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SUMMARY

SUMMARY

Iron metabolism disorders comprise the most common disorders in humans. Hereditary
haemochromatosis (HH) is a common condition resulting from inappropriate iron absorption.
The most common form of the disease (Type 1) is associated with mutations in the HFE gene.
The C282Y homozygous genotype accounts for approximately 80% of all reported cases of
HH within the Caucasian population. A second HFE mutation, H63D, is associated with less
severe disease expression. The C282Y mutation is extremely rare in Asian and African
populations. The H63D mutation is more prevalent and has been observed in almost all

populations.

Iron overload resulting from haemochromatosis is predicted to be rare in Asian Indian
populations and is not associated with common HFE mutations that are responsible for HH in
the Caucasian population. The aberrant genes associated with HH in India have not yet been

identified.

The present study attempted to identify variants in six iron regulatory genes that were
resulting in the Type 1 HH phenotype observed in two Asian Indian probands from a highly

consanguineous family.

The promoter and coding regions of the HMOX1, HFE, HAMP, SLC40A1, CYBRDI and HJV
genes were subjected to mutation analysis. Gene fragments were amplified employing the
polymerase chain reaction (PCR) and subsequently subjected to heteroduplex single-strand
conformational polymorphism (HEX-SSCP) analysis. Samples displaying aberrations were
then analysed using bi-directional semi-automated DNA sequencing analysis to identify any
known or novel variants within the six genes. Variants disrupting restriction enzyme
recognition sites were genotyped employing restriction fragment length polymorphism

(RFLP) analysis.

Mutation analysis of the six genes revealed 24 previously identified variants, five novel
variants (HFE: 5’UTR-840T—G, CYBRDI: 5°UTR-1813C—T, 5’UTR-1452T—C, 5’UTR-
1272T—C; HJV: 5’UTR-534G—T, 5’UTR-530G—T), one previously described
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microsatellite and two novel repeats. Variants identified within the SLC4041, CYBRDI and

HJV genes do not seem to be associated with the iron overload phenotype.

A previously described HAMP variant (5’UTR-335G—T) was observed in the homozygous
state in both probands. This variant seems to be the genetic aberration responsible for iron
overload in this Indian family. The severe juvenile haemochromatosis phenotype usually
associated with HAMP mutations, was not exhibited by the two Indian probands. Their
symptoms resembled those observed in classic Type 1 HH. It is suggested that variants
identified in the HMOXI and HFE genes are modifying the effect of the HAMP variant and
resulting in the less severe disease phenotype. Although this variant has only been identified

in one Indian family, it could shed some light in the hunt for the iron-loading gene in India.
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Opsomming

Oorerflike hemochromatose (OH) is ‘n algemene siektetoestand wat ontstaan as gevolg van
oneffektiewe opname van yster in die liggaam. Die mees algemene vorm van die siekte (Tipe
1) word geassosieer met mutasies in die HFE-geen. Die C282Y homosigotiese genotipe is
verantwoordelik vir ongeveer 80% van alle gerapporteerde gevalle van OH binne die
Kaukasiese bevolking. ‘n Tweede HFE mutasie, H63D, word geassosieer met minder ernstige

siekte simptome. Die C282Y mutasie is besonder skaars in Asiese en Afrika bevolkings.

Daar word bespiegel dat oorerflike ysteroorlading as gevolg van hemochromatose skaars is in
Asiese Indi€r bevolkings en word nie geassosicer met algemene HFE mutasies wat
verantwoordelik is vir OH in Kaukasiese bevolkings nie. Die abnormale gene wat wél

geassosieer word met OH in Indi€ is tot dusver nog nie identifiseer nie.

Die doel van hierdie studie was om die variante in ses yster-regulerende gene te identifiseer
wat die Tipe 1 OH fenotipe in hierdie familie veroorsaak. Hierdie fenotipe is waargeneem in

twee Asies Indiese familielede atkomstig van ‘n bloedverwante familie.

Die promotor en koderingsareas van die HMOXI, HFE, HAMP, SLC4041, CYBRDI en HJV
gene is gesif vir mutasies. Geen fragmente is geamplifiseer met behulp van die polimerase
kettingsreaksie (PKR) en daarna aan heterodupleks enkelstring konformasie polimorfisme
(HEX-SSCP) analise blootgestel. PKR produkte wat variasies getoon het, is daarna
geanaliseer deur tweerigting semi-geoutomatiseerde DNS volgorde-bepalingsanalise om
enige bekende of nuwe variante binne die ses gene te identifiseer. Variante waar restriksie
ensiem herkenningsetels teenwoordig is, is verder analiseer met behulp van die restriksie

fragment lengte polimorfisme (RFLP) analise sisteem.

Mutasie analise van die ses gene het 24 bekende variante, vyf nuwe variante (HFE: 5’UTR-
840T—G, CYBRDI: 5’UTR-1813C—T, 5’UTR-1452T—C, 5’UTR-1272T—C, HJV:
5’UTR-534G—T, 5’UTR-530G—T), een bekende herhaling en twee nuwe herhalings gewys.
Variante wat binne die SLC4041, CYBRDI en HJV gene geidentifiseer is, blyk nie om by te

dra tot die ysteroorladings-fenotipe nie.
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Die bekende HAMP variant (5’UTR-335G—T) is waargeneem in die homosigotiese toestand
in beide van die aangetaste individue. Hierdie variant blyk om die genetiese fout te wees wat
verantwoordelik is vir die ysteroorlading in die betrokke Indiese familie. Die erge juveniele-
hemochromatose fenotipe wat meestal geassosieer word met HAMP-mutasies, is nie
waargeneem in hierdie familie nie. Hul simptome kom ooreen met die simptome van die
klassieke Tipe 1 OH. Dit blyk moontlik te wees dat die variante identifiseer in die HMOXI en
HFE gene die impak van die HAMP variant modifiseer en die matiger siekte-fenotipe tot
gevolg het. Alhoewel hierdie variant slegs in een Indiese familie geidentifiseer is, kan dit lig

werp op die soektog na die veroorsakende ysterladingsgeen in Indié.
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CHAPTER ONE LITERATURE REVIEW

1. LITERATURE REVIEW

1.1 Introduction to Hereditary Haemochromatosis (HH)

Hereditary haemochromatosis (HH) (OMIM™ 235200) is a genetically and clinically
heterogeneous condition that results from inappropriate dietary iron absorption. There have
been great advances in the understanding of this condition since it was first described in 1865
as a “classic triad” of cirrhosis of the liver, diabetes mellitus and bronzing of the skin
(reviewed by Limdi and Crampton, 2004). In 1889, von Recklinghausen coined the term
haemochromatosis, describing a condition resulting from disrupted iron absorption and the
resultant tissue damage. It was then Sheldon (1935) who explained the hereditary nature of
the disease. Simon and colleagues (1976) demonstrated the close association between
haemochromatosis and the major histocompatibility complex (MHC). Later they refined their
findings and demonstrated that HH showed an association with the human leukocyte antigen
(HLA)-A3 complex. Subsequently, haemochromatosis was linked to HLA-A on the short arm
of chromosome 6 (Simon et al/, 1976). Finally, in 1996, Feder and his colleagues identified
the gene implicated in HH (Feder et al, 1996). The gene was initially named HLA-H for
haemochromatosis but was then renamed HFE by the WHO Nomenclature Committee for

Factors of the HLA system (Bodmer et a/, 1997).

The identification of the HFE gene and the causative variants in this gene has greatly
improved the understanding of the HH condition. Feder and his colleagues (1996) identified
the C282Y variant in the HFE gene and found that the vast majority of HH patients were
homozygous for this variant. In patients homozygous for the C282Y variant, the iron overload
phenotype is variable. Basset and his colleagues (1986) noted that iron stores differed by as
much as ten-fold amongst homozygous individuals (reviewed by Bomford, 2002). Although
not fully understood, environmental factors or genetic modifiers of the C282Y variant can
partly explain this anomaly. The extent to which individuals are affected seems to depend on
the severity of the genetic defect, age, sex, environmental stimuli such as dietary iron intake,
the extent of iron loss due to other processes such as blood donation, and the presence of other
diseases or toxins e.g. Hepatitis C virus, excess ethanol intake, and porphyria cutanea tarda
(Bothwell and MacPhail, 1998; Chapman et al, 1982; di Bisceglie et al, 1992). The type and

amount of iron that individuals consume could influence phenotype but because most HH
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patients do not take iron supplements, this does not seem to be an important modifier. The
effect of alcoholism on the HH phenotype has always been recognised by researchers
(reviewed by Fletcher and Powell, 2003). In 1935, Sheldon noted that one fifth of all HH
patients had a history of alcoholism (reviewed by Beutler, 2003). The effect of alcohol on the
HH phenotype is not clear though because it has been reported that some non-drinkers and
people who hardly ever consume alcohol are affected to the same degree as more regular
alcohol consumers. This may indicate that alcohol is a secondary factor and not the only or

most important modulator of C282Y expression.

Several groups have tried to explain the role that genetic modifiers play in the variability of
the HH phenotype. The hepcidin antimicrobial peptide (HAMP) gene is of particular interest
as it has been found to modulate the phenotype of the C282Y variant in mice. Nicolas and
colleagues (2004) intercrossed Hfe-knockout mice (Hfe”) with mice with one normal HAMP
gene (Usf2""). They noted that liver iron accumulation was more severe in the Hfe' Usf2""
mice than in the Hfe”" mice. They therefore concluded that haploinsufficiency of hepcidin
does intensify the HH phenotype and provides a genetic explanation for the phenotypic
variability of HH. Jacolot and colleagues (2004) performed similar experiments and supported
these conclusions when they identified HAMP variants in the heterozygous state in five
patients who were also homozygous for the HFE C282Y variant. These variants included one
that replaced arginine with glycine at amino acid position 59 (R59G), a second that replaced
glycine with aspartic acid at amino acid position 71 (G71D) and a third that created a
premature stop codon at amino acid position 56 (R56X). The iron indices of these five
patients were among the most elevated of the study cohort. Based on these observations they
concluded that variants in the HAMP gene could exacerbate the phenotypic expression of the
C282Y homozygous phenotype. While screening the same study cohort as Jacolot et al
(2004), Le Gac and colleagues (2004a) identified nine C282Y homozygotes who were also
heterozygous for missense mutations in the hemojuvelin (HJV) gene. These nine individuals
had significantly higher mean serum ferritin (SF) levels and thus AJV is implicated as another
modifier of HH expression. Hofmann et al/ (2002) performed mutation analysis on the
transferrin receptor 2 (TFR2) gene in two male siblings who were homozygous for the C282Y
variant but whose phenotypes differed. They identified a variant within the 7FR2 gene in the
brother with liver fibrosis and concluded that TFR2 could function as a modifier for the
penetrance of the HH phenotype when inherited in conjunction with the C282Y homozygous

genotype. Although a great deal of progress has been made, further research is necessary to
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identify other genes that may modify the HH phenotype and in part, explain the phenotypic

heterogeneity and incomplete penetrance of this condition.

After the identification of the HFE gene (Feder et al, 1996) it was found that not all
haemochromatosis patients were carriers of HFE variants and this lead to the discovery of
other forms of haemochromatosis. Classic or Type 1 HH is the most common form which is
inherited in an autosomal recessive manner and is associated with variants in the HFE gene.
The second and more severe type of HH is juvenile haemochromatosis (JH) or Type 2 HH. JH
is also an autosomal recessive disorder and is associated with aberrations in the HJV (Type
2A) and the HAMP genes (Type 2B). Variants in the 7FR2 gene are responsible for Type 3
HH, which is also inherited in an autosomal recessive manner. Type 4 HH or the ferroportin
disease is inherited in an autosomal dominant manner and results from variants in the solute
carrier family 40 (iron-regulated transporter) member 1 (SLC40A47) gene. The second
autosomal dominant form of HH is Type 5 HH. This disorder has only been identified in one
family and is associated with aberrations in the H-ferritin gene. Another condition resulting
from iron overload has been denoted African iron overload and affects people of African
descent but the causative gene has yet to be identified. All of these disorders result from
aberrations that alter iron metabolism and/or homeostasis, which leads to iron overload and

they will be discussed further.

1.1.1 HFE-associated HH (Classic or Type 1)

1.1.1.1 Pathophysiology

Type 1 HH (OMIM™ 235200) is an autosomal recessive condition that affects approximately
1 in every 100 South Africans of northern European descent (Meyer et al, 1987; de Villiers et
al, 1999) and approximately 1 of every 200 Caucasian individuals of northern European
descent worldwide (Merryweather-Clarke et al, 1997). The disruption in iron absorption in
HH patients leads to iron overload and the excess iron is deposited in tissues such as the liver,
heart, pancreas, joints and pituitary gland (Witte et al, 1996). Iron is deposited in the
hepatocytes with a decreasing gradient from periportal zone to centrilobular area and although
typical is not unique to HH, but relative sparing of Kupffer cells is typical of HH and not seen

in individuals with secondary iron overload.
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Iron can readily exchange electrons in aerobic conditions and is thus essential for basic
cellular functions such as cellular respiration, DNA synthesis, and oxygen transport. The
excess iron in the tissues of HH patients can, however, be hazardous as it catalyses the
conversion of hydrogen peroxide to free radical oxygen species that attack cell membranes,

proteins and DNA (Andrews, 1999).

Iron overload occurs relatively slowly in HFE-associated haemochromatosis. By the fourth
decade of life, patients show no symptoms but have accumulated 10 to 20 grams of iron in
their parenchymal tissues. In men clinical expression of HH usually presents at 40 to 60 years
of age. Due to the regular loss of iron through menstruation, pregnancy and lactation, iron
overload is delayed by approximately one decade in women. The symptoms of female
patients usually become evident only after menopause. This may explain why 2-10 times

more men are afflicted by HH than women (Moirand et a/, 1997).

The rate at which iron accumulates in the tissues and the severity of clinical symptoms differ
noticeably in each patient. Early symptoms include unexplained fatigue, weakness, joint pain,
heart palpitations, weight loss, loss of libido, depression and abdominal pain (Adams et al,
1997). Because these symptoms are indefinite, HH can go undiagnosed at this stage. When
the condition proceeds untreated it may result in more severe symptoms such as liver
cirrhosis, arthritis, skin hyperpigmentation, diabetes mellitus, hypopituitarism, hypogonadism,
chronic abdominal pain, cardiomyopathy, primary liver cancer or an increased risk of

infection by certain bacteria (Adams et al, 1997).

1.1.1.2 Genetic mutations associated with Classic HH

In the study by Feder et a/ (1996) two missense mutations were initially identified in patients
with HH. The first resulted in a single base transition resulting in a change from cysteine at
amino acid position 282 to tyrosine (C282Y) and the second was a change of histidine to
aspartate at amino acid position 63 (H63D) of the gene. Of the 178 HH patients studied, 148
(83%) were homozygous for the C282Y mutation and 8 (4%) were compound heterozygotes
for the C282Y and the H63D mutation. A third variant in HFE replaces the amino acid serine
with cysteine (S65C) and is present in approximately 1.5% of European individuals (Mura et
al, 1999; Beutler et al, 2000). At first described as a polymorphism, the S65C/C282Y

genotype may predispose individuals to a milder form of HH. Other variants have been
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identified in the HFE gene in individuals with HH, including one that results in the
replacement of isoleucine at amino acid position 105 with threonine (I105T) and another that
results in the replacement of glycine with arginine at amino acid position 93 (G93R) which
were identified in two families from Alabama (Barton et al, 1999). Two other variants were
identified in the Italian population including one that causes glycine to be replaced with
threonine at amino acid position 168 (G168T) and the second where alanine replaces glycine
at amino acid position 169 (G169A) (Piperno et al/, 2000). How these variants disrupt iron
homeostasis still needs to be elucidated. Variants in the HFE gene are often inherited together

with the C282Y heterozygous or homozygous genotype or with the H63D variant.

The common HFE mutation, C282Y, disrupts an S-S bond in the a3 domain of the protein.
This domain is essential for the noncovalent interaction between HFE and B2-microglobulin
and the C282Y variant abolishes this interaction leading to decreased presentation of HFE on
the cell surface (Waheed et al, 1997). The role of H63D is still not certain but interestingly, it
seems to form a salt bridge with a residue in the 02 domain that binds HFE to transferrin
receptor 1. When HFE is bound to f2-microglobulin it forms an association with TFR1 in the
duodenal precursor cell membrane and assists in the transport of transferrin-bound iron into
these cells. Disruption of this function could result in increased iron absorption from the

duodenal lumen.

The C282Y homozygous genotype results in the most severe form of Type 1 HH followed by
the C282Y/H63D and H63D/H63D phenotypes. Although approximately five of every 1000
individuals is homozygous for the C282Y variant, this variant seems to display incomplete
penetrance. The proportion of HH patients homozygous for the C282Y variant differs in
different populations; it ranges from approximately 64% in an Italian study (Carella et al,
1997) to 100% in an Australian study (Jazwinska et al, 1995) and is absent from the Asian
and African populations (Merryweather-Clarke et al, 1997; Roth et al, 1997). Although most
individuals of northern European descent presenting with clinical symptoms of HH are
homozygous for the C282Y variant, determination of the C282Y allele frequency has shown a
large discrepancy between the number of C282Y homozygotes and the number of patients
diagnosed with HH (Bomford, 2002). Also, individuals in the general population have been
found to be homozygous for the C282Y variant and do not exhibit HH symptoms (reviewed
by Adams, 2000). Thus the C282Y variant exhibits incomplete penetrance. Environmental
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and genetic modifiers of the HH phenotype could explain why not all C282Y individuals are

affected and not all homozygotes are affected to the same extent.

Merryweather-Clarke et a/ (2003) reported digenic inheritance of HH in two families. One
proband in the first family was heterozygous for the C282Y variant as well as a four base pair
deletion in the HAMP gene that removes the last nucleotide of exon 2 that encodes
methionine and the first nucleotide of intron 2 [Met50del IVS2+1(-G)]. The proband
exhibited a severe form of HH similar to juvenile haemochromatosis. The Met50del IVS2-+1(-
G) variant was absent from 321 control subjects. This variant disrupts the GT splicing
acceptor site of the gene and produces a different open reading frame in exon 3. In the second
family a less severe HAMP variant was identified (G71D). This variant was present in the
control cohort and different ethnic groups. This variant could interfere in correct protein
folding. Although true digenic inheritance is rare in HH, they suggest that mechanisms
including digenic inheritance could be playing a role in the pathophysiology of HH and could
explain the heterogeneity of the HH phenotype. The authors suggest that heterozygosity for
HAMP variants, which disrupt its function in iron homeostasis, could modulate the phenotype
of individuals heterozygous or homozygous for the C282Y variant in HFE. They also
postulate that the severity of the HAMP variant will influence the severity of the iron overload
phenotype. Therefore the C282Y variant is a necessary, but not the sole causative factor for

the development of clinical symptoms of HH.

1.1.1.3 Diagnosing Classic HH

Although the discovery of the HFE gene has greatly modified diagnostic and screening
approaches, one must remember that C282Y homozygosity alone does not necessarily mean
that haemochromatosis will develop. The HH phenotype is determined by genetic,
biochemical and clinical factors but there is no agreement between clinicians which factor or
combination of factors defines HH. Diagnosis of HH is complicated by the variability of the
HH phenotype but various tests have been developed to assist in the diagnostic process. These
include biochemical (serum iron studies), genetic testing and liver biopsy (reviewed by
Pietrangelo et al, 2003). Another method for assessing iron overload is by measuring the
number of phlebotomies required to regain normal serum iron and ferritin levels. The most
common biochemical tests used to assess body iron status are transferrin saturation percentage

(TS%) (TS% = serum iron/total iron binding capacity x 100) and SF levels. In HH, iron
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initially accumulates in the transferrin pool, which results in an increase in transferrin
saturation (TS), and subsequently in the tissue parenchyma. As the iron is accrued in the
parenchyma there is an accompanying increase in SF concentration. TS is usually elevated
prior to symptom manifestation so it is an early indicator of the HH condition (Hanson ef al,
2001). TS cutoff values vary from 45-70% but it has been reported that values of 60% or
more in men and 50% or more in women have an estimated sensitivity of 92%, specificity of
93% and positive predictive value of 86% for detecting C282Y homozygous individuals with
HH (Tavill, 2001). If TS is elevated and no other explanation for iron overload exists (e.g.
chronic anaemias, liver diseases due to excessive alcohol consumption or viral infection), it
may indicate that the individual has HH. Ferritin is an iron storage protein and SF
concentration is a good estimate of total body iron stores (1 ng/ml = 10 mg stored iron)
(McDonnel and Witte, 1997). SF levels, but not TS, are associated with clinical signs of HH
and are higher for individuals with clinical manifestations of HH (Bradley et al, 1996).
Ferritin values exceeding 200 pg/l in premenopausal women and 300 pg/l in men and
postmenopausal women are suggestive of HH (Burke et al/, 1998). If TS as well as SF levels
are elevated, additional diagnostic testing, such as liver biopsy or quantitative phlebotomy,

should be performed to verify that iron overload is present.

The discovery of the HFE gene (Feder et al, 1996) has greatly altered the approach for
diagnosing HH. Genetic tests are readily available and genotyping can confirm HH. In
patients where HH is highly suspected C282Y and H63D mutation analysis should be
performed. Mutation detection is especially important in individuals who do not carry the
C282Y or H63D mutations. Pedigree analysis can be performed to identify if other variants in
the HFE gene are playing a role or if other genes are involved in the clinical expression of the
condition. In these families, TS and SF concentrations are used to screen for the HH
phenotype. As described previously, the C282Y genotype does not confer the HH phenotype
in all individuals. Genotype results should be considered together with clinical and
biochemical results when diagnosing HH, as the clinical expression of the condition is widely
variable. A combined genotype/phenotype approach would assist in the identification of
modifying environmental and/or genetic factors that could contribute to or be protecting
against the HH phenotype in individuals with atypical haemochromatosis (Lyon and Frank,
2001). As HH is a treatable genetic disorder, early diagnosis and treatment is essential to

prevent organ damage, improve quality of life and longevity.
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1.1.2 Juvenile Haemochromatosis (Type 2)

1.1.2.1 Pathophysiology

Juvenile or Type 2 haemochromatosis (JH) (OMIM™ 602390) is an autosomal recessive iron
overload disorder. It is characterised by early onset iron overload that results in severe organ
damage before the age of 30 years (Camaschella et al, 2002). Unlike HFE associated HH,
males and females are both affected equally by JH. Increased TS% and SF levels are observed
early in life in both sexes (reflecting plasma iron loading and excess tissue iron, respectively)
(Cazzola et al, 1998). There is a daily increase in iron absorption, which surpasses that of
HFE haemochromatosis, and iron accumulation occurs at a more rapid rate in JH (Lamon et
al, 1979). Excess iron is deposited in the parenchymal cells in a similar manner as seen in

HFE- and TFR2-haemochromatosis or Type 3 (See Section 1.1.3).

Symptoms of JH are similar to those of HFE haemochromatosis. A combination of cardiac
disease, liver cirrhosis, hypogonadism, diabetes, arthropathies and skin pigmentation may
result but are more severe than in HFE type. Cardiac involvement and hypogonadism are the
characteristic features of JH and are more frequent than liver disorders. This could be a
reflection of the different susceptibilities of the cells to massive iron overload during organ
development (Lamon et al, 1979). If the disease goes untreated, cardiac symptoms will
govern the course of the disease with heart failure and/or major arrhythmias being the leading

cause of death (Camaschella et al, 2002; De Gobbi et al, 2002).

1.1.2.2 Genetic mutations associated with JH

The early onset and severity of iron overload in JH as well as the equal penetrance in both
sexes implies that the aberrant protein responsible for JH must play a more important role in
the inhibition of iron absorption than HFE and TFR2 (De Gobbi et al, 2002). This prediction
was confirmed by the discovery of the JH gene, hepcidin antimicrobial peptide (HAMP)
(Roetto et al, 2003) and subsequent identification of mutations within this gene associated

with the disease (Roetto et al, 2004; Matthes et al, 2004).

Another gene, termed HFE2 or hemojuvelin (HJV) has been identified with amino acid

substitution 320 G—V accounting for two-thirds of the mutations identified (Papanikolaou et
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al, 2004). The HJV gene is implicated in the most frequent form of JH on the basis of the
discovery of six variants, found in either the homozygous or compound heterozygous state.
These variants were identified in 12 unrelated families from Greek, Canadian and French
descent (Papanikolaou et al/, 2004). Eighteen other HJV variants have been identified in 31
families from England, Albania, Italy, Southeast USA, Australia, France and Saguenay-Lac-
Saint Jean (Quebec) (Papanikolaou et al/, 2004; Lanzara et al, 2004; Lee et al, 2004; Huang et
al, 2004). The 320 G—V variant was found in 34 of the 60 patients (56.7%) but all the other
variants were identified in single families. The majority of these variants generate premature

stop codons or are missense substitutions affecting conserved amino acid residues.

HJV and HAMP inactivation cause the same disease and it is impossible to predict mutations
in either protein from clinical manifestations (Lanzara et al, 2004). Although the function of
HJV is not well defined it has been reported that in patients with AJV mutations and in HJV
knockout mice (Hfe2™), hepcidin levels are extremely low. This could signify that HIV and
hepcidin function in the same pathways and that HJV positively modulates hepcidin
expression (Papanikolaou et al, 2004). Babitt et al (2006) reported that HIV regulation of
hepcidin occurs through the bone morphogenetic protein (BMP) signalling pathway where it
acts as a coreceptor. The authors showed that BMP up-regulates hepcidin expression within
hepatocytes and this process is enhanced in the presence of HJV. HJV mutations that cause
JH were investigated to determine whether they had an effect on BMP signalling. It was
observed that these mutations result in impaired BMP signalling ability and a decrease in
hepcidin expression. These findings indicate that rather than JH being the result of two
different and independent mechanisms, the underlying cause is a decrease in hepcidin

expression, which results in aberrant iron regulation.

1.1.2.3 Diagnosing JH

For young adults with signs of JH the biochemical status is identical to those in individuals
with Type 1 HH. Genetic testing in these patients will however require sequencing of the
HAMP and HJV genes. Since these tests are not widely available, diagnosis may be based on
liver biopsy specimens (Pietrangelo, 2004a). If an individual is diagnosed with JH then family
members should undergo biochemical testing. If the causative mutation has been identified in
the proband, then family members should also be referred for genetic testing as early

detection and treatment could prevent the progression of the disease.

10
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1.1.3 TFR2-associated Haemochromatosis (Type 3)

1.1.3.1 Pathophysiology

Type 3 haemochromatosis (OMIM™ 604250) was first identified in Southern Italy where
there are very few haemochromatosis patients who are homozygous for the C282Y mutation
in the HFE gene. Genome screening of affected families led to the identification of Type 3
haemochromatosis where patients presented with aberrations in the transferrin receptor 2
(TFR2) gene (Camaschella et al, 2000). Type 3 haemochromatosis displays autosomal

recessive inheritance.

Although very few cases have been reported, the clinical phenotype resulting from variants in
the TFR2 gene are similar to those in HFE haemochromatosis. Increased serum iron
parameters (TS% and SF) due to increased iron absorption at the duodenal level leads to
parenchymal iron overload. Type 3 haemochromatosis predominantly affects the liver where
iron is deposited in a periportal distribution. Iron loading due to 7FR2 inactivation occurs
early in life, similar to JH, but the clinical manifestations of the disease are not as severe and

vary according to the specific 7FR2 mutation (reviewed by Robson et a/, 2004).

Type 3 haemochromatosis is very rare and is usually observed in families from the Central
Southern parts of Italy although there are some exceptions. The causative TFR2 variants are

usually only found in the family in which they were identified (Roetto et al, 2002a).

1.1.3.2 Genetic mutations associated with Type 3 HH

Camaschella et al (2000) identified the first variant in the 7FR2 gene associated with Type 3
haemochromatosis. Several members of two Sicilian families were homozygous for a
nonsense mutation that replaced tyrosine with a stop codon at amino acid position 250
(Y250X). It has never been detected in the heterozygous state in screening studies of Italian
blood donors or in other studies worldwide (Roetto and Camaschella, 2005). The Y250X
variant was identified in two young males, 3 and 16 years old, from the same geographical
region as the original families. They presented with elevated TS and SF and had high hepatic
iron indices (Piperno et al, 2004).

11
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The AVAQ motif deletion, (AVAQ594-597del), was identified in three Italian siblings
(Girelli et al, 2002) but unexpectedly, also in a Japanese family (Hattori et al, 2003). The
Japanese individuals were older at diagnosis, had hepatic iron loading and liver cirrhosis was
observed in one middle-aged man. The finding of the same deletion in two different ethnic
groups causing similar phenotypic expression indicates that the AVAQ motif of the TFR2

protein may play an important role in iron regulation (Roetto and Camaschella, 2005).

Other variants in the 7FR2 gene have been reported including E60X (Roetto et al/, 2001),
M172K (Roetto et al, 2001), R455Q (Hofmann et al, 2002), Q690P (Mattman et al, 2002),
V221 (Biasiotto et al, 2003) and R105X (Le Gac et al, 2004b), Q317X (Pietrangelo et al,
2005). The TFR2 gene codes for two alternatively spliced forms, o and  (Kawabata et al,
1999). Most variants affect both isoforms, but some such as E60X and R105X only affect the
a-form. The M172K variant in the 7FR2 gene has been associated with the most severe
phenotype observed. This variant disrupts a methionine residue in the a—form, which is also
the putative start site of the B-form. It has been reported that if at least one isoform remains
intact, a less severe phenotype is observed. This was the case in patients with the E60X
genotype: of the five patients studied, one female did not express the phenotype and one was
iron deficient. However in young patients with the Y250X or the AVAQ deletion, both of
which disrupt both TFR2 isoforms, it was reported that iron overload was severe and that two

twenty-year-old patients had hypogonadism (Roetto and Camaschella, 2005).

Results from family screening studies have shown that individuals heterozygous for the 7FR2
variants described do not display the iron overload phenotype, even when in the compound

heterozygous state with H63D HFE mutation (Roetto and Camaschella, 2005).

1.1.3.3 Diagnosing Type 3 HH

When unexplained iron overload is present in an individual and Type 3 HH is suspected,
diagnosis must be confirmed through a process of elimination. This is because many of the
symptoms of Type 3 HH mimic those of Type 1. In both disorders, symptoms usually
manifest after the age of 30 years and the biochemical status is the same in both. Biochemical
tests should initially be performed to determine if TS and SF levels are elevated. If these
results are inconclusive, liver biopsy will confirm the presence of iron overload if it is present.

If this is the case, genotyping for the common HFE variants, C282Y and H63D, must be

12
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performed. If no HFE variants are present, mutation screening of the 7FR2 gene should be

performed to confirm the diagnosis of Type 3 haemochromatosis.

1.1.4 SLC40A1-associated HH (Type 4)

1.1.4.1 Pathophysiology

Type 4 haemochromatosis is also referred to as the ferroportin disease (FD) (OMIM™
606069), as it is associated with aberrations in the solute carrier family 40 (iron-regulated
transporter) member 1 (SLC40A41) gene. This gene, also known as the solute carrier family 11
(proton-coupled divalent metal ion transporter) member 3 (SLCI//A3) gene, ferroportin 1
(FPNI) gene, iron-regulated transporter 1 (/[REGI) gene and metal transporter protein-1
(MTPI) gene, encodes the SLC40A1 or ferroportin protein. The first description of Type 4
haemochromatosis was described in two almost identical studies in the Netherlands (Njajou et
al, 2001) and Italy (Montosi et al, 2001). This disease displays clinical and genetic features
distinct from any of the other forms of haemochromatosis. FD is inherited in an autosomal

dominant manner and results from heterozygous variants in the SLC40A1 gene.

Most patients with FD present with elevated SF in the first decade of life and normal to low
TS levels, which gradually increase in the third to fourth decades of life. Iron accumulation is
progressive and iron is deposited mainly in the liver macrophages (Kupffer cells) and
reticuloendothelial cells of young patients. [ron may become deposited in the hepatocytes of
older patients. The biochemical penetrance of FD seems to be complete as all reported
individuals with SLC40A1 variants have increased SF levels regardless of the position of the
variant in the mature protein (Pietrangelo, 2004b). In some FD cases individuals present with

mild iron-deficient anaemia.

The clinical course of FD seems to be less severe than Type 1 haemochromatosis. It has been
hypothesised that nonparenchymal cell (Kupffer cell) iron overload is better tolerated than
parenchymal cell iron overload and is less fibrogenic (Gualdi et al, 1994). This could explain
why FD does not progress into cirrhosis of the liver but is limited to the development of
fibrosis (Gualdi ef al, 1994) even when iron levels are extremely high. Although most patients

have iron loading in the Kupffer cells, some studies have reported iron loading in hepatocytes

13
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(Wallace et al, 2002). Iron is distributed in the liver in a homogenous lobular manner rather

than the periportal and central distribution characteristic of Type 1 haemochromatosis.

