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                                                                                                                                  SUMMARY 

 

SUMMARY 
 
Iron metabolism disorders comprise the most common disorders in humans. Hereditary 

haemochromatosis (HH) is a common condition resulting from inappropriate iron absorption. 

The most common form of the disease (Type 1) is associated with mutations in the HFE gene. 

The C282Y homozygous genotype accounts for approximately 80% of all reported cases of 

HH within the Caucasian population. A second HFE mutation, H63D, is associated with less 

severe disease expression. The C282Y mutation is extremely rare in Asian and African 

populations. The H63D mutation is more prevalent and has been observed in almost all 

populations.  

 

Iron overload resulting from haemochromatosis is predicted to be rare in Asian Indian 

populations and is not associated with common HFE mutations that are responsible for HH in 

the Caucasian population. The aberrant genes associated with HH in India have not yet been 

identified. 

 

The present study attempted to identify variants in six iron regulatory genes that were 

resulting in the Type 1 HH phenotype observed in two Asian Indian probands from a highly 

consanguineous family.  

 

The promoter and coding regions of the HMOX1, HFE, HAMP, SLC40A1, CYBRD1 and HJV 

genes were subjected to mutation analysis. Gene fragments were amplified employing the 

polymerase chain reaction (PCR) and subsequently subjected to heteroduplex single-strand 

conformational polymorphism (HEX-SSCP) analysis. Samples displaying aberrations were 

then analysed using bi-directional semi-automated DNA sequencing analysis to identify any 

known or novel variants within the six genes. Variants disrupting restriction enzyme 

recognition sites were genotyped employing restriction fragment length polymorphism 

(RFLP) analysis.  

 

Mutation analysis of the six genes revealed 24 previously identified variants, five novel 

variants (HFE: 5’UTR-840T→G, CYBRD1: 5’UTR-1813C→T, 5’UTR-1452T→C, 5’UTR-

1272T→C; HJV: 5’UTR-534G→T, 5’UTR-530G→T), one previously described 
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microsatellite and two novel repeats. Variants identified within the SLC40A1, CYBRD1 and 

HJV genes do not seem to be associated with the iron overload phenotype.  

 

A previously described HAMP variant (5’UTR-335G→T) was observed in the homozygous 

state in both probands. This variant seems to be the genetic aberration responsible for iron 

overload in this Indian family. The severe juvenile haemochromatosis phenotype usually 

associated with HAMP mutations, was not exhibited by the two Indian probands. Their 

symptoms resembled those observed in classic Type 1 HH. It is suggested that variants 

identified in the HMOX1 and HFE genes are modifying the effect of the HAMP variant and 

resulting in the less severe disease phenotype. Although this variant has only been identified 

in one Indian family, it could shed some light in the hunt for the iron-loading gene in India. 
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Opsomming 
 

Oorerflike hemochromatose (OH) is ‘n algemene siektetoestand wat ontstaan as gevolg van 

oneffektiewe opname van yster in die liggaam. Die mees algemene vorm van die siekte (Tipe 

1) word geassosieer met mutasies in die HFE-geen. Die C282Y homosigotiese genotipe is 

verantwoordelik vir ongeveer 80% van alle gerapporteerde gevalle van OH binne die 

Kaukasiese bevolking. ‘n Tweede HFE mutasie, H63D, word geassosieer met minder ernstige 

siekte simptome. Die C282Y mutasie is besonder skaars in Asiese en Afrika bevolkings. 

 

Daar word bespiegel dat oorerflike ysteroorlading as gevolg van hemochromatose skaars is in 

Asiese Indiër bevolkings en word nie geassosieer met algemene HFE mutasies wat 

verantwoordelik is vir OH in Kaukasiese bevolkings nie. Die abnormale gene wat wél 

geassosieer word met OH in Indië is tot dusver nog nie identifiseer nie. 

 

Die doel van hierdie studie was om die variante in ses yster-regulerende gene te identifiseer 

wat die Tipe 1 OH fenotipe in hierdie familie veroorsaak. Hierdie fenotipe is waargeneem in 

twee Asies Indiese familielede afkomstig van ‘n bloedverwante familie. 

 

Die promotor en koderingsareas van die HMOX1, HFE, HAMP, SLC40A1, CYBRD1 en HJV 

gene is gesif vir mutasies. Geen fragmente is geamplifiseer met behulp van die polimerase 

kettingsreaksie (PKR) en daarna aan heterodupleks enkelstring konformasie polimorfisme 

(HEX-SSCP) analise blootgestel. PKR produkte wat variasies getoon het, is daarna 

geanaliseer deur tweerigting semi-geoutomatiseerde DNS volgorde-bepalingsanalise om 

enige bekende of nuwe variante binne die ses gene te identifiseer. Variante waar restriksie 

ensiem herkenningsetels teenwoordig is, is verder analiseer met behulp van die restriksie 

fragment lengte polimorfisme (RFLP) analise sisteem. 

  

Mutasie analise van die ses gene het 24 bekende variante, vyf nuwe variante (HFE: 5’UTR-

840T→G, CYBRD1: 5’UTR-1813C→T, 5’UTR-1452T→C, 5’UTR-1272T→C, HJV: 

5’UTR-534G→T, 5’UTR-530G→T), een bekende herhaling en twee nuwe herhalings gewys. 

Variante wat binne die SLC4041, CYBRD1 en HJV gene geïdentifiseer is, blyk nie om by te 

dra tot die ysteroorladings-fenotipe nie. 
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Die bekende HAMP variant (5’UTR-335G→T) is waargeneem in die homosigotiese toestand 

in beide van die aangetaste individue. Hierdie variant blyk om die genetiese fout te wees wat 

verantwoordelik is vir die ysteroorlading in die betrokke Indiese familie. Die erge juveniele-

hemochromatose fenotipe wat meestal geassosieer word met HAMP-mutasies, is nie 

waargeneem in hierdie familie nie. Hul simptome kom ooreen met die simptome van die 

klassieke Tipe 1 OH. Dit blyk moontlik te wees dat die variante identifiseer in die HMOX1 en 

HFE gene die impak van die HAMP variant modifiseer en die matiger siekte-fenotipe tot 

gevolg het. Alhoewel hierdie variant slegs in een Indiese familie geïdentifiseer is, kan dit lig 

werp op die soektog na die veroorsakende ysterladingsgeen in Indië. 
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1. LITERATURE REVIEW 
 

1.1 Introduction to Hereditary Haemochromatosis (HH) 

 
Hereditary haemochromatosis (HH) (OMIMTM 235200) is a genetically and clinically 

heterogeneous condition that results from inappropriate dietary iron absorption. There have 

been great advances in the understanding of this condition since it was first described in 1865 

as a “classic triad” of cirrhosis of the liver, diabetes mellitus and bronzing of the skin 

(reviewed by Limdi and Crampton, 2004). In 1889, von Recklinghausen coined the term 

haemochromatosis, describing a condition resulting from disrupted iron absorption and the 

resultant tissue damage. It was then Sheldon (1935) who explained the hereditary nature of 

the disease. Simon and colleagues (1976) demonstrated the close association between 

haemochromatosis and the major histocompatibility complex (MHC). Later they refined their 

findings and demonstrated that HH showed an association with the human leukocyte antigen 

(HLA)-A3 complex. Subsequently, haemochromatosis was linked to HLA-A on the short arm 

of chromosome 6 (Simon et al, 1976). Finally, in 1996, Feder and his colleagues identified 

the gene implicated in HH (Feder et al, 1996). The gene was initially named HLA-H for 

haemochromatosis but was then renamed HFE by the WHO Nomenclature Committee for 

Factors of the HLA system (Bodmer et al, 1997).  

 

The identification of the HFE gene and the causative variants in this gene has greatly 

improved the understanding of the HH condition. Feder and his colleagues (1996) identified 

the C282Y variant in the HFE gene and found that the vast majority of HH patients were 

homozygous for this variant. In patients homozygous for the C282Y variant, the iron overload 

phenotype is variable. Basset and his colleagues (1986) noted that iron stores differed by as 

much as ten-fold amongst homozygous individuals (reviewed by Bomford, 2002). Although 

not fully understood, environmental factors or genetic modifiers of the C282Y variant can 

partly explain this anomaly. The extent to which individuals are affected seems to depend on 

the severity of the genetic defect, age, sex, environmental stimuli such as dietary iron intake, 

the extent of iron loss due to other processes such as blood donation, and the presence of other 

diseases or toxins e.g. Hepatitis C virus, excess ethanol intake, and porphyria cutanea tarda 

(Bothwell and MacPhail, 1998; Chapman et al, 1982; di Bisceglie et al, 1992). The type and 

amount of iron that individuals consume could influence phenotype but because most HH 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER ONE                                                                                  LITERATURE REVIEW 

 3 
 

patients do not take iron supplements, this does not seem to be an important modifier. The 

effect of alcoholism on the HH phenotype has always been recognised by researchers 

(reviewed by Fletcher and Powell, 2003). In 1935, Sheldon noted that one fifth of all HH 

patients had a history of alcoholism (reviewed by Beutler, 2003). The effect of alcohol on the 

HH phenotype is not clear though because it has been reported that some non-drinkers and 

people who hardly ever consume alcohol are affected to the same degree as more regular 

alcohol consumers. This may indicate that alcohol is a secondary factor and not the only or 

most important modulator of C282Y expression. 

 

Several groups have tried to explain the role that genetic modifiers play in the variability of 

the HH phenotype. The hepcidin antimicrobial peptide (HAMP) gene is of particular interest 

as it has been found to modulate the phenotype of the C282Y variant in mice. Nicolas and 

colleagues (2004) intercrossed Hfe-knockout mice (Hfe-/-) with mice with one normal HAMP 

gene (Usf2+/-). They noted that liver iron accumulation was more severe in the Hfe-/-Usf2+/- 

mice than in the Hfe-/- mice. They therefore concluded that haploinsufficiency of hepcidin 

does intensify the HH phenotype and provides a genetic explanation for the phenotypic 

variability of HH. Jacolot and colleagues (2004) performed similar experiments and supported 

these conclusions when they identified HAMP variants in the heterozygous state in five 

patients who were also homozygous for the HFE C282Y variant. These variants included one 

that replaced arginine with glycine at amino acid position 59 (R59G), a second that replaced 

glycine with aspartic acid at amino acid position 71 (G71D) and a third that created a 

premature stop codon at amino acid position 56 (R56X). The iron indices of these five 

patients were among the most elevated of the study cohort. Based on these observations they 

concluded that variants in the HAMP gene could exacerbate the phenotypic expression of the 

C282Y homozygous phenotype. While screening the same study cohort as Jacolot et al 

(2004), Le Gac and colleagues (2004a) identified nine C282Y homozygotes who were also 

heterozygous for missense mutations in the hemojuvelin (HJV) gene. These nine individuals 

had significantly higher mean serum ferritin (SF) levels and thus HJV is implicated as another 

modifier of HH expression. Hofmann et al (2002) performed mutation analysis on the 

transferrin receptor 2 (TFR2) gene in two male siblings who were homozygous for the C282Y 

variant but whose phenotypes differed. They identified a variant within the TFR2 gene in the 

brother with liver fibrosis and concluded that TFR2 could function as a modifier for the 

penetrance of the HH phenotype when inherited in conjunction with the C282Y homozygous 

genotype. Although a great deal of progress has been made, further research is necessary to 
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identify other genes that may modify the HH phenotype and in part, explain the phenotypic 

heterogeneity and incomplete penetrance of this condition.  

 

After the identification of the HFE gene (Feder et al, 1996) it was found that not all 

haemochromatosis patients were carriers of HFE variants and this lead to the discovery of 

other forms of haemochromatosis. Classic or Type 1 HH is the most common form which is 

inherited in an autosomal recessive manner and is associated with variants in the HFE gene. 

The second and more severe type of HH is juvenile haemochromatosis (JH) or Type 2 HH. JH 

is also an autosomal recessive disorder and is associated with aberrations in the HJV (Type 

2A) and the HAMP genes (Type 2B). Variants in the TFR2 gene are responsible for Type 3 

HH, which is also inherited in an autosomal recessive manner. Type 4 HH or the ferroportin 

disease is inherited in an autosomal dominant manner and results from variants in the solute 

carrier family 40 (iron-regulated transporter) member 1 (SLC40A1) gene. The second 

autosomal dominant form of HH is Type 5 HH. This disorder has only been identified in one 

family and is associated with aberrations in the H-ferritin gene. Another condition resulting 

from iron overload has been denoted African iron overload and affects people of African 

descent but the causative gene has yet to be identified. All of these disorders result from 

aberrations that alter iron metabolism and/or homeostasis, which leads to iron overload and 

they will be discussed further. 

 

1.1.1 HFE-associated HH (Classic or Type 1) 

 

1.1.1.1 Pathophysiology  

 

Type 1 HH (OMIMTM 235200) is an autosomal recessive condition that affects approximately 

1 in every 100 South Africans of northern European descent (Meyer et al, 1987; de Villiers et 

al, 1999) and approximately 1 of every 200 Caucasian individuals of northern European 

descent worldwide (Merryweather-Clarke et al, 1997). The disruption in iron absorption in 

HH patients leads to iron overload and the excess iron is deposited in tissues such as the liver, 

heart, pancreas, joints and pituitary gland (Witte et al, 1996). Iron is deposited in the 

hepatocytes with a decreasing gradient from periportal zone to centrilobular area and although 

typical is not unique to HH, but relative sparing of Kupffer cells is typical of HH and not seen 

in individuals with secondary iron overload.  
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Iron can readily exchange electrons in aerobic conditions and is thus essential for basic 

cellular functions such as cellular respiration, DNA synthesis, and oxygen transport. The 

excess iron in the tissues of HH patients can, however, be hazardous as it catalyses the 

conversion of hydrogen peroxide to free radical oxygen species that attack cell membranes, 

proteins and DNA (Andrews, 1999). 

