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This paper examines the value of very high-resolution multispectral satellite imagery and LiDAR-derived digital
elevation information for classifying estuarine vegetation types. Satellite images used are from theWorldView-2,
RapidEye, and SPOT-6 sensors in 2m and 5m resolution, respectively, acquired between 2010 and 2014. Ground
truthing reference is a GIS-derived vegetation map based on field data from 2008. Supervised maximum likeli-
hood classification produced satisfactory overall accuracies between 64.3% and 77.9% for the SPOT-6 and the
WorldView-2 image, respectively, while the RapidEye-based classifications produced overall accuracies between
55.0% and 66.8%. The reasons for the misclassifications are mainly based on the highly dynamic environmental
conditions causing discrepancies between the field data and satellite acquisition dates rather than technical
issues. Dynamics in water levels and salinity caused rapid change in vegetation communities. Further, weather
impacts such as floods and wind events caused water turbidity and led to bias in the reflective properties
of the satellite images and thus misclassifications. These results show, however, that the spatial and spectral
resolution of modern very high-resolution imagery is sufficient to satisfactory map estuarine vegetation and to
monitor small-scale change. They emphasise, however, the importance of synchronisation of ground truthing
data with actual image acquisition dates in these highly dynamic environments in order to achieve high classifi-
cation accuracies. The results also highlight the importance of ancillary data for accurate interpretation of
observed classification discrepancies and vegetation dynamics.

© 2016 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The St Lucia Estuary is part of the uMfolozi/uMsunduzi/St Lucia
estuarine system which forms the largest fluvial coastal plain in South
Africa (Van Heerden, 2011) and the largest estuarine system in Africa
(155,000 ha). As part of the iSimangaliso Wetland Park, it hosts the
highest biodiversity of wetland habitat types for its size in the whole
of southern Africa (Cowan, 1999). Besides its tremendous value for bio-
diversity and nature conservation, this estuarine system also provides
the basis for the regional economy such as commercial (sugarcane)
crop production, subsistence agriculture, mining, tourism, commercial
and subsistence forestry (GTI, 2010). While each of these activities
benefits from the ecosystem services of the estuarine systems, they
also impact on the condition of the ecosystem in a combined cumulative
way.

The presence, abundance, and condition of macrophytes, i.e. higher
plants, can be used as indicators to determine the health of estuarine
ecosystems (EPA, 2013). However, the paucity of spatial–temporal
information on estuarine vegetation composition and distribution in
l).
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South Africa currently undermines a holistic understanding of estuarine
processes and functioning and subsequently the prediction of impacts
of major environmental changes. Mapping of the estuarine vegetation
would provide a baseline for understanding andmonitoring of estuarine
biological processes. Remote sensing is widely viewed as an effective
way to spatially continuous inventories of vegetation composition,
distribution, and condition, in particular in large and inaccessible areas
in many regions of the world.

However, in coastal and estuarine environments, the very small
scale of the habitats, frequently occurring in narrow bands along the
shore, prohibited the application of remote sensing until recently, as
most of the satellite images successfully used in other environments
did not provide enough spatial detail. Examples are the Landsat 4 to 8
series and the MODIS and NOAA AVHRR sensors.

High andmedium resolution data, namely, aerial photographs, SPOT
3, and Landsat TM imagery have been compared by Harvey and Hill
(2001) in the Northern Territory, Australia, to determine the accuracy
and applicability of each data source for the detailed spectral discrimi-
nation of vegetation types in a tropical wetland. They found that aerial
photos with a very high spatial resolution provided better classification
accuracies than the SPOT and Landsat TM imagery. In accordance with
this, Yang (2007) classified riparian vegetation in Australia with an
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accuracy of 81% using aerial photos, 63% using SPOT-4 imagery (10 m
resolution), and 53% using Landsat 7 imagery (30 m resolution). He
pointed out that the low number of spectral bands is the limiting factor
in using aerial photos for wetland vegetation classification, as is the
coarse spatial resolution in the case of the Landsat imagery.

Only with the recent availability of very high-resolution (VHR)
imagery e.g. from the SPOT-6, RapidEye, and Worldview-2 sensors
which provide multispectral imagery with pixel sizes between 2 and
5 m and more spectral bands, satellite remote sensing of estuarine and
coastal regions has become more feasible. In addition, topographic
information derived from airborne LiDAR (LightDetection and Ranging)
technology has proven to improve coastal vegetation mapping signifi-
cantly, in particularwhen used in combinationwithmultispectral imag-
ery (Prisloe et al., 2006; Kempeneers et al., 2009).

The aim of this paper was therefore to test and compare the use of
VHR SPOT-6, RapidEye, and WorldView-2 (WV2) satellite imagery
with and without combination of LiDAR data for mapping relevant
vegetation types in the St Lucia Estuary.
Fig. 1. The St Lucia system including its lakes and feeder rivers (source: Whitfield, 1992).
The classes that were mapped were aligned with existing habitat
keys from the National Biodiversity Assessment (Turpie et al., 2012;
Van Niekerk and Turpie, 2012). The intention was to provide guidance
on which sensor or sensor combination provides the most accurate
spatial information for informing estuarine management. Furthermore,
the influence of environmental factors such as wind speed and water
levels on the accuracy of the results was examined.
2. Study area

With an area of about 30,520 ha, St Lucia is the largest estuary
in South Africa (Moll et al., 1971; Turpie et al., 2012). The climate is sub-
tropicalwith an average annual rainfall of approximately 1100mmwith
most rainfall occurring in winter and spring, i.e. June to October (Taylor
et al., 2006). The average temperatures range between 25 and 28 °C
throughout the year.

