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Summary 

Integrated pest management (IPM) strives to control insect pests with a multifaceted approach 

that mirrors that of the ecology and endeavours to restore balance to the agricultural 

environment. To ensure the success of an IPM programme it is vital to understand the biology 

and the life cycle of the target insect. False codling moth (FCM), Thaumatotibia leucotreta is 

a tortricid moth with an extensive host range of more than 70 plants and is a key pest on citrus, 

stone fruit and table grapes. Insecticides are still relied upon for the control of FCM however, 

due to stricter regulations and their cascading environmental effects, there is a drive to reduce 

the chemical load in our agricultural environments. This encourages the need for a more 

sustainable approach such as IPM, which targets every stage in the life cycle of FCM. In this 

study, entomopathogenic nematodes (EPNs) and entomopathogenic fungi (EPF) were isolated 

from agricultural soils. The susceptibility of eggs and pupae to EPNs was investigated, and 

both entomopathogen types were screened against larvae. The EPNs proved to be the more 

potent pathogen and the larval stage was the least resilient against the pathogen. The EPN 

species that showed the most promise in laboratory trials were used as an in vitro cultured 

product and were tested in the field against FCM. The EPNs caused mortality of FCM larvae 

within 48 h and remained effective four weeks after application. Mating disruption is a non-

chemical control technique that interferes with the mate-finding ability of insects in order to 

reduce mating events and is therefore an ideal candidate for the control of FCM. However, the 

effect of mating disruption has not been quantified against FCM in stone fruit and table grapes. 

Using multiple mark-release-recapture experiments, this is the first study to reliably quantify 

mating disruption in stone fruit and table grapes. Mating disruption proved to be a highly 

successful technique causing up to 99% disorientation of male FCM, but how the method alters 

FCM’s mate-finding ability was unclear. To determine FCM’s behavioural response to the 

addition of the female pheromone, quantitative tools and dosage-response profiles were used. 

The study proved that at low dosages the success of mating disruption is dependent on FCM 

density, however at high dosages there is a shift to non-competitive disruption causing mating 

disruption to remain effective even at high pest densities with few pheromone point sources. 

The integration of the techniques investigated here will ensure the effective control of FCM at 

each stage of the life cycle, ensuring low population growth that may lead to the successful 

suppression of this problematic pest.    
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Opsomming 

Geïntegreerde plaagbestuur (GPB) streef daarna om insekplae te beheer met 'n veelvlakkige 

benadering wat die ekologie weerspieël en poog om biologiese balans in die landbouomgewing 

te herstel. Om die sukses van 'n IPM-program te verseker, is dit noodsaaklik om die biologie 

en die lewensiklus van die teikeninsek te verstaan. Valskodlingmot (VKM), Thaumatotibia 

leucotreta is 'n tortricid mot met 'n wye gasheerreeks van meer as 70 plante en is 'n belangrike 

plaag op sitrus, steenvrugte en tafeldruiwe. Insekdoders word steeds aangewend vir die beheer 

van VKM maar, as gevolg van strenger regulasies en hul negatiewe omgewings-effekte, is daar 

'n beweging om die hoeveelheid chemiese produkte in ons landbou-omgewings te probeer 

verminder. Dit moedig die behoefte aan om 'n meer volhoubare benadering soos GPB te volg, 

wat elke stadium van VKM se lewensiklus teiken. In hierdie studie, is entomopatogeniese 

nematodes (EPNs) en entomopatogeniese swamme (EPF) vanaf landbougrond geïsoleer. Die 

vatbaarheid van eiers en papies vir EPNs is ondersoek, terwyl beide entomopatogene teen laat-

instar larwes getoets was. Die EPNs was die sterker patogeen en die larwale stadium was die 

mees vatbaar. Die EPN-spesies wat die mees belowende resultate in laboratoriumproewe 

getoon het, is as 'n in vitro gekweekte produk gebruik en in die veld teen VKM getoets. Die 

EPNs het die mortaliteit van VKM-larwes binne 48 uur veroorsaak en was na vier weke na 

toediening nogsteeds effektief. Paringsontwrigting is 'n nie-chemiese beheerstegniek wat 

inmeng met die vermoë van insekte om mekaar opstespoor, wat paringsgeleenthede verminder 

en is dus 'n ideale kandidaat vir die beheer van VKM. Paringsontwrigting teen VKM is egter 

nog nie in steenvrugte en tafeldruiwe gekwantifiseer nie. Met behulp van meervoudige-merk-

hervang eksperimente, is hierdie die eerste studie om paringsontwrigting betroubaar te 

kwantifiseer in steenvrugte en tafeldruiwe. Paringsontwrigting het tot 99% van VKM se 

paringsgeleenthede verminder en is dus 'n hoogs suksesvolle tegniek, maar hoe die beheer 

VKM se vermoë om mekaar op te spoor verander het, was steeds onduidelik. Om VKM se 

gedragsreaksie na die toevoeging van die vroulike feromoon te bepaal, is kwantitatiewe modele 

en doses-reaksieprofiele gebruik. Die studie het bewys dat by lae dosisse is die sukses van 

paringsontwrigting afhanklik van die grootte van die VKM bevolking, maar by hoë dosisse is 

daar 'n verskuiwing na nie-kompeterende ontwrigting wat veroorsaak dat paringsontwrigting 

doeltreffend bly, selfs met groot VKM bevolkings en min feromoonbronne. Die integrasie van 

die tegnieke wat hier ondersoek word sal verseker dat VKM effektief beheer word tydens elke 

stadium van die lewensiklus. Dit sal lae bevolkingsgroei verseker wat kan lei tot die suksesvolle 

onderdrukking van hierdie problematiese plaag.  
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Chapter 1:  

General Introduction 

The Tortricidae is a lepidopteran family, with more than 10 000 species (Horak, 1998; Brown, 

2005), which is well-researched with 687 of these listed as important economic pests 

worldwide (van der Geest and Evenhuis, 1991; Zhang, 1994). In South Africa, four of these 

are regarded as the most economically important lepidopteran agricultural pests with research 

directed at their identification, control and biology (Blomefield, 1989; Timm et al., 2007; 

Prinsloo and Uys, 2015). These include codling moth, Cydia pomonella (Linnaeus), false 

codling moth (FCM), Thaumatotibia (= Cryptophlebia) leucotreta (Meyrick), oriental fruit 

moth, Grapholita molesta (Busck) and the macadamia nut borer, T. batrachopa (Meyrick).   

FCM (Fig. 1.1) is a particular problem as it is a polyphagous pest with an extensive host range 

(Schwartz, 1981; Newton, 1998; Timm et al., 2010) and is a pest of many cultivated South 

African crops; including citrus, stone fruit, vegetable crops and recently table grapes 

(Blomefield, 1989; Prinsloo and Uys, 2015). FCM and its control has been researched for 

several decades in citrus (Brain, 1929; Catling and Aschenborn, 1974; Hofmeyr et al., 1991; 

Grout and Moore, 2015), however, limited work has been conducted on FCM in stone fruit and 

table grapes, and of these most were focused on crop suitability for FCM (Blomefield, 1989). 

The limited applied research regarding FCM in stone fruit and table grapes is of concern, 

especially as the annual value of the industry is over R 10 billion (stone fruit ~R 2 billion; table 

grapes ~R 9 billion) and supply almost 80 000 jobs to the South African economy (Hortgro, 

2017; SATI, 2017). Economic losses may arise due to FCM’s direct damage to the stone fruit 

or table grapes as well as its status as a phytosanitary pest (since 2013, 

https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list) that may cause closed markets 

or cancellation of consignments (Newton, 1998; Bloem et al., 2003).  

Fig. 1.1 Thaumatotibia leucotreta adult, (left) (photo taken by V.M. Steyn) and (right) 

animated image created and supplied by R.F. Jacobs. 
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In this introduction, different aspects, such as the life cycle, reproduction, population dynamics, 

ecology and current control of FCM are shortly revisited with the aim of finding solutions for 

the control of this pestiferous lepidopteran in an integrated pest management (IPM) 

programme.  

1.1 Integrated Pest Management 

In managed crops 10 - 50% may be lost pre-harvest to insects (Oerke, 2006). The first use of 

insecticides (in the form of sulphur) was recorded 4 500 years ago in Mesopotamia (modern 

day Iraq and Kuwait; Oerke, 2006) and are still relied upon today to reduce insect damage to 

food crops (Ghimire and Woodward, 2013; Schreinemachers and Tipraqsa, 2012; Guedes et 

al., 2016). However, due to stricter regulations, cases of resistance, damaging and long-lasting 

effects of broad-spectrum chemicals (e.g. DDT), there is a drive to reduce the chemical load in 

our agricultural environments and use more environmentally friendly products (Guedes et al., 

2016). IPM aspires to achieve this by using an ecological approach to control insect pests (Koul 

et al., 2004). For instance, in a natural environment when sufficient resources are available, the 

pest population should increase. However, their natural enemies (predators and pathogens) will 

likely also increase to maintain the balance. In an agricultural system the natural enemies may 

control up to 90% of the pest population (Pimentel, 2005; Martin et al., 2013; Milligan et al., 

2016). However, this may not be the case, due to the absence of natural enemies in the system 

(Meisner et al., 2014) or the pest population being too high for natural enemies to be effective 

(Tscharntke et al., 2016). To address this, natural enemies may need to be augmented to reduce 

the pest population effectively (Rabb, 1978; Botrell and Smith, 1982). The philosophy of IPM 

therefore encourages simultaneous use of biological, cultural, mechanical and chemical 

(species-specific) approaches to reduce pest damage (Sandler, 2008). In order for IPM to be 

effective it is important to understand the pest’s biology and specifically its life cycle so that 

the IPM programme can be tailored towards a specific species (Bottrell and Smith, 1982).  

1.2 IPM for false codling moth 

1.2.1 Life cycle 

FCM has multiple (at least six) generations per year and completes its life cycle in 42 - 46 days 

at temperatures of 25°C (Opoku-Debrah et al., 2014) and does not undergo diapause 

(Terblanche et al., 2014). The eggs are laid singly on the outside of the fruit and these take ~5 

days to mature (Daiber, 1979a; Opoku-Debrah et al., 2014). They have three different stages 

of maturity that can be distinguished morphologically (Fig. 1.2), these are: newly laid (1, 
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transparent), red eye (2, red colouring inside egg) and black head (3, head capsule of first instar 

larva visible). Next, the first instar larva (white measuring 1 - 2 mm) bore into the fruit, leaving 

behind a characteristic pile of frass on the rind of the fruit. The first instar feeds in the fruit, 

moults multiple times and emerges from the fruit as a fifth instar larva (15 - 20 mm) that has a 

pinkish red colour (Daiber, 1979b). The larva drops to the soil, and burrows down less than 5 

mm (Love et al., 2019) to pupate, the pupa matures for 14 - 21 days (Daiber, 1979c), after 

which the adult moth (16 - 20 mm wing span) emerges (Fig 1.3).  

Fig. 1.2 Thaumatotibia leucotreta eggs illustrating the different stages of maturity, 1) newly 

laid egg 2) red eye stage and 3) black head stage just before first instar emerges (Copyright 

V.M. Steyn). 

         

Fig. 1.3 The life cycle of Thaumatotibia leucotreta in table grapes, images animated and 

supplied by R.F. Jacobs according to photos taken by V.M. Steyn.  
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1.2.2 Reproduction 

After emergence the adults become sexually mature, the females expose their pheromone 

gland, and release an intraspecific semiochemical (pheromone), defined as a chemical signal 

that elicits a behavioural response from the same species (Heuskin et al., 2011). Read et al. 

(1968) first identified FCM’s female pheromone. This was artificially synthesised by 

Henderson and Warren (1970) and later revised and adapted (Persoons, 1977; Newton et al., 

1993). Semiochemicals allow males to detect the pheromone plume from afar (Wall and Perry, 

1987), normally during their ranging flight (Cardé, 2016), and then navigate to the female’s 

side (Allison and Cardé, 2016). Once the male is in close proximity (2 - 3 cm) to the female he 

initiates his courtship sequence. Zagatti and Castel (1987) identified six positions FCM males 

use to expose their three androconial (coremata between abdominal segments, alar notch on 

wings, and dark hair-like scales on hind tibia) areas to increase mating success with the female. 

The first position (Fig.1.3) finds the male head to head with the female, whilst fanning his 

wings, and concludes with successful mating, though not all positions are always utilised by 

the males (Zagatti and Castel, 1987).   

1.2.3 Distribution and population dynamics  

FCM is an indigenous African pest, has been reported from neighbouring islands (Cape Verde 

Islands, Mauritius, Reunion and St Helena), and has recently been introduced to Israel (Wysoki, 

1986; Newton, 1998; Grout and Moore, 2015). Along with its extensive host range (excluding 

their incorrect inclusion of apples, see Stotter, 2009; for a recent and complete list) of 

agricultural crops, it also has multiple natural hosts including but not limited to acorns, Quercus 

robur (Lam.), Port Jackson galls (Seymour and Veldtman, 2010) buffalo-thorn, Ziziphus 

mucronata (Willdenou) and marula, Sclerocarya birrea caffra (Sonder). These natural hosts 

may offer refuge to FCM and later become a source of reintroductions into the agricultural 

systems complicating its management (Begemann and Schoeman, 1999; Stotter, 2009). In 

South Africa, genetic structure analysis has been conducted on FCM to determine the scale to 

which populations may differ (Timm et al., 2010). Individual differences accounted for most 

(85%) of the molecular variation in FCM populations. Further variation was explained by 

geographical distance (7%), among site/farm similarity (8%) and host preference (8%) (Timm 

et al., 2010). These results were in contrast to early suggestions that FCM may exhibit host 

preferences (FCM from citrus may prefer citrus) and form host strains (FCM from citrus remain 

on citrus) (Ford, 1934; Omer-Cooper, 1939). The results from Timm et al. (2010) suggests that 

FCM may move between hosts according to host availability, increasing the chance of FCM 
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immigrating into other crops. However, the matter is further complicated by the among 

site/farm similarity, the authors suggest that this may indicate limited dispersal of FCM. 

Though seemingly in contrast, these findings are plausible within the context of the Western 

Cape that has an agricultural mosaic ensuring a year-round supply of hosts for FCM to utilise 

without dispersing far. However, the host preference/strain exhibited by FCM may have been 

diluted (incorrectly estimated) by Timm et al.’s (2010) study, due to two limitations: 1) use of 

pheromone traps to collect FCM, and 2) host preference was compared between citrus, pears, 

apples, plums, acorns and litchis. The use of traps to collect the genetic material (FCM) made 

it impossible to identify the host from which the moth emerged. Therefore, the subsequent host 

preference analyses were conducted without clear evidence of the host. An example of this is 

the inclusion of apples and pears in their analyses, these fruits being non-hosts of FCM. 

Furthermore, Timm has confirmed that individuals collected from apples and pears were 

retrieved from traps rather than fruit (see De Villiers et al., 2015). Mgocheki and Addison 

(2016)’s work addressed these concerns and only used FCM collected from fruit. No evidence 

of genetic divergence between adults from different fruit could be identified, supporting the 

findings of Timm et al. (2010). However, the extent to which FCM adults move between 

different hosts remains a subject of debate.   

1.2.4 Ecology 

Early work on the flight of male FCM using pheromone baited traps in peach, Prunus persica 

(L.) orchards, found that male flight was limited by low temperatures (Daiber, 1978). Stotter 

(2009) corroborated these findings in citrus and showed that numbers quickly build up after 

the colder seasons. The first flight of the males is therefore considered to be from late October 

(crop depending) and continues throughout the summer months, with few males caught from 

May and during the rest of the winter months (Moore, 2002; Stotter, 2009). The low number 

of males caught in the colder months is not due to diapause, as no evidence of diapause has 

been recorded for FCM and laboratory trials failed to induce diapause in FCM (Terblanche et 

al., 2014). The fewer FCM in the colder months is therefore likely due to slower (68 - 100 

days) development of FCM under cold temperatures (Stofberg, 1954; Daiber, 1979 a, b, c). 

FCM larvae also have low temperature tolerance becoming inactive at 6.7°C and lethal 

temperatures range between -4.5°C and -0.5°C depending on exposure time (Stotter and 

Terblanche, 2009; Boardman et al., 2011), further decreasing populations in cold 

environments. The host may also influence development time of FCM. De Jager (2013) showed 

that development from egg to adult may take as little as 37 days in grapes at 25°C whereas, 
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under the same conditions, development took 40 days in citrus and FCM would not develop in 

apples. 

1.2.5 Current control 

Eggs 

One of the strongest drivers of population growth is propagule pressure, which is the rate of re-

introduction of the pest into an environment (Simberloff, 2009). The egg stage is therefore a 

very important stage to control. There are two parasitoid species that have been confirmed to 

attack FCM eggs, these are Trichogrammatoidea cryptophlebiae (Nagaraja) (Hymenoptera: 

Chalcididae) and Chelonus curvimaculatus (Cameron) (Hymenoptera: Braconidae), with the 

former being commercially available (Vital Bugs, Letsitele, South Africa) and the latter also 

parasitizing the larvae (Searle 1964; Catling and Aschenborn 1974; Malan et al., 2018).  

Larvae 

After the eggs hatch, the neonate larvae may be controlled by Cryptophlebia leucotreta 

granulovirus (CrleGV) (Moore, 2002; Moore et al., 2011). In fact, many options have shown 

promise against the larvae, such as entomopathogenic nematodes (EPNs) (Malan et al., 2011; 

Malan and Moore, 2016), entomopathogenic fungi (EPF) (Begemann, 1989; Coombes et al., 

2013) and parasitoids (Newton, 1998). The EPN enters the host through the insects’ natural 

openings and, once inside, it releases symbiotic bacteria that helps kill the host. The EPN then 

multiplies and, once the nutrients of the host are used up, the EPN exits the cadaver in search 

of a new host (Steinhaus, 1949, Lu et al., 2017). In contrast, an EPF spore will land on the 

insect cuticle, germinate and then penetrate the insect cuticle. The fungus grows throughout 

the body as blastopores and mycelia, which kill the insect, more conidia are produced on the 

exterior of the insect and spores are released into the environment (Lacey and Kaya, 2007). 

Both EPNs and EPF have the potential to persist in the environment after application and are 

therefore a very good fit for IPM. However, currently the commercially available virus CrleGV 

(Cryptogran™, River Bioscience, South Africa) and chemical insecticides are the main 

techniques utilised. Malan et al. (2018) highlights the importance of comparing novel local 

strains with those that are commercially available so that the potential of EPNs and EPF can 

be fully realised in IPM systems in South Africa.  
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Pupae 

The pupal stage should theoretically be the most targeted stage as 1) it is immobile 2) it is the 

longest stage thereby offering the largest application window (Love et al., 2019). 

Unfortunately, as FCM pupates beneath the soil it limits the biological agents that can attack 

it, though EPNs and EPF that occur naturally in the soil environment do show promise in 

laboratory and semi-field environments (Coombes et al., 2013; Malan et al., 2011). EPNs can 

even search out these cryptic stages by following a CO2 gradient (Robinson, 1995). 

Adults 

The Sterile Insect Technique (SIT) has been deployed by a commercial facility [XSIT (Pty) 

Ltd, Citrusdal, South Africa] which has been in operation since 2007 targeting FCM in citrus 

(Barnes et al., 2015; Hofmeyr et al., 2016). SIT works by flooding the landscape with sterile 

moths (10 sterile for each wild moth); these mate with the wild moths, leading to infertile eggs 

and therefore a gradual reduction in the population (Hofmeyr et al., 2015). To ensure that the 

population is suppressed, XSIT monitors wild and sterile FCM on a weekly basis (Boersma et 

al., 2018). This technique has been successful, but is currently only used in citrus and table 

grapes.  

Two pheromone-mediated control options also exist against FCM. These are “attract-and-kill” 

and “mating disruption”, and both techniques exploit the mate-finding behaviour of FCM. The 

attract-and-kill technique works by luring the male with a semiochemical to a dispenser 

impregnated with a pyrethroid gel that kills the male on contact. Mating disruption works by 

broadcasting the synthetic semiochemical throughout the landscape, so as to interfere with 

mate-finding behaviour, thereby reducing mating events and decreasing the number of viable 

eggs in the next generation (Alison and Cardé, 2016). The widespread adoption of mating 

disruption worldwide is attributed to: 1) reduction of insecticide use for edible crops (Suckling, 

2015), 2) its use against pests that cannot be effectively controlled by other means, and 3) low 

mammalian toxicity (Witzgall et al., 2008, 2010; Ioriatti et al., 2011). Hofmeyr et al. (1991) 

studied mating disruption in citrus against FCM and showed the successful disorientation of 

male moths, leading to its registration in South Africa. Mating disruption has not been 

quantified against FCM in stone fruit and table grapes, but is widely used both in South Africa 

and in Europe against other Tortricidae [European grapevine moth, Lobesia botrana (Denis 

and Schiffermüller)] in table grapes (14 000 ha) (Iorriatti et al., 2011). Furthermore, it is still 

unclear how the technique alters the mate-finding behaviour of FCM. Interestingly, despite 
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mating disruption’s long (50+ years) history worldwide (Miller and Gut, 2015), Miller et al. 

