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Abstract

Equity-based insurance guarantees also known as unit-linked annuities are an-
nuities with embedded exotic, long-term and path-dependent options which
can be categorised into variable and equity indexed annuities, whereby in-
vestors participate in the security markets through insurance companies that
guarantee them a minimum of their invested premiums. The difference between
the financial options and options embedded in equity-based policies is that fi-
nancial ones are financed by the option buyers’ premiums, whereas options
of the equity-based policies are financed by also continuous fees that follow
the premium paid first by the policyholders during the life of the contracts.
Other important dissimilarities are that equity-based policies do not give the
owner the right to sell the contract, and carry not just security market related
risk, but also insurance related risks such as the selection rate, behavioural,
mortality, others and the systematic longevity. Thus equity-based annuities
are much complicated insurance products to precisely value and hedge. For
insurance companies to successfully fulfil their promise of eventually returning
at least initially invested amount to the policyholders, they have to be able to
measure and manage risks within the equity-based policies. So in this thesis,
we do fair pricing of the variable and equity indexed annuities, then discuss
management of financial market and insurance risks management.
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Uittreksel

Aandeel-gebaseerde versekering waarborg ook bekend as eenheid-gekoppelde
annuiteite is eksotiese, langtermyn-en pad-afhanklike opsies wat in veranderlike
en gelykheid geindekseer annuiteite, waardeur beleggers neem in die sekuriteit
markte deur middel van versekering maatskappye wat waarborg hulle ’n min-
imum van geklassifiseer kan word hulle belê premies. Die verskil tussen die
finansiële opsies en opsies is ingesluit in aandele-gebaseerde beleid is dat die
finansiële mense is gefinansier deur die opsie kopers se premies, terwyl opsies
van die aandele-gebaseerde beleid word deur ook deurlopende fooie wat volg op
die premie wat betaal word eers deur die polishouers gefinansier gedurende die
lewe van die kontrakte. Ander belangrike verskille is dat aandele-gebaseerde
beleid gee nie die eienaar die reg om die kontrak te verkoop, en dra nie net
markverwante risiko sekuriteit, maar ook versekering risiko’s, soos die selek-
sie koers, gedrags, sterftes, ander en die sistematiese langslewendheid. So
aandeel-gebaseerde annuiteite baie ingewikkeld versekering produkte om pre-
sies waarde en heining. Vir versekeringsmaatskappye suksesvol te vervul hul
belofte van uiteindelik ten minste aanvanklik belê bedrag terug te keer na die
polishouers, hulle moet in staat wees om te meet en te bestuur risiko’s binne
die aandeel-gebaseerde beleid. So in hierdie tesis, ons doen billike pryse van
die veranderlike en gelykheid geïndekseer annuiteite, bespreek dan die bestuur
van finansiele markte en versekering risiko’s bestuur.
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Chapter 1

Introduction

When approaching retirement, people are confronted by a range of financial
risks and uncertainties in their lives ahead. A primary concern for them is
gaining insubstantial income and the associated problem of outliving their
capital. So retirement savings tend to be what people rely on in their older
ages. As they enjoy their retirement savings, the question is do these in-
vestments provide effectual protections against unfavourable conditions of the
market or retirement income risk? As another means of dealing with such a
challenge equity-based annuities, also called unit-linked annuities, form part
of safer investment and retirement advance arrangements.

Increased life expectancy as well as reduction of the state retirement pensions
in several countries led to the rapid growth of equity-based annuities. They
have advantageous tax treatment of the proceeds, and at the same time allows
participation in the financial/security markets, see Mackenzie (2010). These
are specifically retirement designed, long-term financial deals made between
investors and investment/insurance companies whereby the companies concur
to provide a lump sum payment to some, or payments periodically, starting
either immediately or in future time with guaranteed benefits.

Some of the key reasons making equity-based annuities attractive are that:
investors finally have a solution to a reduced mortality rate, replacement to
pensions, participation in the security market, and alleviation of many invest-
ment risks. Even through the recent recession of 2008 there has been a strong
demand to these insurance products. These types of investments were intro-
duced in the United States in the 1970s, then in the early 1990s insurance
companies started including some guarantees in policies of that nature, see
Holz et al. (2012). However, the idea of a retirement income came from the
Romans with the jurist turned annuity dealer "Gnaeus Domitius Annius Ulpi-
anis" who also wrote the first mortality table.

The equity-based types of contracts are divided into two categories, namely,

1
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CHAPTER 1. INTRODUCTION 2

variable annuities (VA) and equity indexed annuities (EIA). Insurance compa-
nies take a certain percentage of the policyholders’ premiums and invest it on
their behalf in a portfolio which gives returns that match with a stock index
returns, see Marshall (2011). These portfolio returns that the policyholder
benefits from are attainable if the market is booming, and when the market
condition is unfavourable the policyholder’s investment account does not see
a growth but is still protected as an equity-based annuity account.

In VA, the return on the portfolio that the insurance company gets after par-
ticipating on behalf of the policyholder is entirely transferred into the policy-
holder’s account, whereas in EIA we can have a combination of VA and fixed
annuities but the return is capped and floored within a certain interval for the
policyholder’s account. These insurance policies come when other means of
retirement income becoming increasingly unsustainable.

Because they provide a primal form of lucrative and protected investment,
VA and EIA are very popular in the United States and their use now has
spread to Japan and many European countries. In 2012, LIMRA Secure Re-
tirement Institute published a report revealing that $159 billion was invested
in variable annuities in US by year end of 2011, see LIMRA (2012). The Mil-
liman Incorporated is an independent international actuarial and consulting
firm that published in August 2011 a survey report on variable annuity devel-
opment in Japan. This was led by a principal and senior consultant Ino Rikiya,
and revealed that about $216.5 billion were invested in variable annuities by
March 2011.

In 2010-2011, a financial institution of the European Union called the Eu-
ropean Insurance and Occupational Pensions Authority (EIOPA) conducted a
survey to find out the size of the variable annuities market in Europe and the
findings estimated about €188 billion invested in variable annuities, see EIOPA
(2011). A commission created by government congress in the US called Secu-
rities and Exchange Commission that regulates security markets, stated that
about $25 billion was invested in EIA in 2007, and in 2008 the Commission es-
timated about $123 billion invested. In South Africa, the available latest data
from the Financial Services Board (FSB) that was analysed by the department
of national treasury revealed in 2012 that the annuity market had increased
from R8 billion invested in 2003 to R31 billion in 2011, see Treasury (2012).
We are yet to see the latest reports estimating total annuity fund invested for
2013-2014 in these countries.

The insurance institutions operating in the world’s three largest annuity mar-
kets that offer equity-based policies include among others as displayed in Table
1.1.
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CHAPTER 1. INTRODUCTION 3

US Japan Europe
Jackson National Hartford Life Aegon
Prudential Financial Nippon Life Lincoln
Met Life Sumitomo Life Met Life
Nationwide Financial AIG Fuji Life Allianz
Transamerica Corporation Nipponkoa Insurance Swiss Life
Riversource Annuities Sompo Japan Bayern LB
AIG Tokio Marine AXA Protection
TIAA-CREF Dai-ichi Life Generali Group
Ameriprise Financial Manulife Financial Deutsche Bank
Hartford Mitsui Mutual Life ING Group

Table 1.1: Insurance Companies in Top Three Markets

Equity-based products mitigate the risk that many retirees will outlast
their retirement savings. At inception of the deal, an investor either chooses
to make a periodic payment or a lump sum premium to the investment account
for later retirement withdrawals. These VA and EIA products have become
people’s hope to getting an assured pay-check and something that provides a
substitute for the pension. Since they have guarantees, they do not fall under
securities in the markets, but insurance policies for some regulatory reasons.

The equity-based products are planned out with an intent to protect the in-
come against the effect of any unfavourable market condition. Within these
equity-based insurance policies tax is included, but it is only taken after with-
drawal is made and not as the annuity occurs. What is so advantageous about
this is that the amount that would have been deducted for tax annually is
compounding and accrues within the annuity. This also suggests that it is
lucrative to defer withdrawals rather than making immediate exhaustion.

The equity-based products also include a refund feature to a contract. They
are successful because they meet most of the requirements and needs of the
investors and make easier the decisions about trading them. When entering
an annuity contract, there are some options on how long the annuity should
last, such as the annuitant’s lifetime, beneficiary’s lifetime, or a pre-specified
duration.

When valuing the equity-based products, it is important that people first un-
derstand the contract benefits in an insurance policy. In the case where the
insurer pays a benefit when a policyholder is still alive, the policyholder bene-
fits from a stream of payments or a lump sum where the value GT is received
at each maturity date T = t until the expiration date T = T∗. Thus GT is a
maturity or a living benefit. However in the case where the policyholder dies
first, the benefit as a lump sum is paid to the beneficiary, which is the value
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CHAPTER 1. INTRODUCTION 4

Gt received at tth time if the policyholder dies between t−1 and t, where t ∈ Z+.

In Table 1.2 we show the advantages and disadvantages of the equity-based
annuities to both the insurance company and policyholder.

Insured Insurer
Advantages Advantages
Numerous investment choices Clients pay for guarantees
Participation in the security market Surpass insurers without VA&EIA
Potential for unrestricted asset growth
Tax-deferred amount accumulation
Fully protected from investment risks
Rest assured to receive income benefits
Disadvantages Disadvantages
Advisory fees Many risks to deal with
Administrative fees Obligation to pay claims
Over limit withdrawal penalty charge
Dissuasive surrender charges
Death forfeits lifelong benefit balance
Early withdrawal charges imposed

Table 1.2: Advantages and disadvantages of equity-based annuities

Surrender and Cliquet Option Features
For insurance companies to meet the needs of customers, equity-based annuity
products have had to evolve over time. They are not similar to each other
in the way guaranteed amount is decided. Some have features such as cli-
quet/ratchet option, where the guarantee base/balance is reset to equal the
level of the accrued account value during the life of the contract if the annui-
tant wants to increase the annual withdrawal percentage.

These features depend on the value of the account at the maturity or death
period. The annuitant can make a choice of stepping up payments after a
certain period agreed by both parties but with some charges. If for example,
the value of the account $45,000 exceeds the guarantee base $34,000, then the
guarantee base can be set again to equal the value of the account $45,000.
From this information, clearly, it is not wise if not impossible to reset when
the base exceeds the account value. For further reading, see Liu (2010).

Another feature which is of greater concern to the insurer is the surrender
option. This is because the insurer is forced to consider due to unpredictable
behaviours of policyholders and circumstances they find themselves in. In this
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CHAPTER 1. INTRODUCTION 5

case, due to several personal reasons and unexpected situations, the policy-
holder may want to surrender the policy. By surrender we refer to an act
of deciding to terminate the contract. On account of the costs the policy
provider/insurer experienced when providing the contract, it will cost the pol-
icyholder some charges to surrender. The amount of the surrender cash value
that the policyholder receives depends on the period the policy is to be sur-
rendered.

The earlier the policyholder surrenders the policy the higher the charges, sim-
ply because it has never satisfied the insurer’s expectations yet. Also, it can
be optimal to surrender the contract if the account valueWt accrued to exceed
the guarantee base Ht. In many companies the surrender value is acquired in
the policy if the premiums were paid regularly for at least 3 years. When sur-
rendering the contract, all benefits that are associated also terminate. So it is
important that the policyholder considers terminating by means of surrender
when the policy does not live up to its promises.

Among the factors that trigger the surrenders by policyholders, we have the
change in GDP, inflation and unemployment. These can cause the interest
rates in the market to drive policyholders to end up surrendering their con-
tracts. Usually, when there is an increase in interest rates many people sur-
render their contracts and as a result the insurance company’s surplus worsens.

When interest rates decrease, the number of people who surrender their con-
tracts also falls because surrendering at that period is a lose situation for the
policyholder since the account value is low. To model the surrender rates, Kim
(2005) suggested that a logit function or what is called a logistic regression
model is a suitable model. In this thesis we represent the function by

ln
(

π

1− π

)
= b0 + b1 ·GDP + b2 · Inflation + b3 ·Unemployment

+ b4 ·Difference (1.0.1)

where the surrender rate is denoted by π, the coefficients that should be esti-
mated are b1, b2, b3 and b4, and the factors that represent explanatory variables
are as written. The difference of rates represent the interest rates from the
security market minus the annuity crediting rate from the insurance company
credited to the policyholder’s account. These explanatory variables we men-
tioned help to explain any change in the value of the response variable which
in our case is the logit function of the surrender rates.

The analysis is as displayed in Section A.1, where the data used for GDP
growth, unemployment and inflation are taken from the US Bureau of La-
bor Statistics Department (2014). The surrender rates data is collected from
LIMRA Secure Retirement Institute. The difference of rates is the 30 years
Treasury yield rates minus the annuity crediting rates assumed to be 7,5%.
The Treasury yield data is from Yahoo.
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CHAPTER 1. INTRODUCTION 6

Background Review on Policy Products
In this thesis, the focus of our study is based on pricing and risk management
framework of variable annuities and equity indexed annuities, where we will
be giving fair prices to these insurance products.