In the south, the estuary mouth is connected to the Indian Ocean by
the 21 km long Narrows channel. The lake system is separated from the
sea by high coastal dunes that flank its eastern bank (Taylor, 2006), see
Fig. 1.

St Lucia has an inlet/mouth that is periodically closed to the sea for
months to years at a time depending on the river inflow regime and
management interventions. This means that water levels and salinity
can change drastically within short periods, e.g. after floods and
mouth breaks. In response, the distribution of estuarine vegetation
communities is highly dynamic.

The predominant natural estuarine vegetation in the region can be
divided into 8 habitat units, namely, permanently flooded macroalgae
and submerged macrophytes, partly flooded reeds and sedges and
salt marshes, mangroves and swamp forests, and grass and shrub vege-
tation, and lastly floating macrophytes (Rautenbach, 2015). Table 1
below summarises the dominant species and gives a brief description
of these habitat types.

Land use in the vicinity of the estuarine system is diverse. It includes
commercial (sugarcane) crop production, subsistence agriculture, min-
ing, tourism, commercial and subsistence forestry, conservation as well
as residential areas (GTI, 2010).

The land use in the immediate iSimangaliso Wetland Park (former
Greater St Lucia Wetland Park) area changed dramatically during
the last two decades. Before the declaration of the Wetland Park as
UNESCO World Heritage Site in 1999 (UNESCO, 1999), large areas
were used for commercial forestry, introducing alien Eucalypt and
Pine species. Since the foundation of the Wetland Park, forestry has
been actively removed, and international eco-tourism is becoming
more important. In the abandoned forestry areas, a quick succession
of natural vegetation can be observed. However, an expansion of rural
settlements into the area due to an increase in population (e.g. immigra-
tion fromMozambique and other areas), puts a newpressure on natural
environments.
3. Material and methods

3.1. Input data

3.1.1. Reference habitat map
As reference map for this study, an existing GIS map based on aerial

imagery from 2008 was used. The map only delineates habitats below
the 5 m contour. This map was originally generated by Nondoda
(2012). A modified version of this map as presented by Rautenbach
(2015) which aggregates some of Nondoda's original classes was used
for this study. Accuracy and spatial detail was considered suitable for
our purpose. The habitat units derived from this data set are Submerged
macrophytes, Salt marsh, Swamp forest, Grass and shrubs, Mangroves,
and Reeds and Sedges (see Table 1 above).



Table 1
Habitat units and their dominant species (Rautenbach, 2015).

Habitat unit Dominant species Description

Macroalgae Ulva intestinalis, Chaetomorpha sp., Cladophora sp.,
Bostrychia sp. and Polysiphonia sp.

Found at estuary margins, as epiphytes and associated with mangrove pneumatophores.

Submerged
macrophytes

Ruppia cirrhosa, Zostera capensis and Stuckenia pectinata Plants rooted in substrata whose leaves and stems are completely submersed.

Reeds and sedges Phragmites australis, Juncus kraussii and Schoenoplectus
scirpoides

Observed at sites with freshwater input at the margins, rooted in submerged substrata.
Juncus kraussii is observed at the vicinity of the Forks and the Narrows.

Mangroves Avicennia marina and Bruguiera gymnorrhiza Observed in the brackish to saline intertidal areas at the Narrows and mouth area.
Grass and shrubs Sporobolus virginicus, Paspalum vaginatum, and

Stenotaphrum secundatum
Sedge grass and shore slope lawn, observed in areas where there is no freshwater input,
freshwater is provided by rainfall.

Salt marsh Sarcocornia sp., Salicornia meyeriana, and Atriplex patula Succulent species colonize exposed saline soils in False Bay and in the mudflats of North Lake
and are not tolerant to long periods of inundation.

Swamp forest Ficus trichopoda, Barringtonia racemosa, and Voacanga sp. Observed on the banks of Mfolozi Estuary, in the vicinity of the back channel and Narrows
and along the Eastern Shores under freshwater conditions.

Floating macrophytes Nymphaea nouchal, Azolla filiculoides Floating leaved species are commonly associated with submerged and deepwater aquatics
and occur at water depths from 0.5 to 2 m.
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3.1.2. LiDAR data
A LiDAR data set acquired in April–May 2013 covering the

iSimangaliso Wetland Park area was made available for this project by
the iSimangaliso Wetland Park authority. The Digital Terrain Model
(DTM) data consisted of high accuracy (1 Sigma) point data of LiDAR-
derived surface information, which has been provided in xyz ASCII
format aswell as in 0.25m contours in SHP file format. The ASCII format
contains very detailed surface information. However, files tend to be
huge and require special software to access. In contrast, the SHP format
is a format that most GIS practitioners can readily use and it is therefore
a common LiDAR output product format. However, the generalisation of
the information to derive 25 cm contoursmeans a loss of detail. In order
to assess the impact of this loss of detail on the habitat classification
accuracy, in this project both the SHP file contour product and the
raw, unthinned xyz point cloud data binned to 1 m were used as sepa-
rate inputs for the habitat classification.
3.1.3. Satellite imagery
For this project, a series of high-resolution satellite images from the

