

2.8 Prealignment

Murino, Ronchetti, Castellani and Fusiello [16] introduced a preprocessing technique which

provides coarse alignment prior to using the iterative correspondence alignment. This is also

referred to as global alignment or prealignment. 3D skeletons are extracted from the data

sets. The skeletons are then matched after which the alignment can be completed using

iterative closest point alignment. They describe an extraction algorithm which extracts

skeletons for tubular 3D models. They distinguish between pipes and joints, where a joint

is an intersection point of many pipes. Their algorithm works well for tubular data sets but

not for mostly flat surface sets such as radar synthetic maps, so it will not be considered.

More detailed information on skeleton extraction in general can be found in [9].

Another prealignment method was presented by Lucchese, Doretto and Cortelazzo [17].

They introduced an original method to determine the motion parameters between sets using

frequency domain analysis. The Fourier transform allows the decoupling of the estimate of

the rotation parameters from the estimate of the translation parameters. The concept can

be most easily explained using a 2D analogy taken from [8]. Consider an ideal windowed

image of the famous Lenna picture (See figure 2.6 (a)). The same image rotated by 35

degrees can be seen in figure 2.6 (b).

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 14

(a) (b)

Figure 2.6: (a) An image windowed around the center of the image. (b) The same windowed

image rotated around the centre by 35 degrees.

Let l1 (x) be the original image, and l2 (x) the rotated version of l1 (x) such that l2 (x) =

l1
(

R (θ)−1
x
)

, where x = (x, y) and x ∈ R
2. l1 (0, 0) denotes the centre of the image. Let

the two dimensional discrete Fourier transform be denoted as

Li (k) = F [li (x)] =

∫∫ +∞

−∞

li (x) e−j2πk
T

xdx.

The Fourier transform property of use here, is that the rotation in the spatial domain is also

present in the frequency domain as

L2 (k) = L1

(

R (θ)−1
k
)

e−j2πk
T

R(θ)T ,

where T = (xt, yt, zt) ∈ R
3 is the translation parameters and

R (θ) =

[

cos (θ) − sin (θ)

sin (θ) cos (θ)

]

.

As a result the spectrum has the following property

|L2 (k)| =
∣

∣L1

(

R (θ)−1
k
)
∣

∣ , and ∠L2 (k) = −2πkT R (θ)T

which ensures that the rotation is decoupled from the translation movement. They define

the Fourier transformed components in terms of a polar reference system as

M i (ρ, ϕ) = |Li (ρ cos (ϕ) , ρ sin (ϕ))| for i = 1, 2

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 15

where

x = ρ cos (ϕ) and y = ρ sin (ϕ) .

Presented in that form, the angle of rotation can be described in terms of spectrum functions

as

M 1 (ρ, ϕ) = M 2 (ρ, ϕ− θ) ,

where θ is the difference planar rotation, and in this specific example, equal to 35 degrees.

Displayed in figures 2.7 (a) and (b) are the three dimensional spectrum plots of the images

of l1 (x) and l2 (x). Figures 2.8 (a) and (b) are the two dimensional spectrum plots of the

same images.

(a) (b)

Figure 2.7: (a) The amplitude components of the first lenna image shown in three dimensions.

(b) The amplitude components of the second rotated lenna image shown in three dimensions.

(a) (b)

Figure 2.8: (a) The amplitude components of the first lenna image shown in two dimensions. (b)

The amplitude components of the second rotated lenna image shown in two dimensions.

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 16

Calculate the radial projections of functions M 1 (ρ, ϕ) and M 2 (ρ, ϕ) as

pi (ϕ) =

∫ ∞

0

M i (ρ, ϕ) dρ where i = {1, 2} .

The rotation becomes evident when the radial projections of p1 (ϕ) and p2 (ϕ) are normalised

and graphed. The maximum peaks of the two projections are seperated by exactly 35 degrees

(Figure 2.9).

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

p
1
,2

(ϕ
)

35◦
p1 (ϕ)

p2 (ϕ)

Figure 2.9: The maximum peaks of the radial projections are seperated by exactly 35 degrees of

angular difference.

They extend the same concept into three dimensions. Models used in their study were

surveyed using a range camera which captures data in the form of implicit surfaces. Let

q1 (x) be the template model, and q2 (x) the rotated version of q1 (x) such that q2 (x) =

q1

(

R (θ)−1
x
)

, where x = (x, y, z) and x ∈ R
3. They denote the three dimensional discrete

Fourier transform as

Li (k) = F [li (x)] =

∫

R3

li (x) e−j2πk
T

xdx,

where li (x) is the windowed equivalent of qi (x). Similarly to the two dimensional method,

the rotation and translation parameters are seperated using the following property of the

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 17

discrete Fourier transform

L2 (k) = L1

(

R (θ)−1
k
)

e−j2πk
T

R(θ)T ,

where k = (kx, ky, kz) ∈ R
3. Similar to the two dimensional example the rotation can be

isolated using the following property

|L2 (k)| =
∣

∣L1

(

R (θ)−1
k
)
∣

∣ .

The next steps of the algorithm further calculates the axis of rotation and also the magnitude

of rotation. The algorithm is completed when the translation is calculated on the basis that

once the rotation is known, the following must hold true

l2 (R (θ) x) = l1
(

R (θ)−1
R (θ)x− T

)

= l1 (x− T) .

Overall there are limitations to this method. The alignment scheme was originally in-

tended for the use of aligning data sets which were scanned using a range camera. A typical

model would be scanned from various directions in order to cover the whole surface of the

object. The partial views would be similar in size, where each view would have sufficient

overlap. In our case the template model will usually cover a much larger area and the search

could be a much smaller area compared to the template set, and so the area of overlap will

be completely unknown. Also, the scheme is only applicable for data sets structured as

voxels. The pre-processing required for converting a point cloud set or a surface model to a

voxel set is resource-intensive.

Johnson and Hebert [10, 18, 19] first introduced a registration method using spin images.

Spin images are invariant to rigid transformation and, as such, a very useful approach to

model registration. A 3D model, presented in the form of a polygonal mesh, is transformed

into a 2D image using a spin image function. This 2D representation is referred to as the

spin image. Because the image encodes the coordinates of points on the surface of an object

with respect to the local basis, it is a local description of the global shape of the object

and is invariant to rigid transformations. Spin images are created using an oriented point,

a three dimensional point with an associated direction. This is the center of the local basis.

The oriented point is defined on a surface mesh point using its 3D position and the normal

from its associated surface. Normals are calculated by fitting a plane through the points

connecting triangulated facelets. The normals of the mesh should be orientated towards the

outside prior to spin image creation. The images generated for two corresponding points,

one on the search set and one on the template set, will be similar, and so oriented points

can be matched based on a comparison of their associated images. The transformation of

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 18

an orientated point is done through a transformation function

S (x)→ (a, b) =

(

√

‖x− p‖2 − (n · (x− p))2, n · (x− p)

)

.

Once all the points on the template set and the search set have been converted into spin

images, the complexity of alignment is reduced to two dimensions. Their method is, however,

limited to surfaced models only. It can also be computationally expensive for sets containing

of a large number of points since a spin image needs to be generated for each point. Their

algorithm requires that the triangle facelet resolution be controlled. The resolution of a

triangle mesh determines the amount of surface detail the mesh contains and is closely

related to the number of points, edges and faces in the mesh. Thirdly, when using data sets

that represent a mostly flat surface – like in our case – the distiction between spin images

might be too small to match successfully.

Silva et al. [20] presented an alignment method using genetic algorithms (GAs). GAs

handle a set of solutions, where the set undergoes a process similar to natural evolution.

They suggest registration of two images by finding the geometric transformation through

a pose-space search, rather than the correspondence based search of ICP algorithms. The

search space of geometric transformations contains solutions that can be used to align two

views. GAs are computational models of natural evolution in which stronger individuals

are more likely to be the winners in a competitive environment. The general principle

underlying GAs is to maintain a population of possible solutions. Each possible solution

is refered to as an individual. The population is subjected to an evolutionary procedure

until some criteria can be satisfied, in our case the best possible transformation. Unlike

correspondence alignment techniques, such as ICP, prealignment is not required for the GA

to converge a global minimum. Their algorithm is, however, very computationally expensive.

They state that a GA is a stochastic method and is generally time-consuming. One way

to speed up computation is by using parallelisation, which in our case, is not an option,

because our hardware platform does not allow for it easily.

Due to the limitations of the above mentioned methods, it was decided to design a

prealignment algorithm from first principles. This prealignment algorithm will be sharply

focussed on our specific alignment problem. The design is presented and described in the

next chapter.

2.9 Reducing alignment processing time

When using an alignment algorithm making use of repeated application of rigid body cor-

rection (e.g. ICP), the majority of processing time is spent searching for correspondence

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 19

between sets. The traditional linear closest point (nearest neighbour) algorithm has a lookup

time for one point, of O(N), where N is the size of the template set. This lookup time can

be reduced by making use of an abstract data type (ADT) to store the points. Correctly

constructed, the ADT should split the search space, making lookup more efficient. Zhang

[4] makes use of a k-dimensional binary search tree (sometimes abbreviated as kd-tree)

data structure to optimise the lookup processing. He describes a recursive lookup function,

but no details on how the tree should be constructed. We use kd-tree optimisation in our

implementation. More detail on kd-tree optimisation can be found in Appendix B.

Besl and McKay [7] sugget that alignment time can be reduced by the linearisation and

prediction of the motion parameters at each iteration of the ICP alignment. This approach,

however, can lead to overshoot estimation of the motion parameters and only works well

when the changes in motion are minor.

In order to reduce the time spent during correspondence processing, Masuda et al. [11]

introduced random sampling of the points in the search set. The direct intention of this

is more to counter the effect of outliers, but also has the added benefit of speeding up the

correspondence process. We apply this technique to our aligment algorithm since it is easy

to implement and maintain.

2.10 A special alignment case

Chetverikov and Svirko [12] describes an iterative alignment algorithm which handles the

special case where the search set is not a complete subset of the template set. They describe

an alignment algorithm for overlapping sets. The algorithm steps are as follows:

1. Calculate the correspondence between the points of the template and the search set

based on a closest point metric. Also compute the squared distances between corre-

sponding points, denoted as d2
i .

2. Sort d2
i in ascending order, and select N of the least values.

3. Compute the optimal motion parameters for the N selected points.

4. Apply the transformation to the search set.

5. Go to step 1, or stop the process if any of the stopping conditions were satisfied.

The selection of the N overlapping correspondence points must be done very carefully as it

will critically effect the accuracy of the final alignment. For our specific problem, the search

set will always be a spatial subset of the template set and so this special case will not be

considered.

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 20

2.11 Data sets used in the study

2.11.1 Digital terrain model

A digital elevation model (DEM) is a digital representation of ground surface topography or

terrain and is also widely known as a digital terrain model (DTM). A DTM can be structured

as a raster (a grid of squares) or as a triangular irregular network (TIN). The latter is a

vector based representation made up of irregularly distributed nodes and lines with three

dimensional coordinates that are arranged in a network of non-overlapping triangles. These

triangles form a mesh structure representing a surface terrain or landscape (see Figure 2.10).

The DTMs presented for this study are TIN structured and sourced either from terrestrial

laser scanners or hand-surveyed data. All DTM points (or vertices) are in a left-handed

Cartesian coordinate system and use metres as a unit of measurement. In the study the

template model is refered to as the DTM. All DTMs are already in the common coordinate

frame and as such remain stationary during alignment [1].

Figure 2.10: A typical triangulated irregular network (TIN) structured digital terrain model

(DTM) representing an opencast mining pit wall rendered as a wire frame.

2.11.2 Synthetic map

The term synthetic map (SM) is used to describe the three-dimensional data sourced from

the mobile mine surveying radar. Mine surveying radars are used to scan the sloped walls of

opencast mining pits. The sloped wall of the pit is scanned by sweeping the antenna position

in a regularly spaced angular grid covering the area of interest. The angular position of

the radar antenna, combined with the propagated range data, forms a three-dimensional

representation of the sloped pit wall (see Figure 2.11). SMs are typically less detailed than

DTMs, often containing noisy points as well as outliers. SMs by default are in a local left-

handed Cartesian coordinate system and so require alignment (or georeferencing) in order

CHAPTER 2. EXISTING ALIGNMENT ALGORITHMS 21

to be useful. For the purposes of the study the SMs will be in either an arbitrary local

coordinate frame or within the common coordinate frame. The SMs already placed within

the common coordinate frame will also be used as a template models. However, when the

SM model is still in an arbitrary frame, it will be used as the search model, requiring motion

parameter adjustment to merge with the common mine coordinate system [1].

Figure 2.11: A rendered image of a synthetic map (SM) point cloud sourced from a mine surveying

radar.

2.12 Conclusion

We have examined various studies pertaining to three-dimensional model alignment. We

listed the algorithms which might be useful for our specific alignment application, some of

which are covered in more detail in the sections to follow. We also listed the data set types

applicable to the study. In the next chapter we consider the design of our georeferencing

scheme.

Chapter 3

System design

3.1 Introduction

In the chapter to follow we design a georeferencing system based on three-dimensional model

alignment. The methods and strategies described in Chapter 2 will form the basis of our

design. The design can be simplistically described as a high level flow chart (Figure 3.1).

The bulk of the chapter to follow, will invlove map conditioning, global alignment and

then finally, iterative correspondence alignment. However, before any design is attempted,

we first establish a baseline of the typical spatial differences achievable with the current

georeferencing method. We also list below, the sections which are to follow.

Figure 3.1: A high level flow diagram of steps needed for aligning two three-dimensional data

sets.

22

CHAPTER 3. SYSTEM DESIGN 23

Establishing a baseline of typical spatial differences

By replacing an existing mine surveying radar georeferencing method, we aim to achieve

at least similar spatial differences currently obtainable. In the first section of our system

design, we perform tests to establish a baseline of typical spatial differences expected for

synthetic map (SM) on digital terrain model (DTM) alignment. The detail is discussed in

section 3.2.

Rigid body motion estimation

From the baseline comparison we determined a set of typical spatial difference values. We

also established that surface resampling improves the spatial differences measured between

sets. In the next step of our design, we consider how to correct the spatial difference between

two misaligned three-dimensional models. Such a correction involves the estimation of the

rigid body parameters. We show the steps necessary for such an estimation. We also consider

the limitations of this estimation. The detail is described in section 3.3.

Iterative correspondence alignment

The process of correspondence, estimation of rigid body parameters and alignment can be

repeated in order to further reduce the spatial difference between misaligned models, as

described in Chapter 2. Besl and McKay [7] proved this. We conduct a simulation to verify

this. As part of the simulation the most commonly known limitation of the iterative closest

point (ICP) becomes evident. Iterative correspondence alignment (ICA) does not always

convergence to the correct local minimum. A prealignment algorithm is required to ensure

converge to the correct local minimum. The detail is described in section 3.4.

Tessellation methods

Next in our design we consider map conditioning. As part of our design it might be helpful

to transform discrete point clouds into surfaced models. We propose three Delaunay tessel-

lation methods useful for the application of discrete SM tessellation. The detail is described

in section 3.5.

Resampling algorithm

In section 3.2 we show that linear surface resampling improves closest point correspondence.

We propose a resampling algorithm useful for our design. We show that by resampling

surfaced maps we can control the number of points in a set and also ensure that points are

evenly distributed geometrically. The detail is described in section 3.6.

CHAPTER 3. SYSTEM DESIGN 24

A global alignment algorithm

In order to overcome the limitation of incorrect convergence using ICA, we propose a global

alignment algorithm. The algorithm corrects for four degrees of freedom. Once the models

have been globally aligned, iterative correspondence alignement can be applied in order to

avoid false convergence. The detail is described in section 3.7.

A complete mine surveying georeferencing scheme

The design is completed using algorithms described so far. A complete georeferencing scheme

is described using map resampling, global alignment and iterative correspondence alignment.

3.2 Establishing a baseline of typical spatial

differences

3.2.1 Introduction

As stated before, mobile surveying radars currently make use of an existing method of

georeferencing to place the radar within the mine coordinate frame. Once the radar is

georeferenced, the 3D models generated by the radar will overlap the 3D models provided

by the mine. Due to the limitations of the surveying radar, the alignment is not perfect. In

this section we aim to quantify the average Euclidean error made when typical map pairs

are compared spatially using alignment done through the existing georeferencing method.