Starting with the Guaranteed Minimum Death Benefit (GMDB), academic re-
searchers and market practitioners such as Mudavanhu and Zhuo (2002) made
a contribution to pricing the death benefit by analysing the benefit with a
lapse option as a strategy to increase the account value and expose the insurer
to the fee loss. Piscopo (2009) also made analysis of variable annuities and em-
bedded option that included the GMDB. In their paper, Marshall et al. (2010)
decompose a payoff of the Guaranteed Minimum Income Benefit (GMIB) to
analyse its value. Two years later, they again examined the static hedge effec-
tiveness, see Marshall et al. (2012).

Kélani and Quittard-Pinon (2014) developed a unified framework of pricing,
hedging and assessing the risk existing in variable annuity guarantees including
the Guaranteed Minimum Accumulation Benefit (GMAB) in a Lévy market.
The recent complex variable annuity product is the Guaranteed Minimum
Withdrawal Benefit (GMWB). A breakthrough in the pricing of this benefit
was made by Milevsky and Salisbury (2006). In their paper they considered a
geometric Brownian motion for investment fund process, and suggested with-
drawals are continuous. Their work was partitioned into two strategies of
policyholder’s behaviour.

Bauer et al. (2008) generalize a finite mesh discretization technique to model
and define a fair price to the GMWB product. Dai et al. (2008) used optimal
withdrawal strategy by maximizing the expectation of the discounted value
of the cash inflows, and further explored by also applying the penalty charge
method suggested to solve singular stochastic models.

Discrete pricing to the product was also part of the framework in Dai et al.
(2008). In their work, some important features such as surrenders and re-
sets were included. The most recent popular variable annuity product is the
GMWB for life abbreviated as GLWB, short for Guaranteed Lifelong With-
drawal Benefit. The product is an extension of GMWB. Holz et al. (2012)
priced the product by including different features and taking into account how
retiree’s behaviour has an impact to the policy.

In other papers studying the variable annuities such as Ngai and Sherris (2011),
the strategies in managing mortality risk embedded in variable annuities was
investigated. Many other articles published thereafter to improve the frame-
work and broaden the strategies in pricing variable annuity products.
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CHAPTER 1. INTRODUCTION 7

For equity indexed annuities that will be discussed in this thesis, more in-
formation is found in papers such as Hardy (2003), Nielsen and Sandmanne
(2002), Bacinello (2003) and many others.

The structure of this thesis is as follows: in Chapter 1, we already gave a
necessary introduction that also include a review to the study of equity-based
annuities, their advantages, disadvantages and features. In Chapter 2, we be-
gin the study of variable annuities by first stating the assumptions for the
valuation of all equity-based annuities, then pricing and hedging the first in-
troduced VA benefit called the GMDB. In Chapter 3, we do valuation and
hedging of the GMIB and GMAB. In Chapter 4, we introduce the most popu-
lar variable annuity called the GMWB product, giving a detailed explanation
of its features and examples.

With the use of data from Yahoo (2010), we also examine sustainability of
withdrawals for a certain chosen exhaustion rate, and eventually formulate
pricing model to valuing the GMWB product. We further include its extended
form GLWB product in pricing. Lastly, In Chapter 5, we base our study on
valuing equity indexed annuities with cliquet and surrender feature.
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Chapter 2

Valuation of Variable Annuities

Before getting to the pricing of variable annuities, let us consider the following
assumptions underlying the process of pricing the variable annuities.

Assume (Ω,F,Q) is a probability space where Ω is a sample space, the fil-
tration (Ft)t∈[0,T∗], and Q is the risk neutral probability measure on (Ω,F).
The risk neutral probability is known in finance as the probability of future
outcomes adjusted for risk, which helps in computing the expectation of asset
values. Thus we will make valuations of payment streams under risk neutral
measure as the expectation of the discounted values. This assumption also
implies that security markets where financial agents are trading is frictionless
with no arbitrage opportunities, see Bauer et al. (2008).

We assume also under the risk neutral measure Q that the reference equity
index value S evolves according to a geometric Brownian motion

dSt = (r − δ)Stdt+ σStdBt, S0 = 1, (2.0.1)

which has the solution

St = exp[(r − δ − 1
2σ

2)t+ σBt]. (2.0.2)

Here B denotes the standard Brownian motion, the fee rate by δ, the risk-free
return rate by r, and lastly σ the volatility of the equity returns. It is in line
with the literature of investment account modeling as shown in Windcliff et al.
(2001) and Gerber and Pafumi (2000) to assume that the geometric Brownian
motion describes the index dynamics.

Variable annuities can be understood to be a combination of separate/investment
accounts with guarantees where the policyholder can choose the asset category
he would link to, for example, the NASDAQ, S&P 500, Bond Index or other
assets combination. The investment account consists of sub-accounts where
all annuitants make premium payments during the accumulation phase.

8
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CHAPTER 2. VALUATION OF VARIABLE ANNUITIES 9

Simulations in the valuation of variable annuities are often the only option
since they are complex, exotic, long-term, path dependent and some have no
closed form solutions as in standard vanilla options. The other reason the em-
bedded options in VA differ from standard vanilla options is that the charges
are deducted periodically. Modeling of these charges and fees assumes they
are taken as dividends. These insurance benefits are offered mostly by life
insurance companies. The valuation of these benefits requires the application
of derivatives techniques as they are derivative oriented. To some, annuitants
are allowed to access their accounts every time, but surrendering the contract
and making withdrawals exceeding yearly guaranteed amount may have harsh
penalty charges. As for the guarantees, calculations of the guarantees to be
withdrawn are made with reference to their guarantee base. Guarantees in
variable annuities are provided even if the account value has gone low. Unlike
equity indexed annuities EIA, variable annuities VA have no cap/ceiling on
the investment growth.

VA policies have many choices making them even more complex and attractive
to investors. There are two main types of VA guaranteed minimum benefits:
a death benefit and four living benefits as listed below.

(i). Guaranteed Minimum Death Benefit (GMDB) - Here an assured
lump sum is being given to the beneficiary when the policyholder dies. The
GMDB and other variable annuity benefits that include a death cover have
a stochastic maturity due at the end of the spontaneous exercise period, and
also are increasingly put options. The payoff is given by

BD = max(W0e
gT∗ ,WT∗), (2.0.3)

where W0 is the initial account value at time t = 0, g is the guaranteed rate
of growth, and WT∗ is the account value at a random maturity time T∗ when
the policyholder dies.

(ii). Guaranteed Minimum Income Benefit (GMIB) - This type of
investment is suitable for people who plan to annuitize their contracts. Money
saved in the account is annuitized to a stream of guaranteed income for life
at a certain point in the future as the maturity after the deferral period. By
annuitization we mean to start a stream of payments from the money that
has been invested and accumulated. If the policyholder dies before the conver-
sion period, the beneficiary receives payment by the GMDB whereas after the
conversion, the beneficiary is no longer part of the deal. Once annuitization
has been triggered it is irreversible, and that means the policyholder has no
access to the account value except from receiving a stream of fixed guaranteed
income benefits G annually.
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CHAPTER 2. VALUATION OF VARIABLE ANNUITIES 10

(iii). Guaranteed Minimum Accumulation Benefit (GMAB) - For this
contract, a lump sum guaranteed as the minimum of all deposits is given to the
policyholder at a contract maturity date, regardless of the performance of the
fund. This accumulation benefit GMAB is also known as the maturity benefit
GMMB with a cliquet feature in it, and is a similar contract to the GMDB
except the assumption that the policyholder is alive at the maturity date. See
Kélani and Quittard-Pinon (2014) and Quittard-Pinon and Randrianarivony
(2009) on how the GMMB/GMAB is linked to the GMDB.

(iv). Guaranteed Minimum Withdrawal Benefit (GMWB) - This con-
tract is different from GMIB in that it can allow immediate withdrawals, while
assuming the retiree is still alive at expiration date. Depending on how much
he invested, the policyholder is guaranteed to receive a certain amount each
year usually less than 8% of the nest egg invested. Mathematically, we can
express it as follows: let G = wH0 = wW0, for w the percentage rate of
withdrawal, be the guaranteed annual amount to be withdrawn as long as the
guarantee base H is not exhausted at each yearly withdrawal maturity date T
before the expiration date T∗. Then the final withdrawal at time T∗ is given
by

BW = max(G,WT∗), (2.0.4)

which is the greater of the yearly minimum withdrawal and the remaining ac-
count value at expiration date.

(v). Guaranteed Life Withdrawal Benefit (GLWB) - The most recent
guarantee introduced in 2004 is a hybrid of GMIB and GMWB. The difference
is that it is only immediate, and the policyholder can only withdraw a fixed
annual amount G for the remaining lifespan without the limit on the total
amount that can be withdrawn. This product is usually given to people who
wish to start withdrawals from the age of 65.

In the following Section 2.1, we start the pricing of variable annuities with
the death benefit.

2.1 Valuation of the GMDB
The Guaranteed Minimum Death Benefit (GMDB) product is a withdrawal-
deferred annuity contract whereby the policyholder makes a lump sum pay-
ment once at contract inception or through periodic payments to the insurance
company as investment premiums. Should the policyholder die, the amount
as a lump sum which is the minimum of invested premium, is given to the
beneficiary. Main GMDB literature includes that of Mudavanhu and Zhuo
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CHAPTER 2. VALUATION OF VARIABLE ANNUITIES 11

(2002), Milevsky (2006), Hardy (2003) and Piscopo (2009).

In this thesis, in a situation where we have only one maturity as in a death
benefit GMDB, T = T∗ because the maturity date will also be an expiration
date. We can also think of T∗ conforming to Ta∗ in actuarial literature, as
the remaining future time of life random variable which takes any time t for
policyholder aged a, with Fa(t) and fa(t) as its cumulative distribution func-
tion and probability density function respectively. Then the probability that
a person aged a dies before reaching the time t is given by

Fa(t) = P (T∗ ≤ t)
= tqa

= 1− tpa

= 1− n− a− t
n− a

. (2.1.1)

Here tpa is the probability that the policyholder aged a will still be living at age
a+ t, for t = 0, 1, 2, · · · , n−a, and n is the terminal age above which aliveness
is impossible. Denote again by qa+t the probability that the policyholder of
age a+ t dies during the course of the following year, then

qa+t = 1− pa+t

= 1
n− a− t

. (2.1.2)

Therefore, tpaqa+t = (t|1qa) is the probability that the policyholder of age a,
will die between time a+ t and a+ t+1. This survival model is for illustration
only and should not be used for any applications. See Dickson et al. (2013)
and Hardy (2003) for more on probabilities of survival and death.

In the case of GMDB, we do not have the annual withdrawal guarantee we
usually denote by G. Here the personal annuity account value Wt obeys the
SDE

dWt = (r − δ)Wtdt+ σWtdBt,

where other parameters are as mentioned in equation (2.0.1), see Chu and
Kwok (2004) for account and equity values dynamics.

In Hardy (2003), the payoff to the GMDB product at a maturity T∗ is un-
derstood to be

BD
T∗ = max(W0e

gT∗ ,WT∗), (2.1.3)

where g is the guaranteed rate of growth. This payoff can have a valuation
that resembles a put option as

BD
T∗ = max(W0e

gT∗ −WT∗ , 0) +WT∗ . (2.1.4)
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This suggests the GMDB at a maturity T∗ is the sum of the account value and
an European put option that has a strike priceW0e

gT∗ and the asset priceWT∗ .

Let the underlying stock process be St, so WT∗ = ST∗e
−δT∗ , and since St is

an index we can set S0 to be whatever we want here. Set W0 = S0. Since we
have a stochastic maturity T∗ and the investment account value WT∗ that are
independent of each other, the time zero value of the GMDB product can be
determined by

BD
0 = Et[EQ[e−rT∗BD

T∗|T∗=t]] (2.1.5)
= Et[EQ[e−rT∗(max(W0e

gT∗ −WT∗ , 0) +WT∗)|T∗=t]] (2.1.6)
= Et[EQ[e−rT∗(max(S0e

gT∗ − ST∗e−δT∗ , 0) + S0e
−δT∗)]], (2.1.7)

where the expectation inside is taken on WT∗ conditional on the fixed value of
T∗ = t, whereas the expectation outside is taken on all possible values of T∗,
see Carr and Wu (2004). Let the inside expectation with the embedded put
option in equation (2.1.7) be denoted as follows

EEP = EQ[e−rT∗(max(S0e
gT∗ − ST∗e−δT∗ , 0) + S0e

−δT∗)]. (2.1.8)

By using the Black and Scholes (1973) model to find the embedded put option
price, equation (2.1.8) becomes

EEP = W0e
gT∗e−rT∗Φ(−dB)−W0e

−δT∗Φ(−dA) +W0e
−δT∗

= W0(e−δT∗Φ(dA) + e(g−r)T∗Φ(−dB)) (2.1.9)

where

dA =
(r − δ − g)T∗ + 1

2σ
2T∗

σ
√
T∗

, and dB = dA − σ
√
T∗. (2.1.10)

Substituting equation (2.1.9) into equation (2.1.7), we have as expressed in
general form

BD
0 =

∫ n−a

0
fa(t)W0

(
BS(r, g, δ, σ, t) + e−δt

)
dt, (2.1.11)

where BS(r, g, δ, σ, t) represents the Black and Scholes (1973) put option price.
In discrete form, we can express it as

BD
0 =

n−a∑
t=1

(tpaqa+t)W0

(
BS(r, g, δ, σ, t) + e−δt

)
. (2.1.12)

Setting the parameters r = 0.05, σ = 0.2, δ = 0.02, g = 0.09, W0 = 100 and
n = 100, yields diagrams in Figure 2.1 showing the GMDB values’ dependence
on the age of the policyholder at contract inception.
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Figure 2.1: GMDB Present Values
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Chapter 3

Valuation of GMIB and GMAB

The Guaranteed Minimum Income Benefit (GMIB) and the Guaranteed Mini-
mum Accumulation Benefit (GMAB) are some of the benefits introduced after
the Guaranteed Minimum Death Benefit (GMDB). In this Chapter, we price
the two survival benefits starting with the GMIB in Section 3.1, then GMAB
in Section 3.2.