RapidEye, SPOT-6, andWorldView-2 sensors was acquired. All imagery
was provided in full band mode, geometrically but not radiometrically
corrected (level 2B). Table 2 below gives an overview of the respective
sensors, the spatial resolution and the respective acquisition dates.
The respective spectral bands are given in Table 3 below.
3.2. Areas used for application of approach

For the supervised classification approach, only subsets of the total
satellite coverage were used which corresponded largely with the ex-
tent of the Wetland Park and the extent of the reference habitat map.
In this way, land cover and habitat classes for which no reference data
were available and whose accuracy could not have been assessed (e.g.
any agriculture and other transformed areas) were largely excluded.
The available RapidEye and SPOT-6 data covered almost the full extent
of that area, while for WorldView-2 only for the southern part imagery
was available.
Table 2
Satellite data used and their specifications.

Sensor Resolution (m) Acquisition dates

WorldView-2 2.0 9 April 2010
RapidEye 5.0 18/20 July 2011

13 January 2012
SPOT6 5.0 8 February 2014
LiDAR Rasterised to match above April–May 2013
3.3. Methods

The final goal of comparing habitat classifications derived from
different combinations of input data has been achieved following
several preprocessing, data conversion, and data generation steps.
Fig. 2 gives an overview of the work conducted for the Maximum
Likelihood classification. The individual preprocessing, classification,
and post-processing steps are unpacked in the following sections.
3.3.1. Preprocessing of remote sensing data
All satellite image files were corrected for radiometric and atmo-

spheric effects to derive top of canopy reflectance values. This correction
allowed for better analysis of the spectral signatures in the actual classi-
fication approach as described in Section 3.3.4 below.

The RapidEye image for July 2011 was provided as seven individual
tiles from two separate acquisition dates (18 and 20 July 2011), the
RapidEye image for 13 January 2012 as six individual tiles. Following
the atmospheric correction of the individual tiles, all the tiles for July
2011 and all tiles for January 2012weremosaicked to allow for an easier
handling of the data in the subsequent work steps.

Some of the satellite images originally came in UTM projection with
WGS84 Datum, while others were provided in Transverse Mercator
projection. It was decided to reproject all images to the projection of
the 2008 reference data: Transverse Mercator, Central Meridian 33°E,
Hartebeesthoek 1994Datum. In thisway, the best possible geographical
match of thedata setswas achieved. It is important that the images to be
classified overlay with high geographic accuracy to the reference data,
as spatial misalignments can lead to misclassifications and reduced
accuracies (Townshend et al., 1992).

Given the humid, subtropical climate of the area, it was very difficult
to get 100% cloud-free satellite images; three out of the four images
used had some cloud occurrences. A masking of cloud areas was not
conducted as a result of time constraints. However, in order to avoid
biases in the classification and accuracy results, care was taken in the
selection of cloud-free training and validation points instead (Sections
3.3.2 and 3.3.3).

The LiDAR data for that area were provided in individual small tiles
as well. Therefore, in a first step, those tiles covering the SPOT-6,
RapidEye, and WV-2 mosaics were identified.

For those, both, the 25 cm contour SHP files aswell as the unthinned
xyz ASCII files binned to 1 m resolution, were converted into an ERDAS
IMG raster formatmatching the spatial resolution of the respectivemul-
tispectral images (2 and 5 m respectively). The raster tiles were then
mosaicked and reprojected tomatch the projection of themultispectral
mosaics.

The elevation data ranges were then stretched and the layers were
stacked (i.e. attached) to the respective multispectral images (see
respective last layers “contour DEM” and “xyz DEM” in Table 3 below).



Fig. 2. Flow diagram of technical steps conducted.
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The elevation range of the original Terrain model for that area was
between−2.5m and+180m. This data range is very small when com-
pared to the re-scaled reflectance values of the multispectral images,
ranging typically between 500 and 6000. The original small data range
of the elevation data would be almost un-noticeable when attached as
extra layer to the multispectral image, thus not adding much informa-
tion for the Maximum Likelihood classification. Therefore, the DEM
data were re-scaled using the function [(Image +2.5)*100], leading
to a “stretched” data range between 0 and 18,250 which emphasises
small variations in relief. Altogether, 8 data stacks were produced as
input for the classification process (Table 3).
3.3.2. Extraction of ground truthing points from GIS reference data
The basis for the training and validation data for the classification of

the satellite images was the 2008 referencemap (Section 3.1.1). For the
classes Submerged macrophytes, Salt marsh, Swamp forest, Grass and
shrubs, Mangroves, and Reeds and Sedges (Table 1) stratified random
points were extracted from that map (Lowry et al., 2007; Duro et al.,
2012). Between 20 and 30 points per class per satellite image extent
were created. For all resulting points, it was checked visually if any
of them was lying in an area impacted by clouds or cloud shadows.
Impacted points were omitted to avoid biases in the classification and
validation approach.



Table 3
Bands of the respective layer stacks used for the supervised classification process.

