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Abstract 

Background: 

The diagnosis of tuberculosis (TB) remains a challenge in children. There is an urgent need 

for new tools for early diagnosis of TB disease in children  

Objectives: 

To evaluate the usefulness of a previously described 3-marker cerebrospinal fluid (CSF) 

biosignature (VEGF, IL-13 and cathelicidin LL-37) and other CSF biomarkers for diagnosis of 

tuberculous meningitis (TBM), and evaluate the utility of a previously identified adult 7-marker 

serum protein biosignature (CRP, IFN-γ, IP-10, CFH, Apo-AI, SAA and transthyretin) and other 

blood biomarkers for diagnosis of pulmonary TB (PTB) and TBM in children.  

Methods: 

CSF and serum samples were collected from children with suspected meningitis, whereas 

serum samples were collected from children with suspected PTB for investigation of 

biomarkers for the diagnosis of childhood TBM and PTB, respectively. Children in the TBM 

project were enrolled at the Tygerberg Academic Hospital, whereas those in the PTB study 

were enrolled at the Red Cross War Memorial Children’s Hospital in Cape Town, South Africa. 

Children were classified as TBM or no-TBM and PTB or no-PTB, using combination of clinical, 

radiological and laboratory findings. Using a multiplex platform, the concentrations of 69 host 

biomarkers were evaluated in CSF and serum samples from children in the TBM study, 

whereas 40 host markers were evaluated in serum samples from children in the PTB study. 

The diagnostic accuracies of individual biomarkers were assessed by receiver operator 

characteristics (ROC) curve, whereas the General Discriminant Analysis (GDA) was used to 

assess the accuracies of combinations between different host biomarkers. 

Results: 

Of the 69 host biomarkers evaluated in CSF and serum samples from children in the TBM 

study, multiple individual host biomarkers showed potential as diagnostic candidates for TBM 

as ascertained by area under the ROC curve (AUC). The previously described 3-marker CSF 

biosignature was validated in the project. However, refinement of the biosignature by 

substitution of IL-13 and cathelicidin LL-37 with two new proteins (MPO and IFN-γ) resulted in 

a new biosignature with improved accuracy (AUC of 0.97). Furthermore, we identified a 4-

marker CSF biosignature (sICAM-1, MPO, CXCL8 and IFN-γ), which also diagnosed TBM 

with AUC of 0.97. The adult 7-marker serum biosignature, modified by the replacement of 

transthyretin with NCAM1, diagnosed TBM with AUC of 0.80.  However, a childhood TBM-

Stellenbosch University  https://scholar.sun.ac.za



 

iii 

 

specific serum biosignature (adipsin, Aβ42 and IL-10) diagnosed TBM with AUC of 0.84. The 

adult signature performed with an AUC of 0.79 in children with PTB, showing no significant 

difference in the diagnosis of childhood PTB or TBM. However, novel childhood PTB-specific 

biosignatures performed better than the adult 7-marker signature. 

Conclusion: 

The adult 7-marker signature showed potential in the diagnosis of both PTB and TBM in 

children recruited from a high TB incidence area. We validated a previously established 3-

marker CSF biosignature, but a refined signature showed much improved accuracy. The 

biosignatures identified in this thesis hold potential for development of new diagnostic tools for 

PTB and TBM in children for possible use at the point-of-care. Our findings require further 

validation in larger and multi-site studies. 
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Opsomming 

 

Agtergrond: 

Die diagnose van tuberkulose (TB) by kinders bly ‘n uitdaginig. Daar is ‘n dringende behoefte 

aan nuwe toestelle vir die vroeë diagnose van TB-siekte by kinders. 

Doelwitte: 

Om die doeltreffendheid van ‘n voorheen beskryfde 3-merker serebrospinale vloeistof (CSF) 

bioprofiel (VEGF, IL-13 and cathelicidin LL-37) en ander CSF biomerkers vir die diagnose van 

tuberkulose meningitis (TBM) te evalueer, asook die bruikbaarheid van ‘n voorheen 

geïndetifiseerde volwasse 7-merker serumproteïn bioprofiel (CRP, IFN-γ, IP-10, CFH, Apo-

AI, SAA en transthyretin) en ander bloedbiomerkers te evalueer vir die diagnose van 

pulmonale TB (PTB) en TBM by kinders. 

Metodes: 

CSF- en serummonsters is verkry van kinders wat vermoedelik meningitis het, terwyl 

serummonsters van kinders met vermeende PTB verkry is om die biomerkers se vermoëns 

om kindertyd TBM and PTB, onderskeidelik, te diagnoseer te ondersoek. Die kinders in die 

TBM-projek is ingeskryf by die Tygerberg Akademiese Hospitaal, terwyl dié wat aan die PTB 

studie deelgeneem het by die Rooikruis Oorlogsgedenkhospitaal in Kaapstad ingeskryf is. Die 

kinders is geklassifiseer as TBM of nie-TBM, en PTB of nie-PTB deur gebruik te maak van ‘n 

kombinasie van kliniese-, radiologiese-, en laboratoriumbevindings. ‘n Multipleks-platform is 

benut om die konsentrasies van 69 gasheerbiomerkers in CSF- en serummonsters van 

kinders in die TBM-studie en 40 gasheerbiomerkers in serummonsters van die kinders in die 

PTB-studie, onderskeidelik, te evalueer. Die diagnostiese akkuraatheid van individuele 

biomerkers is met die ontvanger-operateur-eienskappe (ROC) kurwe geassesseer, terwyl die 

Algemene Diskriminant Analise (GDA) gebruik is om die akkuraatheid van kombinasies tussen 

verskillende gasheerbiomerkers te bepaal.  

Resultate: 

Van die 69 gasheerbiomerkers wat in die CSF- en serummonsters van kinders in die TBM-

studie geëvalueer is, het verskeie individuele gasheerbiomerkers potensiaal getoon as 

diagnostiese kandidate vir TBM, soos vasgestel deur die area onder die ROC-kurwe (AUC). 

Validasie van die voorheen beskryfde 3-merker CSF bioprofiel is in die projek uitgevoer. 

Verfyning van die bioprofiel deur die vervanging van IL-13 en cathekicidin LL-37 met twee 
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nuwe proteïene (MPO en IFN-γ), het gelei tot ‘n nuwe bioprofiel met verbeterde akkuraatheid 

(AUC van 0.97). Daarbenewens, is daar ‘n 4-merker CSF-bioprofiel geïdentifiseer (sICAM-1, 

MPO, CXCL8 en IFN-γ) wat ook TBM met ‘n AUC van 0.97 gediagnoseer het. Die volwasse 

7-merker serum bioprofiel, gewysig deur die vervanging van transthyretin met NCAM1, het 

TBM met ‘n AUC van 0.80 gediagnoseer. ‘n TBM-spesifieke serum bioprofiel (adipsin, Aβ42 

en IL-10) het egter TBM met ‘n AUC van 0.84 gediagnoseer. Die volwasse teken het ‘n AUC 

van 0.79 in kinders met PTB opgelewer en dus geen beduidende verskil tussen die diagnose 

van kindertyd PTB of TBM getoon nie. Daarteenoor, het nuwe kindertyd PTB-spesifieke 

bioprofiele beter gevaar as die volwasse 7-merker profiel. 

Afsluiting: 

Die volwasse 7-merker profiel het potensiaal getoon om beide PTB en TBM by kinders 

afkomkstig van hoë TB-voorkomsgebiede te diagnoseer. ‘n Voorheen beskryfde 3-merker-

CSF-bioprofiel is bevestig, maar ‘n verfynde profiel het heelwat verbeterde akkuraatheid 

getoon. Die bioprofiel wat in hierdie proefskrif geïdentifiseer is, het die potensiaal om gebruik 

te word om nuwe diagnostiese intrumente te ontwikkel vir punt-van-sorg gebruik by PTB en 

TBM in kinders. Die bevindings verg egter verdere validasie in groter en multi-setel studies.  
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Chapter 1 

Literature review 

 

1.1 Introduction 

Tuberculosis (TB) is one of the most important life-threatening diseases amongst the 

infectious diseases across the world (1). In 2016, TB was amongst the top 9 causes of death 

across the world, causing more deaths than HIV and malaria (2). TB is caused by members 

of the Mycobacterium tuberculosis complex (MTBC) species and this specie causes TB in 

both humans and animals (3) . Mycobacterium tuberculosis (M.tb) is the most frequent cause 

of TB in humans, while M. bovis, M. caprae and M. pinnipedii are known to be responsible for 

the disease in wild and domestic mammals (3). TB occurs following an inhalation of an aerosol 

droplet containing the causative agent of TB, Mycobacterium tuberculosis, also known as 

tubercule bacilli, from an individual who is sick of  TB (4). Only 5 to 10% of people who are 

infected with M.tb progress to having active TB, with young children having a higher risk of 

progressing to active TB following an infection (13). The most common type of TB is pulmonary 

TB, which is TB that occurs in the lungs. The most common signs and symptoms seen in 

pulmonary TB include coughing, sputum expectoration, haemoptysis, breathlessness, weight 

loss, anorexia, fever, malaise and wasting (6).  

TB also affects other organs of the body; and is known as extrapulmonary TB (EPTB). Other 

organs other than the lung, which TB frequently occurs in include the pleura, lymph nodes, 

abdomen, genitourinary tract, skin, joints, bones and meninges (7). The involvement of the 

central nervous system (CNS) may result in tuberculous meningitis (TBM). TBM is the most 

severe complication of TB and predominantly affects young children (8, 9). TBM is often 

referred as a medical emergency for which early treatment initiation is required (10). In the 

absence of treatment, TBM leads to severe consequences including high mortality and 

neurological sequelae in survivors (11, 12). The diagnosis of TB is mostly difficult in children 

and this often results in delayed initiation of treatment and consequently death (13). An 

estimated 210 000 children died from TB in 2016 (2). 

 

1.2 History and epidemiology of tuberculosis 

TB has been a threat to humankind throughout known history and human prehistory. It is 

estimated that the causative agent of TB disease, Mycobacterium tuberculosis (M.tb) may 

have killed more humans than any other microbial pathogen (14). It has been hypothesized 

that the genus mycobacterium originated more than 150 million years ago (15). Bone studies 
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provide evidence of the long existence of TB with a bone from the Neolithic period found in 

the region of Heidelberg in Germany showing evidence of TB features (Dated at 500 BC) (16). 

Similarly,  skeletal deformities typical of TB were revealed in Egyptian mummies, dating back 

to 2400 BC (15). TB was endemic in the western world in the 18th century and it was then 

better known as consumption or phtisis (17). Hippocrates described phtisis as a fatal disease 

especially of young adults, with characteristic tubercular lung lesions (15). In 1882, Robert 

Koch became the first researcher to discover through staining experiments that TB is caused 

by tubercle bacillus (18). There is a trace evidence on the history of the involvement of central 

nervous system in tuberculosis. Smears taken from a psoas abscess in a well-preserved 

mummy of an Inca child dated at 700 BC showed acid-fast bacilli, indicating a case of TB of 

the lumbar spine (16). Fifty years after the discovery of the causative agent of TB, two 

pathologists, Rich and McCordock carried out a series of experiments in rabbits and post-

mortem findings in children, which demonstrated that the release of M.tb bacilli into the 

meningeal space from focal sub-pial or sub-ependymal lesions was the cause of meningeal 

TB (reviewed in (19)). 

To date, TB remains a global health challenge with about one third (30%) of the world 

population estimated to be infected with M.tb (20). According to the World Health Organisation 

(WHO), 10.4 million TB cases and 1.7 million deaths were reported in 2016 (21). 90% and 

10% of these cases were in adults and children, respectively. The burden of TB varies 

amongst countries, as indicated in the report that the highest rates of incident cases in 2016 

were observed in South-East Asia region (45%), African region (25%) and Western Pacific 

region (17%), while smaller numbers of incident cases were observed in the Eastern 

Mediterranean region (7%), European region (3%) and region of Americas (3%) (21). 

Currently, the incidence of TB is falling at about 2% per year, but in order to reach the first 

milestones of the WHO End TB strategy, this needs to improve to about 4-5% per year by 

2020 (21). 

EPTB represents an estimated 15% of all TB incident cases and approximately 20-30% of all 

cases in children (22). Central nervous system TB (CNS-TB) is estimated to represent up to 

10% of all EPTB cases and 1% of all TB cases (8, 23). Amongst all CNS-TB cases, TBM is 

the most common form and  most frequently occurs in children (8). As a result of difficulties in 

diagnosing TBM in children and under-reporting of TBM cases, the number of deaths caused 

by this disease across the world is unknown (24). However, it is estimated that up to 200 

childhood deaths occur across the world every day due to TB (22). A meta-analysis study 

showed that the risk of death in children with TBM was 19.3% (95% CI, 14.0%-26,1%), 

indicating that TBM accounts to high number of deaths caused by TB in children (25). In the 
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Western Cape Province of South Africa, TBM is the most common form of bacterial meningitis, 

affecting predominantly children below the age of 13 years (8).  The WHO aims to end 

preventable deaths of new-borns and children under 5 years of age by 2030, and have  an 

overall vision of a world free of TB through the end TB strategy, of which the target is 95% 

reduction in TB deaths by 2035 (21). 

 

Figure 1.1: The map of the world showing the global estimated incidence of TB. Source: 

WHO GLOBAL TB report, 2017 (21). 

 

1.3 General Immunology 

Immunology is the study of the immune system, including its responses to microbial pathogens 

and damaged tissues, and its role in diseases (26). The immune system is the collection of 

cells, tissues, and molecules that mediate resistance to infections (27). The components of 

the immune system function together to protect the skin, respiratory passages, intestinal tract 

and other areas from invaders, such as bacteria, fungi, parasites, viruses, cancer cells and 

toxins (28). Most of the immune system’s cells are  produced after early childhood, from the 

primary lymphoid organs (bone marrow, foetal liver and thymus) and are further transported 

to the secondary lymphoid organs to optimally respond to invaders (29, 30). The immune 
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system comprises of two main classes: the innate immune system and the adaptive immune 

system (31). 

The innate immune system is viewed as the first line of defence against intruding pathogens 

(28), and provides early and rapid host protection against infections. This system relies on the 

expression of germ line-encoded receptors for detection of pathogens. These receptors 

recognise the pathogen associated molecular patterns (PAMPs) shared by large group of 

microorganisms (28). Hence the innate immunity provides a non-specific response to foreign 

particles (32). The mechanisms by which innate immune system eliminate the invaders include 

prevention of entry via external barriers (anatomical and physiological), complement 

activation, phagocytosis, inflammation, cytokine secretion, and target cell lysis (33).  

In contrast, the adaptive immune system provides a delayed, antigen-dependent and antigen-

specific host immune response (22, 26). The specificity of this response is due to the antigen-

specific receptors expressed on the surfaces of the adaptive immune cells (31). Both classes 

of the immune system are driven by several cells, proteins and other components.  

The innate immune system consists of anatomical and physiological barriers (Such as the 

skin, mucous membrane, internal lining epithelium, cilia, and the gastric pH), antimicrobial 

peptides (defensins and cathelicidins) and proteins (lactoferrin and lysozyme) and humoral 

component (Such as complement components and acute phase proteins) (34, 35). This 

system also consists of the cellular components, which mainly include phagocytes 

(macrophages, neutrophils and dendritic cells [DCs]), mast cells, basophils, eosinophils and 

natural killer (NK) cells (22, 28). Both phagocytes share a similar function, which is to engulf 

microbes. In addition, neutrophils contain granules that when released, assist in the 

elimination of the pathogenic microbes (28), whereas DCs and macrophages function as 

antigen presenting cells (APCs), acting as messengers between innate and adaptive immunity 

(37). Macrophages are normally one of the first cells to engulf the invading pathogen and 

initiate inflammatory response that recruit neutrophils and natural killer cells to the site of 

infection. The effect of macrophages facilitate the maturation, differentiation and migration of 

DCs, which play a key role in stimulating the cells of the adaptive immune response 

(Particularly naïve T cells) (38). 

The adaptive immune system mainly consists of the B and T lymphocytes, which are produced 

in the bone marrow. B lymphocytes mature in the bone marrow, whereas T lymphocytes 

mature in the thymus (39). B cells are mainly responsible for the humoral immune response 

via the production of antibodies, moreover, they also play a role in antigen presentation, and 

hence form part of the professional APCs (together with DCs and macrophages)  (28, 32). T 

Stellenbosch University  https://scholar.sun.ac.za



 

5 

 

cells express unique antigen-binding receptors on their membranes, known as T cell receptors 

(TCR), which recognise specific antigens presented by APCs in context of major 

histocompatibility complex (MHC) (22, 33). The two main types of T cells are cytotoxic T cells 

(CD8+ T cells) and T helper (Th) (CD4+ T cells) (28). Naïve CD4+ T cells differentiate into 

various effector T helper (Th) cells, such as T helper 1 (Th1) (which plays role in fighting 

intracellular pathogens), Th2 (which plays role in fighting extracellular pathogens), regulatory 

T cells (which regulates the immune response) and other subsets (Th9, Th17, Th22 and T 

follicular) (42). Activated CD4+ Th cells produce range of cytokines to serve their helper 

functions: helping B cells to produce antibodies, inducing macrophages to increase their 

microbicidal strength, recruiting other cells such as neutrophils, eosinophils, and basophils to 

the site of infection (39). Although CD4+ Th cells, which serve a helper function, are the most 

well-defined CD4+ T cells subsets, a subset of cytotoxic CD4+ T cells (CD4+ CTL) has been 

described, suggesting that CD4+ T cells also carry cytotoxic function (43). These CD4+ CTL 

serve their cytotoxic function by killing target cells in an antigen-specific manner upon direct 

contact through secretion of cytotoxic granules containing granzyme B and perforin (44). 

CD8+ T cells (cytotoxic T lymphocytes or CTLs) primarily play a role in immune response 

against intracellular pathogens, including viruses and bacteria and for tumour surveillance 

(45). CTLs kill infected and tumour cells via secretion of cytokines (TNF-α and IFN-γ), 

production and release of cytotoxic granules (containing granzymes and perforin) and 

Fas/FasL interaction (46).  

While the above described T lymphocytes recognize antigenic peptides in the presence of 

MHC proteins, there are other T cells that recognize peptides without MHC and these cells 

are collectively called unconventional T cells (47). Unconventional T cells include CD1-

restricted T cells, MR1-restricted mucosal associated invariant T cells (MAIT cells), MHC class 

1b-reactive T cells and gamma-delta T cells (48). Gamma-delta T cells are the most well-

described unconventional cells, which have been shown to mediate killing of target cells 

directly through their cytotoxic activity or to play their role indirectly by activating other immune 

cells (47). Immune system processes are orchestrated and regulated by cytokines and 

chemokines produced by leukocytes and non-leukocytes (49).These proteins are involved in 

cell proliferation, differentiation, activation, cell-cell interaction, and migration of immune cells 

(38, 39). 

 

1.4 Immune response against Mycobacterium tuberculosis 

Although the immune response underlying the pathogenesis of tuberculosis is complex and 

incompletely understood, it has been appreciated for a long time that the pathogenesis of TB 

Stellenbosch University  https://scholar.sun.ac.za



 

6 

 

depends on the interaction between bacterial virulence and host resistance (40, 41). Upon 

inhalation through respiratory droplets and deposit into the alveoli, M.tb has been shown to 

first encounter the components of the innate immune system: the anatomical and the 

physiological barriers of the lung, which reduces the transport of microbes to the terminal 

alveolus (53). However, M.tb can manage to enter the terminal alveolus, in which, the M.tb is 

combated by antimicrobial peptides (defensins and cathelicidins) and proteins (lactoferrin and 

lysozyme) with both bactericidal and immunomodulatory effects (4, 43). These peptides and 

proteins are produced by multiple cell types including neutrophils, monocytes, macrophages 

and epithelial cells. Although the relevance of this peptides and proteins in childhood 

tuberculosis is yet to be established, but they are present in the airways from the early neonatal 

period (5). 

Alveolar macrophages are the primary host cells to encounter mycobacterium tuberculosis 

(55). The mycobacterium products such as lipoarabinomannan (LAM) and lipoproteins 

activate these cells via the pattern recognition receptors (PRRs) (best studied PRRs are the 

two members of the toll-like receptor(TLR) pathway,TLR-2 and TLR-4) (53). Alveolar 

macrophages plays a vital role in the immune response against M.tb infection as they are 

involved in phagocytosis, killing of the mycobacterium, and the initiation of the adaptive T-cell 

immunity (56). Alveolar macrophages recognize the pathogen associated molecular patterns 

(PAMPs) such as LAM, through their PRRs. These pathogen recognition lead to intracellular 

signalling cascade in the alveolar macrophages, which result into the engulfing of the microbe 

and secretion of pro-inflammatory cytokines such as TNF-α (57). The alveolar macrophages 

also  release various chemokines such as IL-8, MCP-1, MIP-2 and IP-10 which are thought to 

serve as attractants for other cells such as macrophages, neutrophils and T cells to site of 

infection (lungs) (58). Indeed other phagocytic cells including neutrophils, monocyte-derived 

macrophages and dendritic cells (DCs) are recruited to the infected lungs. These cells also 

ingest the bacteria and secrete more cytokines and chemokines (48, 49). In response, 

neutrophils release anti-mycobacterial effectors such as elastase, collagenase and 

myeloperoxidase (MPO) from their granules, which damages bacterial cells (61). DCs play an 

important role in initiation of the adaptive immune response. DCs are also one of the first types 

of cells to encounter the bacilli. When DCs recognises M.tb PAMPs, they phagocytose M.tb, 

mature and migrate to the local draining lymph node to present the antigen to the T cells (60). 

It appears that this migration is promoted by IL-12p40, and can be inhibited by IL-10 

(Reviewed in (51)). This antigen-presenting process link the innate and adaptive immune 

system.  
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The primed antigen-specific T cells (CD4+T cells and CD8+T cells) then migrate to the site of 

infection (Lungs), guided by chemokines produced by the infected cells (62). In the infected 

lungs, effector T cells are thought to mediate protection in a two-step process, firstly, the 

activation of infected macrophages to produce anti-microbial substances and secondly, the 

formation of granulomas (63). The subsets of CD4+T cells, Th1 produce IFN-γ and TNF-α, 

which activate infected alveolar macrophages to mediate enhanced phagolysosome 

maturation and the induction of highly toxic antimicrobial substances such as reactive oxygen 

species (ROS) and reactive nitric oxide intermediates (RNIs) (63–65). The importance of IFN-

γ in the control of M.tb infection have been well-investigated, for instance, studies in mice have 

shown that failure to produce IFN-γ lead to disseminated mycobacterial infection (Reviewed 

in 48). In another study carried out in CD4+ T cells deficient mice, it has been shown that IFN-

γ produced by CD4+T cells and subsequent activation of macrophages determines the 

outcome of M.tb infection (67). In addition, infants vulnerability to TB have been associated 

with reduced levels and capacity of several pro-inflammatory cytokines (such as TNF-α, IL-1 

and IL-12) and antimicrobial peptides (54).  

Furthermore, the influx of T cells into the site of infection (lungs) also leads to the formation of 

granulomas. Granulomas are considered to be a hallmark of M.tb infection and are composed 

of macrophages, multinucleated giant cells, CD4+T cells, CD8+ T cells, B cells and neutrophils 

(55, 60, 68). IL-12, IFN-γ, and TNF-α are essential in the formation and maintenance of 

granulomas (69, 70). These is supported by studies done in mice, in which mice deficient of 

TNF-α and TNF-α receptor show increased susceptibility to M.tb and impaired granuloma 

formation following infection with M.tb (22, 60). The granuloma is vital in the containment of 

the bacteria, however, it also provide the bacteria with a niche in which they can persist in a 

latent form, and later get an opportunity to reactivate and spread (72). The necrotic breakdown 

of infected macrophages, which results into caseating granulomas, (with a cheesy appearance 

under macroscopic examination), is a major contributor to M.tb transmission. In contrast, 

apoptosis of infected macrophages is detrimental to the infected macrophages, thereby 

limiting the transmission (73). Generally, TB can result from either early progression of a 

primary granuloma during the infection process or reactivation of an established granuloma in 

a latently infected person (74).  

 

1.5 Different stages of the MTB infection spectrum 

Only about 5-10% individuals infected with M.tb will develop clinical manifestations of active 

TB disease within the first two years post-exposure and this is known as primary TB, whereas 

the majority of infected individuals present without clinical signs or symptoms and this is known 
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as latent TB infection (LTBI) (75). It is estimated that about one-third of the world’s population 

is infected with M.tb, without clinical manifestation. The conventional and simplified 

classification of M.tb infection comprises the LTBI and active TB disease. However, LTBI has 

diverse presentations ranging from individuals who have completely cleared the infection, to 

those containing actively replicating bacteria in the absence of clinical manifestation (76). 

Individuals with LTBI represent a reservoir for potential future development of TB disease (77). 

Although latent infection is asymptomatic, there is a great danger of reactivation leading to 

active TB disease (75). Similar to LTBI, Active TB disease is characterized by diverse 

pathological presentations ranging from sterile tissue, to caseous hypoxic lesions containing 

variable numbers of bacteria, to liquified cavities with a massive load of replicating organism 

(76). Studies proposed that M.tb may therefore be viewed as a continuous spectrum  including 

sterilized immunity, subclinical active TB disease and fulminant active TB disease (76). 

 

1.5.1. Latent infection 

Latent infection is described as a state in which an individual has evidence of M.tb infection 

as ascertained by positivity for immunologic tests (tuberculin skin test or interferon-gamma 

release assay [IGRA] ), without clinical manifestation (75). This can be described as a state in 

which the host’s immune response is able to control the infection but cannot completely 

eliminate the bacteria. This control is mediated by the formation of a granuloma. As highlighted 

in section 1.4, a granuloma is a hallmark of TB and it is composed of various inflammatory 

cells including macrophages, multinucleated giant cells, CD4+T cells, CD8+ T cells, B cells 

and neutrophils. The main function of the granuloma is to wall off the infection and prevent 

dissemination (78). Although latent infection is generally associated with the absence of 

clinical symptoms, recent researches propose new models for latent TB infection. A review by 

Barry et al (76) discussed that some of the findings observed in individuals with latent TB 

correspond to features seen in active TB disease. Following this, the review proposed that 

M.tb infection should therefore be viewed as a continuous spectrum (76).  

 

1.5.2. Active TB disease 

Active TB disease can either occur as primary TB disease following initial infection or can be 

due to reactivation of latent TB infection. Amongst the factors contributing to reactivation of 

latent TB are HIV, immune suppressive treatment, malnutrition, young age and tobacco smoke 

(75). Generally, those who are HIV infected and other immunocompromised individuals are at 

a much higher risk of reactivation (79). Majority of TB cases (90%) among adults results from 
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reactivation of latent TB infection (80). Young children are at high risk of infection following 

exposure and progresses more readily from infection into active TB disease (38). 

Correspondingly, the immune system of young children has been associated with vulnerability 

to tuberculosis (39, 40). The clinical manifestation of active TB disease can range from 

pulmonary TB to extrapulmonary TB. Pulmonary TB commonly present with symptoms such 

as cough, fever, weight loss, night sweat and fatigue. Children present with mild symptoms 

such as low-grade fever and unproductive cough (81).  

Extrapulmonary TB is due to hematogenous and lymphatic spread of the M.tb bacilli to other 

organs including the lymph nodes, joints, pleura and brain meninges (7). The spread of the 

M.tb bacilli to the brain meninges results into tuberculous meningitis. TBM is more common in 

children and immunocompromised individuals (such as those living with HIV), and it is thought 

that the differences in immune responses between children and adults play a role (4). Bacillus 

Calmette-Guerin (BCG) vaccination provides some degree of protection against the severe 

forms of TB (milliary disease and TBM), although severe disease manifestations still occur in 

most TB-endemic areas (9). 