3.1 The Pricing GMIB Model
The GMIB is a withdrawal deferred insurance policy whereby the policyholder
pays a premium payment to the insurer in the form of a lump sum single pre-
mium or periodic payments. This will then be invested in the security market
to accumulate over time before it can be converted to a stream of annual in-
come at retirement time.

Before the conversion of the accumulated amount to an annual income stream
by means of annuitization, there is also a choice to withdraw all the accrued
amount if the calculation reveals a much higher account value as compared to
the guarantee base. This type of benefit is similar to what was known before in
the UK as the Guaranteed Annuity Option (GAO), except that the conversion
rate applies to the account value or the guarantee base, depending on which
one is maximum, yielding a fixed annual income stream, see Hardy (2003) and
Kling et al. (2014).

As the income benefit guarantees a lifelong fixed annual payment after annuiti-
zation has been made, it implies that the investor is also protected against the
longevity risk. During the weak security market conditions, the benefit still
serves as a protection during the accumulation phase of the contract. Thus it
is a rather challenging contract to hedge with such characteristics.

In this Section, we value the GMIB using the arbitrage free methodology and

14
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CHAPTER 3. VALUATION OF GMIB AND GMAB 15

other model assumptions made in Chapter 2.

Suppose that the policyholder aged a is paid at a retirement date T , either
by a lump sum which is equal to the investment value WT linked to the refer-
ence equity fund ST , or chose to annuitize for the remaining lifetime and get
a stream of guaranteed annual income crHT . Here cr is the conversion rate
at which the policyholder converts the guarantee base HT into annuity if the
investment fund is equal or lower compared to the base.

As shown in Kling et al. (2014), here the account value WT can be expressed
as A0

ST
S0
, where A0 = W0−δ as the amount left after the fee has been deducted

by the insurer from the premium. Then the income benefit (GMIB) payoff is
expressed by

BI
T = max(crHTνa+T −WT , 0)

= ST max
(
cr
HT

ST
νa+T −K, 0

)
, (3.1.1)

where the strike price K = A0
S0
, and νa+T representing the annuity factor which

is given by

νa+T =
n−(a+T )∑
t=0

tpa+TP(T, T + t). (3.1.2)

Here the denotation P(T, T + t) represents the time T zero coupon bond with
maturity T + t, and tpa+T is the probability that the person aged a + T still
lives at year t.

It is possible in a GMIB contract for the policyholder to annuitize if the in-
vestment fund is less than or equal to the guarantee base. So we can assume
HT = ST , which implies that equation (3.1.1) can be written as

BI
T = ST max

n−(a+T )∑
t=0

P(T, T + t)crtpa+T −K, 0
 . (3.1.3)

Applying the decomposition suggested by Jamshidian (1989), we may rewrite
the GMIB contract payoff that is generated by the zero coupon bond portfolio
with Kt strike prices, and tpa+T survival probabilities as weights. Hence we
can find from t = 0, · · · , n− (a+T ) the interest rate critical value r∗ such that

K =
n−(a+T )∑
t=0

P∗(T, T + t)crtpa+T .

From this we define the bond price corresponding with interest rate critical
value by Kt which is the new strike price that is artificially introduced as

Kt = P∗(T, T + t).
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CHAPTER 3. VALUATION OF GMIB AND GMAB 16

We know that the bond price is a monotonic function of the interest rate.
EquivalentlyP(T, T+t) are decreasing functions of interest rate r. This implies
that if r∗ > r, then∑n−(a+T )

t=0 P(T, T+t)crtpa+T > K and alsoP(T, T+t) > Kt.
Thus

max

n−(a+T )∑
t=0

P(T, T + t)crtpa+T −K, 0

 =
n−(a+T )∑
t=0

crtpa+T max(P(T, T + t)−Kt, 0),

and equation (3.1.3) becomes

BI
T = ST

n−(a+T )∑
t=0

crtpa+T max(P(T, T + t)−Kt, 0). (3.1.4)

The present value under the martingale framework valuation for the GMIB
contract of the policyholder aged a at time 0 with maturity T is given by

BI
0 = EQ

[
exp

(
−
∫ T

0
rsds

)
TpaB

I
T

]

= TpaEQ
e− ∫ T0 rsdsST

n−(a+T )∑
t=0

crtpa+T max(P(T, T + t)−Kt, 0)
 . (3.1.5)

In order to find analytical solutions to equation (3.1.5), it is suitable to measure
the payments in stock units instead of values of the money market. So we are
to establish a numeraire as the equity price ST and switch from a risk neutral
measure Q fixed in the market to equity price measure Qs corresponding to
ST . To comply with Geman et al. (1995) about the change of numeraire,
for martingale probability measure Qs equivalent to Q, we have the density
process defined as

ψT = dQs

dQ
|FT (3.1.6)

= exp
(
−
∫ T

0
rsds

)
ST
S0
. (3.1.7)

This reduces equation (3.1.5) under the new measure Qs to

BI
0 = TpaS0e

−δT
n−(a+T )∑
t=0

crtpa+TEQ
s [max(P(T, T + t)−Kt, 0)] , (3.1.8)

where the expectation in equation (3.1.8) is taken under the equity price mea-
sure Qs.

To obtain the expectation of a call option in equation (3.1.8), Vasicek (1977)
made the assumption that the term structure of interest rates through the
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short rate rt evolves as Ornstein-Uhlenbeck process where the bond options
are explicitly calculated. The process is expressed as

drt = ϕ(Θ− rt)dt+ σdBt (3.1.9)
where ϕ, Θ, and σ are positive real constants. The standard solution for the
SDE (3.1.9) is given by

rt = rse
−ϕ(t−s) + Θ(1− e−ϕ(t−s)) + σ

∫ t

s
e−ϕ(t−u)dBu. (3.1.10)

We have

(rt | Fs) ∼ N
(
E{rt | Fs} = µr,Var{rt | Fs} = σ2

r

)
,

where
µr = rse

−ϕ(t−s) + Θ(1− e−ϕ(t−s))

σ2
r = σ2

2ϕ(1− e−2ϕ(t−s)).

A zero coupon bond P(T, T + t) in equation (3.1.8) with expiration T + t at
time T is given by

P(T, T + t) = eA(T,T+t)−B(T,T+t)rT , (3.1.11)
where
B(T, T + t) = 1

ϕ

[
1− e−ϕ((T+t)−T )

]
= 1
ϕ

[
1− e−ϕt

]
A(T, T + t) = 2ϕ2(ΘB(T, T + t)−Θt) + (t−B(T, T + t))σ2

2ϕ2 − B2(T, T + t)σ2

4ϕ ,

see Björk (2004). For a normally distributed rT , the bond price P(T, T + t)
is distributed log-normally with mean M = A(T, T + t) − B(T, T + t)µr and
variance V = B2(T, T + t)σ2

r . Then the expectation of a call option payoff via
the Black and Scholes (1973) model is given by

EQs [max(P(T, T + t)−Kt, 0)] = FTΦ
(
M − ln(Kt) + V 2

V

)
−KtΦ

(
M − ln(Kt)

V

)
= FTΦ (dA)−KtΦ (dB)

where FT = eM+ 1
2V

2 . Thus from equation (3.1.8), the GMIB present value
with a closed form solution to the Black and Scholes (1973) bond option price
is given by

BI
0 = TpaS0e

−δT
n−(a+T )∑
t=0

crtpa+T

[
FTΦ (dA)−KtΦ (dB)

]
. (3.1.12)

Consider the following parameter values: M = 6.3, V = 0.4, Kt = 90, S0 = 1,
cr = 0.07, δ = 0.001, n = 100, T = 65, and the policyholder’s age at contract
inception from a = 23 until a = 30. As depicted in Figure 3.1 we show the
GMIB present values for policyholders of different ages.
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Figure 3.1: GMIB Present values

3.1.1 Hedging GMIB Through Replicating Portfolio
To hedge the GMIB embedded option using the Greeks can be complicated
since they are dependent on the interest rate model. If in reality the interest
rates and stock prices fluctuations are not reasonably approximated by the
model, the hedging via Greeks will not work as explained in Section 3.1 of
Marshall (2011) . So the insurer has to, on behalf of the policyholder, make
an investment in a portfolio that is replicating where the fee δ = δ∗ is fair if
and only if the payoff of the variable annuity with a GMIB option embedded
is equal to the total premium expressed as

B0(δ∗) = W0. (3.1.13)
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A detailed explanation on how financial industries use replicating portfolios
for risk management can be found in the research report Milliman (2009).

3.2 The Pricing of GMAB
In this Section, we price the GMAB variable annuity, taking into account a
contract with cliquet/reset feature. The GMAB is a survival benefit which
needs a fairly long deferred withdrawal period which happens once. If the
policyholder dies prior to the expiration date, the contract takes the form of
GMDB contract as a lump sum will be given to the beneficiary just as in a
death benefit after a waiting period. It is usually called a maturity benefit
GMMB with a cliquet option. In our valuation, we assume that the policy-
holder will still be alive at expiration date and that the contract has a cliquet
feature at any chosen anniversary dates on the interval t ∈ (t0, tn].

We apply here as well the assumptions of arbitrage free pricing made in Chap-
ter 2. Let W b

ti
and W a

ti
be the account value before and after a cliquet option

is exercised at an agreed anniversary date ti, then

W b
ti

= W b
ti−1

em(ti−ti−1) Sti
Sti−1

, (3.2.1)

where m is the rate at which insurer charges the policyholder as also can be
seen in Kélani and Quittard-Pinon (2014). The GMAB at time ti is given by

BA
ti

= max(BA
ti−1

,W b
ti

). (3.2.2)

The after reset account value is given by

W a
ti

= W b
ti

+ max(BA
ti−1
−W b

ti
, 0). (3.2.3)

Under the risk neutral measure, the time zero value for the expiration T∗ of
the GMAB is given by

BA
pv = E[e−

∫ t
0 rsds ×max(BA

ti−1
−W b

ti
, 0)]. (3.2.4)

Suppose that the interest rate r is constant. Then for the chosen two anniver-
sary dates t = t1 and t = t2, we have the present value

BA
pv = E[e−rt1 max(BA

ti−1
−W b

t1 , 0)] + E[e−rt2 max(BA
ti−1
−W b

t2 , 0)]. (3.2.5)

Let us exclude the mortality and lapse forces, and use the assumption that
the holder is still alive at the expiration date. Also, St0 = Wt0 = BA

t0 . Then
by applying the Black and Scholes (1973) model, we arrive at a closed form
solution for the present value of the anniversaries

BA
pv = e−rt1BA

t0Φ(−dB)−W b
t0e
−m(t1−t0)Φ(−dA)

+ e−rt2BA
t1Φ(−dB)−W b

t0e
−m(t2−t1)Φ(−dA) (3.2.6)
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where

dA =
ln( Wt0

BAti−1
) + (r + 1

2σ
2)(ti − ti−1)

σ
√
ti − ti−1

dB = dA − σ
√
ti − ti−1.

(3.2.7)

For example, suppose the policyholder at contract inception invested a
single premium amount of Wt0 = 100, and the other parameters are r = 0.04,
m = 0.2, and σ = 0.4. The two reset times are t1 = 3 and t2 = 7, then
equation (3.2.6) yields the present value

BA
pv = 63.5
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Chapter 4

Valuation of GMWB

In this Chapter, we begin by explaining the withdrawal benefit and sustain-
able withdrawal rates in Section 4.1. We then formulate the model to price
the minimum withdrawal and the lifelong withdrawal benefits starting with
the static pricing in Subsection 4.2.1 under the policyholder’s perspective and
the dynamic pricing in Subsection 4.2.2, then in Section 4.3 we employ static
pricing under the insurer’s perspective. In Section 4.4, we use the tree method-
ology by incorporating Cox et al. (1979) binomial, the bino-trinomial, and the
stair tree structures by Dai and Lyuu (2010) to find the continuation value of
the withdrawal benefit. In Section 4.5 we make valuation of GMWB for life
or what is called lifelong benefit GLWB.

4.1 The Benefit Itself
One of the variable annuities people consider purchasing more often for their
retirement is the GMWB. Irrespective of whether the account value has de-
creased or not, the GMWB product gives the annuitant the possibility of
withdrawals that are guaranteed during the life of the deal. In this type of a
contract, the annuitant withdraws a certain amount both parties agree upon
at contract initiation or can increase withdrawal accepting some penalty. In
an instance, when the annuitant dies, the GMWB product will give the ben-
eficiary any amount left in the account if the contract is still alive. With
the GMWB variable annuity, investors are also enabled to invest in the mar-
kets with stocks and bonds but under insurance regulations since they involve
guarantees. To impress investors, sometimes the insurer offers that the annu-
itant can get bonuses if they do not withdraw within a certain period from
the contract initiation. That is, for having a deferred annuity contract with
withdrawals at T ≤ t ≤ T∗, where T∗ is the expiration date and the maturity
T denotes the time when the policyholder started annual withdrawal after a
deferred period t ∈ [0, T ].