The statistics of such a comparison will provide a benchmark to which we can compare the

results of the alignment using our new software based algorithm. Introduced in this section

are the two three-dimensional data sets which are aligned using the existing georeferencing

method. The three-dimensional models sourced from the radar will be refered to as the data

or search sets, and the models already in the mine coordinate frame, as the template sets.

As mentioned in Chapter 2, 3D model alignment has long been a prominent field of

study. Alignment of 3D models is also sometimes referred to as range image registration.

The idea is simple: A template (base) model remains stationary while a search model –

initially in an arbitrary coordinate frame – is maneuvered spatially to best fit the template

model (Figure 3.2). When we have satisfactory alignment between the models, we consider

the two models to be in the same coordinate frame. A metric for satisfactory alignment can

differ depending on the cost function. Usually the models are considered aligned when the

spatial difference is reduced to a minimum.

CHAPTER 3. SYSTEM DESIGN 25

Template model

Search model

Figure 3.2: Two 3D models start off in their own coordinate frames. Alignment is done to merge

the coordinate frames into a single common coordinate frame.

3.2.2 Notation

Here we describe the notation used throughout the study. A three-dimensional point (or

vertex) structured as a horizontal vector is denoted as

p = (x, y, z).

The search set is denoted as

P = {pi}, ∀ i ∈ {1, . . . , NP}

where NP is the number of points in the set. The template set is defined as

W = {wj}, ∀ j ∈ {1, . . . , NW}.

A set of triangle points (or vertices) is defined as

T = {tq}, ∀ q ∈ {1, . . . , NT}

where each t is defined as

t = {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)}.

3.2.3 Prealigned comparison

The alignment of two geometric models involves the minimisation of their spatial difference.

SMs in general are limited in geographical detail when compared to DTMs representing the

CHAPTER 3. SYSTEM DESIGN 26

same geographical area. Usually a DTM’s features – such as roads and sloped benches –

appear more detailed and distinct when compared to an equivalent SM (Figure 3.3). In this

section we determine the spatial differences for a few real-world data sets – when they are

already aligned using the traditional total station method – in order to establish a baseline

of achievable alignment quality.

(a) (b)

Figure 3.3: (a) The slope benches are clearly distinguishable in most DTMs due to a higher level

of detail compared to most synthetic maps. (b) A typical synthetic map is far less detailed when

compared to most DTMs.

The spatial difference comparison involves data from seven different geographical loca-

tions, each with a DTM and a SM covering the same area. The model pairs were sampled

from the same opencast mine pit and share overlapping features such that the SM is a spatial

subset of the DTM. All the pairs were aligned prior to the comparison using a traditional

triangulation algorithm. The DTMs presented have varying degrees of TIN resolution (see

Table 3.1). The spatial resolution is quantified as the average distance to the closest point

for every point in the set. The number of points contained in the SMs are listed in Table

3.2. The spatial resolution is also indicated. In the two sections to follow we compare the

models based on triangle corner point correspondence as well as correspondence with the

DTM after surface resampling.

CHAPTER 3. SYSTEM DESIGN 27

Table 3.1: The properties of the DTMs used in the spatial difference test.

DTM No. of points No. of triangles Spatial coverage Spatial resolution Avg triangle area

∆X ∆Y ∆Z Average Std. dev.

(km) (km) (km) (m) (m) (m2)

A 93652 23413 1.06 0.39 0.11 3.28 1.80 16.61
B 310856 77714 0.77 1.25 0.36 2.15 2.79 16.67
C 189380 47345 1.49 0.73 0.24 3.39 2.41 27.34
D 470288 117572 2.91 3.50 0.51 3.43 3.37 67.13
E 824056 206014 1.49 2.76 0.36 3.49 2.06 19.32
F 771220 192805 0.75 1.04 0.20 0.42 0.36 0.23
G 114588 28647 1.39 1.56 0.42 5.87 4.16 72.99

Table 3.2: The properties of SMs used in the spatial difference test.

SM No. of points Spatial coverage Spatial resolution

∆X ∆Y ∆Z Average Std. dev.

(km) (km) (km) (m) (m)

A 9444 0.57 0.26 0.10 2.36 0.44
B 7000 0.34 0.65 0.17 3.83 0.44
C 10827 1.06 0.55 0.18 3.50 1.08
D 4354 0.39 0.69 0.22 5.46 0.79
E 8374 0.27 0.53 0.18 1.51 0.64
F 1098 0.69 0.50 0.13 4.41 2.65
G 16683 0.89 1.25 0.60 4.81 1.62

3.2.4 Triangle corner point correspondence test

The DTMs used in this study are TIN structured and form a mesh surface of non-overlapping

triangles. We determine the spatial proximity of a Cartesian point to the model by calcu-

lating the Euclidean distance to the nearest point in the model. This nearest point will be

a triangle corner point, since all the points form part of the triangle edges. For the tests

the SM points are spatially compared with the DTM points in order to quantify the average

Euclidean distance between them. For each SM point a corresponding closest point in the

DTM is found, qualifying the correspondence method as a nearest neighbour point search.

We present search point set

P = {pi}, ∀ i ∈ {1, . . . , NP} (3.1)

CHAPTER 3. SYSTEM DESIGN 28

prealigned with model point set

W = {wj}, ∀ j ∈ {1, . . . , NW} (3.2)

where both sets are R
3. W denotes the DTM and search set P the SM. The Euclidean

distance d(r1, r2) between two general vertices r1 = (x1, y1, z1) and r2 = (x2, y2, z2) is

d(r1, r2) = ‖r1 − r2‖ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (3.3)

The closest distance between the general point p and the point set W is

d(p,W) = min(d(p,wj))

Adapting this function, we derive a nearest neighbour root mean square (RMS) error func-

tion to quantify the error in model similarity and define it as

f(P ,W) =

√

√

√

√

1

Np

Np
∑

i=1

d(pi,W)2. (3.4)

For the comparison, (3.4) is applied to all the search set pairs in Tables 3.1 and 3.2.

Results

The results indicate (Table 3.3 and Figure 3.4) that the RMS spatial difference between the

sets is in the order of metres, despite the perfect alignment of the models prior to comparison.

The abnormally high maximum distance of test G is due to the search set not being a perfect

spatial subset of the template set. The maximum distance recorded ranges over an order

of magnitude. The results confirm that the SM data is limited in accuracy and only serves

as an approximated model of the geographic landscape being sampled. The radar beam of

the radar, unlike a laser, is not narrow and so sometimes covers multiple targets causing

noisy measurements. Another factor in the model discrepancies is the size of the triangles

making up the DTM meshes. Since correspondence is limited to association with corner

points, we would hope that the mesh triangles are as small as possible, reducing the space

unavailable for point correspondence between triangle points. In the section to follow we

present a resampling scheme which will improve point correspondence by resampling new

points in between triangle corner points.

CHAPTER 3. SYSTEM DESIGN 29

Table 3.3: The results of the spatial difference comparison when comparing the SM point sets to

the DTM point sets using triangle corner point correspondence.

Comparison Spatial difference Min. distance Max. distance

RMS Std. deviation

(m) (m) (m) (m)

A 4.92 2.24 0.15 13.74
B 7.58 2.92 0.38 16.06
C 6.08 2.43 0.26 21.94
D 14.48 7.18 0.52 53.66
E 3.14 1.40 0.05 14.98
F 5.84 5.23 0.04 43.03
G 12.36 8.79 0.32 287.94

CHAPTER 3. SYSTEM DESIGN 30

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Spatial difference (m)

O
cc

u
rr

en
ce

Spatial

(a) Comparison A

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

Spatial difference (m)

O
cc

u
rr

en
ce

(b) Comparison B

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

500

Spatial difference (m)

O
cc

u
rr

en
ce

(c) Comparison C

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Spatial difference (m)
O

cc
u
rr

en
ce

(d) Comparison D

0 10 20 30 40 50 60
0

100

200

300

400

500

600

Spatial difference (m)

O
cc

u
rr

en
ce

(e) Comparison E

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

Spatial difference (m)

O
cc

u
rr

en
ce

(f) Comparison F

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

Spatial difference (m)

O
cc

u
rr

en
ce

(g) Comparison G

Figure 3.4: The test histograms showing the occurrence of spatial difference between the DTM

and SM sets using triangle corner point correspondence.

CHAPTER 3. SYSTEM DESIGN 31

3.2.5 Projected resampling correspondence test

Depicted in Figure 3.5 (a) is an example of how an SM point is compared spatially with the

corner points of a mesh triangle. An SM point may be close to the triangle surface but, be-

cause of corner point correspondence, the true spatial difference remains overestimated. We

suggest resampling (or interpolating) the TIN mesh (see Figure 3.5 (b)), thereby enhancing

the point dispersion, making the point set more representative of a piecewise linear surface.

(a) (b)

Figure 3.5: (a) A geometric comparison between a SM point and the corner points of a triangle

face. (b) A geometric comparison between a SM point and a set of resampled points.

The point set making up the DTM is denoted as

W = {wj = (xwj
, ywj

, zwj
)}, ∀ j ∈ {1, . . . , NW}. (3.5)

The triangle mesh set is denoted as

T = {tq}, ∀ q ∈ {1, . . . , NT} (3.6)

such that NT = NW/3 and

tq = {(w3(q−1)+1,w3(q−1)+2,w3(q−1)+3)}, ∀ q ∈ {1, . . . , NT}. (3.7)

For the following test the DTMs are resampled by evaluating new points based on the mesh

as a piecewise linear surface. Consider a point set G = {gm} in R
2 where points form a

two-dimensional equispaced grid when projected onto the horizontal plane. Each grid point

gm = (xgm,ygm), ∀m ∈ {1, . . . , NG} (3.8)

CHAPTER 3. SYSTEM DESIGN 32

is evaluated on the condition that it should reside within the two dimensional bounds of the

triangle mesh convex hull. Grid points residing within the triangle mesh will be included

into the final resampled point set denoted as

R = {rk}, ∀ k ∈ {1, . . . , NR}. (3.9)

Grid points are projected onto the mesh at an angle perpendicular to the horizontal plane.

The barycentric coordinates [21]

d1 =

∣

∣

∣

∣

∣

∣

∣

xgm ygm 1

x3(q−1)+2 y3(q−1)+2 1

x3(q−1)+3 y3(q−1)+3 1

∣

∣

∣

∣

∣

∣

∣

,

d2 =

∣

∣

∣

∣

∣

∣

∣

x3(q−1)+1 y3(q−1)+1 1

xgm ygm 1

x3(q−1)+3 y3(q−1)+3 1

∣

∣

∣

∣

∣

∣

∣

and

d3 =

∣

∣

∣

∣

∣

∣

∣

x3(q−1)+1 y3(q−1)+1 1

x3(q−1)+2 y3(q−1)+2 1

xgm ygm 1

∣

∣

∣

∣

∣

∣

∣

(3.10)

are used to determine if the resampled points reside within the triangle mesh where ∀m ∈

{1, . . . , NG} and ∀ q ∈ {1, . . . , NT}. The barycentric coordinates are a set of triple numbers

proportional to the signed distances of a point to the sides of the triangle. They are nor-

malised so that they represent the areas of the subtriangles formed by the test point. The

coordinates give the areas of the subtriangles normalised by the area of the original triangle.

In the case where all three barycentric coordinates are negative (or all positive, depending

on the corner point order) ĝm ∈ R where ĝm = (xgm, ygm,zgm) and

zgm = a1 + a2xgm + a3ygm (3.11)

where the planar parameters [21] are set as

a1

a2

a3

=

1 x3(q−1)+1 y3(q−1)+1

1 x3(q−1)+2 y3(q−1)+2

1 x3(q−1)+3 y3(q−1)+3

−1

z3(q−1)+1

z3(q−1)+2

z3(q−2)+3

∀ q ∈ {1, . . . , NT}. (3.12)

The average spatial difference between the SM and the resampled set is calculated as

f(P ,R) =

√

√

√

√

1

Np

Np
∑

i=1

d(pi,R)2. (3.13)

CHAPTER 3. SYSTEM DESIGN 33

For the test the DTMs are resampled using various degrees of grid spacing. A finer grid

spacing is conducive to an increase in the number of points making up the resampled point

set, thereby increasing the number of possible correspondence points. Grid spacings of 10m,

6m, 3m, 2m and 1m are used for the comparison.

Results

The results indicate that a finer grid spacing is conducive to improved spatial similarity

between the models (see Figure 3.6). The standard deviations remain mostly constant for

the chosen grid spacings. The probability of matching geographical features common to

both models is greatly improved by applying pre-processed resampling. Table 3.4 shows the

improvement in spatial difference between the models when a 2m resample grid spacing is

used. The values can be identified in Figure 3.6 as the spatial differences corresponding to

a 2m grid spacing.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20
Comparison A
Comparison B
Comparison C
Comparison D
Comparison E
Comparison F
Comparison G

Grid spacing (m)

R
M

S
sp

at
ia

l
d
iff

er
en

ce
(m

)

Figure 3.6: The RMS spatial difference graphed against grid spacings 10m, 6m, 3m, 2m and 1m

taken from the resampled correspondence comparison.

CHAPTER 3. SYSTEM DESIGN 34

Table 3.4: The improvement in RMS spatial difference when comparing the corner point corre-

spondence tests to the resampled correspondence tests using a 2m grid spacing.

Test Less error
(#) (%)

A 48.275
B 46.761
C 33.973
D 55.094
E 9.5827
F -40.102
G 23.327

3.2.6 Conclusion

Results indicate that spatial differences (as high as 10m) remain between the models even

when they are perfectly aligned. This is due to the SMs being less detailed than the template

DTMs. The noisy SM points also contribute to this discrepancy. Another factor is poor

point correspondence because of triangle corner point association. This spatial discrepancy

can be significantly reduced by resampling the DTMs prior to alignment, creating new points

which can be used for point correspondence.

3.3 Rigid body motion estimation

3.3.1 Introduction

Non-scalable rigid bodies have six degrees of spatial freedom. That is to say, the freedom of

independent translation on the frame axes as well as the freedom of independent rotation

around those axes. Model alignment involves the estimation of the rigid body motion

parameters which best reduce the spatial difference between two sets. In this section we

describe how to estimate the motion parameters from two point sets of equal size.

3.3.2 The estimation algorithm

Let us consider rotation around the frame axes (Figure 3.7) namely the roll (X-axis) rotation

θ, the pitch (Y-axis) rotation φ and the heading (Z-axis) rotation ψ. Euler’s theorem states

that any rotation can be given as a composition of rotations about three axes and thus

can be presented by a 3 Ö 3 rotation matrix. We define the individual orthogonal rotation

matrices as

CHAPTER 3. SYSTEM DESIGN 35

Rx =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

,

Ry =

cosφ 0 sinφ

0 1 0

− sin φ 0 cos φ

and

Rz =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

.

XY

Z

θ

φ

ψ

Figure 3.7: A right handed coordinate system.

Combined they become

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

= RxRyRz

=

(cos φ cosψ) (− cos φ sinψ) (sinφ)

(sin θ sinφ cosψ + cos θ sinψ) (− sin θ sin φ sinψ + cos θ cosψ) (− sin θ cosφ)

(− cos θ sin φ cosψ + sin θ sinψ) (cos θ sinφ sinψ + sin θ cosψ) (cos θ cosφ)

The order of rotation is important and to avoid confusion this study consistently makes

use of the rotation order described above, namely rotation around X-axis, then rotation

around Y-axis and finally rotation around Z-axis. Decomposition of the Euler angles from

the composite rotation matrix can then be derived as

CHAPTER 3. SYSTEM DESIGN 36

θ = arctan2(−R23, R33), φ = arcsin(R13) and ψ = arctan2(−R12, R11).

Besl and McKay [7] describe the same composite rotation matrix as R, but as a function of

quaternion (as described in Chapter 2) values

R̂ (q) =

q2
0 + q2

1 − q
2
2 − q

2
3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 + q2

2 − q
2
1 − q

2
3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 + q2

3 − q
2
1 − q

2
2

. (3.14)

Besl and McKay show in [7] the following set of steps up to (3.19) the extraction of the

motion parameters from paired (corresponding) point sets: Let P = {pi} be a point set

to be aligned with template point set X = {xi}, where Nx = Np and where each point pi

corresponds to the point xi with the same index. Both sets are row matrices in R
3 where

the centres are given by

µp =
1

Np

Np
∑

i=1

pi and µx =
1

Nx

Nx
∑

i=1

xi,

calculated as the mean values. The mean is subtracted from the point set in order to align

the centre of mass of the two sets. The cross-covariance matrix of sets P and X is given by

Σpx =
1

Np

Np
∑

i=1

[

(

pi − µp

)T
(xi − µx)

]

(3.15)

with dimension 3 Ö 3. From (3.15) construct anti-symmetric 3 Ö 3 matrix

A = Σpx −ΣT
px. (3.16)

From A construct column vector

∆ =
[

A23 A31 A12

]T

. (3.17)

Construct symmetric 4 Ö 4 matrix

Q(Σpx) =

[

tr(Σpx) ∆T

∆ Σpx + ΣT
px − tr(Σpx)I3

]

(3.18)

where I3 represents a 3 Ö 3 identity matrix and tr(Σpx) represents the trace of matrix Σpx.