 

Iron overload occurs relatively slowly in HFE-associated haemochromatosis. By the fourth 

decade of life, patients show no symptoms but have accumulated 10 to 20 grams of iron in 

their parenchymal tissues. In men clinical expression of HH usually presents at 40 to 60 years 

of age. Due to the regular loss of iron through menstruation, pregnancy and lactation, iron 

overload is delayed by approximately one decade in women. The symptoms of female 

patients usually become evident only after menopause. This may explain why 2-10 times 

more men are afflicted by HH than women (Moirand et al, 1997).  

 

The rate at which iron accumulates in the tissues and the severity of clinical symptoms differ 

noticeably in each patient. Early symptoms include unexplained fatigue, weakness, joint pain, 

heart palpitations, weight loss, loss of libido, depression and abdominal pain (Adams et al, 

1997). Because these symptoms are indefinite, HH can go undiagnosed at this stage. When 

the condition proceeds untreated it may result in more severe symptoms such as liver 

cirrhosis, arthritis, skin hyperpigmentation, diabetes mellitus, hypopituitarism, hypogonadism, 

chronic abdominal pain, cardiomyopathy, primary liver cancer or an increased risk of 

infection by certain bacteria (Adams et al, 1997).  

 

1.1.1.2 Genetic mutations associated with Classic HH 

 

In the study by Feder et al (1996) two missense mutations were initially identified in patients 

with HH. The first resulted in a single base transition resulting in a change from cysteine at 

amino acid position 282 to tyrosine (C282Y) and the second was a change of histidine to 

aspartate at amino acid position 63 (H63D) of the gene. Of the 178 HH patients studied, 148 

(83%) were homozygous for the C282Y mutation and 8 (4%) were compound heterozygotes 

for the C282Y and the H63D mutation. A third variant in HFE replaces the amino acid serine 

with cysteine (S65C) and is present in approximately 1.5% of European individuals (Mura et 

al, 1999; Beutler et al, 2000). At first described as a polymorphism, the S65C/C282Y 

genotype may predispose individuals to a milder form of HH. Other variants have been 
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identified in the HFE gene in individuals with HH, including one that results in the 

replacement of isoleucine at amino acid position 105 with threonine (I105T) and another that 

results in the replacement of glycine with arginine at amino acid position 93 (G93R) which 

were identified in two families from Alabama (Barton et al, 1999). Two other variants were 

identified in the Italian population including one that causes glycine to be replaced with 

threonine at amino acid position 168 (G168T) and the second where alanine replaces glycine 

at amino acid position 169 (G169A) (Piperno et al, 2000). How these variants disrupt iron 

homeostasis still needs to be elucidated. Variants in the HFE gene are often inherited together 

with the C282Y heterozygous or homozygous genotype or with the H63D variant.  

 

The common HFE mutation, C282Y, disrupts an S-S bond in the α3 domain of the protein. 

This domain is essential for the noncovalent interaction between HFE and β2-microglobulin 

and the C282Y variant abolishes this interaction leading to decreased presentation of HFE on 

the cell surface (Waheed et al, 1997). The role of H63D is still not certain but interestingly, it 

seems to form a salt bridge with a residue in the α2 domain that binds HFE to transferrin 

receptor 1. When HFE is bound to β2-microglobulin it forms an association with TFR1 in the 

duodenal precursor cell membrane and assists in the transport of transferrin-bound iron into 

these cells. Disruption of this function could result in increased iron absorption from the 

duodenal lumen.  

 

The C282Y homozygous genotype results in the most severe form of Type 1 HH followed by 

the C282Y/H63D and H63D/H63D phenotypes. Although approximately five of every 1000 

individuals is homozygous for the C282Y variant, this variant seems to display incomplete 

penetrance. The proportion of HH patients homozygous for the C282Y variant differs in 

different populations; it ranges from approximately 64% in an Italian study (Carella et al, 

1997) to 100% in an Australian study (Jazwinska et al, 1995) and is absent from the Asian 

and African populations (Merryweather-Clarke et al, 1997; Roth et al, 1997). Although most 

individuals of northern European descent presenting with clinical symptoms of HH are 

homozygous for the C282Y variant, determination of the C282Y allele frequency has shown a 

large discrepancy between the number of C282Y homozygotes and the number of patients 

diagnosed with HH (Bomford, 2002). Also, individuals in the general population have been 

found to be homozygous for the C282Y variant and do not exhibit HH symptoms (reviewed 

by Adams, 2000). Thus the C282Y variant exhibits incomplete penetrance. Environmental 
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and genetic modifiers of the HH phenotype could explain why not all C282Y individuals are 

affected and not all homozygotes are affected to the same extent. 

 

Merryweather-Clarke et al (2003) reported digenic inheritance of HH in two families. One 

proband in the first family was heterozygous for the C282Y variant as well as a four base pair 

deletion in the HAMP gene that removes the last nucleotide of exon 2 that encodes 

methionine and the first nucleotide of intron 2 [Met50del IVS2+1(-G)]. The proband 

exhibited a severe form of HH similar to juvenile haemochromatosis. The Met50del IVS2+1(-

G) variant was absent from 321 control subjects. This variant disrupts the GT splicing 

acceptor site of the gene and produces a different open reading frame in exon 3. In the second 

family a less severe HAMP variant was identified (G71D). This variant was present in the 

control cohort and different ethnic groups. This variant could interfere in correct protein 

folding. Although true digenic inheritance is rare in HH, they suggest that mechanisms 

including digenic inheritance could be playing a role in the pathophysiology of HH and could 

explain the heterogeneity of the HH phenotype. The authors suggest that heterozygosity for 

HAMP variants, which disrupt its function in iron homeostasis, could modulate the phenotype 

of individuals heterozygous or homozygous for the C282Y variant in HFE. They also 

postulate that the severity of the HAMP variant will influence the severity of the iron overload 

phenotype. Therefore the C282Y variant is a necessary, but not the sole causative factor for 

the development of clinical symptoms of HH. 

 

1.1.1.3 Diagnosing Classic HH 

 

Although the discovery of the HFE gene has greatly modified diagnostic and screening 

approaches, one must remember that C282Y homozygosity alone does not necessarily mean 

that haemochromatosis will develop. The HH phenotype is determined by genetic, 

biochemical and clinical factors but there is no agreement between clinicians which factor or 

combination of factors defines HH. Diagnosis of HH is complicated by the variability of the 

HH phenotype but various tests have been developed to assist in the diagnostic process. These 

include biochemical (serum iron studies), genetic testing and liver biopsy (reviewed by 

Pietrangelo et al, 2003). Another method for assessing iron overload is by measuring the 

number of phlebotomies required to regain normal serum iron and ferritin levels. The most 

common biochemical tests used to assess body iron status are transferrin saturation percentage 

(TS%) (TS% = serum iron/total iron binding capacity × 100) and SF levels. In HH, iron 
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initially accumulates in the transferrin pool, which results in an increase in transferrin 

saturation (TS), and subsequently in the tissue parenchyma. As the iron is accrued in the 

parenchyma there is an accompanying increase in SF concentration. TS is usually elevated 

prior to symptom manifestation so it is an early indicator of the HH condition (Hanson et al, 

2001). TS cutoff values vary from 45-70% but it has been reported that values of 60% or 

more in men and 50% or more in women have an estimated sensitivity of 92%, specificity of 

93% and positive predictive value of 86% for detecting C282Y homozygous individuals with 

HH (Tavill, 2001). If TS is elevated and no other explanation for iron overload exists (e.g. 

chronic anaemias, liver diseases due to excessive alcohol consumption or viral infection), it 

may indicate that the individual has HH. Ferritin is an iron storage protein and SF 

concentration is a good estimate of total body iron stores (1 ng/ml = 10 mg stored iron) 

(McDonnel and Witte, 1997). SF levels, but not TS, are associated with clinical signs of HH 

and are higher for individuals with clinical manifestations of HH (Bradley et al, 1996). 

Ferritin values exceeding 200 µg/l in premenopausal women and 300 µg/l in men and 

postmenopausal women are suggestive of HH (Burke et al, 1998). If TS as well as SF levels 

are elevated, additional diagnostic testing, such as liver biopsy or quantitative phlebotomy, 

should be performed to verify that iron overload is present.  

 

The discovery of the HFE gene (Feder et al, 1996) has greatly altered the approach for 

diagnosing HH. Genetic tests are readily available and genotyping can confirm HH. In 

patients where HH is highly suspected C282Y and H63D mutation analysis should be 

performed. Mutation detection is especially important in individuals who do not carry the 

C282Y or H63D mutations. Pedigree analysis can be performed to identify if other variants in 

the HFE gene are playing a role or if other genes are involved in the clinical expression of the 

condition. In these families, TS and SF concentrations are used to screen for the HH 

phenotype. As described previously, the C282Y genotype does not confer the HH phenotype 

in all individuals. Genotype results should be considered together with clinical and 

biochemical results when diagnosing HH, as the clinical expression of the condition is widely 

variable. A combined genotype/phenotype approach would assist in the identification of 

modifying environmental and/or genetic factors that could contribute to or be protecting 

against the HH phenotype in individuals with atypical haemochromatosis (Lyon and Frank, 

2001). As HH is a treatable genetic disorder, early diagnosis and treatment is essential to 

prevent organ damage, improve quality of life and longevity. 
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1.1.2 Juvenile Haemochromatosis (Type 2) 

 

1.1.2.1 Pathophysiology 

 

Juvenile or Type 2 haemochromatosis (JH) (OMIMTM 602390) is an autosomal recessive iron 

overload disorder. It is characterised by early onset iron overload that results in severe organ 

damage before the age of 30 years (Camaschella et al, 2002). Unlike HFE associated HH, 

males and females are both affected equally by JH. Increased TS% and SF levels are observed 

early in life in both sexes (reflecting plasma iron loading and excess tissue iron, respectively) 

(Cazzola et al, 1998). There is a daily increase in iron absorption, which surpasses that of 

HFE haemochromatosis, and iron accumulation occurs at a more rapid rate in JH (Lamon et 

al, 1979). Excess iron is deposited in the parenchymal cells in a similar manner as seen in 

HFE- and TFR2-haemochromatosis or Type 3 (See Section 1.1.3). 

 

Symptoms of JH are similar to those of HFE haemochromatosis. A combination of cardiac 

disease, liver cirrhosis, hypogonadism, diabetes, arthropathies and skin pigmentation may 

result but are more severe than in HFE type. Cardiac involvement and hypogonadism are the 

characteristic features of JH and are more frequent than liver disorders. This could be a 

reflection of the different susceptibilities of the cells to massive iron overload during organ 

development (Lamon et al, 1979). If the disease goes untreated, cardiac symptoms will 

govern the course of the disease with heart failure and/or major arrhythmias being the leading 

cause of death (Camaschella et al, 2002; De Gobbi et al, 2002). 

 

1.1.2.2 Genetic mutations associated with JH 

 

The early onset and severity of iron overload in JH as well as the equal penetrance in both 

sexes implies that the aberrant protein responsible for JH must play a more important role in 

the inhibition of iron absorption than HFE and TFR2 (De Gobbi et al, 2002). This prediction 

was confirmed by the discovery of the JH gene, hepcidin antimicrobial peptide (HAMP) 

(Roetto et al, 2003) and subsequent identification of mutations within this gene associated 

with the disease (Roetto et al, 2004; Matthes et al, 2004).  

 

Another gene, termed HFE2 or hemojuvelin (HJV) has been identified with amino acid 

substitution 320 G→V accounting for two-thirds of the mutations identified (Papanikolaou et 
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al, 2004). The HJV gene is implicated in the most frequent form of JH on the basis of the 

discovery of six variants, found in either the homozygous or compound heterozygous state. 

These variants were identified in 12 unrelated families from Greek, Canadian and French 

descent (Papanikolaou et al, 2004). Eighteen other HJV variants have been identified in 31 

families from England, Albania, Italy, Southeast USA, Australia, France and Saguenay-Lac-

Saint Jean (Quebec) (Papanikolaou et al, 2004; Lanzara et al, 2004; Lee et al, 2004; Huang et 

al, 2004). The 320 G→V variant was found in 34 of the 60 patients (56.7%) but all the other 

variants were identified in single families. The majority of these variants generate premature 

stop codons or are missense substitutions affecting conserved amino acid residues. 

 

HJV and HAMP inactivation cause the same disease and it is impossible to predict mutations 

in either protein from clinical manifestations (Lanzara et al, 2004). Although the function of 

HJV is not well defined it has been reported that in patients with HJV mutations and in HJV 

knockout mice (Hfe2-/-), hepcidin levels are extremely low. This could signify that HJV and 

hepcidin function in the same pathways and that HJV positively modulates hepcidin 

expression (Papanikolaou et al, 2004). Babitt et al (2006) reported that HJV regulation of 

hepcidin occurs through the bone morphogenetic protein (BMP) signalling pathway where it 

acts as a coreceptor. The authors showed that BMP up-regulates hepcidin expression within 

hepatocytes and this process is enhanced in the presence of HJV. HJV mutations that cause 

JH were investigated to determine whether they had an effect on BMP signalling. It was 

observed that these mutations result in impaired BMP signalling ability and a decrease in 

hepcidin expression. These findings indicate that rather than JH being the result of two 

different and independent mechanisms, the underlying cause is a decrease in hepcidin 

expression, which results in aberrant iron regulation.  
 