21
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4.1.1 Sustainable Withdrawal Rates
Before getting deeper into the GMWB study, let us try to understand the calcu-
lus of sustainability of withdrawal rates by explicitly explaining and eventually
presenting things pictorially.

When a retiree invests in a portfolio and wants to make withdrawals, it is
obvious that he may meet the possibility of having his nest egg (total pre-
mium invested) exhausted before the expiration date. It should be taken into
consideration as an important element to determine withdrawal rates that are
sustainable.

One of the questions that may be raised is what withdrawal percentage can be
chosen on the retirement savings in order to sustain withdrawal throughout the
contract period? This is what investors can ask themselves, since for them to
have a greater income in retirement periods, they must choose making higher
withdrawal rates from the account. But it has to be noted that the standard of
living for such withdrawal rates cannot be sustainable for a longer period. On
the other hand, the lower rates of withdrawal would diminish the retirement
income but help to reduce the risk of depleting funds in a short period of time.

In a popular paper of financial valuation of GMWB written by Milevsky and
Salisbury (2006), it is recommended that for half a percentage of asset alloca-
tion, the withdrawal rate should not exceed 7% annually as this will shorten
the withdrawal period by leading to surrendering of the contract. We will
investigate how to wisely choose the exhaustion rate using the calculus of sus-
tainable withdrawal rate, where the main idea is to supply investors with an
tool to examine different withdrawal rate sustainability for a particular nest
egg.

As we proceed below, we make some illustrations on how to estimate the
probability of withdrawal success rate and the ruin rate. For example, let
us take a retiree who is 45 years old, with 30 years as the median remaining
lifetime. The present value of lifetime withdrawals is not normally distributed
but distributed closer to a gamma distribution, see Milevsky (2007). Hence,
the withdrawal ruin rate probability for a continuous random variable Y which
takes any withdrawal rate value y with parameters k and φ has a probability
density function given by

f(y; k, φ) = 1
Γ(k)φk y

k−1e−
y
φ k, φ ≥ 0, (4.1.1)

with mean kφ and variance kφ2.
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The parameters k and φ are given by

k = 2µ+ 4η
σ2 + η

− 1, φ = σ2 + η

2 (4.1.2)

where η is the mortality rate, µ is the expected return rate, and σ represent
the volatility of the investment returns. The withdrawal success rate is given
by

P(Success Rate) = 1− P(Ruin Rate). (4.1.3)

As we continue with our example, let us assume that the nest egg that should
finance the stream of annuity withdrawals is $300,000 invested in the NASDAQ
Index. Taking the Yahoo (2010) monthly data from (January 1981-December
2010), we can use these values of the parameters k, φ, µ and σ. The mortality
rate η is given by

η = ln 2
median remaining lifetime ,

which is η = ln 2
30 = 0.023 in our case.

As displayed in Table B.1 of Section B.1, we show the calculated withdrawal
success rate probabilities for every exhaustion rate mentioned in percentages.
In Table B.2, we report the values of the investment portfolio accumulated for
every exhaustion rate in every 5 years overlapping end-of-period. Those values
are calculated by using the formula

Wt = Wt−1(1 +Rt)−G, (4.1.4)

where Wt is the current remaining value of the investment account at the end
of the period and Wt−1 is the previous account value at the beginning of the
period. The return rate Rt of the investment portfolio for period t is calculated
by taking the average of all monthly returns within the specified periods.

Looking at the results in Table B.1, we can see the combination of nine rates
of exhaustion. For the first five years, based on the withdrawal/exhaustion
rate of 2%, the retiree has a withdrawal success rate probability of 87%. It
shows the probability percentage of success dropping and eventually declines
for the retiree who choose the higher rate of exhaustion over 30 years. Al-
though a little more returns can increment the probability of a success rate as
displayed on the results, it is also clear that it can never be optimal to increase
the rate of withdrawal, for it shortens the retirement income receiving periods
and eventually depletes the nest egg before the expiration date. However in
equity-based annuities such as GMWB of the variable annuity class, this can
never be the case for rational policyholders since they are guaranteed to get
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the annual fixed withdrawals until the expiration date. However if they are not
behaving rationally and withdraw above the limit, then this might result to
depletion and eventual surrender. The policyholder will have to pay a penalty
charge every time he decides to withdraw any amount above the annual fixed
guaranteed amount agreed upon at contract inception. All the results are also
represented in Figure 4.1 showing success/ruin rate probability percentages for
each exhaustion rate if chosen over a period of 30 years.

Figure 4.1: Success/Ruin Rate Probability Percentages.

Assuming non-adjusted withdrawals, let us take a constant exhaustion rate
of 4% for our example with a nest egg of $300,000. Table 4.1 below reports
the results for constant annual withdrawals whereW b,W a, and H respectively
represent the account value before withdrawal, account value after withdrawal,
and the guarantee base.

Years µ(%) W b Withdrawn W a H
5 0.95 302849.96 12000 290849.96 288000
10 0.69 302069.96 24000 278069.96 264000
15 1.07 303209.96 36000 267209.96 228000
20 1.3 303899.96 48000 255899.96 180000
25 1.03 303089.96 60000 243089.96 120000
30 0.93 302789.96 72000 230789.96 48000

Table 4.1: Constant Exhaustion Rate.
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As reported in Table 4.1, our example of 30 years contract deal, shows
that for 4% constant exhaustion rate, a retiree’s withdrawal rate is sustain-
able. Therefore, in such a case, he can choose to take all remaining amount
or extend the contract and step-up/reset since after the 30th year there is still
some amount left.

In Figure 4.2 we represent the guarantee base values and the account value
under constant exhaustion rate of 4% for our nest egg of $300,000.

Figure 4.2: Base and Account Values under Constant Exhaustion Rate of 4%.

4.2 Model under Policyholder’s Perspective
Before the formulation of the model in Subsection 4.2.1, we first recall all the
assumptions made for the pricing of variable annuities in Chapter 2.

4.2.1 Fundamental GMWB Static Pricing
Let Wt denote the GMWB value of the personal annuity account linked to the
portfolio at time t, and assume that the initial value of the account is denoted
by W0, where the expiration date is T∗ = W0

G
= 1

w
with G representing the

guaranteed fixed annual withdrawal amount. If a withdrawal exceeding G is
made for some reason, there will be a penalty charge. See Wenger (2012) for
more details.
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The personal account value Wt of the variable annuity with the effects namely
the change in guarantee withdrawal base denoted by dHt = −Gdt and the
contract fee rate δ, satisfies the SDE

dWt = [(r − δ)Wt −G]dt+ σWtdBt, 0 ≤ t ≤ T∗, Wt > 0. (4.2.1)

If Wt ever hits zero, it stays there. To find the solution of the SDE in equation
(4.2.1), we follow techniques by the Itô formula. Define the integrating factor
by

Ft = e(−(r−δ)+ 1
2σ

2)t−σBt . (4.2.2)

For the Itô processes F and W , the product rule yields

d(FtWt) = FtdWt +WtdFt + d〈F,W 〉t
= −GFtdt. (4.2.3)

Therefore, the solution to equation (4.2.1) at the expiration time t = T∗ is
given by

FT∗WT∗ = F0W0 +
∫ T∗

0
−GFsds

WT∗ = W0F
−1
T∗ −GF

−1
T∗

∫ T∗

0
Fsds

= W0e
(r−δ− 1

2σ
2)T∗+σBT∗ −Ge(r−δ− 1

2σ
2)T∗+σBT∗

∫ T∗

0
e−(r−δ− 1

2σ
2)s−σBsds

= e(r−δ− 1
2σ

2)T∗+σBT∗

(
W0 −

W0

T∗

∫ T∗

0
e−(r−δ− 1

2σ
2)s−σBsds

)
. (4.2.4)

Let XT∗ = e−(r−δ− 1
2σ

2)T∗−σBT∗ which can be perceived as the monetary units
that can be bought with a dollar in the annuity account, identical to Euros
that can be purchased with a dollar in the foreign exchange market. Then
equation (4.2.4) can be written resembling an Asian-Quanto put option as

WT∗ = 1
XT∗

(
W0 −

W0

T∗

∫ T∗

0
Xsds

)

= W0

XT∗

(
1− 1

T∗

∫ T∗

0
Xsds

)
. (4.2.5)

An Asian option is one which, unlike European and American ones, has the
payoff determined by the average of the underlying asset prices taken over a
pre-specified period of time. On the other hand, a Quanto option is one which
is expressed in terms of a foreign monetary unit/currency but at an exercise
date is converted with a fixed exchange rate to the investor’s home currency,
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see Datey et al. (2003) to read more on Asian and Quanto options. Hence an
Asian-Quanto option is an option of Asian type which is expressed in foreign
monetary unit and can be converted at a fixed rate of exchange to investor’s
home currency. Moreover, a Quanto option explains that if, for example, an
European investor invests in an American stock with NASDAQ index, he is
exposed to the rise and fall happening in the NASDAQ and Euro/Dollar ex-
change rate.

Let the value of the account’s average be given by

X̄ = 1
T∗

∫ T∗

0
Xsds. (4.2.6)

We know that if Wt reaches zero it stays, and that model equation (4.2.1)
holds for Wt > 0, ∀ t ≥ 0. Then under such constraint we can write equation
(4.2.5) as

AQPP = FX ·max(0, 1− X̄). (4.2.7)

Here AQPP denotes the Asian-Quanto put option payoff, where FX = W0
XT∗

is the foreign exchange rate, and W0 represents the foreign monetary unit
whereas XT∗ is the domestic monetary unit.

For a GMWB policy, the retiree gets the annual withdrawal guarantee and
the remaining account value at the expiration date. So the maturity value of
the yearly withdrawals or what is also called the term certain annuity is given
by ∫ T∗

0
Gersds = W0

T∗r
(erT∗ − 1). (4.2.8)

Consequently, the present value of the total cash inflow to a GMWB policy
under the policyholder’s perspective is given by the arbitrage free formula

CFP = e−
∫ T∗

0 rsds

E[WT∗ ] +
∫ T∗

0
Gersds


= e−rT∗E[WT∗ ] + W0

T∗r
(1− e−rT∗)

= e−rT∗E[FX ·max(0, 1− X̄)] + W0

T∗r
(1− e−rT∗), (4.2.9)

where E[.] is the expectation taken under risk neutral measure. Equation
(4.2.9) implies that the cash inflow package of the GMWB under the static
valuation is the sum of an Asian put option and a term certain annuity.
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As an example, let us take $120 to be the value of the account at contract
inception denoted by W0, the fixed annual withdrawal amount denoted by G
be $8, with the interest rate r of 8%. Then making calculations, the term
certain annuity part in equation (4.2.9) is $69.88. That means the option can
be purchased with $50.12. Therefore, the GMWB consists of 42% option con-
stituent element and 58% of a term certain annuity part.

For X̄ < 1 in equation (4.2.7), we have that

CFP = e−rT∗E[FX max(0, 1− X̄)] + W0
T∗r

(1− e−rT∗)

= e−rT∗E
[
W0
XT∗

(
1− 1

T∗

∫ T∗

0
Xsds

)]
+ W0
T∗r

(1− e−rT∗)

= e−rT∗W0

[
e(r−δ)T∗ −

(
− w

r − δ
+ we−(r−δ)T∗

r − δ

)]
+ wW0

r
(1− e−rT∗)

= W0

[
e−δT∗ +

(
we−(2r−δ)T∗

r − δ
− we−rT∗

r − δ

)]
+ wW0

r
(1− e−rT∗), (4.2.10)

whereas for X̄ ≥ 1, the option becomes zero in equation (4.2.7).

Lastly, to fairly value the GMWB product, we equate the total cash inflow
CFP to the policyholder’s investment premium W0 as

W0 = e−rT∗E[FX ·max(0, 1− X̄)] + W0

T∗r
(1− e−rT∗), (4.2.11)

whereby we can find the fair fee as the solution of the expression

e−rT∗E
[
FX ·max(0, 1− X̄)

W0

]
+ 1
T∗r

(1− e−rT∗)− 1 = 0. (4.2.12)

In Table 4.2 we display the possible fee δ for a single premium of W0 = 100
for interest rate r = 0.07 and different withdrawal rates G.

G T δ
5.5 18.2 0.0451
6.0 16.7 0.053
6.5 13.3 0.061
7.0 14.3 0.069
7.5 13.3 0.079
8.0 12.5 0.088
8.5 11.8 0.096

Table 4.2: Fee δ applied on an investment with single premium and varying with-
drawals.
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4.2.2 GMWB Dynamic Pricing
Under the dynamic pricing, we assume that the policyholder makes with-
drawals above, below or sometimes equal to the level G. As also can be seen
in Dai et al. (2008), the dynamics of the account value W obeys

dWt = (r − δ)Wtdt+ dHt + σWtdBt, 0 ≤ t ≤ T∗, Wt ≥ 0

Ht = H0 −
∫ t

0
λsds, 0 ≤ λs ≤ γ, (4.2.13)

where Ht is the guarantee account balance at time t, denotation λs is the rate
at which withdrawal is made, and γ is the upper bound. The rest is defined
as in equation (4.2.1).