The rotation parameters required for alignment reside within the column space of (3.18). It

is shown by Horn [14] that the column space – calculated using the principal eignenvector –

CHAPTER 3. SYSTEM DESIGN 37

results in a least squares solution of the overdetermined system using evalution cost function

Γ2 =
∑N

i=1

∥

∥x
′

i − (Rpi + T)
∥

∥. The unit eigenvector qR =
[

q0 q1 q2 q3

]T

, correspond-

ing to the principal eigenvalue of matrix Q(Σpx), is selected for optimal estimation of the

rotation parameters. Singular value decomposition (SVD) is ideal to decompose Q(Σpx) into

Q(Σpx) = UDV T . See Appendix A for details on how to estimate the principal eigenvector

using an easily implementable Gram–Schmidt Jacobi method. Construct unit eigenvector

qR =
[

U11 U21 U31 U41

]T

which corresponds to the first column vector of matrix U .

The optimal translation column vector is given by

qT = µT
x − R̂(qR)µT

p , (3.19)

where function R(qR) refers to (3.14). Finally, alignment of set P with set X is done as

P
′

=
{

piR̂(qR)T + qT

}

, ∀ i ∈ {1, . . . , NP}.

3.3.3 Realignment test

The algorithm’s capability to estimate motion parameters is limited to applications where

the two sets are of equal size, the points have known correspondence and where the noise

discrepancy between sets is within tolerance [5]. We consider the effect of non-compliance

to the suggested use of the algorithm by three tests. We consider three possible scenarios:

Ideal correspondence between sets, ideal correspondence with noise added to one of the sets

and then non-correspondence between sets. The test involves two point clouds shaped as

cuboids. Both sets contain 6000 randomly sampled points and have spatial dimensions of 1Ö 1 Ö 2. Both sets are identical except for differing in spatial orientation and translation

(Figure 3.8 (a)). For all three scenarios we estimate the motion parameters and realign the

models.

Perfect correspondence alignment test

For the first test the sets have perfect correspondence. The alignment resulted in perfect

realignment (Figure 3.8 (b)). The alignment is so effective that the template model is not

even visible on the figure because of the overlap. After alignment the residuals are essentially

zero. The following residuals remain, as seen in Table 3.5.

CHAPTER 3. SYSTEM DESIGN 38

Table 3.5: The motion parameter errors which remain after alignment.

Angle of rotation error Translation error
θ φ ψ X Y Z

(deg) (deg) (deg)

-7.10e-14◦ -4.26e-14◦ 5.68e-14◦ -1.39e-14 1.66e-16 -5.99e-15

(a) (b)

Figure 3.8: (a) Two cuboid data sets prior to alignment, rendered with coordinate frame axes.

(b) The same two cuboid data sets after alignment.

Perfect correspondence with noise influence alignment test

For the second test we add normally distributed noise to point set P to test the robustness

of the algorithm against zero average noise. The test is repeated five times, each time with

a different noise level. Noise with standard deviations of 0.1, 0.25, 0.5, 1 and 2 was used.

Figure 3.9 shows the alignment of the sets when noise with standard deviation 0.5 is used.

CHAPTER 3. SYSTEM DESIGN 39

Figure 3.9: The alignment of the set with added noise.

The influence of noise on the alignment becomes more apparent as we increase the spread

of the probability density function (Table 3.6).

Table 3.6: The motion parameter error for different noisy sets after alignment.

Noise std. dev. Angle of rotation error Translation error

θ φ ψ X Y Z

(deg) (deg) (deg)

0.1 0.160◦ 0.034◦ 0.018◦ 0.0009 0.0031 0.0002
0.25 0.636◦ 0.234◦ 0.994◦ 0.0061 0.0036 0.0003
0.5 1.984◦ 0.597◦ 2.156◦ 0.0013 0.0123 0.0333
1 4.489◦ 0.601◦ 4.363◦ 0.0011 0.0300 0.0131
2 18.982◦ 3.216◦ 20.632◦ 0.0233 0.0892 0.0597

From the results we see that noise is a factor in the accuracy of estimation of the motion

parameters. Noise factors up to 0.5 produce heading errors of 2 degrees or less, which is

within the specified heading error limit stipulated in Chapter 1. This shows us that the

estimation algorithm is fairly robust, even when the sets are noisy.

Non-correspondence alignment test

For the last test we consider the scenario where the correspondence between the sets is not

known. This is an important test because correspondence between point sets is very rarely

known prior to alignment. For the test we consider the scenario where the correspondence

is randomly sampled. Figure 3.10 shows the sets after alignment. Visually the quality of

alignment is much worse when compared to Figure 3.9. Comparing the residuals of this test

CHAPTER 3. SYSTEM DESIGN 40

to the residuals from the worst noise influenced test we see that non-correspondence has

more influence on the quality of alignment than noise.

Figure 3.10: Incorrect alignment because of non-correspondence between points.

3.3.4 Conclusion

The results of the tests indicate that estimating the rigid body motion parameters between

two misaligned point sets is easy, as well as accurate, provided the correspondence is known.

Even with noisy sets the accuracy of the estimation is still fairly good. However, when the

sets share no correspondence, the estimation becomes inaccurate to the point of being unus-

able. A correspondence method is needed for our design. We use the closest corresponding

correspondence, as described in section 2.5, because it is the most suited for our application.

3.4 Iterative correspondence alignment

3.4.1 Introduction

Besl, McKay and others (see e.g. [7], [6], [5]) showed that the spatial difference between

two three-dimensional models can be reduced by estimating the motion parameters between

them. They also show that the spatial difference can be reduced even further if the process

is repeated (Figure 3.11). In the section to follow we describe iterative correspondence

alignment.

CHAPTER 3. SYSTEM DESIGN 41

Determine correspondence

Estimate motion parameters

Apply motion parameters to search model

Start alignment

Is alignment satisfactory?

Stop alignment

No

Yes

Figure 3.11: The process of motion parameter estimation and application can be repeated to

even further reduce the spatial difference between models.

3.4.2 The effect of iterative alignment

Consider two corresponding point sets P = {pi} and Y = {yi} where ∀ i ∈ {1, . . . , NP}

and NP = NY . Correspondence, as mentioned before, refers to how the sets are of equal size

and sequenced in order. To align the sets we aim to reduce the average spatial difference

e =
1

NP

NP
∑

i=1

‖yi − pi‖
2 (3.20)

to a minimum. We estimate the rigid body motion parameters of the sets using the least-

squares algorithm from section 3.3. By applying these motion parameters to set P the

average spatial difference after alignment is now

d =
1

NP

NP
∑

i=1

‖yi −R(pi)− t‖2 (3.21)

where function R is the rotation and t the translation. Since the motion parameters are

based on the least squares fit of the sets it can be said that d ≤ e. This is a statement sup-

ported by Besl and McKay [7]. They go even further by saying that, by iteratively repeating

the correspondence and alignment process the average spatial difference will converge mono-

CHAPTER 3. SYSTEM DESIGN 42

tonically. Consider the alignment of two point sets, X and P . They are not corresponding

sets and as such NX 6= NP . P is a spatial subset of X. X will remain stationary and

P will be rotated and translated to best align with X . Using the closest point algorithm

presented in section 2.5, the goal is to determine the new correspondence set Y 1 such that

NY1
= NP and Y 1 ⊂X. The average spatial difference prior to alignment is

e1 =
1

NP

NP
∑

i=1

‖(yi)1 − pi‖
2 . (3.22)

If we repeat the process of correspondence and alignment k times, the average spatial dif-

ferences become

ek =
1

NP

NP
∑

i=1

‖(yi)k − (pi)k‖
2 and dk =

1

NP

NP
∑

i=1

‖(yi)k − (pi)k+1‖
2 . (3.23)

where P k+1 = Rk(P k)+T k is the rotation and translation of the current iteration (indicated

by integer value k). Besl and McKay [7] further prove that

0 ≤ dk+1 ≤ ek+1 ≤ dk ≤ ek for all k. (3.24)

We verify the proof using a simulation. Figure 3.12 depicts a three-dimensional view of two

point sets prior to alignment. The sets were misaligned by a rotation of 11 and 5 degrees

around two of the axes. Iteratively applying correspondence and alignment results in an

ideal fit since the smaller set was originally sampled from the template set. Figure 3.13

depicts the average spatial difference ek during each iteration of the alignment. The spatial

error decreases monotonically until convergence, as proven by Besl and McKay analytically

[7].

CHAPTER 3. SYSTEM DESIGN 43

Figure 3.12: A three-dimensional view of two point sets prior to alignment. The larger template

set remains stationary whilst the smaller set (indicated by crosses) is rotated and translated to

best align with the template set.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

R
M

S
sp

at
ia

l
d
iff

er
en

ce

Figure 3.13: A graph of the RMS spatial difference during each iteration of the alignment.

CHAPTER 3. SYSTEM DESIGN 44

The limitations of iterative alignment

Iterative alignment ensures convergence to a localised position. Figure 3.14 shows such an

example of correct localised alignment. Correct convergence is, however, dependent on the

initial alignment parameters. Consider the same two point sets used previously. For the

next test the sets start off misaligned by rotation angles of 18 and 15 degrees around two of

the axes. The error in rotation prior to alignment is 7 and 10 degrees higher compared to

the previous test. Alignment of the sets fails and the search set converges to an incorrect

localised position (Figure 3.15). Despite the misalignment, the average spatial difference

still converges monotonically (Figure 3.16).

Figure 3.14: The data sets from Figure 3.12 after correct alignment.

CHAPTER 3. SYSTEM DESIGN 45

Figure 3.15: The data sets from Figure 3.12 after incorrect alignment.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iterations

R
M

S
sp

at
ia

l
d
iff

er
en

ce

Figure 3.16: A graph depicting the RMS spatial difference for the incorrect alignment.

From this we see that iterative correspondence alignment (ICA) is limited to when models

are reasonably aligned prior to ICA. The alignment is considered unsuccessful if the average

spatial difference after a number of iterations still remain greater than a predefined threshold.

CHAPTER 3. SYSTEM DESIGN 46

3.4.3 Conclusion

Iterative alignment is a very commonly used method of model alignment [22]. Using a

simulation we have confirmed Besl and McKay’s statement that monotonic convergence is

guaranteed for alignment to a local optimum. Correct alignment is, however, very sensitive

to the initial alignment parameters.

3.5 Synthetic map tessellation methods

3.5.1 Introduction

Survey imaging hardware such as terrestrial lasers and mine surveying radars, scan points

according to a fixed angular grid which makes it possible to mesh points in real-time (Figure

3.17 (a) and (b)). Facelets are constructed by connecting neighbouring points arranged in

a deterministic scan line pattern. Having the points meshed is convenient but does require

more overhead, and so users usually have the option to export scan data either in a meshed

or unmeshed format. As part of this study we concern ourselves with sets which could be

meshed or unmeshed. In the sections to follow we describe computationally inexpensive

meshing methods useful for when point sets are unmeshed or when the points are in random

order.

(a)

A1

A2
A3

B1

B2

B3

(b)

Figure 3.17: (a) The terrestrial laser scans points according to fixed angular scan lines, making

meshing easier to manage. (b) An example of how meshing is done when points are arranged

according to a fixed angular grid.

3.5.2 Triangulated irregular network meshing

Meshing involves connecting existing data points to form non-overlapping polygonal facelets

which best model a piecewise linear surface. Meshing can technically be done using any

CHAPTER 3. SYSTEM DESIGN 47

polygonal shape, but the triangle form is the most practical and the most widely used (e.g.

[21], [23]). The data structures required to store triangle faces are easier to implement

compared to the structures required for other polygonal facelets. Triangulated meshes are

also referred to as triangulated irregular networks (TINs).

A very popular and efficient method of TIN generation is with Delaunay triangulation

(e.g. [21], [24]). The Delaunay algorithm connects the points of the sets to form non-

overlapping triangles in such a way that all triangles comply with the Delaunay constraint.

For two-dimensional space the Delaunay constraint states that the circumcircle of a model

triangle may not contain other points. By complying with the Delaunay constraint, thin and

small angled triangles are avoided, producing a very well distributed TIN. The Delaunay

constraint was originally defined for two-dimensional space but easily extends to work in

n-dimensional spaces, or in our case three-dimensional space.

The three-dimensional Delaunay constraint states that no points are allowed to be within

the circumsphere of a triangle surface piece connecting three points. The sets relevant

to this study, however, model thin geographical surfaces and render as piecewise linear

surfaces instead of closed primitive shapes, and therefore we apply two-dimensional Delaunay

triangulation instead of three-dimensional Delaunay triangulation. Figure 3.18 (a) and (b)

depicts a typical TIN generation example using a two dimensional Delaunay triangulation.

In the section to follow we propose three different TIN generation methods using two-

dimensional Delaunay triangulation. There are many Delaunay triangulation algorithms

available. It is shown that the divide and conquer [25] or the sweep line [26] algorithm are

very efficient, both having O(n log n) computational time [27]. The sweep line algorithm

is, however, marginally slower than the divide and conquer algorithm.

(a) (b)

Figure 3.18: (a) A set of two-dimensional points randomly dispersed on the horizontal plane. (b)

A triangulated network generated using the Delaunay triangulation algorithm on the same set of

points. The Delaunay constraint ensures that thin and small angled triangles are avoided.

CHAPTER 3. SYSTEM DESIGN 48

3.5.3 Efficient meshing methods using two-dimensional

Delaunay triangulation

The three proposed meshing methods are described in the sections to follow. They will

be compared through a test, where the three methods are applied on the same data set.

The Delaunay triangulation method for which the minimum triangle angle is maximised the

most, and the maximum angle is minimised the lowest, will be considered the most optimal

[21].

Horizontal plane projection

Typically, both the terrestrial laser and the slope stability radar will be levelled prior to

being operated. Also, most open pit mines are sloped so as to avoid slope failures, and

therefore, are very seldom completely vertical. Given this, the template sets will generally

have more spatial variation in the horizontal plane than in the vertical plane. Therefore, a

way of triangulation is to ignore the height component of the set, effectively projecting the

points onto the XY plane where two-dimensional triangulation can be applied (Figure 3.19

(a)). We propose the following method:

Consider 3D point set

P = {pi} = {(xi, yi, zi)} , ∀ i ∈ {1, . . . , NP}

=

P11 P12 P13

P21 P22 P23

...
...

...

P(Np)(1) P(NP)(2) P(NP)(3)

.

Apply two dimensional Delaunay triangulation on the horizontal components of the set

namely the first and second column of P as

T = delaunay2D

([

P11 P21 · · · P(NP)(1)

]

,
[

P12 P22 · · · P(NP)(2)

])

.

Matrix T with dimension 3 Ö NT now contains the indices of points taken from P which

form a set of triangle facelets. Figure 3.19 (b) depicts a typical result. This method of

triangulation requires minimal overhead compared to the methods which follow. An overall

acceptable result is only achievable when the set is spatially fairly flat and the variation of

the height component is small when compared to the other components. The next meshing

method addresses this limitation.

CHAPTER 3. SYSTEM DESIGN 49

X

Y

(a) (b)

Figure 3.19: (a) Ignoring the height component of the points results in the orthogonal projection

of the points onto the XY-plane where we apply two-dimensional Delaunay triangulation. (b) A

typical triangulated model of an open-pit sloped wall using two-dimensional Delaunay triangulation

on the projected points.

Principal component projected meshing

Another method of triangulation applies two-dimensional Delaunay triangulation on the

Cartesian components with the greatest geometrical spread. This can be done using prin-

cipal component analysis, also known as the Karhunen–Loève transformation. The data

set is decorrelated and rotated so as to ensure the greatest independent spread across the

Cartesian axes (Figure 3.20 (a) and (b)). Two-dimensional Delaunay triangulation is then

applied on the axes with the greatest variation.