Stack no. 1 2 3 4 5 6 7 8

Band no. WV-2 WV-2 RapidEye 2011 RapidEye 2011 RapidEye 2012 RapidEye 2012 SPOT-6 SPOT-6

1 Coastal Coastal Blue Blue Blue Blue Blue Blue
2 Blue Blue Green Green Green Green Green Green
3 Green Green Red Red Red Red Red Red
4 Yellow Yellow RedEdge RedEdge RedEdge RedEdge NIR NIR
5 Red Red NIR NIR NIR NIR Contour DEM xyz DEM
6 RedEdge RedEdge Contour DEM xyz DEM Contour DEM xyz DEM
7 NIR1 NIR1
8 NIR2 NIR2
9 Contour DEM xyz DEM
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3.3.3. Extraction of ground truthing points for Bare soil and Open water
Additional random points for the land cover classes Openwater and

Bare soil were created, as these classes are highly important in an estu-
arine and coastal context and it was anticipated that the inclusion
of training points for these classes would improve the overall accuracy
of the supervised maximum likelihood classification in narrowing the
actual feature space for all classes.

For the identification of open water and bare soil area, the normal-
ised Difference Vegetation Index (NDVI) was calculated for all four
images, following the formula NDVI = (NIR − Red)/(NIR + Red). The
value range for NDVI data is from −1 to +1. It is generally accepted
that NDVI values for open water are lower than 0, and values for bare
soil are in the positive range just above 0 if images are derived from
radiometrically corrected images, as in our case (Loveland et al., 1991;
Lunetta et al., 2006). Visual inspection of the actual NDVI data confirmed
this rule, only for the RapidEye-derived NDVI data the threshold be-
tween water and bare soil had to be adjusted to 0.1 for a visually satis-
factory distinction between the two classes.

For Bare soil, an NDVI value range between 0.0 (0.1 for RapidEye)
and 0.4 was set. The threshold of 0.4 for delineating bare soil from
vegetation appears to be quite high. However, impervious surfaces
(i.e. anthropogenic bare surfaces) were characterised by Loveland
et al. (1991) by values between 0.3 and 0.4, too. However, for this
paper, the threshold has been defined visually from the image, using
fallow fields, roads, and the beach as reference. It cannot be excluded
though that our class “Bare Soil”would include some sparse vegetation,
too.

From thederivedWater and Bare Soilmasks about 25 randompoints
were extracted for both, training and validation, and added to the re-
spective point sets created from the 2008 habitat reference map. Points
impacted by clouds and cloud shadows were removed from these clas-
ses as well. For the resulting eight habitat classes, between 154 (WV-2)
and 251 (RapidEye) training and validation points, respectively, were
used. The variation in point numbers is related to the amount of points
which had to be deleted due to cloud and cloud shadow impact. Further,
in the 2008 referencemap, Salt marsh and Submergedmacrophytes did
not occur in the southern area covered by the WV-2 image, thus these
classes are not represented in the WV-2 classification.
3.3.4. Maximum Likelihood classification
For all four images, spectral training signatures were created for the

respective training points for all eight respective layer stacks (Table 3).
The resulting spectral signatures were cleaned from obvious outliers
thatwould have contributed to biased spectral statistics in the following
classification process. Outliers were caused mainly by changes in land
cover in the time between the 2008 reference data and the actual
image acquisition date, such as forest plantation to grass and shrubs,
or grass and shrubs to swamp forest. Where the analysis of the spectral
signatures revealed that there are spectral subgroupings within one of
the reference classes, these subclasseswere treated as individual classes
during the classification process. As an example, the class “Grasses and
Shrubs” consisted of areas which were clearly dominated by shrubs,
while other areas were dominated by grasses, resulting in either more
shrub- or grass-dominated spectral signatures. Here subclasses “Grass
and shrubs_woody” and “Grass and shrubs_grassy” were created.
Furthermore, some of the reeds were flooded during the time of
image acquisition and looked spectrally different from non-flooded
reeds. Keeping these spectrally different subgroups of a class separate
in the actual classification process has shown to produce higher classifi-
cation accuracies. The classification process was then run on all 8 layer
stacks (as per Table 3) twice, first excluding, then including the contour
and xyz DEM, respectively, resulting in a total of 16 classifications.

It was decided to include all multispectral bands of the respective
sensors in the classification process to assess the value of the high
spectral resolution (i.e. increased number of bands) on the accuracy of
the classification results. Schuster et al. (2012) and Adam et al. (2014)
emphasise the improvement of land cover classifications by using
RapidEye's RedEdge band. For all classifications, Feature Space was
selected as the non-parametric rule and Maximum Likelihood as the
parametric rule in ERDAS’ Supervised classification tool.
3.3.5. Post-processing
Given the high spatial resolution of the satellite images, the 16 clas-

sification results looked very “noisy”. This means that the vegetation
types were disrupted by single classes or groups of pixels of another
class, mainly as a result of shadow effects in the vegetation canopy. It
was therefore decided to filter the classification outputs to eliminate
those miss-classified single pixels or small pixel groups consisting
of b8 pixels (Fig. 3). According to Duro et al. (2012), this smoothing of
classification results can improve the overall classification accuracy.