Therapeutic phlebotomy is an effective iron depletion therapy but not all patients can endure
weekly phlebotomies and may develop anaemia. SF levels remain elevated even after slight
anaemia has been induced and TS levels are decreased. In these cases erythropoietin therapy
may modify the effects of phlebotomy and be more beneficial to the patient. Defective iron
export from the macrophages may be responsible for inadequate iron supply to erythroid
precursors in the bone marrow, leading to latent anaemia and reduced tolerance to iron
depletion. Defective iron export from macrophages, which in turn could be responsible for
inadequate iron supply to erythroid precursors in the bone marrow could result in anaemia and

an intolerance to iron depletion therapy.

1.1.4.2 Genetic mutations associated with Type 4 HH

The two original studies identified an atypical form of haemochromatosis that was not linked
to HFE (Njajou et al, 2001; Montosi et al, 2001). A genome-wide search in both pedigrees
showed linkage to markers on 2q32. The SLC40A1 gene was later identified and it was
reported that the affected Dutch and Italian family members were heterozygous for the

N144H and A77D variants, respectively.

Since its original discovery, other variants in the SLC40A1 gene have been described in
patients with FD including V162del (Devalia et al, 2002; Cazzola et al, 2002; Roetto et al,
2002b; Wallace et al, 2002), D157G, Q182H, G323V (Hetet et al, 2003), N144T (Arden et al,
2003), Y64N (Rivard et al, 2003), Q248H (Gordeuk et al, 2003), G490D (Jouanelle et al,
2003), G80S, N1741 (Pietrangelo, 2004b), N144D, C326Y (Robson et al, 2004), D270V
(Zaahl et al, 2004), G8OV, D181V, G267D (Cremonesi et al, 2005), C326S (Sham et al,
2005), N185D (Morris et al, 2005) R88T, and 1180T (Bach et al/, 2006). The vast majority of
variants have been reported in single families but the V162del mutation has been reported in
different families with different ethnicities. Although the condition is rare, SLC40A1 variants
have been described in people worldwide including families from the United Kingdom,

Australia, Italy, Greece and African Americans.
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The structure of the ferroportin protein is still unclear. Researchers have reported that the
protein has 12 transmembrane domains (Liu et al, 2005) and that most of the identified
variants are localised in the cytosolic regions of the ferroportin protein. They report that
SLC40A1 variants may be divided into two classes: variants that have a gain in function and
those that result in a loss of function. Variants that result in a gain of function retain the
ability to activate the iron-response proteins (IRPs) and iron is exported from the cells and
ferritin is depleted. Loss of function variants inhibit IRP activation activity and cause only a

slight decrease in SF levels.

It has been reported that when iron levels are high in the cells, hepcidin binds to ferroportin,
internalising it in lysosomes within the cell and then degrades these lysosomes. This inhibits
iron export from the cells (Nemeth et al, 2004a). In a study by Papanikolaou et a/ (2005)
increased hepcidin levels were observed in patients with the V162del mutation. This may
indicate a loss of responsiveness to hepcidin regulation leading to excess iron deposition in
the tissues. Most of the SLC40A 1 variants studied by Liu et al (2005) occur in the cytosolic
regions of the protein and it is unlikely that these cytosolic regions comprise the hepcidin
binding site. They hypothesise that these variants may cause a conformational change in the
ferroportin protein preventing hepcidin-mediated internalisation or organisation into

lysosomes.

The clinical manifestations of FD are highly variable and there are various mechanisms that
lead to the abnormal functioning of ferroportin. As clinical data accumulates a clearer

understanding of the effects of SLC40A [ variants on iron metabolism will develop.

1.1.4.3 Diagnosing Type 4 HH

As is the case with Type 1 and Type 3 HH, symptoms of Type 4 HH manifest after the age of
30. Initially, biochemical analysis should be performed to determine the patient’s iron
parameters. In contrast with Type 1 and 3 HH, SF levels are usually elevated prior to the
increase in TS. Therefore, elevated SF along with normal to low TS (sometimes with mild
anaemia) is indicative of Type 4 HH. To confirm the Type 4 HH diagnosis, mutation

screening of the SLC40A 1 gene must be performed.
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1.1.5 H-ferritin-associated HH (Type 5)

1.1.5.1 Pathophysiology

In 2001, a second form of autosomal dominant haemochromatosis was identified in a
Japanese family (Kato et al, 2001). The proband, a 56-year-old female, had elevated SF and
TS levels. Magnetic resonance imaging (MRI) was performed and low signal intensity, which
is an indication of iron deposition, was identified in the liver, heart and bone marrow. A liver
biopsy specimen showed heavy iron deposition in most of the hepatocytes as well as less iron
deposition in Kupffer cells. Staining of a spleen specimen showed iron deposits in
macrophages. Seven family members across three generations were studied and elevated SF
levels were observed in three individuals. The proband’s brother (aged 65) also presented

with iron deposits in his liver and bone marrow.

1.1.5.2 Genetic mutations associated with Type 5 HH

The clinical manifestations in the family hinted at a form of hereditary haemochromatosis and
all the individuals were screened for the HFE C282Y and H63D variants as well as the
Y250X variant in the TFR2 gene. These variants were not found in any of the family
members. Further analysis was performed on the H- and L-ferritin genes by sequencing
analysis. A single base pair conversion resulting in the replacement of alanine with threonine
at amino acid position 49 (A49T) was identified in the second residue of the five base pair
iron-responsive element (IRE) sequence of the H-ferritin mRNA. This variant was identified
in the heterozygous state in four of the family members but only three of them had elevated
SF levels. The fourth individual was the 28-year-old daughter of the proband and she had just
given birth and was breastfeeding. These factors could have resulted in the lack of the iron

overload phenotype due to an increased level of iron loss.

IRPs have been shown to interact with IREs (Haile et a/, 1989) and influence protein
expression. Functional analysis of the mutated mRNA demonstrated that the mutated IRE
binds to the IRP with a higher binding affinity than the wild-type form. This indicates that the
mutated IRE binds to the IRP strongly and thus inhibits the translation of H-subunit mRNA
(Kato et al, 2001). Further analysis demonstrated that in the liver, expression of the H-subunit

was suppressed while that of the L-subunit was elevated in comparison to the wild type form.
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With regard to the tissue deposition, it is known that the H-subunit of ferritin performs a
ferroxidase function to incorporate iron into the ferritin molecule (Harrison and Arosio,
1996). The researchers found that in the presence of the mutated H-subunit, iron incorporation
into ferritin was much lower in transfected COS-1 cells compared to the wild type and that
total cellular iron uptake was also higher. The researchers concluded that the increase in iron
uptake resulted in more iron in the cytosol due to the loss of ferroxidase activity in the H-

subunit.

Although this form of autosomal dominant haemochromatosis has only been identified in a
single family, further research is necessary to determine if the variant in the H-ferritin gene is

an isolated or a common one.

1.1.5.3 Diagnosing Type 5 HH

As mentioned, Type 5 HH has only been identified in a single Japanese family. Therefore, a
molecular diagnostic test unique to this type of HH has not yet been developed. In this family,
symptoms manifested after the age of 30 as is seen in Type 1, Type 3 and Type 4
haemochromatosis. The biochemical status of the proband was the same as is expected in
Type 1 HH. Iron deposits were reported in hepatocytes as well as in macrophages, making it
unique from Type 1 HH. More research is necessary, but liver biopsy may be a more
definitive test for Type 5 haemochromatosis, as histological results will identify sites of iron
deposition that differ from the other types of HH and may be unique to Type 5. As it now
stands, mutational screening of the HFE, TFR2 and SLC40A1 genes will have to be performed
initially, to determine if these are the causative genes. If they are eliminated as candidate

genes, the H-ferritin gene must be screened to confirm the Type 5 HH diagnosis.

1.1.6 African Iron Overload (AIO)

1.1.6.1 Pathophysiology

Strachan (1929) first identified iron overload in sub-Saharan Africans. He studied 876
individuals from central and Southern Africa who had died in Johannesburg between 1925
and 1928. He concluded that iron overload was a common disorder affecting Africans and

that the main cause of iron overload was their diet (Walker and Segal, 1999). For many years,
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after it was first identified, it was believed that AIO was caused by excess iron intake from a
home-brewed traditional beer, which is made in non-galvanised steel pots or drums (Bothwell
et al, 1964). It is not known what the prevalence of AIO is in urban African populations but
Gordeuk et al (1992a) estimated that approximately 10% or more of rural populations were

affected.

Patients with AIO have elevated SF levels and to a lesser extent, TS levels. Iron deposits have
been reported in the liver, heart, spleen, bone marrow, pancreas and kidneys of affected
individuals. Not unlike Type 4 HH, iron is mostly deposited in the macrophages but has also
been found in parenchymal cells of the various tissues. Many patients suffer from siderosis,
fibrosis, and cirrhosis of the liver and there may be an aetiological association with
hepatocellular carcinoma (HCC), tuberculosis (Moyo et al, 1997a) and other infections. There
have also been patients identified with diabetes mellitus and osteoporosis. Because of the

variable AIO phenotype clinicians often misdiagnose individuals with AIO.

1.1.6.2 Genetic mutations associated with AIO

The observation that not all beer drinkers developed iron overload lead to the belief that a
genetic factor was playing a role in the aetiology of the condition. Researchers have studied
sub-Saharan and African-American populations with iron overload but neither of these
populations shows linkage to the HFE gene (Gordeuk et al, 1992a; Barton et al, 1995).
Gordeuk et al (1992b) set out to determine if a genetic factor, other than HFE, played a role in
AIO. They used likelihood analysis to determine if there was an association between the
hypothesised iron-loading locus and an increased dietary iron intake that determines TS and
unsaturated iron-binding capacity. They studied 236 members of 36 African families. Each
selected family contained a proband with iron overload. The model that they presented stated
that individuals heterozygous for the hypothesised iron-loading locus would develop iron
overload only in conjunction with increased dietary iron but that homozygotes would do so
with normal dietary iron. Moyo et a/ (1997b) tested this hypothesis by studying husband and
wife pairs from rural Zimbabwe. The spouse pairs lived under the same environmental
conditions and would drink similar amounts of beer and therefore if there was no genetic
involvement, iron parameters would be similar in the husband and wife. Different iron

parameters were noted in the spouse pairs and this led to the conclusion that the iron overload
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could not be explained by excess dietary iron alone and that genes may be implicated in the

pathogenesis of the disease.

The causative gene of AIO has not yet been identified but the SLC40A41 gene is a potential
candidate because of the similarities in the phenotype of AIO and ferroportin disease
(Pietrangelo et al, 1999). Gordeuk et al (2003) screened the SLC40A41 gene in Africans and
African-Americans with primary iron overload. They identified a polymorphism (Q248H) in
the heterozygous state in one African-American subject and three Africans. The
polymorphism was also present in the general African-American and African populations.
Interestingly, it was absent from all Caucasians with and without primary iron overload who
were screened. Standing alone this polymorphism does not seem to be associated with
increased SF as there were no significant differences in SF levels in heterozygous family
members and controls compared to wild type unaffected individuals. However, among
African controls heterozygous for the polymorphism there was a trend towards higher SF
levels. It is important to note that the Africans also had excess dietary iron intake in the form
of traditional beer and this could suggest that the heterozygous Q248H genotype along with
excess dietary iron leads to iron overload. This may also indicate that in the presence of other
modifier effects, genetic or environmental, the Q248H polymorphism could lead to significant
iron loading. The African-American heterozygous individual had the beta-thalassemia trait
and an extremely high SF concentration (>1300 pg/l) and macrophage iron deposits. A mild
beta-thalassemia trait could be modifying the Q248H phenotype resulting in substantial iron

overload.

Further research is necessary to identify the elusive iron-loading gene responsible for AIO.
1.1.6.3 Diagnosing AIO

As the gene associated with AIO has not yet been identified, AIO cannot be confirmed using
diagnostic testing. Biochemical tests in African patients must be performed if AIO is
suspected. The results obtained from these tests can be confirmed with liver biopsy. AIO

differs subtly from Type 1 HH in that iron is deposited in the reticuloendothelial cells first

prior to iron being deposited in the hepatocytes.
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1.1.7 Treatment of Hereditary Haemochromatosis

The most widely used treatment for iron overload disorders is phlebotomy or venesection.
Iron chelation and erythrocytapheresis have also been used (reviewed by Barton et al, 1998)
but phlebotomy is the most efficient, safest and cheapest treatment. Almost all HH patients
benefit from phlebotomy, irrespective of their genotype. In the case of some children and
adolescents with severe iron overload, or juvenile haemochromatosis, or men and people with
large body mass, a more aggressive phlebotomy regimen is required (1.5 to 2 units per week).
Phlebotomy is a safe treatment for older HH patients but some patients are unable to undergo
repeated bloodletting and complications can develop. Patients with severe, refractory anaemia
should avoid therapeutic phlebotomy and rather undergo iron chelation therapy (Barton et al,

1998).

One unit of blood is usually removed from HH patients during each phlebotomy session. This
restores normal transferrin and ferritin levels. SF and hepatic iron levels give a good estimate
of the amount of phlebotomy required for iron depletion (Witte et a/, 1996). The agreed upon
SF levels for initiation of venesection are 300 pg/l in men and 200 pg/l in women depending
on their reproductive status (Witte et a/, 1996). On average, people who have higher SF have
more severe iron overload and need more phlebotomies. In patients with a SF level exceeding
1000 ng/l before treatment, it is sufficient to quantify the SF every four to eight weeks during
the initial weeks of treatment. If a patient has received many phlebotomies and in patients
with mild iron overload at the onset of treatment, SF levels must be checked more regularly.
Once the SF level is 100 pg/l or less, SF levels for each patient must be quantified after each
additional one or two treatments. Monitoring haemoglobin and haematocrit, rates of recovery
and mean corpuscular volume, assesses the progress of phlebotomy treatment. Venesection
can be arrested when SF levels are 10-20 pg/l1 or when the haemoglobin concentration is 110
g/1 or the haematocrit is less than 0.33 for more than three weeks (in patients without chronic
anaemia). At these levels mild iron deficiency has been induced and potentially pathogenic
excess iron has been removed. After iron depletion, the haemoglobin and haematocrit levels
return to within the normal range but the SF levels must be maintained at 50 pg/l or less. The
number of annual phlebotomies necessary to maintain SF levels vary in patients but on
average, men require removal of 3 to 4 units while women need only 1 or 2 units removed
(Barton et al, 1996). Some patients do no require any further phlebotomies but SF levels must

still be monitored each year.

20



Stellenbosch University http://scholar.sun.ac.za

CHAPTER ONE LITERATURE REVIEW

Patients presenting with manifestations of late disease should undergo the same treatment as

individuals not afflicted with haemochromatosis in the general population.

1.1.8 Prevalence of Common HFE Mutations C282Y and H63D

Since the discovery of the HFE gene, and the two common mutations associated with
haemochromatosis (Feder et al, 1996), various researchers have attempted to elucidate the
frequency of these mutations worldwide. Table 1.1 outlines the allele frequencies reported by
a few of these researchers in the general populations from various countries. Genotypes have
been reported for various populations and it seems that the C282Y mutation is most prevalent
in populations of European descent. In Europe this mutation occurs more frequently in the
North than in the South, with the highest frequency being observed in Ireland (Byrnes et al,
2001) and this implies a Celtic origin for this mutation. The variant allele is absent from the
African, Asian and Australasian populations but is present at very low frequency in the
Americas with the exception of the European immigrant population of north America

(Merryweather-Clarke et al, 1997).

The H63D variant is more common than the C282Y variant. Its presence is more widespread
and it occurs more frequently in countries bordering the Mediterranean (Merryweather-Clarke
et al, 1997; Roth et al, 1997). This variant is observed on a shorter haplotype and it is
hypothesised that it predates the C282Y variant. The H63D haplotypes observed in the Asian
populations differ from those in Europe and this mutation seems to have arisen in Europe and

in Asia (Rochette et al, 1999).
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Table 1.1. Allele frequencies of the H63D and C282Y variants in various populations

. Allele Frequency | Reference

Population H63D | C282Y
Europe
Irish 0.150 0.110 Byrnes et al, 2001
Scottish 0.148 0.097 Campbell et al, 2003
Welsh (South) 0.153 0.082 Jackson et al, 2001
Estonians 0.136 0.035 Parlist et al, 2001
Germans 0.148 0.039 Merryweather-Clarke et al, 1997
Greeks 0.135 0.013 Merryweather-Clarke et al, 1997
Spanish 0.263 0.032 Merryweather-Clarke et al, 1997
Asia
Chinese (Hong Kong) 0.028 0 Merryweather-Clarke et al, 1997
Taiwanese Aboriginals 0 0 Merryweather-Clarke et al, 1997
Indonesians 0.028 0 Merryweather-Clarke et al, 1997
Indian Subcontinent
North Indians 0.091 0 Garewal et al, 2005
Sri Lankans 0.092 0 Merryweather-Clarke et al, 1997
Africa
Gambians 0.013 0 Merryweather-Clarke et al, 1997
Senegalese 0 0 Merryweather-Clarke et al, 1997
Kenyans 0.013 0 Merryweather-Clarke et al, 1997
Nigerians 0.019 0 Merryweather-Clarke et al, 1997
Zambians 0.007 0 Merryweather-Clarke et al, 1997
Algerians 0.089 0 Roth et al, 1997
Ethiopians 0.094 0 Roth et al, 1997
Middle East
Saudi Arabians 0.085 0 Merryweather-Clarke et al, 1997
Americas
Mexicans 0.065 0 Merryweather-Clarke et al, 1997
Jamaicans 0.022 0.011 Merryweather-Clarke et al, 1997
Vancouver Island Indians  0.014 0.014 Merryweather-Clarke et al, 1997
Australasia
Papua New Guineans 0 0 Merryweather-Clarke et al, 1997
Australian Aboriginals 0 0 Merryweather-Clarke et al, 1997
Vanuatuans 0.006 0 Merryweather-Clarke et al, 1997

Abbreviations: H, histidine; D, Aspartic acid; C, cysteine, Y, tyrosine. Adapted from Merryweather-Clarke et al,
1997.
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1.1.9 Haemochromatosis in the Asian Indian Population

Very few cases of HH have been reported in the Asian Indian population and the literature on
this disease in India is very sparse. Garewal et al (2005) reported the allele frequency of the
C282Y and H63D HFE mutations in 60 control subjects and 215 patients with beta
thalassemia trait from North India. No individuals presented with the C282Y variant. The
H63D variant was observed in the homozygous state in three individuals. There was not a
statistically significant difference in iron parameters between the H63D homozygotes and
patients with the wild type HFE gene. The authors also determined that the H63D haplotype
was identical to that of Europeans indicating that this variant originated in Europe and not

Asia.

Similar results were reported in another study in the north Indian population. Dhillon et al
(2007) aimed to identify the frequency of primary iron overload and C282Y, H63D and S65C
HFE mutations in 100 healthy control individuals and 236 patients with various liver
disorders in north India. None of the control subjects were iron loaded and only 17 of the
chronic liver disease patients presented with iron overload. Interestingly, iron deficiency was
observed in 26% of the control individuals. The authors reported that primary iron overload
was rare in India and suggested that the high frequency of iron deficiency anaemia in the
Indian population could explain this. The C282Y and S65C mutations were not observed in
their study. The H63D mutation was observed with an allele frequency of 13.98% (12% in
controls and 14.8% in patients) but none of the H63D homozygous individuals presented with

iron overload.

Wallace et al (2005) identified a 36-year-old female of Sri Lankan descent with ferroportin
disease. The patient was heterozygous for the previously identified SLC4041 V162del
mutation (Devalia et al, 2002; Cazzola et al, 2002; Roetto et al, 2002b; Wallace et al, 2002).
This was the first reported case of this disease on the Indian subcontinent and the first time
that a mutation in the SLC40A41 gene had been reported associated with iron overload in India.
The authors suggested that because they had identified the mutation in a region where iron
overload is very rare, and not well classified, this mutation or others within the SLC40A41 gene
warranted further investigation. They stated that SLC404] mutations could possibly be

causing unexplained primary iron overload on the Indian subcontinent.
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These results indicate that HH in the Indian population is of the non-HFE type but further
analysis is necessary to determine the exact defect responsible for HH in Indians. Discovery
of the aberrant gene would not only assist in the early diagnosis and treatment of Indian
patients but could assist in explaining the high variability of the HH phenotype observed

worldwide.

1.2 Iron Homeostasis

1.2.1 Iron Distribution and Circulation

On average, adult males have 35-45 mg/kg of total body iron and premenopausal women have
slightly lower stores (approximately 35 mg/kg). The majority of total body iron is
incorporated into haem proteins, particularly haemoglobin (60%) and myoglobin (10%-15%).
Approximately 10% of iron is found in enzymes and cytochromes but less than 1% is in the
plasma bound to transferrin (Andrews, 1999). Transferrin is an 80kD protein with two iron-
binding sites (Aisen et al, 2001). About 80% of transferrin-bound iron (TBI) is transported to
the bone marrow and utilised in the production of haemoglobin in erythroid cells (Conrad et
al, 1999). When intracellular iron exceeds the cells requirements, iron is stored in ferritin
(approximately 30%) (Conrad et al, 1999). Ferritin is found within the hepatocytes as well as
the reticuloendothelial macrophages and can accommodate 4000-4500 iron atoms (Aisen et
al, 2001). Only about 4 mg of iron is bound to transferrin and erythrocytes require
approximately 20 mg per day. The majority of iron required for haemoglobin synthesis is
received from the recycling of senescent red blood cells by reticuloendothelial macrophages

(May et al, 1995).

1.2.2 Overview of Dietary Iron Uptake

Under proper homeostatic regulation 1 to 2 mg of iron is lost daily through sweating and
sloughing off of skin and intestinal cells. This is replenished by dietary iron intake. Because

the body has no physiologic pathway that regulates iron excretion, intestinal absorption from

the duodenum and jejunum enterocytes plays the major role of regulating body iron stores.
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Iron exists in two main forms, the ferric (Fe’") and the ferrous (Fe*") form. Before iron can be
absorbed, it must be reduced from the ferric to the ferrous form at the apical membrane of the
enterocytes. It is believed that the ferrireductase cytochrome b reductase 1 (CYBRD1), also
known as duodenal cytochrome b (DCYTB), performs this function (McKie et al/, 2001).
Targeted disruption of the Cybrdl gene encoding the mouse homolog of CYBRDI does not
cause an iron-deficient phenotype (Gunshin et al, 2005) suggesting that Cybrdl is not
essential for iron uptake in the mouse and that possibly other ferrireductases still remain to be
identified in humans. Once in the ferrous form iron is transported across the apical membrane
into the enterocyte by divalent metal transporter-1 (DMT1), also known as divalent cation
transporter-1 (DCT1) or natural resistance-associated macrophage protein 2 (NRAMP2), a
proton-coupled divalent cation transporter (Fleming et a/, 1997; Gunshin et al, 1997).

Haem from myoglobin and haemoglobin found in food enters the enterocytes through a
different pathway than inorganic iron. Initially, haem needs to be enzymatically cleaved from
haemoglobin in the intestinal lumen. The cleaved haem then enters the enterocyte as a
metalloporphyrin (reviewed by Anderson et al, 2005). It is believed that the recently
identified haem carrier protein-1 (HCP1) binds to haem and transports it across the apical
membrane of the enterocyte (Shayeghi et a/, 2005). It is suggested that when HCP1 binds to
haem on the cell surface the complex is internalised by receptor-mediated endocytosis and
that the resultant endosomal vesicle progresses to the endoplasmic reticulum (ER) (Shayeghi
et al, 2005). Haem oxygenase-1 (HMOX1) is present on the ER surface and liberates iron
from haem. Studies with HCP1 indicate that iron stores post-transcriptionally control haem

transport but this exact mechanism has not yet been fully elucidated (Shayeghi et a/, 2005).

Iron released from haem or imported via DMT1 into the enterocyte cytosol enters the labile
iron pool. Iron can either be incorporated into ferritin where it is stored within the cell or it
can be transported to the basolateral membrane to be exported from the cell. SLC40A1
(ferroportin protein) performs the latter process. Ferroportin works together with membrane-
bound hephaestin (HEPH) and serum ceruloplasmin (McKie et al/, 2000). HEPH is a
ferroxidase and homologous to ceruloplasmin, a multi-copper oxidase with ferroxidase
activity, which functions in nonintestinal cells. Ceruloplasmin does not transport the iron but
it is thought to assist in the release of iron from ferroportin into the blood where it oxidises
ferrous iron to ferric iron for binding to transferrin (Harris et al, 1998). HEPH is not a

transporter either but facilitates the export of iron from the enterocyte. HEPH oxidises ferrous
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iron, and releases it into the bloodstream where it binds to transferrin (Harris et al, 1998,;

McKie et al, 2000). An overview of dietary uptake is shown in Figure 1.1.

Figure 1.1. Schematic representation of dietary iron uptake
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Legend to Figure 1.1.

Dietary iron is reduced by CYBRDI1 from the ferric form (Fe’") to the ferrous form (Fe*"). Fe2+ is transported
across the apical membrane by DMT]1. In the gut lumen haem is enzymatically cleaved from haemoglobin and
transported into the enterocyte via HCP1. HMOXI1 releases ferrous iron from haem. The intracellular iron is
either stored as ferritin or transported out of the cell by SLC40A1, which is located on the basolateral membrane.
HEPH (membrane-bound) and CP (in the plasma) assist in the export of iron by oxidising iron from the ferrous
(FE*) to the ferric (Fe'") form, which subsequently binds to transferrin. Abbreviations: CP, ceruloplasmin;
CYBRDI, cytochrome b reductase 1; DMTI1, divalent metal transporter-1; Fe'*, ferric iron; Fe*', ferrous iron;
HCPI, haem carrier protein-1; HEPH, hephaestin; HMOX1, haem oxygenase-1; SLC40A1, solute carrier family
40 (iron-regulated transporter) member 1; TBI, transferrin-bound iron; TFR1, transferrin receptor 1; TFR2,
transferrin receptor 2. Adapted from Trinder ef al, 2002a.
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1.2.3 Iron Assimilation

1.2.3.1 Hepatocytes

Within the bloodstream iron is transported to various cells bound to transferrin. Transferrin
has a high affinity for binding ferric iron and each transferrin protein can accommodate two
iron ions. Two transferrin receptors have been isolated, TFR1 and TFR2. TFRI is expressed
in most cells but TFR2 expression occurs mainly in the liver (Kawabata et al, 1999).
Transferrin binds strongly to the TFRs and is internalised by TFR-mediated endocytosis. The
cell acidifies the inside of the endosome and iron is released from transferrin. The
apotransferrin-TFR complex is then recycled back to the cell membrane. The neutral pH of
the blood promotes release of apotransferrin from the TFR and transferrin can thus continue
to bind more iron ions. The HFE-B2-microglobulin complex has been reported to modulate
the functioning of TFR1. TFR2 expression seems to be regulated by TS and is independent of
HFE expression. Non-transferrin bound iron (NTBI) may also be taken up in hepatocytes by
DMT]1 but the iron must be in the ferrous form and a ferrireductase should therefore be
present on the cell membrane (Chua et al, 2004). The export of iron from the cell occurs in
the same manner as on the basolateral membrane of the enterocyte using ferroportin and the

ferroxidase ceruloplasmin.

1.2.3.2 Erythroid cells

Erythroid precursors produce haemoglobin and thus need sufficient iron to do so. The
majority of iron comes from phagocytosed senescent red blood cells but a small quantity is
from the diet. Iron is assimilated in these erythroid precursors in the same manner as
explained above for hepatocytes but only TFRI1 is present and iron is released from the
internalised endosome in a different manner. DMT1 releases iron from the endosome once it
is internalised within the cell. Because iron is in the ferric form when bound to transferrin and
DMT1 only binds ferrous iron, an endosomal ferrireductase must be present. The six-
transmembrane epithelial antigen of the prostate-3 (STEAP3) has been isolated and has been
identified as the endosomal ferrireductase (Ohgami et al, 2005) that reduces ferric iron to
ferrous iron. STEAP3 is highly expressed in erythroid cells and is localised on transferrin-

TFR1 endosomes but is not necessary for efficient iron assimilation in other cell types.
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1.2.4 Iron Storage

1.2.4.1 Hepatic iron storage

The liver is the main site of iron storage in the human body. Iron is transported to the
hepatocytes bound to transferrin and gains entry into these cells via TFRs. If intracellular iron
levels exceed the cells needs, iron is stored in ferritin and a small amount is stored as

haemosiderin.

Ferritin is a heteropolymer of 24 subunits. The subunits are called H for heavy or heart (where
they are mostly expressed) and L for light or liver. Both are necessary for the proper
functioning of ferritin. Iron is still bioavailable when it is stored in ferritin. The ferritin
molecule stores iron in the ferric form and the H-chain has ferroxidase activity for oxidising
ferrous iron. Ferric iron is subsequently stored in the ferritin core. The mechanism by which
iron is released from ferritin is not well defined but lysosomal or proteosomal degradation of
ferritin may be required for the liberation of iron. Ferric iron may also leave through pores in

the ferritin molecule (Aisen et al, 2001).

Haemosiderin is not as well defined as ferritin. It is a degradation product of ferritin and is

water-insoluble. Iron is not released from haemosiderin as readily as it is from ferritin.

1.2.4.2 Reticuloendothelial iron storage

Reticuloendothelial macrophages acquire iron either through phagocytosing senescent
erythrocytes (Deiss, 1983) or through the TFR-transferrin pathway (Testa et a/, 1991). Iron is
released from erythrocyte haem by HMOXI in the macrophages. The iron is then either
stored in ferritin or released into the blood where it is oxidised to the ferric state and

transported to other cells bound to transferrin.

1.2.5 Regulation of Iron Homeostasis

As mentioned previously the body has no fixed mechanism for excreting excess iron. Thus
intricate regulatory mechanisms or pathways must control the amount of iron that is absorbed

and stored to prevent iron overload or anaemia. Within individual cells, iron levels are
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controlled through post-transcriptional regulation of the proteins involved in iron uptake and
export. Mechanisms that regulate the iron homeostasis of the entire organism depend on iron
stores, erythropoietic demand (Roy and Enns, 2000) and hypoxia (Ganz and Nemeth, 2006).
The crypt programming model and the hepcidin model have been shown to explain iron

regulation.

1.2.5.1 Post-transcriptional control

Iron homeostasis is post-transcriptionally controlled by iron-regulatory proteins (IRP1 and
IRP2) (Hentze and Kuhn, 1996). IRPs are RNA binding proteins present in the cytosol of
cells. The iron levels within cells regulate various proteins involved in iron homeostasis. IRP1
and IRP2 bind to the iron-responsive element (IRE) in the 5” or 3’ untranslated region (UTR)
of mRNAs encoding these proteins. IRPs and IREs work in conjunction to sense and respond
to changing iron levels within the cell. Depending where the IRE is situated, IRP binding will
have a different effect on protein synthesis. For example in iron-deficient cells, binding of
IRPs to the ferritin 5°-IRE causes a decrease in ferritin transcription and binding to the 3’-IRE
in TFR1 results in a more stable mRNA and thus increased expression. Therefore, more iron
is supplied to the cell and the iron-deficiency is corrected (Ganz and Nemeth, 2006). When
iron concentrations rise, IRP does not bind and ferritin expression is increased and TFR1
expression decreases and iron uptake decreases. Not all proteins involved in iron homeostasis
have IREs but they have been found in ferritin (in the 5’-UTR), TFR1 (3’-UTR), ferroportin
(5°-UTR) and DMT1 (3’-UTR).

1.2.5.2 Crypt programming model

Within the crypts of the duodenum are precursor cells that migrate onto the villi and
differentiate into enterocytes. These precursor cells are responsible for sensing the body’s iron
requirements and altering iron absorption accordingly. They are not able to absorb iron from
the intestinal lumen themselves but as they migrate up the villi they mature into absorptive
enterocytes. The crypt programming model suggests that these precursor cells absorb iron
from the plasma and that therefore their intracellular iron levels correspond with the body’s
iron stores. Thus they are able to regulate the amount of iron absorbed from the lumen as they

move up the villi and become absorptive enterocytes at the brush border (Oates et al, 2000).
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Both TFR1 and TFR2 are present on the basolateral membrane of the precursor cells. They
allow for the uptake of transferrin-bound iron (TBI) from the plasma. HFE binds to TFR1 but
not to TFR2. Waheed et al (1999) postulated that by binding to TFRI1 and modulating its
expression, HFE could modify the precursor cell’s iron sensory function. Experiments have
shown that wild type HFE binds to TFR1 competing for TBI binding and lowering TBI
uptake. This results in lowered intracellular iron concentrations and ferritin and an increase in
the number of transferrin receptors. HFE is thus a negative regulator of TFR1 (Roy et al,
1999). The mechanism by which HFE works has not yet been fully elucidated. The results of
these experiments are questionable because only HFE was transfected and HFE usually
functions in vivo bound to f2-microglobulin. In fact it has been reported that when HFE and
B2-microglobulin are overexpressed in cells, TFR1 recycling is enhanced and more receptors
are expressed at the cell membrane, which produces an increase in iron uptake (Waheed et al,
2002). In HFE-related haemochromatosis it has been observed that duodenal crypt cells and
macrophages are spared from iron loading and in fact are iron poor (Montosi et al/, 2000;
Philpott, 2002). In the HFE-knockout mouse TBI uptake into the enterocytes is also impaired
(Trinder et al, 2002b). These results taken together could indicate that normal HFE function is
necessary to enhance TBI uptake from the plasma by inducing TFR1 expression or by
inhibiting iron export from the cell via ferroportin. Aberrant HFE functioning in the precursor
(crypt cells) therefore causes them to lose their sensory function and results in aberrant iron

regulation.