 

1.5.2.1 Tuberculous meningitis  

Fifty years after Robert Kock discovered the cause of tuberculosis, two pathologists, Rich and 

McCordock demonstrated using a series of experiments in rabbits and post-mortem findings 

in children, that the release of M.tb bacilli into the meningeal space from focal sub-pial or sub-

ependymal lesions cause tuberculous meningitis (TBM) (82). Although TBM accounts for 

about only 1% of all cases of TB, it is the most dangerous form of TB, presenting with high 

morbidity and mortality, mostly in young children (83). TBM has been associated with 

neurological sequelae including, exudate obstruction of CSF flow resulting into hydrocephalus, 

formation of tuberculomas or abscesses resulting in focal neurological signs and obliterative 

vasculitis causing infarction and stroke syndromes (19). Similar to pulmonary TB, the 

pathogenesis of tuberculous meningitis is dependent on the interaction between the host 

immune response and the bacterial virulence. Absence of an adequate cell-mediated 

immunity has been associated with development of tuberculoma or tuberculous brain 

abscesses (84) 

The development of tuberculous meningitis is a two-step process, firstly, M.tb bacilli enters 

the body through droplet inhalation, as described in pulmonary TB. Alveolar macrophages are 

the first cells to encounter the bacilli, and the subsequent mechanisms result into the formation 

of a granuloma. However, prior to granuloma formation, during the localised infection within 
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the lungs, bacilli are filtered into the draining lymph node and there is a short, but significant 

bacteraemia that can transmit bacilli to other organs in the body or the bacilli can gain its way 

to the central nervous system (CNS) by secondary reactivation from a “leaked granuloma” 

(70, 71, 73, 74). This extensive bacteraemia increases the probability that a sub-cortical focus 

will be established in the CNS (87). Although the CNS is protected by the Blood-Brain-Barrier 

(BBB), however, there are a number of bacterial and viral pathogens capable of crossing this 

barrier and causing subsequent meningitis or encephalitis (88). The mechanisms by which the 

bacilli evade the BBB are not fully elucidated. In theory, the bacilli can pass the BBB and 

access the meninges in one of the following ways: (i) As an extracellular organism or (ii) as 

an intracellular organism (Via infected monocytes or neutrophils) (88). Within the meninges or 

brain parenchyma, the bacilli form small sub-pial or sub-ependymal foci, called Rich Foci (82).  

Secondly, the Rich Foci ruptures, releasing M.tb bacilli into the subarachnoid space, this 

triggers a robust inflammatory T cell responses along the meninges (76, 77). Although the 

immune responses within the brain during TBM remains poorly understood, the complications 

of TBM are largely dependent on the severity of inflammatory responses. In the CNS, microglia 

are considered the first line of defense against infectious agents such as M.tb and they carry 

their function through: migration to the site of infection, phagocytosis of self and non-self 

products, induction of Reactive Oxygen Species (ROS), production of cytokines and 

chemokines including MCP-1, RANTES, CXCL10, G-CSF, GM-CSF, IL-1, IL-1α, IL-1β, IL-10, 

IL-12p40,IL-6 and TNF-α (Reviewed in 71). The balance between pro-inflammatory and anti-

inflammatory cytokines is thought to be crucial in the TBM disease progression, this is 

reflected by the up-regulation in CSF pro-inflammatory cytokines and anti-inflammatory 

cytokines in patients with TBM compared to patients with other forms of meningitis, such as 

other bacterial and viral meningitis (75, 79–81). Studies on CSF and serum cytokines levels 

in patients with TBM have found elevated levels of pro-inflammatory cytokines including TNF-

α and IFN-γ, emphasising the inflammation occurring during meningeal TB (93). 

Poor clinical outcomes of TBM have been associated with convulsions, headache, motor 

deficit, brainstem dysfunction and cerebral infarctions on neuroimaging (94). The Medical 

Research Council scale for prediction of TBM stage has criteria that classify TBM stages as 

follows ,stage I- Glasgow coma scale (GCS) of 15 and no focal neurology, stage IIa- GCS of 

15 plus focal neurology, stage IIb- GCS of 11-14 with focal neurology and stage III –GCS < 

11 (84, 85). This scale is used to classify the severity of TBM and relies on Glasgow coma 

scale (GCS) which is scaled between 3 and 15, where 3 is the worst and 15 is the best 

(reviewed in 61). The GCS depends on the assessment of three factors: best eye response, 
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best verbal response and best motor response (96). This classification is used to determine 

TBM disease severity. 

 

1.6 TB vaccination and the influence of vaccines on diagnostics 

Bacillus Calmette-Guérin (BCG) remains the only licensed vaccine for prevention of TB 

worldwide (97). BCG is a live attenuated bacterial vaccine derived from mycobacterium bovis 

that was originally isolated in 1902  (98). As of 1974, WHO Expanded Programme on 

Immunization recommends BCG should be given as soon as possible after birth in high TB 

prevalence countries, with coverage in infants exceeding 80% (99). Although the efficacy of 

BCG in preventing the development of adult pulmonary TB is controversial, BCG vaccination 

clearly protects infants and children from tuberculous meningitis and other severe forms of 

disseminated TB (100). A systematic review and meta-analysis of 14 case-control studies 

examining BCG vaccine efficacy against meningitis revealed that the incidence of TB 

meningitis was reduced by 73% (98). BCG vaccination of infants, at birth or as soon as 

possible after birth, is one of the key components of pillar 1 of the WHO End TB strategy  (98). 

According to WHO, it is estimated that high global coverage of 90% and widespread use of 

BCG in routine infant vaccination programmes could prevent 115 000 TB deaths per birth 

cohort in the first 15 years of life  (98). 

BCG has been associated with false positive tuberculin skin test (TST) results. However, this 

is controversial, as other studies refutes this belief (101). It is thought that BCG vaccination 

causes some difficulties in the interpretation of TST results, as there is no reliable method to 

distinguish the reaction caused by vaccination, from that caused by infection with TB or other 

mycobacteria (102). A study has reported that BCG vaccination at the age of 0-2 months 

affects TST for a long period and this remains the case until 6 years of age (102). Other studies 

have demonstrated that BCG has no significant effect on TST positivity after 10 years or more 

of vaccination (103) . 

 

1.7 Diagnosis of M.tb infection 

 The detection of latent TB infection is currently based on indirect methods which rely on the 

cell-mediated immunity (memory T cell response) to TB antigens (104). The current 

acceptable approaches include the tuberculin skin test (TST) and the interferon gamma (IFN-

γ) release assays (IGRA). Although acceptable, these tests have well publicised limitations 

(104). 
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TST is the most commonly used diagnostic test for TB infection. This test employs Purified 

Protein Derivate (PPD) from various mycobacterial peptides (105). The test is based on the 

immune response to PPD as indicated by Delayed Type Hypersensitivity (DTH) reaction (88, 

89). In individuals with cell-mediated immunity to this tuberculin antigens, a delayed type 

hypersensitivity is expected to occur after 48-72 hours, following intradermal administration of 

PPD (104). The DTH is measured as localized skin induration in millimetres after 48-72 hours 

at the site of injection (108). Diagnostic accuracy of TST is limited by inability of the test to 

distinguish active TB (ATB) disease from latent TB infection (LTBI) (107). TST has several 

limitations including false positive results due to prior or repeated BCG vaccination and false 

negative results due to low sensitivity in immunocompromised individuals (87, 91, 92). 

Interferon-Gamma Release Assays (IGRAs) are commercially available and are increasingly 

used TB diagnostic tests. The only two commercially available IGRAs are QuantiFERON TB 

assay from Australia and the T.SPOT TB assay from Oxford (87, 91). Both assays are based 

on cell-mediated immune response to mycobacterial proteins (88, 91). These proteins 

stimulate patient’s T cells to release IFN-γ in vitro. QuantiFERON TB assay is a whole blood 

assay which measures IFN-γ release by patients T cells in response to mycobacterial proteins, 

through ELISA, while T SPOT.TB assay measures the number of patient’s T cells that releases 

IFN-γ, through ELISPOT (106). The QuantiFERON TB Gold in tube (QFT-GIT) assay 

measures IFN-γ released in response to M.tb antigens (ESAT-6, CFP-10 and TB-7.7). In 

contrast, the recent and enhanced QuantiFERON TB Gold plus (QFT-Plus) assay contains 

the TB1 and TB2 tubes. TB1 tube contains long peptides derived from ESAT-6 and CFP-10, 

which specifically stimulate the release of IFN-γ from CD4+ T cells, whereas in addition to the 

same long peptides, TB2 contains newly introduced shorter peptides to stimulate the release 

of IFN-γ from both CD4+ and CD8+ T cells (111).  

QFT-Plus has a reported higher sensitivity of 95% (accurately identifies patients with TB 

infection) and a higher specificity of 98% (limit unnecessary follow-up and treatment) 

according to the manufacturer (112). In contrast to TST, the later developed immunological 

based TB diagnostic tests, IGRAs, have no cross-reactivity with BCG, because proteins used 

in the assay are specific to M.tb and are absent in BCG (113). False positive IGRA results 

have been reported in cases of other mycobacterial infections, such as Mycobacterium 

mavium, Mycobacterium kansasii and Mycobacterium szulagas (109). Like TST, false 

negative results have also been reported in IGRA, particularly in cases of immunodeficiency, 

or immunosuppression. IGRA has a sensitivity of 79-86% and specificity of 97-98% in 

immunocompetent children, but the diagnostic accuracy drops to sensitivity of 47% and 

specificity of 90% in immunocompromised children (109). IGRA have been reported to have 
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reduced sensitivity in younger and malnourished children (114). Thus, studies recommend 

IGRA to only be used in children aged 4 years or older and in combination with other clinical 

data. Unfortunately, IGRA cannot distinguish latent TB infection from active TB disease (113).  

 

1.8 Diagnosis of TB disease 

The diagnosis of childhood pulmonary tuberculosis is challenged by lack of a practical 

diagnostic gold standard (115). The South African National TB guidelines for children 

recommend that diagnosis of pulmonary TB in children must be based on a combination of 

clinical presentation, history of exposure, bacteriology (GeneXpert, smear microscopy, culture 

and drug sensitivity testing or line probe assay [LPA], chest X-ray and tuberculin skin test 

(Mantoux) (116). Clinical features associated with pulmonary TB include a fever and cough 

lasting longer than 2 weeks, loss of appetite, unusual fatigue, unexplained loss of weight and 

physical signs such as enlarged lymph glands and night sweats. Chest radiography are used 

to investigate lesions suggestive of TB disease (98, 99). However,  these diagnostic 

parameters are not specific to TB disease and hence may provide a non-specific diagnosis 

(119). Clinical features and lung changes are not specific to pulmonary TB and may overlap 

with other lung diseases such as lung malignancies or pneumonia (120). Hence, in addition to 

clinical suspicion, further laboratory techniques (bacteriological) including GeneXpert, smear 

microscopy, culture and drug sensitivity testing or line probe assay (LPA) are done to confirm 

active TB disease (Presence of mycobacterium tuberculosis). 

 

1.8.1 Laboratory confirmation of childhood TB disease 

Although the microbiological confirmation of TB is essential for diagnosis of pulmonary 

tuberculosis (Adult-type), it is not done in many high burden settings for diagnosis of TB in 

young children due to difficulty in obtaining good quality specimen (121).  

 

1.8.1.1 Specimen-type used 

Microbiological diagnostic tests rely largely on the quality of the specimen. However, children 

with TB do not readily expectorate sputum, hence making it difficult to perform microbiological 

tests (102, 103). As a result, in the case of pulmonary TB, clinicians collect other specimen 

types including gastric aspirate (GA) to improve the microbiological diagnosis of TB in children 

and also in individuals with paucibacillary disease (124). It is recommended that a fasting and 

early morning GA should be collected to obtain sputum swallowed during sleep (125). 
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However, GA is invasive and not always possible in TB endemic areas (124). Sputum 

induction (SI) is relatively a non-invasive procedure that allows collection of sputum samples 

from individuals such as children, who are unable to produce or expectorate sputum (124). SI 

allows collection of sputum samples from children as young as one month of age and result 

in better performance than GA (125).  

 

1.8.1.2 Smear microscopy 

Ziehl Neelsen (ZN) sputum smear microscopy remains the primarily used diagnostic tool for 

bacteriological diagnosis of TB in both children and adult in most settings and it is 

recommended by WHO (16, 106). According to WHO, one smear-positive result is required 

for a diagnosis of pulmonary TB (21). To enable more rapid diagnosis, fluorescent microscopy 

was developed, and it has been found to be on an average of 10% more sensitive than 

conventional microscopy. However, the use of fluorescent microscopy is limited by its high 

cost, frequent burn-off of expensive mercury vapour lambs, continuous power supply 

necessity and need for dark room (102, 107). Presently, the light-omitting diode (LED)-based 

fluorescent microscopy technique has been developed as the best alternative to ZN-staining. 

It is cheap, robust, and consumes low energy (107, 108). 

In adults the examination of acid fast bacilli (AFB) stained smears from clinical specimens is 

used to diagnose TB, however, children with pulmonary TB usually do not readily expectorate 

sputum, hence sputum sample is difficult to obtain (102, 103). As a result, gastric aspirate and 

induced sputum samples can be used when sputum samples cannot be obtained. 

Unfortunately, even with these methods only fewer than 20% of children are AFB smear 

positive (129). In a meta-analysis of 20 studies, the pooled percentage of children that were 

sputum smear positive was 6.8% (126). Although  smear microscopy from gastric aspirate 

frequently yield positive results than the use of induced sputum, the rate of positivity of smear 

microscopy from both gastric aspirate and induced sputum specimen is <20% (126). 

Additionally, children present with paucibacillary TB disease and many may be smear-

negative as smear microscopy has the detection range between 104 and 105 bacilli/ml (127).  

 

1.8.1.3 Culture-based methods 

Culture-based methods are often used to further confirm TB disease. Culture remains the  

reference standard for diagnosis of TB disease and it is recommended by WHO (21).  Although 

culture-based methods are more sensitive than smear microscopy, M.tb is a slow growing 

bacteria, which requires about 4-8 weeks to grow, hence this delays appropriate treatment in 
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the absence of a confirmed diagnosis (130). Culture methods include the solid culture medium 

(Löwenstein-Jensen [LJ] medium) and the liquid culture (such as Middlebrook 7H9) (105, 111). 

In most high-burden countries, the use of LJ medium remains the common method for 

performing mycobacterial culture. LJ requires a long period to yield results (3-8 weeks). 

Automated liquid culture systems such as Bactec MGIT 960 OR 320 system (BD) are more 

rapid (10 days), providing faster detection of M.tb compared to solid medium system (125). 

However, automated liquid culture systems are costly and more susceptible to contamination 

(131). In paediatric TB, culturing mycobacteria was reported to confirm TB in only up to 30-

40% (132). In a study on children with TB, culture revealed growth in only 16.2% of the 

specimen (133). Sputum and gastric aspirate cultures from children with pulmonary TB are 

sensitive in less than 50% of all cases (134).  

 

1.8.1.4 Molecular diagnostic methods 

Recently, a rapid molecular test called Xpert® MTB/RIF assay /GeneXpert (Cepheid, USA) 

has been developed. It can provide results within 2 hours. GeneXpert is currently 

recommended by WHO for diagnosis of Tuberculosis (21). GeneXpert was initially 

recommended (in 2010) for diagnosis of pulmonary TB in adults, and since 2013 the use of 

GeneXpert for diagnosis of childhood TB and other specific forms of extrapulmonary TB was 

recommended (21). GeneXpert MTB/RIF assay is a novel fully automated molecular 

diagnostic test, which is based on real-time PCR (115, 116). In addition to TB diagnosis, 

GeneXpert rapidly detects rifampicin resistance in clinical specimen (136). Studies on 

childhood TB shows high sensitivity and very high specificity of GeneXpert when using sputum 

specimen (117, 118). A pooled sensitivity for pulmonary TB diagnosis in children varied among 

studies and specimen type. Expectorated sputum offered 55%-90%, induced sputum offered 

40%-100% and gastric lavage offered 40%-100% (139). The pooled specificity amongst these 

studies varied from 93% -100%, irrespective of specimen (139). Unfortunately, infrastructure, 

instrument, human resource requirements and cost of GeneXpert exceeds expectations of a 

point of care (POC) diagnostic test, hence a limitation to resource-limited areas (140). 

 GeneXpert Ultra is a recently developed improved diagnostic test for TB and it has been 

shown to overcome the shortcomings of GeneXpert MTB/RIF including significant improved 

TB detection especially in patients with paucibacillary disease (141). Xpert Ultra showed 

higher sensitivity in the diagnosis of pulmonary TB than GeneXpert MTB/RIF. In paediatric TB 

using respiratory samples, Ultra showed sensitivity of 71% compared to 47% for GeneXpert 

MTB/RIF (142). However, a multicentre comparative accuracy study reported lower sensitivity 
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of Xpert Ultra in the diagnosis of TB in children compared to adults and a reduced specificity 

in comparison with GeneXpert (143). 

 

1.8.2 Diagnosis of EPTB disease 

EPTB is typically more difficult to diagnose than pulmonary TB, because it presents with non-

specific symptoms, and it requires invasive procedures for diagnosis. Most individuals with 

EPTB do not have lung involvement and are usually negative for sputum smear. Diagnoses 

of EPTB is even more difficult in poor settings due to lack of required facilities. The diagnosis 

of EPTB depends largely on the direct detection of M.tb bacilli in tissue or smear through the 

use of smear microscopy, culture methods, molecular tests (Xpert MTB/RIF) (144). 

Additionally, other indirect methods such as histopathology, cytology, TST, IGRA and 

adenosine deaminase assay are employed (144).  

 

1.8.2.1 Diagnosis of TB meningitis 

Although the guidelines for diagnosis of paediatric TBM are not clearly stated, several studies 

have reported that in the absence of bacteriological confirmation from cerebrospinal fluid 

(CSF), the diagnosis of TBM can be made on the combination of clinical presentation, CSF 

findings, brain imaging, evidence of TB elsewhere, and exclusion of alternative diagnosis (8, 

125). Symptoms of TB include low-grade fever, malaise, headache, dizziness, and vomiting 

in the first few weeks and later the development of more severe headache, altered mental 

status, stroke, hydrocephalus and cranial neuropathies (8, 98). Brain imaging techniques such 

as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are also used to 

investigate brain changes associated with tuberculous meningitis, such changes include basal 

enhancement, pressure of exudates, hydrocephalus, periventricular infarcts, mild meningeal 

enhancement, basal exudates, small tuberculomas and lacunar infarcts (126, 127). In 

addition, routine CSF findings such as raised white cell count (100-500 cells/μL) with 

predominant pleiocytosis, and neutrophil predominance, elevated protein levels (100-

500mg/dL) and hypoglycorrhachia (low CSF glucose level, less than 45mg/dL) may suggest 

tuberculous meningitis (147). Clinical features and brain changes are not specific to 

tuberculous meningitis and may also be seen in other bacterial meningitis or viral meningitis 

(6). Bacteriological confirmation of M.tb bacilli in CSF samples is required in order to make a 

definite diagnosis of TBM.  

Although smear microscopy is the most widely used TB test, low sensitivity of CSF AFB 

microscopy has been reported. The reported sensitivity of AFB microscopy in CSF varies 
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amongst several studies, with many studies reporting poor sensitivity. A study reported 

sensitivity of 7.9% on CSF AFB microscopy and several other studies reported smear-

positivity for AFB in CSF microscopy to be <10% (148). The sensitivity of CSF smear 

microscopy can be improved by collection of large volumes and centrifuging CSF at high 

speed, however the concept might not be practical in clinical settings, especially in young 

children. Culture remains the gold standard for detection of M.tb bacilli in human specimen. 

Although the use of CSF culture yields varying sensitivity (approximately 40-80%), it is more 

sensitive than smear microscopy and it is necessary in determining drug susceptibility (147). 

However, culture requires several weeks to yield results, it is prone to contamination and 

requires well-established microbiological laboratory. GeneXpert is recommended by WHO for 

use in the diagnosis of EPTB including TBM. However, poor sensitivities have been reported 

in the diagnosis of TBM. The use of large CSF volumes and centrifuging CSF at a high speed 

for use on GeneXpert provides better sensitivity (149). The use of large volumes of CSF was 

shown to improve GeneXpert sensitivity up to 72% (149). In another study, the use of large 

volumes of concentrated CSF and additional vortexing steps showed a sensitivity of 59% and 

a very high specificity of 99% for GeneXpert (150). A newly introduced molecular test, Xpert 

Ultra, is arguably more improved than GeneXpert. In a more recent study, Xpert Ultra showed 

higher sensitivity (95%) compared with either Xpert MTB/RIF or culture in the diagnosis of 

tuberculous meningitis in adults (151). 

 

1.9 Diagnosis of childhood TB disease 

According to childhood TB reports, everyday there are up to 200 children deaths caused by 

TB across the world (22). Childhood TB cases are often missed or overlooked due to non-

specific symptoms and difficulties in diagnosis (22). The consequences of under-diagnosis are 

indicated by increased childhood morbidity and mortality related to TB. To a lesser extent, 

overdiagnoses of childhood TB also occurs, which results into unnecessary burdens of long-

term treatment imposed on both the patient, family and the health care system (152). 

Difficulties in case finding make it hard to assess the actual magnitude of childhood TB 

epidemic, hence the childhood TB cases may be higher than currently estimated (22). 

Amongst the WHO strategies for ending TB-associated death, it is recommended that 

research should include children in clinical trials testing new diagnostics and that new 

diagnostics suitable for children should be developed (16, 17). 
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1.10 New approaches towards the development of diagnostic tools for TB disease 

The shortcomings of the current diagnostic approaches results in delayed diagnosis and 

contribute to the poor outcomes associated with childhood TB (10). Studies shows that a better 

prognosis of this disease depends on early diagnosis and initiation of appropriate therapy 

(153). The world health organisation (WHO) recommend that new diagnostic tests suitable for 

use in childhood TB need to be developed (22).Preferably, a good diagnostic test should have 

high accuracy (High sensitivity and specificity), be rapid (at point of care), easy to use, cheap, 

and use non-invasive samples, such as blood, urine and saliva (154). Researches are 

currently on-going across the world, with aim of finding improved diagnostic methods for 

tuberculosis. Immunological biomarkers and gene expression biosignatures are amongst the 

widely investigated approaches for diagnosis of TB disease. 

Following the development of IGRAs, studies have evaluated other immunological biomarkers 

other than the IFN-γ in whole blood stimulated with M.tb antigens (155–157). Indeed, these 

studies showed that immunological biomarkers other than IFN-γ were detectable in whole-

blood stimulated with M.tb antigens and hold promise in the diagnosis of TB disease. 

Furthermore, a study by Chegou et al showed that host markers including IFN-α2, IL-1Ra, 

sCD40L, IP-10 and VEGF detectable following overnight stimulation of whole blood with M.tb 

antigens had potential in the diagnosis of TB in children (158). However, despite the potential 

shown by these immunological biomarkers, a good POC diagnostic should preferable be rapid, 

and hence, a test that requires overnight stimulation may not be convenient. As a result, recent 

studies focus more on the evaluation of biomarkers in unstimulated samples such as serum, 

plasma, urine and blood.  

Another importantly shown aspect to the immunological host markers approach of diagnosis 

is that diagnostic accuracy of markers increased when markers were used in combinations 

(158). In a more recent large multi-centered study, a combination of seven serum host 

biomarkers (C reactive protein (CRP), transthyretin, IFN-γ, Complement Factor H (CFH), 

Apolipoprotein-A1 (Apo-A1), Inducible Protein 10 (IP-10) and Serum Amyloid A) detected from 

unstimulated serum samples diagnosed TB disease in adults with high accuracy (sensitivity 

of 93.8% and specificity of 73.3%). A five-marker salivary biosignature comprising of IL-1β, 

ECM-1, HCC1, IL-23 and fibrinogen diagnosed adult TB disease with sensitivity of 88.9% and 

specificity of 89.7%, regardless of HIV infection status (159). Another study identified 18 

potential biomarkers including NCAM, CRP, SAP, IP-10, ferritin, TPA, I-309 and MIG in 

plasma samples, which diagnosed adult TB disease individually with area under the ROC 

curve (AUC) ≥0.80 and when the biomarkers were analysed on general discriminant analysis 

(GDA), a 6 marker plasma biosignature comprising of NCAM, SAP, IL-1β, sCD40L, IL-13 and 
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Apo-A1 was identified, which diagnosed TB disease with a sensitivity of 100% and specificity 

of 89.3%, irrespective of HIV infection status.  

In a previous study, host immunological biomarkers were investigated in CSF and serum 

samples from children who were suspected of having TBM as potential diagnostic candidates. 

Although a limited panel of analytes (a single standard Luminex 27 panel only) was evaluated 

in these children, some of the host markers detectable in CSF showed potential in the 

diagnosis of TBM in the children. Importantly, a 3-marker CSF biosignature comprising of 

VEGF, cathelicidin LL-37 and interleukin (IL)-13 showed potential as a diagnostic biosignature 

for childhood TB, diagnosing the disease with a sensitivity of 52% and specificity of 95% (160). 

Another study on paediatric TBM suggested that elevated levels of IL-12p40, IP-10, monocyte 

chemoattractant protein 1 (MCP-1) were associated with tuberculomas, whereas elevated 

levels of tumour necrosis factor-α (TNF-α), macrophage inflammatory protein (MIP)-1α, IL-6 

and IL-8 are associated with infarcts in the brain (12). In other biomarker studies, specifically 

investigating the use of whole blood RNA biosignatures in the diagnosis of TB disease, it was 

shown that host blood-based RNA transcripts might be useful in the diagnosis of active TB 

disease in both adults (161) and children (162). A study investigating RNA markers specifically 

in TBM identified four gene markers (glial fibrillary acidic protein (GFAP) , serpin peptidase 

inhibitor, clade A member 3 (SERPINA3), thymidine phosphorylase (TYMP/ECGF1) and heat 

shock protein 70 KDa protein 8 (HSPA8), which were associated with TBM in HIV positive 

individuals, using brain tissues (163).  

Recent studies showed that host biomarkers can be translated into field-friendly diagnostic 

tools based on a simple lateral flow technology (144, 145). A simple test based on host 

biomarkers could overcome most of the shortcomings of the current available tests including 

high costs of operation, electricity usage and need for sophisticated laboratories. Such a test 

will allow screening for TB disease (pulmonary TB or extrapulmonary) at the point-of-care or 

bedside and can be a breakthrough in the diagnosis of childhood TB, including in resource 

limited settings.  

However, most of the potential biosignatures identified so far were done in adult studies and 

majority of these host markers have not been evaluated in children. Therefore, the potential 

of these biosignatures is yet largely unknown in this population. There is a need to evaluate 

the potential usefulness of host biomarkers that have shown potential in adult studies and 

other new host biomarkers in children, especially as such biomarkers may contribute to the 

easier diagnosis of TB disease in this traditionally difficult to diagnose patient group. 

Furthermore, other biomarkers identified in childhood TB specific studies, for example, the 3-

marker CSF biosignature that was identified by Visser et al (160) (IL-13, cathelicidin LL-37 
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and VEGF) require further validation in new cohorts of children with suspected meningitis. 