(2006 a, b) only recently proposed and evaluated the theoretical foundation for the two main 

classes of lepidopteran disruptive mechanisms, namely competitive and non-competitive 

disruption. This shifted the research focus from whether mating disruption works to the 

mechanistic understanding of how Lepidoptera react and thus how the synthetic pheromone 

alters the insects’ behaviour (Miller et al., 2010; Allison and Cardé, 2016). No studies have 

previously been conducted to determine the underlying disruptive mechanism on FCM. 

However, studies conducted on closely related species (Cydia pomonella  and Grapholita 

molesta) have proposed and critically evaluated a framework, along with a dichotomous key, 

for distinguishing between the two mechanism classes (Miller et al., 2006 a, b; Miller and Gut 

2015) and thus provides a protocol to identify the underlying disruption mechanism in other 

pest species. 

1.3 Aim and Objectives 

The overall aim of this research was to investigate the use of EPNs, EPF and mating disruption 

as alternate control methods against FCM in stone fruit and table grapes. To effectively control 

FCM with alternate methods it would be advantageous to apply a control measure targeting 

each stage of the life-cycle. To this end, entomopathogens could be used against the immature 

stages (egg, larva, pupa), whilst mating disruption may be used to reduce mating events so that 

fewer fertile eggs are available in subsequent generations. 

To use entomopathogens against the immature stages of FCM in the South African context, 

locally isolated EPNs and EPF should be identified and their virulence assessed against the 

immature stages of FCM in the laboratory. The most promising isolates could then be tested in 

the field to determine their biological control potential. However, field trials require large 

quantities of EPNs. Therefore the virulence of different culturing techniques should be 

compared and the most suited approach used for field assays. 

Due to the unknown effect of mating disruption against FCM in stone fruit and table grapes, it 

would be important to investigate whether mating disruption affects the male FCM’s mate-

finding behaviour in these crops. If so, it would then be desirable to determine how the addition 

of the synthetic female pheromone alters the male FCM’s behaviour. With this information the 

optimal dose required to effectively disrupt males can be calculated.  
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The current study consists of four data chapters that each addresses one of the questions above. 

Each objective was written as a separate chapter, and compiled as separate manuscripts for 

publication in peer-reviewed journals, therefore some repetition was unavoidable. They are: 

 Efficacy of South African entomopathogens against Thaumatotibia leucotreta 

(Lepidoptera: Tortricidae) immature stages 

 Field control of false codling moth, Thaumatotibia leucotreta, using in vitro cultured 

Steinernema jeffreyense and S. yirgalemense 

 Quantifying mating disruption of false codling moth, Thaumatotibia leucotreta 

(Lepidoptera: Tortricidae) in stone fruit and table grapes 

 Mechanisms mediating false codling moth, Thaumatotibia leucotreta (Lepidoptera: 

Tortricidae) mating disruption, using point-source pheromone dispensers 
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 Chapter 2: 

 

Efficacy of South African entomopathogens against 

Thaumatotibia leucotreta (Lepidoptera: Tortricidae) immature 

stages 

Abstract 

Thaumatotibia leucotreta (Lepidoptera: Tortricidae) or false codling moth (FCM) is a priority 

pest on stone fruit and table grapes, posing phytosanitary restrictions on export fruit, as well as 

direct crop damage. While current control focusses on the adult stage, it is suggested that the 

integrated pest management (IPM) approach should include a control measure for each stage 

of the life cycle. This study aims to investigate the potential of biological control agents, 

sourced locally, against FCM immature stages. Several entomopathogenic nematodes (EPNs) 

and entomopathogenic fungi (EPF) species were isolated, cultured and identified from soil 

collected from orchards and vineyards throughout the Western Cape province. These species, 

along with several other locally collected species, were screened for virulence against the egg, 

larval and pupal stage. Three Heterorhabditis species and Oscheius microvilli were isolated 

from the soil, as well as strains of Metarhizium spp. and Beauveria bassiana. Eggs proved to 

be susceptible (30 - 65%) to several EPNs at a concentration of 200 infective juveniles (IJ) per 

50 µl. Xenorhabdus indica, the symbiotic bacteria of Steinernema yirgalemense, caused 

significantly more mortality than the control, but the secretions of the EPNs were unable to kill 

the egg without the IJs. EPNs were highly virulent (62 - 100%) against the larvae, with S. 

yirgalemense causing 100% mortality at 50 IJs/insect in all trials. Metarhizium robertsii, M. 

anisopliae and Beauveria bassiana caused 78%, 50% and 75% mortality respectively against 

FCM larvae at a spore concentration of 1 x 107. The pupae proved to be the most resistant of 

the immature stages and EPNs caused only low (6 - 33%) mortality at 100 IJs/insect. All the 

immature FCM stages were susceptible to entomopathogens in the laboratory and should be 

further tested in the field to illustrate the benefits of their inclusion into the FCM IPM 

programme. 

Keywords: survey, indigenous, entomopathogenic nematodes, fungi, ovicidal, larvae, pupae  
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2.1 Introduction 

Thaumatotibia leucotreta, the false codling moth (FCM), is an economically important pest for 

South Africa’s fruit, vegetable and nut industries (Blomefield, 1989; Prinsloo and Uys, 2015). 

When not controlled it can cause severe crop damage in stone fruit leading to crop losses of 

over 25%, with some incidence of up to 100% (Blomefield, 1989). In 2004, FCM caused an 

estimated crop loss of R100 million in citrus alone (Moore, 2004). Currently, the integrated 

pest management (IPM) strategy for FCM comprises of specific chemicals as well as more 

environmentally friendly options, such as sterile insect technique, mating disruption, bacteria 

and viruses that are implemented against the pest. However, FCM remains a problem in South 

Africa with high populations throughout the country. Its control has become particularly 

problematic as it has developed some resistance against a number of insecticides (chitin 

inhibitors), and international markets enforcing lower chemical residues (Hofmeyr and Pringle, 

1998; Hofmeyr, 2003; Chandler et al., 2011). This encourages the need for more sustainable 

control which ideally should target every stage in the life cycle of FCM.  

The first entomopathogenic fungi (EPF) were described from silkworm colonies nearly 200 

years ago (Bassi, 1835). The accelerated growth of this field came after the publication of the 

extensive synthesis on insect pathology by Steinhaus (1949), which was later used for course 

work and forms the cornerstone of this field. The author highlights that entomopathogens have 

the unique advantage over insect predators, in that they complete their life cycle by finding a 

single host, whereas insect predators need to find multiple subsequent hosts to complete their 

life cycle. This ensures the relative ease of proliferation and persistence of the 

entomopathogens in the environment, making it a valuable addition to an IPM strategy 

(Steinhaus, 1949). Entomopathogens, in particular, entomopathogenic nematodes (EPNs) and 

EPF have more recently shown to be host specific, with no discernible non-target effects 

(Babendreier et al., 2015), leading to their use as an environmentally-friendly control option 

against many insect pests (Campos-Herrera, 2015; Hatting et al., 2018). 

Previous studies advocate for the need to target the soil borne stages of FCM (Malan et al., 

2011; 2018). Increased interest in the use of entomopathogens, for the control of FCM, has led 

to many new species of EPN being described from South Africa (Hatting et al., 2009; Çimen 

et al., 2015; Malan and Hatting 2015; Çimen et al., 2016; Malan and Ferreira, 2017; Steyn et 

al., 2017). A recent review specifically highlights the potential of EPNs and EPF for the control 

of FCM life stages (Malan et al., 2018). EPNs are particularly suited as they are able to seek 
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out and kill insects in cryptic habitats (Gumus et al., 2015). In fact, the susceptibility of FCM 

larvae to EPNs has been well documented (Malan et al., 2011; Manrakhan et al., 2013; Malan 

and Moore, 2016; Steyn et al., 2017) and cause high mortality in the laboratory (70 - 100%). 

Unfortunately, the window of application to control FCM larvae is relatively short. The 5th 

instar larva emerges from the fruit and drops to the soil, where it will pupate, remaining as a 

prepupa for 3 days and finally becoming a hardened pupa (Daiber, 1979a, b, c). The pupal stage 

of FCM is the longest stage of the life cycle (Daiber, 1979c), between 14-21 days at 25 °C, and 

therefore has the longest application window of all the stages and is the ideal stage to target 

using EPNs (Love et al., 2019). Theoretically, the pupa should be the most resilient or resistant 

to attack of the soil borne stages, as this is its primary habitat and therefore should have 

developed some inherent resistance against naturally occurring soil borne pathogens. Few 

studies have considered the virulence of EPNs and EPF against the pupal stage and have found 

encouraging results (Malan et al., 2011; Coombes et al. 2013). 

Experience from other disciplines, such as invasion biology, highlight the importance of 

limiting the propagule pressure to ensure effective pest control (Simberloff, 2009). Therefore, 

the ovicidal activity or egg stage is an important stage to control, as it reduces new entries into 

the population. In FCM there is an additional benefit for controlling this stage, as the egg is 

laid on the outside of the fruit (De Jager, 2013), preventing damage to the fruit for sale and 

export. Even though the value of controlling eggs is clear, there are few reliable options (e.g. 

egg parasitoids) to target this stage. A number of EPN strains have been shown to be virulent 

against other immature stages of FCM (Malan and Moore, 2011), though EPNs have never 

been tested against the egg stage. The virulence of EPNs against insect eggs has had mixed 

results, some showing no virulence, such as for Phthiraptera (De Doucet et al., 1998) and 

Diptera (Kim et al., 2004) and others reporting success against Coleoptera and Lepidoptera 

(Shahina et al., 2009; Kalia et al., 2014).  

The main aim of this study was to test the virulence of locally isolated entomopathogens against 

the immature life stages of FCM. Here several locally-sourced EPNs and EPF collected from 

orchards and vineyards throughout the Western Cape province were evaluated, for their 

efficacy against the soil borne stages (larvae and pupae) of FCM. Secondly, this is the first 

attempt to test virulence of EPNs, their symbiotic bacteria and their secretions against the eggs 

of FCM. It is hypothesised that the symbiotic bacteria will be able to cause egg mortality 
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without their vector, however, that it will be more virulent when it has the aid of its vector (IJ) 

to buffer environmental conditions and to aid transportation. 

2.2 Material and methods 

2.2.1 Source of insects 

The immature stages of T. leucotreta were collected from a mass reared colony maintained at 

XSIT, Citrusdal (-32° 36' 0.00" S, 19° 01' 0.00" E), South Africa. These stages included newly 

laid eggs on wax paper, 5th instars with their diet and 48 h old pupae, which were transported 

in a cooler box to Stellenbosch (33° 56' 1.327" S, 18° 51' 47.536" E). Upon arrival in 

Stellenbosch the insects were transferred to 27°C ± 1°C. Thereafter, virulence/pathogenicity of 

EPNs, symbiotic bacteria and EPF against the various stages were tested.  

2.2.2 Source of entomopathogens 

The different species of entomopathogens used in the study were obtained from a survey of the 

Western Cape soils and the Stellenbosch University collection, which include the EPN and 

EPF species as indicated in Table 2.1. These species were collected from soils in South Africa 

from a variety of different habitats and are currently maintained at Stellenbosch University for 

research purposes.  

Survey  

A survey of the Western Cape in stone fruit, grapevine and citrus orchards was conducted in 

search of local EPNs and EPF. Soil samples were collected from 20 different farms. A hectare 

on each farm was sampled by dividing it into four quadrants. Within each quadrant five 

subsamples of 50 g of soil was collected in a 1 L plastic container. Each block (one ha of an 

orchard) consisted of four plastic containers, of which each constituted a sample, with a total 

of 80 samples. Each of these soil samples were baited with the greater wax moth larvae 

[(Galleria mellonella L.) (Lepidoptera: Pyralidae)] to allow isolation of EPNs (Moore and 

Malan, 2016) and EPF (Goble et al., 2010). 

Molecular characterisation of nematodes  

Molecular characterization of EPNs followed protocols described by Nguyen (2007). Galleria 

mellonella larvae were inoculated with IJs from each of the isolated EPNs, the IJs were allowed 

to develop for 2 days, after which the G. mellonella larvae were dissected to retrieve young 
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females that were used for DNA extraction. Each of four females was placed individually in 

30 µl drop of lysis buffer (16 mM [NH4]2SO4, 67 mM Tris–HCl, pH 8.8, 0.1% TWEEN®-20 

and Proteinase K) on the side of an Eppendorf tube, then cut into pieces using a sterile 

hypodermic needle tapped to the tip of the tube. Eppendorf tubes were immediately placed in 

a -85°C freezer for a minimum of 20 min, after which the DNA was extracted by using a 

thermocycler at 65°C for 1 h, followed by 95°C for 10 min. Using the KAPA2G ReadyMix 

PCR Kit a PCR cycle of 3 min at 95°C, followed by 35 cycles of 20 s at 95°C, 20 s at 48°C, 

and 30 s at 72°C, and a final cycle of 5 min at 72°C. The reaction was completed with a final 

extension for 7 min at 72°C and then cooled and held at 4°C (Malan et al., 2011). PCR samples 

were separated on a 1% agarose gel, stained with ethidium bromide and visualised using 

ultraviolet light. The un-purified PCR product was sent to the Central Analytical Facilities 

(CAF), DNA Sequencing Unit, Department of Genetics at Stellenbosch University, for a post 

PCR clean-up and sequencing.  

The generated forward and reverse sequences of each isolate were aligned and edited using 

CLC Main Workbench (version 7.9.1). The consensus sequence were blasted at NCBI 

(National Centre for Biotechnology Information), Nucleotide BLAST®, to be able to compare 

them with closely related sequences deposited in GenBank for species identification. 

Molecular characterisation of fungi  

Spores (50 - 100 µg) from pure fungal cultures were scraped from Sabouraud dextrose agar 

(SDA; LAB, Neogen®) plates under sterile conditions into an Eppendorf tube. DNA was 

extracted using the ZR Fungal/Bacterial DNA MiniPrep kit (Zymo Research Corp., CA, USA). 

Gene regions used for the comparisons included the internal transcribed spacer region (ITS) 

with the primers ITS 1 (forward) (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS 4 (reverse) 

(5’-CTCCTCCGCTTATTGATATGC-3’) (White et al., 1990). To distinguish between species 

of the PARBE clade (Justin et al., 2018) of Metarhizium the elongation factor 1–α (EF 1–α) 

genes with the primers EF2F (forward) (5’-GTCGGTGGTATCGACAAGCGT-3’) and EF2R 

(reverse) (5’-AGCATGTTGTCGCCGTTGAAG-3’) (Jacobs et al., 2004) were used. The PCR 

conditions were 94ºC for 10 min, followed by the performing of 36 cycles of 94ºC for 30 sec, 

at 56ºC for 30 sec (for the ITS primers), or at 53ºC for 30 sec (for the EF primers), and then at 

72ºC for one min (Abaajeh and Nchu, 2015). The generated PCR products were handled as 

described above. 
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Table 2.1. Species, isolates, nearest town, habitat and GenBank number of entomopathogenic 

nematodes (Heterorhabditis and Steinernema) and entomopathogenic fungi (Metarhizium) 

used in this study from the Stellenbosch University collection. 

Species Isolate Nearest town Habitat GenBank no. Reference 

H. bacteriophora SF351 Wellington Grapevine (Vitis vinifera) FJ455843 Malan et al. 2006 

H. indica SGS Bonnievale Grapevine (Vitis vinifera) KU945293 Unpublished 

H. noenieputensis SF669 Noenieput Fig (Ficus carica) JN620538 Malan et al. 2014 

H. baujardi MT19 KwaZulu-Natal Natural vegetation MF535520 Abate et al. 2018 

S. jeffreyense J194 Jeffrey’s Bay Guava (Psidium guajava) KP164886 Malan et al. 2016 

S. yirgalemense 157C Nelspruit Citrus (Citrus x aurantium) EU625295 Malan et al. 2011 

M. robertsii MR3 Grabouw Apple (Malus pumila) - - 

 

2.2.3 Source of bacteria 

Xenorhabdus indica Stackebrand, from the Stellenbosch University EPN symbiotic bacterial 

collection, was cultured by adding 200 µl of a 15% glycerol stock culture, stored at -80°C, to 

30 ml tryptic soy broth (TSB) in a 250 Erlenmeyer flask (Ferreira et al., 2014; 2016). The shake 

flasks were kept on an orbital shaker (OrbiShake, Labotec ™, Midrand, South Africa) in a dark 

growth chamber for 48 h at 28°C, to allow bacterial cells to multiply. The flasks where then 

transferred to an orbital shaker at 14°C to stop growth, prior to use. Bacteria were streaked on 

NBTA plates to ensure purity, blue colonies and uptake of dye, after which its virulence was 

screened against FCM eggs, larvae and pupae. In pilot trials the bacterial broth showed no 

mortality against the larvae and pupae, therefore subsequent tests focused on the eggs only. 

2.2.4 Bioassay protocol 

Filter paper discs were placed in alternate wells, to limit contamination between samples, of a 

24-well bioassay plate. All treatments were a pre-determined nematode concentration in 

distilled water, of which 50 µl was pipetted into each well, which ensured the filter paper was 

moist, without any free water. A glass sheet was placed over the wells to prevent larvae from 

escaping. The bioassay plates were placed on moist paper towels, inside two litre plastic 

containers and kept in a dark room for 48 h at 27°C. Mortality was recorded after 48 h.  

2.2.5 Entomopathogenic nematode bioassays 

Eggs 
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A better understanding of the mode of action that the IJs employ to kill the egg is required, so 

it was necessary to observe the egg development and then inoculate the IJs, symbiotic bacteria 

and IJs secretions during the different stages of the eggs’ development. EPN treatments were 

administered using eggs of two different ages, which include either newly laid eggs or eggs 

that have matured at 27°C for 48 h. The 48 h of maturation was indicated by the visible head 

capsule of the first instar (referred to as black head) within the egg. The egg sheets were then 

cut into 10 mm square blocks and the number of eggs that had reached the black head stage 

were recorded (n = 50) on each of the squares. The eggs that had not reached this stage were 

removed from the wax paper squares with a sharp needle. Using the bioassay protocol (section 

2.2.4), a total of 12 squares of either the newly laid or the 48 h old eggs were placed on moist 

filter paper in alternate wells of a 24-well bioassays plate for each EPN treatment. The 

treatments consisted of five EPN species, as indicated in (Table 2.1) (except for H. 

bacteriophora) at a concentration of 200 IJ/50 µl, compared to distilled water only as control. 

Emergence of the neonate larvae were recorded every 24 h for the first 72 h. If the neonate 

larvae had not emerged 72 h after inoculation it was regarded as a mortality. The experiment 

was repeated on a different test date using a fresh batch of pathogens. 

A second experiment to determine the role of the symbiotic bacteria, X. indica was conducted. 

This bacterium was chosen as it was shown to control other lepidopteran species (Kalia et al., 

2014). The treatments were compared against two controls, the first was distilled water only 

and the second consisted of the water part of the 200 IJ/50 µl inoculum that had been siphoned 

off after the EPN suspension stood for 15 min. The second control was included to ensure that 

it was the EPN causing the mortality and not its secretions. Egg sheets of approximately 50 

eggs per sheet were prepared, as described above, and placed on moist filter paper in alternate 

wells of a 24-well bioassay plate. A volume of 50 µl of the bacterial broth, distilled water, 

secretions and 200 IJ/well was inoculated onto each of the sheets and emergence of the 1st 

instar were recorded every 24 h for the first 72 h. If the neonate larvae had not emerged 72 h 

after inoculation it was recorded as a mortality. The experiment was repeated on a different test 

date using a fresh batch of pathogens. 

Larvae 

Different EPN species as indicated in Table 2.1 (excluding H. baujardi and H. noenieputensis) 

as well as Heterorhabditis zealandica Poinar VS3 (Table 2.2) were tested against the late instar 

of FCM. Using the described bioassay protocol (section 2.2.4), 5 bioassay wells with a total of 
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60 FCM larvae were inoculated with 50 IJs/insect of each of the EPN species. The experiment 

was repeated on a different test date using a fresh batch of the pathogen. 