1.2.5.3 Hepcidin model

Hepcidin is a peptide hormone that is produced in the liver (expressed mainly in hepatocytes)
and is excreted in the urine (Krause et al, 2000; Park et al, 2001). It exhibits antimicrobial

properties and is thought to be an important regulator of iron homeostasis.

In an experiment performed by Nicolas et al (2001) the authors attempted to create USF2
knockout mice. These mice developed severe iron overload similar to that observed in HH
patients. Further analysis revealed that a recombination event had in fact removed both the
USF?2 and HAMP genes and that hepcidin defieciency was responsible for the iron overload
observed._In humans, the most severe form of haemochromatosis results from disruption of
the HAMP gene encoding hepcidin (Roetto et al, 2003). Conversely, overexpression of

hepcidin-1 results in severe iron-deficiency anaemia in transgenic mice (Nicolas ef al, 2002a).
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Hepcidin thus negatively regulates iron absorption, recycling and release from stores.
Hepcidin expression is decreased in response to hypoxia and anaemia irrespective of the iron
load. In humans and mice with inflammation, hepcidin levels increase implicating it in the

causation of anaemia of chronic disease (Nicolas et al, 2002b).

It has been noted that hepcidin regulates iron efflux from cells by binding to ferroportin and
internalising it (Nemeth et al/, 2004a). It is hypothesised that when hepcidin levels rise in
response to iron overload or inflammation, iron export from macrophages and intestinal
enterocytes is decreased. And that under iron deficient conditions or HH when hepcidin
expression is decreased, iron is released from the intestinal cells and macrophages because

ferroportin is able to function normally (Siah et a/, 2006).

Researchers have noted that in patients with haemochromatosis due to mutations in HFE,
TFR2 and HJV, urinary hepcidin is decreased despite the presence of excess iron. This could
indicate that hepcidin expression is modulated in some way by these proteins (reviewed by
Ganz and Nemeth, 2006). How HFE and TFR2 may regulate hepcidin is unknown and needs
to be further investigated. Babitt e a/ (2006) have shown how HIJV regulates hepcidin
expression and how mutations in this gene affect this regulation. They have shown that BMP
up-regulates hepcidin expression in hepatocytes and that when HJV is mutated or not present
(HJV knockout mice) this up-regulation is not as effective. They have reported that HIV is a
coreceptor of the BMP signalling pathway and positively regulates hepcidin expression.
Although this helps to explain how HJV and HAMP mutations cause the same disease
(juvenile haemochromatosis), how hepcidin regulates iron absorption from the intestine in

response to body iron stores needs to be explored further.

1.3 Genes Involved in Iron Homeostasis

Numerous genes are involved in maintaining the iron levels in the body. These genes perform
various functions in iron metabolism and homeostasis. Several genes have been mentioned in
the previous sections but only the genes screened for our study will be discussed further.
These include the haem oxygenase-1 (HMOX]I), high-iron (HFFE), hepcidin anti-microbial
peptide (HAMP), solute-carrier family 40 (iron-regulated transporter) member 1 (SLC40A41),
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cytochrome b reductase 1 (CYBRDI) and hemojuvelin (HJV) genes, listed in chronological

order according to when they were isolated.

1.3.1 Haem Oxygenase-1 (HMOXI) Gene

HMOX1 (OMIM™ +141250) is a protein that has an important function in haem catabolism.
It cleaves the porphyrin ring of haem into carbon monoxide (CO), ferrous iron and biliverdin
(Tenhunen et al, 1969). Biliverdin is subsequently converted into bilirubin by biliverdin
reductase. Yoshida et al, (1988) isolated the HMOXI gene. Because HMOX1 activity is
increased by haem, they increased haem oxygenase activity and mRNA expression in human
macrophages through hemin treatment. They subsequently produced a ¢cDNA library and,
using rat HmoxI cDNA, isolated the human HMOXI cDNA. HMOX] contains five exons and
encodes a peptide that contains 288 amino acids and has a molecular mass of more than 32
kD. The activity of HMOX1 in the liver and other organs is notably increased in the presence
of hemin or haemoglobin. This induction has been shown to be due to binding of haem to a
translational repressor Bachl that results is increased expression of HMOXI (Ogawa et al,

2001).

Kutty et al (1994) localised HMOXI to chromosome 22ql2 using the fluorescence in situ
hybridisation (FISH) technique. HMOX presents as two isozymes i.e. HMOX1 and HMOX2.
HMOXI1 is an inducible protein whereas HMOX2 is expressed constitutively. HMOX1
expression has been noted in the spleen, liver, kidney, and bone marrow and is localised on
chromosome 16p13.3. HMOX2 is expressed in the brain, testis, and vascular systems and
shares 43% homology with HMOX1. Seroussi et a/ (1999) mapped the mouse Hmox! gene to

chromosome 8 using FISH analysis.

HMOX1 has a hydrophobic sequence at the C-terminal end, which is involved in binding to
the microsomal membrane. When HMOXI1 is treated with trypsin, the C-terminal
hydrophobic region is removed but the protein retains its function and becomes water soluble
(Yoshida et al, 1991). The rat and human HMOXI1 proteins share approximately 80%
homology (Yoshida et al, 1988). The inner portion in the F helix of the rat Hmox1 (Pro-126-
Lys-149) is called the haem oxygenase signature and highly conserved in HMOX1 isolated
from most species. It is thought that this portion of the protein plays an important role in

HMOXI1 activity. Amino acids with a separable side chain are common in haem enzymes but
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absent from mammalian HMOX1 (Schuller ef al, 1999). No cysteine residues are present in
the HMOX1 peptide sequence but there are six histidine residues, of which five are conserved

in rat Hmox1 (Yoshida et al, 1988).

Poss and Tonegawa (1997) studied the extent to which HMOX1 activity contributed to iron
homeostasis. They produced a Hmox1 deficient mouse model. These mice developed anaemia
associated with low serum iron levels but hepatic iron levels were high and caused
macromolecular oxidative damage, tissue injury and chronic inflammation. Their results

indicate that HMOX1 plays an important role in the expulsion of iron from tissue iron stores.

HMOX1 expression is proposed to act in a cytoprotective manner in many cell types. This
seems to be due to the increased production of biliverdin and bilirubin, which are strong
antioxidants. A case of oxidative stress causing severe injury in endothelial cells in a patient

with HMOX1 deficiency has been reported (Yachie et al, 1999).

Wagener et al (2003) investigated the role of haem and haem oxygenase in the inflammatory
response during wound healing in Wistar rats. Haem accumulated at the edges of the wounds
and an increase in adhesion molecule expression and the presence of leukocytes was reported.
When the inflammatory process was induced, HMOXI1 expression increased as well,
especially in infiltrating cells. They concluded that haem might be a physiologic trigger that
induces the inflammatory response but that HMOX1 antagonises inflammation by modifying

the activities of adhesive cells and cellular infiltration.

1.3.2 High-Iron (HFE) Gene

The HFE gene (OMIM™ +235200) is situated on chromosome 6p21.3 and contains 7 exons.
The gene encodes a 343 amino acid protein (HFE) that resembles the MHC class 1 proteins in
sequence and structure. HFE is comprised of 3 extracellular domains (al, a2 and a3 helices),
a transmembrane region and a short intracellular region (Feder et al, 1996; Lebron et al,
1998). MHC class 1 proteins have a groove present between the ol and a2 helices that allow
binding of peptides. The groove produced by the HFE al and a2 helices is shallower than that
in the MHC class 1 proteins and therefore HFE is unable to bind peptides (Lebrén et al,
1998). HFE has been detected in different tissues including the liver (sinusoidal lining cells,

bile duct epithelial cells and Kupffer cells), duodenum, heart, pancreas, placenta, kidneys,
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ovaries, colon, leukocytes, tissue macrophages, circulating monocytes, brain (capillary

endothelium) and lungs (Feder et al, 1996; Parkkila et al, 1997; Parkkila et al, 2000).

A study on B2-microglobulin-deficient mice provided the first indication that HFE could be
involved in iron metabolism (De Sousa et al, 1994). These transgenic mice developed iron
overload in a manner similar to that observed in humans with HH. It had previously been
noted that f2-microglobulin became physically associated with MHC class 1 proteins and
therefore indicated that B2-microglobulin or a B2-microglobulin-associated protein may be

involved in iron homeostasis and/or the pathogenesis of HH.

Simon et al (1976) found an association with HH and the HLA-A3 locus but it was not until
1996 when the gene was localised to 6p21.3 and isolated (Feder et al, 1996). The gene was
named HFE and it was found in later studies that it indeed did associate with [(2-

microglobulin (Feder et al, 1997).

The HFE-B2-microglobulin complex binds to TFRI and modulates its expression and
presentation at the cell membrane. In this way, HFE may regulate the amount of TBI brought
into the cell. The HFE-B2-microglobulin complex actually competes with TFR1 for binding to
TBI and can reduce the binding affinity of TFR1 10-fold (Parkkila et al, 1997, Feder et al,
1998). In the duodenum, HFE is confined to the crypt cells and could possibly be involved in
the regulation of iron absorption. The C282Y variant disrupts the interaction between HFE
and PB2-microglobulin and less HFE is presented at the cell membrane. The loss of HFE

regulation on TFR1 results in the increased iron absorption characteristic of type 1 HH.

Animal studies have been performed to confirm the involvement of HFE in iron homeostasis.
The Hfe-knockout mouse exhibited an iron overload phenotype very similar to that in HH
patients (Zhou et al, 1998) and this lead researchers to conclude that HFE is involved in iron

homeostasis and the pathogenesis of haemochromatosis (also see Section 1.1.1).

1.3.3 Hepcidin Antimicrobial Peptide (HAMP) Gene

Two separate research groups isolated the HAMP gene (OMIM™ *606464). Krause et al
(2000) isolated a cDNA encoding hepcidin by biochemical purification of blood ultrafiltrate

using a cysteine alkylation assay and mass spectrometry followed by sequence and reverse
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transcriptase PCR (RT-PCR) analysis and rapid amplification of cDNA ends (RACE). The
authors named the peptide liver expressed antimicrobial peptide 1 (LEAP1). Park et a/ (2001)
isolated an antimicrobial peptide from human urine and named it hepcidin because it

originates in the liver and exhibits antimicrobial properties.

HAMP is comprised of three exons and is localised on chromosome 19q13. The active protein
is encoded entirely by exon 3 (Park et al, 2001; Krause et al, 2000). The HAMP gene encodes
a propeptide of 84 amino acids that after enzymatic cleavage produces mature peptides of 20,
22 and 25 amino acids (Park et al, 2001). The active peptides are rich in cysteines, which
form intramolecular bonds that stabilise the B-sheet structure. Hepcidin expression has been
detected at very high levels in the liver. Moderate levels have been noted in the heart and

brain but very little expression is reported in the lung and other tissues (Krause et al, 2000)

Various animal models have been developed in order to establish the function of hepcidin and
how it is regulated. Pigeon et a/ (2001) isolated the cDNA encoding mouse Hamp in the liver.
The protein shares 54% homology with human hepcidin and expression is increased in
response to iron overload and lipopolysaccharide stimulation. Iron levels and inflammation
regulate hepcidin expression. Nemeth et al (2004b) noted that in the mouse hepcidin is
regulated by interleukin-6 (IL6) under inflammatory conditions but that IL6 is not necessary
for hepcidin regulation by iron. Nicolas et al (2001) noted the importance of hepcidin in iron
regulation through studying mice in which the Usf2 gene was disrupted. The Usf2 gene lies
upstream from and is very close to the Hamp gene. No hepcidin expression was detected in
these mice and they developed an iron overload phenotype as seen in HH patients and Hfe-
knockout mice. In a later study, Nicolas et a/ (2002a) produced a murine model in which
hepcidin was overexpressed and these animals subsequently developed severe microcytic
hypochromic anaemia. These findings lead the researchers to conclude that hepcidin is a key
regulator of iron absorption. Disruption of the HAMP gene leads to juvenile

haemochromatosis, which is discussed in Section 1.1.2.

Hepcidin is believed to act as a negative regulator of iron release from macrophages and
enterocytes in the duodenum. Hepcidin expression is increased under conditions of iron
overload but this does not occur in patients homozygous for the C282Y variant in the HFE

gene (Bridle et al, 2003) or in Hfe-knockout mice (Ahmad et a/, 2002).
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The urinary hepcidin levels of patients with HFE-associated haemochromatosis as well as
those with HJV- and TFR2-associated haemochromatosis are very low. In fact the urinary
hepcidin levels in patients with HJV associated Type 2 haemochromatosis are virtually
undetectable. Hfe- (Muckenthaler et al, 2003; Nicolas et al, 2003), Tfr2- (Kawabata et al,
2005) and Hjv-deficient mice (Niederkofler et al, 2005; Huang et al 2005) do not induce
hepcidin expression either. This indicates that these genes all function on the same hepcidin

regulatory pathway and that HJV is the principal hepcidin regulator.

1.3.4 Solute-carrier Family 40 (iron-regulated transporter) Member 1 (SLC40A41) Gene

SLC40A1 was formerly known as solute carrier family 11 (proton-coupled divalent metal ion
tranporter) member 3 (SLCI1A43) gene and is also called ferroportin 1 (FPN1), iron-regulated
transporter 1 (IREG1) and metal transporter protein-1 (MTP1) (OMIM™ *604653).

Reports of the isolation of an iron exporter were described by three separate research groups
in the same year. Positional cloning was used by Donovan et al/ (2000) to identify the gene
responsible for hypochromic anaemia in the mutant zebrafish ‘weissherbst’. The gene was
named fpnl and fpnl cDNAs were also isolated from mouse liver and human placenta by RT-
PCR. McKie et al (2000) used a subtractive cloning technique and PCR analysis to isolate
FPNI1 from human and mouse duodena. They decided to name the protein IREGI. An iron-
responsive protein affinity column was utilised by Abboud and Haile (2000) to isolate
mRNAs that contained functional IREs. The protein that they isolated was subsequently
named MTP1.

The SLC40A41 gene is located on chromosome 2q32 and consists of eight exons that encode a
571 amino acid peptide. Expression has been noted in the placenta, liver, spleen, and kidneys
of humans (Donovan et al, 2000). Initially McKie et al (2000) reported 10 transmembrane
domains in the SLC40A1 protein but Liu ef a/ (2005) have noted that there are in fact 12 in
this protein. Iron absorption in the duodenum is initiated by the uptake of ferrous iron by
DMT1 in the duodenal enterocytes. The iron is transported across the cell and is transferred
out of the cell across the basolateral membrane by SLC40A1. SLC40A1 is localised on the
basolateral membrane of all polarised cells, including duodenal enterocytes, hepatocytes,
placental trophoblasts and cells of the central nervous system (CNS), and is an essential iron

exporter. SLC40A1 is the only known mechanism of iron export and deletion of SLC4041 is
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lethal in transgenic mice whereas inactivation of SLC40A1 by a conditional knockout results
in excess iron being stored in macrophages, hepatocytes and enterocytes (Donovan et al,
2005). Once iron is transported out of the cell in the ferrous form, it must be reduced to the
ferric form for incorporation into transferrin. Ceruloplasmin fulfils this function in

nonintestinal cells and its homolog HEPH is the ferroxidase in the intestine.

Expression of SLC40A1 is controlled in two ways: iron levels and hepcidin. In the 5> UTR of
SLC40A41 mRNAs there is a functional IRE (McKie ef al, 2000). When iron levels within the
cell decrease, an IRP binds to the IRE and decreases mRNA stability and expression. When

iron levels rise, the IRP does not bind and mRNA expression increases.

SLC40A41 mRNA levels are inversely correlated with hepcidin mRNAs. When iron levels are
high, hepcidin regulates ferroportin functioning by binding to it on the basolateral membrane
and internalising it. Hepcidin then induces the destruction of SLC40Al in the internalised
vesicles thus decreasing the amount of SLC40A1l on the cell membrane (Nemeth et al,
2004a). When iron levels return to normal, hepcidin does not bind and SLC40A1 functions

normally.

Variants that inactivate SLC40A1 function have been associated with an autosomal dominant
form of haemochromatosis also known as the ferroportin disease. The phenotype of this
disorder is highly variable and the heterogeneity and range of SLC40A4 1 mutations seem to be

the cause of this variation (see Section 1.1.4).

1.3.5 Cytochrome b Reductase 1 (CYBRDI) Gene

In 2001 a candidate mammalian ferric reductase was isolated from hypotransferrinaemic mice
by McKie et al (2001) using a subtractive cloning procedure. They named the gene duodenal
cytochrome b (DCYTB) but it is also called CYBRDI (OMIM™ *605745). CYBRDI was
mapped to chromosome 2q31 by the International Radiation Hybrid Mapping Consortium and
consists of four exons. The gene encodes a 4 254 bp mRNA molecule that undergoes splicing
to produce 3 alternative transcripts. The protein consists of 286 amino acids, includes six
transmembrane domains and four conserved histidine residues and is highly hydrophobic
(McKie et al, 2001). CYBRDI1 is highly expressed in the brush border of enterocytes near the

tip of the villus in the duodenum and its expression is highly dependent on iron levels
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although its mRNA does not possess an IRE in either its 5’- or 3’-UTR (McKie et al, 2001).

CYBRDI is expressed at very low levels in the liver and spleen.

CYBRDI shares 40-50% homology with cytochrome b561, an enzyme involved in the
regeneration of ascorbic acid from dehydroascorbate. The predicted binding sites for ascorbic
acid and dehydroascorbic acid are highly conserved within CYBRD1 (Latunde-Dada et al,
2002).

In the intestinal lumen iron is found in the ferric form. The main iron importer on the
duodenal enterocytes, DMT1, is only able to transport ferrous iron across the cell membrane
into the cells. CYBRD1 possesses ferrireductase activity and is present on the cell membrane

and reduces ferric iron to ferrous iron prior to transport into the enterocyte.

As mentioned previously CYBRDI1 is regulated by iron. CYBRD1 mRNA and protein levels
were increased in the duodena of mice when iron levels were low (McKie et al, 2001).
CYBRDI expression is up-regulated under hypoxic conditions in the liver but hypoxia does
not seem to affect CYBRDI in the liver or spleen (Latunde-Dada et al, 2002). Zoller et al
(2003) noted a decrease in CYBRD1 expression, and thus activity, in the human duodena
from patients with iron deficiency anaemia. They also found that CYBRDI activity was up-
regulated posttranslationally in haemochromatosis patients with HFE variants. Muckenthaler
et al (2003) also found altered CYBRDI1, SLC40A1 and hepcidin expression in an Hfe-
deficient mouse model. They proposed that increased duodenal iron absorption, characteristic
of haemochromatosis, could be due to the inappropriate regulatory cues from the liver,

possibly involving CYBRDI.

1.3.6 Hemojuvelin (HJV) Gene

The most common form of JH was linked to chromosome 1q. Because no gene regulating iron
homeostasis was known to exist on chromosome 1q, positional cloning strategies were used to
identify this putative JH gene. Papanikolaou et al (2004) cloned the putative JH gene and
named it hemojuvelin (HJV) (OMIM™ *608374).

The HJV gene is located on chromosome 1g21 and its four exons span 4 265 nucleotides. The

primary 2.2 kb transcript has five spliced isoforms. The longest transcript encodes a 426
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amino acid peptide. The protein possesses multiple protein motifs and shows homology to the
repulsive guidance molecule (RGM) that suggests that HIV may function as a membrane-
bound receptor or as a secreted polypeptide hormone. HJV expression is detected in the liver,
brain, heart, kidney, pancreas, skeletal muscle, oesophagus and parts of the colon

(Papanikolaou et al, 2004; Rodriguez-Martinez et al, 2004).

Numerous animal models have been studied to elucidate HJV function and regulation.
Niederkofler et al (2005) noted Hjv expression in the mouse liver. Iron overload was
observed in Hjv-knockout mice and no hepcidin expression was observed in response to
dietary or injected iron. Up-regulation of hepcidin expression still occurred in the Hjv-
knockout mice in response to acute inflammation, which was induced by lipopolysaccharide
or IL6 and Tnf-a. In wild type mice, Hjv was down regulated in the liver in response to
inflammation but not in skeletal muscle. The researchers concluded that Hjv is an important
sensor of iron levels and that its inactivation leads to iron overload and also that down-
regulation of Hjv during the inflammatory response could temporarily eliminate Hjv’s ability

to sense iron levels (Niederkofler et al, 2005).

Huang et al (2005) also produced a Hjv-knockout mouse model and found that iron rapidly
accumulated in the liver, pancreas and heart but that there were decreased iron levels in the
spleen. Hepcidin expression in the liver was decreased and ferroportin expression was
increased in the intestinal epithelial cells and macrophages. The authors concluded that JH
could be the result of decreased hepcidin regulation and increased ferroportin expression. The
increase in ferroportin expression would lead to more iron liberation from macrophage and

intestinal epithelial cells and higher TS in the bloodstream.

HIJV is proposed as the key modulator of hepcidin expression. This is due to the fact that HIV
is expressed in the same tissue as hepcidin (liver) and because the urinary hepcidin level in JH
patients with HJV variants is extremely low (Papanikolaou et al, 2004). HIV acts as a
coreceptor of the BMP signalling pathway and assists in the positive regulation of hepcidin.
Babitt et a/ (2006) proposed that HIV binds to BMP Type I and II receptors, forming an
active complex. The Type II receptors subsequently phosphorylate the Type I receptors,
which then phosphorylate three receptor regulated Smads namely, Smadl, 5 and 8. A

common Smad, Smad 4, forms a complex with the phosphorylated Smad peptides and this
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entire complex migrates to the nucleus where it increases transcription of hepcidin. A

schematic diagram of this regulatory pathway is shown in Figure 1.2.

Figure 1.2. Schematic diagram of the role HJV plays in the regulation of hepcidin expression

via the BMP signalling pathway
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Legend to Figure 1.2.

HJV forms a complex with BMP ligands, BMP Type I receptors and BMP Type II receptors within the
hepatocyte. Within the activated complex Type II receptors phosphorylate Type I receptors, which then
phosphorylate receptor-activated Smads. The phosphorylated R-Smads form a complex with Smad4. The Smad
complex enters the nucleus where it increases hepcidin expression. Abbreviations: BMP, bone morphogenetic
protein; HJV, hemojuvelin; mRNA, messenger RNA; P, phosphorous; RI, BMP Type I receptor; RII, BMP Type
II receptor; R-Smad, receptor mediated Smads. Adapted from Babitt ez al, 2006.
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1.4 Objectives of This Study

HH is a very common disorder that is often misdiagnosed because of the vague symptoms
presented by patients when the disease first becomes evident. Early diagnosis of this easily
treatable condition will assist in preventing the development of the more severe symptoms
that manifest as the disease progresses untreated. Identification of genetic variation associated
with HH or modifying the disorder will improve diagnosis and ultimately improve the

longevity of HH patients.

The aim of this study was to perform mutation analysis of six iron regulatory genes, including
the haem oxygenase 1 (HMOX]I) gene, high-iron (HFE) gene, hepcidin antimicrobial peptide
(HAMP) gene, solute carrier family 40 (iron-regulated transporter) (SLC40A1) gene,
cytochrome b reductase 1 (CYBRDI) gene and hemojuvelin (HJV) gene, by performing the
following:
* PCR amplification of the promoter and coding regions of the respective genes
* Analysis of the amplified fragments employing heteroduplex single-strand
conformation polymorphism (HEX-SSCP) analysis, restriction fragment length
polymorphism (RFLP) analysis and bi-directional semi-automated DNA sequencing

analysis to identify any known and/or novel variation within these genes
The variants observed were analysed to identify possible associations with iron overload and

to identify possible modifiers of the HH phenotype observed in a South African family of

Indian extraction.
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2. Detailed Experimental Procedures

The project has gained ethical approval from the Research and Ethics/Biosafety Committee,
Faculty of Health Sciences, Stellenbosch University (Ethics number N04/08/123).

2.1 Subjects

Whole blood samples were collected from 25 members (two probands and 23 unaffected
individuals) of a South African family of Indian extraction diagnosed with Classic (Type I)
HH. The collaborating clinician was responsible for clinical examination of the probands. The
two probands, a brother and sister, were diagnosed with HH and were used for initial
screening of the genes under investigation. Secondary factors such as excessive alcohol
consumption, hepatitis C infection and beta-thalassemia, that could be causing iron overload,
were eliminated. Written informed consent was obtained from all individuals participating in

the project.

The family originates from the Kond village approximately 120 km from Mumbai in the
Mabharashtra State. The village is located in the Raigad (also known as Raigarh) district in the
South Western part of India. This family is highly consanguineous and the two probands are

the product of a consanguineous relationship between two first cousins.

Proband 1 was a 64-year-old male. He presented to the Groote Schuur Hospital at the age of
49 with a history of arthritis involving the hips, knees and hands and vague abdominal
symptoms. The patient had also noticed increasing pigmentation of the skin. Upon
examination, generalised hyperpigmentation was observed. The patient was a non-insulin-
dependent diabetic and there was evidence of arthritis particularly of the proximal
interphalangeal joints of the second and third fingers of both hands as well as pain on
movement of the knees and hips. Abdominal examination revealed that the patient had slight
hepatomegaly and moderate splenomegaly. The patient was subsequently referred for
biochemical testing to determine his iron parameters. Biochemical examination revealed an
SF level of 5220 pg/l (reference range: 30-300 pg/l), TS% of 100% (reference range: 20-
50%) and a serum iron of 50.4 pmol/l (reference range: 10-30 pmol/l). The patient’s alanine

aminotransferase (ALT) level was slightly raised at 50.4 pg/l (reference range: 1-40 pg/l)
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indicating liver injury. X-ray of the fingers revealed juxta-articular osteoporosis as well as
joint space narrowing and erosions. A liver biopsy was performed and showed micronodular
cirrhosis with massive parenchymal iron deposition. The patient was diagnosed with HH with
established cirrhosis, arthritis and diabetes. After the diagnosis the patient commenced
fortnightly venesection until he was discharged in the year 2000 with a normal SF level. The
management of his arthritis was complicated by the development of a non-steroidal-induced
duodenal ulcer. In 2006 he required a total hip replacement. He remained well until
approximately 2005 when he developed complications of end-stage cirrhosis including

oesophageal varices, ascites, encephalopathy, renal failure and hepatocellular carcinoma.

Proband 2, the sister of proband 1, was a 61-year-old female who presented with
hyperpigmentation on her face at the age of 49. Examination in 1999 confirmed mild
hyperpigmentation. The patient was not diabetic and did not present any other complications
of haemochromatosis. Biochemical examination revealed an SF level of 595 pg/l (reference
range: 12-150 pg/l) and TS% of 58% (reference range: 20-50%). Her aspartate
aminotransferase (AST) level was slightly raised at 51 ng/ml (reference range: 1-40 ng/ml). A
liver biopsy revealed hepatic steatosis with hepatic parenchymal iron deposition confirming
the HH diagnosis. The patient commenced monthly venesection until her ferritin levels

declined to normal levels the following year. She has remained well subsequently.

It was not known if there was a family history of haemochromatosis in this Indian family. The
probands’ father and paternal grandfather both had dark patches on their skin but were never
diagnosed with HH. The father and grandfather had both passed away prior to the initiation of
this study so the presence of HH could not be verified. The group of 23 unaffected family
members comprised 12 females (52%) and 11 males (48%). The pedigree of the family, with
the individuals’ respective phenotypes and age, is shown in Figure 2.1. Individuals II:8, I1:9,
II:10, I:11, 1I:12, :13, 11:14, 11:6, HI:11, II1:13, TII:15 and I1:18 did not provide written
informed consent and were therefore excluded from the present study. Participating family
members were all described as unaffected, but some individuals were young and could be pre-

symptomatic disease carriers. In time they could present with HH symptoms.
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2.2 Methods

2.2.1 Body Iron Status

The transferrin saturation percentage (TS%) and the serum ferritin (SF) levels were measured
in all of the extended family members according to standard methodology. The collaborating
clinician provided the TS% and SF levels of the two probands at diagnosis. The laboratory at
which the blood samples where analysed employed reference ranges of 25-35% for TS% and
22-322 g/l for SF. In the present study iron overload was defined as TS% > 45% (Looker
and Johnson, 1988) and/or a SF level exceeding 200 pg/l in females and 300 pg/l in males.
Iron status was classified into four groups: iron deficiency (SF level < 20 pg/l); normal SF
levels (20-200 pg/l in females, 20-300 pg/l in males); high SF levels (females: > 200 pg/l,
males: > 300 pg/l) with a TS% < 45% and high SF levels with TS% > 45%.

2.2.2 DNA Isolation From Whole Blood Samples

All whole blood samples were collected in tubes containing ethylene diamine tetra-acetic acid
(EDTA) (all chemicals/reagents and respective suppliers provided in Appendix 1) as the
preservative. DNA was isolated from all samples using an adaptation of the Miller et al
(1988) salting out procedure. The initial step for extraction required the transfer of 10 ml of
each whole blood sample to a separate 50 ml Falcon tube (Merck). A volume of 30 ml cold
lysis buffer (155 mM ammonium chloride (NH4CI), 10 mM potassium hydrogen carbonate
(KHCOs3) and 0.1 mM EDTA (C;oH16N,Og) — pH 7.4) was then added to the sample and it
was subsequently placed on ice for 30 minutes and mixed by inversion at 10-minute intervals,
allowing for complete lysis of cells. Following this, the sample was centrifuged at 1500 rpm

for 10 minutes (Hermle Z 200 A, Labnet, Avanti™ 30, Beckman, GS-15R, Beckman).

The supernatant was discarded and the pellet was washed with 10 ml cold phosphate buffered
saline (PBS) [27 mM potassium chloride (KCl), 137 mM sodium chloride (NaCl), 8 mM di-
sodium hydrogen orthophosphate anhydrous (Na,HPO,4) and 1.5 mM potassium di-hydrogen
orthophosphate (KH,PO4) — pH 7.3]. The solution was subsequently centrifuged at 1500 rpm
for 10 minutes and the supernatant was removed. The pellet was resuspended in 3 ml cold

nucleic lysis buffer (10 mM Tris(hydroxymethyl)aminomethane (Tris-HCI) ((CH,OH);CNH;-
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Cl), 400 mM NaCl and 2 mM EDTA - pH 8.2), 1% (w/v) sodium dodecyl sulphate (SDS) and

1.5 mg/ml proteinase K (Roche Diagnostics), and incubated in a water bath at 55°C overnight.

Following overnight incubation, 1 ml saturated 6 M NaCl was added and the solution was
shaken vigorously for 1 minute, followed by centrifugation for 20 minutes at 3500 rpm. The
supernatant was transferred to a clean Falcon tube, shaken for 15 seconds and subsequently
centrifuged at 2500 rpm for 30 minutes. After centrifugation the supernatant containing the
DNA was poured into a new Falcon tube. Two times the volume ice-cold ethanol (EtOH)
(£99.9%) (v/v) was added and the solution was left at room temperature for 30 minutes to

allow the DNA to precipitate.

The precipitated DNA was placed into a clean 1.5 ml tube (Eppendorf) containing 1 ml 70%
(v/v) EtOH for the removal of excess salt. The solution was centrifuged at 14 000 rpm
(Centrifuge 7417C, Eppendorf) for 10 minutes (4°C). Excess EtOH was carefully removed
and the DNA left to air-dry at room temperature. The DNA pellet was dissolved in 200-800 pl
double distilled water (ddH,O), depending on the pellet size, and then shaken overnight at
room temperature and subsequently stored at 4°C. DNA quantity and quality was determined
spectrophotometrically (Nanodrop® ND-1000 Spectrophotometer (Nanodrop Technologies,
United States of America (USA))

2.2.3 Polymerase Chain Reaction (PCR) Amplification

PCR amplification was performed for the promoter and coding region of the genes under
investigation, including HMOXI, HFE, HAMP, SLC404A1, CYBRDI and HJV.
Oligonucleotide primers were designed using the Primer3 program (Rozen and Skaletsky,
2000)  (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3/www.cgi,2002) and the
reference sequence for each gene as listed in Tables 2.1 — 2.6. Reference sequences were
obtained from either the Ensembl (http:/www.ensemblorg) or GenAtlas
(http://www.genatlas.org). The reference promoter and coding regions of all the genes with

relative positions of the primers designed are depicted in Appendix 2.