The following steps apply:

Consider 3D point set

P = {pi}, ∀ i ∈ {1, . . . , NP}.

(a) (b)

Figure 3.20: (a) An almost vertical model with the principal components indicated by the arrowed

axes. (b) The same model “flattened” by rotating the model with the principal component unit

vectors.

CHAPTER 3. SYSTEM DESIGN 50

Calculate the mean value as

µp =
1

NP

NP
∑

i=1

pi.

Convert points into mean-deviation form as

P̂ =

p1 − µp

p2 − µp

...

p(NP) − µp

.

Calculate covariance matrix

S =
1

NP − 1
P̂ P̂

T
.

Use singular value decomposition to determine the eigenvectors as

S = RDV T .

Since S is a square symmetric matrix, eigendecomposition can also be used, but singular

value decomposition is prefered because singular vectors are automatically sorted based

on the variation of each component. R is a 3 Ö 3 orthogonal rotation matrix such that

det(R) = ±1. Apply the rotation to form a new set as

Y = P R =

Y11 Y12 Y13

Y21 Y22 Y23

...
...

...

Y(NY)(1) Y(NY)(2) Y(NY)(3)

.

Apply two-dimensional Delaunay triangulation as

T = delaunay2D

([

Y11 Y21 · · · Y(NP)(1)

]

,
[

Y12 Y22 · · · Y(NP)(2)

])

.

The last column of Y is ignored as it contains the orthogonal component with least amount

of variation.

Point-of-origin Delaunay meshing

Point-of-origin meshing – our proposed method – should be used in the cases where the

survey origin is known. Points are easily sorted according to the original survey pattern

CHAPTER 3. SYSTEM DESIGN 51

when viewed from the surveying origin. We propose the following algorithm:

Consider 3D point set

P =
[

p1 p2 · · · pNP

]T

=
[

(x1, y1, z1) (x2, y2, z2) · · · (xNP
, yNP

, zNP
)

]T

constructed as a row matrix. The survey origin C = (xC , yC , zC) is known and defined

within the same coordinate frame as P . Place points within a local coordinate frame as

P̂ =

p1 −C

p2 −C
...

pNP
−C

=

p̂1

p̂2
...

p̂NP

=

x̂1 ŷ1 ẑ1

x̂2 ŷ2 ẑ2
...

...
...

x̂NP
ŷNP

ẑNP

.

Define the Cartesian to spherical conversion function

(θ, φ, r) = cart2sph (x, y, z) , (3.25)

with the return values defined as

θ = atan2 (y, x) ,

φ = atan2
(

z,
√

x2 + y2
)

and

r =
√

x2 + y2 + z2.

Convert P̂ into spherical coordinates as

A =

atan2 (ŷ1, x̂1)

atan2 (ŷ2, x̂2)
...

atan2 (ŷNP
, x̂NP

)

=

θ1

θ2
...

θNP

and

B =

atan2
(

ẑ1,
√

x̂2
1 + ŷ2

1

)

atan2
(

ẑ2,
√

x̂2
2 + ŷ2

2

)

...

atan2
(

ẑNP
,
√

x̂2
NP

+ ŷ2
NP

)

=

φ1

φ2

...

φNP

.

Unwrap the azimuth angles of A, to remove 2π jumps from adjacent points as

CHAPTER 3. SYSTEM DESIGN 52

Â = unwrap(A).

Apply two-dimensional Delaunay triangulation on the corrected azimuth angles and the

elevation angles as

T = delaunay2D(Â,B)

where T is of dimension NT Ö 3 and contains the indices of the vertices making up the

triangles. Figure 3.21 shows the result of the algorithm on a typical point set.

Figure 3.21: A model surface triangulated from the survey origin viewpoint.

3.5.4 Proposed method comparison

We test the proposed methods by applying them on a typical SM. The mean minimum and

maximum triangle angles are calculated, as shown in Table 3.7. It is shown in [21], that the

minimum triangle angle should be maximised and the maximum triangle angle should be

minimised. The results show that point-of-origin meshing produces the best quality mesh.

Table 3.7: Shown here are the mean minimum and maximum angles of the triangles produced

by the three proposed methods.

Method Mean minimum angle Mean maximum angle
(degrees) (degrees)

Horizontal plane projected 20.93◦ 123.28◦

Principal component projected 42.87◦ 78.85◦

Point-of-origin 43.71◦ 74.45◦

CHAPTER 3. SYSTEM DESIGN 53

3.5.5 Conclusion

There are various ways of meshing model point clouds. We suggest TIN meshing as it

the most widely used, and can easily be done using a Delaunay triangulation algorithm.

The models used in this study are all non-overlapping meshed surfaces and therefore two

dimensional Delaunay triangulation is the most practical. Deciding which two components

to use for the Delaunay triangulation depends on the information available to us. Delaunay

triangulation on the spherical converted coordinates produce the best quality mesh when

the model survey origin is known to us. Principal component projected meshing should be

used in cases where the survey origin is not known.

3.6 Point control with map resampling

3.6.1 Introduction

TIN DTMs usually have a very uneven distribution of points [1]. DTM areas with many,

small triangles will have a higher concentration of points compared to the areas where the

triangles are larger and cover a bigger area (Figure 3.22 (a)). Areas of lower concentration

are far less likely to pair with a point from the search set during correspondence and as such

could affect the quality of alignment.

Also, DTM areas with a high concentration of points could also slow down the rate of

convergence given that the complexity of correspondence is now higher than needs be. We

suggest resampling meshed models using a piecewise linear interpolation technique which

ensures that points are evenly dispersed (Figure 3.22 (b)) and that the rate of convergence is

optimised by controlling the density of the DTM. We propose a simple resampling algorithm

which interpolates TIN models to a customisable density in the next section.

(a) (b)

Figure 3.22: (a) A section of DTM with triangle facelets of different sizes. Some areas require

fewer triangles to describe the features with enough detail. (b) The same section resampled to

ensure uniform point dispersion.

CHAPTER 3. SYSTEM DESIGN 54

3.6.2 Bounded edge projected resampling

Consider meshed DTM point set P = {pi} = {(xi, yi, zi)} , ∀i ∈ {1, . . . , NP}. The triangle

facelets are sequenced in order from the points in P such that the collection of triangles

T = {tq}, ∀q ∈ {1, . . . , NP/3} where

tq =

tq11
tq12

tq13

tq21
tq22

tq23

tq31
tq32

tq33

=

p3(q−1)+1

p3(q−1)+2

p3(q−1)+3

=

x3(q−1)+1 y3(q−1)+1 z3(q−1)+1

x3(q−1)+2 y3(q−1)+2 z3(q−1)+2

x3(q−1)+3 y3(q−1)+3 z3(q−1)+3

.

For each triangle tq ∀ q ∈ {1, ..., NP/3} where NT = NP/3 do the following:

Record the horizontally projected spatial bounds of each triangle as

xmin =min({tq11
, tq21

, tq31
}),

xmax =max({tq11
, tq21

, tq31
}),

ymin =min({tq12
, tq22

, tq32
}) and

ymax =max({tq12
, tq22

, tq32
}).

In order to make sure that all areas of the map are covered, we test all the points which

project onto the triangle facelet within the recorded spatial bounds (Figure 3.23 (a)).

CHAPTER 3. SYSTEM DESIGN 55

(a) (b)

Figure 3.23: (a) A bounding grid is created around each facelet based on the horizontally pro-

jected spatial limits of each triangle. All the points within the grid need to be tested for possible

inclusion (b) The starred points qualify to be included in the final resampled point set because

they fall within the triangle facelet.

From the spatial bounds construct a set of possible test points as

xstart = xmin −modulo(xmin, xstep),

ystart = ymin −modulo(ymin, ystep),

xend = xmax + modulo(xmax, xstep) and

yend = ymax + modulo(ymax, ystep).

The two-dimensional step sizes xstep and ystep allow us to control how dense the final resam-

pled set will be. Set up matrices

Cx = {xstart, xstart + xstep, xstart + 2xstep, . . . , xend} and

Cy = {ystart, ystart + ystep, ystart + 2ystep, . . . , yend} .

Construct two-dimensional Cartesian product set

C = {cj} = Cx × Cy, ∀ j ∈
{

1, ...,
(

NCxNCy

)}

,

where NCx and NCyare the number of points in sets Cx and Cy respectively. The points

in C represent all the points possibly contained within the current triangle facelet (Figure

CHAPTER 3. SYSTEM DESIGN 56

3.23). Use the barycentric parameters [21]

d1 =

∣

∣

∣

∣

∣

∣

∣

cjx cjy 1

tq21
tq22

1

tq31
tq32

1

∣

∣

∣

∣

∣

∣

∣

, d2 =

∣

∣

∣

∣

∣

∣

∣

tq11
tq12

1

cjx cjy 1

tq31
tq32

1

∣

∣

∣

∣

∣

∣

∣

and d3 =

∣

∣

∣

∣

∣

∣

∣

tq11
tq12

1

tq21
tq22

1

cjx cjy 1

∣

∣

∣

∣

∣

∣

∣

(3.26)

to evaluate all the points within the grid (Figure 3.23 (a)). Points that qualify using the fol-

lowing conditional function using the previous barycentric parameters are positioned within

the triangle facelet

f(d1, d2, d3) = [((d1 ≥ 0) ∧ (d2 ≥ 0) ∧ (d3 ≥ 0))] ∨ [((d1 ≤ 0) ∧ (d2 ≤ 0) ∧ (d3 ≤ 0))] .

(3.27)

Operator ∨ denotes logic disjunction function“or”, and operator ∧ denotes logic conjunction

function “and”. The starred points in Figure 3.23 (b) fall within the triangle facelet, and as

such, have qualifying barycentric values. Qualified points require a height component that

is calculated as

z = a1 + a2cjx + a3cjy

where the planar parameters [21] are set as

a1

a2

a3

=

1 tq11
tq12

1 tq21
tq22

1 tq31
tq32

−1

tq13

tq23

tq33

.

Finally we calculate the height component as

z =
[

1 cjx cjy

]

a1

a2

a3

,

=
[

1 cjx cjy

]

1 tq11
tq12

1 tq21
tq22

1 tq31
tq32

−1

tq13

tq23

tq33

. (3.28)

The qualified points of each triangle facelet are grouped together to form the final resampled

set. The algorithm is given in pseudocode form in algorithm 1.

CHAPTER 3. SYSTEM DESIGN 57

Algorithm 1 A bounded edge piecewise linear resampling algorithm.

for q = 1 toNT do . Iterate through all the triangles
for cjx = xstart to xend do . Iterate through all the possible x points

for cjy = ystart to yend do . Iterate through all the possible y points
d1, d2, d3 ← Equation 3.26
if f(d1, d2, d3) then

Include point into the final point set
z ← Equation 3.28

end if

end for

end for

end for

3.6.3 Point control example

To test the effect of different resample spacing we apply the interpolation scheme to a TIN

DTM. Grid spacings 32m, 22m, 12m and 7m are used (Figure 3.24 (a), (b), (c) and (d)).

Wider grid spacing results in less detailed, less dense point sets. A finer grid spacing results

in more detail but require more points to describe the same area.

(a) (b)

(c) (d)

Figure 3.24: (a) A DTM resampled with 32 metre grid spacing. (b) The same DTM resampled

with 22 metre grid spacing. (c) The same DTM resampled with 12 metre grid spacing. (d) The

same DTM resampled with 7 metre grid spacing.

CHAPTER 3. SYSTEM DESIGN 58

3.6.4 Conclusion

Correspondence is a critical step during alignment and DTMs with unevenly distributed

points or DTMs of insufficient point density can lead to less than ideal correspondence. One

method of ensuring evenly distributed points and a customisable density is by resampling

TIN DTMs using a piecewise linear interpolation technique. This will aid the correspondence

process where point density is low, and speed up the alignment in the cases where the density

is too high.

3.7 A global alignment scheme for synthetic maps

with four degrees of freedom

3.7.1 Introduction

Previously we discussed iterative correspondence alignment (ICA) and how it is used to align

two three-dimensional sets. ICA is a general solution and depending on how correspondence

is made, can be applied to meshed or unmeshed three-dimensional models with six degrees

of motion freedom. ICA is, however, in general limited in application since models which

are not reasonably aligned prior to ICA are very unlikely to converge. In many studies, this

is referred to as global alignment or prealignment (see e.g. [16], [20], [17]). In this section we

cover a global fitting scheme which will align two model sets well enough so that ICA will

converge to the correct local position. The scheme is designed specifically for the alignment

of a synthetic map (SM) with either another SM or with a digital terrain model (DTM).

The scheme estimates spatial motion parameters of four degrees of freedom, that is to say

translation and heading correction. A set of tests are done to verify the accuracy of the

algorithm. These tests are presented in Chapter 5.

3.7.2 Synthetic maps

The purpose of this study is to show that a SM can be aligned with another SM or DTM

when they cover the same area. Because of the limitations of a general alignment solution

(especially considering processing time and implementability) we examine the specific con-

ditions applicable to our problem. The SMs used in this study are obtained from a mobile

mine surveying radar. The radar is placed on a stable high point to ensure unobstructed

perpendicular coverage of the mine slope (Figure 3.25 (a)). The radar is levelled prior to

operation which means that the roll and pitch angles will always match that of the DTM

(or previously obtained SM), reducing the alignment complexity from six to four degrees of

freedom.

CHAPTER 3. SYSTEM DESIGN 59

Before operation the radar operator defines an area of the slope wall for surveying.

This is also refered to as a scan region. The scan region is marked out in the shape of

a trapezium with the four corner points defined in azimuth and elevation angles. Figure

3.25 (b) depicts an example scan region viewed from the radar origin. The scan region is

scanned in a sweeping motion, assigning a range value to each grid point as the antenna

beam passes over it. When the scan is finished the spherical coordinate values of each point

(azimuth angle, elevation angle and range) are converted into three dimensional Cartesian

coordinates, creating a 3D SM point cloud.

(a)

(-6.0,3.5) (6.0,3.5)

(-3.5,-3.5) (4.0,-3.5)

(b)

Figure 3.25: (a) The radar is levelled prior to scanning. A section of the mine slope is defined

and is refered to as a scan region. (b) A scan region is defined by a trapezium shape where the

corner points are in angular coordinates (azimuth and elevation angles, respectively).

In order for the SM point cloud to be useful in a geographical and surveying sense, it

will have to be placed within the global or common coordinate frame used by that specific

mine. This is done by either georeferencing the radar prior to operation or by aligning the

radar point cloud with a template map defined in the global (common) coordinate frame.

For the study we concern ourselves with the latter. By aligning the SM with the DTM we

indirectly determine the radar position (origin) and heading (Figure 3.26). In the sections

to follow we explain and test a prealignment algorithm specifically designed for SM point

cloud alignment.

CHAPTER 3. SYSTEM DESIGN 60

Top view

Scan region

Radar origin

Sloped wall

Figure 3.26: The scan region is aligned with the model of the mine slope. The radar position

and heading is then calculated after alignment.

3.7.3 Prealignment algorithm

So far we have shown that ICA guarantees convergence provided that the models are reason-

ably aligned beforehand. In this section we describe an algorithm which aligns a radar point

cloud to another radar point cloud or DTM well enough for ICA to converge to the correct

local position. To speed up the processing time of the algorithm some user interaction is

required in the form of an estimated radar position. The estimated radar position is used

to limit the search space, thereby decreasing the required processing time.

The algorithm takes as input the template set, the search set, the estimated radar

position as well as some predefined tolerance values. The DTM or base radar point cloud

is the template set which we want to align to, and remains stationary. The SM point cloud

is the search set (in the form of a scan region) and is rotated and translated to best align

with the template set. The algorithm finds the best fit of the scan region (given its SM

properties) upon the template set. The estimated radar position as well as tolerance values

ensure that unrealistic alignment positions are disregarded during the process.

3.7.4 An overview of the algorithm

Synthetic maps are defined using trapezium shapes where the first point in the set will be the

upper left corner of the shape and the last point the bottom right corner of the shape. We

denote the SM point set as D. The first point is denoted as d1, and the last point as dND
.

Deducting these two point for one another as dcross = dND
− d1, results in a vector which

CHAPTER 3. SYSTEM DESIGN 61

spans the SM in a downward direction (Figure 3.27). Vector dcross describes the maximum

space which the SM could take up when placed over the template set M . By fitting the scan

region shape on all possible points in the template set, a prealignment solution is guaranteed.