Furthermore, it is yet unknown whether such a biosignature (sensitivity of 52% and specificity 

of 95%) can be further optimised using new host biomarkers, including the biomarkers that 

have shown potential in adult studies, but which have not been evaluated in children.  

In the present project, we therefore aimed to validate the previously identified CSF 3-marker 

biosignature in a new cohort of study participants, investigate whether the biosignature could 

be further optimised using new host markers, investigate whether better candidate biomarkers 

were available and also to assess blood-based biomarkers for the diagnosis of both paediatric 

pulmonary TB disease and TBM. Of particular interest was the performance of the previously 

identified adult 7-marker serum protein biosignature (166) in children with pulmonary TB and 

TBM.  

 

1.11 Study specific aims and objectives 

Specific aim 1: To evaluate the utility of a previously established 3-marker CSF protein 

biosignature in the diagnosis of TBM in a new cohort of children and explore other CSF-based 

biosignatures for the diagnosis of TBM. 

Objective 1.1: To evaluate the usefulness of the previously identified 3-marker CSF 

biosignature (IL-13, VEGF, and cathelicidin LL37) in the diagnosis of TBM, in a new cohort of 

children with suspected meningitis. 

Objective 1.2: To investigate whether the previously established CSF biosignature (objective 

1) can be optimised by using new CSF biomarkers 

Objective 1.3: To investigate whether any new CSF biosignatures show potential in the 

diagnosis of TBM in children  

Objective 1.4: To collect and bank CSF samples from children with suspected meningitis for 

use in the discovery and validation of diagnostic biosignatures for TBM in future. 

Specific aim 2: To evaluate the utility of a previously established adult 7-marker serum protein 

biosignature and other blood-based biomarkers in the diagnosis of pulmonary TB and TBM in 

children  

Objective 2.1: To evaluate the usefulness of a previously established adult 7-marker serum 

protein biosignature (CRP, transthyretin, IFN-γ, CFH, Apo-A1, IP-10 and SAA) in the diagnosis 

of pulmonary TB disease in children. 
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Objective 2.2: To evaluate the usefulness of a previously identified adult 7-marker serum 

protein biosignature in the diagnosis of TBM in a cohort of children with suspected meningitis. 

Objective 2.3: To investigate whether the previously established adult 7-marker serum protein 

biosignature could be optimised by using new serum biomarkers, for diagnosis of pulmonary 

TB or TBM. 

Objective 2.4: To investigate whether any new childhood TB-specific serum biosignatures 

show potential in the diagnosis of pulmonary TB or TBM. 

 

1.12 Study design 

Different approaches were taken for different studies, based on the design used in the parent 

studies, in the case of the pulmonary TB diagnostic study. In the TBM project, a prospective 

design was used, in which participants with signs and symptoms suggestive of TBM were 

enrolled and classified into TBM and no TBM (included other causes of meningitis including 

bacterial meningitis, viral meningitis and other conditions) based on the routinely used 

diagnostic procedures employed at the tertiary hospital where patients were enrolled.  

In pulmonary TB study, children with confirmed pulmonary TB (TB cases) and those 

diagnosed as unlikely TB (No-TB controls) were compared in a case-control design, using 

banked samples.  
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Chapter 2 

Materials and Methods 

2.1 Study setting 

The studies described in the present thesis were carried out at the the Stellenbosch University 

Immunology Research Group (SU-IRG) laboratory, Department of Biomedical Sciences, 

Faculty of Medicine and Health Sciences. The SU-IRG laboratory is accredited by the South 

African National Accreditation Agency under ISO 15189, as a specialist immunology research 

laboratory. 

The institution is situated in the Tygerberg district, in the Western Cape Province of South 

Africa. The present studies enrolled children from the Tygerberg Children’s Hospital and the 

Red Cross War Memorial Children’s Hospital. These hospitals are situated in Cape Town, 

Western Cape Province of South Africa. According to the WHO report of 2017, the total TB 

incidence best estimate for South Africa was 781 per 100 000 population, and the uncertainty 

intervals were 543-1060 per 100 000. Previous surveys and studies showed that the Western 

Cape Province had the highest reported rate of all types of TB cases in South Africa (167). 

Furthermore, TBM was the most prevalent cause of paediatric bacterial meningitis in the 

Western Cape (168). The Tygerberg Children’s Hospital is the tertiary academic hospital of 

the Faculty of Medicine and Health Sciences, University of Stellenbosch. Children with 

suspected TBM in primary day care hospitals, district and secondary level hospitals from the 

hospital’s drainage areas are referred to the Children’s Hospital to establish the diagnosis of 

TBM and to treat the complications associated with advanced disease (stage 2 and 3 TBM, 

e.g. Hydrocephalus). An average of 40 new TBM cases are admitted to the hospital’s wards 

annually, even though this amount soured in 2017, probably owing to the shortage of BCG, 

hence the lack of BCG vaccination of children in recent years. The Red Cross War Memorial 

Hospital is a main referral institution for children under the age of 13 years in the Western 

Cape Province, South Africa. However, it also offers services to patients from all over South 

Africa and from other African countries. 

 

2.2 Study Participants 

2.2.1 TB meningitis diagnostic biomarkers study 

The children included in this study were enrolled at the Tygerberg Children’s Hospital, Parow 

Valley, Cape Town, South Africa, between December 2016 and November 2017. Children 

were enrolled if they presented with signs and symptoms suggestive of meningitis and 

requiring CSF examination for routine diagnostic purposes.  Children were eligible for the 
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study if they were between the age of 3 months and 13 years, when written informed consent 

was provided by a legal guardian. Additionally, assent was obtained in children older than 7 

years who had a normal level of consciousness, as assessed by the Glasgow Coma Score 

(GCS), whereby a GCS of 15/15 was considered as normal level of consciousness. Children 

were excluded from this study if they were older than 13 years and if written informed consent 

was not obtained. Some of the severely ill children admitted to the hospital during the study 

period (December 2016 and November 2017) were not recruited owing to these children 

being too ill and requiring emergency treatment. All the children enrolled into the study were 

TB treatment naïve.  

 

2.2.2 Pulmonary tuberculosis diagnostic biomarkers study 

Children who provided samples for this study were previously enrolled at the Red Cross War 

Memorial Children’s Hospital, Cape Town, South Africa. Briefly, children presenting with signs 

and symptoms requiring investigation for pulmonary TB were recruited and samples collected 

and banked over multiple years. The children were later characterised as patients with TB 

disease or no-TB controls through extensive investigations using available clinical, laboratory 

and radiological investigations. Written informed consent was obtained from parents or legal 

guardians of all study participants prior to the enrolment of the children into the study.  

 

2.3 Ethics statement 

Where applicable (as discussed in 2.2.1 and 2.2.2), written informed consent was obtained 

from parents or legal guardians of the children enrolled in to the studies and where possible, 

assent was obtained from the child in addition to consent from the parents or guardians. The 

TBM study was approved by the Health Research Ethics Committee of the Faculty of Medicine 

and Health Sciences of the University of Stellenbosch (Stellenbosch University ethics 

reference number: N16/11/142) (Principal Investigators; NN Chegou and R Solomons), and 

the pulmonary TB diagnostic study was approved by the University of Cape Town’s Faculty of 

Health Sciences Human Research Ethics Committee (principal investigators, H Zar and Mark 

Nicol). Both studies were additionally approved by the respective hospitals (the Tygerberg 

Academic Hospital and the Red Cross War Memorial Hospital) respectively, and the City of 

Cape Town. 

 

2.4 Sample collection and diagnostic work-up 

2.4.1 TBM diagnostic biomarkers study 

As none of the children enrolled into this study were recruited solely for purposes of the present 
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study, samples were collected during specimen collection for routine diagnostic procedures. 

That is, during the collection of samples (CSF and whole blood) for routine diagnostic 

purposes, all participants provided additional 1ml of whole blood and 1ml of CSF for the 

purpose of this research project. Following the collection of the routine diagnostic samples, 

whole blood was collected into BD Vacutainer® serum tubes and transported to the research 

laboratory (SU-IRG) at ambient conditions. In the laboratory, tubes were centrifuged at 1200 

xg for 10 minutes, after which serum was harvested, aliquoted and stored at -80 °C until use. 

CSF was collected into a sterile (plain) tube and transported to the laboratory on ice. Upon 

arrival in the laboratory, CSF samples were centrifuged at 4000 xg for 15 minutes, after which 

supernatants were harvested, aliquoted and stored at -80 °C until use. All CSF samples were 

processed in a Biosafety level III (BSL-3) laboratory. 

 

To be able to classify the study participants as having TBM, other causes of meningitis or no 

meningitis, a comprehensive clinical evaluation of all patients was done by a specialist 

paediatric neurologist (addendum 1). The routine investigations performed included clinical 

examination (signs and symptoms, history of TB contact, HIV test, GCS, tuberculin skin test, 

and chest X-ray), computed tomography (CT) and magnetic resonance (MR) imaging when 

clinically indicated and air-encephalography (in all children with hydrocephalus). Furthermore, 

lumbar puncture was performed and investigations including appearance and colour 

determination, differential cell counts,  protein, glucose, chloride and other routinely 

investigated markers were assessed, followed by centrifugation of the CSF, Gram staining, 

India ink examination, culture of the centrifuged sediment on blood agar plates (for pyogenic 

bacteria), Auramine “O” staining and fluorescence microscopy (for M.tb), culture using the 

mycobacterium growth indicator tubes (MGIT)TM method (Becton and Dickinson) and  

examination for M.tb using HAIN Genotype MTBDRplus kit (Hain Lifescience GmbH, 

Germany). 

Using a uniform research case definition based on a scoring system consisting of clinical, 

CSF, and neuroimaging findings (145),   diagnosis of probable TBM was made if two or more 

of the following criteria were present in combination with a characteristic history and CSF 

changes associated with TBM: a positive history of contact with an adult TB case, a positive 

tuberculin skin test, a chest x-ray suggestive of pulmonary TB (hilar lymphadenopathy), miliary 

TB or cavitation, CT or MRI demonstrating the characteristic features of TBM (ventricular 

dilatation, meningovascular enhancement and/or granuloma/s), poor weight gain or weight 

crossing percentiles documented on health cards, or positive identification of acid fast bacilli 

from gastric washings (microscopy or culture). A diagnosis of definite TBM was made if acid-

fast bacilli were present in the CSF, M.tb was isolated from the CSF by culture, a nucleic acid 
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amplification test of CSF yielded positive results, or if there was histopathological evidence of 

M.tb from another CNS site. Children who could not be classified as either definite or probable 

TBM, and who had an alternative diagnosis such as other bacterial or viral meningitis, 

leukemia, milliary TB, viral pneumonia, autoimmune encephalitis, HIV encephalopathy and 

Guilain Barre syndrome were then classified as no TBM.  

 

2.4.2 Pulmonary Tuberculosis diagnostic biomarkers study 

Children suspected of having pulmonary TB at the Red Cross War Memorial Children’s 

Hospital were recruited after which blood samples were collected into serum tubes (BD SST 

tubes) centrifuged, aliquoted and stored in a -80°C specimen biobank. Using routine 

diagnostic procedures including clinical, laboratory (microscopy and culture of gastric 

aspirates) and radiological (chest X ray) findings, children were classified as having definite, 

highly probable pulmonary TB disease or TB unlikely. Samples from only the culture confirmed 

pulmonary TB patients or children in the TB unlikely groups were selected from the biobank 

and used for the investigations described in the present dissertation. 

 

2.5 Laboratory experiments 

2.5.1 Luminex multiplex immunoassays 

The bead-based Luminex multiplex assays were used to evaluate the concentrations of host 

biomarkers in the present study.  

2.5.1.1 Principle of the Luminex technology 

Luminex multiplex immunoassays are based on the Luminex® xMAP® technology. Luminex® 

utilizes color-coated microparticles that incorporate different proportions of two fluorescent 

dyes. This technology allows simultaneous multiplexing of up to 500 assays through precise 

concentrations of the two dyes, which can create 500 distinctively colored bead sets, each of 

which can be coated with a specific capture antibody. The different analyte specific beads are 

mixed and incubated with a test sample. If the test sample contains the analyte of interest, the 

analyte is captured by the bead via its specifically bound capture antibody at the surface of 

the bead.  After addition of a cocktail of biotinylated detection antibodies, each detection 

antibody binds a different epitope of its specific analyte, thereby forming a sandwich on the 

surface of the bead. Addition of fluorescent dye (streptavidin-phycoerytherin; SAPE), which is 

the reporter molecule, completes the reaction on the surface of each microsphere. A dual-

laser flow-based detection analyser (in the Luminex 200 or FlexMap 3D systems), or dual LED 

system (in the Luminex Magpix) is then used to read the assay results. One of the lasers or 
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LED lights (red) identifies and discriminates between the beads, whereas the second 

laser/LED (green) determines the magnitude of the PE-derived signal, which is directly 

proportional to the amount of analyte bound.  

2.5.1.2 Luminex experiments for the TBM diagnostic study 

The levels of 68 different analytes were investigated in the CSF and serum samples of all the 

children with suspected meningitis. These included analytes that were previously identified in 

previous studies either as potential biomarkers for TBM including VEGF A and interleukin (IL)-

13 (160) or analytes that had shown potential as biomarkers for the diagnosis of adult 

pulmonary TB in previous studies (139, 146, 149, 150) and relatively new analytes, mainly 

complement proteins that have not frequently been evaluated as TB diagnostic biomarkers 

(Table 2.1). The experiments were performed using the reagent kits supplied by Merck 

Millipore, Billerica, MA, USA and R & D systems Inc. (Bio-Techne®), USA as indicated in table 

2.1. All experiments were performed strictly according to the instructions of the respective kit 

manufactures, in a 96-well plate with the only modifications being the pre-dilution of the assay 

reagents 1:2. It should be noted that prior optimization experiments conducted at the SU-IRG 

laboratory as part of a previous MSc. project showed that a 1:2 pre-dilution of Luminex 

reagents prior to use did not result in any differences when compared with the standard 

procedure that is prescribed by the manufacturers, for the analytes assessed, with higher 

dilutions (≥1:3) resulting in significant differences or trends for some analytes when compared 

to the standard procedure (Jacobs R, MSc Thesis, 2016). As it is difficult to ascertain which 

analytes will perform well when a ≥1: 3 pre-dilution of reagents is used and the fact that a 1:2 

pre-dilution worked well for all analytes evaluated, we chose to employ the 1:2 dilution in the 

current project.  

Briefly, after bringing all reagents and samples to room temperature, the magnetic beads, and 

detection antibody cocktails were diluted 1:2 using the assay buffer supplied in the kits, 

whereas the assay controls (where available) and standards were prepared according to the 

manufacturer’s instructions. Samples were then diluted or left undiluted as prescribed by the 

kit manufacturers or based on previous knowledge on the expected levels of these analytes 

as have been observed in previous studies conducted in the laboratory. After addition of the 

standards, controls and samples in to the appropriate wells of the 96-well plates, analyte-

specific coupled beads were added to each well (in 25μL or 50μL amounts, as specified by 

the manufacturer). The plates were then incubated for 2 hours at room temperature (20-25°C) 

or overnight at 4°C on a plate shaker, following the recommendations of the kit manufacturer. 

After incubation, the well contents were gently removed, and the plates were washed. This 

was followed by the addition of the manufacturer recommended amount of detection 
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antibodies (25μL or 50μL), followed by a further 1 hour at room temperature on a plate shaker. 

Following the incubation, SAPE was added to each well containing the detection antibodies 

and the mixture was incubated for a further 30 minutes at room temperature on a plate shaker. 

After incubation, the well contents were removed, and the plates were washed, read on either 

the Bio Plex 200 Luminex system (Bio Rad laboratories) or Bio Plex Magpix system (Bio Rad 

laboratories) following the settings recommended by the manufacturer. All wash steps were 

performed using an automated magnetic bead washer (Bio Rad Laboratories, Hercules, USA) 

according to the instruction of the kit manufacturers. Beads were acquired and analysed using 

the Bio Plex manager software version 6.1 (Bio Rad Laboratories, Hercules, USA) for plates 

read on Bio Plex 200 system, or acquired using the Bio Plex Magpix software, followed by 

analysis using Bio Plex manager 6.1, for plates read on the Magpix instrument. Median 

Fluorescent Intensity (MFI) data were analysed using a 5 parameter logistic spline curve-fitting 

curve, for calculating analytes concentrations in the unknown samples. Quality control 

reagents supplied in reagent kits purchased from Merck Millipore and a laboratory internal 

quality control were evaluated on all plates. The levels of the analytes in the quality control 

reagent were always within the expected ranges. 

 

Table 2.1: Reagent kits used for evaluation of host markers in TBM serum and CSF 

samples. 

Analytes purchased from Merck Millipore, Billerica, MA, USA 

Panel names and 

catalogue numbers 

Analytes included in the kits 

Human Cardiovascular 

Disease (CVD) Magnetic 

Bead Panel 2 

(HCVD2MAG-67K) 

Von Willebrand factor-cleaving protease (ADAMTS13), D-dimer, 

growth differentiation factor (GDF)-15, Myoglobin, soluble 

intracellular adhesion molecule (sICAM)-1, myeloperoxidase (MPO), 

P-selectin, lipocalin2 (NGAL), soluble vascular adhesion molecule 

(sVCAM)-1, serum amyloid A (SAA) 

Human 

Neurodegenerative 

Disease Magnetic Bead 

Panel 1 

(HNDG1MAG-36K) 

Apolipoprotein (Apo)-AI, Apo-CIII, complement factor H (CFH), 

complement C3 (CC3) 
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Human 

Neurodegenerative 

Disease Magnetic Bead 

Panel 2 

(HNDG2MAG-36K) 

C reactive protein (CRP), alpha-1-Antitrypsin (A1AT), pigment 

epithelium-derived factor (PEDF), serum amyloid P (SAP), CCL18 

(MIP-4/ PARC), complement C4 (CC4) 

Human 

Neurodegenerative 

Disease Magnetic Bead 

Panel 3 

(HNDG3MAG-36K) 

Brain-derived neurotrophic factor (BDNF), cathepsin D, ICAM-1, 

MPO, platelet derived growth factor (PDGF)-AA, CCL5 (RANTES), 

neural cell adhesion molecule (NCAM), PDGF-AA/BB, VCAM-1, 

plasminogen activator inhibitor (PAI)- 1 total 

Human 

Neurodegenerative 

Disease Magnetic Bead 

Panel 4 

(HNDG4MAG-36K) 

S100 calcium-binding protein B (S100B), amyloid beta 1-40 (Aβ40), 

Aβ42, soluble receptor for advanced glycation end products 

(sRAGE) , glial cell-derived neurotrophic factor (GDNF) 

Human Complement 

Magnetic Bead Panel 1 

(HCMP1MAG-19K) 

Complement C2 (CC2), CC5, CC4b, CC5a, CC9, complement factor 

D (CFD), mannose binding lectin (MBL), complement factor 1 (CF1) 

Analytes purchased from R&D SYSTEMS Inc. (Biotechne®), USA 

Human Magnetic Luminex 

Screening Assay 

(LXSAHM- 24) 

CCL1 (I-309), CCL4 (macrophage inflammatory protein (MIP)-1β), 

CXCL8 (IL-8), granulocyte-macrophage colony-stimulating factor 

(GM-CSF), interleukin (IL)-10, IL-17A, IL-6, matrix metalloproteinase 

(MMP)-8, CCL2 (monocyte chemoattractant protein (MCP)-1), CD40 

ligand (CD40L), CXCL9 (MIG), interferon (IFN)-γ, IL-12/23p40, IL-

21, IL-7, transforming growth factor (TGF)-α, CCL3 (MIP)-1α, 

CXCL10 (IP-10), granulocyte colony-stimulating factor (G-CSF), IL-

1β, IL-13, IL-4, MMP-1, tumour necrosis factor (TNF)-α 

Human Magnetic Luminex 

Screening Assay 

MMP-7, CD56 (NCAM-1), vascular endothelial growth factor 

(VEGF)-A 
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(LXSAHM- 03) 

Human Magnetic Luminex 

Screening Assay 

(LXSAHM- 02) 

Ferritin, MMP-9 

-Serum samples for the HCVD2MAG-67K panel were pre-diluted 1:100 prior to analysis, 

whereas CSF samples were evaluated neat. 

-Serum samples for HNDG1MAG-36K panel were pre- diluted 1:40 000, while CSF samples 

were pre-diluted 1:400 prior to analysis. 

-Serum samples for HNDG2MAG-36K panel were pre- diluted 1:2000, while CSF samples 

were pre-diluted 1:200 prior to analysis. 

-Serum samples for HNDG3MAG-36K panel were pre-diluted 1:200 prior to analysis, whereas 

CSF samples were evaluated neat. 

-Serum samples for HNDG4MAG-36 panel were pre-diluted 1:200, while CSF samples were 

pre-diluted 1:3 prior to analysis. 

-Serum samples for HCMP1MAG-19K panel were pre-diluted 1:200, while CSF samples were 

pre-diluted 1:2 prior to analysis. 

-Serum samples for LXSAHM-24 panel were pre-diluted 1:2 prior to analysis, while CSF 

samples were evaluated neat,  

-Serum samples for LXSAHM-03 panel were pre-diluted 1:2 prior to analysis, while CSF 

samples were evaluated neat,  

-Serum samples for LXSAHM-02 panel were pre-diluted 1:50, while CSF samples were pre-

diluted 1:2 prior to analysis. 

All the dilution factors employed in the experiments were either as specified by the 

manufacturers of the respective kits or determined after prior optimisation experiments that 

were performed in the Stellenbosch University Immunology Research Group laboratory. 

 

2.5.1.3 Luminex experiments for the pulmonary TB diagnostic study 

We evaluated the concentrations of the seven proteins comprising a previously published 

seven-marker adult serum protein signature (166) namely;  CRP, IFN-γ, CFH, SAA, Apo-A1, 
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IP-10 and transthyretin as well as proteins that showed potential in another adult study (6, 8) 

and other proteins selected from the literature as possible biomarkers for the diagnosis of 

paediatric pulmonary TB (Table 2.2). The procedures employed in evaluating the 

concentrations of these analytes in the serum samples, including bead acquisition and 

analysis of bead median fluorescent intensities were exactly as described under section 

2.5.1.1. 

Table 2.2: Reagent kits employed in the evaluation of biomarkers for the diagnosis of 

childhood pulmonary TB.  

Analytes purchased from Merck Millipore, Billerica, MA, USA 

Panel names and 

catalogue numbers 

Analytes included in the kits 

Human Neurodegenerative 

Disease Magnetic Bead 

Panel 1 (HNDG1MAG-36K) 

Apo-A1, CC3, Prealbumin (transthyretin), CFH 

Human MMP Magnetic Bead 

Panel 2 (HMMP2MAG-55K) 

MMP-1, MMP-2, MMP-9 

Human Neurodegenerative 

Disease Magnetic Bead 

Panel 2 (HNDG2MAG-36K) 

CRP, A1AT, SAP, CC4 

Human Soluble Cytokine 

Receptor Panel (HSCRMAG-

32K) 

Soluble interleukin (sIL)-6R, sIL-4R, sIL-2Ra, soluble 

vascular endothelial growth factor (sVEGF)-R3 

Human Cytokine/Chemokine 

Magnetic Bead Panel 

(HCYTOMAG-60K) 

IL-13, macrophage-derived chemokine (MDC/CCL22), 

VEGF, IP-10, IL-6, IL-1β, MIP-1β, IL-10, IFN-γ, TGF-α, IL-

12p40, G-CSF, MIP-1α, TNF-α, TNF-β, IFN-α2, IL-9 

Analytes purchased from Bio- Rad Laboratories, Hercules, CA, USA 

Human Acute Phase 

Multiplex 4- Plex Panel 

Alpha-2-macroglobulin (A2M), haptoglobin, CRP, SAP 
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Human Acute Phase 

Multiplex 5- Plex Panel 

Procalcitonin (PCT), ferritin, tissue plasminogen activator 

(TPA), fibrinogen, SAA 

-Samples for Human Acute Phase Multiplex 4-Plex panel were pre-diluted 1:10000 prior to 

analysis. 

-Samples for Human Acute Phase Multiplex 5-Plex panel were pre-diluted 1:100 prior to 

analysis. 

-Samples for HNDG1MAG-36K panel were pre-diluted 1:40000 prior to analysis 

-Samples for HMMP2MAG-55K panel were pre-diluted 1:500 prior to analysis. 

-Samples for HNDG2MAG-36K panel were pre-diluted 1:2000 prior to analysis. 

-Samples for HSCRMAG-32K panel were pre-diluted 1:5 prior to analysis. 

-Samples for HCYTOMAG-60K panel were evaluated neat. 

As described for the experiments done on samples from children with suspected TBM, all the 

dilution factors employed in the experiments were either as specified by the manufacturers of 

the respective kits or determined after prior optimisation experiments that were performed in 

the Stellenbosch University Immunology Research Group laboratory. 

 

2.6 Enzyme-linked Immunosorbent assay  

The concentrations of cathelicidin LL-37, evaluated in the current project as a biomarker for 

TBM (160) in the serum and CSF samples from children with suspected meningitis were 

assessed by Enzyme-linked Immunosorbent assay (ELISA).  This was done using a human 

LL-37 ELISA kit purchased from Elabscience Biotechnology Inc. (Catalog #E-EL-H2438).  

 

2.6.1 Principle of ELISA 

The ELISA kit test principle is based on the Sandwich-ELISA method. Briefly, the micro ELISA 

plate provided in the kit has been pre-coated with a capture antibody specific to Human LL-

37. When the sample test is added to the micro ELISA plate wells and incubated, the antigen 

of interest (cathelicidin LL-37) binds to specific capture antibody. Then, any unbound antigen 

is washed away through recommended washing steps. Then a biotinylated detection antibody 

specific for human LL-37 and avidin-horseradish peroxidase (HRP) conjugate are added to 

each micro plate well and incubated. Then, any unbound conjugate is washed away. The 

Stellenbosch University  https://scholar.sun.ac.za



 

32 

 

substrate solution is added to each well and only those wells that contain human LL-37, 

biotinylated detection antibody and avidin-HRP conjugate will appear blue in colour. The stop 

solution is then added to terminate the enzyme-substrate reaction and the colour turns yellow. 

The optical density (OD) is measured spectrophotometrically at a wavelength of 450 

nanometre (nm)± 2nm. The measured OD value is proportional to the concentration of human 

LL-37.  

 

2.6.2 ELISA experiment for TBM diagnostic study 

The experiment for this study was performed according to the manufacturer’s instruction as 

follows: standards and samples were added into the plate wells and mixture was incubated 

for 90 minutes at 37°C. After incubation, the plate wells contents were removed, and 

biotinylated detection antibody was added, and the mixture was incubated for 1 hour at 37°C. 

After which the plates were washed 3 times according to the manufacturer’s instruction, the 

HRP conjugate was added and the mixture was incubated for 30 minutes at 37°C. After 

incubation, the substrate reagent was added, and the mixture was incubated for 15 minutes 

at 37°C. Following incubation, the stop solution was added and the OD was determined at 

450nm immediately, using an automated microplate plate reader (iMarkTM Microplate Reader, 

Bio-Rad Laboratories). 

