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ABSTRACT 
Recent advances in smartphone technology, including motion sensing and wireless 
communications, have resulted in these devices being used for vehicle-based driver 
behaviour sensing applications, replacing existing bespoke vehicle-based solutions. 
Acceleration is normally used as the primary indicator for recklessness. Despite the many 
benefits of using a smartphone to determine vehicle acceleration, the mobility of the phone 
relative to the vehicle, and the vehicle relative to the earth, causes the earth's gravitational 
force to obscure the true vehicle acceleration as perceived by the phone. The design and 
test results in this paper demonstrate how quaternions and an unscented Kalman filter can 
be used to remove the gravitational vector from the sensed acceleration, which enables 
reckless driving detection.   
 
1 INTRODUCTION 

One of the prevalent trends in the contemporary mobile industry is the use of the powerful 
integrated sensors in mobile devices to gather and process information on our everyday 
lives; a trend which branches from the biggest buzzword in modern electronics: The 
Internet of Things. These sensors have been put to good use by the safety industry to 
monitor the elderly for falls and accidents, but have yet to be properly implemented to 
monitor one of the most perilous parts of our everyday lives, namely commuting (WHO, 
(2010)). Gainwe et al. (2010), presents statistics showing that human error accounts for 
86.4% of fatal crashes per year. The advent of smartphone-based sensing could provide a 
simple, inexpensive way to identify and reduce reckless driving.  
 
The accelerometer features prominently in most proposed vehicle monitoring and reckless 
driving detection systems (Zeeman et al. (2014), Schietekat et al.(2013), Engelbrecht et al. 
(2014)) In vehicle monitoring, it is imperative to distinguish between accelerating, 
decelerating and lateral acceleration, since this data can be used to identify and classify 
driving manoeuvres and events effectively. Accurate coordinate acceleration data is 
therefore the main concern of this paper. 
 
Accelerometers, however, measure what is known as proper acceleration (the acceleration 
relative to a free falling point), not coordinate acceleration (the acceleration relative to a 
stationary point). The proper acceleration of an object that is stationary with respect to the 
earth will therefore be 1 G (1 x 9.81m.s-2) upwards in the earth axes. 
 
Within a vehicle monitoring system, there are three sets of axes of concern: the earth 
axes, the vehicle axes and the sensor axes. The conventions for these axes are illustrated 
in Figure 1. In a dynamically moving vehicle with a smartphone-based sensor providing 
measurements, these axes are not necessarily constrained by known or fixed orientations 



relative to one another. The accelerometer measurement in the sensor axes will therefore 
be corrupted by the effect of gravity with an unknown orientation. 
 
The effect of gravity can be removed from the proper acceleration reading (in the sensor 
axes) if the orientation of the sensor axes relative to the earth axes can be found. The 
coordinate acceleration in the sensor axes can be rotated from the sensor axes to the 
vehicle axes if the orientation of the sensor relative to the vehicle can be determined; 
thereby yielding the coordinate acceleration in the vehicle axes. 
 
The aim of this paper is to present a way of quantitatively measuring, recording and 
displaying the acceleration of a vehicle along its own axes, with the effect of gravity 
removed, to enable reckless driving detection. This is to be done using only the sensors 
commonly found in a smartphone (accelerometer, gyroscope, and magnetometer). 
 

 
Figure 1 - Illustrations showing the conventions for the orientations of the sensor-, 
vehicle- and earth-axes respectively. 

2 RELATED WORK 

Many studies have been done on sensor attitude estimation using accelerometers, 
magnetometers and gyroscopes. The removal of gravitational acceleration from 
accelerometer data is also a common problem that has been well documented and 
researched.  
 
Mizell (2003), attempted to ascertain whether it is possible to use an accelerometer placed 
at an arbitrary orientation on a body to infer reliable information on the movements of the 
body. The accelerometer reading was essentially high pass filtered to obtain the "dynamic" 
acceleration disregarding gravity and then rotated with vector operations so the moving 
average of the accelerometer reading (which is assumed to correspond to gravity) aligns 
with the vertical axis. The assumption that gravity corresponds to the long term average of 
the accelerometer reading is, however, inaccurate when working with a vehicle, body or 
sensor of which the orientation varies relative to gravity. 
 