The penalty charge q is deducted for any withdrawal made exceeding the
annual fixed withdrawal guarantee value G. On the process of λ exceeding G
(i.e on λ > G), the retiree is certain to get G+ (1− q)(λ−G).

For a cash flow rate g(λ) that the retiree receives from a continuous process of
withdrawal, we have that

g(λ) =
{
λ for 0 ≤ λ ≤ G
G+ (1− q)(λ−G) for λ > G

= λ− qmax(λ−G, 0). (4.2.14)

The income is received by the retiree throughout the life of the deal, and the
account value remaining at an expiration date if it exceeds 0 (i.e if WT∗ ≥ 0).
We assume the retiree is wise and would like to maximise the present value
of the cash inflow by choosing withdrawals that are optimal based on the
restriction 0 ≤ λ ≤ γ. Then, the GMWB has arbitrage free value at time t
given by

ϑ(W,H, t) = max
λ
Et[e−r(T∗−t) max(0,WT∗) +

∫ T∗

t
e−r(s−t)g(λs)ds], (4.2.15)

where Et is the conditional expectation of the expression inside taken under
risk neutral measure based on the information at time t.

The pricing formula for the GMWB is found when W = 0, if there is no
annuity account participation in the security market any more. Denote by
ϑ0(H, t) the GMWB value when W = 0, which is what we are looking for.

To solve equation (4.2.15), we employ the standard procedures that are used
when we derive the Hamilton-Jacobi-Bellman equation for problems in stochas-
tic control theory, see Dai et al. (2008). Here ϑ evolves according to

∂ϑ

∂t
+ Lϑ+ max

λ
f(λ) = 0, (4.2.16)
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with

Lϑ = 1
2σ

2W 2 ∂
2ϑ

∂W 2 + (r − δ)W ∂ϑ

∂W
− rϑ, (4.2.17)

and

f(λ) = g(λ)− λ ∂ϑ
∂W
− λ ∂ϑ

∂H

=

λ(1− A) for λ ∈ [0, G)
qG+ λ(1− q − A) for λ ≥ G,

(4.2.18)

where A = ∂ϑ
∂W

+ ∂ϑ
∂H

.

We can obtain the maximum of f(λ) on λ = 0 or G or γ, since it is piecewise
linear. Then, the maximum of f(λ) is given by

max
λ

f(λ) =


qG+ (1− q − A)γ for 1− A ≥ q

(1− A)G for 1− A ∈ (0, q)
0 for 1− A ≤ 0.

(4.2.19)

Substituting equation (4.2.19) into equation (4.2.16), we get that

∂ϑ

∂t
+ Lϑ+ γmax(1− q − A, 0) + min[max(1− A, 0), q]G = 0. (4.2.20)

When the upper bound approaches infinity (i.e γ → ∞), we get as solved in
Section B.2 that

min
[
−∂ϑ
∂t
− Lϑ−max(1− A, 0)G,−(1− q) + A

]
= 0. (4.2.21)

At time T∗, the annuitant receives the maximum of the remaining account
value W and the remaining guarantee base of the charges (i.e ϑ(W,H, T∗) =
max(W, (1−q)H)). When the guarantee base H = 0, we have that ϑ(W, 0, t) =
We−r(T∗−t) as the annuity value whereby e−r(T∗−t) is a discounting factor at rate
r. So the function ϑ0(H, t) can be obtained by finding a solution to equation
(4.2.22) below, which is a reduced form of equation (4.2.21)

min
[
−∂ϑ0

∂t
+ rϑ0 −max(1− ∂ϑ0

∂H
, 0)G,−(1− q) + ∂ϑ0

∂H

]
= 0. (4.2.22)

We now have the solution found in Section B.2, the stopping point solution
for H optimal withdrawals when W = 0 is given by

ϑ0(H, t) = (1− q) max(H −G, 0) + G

r
[1− e−rmin(H

G
,)] (4.2.23)
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For H ≤ G, we have

ϑ0(H, t) = G

r
[1− e−rH ], (4.2.24)

where

 = min
[
(T∗ − t),−

1
r

ln(1− q)
]
. (4.2.25)

As an interpretation, equation (4.2.23) implies that for a large value of guar-
antee base H, the strategy the policyholder considers optimal is to withdraw
a portion at time t of the guarantee base plus the value G of the remaining
account value. But if the guarantee base at time t is significantly small, the
option is to withdraw G of the remaining amount.

Setting the parameters W0 = 100, r = 0.08, T∗ = 15, t = 3 and q = 0.1
in equation (B.2.15), the desirable withdrawal of the portion of H given G = 8
is

H ≤ −G
r

ln(1− q) ' 10.54.

Table 4.3 shows all values for different penalty charges q

q H ϑ0(H, t)
0.1 8.6 56.9
0.2 22.3 83.2
0.3 35.7 94.2

Table 4.3: Optimal withdrawal values for portion of H when W = 0.

4.3 Model under Insurer’s Perspective
Consider now the insurer’s perspective of an account value Wt that is com-
pletely depleted before the expiration date T∗ by not a fixed but deterministic
withdrawals represented by 0 ≤ Gt ≤ Wt, and the short rate process rt is gov-
erned as in equation (3.1.9). Denote by T0 the time when the account value
becomes depleted (i.e when Wt = 0), in which case the insurer will no longer
deduct the fee δ from the account but keep on paying the claims made by the
policyholder. Then the account value is governed by

dWt = [(rt − δ)Wt −Gt]dt+ σWtdBt, t ∈ [0, T0) (4.3.1)
Wt = 0, t ≥ T0.
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Recall equation (4.2.9). Then from the insurer’s perspective, the dynamics of
the short rate rt and Xt are needed for the valuation of a AQPP and can be
simplified by switching from Q to a new measure Qs. Firstly, let us denote the
money market account by

AT∗ = e
∫ T∗

0 rsds.

To shift from measure Q to Qs, we apply the derivative as in equation (3.1.7),
which here we denote by the density process ψT∗ as follows

ψT∗ = dQs

dQ
|FT

= exp
(
−
∫ T∗

0
rsds

)
ST∗
S0

= ST∗/S0

AT∗/A0
,

so that the option embedded part of equation (4.2.9), can be expressed as

EQ
[
e−
∫ T∗

0 rsds W0

XT∗

max(0, 1− X̄)
]

= e−δT∗EQs
[
W0 max(0, 1− X̄)

]
.

Now for a deterministic Gt, the whole of equation (4.2.9) including the term
certain annuity part can be written as

CFI = e−δT∗EQs
[
W0 max(0, 1− X̄)

]
− 1
r

(GT∗e
−rT∗ −G0). (4.3.2)

If we discount equation (4.3.1) and integrate from 0 to T0∧T∗ (i.e from zero to
the maximum time between T0 and T∗), the insurer’s liability can be obtained
as we show∫ T0∧T∗

0
δe−

∫ t
0 rsdsWtdt =

∫ T0∧T∗

0
rte
−
∫ t

0 rsdsWtdt−
∫ T0∧T∗

0
e−
∫ t

0 rsdsGtdt

+
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

= −
∫ T0∧T∗

0
d

(
e−
∫ t

0 rsdsWt

)
−
∫ T0∧T∗

0
e−
∫ t

0 rsdsGtdt

+
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

= −WT0∧T∗e
−
∫ T0∧T∗

0 rsds +W0 −
∫ T0∧T∗

0
e−
∫ t

0 rsdsGtdt

+
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

= −WT0∧T∗e
−
∫ T0∧T∗

0 rsds +W0

−
[∫ T∗

0
e−
∫ t

0 rsdsGtdt−
∫ T∗

T0∧T∗
e−
∫ t

0 rsdsGtdt

]

+
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt, (4.3.3)
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which implies∫ T∗

T0∧T∗
e−
∫ t

0 rsdsGtdt−
∫ T0∧T∗

0
δe−

∫ t
0 rsdsWtdt = WT0∧T∗e

−
∫ T0∧T∗

0 rsds −W0

−
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

+
∫ T∗

0
e−
∫ t

0 rsdsGtdt. (4.3.4)

By noting that WT0∧T∗ = WT∗ , we can express equation (4.3.4) as∫ T∗

T0∧T∗
e−
∫ t

0 rsdsGtdt−
∫ T0∧T∗

0
δe−

∫ t
0 rsdsWtdt = WT∗e

−
∫ T∗

0 rsds −W0

−
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

+
∫ T∗

0
e−
∫ t

0 rsdsGtdt. (4.3.5)

The present value of the GMWB associated liability to the insurer is the
amount stream that the insurer should pay from the depletion period of the
policyholder’s account value until the expiration T∗ minus the fees proportion
the insurer deducts before the policyholder’s account value Wt is entirely ex-
hausted. The present value of the liability denoted by L is obtained by taking
the expectation of (4.3.5) as follows

L = E
[∫ T∗

T0∧T∗
Gte

−
∫ t

0 rsdsdt−
∫ T0∧T∗

0
δWte

−
∫ t

0 rsdsdt

]

= E
[
WT∗e

−
∫ T∗

0 rsds −W0 +
∫ T∗

0
e−
∫ t

0 rsdsGtdt

−
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

]
. (4.3.6)

Equations (4.2.5) and (4.2.7) allow us to express equation (4.3.6) by

L = E
W0

XT∗

max(0, 1− X̄)e−
∫ T∗

0 rsds −W0 −
1
r

∫ T∗

0
d(Gte

−
∫ t

0 rsds)

−
∫ T0∧T∗

0
σe−

∫ t
0 rsdsWtdBt

 (4.3.7)

= e−δT∗E[W0 max(0, 1− X̄)]−W0 −
1
r

(GT∗e
−rT∗ −G0) (4.3.8)

= CFI −W0. (4.3.9)

This achievement in equation (4.3.9) satisfies the intuition in finance that the
present value of the GMWB cash inflow is the present value of the insurer’s
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liability plus the policyholder’s initially invested premium.

Suppose the parameters are contract period of T∗ = 17, premium W0 = 60,
time zero withdrawal G0 = 0, interest rate r = 0.08, GT∗ = W0

T∗
, and that

X̄ < 1. Then the GMWB present values with different fee applied is as dis-
played in Table 4.4

δ BW
0

0.02 7725.5
0.03 7002.9
0.04 6362.6
0.05 5794.3

Table 4.4: GMWB present values for varying fees and constant interest rate.

4.4 Tree Methodology for Pricing the
GMWB

One of the interesting techniques used in finance to price and model is the
tree methodology. This involves the application of Cox et al. (1979) binomial,
bino-trinomial, and the stair tree structures used in Dai and Lyuu (2010). In
this Section, we will incorporate these three types of tree structures in order
to avoid significant errors when pricing the GMWB with trees.

The tree modelling in this study is needed to find the continuation values
of the benefit. From the initial investment account value W0, the account
value varies because of the return on an investment and diminishes as the re-
tiree keeps on withdrawing the amount G. Using the tree structure, we can
model the account value on the interval [0, T∗] at each time step T∗

n
denoted

by ∆t, with n the number of steps. Let us consider an example as portrayed
on the structure below in Figure 4.3.
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Figure 4.3: Main idea of incorporated Tree Structures

Figure 4.3 displays an idea of incorporated three tree structures. The
account value at the initial state, denoted by W0, moves up with probability
p or down with probability 1 − p, depending on the investment return after
withdrawal G. The log-prices of W0 at a given node on the tree, with 2σ

√
T∗
n

distance from each other at the same time step are denoted by Roman figures,
and are calculated as follows

W ln
0d = −σ

√
T∗
n
, W ln

0u = σ
√

T∗
n
, W ln

0uu = 2σ
√

T∗
n
,

W ln
0ud = 0, and W ln

0dd = −2σ
√

T∗
n
.

The jumps made from a tree structure to the other can be represented by in-
volving the stair tree structure which also reflect withdrawals that are discrete,
via the formula

W a
t = W b

t −G. (4.4.1)

The notations W a
t and W b

t is the representation of account value after and
before withdrawal G respectively.
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The idea of a stair tree structure employed is displayed in Figure 4.3 by a
downward jump from W0uu to node x1, with which a trinomial tree branches
from and connects to step 3 nodes. The same is applied with W0ud to node
x2. The final step has the value G set in a manner that the critical position is
eventually hit, which is the stopping withdrawal point at an expiration stage.
This is displayed and denoted by dots down until the red line showing the level
G. The log-prices at the expiration stage for each node are as follows:

Gln
j+8 = (j + 8)σ

√
T∗
n
, Gln

j+6 = (j + 6)σ
√

T∗
n
, Gln

j+4 = (j + 4)σ
√

T∗
n

Gln
j+2 = (j + 2)σ

√
T∗
n
, Gln

j = jσ
√

T∗
n
, and Gln = ln G

G
= 0

for some even integer j.