 

2.7 Statistical analysis 

Differences between any two groups being compared for example, TBM and No TBM or TB 

and No TB) were determined using the student’s t-test or the Mann Whitney U-test, depending 

on whether the data were normally distributed. The diagnostic accuracy of individual host 

biomarkers was assessed by receiver operator characteristics (ROC) curve analysis. Cut-off 

values and sensitivity and specificity for individual analytes were determined using the 

Youden’s index. General Discriminant Analysis (GDA), with leave-one out cross validation, 

was used to assess the predictive abilities of analytes in combination. P-values ≤0.05 were 

considered significant. All statistical analysis were performed using Statistica (TIBCO 

Software Inc., CA, USA) and Graph Pad Prism Version 6 (Graphpad Software Inc, CA, USA). 

 

2.8 Role of the candidate in the research projects 

Following the design of the studies and recruitment of the first study participant (for the TBM 

study) in December 2016, I subsequently joined the group as a Masters student to work on 
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these projects. From the commencement of my studies in January 2017, I sat in meetings 

regarding further planning of the studies and from then onwards, played the following roles: 

Following the collection of samples for the TBM project by the specialist neurologist, I went to 

the hospital wards, collected the samples and transported them to the laboratory (SU-IRG). 

Upon arrival in the laboratory, I processed and stored all the serum samples as per the 

standard operating procedures after which I went to the biosafety level 3 laboratory for 

processing and storage of the CSF samples. I therefore underwent all the necessary trainings 

and certifications while working on “my own” study samples. Towards the end of patient 

recruitment, I, together with my supervisor selected the analytes to be investigated in the 

project, after which I ordered all the reagent kits (for both Luminex and ELISA). I subsequently 

planned the experiments after undergoing the necessary training and certification as per the 

laboratory’s requirements, prepared all templates and performed all experiments, with 

assistance of a research assistant when needed.  

For the pulmonary TB diagnostic study, I assisted in performing the experiments as the kits 

were already ordered by my supervisor prior to my arrival. For both studies, I cleaned all the 

Luminex and ELISA data in preparation for statistical analysis, merged the laboratory and 

clinical data, performed all the univariate data analysis including the preparation of the figures 

and tables and was assisted by a biostatistician from the Centre for Statistical Consultation of 

Stellenbosch University (Professor Martin Kidd) in performing the general discriminant 

analysis. I later assisted in interpreting of the data and wrote my thesis.  
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Chapter 3 

Application of cerebrospinal fluid host protein biosignatures in the diagnosis of 

tuberculous meningitis in children from a high burden setting 
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3.1 Background 

Tuberculous meningitis (TBM) is the most severe form of extra pulmonary TB as it 

affects the central nervous system (CNS). It mostly occurs during early childhood and has 

high morbidity and mortality, mainly due to delayed diagnosis (171). It is well-established that 

diagnosing pulmonary TB disease in children is challenging, especially in resource-poor 

settings (172). It is even more challenging to diagnose extrapulmonary TB in this patient group 

including TBM. As a consequence, TBM frequently results in a poor outcome due to non-

specific symptoms and signs (173). The limitations of both the most widely used diagnostic 

test for TB (smear microscopy) (174), and culture, the gold standard test, are well-publicised 

(172,174). These tests have been shown to not be very useful in the diagnosis of TBM 

(175,176). The GeneXpert MTB/RIF test®, the most important recent advance in the field of 

TB diagnostics, is limited by the large CSF volumes required and low negative predictive value 

(149). However, the use of the GeneXpert Ultra resulted in improved negative predictive value 

in a more recent study on HIV positive adults (151). The diagnosis of TBM is mostly based on 

a combination of clinical findings, multiple laboratory tests on the CSF, imaging findings and 

the exclusion of common differential diagnoses in routine clinical practice (10). Diagnosing the 

disease in most high burden, but resource –constrained settings is difficult due to the 

unavailability of most of these techniques, with children seen at primary and secondary 

healthcare facilities often having multiple missed opportunities; up to six visits before eventual 

diagnosis of TBM is made (177). New tests are urgently needed for the diagnosis of TBM. 

Host biomarker-based tests may be valuable in the diagnosis of TBM as they have 

previously been shown to be potentially useful in other extrapulmonary forms of TB (178), and 

may be easily converted into point-of-care or bedside tests (164,165). In a previous study, we 

identified a 3-marker CSF host protein biosignature comprising of VEGF, IL-13 and cathelicidin 

LL-37, which showed potential in the diagnosis of TBM in children (160). As there have been 

multiple recent studies in which new, potentially useful TB diagnostic biomarkers were 

identified (17, 18), we hypothesized that at least some of these biomarkers which were 

identified in mostly adult pulmonary TB studies, will be useful in the diagnosis of TBM in 

children. We therefore aimed to evaluate the usefulness of our previously established 3-

marker CSF biosignature in a new cohort of children with suspected meningitis, and to also 

evaluate the potential of other host biomarkers that have shown potential in adult pulmonary 

TB studies, as candidate markers for the diagnosis of TBM in children. We further 

hypothesised that the accuracy of the previously identified 3-marker CSF signature (160) may 

be improved if refined through the incorporation of some of these new biomarkers.   
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3.2 Methods 

3.2.1 Study participants 

As mentioned in chapter 2 (Section 2.2.1), children suspected of having meningitis and 

requiring CSF examination for routine diagnostic purposes were recruited from the Tygerberg 

Academic Hospital in Cape Town, South Africa. Children were eligible for participation in the 

study if they were between the ages 3 months and 13 years, provided that written informed 

consent was obtained from the parents or legal guardians. Assent was obtained from children 

older than 7 years if they had a normal level of consciousness i.e., a Glasgow Coma Score 

(GCS) of 15/15. The study was approved by the Health Research Ethics Committee of the 

University of Stellenbosch, Tygerberg Academic Hospital, and the Western Cape Provincial 

Government. 

 

3.2.2 Sample collection 

As mentioned in chapter 2 (section 2.4.1), after collection of CSF and blood samples for 

routine diagnostic purposes, an additional 1ml of CSF was collected into a sterile tube, 

followed by the collection of 1ml of whole blood into a serum blood tube (BD Biosciences). 

Samples were then taken to the immunology research laboratory for further processing for 

research purposes, within an average of 2 hours from collection. Briefly, blood samples were 

centrifuged at 1200 xg for 10 minutes, followed by collection of serum, aliquoting and storage 

at -80oC until further processing. CSF samples were centrifuged in a biosafety level 3 

laboratory at 4000 xg for 15 minutes, followed by aliquoting and storage at -80oC until 

analysed. 

 

3.2.3 Diagnostic work-up of study participants 

All patients underwent a comprehensive clinical evaluation and classification according to a 

uniform clinical research case definition by a specialist paediatric neurologist as described in 

section 2.4.1  

 

3.2.4 Immunoassays 

As mentioned in chapter 2 (section 2.5.1.2), in addition to the three biomarkers that comprised 

our previous 3-marker model (160) (IL-13, VEGF and cathelicidin LL-37, we evaluated the 

concentrations of 66 other candidate biomarkers including markers that were previously 

investigated in adult TB studies (17, 18, 20, 21), and markers which have not been previously 

investigated in the TB field, as possible diagnostic biomarkers for TBM by ELISA (cathelicidin 

LL-37) or the Luminex platform (all other host biomarkers) (All markers are listed in Table 2.1).  
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As mentioned in chapter 2 (section 2.6.2), cathelicidin LL-37 levels in serum and CSF samples 

were evaluated using an ELISA kit purchased from Elabscience Biotechnology Inc. (Catalog 

#E-EL-H2438). Experiments were done according to the procedure recommended by the 

manufacturer after which optical densities (OD) were read at 450nm by an automated 

microplate reader (iMark™ Microplate Reader, Bio Rad Laboratories). The mean OD of the 

blank wells was subtracted from the OD of the sample wells and the background-corrected 

ODs used for statistical analysis.  

 

3.2.5 Statistical analysis 

As mention in chapter 2 (section 2.6), differences in the concentrations of host biomarkers 

between the TBM and the no-TBM group were assessed using the Mann Whitney U test. The 

receiver operator characteristics (ROC) curve analysis procedure was used to assess the 

diagnostic accuracy of individual host biomarkers for TBM. Optimal cut-off values and 

associated sensitivities and specificities were selected based on the Youden's index (180). 

The utility of combinations of biomarkers in the diagnosis of TBM was ascertained by general 

discriminant analysis (GDA), followed by leave-one-out cross validation. The data was 

analysed using Statistica (TIBCO Software Inc., CA, USA), and GraphPad Prism version 6 

(Graphpad software, CA, USA). 

 

3.3 Results 

 A total of 47 children in whom meningitis was strongly suspected, 30 (63.8%) of whom were 

males were included in the study. The mean age of all the children was 41.6 ± 41.5 months 

and six out of 37 with known HIV status (16.2%) were HIV infected. Using a composite 

reference standard based on a uniform research case definition of TBM (145), 23 of the 

children were diagnosed with TBM.  The 24 children without TBM included children with 

bacterial meningitis (n=2), viral meningitis (n=2) and children with other diagnoses (Table 3.1).  
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Table 3.1: Clinical and demographic characteristics of children included in the study 

  All TBM No-TBM# 

Number of participants 47 23 24 

Mean age, months± SD 41.6 ± 41.5 31.5±34.8 51.3±45.7 

Males, n (%) 30(63.8) 13(56.5) 17(70.8) 

HIV Positive, n/no tested  6 /37 0 /22 6 /15 

 

#The no-TBM group included children with bacterial meningitis (n=2), viral meningitis (n=2), 

asphyxia (n=1), autoimmune encephalitis (n=1), febrile seizure (n=3), Guilain Barre (n=1), HIV 

encephalopathy (n=1), focal seizures (n=1), leukemia (n=1), Miliary TB (With lymyphocytic 

interstitial pneumonitis) (n=1), Developmental delay (n=1), Breakthrough seizure (n=1), 

Gastroenteritis (Caused by shock) (n=1), Idiopathic intracranial hypertention (IIH) (n=1), Viral 

Gastroenteritis (Adeno and Rota) and encephalopathy (n=1), Stroke (n=1), Mitochondrial 

diagnosis (n=1), viral pneumonia (This included also SAM and nosocomial sepsis) (n=1), 

Febrile Seizure and Acute gastroenteritis (n=1) and other (n=1). 

 

3.3.1 Usefulness of the previously identified 3-marker CSF biosignature in the 

diagnosis of TBM 

As we were interested in validating the diagnostic accuracy of the previously established 3-

marker CSF biosignature (VEGF, IL-13 and cathelicidin LL-37), we first looked at the utility of 

individual analytes comprising this signature, followed by evaluation of combinations between 

different biomarkers comprising the signature.  

As observed in our previous study (160), VEGF was the most useful individual 

biomarker in this signature as none of the other two markers showed significant differences 

between groups with the Mann Whitney U test. The median levels of all the three analytes 

were higher in children with TBM (Table 3.2). As reagent kits from different manufacturers 

were used in this study, in comparison with what was employed in the previous study, we 

performed receiver operator characteristics (ROC) curve analysis to ascertain the optimal 

threshold values for the analytes using these new reagent kits. Using these new cut-off values, 

we observed that combining all three biomarkers (that is, a patient yielding positive results 

with all three), or positivity with any two out of the three analytes, was inferior to the accuracy 

obtained with VEGF A alone. However, when considering values above the threshold for any 

one of the three markers was taken as a positive result, the accuracy of the 3-biomarker 

signature improved, with positive and negative predictive values of 59.5% (95% CI, 51.5-

66.9%) and 90.0% (95% CI, 55.3-98.5%), respectively (Table 3.2). 
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Table 3.2: Utility of the previously established 3-marker CSF biosignature in the 

diagnosis of TBM in a new cohort of children with suspected meningitis. *Cut-off values 

shown for VEGF A and IL-13 are in pg/ml.  Value shown for cathelicidin LL-37 is the optical 

density. 

Biosignature AUC 

(95% CI) 

Cut-off 

Value 

Sensitivity 

%  (95% 

CI) 

Specificity 

% (95% CI) 

PPV NPV Youden’s 

Index (J) 

VEGF A 0.81 

(0.67-

0.94) 

>9.4 82.6 (61.2-

95.1) 

79.2 (57.9-

92.9) 
79.2 (63.0-

89.5) 

82.6 (65.6-

92.2) 

 0.62 

(0.39-

0.84) 

IL-13 0.58 

(0.42-

0.75) 

>524.9 52.2 (30.6-

73.2) 

66.7 (44.7-

84.4) 
60.0 (43.0-

74.9) 

59.3 (46.6-

70.8) 

0.19 (-

0.09-

0.47) 

*Cathelicidin-

LL37 

0.55 

(0.38-

0.71) 

>0.045 69.6 (47.1-

86.8) 

50.0 (29.1-

70.9) 
57.1 (45.1-

68.4) 

63.2 (45.1-

78.2) 

0.20 (-

0.08-

0.47) 

VEGF+ IL-13+ 

Cathelicidin-

LL37 

0.61 (95% 

CI, 0.50-

0.72) 

N/A 30.4 (5.6-

50.9) 

91.7 (74.2-

97.7) 

77.8 (44.8-

93.8) 

57.9 (50.6-

64.9) 

0.22 

(0.00-

0.44) 

Any two out of 

the three 

biomarkers 

0.73 

(0.60-

0.85) 

N/A 78.3 (58.1-

90.3) 

66.7 (46.7-

82.0) 

69.2 (55.1-

80.5) 

76.2 (58.4-

84.4) 

0.45 

(0.20-

0.70) 

Any one out of 

the three 

biomarkers 

0.67 

(0.56-

0.77) 

N/A 95.7 (79.0-

99.2) 

37.5 (21.2-

57.3) 

59.5 (51.5-

66.9) 

90.0 (55.3-

98.5) 

0.33 

(0.12-

0.54) 

 

 

3.3.2 Utility of alternative host biomarkers in the diagnosis of TBM 

When the concentrations of the 66 other host markers investigated in our study were 

compared between children with and those without TBM using the Mann Whitney U test, the 

levels of multiple host biomarkers were significantly different (p≤0.05) between the two groups 

(Table 3.3). When the data for individual host markers were assessed by ROC curve analysis, 

the area under the ROC curve (AUC) was above 0.70 for 45 of the 66 proteins. Of note, the 

AUCs for 28 of these proteins including IFN-γ, MIP-4, CXCL9, CCL1, RANTES, IL-6, TNF-α, 

MPO, MMP-9, MMP-8, CC2, IL-10, PAI-1, CXCL8, IL-1b, A1AT, CXCL10, G-CSF, CC4, 

CC4b, GM-CSF, PDGF AB/BB, Apo-AI, MBL, ferritin, CC5a, SAP and CC5 were ≥ 0.80 (Table 

3.3, Figure 3.1).   
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As all the six known HIV infected children were in the no-TBM group, we excluded 

these children and re-analysed the data for individual host biomarkers, to assess the possible 

influence of HIV infection on the accuracy of the biomarkers. After excluding the HIV infected 

children, the median levels of PEDF, IL-12/23p40, MMP-1, CD40L and GDF-15 were no longer 

significantly different between the children with TBM Vs. no-TBM. CD40L and GDF-15 showed 

trends for significant differences (0.05≤p-value≤0.09), whereas the observations for all other 

host markers were unchanged (data not shown).   
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Table 3.3: Utility of host biomarkers detectable in CSF samples from children with suspected meningitis in the diagnosis of TB 

meningitis. Median levels (inter-quartile ranges in parenthesis) of all host markers and accuracies in the diagnosis of TBM as determined by 

ROC curve analysis are shown. Cut-off values and associated sensitivities and specificities were selected based on the Youden’s index. #Values 

shown are in ng/ml, all other analytes are in pg/ml.*Values shown are absorbance and not concentration values.  

 

Host marker Median in TBM (IQR) Median in No-TBM 

(IQR) 

p-value AUC (95% CI) Cut-off 

Value 

Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

VEGF 45.4 (15.1-150.2) 3.1 (2.5-8.1) 0.00030

0 

0.81 (0.67-0.94) >9.4 82.6 (61.2-95.1) 79.2 (57.9-92.9) 

IL-13 671.68 (246.08-1409.68) 378.2 (89.0-870.4) 0.32222

0 

0.58 (0.42-0.75) >524.9 52.2 (30.6-73.2) 66.7 (44.7-84.4) 

*Cathelicidin

-LL37 

0.1 (0.1-0.1) 0.0 (0.1-0.1) 0.61952

1 

0.55 (0.38-0.71) >0.045 69.6 (47.1-86.8) 50.0 (29.1-70.9) 

IFN-γ 469.9 (194.0-818.1) 10.3 (3.9-45.7) <0.0001 0.98 (0.95-1.00) >99.5 91.3 (72.0-98.9) 91.7 (73.0-99.0) 

#MIP-4 47.5 (31.0-105.4) 0.3 (0.2-0.8) 0<0.000

1 

0.97 (0.94-1.00) >11.4 91.3 (72.0-98.9) 95.8 (78.9-99.9) 

MIG/CXCL9 9846.2 (4983.6-29684.1) 1349.7 (929.7-

2205.9) 

<0.0001 0.95 (0.90-1.00) >4855.

0 

82.6 (61.2-95.0) 95.8 (78.9-99.9) 

I-309/CCL1 156.6 (127.2-318.9) 5.4 (3.8-11.4) <0.0001 0.95 (0.87-1.00) >74.6 91.3 (72.0-98.9) 95.8 (78.9-99.9) 

RANTES 22.3 (14.6-52.0) 3.8 (0.1-5.7) <0.0001 0.95 (0.87-1.00) >9.9 91.3 (72.0-98.9) 91.7 (73.0-99.0) 

IL-6 524.8 (196.3-2659.9) 2.8 (1.1-12.3) <0.0001 0.95 (0.88-1.00) >100.7 87.0 (66.4-97.2) 95.8 (78.9-99.9) 
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TNF-α 69.2 (50.9-137.6) 1.2 (0.0-8.5) <0.0001 0.93 (0.85-1.00) >19.8 95.7 (78.1-99.9) 87.5 (67.6-97.3) 

MPO 62078.8 (49640.6-

73505.9) 

1430.5 (495.4-

5436.1) 

<0.0001 0.93 (0.83-1.02) >25823

.0 

95.7 (78.1-99.9) 91.7 (73.0-99.0) 

MMP-9 4074.6 (2081.8-7163.1) 8.6 (0.0-198.8) <0.0001 0.91 (0.81-1.00) >963.9 95.7 (78.1-99.9) 91.7 (73.0-99.0) 

MMP-8 8640.1 (2811.4-23467.6) 257.3 (0.0-1075.2) 0.00000

2 

0.91 (0.82-1.00) >1695.

0 

91.3 (72.0-98.9) 83.3 (62.6-95.3) 

#CC2 2188.4 (1229.9-

180000.0) 

87.5 (41.8-558.7) 0.00000

6 

0.89 (0.78-0.99) >712.0 87.0 (66.4-97.2) 83.3 (62.6-95.3) 

PAI-1 6090.8 (2456.8-12786.0) 401.6 (194.4-

1189.3) 

0.00000

8 

0.88 (0.77-0.99) >2163.

0 

82.6 (61.2-95.1) 87.5 (67.6-97.3)  

IL-1β 47.9 (24.2-64.3) 0.0 (0.0-9.7) 0.00000

9 

0.87 (0.76-0.99) >12.9 82.6 (61.2-95.1) 79.2 (57.9-92.9) 

IL-8/CXCL8 970.6 (519.7-1550.8) 110.2 (50.2-331.2) 0.00001

0 

0.88 (0.77-0.99) >394.8 87.0 (66.4-97.2) 79.2 (57.9-92.9) 

IP-

10/CXCL10 

44900.0 (2102.7-

44900.0) 

257.6 (85.5-837.4) 0.00001

6 

0.86 (0.75-0.97) >1200.

0 

95.7 (78.1-97.2) 79.2 (57.9-92.9) 

#A1AT 2209.8 (916.0-6488.9) 338.4 (236.8-

866.1) 

0.00002

3 

0.87 (0.75-0.98) >715.3 91.3 (72.0-98.9) 75.0 (53.3-90.2) 

IL-10 47.8 (22.2-82.4) 5.3 (0.0-12.0) 0.00003

7 

0.88 (0.76-1.00) >15.3 91.3 (72.0-98.9) 87.0 (67.6-97.3) 

G-CSF 400.2 (178.1-561.0) 0.0 (0.0-152.9) 0.00004

3 

0.85 (0.73-0.97) >137.5 91.3 (72.0-98.9) 75.0 (53.3-90.2) 
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#CC4 1201.2 (667.0-2196.0) 336.2 (232.7-

593.2) 

0.00006

0 

0.84 (0.73-0.96) >653.3 78.3(56.3-92.5) 79.2 (57.9-92.9) 

#CC4b 565.7 (377.5-668.8) 172.7 (94.3-331.7) 0.00010

3 

0.83 (0.71-0.96) >364.7 78.3 (56.3-92.5) 79.2 (57.9-92.9) 

GM-CSF 88.9 (64.7-105.1) 27.9 (13.4-60.5) 0.00011

2 

0.81 (0.71-0.95) >63.8 78.3 (56.3-92.5) 79.2 (57.9-92.9) 

#Apo AI 1708.0 (980.1-7429.6) 150.8 (0.0-980.1) 0.00016

7 

0.82 (0.69-0.95) >365.4 91.3 (72.0-98.9) 70.8 (48.9-87.4) 

CC5a 66.7 (35.1-93.0) 6.4 (4.4-42.8) 0.00017

3 

0.81 (0.68-0.95) >26.0 82.6 (61.2-95.1) 70.8 (48.9-87.4) 

PDGF-

AB/BB 

12.9 (5.8-24.5) 5.0 (0.9-7.0) 0.00017

5 

0.82 (0.69-0.95) >7.7 69.6 (47.1-86.8) 87.5 (67.6-97.3) 

#MBL 12.3 (3.7-56.2) 1.0 (0.6-6.6) 0.00022

1 

0.81 (0.69-0.94) >2.9 87.0 (66.4-97.2) 66.7 (44.7-84.4) 

Ferritin 4697.7 (3261.4-

300000.0) 

705.7 (325.5-

3376.9) 

0.00023

6 

0.81 (0.68-0.94) >2729.

0 

91.3 (72.0-98.9) 75.0 (53.3-90.2) 

#CC5 344.7 (166.1-724.3) 36.2 (20.8-178.0) 0.00030

9 

0.81 (0.67-0.94) >155.4 82.6 (61.2-95.1) 75.0 (53.3-90.2) 

#SAP 63.4 (34.6-184.6) 9.6 (5.7-33.5) 0.00036

4 

0.81 (0.67-0.95) >30.8 87.0 (66.4-97.2) 75.0 (53.3-90.2) 

#CFH 1242.8 (669.1-5717.9) 238.9 (82.8-795.3) 0.00062

9 

0.79 (0.66-0.93) >850.9 73.9 (51.6-89.8) 78.3 (56.3-92.5) 
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ICAM-1  2128.5(1610.6-4313.7) 499.8 (319.5-

1190.1) 

0.00074

3 

0.79 (0.65-0.93) >1372.

0 

82.6 (61.2-95.1) 79.2 (57.9-92.9) 

#P-Selectin 1.2 (0.0-1.8) 0.0 (0.0-0.0) 0.00103

6 

0.76 (0.62-0.89) >0.3 73.9 (51.6-89.8) 83.3 (62.6-95.3) 

PDGF-AA 13.6 (7.3-19.9) 5.5 (3.5-7.8) 0.00104

7 

0.78 (0.64-0.92) >6.6 82.6 (61.2-95.1) 75.0 (53.3-90.2) 

TGF-α 10.0 (5.8-25.7) 3.7 (0.0-7.3) 0.00104

8 

0.78 (0.65-0.92) >8.6 73.9 (51.6-89.8) 83.3 (62.6-95.3) 

#NGAL 77.8 (16.8-512.8) 1.7 (0.7-7.3) 0.00140

1 

0.78 (0.61-0.94) >16.8 78.3 (56.3-92.5) 95.8 (78.9-99.9) 

#CC3 886.7 (357.8-1722.5) 192.8 (56.5-749.1) 0.00234

4 

0.76 (0.62-0.91) >528.6 73.9 (51.6-89.8) 69.6 (47.1-86.8) 

MIP-

1β/CCL4 

356.3 (240.6-624.8) 185.9 (122.5-

261.6) 

0.00248

0 

0.76 (0.62-0.90) >261.6 69.6 (47.1-86.8) 75.0 (53.3-90.2) 

IL-17A 14.9 (4.9-32.5) 0.0 (0.0-9.2) 0.00264

2 

0.75 (0.60-0.89) >2.6 82.6 (61.2-95.1) 66.7 (44.7-84.4) 

#CRP 230000.0 (522.0-

230000.0) 

361.6 (64.1-

230000.0) 

0.00312

2 

 0.74 (0.60-0.87)   >11619

3.43 

69.6 (47.1-86.8) 70.8 (48.9-87.4) 

NCAM 30138.4 (18759.6-

35617.2) 

41021.7 (31229.8-

52874.4) 

0.00367

3 

0.75 (0.61-0.89) <36722

.0 

78.3 (56.3-92.5) 66.7 (44.7-84.4) 

#CC9 43.1 (35.5-59.0) 27.3 (20.7-35.8) 0.00464

5 

0.74 (0.59-0.90) >36.6 73.9(51.6-89.8) 83.3 (62.6-95.3) 
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CD40L 471.7 (350.8-823.8) 263.7 (160.1-

426.2) 

0.00642

2 

0.73 (0.58-0.88) >369.6 73.9 (51.6-89.8) 75.0 (53.3-90.2) 

#CF1 480.3 (246.4-970.6) 111.3 (83.2-369.5) 0.00644

8 

0.73 (0.58-0.88) >263.4 73.9 (51.6-89.8) 70.8 (48.9-87.4) 

MIP-

1α/CCL3 

277.3 (208.8-348.8) 179.0 (35.1-262.5) 0.00751

8 

0.73 (0.58-0.87) >223.9 69.6 (47.1-86.8) 70.8 (48.9-87.4) 

#D-dimer 98000.0 (1425.0-

98000.0) 

95.7 (2.5-1581.2) 0.00772

9 

0.72 (0.56-0.87) >49857

.4 

73.9 (51.6-89.8) 79.2 (57.9-92.9) 

#Apo CIII 69.8 (22.7-442.0) 14.2 (6.5-48.4) 0.01565

0 

0.71 (0.56-0.87) >26.3 73.9 (51.6-89.8) 69.6 (47.1-86.8) 

VCAM-1 119507.9 (45091.2-

149043.0) 

41549.9 (17719.0-

122798.7) 

0.02094

2 

 0.70 (0.55-0.85) >79387

.1 

69.6 (47.1-86.8) 66.7 (44.7-84.4) 

IL-12/23p40 249.0 (0.00-695.8) 0.0 (0.0-181.8) 0.01851

0 

0.69 (0.54-0.84) >168.7 69.6 (47.1-86.8) 75.0(53.3-90.2) 

#Adipsin/Co

mplement 

factor D 

50.1 (37.6-168.9) 26.1 (15.8-64.7) 0.04625

8 

0.67 (0.51-0.83) >35.5 82.6 (61.2-95.1) 62.5(40.6-81.2) 

#GDF-15 0.4 (0.2-0.5) 0.0 (0.0-0.2) 0.04928

2 

0.67 (0.50-0.84) >0.2 73.9 (51.6-89.8) 79.2 (57.9-92.9) 

#PEDF 746.8 (667.8-837.2) 658.0 (575.6-

819.8) 

0.05679

3 

0.66 (0.50-0.83) >689.6 73.9 (51.6-89.9) 62.5 (40.6-81.2) 
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MMP-1 448.8 (328.8-1058.9) 308.9 (243.0-

581.1) 