Xiaoping Yun et al. (2003), presented an improved quaternion-based Kalman filter for real-
time tracking of a body's orientation. This is done using Magnetometer, Accelerometer and 
Gyroscopic sensors (MARG) and a standard Kalman filter. To allow the use of the 
standard Kalman filter, a linear relationship between states as well as additive noise is 
assumed. For quaternion orientations and angular rates, however, the assumption that 
noise is additive is incorrect and the quaternion rotation that takes place between states is 
non-linear. Furthermore, no attempt is made to take into account known system dynamics 
when transitioning between states. 



 
Kraft (2003), similarly presents a method for real-time tracking using MARG sensors, but 
an unscented Kalman filter (UKF) is used, allowing a non-linear state-transition function 
and non-additive noise. Measurements from all three sensors are passed directly to the 
UKF, therefore a non-linear relationship exists between the observation and the state. This 
creates a very computationally demanding program. No attempt is made to use the 
orientation data to remove gravity from the acceleration measurement. 
 
Jung Keun Leeet al. (2012), recognized the need for a combined implementation of 
attitude and coordinate acceleration estimation. This is done using a gyroscope and a 
magnetometer as well as an adapted Kalman filter algorithm. All calculations were done 
using rotation matrices which are computationally less efficient than quaternions. 
Furthermore, the system was not adapted for specific vehicle dynamics and no attempt 
was made to translate the axes of the final data to a body other than that of the sensor, 
which is necessary for sensing using a mobile device. 
 
It is clear that, despite much research in the field of orientation estimation no system has 
been proposed where, accelerometer, magnetometer, gyroscope and vehicle dynamics 
information is used to efficiently estimate the coordinate acceleration of a vehicle using a 
mobile device placed within the vehicle.   
 
3 DESIGN 
For this paper, the use of a smartphone and smartphone-based sensors was emulated by 
using a sensor hub (gyroscope, accelerometer and magnetometer) connected via USB to 
a mobile computer running the software based estimator.  
The basic operation of the software based estimator can be summarised as follows: 

1. The system is initialised while the vehicle is stationary. 
2. As the vehicle accelerates for the first time after start-up, the orientation of the 

vehicle relative to the sensor is calculated. 
3. The orientation of the sensor relative to earth is calculated 
4. The known gravitational acceleration is rotated from the earth axes to the sensor 

axes. 
5. The gravitational acceleration in the sensor axes is then subtracted from the current 

acceleration measurement in the sensor axes. 
6. The resulting gravity free acceleration is then rotated from the sensor axes to the 

vehicle axes. 
Steps 3 to 6 are repeated to update the acceleration estimation. 
 
These steps are discussed in more detail in the following sections and Figure 3 illustrates 
the flow of data within the system. 
 
 
3.1  Calibration 
The sensors are assumed to be stationary for the first 200 cycles of the program (4-8 
seconds, processor dependent). A progress bar indicates the progress of calibration. 
During this time and continuing until the sensors are detected to be moving (accelerating), 
a moving average and variance of 200 samples is calculated by using two First In First Out 
(FIFO) queues and two 9-dimensional variables containing the sum of the data in the 
queues. 
For the accelerometer reading, this moving average is used as an estimate of the earth's 
gravity in the sensor axis. For the gyroscope reading, the mean is used as the constant 
gyroscope bias and is subtracted from the gyroscope data received. For the 



magnetometer, this mean value is of no particular significance. The calibration for the 
magnetometer is done by subtracting the lowest value encountered from the reading and 
then dividing by the difference between the highest and the lowest value encountered. It is 
recommended that the highest and lowest values encountered be obtained by rotating the 
device through all its axes in the environment that it is expected to be used in. For this 
system, these high and low values are read from a calibration file at system start up, 
updated whenever the program is running and saved when the program exits successfully. 
 