1.1.2.3 Diagnosing JH 

 

For young adults with signs of JH the biochemical status is identical to those in individuals 

with Type 1 HH. Genetic testing in these patients will however require sequencing of the 

HAMP and HJV genes. Since these tests are not widely available, diagnosis may be based on 

liver biopsy specimens (Pietrangelo, 2004a). If an individual is diagnosed with JH then family 

members should undergo biochemical testing. If the causative mutation has been identified in 

the proband, then family members should also be referred for genetic testing as early 

detection and treatment could prevent the progression of the disease. 
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1.1.3 TFR2-associated Haemochromatosis (Type 3) 

 

1.1.3.1 Pathophysiology 

 

Type 3 haemochromatosis (OMIMTM 604250) was first identified in Southern Italy where 

there are very few haemochromatosis patients who are homozygous for the C282Y mutation 

in the HFE gene. Genome screening of affected families led to the identification of Type 3 

haemochromatosis where patients presented with aberrations in the transferrin receptor 2 

(TFR2) gene (Camaschella et al, 2000). Type 3 haemochromatosis displays autosomal 

recessive inheritance. 

 

Although very few cases have been reported, the clinical phenotype resulting from variants in 

the TFR2 gene are similar to those in HFE haemochromatosis. Increased serum iron 

parameters (TS% and SF) due to increased iron absorption at the duodenal level leads to 

parenchymal iron overload. Type 3 haemochromatosis predominantly affects the liver where 

iron is deposited in a periportal distribution. Iron loading due to TFR2 inactivation occurs 

early in life, similar to JH, but the clinical manifestations of the disease are not as severe and 

vary according to the specific TFR2 mutation (reviewed by Robson et al, 2004). 

 

Type 3 haemochromatosis is very rare and is usually observed in families from the Central 

Southern parts of Italy although there are some exceptions. The causative TFR2 variants are 

usually only found in the family in which they were identified (Roetto et al, 2002a).  

 

1.1.3.2 Genetic mutations associated with Type 3 HH 

 

Camaschella et al (2000) identified the first variant in the TFR2 gene associated with Type 3 

haemochromatosis. Several members of two Sicilian families were homozygous for a 

nonsense mutation that replaced tyrosine with a stop codon at amino acid position 250 

(Y250X). It has never been detected in the heterozygous state in screening studies of Italian 

blood donors or in other studies worldwide (Roetto and Camaschella, 2005). The Y250X 

variant was identified in two young males, 3 and 16 years old, from the same geographical 

region as the original families. They presented with elevated TS and SF and had high hepatic 

iron indices (Piperno et al, 2004).  
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The AVAQ motif deletion, (AVAQ594-597del), was identified in three Italian siblings 

(Girelli et al, 2002) but unexpectedly, also in a Japanese family (Hattori et al, 2003). The 

Japanese individuals were older at diagnosis, had hepatic iron loading and liver cirrhosis was 

observed in one middle-aged man. The finding of the same deletion in two different ethnic 

groups causing similar phenotypic expression indicates that the AVAQ motif of the TFR2 

protein may play an important role in iron regulation (Roetto and Camaschella, 2005).  

 

Other variants in the TFR2 gene have been reported including E60X (Roetto et al, 2001), 

M172K (Roetto et al, 2001), R455Q (Hofmann et al, 2002), Q690P (Mattman et al, 2002), 

V22I (Biasiotto et al, 2003) and R105X (Le Gac et al, 2004b), Q317X (Pietrangelo et al, 

2005). The TFR2 gene codes for two alternatively spliced forms, α and β (Kawabata et al, 

1999). Most variants affect both isoforms, but some such as E60X and R105X only affect the 

α-form. The M172K variant in the TFR2 gene has been associated with the most severe 

phenotype observed. This variant disrupts a methionine residue in the α–form, which is also 

the putative start site of the β-form. It has been reported that if at least one isoform remains 

intact, a less severe phenotype is observed. This was the case in patients with the E60X 

genotype: of the five patients studied, one female did not express the phenotype and one was 

iron deficient. However in young patients with the Y250X or the AVAQ deletion, both of 

which disrupt both TFR2 isoforms, it was reported that iron overload was severe and that two 

twenty-year-old patients had hypogonadism (Roetto and Camaschella, 2005).  

 

Results from family screening studies have shown that individuals heterozygous for the TFR2 

variants described do not display the iron overload phenotype, even when in the compound 

heterozygous state with H63D HFE mutation (Roetto and Camaschella, 2005). 

 

1.1.3.3 Diagnosing Type 3 HH 

 

When unexplained iron overload is present in an individual and Type 3 HH is suspected, 

diagnosis must be confirmed through a process of elimination. This is because many of the 

symptoms of Type 3 HH mimic those of Type 1. In both disorders, symptoms usually 

manifest after the age of 30 years and the biochemical status is the same in both. Biochemical 

tests should initially be performed to determine if TS and SF levels are elevated. If these 

results are inconclusive, liver biopsy will confirm the presence of iron overload if it is present. 

If this is the case, genotyping for the common HFE variants, C282Y and H63D, must be 
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performed. If no HFE variants are present, mutation screening of the TFR2 gene should be 

performed to confirm the diagnosis of Type 3 haemochromatosis. 

 

1.1.4 SLC40A1-associated HH (Type 4) 

 

1.1.4.1 Pathophysiology 

 

Type 4 haemochromatosis is also referred to as the ferroportin disease (FD) (OMIMTM 

606069), as it is associated with aberrations in the solute carrier family 40 (iron-regulated 

transporter) member 1 (SLC40A1) gene. This gene, also known as the solute carrier family 11 

(proton-coupled divalent metal ion transporter) member 3 (SLC11A3) gene, ferroportin 1 

(FPN1) gene, iron-regulated transporter 1 (IREG1) gene and metal transporter protein-1 

(MTP1) gene, encodes the SLC40A1 or ferroportin protein. The first description of Type 4 

haemochromatosis was described in two almost identical studies in the Netherlands (Njajou et 

al, 2001) and Italy (Montosi et al, 2001). This disease displays clinical and genetic features 

distinct from any of the other forms of haemochromatosis. FD is inherited in an autosomal 

dominant manner and results from heterozygous variants in the SLC40A1 gene.  

 

Most patients with FD present with elevated SF in the first decade of life and normal to low 

TS levels, which gradually increase in the third to fourth decades of life. Iron accumulation is 

progressive and iron is deposited mainly in the liver macrophages (Kupffer cells) and 

reticuloendothelial cells of young patients. Iron may become deposited in the hepatocytes of 

older patients. The biochemical penetrance of FD seems to be complete as all reported 

individuals with SLC40A1 variants have increased SF levels regardless of the position of the 

variant in the mature protein (Pietrangelo, 2004b). In some FD cases individuals present with 

mild iron-deficient anaemia. 

 

The clinical course of FD seems to be less severe than Type 1 haemochromatosis. It has been 

hypothesised that nonparenchymal cell (Kupffer cell) iron overload is better tolerated than 

parenchymal cell iron overload and is less fibrogenic (Gualdi et al, 1994). This could explain 

why FD does not progress into cirrhosis of the liver but is limited to the development of 

fibrosis (Gualdi et al, 1994) even when iron levels are extremely high. Although most patients 

have iron loading in the Kupffer cells, some studies have reported iron loading in hepatocytes 
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(Wallace et al, 2002). Iron is distributed in the liver in a homogenous lobular manner rather 

than the periportal and central distribution characteristic of Type 1 haemochromatosis.  

 

Therapeutic phlebotomy is an effective iron depletion therapy but not all patients can endure 

weekly phlebotomies and may develop anaemia. SF levels remain elevated even after slight 

anaemia has been induced and TS levels are decreased. In these cases erythropoietin therapy 

may modify the effects of phlebotomy and be more beneficial to the patient. Defective iron 

export from the macrophages may be responsible for inadequate iron supply to erythroid 

precursors in the bone marrow, leading to latent anaemia and reduced tolerance to iron 

depletion. Defective iron export from macrophages, which in turn could be responsible for 

inadequate iron supply to erythroid precursors in the bone marrow could result in anaemia and 

an intolerance to iron depletion therapy.  

 

1.1.4.2 Genetic mutations associated with Type 4 HH 

 

The two original studies identified an atypical form of haemochromatosis that was not linked 

to HFE (Njajou et al, 2001; Montosi et al, 2001). A genome-wide search in both pedigrees 

showed linkage to markers on 2q32. The SLC40A1 gene was later identified and it was 

reported that the affected Dutch and Italian family members were heterozygous for the 

N144H and A77D variants, respectively.  

 

Since its original discovery, other variants in the SLC40A1 gene have been described in 

patients with FD including V162del (Devalia et al, 2002; Cazzola et al, 2002; Roetto et al, 

2002b; Wallace et al, 2002), D157G, Q182H, G323V (Hetet et al, 2003), N144T (Arden et al, 

2003), Y64N (Rivard et al, 2003), Q248H (Gordeuk et al, 2003), G490D (Jouanelle et al, 

2003), G80S, N174I (Pietrangelo, 2004b), N144D, C326Y (Robson et al, 2004), D270V 

(Zaahl et al, 2004), G80V, D181V, G267D (Cremonesi et al, 2005), C326S (Sham et al, 

2005), N185D (Morris et al, 2005) R88T, and I180T (Bach et al, 2006). The vast majority of 

variants have been reported in single families but the V162del mutation has been reported in 

different families with different ethnicities. Although the condition is rare, SLC40A1 variants 

have been described in people worldwide including families from the United Kingdom, 

Australia, Italy, Greece and African Americans.  
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The structure of the ferroportin protein is still unclear. Researchers have reported that the 

protein has 12 transmembrane domains (Liu et al, 2005) and that most of the identified 

variants are localised in the cytosolic regions of the ferroportin protein. They report that 

SLC40A1 variants may be divided into two classes: variants that have a gain in function and 

those that result in a loss of function. Variants that result in a gain of function retain the 

ability to activate the iron-response proteins (IRPs) and iron is exported from the cells and 

ferritin is depleted. Loss of function variants inhibit IRP activation activity and cause only a 

slight decrease in SF levels.  

 

It has been reported that when iron levels are high in the cells, hepcidin binds to ferroportin, 

internalising it in lysosomes within the cell and then degrades these lysosomes. This inhibits 

iron export from the cells (Nemeth et al, 2004a). In a study by Papanikolaou et al (2005) 

increased hepcidin levels were observed in patients with the V162del mutation. This may 

indicate a loss of responsiveness to hepcidin regulation leading to excess iron deposition in 

the tissues. Most of the SLC40A1 variants studied by Liu et al (2005) occur in the cytosolic 

regions of the protein and it is unlikely that these cytosolic regions comprise the hepcidin 

binding site. They hypothesise that these variants may cause a conformational change in the 

ferroportin protein preventing hepcidin-mediated internalisation or organisation into 

lysosomes.  

 

The clinical manifestations of FD are highly variable and there are various mechanisms that 

lead to the abnormal functioning of ferroportin. As clinical data accumulates a clearer 

understanding of the effects of SLC40A1 variants on iron metabolism will develop. 

 

1.1.4.3 Diagnosing Type 4 HH 

 

As is the case with Type 1 and Type 3 HH, symptoms of Type 4 HH manifest after the age of 

30. Initially, biochemical analysis should be performed to determine the patient’s iron 

parameters. In contrast with Type 1 and 3 HH, SF levels are usually elevated prior to the 

increase in TS. Therefore, elevated SF along with normal to low TS (sometimes with mild 

anaemia) is indicative of Type 4 HH. To confirm the Type 4 HH diagnosis, mutation 

screening of the SLC40A1 gene must be performed.  
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1.1.5 H-ferritin-associated HH (Type 5) 

 

1.1.5.1 Pathophysiology 

 

In 2001, a second form of autosomal dominant haemochromatosis was identified in a 

Japanese family (Kato et al, 2001). The proband, a 56-year-old female, had elevated SF and 

TS levels. Magnetic resonance imaging (MRI) was performed and low signal intensity, which 

is an indication of iron deposition, was identified in the liver, heart and bone marrow. A liver 

biopsy specimen showed heavy iron deposition in most of the hepatocytes as well as less iron 

deposition in Kupffer cells. Staining of a spleen specimen showed iron deposits in 

macrophages. Seven family members across three generations were studied and elevated SF 

levels were observed in three individuals. The proband’s brother (aged 65) also presented 

with iron deposits in his liver and bone marrow. 

 

1.1.5.2 Genetic mutations associated with Type 5 HH 

 

The clinical manifestations in the family hinted at a form of hereditary haemochromatosis and 

all the individuals were screened for the HFE C282Y and H63D variants as well as the 

Y250X variant in the TFR2 gene. These variants were not found in any of the family 

members. Further analysis was performed on the H- and L-ferritin genes by sequencing 

analysis. A single base pair conversion resulting in the replacement of alanine with threonine 

at amino acid position 49 (A49T) was identified in the second residue of the five base pair 

iron-responsive element (IRE) sequence of the H-ferritin mRNA. This variant was identified 

in the heterozygous state in four of the family members but only three of them had elevated 

SF levels. The fourth individual was the 28-year-old daughter of the proband and she had just 

given birth and was breastfeeding. These factors could have resulted in the lack of the iron 

overload phenotype due to an increased level of iron loss.  