Pupae 

FCM are in the pre-pupal stage for 2-3 days before pupation. Therefore, pupae were allowed 

to age to five days before inoculation to ensure full maturity. EPN species indicated in Table 

2.1, including isolates VS5 and VS18 (recovered from survey, Table 2.2) were tested against 

5-day-old FCM pupae. Following the bioassay protocol (section 2.2.4), 5 bioassay wells with 

a total of 60 pupae were inoculated with 100 IJs/insect of each of the EPN species. The 

experiment was repeated on a different test date using a fresh batch of pathogens. 

2.2.6 Entomopathogenic fungi bioassays 

Fungal preparation 

Spores from pure fungal cultures were scraped from SDA plates under sterile conditions into a 

10 ml McCartney bottle, containing distilled autoclaved water, which constituted the stock. A 

drop of TWEEN®-20 was added, after which the inoculum was vortexed and poured through 

a chiffon cloth to ensure that there were no clumps or hyphae in the spore suspension. A serial 

dilution was made from the stock bottles, by adding 1 ml of stock to 9 ml of distilled water. 

The spore concentration was then counted with a haemocytometer, allowing specific 

concentrations to be calculated for subsequent trials.  

Viability of the spores were checked for each fungal strain, by spreading 50 µl of 1 × 107 

conidia/ml suspension on a SDA plate. Each SDA plate was sealed with Parafilm and placed 

in the dark. After 12 h spore germination was determined with the aid of a 20 x magnification 

of a compound microscope (Leica, 2000). The percentage germination was determined by 100-

spore counts taken from each plate (Ekesi et al., 2002). The spores were considered viable if 

the length of the germ-tube was found to be at least twice the diameter of the propagule (Inglis 

et al., 2012). The counts were repeated three times for each of the strains collected. All strains 

used in the trials showed > 85% viability. 

Fungal screening 

A screening trial was conducted with Metarhizium robertsii Bisch., Rehner and Humber 

(Hypocreales: Clavicipitaceae) from the Stellenbosch University collection (Table 2.1), as well 
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as all fungal isolates recovered from the survey (Table 2.2). A total of 12 FCM larvae were 

dipped into a 1 x 107 spore suspension (prepared as previously described, section 2.2.4 and 

then transferred to moist filter paper in alternate wells of a 24-well bioassay plate. The control 

received distilled water with TWEEN®-20 only. Mortality was assessed by inspecting larvae 

for mortality with visible mycosis five days after dipping. The trial was repeated on separate 

dates and with a freshly cultured inoculum. The experiment was repeated on a different test 

date using a fresh batch of pathogens. 

Fungal concentration 

A concentration trial (concentrations calculated as described, section 2.2.4) was conducted 

using M. robertsii. 60 FCM larvae were dipped into one of five spore suspensions each with 

its own concentration (0, 1 x 104, 1 x 105, 1 x 106 and 1 x 107 conidia/ml) and then transferred 

to moist filter paper in alternate wells of a 24-well bioassay plate. The control was distilled 

water with a drop (50 µl) of TWEEN®-20 only. Mortality was assessed by inspecting larvae 

for mortality, with visible mycosis, five days after dipping.  

2.2.7 Statistical analyses 

The statistical analysis was performed using Statistica 12 (Stat-Soft Inc., 2012). If the residuals 

were not normally distributed, the data were log(X + 1)-transformed for further analysis. If the 

assumptions (normality and equality) of a one-way analysis of variance (ANOVA) were 

violated irrespective of transformation, the Kruskal-Wallis H-test was used to separate the 

means at p < 0.05. If there were no significant test date versus treatment interactions, data from 

different test dates were pooled and analysed using ANOVA. When applicable, means were 

separated using Fisher's LSD post-hoc test. Abbott’s correction factor was used to compensate 

for natural mortality (Abbott, 1925). All further statistical analyses were undertaken in RStudio 

version 1.0.143 and R version 3.5.1 (R, 2018). A generalized linear model, with a gaussian 

distribution and an identity link function, was used to determine the most susceptible FCM 

stage to the EPNs tested. It was also used to test the prediction that IJs would be more effective 

against the egg than its symbiotic bacteria or secretions. Several packages were used to 

illustrate our findings graphically, these were ggplot2, plotly and forcats (Wickham, 2016; 

Sievert, 2018).  
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2.3 Results 

2.3.1 Survey 

A total of 12 EPN and nine EPF strains were isolated from the soil using G. mellonella as bait 

insects. Eight (40%) of the 20 locations tested positive for EPNs, whereas seven (35%) 

locations tested positive for EPF, with some of these locations offering up multiple isolates. 

Success of recovery and culture to inoculum differed between the entomopathogens, with 

18.75% of the EPN samples leading to an isolate, whereas only 11.25% of the EPF samples 

yielded a useable strain. No new EPF species were found, however M. anisopliae and B. 

bassiana were successfully recovered. No new EPN species or any Steinernema species were 

found during the survey, however three species of heterorhabditids were found and one 

Rhabditidae species identified as Oscheius microvilli Zhou, Yang, Wang, Bao, Wang, Hou, 

Lin, Yedid and Zhang. The heterorhabditids included H. bacteriophora (most common, 

55.65%), H. zealandica (22.22%) and H. indica (11.11%). Entomopathogenic fungal species 

from Beauveria were recovered more frequently (77.78%) than from Metarhizium. Beauveria 

bassiana was isolated (VMS1, VSM4-6) more frequently from vineyards (75%) than from 

stone fruit orchards. Metarhizium anisopliae was recovered from a stone fruit orchard (Table 

2.2).
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Table 2.2. Species and isolates of entomopathogenic nematodes and entomopathogenic fungi identified from a survey of sites from stone fruit, 

vineyards and citrus blocks in the Western Cape, South Africa during 2016-2017 fruit growing seasons. 

Entomopathogens Species Isolate no. Colour Genbank Number Nearest town Habitat 

Nematode H. zealandica VS1 Green Pending De Doorns Table grapes 

 H. zealandica VS2 Green Pending De Doorns Table grapes 

 H. zealandica VS3 Dark red Pending De Doorns Citrus 

 H. zealandica VS4 Dark red Pending De Doorns Citrus 

 H. indica VS5 Pale yellow Pending Halfmanshof Table grapes 

 H. bacteriophora VS6 Red Pending Franschhoek Peaches 

 H. bacteriophora VS7 Red Pending Robertson Wine grapes 

 H. indica VS8 Red Pending Halfmanshof Table grapes 

 H. bacteriophora VS9 Red Pending Riebeek kasteel Table grapes 

 H. bacteriophora VS10 Red Pending Riebeek kasteel Table grapes 

 H. bacteriophora VS11 Red Pending Riebeek kasteel Table grapes 

 H. bacteriophora VS12 Red Pending Halfmanshof Table grapes 

 H. bacteriophora VS13 Red Pending Halfmanshof Table grapes 

 H. bacteriophora VS15 Red Pending Riebeek kasteel Table grapes 

 H. bacteriophora VS16 Dark red Pending Riebeek kasteel Table grapes 

 Oscheius microvilli VS17 Red Pending Paarl Table grapes 

 H. bacteriophora VS18 Red Pending Halfmanshof Table grapes 

Fungi Beauveria bassiana VMS1 White Pending Stellenbosch Peaches 

 Metarhizium anisopliae VMS2 Green Pending Paarl Plum 

 Metarhizium sp. VMS3 White - Franschhoek Peaches 

 B.  bassiana VMS4 White Pending Halfmanshof Table grapes 

 B.  bassiana VMS5 White Pending Robertson Wine grapes 

 B. bassiana VMS6 White Pending Riebeek kasteel Table grapes 

 Metarhizium sp. VMS7 Green - Paarl Peaches 

 B. bassiana VMS8 White - Halfmanshof Table grapes 

 B. bassiana VMS9 White - Paarl Plum 
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2.3.2 Entomopathogenic nematodes 

The EPNs caused significantly higher mortality of FCM larvae, compared to the eggs (T = 

5.338, df = 128, p < 0.001) and pupae (T = 13.71, df = 117, p < 0.001) at low IJs concentration 

of 50 IJs/insect. Additionally, the EPNs were significantly less effective against pupae than the 

eggs (T = -7.321, df = 126, p < 0.001). 

Eggs 

The screened EPN species caused no mortality to newly laid FCM eggs, however, the eggs that 

were allowed to age to the black head stage before inoculation, were found to be susceptible. 

Subsequent results therefore only pertain to eggs that were inoculated once they had reached 

the black head stage. The older eggs proved to be susceptible to all five EPN species (Fig. 2.1), 

which were all significantly (F5, 100 = 19.605, p < 0.001) different from the control and caused 

30 - 65% mortality. Steinernema jeffreyense performed the worst (30.22% ± 4.65%), while H. 

baujardi caused the highest mortality (64.57% ± 6.88%) and differed significantly from H. 

indica (p = 0.032) (47.04% ± 9.27%) and S. jeffreyense (p < 0.001) against the egg stage.  
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Fig. 2.1. Panel (A) the egg sheets that were inoculated with IJs (1), the young red egg that was 

not susceptible to IJs (2) and the older egg (black head) that was susceptible to IJs. Panel (B) 

mean percentage mortality (± SE) of Thaumatotibia leucotreta eggs at black head stage, 

inoculated with Heterorhabditis and Steinernema (200 IJs/50 µl). Different letters above the 

vertical bars indicate significant differences (p < 0.05). Panel (C) dissected egg and neonate 

instar Thaumatotibia leucotreta larva, with H. noenieputensis IJ (4). Panel (D) two H. 

noenieputensis IJs inside the 1st instar that was killed inside the egg (5).  

Potential secretion of S. yirgalemense caused marginal mortality (24.93% ± 6.61%) of FCM 

eggs, however, the S. yirgalemense inoculum was significantly (Z = 2.441, N = 72 p = 0.044) 

more effective (44.06% ± 5.78%) than its secretions (Fig. 2.2). There was no significant (Z = 

1.014, N = 72, p = 0.932) difference between the virulence of S. yirgalemense and its symbiotic 

bacteria, X. indica (36.92% ± 6.74%). 
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Fig. 2.2. Mean percentage (Abbott’s corrected) mortality (± SE) of Thaumatotibia leucotreta 

eggs, distilled water with EPN secretions (negative control), a bacterial broth of Xenorhabdus 

indica (50 µl/well) or Steinernema yirgalemense (200 IJ/well). Different letters above the 

vertical bars indicate significant differences (p < 0.05). 
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Larvae 

The different EPN species caused between 62 - 100% mortality of FCM larvae (Fig. 2.3). 

Heterorhabditis indica (98.33% ± 0.89%) and S. yirgalemense (100%) caused significantly 

higher mortality than any of the other species, with S. yirgalemense repeatedly causing 100% 

mortality in every trial. The remaining EPN species showed virulence (> 65%) against the FCM 

larval stage and did not differ significantly (T = 1.221, df = 58, p = 0.227) from each other, 

except for H. zealandica (VS3) and S. jeffreyense.  

 

Fig. 2.3. Mean percentage infection (± SE) of Thaumatotibia leucotreta larvae inoculated with 

Steinernema and Heterorhabditis. The late instars were inoculated with 50 IJs/insect for each 

of the species. Different letters above the vertical bars indicate significant differences (p < 0.05). 
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Pupae 

The EPN species tested caused 6 - 33% mortality against FCM pupae (Fig. 2.4).  

Heterorhabditis baujardi caused the highest mortality (33.33% ± 3.51%) of all the tested 

species, but did not significantly differ from H. indica SGS (p = 0.116) (26.19% ± 3.48%) and 

H. indica VS5 (p = 0.266) (26.67% ± 5.53%). 

 

Fig. 2.4. Mean percentage infection (± SE) of Thaumatotibia leucotreta pupae inoculated with 

entomopathogenic nematodes. The pupae were inoculated with 100 IJs/insect for each of the 

species. Different letters above the vertical bars indicate significant differences (p < 0.05).  
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2.3.3 Entomopathogenic fungi against larvae  

Fungal screening 

Eight of the EPF isolates proved virulent against FCM and caused 10 - 78% infection five days 

after application (Fig. 2.5). There was no significant (F1, 39 = 2.4469, p = 0.126) difference in 

infection between Metarhizium and Beauveria species, with species from both genera 

performing well (> 65% infection) and poorly (< 25% infection). Metarhizium robertsii, VS1, 

VS2, VS4 and VS5 strains were significantly (F9, 31 = 22.094, p < 0.001) more virulent against 

FCM larvae than the other strains tested. Metarhizium robertsii was significantly (p = 0.001) 

more virulent than the M. anisopliae (VS2) strain collected from our survey. 

 

Fig. 2.5. Mean percentage infection (± SE) of late instar Thaumatotibia leucotreta larvae after 

dunk test application of several entomopathogenic fungi strains with a spore concentration of 1 

x 107. Different letters above vertical bars indicate significant differences (p < 0.05). 

Fungal concentration 

Metarhizium robertsii did not cause FCM larval infection at low (1 x 104) spore concentrations. 

The higher fungal spore concentrations (1 x 105, 1 x 106 and 1 x 107 conidia/ml) yielded 11 - 

78% mortality (Fig. 2.6). The mortality increased significantly (F4, 20 = 86.146, p < 0.001) with 

each order of magnitude increase in spore concentration. 
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Fig. 2.6. Mean percentage infection (± SE) of late-instar Thaumatotibia leucotreta larvae after 

dunk test application of several concentrations of Metarhizium robertsii spores. Different letters 

above vertical bars indicate significant differences (p < 0.05). 

2.4 Discussion 

The survey of entomopathogens resulted in the recovery of multiple EPN and EPF isolates from 

soil samples collected from vineyards and orchards in the Western Cape. Most EPNs were 

recovered from table grape vineyards, as compared to stone fruit orchards, which yielded only 

two isolates. Heterorhabditis indica was isolated from a table grape vineyard in Halfmanshof, 

while the only previous report of this species in South Africa was from Bonnievale (Table 2.1), 

also from the Western Cape. Though H. indica is widespread in other parts of the world (Burnell 

and Stock, 2000), it seems to be rare in the surveys from South Africa conducted so far as it has 

only been recovered in one study other than the current (Malan et al., 2011). Interestingly, 

bacteria from H. indica VS5 turned wax moth larvae yellow upon infection, while the other 

isolate VS8 recovered from this survey and the isolate SGS turned wax moth larvae brick red. 

Heterorhabditis indica is associated with Photorhabdus luminescens (Poinar, 1983; Burnell 

and Stock, 2000). Future studies should confirm the identity of the associated bacteria with 

locally isolated H. indica and the discrepancy with regard to colour change of the infected wax 
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moth larvae. Ferreira et al. (2014) showed that locally isolated H. zealandica was associated 

with a new symbiotic bacteria, Photorhabdus zealandica, which turned G. mellonella larvae 

steel grey. During this study H. zealandica, which turned G. mellonella larvae red and greenish, 

were found. This result indicates that there may be three different bacteria associated with the 

three different isolates of H. zealandica in South Africa. During a recent South African survey, 

James et al. (2018) isolated H. zealandica turning G. mellonella larvae both red and green.  

Oscheius microvilli from the family Rhabditidae was recovered from a table grape vineyard 

and is the first record of its presence in South Africa. The species was first described from 

China in 2017 (Zhou et al., 2017). It is an interesting species as the Oscheius genus may 

associate with several different bacteria (often Serratia spp.; Zhou et al., 2017) and thus does 

not have such a close relationship with its bacteria as do species from Heterorhabditis and 

Steinernema. Their bacterial association is referred to as facultative and therefore its inclusion 

as an EPN is still debated in the literature (Dillman et al., 2012). 

Unlike other studies in this region no Steinernema spp. were isolated (see Malan et al., 2011) 

and S. carpocapsae, which is the most widespread worldwide (Gaugler, 2002), has never been 

recovered in South Africa. A possible explanation for the reported absence of S. carpocapsae 

from South African soils could be the sampling method employed by others (Malan et al., 2006, 

2011; Steyn et al., 2017) and in the current survey. All these studies share a soil sampling 

method where the soil is sampled by scraping away leaf litter and top soil. Then soil is sampled 

± 10 - 20 cm below the soil surface. This method may bias EPN recovery, especially the 

recovery of S. carpocapsae, as it has been shown to mostly occur very close to the soil surface 

(Chandler et al., 1998; Gaugler, 2002). It is therefore suggested that future studies should 

include top soil and leaf litter in their sampling effort for EPNs. 

Galleria mellonella is generally used as a trap insect for the isolation of EPNs and EPF (Goble 

et al., 2011; Coombes et al., 2013; Abaajeh and Nchu, 2015). Goble et al. (2010), found that G. 

mellonella had the highest (19%) success for isolating EPF during their survey, compared to 

Ceratitis capitata (Wiedemann; Diptera: Tephritidae) and FCM. During the present study, low 

(11%) recovery of EPF was obtained by using G. mellonella larvae as a bait insect. This may 

be ascribed to the methodology as, unlike the aforementioned study, the soil container was not 

tipped after placing the bait insect onto the soil. As the larvae do not burrow in soil, they had 

less chance to contract the EPF spores and this most likely caused the lower recovery of EPF 

strains. Beauveria bassiana was isolated most frequently of the EPF strains, which supports 
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previous surveys (Goble et al., 2011). Various Metarhizium anisopliae strains have also been 

recovered previously by other studies (Goble et al., 2011; Coombes et al., 2013).  

The first evidence of Lepidoptera [Helicoverpa armigera (Hübner) and Spodoptera litura 

Fabricius] eggs being susceptible to EPNs was provided by Kalia et al. (2014), who showed 

Steinernema abbasi Elawad, Ahamad and Reid (syn. S. thermophilum) with the symbiotic 

bacteria X. indica to be virulent. This finding is surprising as there are no natural openings in 

the cell wall of Lepidoptera eggs. The author suggests that the infective juveniles (IJs) penetrate 

the eggs. This is unlikely as the IJs do not have the necessary morphological structures with 

which to break through the cell wall (Kaya and Stock, 1997). However, it is plausible that EPNs 

are effective against lepidopteran eggs, especially as the authors provide photographic evidence 

for their finding. It is possible that the symbiotic bacteria or secretions (that may contain 

antibiotics or secondary metabolites) of the EPNs is causing the observed mortality. However, 

how the IJs manage to penetrate the egg is not well justified and still remains open for debate.   

This study contributes novel evidence to the understanding of EPN virulence against the egg 

stage of FCM. The newly laid eggs proved to be impenetrable by the IJs of all the screened 

EPN species however, if inoculation occurred atthe black head stage, the eggs proved to be 

susceptible. This finding can be explained by the observation of the FCM egg every 12 h 

throughout its development, which showed that the neonate larva chews the wall of the egg and 

then remains in the egg for another 6 - 12 h before emerging. It is during this time that the IJs 

enter the egg through the cell wall and infect the FCM neonate larva before it emerges. This 

greatly reduces the time that the eggs are susceptible to attack and may explain the lower 

mortality seen in FCM when compared to other Lepidoptera, which reported 30% or higher 

mortality with the same IJs concentration (Kaila et al., 2014). The use of EPNs as a control will 

only be feasible practically if their limitations can be overcome, which include; 1) FCM eggs 

having a short window of susceptibility to EPNs, 2) EPNs being soil dwelling and will struggle 

to survive arboreally. 

The EPN secretions, symbiotic bacteria and the nematodes themselves (Lu et al., 2017), played 

a role in the observed mortality of the egg stage. Interestingly, the present study showed that, 

under controlled conditions, X. indica is capable of killing the insect host irrespective of 

whether its vector is present or not. Further research specifically looking towards the potential 

of using the symbiotic bacterial cells or its secreted metabolites in isolation as a control could 

be promising, as it may be easier and cheaper to mass produce. However, before the symbiotic 

bacteria could be used in the field, the cells would have to be removed leaving only the 
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supernatants which have been used and are effective as a control technique (Kepenekci et al., 

2016). It is argued that in a field environment its performance is likely to be worse as the 

symbiotic bacteria or supernatants may be more sensitive to UV, heat and desiccation when it 

does not have its vector to buffer these environmental conditions. However, its potential may 

still be realised in orchards under netting or green house environments that have less harsh 

conditions or even post-harvest treatment of fruit.  

As expected, the larvae were the most susceptible (90 - 100%) of the three life stages to EPNs 

and remains the best immature stage to target with control strategies. The EPN species tested 

had little success in controlling the pupae. The seemingly paradoxical finding of high virulence 

against larvae and low virulence against pupae can indicate some persistence (either mechanical 

or through the immune system) and may be evolutionary resistance of the pupae to soil dwelling 

pathogens, as they would have stronger selection on survival in this medium than larvae. Malan 

et al. (2011) reported higher susceptibility of the pupae than was shown here, one reason for 

this may be pupal age. The FCM remain prepupae for 3 days, at which time they are still soft 

and may have less resistance than the older pupae. It is suggested that age is an important factor 

to consider when determining the susceptibility of pupae to EPNs. Furthermore, EPNs detect 

the insect by following a CO2
 gradient (Robinson, 1995; Hallem et al., 2011; Gang and Hallem, 

2016) and, as the pupae have a lower metabolic activity than larvae, they should produce less 

CO2 and be less attractive to the EPNs.  