A final reaction volume of 25 pl contained 50 ng DNA, 1 x ammonium sulphate buffer
((NH4)2SO4) (Fermentas), 10 pmol of each primer [Inqaba Biotech and Integrated DNA
Technologies (IDT)], 0.5 U Tagq polymerase (Fermentas), magnesium chloride (MgCl)
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(Fermentas) as specified in Tables 2.1 — 2.6 and, unless otherwise stated in the Tables, 0.1

mM of each 2’-deoxynucleotide (AINTP) (dATP, dGTP, dCTP, dTTP) (Fermentas).

PCR amplification was performed in an Applied Biosystems PCR thermocycler
(GeneAmp®PCR system 2700). Five different PCR programmes were utilised to amplify the
promoters and coding region of the genes as mentioned above. These programmes have been
designated programmes A to E and the programme used to amplify a specific amplicon is

indicated in Tables 2.1-2.6. These are discussed further below:

Programme A was initiated by a denaturation step at 95°C for 2 minutes. Followed by 35
cycles of denaturation at 95°C for 30 seconds, annealing for 45 seconds (Annl as specified for
each fragment and listed in Tables 2.1 — 2.6) and extension at 72°C for 30 seconds. Final

extension was performed at 72°C for 10 minutes.

Programme B was characterised by an initial 2 minute denaturation step at 95°C.
Subsequently, there were 10 cycles of denaturation at 95°C for 30 seconds, annealing for 45
seconds (Ann 1 as listed for each primer set in Tables 2.1 — 2.6) and extension at 72°C for 30
seconds. This was followed by 30 cycles of denaturation, annealing (Ann 2 as listed for each
primer set in Tables 2.1 — 2.6) and extension at the same conditions as above. Final extension

occurred at 72°C for 10 minutes.

Programme C included an initial denaturation step (95°C for 5 minutes) followed by 35
cycles each consisting of 1 minute at 95°C (denaturation) and 2 minutes at Ann 1 (as specified

in Tables 2.1 — 2.6) (annealing). Final extension was at 72°C for 15 minutes.

Programme D included an initial denaturation at 94°C for 5 minutes preceded 35 cycles of
denaturation at 94°C for 30 seconds, annealing for 30 seconds (Ann 1 as listed in Tables 2.1 —
2.6) and extension at 72°C for 30 seconds. The cycle was completed with an extension step at

72°C for 10 minutes.

Programme E was initiated by denaturation at 95°C for 5 minutes. This was followed by 35
cycles of denaturation at 95°C for 2 minutes and annealing (Ann 1 as specified for each
primer set as listed in Tables 2.1 — 2.6) for 2 minutes. Subsequently, an extension step at 72°C

for 10 minutes occurred.
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2.2.4 Agarose Gel Electrophoresis

Successful amplification of PCR products was tested on a 2% (w/v) horizontal agarose gel
[consisting of 4 g agarose, 1 x Tris-Borate/EDTA (TBE) (90 mM Tris-HCI (pH 8.0), 90 mM
boric acid (H3;BOs3) and 1 mM EDTA) and 0.01% (v/v) ethidium bromide (EtBr)]. The PCR
product (5 pl) was mixed with Cresol red loading buffer (5 pl) [consisting of 0.02% (w/v)
cresol red and 0.34% (w/v) sucrose) and loaded into the wells of the agarose gel. The products
were resolved at 120 V for 1 hour in 1 x TBE buffer solution. A 100 base pair (bp) marker
(Fermentas) established amplification of the correct fragment size. The DNA was visualised
by ultraviolet light transillumination on the Multigenius Bio Imaging System (Syngene,

Cambridge, United Kingdom (UK)).

2.2.5 Heteroduplex Single-Strand Conformation Polymorphism (HEX-SSCP) Analysis

The successfully amplified DNA fragments were subjected to HEX-SSCP analysis (Kotze et
al, 1995) performed on a Hoefer vertical gel apparatus. The fragments were electrophoresed
on a 12% (w/v) polyacrylamide (PAA) gel supplemented with urea [(NH,),CO] [gel
consisting of 7.5% (w/v) urea, 1.5 x TBE buffer (135 mM Tris-HCI (pH 8.0), 135 mM boric
acid and 1.5 mM EDTA), 12% (w/v) PAA (1%C of a 40% stock [99 acrylamide (AA):1
bisacrylamide (BAA)], 0.1% (w/v) ammonium persulphate (APS) and 0.1 % (v/v) TEMED.

Gels were cast at room temperature and allowed to completely polymerise. Subsequently, the
gels were placed into the Hoefer electrophoresis tank, which contained 1 x TBE buffer. The
upper buffer chamber was filled with fresh 1.5 x TBE buffer. A volume of 15 pl of
bromophenol blue loading buffer [consisting of 0.05% (w/v) bromophenol blue, 0.05% (w/v)
xylene cyanol, 95% (v/v) formamide (de-ionised) and 20 mM EDTA] was added to the PCR
products (20 pl). The solution was then heat denatured at 95°C for 10 minutes and
immediately placed on ice. Approximately 15 pl of the denatured PCR product was loaded on
the gel and electrophoresed at 4°C at 250 V for 18 hours.

Following electrophoresis, the gels were dismantled and the DNA stained in a 0.01% (v/v)
EtBr solution for 10 minutes. This was followed by 3 minutes of destaining in ddH,O. DNA
fragments were visualised by ultraviolet light transillumination and photographed using the

Multigenius Bio Imaging System (Syngene, Cambridge, UK).
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2.2.6 Restriction Fragment Length Polymorphism (RFLP) Analysis

RFLP analysis was performed for the CYBRDI variant S266N and the HMOXI variant
IVS2+4T—C as successful genotyping of these two variants was not possible using the HEX-
SSCP images.

The S266N variant in exon 4 of the CYBRDI gene was digested with TspRI (recognition site
5 CAG|TG 3’, New England Biolabs) to improve genotyping of this variant. The TspRI
recognition site is abolished by the presence of this variant. In the absence of the variant two
fragments of 87 bp and 130 bp result. Digestion of the variant DNA fragment produces three
fragments of 217 bp, 130 bp and 87 bp in the heterozygous state and 1 fragment of 217 bp in

the homozygous state.

RFLP analysis was also used to genotype the [IVS2+4T—C variant in the HMOXI gene. Exon
2 of the HMOXI gene was digested with HpyCH41V (recognition site 5 A|CGT 3°, New
England Biolabs). This restriction enzyme is an isoschizomer of Maell. This variant creates
an HpyCH41V recognition site within the exon 2 fragment. In the absence of the variant the
DNA fragment remains uncut and produces a single 236 bp fragment. Digestion of the variant
DNA fragment produces three fragments of 236 bp, 163 bp and 73 bp in the heterozygous
state and two fragments of 163 bp and 73 bp in the homozygous state.

All RFLP reactions were performed in a final volume of 20 pl that contained 10 pl of the
relevant PCR product, 1 x buffer and 2 U of the applicable restriction enzyme. PCR products
were incubated in a water bath for 16 hours to allow complete digestion. Incubation

temperatures and buffer components for each restriction enzyme are supplied in Table 2.7.

Electrophoresis of all of the digested PCR products was performed on a 2% (w/v) agarose gel
(see Section 2.2.4). A volume of 10 pul of each digested PCR product was mixed with 10 pl
Cresol red loading buffer and loaded into the wells of the agarose gel. The products were
resolved at 100 V for 90 minutes in 1 x TBE buffer solution. The sizes of the digested DNA
fragments were verified by loading a 100 bp DNA marker (Fermentas) along with the
samples. The DNA fragments were visualised by ultraviolet light transillumination on the
Multigenius Bio Imaging System (Syngene, Cambridge, United Kingdom (UK)) for

successful genotyping.
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Table 2.7. Table outlining restriction enzyme buffers and water bath incubation temperatures

Incubation
Restriction
Gene Variant NEBuffer | Buffer Components | Temperature

Enzyme
(o)

10 mM Bis Tris Propane-
HCI
HMOX1  1VS2+4T—C  HpyCH41V 1 10 mM MgCl, 37
1 mM DTT
pH 7.0 at 25°C

50 mM KAc,
20 mM TA,
10 mM MgAc,
CYBRDI S266N TspRI 4 1 mM DTT 65
pH 7.9 at 25°C
Supplemented with
100 pg/ml BSA

Abbreviations: pg/ml, microgram per millilitre; BSA, bovine serum albumin; °C, degrees Celsius; CYBRDI,
cytochrome b reductase 1 gene; DTT, dithiothreitol; HCL, hydrochloric acid; HMOXI1, haem oxygenase-1 gene;
HpyCH41V, Escherichia. coli strain carrying the cloned HpyCH41 gene from Helicobacter pylori CH4; IVS,
intervening sequence; KAc, potassium acetate; MgAc, magnesium acetate; MgCl,, magnesium chloride; mM,
millimolar; N, asparagine; NEBuffer, New England Biolabs buffer; S, serine; TA, tris-acetate; TspRI,
Escherichia coli strain carrying the cloned TspRI gene from Thermus species R.

2.2.7 Semi-automated DNA Sequencing Analysis

Samples showing aberrant banding patterns upon HEX-SSCP analysis were subjected to bi-
directional semi-automated DNA sequencing. The PCR products were purified prior to

sequencing using the GenElute™ PCR Clean-Up Kit (Sigma).

The clean-up protocol was initiated with the insertion of a GenElute Miniprep Binding
Column into the collection tube and addition of a volume of 500 pl of Column Preparation
Solution to each column. Each tube was then centrifuged at 11 200 rpm (Centrifuge 5415D,
Eppendorf) for 1 minute. The eluate was subsequently discarded. The PCR product was
prepared by adding 5 volumes of Binding Solution to 1 volume of the PCR product.
Following mixing, the solution was centrifuged for 1 minute at 13 000 rpm. After discarding
the flow-through, 500 pl of Wash Solution was added to the column and it was centrifuged at
13 000 rpm for 3 minutes. The column was transferred to a clean 2 ml collection tube and 50

ul of ddH,O was applied to the centre of each column. The tube was incubated at room

57




Stellenbosch University http://scholar.sun.ac.za

CHAPTER TWO DETAILED EXPERIMENTAL PROCEDURES

temperature for 1 minute before the DNA was eluted by centrifugation at 13 000 rpm for 1
minute. The purified DNA was subsequently stored at 4°C. The constituents of the
GenElute™ PCR Clean-Up Kit (Sigma) Column Preparation, Binding and Wash Solutions

were not made available by the manufacturer.

Cycle sequencing was performed on a GeneAmp®PCR system 2700 thermocycler. Each
reaction contained 3.3 ng of the relevant primer (Tables 2.1-2.6), 1 ul termination ready
reaction mix [BigDye® Terminator v3.1 cycle sequence kit (Applied Biosystems)] and 9.9 ng
of the purified PCR product.

The cycle program consisted of an initial denaturation step of 10 seconds at 96°C followed by
25 cycles of denaturation at 96°C for 10 seconds, annealing at 55°C for 10 seconds and
extension at 60°C for 4 minutes. The samples were subsequently sent to a sequencing facility
(Central Analytical Facility, Stellenbosch University) where they were loaded onto an ABI
PRISM 3130X1 Genetic Analyser (Applied Biosystems) automated sequencer. Analysis of all
resulting sequences was performed by a) visually examining the electropherograms and b)
alignment of sequences with the reference sequence (accession numbers of reference
sequences are listed in Tables 2.1-2.6) using BioEdit Sequence Alignment Editor v7.0.1 (Hall,
1999).
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Mutation analysis of six genes in an Indian family with Hereditary

Haemochromatosis

Abstract

Hereditary haemochromatosis (HH) is a very common disease in individuals of northern
European descent. The majority of patients are homozygous for the C282Y mutation in the
HFE gene or compound heterozygotes for the C282Y and H63D mutations. Although
prevalent in Caucasians, the disease is rare in Asians and Africans. The present study
attempted to elucidate the gene variant, or variants, causing HH in an Asian Indian family as
well as potential modifiers of the HH phenotype. Mutation analysis of the promoters and
coding regions of six iron regulatory genes including HMOXI, HFE, HAMP, SLC40A1,
CYBRDI and HJV, was performed. Heteroduplex single-strand conformation polymorphism
(HEX-SSCP) analysis and bi-directional semi-automated DNA sequencing analysis were
employed to identify variants associated with HH in this family. Twenty four previously
identified and five novel variants (HFE: 5’UTR-840T—G; CYBRDI: 5’UTR-1813C—T,
5’UTR-1452T—C, 5’UTR-1272T—C; and HJV: 5’UTR-534G—T, 5’UTR-530G—T) as
well as one known SLC4041 repeat and two novel 5’UTR repeats (CYBRDI:
[G(T)sG(T)sG(T)aG(T)9] where n represents zero or six repeats and HJV: (AAGG) presenting
with 11 to 13 repeats) were identified in the Indian family. A propitious previously identified
HAMP variant (5’UTR-335G—T) seems to be responsible for the iron overload phenotype
observed in the two Indian probands. Variants identified in the HMOXI and HFE genes may
be modifying the effect of the HAMP promoter variant.

Introduction

Hereditary haemochromatosis (HH) is a common autosomal recessive disorder resulting from
the disruption of iron absorption. The majority of patients have a mutation in the high-iron
(HFE) gene, with C282Y homozygosity accounting for more than 80% of HH cases in
Caucasians of northern European descent (Feder et al, 1996). The C282Y homozygous
genotype results in the most severe form of HH, referred to as Type 1, and is presented by
approximately five out of every 1000 individuals of northern European descent. However, the

penetrance of this variant seems to be incomplete. The proportion of HH patients presenting
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with the homozygous C282Y variant genotype differs in distinct populations and the variant
allele is not present in the Asian and African populations (Merryweather-Clarke et al, 1997,
Roth et al, 1997). Other types of haemochromatosis not associated with the HFE gene include
Type 2 haemochromatosis resulting from mutations in the HAMP and HJV genes (Roetto et
al, 2003; Papanikolaou et al, 2004), Type 3 resulting from mutations in the 7FR2 gene
(Camaschella et al, 2000), Type 4 associated with SLC40A41 mutations (Njajou et al, 2001)
and Type 5 resulting from mutations in the H-ferritin gene (Kato et a/, 2001).

Although HH Types 1, 2 and 3 are distinct diseases, they do share similar disease phenotypes.
Researchers have discovered that in cases of juvenile haemochromatosis where patients
display mutations in the HJV gene, almost no urinary hepcidin is detected (Papanikolaou et al,
2004). This may indicate that HI'V and HAMP function in the same pathways and that HIV
may regulate HAMP expression. Babitt et al (2006) revealed that HJV regulates hepcidin
expression by acting as a cofactor in the BMP signalling cascade. Hepcidin expression is also
diminished in patients with haemochromatosis due to mutations in HFE or TFR2. This
implicates HFE and TFR2 in the regulation of hepcidin expression and how these two
proteins regulate hepcidin needs to be investigated further (reviewed by Ganz and Nemeth,

2006).

HH is predicted to be rare in the Indian subcontinent. In various studies the frequency of the
C282Y and H63D variants has been determined, but these variants are not associated with
iron overload in India (Garewal et al, 2005; Dhillon et al, 2007). It is believed that
haemochromatosis in India is of the non-HFE type but the gene causing the HH phenotype

has not been elucidated as yet.

Mutation analysis of six genes namely, the haem oxygenase-1 (HMOXI) gene, high-iron
(HFE) gene, hepcidin antimicrobial peptide (HAMP) gene, solute-carrier family 40 (iron-
regulated transporter) member 1 (SLC40A41) gene, cytochrome b reductase 1 (CYBRDI) gene
and hemojuvelin (HJV) gene, was performed in an attempt to elucidate the causative gene

variant or variants associated with HH in this Indian family.

61



Stellenbosch University http://scholar.sun.ac.za

CHAPTER THREE RESULTS AND DISCUSSION

Materials and Methods

Information provided for all study participants, detailed methodologies employed and

statistical analysis performed are as outlined in Chapter 2.

Results

3.1 Body Iron Status

The TS% and SF levels for the two probands (at diagnosis) are provided in Table 3.1. A TS%
exceeding 45% and/or a SF level of more than 200 pg/l in females and 300 pg/l in males were
indicative of iron overload. The TS% and SF levels for 20 of the phenotypically unaffected
family members are also shown in Table 3.1. For one of the extended family members (I11:19)
only the TS% was provided. No iron parameters were available for three of the family
members (III:3, III:5 and III:17). The iron parameters of the extended family members are

provided as of date of study.
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Table 3.1. Characteristics and iron indices of probands and unaffected family members

Transferrin Serum Ferritin
Patient Sex Age Saturation
%) (ng/h
Proband 1 Male 64 100 5220
Proband 2° Female 61 58 595
II:2 Male 63 15 29
I1:4 Female 60 30 191
II:5 Male 57 29 37
II:6 Female 52 18 25
II:7 Male 50 22 277
I:1 Male 42 30 196
III:2 Female 36 24 100
1I:3 Male 23 unknown unknown
II:4 Female 42 12 62
II:5 Male 36 unknown unknown
II:7 Female 43 13 15
II:8 Female 41 26 118
III:9 Male 40 40 137
III:10 Female 39 33 213
1r:12 Male 34 29 264
114 Female 34 23 115
II:16 Female 27 34 108
1I:17 Male 29 unknown unknown
11:19 Male 19 22 unknown
III:20 Female 19 44 91
III:21 Female 10 22 78
III:22 Female 16 31 76
III:23 Female 40 17 57

" Iron parameters are given for the probands at diagnosis.
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3.2 Mutation Analysis

Mutation analysis of the six genes namely, HMOXI, HFE, HAMP, SLC40A41, CYBRDI and
HJV, in the two probands revealed several variations on HEX-SSCP analysis. Twenty four
previously described single nucleotide substitutions were identified as well as a previously
described repeat. In addition to these known variants, five novel single nucleotide
substitutions and two repeats were identified in the two probands. All variants are shown in
Table 3.2. The position of each variant and repeat identified is indicated on the reference
sequence of each gene in Appendix 2. The genotypes of the two Indian probands for each

variant are shown in Appendix 3.

The polymerase chain reaction (PCR) could not be optimised for the amplification of the
SLC40A1 promoter fragment 6 nor the CYBRDI promoter fragment 2 (see primer Tables 2.4
and 2.5). The SLC40A41 promoter region that was spanned by fragment 6 was however
amplified using the adjacent forward and reverse primers namely, SP5 forward and SP7
reverse (see Table 2.4). The resulting 840 bp fragment could not be analysed using HEX-
SSCP analysis so direct sequencing analysis was performed on this fragment. Likewise, the
CYBRD1 promoter region spanned by the BP2 primers was amplified using the adjacent BP1
forward and BP3 reverse primers (see Table 2.5). The resulting 747 bp fragment was
subsequently subjected to direct sequencing analysis. Optimisation of PCR amplification for
the HMOXI promoter fragment 5 (Table 2.1), HAMP promoter fragment 2 (Table 2.3), and
HJV promoter fragments 2 and 5 (Table 2.6) was unsuccessful and therefore mutation

analysis of these fragments was incomplete.

After initially being identified in the probands, all variants were screened for in the 23
extended family members. The genotype of the family members for each variant is shown in
Appendix 3. For some variants amplification of the respective PCR fragment was

unsuccessful and therefore genotyping of that variant is incomplete.
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Table 3.2. Variants initially identified in two probands of an Indian family and subsequently

identified in the extended family members

Gene ‘ 5’UTR/Exon/Intron ‘ Variant ‘ Reference
HMOX1 5’UTR 5’UTR-495A—T rs2071746*
2 IVS2+4T—C rs17885925*
2 IVS2-19C—>T rs7879606*
HFE 5’UTR 5’UTR-1206C—G rs1800702*
5’UTR 5’UTR-467G—C s2794720*
5’UTR 5’UTR-840T—G This study
2 H63D (g.189C—G) Feder et al, 1996
HAMP 5’UTR 5’UTR-335G—T rs3817623*
SLC40A41 5’UTR 5’UTR-1355G—C rs3811621*
5’UTR 5’UTR-750G—A rs13015236*
5’UTR 5’UTR-593C—T rs12693542*
5’UTR 5’UTR-501T—C rs6728200*
1 (CGG)s" Lee et al, 2001
1 (CGG)," Lee et al, 2001
6 V221 (g.663T—C) Devalia et al 2002
CYBRDI 5’UTR 5°’UTR-1844C—G 1s7585974*
5’UTR 5’UTR-1834G—A rs7586174*
5’UTR 5’UTR-1813C—T 1512692965
5’UTR 5’UTR-1459T—C rs10199858*
5’UTR 5’UTR-1452T—C This study
5’UTR 5’UTR-1272T—C This study
5’UTR 5’UTR-624G—A rs884408*
5’UTR 5’UTR-238A—G rs868106*
5’UTR 5’UTR-167C—G rs2356782*
5’UTR 5’UTR-163G—A rs3731976*
5’UTR G(T)G(T)6G(T)sG(T)y" This study
5°UTR G(T)G(T)sG(T)y" This study
2 IVS2+8T—C Zaahl et al 2004
4 S266N (g.797G—A) McKie et al 2001
HJV 5’UTR 5’UTR-1406C—A rs1830823*
5’UTR 5’UTR-542A—G rs10910811*
5’UTR 5’UTR-534G—T This study
5’UTR 5’UTR-530G—T This study
5’UTR 5’UTR(AAGG),," This study
5’UTR 5’UTR(AAGG),," This study
5’UTR 5’UTR(AAGG),;" This study

Abbreviations: 5’UTR, 5-prime untranslated region; CYBRDI, cytochrome b reductase 1 gene; HAMP, hepcidin
antimicrobial peptide gene; HFE, high-iron gene; HJV, hemojuvelin gene; HMOXI, haem oxygenase-1 gene;
IVS, intervening sequence; N, asparagine; S, serine; SLC40AI, solute-carrier family 40 (iron-regulated
transporter) member 1 gene; V, valine. “position of repeats indicated in Appendix 2; *refSNP ID (HapMap)
available online at http://www.hapmap.org.
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Haplotype analysis was performed to identify any genetic modifiers contributing to the iron
overload phenotype in this family. The Cyrillic 2.01 program (Cherwell Scientific Publishing
Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK) was employed to perform
haplotype analysis for each of the genes under investigation. The variants identified in each of
the genes were used as markers to construct the haplotypes. In each case, the wild type allele
was denoted with a 1 and the variant allele was denoted with a 2. The length of the repeat
represented the different allelic forms of the SLC4041 and HJV repeats identified. The
genotypes of individuals for the CYBRDI repeat were represented with a 1 for allele 1
(G(T)sG(T)sG(T)sG(T)9) and 2 for allele 2 (G(T)sG(T)sG(T)9) of the repeat. The genotypes of
some individuals were not clearly distinguishable following HEX-SSCP or DNA sequencing
analysis. Furthermore, the genotypes of some individuals were ambiguous in that they did not
conform to the haplotypes presented in the Indian family. This ambiguity could not be
explained by non-paternity or recombination. The genotypes of these individuals are denoted
with question marks in the pedigree. These individuals will be re-analysed and their
genotypes clarified employing semi-automated DNA sequencing analysis. Appendix 3
outlines more accurately why the genotypes of these individuals were omitted from the

haplotype analysis.

3.2.1 HMOXI gene

Mutation analysis of the HMOX1I coding region and promoter revealed a previously described
5’UTR variant (5’UTR-495A—T) as well as two known intronic variants (IVS2+4T—C and
IVS2-19C—-T).

A single A to T nucleotide substitution was observed in the promoter region of the HMOXI
gene 495 nucleotides upstream from the translation initiation site (5’UTR-495A—T)
(HapMap; refSNP ID: rs2071746). This previously described variant was observed in the
heterozygous state in both probands. Further analysis revealed eight (34.8%) homozygous

variant and seven (30.4%) heterozygous family members.

HEX-SSCP and sequencing analysis of exon 2 revealed two previously identified intronic
variants. The first, a T to C transition, occurs four nucleotides from the end of exon 2
(IVS2+4T—C) (HapMap; refSNP ID: rs17885925). This variant was identified in the

heterozygous state in both of the probands. The variant allele creates a Maell recognition site
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(5> AJCGT 3’). RFLP analysis using the Maell isoschizomer HpyCH41V was used for
genotyping of the extended family members. The wild type sequence produced a 236 bp
fragment while the heterozygous genotype produced three fragments of 236 bp, 163 bp and
73 bp, respectively. The 73 bp fragment was not visible on the 2% (w/v) horizontal agarose
gels but genotyping of this variant was still possible using the 236 bp and 163 bp fragments.
Five extended family members (21.7%) were heterozygous for this variant while 17 (73.9%)
presented with the homozygous wild type genotype. The homozygous state of this variant was

not observed.

The second previously described non-coding variant was a C to T transition located in intron
2, 19 nucleotides upstream from exon 3 (IVS2-19C—T) (HapMap; refSNP ID: rs7879606).
Proband 2 was heterozygous for this variant while proband 1 was homozygous wild type.
Nineteen (82.6%) of the extended family members were homozygous wild type for this
variant and four (17.4%) were heterozygous. The homozygous form of this variant was not

observed.

Annotation of the HMOX1 gene variants and the haplotypes constructed for the three variants
in the HMOX1 gene are depicted in Figure 3.1.
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Legend to Figure 3.1.

Schematic representation of haplotypes constructed for the HMOX1 gene variants. i) Gene annotation indicating
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene
annotation is not drawn to scale and only indicates the positions of the variants. ii) Pedigree with constructed
HMOXI haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is
annotated. Red, haplotype 1; yellow, haplotype 2; brown, haplotype 3; orange, haplotype 4. Abbreviations: 3’, 3-
prime end; 5°, 5-prime end; ATG, translation initiation site; HMOXI, haem oxygenase-1 gene; IVS, intervening
sequence; UTR, untranslated region.

3.2.3 HFE gene

Mutation analysis of the HFE gene revealed three previously described variants (5’UTR-
1206C—G, 5’UTR-467G—C and H63D) and a single novel variant (5’UTR-840T—G@G) in the
HFE gene. The common C282Y HFE variant was absent from both of the probands and all

family members.

HEX-SSCP analysis and bi-directional semi-automated DNA sequencing of promoter
fragment 1 (Table 2.2) identified a known C to G transversion 1206 nucleotides upstream of
the translation initiation site (ATG), 5’UTR-1206C—G, (HapMap; refSNP ID: rs1800702).
This variant was initially identified in the heterozygous state in both probands. Subsequent
genotyping of the extended family members revealed nine heterozygous individuals (39.1%)

and two individuals (8.7%) who were homozygous for the variant allele.

A previously described G to C transversion was identified 467 nucleotides upstream of the
initiating ATG (5’UTR-467G—C) (HapMap; refSNP ID: rs2794720) in fragment 7 of the
promoter (Table 2.2). Both probands were heterozygous for this variant. Analysis in the
family members revealed eight heterozygous individuals (34.8%) and two (8.7%) individuals

who were homozygous for the variant allele.

A novel variant was identified in the 5S’UTR of the HFE gene. This variant was observed
following HEX-SSCP and sequencing analysis of fragment 3 of the promoter (Table 2.2). The
variant is a T to G transversion at nucleotide position 840 upstream from the initiating ATG
(5’UTR-840T—G). The HEX-SSCP gel and sequencing electropherograms of this variant are
depicted in Figure 3.2. Both probands were heterozygous for this variant as well as three

(13%) family members. The homozygous state of this variant was not observed.
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Figure 3.2. Schematic representation of the novel 5’UTR-840T—G variant in the HFE

promoter

A. BO) moeTToocooToaAC TTOA

A AR

ACTTGOGG GO REGAAC TT G A

v
. A AN AAAAA

A. HEX-SSCP gel stained with EtBr and visualised using ultraviolet light transillumination. Arrow indicates
aberrant band, Het = heterozygous banding pattern, N = homozygous wild type banding pattern. B. Sequencing
electropherograms indicating (i) the wild type sequence and (ii) the 5’UTR-840T—G variant. Arrow indicates
the point of variation, green adenine or A, blue cytosine or C, black guanine or G, red thymine or T.

Het Het N

B. (i)

A missense mutation was observed in exon two of the HFE gene. The mutation is a
previously described C to G transversion at nucleotide position 189 that results in the
replacement of histidine with aspartic acid at amino acid position 63 (H63D) (Feder et al,
1996). This mutation was not present in the two probands but was identified in the

heterozygous state in four (17.4%) family members.

The HFE gene annotation, as well as the haplotypes constructed for the four variants

identified in the HFE gene, are shown in Figure 3.3.
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Legend to Figure 3.3.

Schematic representation of haplotypes constructed for the HFE gene variants. i) Gene annotation indicating the
transcription initiation site and the position of variants used as markers for haplotype assembly. Gene annotation
is not drawn to scale and only indicates the positions of the HFE variants. ii) Pedigree with constructed
haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is annotated. Blue,
haplotype 1; brown, haplotype 2; pink, haplotype 3. Abbreviations: 3, 3-prime end, 5°, 5-prime end; ATG,
translation initiation site; D, aspartic acid; H, histidine; HFE, high-iron gene; UTR, untranslated region.

3.2.4 HAMP gene

Mutation analysis of the HAMP gene revealed a single known variant in the 5’UTR (5’UTR-
335G—T) (HapMap; refSNP ID: rs3817623). This variant is a transversion of a G to T
nucleotide at position 335 upstream relative to the initiating ATG. The variant was identified
following HEX-SSCP and sequencing analysis of promoter fragment 4 of the gene and was
observed in the homozygous state in both of the probands. None of the extended family

members were homozygous for the variant allele but the heterozygous state was observed in

16 (69.6%) of these individuals.
Although only a single variant was identified in the HAMP gene, this variant was used to

construct haplotypes for the Indian family. Annotation of the gene and the haplotypes

constructed for the HAMP variant are shown in Figure 3.4.
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Legend to Figure 3.4.

Schematic representation of haplotypes constructed for the H4MP gene variant. i) Gene annotation indicating
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene
annotation is not drawn to scale and only indicates the position of the variant. ii) Pedigree with constructed
haplotypes provided for each individual. Abbreviations: 3°, 3-prime end; 5°, 5-prime end; ATG, translation
initiation site; HAMP, hepcidin antimicrobial peptide gene; UTR, untranslated region.

3.2.5 SLC40A1 gene

Five previously identified variants were identified in the SLC4041 gene (5’UTR-1355G—C,
5’UTR-750G—A, 5’UTR-593C—T, 5’UTR-501T—C and V221). The CGG microsatellite
within the SLC40A 1 promoter was also identified with either 7 or 8 repeats.

HEX-SSCP analysis and sequencing of fragment 1 of this gene promoter revealed a known
nucleotide substitution. The G to C transversion at nucleotide position 1355 upstream from
the initiating ATG (5’UTR-1355G—C) (HapMap; refSNP ID: rs3811621) was identified in
the heterozygous state in both of the probands. Screening of the extended family members

revealed eight (34.8%) homozygotes and 13 (56.5%) heterozygotes.

A known G to A transition at nucleotide position 750 upstream from ATG (5’UTR-750G—A)
(HapMap; refSNP ID: rs13015236) was identified in the homozygous state in proband 1 and
in the heterozygous state in proband 2. Subsequent screening of the extended family members

revealed 14 (60.9%) heterozygous and five (21.7%) homozygous individuals.

Direct sequencing analysis of the 840 bp SLC40A41 fragment revealed a nucleotide
substitution of a C to a T at position 593 upstream from the initiating ATG. This variant was
identified in the homozygous variant state in both of the probands. The variant (5’UTR-
593C—T) (HapMap; refSNP ID: rs12693542) presented in the heterozygous form in nine
(39.1%) family members, while the homozygous variant genotype was observed in 13

(56.5%) individuals.

Sequencing analysis of 840 bp fragment revealed another variant. The 5’UTR-501T—C
variant (HapMap; refSNP ID: rs6728200) is a T to C transition 501 nucleotides upstream
from the initiating ATG. Both of the probands as well as all of the family members genotyped

were homozygous for the variant C allele.
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HEX-SSCP and sequencing analysis of the coding region of the SLC40A41 gene revealed a
single synonymous variant in exon 6. The variant is a T to C transition at nucleotide position
663 (g.663 T—C) that does not result in the replacement of the amino acid valine at amino
acid position 221 (V221) (Devalia et al, 2002). This variant was identified in the
heterozygous state in proband 1 but was absent from proband 2. Genotyping of the extended
family members revealed 16 (69.6%) heterozygous individuals but the homozygous variant

state was not observed.