 

IRPs have been shown to interact with IREs (Haile et al, 1989) and influence protein 

expression. Functional analysis of the mutated mRNA demonstrated that the mutated IRE 

binds to the IRP with a higher binding affinity than the wild-type form. This indicates that the 

mutated IRE binds to the IRP strongly and thus inhibits the translation of H-subunit mRNA 

(Kato et al, 2001). Further analysis demonstrated that in the liver, expression of the H-subunit 

was suppressed while that of the L-subunit was elevated in comparison to the wild type form. 
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With regard to the tissue deposition, it is known that the H-subunit of ferritin performs a 

ferroxidase function to incorporate iron into the ferritin molecule (Harrison and Arosio, 

1996). The researchers found that in the presence of the mutated H-subunit, iron incorporation 

into ferritin was much lower in transfected COS-1 cells compared to the wild type and that 

total cellular iron uptake was also higher. The researchers concluded that the increase in iron 

uptake resulted in more iron in the cytosol due to the loss of ferroxidase activity in the H-

subunit.  

 

Although this form of autosomal dominant haemochromatosis has only been identified in a 

single family, further research is necessary to determine if the variant in the H-ferritin gene is 

an isolated or a common one.  

 

1.1.5.3 Diagnosing Type 5 HH 

 

As mentioned, Type 5 HH has only been identified in a single Japanese family. Therefore, a 

molecular diagnostic test unique to this type of HH has not yet been developed. In this family, 

symptoms manifested after the age of 30 as is seen in Type 1, Type 3 and Type 4 

haemochromatosis. The biochemical status of the proband was the same as is expected in 

Type 1 HH. Iron deposits were reported in hepatocytes as well as in macrophages, making it 

unique from Type 1 HH. More research is necessary, but liver biopsy may be a more 

definitive test for Type 5 haemochromatosis, as histological results will identify sites of iron 

deposition that differ from the other types of HH and may be unique to Type 5. As it now 

stands, mutational screening of the HFE, TFR2 and SLC40A1 genes will have to be performed 

initially, to determine if these are the causative genes. If they are eliminated as candidate 

genes, the H-ferritin gene must be screened to confirm the Type 5 HH diagnosis. 

 

1.1.6 African Iron Overload (AIO) 

 

1.1.6.1 Pathophysiology 

 

Strachan (1929) first identified iron overload in sub-Saharan Africans. He studied 876 

individuals from central and Southern Africa who had died in Johannesburg between 1925 

and 1928. He concluded that iron overload was a common disorder affecting Africans and 

that the main cause of iron overload was their diet (Walker and Segal, 1999). For many years, 
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after it was first identified, it was believed that AIO was caused by excess iron intake from a 

home-brewed traditional beer, which is made in non-galvanised steel pots or drums (Bothwell 

et al, 1964). It is not known what the prevalence of AIO is in urban African populations but 

Gordeuk et al (1992a) estimated that approximately 10% or more of rural populations were 

affected. 

 

Patients with AIO have elevated SF levels and to a lesser extent, TS levels. Iron deposits have 

been reported in the liver, heart, spleen, bone marrow, pancreas and kidneys of affected 

individuals. Not unlike Type 4 HH, iron is mostly deposited in the macrophages but has also 

been found in parenchymal cells of the various tissues. Many patients suffer from siderosis, 

fibrosis, and cirrhosis of the liver and there may be an aetiological association with 

hepatocellular carcinoma (HCC), tuberculosis (Moyo et al, 1997a) and other infections. There 

have also been patients identified with diabetes mellitus and osteoporosis. Because of the 

variable AIO phenotype clinicians often misdiagnose individuals with AIO.  

 

1.1.6.2 Genetic mutations associated with AIO 

 

The observation that not all beer drinkers developed iron overload lead to the belief that a 

genetic factor was playing a role in the aetiology of the condition. Researchers have studied 

sub-Saharan and African-American populations with iron overload but neither of these 

populations shows linkage to the HFE gene (Gordeuk et al, 1992a; Barton et al, 1995). 

Gordeuk et al (1992b) set out to determine if a genetic factor, other than HFE, played a role in 

AIO. They used likelihood analysis to determine if there was an association between the 

hypothesised iron-loading locus and an increased dietary iron intake that determines TS and 

unsaturated iron-binding capacity. They studied 236 members of 36 African families. Each 

selected family contained a proband with iron overload. The model that they presented stated 

that individuals heterozygous for the hypothesised iron-loading locus would develop iron 

overload only in conjunction with increased dietary iron but that homozygotes would do so 

with normal dietary iron. Moyo et al (1997b) tested this hypothesis by studying husband and 

wife pairs from rural Zimbabwe. The spouse pairs lived under the same environmental 

conditions and would drink similar amounts of beer and therefore if there was no genetic 

involvement, iron parameters would be similar in the husband and wife. Different iron 

parameters were noted in the spouse pairs and this led to the conclusion that the iron overload 
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could not be explained by excess dietary iron alone and that genes may be implicated in the 

pathogenesis of the disease. 

 

The causative gene of AIO has not yet been identified but the SLC40A1 gene is a potential 

candidate because of the similarities in the phenotype of AIO and ferroportin disease 

(Pietrangelo et al, 1999). Gordeuk et al (2003) screened the SLC40A1 gene in Africans and 

African-Americans with primary iron overload. They identified a polymorphism (Q248H) in 

the heterozygous state in one African-American subject and three Africans. The 

polymorphism was also present in the general African-American and African populations. 

Interestingly, it was absent from all Caucasians with and without primary iron overload who 

were screened. Standing alone this polymorphism does not seem to be associated with 

increased SF as there were no significant differences in SF levels in heterozygous family 

members and controls compared to wild type unaffected individuals. However, among 

African controls heterozygous for the polymorphism there was a trend towards higher SF 

levels. It is important to note that the Africans also had excess dietary iron intake in the form 

of traditional beer and this could suggest that the heterozygous Q248H genotype along with 

excess dietary iron leads to iron overload. This may also indicate that in the presence of other 

modifier effects, genetic or environmental, the Q248H polymorphism could lead to significant 

iron loading. The African-American heterozygous individual had the beta-thalassemia trait 

and an extremely high SF concentration (>1300 µg/l) and macrophage iron deposits. A mild 

beta-thalassemia trait could be modifying the Q248H phenotype resulting in substantial iron 

overload.  

 

Further research is necessary to identify the elusive iron-loading gene responsible for AIO. 

 

1.1.6.3 Diagnosing AIO 

 

As the gene associated with AIO has not yet been identified, AIO cannot be confirmed using 

diagnostic testing. Biochemical tests in African patients must be performed if AIO is 

suspected. The results obtained from these tests can be confirmed with liver biopsy. AIO 

differs subtly from Type 1 HH in that iron is deposited in the reticuloendothelial cells first 

prior to iron being deposited in the hepatocytes.  
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1.1.7 Treatment of Hereditary Haemochromatosis 

 

The most widely used treatment for iron overload disorders is phlebotomy or venesection. 

Iron chelation and erythrocytapheresis have also been used (reviewed by Barton et al, 1998) 

but phlebotomy is the most efficient, safest and cheapest treatment. Almost all HH patients 

benefit from phlebotomy, irrespective of their genotype. In the case of some children and 

adolescents with severe iron overload, or juvenile haemochromatosis, or men and people with 

large body mass, a more aggressive phlebotomy regimen is required (1.5 to 2 units per week). 

Phlebotomy is a safe treatment for older HH patients but some patients are unable to undergo 

repeated bloodletting and complications can develop. Patients with severe, refractory anaemia 

should avoid therapeutic phlebotomy and rather undergo iron chelation therapy (Barton et al, 

1998). 

 

One unit of blood is usually removed from HH patients during each phlebotomy session. This 

restores normal transferrin and ferritin levels. SF and hepatic iron levels give a good estimate 

of the amount of phlebotomy required for iron depletion (Witte et al, 1996). The agreed upon 

SF levels for initiation of venesection are 300 µg/l in men and 200 µg/l in women depending 

on their reproductive status (Witte et al, 1996). On average, people who have higher SF have 

more severe iron overload and need more phlebotomies. In patients with a SF level exceeding 

1000 µg/l before treatment, it is sufficient to quantify the SF every four to eight weeks during 

the initial weeks of treatment. If a patient has received many phlebotomies and in patients 

with mild iron overload at the onset of treatment, SF levels must be checked more regularly. 

Once the SF level is 100 µg/l or less, SF levels for each patient must be quantified after each 

additional one or two treatments. Monitoring haemoglobin and haematocrit, rates of recovery 

and mean corpuscular volume, assesses the progress of phlebotomy treatment. Venesection 

can be arrested when SF levels are 10-20 µg/l or when the haemoglobin concentration is 110 

g/l or the haematocrit is less than 0.33 for more than three weeks (in patients without chronic 

anaemia). At these levels mild iron deficiency has been induced and potentially pathogenic 

excess iron has been removed. After iron depletion, the haemoglobin and haematocrit levels 

return to within the normal range but the SF levels must be maintained at 50 µg/l or less. The 

number of annual phlebotomies necessary to maintain SF levels vary in patients but on 

average, men require removal of 3 to 4 units while women need only 1 or 2 units removed 

(Barton et al, 1996). Some patients do no require any further phlebotomies but SF levels must 

still be monitored each year. 
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Patients presenting with manifestations of late disease should undergo the same treatment as 

individuals not afflicted with haemochromatosis in the general population. 

 

1.1.8 Prevalence of Common HFE Mutations C282Y and H63D  

 

Since the discovery of the HFE gene, and the two common mutations associated with 

haemochromatosis (Feder et al, 1996), various researchers have attempted to elucidate the 

frequency of these mutations worldwide. Table 1.1 outlines the allele frequencies reported by 

a few of these researchers in the general populations from various countries. Genotypes have 

been reported for various populations and it seems that the C282Y mutation is most prevalent 

in populations of European descent. In Europe this mutation occurs more frequently in the 

North than in the South, with the highest frequency being observed in Ireland (Byrnes et al, 

2001) and this implies a Celtic origin for this mutation. The variant allele is absent from the 

African, Asian and Australasian populations but is present at very low frequency in the 

Americas with the exception of the European immigrant population of north America 

(Merryweather-Clarke et al, 1997).  

 

The H63D variant is more common than the C282Y variant. Its presence is more widespread 

and it occurs more frequently in countries bordering the Mediterranean (Merryweather-Clarke 

et al, 1997; Roth et al, 1997). This variant is observed on a shorter haplotype and it is 

hypothesised that it predates the C282Y variant. The H63D haplotypes observed in the Asian 

populations differ from those in Europe and this mutation seems to have arisen in Europe and 

in Asia (Rochette et al, 1999). 
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Table 1.1. Allele frequencies of the H63D and C282Y variants in various populations 

Abbreviations: H, histidine; D, Aspartic acid; C, cysteine, Y, tyrosine. Adapted from Merryweather-Clarke et al, 
1997. 
 

Allele Frequency Population H63D C282Y 
Reference 

Europe    

Irish 0.150 0.110 Byrnes et al, 2001 
Scottish 0.148 0.097 Campbell et al, 2003 
Welsh (South) 0.153 0.082 Jackson et al, 2001 
Estonians 0.136 0.035 Parlist et al, 2001 
Germans 0.148 0.039 Merryweather-Clarke et al, 1997 
Greeks 0.135 0.013 Merryweather-Clarke et al, 1997 
Spanish 0.263 0.032 Merryweather-Clarke et al, 1997 
    
Asia    

Chinese (Hong Kong) 0.028 0 Merryweather-Clarke et al, 1997 
Taiwanese Aboriginals 0 0 Merryweather-Clarke et al, 1997 
Indonesians 0.028 0 Merryweather-Clarke et al, 1997 
    
Indian Subcontinent    

North Indians 0.091 0 Garewal et al, 2005 
Sri Lankans 0.092 0 Merryweather-Clarke et al, 1997 
    
Africa    

Gambians 0.013 0 Merryweather-Clarke et al, 1997 
Senegalese 0 0 Merryweather-Clarke et al, 1997 
Kenyans 0.013 0 Merryweather-Clarke et al, 1997 
Nigerians 0.019 0 Merryweather-Clarke et al, 1997 
Zambians 0.007 0 Merryweather-Clarke et al, 1997 
Algerians 0.089 0 Roth et al, 1997 
Ethiopians 0.094 0 Roth et al, 1997 
    
Middle East    

Saudi Arabians 0.085 0 Merryweather-Clarke et al, 1997 
    
Americas    

Mexicans 0.065 0 Merryweather-Clarke et al, 1997 
Jamaicans 0.022 0.011 Merryweather-Clarke et al, 1997 
Vancouver Island Indians 0.014 0.014 Merryweather-Clarke et al, 1997 
    
Australasia    

Papua New Guineans 0 0 Merryweather-Clarke et al, 1997 
Australian Aboriginals 0 0 Merryweather-Clarke et al, 1997 
Vanuatuans 0.006 0 Merryweather-Clarke et al, 1997 
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1.1.9 Haemochromatosis in the Asian Indian Population 

 

Very few cases of HH have been reported in the Asian Indian population and the literature on 

this disease in India is very sparse. Garewal et al (2005) reported the allele frequency of the 

C282Y and H63D HFE mutations in 60 control subjects and 215 patients with beta 

thalassemia trait from North India. No individuals presented with the C282Y variant. The 

H63D variant was observed in the homozygous state in three individuals. There was not a 

statistically significant difference in iron parameters between the H63D homozygotes and 

patients with the wild type HFE gene. The authors also determined that the H63D haplotype 

was identical to that of Europeans indicating that this variant originated in Europe and not 

Asia.  