We are now going to model the account value for the withdrawal period on the
interval [0, T∗] with a more detailed different diagram example from the first.
Consider the tree in Figure 4.4 below
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Figure 4.4: Withdrawal Period Tree Structure on [0, T∗]

Figure 4.4 can be explained as thus: firstly, before the withdrawal, we have
the initial account value W b

0 denoted on the tree by node A. Then A branches
a trinomial with upward, middle, and downward probabilities pu, pm, and pd
respectively. With the sizes of the up, middle, and down jumps

u = eσ
√

2∆t, m = 1, and d = e−σ
√

2∆t,

we have, as proposed by Boyle (1986), the upward probability of

pu =
e (r−δ)∆t

2 − e−σ
√

∆t
2

eσ
√

∆t
2 − e−σ

√
∆t
2

2

, (4.4.2)

and the downward probability

pd =
 eσ√∆t

2 − e
(r−δ)∆t

2

eσ
√

∆t
2 − e−σ

√
∆t
2

2

, (4.4.3)
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and the middle probability given by

pm = 1− (pu + pd). (4.4.4)

Note pu, pm, and pd are within the interval (0,1) and ∆t < 2σ2

(r−δ)2 .

The implementation of the jumps on a stair tree structure to model discrete
withdrawals, appears represented with the red downward jump arrows. For
example, take node I with the account value before withdrawal W b(I), then
after withdrawing G, it jumps downwards to node J which has the discrete
withdrawal formula

J = W a(I) = W b(I)−G. (4.4.5)

Looking at the values of the account at critical position nodes K,V, and Z, we
notice that they lie below the level of the guaranteed withdrawal G. Therefore,
until the expiration date T∗ is reached, the retiree still receives the guarantee
G even if the account value declines as in K. Now, on our tree in Figure 4.4,
if that happens in critical positions before expiration date T∗ as in K, the
account value there becomes 0 after payment G and no branching out from
such 0 amount account value to connect with next time step nodes. That is
because it is still on the way to reaching the expiration date T∗ and we have to
consider branching only from nodes with account values exceeding withdrawal
guarantee G. The node V is the first at the expiration date T∗ that indicates
when G ≤ 0, which is the convergence destination.

However if there is an amount left in the account, even after the contract
is over, the retiree has the right to receive the remainder as part of the deal
in GMWB variable annuity. Algebraically, this means that the GMWB at the
expiration date is given by

max(W b
T∗ −G, 0) +G = max(W a

T∗ , 0) +G, (4.4.6)

which in our case in Figure 4.4, we have as

max(V, 0) +G. (4.4.7)

The formula (4.4.6) of the GMWB is not the same as the ones we used before
the expiration date T∗. If the retiree dies before the expiration date is reached,
the continuation value of the GMWB is obtained as follows. Let us pick a
node Q for example, then if the retiree dies at that time step, the continuation
value of the GMWB is given by

GMWBtQ = e−r∆t(puGMWBT∗U
+ pdGMWBT∗V

). (4.4.8)
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For a doubling period to expiration date, for example, if this happens at node
J, the continuation value is given by

GMWBtJ = e−3r∆t(p2
uGMWBT∗X

+ pupdGMWBT∗U
+ pupmGMWBT∗U

+ pmpdGWMBT∗V
+ pupdGWMBT∗V

+ p2
uGWMBT∗Z

), (4.4.9)

where r denotes the return rate. See equations (B.3.4) and (B.3.5) in Section
B.3 for clarity to above equations (4.4.8) and (4.4.9), and also Cox et al. (1979).

Because of the nature of the Cox et al. (1979) tree structure at steps 1 and 3,
we have the log-prices in Figure 4.4 represented in green dotted Roman figures,
where

i= ln( G
Wa

0
)− σ

√
T∗
n
, ii= ln( G

Wa
0

), iii= ln( G
Wa

0
) + σ

√
T∗
n
, iv= ln( G

Wa
0

) + 3σ
√

T∗
n
,

v= ln( G
Wa

0
) + 5σ

√
T∗
n
, vi= ln( G

Wa
0

) + 7σ
√

T∗
n

and so forth with the distance of 2σ
√

T∗
n

between each other, see Yang and
Dai (2013). These are the same log-prices at time step 3 on same level.

As a numerical illustration to equation (4.4.9), let us use equations (4.4.2),
(4.4.3) and (4.4.4), and assume pd = 0.6, pm = 0.1, pu = 0.3 and other pa-
rameters r = 0.07, T = 15, n = 2 such that ∆t = 7.2. Again, suppose that
the GMWB values at point X, U, V and Z in Figure 4.4 are respectively given
by 0, 22, 40 and 62. Then the point J continuation value of the GMWB is
expressed as

GMWBtJ = e−(3×0.07×7.2)
[
(0.32 × 0) + (0.3× 0.6× 22) + (0.3× 0.1× 22)

+ (0.1× 0.6× 40) + (0.3× 0.6× 40) + (0.32 × 60)
]

= 4.33.

4.5 GMWB for Life Valuation
The GMWB is made complex by also extending it to the GMWB for life or
what is known as the GLWB, short for Guaranteed Lifelong Withdrawal Ben-
efit. This takes the form of GMIB after annuitization. The GLWB product
provides a lifespan income for the retirees who are aged 65 and above in many
insurance companies. If the nest egg is exhausted prior to the death of the
policyholder, the withdrawals that will be made after are liabilities of the in-
surer.

As in the GMWB, the GLWB can be decomposed into static and dynamic
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pricing, even though we show an example for static pricing only in this Sec-
tion. The difference will be that in GLWB, it is quite necessary to involve the
survival and death probabilities in pricing of the model. In GLWB, there is
no limit on how much total to withdraw because even if the guarantee base
H becomes zero, the policyholder is entitled to withdraw the yearly guaran-
teed amount agreed upon at contract inception. This means that the yearly
withdrawal guarantee is specified but the total is never limited.

4.5.1 Pricing the GLWB
Recall that the equity S evolves according to equation (2.0.1) and all related
assumptions about the state of the market and pricing in Chapter 2.

The policyholder gets the yearly guaranteed amount if still alive and the bene-
ficiary receives the remaining account value should the policyholder die before
the account value is depleted. The GLWB discounted value at time t = 0 is
given by the discounted values sum of the benefits the policyholder gets when
alive and those the beneficiary receives when dead. Let us denote the value at
time zero of the GLWB by Υ0, then

Υ0 = B`
0 +BD

0 , (4.5.1)

where B`
0 and BD

0 are, respectively, the living benefit and the remaining benefit
received by the beneficiary at death that are discounted at time zero.

Recall equation (2.1.1) with all the probabilities associated to it, and that
T∗ = Ta∗ is the remaining future time of life random variable for the pol-
icyholder aged a at contract inception. Now we can express the time zero
discounted living benefit or present value of yearly guaranteed withdrawal
G = wW0 that are weighted with probability of survival as

B`
0 =

n−a∑
t=1

wW0e
−rt(tpa), (4.5.2)

where w is as mentioned in Chapter 2. For a stochastic expiration date T∗ and
the account valueWT∗ that are independent, the death benefit value discounted
at time t = 0 for maturity T = t is expressed as in Mudavanhu and Zhuo (2002)
by

BD
0 (T = t) = E0[EQ[e−rtBD

T |T=t]], (4.5.3)

where the expectation taken for T and WT under risk neutral measure.

But fixing the time to be at expiration T∗, we can use the Itô formula to
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calculate the death benefit and get the solution of equation (4.2.1) under the
withdrawal model for life as an Asian Quanto Put

BD
T∗ = e(r−δ− 1

2σ
2)T∗+σBT∗ max

[(
W0 −

W0

T∗

∫ T∗

0
e−(r−δ− 1

2σ
2)s−σBsds

)
, 0
]
.

The arbitrage free present value at time t = 0 for maturity T = T∗ of the death
benefit is given by

BD
0 (T = T∗) = e−rT∗EQ[BD

T∗ ], (4.5.4)

where

E[BD
T∗ ] = EQ

[
e(r−δ− 1

2σ
2)T∗+σBT∗ max

[(
W0 −

W0
T∗

∫ T∗

0
e−(r−δ− 1

2σ
2)s−σBsds

)
, 0
]]
.

Consider equation (4.5.3), then we have for maturity T = t that

BD
0 =

∫ n−a

0
fa(t)EQ(BD

t )dt, (4.5.5)

where fa(t) is the probability density function for the remaining future time
of life random variable T∗. It can be expressed in discrete form as

BD
0 =

n−a∑
t=0

tpaθa+tEQ(BD
t ). (4.5.6)

With equations (4.5.2) and (4.5.6), we have the GLWB present value of all the
cash inflow from t = 0 to t = (T∗ = n− a) as

BL
0 =

n−a∑
t=0

[wW0e
−rt

tpa + tpaθa+tEQ(BD
t )]. (4.5.7)

Setting the parameters for equation (4.5.7) as follows: r = 5%, w = 7%,
W0 = 1000, δ = 1%, n = 100, and a = 65 until a = 95, the sum was calculated
and the results in Figure 4.5 show the present values for GLWB.
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Figure 4.5: GLWB Present Values
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Chapter 5

Valuation of Equity-Indexed
Annuities

In this Chapter, the main aim is to value an equity-indexed policy which is
mostly known as purchased with a cliquet feature involved, but we will also
include surrender feature. There are some differences between the variable
annuities and equity-indexed annuities. EIA is a life income annuity whereby
it is guaranteed that the return on investment never falls to be below a certain
level regarded as the minimum, which is not the case when it comes to VA
income products, see Bernard and Boyle (2010). They have variable and fixed
annuities characteristics, but their returns vary more than in fixed annuity
and not more than the way they do in variable annuities. The EIA contract
is relatively short and usually (5-10) years, whereas in variable annuities the
contract period can be much longer. The embedded options of the equity-
based annuities in general, as compared to traded options make it impossible
to determine what the market volatility would be for equity-based options. If
the portfolio fund performs well, additional interests are credited to the pol-
icyholder’s account as a bonus. The profit gained by the insurance company
is shared to the holder of the policy. But since the market has uncertainties,
the chances that the policyholder will get additional interests are slim as the
fund performance varies. Nevertheless, this does not have any severe impact
to the annual benefit since the minimum guarantee helps to protect the income
against any condition or performance of the fund, as this is part of the deal
at contract inception. The policyholder gets the benefit at each withdrawal
date, at a death (received by the beneficiary), and when he decide to surren-
der the contract. The guaranteed minimum we are talking about makes the
equity-indexed policy to qualify and be recognised as an insurance policy. The
premiums of the equity-indexed policy are not invested in a separate account
as in variable annuities, but those premiums contribute to the formation of
the general fund of the insurer. The EIA was first marketed by the Keyport
Life in 1995, see MacKay (2011).

43
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5.1 Equity Indexed Annuities with Cliquet
Option

In this Section, we value the equity indexed policy of a living benefit with a
cliquet option. The equity indexed insurance policies not only offer the pro-
tection to the investment income, but also give a chance to participate in the
market index such as NASDAQ, S&P 500, DOW JONES, NYSE and others,
see Hardy (2004). If the index linked goes up, the policyholder get additional
interests depending on the rate at which annuity participates.

The cliquet option also allows the policyholder to reset the guarantee base
to equal the account value linked to the index, and all that depend on the
growth of the index at each time. So in our study we are going to separate
the cliquet contracts in two different types, namely the simple cliquet contract
and the compound cliquet contract.

The index linked S evolves as in equation (2.0.1) with a drift r − δ. Sup-
pose for cliquet option that the annual return rates linked to the index (e.g
NASDAQ and S&P 500) are given by

Rt = St
St−1

(5.1.1)

which implies

Rt = e[(r−δ− 1
2σ

2)t+σBt] × e−[(r−δ− 1
2σ

2)(t−1)+σBt−1]

= e[(r−δ− 1
2σ

2)(t−(t−1))+σ(Bt−Bt−1)]

= e[(r−δ− 1
2σ

2)+σ(Bt−Bt−1)]. (5.1.2)

The return rates are independently and identically distributed with their log-
arithms normally distributed as follows

ln(Rt) ∼ N(r − δ − 1
2σ

2, σ2) (5.1.3)

with mean r − δ − 1
2σ

2 and variance σ2.

Following Hsieh and Chiu (2007), let us first denote by R∗ the cliquet op-
tion contract return and define it at time t as

R∗t = 1 + min (c,max(f, ς(Rt − 1))) (5.1.4)

where the rates of ceiling and floor are denoted by c and f respectively, and
the rate at which the annuity participates in the index by ς. The floor and
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the ceiling rates are, respectively, the minimum and the maximum rates of the
interest earned by the annuity. If, for example, the index linked gains a growth
rate of 11% and the annuity participated 80%, then the rate of interest for the
annuity is 0.11× 0.8 = 8.8%. So if the annuity has the ceiling rate of 7%, only
7% will be credited to its account and 1.8% is taken by the insurance company
and that is how both parties benefit.

By considering equation (5.1.4), we define the following payoffs of the cli-
quet option contracts. Denote by Sp, the simple cliquet contract payoff, the
compound cliquet contract payoff by Cp, and the single premium byW0. Then

Sp = W0

(
1 +

T∗∑
t=1

min(c,max(f, ς(Rt − 1)))
)

= W0

(
1 +

T∗∑
t=1

(R∗t − 1)
)

= W0

(
(1− T∗) +

T∗∑
t=1

R∗t

)
(5.1.5)

and

Cp = W0

T∗∏
t=1

(1 + min(c,max(f, ς(Rt − 1)))

= W0

T∗∏
t=1

R∗t (5.1.6)

where the expiration date T∗ ∈ Z+.