3.2 Calculating the orientation of the vehicle relative to the sensor  
The calibration of sensors stop and the recording of the first acceleration starts when the 
device starts moving (accelerating). The transition from stationary to accelerating is, for 
this paper, defined by a sustained difference between acceleration magnitude and the 
mean of the acceleration up to that time. The difference must be greater than the standard 
deviation of the previous acceleration measurements multiplied by a predefined tolerance. 
The first acceleration is recorded by summing all sampled acceleration data for the first 
period that the device is moving and dividing the sum by the number of samples taken.  
Orientation of the vehicle relative to the sensor is calculated using the direction of the first 
acceleration in the sensor axes, the direction of gravity in the sensor axes and the 
assumption that gravity lies in the vehicle's X-Y plane. 
 
The objective is to find the quaternion describing the rotation from the sensor axes to the 
vehicle axes. An objective function which can be minimized to find the most accurate 
quaternion rotation 𝑞𝑆𝑉 is shown in equation 1. 

  
𝒇�𝒒𝑺𝑽, 𝒅𝑽,𝒎𝑺� = 𝒒𝑺𝑽 ⊗ 𝒅𝑽 ⊗ 𝒒′𝑺

𝑽 −𝒎𝑺  (1) 

 
Where 𝑑𝑉 represents the direction of the front of the vehicle in the vehicle axes and 𝑚𝑆 is 
the normalized measurement of the first acceleration in the sensor axes. 
 
𝑑𝑉 =  0 +  1𝑖 +  0𝑗 + 0𝑘 (2) 
 
𝑚𝑆 =  0 + 𝑚𝑥𝑖  +  𝑚𝑦𝑗 + 𝑚𝑧𝑘 (3) 
 
The objective function is minimized by using the gradient descent method. The gradient 
descent algorithm is a simple algorithm both to implement and compute. This iterative 
algorithm is described by equations 4 - 6 with the Jacobian ( 𝐽 ) of the objective function 𝒇: 
  
𝑥+  =  𝑥𝑐  − 𝜇 × Δ𝑓

�|Δ 𝑓|�
 (4) 

 
  
Δ𝑓 =  𝐽𝑇𝑓 (5) 
 
𝜇𝑡   = 𝛼||𝑞̇𝑆𝐸||Δ 𝑡 (6) 

 
Here, 𝜇𝑡 is the step size, which is directly proportional to the gyroscope rate, this prevents 
overshooting at low rotational speeds and enables faster tracking at high rotational speed.  
The Jacobian matrix of the objective function in equation 1 was calculated mathematically.  
 
The gradient descent algorithm is iterated over until the adjustment is less than 1 ×  10−4. 
 



 
3.3 Calculate the orientation of sensor relative to earth: 
To avoid local minima with the gradient descent algorithm, an informed guess is made as 
to the initial orientation of the sensor relative to earth. This is done by checking the 
stationary mean of the gravity vector to see if the acceleration is upwards (positive y-
direction) or downwards (negative y-direction). If the acceleration (gravity) is negative in 
the y-axis, a quaternion with a 180∘ roll is defined as the initial guess, otherwise a zero-
quaternion is used (no rotation). 
 

 
Figure 2 - An illustration of the rotation 𝒒𝑬𝑺  and how it is estimated using an 
accelerometer reading. 

 
3.3.1 Initialize Unscented Kalman filter: 
An Unscented Kalman Filter (UKF) is used to combine accelerometer-, gyroscope-, 
magnetometer- and vehicle dynamics data in a way that maximises the probability of a 
correct estimation of the sensor's orientation relative to the earth axes. 
 
The parameters needed to initialize an UKF are: 
 

• Transition function. f 
• Observation function. g 
• Transition covariance. Q 
• Observation covariance. R 
• Initial state mean. µ0 
• Initial state covariance. Σ0  

 
The optimal state vector is chosen as the four part quaternion orientation with the three 
part rotational velocity appended as shown in equation 7. 
  
𝑥𝑘  =  [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝜔1, 𝜔2, 𝜔3]𝑇 (7) 
 
A combination of the two objective functions similar to that in equation 1 (one for the 
accelerometer reading and the vertical y-axis and one for the magnetometer reading and 



magnetic north) is minimized by using the gradient descent method described in equations 
4 - 6. 
 