The lower susceptibility of the pupal stage to EPN species, was not unexpected and has been 

shown before (Malan et al., 2011). However, as mentioned above, this may be overcome by 

targeting the pre-pupal stage. This would decrease the length of the application window, but 

should drastically increase the efficacy of the IJs to penetrate the pupae. 

The collected EPF strains (B. bassiana and M. anisopliae) proved to be successful in causing 

mortality in FCM larvae. This supports previous findings that found various EPF strains (B. 

bassiana and M. anisopliae) to be highly (80%) effective against the 5th instar FCM (Goble et 

al., 2010, 2011; Coombes et al., 2017). Additionally, this study showed that M. robertsii is 

effective (78%) against FCM larvae. However, the high mortality, even with the short exposure 

time used in this study, suggests that EPF may be a viable control option for the larvae, even 

with its short application window, as they are easy to culture and remain viable for an extensive 

period of time in the soil (Coombes et al., 2017). 
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The high larval infection from EPF strains screened in this study along with the evidence of 

previous studies (Goble et al., 2010, 2011) suggests that EPF has potential as a highly effective 

control agent against the soil borne stages of FCM. However, it should be noted that the EPF is 

a less favourable choice when targeting non-mobile stages of the life cycle as it is stationary 

and relies on its application coverage to control the pest. However, as FCM larva only burrow 

for a few millimetres into the soil to spin a cocoon (Love et al., 2019), spores washing into the 

soil would have an opportunity to target the prepupal stage of FCM, as well as during eclosion 

of the moth.  

From this and previous studies it is clear that FCM larvae are highly susceptible to EPNs in the 

laboratory. Future research should test these EPN species in the field or semi-field 

environments. Recent work by Steyn et al. (2018), tested several EPN species that were cultured 

in G. mellonella in a semi-field environment, with promising results. However, larger field trials 

and commercial application of EPNs will require EPNs to be massed cultured in vitro, but how 

these EPNs perform against FCM in laboratory and semi field environments is still unknown. 
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Chapter 3: 

 

Control of false codling moth, Thaumatotibia leucotreta, using in vitro 

cultured Steinernema jeffreyense and S. yirgalemense 

Abstract 

False codling moth (FCM), Thaumatotibia leucotreta, is a priority pest of citrus, stone fruit and 

table grapes, as it causes direct crop damage. Biological control of entomopathogenic 

nematodes (EPNs) has not been explored for use against FCM in stone fruit and table grapes. 

However, EPNs have been shown to provide exceptional efficacy against the larvae of FCM in 

laboratory bioassays, compared to other biocontrol agents. EPNs are particularly attractive for 

the control of FCM as they attack the soil-dwelling stages. In this study, the mortality, quality 

and age of in vitro liquid cultured Steinernema jeffreyense was assessed in the laboratory and 

tested in the field. Additionally, pre- and post-application pathogenicity tests with FCM larvae 

were conducted to assess EPN virulence of in vitro cultured nematodes. Field trials were 

conducted by means of applying infective juveniles (IJs) to the vineyard floor. Four different 

S. jeffreyense concentrations (0, 10, 20 and 30 IJs/cm2) were applied to forty 1 m2 experimental 

plots that were artificially infested with FCM larvae. The insects were retrieved from the soil 

48 h after application, to allow for the assessment of the immediate effect. FCM loaded cages 

were replaced over a period of four weeks, to determine the persistence of the original 

application. A second trial, following the same procedure, S. jeffreyense and Steinernema 

yirgalemense were compared with regard to virulence and persistence over a 4-week period. In 

the laboratory, the in vitro cultured EPNs proved to be of similar quality as the in vivo cultured 

S. jeffreyense with a high percentage mortality of > 80%. The semi-field study showed 

promising results, with the immediate effect yielding up to 77% mortality of FCM larvae and 

remained > 35% over the 4-week period after application. These results compare favourably 

with previous field studies, using in vivo EPN, proving that EPNs would be a valuable addition 

to the current integrated pest management programme to control FCM. 

Keywords: entomopathogenic nematodes, in vitro, field, IPM 
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3.1 Introduction 

False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is 

an economically important pest and has additional phytosanitary restrictions (Prinsloo and Uys, 

2015). However, there are limited chemical control options that effectively control this pest, 

especially as harvest draws near, encouraging the need for environmentally friendly control 

options (Malan et al., 2018). Entomopathogenic nematodes (EPNs) are roundworms that have 

a mutualistic symbiotic relationship with gram negative bacteria that can work together to kill 

insects within 48 h (Gaugler, 2002). There is potential for the use of these organisms for the 

biological control of the soil stage of FCM (Chapter 2; Malan et al., 2011; Steyn et al., 2017). 

Biological control through the augmentative release of EPNs has been practised worldwide for 

several decades (Campos-Hererra, 2015), but has not been implemented against FCM in stone 

fruit and table grapes in South Africa. In citrus, Cryptonem (L9251) [Heterorhabditis 

bacteriophora, River Bioscience (Pty.) Ltd, Port Elizabeth, South Africa] is used against FCM 

at 10 IJ/cm2 and is currently the only EPN product available (imported) in South Africa (Hatting 

et al., 2018).  

To make augmentative releases a reality, the EPNs need to be massed produced, which can be 

achieved by one of three methods. In vivo production, is thought to yield the highest quality 

EPNs (Gaugler and Georgis, 1991; Yang et al., 1997) and requires lower technology input and 

capital outlay (Shapiro-Ilan et al., 2012). In vitro production comes in two forms, solid culture 

and liquid culture. Solid culture is seen as the intermediate between in vivo and liquid in terms 

of capital outlay and EPN quality (Shapiro-Ilan et al., 2012). However, in vitro liquid culture 

has the advantage of economy of scale, (successful production in 80 L bioreactors, Georgis et 

al., 1995), making the production less expensive and as such is the most (95%) adopted method 

worldwide (Shapiro-Ilan et al., 2012). 

The mass production of organisms may lead to the selection of attributes that increase their 

production potential, which may include increased fecundity and survivability. Unfortunately, 

the increased production is one trait that may cause a marked decrease (cost) in other aspects 

of the organism’s survival or behaviour that is not continuously selected for during the rearing 

process. This leads to trait deterioration and most frequently manifests as life-history trade-offs 

between reproduction and performance as was found for invertebrates, Lepidoptera and EPNs 

(Phillips et al., 2006; Bilgrami et al., 2006; Hanski et al., 2006). Consequently, it is likely that 

the virulence of EPNs against insects may decline over time in mass reared systems and may 

be more pronounced with in vitro culture (as this trait is not selected for) causing the quality of 
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the EPNs to be reduced (Shapiro-Ilan and Gaugler, 2002). In fact, previous studies have 

provided evidence that there are differences in the virulence between in vitro and in vivo 

cultured EPNs (Gaugler and Georgis, 1991; Shapiro-Ilan and Gaugler, 2002; Ferreira et al., 

2014, 2016). 

The suppression of pest insects, with the application of mass reared EPNs, has been reviewed 

by Shapiro-Ilan et al. (2002) and Lacey et al. (2015). The authors highlight several factors 

(biological and economic) that allow some interventions to lead to success rather than failure. 

The biological factors include the phenology (life stages susceptible to the EPN), environmental 

factors (especially soil moisture and temperature), timing (cooler seasons more favourable), 

application (methods that deploy the EPN into the soil are favoured) and formulation. 

Formulation is of considerable importance as it offers several benefits, it lengthens shelf life, 

aids in transportation and may benefit in field survival (Kagimu et al., 2017). Often, however, 

even when all the biological factors are favourably met, the use of EPNs may still not be adopted 

due to economic factors, such as competition with other biological control techniques (ease of 

use, price/ha, ability to control other pests) (Shapiro-Ilan et al., 2002). In lieu of this, these 

biological and economic factors should first be validated, before an EPN can be considered as 

a potential biological control option.  

Numerous biological and economic factors that lead to the success of biological control have 

been validated for the use of EPNs to control lepidopteran pests in the South African context. 

For instance, phenology (Chapter 2, Malan et al., 2011), environmental factors (De Waal et al., 

2011) and formulation (Kagimu et al., 2017) have been studied and show suitability for this 

control method. The method is also economically competitive as EPNs have been shown to 

target multiple South African pest insects and can be sprayed with conventional farm equipment 

creating high demand from growers (Malan et al., 2018). Additionally, semi-field experiments 

using in vivo reared EPNs against FCM larvae show promising results (Malan and Moore, 2016; 

Steyn et al., 2018). However, these validations have all been done with in vivo cultures that do 

not translate well to economies of scale (relatively high price/ha). It is therefore vital to 

determine how liquid in vitro reared EPNs perform in comparison to in vivo reared EPNs.  

The objective of this study was to determine the virulence of in vitro liquid mass cultured EPNs, 

against late instar FCM larvae in the laboratory and semi-field environment. In the laboratory, 

the effect of age of in vitro cultured and stored S. jeffreyense on virulence against FCM larvae 

was tested. It was hypothesised that initially there would be no difference in virulence against 

FCM, but with storage time, virulence will decrease. Additionally, it was aimed to determine 
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the quality of in vitro liquid cultured S. jeffreyense, in comparison with those cultured in vivo. 

It was hypothesised that the in vivo cultured infective juveniles (IJs) are more natural and will 

outperform the in vitro cultured IJs in terms of FCM pathogenicity. Additionally, it was 

predicted that S. yirgalemense will outperform (measured as infection of FCM larvae) S. 

jeffreyense in the field environment, as was shown previously (Chapter 2, in vivo culture) in the 

laboratory. Lastly, the effect of handling was tested on the field inoculum and whether these 

effects can be offset by formulation was investigated. It was hypothesised that by formulating 

the IJs it will decrease the deterioration of the nematodes and ensure high virulence of the IJs 

against FCM larvae irrespective of handling in field. 

3.2 Material and methods 

3.2.1 Source of insects  

The late instar larval stage of T. leucotreta, collected from a mass reared colony maintained at 

XSIT in Citrusdal, South Africa, were transported in a cooler box to Stellenbosch. Upon arrival 

in Stellenbosch, the insects were placed at 27°C ± 1°C. Galleria mellonella L (Lepidoptera: 

Pyralidae) or wax moth larvae were cultured according to the technique of Van Zyl and Malan 

(2015) and used to culture in vivo EPNs. 

3.2.2 Source of entomopathogenic nematodes  

The Department of Conservation Ecology and Entomology, Stellenbosch University, supplied 

the in vitro liquid cultured IJs of S. jeffreyense (J192) (KC897093) and S. yirgalemense (157-

C) (AY748450) used in this study. The IJs were cultured using the technique of Dunn et al. 

(2018) and stored, 30 ml of the liquid diet, in 250 ml sterile Erlenmeyer flasks, plugged with 

cotton wool, on a platform orbital shaker at 120 rpm, at a temperature of 14°C, for different 

times. In vivo S. jeffreyense were cultured using G. mellonella larvae as host and a modified 

White trap was used to collect the IJs (Kaya and Stock 1997). The formulation used, contained 

the in vitro cultured S. jeffreyense and was formulated according to Kagimu (2018). 

3.2.3 Bioassay protocol 

Filter paper discs were placed in alternate wells of a 24-well bioassay plate. All treatments were 

inoculated with a suspension containing IJs in distilled water and 50 µl of the inoculum was 

pipetted into each well, which ensured the filter paper was moist, without free water. Control 

treatments received 50 µl of water only. Sixty late instar FCM larvae per treatment were placed 

on moist filter paper, in 12 alternative wells of five 24-well bioassay plates. A glass sheet in the 

lid ensured no larvae escaped. The bioassay plates were placed in 2 L plastic containers on 
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moist paper towels to maintain moisture, closed with the lid and kept in a dark room for 48 h at 

27°C. Mortality by infection was assessed with the aid of a dissecting microscope after 48 h, 

by opening the larvae and visually observing the nematodes inside of the cadaver. 

3.2.4 Baseline sampling and trapping 

Each vineyard was divided into four quadrants, within each quadrant five subsamples of 50 g 

of soil were collected and placed into a 1 L plastic container, so that each block had four plastic 

containers, each of which constituted a sample so that the baseline trapping had a total of 8 

samples. Each of these soil samples were baited with10 G. mellonella larvae, to trap for resident 

EPN occurrence (Malan and Moore, 2016). 

3.2.5 Pathogenicity of age and formulation of in vitro cultured nematodes  

The effect of age and quality of the in vitro liquid cultured IJs was determined by comparing 

the virulence of S. jeffreyense against larvae of FCM, following the bioassay protocol outlined 

above, at a concentration of 50 IJs/50 µl. Three in vitro cultured IJs ages were tested, namely 

fresh formulation (1 - 2 days old), 86 days old (the intermediate) and 136 days old. The age of 

the inoculum was calculated 14 days after inoculation of the liquid culture, with a new cohort 

of IJs available in the flasks, which were then moved from 25°C to storage at 14°C. To 

determine the quality of the in vitro culture, its virulence against FCM larvae was compared to 

a fresh in vivo IJs culture. Above trials were repeated on a different test date and with another 

batch of inoculum. 

3.2.6 Laboratory pathogenicity of field inoculum 

The inoculum of the in vitro S. jeffreyense, used for the semi-field trial was tested for 

pathogenicity against FCM larvae, 12 h before application, using the bioassay protocol. 

Steinernema jeffreyense cultured in vivo and in vitro were applied at 50 IJs/insect. After 48 h 

mortality by infection was determined as this will indicate a baseline for the quality and 

maximum performance (calculated as infection) to be expected in the field from the applied 

nematodes.  

3.2.7 Field trial to assess concentration  

Two semi-field trials were conducted during summer (January - March) 2018 in table grape 

vineyards in Paarl (33°43'07.1"S 18°57'54.7"E). Each field trial consisted of forty 1 m2 

experimental plots, each plot was assigned to a treatment, following a completely randomised 

design (Fig. 3.1.). The field trials followed the protocol outlined in Malan and Moore (2016). 

At each experimental plot a metal mesh cage was buried just below the soil surface 20 cm away 
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from the stem. Each cage was filled with sifted soil from the orchard and 20 FCM larvae. The 

vineyard was irrigated once per week to ensure adequate moisture. 

 

 

Fig. 3.1. The completely randomised design of the semi-field trials. Each zero represents a 

grapevine plant which was not treated and served as a buffer between experimental plots. The 

experimental plots are represented by the different coloured blocks with each colour is a 

different treatment.  

An inoculum with a low IJs concentration (2000 IJs/ml or 100 IJs/50 µl) of each treatment 

(except the formulation, as it was in solid form) was transported to the field in a 2 L glass bottle 

and then diluted further for field use. To avoid oxygen deprivation, only 1.2 L of inoculum was 

placed in the bottle. Additionally, the bottles were agitated every 5 min to ensure adequate 

oxygen distribution. The dry formulation was added directly to the tank of the pressure sprayer 

in the field. The transported inoculum was diluted to a 1 L inoculum and the contents applied 

to each experimental block. Before each EPN application, 30 ml was sprayed into a glass jar 

and inspected to ensure effective nematode dispensing. The IJs were then applied to the 

vineyard floor with a 5 L pressure sprayer, after the vineyard floor had been artificially infested 

with FCM larvae in buried cages. The insects were retrieved from the soil 48 h later to allow 

for assessment of the immediate effect. Newly filled cages (containing soil and larvae) were 

then re-buried 7, 14, 21 and 28 days after application and retrieved 48 h later. After retrieval of 

the cages, they were taken to the laboratory where the soil was sifted and the larvae or prepupae 

were inspected for mortality and dissected to confirm infection by EPNs and determine 

persistence. 

Three temperature Thermochron iButton® data loggers (Dallas Semiconductors, Model 

DS1920; 0.5°C accuracy) were equally spaced in the experimental plot. These consisted of two 
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that were placed in an identical cage as the larvae, just below the soil surface in row five and 

row 13. These iButtons therefore recorded the temperature the FCM larvae experienced. The 

third ibutton was placed in row nine, one metre above the soil surface allowing it to measure 

the ambient temperature. All ibuttons recorded the temperature (± 0.5°C) every 15 min over the 

28-day trial period.  

The treatment included four different in vitro liquid cultured S. jeffreyense concentrations (0, 

10, 20, 30 IJs/cm2) and the formulation at 30 IJs/cm2. Each treatment was randomly assigned 

and applied to eight of the 1 m2 experimental plots. To achieve the desired concentrations the 

transported inoculum was diluted into a 1 L IJs suspension. 

3.2.8 Species comparison field trial  

The trial (followed a similar design as section 3.2.7) compared both in vitro liquid cultured S. 

jeffreyense and S. yirgalemense, previously shown to be virulent against FCM (Chapter 2). The 

two species were compared to a water only control and each of the treatments were applied at 

20 IJs/cm2 to 16 of the 1 m2 experimental blocks. Cages were retrieved and immediately 

replaced with fresh FCM loaded cages, on day 7, 14 and 28, to determine the persistence 

between the two nematode species. Soil temperature was recorded as described above. 

3.2.9 Post application viability of inoculum 

The inoculum that was kept in the field and then used for the application, was transported back 

to the laboratory after use and tested against FCM. The treatments included in vitro cultured IJs 

(lowest field concentration = 22.7 IJs/50 µl and 50 IJs/50 µl), the formulation (still in dry form 

and only diluted prior to test, 50 IJs/50 µl) and a water only control (50 µl). This allowed the 

assessment of whether handling of the inoculum decreased the IJs pathogenicity against FCM.  

3.2.10 Statistical analyses 

The statistical analysis was performed using Statistica 12 (Stat-Soft Inc., 2012). The data were 

tested for normality using Shapiro Wilk’s test. If the data were not normally distributed they 

were log(X+1)-transformed for further analysis. If the assumptions (normality and equality) of 

a one-way analysis of variance (ANOVA) were violated irrespective of transformation, the 

Kruskal-Wallis H-test was used to separate the means at p < 0.05. If there were no significant 

test date versus treatment interactions, data from different test dates were pooled and analysed 

using ANOVA. When applicable, means were separated using the Fisher's LSD method. All 

further statistical analyses were undertaken in RStudio version 1.0.143 and R version 3.5.1 (R, 

2018). A generalized linear model, with a gaussian distribution and an identity link function, 
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was used to determine the effect of handling the inoculum in the field during field application. 

It was also used to compare the soil and ambient temperature over the 4-week field trial. Several 

packages were used to illustrate our findings graphically, including ggplot2, plotly and forcats 

(Wickham, 2016; Sievert, 2018). 

3.3 Results 

3.3.1 Baseline sampling and trapping 

No EPNs were isolated from any of the soil samples collected from the table grape vineyards. 

This indicates that there were no or very low levels of naturally occurring EPNs present. 

3.3.2 Pathogenicity of age and formulation of  in vitro cultured nematodes 

There was a significant (F4, 50 = 61.036, p < 0.001, df = 50) effect of age amongst the in vitro 

cultures (Fig. 3.2), the older cultures of 136 days (in vitro B) (86.67% ± 2.83%) performed 

better than the fresh formulation (72.5% ± 5.13%, p = 0.036) and 86-day-old (in vitro A) (47.5% 

± 4.82%, p < 0.001) cultures. The 136-day-old in vitro reared IJs did not significantly (p = 

0.782) differ from the in vivo (85% ± 5.09%) cultured S. jeffreyense. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Mean percentage infection (± SE) of Thaumatotibia leucotreta larvae inoculated with 

Steinernema jeffreyense produced either by in vitro liquid (A = 86 days old and B = 136 days 

old) culture, formulated and in vivo (fresh), mortality was assessed 48 h after treatment. The 

last instar FCM larvae were inoculated with 50 IJs/insect for each of the treatments. Different 

letters above the vertical bars indicate significant differences (p < 0.05). 

3.3.3 Laboratory pathogenicity of field inoculum 
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There was no significant difference (H1, 25 = 0.479, p = 0.489) found between the in vivo and 

the in vitro cultured S. jeffreyense, used in the field trials (Fig. 3.3). The in vitro caused high 

infection (86.67% ± 1.36%) of FCM larvae and was the maximum performance or mortality 

that was expected in the field.  

 

 

 

Fig. 3.3. Mean percentage infection (± SE) of last instar Thaumatotibia leucotreta larvae 

inoculated with Steinernema jeffreyense (50 IJs/insect) cultured for the semi-field trials, either 

by in vitro or in vivo cultured IJs. Mortality was assessed 48 h after treatment. Different letters 

above the vertical bars indicate significant differences (p < 0.05). 