Now, we are to discount the cliquet option contracts payoffs under risk neutral
measure to find the T∗ years values of the contracts. We have by using the
martingale framework, the value of the simple cliquet option contract as

SV = E[e−rT∗Sp]

= E
[
e−rT∗W0

(
1 +

T∗∑
t=1

min(c,max(f, ς(Rt − 1)))
)]

(5.1.7)

and the value of the compound cliquet option contract given by

CV = E[e−rT∗Cp]

= E
[
e−rT∗W0

T∗∏
t=1

[1 + min(c,max(f, ς(Rt − 1)))]
]
. (5.1.8)
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Set fς = 1 + f
ς
and cς = 1 + c

ς
. Then equation (5.1.4) can be written as

R∗t = 1− ς + ς min
(

1 + c

ς
,max(1 + f

ς
, Rt)

)
= 1− ς + ς min(cς ,max(fς , Rt)). (5.1.9)

With equations (5.1.5) and (5.1.7), we have that

SV = E[e−rT∗Sp]

= E
[
e−rT∗W0

(
(1− T∗) +

T∗∑
t=1

R∗t

)]

= E
[
e−rT∗W0

(
(1− T∗) +

T∗∑
t=1

(
1− ς + ς min(cς ,max(fς , Rt))

))]

= E
[
e−rT∗W0

(
(1− T∗) + T∗ − ςT∗ + ς

T∗∑
t=1

min(cς ,max(fς , Rt))
)]

(5.1.10)

and equations (5.1.6) and (5.1.8) give

CV = E[e−rT∗Cp]

= E[e−rT∗W0

T∗∏
t=1

R∗t ]

= E
[
e−rT∗W0

T∗∏
t=1

(
1− ς + ς min(cς ,max(fς , Rt))

)]
(5.1.11)

To arrive at the analytical solutions of the simple and compound cliquet
option contracts values, we have to first find E[min(cς ,max(fς , Rt))]. Let
Zt = min(cς ,max(fς , Rt)), then clearly it can be observed that Zt’s are ran-
dom variables that are independent and log-normally distributed with values
censored on the interval [fς , cς ].

Assuming the expected values of random variables Zt’s are equal constants, we
can represent a constant by EZI and express equations (5.1.10) and (5.1.11)
as

SV = e−rT∗W0
(
1− ςT∗ + ςT∗E[ZI ]

)
and

CV = e−rT∗W0
(
1− ς + ςE[ZI ]

)T∗
,

where
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ZI =


fς for RI ≤ fς ,

RI for RI ∈ [fς , cς ],
cς for RI ≥ cς .

(5.1.12)

The logarithmic annual returns in equation (5.1.3) linked to the index are
normally distributed with the probability density function hR(z). Then we
can write the expression

E[ZI ] = fςP (RI ≤ fς) + E[RI |fς ≤ RI ≤ cς ]× P (fς ≤ RI ≤ cς)
+ cςP (RI ≥ cς)

= fς

∫ fς

0
hR(z)dz +

∫ cς

fς
zhR(z)dz + cς

∫ ∞
cς

hR(z)dz

= fςΦ(dA) + er[Φ(dB)− Φ(dA)] + cς(1− Φ(dB)) (5.1.13)

where the denotation Φ(.) represents the cumulative probability function for
the standard normal distribution. The denotations dA and dB found in Sub-
section C.1 are given by

dA =
ln(fς)− r + δ + 1

2σ
2

σ
(5.1.14)

and

dB =
ln(cς)− r + δ + 1

2σ
2

σ
. (5.1.15)

Then equations (5.1.10) and (5.1.11) become the simple and compound cliquet
contracts values for T∗ years as expressed below

SV = e−rT∗W0

(
1− ςT∗ + ςT∗

[
fςΦ(dA)

+ er[Φ(dB)− Φ(dA)] + cς(1− Φ(dB))
])

(5.1.16)

and

CV = e−rT∗W0

(
1− ς + ς

[
fςΦ(dA)

+ er[Φ(dB)− Φ(dA)] + cς(1− Φ(dB))
])T∗

. (5.1.17)

The analytical solutions to equations (5.1.16) and (5.1.17) are as shown in
Subsection C.1.1.
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5.2 Equity-indexed annuities with surrender
option

We now look at the equity-indexed policy with a surrender option. To value
the policy, let us consider and recall equation (2.0.1) and every model assump-
tion. Also, suppose that the index linked annual return rates are as in equation
(5.1.1).

To calculate the contract policy value, let us assume that it was initiated at
time t = 0 and matures at time T∗. Denote the benefit at time t = 0 by U0, rate
of participation ς, and since EIA can also be a fixed annuity we may assume
the guaranteed growth rate g where the benefit is without floor and ceiling.
The benefit whereby the additional interest is credited to the policyholder, we
may call it a bonus and denote it by bt expressed as in Calidonio-Aguilar and
Xu (2011) and Bacinello (2001) as follows

bt = max(0, ςRt − g). (5.2.1)

The benefit U at time t is given as the previous benefit multiplied by the
minimum guarantee rate plus additional interest as thus:

Ut = Ut−1(1 + g + bt), for t ∈ [0, T∗]. (5.2.2)

Equation (5.2.2) can actually be expressed in terms of a fundamental benefit
with the relations from equations (5.2.1) and (5.2.2) as we show below.

U1 = U0(1 + g + b1)
U2 = U1(1 + g + b2)
... = ...
Ut−1 = Ut−2(1 + g + bt−1)
Ut = Ut−1(1 + g + bt)

then,

U1 × U2 × · · ·Ut = U0(1 + g + b1)× · · ·Ut−2(1 + g + bt−1)
× Ut−1(1 + g + bt). (5.2.3)
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Therefore, considering from equation (5.2.1) the case when Rt ≥ g, we have
the benefit as

Ut = U0

t∏
i=1

(1 + g + bi)

= U0

t∏
i=1

(1 + g + ςRi − g)

= U0

t∏
i=1

(1 + g)
(

1 + ςRi − g
1 + g

)

= U0

t∏
i=1

(1 + g)(1 + ξi) (5.2.4)

where

ξi = max
(

0, ςRi − g
1 + g

)
. (5.2.5)

Now, denote by I(Ut) the present value of the benefit Ut under the martingale
framework for estimating contingent claims. Then, we can express I(Ut) as

I(Ut) = E[e−rtUt], for t ∈ [0, T∗]. (5.2.6)

and the expectation E[.] is taken under the risk neutral measure Q.
Substituting equation (5.2.4) into equation (5.2.6), we have that

I(Ut) = E[e−rtU0

t∏
i=1

(1 + g)(1 + ξi)]

= E
[
e−rtU0

t∏
i=1

(1 + g)
(

1 + max
(

0, ςRi − g
1 + g

))]

= U0

t∏
i=1
E
[
e−r(1 + g) + e−r (max (0, ςRi − g))

]

= U0

t∏
i=1

e−r(1 + g)

+ ςE
[
e−r max

(
0, (1 +Ri)− (1 + g

ς
)
)]. (5.2.7)

The expected value under the risk neutral measure taken in equation (5.2.7)
can be regarded as European call option at time t = 0, which has an asset price
equal to 2 and exercise price of 1 + g

ς
. Let that expected value or a European

call option price be denoted by Ci, then

I(Ut) = U0

t∏
i=1

[
e−r(1 + g) + ςCi

]
, for t ∈ [0, T∗]. (5.2.8)
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By using Black and Scholes (1973), we define the value of Ct as follows

Ct = Φ(dA)− (1 + g

ς
)e−rΦ(dB), (5.2.9)

where

dA =
ln
(

1
1+ g

ς

)
+ (r + δ + 1

2σ
2)

σ
, dB = dA − σ (5.2.10)

with Φ(.) representing the cumulative probability function for standard nor-
mal distribution.

As we continue, the value of the policy is the present value sum of all the
benefits that are given to the policyholder that are weighted with probabilities
of life, surrender and death. So we have to first find the present value which in-
volves taking into account the surrender option. This surrender value is given
by a certain percentage from the benefit accrued at the time the policyholder
chooses to surrender, and the longer the contract exist the more increased it
becomes. We can denote by jt that percentage at time t, then the surrender
value can be expressed as

V̄ = jtUt, for t ∈ [0, T∗]. (5.2.11)

Under the risk neutral measure Q, the surrender value at time t = 0 denoted
by I(V̄ ) is expressed as below

I(V̄ ) = E[e−rtV̄ ]
= E[e−rt(jtUt)]
= jtI(Ut). (5.2.12)

More about surrendering of a contract is well explained in Chapter 1 where we
have also shown how modeling of surrender rates is done. Insurance companies
usually use historical data to estimate the probability that investors might
choose to surrender their contracts. For example, when modelling surrender
rates we used historical data for logistic regression model. So to get a fair
value for the policy with a surrender feature, we assume the historical data is
used to estimate the likelihood of surrendering by the policyholder. Therefore
we will have the fair value that includes the probabilities of surrender, life and
death which are described as follows:

• The probability that surrendering by policyholder aged a is made at year
t is denoted by tΩa.

• The probability that the policyholder aged a might die at year t is de-
noted by tqa.
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• The probability that the holder aged a is still living at (T∗− 1)th year is
denoted by (T∗−1)pa.

• The probability that surrendering the contract has never made at (T∗ −
1)th year is denoted by (T∗−1)χa.

Then the value of the benefit with a surrender feature for the EIA can be
found by summing all the present values I(Ut) and I(V̄ ) weighted with all the
probabilities as we do

PV̄ =
T∗−1∑
t=t

(tΩa)I(Ut) +
T∗−1∑
t=t

(tpa)(tΩa)jtI(Ut)

+ ((T∗−1)pa)((T∗−1)χa)I(UT∗). (5.2.13)

The costs amount resulted when the policyholder dies and surrender the con-
tract prior to the maturity are respectively represented by the first and second
terms that are weighted with probabilities of paying those amounts (which are
the probabilities of death or surrender). The final term represents the costs
amount payable when the policyholder who is alive at maturity never surren-
dered the policy.

Suppose that age a = 50 with T∗ = 8 as the maturity date, and percentage
jt = 0.8 for t ∈ [5, 8] since surrenders usually made not at earlier periods. The
probabilities of surrender considered are as follows: tΩ50 = 0.2 for t ∈ [5, 8]
and (T∗−1)χ50 = 7χ50 = 1− 7Ω50 = 0.8. The probabilities of life and death
considered as follows: tp50 = n−a−t

n−a = 100−50−t
50 where n is the terminal age

of the investor. Now by considering the surrender periods 5-8 and assuming
I(U) = 0.7 within the periods mentioned, equation (5.2.13) yields the results
as follows:

PV̄ =0.56 + 0.38896 + 0.48160 = 1.43
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Chapter 6

VA/EIA Investment Embedded
Risks

In this Chapter we mention important risks that are mostly experienced by the
policyholders and the insurance companies. It is important that the insurers
not only measure the risks, but know how to also manage them. Hedging of
insurance benefits involves the use of both quantitative finance and actuar-
ial science because of the existing inseparable insurance and financial security
risks within the guaranteed benefits. Among the risks known the following are
of greater concern:

(i) Mortality risk- It is the risk that insurance companies experience too
many claims due to high policyholders’ death rate in a short period of time

• This risk can be managed by issuing contracts to many retirees, as it gives
an insurer a pledge in estimating. For example, if one person out of 300 policy-
holders dies, then the insurer can collect from 300 policyholders the premiums
including that of the deceased to pay claim made by the beneficiary.

(ii) Behavioural risk - This is the risk affecting the insurer because of the
policyholder not making decisions aligned with the insurer’s assumptions. It
includes eventually lapsing the contract as a result of policyholder’s failure to
pay premiums as agreed, and others such as surrendering the contract. To
manage the risks associated with behaviour, the following should be among
what can be done:

• Issuing the policy to a larger number of people can mitigate the risk, since
the aggregate of the whole population’s behaviour is of greater importance to
the policy issuer.
• It is a usual thing that most people below age 60 defer income, but older
ones make immediate exhaustion. So with that kind of behaviour, the insurer
knows which class of individuals suitable to get the type of contract he issues.
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• Making restrictions on the behaviour of the policyholder. For example, the
maximum withdrawal to be made each year. Also requiring the policyholder
a certain waiting period before starting income withdrawal or a certain age to
start income withdrawal.

(iii) Selection rate risk - This is the risk that insurers bear for giving pol-
icyholders an option on when to start making withdrawals and flexibility on
how much they would like to withdraw. This can entail greater loss to the
insurance company since early and high withdrawals can cause a severe loss
to the company.

• Managing such risk can be done through improved contract terms for poli-
cyholders who choose to defer withdrawals, and a cliquet option can be helpful
in reduction of an income selection.

(iv) Market risk - This is the risk of losses in position resulted from the
characteristic behaviour of the market prices. It includes for equity-based an-
nuities, the change in volatility, the rate of interest and equity returns. There
are many ways of dealing with that kind of risk, for example:

• Hedging strategies such as the Greeks to measure sensitivity of embedded
options to the interest, volatility and time.
• Diversification of investments to reduce the volatility of asset values.