For a live implementation such as the one in this paper, only one iteration of the gradient 
descent algorithm is needed per time step. 
 
The resulting quaternion also contains a yaw-rotation from the magnetometer reading, this 
reading was found to have a delay relative to the other readings and was very inaccurate. 
The yaw of the vehicle around the earth's y-axis is of little significance when performing 
reckless driving detection and was therefore removed. This yaw-removal was done by 
converting the quaternion orientation (𝑞𝐸𝑆) to Euler angles. These angles were then used to 
create a new quaternion using the same convention, but with the yaw-angle equal to zero. 
Figure 2 illustrates the rotation between the earth and sensor axes. 
 
The 4-part quaternion orientation calculated here is combined with the 3-part gyroscope 
reading to provide an observation vector (shown in equation 8) for the UKF. 
 
𝑥𝑘  =  [𝑞𝑚1, 𝑞𝑚2, 𝑞𝑚3, 𝑞𝑚4, 𝜔𝑚1, 𝜔𝑚2, 𝜔𝑚3]𝑇 (8) 
 
3.3.2 Update Kalman filter: 
For the first run, the Kalman filter is updated with the same mean and covariance used to 
initialise the filter as well as the observation vector defined in equation 8. For each 
successive iteration of the program the Kalman filter is updated with the mean and 
covariance output from the previous Kalman filter as well as the new observation vector. 
 

 
Figure 3 - A Data flow diagram illustrating the underlying flow of data within the 
system. 

3.4 Rotate gravity from the earth- to the sensor axes: 
At this point, all the necessary data to remove gravity from the accelerometer reading and 
to provide the absolute acceleration in the vehicle axes (𝑎𝑉����) is available. This includes the 



raw accelerometer data in the sensor axes (𝑎𝑆), the gravity vector in the earth axes, the 
orientation of the vehicle relative to the sensor axes (𝑞𝑆𝑉), and the orientation of the sensor 
relative to the earth axes (𝑞𝐸𝑆). The magnitude of gravity in the earth axes can now be 
rotated into the sensor axes as shown in equation 9.  
 
𝑔𝑆 =  𝑞𝐸𝑆 ⊗ 𝑔𝐸 ⊗ 𝑞′𝐸𝑆  (9) 
3.5 Remove gravity from acceleration measurement: 
This gravitational acceleration in the sensor axes can now be subtracted from the sensor 
measurement as shown in equation 10.  
 
𝑎𝑆���  =  𝑎𝑆  − 𝑔𝑆 (10) 
 
3.6 Rotate resultant acceleration to vehicle axes: 
The resulting acceleration in the sensor axes can now be rotated to the vehicle axes as 
shown in equation 11. 
 
𝑎𝑉����  =  𝑞𝑆𝑉 ⊗ 𝑎𝑆��� ⊗ 𝑞′𝑆𝑉 (11) 
 
3.7 Record and visualise acceleration: 
The resultant calculated acceleration data is visualised to better facilitate the 
comprehension of what has been achieved in this paper. The data is also recorded to 
enable the analytical measurement of the accuracy of the results.  
At each iteration of the program, the resulting three axis acceleration in the vehicle axes as 
well as the time elapsed since the previous reading is written to a comma separated value 
(.csv) file for later use.  
The data is displayed using Visual Python. A 3D set of axes that represent the earth's axes 
are displayed in green and a red object of which the orientation is easily identifiable, 
represents the vehicle's axes. The orientation of the red object is defined by a combination 
of the quaternions 𝑞𝐸𝑆 and 𝑞𝑆𝑉 as shown in equation 12. 
 
 
𝑞𝐸𝑉  =  𝑞𝐸𝑆 ⊗ 𝑞𝑆𝑉 (12) 
 
The position of the red object relative to the origin represents the instantaneous 
acceleration of the vehicle in the vehicle axes. Examples of the 3D model's orientations 
and positions are shown in Figure 4. 
 The magnitude of the acceleration is also shown by the bars in Figure 5. 
 

Figure 4 - The above screen shots show the position and orientation of the 3D model 
for situations where the vehicle is not accelerating, on an incline at constant speed, 
and accelerating on a level road respectively. 