3.3.4 Field trial to assess concentration  

The average soil temperature, (23.18°C) during the exposure of the FCM larvae in the soil, was 

significantly (T = -8.97, df = 5811, p < 0.001) lower than the average ambient temperature 

(24.92°C), over the 4-week field trial (Fig. 3.5). 
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Fig. 3.4. The temperature recorded every 15 min (dots) over the 28-day exposure period of the 

concentration field trial in Paarl. The vertical dots are coloured on scale from low (blue, 15°C) 

to high (red, 40°C) temperatures. Panel (A) the ambient temperature measured in the middle of 

the experimental plot (row nine). Panel (B) the soil temperature measured in row five and 13 

of the experimental plot. The solid lines represent the average ambient (blue) and soil (brown) 

temperature.  

There was a positive dose effect, with the highest concentration causing significantly (F3, 24 = 

3.683, p = 0.004) higher infection of FCM larvae, for the immediate effect (48 h), than the 

A 

B 
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lowest dose (Fig. 3.6A). Steinernema jeffreyense at the highest concentration caused mortality 

of 76.99% ± 6.59% and performed the best for the immediate effect (48 h), but did not 

significantly differ from medium concentration (p = 0.062, 58% ± 8.25%) or formulation (p = 

0.267, 67.16% ± 5.14%). Overall there was a significant (F2, 46 = 4.639, p = 0.015) decrease in 

persistence as time passed (Fig. 3.6B). However, there was no significant (F8, 46 = 1.083, p = 

0.392) difference between the S. jeffreyense treatments, but the formulation did significantly (p 

= 0.009) differ from in vitro high concentration at each time point post application. The 

infection of the in vitro low, did not significantly (p > 0.05) decrease with time [immediate (48 

h), 14, 21, 28 days] and its infection remained the most stable (overall mean 36.5%) throughout 

the 28 day trial. The in vitro high concentration caused infection of a third (33.07% ± 7.92%) 

of the FCM larvae 28 days after the application, whereas the formulation was unable to infect 

a fifth (17.59% ± 2.18%) of the FCM larvae after the same time.  
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Fig. 3.5. Mean percentage infection (± SE) of Thaumatotibia leucotreta larvae applied with in 

vitro Steinernema jeffreyense in semi-field conditions. Treatments were liquid in vitro low (red, 

10 IJs/cm2), medium (green, 20 IJs/cm2), high concentrations (blue, 30 IJs/cm2) and an in vitro 

formulation (Panel A blue, Panel B purple at 30 IJs/cm2). Panel (A) shows the immediate effect 

(48 h after application) of the treatments on the FCM larvae. Panel (B) shows the persistence 

of the treatments to infect FCM larvae 14, 21 and 28 days after the initial application. Different 

letters above the vertical bars indicate significant differences (p < 0.05). 
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3.3.5 Species comparison field trial  

The average soil temperature (21.71°C), during the exposure of the FCM larvae in the soil, was 

significantly (Z = -10.93, N = 4894, p < 0.001) colder (2°C less) than in the concentration trial 

(Fig. 3.7).  

Fig. 3.6. The temperature recorded every 15 min (dots) over the 28-day period exposure of the 

Steinernema yirgalemense and S. jeffreyense comparison field trial in Paarl. The soil 

temperature was measured in row five and 13 of the experimental plot. The solid line (brown) 

represents the average soil temperature, while the vertical dots are coloured on a scale from low 

(blue, 15°C) to high (red, 30°C) temperatures. 

There was no overall significant (F1, 18 = 2.038, p = 0.171) difference of infection of FCM larvae 

between the two species over the 28-day field trial (Fig. 3.7). The overall infection of FCM 

larvae significantly (F2, 36 = 19.436, p < 0.001) decreased as time increased although the 

persistence of the species differed. In the case of S. jeffreyense, infection of FCM larvae 

significantly (F2, 31 = 16.365, p < 0.001) decreased with every succeeding week after the 

application. However, S. yirgalemense infection only significantly (p = 0.023) decreased from 

day 7 (73.34% ± 7.89%) to 14 (44.94% ± 3.98%) after application, but did not significantly (p 

= 0.544) decrease from 14 to 28 days (37.84% ± 10.18%) after the initial application.  
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Fig. 3.7. Mean percentage infection (± SE) of Thaumatotibia leucotreta larvae 7, 14 and 28 

days after entomopathogenic nematode application in a semi-field trial. Treatments were in 

vitro liquid cultured Steinernema jeffreyense (grey) and S. yirgalemense (gold) at a 

concentration of 20 IJs/cm2. Different letters above the vertical bars indicate significant 

differences (p < 0.05). 

3.3.6 Post application viability of inoculum 

The infection of FCM larvae caused by in vitro post application inoculum (63.33% ± 9.35%) 

had significantly (T = 3.172, df = 14, p = 0.007) lower performance than the pre-application 

inoculum (86.67% ± 1.36%) (Fig. 3.4). There was a significant (F2, 12 = 13.052, p = 0.037) effect 

of dose, with the higher IJs concentrations causing higher infection rates. However, there was 

no significant (p = 0.654) difference between the performance (rate of infection) of the in vitro 

inoculum and the formulation of S. jeffreyense.  
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Fig. 3.8. Mean (± SE) percentage infection of Thaumatotibia leucotreta larvae inoculated with 

the same inoculum that had been used for field application. Treatments were the formulation 

(50 IJs/50 µl) and in vitro Steinernema jeffreyense, at concentrations of 22.7 IJs/50 µl and 50 

IJs/50 µl, mortality was assessed 48 h after treatment. Different letters above the vertical bars 

indicate significant differences (p < 0.05). 

3.4 Discussion 

Both in vitro liquid cultured S. jeffreyense and S. yirgalemense have not previously been tested 

for pathogenicity against FCM larvae. The IJs inoculum used in this study was either freshly 

cultured in vivo or in vitro. In the case of S. jeffreyense, the IJs were stored at 14°C for up to 

136 days. No significant differences were found during the screening of the older in vitro and 

freshly in vivo cultured S. jeffreyense, with a mortality of 87% and 85% respectively, using a 

low concentration (50 IJs/insect). The quality of the in vitro cultured EPNs is often assumed 

and has been previously proven, to be inferior to in vivo produced EPNs (Yang et al., 1997; 

Shapiro-Ilan et al., 2012; Ferreira et al., 2014, 2016). Contrary to the expectation, the virulence 

of S. jeffreyense did not differ between the different production methods under laboratory 

conditions. This may be explained by Bilgrami et al. (2006), who showed that it is the 

deterioration of the symbiotic bacteria that cause the most notable reduction in EPN quality 

(e.g. virulence). In vitro liquid culture grows the bacteria in an optimized complex medium 

a 
a 

b 
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(Dunn and Malan, 2018) and, if the technique is successful, it should lead to sufficient lipids to 

be stored, to aid in longevity and infectivity in field trails, which are comparable with those of 

in vivo cultured nematodes.  

Age affected the virulence of the EPNs as expected, however, the direction of the effect found 

during this study was not anticipated. The older in vitro cultured S. jeffreyense performed better 

(87%) than the freshly cultured nematodes (47%), which may be ascribed to the physiological 

maturity of the IJs being required to infect/colonise the insect. This process would happen 

naturally in a White trap when the nematodes are ready to move from the cadaver to the water 

trap, which is not the case in artificial culturing of the nematodes. This finding is important for 

in vitro production, as it indicated that caution should be taken in using or formulating IJs too 

soon after production. Further research on the age of in vitro cultured IJs is required, to ensure 

that the IJs are ready for formulation. 

In the field trial, the medium concentration (20 IJs/cm2) of EPNs led to infection of 50 - 68% 

of the FCM larvae and the high concentration (30 IJs/cm2) to mortality of 70 - 85%. Depending 

on the cost involved, the lower concentration could be used for future trials, to ensure the 

efficiency of the method. The persistence of the medium and high concentrations did not 

significantly differ over the four-week period. However, though there was an initial decline 

(loss of 24% virulence) for the high concentration from the initial to two-week post application 

period, the persistence remained reasonably stable for the rest of the period and still provided 

33% infection after four weeks. The persistence of the medium nematode concentration steadily 

declined each week after the initial application and only provided 18% infection after the four 

week period. Unfortunately, it is not possible to make comparisons between the species (S. 

jeffreyense) tested here and the commercially available product Cryptonem (L9251) (Hatting et 

al., 2018), as data for the product are not available. However, Malan and Moore (2016) tested 

the virulence of a local (in vivo cultured) Heterorhabditis bacteriophora Poinar 1976 (the active 

ingredient of Cryptonem) in the field with a similar design as our field experiments. The authors 

reported very high (91%) initial mortality of FCM larvae with 20 IJs/cm2, but the persistence 

was considerably lower than found in the present study (Malan and Moore, 2016). The 

formulation also had similar infection rates to that of the medium nematode concentration and 

did not increase the performance of the in vitro cultured S. jeffreyense. The in vitro inoculum’s 

virulence decreased by 20% from pre- to post application, indicating the detrimental effects of 

handling and heat in the field. None of these handling effects that were experienced during the 

day in the field were mediated by the formulation. A reason for the lower than expected 

performance of the formulation is thought to be as a result of small number (< 5 million) of IJs 
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available for formulation, as the formulation tends to desiccate the IJs if the ratio of IJs to 

diatomaceous earth is incorrect (Kagimu, 2018), as was the case here. This study was unable to 

culture large enough numbers of IJs to ensure the formulation was perfect, these results should 

therefore be seen only as the first step and more work is required to confirm our results. 

Nevertheless, it is suggested that the virulence of the formulation should always be tested 

against target insects (not only G. mellonella) to ensure it is effective for field use.  

Both in vitro reared S. jeffreyense and S. yirgalemense performed well (> 60% infection) in the 

field environment after a 7-day exposure to field conditions. Our prediction that S. yirgalemense 

would be significantly better than S. jeffreyense proved to be incorrect. However, it was shown 

that differences may arise between the species as time in the field increases. Steinernema 

yirgalemense still infected more than a third of the FCM larvae, four weeks after the application, 

whereas S. jeffreyense infected less than 13%. Environmental factors such as soil temperature, 

moisture and availability of the host are known to affect the survival or persistence of EPNs in 

the field (Glazer, 2002). However, the IJs stage and our design (both species experienced the 

same conditions) should ensure that these stressors do not influence the differences seen 

between the species. The effect of host availability is therefore the most important factor to 

consider with our design (the removal of hosts in our field trials) as the essential energy 

available that allows EPNs to persist is limited (Glazer, 2002). Lipid reserves of IJs have been 

shown to diminish with time (Andaló et al., 2011) and limited energy sources should affect the 

species differently. Steinernema jeffreyense, which is relatively large (> 1000 µm, Malan et al., 

2016), may have greater energy (lipid) reserves, allowing it to function better for longer periods 

(Hazir et al., 2001). Another consideration in relation to body size is dehydration, with the larger 

EPNs having the advantage to persist longer (Nguyen et al., 2006) due to better surface to 

volume ratio, which is important for ectotherms to curb evaporative water loss and thermal 

inertia (Peters, 1986). It is therefore contradictory that S. yirgalemense (the smaller EPN) 

persisted longer in our field trials. This apparent anomaly may be because of behavioural 

differences between the species, such as being inactive and rolling into coils to reduce water 

loss (Womersley, 1987) and should be explored for these species. It was observed that during 

storage, S. jeffreyense is always active, while in the case of S. yirgalemense the IJs tends to be 

curled in a question-mark position when not disturbed. Furthermore, though S. jeffreyense has 

the larger body, it may also be more active (or have higher energy requirements), which may 

require it to use its energy resources quicker. Therefore, the more active or larger body length 

could become a drain (rather than a benefit) on the nematode and may cause it to become less 

virulent or die more readily. In the FCM field trial of Malan and Moore (2016), the same trend 
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was experienced with regard to persistence of another large IJ, Steinernema khoisanae (Nguyen 

et al., 2006).  

Our semi-field trial results compared favourably with that of Malan and Moore (2016) and 

Steyn et al. (2018) that tested the potential of EPNs in the semi-field environment against the 

larvae of FCM. These authors used in vivo cultured nematodes, while the current study showed 

that the in vitro cultured EPNs are as virulent in the field environment. The persistence for S. 

yirgalemense was similar (35% after 4 weeks) to that reported by Malan and Moore (2016), but 

shorter than reported by Steyn et al. (2018). This is likely to be as a result of more favourable 

prevailing subtropical conditions (higher temperature and more frequent irrigation) in the latter 

trial. As the in vitro cultured EPNs used here have only gone through a few generations (less 

than 100) of sub-culture, it is suggested that their virulence should be periodically evaluated in 

the future. This will ensure that virulence, host finding and infection abilities, are not lost, 

through genetic drift, during continuous in vitro culturing of the EPNs. This finding provides 

novel support for the potential of liquid in vitro mass production of these species, for the control 

of FCM. 

It is important to determine whether the high mortality or suppression (70%) reported in the 

semi-field trials for FCM will translate to equivalent suppression in large-scale field 

applications. Compared to EPN field trials, our semi-field trials resulted in high suppression of 

the pest insect. The suppression is likely to be lower in the field environment, targeting natural 

populations of FCM, than measured under these controlled semi-field conditions. However, it 

is important to remember that the in vitro reared EPNs used in this study will benefit from 

optimization (Yang et al., 1997, Dunn and Malan, 2018) and formulation (Gaugler, 2002; 

Kagimu et al., 2017). Another consideration is the persistence of EPNs measured in this study, 

which is regarded to be a low estimate for two reasons. Firstly, EPNs are mobile and are diluted 

due to diffusion into surrounding areas that were not treated. Secondly, the removal of the host 

does not allow for subsequent generations of the EPNs to be produced in the field. It is 

concluded from this study that S. jeffreyense and S. yirgalemense have potential as biological 

control agents of FCM, and the development of EPNs as a commercial product in South Africa 

should be encouraged. 
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Chapter 4: 

 

Quantifying mating disruption of false codling moth 

Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in stone fruit 

and table grapes 

Abstract 

Mating disruption is the broadcasting of female pheromones within an agricultural system so 

as to interfere with, or decrease, the reproductive potential of the pest insect. Seen as a 

sustainable, non-chemical management method, it is used in citrus orchards against the false 

codling moth (FCM), Thaumatotibia leucotreta (Meyrick). Research to support its efficacy 

against FCM is limited, especially in stone fruit and table grapes. Previous attempts to quantify 

mating disruption against FCM has led to inconsistent results, encouraging the need to 

investigate mating disruption experimentally. Here an experimental design that provides 

reliable results was evaluated. Sterile males were released in stone fruit and table grapes and 

recaptured with a trapping grid, every 24 hours for five days. Trapping efficiency, trap 

interference and recaptures of wild and sterile moths were compared. Factors that improved the 

reliability of results, included the use of mark-release-recapture experiments, nine trap layout 

and a paired control that ensured that only one variable was changed. Experimental blocks were 

then either treated with 400 pheromone dispensers/ha or 0 pheromone dispensers. This study 

reports the first experimental evidence that mating disruption is a viable control option against 

FCM in stone fruit and table grapes. Mating disruption was calculated as 86% in stone fruit and 

93% in table grapes, with less than the recommended field dose.  Evidence from this study 

indicated that mating disruption shows promise as a control technique against FCM in stone 

fruit and table grapes. This study therefore sets a solid foundation for further research into the 

mechanistic understanding of how the pest’s behaviour is affected, as well as to calculate the 

dosage to cause the highest level of mating disruption with the most economic amount of 

pheromone. 
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4.1 Introduction 

Mating disruption is the broadcasting of the synthetic female pheromone throughout the 

landscape so as to interfere with mate-finding ability and decrease reproductive events (Miller 

and Gut, 2015). Fewer reproductive events results in fewer viable offspring and thus smaller 

populations. Calling lepidopteran females expose their pheromone glands, which release the 

sex pheromone into the surroundings; the male moths are attracted to the pheromone and after 

they find the female, mating occurs (Allison and Cardé, 2016). This makes Lepidoptera a 

perfect target for mating disruption, which has successfully been used for control and in 

eradication programmes for several lepidopteran pests (Lance et al., 2016; Suckling et al., 

2017). Mating disruption is also seen as a sustainable, non-chemical management method 

(Suckling, 2015). False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) is a key pest 

in stone fruit, table grapes and citrus, though the majority of work focussing on its control has 

been conducted on citrus (Malan et al., 2018). To the author’s knowledge, only one peer-

reviewed study has been published to date on fruit crops that tested mating disruption against 

FCM (Hofmeyr et al., 1991), however, a recent study has been conducted in cotton (Ochou et 

al., 2017). Though the study by Hofmeyr et al. (1991) was conducted in citrus, many studies 

cite mating disruption as a viable control method of FCM in a variety of crops (Moore and 

Hattingh, 2012; Hofmeyr et al., 2016; Malan et al., 2018). Four products are registered [RB 

SPLAT, L10259; X-MATE FCM, L10320; Check Mate FCM-F, L8384; Isomate FCM, L76692 

(see Agri-Intel, 2018)]. 

The attraction and disruption potential of FCM’s semiochemicals were tested in citrus orchards 

nearly two decades ago (Hofmeyr and Calitz, 1991, Hofmeyr et al., 1991; Hofmeyr and Burger, 

1995). The success, (measured as males unable to find traps/females), that the authors reported 

has led to its widespread use throughout the citrus-growing regions in South Africa. Only one 

peer reviewed study (Ochou et al., 2017) on cotton and several semi-popular articles have been 

published on the mating disruption of FCM since (Schoeman and De Beer, 2008; Moore and 

Kirkman, 2011). However, most peer-reviewed work has focussed on refining the synthetic 

female pheromone and shedding light on the exact blend of the pheromone (Persoons et al., 

1977; Angelini et al., 1981; Newton and Mastro, 1989; Newton et al., 1993). As yet no peer 

reviewed work is available to confirm its effectiveness against FCM in either stone fruit or table 

grapes. This is problematic as different crops have various growth forms and may differ 

according to density of foliage canopy or height of the plant and number of trees planted/ha. 

Several abiotic factors such as temperature, light intensity and wind speed are known to affect 
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trap effectiveness (McNeil, 1991; Williams et al., 2013). These abiotic factors are likely to 

differ between dense and sparse growth types, making it important to quantify mating disruption 

on a variety of crops. Despite the lack of real evidence for this control method’s success in stone 

fruit and table grapes, mating disruption is now widely used and registered on various fruit 

crops (Agri-Intel, 2018; and prescribed by fruit unions, Hortgro, 2017) throughout South 

Africa.  

Attempts to quantify the potential of mating disruption against FCM have had mixed results, 

with some authors reporting very high (> 80%) suppression of trap catches, but the fruit damage 

remained unchanged (Hofmeyr et al., 1991) and others reporting less fruit damage in treated 

block (Ochou et al., 2017). The variability of results makes inferences regarding its success 

difficult and in some cases has led to a loss of confidence in the method. The unpublished 

(Hofmeyr and Hofmeyr, 2002; Moore and Kirkman, 2010, 2011) studies make it difficult to 

review or reproduce experiments, as “in house” results (without methods) are often reported 

and subsequently cited (Malan et al., 2018). This encourages the need to test mating disruption 

experimentally.  

Previous work conducted on FCM mating disruption have shared a similar design, several 

blocks were treated with or without the pheromone dispensers and then naturally occurring 

(wild) FCM were caught with a central trap. Long term trap catches between treated and 

untreated blocks were compared to determine the treatments’ success (Ochou et al., 2017), 

while some (Schoeman and De Beer, 2008) used only damage assessments. This design has 

several drawbacks, firstly the central trap only catches a small percentage of the population. 

Secondly, the wild populations of FCM are often not quantified before the trial and it is difficult 

to quantify their numbers during these trials. Another limitation is due to FCM’s polyphagous 

feeding habits and the mobility of adults, damage has not been correlated with FCM presence. 

This makes comparisons difficult between the treated and untreated blocks. The problem with 

this design is that more than one factor is changed, making it extremely difficult to draw reliable 

conclusions. A more logical and experimentally suited approach would be to only change one 

variable at a time, in this case pheromone present or not, allowing for strong inference (Platt, 

1964; Miller and Gut, 2015). I propose that mating disruption of FCM could be better quantified 

by releasing a known number of moths (into the treated and untreated blocks) and recapture 

them to quantify the effect of the pheromone on mating disruption. This method has 

successfully been used to determine the potential of mating disruption in stone fruit against 

Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera:Tortricidae) (Reinke et al., 2014) 
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and other fruit pests [Codling moth, Cydia pomonella (Linnaeus) (Lepidoptera:Tortricidae); 

McGhee et al., 2014]. 