Further, where existing, the interim subclasses (e.g. Sedges and
Reeds-flooded and Sedges and Reeds-non-flooded) were merged
again to the original class types. This had to be done to have the same
level of class detail as the reference habitatmap for accuracy assessment
purposes.
3.3.6. Accuracy assessment
For all resulting 16 classifications, error matrices including the

Overall Accuracy, the User's and Producer's Accuracy for each class, as
well as the Kappa coefficient were produced and analysed. The Overall
Accuracy gives the percentage of reference points that have been classi-
fied correctly. The User's Accuracy indicates the probability that a pixel
classified in this class actually represents this class on the ground, and
the Producer's Accuracy indicates how accurately the training points
have been classified. The Kappa statistic indicates to which extent the
classification result is better than pure chance (Lillesand et al., 2004),
i.e. the higher the Kappa value, the greater the classification accuracy.
The difference between Kappa and Overall Accuracy (OAA) is that the
OAA can be biased by differences in the number of reference points
per class, i.e. classes with more reference points weigh more in the
OAA, while the Kappa is not affect by unequal reference point numbers.



Fig. 3. Example of classification results. Top:MultispectralWV-2 image of the estuarymouth; bottom: final classification results for same area after filtering (areas higher than 10m above
sea level are masked out).
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4. Results and discussion

Table 4 below gives an overview of theOverall Accuracies and Kappa
values for all 16 (4 × 4) classification runs.
4.1. Impact of LiDAR DEMs on classification accuracies

Comparing runs 1 and 2, and runs 3 and 4 in Table 4 respectively
shows that in 7 out of the 8 classifications the additional use of the



Table 4
Overview of Overall Accuracies (OAA) and Kappa values for all classifications.

2010 WV-2 2011 RapidEye 2012 RapidEye 2014 SPOT-6

Run no. DEM type OAA Kappa OAA Kappa OAA Kappa OAA Kappa

1 no contours 72.7% 0.66 57.8% 0.52 55.0% 0.48 69.6% 0.64
2 contours 76.6% 0.70 62.5% 0.57 60.2% 0.54 64.3% 0.59
3 no xyz 75.3% 0.69 57.4% 0.51 56.8% 0.50 71.4% 0.67
4 with xyz 77.9% 0.72 66.8% 0.62 57.8% 0.51 75.7% 0.72
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LiDAR-derived DEM information improved the overall classification
accuracies (OAA). This result is in accordance to other publications,
confirming that the combined use of LiDAR and multispectral data
improves classification accuracies (e.g. Kempeneers et al., 2009). The
LiDAR decreased the accuracy of the classification results in the second
run of the SPOT-6 image.

The overall accuracies and Kappas for the purely multispectral-
based classifications of the first and third run are about the same for
the RapidEye and SPOT-6 images, which was to be expected because
in both cases the input is only the multispectral image. However,
there is a slight improvement in the third run of the WorldView-2
image, probably caused by slight differences in the respective training
areas.

Accuracies for three of the four classifications including the detailed
LiDAR information in the fourth run are higher than the respective accu-
racies for the contour-derived LiDAR stacks in run 2. This indicates that
the use of more detailed surface data improves vegetation classification
accuracies.

4.2. Confusion between Sedges and Reeds and Grass and Shrubs

Table 5 shows the error matrix for the fourth run of theWorldView-
2 classification that included the detailed xyz-derived LiDAR data. This
matrix shows howmany of the reference data have been classified cor-
rectly. For example, of the 19 validation points for Grass and Shrubs
(row Ref. Total), 13 have been correctly classified as Grass and Shrubs,
but 2 points were classified as Swamp forest and Sedges and Reeds
and one as Mangroves and one as Bare soil. Altogether, 33 points have
been classified as Grass and Shrubs (Class. Total), 13 of which are in
fact Grass and Shrubs, but 9 of the 33 should have been classified as
Swamp forest, 1 as Mangroves, and 10 as Sedges and Reeds instead.
The last columns give the respective Producer's and User's Accuracy
and Kappa value per class.

Table 5 shows that the accuracies for 5 of the 6 classes with Kappas
N0.7 are quite high, including the classes Bare soil and Water, which,
because of their spectral distinctness from any vegetation classes, in
most land cover classifications yield very high accuracies. However,
the sensors often confused the classes Grass and Shrubs and Sedges
and Reeds, leading to Kappas as low as 0.31 and Accuracies as low as
39.4%. The analysis of the other classifications shows that the same con-
fusion occurred frequently between these two classes.

However, we expect that the high dynamic of the estuarine vegeta-
tion, in particular the non-woody classes even over a relatively short
Table 5
Error matrix for the 4th run of the WorldView-2 classification of the stack including the xyz-d

Classified data Sw. forest G & S Mangr. Open water Bar

Sw. forest 45 2 1 0 0
Gr. & Shrub 9 13 1 0 0
Mangroves 1 1 7 0 0
Open water 0 0 0 22 0
Bare soil 0 1 1 3 14
S. & Reeds 0 2 0 0 0
Ref. Total 55 19 10 25 14

Overall Classification Accuracy = 77.92%.
Overall Kappa Statistics = 0.723.
observation period of 2 years, would be the main reason for the low
accuracy results when measured against the 2008 reference data. High
dynamics in the estuarine vegetation have also been reported by
Rautenbach (2015) for the period 2008–2013. In other words, our clas-
sifications correctly picked up real vegetation changes on the ground.