The previously described CGG microsatellite in the 5’UTR (Lee et al, 2001) was identified
after direct sequencing of the 840 bp fragment. The repeat was observed in two allelic forms
namely, allele 1: (CGQG)s and allele 2: (CGG);. The two probands were both homozygous for
(CGQ)s (allele 1). Eleven (47.8%) of the family members were also homozygous for allele 1.
Genotyping further revealed 12 (52.2%) individuals who were heterozygous having both the
(CGG)7 and (CGG)s alleles. The homozygous (CGG); genotype was not observed.

The SLC40A41 gene annotation and the haplotypes constructed for the variants identified

within this gene are shown in Figure 3.5.
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Legend to Figure 3.5.

Schematic representation of haplotypes constructed for the SLC40A4 1 gene variants. i) Gene annotation indicating
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene
annotation is not drawn to scale and only indicates the positions of the variants. ii) Pedigree with constructed
haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is annotated. Blue,
haplotype 1; pink, haplotype 2; purple, haplotype 3. Abbreviations: 3’, 3-prime end; 5°, 5-prime end; ATG,
translation initiation site; SLC40A41, solute carrier family 40 (iron-regulated transporter) member 1 gene; UTR,
untranslated region; V, Valine.

3.2.6 CYBRDI gene

Mutation analysis of the CYBRDI promoter and coding region revealed ten previously
described (5’UTR-1844C—G, 5’UTR-1834G—A, 5’UTR-1813C—T, 5’UTR-1459T—C,
5’UTR-624G—A, 5’UTR-238A—G, 5’UTR-167C—G, 5’UTR-163G—A, IVS2+8T—C and
S266N) and two novel (5’UTR-1452T—C and 5’UTR-1272T—C) variants. A repeat was also
observed in the 5’UTR [G(T)sG(T)sG(T).G(T)9] where n represents either zero or six repeats.

Direct sequencing analysis of the 747 bp CYBRDI promoter fragment, amplified using BP1
forward and BP3 reverse primers according to Table 2.5, revealed four previously described
variants. The first was a single nucleotide substitution observed 1844 nucleotides upstream
from the initiating codon (5’UTR-1844C—G@G) (HapMap; refSNP ID: rs7585974). This variant
was observed in both of the probands in the homozygous state. Subsequent genotyping of the
extended family revealed 17 (73.9%) homozygous and five (21.7%) heterozygous individuals.
The homozygous wild type genotype was not observed in this Indian family. The second
known variant 5’UTR-1834G—A (HapMap; refSNP ID: rs7586174) was observed 1834
nucleotides upstream from the initiating ATG. This variant was identified in the heterozygous
state in both of the probands. Four (17.4%) family members were homozygous for this variant
and 12 (52.2%) were heterozygous. The third previously described variant was a C to T
transition 1813 nucleotides upstream from the first ATG codon (5’UTR-1813C—T)
(HapMap; refSNP ID 12692965). This variant was absent from the two probands but was
observed in the heterozygous state in five (21.7%) family members. This variant was not
detected in the homozygous form. The fourth known single nucleotide substitution (T to C)
was identified 1459 nucleotides upstream relative to the ATG (5’UTR-1459T—C). This
previously described variant (HapMap; refSNP ID: rs10199858) was observed in the
heterozygous state in both of the probands. Genotyping of the extended family revealed 10
(43.5%) heterozygous and four (17.4%) homozygous individuals.
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A repeat was observed in the promoter region of the CYBRDI gene after direct sequencing
analysis of the 747 bp fragment (primers BP1 forward and BP3 reverse according to Table
2.5). The repeat, [G(T)sG(T)sG(T)aG(T)9] where n indicates either zero or six repeats, was
present in two allelic forms; allele 1: [G(T)sG(T)¢G(T)sG(T)9] and allele 2:
[G(T)sG(T)sG(T)y]. Both probands as well as 10 (43.5%) family members were heterozygous
for alleles 1 and 2 of the repeat. Eight family members (34.8%) were homozygous for allele 1,
while four (17.4%) were homozygous for allele 2 of the repeat. The schematic representation

of the two alleles of the repeat is shown in Figure 3.6.

Direct sequencing analysis of the 747 bp fragment also revealed a novel T to C transition
variant 1452 nucleotides upstream from the ATG initiation site (5’UTR-1452T—C). This
variant was observed in the heterozygous state in the two probands as well as in 16 (69.6%)
family members. The homozygous form of the variant was not identified. The schematic

representation of this novel variant is depicted in Figure 3.7.

Figure 3.6. Schematic representation of the [G(T)sG(T)sG(T),G(T)o] repeat identified in the
CYBRD1 promoter

ﬁ) CCCGGTTTACTGGGTTTTTTTTGTTTTTTGTTTTTTGTTTTTTTTTOGAGATC

AN 2 AR AR AR AR AR AR AR

(i)

CCCGGTTTACTGG G TT TTTTTTGTT TTTTGTTTTTTT TTGAGAC

Legend to Figure 3.6.

Sequencing electropherograms indicating (i) allele 1 [G(T)sG(T)sG(T)sG(T)y] and (ii) allele 2
[G(T)sG(T)sG(T)e] of the [G(T)sG(T)sG(T),G(T)s] repeat. Green adenine or A, blue cytosine or C, black
guanine or G, red thymine or T.
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A second novel variant was identified following HEX-SSCP analysis of fragment 4 of the
CYBRDI promoter. A T to C transition was observed at nucleotide position 1272 upstream of
the initiating ATG (5’UTR-1272T—C). Both probands were heterozygous for this variant.
The variant was also found in the heterozygous state in five (21.7%) extended family
members. The homozygous genotype was not identified in the family. The HEX-SSCP gel
showing the heteroduplexes for the variant and the sequencing electropherogram of this

variant are shown in Figure 3.8.

Figure 3.7. Schematic representation of the novel 5’UTR-1452T—C variant in the CYBRDI

promoter

(1 AOTTAACACGTAAAGCOUCACGOC G

(i) |
TTaAETTTALACAGTHAA GGCTC

a

Legend to Figure 3.7.

Sequencing electropherograms indicating (i) the wild type sequence and (ii) the 5’UTR-1452T—C variant.
Arrow indicates the point of variation, green adenine or A, blue cytosine or C, black guanine or G, red thymine
or T.

A G to A transition 624 nucleotides upstream from the initiating ATG codon (5’UTR-
624G—A) (HapMap; refSNP ID: rs884408) was identified in the heterozygous state in both
of the probands. Family member genotyping of this previously described variant revealed one

(4.3%) homozygous and 12 (52.2%) heterozygous individuals.

A known variant, which is an A to T transition, was identified 238 nucleotides upstream from

the initiating ATG (5’UTR-238A—G) (HapMap; refSNP ID: rs868106). This variant was
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observed in the heterozygous state in both of the probands as well as in 12 (52.2%) family
members, furthermore, the variant presented in the homozygous state in three family members

(13%).

Figure 3.8. Schematic representation of the novel 5’UTR-1272T—C variant in the CYBRDI

promoter

B.(i) IMC T GAACAGTITITITGGUCCAA

A.

N N Het Het

WAl

B.(ii) |[CTGAACAGYTTGGOCAS

Legend to Figure 3.8.

A. HEX-SSCP gel stained with EtBr and visualised using ultraviolet light transillumination. Arrow indicates
aberrant band observed in the heteroduplex upon HEX-SSCP analysis, Het = heterozygous banding pattern, N =
homozygous wild type banding pattern. B. Sequencing electropherograms indicating (i) the wild type sequence
and (ii) the 5’UTR-1272T—C variant. Arrow indicates the point of variation, green adenine or A, blue cytosine
or C, black guanine or G, red thymine or T.

Following HEX-SSCP and sequencing analysis of fragment 10 of the promoter two
previously described variants were identified. The first was a C to G transversion at
nucleotide position 167 upstream from the initiating ATG (5’UTR-167C—G) (HapMap;
refSNP ID: rs2356782). This variant was observed in the heterozygous state in both probands
as well as in 10 family members. Four family members (17.4%) presented with the
homozygous state of this variant. The second variant was a G to A nucleotide substitution 163

nucleotides upstream relative to ATG (5’UTR-163G—A) (HapMap; refSNP ID: rs3731976).
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Both probands were heterozygous for this variant. One family member (4.3%) was

homozygous for this variant while 11 (47.8%) were heterozygous.

Mutation analysis of exon 2 of the CYBRDI gene revealed a previously described intronic
variant (IVS2+8T—C), located in intron 2 (Zaahl et al, 2004). This non-coding variant was
identified in the heterozygous state in both of the probands. Due to inconclusive results
following HEX-SSCP mutation analysis, genotyping of this variant in the extended family
members was incomplete. This variant was ommitted from haplotype analysis due to the
inconclusive genotyping results. The extended family members should be genotyped for this
variant employing semi-automated DNA sequencing analysis but due to financial constraints,

this was not done in the present study.

A previously described exonic variant, which replaces serine with asparagine at amino acid
position 266 (S266N) (McKie et al, 2001), was identified in exon 4 of the CYBRDI gene.
This variant results from a G to A transition at nucleotide position 797 (g.797G—A) and was
observed in the heterozygous state in both probands. This variant abolishes a TspRI
recognition site (5° CAG|TG 3°); therefore the extended family members were subjected to
RFLP analysis for genotyping of this variant. The homozygous wild type genotype produced
DNA fragments of 130 bp and 87 bp. The heterozygous genotype produced three fragments
of 217 bp, 130 bp and 87 bp, respectively while the homozygous variant genotype only
produced a single DNA fragment of 217 bp. Twelve family members (52.2%) were

heterozygous for this variant and two (8.7%) were homozygous for the variant allele.

The gene annotation and haplotypes constructed for 12 of the 13 CYBRDI variants are
depicted in Figure 3.9.
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Legend to Figure 3.9.

Schematic representation of haplotypes constructed for the CYBRD! gene variants. i) Gene annotation indicating
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene
annotation is not drawn to scale and only indicates the positions of the CYBRDI variants. ii) Pedigree with
constructed haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is
annotated. Pink, haplotype 1; blue, haplotype 2; green, haplotype 3; purple, haplotype 4. Abbreviations: 3’, 3-
prime end; 5-prime end; 3°, ATG, translation initiation site; CYBRDI, cytochrome b reductase 1 gene; IVS,
intervening sequence; N, asparagine, S, serine; UTR, untranslated region.

3.2.7 HJV gene

Mutation analysis of the HJV gene revealed two previously described (5’UTR-1406C—A and
5’UTR-542A—G) and two novel variants (5’UTR-534G—T and 5’UTR-530G—T) in the
HJV gene promoter. An AAGG variable number tandem repeat (VNTR) or microsatellite was
identified in the promoter region with 11 to 13 repeats. No variants were identified in the

coding region of the HJV gene.

Following HEX-SSCP and sequencing analysis of fragment 1 of the HJV promoter a known C
to A transversion was observed 1406 nucleotides from the initiating ATG (5’UTR-
1406C—A) (HapMap; refSNP ID: rs1830823). Both the probands were heterozygous for this
variant as well as 16 family members (69.6%). The variant was identified in the homozygous

state in two family members (8.7%).

HEX-SSCP analysis of promoter fragment 6 (Table 2.6) did not yield clear results for
genotyping so direct sequencing analysis was performed on this fragment for the two
probands and extended family members. Sequencing analysis of this fragment revealed three
variants in the 5S’UTR. A previously described variant (5’UTR-542A—G) (HapMap; refSNP
ID: rs10910811) is an A to G transition at nucleotide position 542 upstream relative to the
initiating ATG. This variant was observed in the heterozygous form in both of the probands.
Genotyping of the extended family members revealed nine (39.1%) heterozygotes and five
(21.7%) homozygotes. Two novel G to T transversions were identified 534 and 530
nucleotides upstream from ATG, respectively (5’UTR-534G—T and 5’UTR-530G—T). The
5’UTR-534G—T variant was observed in the heterozygous state in both of the probands and
in 14 (60.9%) family members. Both probands were also heterozygous for the 5’UTR-
530G—T variant as well as 14 (60.9%) of the extended family members. The homozygous
state of both of these variants was not identified. The schematic representation of the 5’UTR-

534G—T and 5’UTR-530G—T variants are shown in Figure 3.10. An AAGG repeat was also
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identified in this fragment with 11 (allele 1), 12 (allele 2) or 13 (allele 3) repeats. The AAGG
VNTR was repeated 12 times in both of the probands (AAGG);,. Four family members
(17.4%) were homozygous for allele 1 while six (26.1%) were homozygous for allele 2.
Seven (30.4%) family members presented with the genotype of alleles 1 and 2. Allele 3 with
allele 2 was observed in five (21.7%) family members. The homozygous state of allele 3 was

not observed in this study. The three alleles of this repeat are depicted in Figure 3.11.

Figure 3.10. Schematic representation of the novel 5’UTR-534G—T and 5’UTR-534G—T

variants in the HJV promoter

(l) AGGTAAGGAAGGAAGTAAGGAACGGA A

AAAAAAARANAAAAN

(i) ; |

aaGGaaGGaamim NGIH WG A GG A A
[}
[}
\ 4

T
Legend to Figure 3.10.

Sequencing electropherograms indicating (i) the wild type sequence and (ii) the 5’UTR-534G—T variant (solid
arrow) and the 530G—T variant (dashed arrow). Arrows indicate the point of variation, green adenine or A, blue
cytosine or C, black guanine or G, red thymine or T.
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Figure 3.11. Schematic representation of the novel AAGG repeat identified in the HJV

promoter

A (l) AGGGAGGOAAGGAAGGAAGGAAGGAAGGAAGOAAGGAAGGAAGOAAGGAAGGAAALAGTAT

ol A

A (ll) AGCGOACGOOAAGOAAGGAAGGAAGOAAGGAACGGAAGOAAGGAAGGAAGGAAGGAAGOALAAAGTAT

st OO

A (iii) ANNGAAGGAAGGAAGGAAGGAAGN N NN NAAGGAAGGAAGGAAGGAAGGAAGGAALAGTAT
oA ANAAN

A AA AR AR

A. Sequencing electropherograms indicating (i) allele 1 (AAGG),; (ii) allele 2 (AAGG);; and (iii) allele 3
(AAGQG);; (in the heterozygous state with allele 2) of the repeat in the HJV promoter. Green adenine or A, blue
cytosine or C, black guanine or G, red thymine or T.

The gene annotation for HJV and the haplotypes assembled for the HJV single nucleotide

substitutions and repeat are shown in Figure 3.12.
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Legend to Figure 3.12.

Schematic representation of haplotypes constructed for the HJV gene variants. i) Gene annotation indicating the
transcription initiation site and the position of variants used as markers for haplotype assembly. Gene annotation
is not drawn to scale and only indicates the positions of the HJV variants. ii) Pedigree with constructed
haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is annotated. Blue,
haplotype 1; pink, haplotype 2; purple, haplotype 3; green, haplotype 4. Abbreviations: 3’, 3-prime end; 5°, 5-
prime end; ATG, translation initiation site; HJV, hemojuvelin gene; UTR, untranslated region.

3.3 Summary of Haplotype Analysis

The construction of haplotypes gives an indication of which haplotypes could be modifying
the iron overload phenotype. Haplotypes that were identified in the two probands as well as
unaffected family members suggest that this haplotype is not associated with disease
development and can be excluded. Those haplotypes that were unique to the two probands
were included and could be associated with the iron overload phenotype. Table 3.3 is a

summary of the results obtained following haplotype analysis.

Table 3.3. Summation of haplotype analysis

Family members
.Ha.PIOTYP.e with same Include () or
Gene similarity in haplotype exclude ()
Proband 1 and as probands
haplotype*
Proband 2 Proband 1 Proband 2
HMOX1 Differ None None N
HFE Same None None N
HAMP Same None None N
SLC40A41 Differ II1:2, 11:6 II:5 X
CYBRDI Same II:2 II:2 X
HIV Same II:5, II:7 II:5, II:7 X

Abbreviations: CYBRDI, cytochrome b reductase 1 gene; HAMP, hepcidin antimicrobial peptide gene; HFE,
high-iron gene; HJV, hemojuvelin gene; HMOXI, haem oxygenase-1 gene; SLC40A1, solute carrier family 40
(iron-regulated transporter) member 1 gene. *Haplotypes were excluded if they were present in the probands as
well as unaffected family members. The haplotypes were not contributing to the disease phenotype when
considered on their own, but could still be associated with disease when considered in conjunction with other yet
unidentified modulating genes.
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3.4 In Silico Analysis of Exonic Variants

A previously described silent variant was identified in the SLC40A41 gene. This single
nucleotide substitution preserves the valine amino acid at amino acid position 221 (V221)
(Devalia et al, 2002). Another known exonic variant was identified in exon 4 of the CYBRD1
gene. This nonsense mutation results in the replacement of the polar, hydrophilic amino acid
serine with polar, uncharged asparagine at amino acid position 266 (S266N) (McKie et al,
2001). The ESEfinder (ESE-Exonic Splice Element) program was used to analyse these
variants to determine their possible effect on splicing (Cartegni ef al/, 2003; Smith et al, 2006)
(http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi). No alteration in splicing was predicted

in the presence of the variant allele of either the V221 variant or the S266N variant.

3.5 In Silico Analysis of Intronic Variants

Three known intronic variants were identified in this study. They included two identified in
intron 2 of the HMOX1 gene (IVS2+4T—C and IVS2-19C—T) and one identified in intron 2
of the CYBRDI gene (IVS2+8T—C). These intronic variants were subjected to analysis using
the Alternative Splice Site Predictor (ASSP) program (Wang and Marin, 2006)
(http://www.es.embnet.org/~mwang/assp.html) to determine if splicing was affected in the
presence of the variant allele. All the donor and acceptor sites present in the wild type
sequences were preserved within the variant sequences. Therefore, this program did not

predict any altered splicing patterns resulting from any of these variants.

3.6 In Silico Promoter Analysis

Variants identified within the 5’UTR of the various genes under investigation were subjected
to in silico analysis to determine whether they disrupted any transcription factor binding sites
(TFBS). Several programs are available for in silico analysis of gene regulatory regions. The
TRANSFAC®7 database (http://www.gene-regulation.com/pub/databases.html#transfac)
(Wingender et al, 2001) contains information on many transcription factors as well as their
experimentally verified binding sites. All promoter variants were analysed using the PATCH
program (http://www.gene-regulation.com/cgi-bin/pub/programs/patch/bin/patch.cgi),
available within the TRANSFAC®?7 database to identify putative TFBS that may be disrupted
by these variants. The 5’UTR variants were also analysed using the non-redundant JASPAR
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CORE database (http://jaspar.genereg.net/) (Sandelin et al, 2004). The default settings and
parameters of these two software programs were applied when ascertaining if a nucleotide
substitution disrupted a putative TFBS. Putative TFBS identified using PATCH and JASPAR
CORE were analysed wusing the rVISTA program. The rVISTA program
(http://genome.lbl.gov/vista/rvista/submit.shtml) (Loots et al, 2002) is another program
available within the TRANSFAC®?7 database. This program identifies conserved binding
motifs and was employed to verify results obtained using PATCH and JASPAR CORE. The
results obtained through in silico analysis of the promoter variants identified in each of the

genes are shown in Tables 3.4-3.9.
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Discussion

A number of variants were observed in the six genes investigated in this Indian family. These
included 24 previously identified variants, one known repeat, five novel single nucleotide
substitutions and two novel repeats. These variants were either identified in the exonic,
intronic or 5’UTR of the different genes under investigation. The 24 previously identified and

the five novel variants all resulted from single nucleotide substitutions.

Single nucleotide polymorphisms (SNPs) are single nucleotide positions within genomic
DNA at which two or more different alleles occur in the general population. The least
frequent allele must be present in 1% or more of a specific population for a nucleotide
variation to be classified as a SNP. SNPs occur at a frequency of approximately one per 1000
bp in the human genome (Taillon-Miller et al, 1998) and account for nearly 90% of all
genetic variation observed (Collins et al, 1998). SNPs in the coding regions of genes or in
their regulatory regions are more likely to be functional than those found in other regions.
Association studies focussed on identifying candidate genes that may be involved in disease
development are expensive as they involve searching the entire genome for these disease
associations. SNPs are invaluable markers that can be employed to reduce the search region
for disease causing loci from the whole genome to a smaller region associated with the
disease. Finding SNPs in different populations, which could be associated with genes

conferring susceptibility to disease in these populations, is thus essential.

The  HapMap  project  (The  International ~ HapMap  Consortium,  2003)
(http://www.hapmap.org) has developed a publicly accessible map of DNA sequence
variation within the human genome and is still adding SNPs to the database. The study
includes 270 individuals from three populations namely, European, Asian and African.
Subjects include 30 family trios (two parents and an adult child) from Nigeria (African
population), 45 unrelated Japanese and 45 unrelated Han Chinese individuals (Asian
populations) and 30 family trios represented by the Centre d’Etude du Polymorphisme
Humaine (CEPH) samples (European population). The CEPH samples came from a Utah
population and individuals were of either northern or western European descent. This project
aims to determine the frequency of SNPs in these populations and the degree of association

between them. SNPs may occur with varying frequencies in different populations. Although
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not all populations are represented, this project is an essential tool for the discovery of genetic
variation and is a starting point for follow-up studies, in other populations, where this

variation may be associated with health and disease.

As mentioned previously, HH appears to be rare in the Indian population and very few studies
have investigated the genetic factors involved in the pathogenesis of the disease. As the
present study included the analysis of only a single Indian family, results obtained for the
respective variants are not an indication of their frequencies in the general Indian population.
The International HapMap Consortium does not include SNP information for the Asian Indian
population and therefore results obtained in the present study were not compared to results
included in the HapMap project. Allele frequencies of known variants obtained in the
HapMap project are however listed in Table 3.10 to give an indication of the prevalence of

these variants in different populations.

Table 3.10. HapMap allele frequencies for known variants identified in this study

Gene Variant HapMap Population HapMap Allele Frequencies
refSNP ID - -
Wild Type Allele* | Variant Allele*
European 0.609-0.542 0.391-0.458
African-American 0.174-0.300 0.700-0.826
HMOXI 5’UTR-495A—T
rs2071746 | Asian 0.523-0.474 0.477-0.526
Sub-Saharan 0.308 0.692
African
IVS2+4T—C rs17885925 | European 0.978 0.022
African-American 0.935 0.065
IVS2-19C—-T rs7879606 | European 0.977 0.023
African-American 0.938 0.062
European 0.479-0.600 0.400-0.521
African-American 0.8 0.2
HFE 5’UTR-1206C—G | rs1800702 | Asian 0.229-0.330 0.670-0.771
Sub-Saharan 0.842 0.158
African
European 0.397 0.603
5’UTR-467G—C rs2794720 | Asian 0.670-0.733 0.267-0.330
Sub-Saharan
African 0.147 0.853
European 1.000 0
HAMP 5"UTR-335G—T 1s3817623 Asian 0.956-0.966 0.034-0.044
Sub-Saharan
. 1.000 0
African
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Table 3.10. HapMap allele frequencies for known variants identified in this study (Cont.)

Gene Variant HapMap Population HapMap Allele Frequencies
refSNP ID Wild Type allele* | Variant allele*
SLC4041 | 5°’UTR-1355G—C European 0.725-0.729 0.271-0.275
African-American 0.478 0.522
rs3811621 | Asian 0.838-0.896 0.104-0.162
Sub-Saharan 0.608 0.392
African
European 0.400 0.600
5’UTR-750G—A | rs13015236 | African American 0.770 0.230
Asian 0.270-0.310 0.690-0.730
European 0.293 0.707
SUTR-593CoT | rs12693542 Asian 0.102-0.122 0.878-0.898
Sub-Saharan
. 0.551 0.449
African
5’UTR-501T—C rs6728200 | Not Provided Not Provided Not Provided
CYBRDI | 5°’UTR-1844C—G | rs7585974* | Not Provided Not Provided Not Provided
5’UTR-1834G—A | 157586174 | Not Provided Not Provided Not Provided
5’UTR-1813C—T | rs12692965 | Not Provided Not Provided Not Provided
5’UTR-1459T—C | rs10199858 | Not Provided Not Provided Not Provided
5’UTR-624G—A rs884408 | Not Provided Not Provided Not Provided
European 0.370-0.500 0.500-0.630
5’UTR-238A—G rs868106* | African-American 0.310 0.690
Asian 0.045-0.103 0.897-0.955
, European 0.440 0.560
5’UTR-167C—G | 152356782 Asian 0.160 0.840
, European 0.630 0.370
5’UTR-163G—A | 153731976 Asian 0.280 0.720
European 0.208-0.271 0.792-0.729
African-American 0.275 0.725
IVS2+8T—C rs7586144 | Asian 0.021-0.176 0.979-0.824
Sub-Saharan 0.158-0.167 0.842-0.833
African
European 0.258-0.271 0.729-0.742
African-American 0.109 0.891
S266N rs10455 Asian 0.580-0.708 0.292-0.420
(8.797G—A) Sub—Saharan 0.042 0.958
African
HIV 5’UTR-1406C—A | rs1830823 | Not Provided Not Provided Not Provided
5’UTR-542A—G | rs10910811 | Not Provided Not Provided Not Provided

Abbreviations: 5’UTR, 5-prime untranslated region; CYBRDI, cytochrome b reductase 1 gene; HAMP, hepcidin
antimicrobial peptide gene; HFE, high-iron gene; HJV, hemojuvelin gene; HMOXI, haem oxygenase-1 gene;
IVS, intervening sequence; N, asparagine; S, serine; SLC40AI, solute-carrier family 40 (iron-regulated
transporter) member 1 gene. *The wild type and variant alleles are as indicated in the naming of each variant
(wild type allele — variant allele).

Many variants were identified after mutation analysis of this Indian family. All variants
identified in a single gene were considered together to construct haplotypes using the Cyrillic
2.01 program (Cherwell Scientific Publishing Ltd, Magdalen Centre, Oxford Science Park,
Oxford, UK). Haplotypes give a clearer indication of which variants identified in a gene may

be functioning in concert and subsequently causing iron overload or modulating the HH
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phenotype. The results obtained after haplotype analysis of each gene will be discussed
further.

HMOXI gene

Three previously described variants were identified after mutation analysis of the HMOX1
promoter and coding regions. These included one promoter variant, 5’UTR-495A—T
(HapMap; refSNP ID: rs2071746) and two intronic variants, I[VS2+4T—C (HapMap; refSNP
ID: rs 17885925) and IVS2-19C—T (HapMap; refSNP ID: rs 7879606) identified in intron 2
of the gene.

Probands 1 and 2 presented with two different haplotypes: proband 1 was heterozygous for
the 5’UTR-495A—T and IVS2+4T—C variants and homozygous wild type for the IVS2-
19C—T variant while proband 2 was heterozygous for the promoter variant as well as both of
the intronic HMOX]1 variants (refer to Figure 3.2). Neither of these haplotypes was present in

any of the extended family members.

Both probands developed HH symptoms in the fifth decade of life. Individuals II:4, II:5, I1:6
and II:7 are all older than 50 years, heterozygous for the promoter variant, homozygous wild
type for both intronic variants and did not present with elevated iron levels. These data
indicate that heterozygosity for the 5’UTR-495A—T alone does not seem to be associated
with disease development. Third generation family members II1:8 and I1I:10 (see Figure 3.2)
were heterozygous for both intronic variants as well as the promoter variant. Individuals I11:8
and II1:10 are both females with ages of 41 and 39 years, respectively. Individual III:8
presented with a TS% of 26% and a SF level of 118 ng/l. Individual III:10 presented with a
TS% of 33% and a SF level of 213 pg/l. Because of the young age of these individuals, the
iron overload phenotype may not be fully expressed. Individual II1:10 does have a slightly
elevated SF level (female reference range: 20-200 pg/l) but individual III:8 (same haplotype
as I11:10) does not seem to be displaying signs of iron overload and this presumably indicates
that this haplotype may possibly not be associated with iron overload. The two probands
presented with the variant allele for the promoter variant and were both heterozygous for the
IVS2+4T—C variant. The IVS2-19C—T variant was not present in proband 1 and therefore
does not seem to be associated with the HH phenotype and could be a common polymorphism

in this family. Inheritance of the 5’UTR-495A—T variant allele (heterozygous state) and the
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IVS2+4T—C variant could be modifying the iron overload phenotype observed in both of the
probands but this needs to be investigated further.

In silico analysis of the IVS2+4T—C intronic variant was performed. The ASSP program
(Wang and Marin, 2006) (http://www.es.embnet.org/~mwang/assp.html) was employed to
assess whether the intronic variant altered splicing of the HMOX1 gene. All splice donor and
acceptor sites remained in tact in the presence of the variant allele indicating that this variant
does not affect the splicing mechanism. Functional analysis of this variant using the minigene
assay for intronic variants described by Baralle et a/ (2003) is necessary to determine if this

variant is contributing to the disease phenotype.

In silico analysis of the 5’UTR-495A—T variant using the JASPAR CORE program
(http://jaspar.genereg.net/) (Sandelin et al, 2004) revealed that in the presence of the variant
allele the putative TFBS for the Sry-related high-mobility group (HMG) box-9 (SOX9) and
forkhead box protein L1 (FOXLI1) transcription factors are both abolished. The program also
predicted the creation of a putative hepatocyte nuclear factor 4-a (HNF4A) TFBS. To
determine whether any of these putative TFBS are conserved within the human HMOX1 gene,
in silico analysis was performed using the rVISTA program
((http://genome.lbl.gov/vista/rvista/submit.shtml) (Loots et al, 2002). The three TFBS were
conserved within the HMOXI promoter but this program only confirmed the creation of the

putative HNF4A transcription factor (See Table 3.4).

SOX9 is a member of the SOX family of transcription factors. Members of this family all
exhibit the same DNA-binding domain, which is known as the high-mobility group (HMG)
box. SOX transcription factors bind to the minor groove of DNA and bend and unwind the
DNA. This DNA bending seems to be essential for DNA transcription to occur (reviewed by
Marshall and Harley, 2000). SOX9 plays an important role in human sex determination and
chondrogenesis. Mutations in the SOX9 gene are responsible for the development of
Campomelic dysplasia. This condition results in XY individuals being either intersex or
developing male-to-female sex reversal. The SOX9 transcription factor has not been shown to
regulate HMOXI gene expression or be associated with iron overload and therefore loss of
this putative TFBS does not seem to be a contributing factor to developing iron overload and

therefore HH.
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The FOXLI transcription factor is a member of the winged helix/forkhead family of DNA
binding factors and is only expressed in the gastrointestinal mesenchyme. This transcription
factor is necessary for the maintenance of the gut (Kaestner et al, 1996). FOXLI1 has been
shown to regulate the proliferation and differentiation of the gut epithelium. FOXL1 seems to
regulate the expression of factors that mediate epithelial-mesenchymal interactions and
defects in the epithelium result when this precise control of expression is disrupted in the
mesenchyme. Interestingly, Kaestner and colleagues (1997) observed that in Foxl1-deficient
mice the expression of both bone morphogenetic protein 2 (BMP2) and BMP4 were
drastically reduced. Therefore FOXL1 seems to be a regulator of BMP2 and BMP4
expression. Interaction between FOXL1 and HMOXI1 may possibly be necessary for FOXL1
to perform its regulatory function and the 5’UTR-495A—T variant, which potentially disrupts
their interaction, could result in a decrease in BMP2 and BMP4 expression. BMP2 and BMP4
function in the BMP signalling pathway in which HJV acts as a coreceptor and positively
regulates hepcidin expression (Babitt et a/, 2006). HIV exhibits binding specificity for BMP2
and to a lesser degree, BMP4, in the BMP signalling pathway. By disrupting the FOXL1 and
HMOXI1 interaction, this promoter variant may be decreasing hepcidin expression and
causing iron overload. Another possibility is that the promoter variant is modifying the HH
phenotype. The HH phenotype is highly variable and not all patients develop osteoporosis of
any kind. Different patterns of osteoclast and osteoblast dysregulation have been associated
with osteoporosis development (Byers et al, 1997). BMPs are essential regulators of
osteoblast differentiation and disruption of this regulatory pathway might result in

inappropriate osteoblast differentiation and eventually osteoporosis.