Such a brute force solution is however very expensive computationally, especially when

working under a time constraint. The processing time can however be reduced by eliminating

false solutions as early as possible. The elimination process can be done in five conditional

steps. After each step the points which fail the conditional requirements will be removed

from the template set.

d1

dND

Figure 3.27: A vector drawn from the first to the last point in synthetic map point set D.

Conditional requirement 1 : Elimination based on height difference

The radar is always levelled prior to operations which means that the height component of

the SM point set will remain constant for all possible heading angles. As stated before, the

first and last point of the SM defines its spatial bounds. By deducting the height components

of these two points we determine the exact height spread (denoted as zdcross
) the search set

has (Figure 3.28). The first – and least computationally expensive – conditional requirement

is to evaluate the points in the template set M to have a similar height component difference

as that of D. Unlike the other conditionals, this conditional requires no squaring or square

root calculations, making it the least expensive computationally. The height difference of

vectors calculated from points in M must fall within a certain tolerance (denoted as ztolerance)

of zdcross
to meet the conditional requirement. Points which fall outside the conditional

requirement are removed from the set. Processing continues with the remaining points of

M to be evaluated by the second conditional requirement.

CHAPTER 3. SYSTEM DESIGN 62

Figure 3.28: A SM with difference in height indicated by the vertical vector zdcross
.

Conditional requirement 2 : Elimination based on SM cross vector length

The second conditional requirement compares the length of vectors calculated from template

set M with that of the length of cross vector dcross. All the point pairs in the template set

are then filtered so as to have the same vector length as that of the SM cross vector (Figure

3.29). Again the conditional requirement allows for a tolerance, denoted as rtolerance. Pro-

cessing continues with the remaining points of M to be evaluated using the third conditional

requirement.

Figure 3.29: A SM with vector dcross drawn from the first to the last point in the set.

CHAPTER 3. SYSTEM DESIGN 63

Conditional requirements 3 and 4 : Elimination based on estimated centre to

corner point vector lengths

Vectors are calculated between the estimated centre cR and the remaining points of M .

The lengths of these vectors must be similar in length to that of vectors calculated between

the original local radar centre c0 and corner points d1 and dND
(Figure 3.30). The third

conditional requirement compares length ‖mA − cR‖ to ‖d1 − c0‖, and the fourth condi-

tional requirement compares length ‖mB − cR‖ to ‖dND
− c0‖. The vector lengths must be

similar, within tolerance value ctolerance. Processing continues with the remaining points of

M to be evaluated by the fifth and final conditional.

Figure 3.30: The points in the template set are evaluated so that distances between the estimated

radar centre cR and the matching corner points fall with a certain tolerance.

Conditional requirement 5 : Elimination based on new estimated centre

SM points d1 and dND
are positioned in the global coordinate frame before the fifth and

last conditional requirement is to be evaluated (Figure 3.31). The points are first corrected

in heading angle and then corrected in absolute position. Figure 3.32 is a three-dimensional

depiction of how the SM corner points are placed over template set point pair mA and

mB. Note that labels d1 and mA represent the same point. The new estimated centre

eR is calculated using the original local radar centre and the difference in position between

the two frames. The final conditional is then evaluated, ensuring that the newly estimated

centre eR fall within a radius (of length ctolerance) of estimated centre cR that was provided

by the user (Figure 3.32).

CHAPTER 3. SYSTEM DESIGN 64

mA

mB

dN

cR

eR

‖d1 − c0‖

d1

‖dND
− c0‖

Figure 3.31: Points d1 and dND
are corrected in heading and position in order to be placed on

top of points mA and mB .

Figure 3.32: The newly estimated centre must be within a certain radial tolerance relative to the

user supplied initial centre.

CHAPTER 3. SYSTEM DESIGN 65

Determine best alignment fit based on remaining points

Points that passed the fifth and final conditional requirement represent all the possible

matches that remain. Points from D will now be much more thoroughly compared to the

original unfiltered template set M . D is corrected in heading and absolute position as

D4θ = R (4θ)D + t, where function R (4θ) represents a rotation matrix which corrects

the heading angle and t the correction in absolute position. A subset of random points

are uniformly selected from D4θ as Dγ = random (D4θ), where random () has a uniform

distribution. For set Dγ find the closest points in the original unfiltered template set

M and calculate the RMS spatial difference. The RMS spatial difference will be stored

and compared later when all iterations have ended. The alignment heading and absolute

position difference associated with the lowest RMS spatial difference will be considered the

best possible fit of D onto M .

3.7.5 The algorithm in mathematical steps

We define the template set as

M = {mj} =
{(

xmj
, ymj

, zmj

)}

∀ j ∈ {1, . . . , NM} and

the search set (SM) as

D = {di} = {(xdi
, ydi

, zdi
)} ∀ i ∈ {1, . . . , ND} .

M is in a geographical global (common) coordinate system, whereas D is in a local coordi-

nate system centred around the radar frame origin c0 = {(x0, y0, z0)} = {(0, 0, 0)}. Define

an initial radar centre point, within the geographical coordinate frame as

cR = (xcR
, ycR

, zcR
) .

This coordinate will be provided by the user’s initial estimate. As part of the algorithm a

new radar centre will be calculated, defined as

eR = (xeR
, yeR

, zeR
) .

Vector dcross which spans the scan region outline is calculated from two of the corner points

(Figure 3.33). We calculate this cross vector from the first and last points of set D denoting

it as

dcross = dND
− d1 = (xdcross

, ydcross
, zdcross

) ,

CHAPTER 3. SYSTEM DESIGN 66

where d1 is the upper left point and dND
the bottom right point (Figure 3.33).

d1

dND

dcross

zdcross

φd̂i

Figure 3.33: A scan region viewed from the radar origin. The vector spanning the scan region

outlines, is calculated from the opposite corners of the scan region.

Calculate the elevation angle of vector dcross as

φdcross
= atan2

(

zdcross
,

√

x2
dcross

+ y2
dcross

)

.

Calculate the length of vector dcross as

rdcross
= ‖dcross‖ .

Iterate through template set and evaluate conditional requirements

All possible template set point combinations are considered during the alignment process.

In order to match the SM shape onto the template set, all combinations of possible corner

point pairs must be considered. Define template point pair

mA = {(xmA,ymA,zmA
)} and mB = {(xmB ,ymB ,zmB

)} ∀ A,B ∈ {1, . . . , NM} ,

where A 6= B. From template points mA and mB define template cross vector

mB−A = mB −mA.

We hope to find the point pair mA and mB which most closely matches the SM cross vector

dcross. The template set is efficiently iterated as

CHAPTER 3. SYSTEM DESIGN 67

Algorithm 2 The template set is efficiently iterated using the following algorithm.

for k = 1 toNM do

mA ←mk

for j = (k + 1) toNM do

mB ←mj

mB−A ←mB −mA

Evaluate conditional requirements
end for

end for

From mB−A calculate delta values

4xB−A = xmB
− xmA

,

4yB−A = ymB
− ymA

,

4zB−A = zmB
− zmA

and

4rB−A = ‖mB −mA‖ .

Define tolerance values ztolerance, rtolerance and ctolerance. The rejection criteria of the algorithm

is dependent on five conditionals which are functions of the tolerance values. Four out of

the five conditions are:� Conditional requirement 1 : evaluate 4 zB−A as

(zdcross
− ztolerance) < 4zB−A < (zdcross

+ ztolerance) . (3.29)� Conditional requirement 2 : evaluate 4 rB−A as

(rdcross
− rtolerance) < 4rB−A < (rdcross

+ rtolerance) . (3.30)� Conditional requirement 3 : evaluate ‖mA − cR‖ as

(‖d1 − c0‖ − ctolerance) < ‖mA − cR‖ < (‖d1 − c0‖+ ctolerance) . (3.31)� Conditional requirement 4 : evaluate‖mB − cR‖ as

(‖dND
− c0‖ − ctolerance) < ‖mB − cR‖ < (‖dND

− c0‖+ ctolerance) . (3.32)

More steps are required in order to evaluate the fifth and final conditional requirement. SM

point d1 is to be corrected in heading angle and absolute position before the final conditional

CHAPTER 3. SYSTEM DESIGN 68

requirement can be evaluated. Since the radar is always levelled prior to operation, the

heading can be determined as the difference in azimuth Euler components between the

template and the search set. Get current horizontal angle as

θmB−A
= atan2

(

ymB−A
, xmB−A

)

. (3.33)

Calculate the difference in heading angle as

4θ = θd̂cross
− θmB−A

. (3.34)

Correct the corner point’s heading as

d
′

1 =

cos (4θ) sin (4θ) 0

− sin (4θ) cos (4θ) 0

0 0 1

xd1

yd1

zd1

. (3.35)

Correct the local radar centre’s heading as

c
′

0 =

0

0

0

=

cos (4θ) sin (4θ) 0

− sin (4θ) cos (4θ) 0

0 0 1

0

0

0

. (3.36)

The SM represents a rigid body and as such any point can be used the determine the

difference in absolute position (Figure 3.34). Determine the difference in absolute position

as

t =

4x

4y

4z

= mA − d

′

1. (3.37)

Calculate the estimated radar centre eR as

eR =

xeR

yeR

zeR

= c

′

0 + t =

x0

y0

z0

+

4x

4y

4z

=

0

0

0

+

4x

4y

4z

(3.38)

CHAPTER 3. SYSTEM DESIGN 69

d1

dND

c0

4y

4x mA

mB

eR

Local coordinate frame (after rotation) Global coordinate frame

Top view

Figure 3.34: The radar position difference between the coordinate frames is determined by

subtraction of the Cartesian components of any two corresponding points, as in this case with d1

and mA.

We can now evaluate the fifth and final conditional requirement:� Conditional requirement 5 : evaluate

‖eR − cR‖ < (ctolerance). (3.39)

All the points which pass this conditional will be used in the next processing steps.

Determine best alignment fit

Rotate all the SM points in order to correct the heading as well as the absolute position

D4θ =

cos (4θ) sin (4θ) 0

− sin (4θ) cos (4θ) 0

0 0 1

D + t. (3.40)

Pick a subset of random points from D4θ using a uniform distribution such that

Dγ = random (D4θ) (3.41)

and

Dγ ⊂D4θ where NDγ � ND. (3.42)

CHAPTER 3. SYSTEM DESIGN 70

For set Dγ , find the closest points in set M and calculate the RMS spatial difference. The

RMS error is stored as

disterror ==

√

√

√

√
1

NDγ

NDγ
∑

min (‖Dγ −M‖). (3.43)

After all iterations

The heading and absolute position associated with the lowest stored RMS error are regarded

as the final alignment parameters. Reaching the end of the algorithm, the template set fit

with lowest spatial difference is picked as the optimal global alignment position.

3.7.6 The algorithm steps explained in pseudocode

Algorithm 3 The global alignment algorithm.

for k = 1 toNM do

mA ←mk

for j = (k + 1) toNM do

mB ←mj

mB−A ←mB −mA

4zB−A ← zmB
− zmA

if cond(4zB−A) then

4rB−A ← ‖mB −mA‖
if cond(4rB−A) then

if zA < zB then

swap (mA,mB)
end if

if cond(‖mA − cR‖) then

if cond(‖mB − cR‖) then

Calculate estimated radar centre using Eq. 3.33 to 3.38
if cond(‖eR − cR‖) then

Determine final estimated radar centre using Eq. 3.40 to 3.43
end if

end if

end if

end if

end if

end for

end for

Best estimate is result with minimum error

CHAPTER 3. SYSTEM DESIGN 71

3.7.7 Conclusion

We have explained a global alignment algorithm which aligns SM point clouds to either

other SM point clouds or DTMs. The algorithm considers motion complexity of four degrees

of freedom. The algorithm requires that one model be a spatial subset of the other. An

estimated model origin point is used to eliminate incorrect alignment positions, which speeds

up the algorithm. Several tests are done to verify the accuracy of the algorithm (Chapter

5). Results indicate a spatial difference of less than 8 metres in all cases (Table 5.1). Six

out of the seven tests resulted in a heading accuracy of less than 2 degrees and three out

of the seven tests resulted in position errors of less than 6 metres. In the section to follow

we combine this prealignment algorithm with iterative correspondence alignment to form a

complete alignment scheme suitable for radar georeferencing.

3.8 A complete radar georeferencing scheme

3.8.1 Introduction

One of the biggest problems of iterative correspondence alignment is that it requires the

models to be reasonably aligned prior to alignment. In the previous section we described

a global alignment algorithm which provides some alignment, requiring only an estimated

starting point. This algorithm provides reasonable alignment quality, but the alignment

quality can be improved even further by using iterative correspondence alignment (ICA)

to complete the process. In this section we describe a fully implementable georeferencing

scheme useful to georeference a mobile mine surveying radar. This full solution is kept

as versatile as possible by allowing for alignment on surfaced DTMs as well as a non-

surfaced georeferenced SMs. In this Chapter we also show that by applying the iterative

correspondence alignment after the global fit, we improve the quality of the final alignment

sufficiently for the determined position and heading to be within our predefined specification

as stipulated in Chapter 1. To verify the accuracy of the georeferencing scheme several tests

are done. They are presented in Chapter 5.

3.8.2 The effect of position and heading error

The radar illuminates the mine slope with a torch-like antenna beam. The radar’s 3 dB

beamwidth is 2.5 degrees in both azimuth and elevation angles [1]. For a correctly georef-

erenced radar the targets will appear where we expect them to be when viewed in the mine

coordinate frame. However, when the radar is incorrectly georeferenced, the targets will be

positioned incorrectly. Inaccuracy in the absolute position of the radar results in an offset

shift between the radar targets and the mine model. Inaccuracy in the heading of the radar

CHAPTER 3. SYSTEM DESIGN 72

results in a rotation error between the radar targets and the mine model. Between these two

inaccuracies, the latter is more of a concern since the error scales linearly with the target

range, while the offset is independent of the target range. Figure 3.36 illustrates a scenario

where the heading angle is off by 45 degrees. At a distance of 100 metres the target position

error is only 100 metres, but for a distance of 300 metres the error is 300 metres.

Radar position

Figure 3.35: Synthetic maps (SMs) are resolved in spherical coordinates and so the frame origin

is always known to us.

Radar

45◦

100m distance

300m distance

100m error

300m error

Actual position

Apparent position

Figure 3.36: The error in distance of a target when the radar is misaligned due to a heading

error of 45 degrees.

CHAPTER 3. SYSTEM DESIGN 73

Range Diameter
(m) (m)

100 4.36
250 10.90
500 21.81
1000 43.62
1500 65.43
2000 87.24

Table 3.8: The diameter coverage of a 2.5 degree antenna beam at different ranges.

The radar can sight targets as far as a few kilometers and therefore we have to take

into account the target position error due to range. Table 3.8 shows the beam diameter

at different ranges. Radars do, however, have the ability to resolve multiple targets within

its illuminated beam. The targets will however resolve with weaker amplitude when ap-

pearing on the edge of the beam, but will still be visible. For this reason we consider 2

degrees accuracy in heading angle, which is smaller than the beam width, adequate for the

application.

3.8.3 Correcting rigid body motion for four degrees of freedom

only

Since the intended use of the algorithm is to georeference an already levelled radar, we can

reduce the complexity of the process by correcting for four degrees of freedom only, instead

of six degrees of freedom. By reducing the complexity we speed up convergence and also

enhance the quality of the final fit. During rigid body correction for six degrees of freedom

we construct a 3 Ö 3 rotation matrix

R =

q2
0 + q2

1 − q
2
2 − q

2
3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 + q2

2 − q
2
1 − q

2
3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 + q2

3 − q
2
1 − q

2
2

R =

(cosφ cosψ) (− cosφ sinψ) (sinφ)

(sin θ sin φ cosψ + cos θ sinψ) (sin θ sinφ sinψ + cos θ cosψ) (− sin θ cos φ)

(− cos θ sin φ cosψ + sin θ sinψ) (cos θ sinφ sinψ + sin θ cosψ) (cos θ cosφ)

.

See section 3.3 for more detail on the matrix construction. Since we only want to correct

the heading angle we define

ψ = arctan2(−R12, R11) = arctan2(cosφ sinψ, cosφ cosψ).

CHAPTER 3. SYSTEM DESIGN 74

Since we assume the pitch and roll angles to be zero, we let θ = 0◦ and φ = 0◦. From

heading angle ψ construct new rotation matrix

Rz =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

.