 
Figure 5 - A screen shot of the magnitude bars of the acceleration (lateral, vertical, 
and forward). The colours of the bars also vary from green, for small acceleration 
magnitudes, to red, for large acceleration magnitudes. 

4 RESULTS 
 
The testing of the system proved to be a non-trivial task, as a known acceleration with a 
constant known sensor orientation is difficult to reproduce. The novel tests that were 
implemented to thoroughly test the system and quantify errors are shown in Table 1. 
 
Table 1- A table showing the various tests done and the motivations for doing them. 

Test: Motivation: 
Stationary test Used as a baseline and to quantify sensor noise. 
Constant speed & 
level road test 

To quantify the noise contributed by vehicle vibrations, road 
roughness and - irregularities at different speeds. 

Deceleration test,  
no incline 

To compare theoretical average x-axis deceleration over an interval 
with the average measurement over the interval. 

Deceleration test on 
an incline 

To test whether gravitational acceleration influences the 
measurements and if the vehicle-sensor orientation can be correctly 
calculated on an incline. 

Constant speed & 
varying incline test 

To test if the system can adjust for sudden changes in incline. 

Constant speed & 
turn radius test 

To test for accurate lateral acceleration data. 

 
 
 As the system is designed to be used in a vehicle, tests were done with the sensor in a 
secure position in the vehicle. For all tests, the normal calibration procedure is followed 
where the vehicle remains stationary on a road with a level horizontal gradient for the 
duration of calibration and is then accelerated forward in order for the system to determine 
the orientation of the sensor relative to the vehicle. All speeds are measured and saved 
programmatically with a GPS, as vehicle speedometers tend to be less accurate. All graph 
scales are chosen to correspond to the highest acceleration measured during vehicle 
testing. 
 



Table 2 - A table showing the results of a deceleration test done on a constant 
incline. 

 

 

 

4.1 Discussion of results: 
 
Comprehensive vehicle testing of the final system was done and the measured results 
were compared to theoretically calculated results as shown in Table 2. All results 
appeared to be accurate when compared to theoretical values and indicated good system 
operation, except for the sustained lateral acceleration test. The minimal acceleration error 
in the vehicle x- and z-axis during constant speeds shows that acceleration events of 30 
mG or more are detectable by the system. This opens doors for, not only reckless driving 
detection, but applications where smaller accelerations are of concern, such as road 
quality detection, lane control and swerve detection, and efficient cruise-control algorithms. 
The vehicle's x-axis acceleration does not notably change due to changes in incline, 
indicating that the effect of gravity is effectively eliminated and that the resulting 
acceleration represents a accurate coordinate acceleration and not a proper acceleration. 
The acceleration tests also indicated that the vehicle's x-, y- and z-axis acceleration data 
vary independently, proving that that the resulting acceleration data is rotated accurately to 
the vehicle axes. Figure 6 shows graphically the independent variation of the x-axis 
acceleration during a deceleration on a constant incline. One problem area was identified. 
The assumption that the effect of a vehicles yaw with respect to north on reckless driving 
detection is negligible adversely affected the operation of the Kalman Filter.  
 
It is therefore clear that, except for prolonged lateral accelerations, the system is accurate 
and would be beneficial for a reckless driving detection system. 
 

Figure 6 - A graph showing the acceleration data for a deceleration from 60km/h to 
stationary on a constant incline. 



5 CONCLUSION 
 
The goal of this paper was to remove the effects of gravitation vector from the acceleration 
measured by a smartphone in a vehicle. This was done to enable detection of reckless 
driving behaviour, which is primarily based on vehicle acceleration. The objective was met 
by using the gyroscope, magnetometer, and acceleration sensors with an unscented 
Kalman filter and quaternions to estimate the gravitation acceleration. The estimated 
gravitation vector is then removed from the acceleration vector measured by the 
smartphone, to determine vehicle acceleration. The results show that the system enables 
accurate measurement of reckless events in various conditions.  A Video Demonstration of 
detector in action in a vehicle can be found at: https://youtu.be/c3QpE-namqw. 
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