Various hepatocyte-specific genes are regulated by hepatocyte nuclear factors (HNFs).
Expression of these genes is dependent on the binding of a multitude of diverse HNF
transcription factors. HNF transcription factors bind to gene regulatory regions and stimulate
gene transcription (reviewed by Costa et al, 2003). HNF4A is a member of the steroid/thyroid
nuclear receptor family and is expressed mainly in the liver but also in the kidneys and
intestine. It is an essential regulator of liver metabolism and development. The 5’UTR-
495A—T variant creates a putative HNF4A site in the HMOXI promoter. Creation of this
TFBS may result in increased expression of the HMOXI gene. It has been reported that
HMOXI1 plays a protective role in many cell types protecting them against damage that may
be caused by oxidative stress (Yachie et al, 1999). An increase in HMOXI expression

increases the production of two strong antioxidants, bilirubin and biliverdin. Although the role
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HNF4A plays in the regulation of HMOX]I expression has not as yet been described, it has
been noted that HNF4A expression is also increased in the presence of oxidative stress
induced by hepatitis C virus infection (Qadri et al, 2006). Therefore HNF4A and HMOX1
may both function in the same antioxidant defence mechanism and HNF4A could regulate
HMOXI gene expression. Excess iron present in HH patients catalyses the conversion of
hydrogen peroxide to free radicals. These free radicals cause oxidative stress in various
tissues (Andrews, 1999). The creation of an extra putative HNF4A TFBS may disrupt
HMOXI gene expression within hepatocytes resulting in imperfect functioning of the
antioxidant defence mechanism. This could ultimately result in hepatocyte damage in the
presence of oxidative stress resulting from excess iron. The ALT level in proband 1 and the
AST level in proband 2 were both slightly elevated at the time of diagnosis. Both of these
enzymes are secreted by hepatocytes and elevated levels are observed when the liver is
damaged. When proband 1 was initially diagnosed with HH he presented with established
liver cirrhosis. Proband 2 has completed her phlebotomy course and her iron levels have
stabilised and she has not developed liver cirrhosis. Therefore, the HMOXI promoter variant
may not be causing iron overload but could contribute to the liver damage that results in the

presence of excess iron.

HFE gene

Three previously described variants (5’UTR-1206C—G, 5’UTR-467G—C and H63D) and 1
novel variant (5’UTR-840T—G) were identified in the HFE gene in the Indian family.

Feder and colleagues (1996) identified the variant H63D in many HH patients who carried a
single C282Y mutation. Although approximately 80-90% of HH cases are the result of the
(C282Y homozygous genotype (Feder et al, 1996; Jazwinska et al, 1996; Beutler et al, 1996;
Carella et al, 1997; Mura et al, 1997), 75% of individuals with one C282Y mutation are also
compound heterozygotes with the H63D mutation (Robson et al, 2004). The homozygous
H63D genotype has been implicated in a much milder form of the HH phenotype. Exactly
how the H63D variant disrupts HFE function has not been elucidated yet. H63D is not located
in the region of the HFE peptide that binds to the transferrin receptor (TFR) but it does form a
salt bridge with the TFR-binding region of the a2 loop. Even though this variant forms the
salt bridge, the H63D protein is still able to bind to TFR. Garewal et al (2005) ascertained the
allele frequency of the C282Y and H63D HFE mutations in a North Indian population with
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the beta thalassemia trait. They determined that both of these mutations are rare within the
Northern Indian population and that the H63D mutation is not associated with iron overload
in the beta thalassemia trait (reviewed by Poddar, 2006). In the present study, this variant was
not identified in the two probands but it was observed in the heterozygous state in four
unaffected family members (III:1, III:2, III:19 and III:21). These findings indicate that this

variant does not seem to be associated with iron overload in this family.

Haplotype analysis of the HFE gene revealed that only three haplotypes were inherited by the
second generation family members. This indicated that the parents of the two probands
presented with a common haplotype. The parents of the two probands were first cousins and
therefore the presence of a shared haplotype is possible. The two probands presented with the
same haplotypes. Both probands were heterozygous for the 5’UTR-1206C—G, 5’UTR-
840T—G and 5’UTR-467G—C variants while they were homozygous wild type for the
H63D variant. Proband 2 was heterozygous for the 5’UTR-1206C—G, 5’UTR-467G—C and
5’UTR-840T—G variants and homozygous wild type for the H63D variant. The haplotype

observed in the two probands was not present in any of the extended family members.

A haplotype similar to that identified in the probands was observed in individual II:5. The
individual was heterozygous for the 5’UTR-1206C—G and 5’UTR-467G—C variants and
homozygous wild type for the H63D variant. This family member was also homozygous wild
type for the novel 5’UTR-840T—G variant while the probands were heterozygous for this
variant. This indicates that this novel variant could possibly be associated with the iron

overload phenotype.

In silico analysis of the HFE promoter revealed that in the presence of the novel 5’UTR-
840T—G variant a putative PU.1 TFBS is abolished. This transcription factor binding site

was also conserved within the HFE promoter region (see Table 3.5).

Osteoporosis develops in many HH patients with HFE mutations but the mechanism involved
in the development of osteoporosis has not been fully elucidated. The PU.1 transcription
factor plays an important role in macrophage differentiation (Tondravi et al, 1997) and
therefore modulates osteoclast development as osteoclasts are derived from these cells
(Udagawa et al, 1990). The PU.1 transcription factor has been associated with osteoporosis

development. Mice lacking a functional PU.I gene developed osteoporosis as no
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macrophages or osteoclasts were present (reviewed by Teitelbaum, 2000). As mentioned
previously proband 1 presented with osteoporotic symptoms. Although the regulatory effect
that PU.1 has on the expression of HFE has not yet been elucidated, it is possible that PU.1
and HFE function in concert and that by disrupting their interaction, the novel 5’UTR-
840T—G variant could be responsible for the osteoporotic symptoms that developed.

PU.1 has also been established as a regulator of T-cell development. PU.1 expression is
tightly regulated during immune cell development and dysregulation of its expression may
lead to immune disorders such as diabetes and arthritis (Fang, University of Missouri,
Columbia, 2006) (available online: http://www.dana.org/grants/imaging/detail.aspx?id=4430).
Proband 1 presented with non-insulin-dependent diabetes at diagnosis and later developed
arthritis in his hips, knees and hands. Furthermore, patients with type 1 HH (HFE-associated)
may also develop arthritis and diabetes. Hepcidin plays an important role in the immune
response and by regulating the amount of available iron, regulates inflammation and infection
(reviewed by Vyoral and Petrak, 2005). The 5'UTR-840T—G HFE variant as well as the
5'UTR-335G—T HAMP variant disrupt a putative PU.1 TFBS. HFE and HAMP may
function in the same immune cell regulatory pathway as PU.1 and by disrupting the
interaction between PU.1 and these peptides; these two variants could be contributing to the

development of the arthritis and diabetes observed in proband 1.

The hepcidin levels of HH patients homozygous for the C282Y HFE variant are very low
(Bridle et al, 2003). Hepcidin expression is also reduced in the Hfe-knockout mouse model
(Ahmad et al, 2002). Furthermore, virtually no hepcidin is detected in the urine of individuals
with HJV mutations. These findings indicate that HFE and HJV may function in the same
regulatory pathway and regulate the expression of hepcidin. It has been shown that HJV
positively regulates the expression of the HAMP gene via the BMP signalling pathway (Babitt
et al, 2006). HFE could possibly also be involved in this regulatory pathway but its potential

role needs to be investigated further.

The HFE variant could also be modulating the iron overload phenotype by providing a
protective effect against the severe iron overload that is usually associated with HAMP
mutations (refer to section 1.1.2). As can be seen in Table 3.5 a putative specificity protein 1
(SP1) TFBS is created in the presence of the 5S'UTR-840T—G variant. SP1 is a ubiquitous

transcription factor and has been implicated in the regulation of many genes. Although its role
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in the regulation of HFE transcription has not yet been elucidated, SP1 binding sites have
been identified within the HFE promoter (Mura et al, 2004). By creating an additional SP1
binding site this variant could increase HFE expression. Although the exact function of the
HFE peptide in iron metabolism still remains unclear, it does seem to be involved in the
regulation of the amount of iron absorbed from the gut lumen. Excess iron is absorbed in
individuals with mutations in the HFE gene, such as C282Y, which result in diminished HFE
availability. By potentially increasing the expression of HFE, the 5'UTR-840T—G variant
could result in diminished iron absorption. This may counteract, but not completely make up
for, the effects of the HAMP variant and may therefore be responsible for the less severe iron
overload phenotype observed in the two Indian probands. Functional analysis of this variant
needs to be performed to determine if the SUTR-840T—G variant is indeed a gain-of-

function variant.

HAMP gene

The Indian family analysed was highly consanguineous and only two family members were
identified who presented with the HH phenotype. Furthermore, the probands are siblings and
are the product of a first cousin relationship. This indicates that the HH phenotype is most
likely inherited in an autosomal recessive manner and that a homozygous variant in any of the

six genes would be a likely candidate as the causative variant.

A single previously identified variant was identified in the promoter region of the HAMP gene
(5°’UTR-335G—T) (HapMap; refSNP ID: rs3817623). This variant was identified in the
homozygous state in both probands but none of the extended family members presented with
the homozygous genotype (see Figure 3.5). This variant was observed in the heterozygous
state in 16 family members. All heterozygous family members presented with iron parameters
within the normal range except individual III:7 who was iron deficient (SF level: 15 pg/l) and
individual III: 10 who presented with a slightly elevated SF level (213 pg/l). The heterozygous
genotype does not seem to be associated with iron overload as heterozygous individuals with
similar ages to the probands were identified (II:2, II:4, II:5 and II:6) and presented with
normal iron parameters. The polymorphic allele has not been detected in the European or sub-
Saharan African populations but has been detected in the Asian population (0.034-0.044)
(HapMap project). Furthermore, the variant genotype has been reported in the heterozygous
state in the Asian population with a genotypic frequency of 0.068-0.089, however, the
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homozygous form has not been documented. It should be noted that this Asian population
does not include Asian Indians but individuals from the Japanese and Han Chinese

populations.

In silico analysis of this promoter variant revealed that in the presence of the polymorphic
allele three putative TFBS are abolished (see Table 3.6). These include the interleukin-4
(IL4), vitamin D3 receptor (VDR) and spleen focus forming virus proviral integrating
oncogene 1 (PU.1). Further analysis employing the rVISTA program did show that these
three transcription factors are conserved within the HAMP promoter but did not confirm that

they were abolished in the presence of the variant allele.

PU.1 is an ETS-domain transcription factor. It plays an essential role in the development of
myeloid and B-lymphoid cells. Tondravi et al/ (1997) demonstrated that PU.1 mRNA
gradually increased as bone marrow macrophages differentiated into osteoclasts. They also
noted that both osteoclast and macrophage development did not occur in PU.1 deficient mice
and that these mice ultimately developed osteoporosis. Osteoporosis is a disease characterised
by generalised low bone mass and microarchitectural deterioration of bone tissue. The bones
of osteoporotic patients are more fragile and there is an increased susceptibility to fracture
(reviewed by Rizzoli et al, 2001). Polymorphisms within VDR have been associated with a
decreased bone mineral density and osteoporosis (Morrison et al, 1992; Gennari et al, 1998;
Ferrari et al, 1999). Hepcidin could be functioning in the same pathway as the VDR and PU.1
transcription factors and regulating osteoclast development and differentiation. Although not
all HH patients develop osteoporosis, it is interesting to note that both of the transcription
factors that are abolished by the 5S’UTR-335G—T HAMP variant have been implicated in the
development of this disease. Further research is necessary to determine the role that this

variant may play in the development of osteoporosis in HH patients.

Hepcidin is an essential peptide involved in the regulation of iron absorption in the intestine
and iron recycling from macrophages. It has also been proposed as the key regulator of
anaemia of inflammation (Fleming and Sly, 2001; Weinstein et al, 2002). Hepcidin
expression induced in the presence of IL6 but not IL1-a or tumour necrosis factor (TNF)-a
and therefore seems to be regulated by a type 2 acute phase response (Nemeth et al, 2003).
The entire mechanism of hepcidin regulation has not as yet been elucidated. IL4 is a type two

cytokine and may be involved in the regulation of hepcidin expression. Vogel and colleagues
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(2002) attempted to determine the role mutated VDR plays in modifying the autoimmune
response. The VDR binds to the active form of vitamin D (1,25-dihydroxyvitamin D3) and
translocates to cell nuclei where it regulates a multitude of biological effects (Baker et al,
1988). The authors noted that the binding of 1,25-dihydroxyvitamin D3 produced various
effects including decreasing the expression of type 1 cytokines and increasing the expression
of IL4 (Vogel et al, 2002). These results indicate that VDR and IL4 may play a role in the
regulation of hepcidin. In the presence of the variant allele both of these putative TFBS are
removed and this could ultimately influence the expression of the HAMP gene. Decreased
expression of hepcidin has been implicated in the development of the severe iron overload
disorder JH (Roetto et al, 2004; Matthes et al, 2004). The role that VDR and IL4 play in
HAMP gene expression needs to be investigated further.

Functional analysis of this variant is currently underway. Transcription activity from the
mutated and wild type HAMP promoter is being investigated. Luciferase reporter constructs
transfected with the mutated and wild type HAMP promoters have been developed to
determine if this variant affects HAMP mRNA expression. Preliminary results indicate that
mRNA expression from the HAMP promoter is strongly impeded in the presence of the
5’UTR-335G—T variant. These preliminary findings provide supporting evidence that we

have identified the variant causing HH within this Indian family.

Genotyping of this variant in an unaffected, general population matched control cohort was
not performed. The family under investigation was a first generation South African Indian
family and screening of the South African Indian population may not be a true reflection of
the prevalence of this variant in the Asian Indian population. Analysis and comparison of this
variant in the Asian Indian population as well as the South African Indian population is
necessary to determine if this variant is truly associated with HH in these general populations

or if it is a private variant only causing HH in this family.

SLC40A41 gene

Mutation analysis of the SLC40A1 promoter and coding regions revealed five previously
identified variants (5’UTR-1355G—C, 5’UTR-750G—A, 5’UTR-593C—T, 5’UTR-
501T—C and V221). The previously described CGG microsatellite within the SLC40A1

promoter (Lee et al, 2001) was also identified with either 7 or 8 repeats.
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As can be seen in Figure 3.6 only three different haplotypes were present in the second
generation family members. As mentioned previously this could occur as the probands'
parents were first cousins. The two probands presented with different haplotypes for this
gene. Analysis of unaffected family members with similar ages to the probands revealed that
individuals II:2 and II:6 presented with the same haplotypes as proband 1 and individual II:5
presented with the same haplotypes as proband 2. As none of these family members was iron
loaded, the SLC40A1 variants do not seem to be associated with the iron overload phenotype

and may be common polymorphisms within this Indian family.

CYBRDI gene

Ten previously described (5’UTR-1844C—G, 5’UTR-1834G—A, 5’UTR-1813C—T,
5’UTR-1459T—C, 5’UTR-624G—A, 5’UTR-238A—G, 5’UTR-167C—G, 5’UTR-
163G—A, IVS2+8T—C and S266N) and two novel (5’UTR-1452T—C and 5’UTR-
1272T—C) variants were identified in the CYBRDI gene. A repeat was also observed in the
5’UTR [G(T)sG(T)sG(T),G(T)9] where n represents either zero or six repeats.

Haplotype analysis revealed that the two probands presented with exactly the same haplotypes
(haplotype 1 and haplotype 2) (see Figure 3.11). The same haplotypes were also observed in a
63-year-old male family member (II:2) who presented with normal iron parameters. This
indicates that all of the variants identified within the CYBRDI promoter and coding regions

do not seem to be associated with the iron overload phenotype.

HJV gene

Two previously described (5’UTR-1406C—A and 5’UTR-542A—G) and two novel variants
(5°UTR-534G—T and 5’UTR-530G—T) were identified within the HJV gene promoter
region. An AAGG variable number tandem repeat (VNTR) or microsatellite was also
identified in the promoter region with 11 to 13 repeats (allele 1 = 11, allele 2 = 12, allele 3 =
13).

The haplotypes constructed for the HJV gene were identical in the two affected probands (see
Figure 3.14). The same haplotype was identified in two of the probands' siblings (II:5 and
I1:7). These two individuals had similar ages to the two probands but did not display
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symptoms of iron overload as their iron parameters were within the normal range. These
results indicate that the HJV gene variants identified in the Indian family are not associated

with the iron overload phenotype.

To conclude, mutation analysis of the HMOXI, HFE, HAMP, SLC40A1, CYBRDI and HJV
genes revealed many variants in the Indian family under investigation. Of the variants
identified, the homozygous 5’UTR-335G—T variant identified in the HAMP promoter seems
to be the most likely candidate responsible for the iron overload phenotype in the two Indian
probands. HAMP variants are associated with the severe iron overload phenotype observed in
JH. The two probands in this Indian family did not present with the severe iron overload
phenotype but rather a milder form similar to classic or Type 1 HH. Variants within the
HMOXI (5°’UTR-495A—T) and HFE (5'UTR-840T—G) genes could all be modulating the
effect of the homozygous HAMP variant and producing the less severe iron overload
observed. These variants may also, in part, be causing some of the symptoms characteristic of
HH such as liver cell damage, liver cirrhosis and osteoporosis. The remainder of the single
nucleotide substitutions identified in the six genes seem to represent common polymorphisms
within this Indian family. Analysis within the general Indian population is required to
determine if they are SNPs within this population. It should also be considered that the
presence of mutations/variants within the unaffected family members could be providing a

protective effect. This possibility needs to be investigated further.
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4. Conclusions and Future Prospects

Hereditary haemochromatosis (HH) is one of the most common genetic disorders in people of
northern European descent. Iron homeostasis is disrupted in patients with HH and this results
in uncontrolled iron absorption from the gut lumen. The excess iron is stored in various
tissues where it may damage cell membranes, proteins and DNA. Treatment of the disease by
regular phlebotomy is cheap and relatively non-invasive. If the disease progresses
undiagnosed and untreated it can result in the development of diabetes mellitus, skin
hyperpigmentation, liver cirrhosis and primary liver cancer. Although well characterised in
the Caucasian population, iron overload in non-Caucasians is not well defined and the gene
aberrations associated with non-Caucasian iron overload still remain to be identified. Iron
overload and specifically, hereditary haemochromatosis, is predicted to be rare and not well
documented within the Asian Indian population. Various research groups have determined
that iron overload in Indians is not associated with the C282Y or H63D mutations in HFE and

is of the non-HFE type.

The aim of this study was to identify known and novel variants within iron regulatory genes
that were contributing to the HFE-associated HH phenotype observed in two probands from
an Indian family. Six genes involved in iron regulation were screened including the HMOX1
gene, HFE gene, HAMP gene, SLC40A41 gene, CYBRDI gene and the HJV gene. Mutation
analysis of these genes in the two Indian probands and 23 of their unaffected family members
revealed 24 previously described single nucleotide variants, five novel single nucleotide
variants, one previously described microsatellite within the SLC40A41 gene and two novel

repeats, one in the 5S’UTR of the CYBRD gene and another in the 5’UTR of the HJV gene.

As mentioned previously it has been reported that haemochromatosis in the Indian population
is not associated with the common HFE gene mutations C282Y and H63D. Both of these
mutations were not present in the two probands. The C282Y mutation was not observed in
any of the unaffected family members but the H63D variant was present in the heterozygous
state in four family members who presented with normal iron parameters. Therefore the
C282Y and H63D mutations are not playing a role in iron loading within this Indian family.

These results corroborate the findings of other researchers who have analysed these mutations
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in the Indian population and reported that iron overload on the Indian subcontinent is not

associated with the two common HFE mutations (Garewal et al, 2005; Dhillon et al, 2007).

Haplotype analysis was performed for the variants identified in each of the genes investigated.
The probands’ haplotypes constructed for the SLC40A41, CYBRDI and HJV variants were also
observed in unaffected family members, indicating that the variants in these three genes are
not associated with the HH phenotype observed in the two probands. The prevalence of these
variants within the probands and unaffected family members indicates that these variants are
common polymorphisms in the Indian family. Further analysis in a larger study cohort from
the general Indian population is necessary to confirm if these variants are polymorphisms in
the general Indian population rather than being common only in this highly consanguineous

family.

The previously described 5’UTR-335G—T variant identified in the HAMP gene was
observed in the homozygous state in both affected probands. This variant was observed in the
heterozygous state in 16 unaffected family members. The Indian family under investigation is
a highly consanguineous one and the two probands are the product of a consanguineous
relationship. The fact that only two individuals are afflicted with HH increases the likelihood
that the iron overload disorder is inherited in an autosomal recessive manner in this family.
Therefore, a homozygous variant identified in the two probands, but absent in the
homozygous variant form from the unaffected family members, would be a likely candidate

for causing the disease phenotype.

Preliminary results from functional analysis of this HAMP promoter variant have indicated
that expression from the mutated HAMP promoter is greatly inhibited. This preliminary data
supplies supporting evidence that the 5’UTR-335G—T HAMP variant is responsible for the

iron overload phenotype observed in the two Indian probands.

Mutations in the HAMP gene have previously been associated with the severe iron overload
observed in juvenile haemochromatosis patients. Patients with JH exhibit symptoms more
severe than those with Type 1 HH. The two probands identified in this study do not exhibit
symptoms of JH but of the less severe Type 1 or HFE-associated HH. A possible explanation
for the less severe HH phenotype observed in the two probands is that variations in other iron

regulatory genes are involved in the pathogenesis of HH. Variants identified in other genes
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may be modifying the effects of the homozygous HAMP promoter variant resulting in the less

severe phenotype.

Haplotype analysis of the variants identified in the HMOXI and HFE genes indicated that
variants unique to the haplotypes observed in the two probands might be modulating the iron
overload phenotype. These variants include: 5’UTR-495A—T (HMOXI) and 5’UTR-
840T—G (HFE). These variants may also be responsible for the symptoms that manifested

within the two probands.

Future researchers should investigate the role that the HMOXI and HFE gene variants play in
the modification of the HH phenotype. Multiple families and a larger group of unrelated
affected Indian HH patients should be analysed to either corroborate or refute the findings of
this study. Animal models should also be developed with knock-in of the HAMP variant in
conjunction with the HMOXI and HFE variants to determine how they affect iron

homeostasis.

A limitation of the present study was that the study cohort only included members from a
single highly consanguineous family. The prevalence of the variants identified is not a good
indication of the prevalence of these variants in the Asian Indian population as they would
understandably be more common in this family. In this family the two probands were siblings
and there were no affected family members in the successive generation. This limited the
efficiency of haplotype analysis, as it could not be determined for certain which was the
variant haplotype. A further limitation was that haplotype analysis was incomplete for many
of the third generation family members as the haplotypes of only one parent was established.
Future studies should include the analysis of various multi-generation families with affected

family members in different generations to improve the efficacy of haplotype analysis.

Another limitation of this study was the effectiveness of the screening technique. Although
many known and novel variants were identified there is a possibility that additional variants
were overlooked. Evidence to support this is provided by the fact that only a single variant
was identified in the HAMP gene. Furthermore, genotyping of some of the variants was
inconclusive for various family members following HEX-SSCP analysis and therefore
haplotype analysis was incomplete for these individuals. Single-strand conformation

polymorphism (SSCP) analysis is predicted to exhibit a specificity of 70-100% when DNA
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fragments of 130-250 bp are analysed (Xiao and Oefner, 1992; Bonner and Ballard, 1999).
The size of all the DNA fragments analysed in the present study, with the exception of the
HMOXI exon 3 fragment amplified with primer set 3A, exceeded 250 bp. Although the
variant detection rate of this technique was improved by the combined analysis of
heteroduplexes (HEX-SSCP analysis), the size of the DNA fragments could influence the
efficacy of this screening technique. Future research should focus on either optimising the
HEX-SSCP technique for each DNA fragment analysed or should employ a more sensitive
screening technique. Larger DNA fragments (198-732 bp) can be analysed using denaturing
high-performance liquid chromatography (dHPLC) analysis and the sensitivity of this
technique is reportedly 92-100% (Underhill et al, 1997). This technique is superior to SSCP
analysis in terms of its sensitivity and efficiency. More costly screening techniques are also
available such as bi-directional semi-automated DNA sequencing analysis and DNA chip
technology. Bi-directional semi-automated DNA sequencing allows for the identification of
all variants within a DNA fragment and is considered to be the most effective screening
technique available (Kristensen et al, 2001). DNA chips allow for the detection of a multitude
of known variants in different genes. DNA chips could be constructed for known variants
implicated in the pathogenesis of HH and assist in the simultaneous detection of alleles
associated with the disease. Bi-directional semi-automated DNA sequencing and chip
technology is more effective than SSCP but also more costly and therefore are not viable

options in all research laboratories.

Another limitation was observed after employing semi-automated DNA sequencing analysis
for the genotyping of some variants in the extended family members. Various individuals
presented with genotypes that were ambiguous and did not conform to the haplotypes present
in the family. The genotypes of these individuals were subsequently omitted from the
haplotype analysis as the ambiguity could not be explained by non-paternity or
recombination. The sequencing electropherograms for these individuals were double-checked
by the researcher and supervisor and the same results were obtained. A possible explanation
for the observed discrepancy is that the samples were swapped in the sequencing laboratory
and that the incorrect sample was sequenced. Samples should always be double-checked and

labelled carefully to prevent this from occurring.

PCR amplification was not optimised for fragment 5 of the HMOX1 promoter, fragment 2 of
the HAMP promoter and fragments 2 and 5 of the HJV promoter. Therefore the mutation
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analysis of these promoter regions was incomplete. Future researchers should attempt to
optimise the PCR technique for these fragments or should redesign primers flanking the
relative regions. Mutation analysis of these fragments could possibly reveal additional
variants in the promoters of these three genes that may be associated with the iron overload
phenotype. Genotyping of the IVS2+8T—C CYBRDI intronic variant was incomplete as
HEX-SSCP results were unclear. The genotypes of the family members for this variant need

to be clarified employing semi-automated DNA sequencing analysis.

HH is rare in the Indian population and the causative gene has not yet been elucidated. The
homozygous 5’UTR-335G—T HAMP variant seems to be causing HH in the Indian family
investigated in this study. Further analysis within the general Asian Indian population is
necessary to determine whether this variant is associated with HH in other Indian patients or
if it is a private variant which is only present in this highly consanguineous family. Future
research should also focus on identifying any genetic factors that could be modifying the
expression of this variant. The identification of the involvement of the homozygous 5’UTR-
335G—T HAMP variant in the pathogenesis of HH in these two Indian probands may assist

in the elucidation of the elusive iron loading gene in the Asian Indian population.
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APPENDIX 1: LIST OF CHEMICALS/REAGENTS

STUDY AND THEIR SUPPLIERS.

USED IN

THIS

Chemical/Reagent Supplier

Acrylamide Sigma-Aldrich

Agarose Laboratory Specialist Services
APS Merck

Bisacrylamide Sigma-Aldrich

Bromophenol blue Seabreeze Suppliers

Cresol red Merck

ddH,O Adcock-Ingram

dNTPs (dATP, dTTP, dCTP, dGTP)

Fermentas

EDTA

Seabreeze Suppliers

EtBr

Fluka

EtOH

Seabreeze Suppliers

Formamide (De-ionised)

Merck

H;BO; Seabreeze Suppliers
KCI Roche Diagnostics
KHCO; Merck

KH,PO, Seabreeze Suppliers
NaCl Fluka

Na,HPO4 Seabreeze Suppliers
Urea Sigma-Aldrich
NH4Cl Seabreeze Suppliers
PBS Fluka

Proteinase K

Roche Diagnostics

SDS

Seabreeze Suppliers

Sucrose

Seabreeze Suppliers

Tagq polymerase Fermentas
TEMED Fluka
Tris-HCl Fluka
Xylene cyanol Fluka
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APPENDIX 2: PROMOTER AND CODING REGIONS OF HMOXI1, HFE,
HAMP, SLC4041, CYBRDI AND HJV GENES INDICATING PRIMER
BINDING POSITIONS AND VARIANTS IDENTIFIED IN THIS STUDY.

Promoter (5’ to 3’) and coding regions (5’ to 3°) of the respective genes were selected from
Ensembl and GenAtlas. The primers designed for the analysis of the promoter regions are
highlighted in various colours (described below). Primers designed for the analysis of the
exons of each gene are indicated using various text colours. Arrows flank the primers with
arrowheads indicating the orientation of each primer. The translation initiation site (ATG) and
the stop codon (TGA, TAA or TAG) are indicated in bold red text. Variation detected in the
current study is highlighted in grey and the superscript number indicates the nucleotide
position (described below). The 5’UTR and introns of genes are indicated in lowercase text
while the mRNA encoding regions (transcripted regions) are indicated in uppercase. The bold
mRNA regions are those that form part of the translated peptide (translated). Variants
identified in the present study are highlighted in grey and the superscript number indicates the

nucleotide position, which is indicated in the key.