 

Similar results were reported in another study in the north Indian population. Dhillon et al 

(2007) aimed to identify the frequency of primary iron overload and C282Y, H63D and S65C 

HFE mutations in 100 healthy control individuals and 236 patients with various liver 

disorders in north India. None of the control subjects were iron loaded and only 17 of the 

chronic liver disease patients presented with iron overload. Interestingly, iron deficiency was 

observed in 26% of the control individuals. The authors reported that primary iron overload 

was rare in India and suggested that the high frequency of iron deficiency anaemia in the 

Indian population could explain this. The C282Y and S65C mutations were not observed in 

their study. The H63D mutation was observed with an allele frequency of 13.98% (12% in 

controls and 14.8% in patients) but none of the H63D homozygous individuals presented with 

iron overload. 

 

Wallace et al (2005) identified a 36-year-old female of Sri Lankan descent with ferroportin 

disease. The patient was heterozygous for the previously identified SLC40A1 V162del 

mutation (Devalia et al, 2002; Cazzola et al, 2002; Roetto et al, 2002b; Wallace et al, 2002). 

This was the first reported case of this disease on the Indian subcontinent and the first time 

that a mutation in the SLC40A1 gene had been reported associated with iron overload in India. 

The authors suggested that because they had identified the mutation in a region where iron 

overload is very rare, and not well classified, this mutation or others within the SLC40A1 gene 

warranted further investigation. They stated that SLC40A1 mutations could possibly be 

causing unexplained primary iron overload on the Indian subcontinent.  
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These results indicate that HH in the Indian population is of the non-HFE type but further 

analysis is necessary to determine the exact defect responsible for HH in Indians. Discovery 

of the aberrant gene would not only assist in the early diagnosis and treatment of Indian 

patients but could assist in explaining the high variability of the HH phenotype observed 

worldwide.  

 

1.2 Iron Homeostasis 
 

1.2.1 Iron Distribution and Circulation 

 

On average, adult males have 35-45 mg/kg of total body iron and premenopausal women have 

slightly lower stores (approximately 35 mg/kg). The majority of total body iron is 

incorporated into haem proteins, particularly haemoglobin (60%) and myoglobin (10%-15%). 

Approximately 10% of iron is found in enzymes and cytochromes but less than 1% is in the 

plasma bound to transferrin (Andrews, 1999). Transferrin is an 80kD protein with two iron-

binding sites (Aisen et al, 2001). About 80% of transferrin-bound iron (TBI) is transported to 

the bone marrow and utilised in the production of haemoglobin in erythroid cells (Conrad et 

al, 1999). When intracellular iron exceeds the cells requirements, iron is stored in ferritin 

(approximately 30%) (Conrad et al, 1999). Ferritin is found within the hepatocytes as well as 

the reticuloendothelial macrophages and can accommodate 4000-4500 iron atoms (Aisen et 

al, 2001). Only about 4 mg of iron is bound to transferrin and erythrocytes require 

approximately 20 mg per day. The majority of iron required for haemoglobin synthesis is 

received from the recycling of senescent red blood cells by reticuloendothelial macrophages 

(May et al, 1995). 

 

1.2.2 Overview of Dietary Iron Uptake 

 

Under proper homeostatic regulation 1 to 2 mg of iron is lost daily through sweating and 

sloughing off of skin and intestinal cells. This is replenished by dietary iron intake. Because 

the body has no physiologic pathway that regulates iron excretion, intestinal absorption from 

the duodenum and jejunum enterocytes plays the major role of regulating body iron stores. 
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Iron exists in two main forms, the ferric (Fe3+) and the ferrous (Fe2+) form. Before iron can be 

absorbed, it must be reduced from the ferric to the ferrous form at the apical membrane of the 

enterocytes. It is believed that the ferrireductase cytochrome b reductase 1 (CYBRD1), also 

known as duodenal cytochrome b (DCYTB), performs this function (McKie et al, 2001). 

Targeted disruption of the Cybrd1 gene encoding the mouse homolog of CYBRD1 does not 

cause an iron-deficient phenotype (Gunshin et al, 2005) suggesting that Cybrd1 is not 

essential for iron uptake in the mouse and that possibly other ferrireductases still remain to be 

identified in humans. Once in the ferrous form iron is transported across the apical membrane 

into the enterocyte by divalent metal transporter-1 (DMT1), also known as divalent cation 

transporter-1 (DCT1) or natural resistance-associated macrophage protein 2 (NRAMP2), a 

proton-coupled divalent cation transporter (Fleming et al, 1997; Gunshin et al, 1997).  

 

Haem from myoglobin and haemoglobin found in food enters the enterocytes through a 

different pathway than inorganic iron. Initially, haem needs to be enzymatically cleaved from 

haemoglobin in the intestinal lumen. The cleaved haem then enters the enterocyte as a 

metalloporphyrin (reviewed by Anderson et al, 2005). It is believed that the recently 

identified haem carrier protein-1 (HCP1) binds to haem and transports it across the apical 

membrane of the enterocyte (Shayeghi et al, 2005). It is suggested that when HCP1 binds to 

haem on the cell surface the complex is internalised by receptor-mediated endocytosis and 

that the resultant endosomal vesicle progresses to the endoplasmic reticulum (ER) (Shayeghi 

et al, 2005). Haem oxygenase-1 (HMOX1) is present on the ER surface and liberates iron 

from haem. Studies with HCP1 indicate that iron stores post-transcriptionally control haem 

transport but this exact mechanism has not yet been fully elucidated (Shayeghi et al, 2005).  

 

Iron released from haem or imported via DMT1 into the enterocyte cytosol enters the labile 

iron pool. Iron can either be incorporated into ferritin where it is stored within the cell or it 

can be transported to the basolateral membrane to be exported from the cell. SLC40A1 

(ferroportin protein) performs the latter process. Ferroportin works together with membrane-

bound hephaestin (HEPH) and serum ceruloplasmin (McKie et al, 2000). HEPH is a 

ferroxidase and homologous to ceruloplasmin, a multi-copper oxidase with ferroxidase 

activity, which functions in nonintestinal cells. Ceruloplasmin does not transport the iron but 

it is thought to assist in the release of iron from ferroportin into the blood where it oxidises 

ferrous iron to ferric iron for binding to transferrin (Harris et al, 1998). HEPH is not a 

transporter either but facilitates the export of iron from the enterocyte. HEPH oxidises ferrous 
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iron, and releases it into the bloodstream where it binds to transferrin (Harris et al, 1998; 

McKie et al, 2000). An overview of dietary uptake is shown in Figure 1.1. 

 

Figure 1.1. Schematic representation of dietary iron uptake 

 

Legend to Figure 1.1. 
Dietary iron is reduced by CYBRD1 from the ferric form (Fe3+) to the ferrous form (Fe2+). Fe2+ is transported 
across the apical membrane by DMT1. In the gut lumen haem is enzymatically cleaved from haemoglobin and 
transported into the enterocyte via HCP1. HMOX1 releases ferrous iron from haem. The intracellular iron is 
either stored as ferritin or transported out of the cell by SLC40A1, which is located on the basolateral membrane. 
HEPH (membrane-bound) and CP (in the plasma) assist in the export of iron by oxidising iron from the ferrous 
(FE2+) to the ferric (Fe3+) form, which subsequently binds to transferrin. Abbreviations: CP, ceruloplasmin; 
CYBRD1, cytochrome b reductase 1; DMT1, divalent metal transporter-1; Fe3+, ferric iron; Fe2+, ferrous iron; 
HCP1, haem carrier protein-1; HEPH, hephaestin; HMOX1, haem oxygenase-1; SLC40A1, solute carrier family 
40 (iron-regulated transporter) member 1; TBI, transferrin-bound iron; TFR1, transferrin receptor 1; TFR2, 
transferrin receptor 2. Adapted from Trinder et al, 2002a. 
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1.2.3 Iron Assimilation 

 

1.2.3.1 Hepatocytes 

 

Within the bloodstream iron is transported to various cells bound to transferrin. Transferrin 

has a high affinity for binding ferric iron and each transferrin protein can accommodate two 

iron ions. Two transferrin receptors have been isolated, TFR1 and TFR2. TFR1 is expressed 

in most cells but TFR2 expression occurs mainly in the liver (Kawabata et al, 1999). 

Transferrin binds strongly to the TFRs and is internalised by TFR-mediated endocytosis. The 

cell acidifies the inside of the endosome and iron is released from transferrin. The 

apotransferrin-TFR complex is then recycled back to the cell membrane. The neutral pH of 

the blood promotes release of apotransferrin from the TFR and transferrin can thus continue 

to bind more iron ions. The HFE-β2-microglobulin complex has been reported to modulate 

the functioning of TFR1. TFR2 expression seems to be regulated by TS and is independent of 

HFE expression. Non-transferrin bound iron (NTBI) may also be taken up in hepatocytes by 

DMT1 but the iron must be in the ferrous form and a ferrireductase should therefore be 

present on the cell membrane (Chua et al, 2004). The export of iron from the cell occurs in 

the same manner as on the basolateral membrane of the enterocyte using ferroportin and the 

ferroxidase ceruloplasmin.  

 

1.2.3.2 Erythroid cells 

 

Erythroid precursors produce haemoglobin and thus need sufficient iron to do so. The 

majority of iron comes from phagocytosed senescent red blood cells but a small quantity is 

from the diet. Iron is assimilated in these erythroid precursors in the same manner as 

explained above for hepatocytes but only TFR1 is present and iron is released from the 

internalised endosome in a different manner. DMT1 releases iron from the endosome once it 

is internalised within the cell. Because iron is in the ferric form when bound to transferrin and 

DMT1 only binds ferrous iron, an endosomal ferrireductase must be present. The six-

transmembrane epithelial antigen of the prostate-3 (STEAP3) has been isolated and has been 

identified as the endosomal ferrireductase (Ohgami et al, 2005) that reduces ferric iron to 

ferrous iron. STEAP3 is highly expressed in erythroid cells and is localised on transferrin-

TFR1 endosomes but is not necessary for efficient iron assimilation in other cell types.  
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1.2.4 Iron Storage 

 

1.2.4.1 Hepatic iron storage 

 

The liver is the main site of iron storage in the human body. Iron is transported to the 

hepatocytes bound to transferrin and gains entry into these cells via TFRs. If intracellular iron 

levels exceed the cells needs, iron is stored in ferritin and a small amount is stored as 

haemosiderin.  

 

Ferritin is a heteropolymer of 24 subunits. The subunits are called H for heavy or heart (where 

they are mostly expressed) and L for light or liver. Both are necessary for the proper 

functioning of ferritin. Iron is still bioavailable when it is stored in ferritin. The ferritin 

molecule stores iron in the ferric form and the H-chain has ferroxidase activity for oxidising 

ferrous iron. Ferric iron is subsequently stored in the ferritin core. The mechanism by which 

iron is released from ferritin is not well defined but lysosomal or proteosomal degradation of 

ferritin may be required for the liberation of iron. Ferric iron may also leave through pores in 

the ferritin molecule (Aisen et al, 2001). 

 

Haemosiderin is not as well defined as ferritin. It is a degradation product of ferritin and is 

water-insoluble. Iron is not released from haemosiderin as readily as it is from ferritin. 

 

1.2.4.2 Reticuloendothelial iron storage 

 

Reticuloendothelial macrophages acquire iron either through phagocytosing senescent 

erythrocytes (Deiss, 1983) or through the TFR-transferrin pathway (Testa et al, 1991). Iron is 

released from erythrocyte haem by HMOX1 in the macrophages. The iron is then either 

stored in ferritin or released into the blood where it is oxidised to the ferric state and 

transported to other cells bound to transferrin. 

 

1.2.5 Regulation of Iron Homeostasis  

 

As mentioned previously the body has no fixed mechanism for excreting excess iron. Thus 

intricate regulatory mechanisms or pathways must control the amount of iron that is absorbed 

and stored to prevent iron overload or anaemia. Within individual cells, iron levels are 
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controlled through post-transcriptional regulation of the proteins involved in iron uptake and 

export. Mechanisms that regulate the iron homeostasis of the entire organism depend on iron 

stores, erythropoietic demand (Roy and Enns, 2000) and hypoxia (Ganz and Nemeth, 2006). 

The crypt programming model and the hepcidin model have been shown to explain iron 

regulation. 