Further sources for low classification accuracies are:

- Spectral similarity between the classes: The more grassy areas of the
class Grass and Shrubs might have gotten confused with the also
grass-like Sedges and Reeds.

- Small scale vegetation mosaic: In case that the vegetation on the
ground appears in form of amosaic of small patches of different veg-
etation types and that this patchiness had been “generalised” in the
2008 reference map, this might confuse the classification in that ei-
ther the classifier picked variations up correctly but the generalised
reference data did not have the correct resolution, or in the form of
spectral mixed pixels, which are “blurry” and do not pick up bound-
aries between patches correctly.

- Different water levels: both vegetation types are bound to sites which
are low lying and prone to (and dependent on) various levels of
flooding. So even if the vegetation itself did not change between
the image date and the reference date, various levels of flooding,
spatially and temporally, might have biased the spectral signatures
and lead to confusion between these classes. This observation is con-
firmed by the findings of Fyfe (2003) and Silva et al. (2008) whose
wetland classifications were affected by similar effects. Figs. 5
and 6 also illustrate the varying water levels in the area at the time
of the satellite observations.

- Accuracy of the reference data: The St Lucia wetlands cover a large
area, and under various water levels, all sections are not equally ac-
cessible (e.g. swampy area with large populations of hippopotami
and crocodiles). It stands to reason that in the 2008 reference map,
some areas were therefore mapped at a coarser resolution than
others. It can therefore not be excluded that those two classes have
been confused in that data already.

4.3. Analysis of accuracies of other classes

Fig. 4 below shows the Kappa values for all 8 classes in all 16 classi-
fications. The figure shows that the accuracy for class Submerged mac-
rophytes is consistently high for all three images (class not present in
smaller WorldView-2 image extent). This result is in contrast to other
findings, e.g. by Adam andMutanga (2009) who found that submerged
erived LiDAR information.

e soil S & R Class. Total Prod. Acc. Users Acc. Kappa

0 48 81.8% 93.8% 0.90
10 33 68.4% 39.4% 0.31
0 9 70.0% 77.8% 0.76
0 22 81.5% 100% 1.00
0 19 100% 73.7% 0.71

19 21 65.5% 90.5% 0.88
29 152



Fig. 4. Kappa values for all classes in all 16 classification runs. R1 and R3: runs without LiDAR DEM, run R2: with contour DEM, run R4: with xyz DEM.
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vegetation is difficult to distinguish due to the highwater fraction in the
spectral signal. Reflectance of water in the infrared band is close to zero,
while vegetation has high reflectance in infrared and distinction be-
tween species frequently relies on these bands. However, Dogan et al.
(2009) used Quickbird data for successful mapping of submerged
vegetation as well, which provides 4 spectral bands (visible plus near
infrared) in 0.65 m resolution.

Similarly, Swamp forest was consistently mapped with very high
accuracies, apart from the DEM-including runs 2 and 4 of the RapidEye
images. In contrast, the class Grass and Shrubs frequently was among
the lowest accuracies. Mangroves have been classified satisfactory in
most of the classifications, too; only in run 1 and run 2 of the 2011
RapidEye image they got confused with Swamp Forest, which means,
here the additional use of the DEM increased the separability between
the two forest types.

The class OpenWater was among the best classes in most of the im-
ages, whichwas expected.Water and Bare soil were classifiedwith very
low accuracies, however, in the RapidEye images, and the reasons for
this are discussed in Section 4.5 below.

The implication of these results for the user is that Submerged mac-
rophytes, Swamp forest,Mangroves, Openwater, and Bare soil are those
classes which – according to our results – can be extractedmost reliably
from the compared WorldView-2, RapidEye, and SPOT-6 images, while
the other classes, in particular those with continuously low accuracies,
are not so easily distinguishable in an approach as the presented one.

4.4. Comparison of accuracies between sensors

Generally, WorldView-2 produced the best accuracies and SPOT-6
the second best results, while all the RapidEye classifications have strik-
ingly low accuracies (Table 4) with overall accuracies between 55.0 and
66.8% and Kappas as low as 0.48–0.62. The goodWV-2 result is expect-
ed, given the closest temporal “proximity” to the 2008 reference data. It
might be premature though to conclude that WorldView-2 also having
the highest spectral and spatial resolution (8 bands, 2 m pixel size) of
the compared data sets is the most appropriate for estuarine habitat
classification, as, given to the smaller extent of the available image,
the total number of classes was lower than in the other images as Sub-
mergedmacrophytes and Salt marsh did not occur in that area. A lower
number of classes usually increases classification accuracies.

SPOT-6 has only 4 spectral bands and a pixel size of 5 m, and with
its 10 vegetation classes, it still produced the second best results,
which is even more striking, given its largest temporal “distance” from
the 2008 reference data. In contrast, both RapidEye images with 5
spectral bands and also 5 m pixel size produced unsatisfactory accura-
cies for many classes. In comparison, Adam et al. (2014) achieved accu-
racies above 90% for their RapidEye-based land cover classification in
the same region. However, their classes were much broader (bare
land, coastal sand, grassland, degraded grassland, indigenous forest,ma-
ture sugarcane, young sugarcane, plantation forest, settlements, water
body, and wetland) and spectrally more distinct and thus less prone
to misclassification than the classes used in this study, where Adam's
class “Wetland” actually is divided into six subclasses.