(v) Longevity risk - This is one of them and considered the primary and
systematic risk since it is difficult to efficiently deal with. To the policyholders,
longevity risk is viewed as a risk that they might live too long and eventually
outlive their savings. So with the equity-based investments it is understood
that longevity risk as a challenge to the policyholder it can be managed. But
longevity risk as a problem to the insurance company is still a primary con-
cern because it has to pay every claim policyholders make as long as they live
according to the contract obligation agreed upon at contract initiation. Thus
it poses a greater challenge to the management of such risk.
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Chapter 7

Conclusion

In this thesis, the main objective was to carry out the risk management, val-
uation and analysis of the equity-based insurance policies which gained popu-
larity during the 1990s in United States, Europe, Japan and other developed
countries. These kind of policies are categorised into Variable Annuity (VA)
and Equity Indexed Annuity (EIA). The four complex VA benefits differ from
EIA in that the return on an investment is not restricted to floors and caps.

As can be viewed from valuation results of the priced benefits, we conclude that
indeed the pricing formulae are fair as there was no negative present values.
This means that despite the fees deducted, it is possible for the policyholder to
receive what he initially invested, either by lump sum or periodic withdrawals.

Based on risk management, since it is such a greater challenge for insurers
to efficiently manage the undiversifiable longevity risk, in conclusion statis-
tical models are better candidates to the estimation of certain factors that
will help the company make roughly good decisions when issuing a contract.
Factors such as risk premium which we can compute and estimate how much
risk acceptable to both the policyholder and the insurer when getting into a
contract. This risk premium is a compensation for taking additional risk and
is key to every model in finance associated with risk and return. It is intuitive
that for highly risky investment there should be high expected returns com-
pared to less risky investment. Thus we have the expected return as the sum of
risk free return and risk premium compensated for risk taken by investor. The
importance of risk premium is that it reflects basic judgements to be made on
how large the risk projected in the equity market and what associated price
we should attach to it. This can be included in the future work using models
that better estimate risk premium.

Another factor that is important for the management of longevity risk is
the mortality. Important thing to note about mortalities in annuities is that
each year not provisional added for life expectancy may increase the policy
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provider’s liabilities. The line of management to be used falls under the def-
inition of product design where there should be some age restrictions and
requirements for a particular contract to be issued to the buyers. Such designs
help the insurance companies minimise the time length for which they will pay
the income claims made by the policyholders. The idea here would be to make
projections about the mortality rates of any country we choose in order to help
the insurer decide when and to which age class should the contract be issued.
An important assumption would be that a large number of population in a
country we are interested in usually make their savings for retirement in the
equity-based insurance policies. This also can be done in the future study of
the equity based annuities using good models to forecast the mortality rates.
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Appendix A

Modelling Surrender Rates

A.1 Analysis of Surrender Rates
The plots in Figures A.1, A.2, A.3 and A.4, describe the nature of the data used
for both variable annuities and equity indexed annuities, as well as independent
variables that can be seen in equation (1.0.1).

Figure A.1: Logit Surrender Rates Response Variables for VA and EIA

57

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODELLING SURRENDER RATES 58

Figure A.2: GDP, Inflation and Unemployment data description

Figure A.3: Interest Rates data description
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Figure A.4: Description of non-logit Surrender Rates vs. All Explanatory Vari-
ables

The analysis output for the logistic regression of both VA and EIA surren-
der rates data is as displayed in Figures A.5 and A.6

Figure A.5: VA Logit Function Analysis Output
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Figure A.6: EIA Logit Function Analysis Output

The Tables A.1 and A.2 also describe the data for all factors used in the
model.

VA-Logit EIA-Logit GDP INF UNEMP DIFF
Average -0.825 -0.761 0.160 0.326 0.757 -0.130
S.Dev 0.210 0.624 0.089 0.138 0.226 0.091

Table A.1: Variables Averages and Standard deviations

VA-Logit EIA-Logit GDP INF UNEMP DIFF
VA-Logit 1
EIA-Logit 0.444 1

GDP -0.173 -0.391 1
INF 0.175 0.333 0.257 1

UNEMP -0.383 -0.450 -0.301 -0.621 1
DIFF 0.302 -0.342 -0.212 -0.094 0.216 1

Table A.2: Correlation for Logit function of VA and EIA with explanatory variables
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Appendix B

Withdrawal rates, Dynamic
Solution and Continuation
Value for GMWB

B.1 Sustainable Withdrawal Probabilities
Tables B.1 and B.2 below correspond to what is explained for equation (4.1.4)
in Subsection 4.1.1.
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B.2 Solving for Solution to Dynamic GMWB
From equation (4.2.21), below is how we came about equation (4.2.22) when
γ →∞.
First, let us consider a case where 1−A ≤ q, then the term γmax(1−q−A, 0)
will all disappear. So we will be left with

∂ϑ

∂t
+ Lϑ+ min[max(1− A, 0), q]G = 0 (B.2.1)

⇒ ∂ϑ

∂t
+ Lϑ+ max(1− A, 0)G = 0 (B.2.2)

following −1 + A+ q ≥ 0.

Knowing that min(a, b) + c = min(a + c, b + c), thus equation (4.2.21) yields
equation (4.2.22) written as

min
[
−∂ϑ
∂t
− Lϑ−max(1− A, 0)G,−(1− q) + A

]
= 0. (B.2.3)

Recall that when W = 0 we have ϑ0(H,T∗) = H(1− q) and ϑ0(0, t) = 0. Now
to get ϑ0(H, t), let us consider these scenarios below:

First Scenario: Consider when

1 ≥ ∂ϑ0

∂H
> (1− q) (B.2.4)

then, equation (4.2.22) or (B.2.3) becomes

−∂ϑ0

∂t
+ rϑ0 −G+G

∂ϑ0

∂H
= 0. (B.2.5)

Define

γ0(H, t) = ϑ0(H, t)er(T∗−t) −G
∫ T∗

t
er(T∗−s)ds, (B.2.6)

then γ0(H, t) satisfies

∂γ0(H, t)
∂t

−G∂γ0(H, t)
∂H

= 0 (B.2.7)

with conditions

(i). γ0(H,T∗) = H(1− q),

(ii). γ0(0, t) = −G
∫ T∗

t
er(T∗−s)ds

(B.2.8)

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. WITHDRAWAL RATES, DYNAMIC SOLUTION AND
CONTINUATION VALUE FOR GMWB 64

The function γ0(H, t) has a solution of the kind

γ0(H, t) = F (υ) (B.2.9)

where υ = t + H
G

and the function F will be determined from the conditions
above. Equation (B.2.7) has characteristics given by T∗ ≤ υ and T∗ > υ.

We know that ϑ0(H,T∗) = H(1 − q) for time t = T∗, so ∂ϑ0(H,T∗)
∂H

= 1 − q
which opposes the first scenario. This means that the condition (i) in equation
(B.2.8) is also rejected since we will have γ0(H,T∗) = F (T∗ + H

G
) = H(1− q).

Thus it does not hold for characteristic T∗ ≤ t+ H
G

So, we will be focusing on the situation when t = t, that is only on condi-
tion (ii).

γ0(0, t) = −G
∫ T∗

t
er(T∗−s)ds

which implies that when H = 0, equation (B.2.9) becomes

F (t+ 0
G

) = −G
∫ T∗

t
er(T∗−s)ds (B.2.10)

and consequently, for characteristic T∗ > t+ H
G

we have from equation (B.2.9)
that

γ0(H, t) = F (t+ H

G
) (B.2.11)

= −G
∫ T∗

t+H
G

er(T∗−s)ds. (B.2.12)

Thus from equation (B.2.6), we have that

ϑ0(H, t) = e−r(T∗−t)G

[
−
∫ T∗

υ
er(T∗−s)ds+

∫ T∗

t
er(T∗−s)ds

]

= G

[∫ υ

T∗
er(t−s)ds+

∫ T∗

t
er(t−s)ds

]

= G
∫ υ

t
er(s−t)ds, (B.2.13)

and thus ∂ϑ0(H,t)
∂H

= e−r
H
G < 1 satisfying one part of first scenario 1 ≥ ∂ϑ0(H,t)

∂H
.

Which means that to satisfy the whole of our first scenario we need that

e−r
H
G > (1− q), (B.2.14)

and that is when H < −G
r

ln(1− q). Now combining the characteristic region
H < G(T∗− t) and H < −G

r
ln(1−q), we have for (H, t) the optimal boundary

for withdrawal starting at

H ≤ min[G(T∗ − t),−
G

r
ln(1− q)]. (B.2.15)
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Set  = min[(T∗ − t),−1
r

ln(1− q)].

Second Scenario: We consider when
∂ϑ0

∂H
= 1− q. (B.2.16)

Then, we have ϑ0(H, t) = H(1− q) +Ct where Ct is an arbitrary function of t.
So, taking H < G we have

G(1− q) + Ct = ϑ0(G, t)

= G
∫ t+

t
e−r(s−t)ds

= G

r

[
1− e−r

]
(B.2.17)

which implies that

ϑ0(H, t) = H(1− q) +G
∫ t+

t
e−r(s−t)ds− G(1− q). (B.2.18)

Combining solutions (B.2.13) and (B.2.18) to both scenarios, we have that

ϑ0(H, t) = (1− q) max(H − G, 0) + G

r

[
1− e−rmin(,H

G
)
]
. (B.2.19)

B.3 GMWB Continuation Value
Recall the formulae in equations (4.4.8) and (4.4.9) for the continuation values
of the GMWB. Let us denote the GMWB continuation value by Λ at any node
before the maturity date. Then, we have the following formulae

Λu = e−µ∆t(puΛuu + pdΛum), (B.3.1)
Λm = e−µ∆t(puΛum + pdΛmd), (B.3.2)
Λd = e−µ∆t(puΛmd + pdΛdd). (B.3.3)

Then for a doubling period to the maturity date T∗, we have substitute
equations (B.3.1), (B.3.2), and (B.3.3) in the following GMWB continuation
value formula in equation (B.3.4) of a single period successor node:

Λ = e−µ∆t(puΛu + pmΛm + pdΛd), (B.3.4)

so that the doubling period as in Figure 4.4 (from J to the maturity date) has
the continuation value as

Λ = e−µ∆t[pue−µ∆t(puΛuu + pdΛum) + pme
−µ∆t(puΛum + pdΛmd)

+ pde
−µ∆t(puΛmd + pdΛdd)]

= e−3µ∆t[p2
uΛuu + pupdΛum

+ pmpuΛum + pmpdΛmd + pdpuΛmd + p2
dΛdd]. (B.3.5)
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Appendix C

Valuation Analysis for EIA

C.1 Analysis of Equity-Indexed Policies
In equations (5.1.13), (5.1.16) and (5.1.17), dA and dB are derived as follows:
Firstly,

Definition C.1 For a log-normal distributed variable Y with parameters de-
noted by µ and σ which are, respectively, the mean and standard deviation of
the variable’s natural logarithm (i.e the variable’s logarithm is normally dis-
tributed), it implies Y = eµ+σZ, where Z is a standard normal variable with
mean 0 and variance 1. Then expected value is given by E[Y ] = eµ+ 1

2σ
2, See

Serfling (2002).

Knowing the definition, we then solve the probability terms to get equation
(5.1.13) as follows

P (RI ≤ fς) = P (eµ+σN(0,1) ≤ fς)
= P (µ+ σN(0, 1) ≤ ln fς)

= P

(
N(0, 1) ≤

ln fς − (r − δ − 1
2σ

2)
σ

)
= P (N(0, 1) ≤ dA)
= Φ(dA), (C.1.1)

then
P (RI ≥ cς) = P (eµ+σN(0,1) ≥ cς)

= P (µ+ σN(0, 1) ≥ ln cς)

= P

(
N(0, 1) ≥

ln cς − (r − δ − 1
2σ

2)
σ

)
= P (N(0, 1) ≥ d2)
= P (N(0, 1) ≤ (−dB))
= 1− Φ(dB), (C.1.2)
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and

P (fς ≤ RI ≤ cς) = P (RI ≤ cς)− P (RI ≤ fς)
= P (eµ+σN(0,1) ≤ cς)− P (eµ+σN(0,1) ≤ fς)
= Φ(dB)− Φ(dA). (C.1.3)

C.1.1 Analytical EIA Values
Analytical values to the EIA’s simple and compound cliquet options in equa-
tions (5.1.16) and (5.1.17) are as in Tables C.1 and C.2, where we have taken
into account the following assumptions: (i). Duration of the contract is 14
years; (ii). Initial investment W0 is $100; (iii). Risk free interest rate of 4%;
(iv). Fee rate of 0.1% (v). Floor rate of 0%; and (vi). Volatility of 30%.

Now, with the rates of participation ς from 0.7 to 1.0, and the ceiling rates c
from 12.5% to 15.5%, we have

ς�c 12.5% 13.5% 14.5% 15.5%
0.7 90.55 91.42 92.67 93.47
0.8 92.75 94.08 95.51 96.47
0.9 94.61 96.36 97.68 99.11
1.0 96.12 98.03 99.77 108.68

Table C.1: Simple EIA Cliquet Values

ς�c 12.5% 13.5% 14.5% 15.5%
0.7 101.34 102.83 105.02 106.42
0.8 105.15 107.52 110.12 111.91
0.9 108.48 111.72 114.18 116.94
1.0 111.26 114.86 118.23 136.99

Table C.2: Compound EIA Cliquet Values
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