HMOXI promoter sequence
[ENSG00000100292 (Ensembl)]

acagggt ct ccct at gt t gcccaggecagtct’cgaact caaa&:aat cttcccacct cgact gggct caaagcgce
tcttcccacct caacct cccaaagt act gggact acaggt gt gagct accat gccaggcct gaaagccat ctt aa

aaaaaaaat ct t agaat gagaat cacagt at t gggaaaggact gt at gaat cat ct ggt ccattcgttttgtcct

ctgggttcacccagt gaccctatttcccccgagttct aaggagtgcacct cat gcagaattgatt caat aggcga
t cagcaagggccagct ct gct ct gggccct gagcaggcact gagt at aagt cagacct gaat gt gcct ggaagag
t gt cccacgcat t ccagcagggaagcagt tt gt at gacaggt gt cccagt ccaggcggaiiaccagonocnoceas

B@flot ggaggaggcaggecggggact t agt ct cct ccct gggt t t ggacact ggcat cct§ctitat gt gt gacac
cact gcacccct ct gagcct cggttt ccccat ct gt aaaat agaagcgat ct accct cacaggt cagt t gt aggg

at gaaccat gaaaat act agagt:t ctgttttttgacaggaact caaaaaacagat cct aaat gt acatt t aaag
aggo I - o c 2gaggat t ccagcaggt gacat t t t agggAGEHGgagacAGCagAgEcH
ggggt t gct aagt t cct gat gt t gcccaccaggcet @t t gct ct gagcageget gect cccagcet tt ct ggaacc
tt ct gggacgcct ggggt gcat caagt cccaagggﬁacagggagcagaagggggggct ct ggaaggagcaaaat ¢
acaccc_t ttccttaaaggttttgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtatg
tgtgtgtgtgtgtgtgtgtgtgtgtgttttctctaaaagtcct at ggcc_&it atg
act gct cct ct ccaccccacact ggcccggggegggcet gggcgegggeccct gcgggt gt t gcaacgecccggeca

<
gaaagt gggcat cagct gt t ccgcct ggcccacgt gacccgccgagceat aaat gt gaccggecgeggcet ccggea
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gt caacgcct gcct cct ct cgagegt cct cagcgcageccgecgeccgeggagecagcacgaacgagceccagcacce

ggccggATCGgagegt ccgcaacccgacaggcaagcgcggggcgcgggacgcgggacgggc_
BEBlEE: t gcgt cct agccccaccccgggacact gccacacagcgacagagcccaggagccagaaact t ggget ¢

HMOXI coding regions
[NM 002133 (GenAtlas)]

Exon 1
gccagacttt gttt cccaagggt cat at gact gct cct ct ccaccccacact ggcccggggegggcet gggegegg

gcccct gcgggt gt t gcaacgcccggccagaaagt gggcat cagct gt t ccgect ggcccacgt gacccgccgag
cat aaat gt gaccggccgcggct ccggcagTCAACGCCTGCCTCCTCTCGAGCGT CCTCAGCGCAGCCGECCECCC

(GCGGAGCCAGCACGAACGAGCCCAGCACCGGEOCGGA T GGAGCGT CCGCAACCCGACAGYCaagcgcggggcygey

ggacgcgggacgggcgect ttct ct cccaaccct get t gegt cct agcaccaccccgggacact gccacacagcg

acagagcccaggagccagaaact t gggct ct ggagt caggaggt gcgggot t ct gat cct gect gt gccegt agg
gt agtt ggagggag

Exon 2

gggat t acaggcgt gagccaccgt gcccagccacaaggct gcat ct t aaagcgat t gagaacgt ggcct gaat ga
ggat gggagt ct ct t gaaggcct gcccacaggt gggaggct cagcagt t gggaaggaccccacccccagccagcet

ttgtgttcacctttcccatttcct cct cagCATGCCCCAGGATTTGT CAGAGGCCCT GAAGGAGGECCACCAAGGA
GGTGCACACCCAGGCAGAGAAT GCTGAGT TCATGAGGAACT TTCAGAAGGGCCAGGT GACCCGAGACGGCTTCAA
Got aflgt ggct t ggt gggact agccct ggt ggagggt gt ggcaggt gt gggt ggaccﬂaaggct cagaccagtg

gt t t aagt ggggat gct gagggaccagat gggcat gt ccaat agaat cat ct t aaaaat gat gacact gaggct c

agagagggaaggt gagt t acccaaggt cacac

Exon 3

Tcct ctt gt amaaaacccct ct ggct get gt gt gaagaggat t gt agcgagggg‘ggcagaaggagt cagagccca
gct gcgaagt gaggagggcect t t ccaaaggcagt agt ggacgggacggacagaggt gggggt ct t ct at gt ggct

ggcggcct gac.t gct cact ct gc‘t t cagCTGGTGATGGOCTOOCTGTﬁOCACATCTATGTGGOOCTGGAGGA
GGAGAT TGAGCGCAACAAGGAGAGCCCAGT CTTCGCCCCTGT CTACT TCCCAGAAGAGCT GCACCGCAAGECTGC
CCTGGAGCAGGACCTGGCCTTCTGGT ACGEGECCCCGCT GECAGGAGGT CATCCCCTACACACCAGCCATGCAGCG
CTATGT GAAGCGGCT CCACGAGGT GGEGECGECACAGAGCCCGAGCT GCTGGT GBCCCACGCCTACACCCGCTACCT
GGGTGACCTGT CTGGGGEGECCAGGT GCTCAAAAAGAT TGCCCAGAAAGCCCT GGACCT GCCCAGCT CTGBCGAGGG
& TGEOCTTCT TCACCT TOCOCAACATT

>

GCCAGT GCCACCAAGT TCAAGCAGCT CTACCGCT CCCCCATGAACT CCCTGGAGAT GACT CCCGCAGT CAGGCAG
AGGEGT GATAGAAGAGGCCAAGACTGCGT TCCTGCTCAACATCCAGOL gagggt cgggcagcect ggggcagcect ct
gcctccccccegttgttcct ccaagggaccctt ct catt gt aggggagggt gect at aggt cat ggt t aacacaggg

12 cttactagct gggt gat ct t gggcaaat gccttcatctctct gt acct cagtt
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Exon 4
gcccat ctt ggect cccaaagt get gggat t acaggggcegcaccaccgt gt ccggccaatatttttctt accit c

ttgttatttccaaagtatttcctaacacaacttaaggtcctaccttcagctg ctg
agat aggcatgtgtgtcttttgtcttttagCTCTTTGAGGAGT TGCAGGAGCT GCTGACCCATGACACCAAGGAC
CAGAGCCCCT CACGGGECACCAGEECT TCECCAGCGEEECCAGCAACAAAGT GCAAgt gagagceat ccaggaaggg
gcacttcct ct gggct acacat ggagggactt ggct gt ct gact gt agtatctctattcctctgttttctgaatg

tttggt ggt ggt gggt gtt gttt cct gct gccccaccecact geec tatattgcc
caggccagtc

Exon §

cgtctttgaaggt att caagcagt ggct agagggacacct gt ct gt ggt ct t gcagaat cct ggcgt t gggcagt
gact gt accacagaccct gaggccget ct gt t t get tt cct at gacat cagacaccct gat gcacgcccacct g
ttaat gaccttgccccattttctctttcagATTCTGCCCCCGT GGAGACT CCCAGAGEGAAGCCCCCACTCAACA
CCCGCTCCCAGGCTCCGCTTCTCCGATGGEGTCCTTACACTCAGCTTTCTGGT GBCGACAGT TGCTGTAGGGCTTT
ATGCCATGT GAAT GCAGGCAT GCT GGCT CCCAGGGCCAT GAACT TTGT CCGGT GGAAGGCCTTCTTTCTAGAGAG
GGAATTCTCTTGGCTGGCTTCCTTACCGT GGGCACT GAAGGCTTTCAGGGCCTCCAGCCCTCTCACTGTGTCCCT
CTCTCT CIEAAAGGAG(‘:AAGGAGCCT ATGGCATC

—

TTCCCCAACGAAAAGCACAT CCAGGCAATGGECCTAAACT TCAGAGGGEEECGAAGGEGATCAGCCCTGCCCTTCAGC
ATCCTCAGI TCCTGCAGCAGAGCCT GGAAGACACCCTAAT GT GGCAGCT GT CTCAAACCT CCAAAAGCCCTGAGT
TTCAAGTATCCT TGT TGACACGGCCAT GACCACT TTCCCCGT GGGCCATGECAAT TTTTACACAAACCTGAAAAG
ATGITGIGICTTGIGITTTTGTCTTATTTTTGITGGAGC

aACT CTGITCCT

—>

GGCTCAGCCTCAAATGCAGTATTTTTGTTGTGT TCTGT TGTTTTTATAGCAGSGT TGEGGTGGT TTTTGAGCCAT
GCGT GEGT GERGAGGGAGGT GT TTAACGGECACT GTGACCT TGGT CTAACT TTTGT GTGAAATAATAAACAACAT T
GICTGat agt agctt gaagt agttttcatgggctttgttattcttggggaact gaccttttcctccctggtt

aagt ggt gat agggggt t ggcaggagct ggt ct gt t t gagaat acagaaggt gagct t
ttcttttcttttttttttttttt gagat ggagtct

HMOXI Key:
Promoter Region Coding Regions
Fragment 1 (XP1) _ Fragment 1 (X1)
Fragment 2 (XP2) Fragment 5 (XP5) Fragment 2(X2) Fragment 5A (X5A)

| Fragment3 (XP3) | Fragment 6 (XP6) Fragment 3A (X3A)

Fragment 3B (X3B)

Variants: 1 = 5’UTR-495 A—T, 2 =1VS2+4T—C, 3 =1VS2 -19C—-T
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HFE promoter sequence
[ENSG00000010704 (Ensembl)]

>
aatttgct agat at gt aaaggt t t ggagcaaat caggt gt at t aaattt at t aat at t gt t t gaaat gt ct aagg
caat aat t cccaaact t cgt t gagggagaaggaaagctt t t aaaat cccat t gcccaggt ggcat cccat act gt

tact gggaat t at gcat t gggat ggat cct t t aaccgaggagat t at t at agcEggagetet gaa.cagcaa?c
tcagttctt gt gat agt gagcaaagaact acaaact aacaccaaaat gcaagctt aaagcaaagttt att gaagc

acaat aat acact ct gagggacagcgggct t at %t gcgaagt gaact cagcact t ct t t acagagct caaggt

gcttttatggggttt gt ggggaggagt tgaggtttgggoct gt at ct gﬁgt gacaggat gatgttatttgattgaa
gt gt at agct at acaat ct aaaat t aa TG geatggtetTacetataat t t gt t aagaaaagect cccaggga

t gggggggcaaaact gt at gt aaat tctatt at aa‘gat ggcat gat gaact t gggg.gaazt t gaagacaggc
ttttgtgttgttggobaigHoccaceHlagogaat: t ccacct gt accctcctttctctttctccaggatatttt
ggccacagact t t at cat aaact ccat ccct t agggt ggcat t agggt agt ct t %ggcct gaat t t aggt gggcc
agtggctgtc ct ct [EHHCECEEEIEEEEEgloct aat gt ct aact acct aac
aat t acccat mgcct caat at gtttaatcattctccagataatccc
- L
gt gtctggggt t aggagcag
aat act gt aaagt t t gt gaaacact t gt cagat aatt caat t _t cagt aggat c

taattggttaatgttatgacttaattaatttgaat caaaaaacaaaat gaaaaagctttatatttctaagtcaaa

t aagacat aagt t ggt ct aag%t gagat aaaatttttaaatgtatgattgaattttgaaaatcataaatattta

aat at ct aaagt t cagat cagaaiicoeaoSHESlllEEE 2ot caacaacacccct t caggat t t aaaaac
caagggggacact ggat ¢ gt accttct gct gt aggagagagagaact aaagt t ct

gaaagacctgttgcttttcaccaggaagt F_cct aggcaat agct gt agggt gact t
ct ggagccat cccegt tt ccccgeccccccaaaagaageggagat t t aacggggacgt gcggecagaget ggggaa
at gggcccgecgagecaggecggegettct cct cct gat getttt gcagaccgeggt cct gcaggggcglé-

EolEgHesEaeg o ct ocgggcgaact aggggcgeggegggggt ggaaaaat cgaaact agetttttctttgege
ttgggagtttgctaacttt ggaggacct gct caaccct at ccgcaagec

HFE coding regions
[NM 000410 (GenAtlas)]

Exon 1

aaaaagctttatatttctaagtcaaat aagacat aagtt ggt ct aaggtt gagat aaaattttt aaat gt at gat
tgaattttgaaaat cat aaat atttaaat at ct aaagtt cagat cagaacattgcgaagctactttccccaatca
acaacacccctt caggat t t aaaaaccaagGEEGACACTGGATCACCTAGT GT TTCACAAGCAGGTACCTTCTGC
TGTAGGAGAGAGAGAACTAAAGT TCTGAAAGACCTGT TGCTTTTCACCAGGAAGT TTTACTGEECATCTCCT GA%
CCTAGGCAATAGCTGTAGGGT GACT TCTGGAGCCAT CCCCGT TTCCCCGCCCCCCAAAAGAAGCGGAGATTTAAC
GGGGACGT GCGGECCAGAGCT GGGGAAAT GGBCCCGECGAGCCAGBCCGBCECTTCTCCTCCTGATGCTTTTGCAGA

CCGECGGTCCTGCAGGEECECTTACTGCgt gagt ccgagggct gcgggcgaact aggggcgcggﬁggggf ggaaa
aat cgaaactagctttttctttgcgcettgggagtttgctaactttggaggacct gct caaccct at ccgcaagcec

cctctccctactttct gecgt ccagacccegt gagggagt gect accact gaact gea
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Exon 2

aagcacacaaggaaagagcacccaggact gt cat at ggaagaaagacaggact gcaact caccctt cacaaaat g
aggaccagacacagct gat ggt at gagt t gat gcaggt gt gt ggagcct caacat cct gct cccct cct act aca
cat ggt t aaggcct gtt gct ct gt ct ccagGI TCACACTCTCTGCACTACCT CTTCATGGEGTGCCTCAGAGCAGG
ACCTTGGTCTTTCCTTGT TTGAAGCT TTGGGCTACGT GGAT GACCAGCTGI TCGTGT T(% ATGATEIATGAGAGT
CGCCGT GTGGAGCCCCGAACT CCATGGGT TTCCAGTAGAATTTCAAGCCAGAT GT GGCTGCAGCTGAGT CAGAGT
CTGAAAGGGTGGGATCACATGTTCACTGTTGACTTCTGGACT. ATTATGGAAﬂATCACAACCACAGCAAGth atg
tggagagggggcctcaccttcctgaggttgtcagagcttttcatcttttdﬂtgcatcttgaaggaaacagctgga

agt ct gaggt ctt gt gggagcagggaagagggaaggaat t t gctt cct gagat catt t ggt cct t ggggat ggt g
gaaat agggacctattcctttggtt

Exon 3

aggttgtcagagcttttcatcttttcatgcatcttgaaggaaacagct ggaagt ct gaggt ctt gt gggagcagg

gaagagggaaggaatttgcttcctgagatcatttggtc >ggacct attcctttggt

t gcagt t aacaaggct ggggat t t t t ccagAGTCCCACACCCTGCAGGT CATCCTGCEECTGIGAAATGCAAGAAG

ACAACAGTAC 5GT ATGATGGGCAGGACCACCTTGAATTCT GCCCT! GACACASTEG

ATTGCGAGAGCAGCAGAACCCAGGGCCT GGCCCACCAAGCT GGAGT GGGAAAGGCACAAGAT TCGGGCCAGEC
AGGGACT GCCCTGCACAGCT GCAGCAGT TGCT GGAGCT GGCGAGAGGTGTTTTGGACC

<
AACAACQt at ggt ggaaacacact t ct gcccct at act ct agt gg ggcacggaat

ccct ggt t ggagt t t cagaggt ggct gaggct gt gt gcct ct ccaaat t ct gggaagggacttt ct caat cct ag
agtct ct acctt at aat t gagat gt at gagacagcc

Exon 4
ct ccaagt gacact gt gt t agagt ccaat ctt aggacacaaaat ggt gt ctctcctgtagcttgtttttttctga

aaagggtatttccttcctccaacct at agaaggaagt gaaagtt ccagt ctt cct ggcaagggt aaacagat o
ctctcctcatccttcctctttcct gt caagTGCCTCCTTTGGTGAAGGT GACACATCATGTGACCTCTTCAGTGA
CCACTCTACGGT GTCGGGCCTTGAACTACTACCCCCAGAACAT CACCAT GAAGT GGCTGAAGGATAAGCAGCCAA
TGGATGCCAAGGAGT TCGAACCTAAAGACGT AT TGCCCAAT GGGGAT GGGACCTACCAGGGCTGGATAACCTTGG
CTGTACCCCCT GGGGAAGAGCAGAGATATACGT GCCAGGT GGAGCACCCAGGCCTGGATCAGCCCCTCATTGTGA
TCTGGGgt at gt gact gat gagagccaggagct gagaaaat ctat t ggg‘ggt t gagaggagt gcct gaggaggt a
att at ggcagt gagat gaggat ct gctcttt gtt agggggt gggct gagggt ggcaat caaaggctttaacttgce

tttttctgttttagagccct caccgt ct ggcaccct

Exon 5
cagcccct catt gt gat ct ggggt at gt gact gat gagagccaggagct gagaagat ct at t gggggt t gagagg

agt gcct gaggaggt aat t at ggcagt gagat gaggat ct gct ctt t gt t agggggt gggct gagggt ggcaat c
aaaggctttaacttgctttttctgttttagAGCCCTCACCGT CTGECACCCTAGICATTGGAGT CATCAGTGGAA

TTCCTGITTTTGTCGTCATCTTGTI TCATTGGAATTTTGI TCATAATATTAAGGAAGAGGECAGEGT TCAAgt gagt
aggaacaaggg8gaagrcrcrTagraccr cr gccccagggeacagt gggaagaggggeagaggggat ct ggeat ¢
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Exon 6

aggt gaggagaccagt t agaaagccaat aagcat t t ccagat gagagat aat ggt t ct t gaaat ccaa

>agat gggt gaat gaggaaaat aaggaagagagaagaggcaagat ggt gcct aggt t t gt gat
gcectcetttcctgggtctcttgtct ccacagGAGGAGCCATCEEECACTACGT CTTAGCTGAACGTGAGT GAcacg

cagcct gcagact cact gt gggaﬂ aagagggagt gcattt at gagctcttcatg
HFE Key:
Promoter Region Coding Regions
Fragment 1 (HP1) _ Fragment 1 (H1)
Fragment 2 (HP2) _ Fragment 2A (H2A) Fragment 4 (H4)
Fragment 3 (HP3) _ Fragment 2B (H2B) Fragment 5 (HS)
 Fragment4 (HP4) ~ Fragment 8 (HPS)

Variants: 1 = 5’UTR-1206C—G, 2 = 5’UTR-840T—G, 3 = 5’UTR-467G—C, 4 =H63D

HAMP promoter sequence
[ENSG00000105697 (Ensembl)]

agt gcct ttt ct gt aaagt gaaggaaat gagt gt ccgacggggaggaggt t cct aa%agggagcagggt ct gggg
agcccaggcct ct ggggt t gggt gact gagaaggcageccct gaat acagagcagaget gaaggt ggggceagt aa
gt gct gct gggagaacaggcagcacaggct gagt t ggt gcagaagt gagt caacat at gt gccat cgt at aaaat
gt act GalEggaCHIGIagalGHiEge: at t act attact gctattttatgttttat agacaggm
cacccaggct ggagt gcagt cacacaat cat agct cact gcaacct cagcct cct gggcet t aagcgat ct gect ¢

agcct cccaagt agct<gggact acagat gt gt gccaccacgcctggctaaatttgttt aaaatttttttt gt aga
gat ggggt ct ccct at giifigeccaggetiagtietitigaact t ct gggct caagcgaccct cct gectt ggect ccca
aatt gct gggat t acaggcat aagccact gt gct gggccat att act gct gt cattt at ggccaaaagtttgetc

aaacattttccagttaccagagccacatc aaaacaccacgt gcggat cgggcacac

gctgatgcttgeccct gct caggget at ct agt gt t ccct gcca‘gaacct at gcacgt gt ggt gagagct t aaagc
aat ggat gct t cccccaacat gccagacact cct gaggagcct ggcggct gct ggccat geccegt gt gcat gt a

ggcgat gggg gaaccttgattctgct cat caaact gct t aaccgct gaagcaaaag

gggfifaact t t tt t cecgat c A EAARNGACANBONGANGEC022agggct ccocagat gget ggt gageagt g

t gt gt ct gt gaccccegt ct gccccaccccect gaacacacct ct gccgg gttccctg

tcgctctgttceccgettatctctcececgecttttcggegecaccacctt a tlggaaat gagacagagcaaagggga

gggggct cagaccaccgcect cccct ggcaggecccat aaaagcgact gt cact cggt cccagacaccagagcaag

ct caagacccagcagt ggga{cagccagacagacggcacgat ggcact gagct cccagat ct gggecgcettgectc

ct gct cct cct cct cct cgcEENNEEEENNNEENEN : t t t cccacaacaggt gagagcccagt ggcct ggg
t cctt agcagggcagcagggat gggagagcec
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HAMP coding regions
[NM 021175.2 (GenAtlas)]

Exon 1

ggct gagggt gacacaaccctgttccct gt cgctct gtt cccgettat ctct ccecgecttttcggegecaccacc

tt ctt ggaaat gagacagayTaaagUUa0TI00CT cagattRcgect ccecct ggcaggecccat aaaagcgac
t gt cact cggt cccagacaccagagcaagc TCAAGACCCAGCAGT GCGGACAGCCAGACAGACGECACGATGEGECAC
TGAGCTCCCAGAT CTGEECCCCT TECCTCCTGCTCCTCCTCCTCCTCACCAGCCTGACCAGTGECTCTGITTTCC

CACAACAgt gagagcccagt ggcct gggt c‘ct t agcagggcagcagggat gggagagccaggcct cagcct agg

gcact ggagacacccgagcact gagcagagct caggacgt ct caggagt act ggcagct gaacaggaaccaggac
aggcacggt ggct cat gcct gt aat cccagcact tt gg

Exon 2
tttttttttaggaaaagccgecccat gggaaggt gagcagaagcaagaaagcaaggcccct cct aagagt ccattt
gagct ct gggt t t g’gt t gccgggagcecagt ct cagaggt ccact gggecccct ge

catcctctgcacccccttctgcettt cacagACGEGACAACT TGCAGAGCT GCCAACCCCAGGACAGAGCTGGAGCC
AGGEECCAGCTGGAT (gt gagcgcaacagt gat geccttt cct agcceccct get ccct ccccat gect aaggecggt t

cc‘c ccacagcccat gt t ccagaggcgaaggaggcgagacacccact t ccccat ct
gcattttctgctgcggct gct gt cat cgat caaagt gt gggat gt

Exon 3

ccat cctctgcacccccttctgetttcacagacgggacaact t gcagagct gcaaccccaggacagagct ggagce

cagggccagct ggat ggt gagcgcaacagt gat gccttt cct’agccccct gct ccct ccccat get aaggecggt

tccctgetcacattcccttcctt cccacagCCCATGI TCCAGAGGCGAAGGAGECGAGACACCCACTTCCCCATC
TGCATTTTCTGCTGCGGCT GCTGI CATCGATCAAAGT GT GGGAT GT GCTGCAAGACGT AGAACCTACCTGCCCTG
COCCOGTOCCCTCOCTTOCTTAT TTATTOCT GCT GOCCCAGAACAT ARG TCT T GEAAT AAAAT GECTGRTTCTTT
TGITTTCCaaaccagagtgtctgttgtcctttctctctgccgagt gt ct gt gct aagagcttgtcct gaccctgce

HAMP Key:
Promoter Region Coding Regions
Fragment 1 (PP1) _ Fragment 1 (P1)
Fragment 2 (PP2) Fragment 5 (PP5)
Fragment 3 (PP3) Fragment 6 (PP6) Fragment 3 (P3)
Variant: 1 = 5’UTR-335G—T
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SLC40A41 promoter sequence
[ENSG00000138449 (Ensembl)]

gaat ccagct gcacccaccccgt agacct Tt gggget cet ght t gagagt gcagat acagggcacat act cat ge
gt ggctccct t cact act gggt gt cagt ct ggcct gt gct caaggt gt ggcat ct ggt t ggagt t t caat at gt a

ggat ccact accagggttttcgt gagatt aigaagggt aaggt aacct act ggcaaaaggggct 'ggt at gcccca
ggggt t ggt t t ggcacageaggattaaaacgaagt caaccaaggct agffagt ct ggt gtt cttt agt catt cacc

t caccct ccaggaggccaccgaat ggcttt at ct ggacagggacagat ccagggacacaact gggat aaccggt a

tt cct ggt aagcct gt cact ggggcat t t ggaggt t aggt ggggaagggacgcgcgcegt gggggcggggt gagag
ggt acagagggagaaggaat gat ggt getagggt ttgct ggggct gcagcat cct ca?t ct gt ct ccaggacggat

fit ggaggccccagt t t ggggat acgggt aggt ct gt aact cget gcgggact t cacct t t gcaagect cegtttg

ctcct ct caagagggat ggact ct gat cttt gcgeccecttcctgeectttgattetggttettt gagogaagee
EEGENENGEEEEEoygaaggaaaggcat t ct ct got gecaggegggecggaat gggacggec dgaaageggee
fctgtgogcatgaattatatttatttagat ag:t gtattaaaaattattttcgttaaaaaaggaat ccccacccac
caagct cgeo [ ot ccogcggccgcecect tt cect Glaact gcggggt ageeggt ge
gcagc ellNCHCEageaEeHEaE ct t agt t t cgcgcagaat ct ccct acgecgecccgecggcet Bfcacgeg
ccttcctectttt cccagccccac%gccgccccccgaggt t gccct cgcgget t cccggagagcaggaaaacccg
gggagIIEEeHERNEHREEeEEsEo ot ccccgcaageecgegeagggt gt ct gcggeeggt t ggacget t gcgeee
ggggfifgggcgact cct ccgggecaagggegeggggacggeceggegegea) cgcgce
cgcggggacgcccgggceggcecct gaaggggacggggcggecccagt cggaggt cgcagggaget ccgeccccgac
t cggt at aagagct gggcccggccca_agagagcﬁggct cagggcgt ccgct ag
gct cggacgacct Mat aaggct t t gcct t t ccaafifiicatcHEcRTHoHNNENe

flaagt t t ggaaagaaggaaaaaagaaaat ccct gggeccecttttcttttgttctttgccaaagt cgtcgtt gt ag

tctttttgcccaaggetgttgtgtttttagaggt gctatctccagttccttgeact cctgttaacaagcacctca

gcgagagcagcagcagcgat agcagccgcagaagagccagcggggt cgect agt gt cat gaccagggcgggagat
cacaaccg:_gt gt cgt t gaccgaaagcat at ggt ggaaacccaggt ggggctttg
gagacaagcaact ct acacgagt t ct ggaggaat gt ggct ct gct gt gaaccat agct t t gt aaaaagat ccttt
gact cat at t t ggt ggacgt t aaggaagaaaggaaat t cagggt gt gggaaaaggggt t t gcacacaggcacgga
t ggagt agat t gggcagt t t ggat t gcct t gt gt aaaaaagaaacaaaac
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SLC40A1 coding regions

[NM 014585 (GenAtlas)]
Exon 1
cggct t cccggagagcaggaaaacccggggagt ggaacgegt cgaggcgaaggt ccccgcaagcecgegeagggt g
t ct gcggecggt t ggacgcet t gcgeccggggt gggegact cet ccgggcaagggcgecggggacggeccggegege
aaggt t gacgggagct cgt ct cgcgcecgegGEGACGCCCEEECEECCCT GAAGGGEGACGREGEGECEECCTCAGT CGEG
AT O APGAGCT COGOOCCCGACT CGGTAT AAGAGC T GEEOCCGRECCCACGEOGECEAECEE0GE0GECEGAG
AGAGCT GGECT CAGGECGT CCECT AGGCT CCRACGACCT GCTGAGCCT CCCAAACCGCTTCCATAAGECTTTGCCT
TTCCAACTTCAGCTACAGTIGTTAGCT. AA;GT TTGGAAAGAAGGAAAAAAGAAAATCCCTGEECCCCTTTTCTTTTG
TTCTTTGCCAAAGTCGTCGTTGTAGTCTTTTTGCCCAAGECTGTI TGTGI TTTTAGAGGTGCTATCTCCAGT TCCT
TGCACTCCTGTTAACAAGCACCT CAGCGAGAGCAGCAGCAGCGATAGCAGCCGECAGAAGAGCCAGCEEGTCECC
TAGTGTCAT GACCAGGECECGAGAT CACAACCGCCAGAGAGGATCCTGI (gt gagt gt cgt t gaccgaaagcat a
t ggt ggaaacccaggt ggggcttt ggagacaagcaaa ctacacgagttct ggaggaat gt ggct ct gct gt gaa

ccat agct tt gt aaaaagat ccttt gact cat at t t ggt ggacgt t aaggaagaaaggaaat t cagggt gt ggga
aaagg

Exon 2
aat ggt at t aagt gaacgaaat acat cggt t cat aggt aact t gat aaaat gt acgt ggt t t gt cct gcaaagt a

gtttttaataatcatgttctaatgagatcaaa aﬁct catt aagt gact accat cg
ctttttgtcaccccgcctgtgtctttgecagGATCCTTGECCGACTACCTGACCTCTGCAAAATTCCTTCTCTACC
TTGGTCATTCTCTCTCTACTTGgt aagt gagaat gcat agt ct t acaacacagt t gcgcaa:t ttttatttcct

ttcgttctagccagttgtattaagccaacttccagttttgtcaagcagttaaagaaat aaat
aat gaaaacgttatttacat cgaagatctttccccatgagtgttag

Exon 3

ccat t gt gct gggat gaacgtttt aacat ct gagcagt at t caat ct aagagt aatt act gacttt gaaagtctc

at aat gt agccaggaagt gccctttt gat aaggaagcaact t cct gagt acaat agact agaaacgaaaaat at t

ccat caaaacattttctcttttcatttaagGGAGATCCGATGTGECACTTTACEGTGTCTGTGTTTCTGGTAGAG
CTCTATGGAAACAGCCTCCTTTTGACAGCAGT CTACGGGCTGGT GGTGECAGGGTCTGT TCTGGTCCTGGEGAGCC
ATCATCGGT GACTGGGTGGACAAGAATCCTAGACTTAAAgt gagt gt t gt t at at aat t aagcccttttattca

t gggaccaat gcct gaget acct ct gt agcaaaggaaacaacaa®ctaggagagaaacaaccagggaat gt ct ge

at gccacact t gagggaggagggct t agat ggcaccacct ct ggat ggagggt cccat ggct cccacaca

Exon 4
tgacttcagaaaggttttctttttatct ggtaataattaggtctgtgtattaatgtattatagtagaacaatt at

gt gt >agacat tttgatgtaatgtacactttctctcttcctctgcacagTGECCCA
GACCTCCCTGGTGGTACAGAATGT TTCAGT CATCCTGT GTGGAATCATCCTGATGATGGT TTTCTTACATAAACA
TGAGCTTCTGACCATGTACCATGGATGGGI TCTCgt aagt t ct caat gagat t ct t gat ggcagaaaat t gaat a

;¢ aatgctttgaagctatttttttttttggccagt gt gaccttttaatattgatt

tctgtgtctactgtaatatcccctatagtttgttttgttgtt
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Exon 5

cattgactactggtattcattcagtttcatatctat aacgt aaaat gatttctt at aaat gaaatt aaaatactt
tttttatcattccaccaaagactatt >acat at gt acagt gt ggt aaact gacat t

ataactcatttttttcttgtcattctttagACTTCCTGCTATATCCTGATCATCACTATTGCAAATATTGCAAAT
TTGGCCAGTACTGCTACTGCAATCACAAT CCAAAGGGATTGGATTGT TGT TGT TGCAGGAGAAGACAGAAGCAAA

<
CTAGCAAgt aatttggctttctctttt aat gaaat gagcat gttaggattcacttt aaat

tgtaagccttgtatttttgttctgggtatttttt aagaat gat aaattgaaagcatactttttttcttacc
ttattgtcagttttagtgctgatttatctcactgtta

Exon 6

gt gggactt gacccaaacaacaaatattttt ccaacaaaatgtctttcttacaaatgtacttttagaaaaccaca

ttttaggaatctatactcttggtttacagetttgtattgtgtaaatgggeagtct Xttt gat gggt tt gcaca
cttacctgcctctttcacctgcctctct agATATGAATGCCACAATACGAAGGATTGACCAGT TAACCAACATCT
TAGCCCCCATGGCTGI TGGCCAGATTATGACATTTGGCT CCCCAGT CATCGGCTGTGECTTTATTTCGGGATGGA
ACTTGGTATCCATGT GOGT GGAGT ACGT I8 CTGCT CTGGAAGGT TTACCAGAAAACCCCAGCTCTAGCTGTGAAA
CCTGGTCTTAAAGAAGAGGAAACT GAATTGAAACAGCTGAATTTACACAAA(gt aaact gaacacaat gat ct ct

cetttt gt‘tct cat gttcagacctt aaat gt t ggt gaagat caaaact attttgaatttgtatcaggttttatta

ccagt gggggccagat gaggt t aaat at at cgct t t ggt agacgaggcaagagcaggct ttt gaggat ct aggga
aaaact c

Exon 7

acttgatgattattccttggctggaattcttagattattagt aaaagaaaat acat at t acaat gt ct aaccaag

ggt acccat t gggaaggggaat agaaggaaaaaaagt act act aataattggcttttatttctacat gtcctccc
caacaaaat aatggtatcttttcttaacagATACT GAGCCAAAACCCCT GCAGEGAACTCATCTAATGGGTGTGA
AAGACT CTAACAT CCATGAGCT TGAACAT GAGCAAGAGCCTACT TGT GCCT CCCAGAT GGCTGAGCCCTTCCGTA
CCTTCCGAGATGGATGGGTCTCCTACTACAACCAGCCTGTGTTTCTGECTGECATGGGTCTTGCTTTCCTTTATA
TGACTGT CET GGGCTTTGACT GCATCACCACA EACTGAGTGGTTCCATCCTCAGTA
TTTTGATGGGAGCATCAGCTATAACT GGAATAATGGGAACTGTAGCTTTTACT TGGCTACGT CGAAAATGTGGT T
TGGTTCGGACAGGT CTGATCTCAGGATTGGCACAGCTTTCCTGITTGATCTTGT GTET GATCTCTGTATTCATGC
CTGGAAGCCCCCTGGACTTGTCCGTTTCTCCTTTTGAAGATAT CCGAT CAAGGT TCATTCAAGGAGAGTCAATTA
CACCT AOCA: AAATATACAT GT CTAATGGGT CTAATTCTGCTAATATTGT CCCGG
AGACAAGT CCTGAATCTGT GCCCATAATCTCTGT CAGTCTGCTGI TTGCAGGCGT CATTGCTGCTAGAATCGgt a
agaaatctctttttatatattaatgaactaaagtgtctttttgt aat‘gt aggt t cagagaat ccat t aat aaat g

atctgaaatgttccctaaatgttaatttaagcaaaatccactcttacgaaatttttattttacatatttatactt
tatatttattgtgttttttattttata
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Exon 8

ataacccaatatttatttat gaaaaat aattcttaaggcaaggct at ggt at at t t aaggt gact t aaagacagt

caggct aaaatgtatattttgcat at gt caacagatttttatct gt gat P aaaa
tctaatctttaaaaaaatattttattatagGICTTTGGTCCTTTGATTTAACTGIGACACAGT TGCTGCAAGAAA
ATGTAATTGAAT CTGAAAGAGGCAT TATAAAT GGT GTACAGAACT CCATGAACTATCTTCTTGATCTTCTGCATT
TCATCATGGT CATCCTGGCTCCAAATCCTGAAGCT TTTG(ECT TGCTCGTATTGATTTCAGICTCCTTTGT %A
TGGGCCACATTATGTATTTCCGATTTGCCCAAAATACT CTGGGAAACAAGCTCTTTGCTTGCGGT CCTGAT
AATCAAGCAAATACATCTGT TGTTTGAGACAGT TTAACTGT TGCTATCCTGITACTAG
ATTATATAGAGCACATGTGCTTATTTTGTACT GCAGAATTCCAATAAATGCCTGGGTGTTTTGCTCTGITTTTAC
CACAGCTGT GCCFI’ GAGAACTAAAAGCTGTTTAGGAAACCTAAGT CAGCAGAAATTAACT GATTAATTT‘CCﬁ
TGTTGAGGCATGGAAAAAAAATTGGAAAAGAAAAACT CAGT TTAAATACGGAGACTATAATGATAACACT GAATT
CCCCTATTTCTCATGAGTAGATACAATCTTACGTAAAAGAGT GGTTAGT CACGTGAATTCAGT TATCATTTGACA
GATTCTTATCTGTACTAGAATTCAGATATGTCAGTTTTCTGCAAAACTCACTCTTGT TCAAGACTAGCTAATTTA
TTTTTTTGCATCTTAGT TATTTTTAAAAASAAAT TCT TCAAGT ATGAAGACT AAATTTTGATAACTAATATTATC

SLC40A1 Key:

Promoter Region Coding Regions

Fragment 1 (SP1) _ Fragment 1A (S1A) Fragment 7A (S7A)

Fragment 2 (SP2) Fragment 6 (SP6) Fragment 1B (S1B)

Fragment 3 (SP3) Fragment 7 (SP7) Fragment 7C (S7C)
_ Fragment 3 (S3)

Fragment 8B (S8B)