0.05811

1 

0.66 (0.50-0.82) >318.9 78.3 (56.3-92.5) 58.3 (36.6-77.9) 

#SAA 450.4 (1.5-230000.0) 6.5 (0.1-254.2) 0.05925

9 

0.66 (0.50-0.82) >204.9 60.9 (38.5-80.3) 75.0 (53.3-90.2) 

Aβ40 580.0 (305.1-918.5) 800.5 (323.6-

2195.3) 

0.19060

1 

0.61 (0.44-0.78) <759.5 65.2 (42.7-83.6) 58.3 (36.6-77.9) 

#ADMTS13 8.1 (6.3-15.9) 6.1 (0.5-9.7) 0.21231

2 

0.60 (0.44-0.77) >6.2 78.3 (56.3-92.5) 54.2 (32.8-74.5) 

Aβ42 172.8 (54.3-288.2) 219.0 (81.9-645.3) 0.25923

3 

0.60 (0.43-0.76) <292.1 78.3 (56.3-92.5) 41.7 (22.1-63.4) 

#Myoglobin 0.5 (0.1-1.1) 0.1 (0.0-0.9) 0.26671

8 

0.60 (0.43-0.76) >0.2 73.9 (51.6-89.8) 58.3 (36.6-77.9) 

MCP-1/CCL2 812.5 (457.9-1348.7) 1076.2 (513.2-

1423.7) 

0.29214

5 

0.59 (0.42-0.76) <881.0 60.9 (38.5-80.3) 66.7 (44.7-84.4) 

S100B 41.2 (41.2-2800.0) 41.2 (28.0-64.6) 0.31169

1 

0.59 (0.42-0.77) >64.6 38.9 (17.3-64.3) 75.0 (50.9-91.3) 

MMP-7 101.5 (81.6-181.6) 101.5 (81.6-121.5) 0.32987

7 

0.58 (0.42-0.75) >111.5 43.5 (23.2-65.5) 70.8 (48.9-87.4) 

IL-4 162.6 (107.9-229.2) 191.6 (132.7-

248.9) 

0.39446

3 

0.57 (0.40-0.74) <181.1 65.2 (42.7-83.6) 58.3 (36.6-77.9) 

Srage 14.1 (12.8-15.3) 14.4 (12.8-16.6) 0.47302

4 

0.56 (0.39-0.73) <14.4 56.5 (34.5-76.8) 50.0 (29.1-70.9) 
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Cathepsin D 75722.1 (61184.2-

91429.2) 

66539.1 ( 50433.7-

96857.8) 

0.53707

0 

0.55 (0.38-0.72) >68062

.2 

69.6 (47.1-86.8) 54.2 (32.8-74.5) 

IL-7 4.3 (0.0-7.0) 5.3 (2.4-7.9) 0.64574

5 

0.54 (0.37-0.71) <4.3 52.2 (30.6-73.2) 58.3 (36.6-77.9) 

BDNF 0.6 (0.0-1.1) 0.5 (0.0-1.0) 0.67475

2 

0.54 (0.37-0.70) >0.5 60.9 (38.5-80.3) 50.0 (29.1-70.9) 

IL-21 43.2 (12.7-78.2) 46.8 (30.9-61.1) 0.78180

9 

0.52 (0.35-0.69) <37.36 47.8 (26.8-69.4) 66.7 (44.7-84.4) 

GDNF 2.2 (1.8-2.3) 2.1 (1.9-2.5) 0.82879

4 

0.48 (0.31-0.65) <2.1 47.8 (26.8-69.4) 41.7 (22.1-63.4) 
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Figure 3.1: Representative plots showing the concentrations of biomarkers detected in 

CSF samples from children with and without TBM and ROC curves showing the 

accuracies of these biomarkers in the diagnosis of TBM. Error bars in the scatter-dot plots 

indicate the median and inter-quartile ranges. Representative plots for six analytes with AUC 

≥0.80 are shown. The accuracies of all host biomarkers evaluated in the study are shown in 

Table 3.3. 
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3.3.3 Utility of combinations between other host biomarkers in the diagnosis of 

TBM 

When the data obtained for all host markers (including VEGF A, IL-13 and LL-37) were fitted 

into General Discriminant Analysis (GDA) models irrespective of HIV status, optimal prediction 

of TBM was shown to be achieved with a combination of four markers. The most accurate 

four-marker biosignature comprising of sICAM-1, MPO, CXCL8 and IFN-γ diagnosed TBM 

with an AUC of 0.97 (95% CI, 0.92-1.00); corresponding to a sensitivity of 87.0% (20/23), (95% 

CI, 66.4-97.2%) and specificity of 95.8% (23/24), (95% CI, 78.9-99.9%). After leave-one-out 

cross validation, there was no change in the sensitivity (87.0%) and specificity (95.8%) of the 

four-marker biosignature. The positive and negative predictive values of the biosignature were 

95.2% (95% CI, 74.5-99.3%) and 88.5% (95% CI, 72.7-95.7%), respectively. Further 

optimization of the four-marker biosignature by selection of optimal cut-off values based on 

Youden’s Index resulted in both sensitivity and specificity 96% (Figure 3.2). 

Given that VEGF has consistently shown promise as a biomarker for TBM (16, 23–25) 

and that we identified other candidate biomarkers with strong potential in the present study, 

we wondered whether the previous 3-marker VEGF-based biosignature could be further 

optimised using other analytes. A GDA model in which IL-13 and cathelicidin LL-37 were 

replaced with IFN-γ and MPO respectively, resulted in an improved AUC of 0.97 (95% CI, 0.92 

- 1.00), corresponding to a sensitivity of 82.6% (19/23), (95% CI, 61.2-95.1%) and specificity 

of 95.8% (23/24), (95% CI, 78.9-99.9%). After leave-one-out cross validation, the sensitivity 

and specificity of the biosignature were 78.3% (18/23), (95% CI, 56.3-92.5%) and 91.7% 

(22/24), (95% CI, 73.0-99.0%) respectively. The positive and negative predictive values the 

refined VEGF-based biosignature after leave-one-out cross validation were 90.0% (95% CI, 

70.1-97.2%) and 81.5% (95% CI, 66.8-90.6%), respectively. Further optimization of the 

biosignature through the selection of better cut-off values resulted in improved sensitivity and 

specificity of 92% and 100% respectively (Figure 3.3). 
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Figure 3.2: Accuracy of the 4-marker CSF biosignature (sICAM-1, MPO, CXCL8 and IFN-

γ) in the diagnosis of TBM. Scatter plot showing the ability of the 4-marker signature to 

classify children as TBM or no TBM (left image). ROC curve showing the accuracy of the 4-

marker biosignature (right image). Red squares; children with TBM; blue circles: children with 

no TBM. 

 

Figure 3.3: Accuracy of a new VEGF-based 3-marker CSF biosignature in the diagnosis 

of TBM. Scatter plot showing the ability of the 3-marker signature to classify children as TBM 

or no TBM (left image). ROC curve showing the accuracy of the 3-marker biosignature (VEGF, 

IFN-γ and MPO (right image). Red squares: children with TBM; blue circles: children with no 

TBM. 
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3.4 Discussion 

We assessed the utility of a previously identified 3-marker CSF biosignature (IL-13, VEGF and 

cathelicidin LL-37) (160) as well as host biomarkers that have shown potential as pulmonary 

TB diagnostic candidates in recent adult studies, as tools for the diagnosis of TBM in children 

with suspected meningitis. Although we validated the diagnostic accuracy of the previously 

identified 3-marker biosignature, other major findings from our study included the identification 

of a novel four-marker CSF biosignature comprising of sICAM-1, MPO, CXCL8 and IFN-γ, and 

a modified 3-marker signature (VEGF, IFN-γ and MPO) which diagnosed TBM with promising 

accuracy. We also identified multiple host biomarkers that are detectable in CSF, and which 

showed strong potential as diagnostic candidates for TBM in children. 

  It is well-known that the diagnosis of TB disease in children remains a major challenge 

worldwide. This is mainly due to several well-publicised limitations in the currently available 

diagnostic tools (4, 6). It is even more challenging to diagnose extrapulmonary TB including 

TBM in this patient group, with unstandardized and cumbersome approaches without reliable 

diagnostic criteria, currently being used in routine clinical practice (184,185).  In order to 

improve standardization of clinical diagnosis of TBM for research purposes, a uniform 

research case definition for both adults and children was proposed, categorizing patients as 

definite, probable, or possible TBM according to a composite score based on clinical, CSF, 

and neuroimaging findings (145). None of the tests that are used in the diagnosis of TBM in 

children performs with high accuracy individually (7, 8, 28, 29). The disease consequently 

results in high morbidity and mortality, due mainly to diagnostic delay (3, 30).  

Host inflammatory biomarker based biosignatures have been shown to have potential 

in the diagnosis of TB disease in both adults and children in previous studies (17, 21, 31). 

Furthermore, these immulogical biomarker-based tests have the potential to be readily 

converted into user-friendly, point-of-care diagnostic tests (14, 15) with the development of 

such tools for the management of TBM especially in children promising to be a major 

breakthrough in future. In the present study, we validated the diagnostic accuracy of a 

previously identified CSF inflammatory biomarker-based biosignature (160). Although a 

diagnostic test with positive and negative predictive values of  59.5% and 90.0% respectively, 

will be imperfect, such a test may indeed contribute significantly to the management of children 

with suspected TBM if the test is a rapid, point-of-care or bedside test, considering that it 

currently takes up to six hospital visits before TBM is diagnosed in children, with the current 

diagnostic approaches, in a country such as South Africa, which is relatively well-resourced, 

compared to other lower and middle income countries (177). Our data indicates that 

replacement of two of the proteins in this previously identified signature (IL-13 and cathelicidin 

LL-37) with new biomarkers (MPO and IFN-γ respectively) has the potential to yield a test with 
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both sensitivity and specificity >95%. Furthermore, host markers comprising the alternative 

four-marker biosignature (sICAM-1, MPO, CXCL8 and IFN-γ) and other analytes that showed 

potential individually, may be back-up host markers that might be employed during the 

development of such a test.  Our findings may therefore pave the way for the development of 

a prototype CSF biomarker-based test for the diagnosis of TBM in children.  

During the development of such a test, the biosignature could be optimised further for 

use as a rule-in or rule-out test and the newly developed tests used as a screening test for 

TBM. If the test is based on a point-of-care diagnostic platform, such as the lateral flow 

technology, successful implementation of the test at the point-of-care or bedside would lead 

to a significant reduction in the costs and delays that are currently incurred in the diagnosis of 

TBM in children (177), with a consequent reduction in morbidity and mortality. Although a CSF-

based point-of-care or bedside test will be useful in the management of TBM in children, the 

expertise required for lumbar punctures, opposed to that needed for the collection of other 

samples such as blood, saliva or urine may be a challenge in resource-limited settings, making 

the implementation of such a diagnostic tool difficult. That notwithstanding, such a test will 

also contribute to the management of the disease in children where sample collection is 

possible. 

The fact that host-inflammatory biomarkers detectable in CSF show potential in the 

diagnosis of TBM is not surprising, given that previous studies identified VEGF and other 

candidate biomarkers (16, 23–25) as potential tools for the diagnosis of the disease. Such 

candidate biomarkers that are detectable in biological fluids including blood (17, 32–34), saliva 

(20, 21, 35), urine (191) and other specimens (13, 14, 37, 38) have been identified as TB 

diagnostic candidates in several previous studies. It is well-established that individual host 

biomarkers might not suffice as diagnostic tools for TB disease (17, 33, 34) owing to the fact 

that these inflammatory biomarkers will be raised in other diseases, including cancers. 

However, these specificity concerns may be addressed through the use of a panel of 

biomarkers as done in the present study. The main limitation of the current study was the 

relatively small sample size, especially the few children with alternative diagnoses including 

children with other forms of meningitis. However, as this was a TBM-suspect study, the design 

of the study was relatively strong and the number of participants enrolled into the study is 

consistent with the patient numbers were described in multiple previous studies. Validation of 

the previously established 3-marker CSF signature in the current study indicates that the novel 

biosignatures identified in the study have strong potential. Further studies should include 

larger numbers of study participants with suspected meningitis, including those who are HIV 

infected, and individuals with confirmed alternative meningitides.  HIV infected children 

included in such studies should be appropriately staged with CD4 counts and viral loads, to 
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assess the possible influence of severe HIV infection on the accuracy of the diagnostic 

biosignatures. For the biosignatures described in the current study to be useful in the 

management of children with suspected TBM, the biosignatures would require incorporation 

into a point-of-care or bedside diagnostic test platform, for example, based on the lateral flow 

technology. Such prototype blood-based TB tests have been developed and successfully 

investigated in multiple African countries (14, 15), with multi-biomarker finger-prick based 

formats currently under development for the diagnosis of adult pulmonary TB disease 

(www.screen-tb.eu). Incorporation of host inflammatory biomarkers into such a platform may be 

relatively easier, and faster as lessons learned during the development of adult pulmonary TB 

tests will be beneficial.   

In conclusion, we validated a previously established 3-marker CSF biosignature as a 

tool for adjunctive diagnosis of TBM in children and furthermore showed that modification of 

this signature through the substitution of two of the proteins with new protein biomarkers 

results in a strong biosignature for the diagnosis of TBM. These biosignatures will only be 

beneficial for people who would benefit from the urgently required new tools (children with 

suspected TBM, parents) if these signatures are further developed into point-of-care or 

bedside diagnostic tests. Our study therefore paves the way for the development of such a 

test. 
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Chapter 4 

Application of blood-based host immunological biomarkers in the diagnosis of 

tuberculosis in children 
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4.1 Background 

Optimal management of TB disease depends largely on early diagnosis, followed by 

early initiation of anti-tuberculosis therapy. Therefore, the improvement of case detection and 

early administration of curative treatment can reduce the morbidity and mortality associated 

with paediatric tuberculosis (194). However, the diagnosis of TB disease remains difficult 

especially in children, due to sub-optimal performance of the currently available diagnostic 

methods. Bacteriological confirmation of TB disease still relies mainly on smear microscopy 

worldwide (174). Mycobacterium tuberculosis (M.tb) culture remains the gold standard test, 

but has a long turn-around time and culture facilities are not widely available in resource 

constrained settings (4, 5). The GeneXpert MTB/RIF test® is a rapid molecular test for TB 

diagnosis and detection of rifampicin resistance in a clinical specimen within 2 hours (21). The 

GeneXpert is arguably the most significant advance in TB diagnosis and it is recommended 

by WHO for diagnosis of both pulmonary TB and extrapulmonary TB (EPTB) in adults and 

children (21). However, these tests require the availability of good quality sputum samples and 

hence not suitable in individuals with difficulty in providing good quality sputum samples and 

those with paucibacillary disease such as children (118). Young children with pulmonary TB 

disease usually do not readily expectorate sputum, hence sputum sample is difficult to obtain. 

In such cases, induced sputum or gastric aspirate is used to determine the presence of M.tb 

bacilli. Sputum induction is invasive and not easily done in resource poor settings. As 

discussed in Chapter 3, these tests are not useful in the diagnosis of EPTB, including TBM in 

children. Therefore, the diagnosis of paediatric TB remains difficult, often resulting in under-  

or over-diagnosis (195) in some cases. The world health organisation encourages 

development of new diagnostic tools suitable for paediatric tuberculosis (22). 

Immunodiagnostic methods may be valuable in the diagnosis of childhood TB especially if 

based on easily obtainable samples such as saliva, urine, and blood (including plasma and 

serum).  

In a recent large multi-centred pan-African study, an adult seven-marker serum protein 

biosignature comprising of CRP, transthyretin, IFN-γ, CFH, Apo-A1, IP-10, and SAA 

diagnosed TB with high accuracy as ascertained by AUC of 0.91 (166). Other studies showed 

that host biomarkers detectable in saliva and plasma samples hold  promise in the 

development of new diagnostic methods for tuberculosis in adults (139, 149, 150). Although 

CSF biomarkers were shown to diagnose TBM in previous studies and validated in the present 

thesis (Chapter 3), host biomarkers detected in blood may be more beneficial as blood can be 

easily collected and offers easier adaptation of biomarkers into finger-prick-based tests. Such 

a test was highly recommended by the WHO as described in the target product profiles for 

new diagnostics (196) and may be easier to implement in low resourced settings. The aim of 
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the present study was therefore to ascertain whether  host biomarkers, most of which had 

previously been shown to have potential in the diagnosis of adult TB in serum and plasma 

samples (166,170) possessed diagnostic potential for childhood pulmonary TB and TBM. We 

were specifically interested in evaluating the performance of the previously established adult 

seven-marker serum protein biosignature (CRP, transthyretin, IFN-γ, CFH, Apo-A1, IP-10, and 

SAA) in the diagnosis of pulmonary TB and TBM in children. 

The usefulness of the host biomarkers in the diagnosis of childhood pulmonary TB shall be 

discussed as section 4A whereas the accuracy of these biomarkers in the diagnosis of TBM 

shall be discussed in section 4B. 

4.2 Materials and Methods 

As discussed in chapter 2 (Section 2.2.2), children who provided samples for the pulmonary 

TB diagnostic study were previously enrolled at the Red Cross War Memorial Children’s 

Hospital, Cape Town, South Africa. Stored serum samples that were previously collected from 

these children as described in section 2.4.2 were used for Luminex experiments as described 

below. Children enrolled into the TBM study were the same children described in table 3.1 in 

chapter 3 and in Chapter 2 (Section 2.2.1) 

4.2.1 Luminex multiplex immunoassay 

For the pulmonary TB diagnostic study, we evaluated the concentrations of the seven markers 

comprising the previously described adult 7-marker serum protein biosignature (CRP, 

transthyretin, IFN-γ, CFH, Apo-A1, IP-10, and SAA) and 33 other biomarkers (as listed in table 

2.2) selected based on a review of the literature as discussed in chapter 2 (Section 2.5.1.3).  

For TBM diagnostic study, we evaluated the concentration of six markers (CRP, IFN-γ, CFH, 

Apo-A1, IP-10, and SAA)  amongst the 7 markers comprising the previously described 7-

marker serum biosignature (as transthyretin (196) was not available at the time that the study 

was conducted) and 63 other biomarkers (as listed in table 2.1), also selected based on a 

review of literature as discussed in chapter 2 (Section 2.5.1.2).  

All the experiments were performed in a blinded manner on the Bio Plex 200 Luminex 

system (Bio Rad laboratories) or Bio Plex Magpix system (Bio Rad laboratories), according to 

the instructions of the respective kit manufacturers (Bio Rad and Merck Millipore, and R&D 

Systens). As described in Section 2.5.1.1, bead acquisition and analysis of median 

fluorescence intensity was done using the Bio Plex manager version 6.1 or Bio Plex MP, on 

either the Bio Plex 200 system (Bio-rad) or Bio Plex Magpix (Bio-rad). The concentrations of 

host markers in the quality control reagents supplied by the kit manufacturers as well as a 

laboratory internal QC were within the expected ranges. 
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4.2.2 Statistical analysis 

As discussed in chapter 2 (Section 2.6), the differences in the concentrations of host markers 

detected in serum samples from children with TB disease and children without TB (Not TB) or 

those with TBM Vs those without TBM were evaluated using the Mann Whitney U-test for non-

parametric data analysis. The diagnostic accuracies of individual host markers were assessed 

by receiver operator characteristic (ROC) curve analysis. Optimal cut-off values and 

associated sensitivity and specificity were selected based on the Youden’s Index. General 

Discriminant Analysis (GDA), with leave-one out cross validation, was used to assess the 

predictive abilities of analytes in combination. P-values ≤0.05 were considered significant. All 

statistical analysis were performed using Statistica (TIBCO Software Inc., CA, USA) and 

Graph Pad Prism Version 6 (Graphpad Software Inc, CA, USA). 

4.3 Results 

4.3.1 Section 4A: Usefulness of blood-based biomarkers in the diagnosis of 

childhood pulmonary TB 

4.3.1.1 Study participants 

A total of 40 children, 20 of whom were culture positive TB patients and 20 matched controls, 

in whom TB was unlikely, were investigated in this part of the project. The mean age of all 

study participants was 25.6±27.5 months. Twenty-six (65%) of all study participates were 

males. However, there was no difference in the proportion of males between children with or 

without TB. All children included in the study were HIV uninfected. The clinical and 

demographic characteristics of study participants are shown in Table 4.1. 

Table 4.1. Clinical and demographic characteristics of children with pulmonary TB or 

no TB 

 All TB cases No TB 

controls 

Number of participants 40 20 20 

Mean age, months± SD 25.6 ± 27.5 25.6 ± 28.0 25.6 ± 27.7 

Males, n (%) 26 (65) 13 (65) 13 (65) 

Mantoux positive, n/ number 

done 

14/38 14/18 0/20 

Abbreviations: TB=Tuberculosis. SD=Standard Deviation 
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4.3.1.2 Utility of the previously established adult 7-marker serum protein 

biosignature in the diagnosis of active TB disease 

When the concentrations of the individual host markers comprising the 7-marker adult protein 

biosignature (CRP, transthyretin, IFN-γ, IP-10, CFH, Apo-AI and SAA) were evaluated in 

serum samples from children with pulmonary TB vs those without TB, significant differences 

were obtained for IFN-γ only. The concentrations of IFN-γ were higher in children with 

pulmonary TB. Trends (0.05≤p-value≤0.09) towards higher levels of CFH were observed in 

children with pulmonary TB. After ROC curve analysis, the most informative single host marker 

from this signature, as determined by area under the ROC curve (AUC) was IFN-γ (Table 4.2). 

When these host markers were evaluated in combination, the area under the ROC 

curve for the signature (AUC) was 0.79 (95% CI, 0.65-0.93) (Figure 4.1 A and B). The 

sensitivity of the biosignature was 65.0% (13/20) and specificity was 75.0% (15/20). After 

leave-one-out cross validation, the sensitivity of the biosignature was 50.0% (10/20) and 

specificity was 60.0% (12/20). The positive and negative predictive values of the biosignature 

after leave-one-out cross validation were 55.6% (95% CI, 38.5-71.4) and 54.6% (95% CI, 40.5-

67.9), respectively. When alternative cut-off values were carefully selected in order to 

maximise both sensitivity and specificity, the sensitivity and specificity of the biosignature 

improved to 75.0% and 70.0%, respectively. To contextualise these findings, this biosignature 

diagnosed pulmonary TB in adults from five different African countries, 24% of whom were 

HIV infected with a sensitivity of 93.8% and specificity of 73.3% in the previous adult study 

(166). When a first assessment of the potential usefulness of all host biomarkers evaluated in 

the study was done, by fitting all host markers, including the seven into general discriminant 

analysis (GDA) models in an unbiased manner, it was realised that only IFN-γ, CFH, IP-10 

and Apo-AI featured amongst the analytes that contributed to the top 20 most accurate 

biosignatures (Figure 4.1 C). 
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Table 4.2: Usefulness of analytes comprising the previously established adult 7-marker 

serum protein biosignature in the diagnosis of pulmonary TB disease in children. 

Median levels (inter-quartile ranges in parenthesis) of all host markers detected in serum 

samples from children with TB or not TB and accuracies in the diagnosis of TB disease as 

determined by ROC curve analysis. Cut-off values and associated sensitivities and 

specificities were selected based on the Youden’s index. #values shown are in ng/ml, values 

for all other host markers are in pg/ml. 

Host marker Median in 

Not TB 

(IQR) 

Median in 

TB (IQR) 

p-value AUC 

(95% 

CI) 

Cut-off 

Value 

Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

IFN-γ 4.9 (1.7-

10.3) 

15.5 (9.6-

22.8) 

0.001863 0.79 

(0.64-

0.94) 

>6.83 85.0 (62.1-

96.8) 

70.0 (45.7-

88.1) 

#CFH 467324.7 

(395553.7-

553443.1) 

575842.9 

(409906.2-

639034.7) 

0.072046 0.67 

(0.50-

0.84) 

>499011.0 60.0 (36.1-

80.9) 

60.0 (36.1-

80.9) 

IP-10 344.4 

(196.4-

1020.8) 

701.1 

(402.8-

1511.0) 

0.171931 0.63 

(0.45-

0.81) 

>468.5 75.0 (50.9-

91.3) 

60.0 (36.1-

80.9) 

SAA 2435.5 

(329.0-

4684.4) 

4061.9 

(1446.5-

5587.7) 

0.297655 0.60 

(0.42-

0.78) 

>4616.0 50.0 (27.2-

72.8) 

75.0 (50.9-

91.3) 

#CRP 8831.4 

(1527.8-

24656.0) 

10586.0 

(4236.4-

21927.8) 

0.473481 0.57 

(0.39-

0.75) 

>5018.0 70.0 (45.7-

88.1) 

50.0 (27.2-

72.8) 

#Apo-AI 553386.3 

(361307.5-

759960.8) 

534096.4 

(402057.4-

616430.1) 

0.579094 0.55 

(0.37-

0.74) 

<529657.0 50.0 (27.2-

72.8) 

55.0 (31.5-

76.9) 

#Transthyretin 93085.2 

(65840.6-

162001.4) 

102319.7 

(73968.4-

123449.0) 

0.871063 0.52 

(0.33-

0.70) 

>95663.0 60.0 (36.1-

80.9) 

55.0 (31.5-

76.9) 
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Figure 4.1: Accuracy of the previously identified adult 7-marker serum protein 

biosignature (CRP, transthyretin, IFN-γ, IP-10, CFH, Apo-A1, and SAA) in the diagnosis 

of pulmonary TB disease in children. Scatter plot showing the ability of the 7-marker 

signature to classify children as TB or not TB (A). ROC curve showing the accuracy of the 7-

marker biosignature (B). Frequency of analytes in the top 20 most accurate models in the 

diagnosis of pulmonary TB, if host biomarkers are not pre-specified (C). Red squares in (A); 

children with TB; blue circles: children without TB (Not TB). 
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4.3.1.3 Usefulness of alternative host biomarkers detected in serum samples in 

the diagnosis of pulmonary TB in children 

When the concentrations of the 33 other host markers evaluated in the study were compared 

between children with TB disease and children without TB disease using the Mann Whitney 

U-test, the median levels of MMP-1, MMP-9, PCT, sIL-6R, and IL-6 were significantly (p-

value≤0.05) higher in children with TB disease compared to children without TB disease. 

Furthermore, trends (0.05≥p-value≤0.09) towards higher levels of sIL-2Ra, and sIL-4R were 

observed in children with TB disease, whereas trends (0.05≥p-value≤0.09) towards higher 

levels of MDC were observed in children without TB disease (Table 4.3). When the data for 

individual host markers were assessed by ROC curve analysis, the area under the ROC curve 

(AUC) was above 0.70 for 5 proteins including MMP-1, MMP-9, PCT, sIL-6R, and IL-6 (Table 

4.3, Figure 4.2).  
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Table 4.3: Utility of alternative host biomarkers detectable in serum samples in the diagnosis of pulmonary TB in children. Median levels 

(inter-quartile ranges in parenthesis) of all host markers detected in serum samples from children with TB or not TB and accuracies in the 

diagnosis of TB disease as determined by ROC curve analysis. Cut-off values and associated sensitivities and specificities were selected based 

on the Youden’s index. #values shown are in ng/ml, values for all other host markers are in pg/ml. 