Given the inconsistency of accuracies for individual classes between
the compared sensors, in this study, the results are not used for a change
analysis of over time, as the results are likely biases by the respective
class-related errors.

4.5. Analysis of 2011 and 2012 RapidEye results using environmental
condition data

Table 6 shows the error matrix for the 2011 RapidEye classification
of the stack including the xyz-derived LiDAR information (run 4) as a
typical example for the RapidEye results. Table 7 shows the accuracy
matrix for the fourth run of the 2012 RapidEye classification.

In the 2011 result, the class Sedges and Reeds for the reasons de-
scribed above is confused with Grass and Shrubs. However, in this
image, Grass and Shrubs also was confused with Bare soil. It has to be
remembered, though, that the Bare Soil mask was produced using an
NDVI threshold of 0.4, which is likely to include sparsely vegetated
areas as well (compare Section 3.3.3). It is therefore possible that
some openGrass and Shrub areas, may be areas recovering after vegeta-
tion removal, wrongly fell into the Bare soil class. Further, probably the
more woody fraction of the Grass and Shrubs class got confused to a
greater extent with the other woody class Swamp forest. Apparently,
RapidEye's spectral resolution was not good enough to distinguish
between these spectrally similar classes.

Striking, however, is the high degree of confusion and misclassifica-
tion of the Bare Soil and Water classes in both the 2011 and the 2012
RapidEye images. In most land cover or vegetation classifications,
these classes usually produce accuracies of 75%, 80%, or better.

Figs. 5 and 6might explain the results. At the bottomof Fig. 5 subsets
of the Lakes area of the RapidEye and SPOT-6 images are displayed in
natural (true) colour. The WorldView-2 image unfortunately did not
cover this area. The estuary's water body looks very different in all
three images. In the July 2011 image, thewater level appears to bemod-
erately high, in the January 2012 image the water level is very low, and
in the2014 SPOT-6 image, thewater level appears to be very high. These



Table 6
Error matrix for the 2011 RapidEye classification of the stack including the xyz-derived LiDAR information.

Classified data Subm. Salt marsh Swamp forest G & S Mangr. Open water Bare soil S & R Ref. totals Prod. Acc. Users Acc. Kappa

Submerged 20 0 0 0 0 0 0 0 23 87.0% 100.0% 1.00
Salt marsh 0 20 0 4 0 1 0 2 24 83.3% 74.1% 0.71
Sw. forest 0 0 22 5 1 0 0 3 29 75.9% 71.0% 0.66
Gr. & Shrub 0 2 0 7 3 0 7 6 20 35.0% 28.0% 0.20
Mangroves 0 0 3 0 17 0 0 1 23 73.9% 81.0% 0.79
Open water 0 0 0 0 0 9 0 0 23 39.1% 100.0% 1.00
Bare soil 3 1 0 0 0 13 11 1 18 61.1% 37.9% 0.32
S. & Reeds 0 1 4 4 2 0 0 29 42 69.1% 72.5% 0.65
Col.Total 23 24 29 20 23 23 18 42 202

Overall Classification Accuracy = 66.83%.
Overall Kappa Statistics = 0.62.
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observations are supported by themeasuredwater levels at the St Lucia
Bridge (Fig. 6). The water level at the time of acquisition of the 2010
WV-2 image is about the same at the reference time in 2008. The
comparable hydrologic conditions with no major water level changes
between the two dates resulted in vegetation similarity and contributed
to the high accuracies of the WV-2 classification.

The difference in the 2011 and 2012water levels and the peakwater
levels in between the reference and image acquisition dates might
explain the confusion of the classes which are to be found close to
the water edge, as their position will probably have been different
from the reference GIS map or vegetation mapped in 2008 might have
been washed away during the floods. This result is supported by
Rautenbach (2015), who noted: “The biggest change in vegetation
composition [between 2008 and 2013] was the overall decrease in salt
marsh (by 57%) and increase in submerged macrophytes (by 96%). After
the drought [in 2010], water level rose rapidly as rainfall returned to
normal and the Mfolozi River connected to the sea and St Lucia Estuary.
This caused an increase in surface area of thewater column (which includes
the Lakes, Narrows, Back Channel, Link Canal and Mfolozi River) from
30498 ha in 2008 to 32624 ha in 2013. The increase in water level and
the reduction in salinity in False Bay and the lakes (North and South)
caused flooding and inundation of the salt marsh habitat, reducing the
area covered.”

The colour of the water at the image acquisition dates is another
potential source for misclassification. In the SPOT-6 image, the water
looks relatively clear with only a slight brown discolouration indicating
some small degree of turbidity. This may be a result of themixing of the
strong winds 2 days before the image was taken (Fig. 5, top). Given the
high water levels at that time, the mixing of the water column would
only have been moderate. Flow from the Mfolozi River and entry of
water via the back channel and link canal would also result in increased
turbidity particularly in the Narrows.

In the 2011 image, however, the water looks greenish, indicating
some degree of chlorophyll, either from some microalgae bloom or by
Table 7
Error matrix for the 2012 RapidEye classification of the stack including the xyz-derived DEM in

Classified data Subm. Salt marsh Swamp forest G $_amp_$amp; S Mangr.