Fragmetnt 8C (S8C)

Fragment 6 (S6)

Variants: 1 = 5’UTR-1355G—C, 2 =5’UTR-750G—A, 3 = 5’UTR-593C—-T,
4 =5UTR-501T—C, 5 = (CGQ) repeat, 6 = V221
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CYBRDI promoter sequence
[ENSG00000071967 (Ensembl)]

>
ggggctttggttcaaattggtttgggt gggcgggcacttt gaaaat ccattt gt cacact aaacggcaagt ccag

gt ccaggaggttcctgtcttccctct ct caagagcaaact gcaagt agt tt cat t gcaggat aaggccaagccca

ccgctgcccatgetgtttttgtttt gttt ccagacagagt ct agct gt caccaggct gcagt gcagt ggt gcgat
—Y 44—
cat a@ict ct cct gafct caagt gatt ct ctt gcct @8cacct cccaaagecct gggat t acaget gt gagacac

ct cat ggggacccggt t t act gg FlNNNNNNGHNNNNNGNNRNENRNNNNNNN g agacagagt ct cact tt

gt caggcaagct gaagt gcagt ggt gcaacct caget cact gcagect cgacct t ct gggetcaagt gat cetee

et cagt cccccaagt aget gggget acaggt geat geat t t gt at t t NGagTAGagacagggtiicacct t g
ttgcccaggcet gtt ct caaact cct ggact caagt gat ct gcccgectt agect cccaaagt gct aagat t acag

gt gt gaggc aFHGEHEEoEEHNtCaslgHt aact t aaaacaaaaaatt at aaat t t gaaaaaagaggagact t

tatttcttat aaaaagt t at agcct gcaaggaggccat t ccat aggct gat aaacat agcct ct ggcct aagacc

agagacaggcact t ggaaggcagaggggt t ggggt aggagct t t at gct gaacagfift t ggccaaacat acat ac

gt aac aat at t aat ggaggt ggt cct t acacat gcat at t gaacaaa
fEEcalgiiene: t t goggt ggagacttaacatttaattgtattacttcaaatacatttaaatgtattacttcaa

acct acact t caaaaggt ctttt caggacgt gaat gcat acaagt gcacaat cc—
tccat ggt cggt cttct t at cat gaaaaagt t cct gaaat cagcccagt gaaag—

caggggt t cagct ggt cagcat ct gt gaact gattaagttgtaattgttttaatattgcttatct caagccagtg

cttgtttagcct ct agaggaaaagaaaaccttt gt ggcagtt a<gaccat agtttatttcttaagt GiloEEoHGH
tcctttttataatttgatgtcttattgetacaafiiiicHoNlcHoNEEOEEH: at gattt ct at

tttaaacattaat gct agt cagct gt t gagt ct aaat t ccaaaat ggagggggt agact t ccct t ccggct gt ag

ctagaaact cagctttaaggtttttct gg@lgt ct gctt ggccaaggal ggcttag

gattttatttttagtttacaccaccttacaggttcctccttaacaccctttgatgtca

B@Bact gt ggct aaggaggct t cgt t agt agt t aaaagcacacacat aacc_t ct

ct t aaccaagagggcgcaccact gccct act caacct ccccacaaat aﬁt t aaaag

caaqtggt gagt at aaaat cct cggaattttctctttgagcaact aact aggt ct gtt act gaagccct ctgcga
Bt oct ggacgagggagagggt gaggccaccaggca@t gagcgeect cggcggecgegt gat cccgggy
gt ggggcc ct ccccaccc@@caa@iffaggccccacat t ccgggecagecageccag

aaagt ccct ccccgcaggcggagacagccccaagaagt cgacgccccggt cccgecgeccggcecact acccagag

ggct gccgecgcect ct ccaagtt ct t gt ggcccececgeggt gcggagt at ggggegct gat ggccat ggagggct a
ctggeget t cct ggeget get ggggt cggeact get cgt cggbcct cgt ct gggt

cct ccact accgagaggggct t ggct gggat gggagcgceact agagt t t aact ggcacccagt gct cat ggt cac

cggcttcgtcttcat ccagggcat cggt act ggcacc
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CYBRDI coding regions
[NM 024843 (GenAtlas)]

Exon 1
gccaccaggcaat gagcgccct cggecggecgegt gat cccgggggt ggggeccat tt ct gagt t ggggecagcet ¢

cccacccccaagaggccccacat t ccgggecagcageccagaaagt ccct ccccgecaggecggagacagecccaag
mgccccggt ccecgecgeccggecACTACCCAGAGGEGCT GCCGOCGCCTCTCCAAGT TCTTGTGECCCC
CCCGGTGCERAGT AT GEEGECECTGATGGECCAT GGAGGECTACT GECECT TCCTAECECTACTAEEGT CAGCACT G
CTCGTCGECTTCCTGTCAGTGATCT TCGCCCTCGT CTGEGT CCTCCACT ACCGAGAGEEECT TGECTCERAT GGG
AGCGCCACTAGAGT TTAACT GECACCCAGT GCTCATGGTCACCGECTTCGT CTTCATCCAGGGECATCgt act ggc

acct cct gggggggt gcggggaggaaagcggggagaacggcgggﬁgcagagggt cctcegt gaagececttccag
ct gaggaagt gct ggaggat cgcggggcccggaggagt gcggt gaggagcgcgcgggaagccaagt cggct ggge
gggagggaggct ggct ggct ct

Exon 2

t cct ccaccgt cccct agagggagecact gagaggcaggggt aacat ggggaagaggggagaagcaaaagccaag

ggaaaaaggt t t caaaaagggagt gt ccagt gt gt caaact gt t cgt tttgtgttgttt aaaaaacaaaacaaaa
cacattctgtgtcctttcgtctttccctagCCATCATCGT CTACAGACT GCCGT GGACCT GGAAATGCAGCAACGC
TCCTGATGAAATCCATCCATGCAGGGT TAAATGCAGT TGCTGCCATTCTTGCAATTATCTCTGT GGTGGCCGT GT
TTGAGAACCACAATGT TAACAATATAGCCAATATGTACAGT CTGCACAGCT GGGT TGGACTGATAGCTGT CATAT
CCTATTTGITACAG&gt cagt a-t tcagtgtatttacaagcaagtt at aaaaa‘caat t cagagact gt aaat gt t

ttcttttcttttttttttttttttttttt gagacagagtctcgcttagccacccaggcet ggagt gcagt gct geg
at ctt ggct cact gcaaccact gt ct ccagggt t caagt gatt ct

Exon 3
at gagaaggt gat aaaaggggt t acat t aggt agt ggaact ggagcgaggaaacttcattttctaccctttggtt

ctatat gaaaggt tTTgicataitacacalali gt ttt aaat aat t t aaaatt agt t t agaact t aaaat t aa
atgataacctttgcactttttggtgtttagCITCTTTCAGGITTTTCAGICTTTCTGCTTCCATGGGECTCCCCTT
TCTCTCCGAGCATTTCTCATGCCCATACATGT TTATTCTGGAATTGTCATCTTTGGAACAGT GATTGCAACAGCA
CTTATGCGATTGACAGAGAAACTGATTTTTTCCCTgt aagt t gcat agt ctt ct t aat t gt aat act t aagccac
aaaat gtt aaa?act tgttcact gggaaaat gt aat aaaaat at aacaaaattttttagat att aaaattaaaaa

atattttaaagaatttgttatatcatataggt aat at gat at t act aaaagt t t agaaggaccaa
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Exon 4

tcaatttcattatatattcccgagtgaattgtagcataatttatatttctccttaatagcaagctttgagagttt

acatt gaaact gt act agt gt gcat tt t gagcagat aaat t caagactgtttt
ttgtaattggatacatctcttatttcat agGAGAGATCCTGCATACAGTACATTCCCCCCAGAAGGTGTTTTCGT
AAATACGCTTGGCCTTCTGATCCTGGT GT TCGGGGCCCTCATTTTTTGGATAGT CACCAGACCGCAAT GGAAACG
TCCTAAGGAGCCAAATTCTACCATTCTTCATCC %E»A\GCAAGA\G<
GGCAACAACATGGACAAAT CAGAT TCAGAGT TAAACAGH TGAAGT AGCAGCAAGGAAAAGAAACT TAG
CTCLGGATGAGGCTGGGCAGAGATCTAOCATGTAAaat gt t gt agagat agagccat at aacgt cacgttt caaa

acta attagccat at gat aat t gggct at gt agt at caatatttactttaatc

acaaaggat ggtttcttgaaataatttgtattgatt gaggcct at gaact gacct gaat t ggaaaggat gt gat t

CYBRDI Key:
Promoter Region Coding Regions
Fragment 1 (BP1) Fragment 6 (BP6) Fragment 1 (Cyl)
Fragment 2 (BP2) Fragment 7 (BP7) Fragnent 2 (Cy2)
Fragment 3 (BP3) Fragment 8 (BPS) Fagment 3 (Oy3)

Variants: 1 = 5’UTR-1844C—G, 2 = 5’"UTR-1834G—A, 3 = 5’"UTR-1813C—T,

4 = G(T)sG(T)sG(T)aG(T)s repeat, 5 = 5’UTR-1459T—C, 6 = 5"UTR-1452T—C,
7=5"UTR-1272T—C, 8 = 5’"UTR-624G—A, 9 = 5’"UTR-238A—G, 10 = 5’UTR-167C—G, 11
= 5"UTR-163G—A, 12 = IVS2+8C—T, 13 = S266N
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HJV promoter sequence
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agaagagt gct at gagggcct ct agact ct gt at t aaaat agagccaact ggt aaagat ggct t agt gat t gt gt
tggttattact gagt gt caatttgattggatt gaaggat acaaagt att gat cct gggt gt gt ct gt gagggt gt
t gccaaaagaaat t aacat t t gagt cagt gggct gggaaaggcagat ccaccct t aat ct gggt gagcacaat ct
aatt cact gccagcacagct agaat aaaaagcaggcagaaaaat at gaaaggagagact ggc@ft agcct cccag

cct agatiatttietieceatigetiggat gct t cct gcecct t gaacat cagact ccaagttcttcaatttt gagact ga
gact ggct ct cctt gccecct caagct t gcagacagcect act gt gggaccct gt gat cgt gt aagt t aat act t aa

taaattcccctttatttatat gt ct acct at at agat at ccat at ct at at agat at t aat aaat ct agagagac
agaaagcagact ggt gatggccagt ct agat ggct agat agat agacat ggat at agat at agat ct ct at at ag
at agaggt agat acagat at agat at at gccctattagttct gttcct ct agagaaccct aat acag!
gaccgta

>
tttggaat cggt cet ¢
fTtogaat cagt

c{t gttaatttcacttggcaagt act aaaagat gat gat ct cagat at acct at ggct gcaaaaacat gacat ggc

taaatcccttggttgcagtatctcttttcttttttaaggggogt gggggggcygggt ct cact gt t gcccagget g

gagt gcaat ggcgt t at [ - 22ct cct gcget caagt gaccct cct ge

Baagiigelgacat t t t gcaat at t t at ggt cacaagattat gtt at t ccat aaaagt at cttt ct gaggct aggce

at gt t ggt t cacactt gt aat cccagcact ct gagaggct ga aaggagt t caag

accagcct ggt caacat agt gag NN - o = 29y 2gggagggago@agggagggagt
gaggaaggaaggaaggaagg aag gaaggaaggaaggaaggaaggaaggaaggiaaaagt at at t t t t gaat ct

ttttctatttctccag:tctttctttagaagaattctatttccattcﬁttcttcacctctttgcctttgttag.

I A ———

t aaagt aat gaaaat ggagt aggt aggaggat agacagct gcaaggat ct gagct ggat agact gaacaaaccct

cat cct aagcaact cicagct cagat t t BlllCHCHENEEEOEMEEeH: t ¢ t t cot ccttct gaaat act ct gcaa

agat aggagaggggct aijEIEEEIEIEEEIEE- ct t at t caaagt cagct acct cct agat act at ct gt
agaacct aaat gt aat att at ggt aaat gaaaggt at ccaat t gcccact gt aat t

ttt aaaggccaggagct caacat t at t gaaaat gct ggagggct cacagagt caca

caagct ggaatt ggat at ccaacttgtctgtcatatttctctcctccctccct gact t<qgcact caat act ccat

at t c{ TNGHAANGENENAABEENER: cact cccccaact cecacaceet acceccaccaa

Bl aoct at tt tt aaaaccgt caact cagt agccacct ccct ccct get caget gt ccagt act ct ggccag

ccatatactcccccttccccccat accaaaccttct ct ggttccct gacct cagt gagacagcagccggect ggg
gacct gggggagaca%ggaggaccccct ggct ggagct gacccacagagt agggaat cat ggct ggagaat t gga
t agcagagt aat gt t t fAcEHeHIeaacaglaagiitaaaat gaaatt gcaattcctttaa
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Exon 1

t aaaggt at ccaat t gcccact gt aatt tt t aaaggccaggagct caacat t at t gaaaAT GCTGGAGEECTGCCTGGAGT
AGGCAGT GACCACAGAGTCACACAAGCTGGAAT TGGATATCCAACT TGTCTGTCATATTTCTCTCCTCCCTCCCT
GACTTGGCACTCAATACTCCATATTCTTTCTAATCCT CTAACCCT CCCCACT CCCCCAACTCCCACACCCTACCC
CCACCAACGT TCCTGGAATTTTGGACTTAGCTATTTTTAAAACCGT CAACT CAGTAGCCACCTCCCTCCCTGCTC
AGCTGI CCAGTACT CTGECCAGCCATATACT CEOOCTTOOOOOCATAOCAAAOCT TCTCTGGTTCCCTGACCTCA
GT GAGACAGCAGCCGECCT GEEGACCT GEEGRAGACACGRAGGACCCCCT GECTGGAGCTGACCCACAGAGT AGG
GAATCATGCCTGGAGAATTCGGATAGCAGAGTAATGT TTGACCTCTGGAAACAgL aagt caaaat gaaat t gcaat

tcctttaataagcttttatattgaagttagacttttataaaattacaaacacctacttggatgtctctcgtccaa

atgctgggat ctct ccct accaaggt gccccaat ctccatttctctttctgtcttatttctttct ggect ctgge
ctctagctttttgaagtttaattctctgtctctcctctggeagtcttagecctctctttaccttattacctcaag

Exon 2

ggcttaact gccacacttat agt tt gaggaact ccaat ct ccccaaattccagtctgttcatccttttcttgatc

tccccagattcactccacattatcctt ®caatcttcaattcttctctctctccat gt ccagccaaatttctttt

t t cagTCACTTACAGGGCT TCCGGTCAAAATTCACTAGGT AGGAGGGT CAT CAGCT GGGAAGAACCGGCGCCT GG
GAAACCTGGCTGGATAGGT AT GGGGGAGCCAGGCCAGT CCCCTAGT CCCAGGT CCTCCCAT GBCAGT CCCCCAAC
TCTAAGCACTCTCACTCTCCTGCTGCTCCTCTGIGGACAT (gt aaggaagggccagggaagggt t t ggggaaat ¢

t agagggt aggct gﬁ:t at gt aggggt gggcat gt gagcct gaat gagt gaggagagat aggcgct gagagt cccg

Exon 3
agat gt ggcaggct t acacact t t t agt aagacagccgagagaact agggact agggggt t gggggct ggggaag
gcccttagttaggttttaggaagget ggaaacccct gat gagat t t ggaagagt t at gagcaaact acact ccga
w ct gaggaccgt ct cacaat cctctcccttctgtctttagCTCATTCTCAATGCAAGATCCTCC
GCTGCAATGCCTGAGTACGTATCGTCCACTCTGAGCCTTAGAGGT GGEEGT TCATCAEGAGCACT TCGAGGAGGAG
GAGGAGGAGCECCEEEGT GRAGEEGT GEECTCTGECEECCTCTGICGAGCCCTCCGCTCCTATGCAECTCTGCACTC
GGCECACCECCCECACCTECCECEEEGACCTCECCTTCC

GACCTGATGATCCAGCA!
ATTCI-:C&GT ACATGCECATCGAAGACCT GATGATCCAGCACAACT GCTCCCECCAGEECCCTACAGCCC
CTOC000E00C0GEAE0000G00CT T OCAGEOGOGEGECT OCEROCT OCCT GOOCOGEAC CTTGTGACT

ATGAAGGCCGGT TTTCCCGGECTGCATGGT CGTCCCCCEEEGET TCTTGCAT TGCGCT TCCT TCGEGEGEACC
>

4_
(iCCATGT GCGCAGCTTCCACCATCACTTTCACACAT GCCGT GT CCAAGGAGCT TGECCTCTACTGGATAATGACT
TCCTCTTTGI CCAAGCCACCAGCT CCCCCAT GECGT TGEEEECCAACGCTACCGCCACCCGGAAGE caggceact

<
caatcttccttccgat ccacct cat cattcctccccatccccact att caacagca
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Exon 4
tttccctctcct aggaagtt gccacgat t aagt agagagggggt t aagt agggat gaggt aat act ggaacat aa

at aggagaaggga >t agtcctgcat ct ctactt ggat cagat ct ct aact at gt at
gaggt ct gat t ggggggaagat gcact gaacccaaaat gaactgttttccctctt gt cct cacagCTCACCATCA

TATTTAAGAACATGCAGGAATGCATTGATCAGAAGGT GTATCAGCCTGA €t CTTTG

AAGATGGTTCT AT CAAT GGAGGT GACCGACCT GGGGGAT CCAGT TT GTCGATT CAAACT GCTAACCCT G A

AGCTGOCTACAT TGGCACAACTATAAT CATTCGGCAGACAGCT GBGCACCT CTCCT TCTCCA
m’GGTAGCAGAGGATGTg;OCAT&;OCTTCTCAGCTGAACAGGAOCTGCAGCTCTGTGTT&;&;&;TGOOCTC
CAAGTCAGOGACTCTCTCG GGGAGCTATAACCAT TGATACT GOCAGACGGCTGTGCA
AGGAAGGECTTCCAGT COAAGAT CETTACTTCCATTOCTGTGTCTTTGATGT TTTAATTTCTGGTGATOCCA T
T ST AT TOATGGCAGCACT GGAGGAT GOCCGAGCCT TCCTGCCAGACT TAGAGAAGCTGLAT CTCT (X
T TGEGGTTCCTCTTTCCT CAGCAACCCT CTTAGCT CCACT CCTTTCTGGGCTCTTTGTTCTGTG

'ﬂ'TGCATTCAGT AAGGCGCGACCATCAGT CCCATTACTAGT TTGGAAATGAT TTGGAGATACAGAT TGECATAGAAG

AATGTAAAGAATCATTAAAGG > GIGAAACAATGACATTATCCAGAGT
CTGCATTCC

CAGATGAGGCTGCAGTCCAGGGTTGAAATTATCACAGAATAAGGATTCT GGGCA<

GGATCTCTGTS

AT CTCTGTGGGEGCTCTTCACCAATTTTTCCAGCCTCATTTATAGTAAACAAATTGTTCTAATCCATTTACTGC
AGATTTCACCCTTATAAGT TTAGAGGT CATGAAGGT TTTAATGATCAGTAAAGATTTAAGGGT TGAGATTTTTA
< GAAGACATGATCATTAGCCATAAGAAACT CAAAGGAGG
TGTGTGTGTAAGGTATGTTCTgC

AAGACATAATTAGGGAAAGAAGTCTATTTGATGAATATGTGTGTGTAAGGTA?GTTCTGCTTTCTTGATTCAAAA
ATGAAGCAGGCATTGTCTAGCT CTTAGGT GAAGGGAGT CTCTGCTTTTGAAGAAT GGCACAGGT AGGACAGAAGT
ATCATCCCTACCCCCTAACTAATCTGI TATTAAAGCTACAAATTCTTCACACCATCect ct gt t gect at gt t gaa
tctctttacagat gcttgaaat ggagt aaat gcaat gt gtt cact ccact ;aaagagggct cggaagt at cagat

act gtt gct at ct cagggagt tt acaggct at t ggagagacaaaaccaat t cacat gaaagagt gat gagt gt gt

HJV Key:
Promoter Region Coding Regions
Fragment 1 (JP1) Fragment 6 (JP6) Fragment 1 (J1)
Fragment 2 (JP2) Fragment 7 (JP7) Fragment 2 (J2) Fragment 4C (J40)
Fragment 3 (JP3) Fragment 8 (JP8) Fragnent 3A (J3A) | Fragment 4D (J4D)
 Fragment4 (JP4) | [ECHCHIDNOED) Fragment 3B (J3B)
DEEESES $ | Frogment 10(JP10) Fragment 3C (J3Q)

Fragment 4 G (J40Q

Fragment 4H (J4H)

Variants: 1 = 5’UTR-1406C—A, 2 = 5’UTR-542A—G, 3 = (AAGQ) repeat,
4 =5"UTR-534G—T, 5 =5UTR-530G—T
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APPENDIX 3: GENOTYPES OF TWO INDIAN PROBANDS AND
EXTENDED FAMILY MEMBERS.

The genotypes of the two Indian probands and extended family members are provided in the
tables below. The genotypes are denoted WT when the individual presented with the
homozygous wild type genotype, HET when they were heterozygous and HOM when they
presented with the homozygous variant genotype. The genotypes of some of the individuals
are not indicated. Genotypes were omitted for three possible reasons: either 1) amplification
of the relevant DNA fragment was unsuccessful and mutation analysis was incomplete, 2)
DNA fragments were successfully amplified and HEX-SSCP analysis was performed but the
genotype of the individual was unclear or 3) results from HEX-SSCP, RFLP or semi-
automated DNA sequencing analysis were ambiguous and genotypes were not consistent with
the haplotypes present in the family. The genotypes of these individuals will be clarified
employing semi-automated DNA sequencing analysis. The reason for the ambiguity (option

1, 2 or 3) is colour coded and the key is given at the end of this appendix.

HMOXI gene
Variants
Sample [ 5'UTR-495A/T | IVS2+4T/C [ IVS2 -19C/T
Proband 1 HET HET WT
Proband 2 HET HET HET
I:2 WT HET WT
I:4 HET WT WT
I:5 HET WT WT
I:6 HET WT WT
I:7 HET WT wWT
1:1 HOM WT wWT
m2 | v WT
n:3 HOM WT wWT
I:4 WT WT WT
n:5 WT wWT wWT
m:z [  HET HET
I:8 HET HET HET
1n:9 HET - wWT
1n:10 HET HET HET
m:12 [ HET HET
1:14 HOM WT WT
1n:16 HOM WT WT
n:17 HOM WT WT
1:19 HOM WT WT
11:20 HOM WT WT
1:21 HOM WT WT
:22 WT WT WT
1:23 WT wWT wWT
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HFE gene
Variants

Sample [ 5'UTR-1206C/G | 5'UTR-840T/G | 5'UTR-467G/C | H63D

Proband 1 HET HET HET WT

Proband 2 HET HET HET WT
I:2 WT HET WT -
I1:4 WT HET WT WT
I1:5 HET WT HET WT
11:6 HOM WT HOM -
1:7 HET WT HET WT
n:1 HET WT HET HET
1:2 HET WT HET HET
n:3 WT - WT WT
1:4 WT HET WT WT
1:5 WT WT WT WT
n:7 HET WT HET WT
:8 HET WT HET WT
1:9 HET WT HET WT
1n:10 WT - WT WT
n:12 HET - WT WT
I:14 WT WT WT WT
In:16 WT WT WT WT
n:17 WT WT WT WT
1:19 HOM WT HOM HET
1:20 HET WT HET WT
n:21 WT - WT HET
:22 WT WT WT WT
I1:23 WT WT WT WT
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HAMP gene
Variant
Sample 5'UTR-335G/T

Proband 1 HOM
Proband 2 HOM
11:2 HET
I1:4 HET
I1:5 HET
11:6 HET
1:7 WT
1n:1 HET
1:2 HET
1:3 HET
I:4 WT
:5 HET
1:7 HET
111:8 HET
1:9 HET
11:10 HET
1:12 HET
i:14 WT
111:16 WT
n:17 HET
1:19 WT
111:20 HET
1:21 WT
111:22 WT
111:23 HET
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SLC40A1 gene
Variants
Sample | 5'UTR-1355G/C | 5'UTR-750G/A | 5'UTR-593 C/T | 5'UTR-501 T/C | (CGG) repeat * | V221V
Proband 1 HET HOM HOM HOM 8 HET
Proband 2 HET HET HOM HOM 8 WT
11:2 HET HOM HOM HOM 8 HET
I:4 HOM HET HOM HOM 8 HET
I:5 HET HET HOM HOM 8 WT
11:6 HET HOM HOM HOM 8 HET
.7 HOM HET HOM HOM 8 HET
1 HOM HET HET HOM 7/8 HET
2 WT HET - - 7/8 HET
:3 HET HET HET HOM 7/8 HET
4 HOM HOM HOM HOM 8 HET
5 HET HOM HOM HOM 8 HET
.7 HET HET HET HOM 7/8 WT
8 HOM HET HOM HOM 7/8 HET
:9 HET WT HET HOM 7/8 HET
:10 HET HET HET HOM 7/8 WT
:12 HOM HET HET HOM 7/8 HET
:14 HET HET HOM HOM 8 WT
:16 HOM HET HOM HOM 8 HET
:17 HET HET HOM HOM 8 HET
:19 HET HOM HET HOM 7/8 WT
111:20 - - HOM HOM 8 WT
1:21 HET WT HET HOM 7/8 HET
1:22 HET WT HET HOM 7/8 HET
.23 HOM HET HOM HOM 7/8 WT

* The genotype of each individual is indicated with the number of (CGG) trinucleotide repeats presented.
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eadar oy jo (4(1)D(1)D1)D) T d1RIre pue (A(1)D(1)D(1)D4(1)D) T A[RI[e YIM pjuasaid oym S[enpIAIpUI pAYeoIpul I HH

LM 13H 13H «L3H LM LM 13H ez
LM 13H 13H «L3H LM 13H WOH zz:
LM LM 13H «L3H LM 13H WOH A
13H 13H 13H «L3H 13H = 13H 0z:1m
LM LM LM 5(1)9%(1)9%A1L)98(1)D LM WOH WOH 6L:m
LM 13H 13H «L3H LM 13H WOH Zm
1M 13H 1M 5(1)9%(1)9%1L)98(1)D 1M 13H NOH aL:
LM 13H 13H «L3H LM 13H WOH AR

- 13H LM 5(1)9%(1)9%1L)98(1)D LM WOH WOH zLm
1M 13H INOH 5(1)9%1)9%(1)D 13H 1M INOH oL:
13H = 13H «L3H 13H 13H NOH 6:1l
1M - INOH 5191919 13H 1M NOH g:l
13H 13H INOH 5(1)9%1)9%(1)D 13H 1M NOH L

- 13H LM 5(1)9%(1)9%A1L)98(1)D LM WOH WOH CHI]
13H 13H 1M 5(1)9%(1)9%1)98(1)D 1M INOH NOH Al
LM 13H 13H «L3H LM 13H WOH el
1M 1M INOH 5191919 1M 1M NOH z:
LM - - - - - - ]
1M 13H 1M 5(1)9%(L)9%L)98(1)D 1M 13H 13H L

= 13H 1M 5(1)9%(1)9%1)98(1)D 1M 13H 13H 9:ll
LM = 13H «L3H LM 13H NOH Gl
1M 13H 1M 5(1)9%(1)9%A1)98(1)D 1M 13H 13H 1l
13H 13H 13H «L3H LM 13H NOH rAd|
13H 13H 13H «L3H LM 13H WOH Z pueqoud
13H 13H 13H «L3H LM 13H WOH | pueqo.id

2/LZ.Z1-¥1NS | 2/12svi-¥1ns | o/L6svi-dins | (Lo (Do(Lo%(L)o | Loci8L-d1ns | viovesi-d1nS | 9/ovy8L-d41n.S ajdweg
sjueLiep
uds 1qYIAD

¢ XIANHddV
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CYBRDI gene (Cont.)

Variants
Sample 5'UTR-624G/A | 5'UTR-238A/G | 5'UTR-167C/G | 5'UTR-163G/A S266N
Proband 1 HET HET HET HET HET
Proband 2 HET HET HET HET HET

1:2 HET HET HET HET HET
1:4 HET WT WT WT HET
I1:5 HET HET HET HET HET
11:6 HET WT WT WT HET
n:7 HET WT WT WT HET
i:1 HET HET HET HET WT
l:2 WT HOM HOM HOM HET
1i:3 HET HET HET HET WT
1l:4 - WT WT WT -
Hl:5 HET - WT WT -
n:7 - HOM HOM HET -
11:8 - HOM HOM HET -
11:9 HET HET HET WT HET
1:10 - HET HOM HET -
n:12 HOM WT WT WT -
:14 HET HET HET HET HET
11:16 HET WT WT WT HET
Hn:17 HET HET HET HET HET
11:19 - WT WT WT -
111:20 WT HET HET WT HOM
11:21 HET HET HET HET HET
11:22 HET HET HET HET HET
11:23 HET HET - - HOM
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HJV gene
Variants
Sample | 5'UTR-1406C/A | 5'UTR-542A/G | (AAGG) repeat * | 5'UTR-534G/T | 5'UTR-530G/T

Proband 1 HET HET 12 HET HET

Proband 2 HET HET 12 HET HET
11:2 HET HET 11 HET WT
11:4 HET HET 11/12 HET WT
I1:5 HET HET 12 HET WT
11:6 HET - 11/12 HET HET
:7 HET HET 12 - HET
11 HET WT 12 WT -
11:2 HET WT 12 WT HET
1:3 - HOM 11/12 HET HET
1:4 HOM HOM 11/12 HET HET
11:5 HOM - - - -
1:7 HET HOM 12/13 HET HET
11:8 HET HOM 12/13 HET HET
11:9 WT HET 12/13 HET HET
11:10 WT HET 12/13 HET HET
11:12 HET HOM 12/13 HET HET
1:14 HET WT 11 WT WT
111:16 HET WT 11 HET WT
H:17 WT - 12 WT HET
11:19 HET HET 11/12 WT HET
111:20 - - 11 HET WT
11:21 HET HET 11/12 - WT
111:22 HET HET 11/12 - WT
111:23 HET WT 12 HET HET

* The genotype of each individual is indicated with the number of (AAGG) tetranucleotide repeats presented.

Key to reason for omission of genotypes:

(1) Unsuccessful amplification

ﬁ (2) HEX-SSCP analysis was performed but the results were unclear

: (3) Inconsistent genotype
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APPENDIX 4: ABSTRACT OF WORK PRESENTED AT 2006 SASHG
CONGRESS.

Oral presentation: 12" biennial Congress of the South African Society of Human Genetics

(SASHG) congress, Golden Gate — March 2007.

IRONING OUT HAEMOCHROMATOSIS: A STUDY OF AN INDIAN FAMILY

MA Hallendorff', RJ Hift’, MG Zaahl'
'Department of Genetics, University of Stellenbosch, South Africa
*Department of Medicine, University of Cape Town, South Africa

Hereditary haemochromatosis (HH) is a disease characterised by iron overload. Excess iron
can cause damage to various tissues and organs if the disease goes untreated. Most cases of
HH in Caucasians of European descent are caused by mutations in the haemochromatosis
(HFE) gene. Various other genes have also been found to play a role in other forms of
haemochromatosis. The disease demonstrates genetic heterogeneity. This heterogeneity has
hinted at the possibility of modifier genes altering the disease phenotype. In this study an
Indian family with classic clinical symptoms of HFE haemochromatosis, but no HFE
mutations, was investigated. The two probands, a brother and sister, both have typical
hereditary haemochromatosis but do not have the common C282Y or H63D mutations in the
HFE gene. The probands also do not have any of the less common mutations in the HFE
gene. Seven genes involved in iron metabolism were screened (promoter and coding region).
These genes are the genes that encode cytochrome b reductase 1 (CYBRDI), heme oxygenase
1 (HMOXI), hepcidin antimicrobial peptide (HAMP), hemojuvelin (HJV), ferroportin 1
(SLC40A1), ceruloplasmin (CP), and the high iron gene HFE. Mutation analysis of these
genes was performed using polymerase chain reaction (PCR), heteroduplex single strand
conformational polymorphism (HEX-SSCP) detection and semi-automated DNA sequencing
techniques. These procedures were applied to identify any known and/or novel variations in
the genes that may be associated with a predisposition to hereditary haemochromatosis in
non-Caucasian individuals. Various mobility shifts were identified by HEX-SSCP analysis.
Variants were confirmed in the HJV, HAMP, HMOXI, SLC40A1, and HFE promoter regions
using bi-directional semi-automated DNA sequencing. Variants were also identified in the

coding regions of the HMOX1, SLC40A41, CYBRDI and HJV genes. The extended family of
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the probands will be screened for the various variants found to define haplotypes that may
contribute to the pathogenesis of haemochromatosis in this family. Our findings could

contribute to elucidating the cause of non-HFE related iron-overload in non-Caucasian

populations.
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