Matrix Rz will now be used to change the heading angle during each iteration.

3.8.4 The full georeferencing scheme

In this section we describe the flow of steps leading to final alignment. Some user interaction

is required, and depending on the template map type, the alignment accuracy and the

number of iterations, the flow of the procedure will be different. The full alignment scheme

takes into account that the template map may be either a DTM or a georeferenced SM. A

chart which describes the flow process is presented below in Figure 3.37.

The alignment is started by choosing a georeferenced template map with which to align.

Surface resampling is done only if a surfaced DTM model map is chosen. A prealignment

fit will be attempted to provide the initial alignment. The scheme will only continue if the

root mean square value of the spatial difference between the two models is below a certain

tolerance value. If the spatial difference is above that tolerance value, then it is unlikely

that the iterative alignment will converge correctly and so the procedure is aborted.

If the prealignment is within tolerance, the procedure continues. Once again we consider

if a surfaced DTM was used for the alignment. If yes, then the DTM is again resampled,

this time with a finer grid spacing upon which we proceed with the iterative correspon-

dence alignment. The correspondence alignment will be iterated until the spatial difference

converges or until the maximum allowed number of iterations is reached.

After the iterative correspondence alignment the RMS spatial difference is evaluated. If

the spatial difference is greater than the allowed tolerance then the complete alignment is

considered unsuccessful, and the user will have to georeference the radar with the manual

georeferencing method.

CHAPTER 3. SYSTEM DESIGN 75

Figure 3.37: A flowchart describing the alignment process. All scenarios are considered.

CHAPTER 3. SYSTEM DESIGN 76

3.8.5 Convergence and successful alignment

Convergence is reevaluated at each iteration of correspondence alignment. Models are con-

sidered converged when the difference in RMS spatial difference rmsk between two continu-

ous iterations is less then a predefined constant, where k is the iteration number. Alignment

continues while

rmsk+1 − rmsk < stolerance

where stolerance is predefined tolerance constant. The second convergence condition is when

the maximum number of iterations maxiterations is reached. After iterative correspondence

alignment is stopped, we evaluate if the alignment was a success. The alignment is considered

successful when the RMS spatial difference of the models falls below a certain threshold. The

complete system tests performed (Chapter 5) indicate that in general the scheme will align

the models well enough for the radar to be georeferenced within our stipulated accuracy

specification.

3.8.6 Conclusion

A full alignment scheme was described which can be applied to model maps which are either

surfaced or unsurfaced. The full scheme was explained as a flow of processes. Iterative

correspondence alignment is applied directly after the prealignment using the proposed

global alignment algorithm. We also defined alignment convergence. The next Chapter

describes the implementation of the design.

Chapter 4

System implementation

4.1 Introduction

As a requirement of the study, two software applications were developed. One application is

to be used for SM on SM alignment and another for SM on DTM alignment. Details of the

software implementation are described in this chapter. We first explain the implementation

methodology and then the implementation steps. Design choices explained include such

things as development tools, data structures and methods of testing. The software is broken

down and explained as a flow of functions.

4.2 Development methodology

Reutech coding standards were used as a guideline for the implementation. This allowed

for consistent layout and consistent variable and function naming. The classic waterfall

development model is used. This model was chosen because there was only one person doing

development. Also the waterfall model is the most natural to the development process. The

waterfall development cycle has the following steps:� Requirements specification� Design� Construction� Integration� Testing

77

CHAPTER 4. SYSTEM IMPLEMENTATION 78

4.3 Requirement specification

For the scope of the project a piece of software is required that satisfies the following

requirements:� The software must be cross-platform, compatible with at least Microsoft Windows XP

and Red-Hat Linux 9 on a x-86 target machine.� The real-time execution time of the software must not exceed a few minutes.� The software must be easily integratable with programming languages GNU C++ and

Delphi 7.� The software should only use standard or cross-platform libraries.� The software must be executable from the command line without a graphical user

interface.� The software must handle DTM and SM files with a great number of points, in the

order of hundreds of thousands.

It was decided to split the software into two parts to handle the alignment of DTMs and SMs

as template sets separately. Two executable applications were developed. The one aligns

a SM to a DTM. Another application aligns a SM to an already georeferenced SM. In the

subsections to follow we describe the differences between these two alignment procedures.

4.3.1 SM on DTM alignment

The software takes as input the DTM template map and the SM model. The other input

parameters are:

1. The number of random match points used during the global fit. The default is 150

points.

2. The centre point tolerance in metres. The default is 50 metres.

3. The azimuth radar angle of the first (upper leftmost) point in the search model. The

default is 0 degrees.

4. The rough resampling grid spacing which will be used during the global fit. The

default is 7 metres.

5. The fine resampling grid spacing which will be used during the iterative correspondence

alignment. The default is 3 metres.

CHAPTER 4. SYSTEM IMPLEMENTATION 79

6. The maximum number of correspondence alignment iterations. The default is 100

times.

7. The estimated radar position.

Upon successful alignment, the newly calculated heading and absolute position is printed

to screen.

4.3.2 SM on SM alignment

The software takes as input the georeferenced SM template model and the SM search model.

The other input parameters are:

1. The number of random match points used during the global fit. The default is 150

points.

2. The centre point tolerance in metres. The default is 50 metres.

3. The azimuth radar angle of the first (upper leftmost) point in the search model. The

default is 0 degrees.

4. The maximum number of correspondence alignment iterations. The default is 100

times.

Upon successful alignment, the newly calculated heading and absolute position is printed

to screen.

4.4 Design

In this section we consider several design choices. They include:� Development tools� Extra library� Data structures� Software architecture

CHAPTER 4. SYSTEM IMPLEMENTATION 80

Development tools

Considering the development restrictions mentioned in 4.3, we exclude the following devel-

opment tools:� Any interpreted language such as Python, Ruby or Java because run-time execution

is too slow.� Languages only compatible in Microsoft Windows such as C#.

The GNU C++ programming language provides the following:� It uses standard libraries available on most Linux distributions including Red-Hat

Linux 9.� It can be compiled under Microsoft Windows using free compilers such as MinGW

(Microsoft GNU for Windows) or Cygwin.� It can be compiled under Microsoft Windows into a dynamically linked library (DLL)

for integration with already existing Delphi 7 software.� It includes the standard template library (STL) which provides generic handling of

abstract data types. This library includes functions such as sorts and searches which

will shorten development time.� The developer is most skilled in this programming language.� It provides faster execution time compared to an interpreted language such as Java

[28].

GNU C++ was ultimately chosen as the compiler of choice, given the above mentioned

points. The software can be built for a Microsoft Windows XP platform using version 3.4.2

of the MinGW (Microsoft GNU for Windows) C++ compiler. For the Linux platform, the

software can be built using version 3.2.2 of the GNU C++ compiler. The software has

not been tested on other versions of the compilers, but it is very likely that it will still be

compatible.

The build utility make, is used for the compilation and linking of the source into exe-

cutables. Two separate make files were used to build the software. One for building for

Microsoft Windows XP platform, and another for the Linux platform.

CHAPTER 4. SYSTEM IMPLEMENTATION 81

Extra libraries

A third-party C++ kd-tree library written by Guy Shechter [29] is used in the software.

The library is statically linked after compilation. The library compiles for both Windows

and Linux. The license states that the library may be used freely as long as a copyright

notice is placed in the source and binary form of the software.

Data structures

The data sets used for the study contain a large number of points and need to be handled

adequately. When map files are loaded at start up, the following apply:� The maps will be loaded into memory only once.� Points will be inserted into the data structure sequentially without removal.� The number of points in the file is known prior to loading it.� The maps will sometimes have to be randomly accessed during processing.� Maps might need to be displayed graphically and therefore must be randomly acces-

sible in constant time.

Given the properties just mentioned, an array structure is the best design choice for storing

the maps in memory for the following reasons:� It provides random access in constant time.� It provides the most optimised loading time when the number of elements are known.

The C++ STL provides such an array structure, in the form of a vector template. This

data structure will be used throughout the source code.

Software Architecture

The software is split into several source files, namely two application source files and a

common library source file. The two application source files are ultimately compiled into

executables. The common library module contains all the algorithmic functions needed for

the study. The software consists out of the following source files (including the kd-tree

library):

CHAPTER 4. SYSTEM IMPLEMENTATION 82

Table 4.1: The software implementation has the following source files.

C++ source file C++ header file

CommonLib.cpp CommonLib.h
sm2sm.cpp –
sm2dtm.cpp –

kdtree common.cc kdtree common.h

4.5 Construction

All the functions coded are original, except those already included in the standard libraries

or the kd-tree library. The functions were placed in a common library file. Additional to the

library file, two applications were developed which both share the common set of processing

functions (Figure 4.1). The application used for SM on SM alignment is called “sm2sm”and

the application used for SM on DTM alignment called “sm2dtm”.

Common Library

sm2sm sm2dtm

Figure 4.1: The two applications needed for the study share a common set of functions.

The common library file contains all the functions used by both the applications. The

common library is compiled into an object file and linked into the executable application

during compilations. The functions are defined in a header file and included in the executable

source. The functions in the common library are for calculating:� The determinant of a 3× 3 matrix.� The inverse of a 3× 3 matrix.� The result of adding a scalar to a N × 3 matrix.� The result of subtracting a scalar to a N × 3 matrix.� The transpose of a 4× 4 matrix.

CHAPTER 4. SYSTEM IMPLEMENTATION 83� The norm of a 4× 1 matrix.� The dot product of a 4× 1 matrix.� The mean of a N × 3 matrix.� The cross covariance matrix of a N × 3 matrix.� A 4× 4 rotation matrix using Euler angles.� The QR decomposition of 4× 4 matrix.

Other functions which uses the above listed mathematical functions were also present. They

are:� Resample surfaced data set.� Read drawing exchange format (DXF) file into standard template library (STL) vector.� Save STL vector to comma separated variable (CSV) file.� Read exported SM points into STL vector.� Process global alignment between STL vector sets.� Process ICP alignment between STL vector sets.� Do RMS comparison between STL vector sets.

Application sm2sm

Sm2sm is the application used for SM on SM alignment. The two main input parameters

of the application is the template model in the form of a SM and the search model, also in

the form of a SM. The program has the following flowchart:

CHAPTER 4. SYSTEM IMPLEMENTATION 84

Figure 4.2: The flowchart of the sm2sm application used for SM on SM alignment.

The sm2sm executable takes the following parameters from the command line:� The template model in the form of a SM (gis) file.

CHAPTER 4. SYSTEM IMPLEMENTATION 85� The search model in the form of a SM (gis) file.� The number of match points to be used during global alignment.� The centre tolerance used during global alignment, specified in metres.� The azimuth reference angle of the template model, specified in degrees.� The maximum number of ICP iterations used during ICA alignment.

To build the program in Windows, the following should be typed in the command line:

make −f Makef i l e . win

To build the program in Linux, the following should be typed in the command line:

make −f Makef i l e . l i nux

Application sm2dtm

Sm2dtm is the application used for SM on DTM alignment. The two main input parameters

of the application are the template model in the form of a DTM and the search model in

the form of a SM. The application has the following flowchart:

CHAPTER 4. SYSTEM IMPLEMENTATION 86

Figure 4.3: The flowchart of the sm2dtm application used for SM on DTM alignment.

The sm2dtm executable takes the following parameters from the command line:

CHAPTER 4. SYSTEM IMPLEMENTATION 87� The template model in the form of a DTM (dxf) file.� The search model in the form of a SM (gis) file.� The number of match points to be used during global alignment.� The centre tolerance used during global alignment, specified in metres.� The azimuth reference angle of the template model, specified in degrees.� The global alignment resample grid spacing, specified in metres.� The ICA alignment resample grid spacing, specified in metres.� The maximum number of ICP iterations used during ICA alignment.� The x coordinate of the estimated centre point, specified in metres.� The y coordinate of the estimated centre point, specified in metres.� The z coordinate of the estimated centre point, specified in metres.

To build the program in Windows, the following should be typed in the command line:

make −f Makef i l e . win

To build the program in Linux, the following should be typed in the command line:

make −f Makef i l e . l i nux

Application MapDisplay

A third application was also developed. This application was not a requirement of the

study. It is used to graphically display the sets either before or after alignment. Models

are gendered using the OpenGL library as well as the OpenGL utility toolkit (Figure 4.4).

The application takes as inputs the template set and the data set. Models are displayed as

wireframes. Surfaced models are also displayed using resampled points.

4.6 Integration

Existing GNU C++ software under Red-Hat Linux 9

Integration into existing GNU C++ software requires minimal provision since both are

written in GNU C++. The library with the functions is compiled into an object file and

linked into the existing software.

CHAPTER 4. SYSTEM IMPLEMENTATION 88

Figure 4.4: MapDisplay, an OpenGL viewer application used for viewing models.

Existing Delphi 7 software under Microsoft Windows

Integration into Delphi 7 software require a few more provisions:� No operating specific calls must be used since this will prevent cross-platform com-

patibility.� Software is compiled into a dynamic library which can then be linked to the Delphi

software. This compilation can be done using free Windows C++ compilers such as

MinGW and Cygwin.

4.7 Testing

In this section we describe the procedure for the testing of the software. Different levels of

testing are used to ensure overall robustness and consistency.

Unit testing

Unit testing verifies the functionality of specific sections of code at the functional level.

The unit tests form the bulk of the tests that are done. The mathematical functions listed

in Section 4.5 were unit tested during development. The unit tests are executed in the

command line as a special input parameter. Typing “sm2sm test” or “sm2dtm test” will

start the unit tests. The list of functions testes are printed to the screen. The unit test

will stop if one the functions fail. Math functions are tested to have the same results as

functions executed using the MATLAB programming language.

CHAPTER 4. SYSTEM IMPLEMENTATION 89

Table 4.2: A list of batch scripts used for system testing.

Test Batch script

A AlignRun A Full.bat
B AlignRun B Full.bat
C AlignRun C Full.bat
D AlignRun D Full.bat
E DeployRun E Full.bat
F DeployRun F Full.bat
G DeployRun G Full.bat

System testing

The complete system was tested by doing alignment tests on data for which the correct

alignment was known. These tests are described in Chapter 5 as part of the system eval-

uation. During development unrealistic results normally indicated faults in the code. The

tests were automated using batch scripts, executed on Microsoft Windows XP platform.

Table 4.2 lists the batch scripts used for executing the tests. The system was also tested by

inspecting the alignment visually using the OpenGl MapDisplay viewer application. Faults

in the code were sometimes detected in the cases where models rendered abnormally.

Regression testing

Regression testing is done by periodically re-running the unit and system tests previously

described.

4.8 Conclusion

The waterfall model of development was applied to the software required for the study. All

the specified requirements were met. Two pieces of software of were designed, constructed

and tested. The outcome was predictable development time and minimal code fixes.

Chapter 5

System testing

5.1 Introduction

The georeferencing scheme is tested in two parts. The first set of tests are done in order to

evaluate the proposed global alignment algorithm in isolation. The second set of tests are

done to test the georeferencing system as a whole.

5.2 Global alignment tests

Alignment tests are performed to verify the accuracy of the prealignment algorithm. Seven

tests are done. Note that these are seven new tests, not to be confused with the data sets used

in section 3.2.3. The tests are performed on typical data sets. After each test the spatial

difference is calculated to verify the quality of alignment. We also measure the error in

heading as well as the resultant difference between the calculated and actual radar position.

The actual radar position is determined using the standard method of georeferencing using a

triangulated resectioning method as described in Chapter 1. The user estimated centre is 20

metres away from the actual radar centre in all test cases. We graph the spatial differences

in all cases using histograms. The algorithm tolerance values, for all tests, are set to the

following: A radius tolerance rtolerance of 5 metres. A centre tolerance ctolerance of 30 metres.

A delta height tolerance ztolerance of 2 metres. NDγ is set to 150 points for all cases. For

the first four tests (A to D) we use unsurfaced SMs as the template sets. For tests E to G

we use resampled TIN DTMs as the template sets. Note that comments on the results will

only be presented after all the results (Section 5.2.2).