Submerged 13 0 0 0 0
Salt marsh 0 8 0 3 2
Sw.forest 0 0 26 3 4
Gr. & Shrub 0 5 1 24 3
Mangroves 0 0 0 0 12
Open water 0 0 0 0 0
Bare soil 5 8 0 2 0
S. & Reeds 0 5 2 8 2
Col. Total 18 26 29 40 23

Overall Classification Accuracy = 57.83%.
Overall Kappa Statistics = 0.51.
submerged macrophyte development. This observation was confirmed
by Taylor et al. (2013), who reported high coverages of macrophyte
beds in that area which vanished after May 2013. The misclassification
ofWater as Bare soil (Table 6) supports this observationwhen consider-
ing that our Bare soil based on an NDVI b0.4 likely included some veg-
etation signal.

In the 2012 RapidEye image, the water looks very turbid and turbu-
lent. Figs. 5 and 6 show that the water level at that time was very low
and that during the 3 days preceding the image capture a strong
(south-easterly) wind was blowing. Under these conditions, the water
column would have been mixed up and very turbid and the water sur-
face very rough with wind-generated waves. (The waves are actually
visible when zooming into the image.) This explains the high degree
of misclassification between bare soil and water in this image.

5. Conclusions

This paper examined the value of very high-resolutionmultispectral
satellite imagery from theWorldView-2 (2m pixel size), RapidEye (5m
pixel size), and SPOT-6 (5m pixel size) sensors acquired between 2010
and 2014 and LiDAR-derived digital surface information for classifying
estuarine vegetation types. Ground truthing reference was a GIS-based
vegetation map from 2008. Supervised maximum likelihood classifica-
tion produced satisfactory overall accuracies for the WorldView-2 and
the SPOT-6 image, while the RapidEye-based classifications produced
slightly lower overall accuracies.

However, the analysis of classification errors in relation to environ-
mental factors showed that mainly high vegetation dynamics, adverse
wind conditions, different water levels, and resulting water turbidity
seem to be the reason for the observed misclassifications rather than
weaknesses of the imagery itself.

It is the inherent dynamic nature of the estuarine environment with
large fluctuations in water levels and salinity, which causes swift turn-
over of vegetation types, temporally and spatially. Examples include
formation.

Open water Bare soil S & R Ref. totals Prod. Acc. Users Acc. Kappa

0 0 0 18 72.2% 100.0% 1.00
0 0 1 26 30.8% 57.1% 0.52
0 0 2 29 89.7% 74.3% 0.71
0 3 3 40 60.0% 61.5% 0.53
0 0 4 23 52.2% 75.0% 0.72
0 0 0 25 — — 0.00

25 16 1 24 66.7% 28.1% 0.20
0 5 34 45 75.6% 60.7% 0.51

25 24 45 230



Fig. 5. Top: Hourly wind speed, measured at Richardsbay for 2011–2014 and Durban for 2010 (no Richardsbay data available for 2010), for 3 days prior to respective satellite image
acquisition dates. Bottom: Subset of respective RapidEye and SPOT-6 images for the North Lake and False Bay area of the estuary. Wind data source: SADCO (http://sadco.csir.co.za/).

197M. Lück-Vogel et al. / South African Journal of Botany 107 (2016) 188–199
Saltmarsh to Sedges and Reeds, or Grass and Shrubs to Swamp forest on
abandoned Forest plantations. This leads to inaccurate vegetation classi-
fications if the acquisition date of satellite imagery and the validation
data are too far apart. In the St Lucia Estuary, even 6–12 months differ-
ence turned out to lead to major vegetation change and hence misclas-
sification, if a major flood eradicated entire vegetation patches or even a
recent wind event occurred. It is therefore recommended that ground
truthing data are to be used that match the satellite image acquisition
dates as closely as possible.

Results were also influenced by physiognomic and spectral similarity
of certain vegetation types, such as grass and reeds, and shrubs and for-
ests. This confusion is technically expected. The additional use of LiDAR-
derived Digital Surface Models improved the separability of those classes
and improved5out of 8 classification runs. Further solutions could include
either the use of a sensor with a better (hyperspectral) resolution of the
satellite imagery or possibly by a more conscious choice of the image
acquisition date, where spectral separability varies over the seasons.
Apart from true vegetation change, recent weather impacts (high
water levels inundating terrestrial vegetation and wind events mixing
up the water column) also contribute to a bias in the reflective proper-
ties of the satellite imagery and impair the accurate identification of
surface and vegetation types.

Our research showed the importance of ancillary environmental
condition data such as water levels, mouth state, wind and weather
data to interpret results appropriately. For dynamic environments,
such as estuaries and the coast, these data should be sourced routinely
as part of any remote-sensing-based vegetation assessment study.
This is even more important under (so frequently experienced) project
conditions where ground truthing data of the same period are not
available.

This research also shows that remote sensing may potentially be
more successfully applied to the large permanently open estuaries
(~30 of South Africa's systems) as their habitats are more stable than
the systems that close with large fluctuations in water levels.

http://sadco.csir.co.za
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The results show that the spatial and spectral resolution of modern
very high-resolution imagery is sufficient to satisfactory map andmon-
itor small-scale estuarine vegetation. They emphasize, however, the
importance of synchronisation of ground truthing data with actual
image acquisition times in these highly dynamic environments.
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