The aim of this study was to quantify mating disruption against FCM in stone fruit and table 

grapes. Here, an adapted experimental design is validated that provides reliable results, 

evaluation of trap position, efficiency of trap layout and comparisons between trapping of wild 

and released moths. As well as being the first attempt to calculate mating disruption against 

FCM in stone fruit and table grapes. 

4.2  Material and methods 

4.2.1 Source of insects  

Thaumatotibia leucotreta were collected as 1-day-old sterile adults from a colony maintained 

at XSIT (Pty) Ltd in Citrusdal, South Africa. Sterile adults were used for the experiments as 

FCM is a priority pest and it would not be acceptable to release unsterilized individuals into the 

fruit orchards. The sterile adults were from the mass reared population maintained at XSIT that 

are used for the sterile insect technique (SIT). The moths were transported in a cooler box to a 

stone fruit orchard either plums, (33°54'26.9"S 18°47'42.7"E, Stellenbosch), or table grapes 

(33°10'09.0"S 18°59'20.6"E, Halfmanshof) to ensure the cold chain was not interrupted. Upon 

arrival, at the experimental plots, the moths were allowed to warm up for 10 minutes after which 

they were released. 

4.2.2 Mark-release-recapture protocol 

Two stone fruit (plum) or four table grape blocks of 0.5 ha were used to conduct all experiments. 

The treatment blocks may be considered relatively small for measuring mating disruption, as 

product labels (Isomate, Nulandis, South Africa) suggest areas larger than 5 Ha should be 

treated for best results. However, when testing mating disruption experimentally it may be 

impractical to use large experimental blocks. Previous studies testing mating disruption 

experimentally use smaller or similar experimental plot sizes than used during this study (Miller 

et al., 2006, Table 1). Smaller (<1 Ha) experimental plots, also have several advantages; 1) 

multiple (at least 4) replications were possible with available time and resources, and 2) there 

is less variability amongst variables that are not being tested, ensuring more consistent results. 

A total of 16 mark recapture releases were conducted in each of the crops. The stone fruit 

releases took place from November 2016 - February 2017 and the table grape releases took 

place from November 2017 - December 2017. Each block consisted of a grid of nine delta traps 
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loaded with FCM female pheromone (Chempac, Simondium, South Africa) and four release 

points (Fig. 4.1). The grid of traps was placed around the release points, all traps were placed 

at least 20 m from the nearest release point and the nine-trap layout was chosen to ensure there 

was no pseudo-replication of inner traps (Suckling et al., 2015). Four release points were chosen 

to ensure that the male moths were evenly distributed throughout the experimental block. Two 

hundred sterile FCM (100 males and 100 females) were released at each of the release points 

and recaptured every 24 h for five days. Sterile moths were marked with different colours (pink, 

yellow, and blue) of fluorescent powder (Day Glo®) that were randomised for each release or 

treatment. No moths were caught in the traps of a different treatment for any of the pre-treatment 

stone fruit trials. Therefore, moths were not marked for subsequent releases. Subsequently, the 

sterile moths were identified by inspection of gut contents, as the rearing facility colours their 

artificial diet with Calco Oil Red® (Royce International, Sarasota, Florida) that colours the gut 

red. Half of the blocks for each crop (i.e. one for stone fruit and two for table grapes) were 

treatment blocks, the other half of the blocks were paired controls. Two releases were done 

simultaneously, one in the treatment block and one in the paired control block. The treatment 

block and paired control block had the exact same design, slope, wind direction (control plot 

upwind from treatment plot) and were chosen 100 m apart. The treatment blocks consisted 

either of a no pheromone treatment (pre-treatment) or 400 point-source polyethylene tube 

dispensers (Isomate FCM 240, lot no. FCM-50393, Shin-Etsu Chemical Co., Ltd., Japan) that 

are formulated commercially and loaded with 240 mg of active ingredients (166.8 mg of E-8-

dodecenyl acetate + 70.8 mg of Z-8-dodecenyl acetate + 2.4 mg of E / Z-8-dodecenol) (post-

treatment) per hectare and the paired control block had no dispensers. The dispensers were hung 

every 7.5 m in the upper (at least 1.8 m high) branches or trellis and corresponded to every ~5th 

tree or vine as they were planted 1.5 m apart and rows were 3 m apart.  
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Fig. 4.1. The layout of the field releases in stone fruit and table grapes to test mating disruption 

against Thaumatotibia leucotreta. Delta traps (yellow triangles) were hung at least 20 m from 

the release points (R). The trap positions of the traps are shown by the code above each trap, 

for instance C4 is the central trap. Panel A) is the layout of the paired control. Panel B) is the 

layout of the treated block, the black dots represent pheromone dispensers. 

 

4.2.3 Temperature data 

Weather station data  

The maximum and minimum temperatures were recorded daily for the stone fruit experiments 

with weather stations that were administrated by the Agricultural Research Council (Agro-

Climatology division) weather stations within a five km radius of the field trial. The average 

daily temperature was calculated by adding the max and min temperatures and dividing by two.  

Microclimate data  

A temperature Thermochron iButton® (Dallas Semiconductors, Model DS1920; 0.5°C 

accuracy) data logger was centrally placed within each of the six table grape experimental plots. 

Temperature was recorded every 15 min and the average temperature was calculated for day 

(06:00 - 19:45) and night (20:00 - 05:45) in table grapes for the duration of the trial. 

4.2.4 Evaluation of experimental design 

Only blocks that received no pheromone were used to evaluate the experimental design.  

BA
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Trap placement and efficiency 

All traps were named according to their position within the trapping grid. The mean number of 

moths caught by each position (e.g. central trap, C4, Fig. 4.1) was calculated for each release 

and compared to that of other trap positions. The total distance (m) the trap positions were away 

from the release points was calculated to determine if distance had an effect on recapture rates. 

The number of moths recaptured in the central trap (C4) was compared to border traps (A4 and 

E4). Trap interference was calculated following Suckling et al. (2015), by dividing the number 

of moths caught in the border traps by the number of moths caught in the central trap. 

Along or across rows 

Moths may fly more readily along a row of trees or vines rather than through the tree row. This 

hypothesis was tested by comparing the number of male moths caught in the traps that ran along 

the row from the release points (Fig. 4.1) to the number of moths caught in traps that required 

the moths to cut through the rows. The moths caught in the central trap (C4) were excluded, so 

that there was a balanced (four traps along and four across) design.  

Wild vs released moths 

To compare the trapping profile of wild and sterile moths, the mean number of recaptured moths 

was calculated for each of the trap positions in the stone fruit blocks that were not treated with 

pheromone. No wild moths were present in the table grape blocks, therefore only data from the 

stone fruit releases were used for this analysis.  

4.2.5 Mating disruption 

The data from the stone fruit and table grape releases were analysed separately. Traps loaded 

with FCM female pheromone were used as a proxy for calling females, as it was assumed that, 

if males were not caught in the traps, they would also not be able to find a calling female. This 

is the standard technique for quantifying mating disruption and has been used for many insects 

including other lepidopterans (Hofmeyr et al., 1991, Stelinski et al., 2004; Miller et al., 2006 a, 

b; Allison and Cardé, 2016). Mating disruption was calculated following Miller et al. (2006b) 

and McGhee et al. (2014) and consisted of two steps.  

Formula 1: Standardized catch 

Catch = (
𝑚𝑎𝑙𝑒𝑠 𝑐𝑎𝑢𝑔ℎ𝑡 𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑏𝑙𝑜𝑐𝑘

𝑚𝑎𝑙𝑒𝑠 𝑐𝑎𝑢𝑔ℎ𝑡 𝑖𝑛 𝑝𝑎𝑖𝑟𝑒𝑑 𝑟𝑒𝑙𝑒𝑎𝑠𝑒
)  
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The standardization accounted for the effect of moth quality, temperature, crop type and other 

possible influences on the recapture rates.  The level of mating disruption was then calculated: 

Formula 2: Mating disruption 

Mating disruption = (1 - 
𝑚𝑎𝑙𝑒𝑠 𝑐𝑎𝑢𝑔ℎ𝑡 𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑏𝑙𝑜𝑐𝑘

𝑚𝑎𝑙𝑒𝑠 𝑐𝑎𝑢𝑔ℎ𝑡 𝑖𝑛 𝑝𝑎𝑖𝑟𝑒𝑑 𝑟𝑒𝑙𝑒𝑎𝑠𝑒
) x 100 

When more individuals were caught in the treatment block than in the control block, formula 2 

provided a negative answer, however, as a negative value is nonsensical, these values were 

therefore reported as 0.  

4.2.6 Statistical analyses 

The statistical analyses were performed using Statistica 12 (Stat-Soft Inc., 2012). If the residuals 

were not normally distributed the data were log(X + 1)-transformed for further analysis. If the 

assumptions (normality and equality) of a one-way analysis of variance (ANOVA) were 

violated irrespective of transformation, the Kruskal-Wallis H-test and Mann-Whitney U test 

were used to separate the means at p < 0.05. When applicable, means were separated using the 

Fisher's LSD method. RStudio version 1.0.143 and R version 3.5.1 (R, 2018), was used to 

illustrate the findings graphically, the packages used were ggplot2, plotly and forcats 

(Wickham, 2016; Sievert, 2018).  

4.3 Results 

4.3.1 Temperature  

Weather station data 

The average temperature in the stone fruit orchard (Fig. 4.2) during November - December 

2016 for the pre-treatment releases (18.77°C ± 0.37°C, Fig. 4.2A) was significantly (Z = -6.09, 

N = 120, p < 0.001) lower than during the post-treatment releases (22.33°C ± 0.31°C, Fig. 4.2B) 

which were conducted during January - February 2017.   
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Fig. 4.2. The daily minimum, maximum and average temperature recorded by several weather 

stations within a five km radius of the stone fruit field trial in Stellenbosch. Panel (A) the 

ambient temperature measured during the pre-treatment releases. Panel (B) the ambient 

temperature measured during the post-treatment releases. The solid (black) line represents the 

average ambient temperature.  

Microclimate data 

The average temperature (21.54°C ± 0.12°C) was marginally higher during the table grape trials 

(November-December 2017), than during the stone fruit trials (20.52°C ± 0.29°C). The average 

night temperature (16.77°C ± 0.1°C), during the table grape field trial (Fig. 4.3) was expectedly 

significantly (Z = -31.37, Nnight = 1295, Nday = 2257, p < 0.001) lower than the average day 

temperature (24.28°C ± 0.15°C), but the day and night temperatures did not differ between the 

pre-treatment (Fig. 4.3A) and post-treatment (Fig. 4.3B) trials.  

A B
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Fig. 4.3. The temperature recorded every 15 min over the 38-day exposure period of the table 

grape field trial in Halfmanshof. Points were coloured for day (red, 06:00-19:45) and night 

(blue, 20:00-05:45). Panel (A) the ambient temperature measured during the pre-treatment 

releases. Panel (B) the ambient temperature measured during the post-treatment releases. The 

solid (black) line represents the average ambient temperature.  

4.3.2 Evaluation of experimental design 

Trap placement and efficiency 

Significantly (F1, 133 = 25.362, p < 0.001) more moths were caught per trap per release in table 

grapes (Fig. 4.4A, 8.69 ± 1.02) than in stone fruit orchards (Fig. 4.4B, 2.92 ± 0.37). However, 

there was no significant (F8, 117 = 1.113, p = 0.360) effect of trap position on the number of 

moths caught between the crops. Position C2 (2.2 ± 0.46) caught the fewest moths in the 

trapping grid, and captured significantly fewer moths than positions A4 (8.07 ± 1.69, p = 0.026) 

and E4 (9.0 ± 2.81, p = 0.039). The position (C4) closest to the release sites captured a similar 

number of moths to the trap positions further away, causing no significant (F3, 131 = 2.172, p = 

0.094) effect of distance on the number of moths recaptured. There was a very weak negative 

association in stone fruit (r = -0.343, p = 0.006) and table grapes (r = -0.216, p = 0.068) of trap 

catches with distance from release site, but it explained almost none of the variation in the 

system (stone fruit, R2 = 0.118; table grapes, R2 = 0.047). The moths caught in the central trap 

did not significantly (F2, 42 = 0.158, p = 0.854) differ from the number caught in border traps. 

A B
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The trapping interference proved to be low (1.1 - 1.23) in our trapping design as the central trap 

caught only 14% less than the border traps. 

 

Fig. 4.4. Mean (± SE) number of Thaumatotibia leucotreta males caught per release (Catch) 

for every position in the trapping grid for the blocks not treated with pheromone. Panel A) 

moths caught in stone fruit, panel B) moths caught in table grapes. Bars are coloured by total 

distance (m) the trap is away from release sites.  Different letters above the vertical bars indicate 

significant differences (p < 0.05). 

 

 

 

 

 

 

A

B 
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Along and across rows 

There was no overall significant (F1, 26 = 0.239, p = 0.469) difference between the number of 

moths caught in the traps along (37 ± 10.06) or across (45.57 ± 11.72) from the release points 

(Fig. 4.5). There was also no significant (p = 0.629) placement (along/across) x crop effect.  

Fig. 4.5. Mean (± SE) number of Thaumatotibia leucotreta caught per release (Catch) in traps 

that were in the same (along, grey) or different (across, gold) rows as the release point for each 

crop. Different letters above the vertical bars indicate significant differences (p < 0.05). 

Wild vs released moths 

The trapping pattern of wild moths and sterile released moths were similar (F8, 108 = 1.246, p = 

0.230) in the pre-treatment releases (Fig. 4.6). Only position C4 caught significantly (p = 0.046) 

more released moths than wild moths during the two month period. 
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Fig. 4.6. Mean (± SE) number of Thaumatotibia leucotreta males caught per release (Catch) 

for every position in the trapping grid. Trapping was conducted in stone fruit blocks not treated 

with pheromone and illustrates data from eight releases over a period of two months. Grey bars 

are wild moths and the gold represents the released sterile moths.   

4.3.3 Mating disruption  

A relatively large proportion of the released sterile moths were recaptured in the control blocks 

(Table 4.1), on average the trapping grid recaptured 13.5% (± 3.14%). The recapture percentage 

was significantly (F1, 13 = 5.712, p = 0.033) higher in table grapes (19.56% ± 4.88%) than in 

stone fruit (6.57% ± 1.53%). The number of moths caught in the pre-treatment control blocks 

was significantly lower than number of moths caught in the post-treatment control blocks in 

stone fruit (Z = -2.924, N = 72, p = 0.003) and table grapes (Z = -3.367, N = 72, p < 0.001). The 

pre-treatment releases all had higher catch in the treatment blocks than in the control blocks 

(Table 4.1), causing mating disruption to be calculated as a negative value and therefore taken 

as 0 (Fig. 4.7). The addition of pheromone dispensers caused a significant reduction in trap 

catches in stone fruit (F1, 70 = 8.975, p = 0.004) and in table grapes (F1, 61 = 16.632, p < 0.001). 

The mating disruption was the highest in table grapes (92.7% ± 1.34%), but did not significantly 

(F1, 11 = 2.488, p = 0.143) differ from the disruption in stone fruit (Fig. 4.7). The post-treatment 

mating disruption of wild moths (79.31% ± 2.07%) was similar to the mating disruption of the 

released moths (86.38% ± 3.43%)  in stone fruit orchards (Fig. 4.7). 
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Table 4.1. The number of released sterile male Thaumatotibia leucotreta recaptured per 

treatment and the standardized catch as a percentage in stone fruit and table grapes. The number 

and standardized catch of wild moths recaptured in stone fruit is provided in brackets. 

 Pre-treatment (0 dispensers) Post-treatment (400 dispensers) 

Crop Control Treatment Catcha  Control Treatment Catcha  

Stone fruit 14 (39) 18 (41) 128.57 (105.13) 28 (64) 5 (14) 17.86 (21.88) 

Stone fruit 3 (9) 7 (9) 233.33 (100) 42 (6) 4 (1) 9.52 (16.67) 

Stone fruit 33 (5) 59 (6) 178.79 (120) 16 (17) 1 (4) 6.25 (23.53) 

Stone fruit 26 28 107.69 48 10  20.83 

Table grapes 32 35 109.38 62 5 8.06 

Table grapes 53 59 111.32 60 2 3.33 

Table grapes 32 38 118.75 189 17 8.99 

Table grapes 62 76 122.58 136 12 8.82 

aCalculated following McGhee et al. (2014), standardized catch = (
𝑚𝑎𝑙𝑒𝑠 𝑐𝑎𝑢𝑔ℎ𝑡 𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑏𝑙𝑜𝑐𝑘

𝑚𝑎𝑙𝑒𝑠 𝑐𝑎𝑢𝑔ℎ𝑡 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑙𝑜𝑐𝑘
) x 100 

 

Fig. 4.7. Mean (± SE) mating disruption of Thaumatotibia leucotreta males in stone fruit and 

table grapes. The blue triangles represent the wild moths and the red dots represent the mating 

disruption of the sterile released moths. No wild moths were present in the table grape 

vineyards. Different letters above the error bars indicate significant differences (p < 0.05). 

Control  

Treated 

with pheromone  
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4.4  Discussion 

Reliable and reproducible results for mating disruption against FCM have historically proven 

to be difficult for two reasons. Firstly, due to little published work and secondly as testing has 

occurred over the long term, trap catches are influenced by several factors including 

temperature and pest density, making it hard to determine the effect of the pheromone. Hofmeyr 

et al. (1991) reported the first evidence of mating disruption being effective against FCM after 

their long-term study in citrus orchards. The current study offers the first experimental evidence 

that mating disruption is also effective against FCM in stone fruit and table grapes. In fact, a 

large percentage (13.5%) were recaptured of the total released moths, allowing the reliable 

calculation of mating disruption in both crops. In table grapes the addition of the pheromone 

worked particularly well to disorientate males and caused high (92%) levels of mating 

disruption. The mating disruption in stone fruit was slightly higher against sterile moths (86%), 

but did not significantly differ from the disruption of the wild (79%) moths.  

The constraint on the experimental design of unknown pest densities can be alleviated by 

releasing a known number of individuals into the environment (McGhee et al., 2014). However, 

this approach also has its limitations, for instance previous mark-release-recapture studies on 

FCM recaptured less than 3% of males with their grid of traps (Visser et al., 2015). These low 

recaptures also cause similar limitations to the reliability of inferences that the traditional design 

has. Another limitation is the inability to reliably correlate temperature to recapture rates. 

Previous studies on Tortricidae have shown that different temperatures between releases may 

influence the recapture rates and the performance of insects (Chidawanyika and Terblanche, 

2011). In the stone fruit control block releases, trap catch had a weak negative (r = -0.343) 

association with temperature and the lower temperatures recorded in the pre-treatment releases 

corresponded to fewer moths caught than in the post-treatment releases. However, though 

temperatures were similar between the pre- and post-treatment releases in table grapes, the 

number of moths caught in the pre-treatment control blocks were still fewer than the number 

caught in the post-treatment control blocks. This disparity indicates that there are other factors 

affecting the trapping efficiency of the moths and highlights the importance of not assuming 

causation from correlation. However, these limitations were improved with this design by 

increasing the number of release points (ensuring uniform distribution of moths), better trap 

placement and including a control to standardize moth quality (Williams et al., 2013).  

Validation of the design showed that total distance away from the release point was not a 

reliable predictor of number recaptured, which is in contrast to Visser et al. (2015) who also 
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marked and recaptured FCM. The trap layout probably contributed to the uniform recapture of 

the moths, as there were few differences between the numbers of individuals caught by the 

different positions in the grid. A constraint of high density trapping is the effect of trap 

interference, where central traps are masked by their neighbouring traps (Suckling et al., 2015). 

Trap interference recorded here was very low (< 1.3) suggesting that central traps were almost 

as efficient as border traps in the grid. An alternative explanation may be that the distance from 

release point and trap interference may be working in contrasting directions, thereby reducing 

their combined effect on recaptures. However, it may also be a result of the four release points, 

rather than a central release (Visser et al., 2015), that ensured the moths were evenly distributed 

throughout the blocks. Contrary to our expectation there was no preferential flight pattern of 

moths, as moths were equally likely to be caught in traps that were along or across the row from 

the release point. A possible explanation for this result is that the moths are flying above the 

crop and may indicate that FCM is a reasonably strong flyer, though direct tests should be 

conducted to confirm this theory. These additional factors that influence trap catches, 

highlighted the importance of including the paired identical release into our experimental 

design and ensured that trapping design did not bias our results for testing mating disruption. 