 

1.2.5.1 Post-transcriptional control 

 

Iron homeostasis is post-transcriptionally controlled by iron-regulatory proteins (IRP1 and 

IRP2) (Hentze and Kuhn, 1996). IRPs are RNA binding proteins present in the cytosol of 

cells. The iron levels within cells regulate various proteins involved in iron homeostasis. IRP1 

and IRP2 bind to the iron-responsive element (IRE) in the 5’ or 3’ untranslated region (UTR) 

of mRNAs encoding these proteins. IRPs and IREs work in conjunction to sense and respond 

to changing iron levels within the cell. Depending where the IRE is situated, IRP binding will 

have a different effect on protein synthesis. For example in iron-deficient cells, binding of 

IRPs to the ferritin 5’-IRE causes a decrease in ferritin transcription and binding to the 3’-IRE 

in TFR1 results in a more stable mRNA and thus increased expression. Therefore, more iron 

is supplied to the cell and the iron-deficiency is corrected (Ganz and Nemeth, 2006). When 

iron concentrations rise, IRP does not bind and ferritin expression is increased and TFR1 

expression decreases and iron uptake decreases. Not all proteins involved in iron homeostasis 

have IREs but they have been found in ferritin (in the 5’-UTR), TFR1 (3’-UTR), ferroportin 

(5’-UTR) and DMT1 (3’-UTR). 

 

1.2.5.2 Crypt programming model 

 

Within the crypts of the duodenum are precursor cells that migrate onto the villi and 

differentiate into enterocytes. These precursor cells are responsible for sensing the body’s iron 

requirements and altering iron absorption accordingly. They are not able to absorb iron from 

the intestinal lumen themselves but as they migrate up the villi they mature into absorptive 

enterocytes. The crypt programming model suggests that these precursor cells absorb iron 

from the plasma and that therefore their intracellular iron levels correspond with the body’s 

iron stores. Thus they are able to regulate the amount of iron absorbed from the lumen as they 

move up the villi and become absorptive enterocytes at the brush border (Oates et al, 2000). 
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Both TFR1 and TFR2 are present on the basolateral membrane of the precursor cells. They 

allow for the uptake of transferrin-bound iron (TBI) from the plasma. HFE binds to TFR1 but 

not to TFR2. Waheed et al (1999) postulated that by binding to TFR1 and modulating its 

expression, HFE could modify the precursor cell’s iron sensory function. Experiments have 

shown that wild type HFE binds to TFR1 competing for TBI binding and lowering TBI 

uptake. This results in lowered intracellular iron concentrations and ferritin and an increase in 

the number of transferrin receptors. HFE is thus a negative regulator of TFR1 (Roy et al, 

1999). The mechanism by which HFE works has not yet been fully elucidated. The results of 

these experiments are questionable because only HFE was transfected and HFE usually 

functions in vivo bound to β2-microglobulin. In fact it has been reported that when HFE and 

β2-microglobulin are overexpressed in cells, TFR1 recycling is enhanced and more receptors 

are expressed at the cell membrane, which produces an increase in iron uptake (Waheed et al, 

2002). In HFE-related haemochromatosis it has been observed that duodenal crypt cells and 

macrophages are spared from iron loading and in fact are iron poor (Montosi et al, 2000; 

Philpott, 2002). In the HFE-knockout mouse TBI uptake into the enterocytes is also impaired 

(Trinder et al, 2002b). These results taken together could indicate that normal HFE function is 

necessary to enhance TBI uptake from the plasma by inducing TFR1 expression or by 

inhibiting iron export from the cell via ferroportin. Aberrant HFE functioning in the precursor 

(crypt cells) therefore causes them to lose their sensory function and results in aberrant iron 

regulation. 

 

1.2.5.3 Hepcidin model 

 

Hepcidin is a peptide hormone that is produced in the liver (expressed mainly in hepatocytes) 

and is excreted in the urine (Krause et al, 2000; Park et al, 2001). It exhibits antimicrobial 

properties and is thought to be an important regulator of iron homeostasis.  

 

In an experiment performed by Nicolas et al (2001) the authors attempted to create USF2 

knockout mice. These mice developed severe iron overload similar to that observed in HH 

patients. Further analysis revealed that a recombination event had in fact removed both the 

USF2 and HAMP genes and that hepcidin defieciency was responsible for the iron overload 

observed. In humans, the most severe form of haemochromatosis results from disruption of 

the HAMP gene encoding hepcidin (Roetto et al, 2003). Conversely, overexpression of 

hepcidin-1 results in severe iron-deficiency anaemia in transgenic mice (Nicolas et al, 2002a). 
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Hepcidin thus negatively regulates iron absorption, recycling and release from stores. 

Hepcidin expression is decreased in response to hypoxia and anaemia irrespective of the iron 

load. In humans and mice with inflammation, hepcidin levels increase implicating it in the 

causation of anaemia of chronic disease (Nicolas et al, 2002b).  

 

It has been noted that hepcidin regulates iron efflux from cells by binding to ferroportin and 

internalising it (Nemeth et al, 2004a). It is hypothesised that when hepcidin levels rise in 

response to iron overload or inflammation, iron export from macrophages and intestinal 

enterocytes is decreased. And that under iron deficient conditions or HH when hepcidin 

expression is decreased, iron is released from the intestinal cells and macrophages because 

ferroportin is able to function normally (Siah et al, 2006).  

 

Researchers have noted that in patients with haemochromatosis due to mutations in HFE, 

TFR2 and HJV, urinary hepcidin is decreased despite the presence of excess iron. This could 

indicate that hepcidin expression is modulated in some way by these proteins (reviewed by 

Ganz and Nemeth, 2006). How HFE and TFR2 may regulate hepcidin is unknown and needs 

to be further investigated. Babitt et al (2006) have shown how HJV regulates hepcidin 

expression and how mutations in this gene affect this regulation. They have shown that BMP 

up-regulates hepcidin expression in hepatocytes and that when HJV is mutated or not present 

(HJV knockout mice) this up-regulation is not as effective. They have reported that HJV is a 

coreceptor of the BMP signalling pathway and positively regulates hepcidin expression. 

Although this helps to explain how HJV and HAMP mutations cause the same disease 

(juvenile haemochromatosis), how hepcidin regulates iron absorption from the intestine in 

response to body iron stores needs to be explored further. 

 

1.3 Genes Involved in Iron Homeostasis  

 
Numerous genes are involved in maintaining the iron levels in the body. These genes perform 

various functions in iron metabolism and homeostasis. Several genes have been mentioned in 

the previous sections but only the genes screened for our study will be discussed further. 

These include the haem oxygenase-1 (HMOX1), high-iron (HFE), hepcidin anti-microbial 

peptide (HAMP), solute-carrier family 40 (iron-regulated transporter) member 1 (SLC40A1), 
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cytochrome b reductase 1 (CYBRD1) and hemojuvelin (HJV) genes, listed in chronological 

order according to when they were isolated.  

 

1.3.1 Haem Oxygenase-1 (HMOX1) Gene 

 

HMOX1 (OMIMTM +141250) is a protein that has an important function in haem catabolism. 

It cleaves the porphyrin ring of haem into carbon monoxide (CO), ferrous iron and biliverdin 

(Tenhunen et al, 1969). Biliverdin is subsequently converted into bilirubin by biliverdin 

reductase. Yoshida et al, (1988) isolated the HMOX1 gene. Because HMOX1 activity is 

increased by haem, they increased haem oxygenase activity and mRNA expression in human 

macrophages through hemin treatment. They subsequently produced a cDNA library and, 

using rat Hmox1 cDNA, isolated the human HMOX1 cDNA. HMOX1 contains five exons and 

encodes a peptide that contains 288 amino acids and has a molecular mass of more than 32 

kD. The activity of HMOX1 in the liver and other organs is notably increased in the presence 

of hemin or haemoglobin. This induction has been shown to be due to binding of haem to a 

translational repressor Bach1 that results is increased expression of HMOX1 (Ogawa et al, 

2001). 

 

Kutty et al (1994) localised HMOX1 to chromosome 22q12 using the fluorescence in situ 

hybridisation (FISH) technique. HMOX presents as two isozymes i.e. HMOX1 and HMOX2. 

HMOX1 is an inducible protein whereas HMOX2 is expressed constitutively. HMOX1 

expression has been noted in the spleen, liver, kidney, and bone marrow and is localised on 

chromosome 16p13.3. HMOX2 is expressed in the brain, testis, and vascular systems and 

shares 43% homology with HMOX1. Seroussi et al (1999) mapped the mouse Hmox1 gene to 

chromosome 8 using FISH analysis. 

 

HMOX1 has a hydrophobic sequence at the C-terminal end, which is involved in binding to 

the microsomal membrane. When HMOX1 is treated with trypsin, the C-terminal 

hydrophobic region is removed but the protein retains its function and becomes water soluble 

(Yoshida et al, 1991). The rat and human HMOX1 proteins share approximately 80% 

homology (Yoshida et al, 1988). The inner portion in the F helix of the rat Hmox1 (Pro-126-

Lys-149) is called the haem oxygenase signature and highly conserved in HMOX1 isolated 

from most species. It is thought that this portion of the protein plays an important role in 

HMOX1 activity. Amino acids with a separable side chain are common in haem enzymes but 
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absent from mammalian HMOX1 (Schuller et al, 1999). No cysteine residues are present in 

the HMOX1 peptide sequence but there are six histidine residues, of which five are conserved 

in rat Hmox1 (Yoshida et al, 1988). 

 

Poss and Tonegawa (1997) studied the extent to which HMOX1 activity contributed to iron 

homeostasis. They produced a Hmox1 deficient mouse model. These mice developed anaemia 

associated with low serum iron levels but hepatic iron levels were high and caused 

macromolecular oxidative damage, tissue injury and chronic inflammation. Their results 

indicate that HMOX1 plays an important role in the expulsion of iron from tissue iron stores.  

 

HMOX1 expression is proposed to act in a cytoprotective manner in many cell types. This 

seems to be due to the increased production of biliverdin and bilirubin, which are strong 

antioxidants. A case of oxidative stress causing severe injury in endothelial cells in a patient 

with HMOX1 deficiency has been reported (Yachie et al, 1999).  

 

Wagener et al (2003) investigated the role of haem and haem oxygenase in the inflammatory 

response during wound healing in Wistar rats. Haem accumulated at the edges of the wounds 

and an increase in adhesion molecule expression and the presence of leukocytes was reported. 

When the inflammatory process was induced, HMOX1 expression increased as well, 

especially in infiltrating cells. They concluded that haem might be a physiologic trigger that 

induces the inflammatory response but that HMOX1 antagonises inflammation by modifying 

the activities of adhesive cells and cellular infiltration. 

 

1.3.2 High-Iron (HFE) Gene  

 

The HFE gene (OMIMTM +235200) is situated on chromosome 6p21.3 and contains 7 exons. 

The gene encodes a 343 amino acid protein (HFE) that resembles the MHC class 1 proteins in 

sequence and structure. HFE is comprised of 3 extracellular domains (α1, α2 and α3 helices), 

a transmembrane region and a short intracellular region (Feder et al, 1996; Lebrón et al, 

1998). MHC class 1 proteins have a groove present between the α1 and α2 helices that allow 

binding of peptides. The groove produced by the HFE α1 and α2 helices is shallower than that 

in the MHC class 1 proteins and therefore HFE is unable to bind peptides (Lebrón et al, 

1998). HFE has been detected in different tissues including the liver (sinusoidal lining cells, 

bile duct epithelial cells and Kupffer cells), duodenum, heart, pancreas, placenta, kidneys, 
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ovaries, colon, leukocytes, tissue macrophages, circulating monocytes, brain (capillary 

endothelium) and lungs (Feder et al, 1996; Parkkila et al, 1997; Parkkila et al, 2000). 

 

A study on β2-microglobulin-deficient mice provided the first indication that HFE could be 

involved in iron metabolism (De Sousa et al, 1994). These transgenic mice developed iron 

overload in a manner similar to that observed in humans with HH. It had previously been 

noted that β2-microglobulin became physically associated with MHC class 1 proteins and 

therefore indicated that β2-microglobulin or a β2-microglobulin-associated protein may be 

involved in iron homeostasis and/or the pathogenesis of HH. 

 

Simon et al (1976) found an association with HH and the HLA-A3 locus but it was not until 

1996 when the gene was localised to 6p21.3 and isolated (Feder et al, 1996). The gene was 

named HFE and it was found in later studies that it indeed did associate with β2-

microglobulin (Feder et al, 1997). 

 

The HFE-β2-microglobulin complex binds to TFR1 and modulates its expression and 

presentation at the cell membrane. In this way, HFE may regulate the amount of TBI brought 

into the cell. The HFE-β2-microglobulin complex actually competes with TFR1 for binding to 

TBI and can reduce the binding affinity of TFR1 10-fold (Parkkila et al, 1997, Feder et al, 

1998). In the duodenum, HFE is confined to the crypt cells and could possibly be involved in 

the regulation of iron absorption. The C282Y variant disrupts the interaction between HFE 

and β2-microglobulin and less HFE is presented at the cell membrane. The loss of HFE 

regulation on TFR1 results in the increased iron absorption characteristic of type 1 HH.  

 

Animal studies have been performed to confirm the involvement of HFE in iron homeostasis. 

The Hfe-knockout mouse exhibited an iron overload phenotype very similar to that in HH 

patients (Zhou et al, 1998) and this lead researchers to conclude that HFE is involved in iron 

homeostasis and the pathogenesis of haemochromatosis (also see Section 1.1.1).  