 

Marker Median in Not TB 

(IQR) 

Median in TB (IQR) p-value AUC (95% CI) Cut-off 

Value 

Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

MMP-1 11462.4 (0.0-

28694.4) 

42440.1 (19336.1-737391.4) 0.002674 0.78 (0.63-0.92) >26122.0 70.0 (46.0-88.0) 75.0 (0.51-0.91) 

MMP-9 168289.4 (89630.6-

274360.8) 

564467.0 (353524.8-674156.1) 0.002924 0.78 (0.62-0.93) >310782.0 80.0 (56.0-94.0) 80.0 (56.0-94.0) 

PCT 1648.9 (827.5-

3261.8) 

3830.1 (2656.0-4634.3) 0.014408 0.73 (0.55-0.90) >2656.0 75.0 (51.0-91.0) 70.0 (46.0-88.0) 

sIL-6R 5739.1 (4117.6-

6206.6) 

7210.4 (5744.5-8276.4) 0.023904 0.71 (0.54-0.88) >6119.0 75.0 (51.0-91.0) 70.0 (46.0-88.0) 

IL-6 5.1 (1.2-9.0) 10.6 (4.8-26.9) 0.024738 0.71 (0.55-0.87) >6.3 70.0 (46.0-88.0) 65.0 (41.0-85.0) 

sIL-2 Ra 1258.4 (729.6-

1755.5) 

1819.3 (1416.6-2463.2) 0.061966 0.67 (0.50-0.85) >1532.0 75.0 (50.9-91.3) 70.0 (45.7-88.1) 

sIL-4R 0.0 (0.0-182.7) 200.2 (0.0-547.4) 0.081010 0.66 (0.48-0.83) >164.9 55.0 (31.5-76.9) 75.0 (50.9-91.3) 

MDC 1373.2 (1164.6-

1651.9) 

907.8 (544.0-1567.1) 0.085856 0.66 (0.48-0.84) <1269.0 65.0 (40.8-84.6) 75.0 (50.9-91.3) 
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TGF-α 1.9 (0.8-13.5) 6.6 (4.0-12.2) 0.107298 0.65 (0.47-0.83) >2.1 85.0 (62.1-96.8) 60.0 (36.1-80.9) 

IL-1β 1.1 (0.9-2.1) 1.5 (1.1-2.0) 0.140179 0.64 (0.46-0.82) >1.2 65.0 (40.8-84.6) 60.0 (36.1-80.9) 

#Haptoglobin 259374.4 

(195442.5-

352633.0) 

332038.9 (219377.2-417738.6) 0.147848 0.64 (0.46-0.81) >305379.0 70.0 (45.7-88.1) 75.0 (50.9-91.3) 

MMP-2 1361.7 (0.0-

100430.9) 

0.0 (0.0-20155.8) 0.150155 0.62 (0.44-0.80) <1362.0 70.0 (45.7-88.1) 50.0 (27.2-72.8) 

VEGF 271.9 (99.6-397.1) 309.4 (189.9-548.1) 0.167585 0.63 (0.45-0.81) >266.8 55.0 (31.5-76.9) 50.0 (27.2-72.8) 

#A1AT 6060.5 (5244.0-

9269.6) 

8536.1 (5181.4-10849.7) 0.255535 0.61 (0.43-0.79) >7118.0 65.0 (40.8-84.6) 65.0 (40.8-84.6) 

Fibrinogen 2977.3 (2470.9-

4028.3) 

3699.4 (3169.9-4418.5) 0.260451 0.61 (0.42-0.79) >2977.0 85.0 (62.1-96.8) 50.0 (27.2-72.8) 

MIP-1α 19.1 (12.1-34.8) 17.7 (10.6-25.1) 0.267363 0.60 (0.43-0.78) <17.9 55.0 (31.5-76.9) 55.0 (31.5-76.9) 

TPA 2204.4 (1549.0-

4097.1) 

2890.7 (2586.5-3872.0) 0.284944 0.60 (0.41-0.78) >2586.0 75.0 (50.9-91.3) 60.0 (36.1-80.9) 

Ferritin 8374.0 (5517.2-

23885.4) 

14162.7 (7067.7-29837.8) 0.297519 0.60 (0.42-0.78) >10035.0 65.0 (40.8-84.6) 60.0 (36.1-80.9) 

#SAP_Mil 65177.3 (44292.0-

67930.3) 

48612.6 (31511.3-70107.2) 0.297678 0.60 (0.41-0.78) <44382.0 50.0 (27.2-72.8) 75.0 (50.9-91.3) 

#Complement 

C3 

10101.0 (7339.0-

13321.0) 

12327.3 (8083.5-16955.8) 0.424797 0.58 (0.39-0.76) >9947.0 65.0 (40.8-84.6) 50.0 (27.2-72.8) 
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G-CSF 74.4 (42.1-179.6) 91.5 (70.9-145.7) 0.432710 0.57 (0.39-0.76) >83.1 70.0 (45.7-88.1) 55.0 (31.5-76.9) 

TNF-α 17.3 (8.7-24.7) 17.2 (12.8-25.1) 0.440750 0.57 (0.39-0.75) >16.4 70.0 (45.7-88.1) 50.0 (27.2-72.8) 

#α2M 1036000.0 

(677326.6-

1685750.0) 

1233450.0 (758434.6-

2484500.0) 

0.440750 0.57 (0.39-0.75) >1125850.0 55.0 (31.5-76.9) 55.0 (31.5-76.9) 

IL-10 19.2 (6.7-58.0) 17.8 (6.5-26.) 0.456909 0.57 (0.39-0.75) <22.5 65.0 (40.8-84.6) 50.0 (27.2-72.8) 

sVEGF-R3 379.1(216.2-512.3) 412.1 (321.5-699.4) 0.515557 0.56 (0.38-0.74) >362.5 70.0 (45.7-88.1) 50.0 (27.2-72.8) 

IFN-α2 0.0 (0.0-33.3) 6.8 (0.0-21.4) 0.650211 0.54 (0.36-0.72) >1.9 55.0 (31.5-76.9) 60.0 (36.1-80.9) 

IL-9 1.3 (1.0-2.5) 1.6 (1.1-2.3) 0.674842 0.54 (0.36-0.72) >1.3 65.0 (40.8-84.6) 60.0 (36.180.9) 

IL-12p40 13.6 (8.4-34.0) 16.7 (5.9-22.4) 0.714647 0.54 (0.35-0.72) <18.1 65.0 (40.8-84.6) 45.0 (23.1-68.5) 

MIP-1β 36.7 (23.5-58.3) 34.2 (23.6-61.4) 0.892389 0.51 (0.33-0.70) <36.3 55.0 (31.5-76.9) 55.0 (31.5-76.9) 

#Complement 

C4 

187321.8 (98162.7-

239125.7) 

168742.9 (119514.1-222998.7) 0.924573 0.51 (0.32-0.70) <194156.0 60.0 (36.1-80.9) 50.0 (27.2-72.8) 

IL-13 24.8 (0.0-150.5) 24.0 (0.0-127.0) 0.945141 0.51 (0.32-0.69)  <29.7 55.0 (31.5-76.9) 50.0 (27.2-72.8) 

#SAP 28615.4 (16597.0-

40008.2) 

27356.1 (11787.1-43015.6) 0.989208 0.50 (0.32-0.69) >27879.0 50.0(27.2-72.8) 50.0(27.2-72.8) 

TNF-β 34.2 (0.0-250.1) 32.8 (0.0-205.7) 1.000000 0.50 (0.32-0.68) <41.7 55.0 (31.5-76.9) 50.0 (27.2-72.8) 
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Figure 4.2: Representative plots showing the concentrations of biomarkers detected in 

serum samples from children with and without TB disease and ROC curves showing 

the accuracies of these biomarkers in the diagnosis of TB disease. Error bars in the 

scatter-dot plots indicate the median and inter-quartile ranges. Representative plots for six 

analytes with AUC ≥0.70 are shown. 
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4.3.1.4 Utility of combinations between alternative host markers detected in 

serum samples in the diagnosis of pulmonary TB in children 

When the data obtained for all host markers (including CRP, transthyretin, IFN-γ, IP-10, CFH, 

Apo-AI and SAA) were fitted into General Discriminant analysis (GDA) models irrespective of 

HIV status, optimal prediction of TBM was shown to be achieved with a combination of up to 

seven markers. A new seven-marker serum protein biosignature comprising of PCT, MIP-1α, 

α2M, IFN-γ, IL-10, SAP, and CFH diagnosed pulmonary TB with AUC of 0.94 (95% CI, 0.87-

1.00); corresponding to a sensitivity of 95.0% (19/20) and specificity of 90.0% (18/20) (Figure 

4.3). After leave-one-out cross validation, there was no change in the performance of the 

seven-marker biosignature, with attempts in further optimization of the signature through the 

selection of better cut-off values not resulting in any improvement. The positive and negative 

predictive values of the seven-marker biosignature were 90.5% (95% CI, 71.8-97.3%) and 

94.7% (95% CI, 72.6-99.2%), respectively. 

 In addition to the 7-marker signature described in the previous paragraph, two other 

novel host biosignatures showed potential in the diagnosis of pulmonary TB in children. A six-

marker serum protein biosignature comprising of MMP-9, IFN-γ, α2M, fibrinogen, CFH and 

SAP diagnosed pulmonary TB with AUC of 0.94 (95% CI, 0.86-1.00); corresponding to 

sensitivity of 90.0% (18/20) and specificity of 95.0% (19/20) (Figure 4.4 A and B). After leave-

one-out cross validation, the sensitivity of the six-marker biosignature was 90.0% (18/20) and 

specificity was 85.0% (17/20). The positive and negative predictive values of the six-marker 

biosignature were 85.7% (95% CI, 67.7-94.5) and 89.5% (95% CI, 69.3-97.0), respectively. 

Further optimization of the six-marker biosignature resulted in sensitivity of 90.0% and 

specificity of 95.0%. The other new biosignature comprised a combination between five 

analytes (IL-1β, IL-12p40, TNF-β, MMP-1 and α2M) which diagnosed pulmonary TB with AUC 

of 0.95 (95% CI, 0.89-1.00); corresponding to a sensitivity of 85.0% (17/20) and specificity of 

95.0% (19/20) (Figure 4.4 C and D). After leave-one-out cross validation the sensitivity of the 

biosignature was 70.0% (14/20) and specificity was 95.0% (19/20). The positive and negative 

predictive values of the five-marker biosignature were 93.3% (95% CI, 67.0-99.0%) and 76.0% 

(95% CI, 61.7-86.2%) respectively. Further optimization of the five-marker biosignature by 

selection of optimal cut-off values resulted in sensitivity of 85.0% and specificity of 95.0%. 
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Figure 4.3: Accuracy of a new 7-marker serum protein biosignature (PCT, MIP-1α, α2M, 

IFN-γ, IL-10, SAP, and CFH) in the diagnosis of pulmonary TB disease in children. 

Scatter plot showing the ability of the 7-marker signature to classify children as TB or not TB 

(A). ROC curve showing the accuracy of the 7-marker biosignature (B). Red squares; children 

with TB; blue circles: children without TB (Not TB). 
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Figure 4.4: Accuracy of the new 6-marker (MMP-9, IFN-γ, α2M, Fibrinogen, CFH and 

SAP) and 5-marker (IL-1β, IL-12p40, TNF-β, MMP-1 and α2M) serum protein 

biosignatures in the diagnosis of TB disease. Scatter plot showing the ability of the 6-

marker serum protein biosignature to classify children as TB or not TB (A). ROC curve showing 

the accuracy of the 6-marker serum protein biosignature (B). Scatter plot showing the ability 

of the 5-marker serum protein signature to classify children as TB or not TB (C). ROC curve 

showing the accuracy of the 5-marker serum protein biosignature (D). Red squares; children 

with TB; blue circles: children without TB (Not TB). 
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4.3.2 Section 4B: Usefulness of blood-based biomarkers in the diagnosis of 

childhood tuberculous meningitis 

4.3.2.1 Application of the previously established adult 7-marker serum protein 

biosignature in the diagnosis of TBM in children 

Of the seven markers comprising the 7-marker (CRP, IFN-γ, IP-10, CFH, Apo-A1, SAA and 

transthyretin) serum protein biosignature, transthyretin was not available on our analytes 

panel due to shortage of supply from the manufacturers. When the concentrations of the 

available six individual markers (CRP, IFN-γ, IP-10, CFH, Apo-A1 and SAA)  of the 7 markers 

comprising the 7-marker adult serum protein biosignature (CRP, IFN-γ, IP-10, CFH, Apo-A1, 

SAA and transthyretin) were evaluated in serum samples from children with TBM Vs. those 

without TBM, significant differences were obtained for CFH only. After ROC curve analysis, 

the most informative single marker from this signature, as determined by AUC was CFH (Table 

4.4) 

As transthyretin was not available in our analytes panel, it was replaced NCAM1 as 

the levels of NCAM were previously shown to correlate with transthyretin levels in a previous 

study, even though that particular information was not included in the published manuscript 

(170). 

When transthyretin was replaced by NCAM1, the modified seven-marker serum 

protein biosignature comprising of CRP, IFN-γ, IP-10, CFH, Apo-A1, SAA, and NCAM1 

diagnosed TBM with AUC of 0.80 (95% CI, 0.67-0.92); corresponding to sensitivity of 73.9% 

(17/23) and specificity of 66.7% (16/24) (Figure 4.5 A and B). After leave-one-out cross 

validation, the 7-marker biosignature diagnosed TBM with sensitivity of 60.9% (14/23) and 

specificity of 58.3% (14/24). The positive and negative predictive values of the modified 7-

marker biosignature were 58.3% (95% CI, 44.1-71.1%) and 60.9% (95% CI, 45.8-74.1%), 

respectively. Further optimization of the 7-marker biosignature by selection of optimal cut-off 

values resulted into sensitivity of 71% and specificity of 74%. When a first assessment of the 

potential usefulness of all host biomarkers evaluated in the study was done, by fitting all host 

markers, including the six available proteins from the 7-marker adult serum protein 

biosignature into general discriminant analysis (GDA) models in an unbiased manner, it was 

realised that only  SAA featured amongst the analytes that contributed to the top 20 most 

accurate biosignatures, thus indicating that other biosignature (other than the adult 7-marker 

signature) might be more promising (Figure 4.5 C). 
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Table 4.4: Usefulness of analytes comprising the previously established adult 7-marker 

serum protein biosignature in the diagnosis of TBM in children. Median levels of host 

markers detected in serum samples from children with TBM or no TBM disease (Inter-quartile 

range in parenthesis) and accuracies in the diagnosis of TBM. Cut-off values and associated 

sensitivities and specificities were selected based on the Youden’s index. #values shown are 

in ng/ml, values for all other host markers are in pg/ml. 

 

Markers Median in 

TBM (IQR) 

Median in 

Non-TBM 

(IQR) 

p-value AUC 

(95% 

CI) 

Cut-off 

Value 

Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

#CFH 415846.5 

(363515.9-

470137.5) 

314294.0 

(261691.8-

412727.7) 

0.009719 0.72 

(0.57-

0.87) 

>350185.0 87.0 (66.4-

97.2) 

66.7 (44.7-

84.4) 

#Apo AI 302283.6 

(267898.0-

346446.2) 

286350.3 

(191698.6-

320139.9) 

0.160089 0.62 

(0.46-

0.78) 

>287512.0 65.2 (42.7-

83.6) 

54.2 (32.8-

74.5) 

CXCL10/IP-

10 

55.9 (35.9-

169.1) 

75.8 (49.3-

298.3) 

0.213146 0.61 

(0.44-

0.77) 

<57.2 52.2 (30.6-

73.2) 

66.7 (44.7-

84.4) 

#CRP 230000.0 

(230000.0-

230000.0) 

230000.0 

(63731.2-

230000.0) 

0.380342 0.56 

(0.43-

0.69) 

>80721.0 87.0 (66.4-

97.2) 

33.3 (15.6-

55.3) 

#SAA 65700.0 

(847.0-

230000.0) 

39439.7 

(6551.9-

226031.8) 

0.656243 

 

0.54 

(0.37-

0.71) 

>59894.0 56.5 (34.5-

76.8) 

66.7 (44.7-

84.4) 

IFN-γ 0.0 (0.0-

0.0) 

0.0 (0.0-

0.0) 

0.928917 0.51 

(0.39-

0.63) 

<61.5 87.0 (66.4-

92.2) 

20.8 (7.1-

42.2) 
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Figure 4.5: Accuracy of the modified 7-marker serum protein biosignature (CRP, IFN-γ, 

IP-10, CFH, Apo-A1, SAA and NCAM1) in the diagnosis of TBM. Scatter plot showing the 

ability of the 7-marker signature to classify children as TBM or no TBM (A). ROC curve 

showing the accuracy of the 7-marker biosignature (B). Frequency of analytes in the top 20 

most accurate models in the diagnosis of TBM, if host biomarkers are not pre-specified (C). 

Red squares; children with TBM; blue circles: children with No TBM. 
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4.3.2.2 Potential of alternative blood (serum)-based host protein biomarkers in 

the diagnosis of TBM in children 

When the concentrations of the 63 other host biomarkers detected in serum samples were 

compared between children with and those without TBM using the Mann Whitney U test,  the 

median levels of 16 biomarkers including sVCAM1, CCL2, IL-4, TNF-α, CCL4, adipsin, SAP, 

CC5, G-CSF, IL-10, Apo-CIII, IL-17A, PAI-1, PDGF AB/BB, MBL and NCAM1 were 

significantly different (p<0.05) between the children with and those without TBM according to 

the Mann Whitney U test. The levels of five biomarkers (CC4b, MMP-1, CXCL8, CC4, sRAGE) 

showed trends (0.05<p≤0.09) between the two groups. The concentrations of SAP, CC5, Apo-

CIII, PAI-1, PDGF-AB/BB and MBL were significantly higher in serum samples of children with 

TBM whereas those of sVCAM-1, CCL2, IL-4, TNF-α, CCL4, ADIPSIN, G-CSF, IL-10, IL-17A 

and NCAM1 were higher in serum samples from children without TBM. When the diagnostic 

potentials of individual serum biomarkers were assessed by ROC curve analysis, 13 of the 

markers showed promise as ascertained by AUC ≥ 0.70 (Table 4.5, Figure 4.6). When only 

HIV uninfected children were considered, there were noticeable improvements in the 

performance of other host markers including MMP-1 and IL-7. The median levels of six 

markers including IL-10, MBL, sRAGE, CC4, CC4b and NCAM1 were no longer significantly 

different or showing trends between the two groups (Data not shown). 
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Table 4.5: Utility of alternative host biomarkers detectable in serum samples in the diagnosis of TBM in children. Median levels of host 

markers detected in serum samples from children with TBM or no TBM disease (Inter-quartile range in parenthesis) and accuracies in the 

diagnosis TBM. The data shown are raw, untransformed values. Cut-off values and associated sensitivities and specificities were selected based 

on the Youden’s index. *values shown are the absorbance and not the concentration values. #values shown are in ng/ml, values for all other host 

markers are in pg/ml. 

Markers Median in TBM (IQR) Median in Non-TBM (IQR) p-value AUC (95% CI) Cut-off 

Value 

Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

VCAM-1 1197300.0 (952940.0-

1543500.0) 

1802000.0 (1456400.0-

2521350.0) 

0.000188 0.82 (0.70-0.94) <1580000.0 78.3 (56.3-92.5) 66.7 (44.7-84.4) 

MCP-1/CCL2 244.3 (165.5-390.9) 512.3 (319.7-994.8) 0.000262 0.81 (0.69-0.93) <327.3 73.9 (51.6-89.7) 75.0 (53.3-90.2) 

IL-4 82.7 (7.42-99.6) 136.8 (99.6-191.3) 0.001147 0.78 (0.65-0.91) <116.7 78.3 (56.3-92.5) 62.5 (40.6-81.2) 

TNF-α 4.8 (0.0-11.4) 23.3 (15.7-31.9) 0.001457 0.77 (0.62-0.91) <12.9 78.3 (56.3-92.5) 79.2 (57.9-92.9) 

MIP-1β/ CCL4 219.0 (158.1-296.8) 401.4 (275.7-667.2) 0.002148 0.76 (0.62-0.90) <334.3 78.3 (56.3-92.5) 66.7 (44.7-84.4) 

#Adipsin 

(CFD) 

1950.4 (1611.1-2319.1) 2917.4 (2493.4-3938.5) 0.004065 0.75 (0.59-0.90) <2393.0 78.3 (56.3-92.5) 79.2 (57.9-92.9) 

#SAP 331539.9 (261542.1-

655100.2) 

167660.5 (88309.6-

286067.7) 

0.005664 0.74 (0.59-0.89) >257478.0 78.3 (56.3-92.5) 70.8 (48.9-87.4) 

#CC5 52307.0 (44989.9-59967.4) 38538.0 (28210.6-47089.8) 0.006660 0.73 (0.58-0.88) >46742.0 69.6 (47.1-86.8) 75.0 (53.3-90.2) 

#CFH 415846.5 (363515.9-

470137.5) 

314294.0 (261691.8-

412727.7) 

0.009719 0.72 (0.57-0.87) >350185.0 87.0 (66.4-97.2) 66.7 (44.7-84.4) 

G-CSF 14.0 (0.0-117.6) 147.6 (25.1-463.4) 0.010573 0.72 (0.57-0.86) <76.0 65.2 (42.7-83.6) 70.8 (48.9-87.4) 
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IL-10 0.0 (0.0-4.1) 8.1 (0.0-21.2) 0.011193 0.70 (0.56-0.85) <7.0 95.7 (78.1-99.9) 54.2 (32.8-74.5) 

#Apo CIII 151289.3 (130100.8-

181642.4) 

95825.1 (63481.7-

161543.8) 

0.014822 0.71 (0.55-0.87) >114926.0 87.0 (66.4-97.2) 62.5 (40.6-81.2) 

IL-17A 0.0 (0.0-0.0) 0.0 (0.0-18.4) 0.018640 0.65 (0.53-0.76) <11.3 95.7 (78.1-99.9) 37.5 (18.8-59.4) 

PAI-1(total) 348736.6 (261199.3-

456794.4) 

246289.2 (175941.2-

350988.5) 

0.018694 0.70 (0.55-0.85) >255621.0 78.3 (56.3-92.5) 58.3 (36.6-77.9) 

PDGF-AB/BB 49576.6 (33649.3-83528.9) 33592.0 (14786.0-49751.6) 0.032444 0.68 (0.53-0.84) >42307.0 65.2 (42.7-83.6) 66.7 (44.7-84.4) 

#MBL 9533.4 (4686.1-30439.6) 3299.1 (901.1-14882.4) 0.033928 0.68 (0.52-0.84) >4522.0 78.3 (56.3-92.5) 58.3 (36.6-77.9) 

NCAM-1 246692.5 (164329.5-

305706.5) 

285446.4 (256271.6-

342048.0) 

0.036064 0.68 (0.52-0.84) <264419.0 69.6 (47.1-86.8) 70.8 (48.9-87.4) 

#CC4b 29843.2 (21128.5-42752.7) 25562.6 (17752.8-31264.4) 0.056822 0.66 (0.51-0.82) >26285.0 69.6 (47.1-86.8) 54.2 (32.8-74.5) 

MMP-1 5694.6 (3233.2-7609.0) 4084.8 (2174.5-6345.7) 0.068827 0.66 (0.50-0.81) >4282.0 60.9 (38.5-80.3) 54.2 (32.8-74.5) 

CXCL8/IL-8 37.1 (15.5-54.1) 55.4 (27.5-112.9) 0.072101 0.65 (0.49-0.81) <42.1 60.9 (38.5-80.3) 66.7 (44.7-84.4) 

#CC4 157528.9 (90929.3-

209684.1) 

85388.5 (48405.5-

194821.2) 

0.079129 0.65 (0.49-0.81) >89484.0 78.3 (56.3-92.5) 54.2 (32.8-74.5) 

sRAGE 855.2 (773.7-896.6) 875.8 (855.2-937.8) 0.094181 0.64 (0.48-0.80) <875.8 73.9 (51.6-89.8) 50.0 (29.1-70.9) 

TGF-α 60.3 (26.9-96.2) 28.5 (5.6-79.8) 0.110002 0.64 (0.48-0.80) >29.9 69.6 (47.1-86.8) 54.2 (32.8-74.5) 

IL-7 36.0 (22.9-55.8) 29.2 (12.4-37.7) 0.110363 0.64 (0.48-0.80) >27.5 69.6 (47.1-86.8) 50.0 (29.1-70.9) 

IL-6 6.8 (1.6-14.6) 8.9 (2.5-44.7) 0.135692 0.63 (0.47-0.79) <8.0 56.5 (34.5-76.8) 58.3 (36.6-77.9) 
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GM-CSF 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.158099 0.57 (0.40-0.73) <9.3 100.0 (85.2-100) 16.7 (4.7-37.4) 

#Apo AI 302283.6 (267898.0-

346446.2) 

286350.3 (191698.6-

320139.9) 

0.160089 0.62 (0.46-0.78) >287512.0 65.2 (42.7-83.6) 54.2 (32.8-74.5) 

VEGF 152.4 (112.5-251.2) 106.7 (74.8-235.8) 0.169862 0.62 (0.45-0.78) >111.2 78.3 (56.3-92.5) 54.2 (32.8-74.5) 

Aβ40 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.171006 0.54 (0.37-0.71) <72.1 100.0 (85.2-

100.0) 

8.3 (1.0-27.0) 

#CF1 66236.8 (49972.0-99204.5) 54181.1 (45646.3-71882.7)) 0.176578 0.62 (0.45-0.78) >57835.0 65.2 (42.7-83.6) 62.5 (40.6-81.2) 

MMP-7 808.0 (524.4-1584.1) 1175.0 (625.5-3399.8) 0.189921 0.61 (0.45-0.78) <869.0 60.9 (38.5-80.3) 62.5 (40.6-81.2) 

#Myoglobin 9.6 (4.4-20.3) 21.4 (4.9-51.0) 0.201135 0.61 (0.44-0.78) <10.2 60.9 (38.5-80.3) 66.7 (44.7-84.4) 

CXCL10/IP-

10 

55.9 (35.9-169.1) 75.8 (49.3-298.3) 0.213146 0.61 (0.44-0.77) <57.2 52.2 (30.6-73.2) 66.7 (44.7-84.4) 

PDGF-AA 8538.7 (5683.1-15788.5) 6995.0 (2635.5-12806.3) 0.221073 0.61 (0.44-0.77) >6150.0 69.6 (47.1-86.8) 50.0 (29.1-70.9) 

#MIP4 241.6 (172.5-366.9) 178.1 (119.2-342.3) 0.221073 0.61 (0.44-0.77) >187.7 69.6 (47.1-86.8) 54.2(32.8-74.5) 

Aβ42 0.0 (0.0-0.0) 0.0 (0.0-556.9) 0.240593 0.58 (0.45-0.72) <278.4 73.9 (51.6-89.8) 41.7 (22.1-63.4) 

#CC3 40885.9 (36448.0-74127.5) 46059.4 (25390.4-53871.9) 0.254876 0.40 (0.23-0.57) >32056.0 91.3 (72.0-98.9) 41.7 (22.1-63.4) 

#A1AT 18729.1 (14631.0-24621.2) 16819.0 (11711.3-27780.9) 0.287284 0.59 (0.42-0.76) >17908.0 60.9 (38.5-80.3) 58.3 (36.6-77.9) 

#P-Selectin 194.3 (102.1-352.1) 119.1 (54.4-274.0) 0.330420 0.58 (0.42-0.75) >159.1 65.2 (42.7-83.6) 62.5 (40.6-81.2) 

CC5a 2663.1 (1751.2-3946.9) 2423.2 (1559.1-3554.3) 0.349063 0.58 (0.41-0.75) >2660.0 52.2 (30.6-73.2) 66.7 (44.7-84.4) 
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IL-12/23p40 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.349077 0.52 (0.35-0.69) <620.1 100.0 (85.2-