90

CHAPTER 5. SYSTEM TESTING 91

5.2.1 Test results

Test A - SM alignment to SM

For test A we use a template set (Figure 5.1 (a)) sourced from a SM and a search set (Figure

5.1 (b)) also sourced from a SM. Both sets are very similar in size and as such represent

a simple alignment example. The template set is not a surface model and as such is not

resampled prior to the alignment. The template set contains 8336 points and the search

set 4379. The spatial bounds for the template set in the Cartesian axes are 4x = 230m,

4y = 559m and 4z = 88m. The spatial bounds for the search set in the Cartesian axes

are 4x = 140m, 4y = 411m and 4z = 72m.

Figure 5.2 (a) shows the models after alignment. Figure 5.2 (b) shows the spatial differ-

ence as a histogram.

(a) (b)

Figure 5.1: Test A (a) The template set prior to alignment. (b) The search set prior to alignment.

(a)

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.2: Test A (a) Both sets after alignment. (b) Spatial difference histogram.

CHAPTER 5. SYSTEM TESTING 92

Test B - SM alignment to SM

For test B we again have a template set and a search set both sourced from SMs. No

resampling is applied given that the template set is not a surfaced model. The template set

contains 7215 points and the search set 4276. The spatial bounds for the template set in

the Cartesian axes are 4x = 388m, 4y = 783m and 4z = 163m. The spatial bounds for

the search set in the Cartesian axes are 4x = 243m, 4y = 564m and 4z = 90m.

(a) (b)

Figure 5.3: Test B (a) The template set prior to alignment. (b) The search set prior to alignment.

(a)

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.4: Test B (a) Both sets after alignment. (b) Spatial difference histogram.

Figure 5.4 (a) shows the models after alignment. Figure 5.4 (b) shows the spatial differ-

ence as a histogram.

Test C - SM alignment to SM

For test C we again have a template set (Figure 5.5 (a)) and a search set (Figure 5.5 (b)) both

sourced from SMs. No resampling is applied given that the template set is not a surfaced

CHAPTER 5. SYSTEM TESTING 93

model. The template set contains 6785 points and the search set 4221. The spatial bounds

for the template set in the Cartesian axes are 4x = 949m, 4y = 374m and 4z = 177m.

The spatial bounds for the search set in the Cartesian axes are 4x = 691m, 4y = 244m

and 4z = 132m.

(a) (b)

Figure 5.5: Test C (a) The template set prior to alignment. (b) The search set prior to alignment.

(a)

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

200

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.6: Test C (a) Both sets after alignment. (b) Spatial difference histogram.

Figure 5.6 (a) shows the models after alignment. Figure 5.6 (b) shows the spatial differ-

ence as a histogram.

Test D - SM alignment to SM

For test D we again have a template set (Figure 5.7 (a)) and a search set (Figure 5.7 (b)) both

sourced from SMs. No resampling is applied given that the template set is not a surfaced

model. The template set in this case is much larger than the search set. The template set

contains 8834 points and the search set 2788. The spatial bounds for the template set in

CHAPTER 5. SYSTEM TESTING 94

the Cartesian axes are 4x = 654m, 4y = 357m and 4z = 211m. The spatial bounds for

the search set in the Cartesian axes are 4x = 328m, 4y = 118m and 4z = 108m.

(a) (b)

Figure 5.7: Test D (a) The template set prior to alignment. (b) The search set prior to alignment.

(a)

0 2 4 6 8 10 12 14
0

50

100

150

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.8: Test D (a) Both sets after alignment. (b) Spatial difference histogram.

Figure 5.8 (a) shows the models after alignment. Figure 5.8 (b) shows the spatial differ-

ence as a histogram.

Test E - SM alignment to DTM

For test E the template set (Figure 5.9 (a)) is sourced from a TIN DTM and the search set

(Figure 5.9 (b)) from a SM. The template set is resampled using a 7m grid spacing. The

resampling results in evenly dispersed point distribution for the template set. In this case

the search set is much smaller in size when compared to the template set. The template

set contains 786704 points and the search set 5567. After resampling the template set

contains 59830 points. The spatial bounds for the template set in the Cartesian axes are

CHAPTER 5. SYSTEM TESTING 95

4x = 1350m, 4y = 2175m and 4z = 336m. The spatial bounds for the search set in the

Cartesian axes are 4x = 330m, 4y = 1055m and 4z = 120m.

(a) (b)

Figure 5.9: Test E (a) The template set prior to alignment. (b) The search set prior to alignment.

(a)

−5 0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.10: Test E (a) Both sets after alignment. (b) Spatial difference histogram.

Figure 5.10 (a) shows the models after alignment. Figure 5.10 (b) shows the spatial

difference as a histogram.

Test F - SM alignment to DTM

For test F the template set (Figure 5.11 (a)) is again sourced from a TIN DTM and the

search set (Figure 5.11 (b)) from a SM. The template set is resampled using a 7m grid

spacing. The resampling results in evenly dispersed point distribution for the template

set. The template set contains 93652 points and the search set 6125. After resampling the

template set contains 5949 points. The spatial bounds for the template set in the Cartesian

CHAPTER 5. SYSTEM TESTING 96

axes are 4x = 393m, 4y = 1056m and 4z = 112m. The spatial bounds for the search set

in the Cartesian axes are 4x = 180m, 4y = 524m and 4z = 75m.

(a) (b)

Figure 5.11: Test F (a) The template set prior to alignment. (b) The search set prior to alignment.

(a)

0 2 4 6 8 10 12
0

50

100

150

200

250

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.12: Test F (a) Both sets after alignment. (b) Spatial difference histogram.

Figure 5.12 (a) shows the models after alignment. Figure 5.12 (b) shows the spatial

difference as a histogram.

Test G

For test G the template set (Figure 5.13 (a)) is sourced from a TIN DTM and the search

set (Figure 5.13 (b)) from a SM. The template set is resampled using a 7m grid spacing.

The resampling results in evenly dispersed point distribution for the template set. The

template set contains 802256 points and the search set 8834. After resampling the template

set contains 44766 points. The spatial bounds for the template set in the Cartesian axes are

CHAPTER 5. SYSTEM TESTING 97

4x = 2193m, 4y = 1211m and 4z = 366m. The spatial bounds for the search set in the

Cartesian axes are 4x = 654m, 4y = 357m and 4z = 211m.

(a) (b)

Figure 5.13: Test G (a) The template set prior to alignment. (b) The search set prior to

alignment.

(a)

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Spatial difference (m)

O
cc

u
rr

en
ce

(b)

Figure 5.14: Test G (a) Both sets after alignment. (b) Spatial difference histogram.

Figure 5.14 (a) shows the models after alignment. Figure 5.14 (b) shows the spatial

difference as a histogram.

5.2.2 Test results

The search set aligned to correct local positions for all the tests covered above, tests A to

D with unsurfaced SM template sets and tests E to G with resampled DTM template sets.

The results of the tests are listed in table 5.1.

CHAPTER 5. SYSTEM TESTING 98

Table 5.1: The results of the prealignment tests A to G.

Test Heading error Centre position difference Spatial difference Run-time

RMS Std. deviation

(deg) (m) (m) (m) (sec)

A 1.02◦ 9.60 2.96 1.33 165
B 0.03◦ 0.51 1.58 1.41 13
C 0.31◦ 8.11 3.96 2.04 9
D 1.88◦ 3.42 2.89 1.49 6
E 4.01◦ 15.41 7.82 3.49 33
F 1.22◦ 4.04 4.12 1.34 5
G 2.23◦ 12.59 7.16 2.92 15

For most of the tests the alignment resulted in a heading error of less than 2 degrees.

For the seven tests conducted, the position errors average 7.67 metres. All the tests resulted

in RMS spatial difference errors of less than 8 metres. The errors in spatial difference

average 4.36 metres. Although the tests done in section 3.2.3 were from different data sets,

a comparison can still be made. The spatial errors are similar, indicating that the alignment,

for most cases, is converging to the correct local minimum.

5.3 Full alignment tests

5.3.1 Introduction

In this section we repeat the tests from section 5.2. Sets are aligned using the full alignment

scheme presented in figure 3.37. For the tests, we verify that the full scheme – as described

in this Chapter 3 – meets the georeferencing requirements stipulated in Chapter 1. For

all tests we render histograms showing final spatial difference as well as graphs which plot

RMS spatial difference versus alignment iteration count. The iteration counts are just for

the ICA alignment. Parameters used in the tests include the maximum number of iterations

maxiterations = 100 and the convergence constant stolerance = 0.0001m. Note that comments

on the results will only be presented after all the results.

CHAPTER 5. SYSTEM TESTING 99

Test A - SM alignment to SM

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

0 5 10 15 20 25
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.15: Test A (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

Test B - SM alignment to SM

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

1 2 3 4 5 6 7 8
1.58

1.5805

1.581

1.5815

1.582

1.5825

1.583

1.5835

1.584

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.16: Test B (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

CHAPTER 5. SYSTEM TESTING 100

Test C - SM alignment to SM

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

1 2 3 4 5 6 7 8 9
3.54

3.56

3.58

3.6

3.62

3.64

3.66

3.68

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.17: Test C (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

Test D - SM alignment to SM

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

0 10 20 30 40 50 60
2.76

2.77

2.78

2.79

2.8

2.81

2.82

2.83

2.84

2.85

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.18: Test D (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

CHAPTER 5. SYSTEM TESTING 101

Test E - SM alignment to DTM

0 5 10 15 20
0

50

100

150

200

250

300

350

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

0 20 40 60 80 100
3.5

4

4.5

5

5.5

6

6.5

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.19: Test E (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

Test F - SM alignment to DTM

0 2 4 6 8 10
0

50

100

150

200

250

300

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

0 10 20 30 40 50 60 70

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.3

2.31

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.20: Test F (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

CHAPTER 5. SYSTEM TESTING 102

Test G - SM alignment to DTM

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

S
p
at

ia
l
d
iff

er
en

ce
(m

)

Occurrence

(a)

0 5 10 15 20 25 30
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

R
M

S
S
p
at

ia
l
d
iff

er
en

ce
(m

)

Iteration

(b)

Figure 5.21: Test G (a) The spatial differences as a histogram. (b) The RMS spatial difference

plotted against iterations.

5.3.2 Test results

The results of the tests indicate that 6 out of 7 tests showed improvement in the quality

of alignment compared to the tests done with global alignment only (Table 5.2). Graphs

5.15-5.21 (b) show that iterative correspondence alignment improved the spatial difference

in all cases. Table 5.3 shows the percentage of improvement of the heading accuracy as well

as the percentage of improvement in the radar centre position: 4 out of 7 tests indicate an

improvement in heading accuracy and 6 out of 7 tests indicate an improvement in position

accuracy. Tests done on resampled sets (E to G) resulted in a greater improvement in the

absolute position error compared to the tests done on unsurfaced sets

CHAPTER 5. SYSTEM TESTING 103

Table 5.2: The results for tests using the full alignment scheme. The same data sets from section

5.2 were used.

Test Iterations Heading error Centre pos. difference Spatial difference Run-time

RMS RMS imprv. Std.dev.

(deg) (m) (m) (m) (m) (sec)

A 21 0.02◦ 6.57 2.25 0.71 1.16 195
B 8 0.07◦ 0.53 1.58 0.00 1.39 21
C 9 0.35◦ 6.37 3.55 0.41 1.77 17
D 57 1.19◦ 2.10 2.76 0.13 1.41 51
E 98 0.99◦ 2.07 3.77 4.05 2.13 636
F 64 1.41◦ 1.22 2.22 1.9 1.04 120
G 28 0.86◦ 3.97 2.96 4.2 1.29 62

Table 5.3: The percentage of improvement for the tests compared to the results from section 5.2.

The table also shows the final heading and position error as a percentage of the required accuracy

specification.

Test Heading error Centre position difference

Per. improvement As % of 2 deg. Per. improvement As % of 6m

(%) (%) (%) (%)

A 98.04 1.00 31.56 109.50
B -133.33 3.50 -3.92 8.83
C -12.90 17.50 21.45 106.17
D 36.70 59.50 38.60 35.00
E 75.31 49.50 86.57 34.50
F -15.57 70.50 70.05 20.17
G 61.43 43.00 68.47 66.17

5.4 Conclusion

The complete design was tested on surfaced and unsurfaced models. The tests performed

indicate that we have met the requirements stipulated in Chapter 1. All the tests passed the

specified heading requirement. 5 out of 7 tests passed the specified allowable position error.

The maximum run-time was 11 minutes, which is within the specified allowable operation

time.

Chapter 6

Conclusions and recommendations

6.1 Research results

6.1.1 Project objectives

The first objective of this study was to investigate existing alignment algorithms as possible

solutions to our problem. Chapter 2 examined some of the literature covering model align-

ment and related topics. In the same chapter, the pertinent local alignment algorithms were

considered and some chosen for our design. It was established that least squares estimation

is a very common method of three-dimensional model alignment, and that it would function

well in our design. The literature did, however, also show that a global alignment algorithm

would be required for our design. A global alignment algorithm was proposed and described

in Chapter 3. The first objective was achieved in full.

The second objective was to develop a complete georeferencing scheme which considers

surfaced and unsurfaced models, converges to alignment within minutes of operation time,

and provides a heading accuracy of 2 degrees and an absolute position accuracy of 6 metres.

As part of the design, a baseline was established for which the expected spatial differences

were calculated. From the literature, iterative least squares alignment was chosen as a local

alignment algorithm, and shown to work well for that function. A global alignment algorithm

was proposed, forming a very important contribution to the study. It is now possible to

georeference the radar using an estimated centre position only. Another contribution to

the design was a map resampling scheme which conditions maps to ensure that points are

distributed evenly. It also provides the ability to control the detail level of the template

set, which in turn speeds up the georeferencing process. The ability to resample maps is

another important contribution to the georeferencing system. The second objective was

achieved in full, to the effect that a full georeferencing system was developed. It can also be

noted that the design described can also be applied to other alignment scenarios, and not

104

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 105

only radar alignment. The solution is general enough to be useful for many other alignment

applications, such as laser model alignment. Chapter 3 describes this design.

The third objective was to implement a complete georeferencing scheme as a cross-

platform application, in a non-interpreted programming language without the use of plat-

form specific third party libraries. Chapter 4 describes the implementation steps. The

applications created compile under Microsoft Windows XP and Red Hat Linux, using the

same set of source code. Integration with existing software can be done very easily by

compiling the source into a dynamically linked library (DLL) file under Windows, or by

compiling the source into a dynamic shared object (DSO) file under Linux. This will allow

the routines to be linked into existing software dynamically for both GNU C++ and Delphi

7. The software is a very important contribution to the study. It focuses directly on the

requirement of georeferencing a mine surveying radar. It was shown that the software is

robust and easy to build for the required platform. Its simple, but effective design, makes

possible modification easy. The objective was achieved in full.

Through tests conducted in Chapter 5 on surfaced and unsurfaced models, we have

shown that the alignment converges within minutes. Furthermore, we have also shown that

for all tests the heading error was less than 2 degrees, and for 5 out of the 7 tests, the

absolute position error was less than 6 metres. The tests also resulted in the same order

of spatial difference as recorded in the baseline results. Tests that preformed poorly are

contributed to template sets of insufficient resolution, and to the lack of distinguishable

features in the geographical makeup of the sets. Most of the DTMs used in the study were

sourced from hand surveyed points. It is possible that the georeferencing accuracy of the

system could be maximised when DTMs sourced from laser are used, as they are known

to produce very high resolution models. Also, as stated before, ideally, the template set,

as well as the search set should contain a sufficient amount of distinguishable geographical

features. Sets of cylindrical shape should be avoided, and ideally the search set should cover

as wide an area as possible. The objective was achieved to the point where most of the tests

passed the stipulated accuracy limit.

6.2 Further work

Despite the careful consideration that went into the research, design and implementation of

this georeferencing system, there are some things that could be improved upon:

The proposed global alignment algorithm could be expanded to be more robust against

outlier points. Currently the algorithm will align poorly if the search set corner points,

happen to be outliers. The algorithm could be modified to use alternate points when the

corner points are considered to be outliers. The algorithm can also be improved upon

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 106

by making use of an improved random selection criterion. Currently the algorithm picks

a number of randomly selected points to evaluate the quality of the fit. This selection

could be done more strategically, which in turn could possibly improve the final alignment

quality. The proposed global alignment algorithm could also be replaced by a more general

alignment solution. A genetic algorithm, trained for alignment is a good example for such a

replacement. We discuss one such genetic algorithm in Chapter 2. A more general solution

might make it possible to align for six degrees-of-freedom instead of only four. Such a general

solution might, however, result in a significant increase in overall run-time.