Relevance of experiments on sterile organisms for deducing wild moths’ behaviour may be 

questioned, as mass reared moths that are subsequently sterilised could have compromised 

performance in the field when compared to wild moths (Nepgen et al., 2015; Boersma and 

Carpenter, 2016). This begs the question of whether sterile moths’ behavioural responses (e.g. 

ability follow pheromone plumes) correspond to that of wild moths. This may be answered by 

considering how the male moth locates a female’s pheromone source, as the male moth must 

first detect the pheromone and then follow it to its source (Cardé, 2016). This behaviour is 

exploited as mate finding and trap finding require the same male attributes. This study found 

there was no difference in the number of wild and sterile moths caught in the different positions 

in our trapping grid. Furthermore, sterile and wild moths shared a trapping pattern (similar 

number of moths in different trap positions), indicating that sterile males are equally capable of 

finding mates/traps and justifies the use of sterile moths in such experiments.  

A limitation of the design is that there is no direct measure of the success or failure of mating 

disruption. As the ultimate goal of mating disruption is the reduction of fruit damage, previous 

studies (Hofmeyr et al., 1991; Ochou et al., 2017) included damage assessments as their direct 

measure of mating disruption. Though feasible, damage may also only be a proxy of mating 

disruption especially against FCM, that is thought to move between fruit crops and therefore 
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damage may be a result of mated females entering the treated area. A more direct measure of 

mating disruption could be achieved by counting the number of spermatophores within the 

female’s bursa (Fadamiro and Baker, 2002). Therefore, as damage assessments have their own 

limitations and were impossible to conduct with this design due to the release of sterile moths, 

it is suggested that future studies should incorporate the counting of spermatophores within the 

released females’ bursa, this will allow pest density estimation as well as a direct measure of 

mating disruption to be obtained. 

Previous work on mating disruption against Lepidoptera have mostly reported success of the 

technique (Miller et al., 2006b; Miller and Gut, 2015). Some studies reported near total mating 

disruption (99.4%, Deland et al., 2004; 99.1%, Tcheslavskaia et al., 2005) with similar methods 

as used here. This indicates that the mating disruption calculated here (86% and 93%) can still 

be improved against FCM, especially as both these studies applied twice as much pheromone 

in their studies.  

From this study, it is clear that mating disruption has potential as a control against FCM in stone 

fruit and table grapes. Though the tests shown here provide a good base for testing and 

calculating mating disruption, there are still a number of questions that need to be addressed. 

Whilst it was shown that the addition of mating disruption is effective, the mechanisms that 

causes FCM males to be disrupted are not fully understood. Miller et al. (2006), proposed that 

moths may be disrupted either competitively (male follows plume to its source) or non-

competitively (male initially follows plume but later becomes disorientated as they approach 

the dispenser/source of synthetic pheromone) and that it is vital to understand this behavioural 

response for proper management of the pest. Another important question for management is 

discerning the optimal dose of pheromone to ensure high disruption with the lowest possible 

cost. Our validated design, helps us address these questions in Chapter 5 and allows us to delve 

deeper into the mechanistic disruption of FCM.  
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Chapter 5: 

 

Mechanisms mediating false codling moth Thaumatotibia 

leucotreta (Lepidoptera: Tortricidae) mating disruption, using 

point-source pheromone dispensers 

Abstract 

False codling moth (FCM) is a polyphagous tortricid moth that is a priority agricultural pest, 

due to its direct crop damage and phytosanitary restrictions. Mating disruption shows potential 

as an environmentally friendly and sustainable control option against FCM in stone fruit, table 

grapes and citrus. However, it is unclear how the technique alters the mate-finding ability of 

FCM and what factors are important to ensure the control’s success. Recent work has indicated 

that Lepidoptera are disrupted either competitively or non-competitively. No studies have yet 

been conducted on FCM to determine its disruptive mechanism. However, studies conducted 

on closely related species have proposed and critically evaluated a framework along with a 

dichotomous key for distinguishing between the two mechanisms. This provides a protocol for 

identifying the underlying disruption mechanism in other species. Here the dosage-response 

profile, the optimal dosage and optimal density was calculated from multiple mark-release-

recapture (MRR) experiments using sterile FCM. Stone fruit and table grape blocks were treated 

with increasing levels of pheromone dispenser densities which allowed the level of disruption 

experienced (FCM caught in treated/untreated blocks) to be calculated. Mating disruption 

proved highly effective in stone fruit and table grapes against FCM, furthermore FCM follows 

a hybrid disruption profile and is disrupted competitively at low dosages and non-competitively 

at higher dosages. The shift to non-competitive disruption resulted in 99% disruption and was 

achieved at a dosage of 192 g/ha of active ingredient and remained effective with as little as 36 

pheromone release sites/ha. Mating disruption is therefore highly recommended to form part of 

the current integrated pest management programme for FCM.   
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5.1 Introduction 

Mating disruption is the broadcasting of female pheromones within an agricultural system so 

as to decrease the reproduction of the pest insect (Miller and Gut, 2015). Mating disruption has 

been used since the 1970’s and has been tested against many agricultural lepidopteran pests 

including Pyralidae, Noctuidae with  around 200+ studies (Evenden, 2016) focussing on the 

control of Tortricidae (Cardé and Minks, 1995; Judd et al., 1997). Though there is variation in 

its effectiveness, with some species easily disrupted (Stelinski et al., 2008) and others requiring 

much higher doses (Miller et al., 2006b), the technique has been proven to be a highly effective 

method (Suckling, 2015). Thaumatotibia leucotreta, false codling moth (FCM) is one of the 

most economically important pests in Africa, as it is a polyphagous tortricid, with multiple 

generations per year (Malan et al., 2018) and no documented diapause to date (Terblanche et 

al., 2014). There is potential for the use of mating disruption against the adult stage of FCM in 

citrus, stone fruit and table grapes (Chapter 4; Hofmeyr et al., 1991). However, as yet it is 

unclear how the technique works against FCM and what mechanisms drive its success or 

failure.  

Much speculation and experimental work has been conducted determining the disruption 

mechanisms involved for Lepidoptera (Cardé et al., 1998; Miller et al., 2006a; Allison and 

Cardé, 2016) and can be divided into two broad classes, namely, competitive disruption and 

non-competitive disruption (Miller and Gut, 2015). Competitive disruption includes 

competitive attraction (false trail following, confusion), induced allopatry (aggregation of 

males close to dispenser), and induced arrestment (reduced search) so its success is dependent 

on pest density as females compete with dispensers for male visitations (Miller and Gut, 2015). 

Non-competitive disruption’s success is not linked to pest density and includes camouflage, 

sensory imbalance (desensitization or sensory blockage) (Cardé and Minks, 1995), shifted 

activity period (Mori and Eveden, 2013; Gerken and Champbell, 2018) and suppressed calling 

(Miller and Gut, 2015).  

These broad classes of mating disruption mechanisms can be differentiated by following 

mathematical and graphical tools proposed by Miller et al. (2006a, b). Miller et al. (2006a) 

suggested that, when competitively disrupted, the catch will drop sharply initially with the 

addition of pheromone dispensers, but additional dispensers will have a diminishing net effect 

on catch. Therefore, the catch does not decrease linearly with additional dispensers, but reaches 

a plateau as dispenser density increases. Contrastingly, under non-competitive disruption, catch 

is expected to decrease linearly with additional dispensers. With these predictions in place, 
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Miller et al. (2006b) reviewed the literature and used data from previous studies to assess the 

overall disruption mechanism at play for Lepidoptera. Of the 13 studies reviewed, the prediction 

of competitive disruption was supported by 11 of the studies, suggesting, with the current 

technology (dispensers), that competitive disruption is the most prevalent mechanism.  

Recently, other studies have used the framework offered by Miller et al. (2006a, b) and revised 

by Miller et al. (2010) to determine the manner in which lepidopteran pests are disrupted, by 

various pheromone dispensers (McCormick et al., 2012; Reinke et al., 2014; McGhee et al., 

2014). Reinke et al. (2014) provided the first experimental evidence that competitive and non-

competitive disruption are not mutually exclusive. In their study, they showed that the 

disruption of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) may 

shift from competitive to non-competitive disruption with high releasing point-source 

pheromone dispensers, while codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) 

continues to be disrupted competitively, even with high releasing aerosol pheromone emitters 

(McGhee et al., 2014).  

To ensure adoption of mating disruption, clarity of the disruption mechanism involved is only 

part of the problem, another obstacle is the efficient or optimal application of the pheromone to 

reduce costs (Lapointe and Stelinski, 2011). Hand applied pheromone dispensers require the 

greatest input of labour and time, as between 500 - 1000 dispensers are applied per hectare 

depending on pest and crop treated (Witzgall et al., 2008). A popular method to reduce the 

application costs is to reduce the number of pheromone sources or pheromone sites/ ha. For 

instance, the use of puffers reduces the pheromone sites from 500 - 1000 uniformly distributed 

sites per hectare to as little as five with disruption remaining effective (+ 90% disruption, 

McGhee et al., 2014). Another approach is to leave sections of the orchard untreated (referred 

to as intentional gaps) thereby reducing the pheromone sites, dose and application costs 

(Tcheslavskaia et al., 2005; Lapointe and Stelinski, 2011).  

The aim of this study was to reveal the mechanism employed by FCM to result in mating 

disruption and to identify the optimal application of the pheromone dispensers in stone fruit and 

table grapes. Dosage-response profiles, optimal dosage and optimal density were determined 

using the framework of Miller et al. (2006a, b, 2010) to show that 1) FCM has a hybrid 

disruption profile, 2) FCM is disrupted competitively at low dosages and non-competitively at 

high dosages, 3) optimal dosage is 192 g/ha, and 4) optimal density is 36+ pheromone sites. 
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5.2 Material and methods 

5.2.1 Source of insects  

Thaumatotibia leucotreta were collected as 1-day-old sterile adults from a mass reared 

population maintained at XSIT (Pty) Ltd in Citrusdal, South Africa (see Chapter 4.2.1). The 

moths were transported in a cooler box to the stone fruit (33°54'26.9"S 18°47'42.7"E, 

Stellenbosch) or table grapes (33°10'09.0"S 18°59'20.6"E, Halfmanshof) to ensure the cold 

chain was not interrupted. Upon arrival at the experimental plot the moths were allowed to 

warm up for 10 min after which they were released. 

5.2.2 Mark-release-recapture protocol 

The data from Chapter 4 was used along with additional 34 releases, therefore data from 48 

releases were analysed in this chapter. The release protocol described and tested in Chapter 4 

was followed. Briefly, experiments were conducted in 0.5 ha blocks of either stone fruit (plum) 

(November 2016 - April 2017) or table grapes (November 2017 - January 2018). Each block 

had a grid of nine Delta traps loaded with the Chempac FCM lure (L7254, Chempac, 

Simondium, South Africa) and 200 sterile FCM (100 males and 100 females) were released at 

one of four sites per 0.5 ha block (Fig. 4.1). Each release had its own paired release/control and 

sterile males were recaptured every 24 h for five days. Treatments consisted of either no 

pheromone dispensers or a specific number of point-source polyethylene tube dispensers 

(Isomate FCM 240, lot no. FCM-50393, Shin-Etsu Chemical Co., Ltd., Japan) that are 

formulated commercially and loaded with 240 mg of active ingredients (166.8 mg of E-8-

dodecenyl acetate + 70.8 mg of Z-8-dodecenyl acetate + 2.4 mg of E / Z-8-dodecenol). The 

release rate of these dispensers is reportedly 50 - 60 µg h-1 and considered as high releasing 

dispensers (Witzgall et al., 2008; Reinke et al., 2014), though this was not measured in this 

study. Unless stated otherwise, dispensers were hung uniformly throughout the experimental 

block in the top 0.5 m of the tree or vine (at least 1.8 m above the ground). 

5.2.3 Dosage response  

The dosages included 0, 200, 400, 600, 800, 1600 dispensers per ha, that is equivalent to 0, 48, 

96, 144, 192 and 384 g of active ingredients/ha, respectively. All treatments were repeated at 

least four times (releases), except treatments of 0, 400 and 800 dispensers per ha, which were 

repeated eight times. Currently the recommended field dosage for stone fruit and table grapes 

is 600 dispensers/ha (Isomate™ FCM, Nulandis, South Africa). 
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Optimal dosage 

Mating disruption was calculated for each of the different dosages using formula 4.2 (Chapter 

4) and following Miller et al. (2006b). The optimal dosage was calculated as the point where 

additional pheromone dispensers did not cause a significant increase in disruption. This will 

ensure that the additional pheromone justifies the additional cost and that the best disruption is 

achieved with the lowest financial input. 

Competitive vs non-competitive disruption 

In accordance with Miller et al. (2006a, b), Miller et al. (2010) and Miller and Gut (2015) the 

treatment means (± SE) were calculated for catch, 1/catch and dispenser density (number of 

point sources) multiplied by catch. The calculated data from the releases were then fitted to an 

untransformed plot (Fig. 5.1A), the Miller-Gut plot (Fig. 5.1B) and the Miller-de Lame plot 

(Fig. 5.1C). Each of the mechanisms has a distinctive theoretical dosage-response profile on 

each of the plots, which were used to differentiate between the two mechanisms in this study 

(Miller and Gut, 2015). The theoretical profiles were drawn for each of the mechanisms, the 

green line represents the predicted profile of competitive disruption, whereas the blue line 

represents the predicted profile of non-competitive disruption (Fig. 5.1). The line that best fitted 

the dosage-response profile in each scenario was chosen following Reinke et al. (2014), which 

compared the R2 values of the lines. The catch referred to here is the standardized catch (formula 

4.1, Chapter 4) which is the mean number of males caught per release relative to its paired 

control, divided by the number of traps, so that catch equals the relative number of males caught 

per trap per release. All calculations were done per ha. The data from table grape and stone fruit 

blocks were pooled as they did not significantly (p > 0.05) differ within treatment. 
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Fig. 5.1. The theoretical profiles drawn for each of the mechanisms. The solid green line 

represents the predicted profiles of competitive disruption, whereas the dotted blue line 

represents the predicted profiles of non-competitive disruption. Panel A) untransformed data, 

competitive disruption has a diminishing net effect of each additional dispenser. Panel B) 

Miller- Gut plot, panel C) Miller-de Lame plot (most stringent test of the three), competitive 

disruption has a negative slope and non-competitive will be best fit with a quadratic function. 

5.2.4 Density response 

Optimal density 

Due to the use of point-source pheromone dispensers, there was an inherent problem with our 

design, namely that to increase the dosage I also had to increase the number of point sources. 

To tease apart the respective influences of dosage and the number of pheromone sources, an 

experiment was conducted with a constant dosage of 800 dispensers (192 g) per hectare. The 

800 dispenser dosage was chosen for two reasons 1) calculated as the optimal dosage, and 2) 

shown in dosage experiment as point where disruption shifts to non-competitive disruption. 

Stellenbosch University  https://scholar.sun.ac.za



 

95 

 

Dispensers were not uniformly distributed throughout the experimental block, rather the 

dispensers were clustered into a certain number of pheromone release sites. The clusters were 

made by attaching a number of dispensers to a modified wire hanger (Fig. 5.2). Dispensers were 

spaced evenly along hanger to allow for proper functioning of the dispensers. Pheromone 

release site densities included 0, 9, 18 and 36, which were compared to 800 individual 

dispensers uniformly distributed throughout the block.   

Fig. 5.2. A diagram of the modified wire hanger (left) with a number of pheromone dispensers 

attached and right) the modified wire hanger in a table grape vineyard that was used to test the 

density response whilst keeping the dosage constant.   

Confirmation of non-competitive disruption 

To confirm that the dosage equivalent to 800 dispensers/ha was in fact the point where 

disruption switches from competitive to non-competitive disruption as shown (section 5.3.1), 

the profile analysis was repeated on the density response results. The profile analysis was 

conducted as described above (section 5.2.3).  

5.2.5 Statistical analyses 

The statistical analysis was performed using Statistica 12 (Stat-Soft Inc., 2012). If the residuals 

were not normally distributed the data were log(X + 1)-transformed for further analysis. If the 

assumptions (normality and equality) of a one-way analysis of variance (ANOVA) were 

violated irrespective of transformation, the Kruskal-Wallis H-test and Mann-Whitney U test 

were used to separate the means at p < 0.05. When applicable, means were separated using the 

Fisher's LSD method. TableCurve 2D (version 5.01.02) (SYSTAT Inc, San Jose, California, 

USA) was used to fit expected dosage-response profiles and calculate the coefficient of 

determination (R2) for linear and non-linear equations. RStudio version 1.0.143 and R version 

3.5.1 (R, 2018), was used to illustrate the findings graphically, the packages used were ggplot2, 

plotly and forcats (Wickham, 2016; Sievert, 2018).  
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5.3 Results 

5.3.1 Dosage response 

Optimal dosage 

The mating disruption of all dosages were significantly (p < 0.001) higher than that of the 

control (Fig. 5.3). The lowest dose (200/ha) tested in stone fruit caused high (82.36% ± 4.19%) 

disruption and did not differ significantly (df = 25, p = 0.848) from the recommended field 

dosage (600/ha) for stone fruit. The level of disruption was slightly higher in table grapes than 

in stone fruit, but did not significantly differ for the 400/ha, (p = 0.323) or 800/ha (p = 0.281) 

treatments. There was an initial increase in mating disruption that remained constant (82 - 92%) 

up to the 600/ha dosage. However, the increase to 800/ha caused a significant increase of mating 

disruption (96 - 99%) in stone fruit (800/ha > 600/ha, p = 0.007) and table grapes (800/ha > 

400/ha, p = 0.045). The highest dosage in table grapes (1600/ha) did not significantly (p = 

0.958) differ from the 800/ha and caused less than 100% mating disruption. Increasing the 

number of pheromone dispensers above 800/ha did not cause an increase in the realized 

disruption, therefore the optimal dosage was 800 dispensers/ha. 

Fig. 5.3. Mean mating disruption (± SE) of Thaumatotibia leucotreta in stone fruit (dots) and 

table grapes (triangles) calculated as number of moths caught in treated block / number of males 

caught in the control block. Coloured points refer to the number of pheromone dispensers per 

hectare. Different letters above the vertical bars indicate significant differences (p < 0.05). 
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Competitive vs non-competitive disruption 

The untransformed plot (Fig. 5.4) showed an initial sharp drop in trap catches from 0 to 200 

dispensers per ha, after which trap catches plateau. The data most closely resembled a decaying 

exponential curve (R2 = 0.783, solid black line) compared to the negative linear slope (R2 = 

0.397), illustrating the diminishing net effect (reduction of catch) of each additional dispenser. 

The 800 and 1600/ha dispenser (dark blue and pink points) were slightly lower than would be 

expected (see Fig. 5.1) under purely competitive disruption. However, most evidence for this 

plot supported the predictions of competitive disruption. 

 

Fig. 5.4. Untransformed plot from dosage response results, that sets catch of Thaumatotibia 

leucotreta against dispenser density. The capital letter (A) in the top left corner indicates the 

plot which it refers to of the theoretical profile analyses process. The equation is for the line 

(solid line) of best fit. Different colours represent the number of Isomate™ dispensers/ha. The 

error bars indicate the standard error of the mean. 

The inverse of catch is strongly correlated (r = 0.973, p = 0.001) with number of point sources 

(Fig. 5.5). A positive linear model (solid black line, R2 = 0.947) better fit the data than the 

exponential model (R2 = 0.771). The Miller-Gut plot therefore most closely follows the 

predictions of competitive disruption.  

y = 1328.5-0.8183x 
R2 = 0.783 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

98 

 

 

Fig. 5.5. Miller-Gut plot from dosage response results of Thaumatotibia leucotreta that sets the 

inverse of catch against dispenser density. The equation is for the line (solid line) of best fit.  

Different colours represent the number of Isomate™ dispensers/ha. The error bars indicate the 

standard error of the mean. 

Contrastingly, when data are shown on the Miller-de Lame plot (Fig. 5.6) there is a distinctive 

re-curve at dosages higher than 600/ha, which provides strong evidence for non-competitive 

disruption. This is strengthened by the weak negative association (r = -0.422) and the quadratic 

function (R2 = 0.624) that was the best fit for the data. However, the inflection point here is 

much lower than theoretically predicted (0.5 of max catch, Miller and Gut, 2015) under non-

competitive disruption. The simultaneous consideration of these findings indicate that 

competitive disruption is prevalent at lower (< 600/ha) dosages, however, at the higher (800+ 

/ha) dosages non-competitive disruption is better supported. 

y = 0.0017x + 0.2274 

R2 = 0.947 
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Fig. 5.6. Miller-de Lame plot from dosage response results, that sets catch calculated as number 

of male Thaumatotibia leucotreta moths per trap per release caught in treated block against 

catch multiplied by the dispenser density. The hand drawn dashed line illustrates the distinctive 

recurve predicted for non-competitive disruption. Different colours represent number of 

Isomate™ dispensers/ha. The error bars indicate the standard error of the mean.  