 

1.3.3 Hepcidin Antimicrobial Peptide (HAMP) Gene 

 

Two separate research groups isolated the HAMP gene (OMIMTM *606464). Krause et al 

(2000) isolated a cDNA encoding hepcidin by biochemical purification of blood ultrafiltrate 

using a cysteine alkylation assay and mass spectrometry followed by sequence and reverse 
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transcriptase PCR (RT-PCR) analysis and rapid amplification of cDNA ends (RACE). The 

authors named the peptide liver expressed antimicrobial peptide 1 (LEAP1). Park et al (2001) 

isolated an antimicrobial peptide from human urine and named it hepcidin because it 

originates in the liver and exhibits antimicrobial properties.  

 

HAMP is comprised of three exons and is localised on chromosome 19q13. The active protein 

is encoded entirely by exon 3 (Park et al, 2001; Krause et al, 2000). The HAMP gene encodes 

a propeptide of 84 amino acids that after enzymatic cleavage produces mature peptides of 20, 

22 and 25 amino acids (Park et al, 2001). The active peptides are rich in cysteines, which 

form intramolecular bonds that stabilise the β-sheet structure. Hepcidin expression has been 

detected at very high levels in the liver. Moderate levels have been noted in the heart and 

brain but very little expression is reported in the lung and other tissues (Krause et al, 2000)  

 

Various animal models have been developed in order to establish the function of hepcidin and 

how it is regulated. Pigeon et al (2001) isolated the cDNA encoding mouse Hamp in the liver. 

The protein shares 54% homology with human hepcidin and expression is increased in 

response to iron overload and lipopolysaccharide stimulation. Iron levels and inflammation 

regulate hepcidin expression. Nemeth et al (2004b) noted that in the mouse hepcidin is 

regulated by interleukin-6 (IL6) under inflammatory conditions but that IL6 is not necessary 

for hepcidin regulation by iron. Nicolas et al (2001) noted the importance of hepcidin in iron 

regulation through studying mice in which the Usf2 gene was disrupted. The Usf2 gene lies 

upstream from and is very close to the Hamp gene. No hepcidin expression was detected in 

these mice and they developed an iron overload phenotype as seen in HH patients and Hfe-

knockout mice. In a later study, Nicolas et al (2002a) produced a murine model in which 

hepcidin was overexpressed and these animals subsequently developed severe microcytic 

hypochromic anaemia. These findings lead the researchers to conclude that hepcidin is a key 

regulator of iron absorption. Disruption of the HAMP gene leads to juvenile 

haemochromatosis, which is discussed in Section 1.1.2. 

 

Hepcidin is believed to act as a negative regulator of iron release from macrophages and 

enterocytes in the duodenum. Hepcidin expression is increased under conditions of iron 

overload but this does not occur in patients homozygous for the C282Y variant in the HFE 

gene (Bridle et al, 2003) or in Hfe-knockout mice (Ahmad et al, 2002).  
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The urinary hepcidin levels of patients with HFE-associated haemochromatosis as well as 

those with HJV- and TFR2-associated haemochromatosis are very low. In fact the urinary 

hepcidin levels in patients with HJV associated Type 2 haemochromatosis are virtually 

undetectable. Hfe- (Muckenthaler et al, 2003; Nicolas et al, 2003), Tfr2- (Kawabata et al, 

2005) and Hjv-deficient mice (Niederkofler et al, 2005; Huang et al 2005) do not induce 

hepcidin expression either. This indicates that these genes all function on the same hepcidin 

regulatory pathway and that HJV is the principal hepcidin regulator. 

 

1.3.4 Solute-carrier Family 40 (iron-regulated transporter) Member 1 (SLC40A1) Gene 

 

SLC40A1 was formerly known as solute carrier family 11 (proton-coupled divalent metal ion 

tranporter) member 3 (SLC11A3) gene and is also called ferroportin 1 (FPN1), iron-regulated 

transporter 1 (IREG1) and metal transporter protein-1 (MTP1) (OMIMTM *604653).  

 

Reports of the isolation of an iron exporter were described by three separate research groups 

in the same year. Positional cloning was used by Donovan et al (2000) to identify the gene 

responsible for hypochromic anaemia in the mutant zebrafish ‘weissherbst’. The gene was 

named fpn1 and fpn1 cDNAs were also isolated from mouse liver and human placenta by RT-

PCR. McKie et al (2000) used a subtractive cloning technique and PCR analysis to isolate 

FPN1 from human and mouse duodena. They decided to name the protein IREG1. An iron-

responsive protein affinity column was utilised by Abboud and Haile (2000) to isolate 

mRNAs that contained functional IREs. The protein that they isolated was subsequently 

named MTP1.  

 

The SLC40A1 gene is located on chromosome 2q32 and consists of eight exons that encode a 

571 amino acid peptide. Expression has been noted in the placenta, liver, spleen, and kidneys 

of humans (Donovan et al, 2000). Initially McKie et al (2000) reported 10 transmembrane 

domains in the SLC40A1 protein but Liu et al (2005) have noted that there are in fact 12 in 

this protein. Iron absorption in the duodenum is initiated by the uptake of ferrous iron by 

DMT1 in the duodenal enterocytes. The iron is transported across the cell and is transferred 

out of the cell across the basolateral membrane by SLC40A1. SLC40A1 is localised on the 

basolateral membrane of all polarised cells, including duodenal enterocytes, hepatocytes, 

placental trophoblasts and cells of the central nervous system (CNS), and is an essential iron 

exporter. SLC40A1 is the only known mechanism of iron export and deletion of SLC40A1 is 
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lethal in transgenic mice whereas inactivation of SLC40A1 by a conditional knockout results 

in excess iron being stored in macrophages, hepatocytes and enterocytes (Donovan et al, 

2005). Once iron is transported out of the cell in the ferrous form, it must be reduced to the 

ferric form for incorporation into transferrin. Ceruloplasmin fulfils this function in 

nonintestinal cells and its homolog HEPH is the ferroxidase in the intestine. 

 

Expression of SLC40A1 is controlled in two ways: iron levels and hepcidin. In the 5’ UTR of 

SLC40A1 mRNAs there is a functional IRE (McKie et al, 2000). When iron levels within the 

cell decrease, an IRP binds to the IRE and decreases mRNA stability and expression. When 

iron levels rise, the IRP does not bind and mRNA expression increases. 

 

SLC40A1 mRNA levels are inversely correlated with hepcidin mRNAs. When iron levels are 

high, hepcidin regulates ferroportin functioning by binding to it on the basolateral membrane 

and internalising it. Hepcidin then induces the destruction of SLC40A1 in the internalised 

vesicles thus decreasing the amount of SLC40A1 on the cell membrane (Nemeth et al, 

2004a). When iron levels return to normal, hepcidin does not bind and SLC40A1 functions 

normally.  

 

Variants that inactivate SLC40A1 function have been associated with an autosomal dominant 

form of haemochromatosis also known as the ferroportin disease. The phenotype of this 

disorder is highly variable and the heterogeneity and range of SLC40A1 mutations seem to be 

the cause of this variation (see Section 1.1.4).  

 

1.3.5 Cytochrome b Reductase 1 (CYBRD1) Gene 

 

In 2001 a candidate mammalian ferric reductase was isolated from hypotransferrinaemic mice 

by McKie et al (2001) using a subtractive cloning procedure. They named the gene duodenal 

cytochrome b (DCYTB) but it is also called CYBRD1 (OMIMTM *605745). CYBRD1 was 

mapped to chromosome 2q31 by the International Radiation Hybrid Mapping Consortium and 

consists of four exons. The gene encodes a 4 254 bp mRNA molecule that undergoes splicing 

to produce 3 alternative transcripts. The protein consists of 286 amino acids, includes six 

transmembrane domains and four conserved histidine residues and is highly hydrophobic 

(McKie et al, 2001). CYBRD1 is highly expressed in the brush border of enterocytes near the 

tip of the villus in the duodenum and its expression is highly dependent on iron levels 
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although its mRNA does not possess an IRE in either its 5’- or 3’-UTR (McKie et al, 2001). 

CYBRD1 is expressed at very low levels in the liver and spleen. 

 

CYBRD1 shares 40-50% homology with cytochrome b561, an enzyme involved in the 

regeneration of ascorbic acid from dehydroascorbate. The predicted binding sites for ascorbic 

acid and dehydroascorbic acid are highly conserved within CYBRD1 (Latunde-Dada et al, 

2002).  

 

In the intestinal lumen iron is found in the ferric form. The main iron importer on the 

duodenal enterocytes, DMT1, is only able to transport ferrous iron across the cell membrane 

into the cells. CYBRD1 possesses ferrireductase activity and is present on the cell membrane 

and reduces ferric iron to ferrous iron prior to transport into the enterocyte. 

 

As mentioned previously CYBRD1 is regulated by iron. CYBRD1 mRNA and protein levels 

were increased in the duodena of mice when iron levels were low (McKie et al, 2001). 

CYBRD1 expression is up-regulated under hypoxic conditions in the liver but hypoxia does 

not seem to affect CYBRD1 in the liver or spleen (Latunde-Dada et al, 2002). Zoller et al 

(2003) noted a decrease in CYBRD1 expression, and thus activity, in the human duodena 

from patients with iron deficiency anaemia. They also found that CYBRD1 activity was up-

regulated posttranslationally in haemochromatosis patients with HFE variants. Muckenthaler 

et al (2003) also found altered CYBRD1, SLC40A1 and hepcidin expression in an Hfe-

deficient mouse model. They proposed that increased duodenal iron absorption, characteristic 

of haemochromatosis, could be due to the inappropriate regulatory cues from the liver, 

possibly involving CYBRD1.  

 

1.3.6 Hemojuvelin (HJV) Gene 

 

The most common form of JH was linked to chromosome 1q. Because no gene regulating iron 

homeostasis was known to exist on chromosome 1q, positional cloning strategies were used to 

identify this putative JH gene. Papanikolaou et al (2004) cloned the putative JH gene and 

named it hemojuvelin (HJV) (OMIMTM *608374).  

 

The HJV gene is located on chromosome 1q21 and its four exons span 4 265 nucleotides. The 

primary 2.2 kb transcript has five spliced isoforms. The longest transcript encodes a 426 
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amino acid peptide. The protein possesses multiple protein motifs and shows homology to the 

repulsive guidance molecule (RGM) that suggests that HJV may function as a membrane-

bound receptor or as a secreted polypeptide hormone. HJV expression is detected in the liver, 

brain, heart, kidney, pancreas, skeletal muscle, oesophagus and parts of the colon 

(Papanikolaou et al, 2004; Rodriguez-Martinez et al, 2004). 

 

Numerous animal models have been studied to elucidate HJV function and regulation. 

Niederkofler et al (2005) noted Hjv expression in the mouse liver. Iron overload was 

observed in Hjv-knockout mice and no hepcidin expression was observed in response to 

dietary or injected iron. Up-regulation of hepcidin expression still occurred in the Hjv-

knockout mice in response to acute inflammation, which was induced by lipopolysaccharide 

or IL6 and Tnf-α. In wild type mice, Hjv was down regulated in the liver in response to 

inflammation but not in skeletal muscle. The researchers concluded that Hjv is an important 

sensor of iron levels and that its inactivation leads to iron overload and also that down-

regulation of Hjv during the inflammatory response could temporarily eliminate Hjv’s ability 

to sense iron levels (Niederkofler et al, 2005). 

 

Huang et al (2005) also produced a Hjv-knockout mouse model and found that iron rapidly 

accumulated in the liver, pancreas and heart but that there were decreased iron levels in the 

spleen. Hepcidin expression in the liver was decreased and ferroportin expression was 

increased in the intestinal epithelial cells and macrophages. The authors concluded that JH 

could be the result of decreased hepcidin regulation and increased ferroportin expression. The 

increase in ferroportin expression would lead to more iron liberation from macrophage and 

intestinal epithelial cells and higher TS in the bloodstream. 

 

HJV is proposed as the key modulator of hepcidin expression. This is due to the fact that HJV 

is expressed in the same tissue as hepcidin (liver) and because the urinary hepcidin level in JH 

patients with HJV variants is extremely low (Papanikolaou et al, 2004). HJV acts as a 

coreceptor of the BMP signalling pathway and assists in the positive regulation of hepcidin. 

Babitt et al (2006) proposed that HJV binds to BMP Type I and II receptors, forming an 

active complex. The Type II receptors subsequently phosphorylate the Type I receptors, 

which then phosphorylate three receptor regulated Smads namely, Smad1, 5 and 8. A 

common Smad, Smad 4, forms a complex with the phosphorylated Smad peptides and this 
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entire complex migrates to the nucleus where it increases transcription of hepcidin. A 

schematic diagram of this regulatory pathway is shown in Figure 1.2.  

 

 
Figure 1.2. Schematic diagram of the role HJV plays in the regulation of hepcidin expression 

via the BMP signalling pathway 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 
 
 
Legend to Figure 1.2. 
HJV forms a complex with BMP ligands, BMP Type I receptors and BMP Type II receptors within the 
hepatocyte. Within the activated complex Type II receptors phosphorylate Type I receptors, which then 
phosphorylate receptor-activated Smads. The phosphorylated R-Smads form a complex with Smad4. The Smad 
complex enters the nucleus where it increases hepcidin expression. Abbreviations: BMP, bone morphogenetic 
protein; HJV, hemojuvelin; mRNA, messenger RNA; P, phosphorous; RI, BMP Type I receptor; RII, BMP Type 
II receptor; R-Smad, receptor mediated Smads. Adapted from Babitt et al, 2006. 
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1.4 Objectives of This Study 
 

HH is a very common disorder that is often misdiagnosed because of the vague symptoms 

presented by patients when the disease first becomes evident. Early diagnosis of this easily 

treatable condition will assist in preventing the development of the more severe symptoms 

that manifest as the disease progresses untreated. Identification of genetic variation associated 

with HH or modifying the disorder will improve diagnosis and ultimately improve the 

longevity of HH patients.  