The process of correspondence is a major factor in the run-time of the local alignment

algorithm used in this study (see e.g. [7], [4], [6]). The run-time can be decreased sig-

nificantly if the correspondence is done more efficiently, given that it is repeated so many

times. Local alignment can also be expanded to be more robust by considering partially

overlapping data sets.

The algorithms used in this study rely heavily on linear algebra functions. The linear

algebra functions used in the software were, however, all written from first principles in

C++. Optimising these functions may result in a decrease in alignment time. Otherwise,

optimised mathematical libraries can be considered for Windows or Linux respectively. Two

sets of source code may be required, if this option is to be investigated.

Graphics processing unit (GPU) parallelisation libraries are now readily available for

development. The proposed global alignment algorithm could, in theory, be optimised using

GPU parallelisation. The template set, could for instance, be split into several parts, and

then for each part a separate process can be instantiated. When processing is completed,

each process reports back with its best alignment position. The process which produces the

lowest spatial difference will be considered to be optimal.

6.3 Summary

The objectives were achieved, with the project culminating in the successful implementation

of a mine surveying radar georeferencing scheme. The core of the scheme is largely applicable

to mine surveying radar, although it can be applied to more general alignment problems.

In achieving the objectives, the envisioned contributions were also realised.

Firstly, a software implementable alignment scheme was developed which does not require

full prealignment, useful for georeferencing a mine surveying radar. Secondly, a resampling

scheme was developed useful in controlling the number of points used to represent a three-

dimensional model and for obtaining the maximum accuracy out of surfaced models through

surface resampling.

Bibliography

[1] REUTECH RADAR SYSTEMS, “Private communications”, 2008-2010.

[2] M.I. Skolnik, Introduction to Radar Systems, McGraw-Hill, Tokyo, international stu-

dent edition edition, 1962.

[3] S. Kingsley and S. Quegan, Understanding Radar Systems, SciTech, Mendham, 1999.

[4] Zhengyou Zhang, “Iterative point matching for registration of free-form curves and sur-

faces”, International Journal of Computer Vision, vol. 13, no. 2, pp. 119–152, October

1994.

[5] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point

sets”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 9, no. 5, pp. 698–700, September

1987.

[6] Y. Chen and G. Medioni, “Object modeling by registration of multiple range images”,

1991, pp. 2724–2729 vol.3.

[7] P. J. Besl and H. D. Mckay, “A method for registration of 3-d shapes”, Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 14, no. 2, pp. 239–256, 1992.

[8] L. Lucchese, G.M. Cortelazzo, and C. Monti, “High resolution estimation of planar

rotations based on fourier transform and radial projections”, in Circuits and Systems,

1997. ISCAS ’97., Proceedings of 1997 IEEE International Symposium on, 9-12 1997,

vol. 2, pp. 1181 –1184 vol.2.

[9] R. Giannitrapani and V. Murino, “Three-dimensional skeleton extraction by point

set contraction”, in Image Processing, 1999. ICIP 99. Proceedings. 1999 International

Conference on, 1999, vol. 1, pp. 565 –569 vol.1.

[10] A. E. Johnson, Spin-images: A representation for 3-d surface matching, PhD thesis,

Carnegie Mellon University, 1997.

[11] T. Masuda and N. Yokoya, “A robust method for registration and segmentation of

multiple range images”, 1994, pp. 106–113.

107

BIBLIOGRAPHY 108

[12] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed iterative closest

point algorithm”, in In International Conference on Pattern Recognition, 2002, pp.

545–548.

[13] M. W. Walker, L. Shao, and R. A. Volz, “Estimating 3-d location parameters using

dual number quaternions”, CVGIP: Image Underst., vol. 54, no. 3, pp. 358–367, 1991.

[14] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions”,

Journal of the Optical Society of America A, vol. 4, no. 4, pp. 629–642, 1987.

[15] O. D. Faugeras and M. Hebert, “A 3-d recognition and positioning algorithm using

geometrical matching between primitive surfaces”, in IJCAI’83: Proceedings of the

Eighth international joint conference on Artificial intelligence, San Francisco, CA, USA,

1983, pp. 996–1002, Morgan Kaufmann Publishers Inc.

[16] V. Murino, L. Ronchetti, U. Castellani, and A. Fusiello, “Reconstruction of complex

environments by robust pre-aligned icp”, in In Proc. Third Int. Conf. on 3-D Digital

Imaging and Modeling, 2001, pp. 187–194.

[17] L. Lucchese, G. Doretto, and G. M. Cortelazzo, “A frequency domain technique for

range data registration”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 11, pp.

1468–1484, November 2002.

[18] A. E. Johnson and M. Hebert, “Surface matching for object recognition in complex 3-d

scenes”, Image and Vision Computing, vol. 16, pp. 635–651, 1998.

[19] A. E. Johnson and M. Hebert, “Using spin images for efficient object recognition in

cluttered 3d scenes”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 5, pp.

433–449, 1999.

[20] Bellon Olga R.P. Boyer Kim L. Gotardo Paulo F. U. Silva, Luciano, “Low-overlap range

image registration for archaeological applications”, June 2003, vol. 1, pp. 9 –9.

[21] Zhilin Li, Qing Zhu, and Chris Gold, Digital Terrain Modeling: Principles and Method-

ology, CRC Press, 2005.

[22] A. Gruen and D. Akca, “Least squares 3d surface and curve matching”, ISPRS Journal

of photogrammetry and remote sensing, vol. 59, pp. 151–174, 2005.

[23] J. Lee, “Comparison of existing methods for building triangular irregular network, mod-

els of terrain from grid digital elevation models”, International journal of geographical

information systems, vol. 5, no. 3, pp. 267–285, 1991.

BIBLIOGRAPHY 109

[24] P. Fernandes, P. Girdinio, M. Repetto, and G. Secondo, “Refinement strategies in

adaptive meshing”, Magnetics, IEEE Transactions on, vol. 28, no. 2, pp. 1739 –1742,

mar. 1992.

[25] Leonidas Guibas and Jorge Stolfi, “Primitives for the manipulation of general subdivi-

sions and the computation of voronoi”, ACM Trans. Graph., vol. 4, no. 2, pp. 74–123,

April 1985.

[26] S. Fortune, “A sweepline algorithm for voronoi diagrams”, in SCG ’86: Proceedings of

the second annual symposium on Computational geometry, New York, NY, USA, 1986,

pp. 313–322, ACM Press.

[27] P. Su and R. Drysdale, “A comparison of sequential delaunay triangulation algorithms”,

Computational Geometry, vol. 7, no. 5-6, pp. 361 – 385, 1997, 11th ACM Symposium

on Computational Geometry.

[28] L. Prechelt, “Comparing java vs. c/c++ efficiency differences to inter-personal differ-

ences”, 1999.

[29] G. Shechter, “http://www.mathworks.com/matlabcentral/fileexchange/4586”, 2010.

[30] D. Lay, Linear algebra and its applications, Pearson Education, Inc., United States of

America, third international edition edition, 2003.

[31] J. L. Bentley, “Multidimensional binary search trees used for associative searching”,

Commun. ACM, vol. 18, no. 9, pp. 509–517, September 1975.

[32] David Simon, Fast and Accurate Shape-Based Registration, PhD thesis, Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA, December 1996.

Appendix A

Gram–Schmidt Jacobi iterative

method

A.1 Introduction

A general way to calculate the principal eigenvector of a symmetric square matrix is by

using singular value decomposition (SVD). The eigenvectors are contained within the col-

umn vectors of unitary matrix U , when A = UDV T and A = AT [30]. However, to

implement a singular value decomposition algorithm from first principles is unnecessary

when the principal eigenvector is the only required unknown. Presented here – as shown in

[30] – is an alternate method for calculating the principal eigenvector, by using an iterative

Gram–Schmidt Jacobi process, useful for when the subject matrix symmetric and of size NÖ N .

A.2 The proposed method

The method is repeated iteratively. For each iteration of the Gram–Schmidt process an or-

thonormal basis is constructed. Our requirement is for three dimensions, but the process can

be applied easily for N dimensions. Given a N Ö N subject matrix A =
[

x1 · · · xp

]

,

construct column vectors given by

v1 = x1, (A.1)

v2 = x2 −
x2·v1

v1 · v1
v1, (A.2)

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2 and (A.3)

vp = xp −
xp · v1

v1 · v1
v1 −

xp · v2

v2 · v2
v2 − . . .−

xp · vp−1

vp−1 · vp−1
vp−1. (A.4)

A–1

APPENDIX A. GRAM–SCHMIDT JACOBI ITERATIVE METHOD A–2

Construct orthonormal basis

P =
[

v1

‖v1‖
· · · vp

‖vp‖

]

. (A.5)

Provided that subject matrix A = AT , the eigenvectors are iteratively calculated as

A1 = A and Ak+1 = P−1
k AkP k. (A.6)

P k is a orthonormal basis, and so P−1
k = P T

k . The eigenvectors are calculated iteratively as

Dk+1 = DkAk+1 where D1 = I3. (A.7)

After convergence the first column of D will contain the principal eigenvector, and A11 the

corresponding eigenvalue [30].

A.3 Conclusion

The principal eigenvector and corresponding eigenvalue is calculated using a minimal set of

steps. This method is easy to implement, compared to implementation of an SVD algorithm.

Appendix B

Accelerating closest point

correspondence

B.1 Introduction

In Chapter 3 we introduced various methods of point correspondence. Most of them have

limited application to this problem since they require meshed models. From the correspon-

dence algorithms mentioned, closest point correspondence (CPC) is the most practical since

it also works on unmeshed point clouds. CPC is also the simplest algorithm to implement

since it requires only the most basic of mathematical functions. CPC is, however (like all

correspondence algorithms), computationally expensive and takes up the majority of the

execution time during the alignment process. In this chapter we examine computational

implications of the linear CPC algorithm and how to optimise it.

B.2 Linear closest point

The linear closest point algorithm is the most basic form of the closest point algorithm

since no pre-processing is necessary. The spatial difference is computed using either the

euclidean or the euclidean squared distance metric. The test point is compared to all the

points in the template set and therefor has a complexity of O(NX). If we compare all the

points in the search set with all the points in the template set, then the complexity order is

O(NXND), where NX is the size of the template set and ND is the size of search set. For

the purpose of aligning DTMs and SMs we would expect the alignment to converge within

the order of minutes. It is typical for DTMs and radar range images to contain thousands or

even hundreds of thousands of points. In this section we examine the implications involved

with large point sets on the linear CPC algorithm. We conduct several tests to compare

processing times.

B–3

APPENDIX B. ACCELERATING CLOSEST POINT CORRESPONDENCE B–4

(a) (b)

Figure B.1: (a) A typical TIN DTM rendered with triangle facelets. (b) A resampled set of the

same DTM with 10 metre grid spacing.

Linear closest point correspondence test

In order to establish a baseline of typical execution times for linear closest point correspon-

dence, we do a test. For the test we do the following:

We create a template point set using a typical TIN DTM (Figure 3.3 (a)) and define it

as

X = {xi} ∀ i ∈ {1, . . . , NX} .

We resample X using various grid spacings, defining the resampled sets as

Y α = resample(X, α) ∀ α ∈ {60, 40, 20, 10, 8, 6, 4} ,

where α indicates the grid spacing. The size of resampled set NYα is inversely proportional

to the grid spacing such that

NY60
< NY40

< NY20
< NY10

< NY8
< NY6

< NY4
.

Figure 3.3 (b) depicts the resampled set Y 10, resampled with a grid spacing of 10 metres.

In order to perform a correspondence test, a second set of points is required. We generate

such a set by randomly selecting points from the resampled set. The new set is rotated and

translated so as to simulate a practical alignment scenario. For the test we assume that the

search set Sα has 20% the number of points contained in Y α.

From each Y α select a subset of points such that

Sα ⊆ Y α and NSα = 0.2×NYα.

The elements of Sα are picked randomly from Y α using an uniform distribution function.

Translate and rotate Sα to be more representative of a practical alignment scenario. The

APPENDIX B. ACCELERATING CLOSEST POINT CORRESPONDENCE B–5

order magnitude of the CPC algorithm during each alignment iteration is O(NSαNYα). The

CPC algorithm is executed once, simulating one iteration of alignment. We perform all

tests on an Intel Pentium 4 3.0 GHz machine with 512 MB of RAM. The algorithm is

implemented using the GNU C++ programming language calling standard glibc functions.

The Linux application gprof is used to profile the processing times.

Table B.1: The processing times of the closest point correspondence algorithm on point sets of

various sizes. Larger sets require longer processing time.

Grid spacing α NYα NSα Linear search time
(m) (s)

60 429 85 <0.01
40 963 192 0.02
20 3864 772 0.17
10 15483 3096 4.19
8 24180 4836 10.48
6 43002 8600 33.26
4 96742 19348 164.77

Refer to Table B.1 for the results of the CPC tests. The processing times for the smaller

sets are insignificant (grid spacings 60 to 20), taking less than a second, but as the sets

become larger (grid spacings 10 to 4) the processing times are prolonged to seconds and

even minutes. We must also consider that the processing times are only for one iteration of

alignment. In the section to follow we examine a spatial subdivision technique which will

accelerate the CPC algorithm and reduce processing times.

B.3 kd-tree space partitioning

In this section we introduce a very effective spatial search method involving a divide-and-

conquer spatial partitioning technique which reduces the search complexity from O(NSαNYα)

to O(NSα logNYα) [31]. The model point set Y α, is pre-processed into an abstract data

structure (ADS). The ADS is a kd-tree (also known as the k-dimensional tree) . A kd-tree

is a special case of the binary tree structure (BTS). It has been shown [32] that the kd-tree

storage structure accelerates the alignment process, reducing the processing time. kd-tree

acceleration is a general search solution which can be applied to multi-dimensional data sets,

but is especially effective for three-dimensional data sets. kd-tree optimisation involves two

steps: kd-tree construction and tree traversal (searching).

During construction, the BTS is filled by bisecting the point set into spatial subsets and

inserting them into the various branches of the tree structure. The second and final step

involves a search algorithm which traverses the kd-tree in search of the closest point.

APPENDIX B. ACCELERATING CLOSEST POINT CORRESPONDENCE B–6

We briefly explain kd-tree construction using a two dimensional example taken from [31].

Consider point set X = {(50, 50) , (80, 15) , (10, 70) , (70, 85) , (25, 20) , (40, 85) , (10, 60)}. The

two-dimensional space is bisected according to the split dimension (determined by the cur-

rent tree depth) and placed within the BTS (Figure B.2 (a) and (b)). After the kd-tree

construction, a recursive search algorithm is used to search for the closest point. See [31]

for additional information.

C(80,15)

F(70,85)

E(40,85)

B(10,70)

G(10,60)

D(25,20)

A(50,50)

(100,100)

(100,0)(0,0)

(0,100)

(a)

A

B C

D E

G

FSplit on X

Split on X

Split on Y

Split on Y

(b)

Figure B.2: (a) A two-dimensional example taken from [31] showing a spatially divided point

set. (b) The kd-tree structure of the same example. The splitting dimension is determined by the

current tree depth.

kd-tree accelerated closest point correspondence test

We perform a series of tests using the same sets as in Table B.1. The results of the tests

can be seen in Table B.2. The processing times of the kd-tree accelerated searches for the

resampled sets with grid spacings 4 to 20 were significantly reduced when compared to the

equivalent linear search times.

Table B.2: The processing times of the linear closest point correspondence algorithm as well as

the kd-tree accelerated closest point search.

α NYα
NSα

Linear search time kd-tree const. time kd-tree search time Time diff.

(m) (s) (s) (s) (%)

60 429 85 <0.01 <0.01 <0.01 –
40 963 192 0.02 <0.01 <0.01 –
20 3864 772 0.17 0.01 0.03 23.5
10 15483 3096 4.19 0.06 0.31 8.83
8 24180 4836 10.48 0.11 0.98 10.4
6 43002 8600 33.26 0.19 2.88 9.23
4 96742 19348 164.77 0.4 16.56 10.3

APPENDIX B. ACCELERATING CLOSEST POINT CORRESPONDENCE B–7

B.4 Conclusion

The CPC algorithm is computationally expensive, especially when applied to very large

point sets. Typical DTM sets will require minutes of processing time when processed by a

linear CPC algorithm. The CPC algorithm can however be significantly accelerated using

a kd-tree storage structure. The tree construction requires some overhead and additional

processing time but is still insignificant when compared to the computational expense of the

linear CPC algorithm.