5.3.2 Density response 

Optimal density 

There was a significant (F4, 11 = 105.93, p < 0.001) effect of number of pheromone sites (density) 

on the mating disruption in table grapes (Fig. 5.7), however, the control did not significantly (p 

= 0.058) differ from the lowest density (nine pheromone sites; 14.77% ± 8.97%). Using 18 

pheromone sites (64% ± 17.04%) per hectare caused significantly (p < 0.001) higher mating 

disruption than nine pheromone sites and the control, but caused significantly lower disruption 

than 36 (p = 0.01) and 800 (p < 0.001). There was no significant difference in disruption 

between 36 pheromone sites (91.21% ± 5.21%) and 800 (98.81% ± 1.19%) uniformly 

distributed pheromone dispensers. 
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Fig. 5.7. Mean mating disruption (± SE) of Thaumatotibia leucotreta males in table grapes. 

Treated blocks had 800 Isomate™ dispensers/ha that were either clustered (9, 18, 36 sites/ha) 

or singly (800 sites/ha) distributed throughout vineyard. Different letters above the vertical bars 

indicate significant differences (p < 0.05). 

Confirmation of non-competitive disruption 

Catch decreased significantly, and had a strong negative (r = -0.964, p = 0.036) association, 

with increasing pheromone sites (Fig. 5.8A). The linear model (R2 = 0.93) was a better fit than 

the exponential model (R2 = 0.817). The linear model shows that additional release sites have 

an equal nett effect of disruption, furthermore it is graphically similar and follows the 

predictions of the non-competitive disruption profile (Fig. 5.8A, blue). The Miller-Gut plot 

(Fig. 5.8B) also provides evidence for non-competitive disruption as the exponential model (R2 

= 0.998) was a better fit than the linear model (R2 = 0.873). There was a distinctive recurve 

present on the Miller-De Lame plot (Fig. 5.8C) making it graphically similar to the theoretical 

profile for non-competitive disruption (Fig. 5.8C, blue). Furthermore, it was better fit with a 

quadratic function (R2 = 0.718) than with a negative linear model (R2 = 0.034). The inflection 
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point on the Miller-De Lame plot is similar to half of maximum catch (as predicted). All three 

plots offer evidence for non-competitive disruption for the density response data (Fig. 5.8).  

 

Fig. 5.8. The catch of Thaumatotibia leucotreta from the density response experiments in table 

grapes, A) Untransformed plot, B) Miller-Gut plot, C) Miller-de Lame plot. Different colours 

represent number of Isomate™ dispensers/ha. The error bars indicate the standard error of the 

mean. The plots in blue on the right represent the theoretical profiles for non-competitive 

disruption (adapted from Miller and Gut, 2015).   
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5.4  Discussion 

This study provides novel insights into the behavioural mechanisms of FCM under mating 

disruption. FCM’s disruption profile (Fig. 5.6C) closely follows the predictions of the hybrid 

disruption profile (Fig. 6C of Miller and Gut, 2015), suggesting that FCM is likely disrupted 

competitively at low doses and non-competitively at high doses. Miller and Gut (2015) 

suggested that the hybrid profile may be as a result of some males being disrupted non-

competitively and others impacted competitively, due to poor coverage of the pheromone. If 

this was true, the uniform distribution of the pheromone would be important to cause the shift 

to non-competitive disruption. However, from our density response trial, in which the 

pheromone was not uniformly distributed but rather released at few pheromone sites, it is clear 

that FCM was disrupted non-competitively. A similar result was found by Reinke et al. (2014) 

that showed it was possible to shift Oriental fruit moth disruption to a non-competitive response 

at higher dosages. In contrast, codling moth remains competitively disrupted even under very 

high dosages (Miller et al., 2010; McGhee et al., 2014). This indicates that even closely related 

species may respond differently in various scenarios to the addition of pheromone (Miller and 

Gut, 2015). In this study, FCM disruption shifted from competitive disruption to non-

competitive disruption at 800 dispensers per hectare. This is a promising result as the ability to 

disrupt moths non-competitively has been suggested to contribute to of the efficiency of 

controlling the pest (Gut et al., 2004, Reinke et al., 2014; Miller and Gut, 2015) as disruption 

is not affected by the asymptotic effect that is prevalent with competitive disruption (Miller et 

al., 2006b; McGhee et al., 2014).   

Mating disruption proved to be very effective (up to 99%) against FCM and confirms our 

findings from Chapter 4. Interestingly, the realized disruption remained constant from 200 

dispensers/ha to 600/ha and only substantially improved at 800/ha. In fact, the disruption shown 

in Chapter 4 (86% stone fruit, 93% table grapes), was improved dramatically (+ 10% stone fruit 

and + 6% table grapes) by increasing the number of dispensers to 800/ha. This extra increase 

in disruption is suggested to be as a result of disruption shifting from competitive to non-

competitive disruption.  

The optimal dosage (800 dispensers per ha or their equivalent release rate) found in this study, 

has a two-fold result and the best option will depend on the practitioner. The first option is to 

increase the dosage, this will have a synergistic effect, causing a significant increase in 

disruption and additionally it will cause a shift to non-competitive disruption making it effective 

even under very high pest densities (Miller and Gut, 2015). The synergistic increase in 
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disruption seen here may be as a result of altering calling behaviour of the female (Stelinksi et 

al., 2014) or delayed mating (Gerken and Campbel, 2018) that both occur under non-

competitive disruption. The delayed mating decreases mating success thereby reducing 

fecundity causing a steady decline of the reproductive performance of the pest (Amaoh et al., 

2018) and should therefore be explored further for FCM. However, if the practitioner does not 

deem the extra disruption worthwhile for the additional cost, it would be better to reduce the 

dosage, to 200 - 400 dispensers per ha as the disruption with these dosages does not differ from 

the current recommended (600/ha) dosage although new registration would be required. 

Another option to offset the cost of the additional dosage is by changing the method of 

application to include intentional gaps and have fewer pheromone sites (Lapointe et al., 2014). 

Optimizing mating disruption by the reduction of pheromone sources or pheromone sites 

without the loss of disruption may prove to be difficult, especially with pests disrupted 

competitively (Witzgall et al., 2010). The reduction of pheromone sites by clustering 

pheromone dispensers simultaneously decreases the number of pheromone sites and increases 

the release rate per site (Miller et al., 2006b). Therefore, even though each pheromone site is 

causing a proportionally higher disruption, it may lead to reduced overall disruption. For 

instance, Suckling and Angerelli (1996), targeting light brown apple moth (Epiphyas 

postvittana), which has been shown to be disrupted competitively (Miller et al., 2006b), held 

200 dispensers per ha constant, whilst varying number (0, 2, 18, 200) of clusters and reported 

10% less disruption with 18 clusters opposed to 200 uniform dispensers, significantly reducing 

the overall treatment potency. However, here it was shown that disruption of FCM remained 

high (91%) with as few as 36 pheromone sites/ha and caused similar disruption as 800 

uniformly distributed pheromone dispensers. I suggest that when the pest is disrupted non-

competitively the number of pheromone sites may be reduced without the loss of disruption, as 

the dispensers do not compete with females for male visitations. Furthermore, I suggest that the 

potency of the overall treatment seen in the present study illustrates that incorporating 

intentional gaps (Tcheslavskaia et al., 2005), is likely to be effective against FCM.  

Mating disruption is highly effective against FCM in stone fruit and table grapes. It is suggested 

that the release rate of the dispensers is measured using gas chromatography and that the 

equivalent active ingredients released by 800 dispensers per hour is calculated so that the exact 

amount of active ingredient required in the system to shift FCM to non-competitive disruption 

can be determined. Therefore, it is suggested that the active ingredients released per hour 

equivalent to 800 dispensers per hectare should be used against FCM and that with as few as 
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36 pheromone sites/ha disruption will remain effective. Furthermore, due to FCM being 

disrupted non-competitively at higher pheromone dosages, it will remain an effective control 

strategy even with high pest densities. The adoption of this technique into the current integrated 

pest management programme is highly recommended.  
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Chapter 6:  

General Discussion 

 

Integrated pest management (IPM) was born from the knowledge that no “silver bullets” exist, 

therefore this management method strives to better serve the long term by utilising multiple 

techniques and to tailor the control to specific species. False codling moth (FCM), 

Thaumatotibia (= Cryptophlebia) leucotreta (Meyrick) was first reported in citrus by Fuller 

(1901), since then much research has been conducted on its biology, ecology and control. 

Despite this, FCM remains a priority pest in South Africa causing direct crop damage and 

posing phytosanitary restrictions. FCM’s persistence in the agricultural system is likely due to 

its highly polyphagous nature (over 70 hosts), rapid life cycle and cryptic immature stages 

(Chapter 1). This coupled with the mobility of adults could allow FCM to utilise many different 

niches, making the choice of an appropriate control technique difficult (Chapter 1). 

 Understanding the ecology and the life cycle of the target insect pest is of utmost importance 

for the successful implementation of IPM (Botrell and Smith, 1982). This information can be 

used to determine the best stage of the life cycle to target and then investigate the potency of 

various control techniques to attack that stage. Chapter 1 suggested that the use of 

entomopathogens be investigated against the immature stage of FCM, whilst the addition of 

synthetic female pheromone could be used to disrupt males’ mate-finding behaviour and thus 

limit the number of individuals in subsequent generations. 

 

6.1 Synopsis of Findings 

To realise the full potential entomopathogenic nematodes (EPNs) and entomopathogenic fungi 

(EPF) against FCM it is important to determine what local species are present in our agricultural 

soils. The use of a local species as a biopesticide would be advantageous, due to their better 

performance at warm temperatures and as they can be used without introducing exotic species 

into our soils that may have other negative impacts (Malan et al., 2018). Another advantage of 

a local species is that they have the proven ability to survive under conventional management 

techniques; in fact more than a third of the areas surveyed in this study tested positive for 

entomopathogens. Four different EPN species were isolated, cultured and identified from the 

soil survey, which included the first South African detection of Oscheius microvilli, the second 
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report of Heterorhabditis indica, while other species isolated include H. zealandica and H. 

bacteriophora. Several EPF strains were also recovered from the soil survey, which included 

Metarhizium anisopliae and Beauveria bassiana.  

The species recovered from the local soils proved to be virulent against the immature stages of 

FCM. This study is the first to report the susceptibility of FCM eggs to EPNs, this novel finding 

may have potential as a control option. Firstly, reduction of new entries into the population will 

reduce the speed with which the population grows (Simberloff, 2009) and secondly as the larvae 

are killed before they leave the egg, therefore no damage will be made to the fruit ensuring they 

remain viable for marketing and export. Above ground application of EPNs may prove difficult, 

though the use of adjuvants do help limit desiccation and may improve the performance of the 

EPNs (Shapiro-Ilan et al., 2010; Platt, 2019). To reduce the desiccation stress, another option 

could be to use symbiotic bacteria or supernatants (also virulent against the eggs, Chapter 2) of 

the EPNs as a post-harvest control, this will further reduce the chance of larvae boring into the 

fruit once packed and becoming phytosanitary concerns.  

The below ground stages (larvae and pupae) were both susceptible to EPNs, however the EPNs 

caused only low mortality of the pupae and other techniques should be investigated against this 

stage. A possible solution could be to use EPNs in combination with EPF to control the pupae, 

this combination has been shown to work well (additive and synergistic effect) against other 

pests as the entomopathogens have similar ecological niches and modes of action (Batalla-

Carrera et al., 2013; Bueno-Pallero et al., 2018). Both the EPNs and EPF strains were tested 

against the larval stage of FCM and proved highly virulent. EPNs were especially potent with 

Steinernema yirgalemense repeatedly causing 100% mortality in all laboratory trials and was 

therefore selected for further testing in the field to fully understand its benefit as a part of an 

IPM programme.  

The use of EPNs for field trials and commercial application requires large quantities of 

nematodes. In this study EPNs, currently cultured in vitro by Stellenbosch University were 

used, however, before field trials could commence the virulence of in vitro cultured EPNs were 

assessed. As in vitro cultured EPNs have not been tested against FCM before, comparisons 

were made between in vitro and in vivo cultures. It was expected that the in vitro virulence 

would be lower than in vivo cultured EPNs as in vivo more closely resembles the natural process 

and has been shown to produce higher quality nematodes (Shapiro-Ilan and Gaugler, 2002; 

Ferreira et al., 2014). However, the laboratory tests revealed that the EPNs cultured in vitro for 

the field trials had similar virulence to the in vivo cultured EPNs. This novel finding is likely 
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due to the high quality of the symbiotic bacteria that are cultured for the in vitro EPNs ensuring 

the EPNs are in optimal condition (Dunn et al., 2018).  

The field trials mirrored the laboratory results in providing similar control of FCM to previous 

field trials that used in vivo cultured EPNs (Malan and Moore, 2016) and caused mortality of 

more than two thirds of the FCM larvae after 48 h. The EPNs also managed to persist (as 

expected) and provided control for longer than four weeks. This was two weeks longer than 

reported by previous studies. The potency of the EPNs was further realised by the low 

concentration 20 IJs/cm2 remaining effective against the larvae. As shown in the laboratory in 

Chapter 2, S. yirgalemense proved to be the most effective species against the larvae in the 

field, however, this only became evident three weeks after the EPN was applied. In this study 

S. yirgalemense is thought to have persisted longer due to its inactivity (as observed when 

stored) allowing to retain its virulence longer. This highlights the importance of testing not only 

the immediate effect, but also the persistence of the biological agent as differences may be seen 

at different time points. The promising results shown in this study of the entomopathogens, 

especially the EPNs against the immature stages of FCM, encourages the use of the biologicals 

as part of the IPM system.  

The potential of mating disruption was explored against FCM to reduce population growth 

(viable eggs), by limiting reproductive events. However, though mating disruption has been 

proven to be an effective and sustainable method worldwide (Miller and Gut, 2015; Suckling, 

2015), limited work has been conducted in South Africa especially against indigenous pests (cf. 

Hofmeyr et al., 1991). It was therefore prudent to first establish and evaluate an appropriate 

experimental design that would lead to reliable results. In Chapter 4, several features of the 

experimental design proved to be beneficial. Firstly, the nine trap layout in the trapping grid 

which ensured a higher percentage of recaptured moths than in previous studies on FCM (Visser 

et al., 2015) and other Tortricidae such as codling moth, (McGhee et al., 2014). Secondly, the 

four release points ensured the moths were equally distributed throughout the experimental 

block. Lastly, the inclusion of the paired control allowed only one variable to be changed at a 

time (pheromone present or not) and facilitates relevant comparisons between the different 

treatments. Using the evaluated experimental design, this study provides the first evidence that 

mating disruption does disorientate (80 – 90% trap reduction) FCM males in both stone fruit 

and table grapes. However, the mating disruption calculated in this study was lower than 

achieved in previous studies against other Tortricidae (Stelinski et al., 2008; Miller et al., 2010; 

Reinke et al., 2014). This highlighted that mating disruption can be improved against FCM. 
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To improve mating disruption against FCM several factors were investigated, firstly chapter 4 

had shown that mating disruption does disorientate male FCM, although how FCM males were 

disrupted remained unclear. With the use of the quantitative tools proposed and evaluated by 

Miller et al. (2006a, b), Chapter 5 proved that FCM is disrupted competitively at low dosages, 

however if the dosage is increased to the equivalent of 800 dispensers of active ingredient (AI) 

per hectare (AI) it shifts to non-competitive disruption. The shift to non-competitive disruption 

is still evident at 800 dispensers/ha even when as few as 36 pheromone release sites were used. 

The shift to non-competitive disruption with the higher dosage, caused the mating disruption to 

increase to 96% in stone fruit and 99% in table grapes. This is similar to the disruption that is 

achieved against the Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera:Tortricidae) 

that is considered a good target for mating disruption (Reinke et al., 2014; Miller and Gut, 

2015), especially with high releasing pheromone dispensers.  

Though the benefit of increasing the dosage is clear, the additional cost will probably not appeal 

to practitioners. However, these additional costs may be offset by how the pheromone is applied 

(as discussed in Chapter 5). For instance, labour costs may be saved by reducing the pheromone 

release sites to 36 instead of the 800 per hectare. Another option is to use the FCM hybrid 

disruption profile to our advantage, by keeping dosages low, FCM will be disrupted 

competitively (i.e. success density dependent) and then use other techniques to increase the 

pheromone in the system. A recent approach is the use of mass reared insects to increase the 

number of point sources in the system (Suckling et al., 2011), in the case of FCM two options 

can be utilised to achieve this. Firstly, sterile FCM females may be released into the landscape 

that can serve as mobile pheromone dispensers that may lead to a synergistic relationship 

between mating disruption and the sterile insect technique. A second novel technique that has 

been tested by Suckling et al. (2011) and shows great (82 - 95 % disruption, but only lasts 4 

days) promise is impregnating mass reared sterile fruit flies with the moth pheromone and 

releasing them into the landscape, this technique has the advantage of being even more 

environmentally friendly and sustainable (no use of plastic dispensers) and targeting two pests 

simultaneously. Lastly, the high mating disruption with the few pheromone sites shown in this 

study, suggests that new technology such as aerosol emitters (also referred to as “puffers”) 

could prove very effective against FCM. These aerosol emitters or “puffers” can be 

programmed to dispense the pheromone only whilst moths are calling (reducing waste of 

pheromone release in the day by conventional dispensers) and at a high release rate (McGhee 

et al., 2014). An additional benefit of this technology is that the stocking density is very low (5 

- 20/ha) which is a valuable attribute when using the control over large areas or even for area 
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wide control. Unfortunately, this technology is not yet commercially available in South Africa 

for FCM, but the evidence from this study may encourage the product to become commercially 

available in future.  

 

6.2 Future directions 

The benefit of IPM to manage insecticide resistance should be explored against FCM. Insects 

may become resistant to insecticides due to individual tolerances, repeated use of a single 

approach or the sub-lethal application of the insecticide. However, by including alternate 

controls such as entomopathogens or mating disruption (Caprio and Suckling, 1995), the 

tolerant insects are, as likely to be removed from the population as the less tolerant individuals, 

thereby increasing the time to resistance build-up. In fact, the addition of mating disruption may 

even exclude the resistant individuals entirely from the gene pool, as resistance to insecticides 

has been shown to decrease calling ability in Lepidoptera (McNeil, 1991). Suggesting that 

insecticides and mating disruption may have a synergistic relationship, and should be further 

investigated for FCM. 

The ultimate goal of mating disruption is the reduction of crop damage; therefore, it is suggested 

that the dosages shown here to disorientate FCM males are tested under natural conditions. 

These experiments should incorporate damage assessments and some measurement of female 

emigration so that mating disruption can be measured directly and so further improve our 

understanding of mating disruption in commercial orchards.  

Now that it has been shown that FCM has a hybrid disruption profile this information can be 

used to our advantage, for instance, non-competitive disruption remains effective even under 

very high pest densities (99% mating disruption, 400 males/ha, Chapter 5). However, though 

FCM was shown to be disrupted non-competitively at higher doses, the exact way in which this 

may manifest is not yet clear and should be studied in future. Previous studies on other 

lepidopterans found evidence for; sensory imbalance (desensitization or sensory blockage) 

(Cardé and Minks, 1995), shifted activity period (Mori and Eveden, 2013; Gerken and 

Campbell, 2018) and suppressed calling (Miller and Gut, 2015). The results found in this study 

will provide future researchers with a solid foundation from which to start their investigations.  

The potential of FCM to move in and out of different crops (as discussed in Chapter 1), may 

reduce the realised benefit of mating disruption, as previously mated females may enter the 

orchard/vineyard and deposit viable eggs on the fruit. This will result in damage still occurring 
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even though mating disruption is working optimally. To combat this many studies advocate the 

use of mating disruption only over large areas, however, another option is by treating the edge 

of the orchard/vineyard with a repellent. It is suggested that moth repellents synthesised from 

plant volatiles should be identified, as has been done for other Lepidoptera (see De Moraes et 

al., 2001), and tested by qualitative studies in semi-field and field environments. If compounds 

exist to repel FCM females it is likely that their use, along with the use of the control techniques 

evaluated in this study, should entirely exclude the pest from agricultural crops. 

6.3 Concluding remarks 

A challenge for the effective control of insect pests is to tailor the IPM programme to suit the 

specific insect.  Investigating which control techniques are suitable or not for specific life stages 

is an integral part of the problem. From this study, valuable knowledge on the susceptibility of 

the immature life stages of FCM to entomopathogens (Chapters 2 and 3) has been gained, and 

showed that mating disruption is a valuable control option (Chapters 4 and 5) to disrupt the 

mate finding ability of FCM males. It is clear from this study that with the integration of these 

techniques FCM can be effectively controlled at each stage of the life cycle, ensuring low 

population growth that may lead to the successful suppression of this infamous pest.    
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