100.0) 

4.2 (0.1-21.1) 

IL-1β 0.0 (0.0-0.0) 0.0 (0.0-9.2) 0.358788 0.56 (0.43-0.68) <8.3 91.3 (72.0-98.9) 29.2 (12.6-51.1) 

MMP-8 24763.5 (12747.3-86623.8) 19342.7 (9257.2-35601.6) 0.360001 0.59 (0.41-0.75) >22769.0 56.5 (34.5-76.8) 58.3 (36.6-77.9) 

#CRP 230000.0 (230000.0-

230000.0) 

230000.0 (63731.2-

230000.0) 

0.380342 0.56 (0.43-0.69) >80721.0 87.0 (66.4-97.2) 33.3 (15.6-55.3) 

CCL3/MIP-1β 48.7 (0.0-65.1) 49.8 (0.0-209.1) 0.382647 0.57 (0.41-0.74) <48.9 65.2 (42.7-83.6) 54.2 (32.8-74.5) 

MMP-9 205449.19 (59802.48-

556493.88) 

174486.7 (73396.4-

266465.9) 

0.387093 0.57 (0.40-0.74) >189764.0 56.5 (34.5-76.8) 58.3 (36.6-77.9) 

IL-21 0.0 (0.0-0.0) 0.0 (0.0-15.9) 0.396732 0.55 (0.43-0.67) <34.6 95.7 (78.1-99.9) 20.8 (7.1-42.2) 

Cathepsin D 439708.5 (308272.3-

728466.0) 

493856.4 (331662.9-

959098.3) 

0.412583 0.57 (0.40-0.74) <459422.0 60.9 (38.5-80.3) 54.2 (32.8-74.5) 

ICAM-1 216547.6 (137559.5-

286618.4) 

215566.5 (171273.1-

337326.2) 

0.418679 0.57 (0.40-0.72) <224039.0 56.5 (34.5-76.8) 50.0 (29.1-70.9) 

#CC9 3295.9 (2497.1-4084.6) 3657.9 (2600.8-4489.9) 0.475866 0.56 (0.39-0.73) <3502.0 65.2 (42.7-83.6) 58.3 (36.6-77.9) 

MPO 4746700.0 (1779300.0-

6026200.0) 

3438600.0 (1669250.0-

4934150.0) 

0.475891 0.56 (0.39-0.73) >4650000.0 52.2 (30.6-73.2) 70.8 (48.9-87.4) 

CD40L 11633.0 (8228.9-16525.6) 10742.2 (6930.7-17042.3) 0.475891 0.56 (0.39-0.73) >11151.0 65.2 (42.7-83.6) 54.2 (32.8-74.5) 

#GDF-15 1.0 (0.6-1.6) 1.1 (0.6-3.1) 0.501871 0.56 (0.39-0.73) <1.1 60.9 (38.5-80.3) 54.2 (32.8-74.5) 
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#D-dimer 9287.6 (1772.3-17900.1) 9102.9 (3021.2-41007.9) 0.550286 0.55 (0.38-0.72) <9451.0 52.2 (30.6-73.2) 50.0 (29.1-70.9) 

BDNF 15636.7 (10109.5-24406.5) 18107.0 (8952.6-28946.9) 0.572783 0.55 (0.38-0.72) <17211.0 65.2 (42.7-83.6) 54.2 (32.8-74.5) 

CXCL9/MIG 2309.5 (0.0-3311.4) 1800.7 (0.0-3557.3) 0.625319 0.54 (0.38-0.71) >2114.0 52.2 (30.6-73.2) 62.5 (40.6-81.2) 

#SAA 65700.0 (847.0-230000.0) 39439.7 (6551.9-226031.8) 0.656243 0.54 (0.37-0.71) >59894.0 56.5 (34.5-76.8) 66.7 (44.7-84.4) 

IL-13 0.0 (0.0-338.1) 0.0 (0.0-756.3) 0.681743 0.53 (0.38-0.69) <74.6 56.5 (34.5-76.8) 45.8 (25.6-67.2) 

#CC2 15903.9 (8706.0-31171.1) 15768.9 (6992.3-49343.7) 0.725481 0.53 (0.36-0.70) <15990.0 52.2 (30.6-73.2) 50.0 (29.1-70.9) 

Ferritin 52841.0 (14202.0-

114067.7) 

62740.4 (16776.2-

169542.0) 

0.740490 0.53 (0.36-0.70) <56314.0  56.5 (34.5-76.8) 58.3 (36.6-77.9) 

#PEDF 21756.5 (18654.6-25542.3) 21401.6 (18159.9-26348.1) 0.765743 0.53 (0.36-0.70) >21725.0 52.2 (30.6-73.2) 54.2 (32.8-74.5) 

RANTES 108231.8 (53485.5-

169473.6) 

92692.2 (39285.6-

188178.1) 

0.790226 0.52 (0.35-0.69) >99016.0 56.5 (34.5-76.8) 54.2 (32.8-74.5) 

#ADMTS13 901.2 (545.3-1092.7) 874.4 (600.0-1120.0) 0.823096 0.52 (0.35-0.68) <962.3  60.9 (38.5-80.3) 45.8 (25.6-67.2) 

#NGAL 394.1 (152.5-1046.1) 380.5 (189.3-560.3) 0.831299 0.52 (0.35-0.69) >371.5 52.2 (30.6-73.2) 50.0 (29.1-70.9) 

CCL1/I-309 15.0 (8.6-33.4) 15.2 (7.6-44.4) 0.848035 0.52 (0.35-0.69) <15.2 52.2 (30.6-73.2) 50.0 (29.1-70.9) 

GDNF 136.3 (120.1-152.7) 136.3 (136.3-152.7) 0.921886 0.51 (0.34-0.67) <140.4 52.2 (30.6-73.2) 41.7 (22.1-63.4) 

IFN-γ 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.928917 0.51 (0.39-0.63) <61.5 87.0 (66.4-92.2) 20.8 (7.1-42.2) 

*Cathelicidin-

LL37 

0.5 (0.3-0.9) 0.5 (0.3-0.9) 0.974533 0.49 (0.31-0.66) >0.4 60.9 (38.5-80.3) 34.8 (16.4-57.3) 

S100B 2800.0 (2744.2-2800.0) 2800.0 (2744.2-2800.0) 0.986591 0.50 (0.34-0.66) >2772.0 55.6 (30.8-78.5) 40.0 (19.1-64.0) 
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Figure 4.6: Representative plots showing the concentrations of biomarkers detected in 

serum samples from children with and without TBM and ROC curves showing the 

accuracies of these biomarkers as individual markers in the diagnosis of TBM. 

Representative plots for 6 analytes with AUC ≥0.75 are shown. Error bars in the scatter-dot 

plots indicate the median and inter-quartile ranges. 
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4.3.2.3 Potential of combinations between alternative blood (serum)-based host 

protein biomarkers in the diagnosis of TBM in children 

When the data obtained from serum samples from all study participants were fitted into the 

General Discriminant Analysis (GDA) models regardless of HIV status, optimal prediction of 

TBM was shown to be achieved with a combination of three markers. The most accurate three-

marker biosignature comprising of adipsin(CFD), Aβ42 and IL-10 diagnosed TBM with area 

under the curve (AUC) of 0.84 (95% CI, 0.73-0.96); corresponding to a sensitivity of 82.6% 

(95 CI, 61.2-95.0%) and specificity of 75.0% (95% CI, 53.3-90.2%). After leave-one-out cross 

validation, there was no change in the sensitivity of the 3-marker serum biosignature, whereas 

the specificity reduced to 70.8% (95 CI, 48.9-87.4%).  The positive and negative predictive 

values of the biosignature were 73.1% (95% CI, 58.6-83.9%) and 81.0% (95% CI, 62.7-

91.5%), respectively. Further optimization of the three-marker serum biosignature through 

selection of optimal cut-off values resulted in both sensitivity and specificity of 83% (Figure 

4.7). 

    A                                    B 

 

Figure 4.7: Accuracy of the 3-marker serum biosignature (Complement factor D/adipsin, 

Ab42 and IL-10) in the diagnosis of TBM. Scatter plot showing the ability of the 3-marker 

signature to classify children as TBM or no TBM (A). ROC curve showing the accuracy of the 

Stellenbosch University  https://scholar.sun.ac.za



 

80 

 

3-marker biosignature (B). Red squares: children with TBM; blue circles: children with No 

TBM. 

4.3.3 Differential expression of host biomarkers in cerebrospinal fluid Vs. 

serum samples 

As the study participants whose samples were evaluated in this study (section 4B) were the 

same participants evaluated in chapter 3, with the same analyte panels being used in the two 

studies, data from both serum and CSF samples from each study participant was available. 

The levels of all 69 host biomarkers evaluated in serum samples in this study were therefore 

compared to the levels obtained in CSF samples from the same study participants in chapter 

3, to assess the differential expression of the biomarkers in blood Vs. CSF. The data on the 

differential expression of host biomarkers between the two sample types could provide 

information on the best sample type for future experiments, for development of diagnostic tools 

and also for understanding of the immunology of TBM in children. 

Using data obtained from the manufacturer’s package inserts, we evaluated the proportions 

of participants in whom the detected levels of different host markers ≥ the published minimum 

detectable concentration (MDC). Out of all evaluated host markers, reliably published data on 

MDC was not available (NA) for 29 analytes (MIP-1α, IFN-γ, IL-10, IL-13, 1L-21, MIG, GM-

CSF, G-CSF, IL-1β, IL12/23p40, CXCL8, IL-17A, IL-4, TNF-α, CD40L, TGF-α, IL-7, MMP-7, 

VEGF-A, NCAM-1, MMP-1, MMP-9, IP-10, IL-6, CCL2, ferritin, CCL1, MMP-8, and CCL4) 

purchased from R&D systems and for cathelicidin LL-37, which was analysed using ELISA kit 

purchased from Elabscience Biotechnology Inc. As a result, only analytes purchased from 

Merck Millipore were evaluated for proportions of participants in whom the detected levels 

were ≥ the published MDC. The concentrations of 19 markers (D-dimer, CC2, CC4b, CC5a, 

adipsin, CF1, ADAMTS13, Cathepsin D, ICAM-1, NCAM, sVCAM-1, PAI-1, Apo-CIII, CC3, 

CRP, A1AT, PEDF, SAP and MIP-4) were higher than the MDC in both serum and CSF in all 

study participants (100%). Furthermore, the levels of seven markers (CC5, CC9, MBL, PDGF-

AA, sRAGE, CFH, and CC4) were higher than the MDC in both sample types in at least 90% 

of the study participants (Table 4.6). 

When the levels of 69 host biomarkers were compared between CSF and serum samples 

using Mann-Whitney U-test analysis, the levels of 18 markers (Aβ40, Aβ42, MIP-1α, IL-8, IFN-

γ, IL-10, IL-13, IL-21, IL-6, MCP-1, IP-10, MIG,GM-CSF, IL-1β, IL-12/23p40, IL-17A, IL-4, and 

TNF-α) were significantly higher in CSF samples in comparison to serum samples (Table 4.6, 

Figure 4.8). The levels of 19 markers (D-dimer, CC2, CC4b, CC5a, ADIPSIN, CF1, 

ADAMTS13, Cathepsin D, ICAM-1, NCAM, sVCAM-1, PAI-1, Apo-CIII, CC3, CRP, A1AT, 

PEDF, SAP and MIP-4) were significantly higher in serum samples of all study participants in 
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comparison to CSF samples (Table 4.6, Figure 4.9). The levels of 3 markers (CCL4, G-CSF 

and I-309) showed no difference between CSF and serum samples, while the other remaining 

markers were significantly higher in serum samples than in CSF samples (Table 4.6). 

Table 4.6: Proportion of study participants with host markers above the minimum 

detectable concentration (MDC) in CSF and serum samples and the differences in 

median levels detected between the two sample types. Median levels of host biomarkers 

detected in CSF and serum samples from all study participants (n=47) and the proportion of 

study participants with host biomarkers above the minimum detectable concentration (MDC) 

in the two sample types are shown. MDC values were obtained from the package inserts 

provided by the kits manufacturers. *The Optical density (OD) is shown for these markers. 

#Marker levels are expressed in ng/ml, while the other markers are expressed in pg/ml. IQR: 

Inter-quartile range. 

   

Cerebrospinal Fluid (CSF) 

 

Serum 

  

Marker MDC % > 

MDC 

Median (IQR)  % > 

MDC 

Median (IQR) P value 

                                 (A) Host markers more abundantly expressed in CSF 

Aβ40 1,4 97.9 647.6 (305.1-1407.0) 4.3 0.0 (0.0-0.0) 0.0001 

Aβ42 9,7 93.6 200.6 (54.3-409.4) 34.0 0.0 (0.0-556.9) 0.0008 

CCL3/MIP-1α NA NA 219.1 (118.9-327.5) NA 48.7 (0.0-

180.4) 

<0.0001 

CXCL8/IL-8 NA NA 454.9 (107.8-1106.0) NA 46.6 (20.4-

78.0) 

<0.0001 

IFN-γ NA NA 91.7 (7.7-469.9) NA 0.0 (0.0-0.0) <0.0001 

IL-10 NA NA 16.0 (3.9-50.4) NA 1.3 (0.0-8.8) <0.0001 

IL-13 NA NA 378.2 (169.1-1171.0) NA 0.0 (0.0-756.3) 0.0005 

IL-21 NA NA 44.7 (28.6-71.0) NA 0.0 (0.0-0.0) <0.0001 

IL-6 NA NA 86.8 (2.3-536.6) NA 8.9 (1.8-25.9) 0.0017 

CCL2/MCP-1 NA NA 993.4 (502.2-1395.0) NA 329.1 (228.9-

640.0) 

<0.0001 
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CXCL10/IP-10 NA NA 1974.0 (189.8-

44900.0) 

NA 66.4 (39.3-

195.4) 

<0.0001 

CXCL9/MIG NA NA 3163.0 (1350.0-

9846.0) 

NA 1801.0 (0.0-

3311.0) 

0.0021 

GM-CSF NA NA 63.0 (20.7-93.0) NA 0.0 (0.0-0.0) <0.0001 

IL-1β NA NA 13.9 (0.0-51.3) NA 0.0 (0.0-0.0) <0.0001 

IL-12/23p40 NA NA 0.0 (0.0-542.3) NA 0.0 (0.0-0.0) <0.0001 

IL-17A NA NA 9.2 (0.0-20.5) NA 0.0 (0.0-0.0) 0.001 

IL-4 NA NA 170.2 (113.3-246.1) NA 99.6 (41.1-

136.8) 

<0.0001 

TNF-α NA NA 22.1 (1.2-71.4) NA 14.4 (0.0-24.9) 0.0736 

(B) Host markers more abundantly expressed in serum 

#D-dimer 0.028 100.0 1448 (2.5-98000.0) 100.0 9283.0 (2437.0-

21283.0) 

0.7202 

#CC2 0.25 100.0 774.4 (70.8-2297.0) 100.0 15904.0 (7911.0-

37262.0) 

<0.0001 

#CC4b 0.28 100.0 351.9 (168.7-611.0) 100.0 28264.0 (19539.0-

35483.0) 

<0.0001 

#CC5 0.68 93.6 166.1 (33.3-511.3) 100.0 46216.0 (34488.0-

55936.0) 

<0.0001 

CC5a 0.0023 100.0 41.3 (6.4-88.0) 100.0 2530.0 (1645.0-

3761.0) 

<0.0001 

#CC9 8.16 93.6 35.7 (24.6-50.0) 100.0 3423.0 (2584.0-

4293.0) 

<0.0001 

#Adipsin/CFD 0.016 100.0 43.5 (21.2-119.4) 100.0 2468.0 (1791.0-

3458.0) 

<0.0001 

#MBL 0.036 93.6 5.3 (0.9-25.6) 100.0 7544.0 (1636.0-

18866.0) 

<0.0001 

#CF1 0.15 100.0 275.7 (97.6-699.5) 100.0 59466.0 (45700.0-

77858.0) 

<0.0001 

#P-selectin 0.024 44.7 0.0-0.0-1.6) 78.7 166.5 (60.7-291.1) <0.0001 

sICAM1_67K 0.032 80.9 14.5 (0.5-58.5) 100.0 234.7 (146.8-372.8) <0.0001 
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sVCAM1_67K 0.032 80,9 27.9 (6.8-129.4) 80.9 957.1 (631.5-

1408.0) 

<0.0001 

#ADAMTS13 0.053 100.0 7.2 (0.6-13.3) 100.0 891.5 (545.3-

1093.0) 

<0.0001 

#GDF-15 0.00011 80.9 0.2 (0.0-0.4) 95.7 1.0 (0.6-2.1) <0.0001 

#Myoglobin 0.007 80.9 0.2 (0.0-1.0) 100.0 11.1 (4.7-37.8) <0.0001 

MPO_67K 0.005 80.9 1.2 (0.0-46.8) 80.9 799.3 (313.5-

1647.0) 

<0.0001 

#Lipocalin-

2/NGAL 

0.001 80.9 7.9 (0.8-78.4) 87.2 394.1 (170.6-691.6) 0.0004 

#SAA 0.048 76.6 52.3 (0.2-2411.0) 80.9 46890.0 (4510.0-

230000.0) 

0.0018 

BDNF 0.23 63.8 0.6 (0.0-1.0) 100.0 16046.0 (10109.0-

25813.0) 

<0.0001 

Cathepsin D 8.08 100.0 73531.0 (55896.0-

95805.0) 

100.0 450337.0 

(315790.0-

746949.0) 

<0.0001 

ICAM1_36K 6.29 100.0 1503.0 (420.1-3384.0) 100.0 216548.0 

(148077.0-

303985.0) 

<0.0001 

MPO_36K 200.0 89.4 28780.0 (1383.0-

63392.0) 

100.0 3770000.0 

(1690000.0-

5750000.0) 

<0.0001 

PDGF-AA 0.22 95.7 7.3 (5.0-15.9) 100.0 8089.0 (3553.0-

14143.0) 

<0.0001 

RANTES 1.20 83.0 9.3 (3.7-22.3) 100.0 102077.0 (49156.0-

185835.0) 

<0.0001 

NCAM 4.81 100.0 33759.0 (26739.0-

45387.0) 

100.0 444783.0 

(352121.0-

542236.0) 

<0.0001 

PDGF-AB/BB 3.83 76.6 7.0 (4.1-12.9) 100.0 41696.0 (20984.0-

69370.0) 

<0.0001 

sVCAM1_36K 6.44 100.0 89081.0 (24577.0-

135239.0) 

100.0 1510000.0 

(1130000.0-

1850000.0) 

<0.0001 
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PAI-1 0.48 100.0 1706.0 (348.2-9135.0) 100.0 271962.0 

(198549.0-

387515.0) 

<0.0001 

S100B 3.1 80,9 41.2 (30.1-766.1) 80.9 2800.0 (2744.0-

2800.0) 

<0.0001 

sRAGE 3,8 97.9 14.1 (12.8-16.0) 100.0 855.2 (773.7-937.8) <0.0001 

GDNF 0,9 80,9 2.1 (1.8-2.3) 83.0 136.3 (120.1-152.7) <0.0001 

Ferritin NA NA 3261.0 (621.2-8447.0) NA 57058,0 (15940,0-

137448,0) 

0.0012 

MMP-9 NA NA 1480.0 (2.6-4385.0) NA 188899.0 (59802.0-

348674.0) 

<0.0001 

CD40L NA NA 363.4 (214.6-594.4) NA 11509.0 (7489.0-

16633.0) 

<0.0001 

MMP-1 NA NA 398.5 (280.1-770.2) NA 4363.0 (2518.0-

7221.0) 

<0.0001 

TGF-α NA NA 7.3 (2.2-14.8) NA 43.0 (22.6-91.9) <0.0001 

IL-7 NA NA 5.0 (1.6-7.0) NA 31.6 (14.8-46.3) <0.0001 

MMP-8 NA NA 1985.0 (60.0-8791.0) NA 21071.0 (11071.0-

45371.0) 

<0.0001 

#Apo AI 0.300 85.1 980.1 (150.8-4219.0) 100.0 295552.0 

(239391.0-

324560.0) 

<0.0001 

#Apo CIII 0.001 100.0 29.4 (11.0-167.2) 100.0 134435.0 (86406.0-

167953.0) 

<0.0001 

#CC3 0.012 100.0 657.6 (154.2-1449.0) 100.0 44827.0 (31909.0-

67779.0) 

<0.0001 

#CFH 0.037 91.5 746.1 (200.7-2276.0) 100.0 374790.0 

(293798.0-

447723.0) 

<0.0001 

#CRP 0.0022 100.0 2387.0 (239.5-

230000.0) 

100.0 230000.0 (92176.0-

230000.0) 

0.0003 

#A1AT (α1-

Antitrypsin) 

0.0362 100.0 916.0 (319.1-2721.0) 100.0 18344.0 (13298.0-

25608.0) 

<0.0001 

Stellenbosch University  https://scholar.sun.ac.za



 

85 

 

#PEDF 0.008 100.0 735.7 (606.7-831.0) 100.0 21693.0 (18259.0-

25919.0) 

<0.0001 

#SAP 0.009 100.0 34.6 (8.8-121.3) 100.0 269193.0 

(140485.0-

491860.0) 

<0.0001 

#MIP-4 0.0041 100.0 5.4 (0.3-47.5) 100.0 223.7 (146.9-366.9) <0.0001 

#CC4 0.0465 97.9 639.6 (297.1-1473.0) 95.7 146270.0 (70465.0-

204543.0) 

<0.0001 

MMP-7 NA NA 101.5 (81.6-121.5) NA 930.0 (605.2-

1748.0) 

<0.0001 

VEGF-A NA NA 10.0 (2.8-78.4) NA 142.8 (77.1-241.8) <0.0001 

NCAM1 NA NA 115167.0 (59829.0-

172190.0) 

NA 265229.0 

(209949.0-

339134.0) 

<0.0001 

*Cathelicidin-

LL37 

 NA  NA 0.0 (0.0-0.0)  NA 0.5 (0.3-0.9) <0.0001 

(C) Host markers showing no difference in expression levels between CSF and serum 

CCL4 NA NA 240.6 (148.4-470.0) NA 296.8 (179.8-431.0) 0.4363 

G-CSF NA NA 173.4 (0.0-458.7) NA 83.0 (0.0-162.9) 0.1172 

CCL1/I-309 NA NA 63.2 (5.13-156.6) NA 15.0 (7.6-33.4) 0.13 
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Figure 4.8: Representative plots showing the levels of host markers more abundantly 

expressed in cerebrospinal fluid. Samples of all study participants regardless of disease 

status or whether they were finally diagnosed with TBM or no TBM were included in the 

analysis (n=47). The levels of each host marker detected in cerebrospinal fluid sample was 

mapped to the levels detected in serum sample for each study participants. Only the top nine 

markers that were highly abundant in cerebrospinal fluid samples are shown (p-value <0.001). 
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Figure 4.9: Representative plots showing the levels of host markers more abundantly 

expressed in serum. Samples of all study participants regardless of disease status or 

whether they were finally diagnosed with TBM or no TBM were included in the analysis (n=47). 

The levels of each host marker detected in serum sample was mapped to the levels detected 

in cerebrospinal fluid sample for each study participants. Only the top nine markers that are 

highly abundant in serum samples are shown (p-value <0.0001). 

 

4.4 Discussion 

In this study, the usefulness of a previously identified adult 7-marker serum protein 

biosignature (CRP, transthyretin, IFN-γ, IP-10, CFH, Apo-AI and SAA) as well as host 

biomarkers that have shown potential as pulmonary TB diagnostic candidates in recent adult 

studies were assessed as tools for the diagnosis of TB meningitis and pulmonary TB in 

children.  In the first section of this study (4.3.1), it was observed that the adult 7-marker serum 

protein biosignature diagnosed pulmonary TB with promising accuracy, as ascertained by 

area under the ROC curve (AUC) of 0.79. Similarly, the same 7-marker adult protein signature 
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discriminated between children with or without TBM with an AUC of 0.80. Other major findings 

from this study included the identification of a novel 7-marker serum protein biosignature 

comprising of PCT, MIP-1α, α2M, IFN-γ, IL-10, SAP, and CFH and also five and six-marker 

signatures which diagnosed pulmonary TB in children with better accuracy than the adult 7-

marker serum protein signature and also the identification of an alternative 3-marker serum 

protein biosignature which outperformed the adult 7-marker signature in children with TBM. 

Furthermore, there were several candidate biomarkers which showed potential as promising 

diagnostic candidates for both childhood pulmonary TB and TBM in the project.  

  The most promising individual host biomarkers with potential for diagnosis of 

pulmonary TB in children included IFN-γ, MMP-1, MMP-9, PCT, sIL-6R and IL-6. IFN-γ is a 

proinflammatory cytokine that has been shown to play an important role in the protection 

against mycobacterium tuberculosis (197). MMP-1 and MMP-9 are matrix metalloproteinases 

(MMPs), which play an important role in extracellular matrix remodelling, wound healing and 

angiogenesis (198) and are known to be associated with TB. A review by Salgame (199) 

demonstrated that M.tb induces tissue remodelling via induction of MMP-9 to favour its 

establishment in the host, whereas the excessive secretion of MMP-1 is responsible for matrix 

degradation and cavitation during reactivation of a latent infection. Another study reported that 

the levels of MMP-1 in plasma samples were significantly higher in children with pulmonary 

TB compared to healthy controls (200). Procalcitonin (PCT) is a 116 amino acid peptide that 

belongs to the calcitonin superfamily (201) and it is an inflammatory marker that is stimulated 

directly by bacterial peptides and indirectly by cytokines (IL-6 and TNF-α) (202). Furthermore, 

PCT is a biomarker that exhibits greater specificity for bacterial infections than other 

proinflammatory markers and its use in the diagnosis of bacterial infections has well been 

described, especially in sepsis (26, 27). It was previously demonstrated that serum PCT levels 

are lower in patients with pulmonary TB (PTB) in comparison to patients with community-

acquired pneumonia (CAP), and that PCT was a useful biomarker for discriminating patients 

with pulmonary TB and patients with CAP (203). Similarly, another study showed that serum 

levels of PCT were higher in patients with CAP than in patients with pulmonary TB (204). A 

meta-analysis showed that PCT test had a pooled sensitivity of 42% and specificity of 87% for 

discriminating TB from pulmonary TB. In contrast, the current study demonstrated higher 

serum levels of PCT in children with pulmonary TB compared to children without PTB. IL-6 

and sIL-6R are responsible for stimulation of cells that express only gp130 through a process 

referred to as trans-signalling (205). IL-6 has been reported as a potent biomarker for 

mycobacterium infection either as a stand alone or in combination with other markers (206). 

In the current study, both sIL-6R and IL-6 were significantly higher in serum samples of 
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children with pulmonary TB disease compared to children without pulmonary TB disease and 

showed potential in the diagnosis of pulmonary TB. 

Given that the performance of the current diagnostic methods for pulmonary TB 

disease in children is limited by the difficulty in obtaining good quality sputum specimen and 

the paucibacillary nature of the disease in children, tests based on non-sputum samples such 

as blood could improve the diagnosis of pulmonary TB disease in children. In this study we 

showed the potential of host markers detectable in blood (serum) samples in the diagnosis of 

pulmonary TB disease. Blood is an easily obtainable sample requiring a non-invasive 

procedure. Previous studies have shown that host biomarkers can easily be incorporated into 

a field-friendly assays utilizing lateral flow format that allows quantitative detection of multiple 

biomarkers directly in several samples including serum samples (207). This assay could serve 

as a screening test for TB disease in children at a point-of-care in resource-limited areas. A 

similar test based on the 7-marker serum protein biosignature is currently being developed for 

diagnosis of TB disease in adults (www.screen-tb.eu).  

In the current study we evaluated the usefulness of the adult 7-marker serum protein 

biosignature in children. Although the adult 7-marker serum protein biosignature performed 

poorly in children in comparison to adults, however, a test with sensitivity of 75% and 

specificity of 70% could be a breakthrough in the diagnosis of pulmonary TB in children, 

especially if it is a finger-prick blood-based formats. However, we identified alternative novel 

serum biosignatures with higher accuracies in the diagnosis of TB disease in children. These 

new biosignatures indicate a possibility for development of biomarker-based tests that are 

specific for childhood pulmonary TB diagnosis. The biomarker-based test could overcome 

most of the shortcomings of the current diagnostic methods, especially if it is rapid, cost-

effective, user-friendly and accurate. The individual host markers that showed potential for 

diagnosis of TB disease in this study will serve as back-up markers for substitution of markers 

in the biosignatures in cases where problems are encountered during translation of Luminex-

based data to lateral flow format. A successful biomarker-based test could improve case 

findings leading to early initiation of TB treatment and reduction of childhood death associated 

with tuberculosis. The main limitation of the current study was the relatively small sample size. 

However, this was a pilot study designed to generate preliminary data that could be used in 

further, larger validation studies. These future studies should include larger number of children 

with suspected pulmonary TB, including those who are HIV infected and children with 

confirmed other respiratory diseases. 

The individual serum protein host biomarkers identified as potential biomarkers for 

TBM in the second part of this project included SAP, CC5, CFH, Apo-CIII, PAI-1, PDGF-
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AB/BB, MBL, sVCAM-1, CCL2, IL-4, TNF-α, CCL4, ADIPSIN, G-CSF, IL-10, IL-17A, and 

NCAM1. The levels of SAP, CC5, CFH, Apo-CIII, PAI-1, PDGF-AB/BB and MBL were 

significantly higher in serum samples of children with TBM, whereas the median levels of 

sVCAM-1, CCL2, IL-4, TNF-α, CCL4, ADIPSIN, G-CSF, IL-10, IL-17A, and NCAM1 were 

significantly higher in serum samples of children with non-TBM. Although the diagnostic 

potentials of these markers were previously investigated in TB, most of them were not 

investigated in TBM, especially using serum samples. Serum amyloid A (SAP) is a member 

of positive acute phase proteins produced predominantly in the liver and secreted during an 

acute phase reaction (208). SAP attracts inflammatory cells, inhibits the respiratory burst of 

leukocytes and modulates the immune response (209). SAP has been reported as a potential 

diagnostic marker for TB in different body fluids (150, 170, 190). CC5, CFD, and CFH are the 

proteins of the complement system. CFH serves as a key regulator of the alternative pathway 

of the complement system (211). CFH has previously been investigated as a marker for TB 

diagnosis and higher levels of CFH were observed in patients with TB (32, 33). CFD is a 

protein of the alternative pathway and it is vital for cleavage of factor B. Patients deficient of 

CFD were reported to be unable to opsonize Nessiaria meninigitidis (212). In a complement 

cascade, the cleavage of  CC5 generate a potent anaphylatoxin, C5a and leads to pathogen 

lysis, inflammation and cell damage (213). In the previous study, trends were observed 

towards TBM patients in the levels of IL-4 and G-CSF (160). However, in the current study we 

observed higher levels of IL-4 and G-CSF in TBM as compared to non-TBM patients. Neural 

cell adhesion molecule (NCAM) is widely expressed in the CNS and it plays a role in the 

intercellular adhesion among neurons, astrocytes, oligodendrocytes and myotubes (194, 195). 

NCAM was previously demonstrated as a biomarker for TB disease and higher levels were 

observed in plasma samples of individuals with other respiratory disease as compared to TB 

disease (170). Our findings that there are elevated levels of NCAM in children without TBM as 

compared to children with TBM are in line with the above-mentioned demonstration. In the 

previous study (33), NCAM was included in the plasma-based biosignature for diagnosis of 

adult TB disease, in our study, NCAM was included in the serum-based biosignature for 

diagnosis of TBM in children. This shows the consistency of NCAM detectable in blood 

samples in the diagnosis of Mtb-related disease/Infection. Mannose-binding lectin (MBL) is an 

acute phase reactant produced by the hepatocytes and it plays a major role in the recognition 

of pathogen-associated molecular patterns (PAMPS), leading to lysis of the pathogen via 

activation of the lectin complement pathways and opsonisation (216). Higher serum levels of 

MBL in patients with pulmonary TB have been reported (217). Our data is in line with this 

study, as we observed higher serum levels of MBL in children with TBM compared to children 

with non-TBM. 
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Although CSF biomarkers were shown to diagnose TBM in previous studies and 

validated in the present study (chapter 3), host biomarkers detected in blood may be more 

beneficial than those detected in CSF. Blood is an easily collectable sample as compared to 

CSF, which involves an invasive procedure called Lumbar puncture. Hence, the development 

of a blood-based screening test for TBM could reduce the number of lumbar punctures 

currently performed per case of meningitis in children. Another major advantage of using a 

blood-based test for the diagnosis of TBM is that such a test may be more easily applicable 

especially in resource-limited settings as blood based tests may be easily adaptable and used 

to develop a finger-prick blood as is currently being done in an ongoing study (www.screen-

tb.eu), and would be a major breakthrough in the diagnosis of TBM disease. The blood 

biosignatures identified in this study hold a promise for development of a blood-based test for 

screening of TBM in children at a point-of-care or bedside. 

 

Similar to the pulmonary TB part of the current chapter, the main limitation of this part 

of the project was also the relatively small sample size, especially the few children with 

alternative diagnoses including children with other forms of meningitis. However, as this study 

included individuals in whom TBM was suspected, the design of the study was relatively 

strong, and the number of participants enrolled into the study was consistent with the patient 

described in multiple previous studies. The same design was used in chapter 3, with the same 

study participants, in which the previously established 3-marker CSF signature was validated. 

This shows that the novel biosignatures identified in the current study have strong potential. 

As highlighted in chapter 3, further studies should include larger numbers of study participants 

with suspected meningitis, including those who are HIV infected, and individuals with 

confirmed alternative meningitides.  HIV infected children included in such studies should be 

appropriately staged with CD4 counts and viral loads, to assess the possible influence of 

severe HIV infection on the accuracy of the diagnostic biosignatures. These future studies 

shall focus on the validation and refinement of the modified seven marker serum protein 

biosignature (CRP, IFN-γ, IP-10, CFH, Apo-A1, SAA, and NCAM1) and the 3-marker serum 

protein biosignature (adipsin/CFD, Aβ42 and IL-10). 

Furthermore, in the last part of this study (4.3.3), we showed that host biomarkers are 

differentially expressed between CSF samples (in chapter 3) and serum samples (in chapter 

4) from all participants in whom TBM is suspected, regardless of the disease. Majority of 

studies investigating host biomarkers for neurological disorders and diseases such as 

Alzheimer’s disease, dementia, Parkinson’s disease, multiple sclerosis, and meningitis, 

including TBM have focused mainly on the cerebrospinal fluid samples (80, 140, 198–202). 

There are only few studies that investigated the levels of host biomarkers in serum samples 
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for diagnosis of TBM. Furthermore, even in studies that investigated the levels of markers in 

serum and CSF samples, the differential expression of these markers between the two sample 

types were not compared. Currently, the routine TBM diagnosis requires the collection of CSF 

through a lumbar puncture. Studies report that the collection of CSF through lumbar puncture 

is well-tolerated and has fewer side effects (218). However, the collection of blood is easier 

and non-invasive, and therefore has a great advantage as compared to CSF. Studies showed 

the usefulness of host biomarkers detectable in serum samples in the diagnosis of TB. Our 

data shows that most of the markers investigated in this study are detectable in serum samples 

of all study participants. The abundant expression of these markers in serum may implies that 

these markers may be more reliably detected even with a lateral flow platform, which could be 

useful in the development of improved diagnostic tools for TBM. The data on the differential 

expression of host biomarkers between the sample types could provide helpful information in 

the sample type choice for future research. As the performance of the identified alternative 

childhood TB-specific signatures identified in this study have not been evaluated adults, it may 

be good to evaluate the performance of these biosignatures in adults in future studies, together 

with the adult 7-marker signature, so that a head-to-head comparison of the performance of 

the signatures could also be established in adults. 

In conclusion, the current study showed that the adult seven-marker biosignature 

showed potential in the diagnosis of both pulmonary TB and TBM in children in a high burden 

setting. However, alternative childhood TB-specific biosignatures (pulmonary TB-specific and 

TBM-specific) were more promising. This may imply that different host biomarker-based tests 

might be required for adults and children. However, regarding the performance of the adult 7-

maker serum biosignature in children, data from the current chapter demonstrates this specific 

biosignature may perform equally well in children with either pulmonary TB (AUC of 79%) or 

those with extra pulmonary TB, specifically TBM (AUC of 80%).  The alternative biosignatures 

identified in the project, if further validated and refined, could be used to develop blood-based 

point-of-care or bedside diagnostic tests suitable for diagnosis of pulmonary TB and TBM in 

children. However, with an AUC of 79 or 80% in both pulmonary TB and TBM, diagnostic tests 

based on the adult 7-marker serum protein biosignature may still be useful in children, 

especially if they are based on simple, field friendly technologies such as the lateral flow 

technology as no other simple tests that perform with that level of accuracy currently exist.  

While waiting for further validation studies on the newly identified childhood TB-specific 

signatures, any test developed based on the adult signature, as is being done in the screenTB 

project (www.screen-tb.eu), could be implemented in the diagnosis of TB disease in children, 

especially as it will be a much simpler and field-friendly test, compared to any of the currently 

existing diagnostic tests for TB. This study therefore paves the way for the use of any tests 
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developed on the adult 7-marker signature, in the diagnosis of both pulmonary TB and TBM 

in children, pending the validation of the childhood TB specific signatures which may be more 

promising in that patient group. 
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Chapter 5 

General discussion and conclusion 

5.1 Introduction 

As reviewed in previous chapters, TB remains a major health challenge worldwide. The bad 

outcomes resulting from TB are mainly due to difficulties in the diagnosis of the disease and/or 

delayed initiation of treatment. The current available diagnostic methods have several 

shortcomings as highlighted in chapter 1, especially in young children and in people presenting 

with extrapulmonary TB, including tuberculous meningitis (TBM). The bacteriological 

confirmation of M.tb heavily depends on the quality of specimen provided for diagnosis. 

However, young children do not readily expectorate sputum, which hinders the confirmation 

of TB in children. Even with new methods used for collection of clinical specimens (gastric 

aspiration and induced sputum), many cases are still missed. This emphasizes a need for 

development of new diagnostic methods suitable for use in young children, particularly 

sputum-independent methods. 

It is even more difficult to diagnose TBM in children, especially in resource-limited areas. The 

diagnosis of TBM relies on the combination of clinical presentation, CSF findings, evidence of 

TB outside the CNS, brain imaging and where possible, bacteriological confirmation as 

discussed in chapter 1. However, access to these facilities requires admission into a tertiary 

hospital, in relatively well-resourced environments. Consequently, children who do not access 

these facilities, especially those in poor-settings, miss the opportunity for early diagnosis of 

TBM, with children living in relatively better-off provinces such as in the Western Cape Region 

of South Africa still presenting at the clinic an average of six times before proper diagnosis of 

TBM is made (223). An additional problem is that all the invasive tests currently used in the 

diagnosis of TBM perform poorly individually, hence the need for several admissions at which 

time, many of the children die. There is therefore an urgent need for rapid, cost-effective and 

accurate point of care tests for diagnosis of TBM in children. 

Host biomarkers detectable in easily obtainable samples such as serum, plasma, saliva and 

urine have shown potential for development of point-of-care diagnostic tools, especially based 

on the lateral flow assay technology. A recent multi-centred pan-African study identified a 7-

marker serum protein biosignature with potential for diagnosis of TB disease in adults (166). 

Considering that the 7-marker serum protein biosignature has never been investigated in 

children, this thesis evaluated the usefulness of this biosignature in the diagnosis of pulmonary 

TB and TBM in children. Another study identified a 3-marker CSF biosignature with potential 

for diagnosis of TBM in children (160). There was a need to further validate the performance 

of this biosignature in a new cohort of children. To address this, the diagnostic performance 
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of the 3-marker CSF biosignature was validated in a new cohort of children with signs and 

symptoms suggestive of meningitis. Furthermore, this thesis investigated other host markers 

that could be used in the diagnosis of pulmonary TB and TBM in children. 

 

5.2 Summary of main findings 

Application of cerebrospinal fluid host protein biosignatures in the diagnosis of tuberculous 

meningitis in children from a high burden setting 

In chapter 3, the concentrations of 69 host markers were investigated in the CSF and serum 

samples from children with signs and symptoms suggestive of meningitis. The performance 

of the previously identified 3-marker CSF biosignature (VEGF, IL-13 and Cathelicidin LL-37) 

was validated in the current study, with positive and negative predictive values of 59.55 (95% 

CI, 51.5-66.9%) and 90.0% (95% CI, 55.3-98.5%), respectively. There were other important 

findings from this study. Although the levels of 46 individual host markers detected in CSF 

samples showed potential to diagnose TBM in children with high accuracy (AUC≥0.70), the 

most optimal performance was obtained with the combination of up to four markers. VEGF 

was the most consistent host marker, as it performed well individually in the previous studies 

and in the current study. As a result, VEGF was fitted into General Discriminant Analysis 

(GDA) models with other host markers and a modified 3-marker CSF biosignature comprising 

of VEGF, MPO and IFN-γ (that is MPO and IFN-γ substituted IL-13 and cathelicidin LL-37) 

was obtained. The modified VEGF-based CSF biosignature diagnosed TBM in children with 

high accuracy, as ascertained by AUC of 0.97 (95% CI, 0.92-1.00) corresponding to sensitivity 

of 92% and specificity of 100% after further optimization. When all the data obtained from CSF 

samples of all study participants was fitted into GDA models irrespective of HIV status, a four-

marker CSF biosignature comprising of sICAM-1, MPO, CXCL8 and IFN-γ was identified. The 

four-marker CSF biosignature diagnosed TBM with an AUC of 0.97 (95% CI, 0.92-1.00); 

corresponding to both sensitivity and specificity of 96% after selection of optimal cut-off values. 

Application of host immunological biomarkers detectable in blood in the diagnosis of childhood 

TB 

As highlighted in chapter 4 (Part A), the concentrations of the seven markers comprising the 

previously described adult 7-marker serum protein biosignature (CRP, transthyretin, IFN-γ, 

CFH, Apo-A1, IP-10, and SAA) and 33 other biomarkers were investigated in serum samples 

obtained from children with confirmed pulmonary TB (PTB) and children with unlikely TB 

diagnosis. The study showed that the adult seven-marker serum protein biosignature has a 

reduced performance in children as shown by AUC of 0.79 (95% CI, 0.65-0.93) with 
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corresponding sensitivity of 75% and specificity of 70% after further optimization. Of note, 

multiple host markers including MMP-1, MMP-9, PCT, sIL-6R and IL-6 showed potential as 

diagnostic candidates for pulmonary TB in children. When fitting all the data obtained from 

serum samples of all study participants into the GDA models, a combination of up to seven 

host biomarkers showed an optimal prediction of pulmonary TB in children. A novel seven-

marker serum protein biosignature comprising of PCT, MIP-1α, α2M, IFN-γ, IL-10, SAP and 

CFH diagnosed PTB with AUC of 0.94 (95% CI, 0.87-1.00); corresponding to sensitivity of 

95% and specificity of 90%. Furthermore, a novel 6-marker serum protein biosignature 

comprising of MMP-9, IFN-γ, α2M, fibrinogen, CFH and SAP diagnosed PTB with AUC of 0.94 

(95% CI, 0.86-1.00); corresponding to sensitivity of 90% and specificity of 95% after further 

optimization. The most accurate biosignature was the novel 5-marker serum protein 

biosignature comprising of IL-1β, IL-12p40, TNF-β, MMP-1 and α2M, which diagnosed PTB 

with AUC of 0.95 (95% CI, 0.89-1.00); corresponding to sensitivity of 85% and specificity of 

95% after further optimization. 

In part B (Chapter 4), we evaluated the levels of 69 host markers in serum samples from all 

study participants. The study participants and host biomarkers investigated in this study were 

the same as those included in chapter 3. The main aims of this study were to assess the 

usefulness of the adult seven-marker serum protein biosignature (CRP, IFN-γ, IP-10, CFH, 

Apo-AI, SAA and transthyretin) in the diagnosis of TBM in children and to identify other 

potential biomarkers. As highlighted in chapter 4 (Part B), transthyretin was not available in 

our analyte panel, therefore, six markers (CRP, IFN-γ, IP-10, CFH, Apo-AI, and SAA) out of 

the seven-marker serum protein biosignature were fitted into the GDA models with other 

markers and a modified seven-marker serum protein biosignature comprising of CRP, IFN-γ, 

IP-10, CFH, Apo-AI, SAA and NCAM1 (that is, NCAM1 substituted transthyretin) was 

evaluated. The modified seven-marker serum protein biosignature diagnosed TBM with AUC 

of 0.80 (95% CI, 0.67-0.92); corresponding to sensitivity of 71% and specificity of 74% after 

further optimization. When all the markers were evaluated individually, the median levels of 

SAP, CC5, CFH, Apo-CII, PAI, PDGF-AB/BB and MBL were significantly higher in children 

with TBM, whereas the median levels of sVCAM-1, CCL2, IL-4, TNF-α, CCL4, ADIPSIN, G-

CSF, IL-10, IL-17A and NCAM1 were significantly higher in children without TBM (non-TBM). 

Furthermore, host markers including VCAM-1, MCP-1/CCL2, IL-4, TNF-α, MIP-1β/CCL4. 

ADIPSIN/CFD, SAP, CC5, CFH, G-CSF, IL-10, Apo-CIII and PAI-1 showed potential as 

diagnostic candidates for TBM in children as determined from the AUCs. When the data 

obtained from serum samples of all study participants was fitted into the GDA models 

regardless of HIV status, the optimal prediction of TBM was achieved with a combination of 

up to three host markers. A 3-marker serum protein biosignature comprising of complement 
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factor D (adipsin), Aβ42 and IL-10 diagnosed TBM with AUC of 0.84 (95% CI, 0.73-0.96); 

corresponding to both sensitivity and specificity of 83% after further optimization. It was also 

observed that there were vast differences in the expression of host biomarkers in serum Vs. 

CSF of children with suspected meningitis as discussed in Chapter 4B.  

5.3 Significance of findings from the present thesis 

As discussed in the previous paragraph, we validated a previously described 3-marker CSF 

biosignature (VEGF, IL-13 and cathelicidin LL-37) in chapter 3 of this thesis. Although this 

validated 3-marker signature will be useful in the diagnosis of TBM especially if developed into 

a simple, bedside or point-of-care test, we showed that modification of this signature by 

substituting IL-13 and cathelicidin LL-37 with two other proteins (MPO and IFN-γ) resulted in 

a much improved biosignature, with AUC of 97%. This paves the way for the development of 

a new CSF biomarker-based test for the diagnosis of TBM. During the development of the 

test, any of the analytes in the signature could be replaced by the analytes in the alternative 

new 4-marker signature which also performed with an AUC of 97%, or any of the other 

biomarkers that showed potential individually as shown in table 3.3. As such a test will be 

based on the evaluation of these proteins in CSF samples, collection of CSF by lumber 

puncture may be a problem as it will require expertise which might not be available, especially 

in resource limited settings. Considering the WHO Target Product Profiles (TPPs) (196), the 

key priority biomarker-based tests, especially tests that could possibly be used at the 

community health centre level as triage test should be preferably based on easily collected 

samples such as whole blood, urine, saliva amongst others. We therefore evaluated the utility 

of the adult 7-marker signature and other proteins in serum samples from all the children 

enrolled into the project as discussed in chapter 4. As collection of CSF may be problematic, 

the serum-based test, which may be easily adapted into a finger-prick tests as is currently 

done in our laboratory as well as in other countries may thus be useful in remote settings.  

As also reported in chapter 4, we evaluated the adult seven-marker signature as well as other 

host biomarkers as tools for the diagnosis of pulmonary TB in children. Given the difficulties 

currently encountered in the diagnosis of TB disease, the adult 7-marker test may still be 

useful in the diagnosis of TB disease in children given the AUC of 79%, especially if based on 

a point-of-care lateral flow blood-based test as is currently done in the ScreenTB project. Such 

a test could be optimised, with better cut-off values to increase its sensitivity so that it is used 

as a rule-out test for TB disease in children. Individual diagnosed with positive test results 

would then be referred to higher levels of the healthcare system for confirmatory tests such 

as geneXpert and culture, thereby saving on costs on the currently extensive investigations 

that are done in all children that are suspected of having TB disease. Further optimisation of 
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the test with the new childhood TB specific biosignatures identified in the current study would 

lead to an even better performing test for TB disease in children. 

The biosignatures identified in this study hold promise for the development of suitable POC 

diagnostic tools for TB disease (including both pulmonary TB and TBM) in children. The 

development of diagnostic tests suitable for use in children has been recommended by the 

WHO in order to reduce high morbidity and mortality in this population. The findings from this 

thesis suggest that the described biosignatures could be incorporated into a field-friendly 

platform, based on lateral flow technology. Similar blood-based TB tests have been developed 

and successfully investigated in multiple African countries (14, 15), with multi-biomarker 

finger-prick based formats currently under development for the diagnosis of adult pulmonary 

TB disease (www.screen-tb.eu). Such developed biomarker-based diagnostic tools will benefits 

children with difficulty in providing good quality sputum samples, those with paucibacillary 

disease, those with extrapulmonary TB (particularly TBM) and those living in resource limited 

areas with less opportunities to access the currently used diagnostic tools for TB disease. 

 

5.4 Future investigations 

Considering that the main common limitation amongst all the studies reported in the current 

thesis was the relatively small sample size, it will be important that future studies are done in 

larger numbers of children with suspected pulmonary TB or TBM. For the TBM study, further 

studies should include larger numbers of study participants with suspected meningitis, 

including those who are HIV infected, and individuals with confirmed alternative meningitides.  

HIV infected children included in such studies should be appropriately staged with CD4 counts 

and viral loads, to assess the possible influence of severe HIV infection on the accuracy of the 

diagnostic biosignatures. Given the wide distribution of age (3 months to 13 years) in children 

that were included in the TBM study, it might also be worthy in future studies to evaluate the 

performance of the biosignatures in young children or infants as compared to older children. 

The pulmonary TB diagnostic biomarkers study was a pilot study designed to select 

biomarkers that could be investigated further in larger validation studies and this will form part 

of my future studies. Such future studies should include larger number of study participants 

with suspected pulmonary TB, including those who are HIV infected and children with other 

respiratory diseases and should be conducted on children recruited from multiple countries 

and multiple continents, so as to assess the global application of the biosignatures. This will 

be the same for further work done on the biosignatures for the diagnosis of TBM. In the course 

of the above mentioned future studies the blood (serum) and CSF biosignatures identified in 

these thesis for diagnosis of pulmonary TB and TBM in children should be refined by 

evaluating various combinations between the different host biomarkers that showed potential 
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and also investigate the correlation structure between different promising analytes. Well-

refined biosignatures could then be incorporated into field-friendly POC tests and in the course 

of development of such tests, biomarkers that correlate well with intended biomarkers for such 

tests may act as replacement markers, in case problems are encountered when attempting to 

convert the desired analytes into the POC tests. 

When samples were being collected for the TBM study, PaxGene RNA whole blood was 

collected from all study participants. There are many recent studies that identified 

transcriptional biosignatures which showed potential as biosignatures for the diagnosis of 

active TB, biomarkers for progression from LTBI to active TB and biosignatures for monitoring 

of TB treatment response. As majority of these studies were done in adults, it will be interesting 

to see how transcriptomic biosignatures perform in the diagnosis of childhood TB. Future 

studies, depending on available funding may therefore make use of the collected PaxGene 

tubes to evaluate new candidate biomarkers for the diagnosis of TBM, through the RNA 

sequencing. Alternatively, targeted approaches could be employed to investigate the utility of 

the transcriptomic biomarkers that have been reported in the literature in children with either 

pulmonary TB or TBM. The most useful candidate biomarkers may then be selected for future 

development of tests for the diagnosis of childhood TB.  

Metabolomics is an emerging science in the area of omics (224). Application of metabolomics 

offers ability to identify and quantify low-molecular weight metabolites and produce metabolite 

profiles which reflect the scale of a given biological system (224). Metabolomics has been 

widely applied in the search of biomarkers associated with TB disease. A study showed that 

specific metabolites detected in plasma samples including  M.tb-derived glycolipids and 

resolvins, have potential as biomarkers of TB disease (225). A study by Mason et al. (226) 

Identified 16 CSF metabolites, which differentiated between TBM and non-TBM. Furthermore, 

a recent study identified 5 amino acids, namely alanine, asparagine, glycine, lycine and proline 

which were elevated in TBM cases (227). However, the exploration of metabolomics in TBM 

is still at very early stages, as compared to that of pulmonary TB. In my future studies, targeted 

metabolomics approaches will be used to evaluate M.tb-specific products including the 

antigen 85 (Ag85) protein complex, membrane lipids and fatty acid structures which are 

hypothesized to be present in CSF, the site of disease. Such M.tb-specific products may 

significantly enhance the specificity of host biomarker-based tests such as the ones based on 

the biosignatures identified in the current study. 

The information gained about the differential expression of host markers between CSF and 

serum samples necessitates further investigation for immune cells subpopulations between 

children with TBM and those without TBM. CSF immune cells subpopulations have been 
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evaluated in several conditions, such as multiple sclerosis, Cryptococcal meningitis, and other 

neurological disorders (228–232). Furthermore, during the diagnosis of TBM, routine CSF 

investigations show raised CSF white blood cell count with pleiocytosis and predominance of 

neutrophils (18, 207). However, there is limited work on the immune cells subpopulations 

associated with paediatric TBM. Therefore, future studies shall investigate the differential 

immune cells subpopulations in CSF and peripheral blood (PB), as well as in comparison 

between children with TBM and those without TBM. Such investigations will provide 

information about the pathogenesis of TBM and information relating to understanding the 

mechanisms at play at the site of disease, especially when compared to the periphery. 

5.5 Conclusion 

In conclusion, the data presented in this thesis shows that host biomarkers detectable in CSF 

samples hold potential in the diagnosis of TBM. Furthermore, the adult seven-marker 

biosignature showed potential in the diagnosis of both PTB and TBM in children in a high 

burden setting. However, alternative childhood TB-specific biosignatures were more 

promising, indicating that different host biomarker-based tests might be required for adults and 

children. There is a need for further validations and refinements for these findings, especially 

the pulmonary TB diagnostic biomarkers pilot study, in new and larger cohorts of children 

before the development of biomarker-based diagnostic tools suitable for use in children. 

Pending these investigations, any point-of-care tests developed based on the adult 7-marker 

signature for use in adults may also be employed in children with pulmonary TB (AUC of 79%) 

or TBM (AUC of 80%). Cut-off values may then be adjusted so as to ensure that such a test 

when applied to children, is either a rule-out or rule-in test, pending the development of 

childhood TB-specific tests in future. 
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