 

The aim of this study was to perform mutation analysis of six iron regulatory genes, including 

the haem oxygenase 1 (HMOX1) gene, high-iron (HFE) gene, hepcidin antimicrobial peptide 

(HAMP) gene, solute carrier family 40 (iron-regulated transporter) (SLC40A1) gene, 

cytochrome b reductase 1 (CYBRD1) gene and hemojuvelin (HJV) gene, by performing the 

following: 

• PCR amplification of the promoter and coding regions of the respective genes 

• Analysis of the amplified fragments employing heteroduplex single-strand 

conformation polymorphism (HEX-SSCP) analysis, restriction fragment length 

polymorphism (RFLP) analysis and bi-directional semi-automated DNA sequencing 

analysis to identify any known and/or novel variation within these genes 

 

The variants observed were analysed to identify possible associations with iron overload and 

to identify possible modifiers of the HH phenotype observed in a South African family of 

Indian extraction. 
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2. Detailed Experimental Procedures 
 

The project has gained ethical approval from the Research and Ethics/Biosafety Committee, 

Faculty of Health Sciences, Stellenbosch University (Ethics number N04/08/123). 

 

2.1 Subjects 
 

Whole blood samples were collected from 25 members (two probands and 23 unaffected 

individuals) of a South African family of Indian extraction diagnosed with Classic (Type I) 

HH. The collaborating clinician was responsible for clinical examination of the probands. The 

two probands, a brother and sister, were diagnosed with HH and were used for initial 

screening of the genes under investigation. Secondary factors such as excessive alcohol 

consumption, hepatitis C infection and beta-thalassemia, that could be causing iron overload, 

were eliminated. Written informed consent was obtained from all individuals participating in 

the project. 

 

The family originates from the Kond village approximately 120 km from Mumbai in the 

Maharashtra State. The village is located in the Raigad (also known as Raigarh) district in the 

South Western part of India. This family is highly consanguineous and the two probands are 

the product of a consanguineous relationship between two first cousins.  

 

Proband 1 was a 64-year-old male. He presented to the Groote Schuur Hospital at the age of 

49 with a history of arthritis involving the hips, knees and hands and vague abdominal 

symptoms. The patient had also noticed increasing pigmentation of the skin. Upon 

examination, generalised hyperpigmentation was observed. The patient was a non-insulin-

dependent diabetic and there was evidence of arthritis particularly of the proximal 

interphalangeal joints of the second and third fingers of both hands as well as pain on 

movement of the knees and hips. Abdominal examination revealed that the patient had slight 

hepatomegaly and moderate splenomegaly. The patient was subsequently referred for 

biochemical testing to determine his iron parameters. Biochemical examination revealed an 

SF level of 5220 µg/l (reference range: 30-300 µg/l), TS% of 100% (reference range: 20-

50%) and a serum iron of 50.4 µmol/l (reference range: 10-30 µmol/l). The patient’s alanine 

aminotransferase (ALT) level was slightly raised at 50.4 µg/l (reference range: 1-40 µg/l) 
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indicating liver injury. X-ray of the fingers revealed juxta-articular osteoporosis as well as 

joint space narrowing and erosions. A liver biopsy was performed and showed micronodular 

cirrhosis with massive parenchymal iron deposition. The patient was diagnosed with HH with 

established cirrhosis, arthritis and diabetes. After the diagnosis the patient commenced 

fortnightly venesection until he was discharged in the year 2000 with a normal SF level. The 

management of his arthritis was complicated by the development of a non-steroidal-induced 

duodenal ulcer. In 2006 he required a total hip replacement. He remained well until 

approximately 2005 when he developed complications of end-stage cirrhosis including 

oesophageal varices, ascites, encephalopathy, renal failure and hepatocellular carcinoma.  

 

Proband 2, the sister of proband 1, was a 61-year-old female who presented with 

hyperpigmentation on her face at the age of 49. Examination in 1999 confirmed mild 

hyperpigmentation. The patient was not diabetic and did not present any other complications 

of haemochromatosis. Biochemical examination revealed an SF level of 595 µg/l (reference 

range: 12-150 µg/l) and TS% of 58% (reference range: 20-50%). Her aspartate 

aminotransferase (AST) level was slightly raised at 51 ng/ml (reference range: 1-40 ng/ml). A 

liver biopsy revealed hepatic steatosis with hepatic parenchymal iron deposition confirming 

the HH diagnosis. The patient commenced monthly venesection until her ferritin levels 

declined to normal levels the following year. She has remained well subsequently.  

 

It was not known if there was a family history of haemochromatosis in this Indian family. The 

probands’ father and paternal grandfather both had dark patches on their skin but were never 

diagnosed with HH. The father and grandfather had both passed away prior to the initiation of 

this study so the presence of HH could not be verified. The group of 23 unaffected family 

members comprised 12 females (52%) and 11 males (48%). The pedigree of the family, with 

the individuals’ respective phenotypes and age, is shown in Figure 2.1. Individuals II:8, II:9, 

II:10, II:11, II:12, II:13, II:14, III:6, III:11, III:13, III:15 and III:18 did not provide written 

informed consent and were therefore excluded from the present study. Participating family 

members were all described as unaffected, but some individuals were young and could be pre-

symptomatic disease carriers. In time they could present with HH symptoms.  
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2.2 Methods 
 

2.2.1 Body Iron Status 

 

The transferrin saturation percentage (TS%) and the serum ferritin (SF) levels were measured 

in all of the extended family members according to standard methodology. The collaborating 

clinician provided the TS% and SF levels of the two probands at diagnosis. The laboratory at 

which the blood samples where analysed employed reference ranges of 25-35% for TS% and 

22-322 µg/l for SF. In the present study iron overload was defined as TS% > 45% (Looker 

and Johnson, 1988) and/or a SF level exceeding 200 µg/l in females and 300 µg/l in males. 

Iron status was classified into four groups: iron deficiency (SF level < 20 µg/l); normal SF 

levels (20-200 µg/l in females, 20-300 µg/l in males); high SF levels (females: > 200 µg/l, 

males: > 300 µg/l) with a TS% < 45% and high SF levels with TS% > 45%. 

 

2.2.2 DNA Isolation From Whole Blood Samples 

 

All whole blood samples were collected in tubes containing ethylene diamine tetra-acetic acid 

(EDTA) (all chemicals/reagents and respective suppliers provided in Appendix 1) as the 

preservative. DNA was isolated from all samples using an adaptation of the Miller et al 

(1988) salting out procedure. The initial step for extraction required the transfer of 10 ml of 

each whole blood sample to a separate 50 ml Falcon tube (Merck). A volume of 30 ml cold 

lysis buffer (155 mM ammonium chloride (NH4Cl), 10 mM potassium hydrogen carbonate 

(KHCO3) and 0.1 mM EDTA (C10H16N2O8) – pH 7.4) was then added to the sample and it 

was subsequently placed on ice for 30 minutes and mixed by inversion at 10-minute intervals, 

allowing for complete lysis of cells. Following this, the sample was centrifuged at 1500 rpm 

for 10 minutes (Hermle Z 200 A, Labnet, AvantiTM 30, Beckman, GS-15R, Beckman). 

 

The supernatant was discarded and the pellet was washed with 10 ml cold phosphate buffered 

saline (PBS) [27 mM potassium chloride (KCl), 137 mM sodium chloride (NaCl), 8 mM di-

sodium hydrogen orthophosphate anhydrous (Na2HPO4) and 1.5 mM potassium di-hydrogen 

orthophosphate (KH2PO4) – pH 7.3]. The solution was subsequently centrifuged at 1500 rpm 

for 10 minutes and the supernatant was removed. The pellet was resuspended in 3 ml cold 

nucleic lysis buffer (10 mM Tris(hydroxymethyl)aminomethane (Tris-HCl) ((CH2OH)3CNH2-
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Cl), 400 mM NaCl and 2 mM EDTA – pH 8.2), 1% (w/v) sodium dodecyl sulphate (SDS) and 

1.5 mg/ml proteinase K (Roche Diagnostics), and incubated in a water bath at 55ºC overnight. 

 

Following overnight incubation, 1 ml saturated 6 M NaCl was added and the solution was 

shaken vigorously for 1 minute, followed by centrifugation for 20 minutes at 3500 rpm. The 

supernatant was transferred to a clean Falcon tube, shaken for 15 seconds and subsequently 

centrifuged at 2500 rpm for 30 minutes. After centrifugation the supernatant containing the 

DNA was poured into a new Falcon tube. Two times the volume ice-cold ethanol (EtOH) 

(±99.9%) (v/v) was added and the solution was left at room temperature for 30 minutes to 

allow the DNA to precipitate. 

 

The precipitated DNA was placed into a clean 1.5 ml tube (Eppendorf) containing 1 ml 70% 

(v/v) EtOH for the removal of excess salt. The solution was centrifuged at 14 000 rpm 

(Centrifuge 7417C, Eppendorf) for 10 minutes (4ºC). Excess EtOH was carefully removed 

and the DNA left to air-dry at room temperature. The DNA pellet was dissolved in 200-800 µl 

double distilled water (ddH2O), depending on the pellet size, and then shaken overnight at 

room temperature and subsequently stored at 4ºC. DNA quantity and quality was determined 

spectrophotometrically (Nanodrop® ND-1000 Spectrophotometer (Nanodrop Technologies, 

United States of America (USA))  

 

2.2.3 Polymerase Chain Reaction (PCR) Amplification 

 

PCR amplification was performed for the promoter and coding region of the genes under 

investigation, including HMOX1, HFE, HAMP, SLC40A1, CYBRD1 and HJV. 

Oligonucleotide primers were designed using the Primer3 program (Rozen and Skaletsky, 

2000) (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3/www.cgi,2002) and the 

reference sequence for each gene as listed in Tables 2.1 – 2.6. Reference sequences were 

obtained from either the Ensembl (http://www.ensembl.org) or GenAtlas 

(http://www.genatlas.org). The reference promoter and coding regions of all the genes with 

relative positions of the primers designed are depicted in Appendix 2.  

 

A final reaction volume of 25 µl contained 50 ng DNA, 1 × ammonium sulphate buffer 

((NH4)2SO4) (Fermentas), 10 pmol of each primer [Inqaba Biotech and Integrated DNA 

Technologies (IDT)], 0.5 U Taq polymerase (Fermentas), magnesium chloride (MgCl2) 
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(Fermentas) as specified in Tables 2.1 – 2.6 and, unless otherwise stated in the Tables, 0.1 

mM of each 2’-deoxynucleotide (dNTP) (dATP, dGTP, dCTP, dTTP) (Fermentas).  

 

PCR amplification was performed in an Applied Biosystems PCR thermocycler 

(GeneAmp®PCR system 2700). Five different PCR programmes were utilised to amplify the 

promoters and coding region of the genes as mentioned above. These programmes have been 

designated programmes A to E and the programme used to amplify a specific amplicon is 

indicated in Tables 2.1-2.6. These are discussed further below: 

 

Programme A was initiated by a denaturation step at 95ºC for 2 minutes. Followed by 35 

cycles of denaturation at 95ºC for 30 seconds, annealing for 45 seconds (Ann1 as specified for 

each fragment and listed in Tables 2.1 – 2.6) and extension at 72ºC for 30 seconds. Final 

extension was performed at 72ºC for 10 minutes.  

 

Programme B was characterised by an initial 2 minute denaturation step at 95ºC. 

Subsequently, there were 10 cycles of denaturation at 95ºC for 30 seconds, annealing for 45 

seconds (Ann 1 as listed for each primer set in Tables 2.1 – 2.6) and extension at 72ºC for 30 

seconds. This was followed by 30 cycles of denaturation, annealing (Ann 2 as listed for each 

primer set in Tables 2.1 – 2.6) and extension at the same conditions as above. Final extension 

occurred at 72ºC for 10 minutes. 

 

Programme C included an initial denaturation step (95°C for 5 minutes) followed by 35 

cycles each consisting of 1 minute at 95°C (denaturation) and 2 minutes at Ann 1 (as specified 

in Tables 2.1 – 2.6) (annealing). Final extension was at 72°C for 15 minutes. 

 

Programme D included an initial denaturation at 94ºC for 5 minutes preceded 35 cycles of 

denaturation at 94ºC for 30 seconds, annealing for 30 seconds (Ann 1 as listed in Tables 2.1 – 

2.6) and extension at 72ºC for 30 seconds. The cycle was completed with an extension step at 

72ºC for 10 minutes.  

 

Programme E was initiated by denaturation at 95ºC for 5 minutes. This was followed by 35 

cycles of denaturation at 95ºC for 2 minutes and annealing (Ann 1 as specified for each 

primer set as listed in Tables 2.1 – 2.6) for 2 minutes. Subsequently, an extension step at 72ºC 

for 10 minutes occurred.
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2.2.4 Agarose Gel Electrophoresis 

 

Successful amplification of PCR products was tested on a 2% (w/v) horizontal agarose gel 

[consisting of 4 g agarose, 1 × Tris-Borate/EDTA (TBE) (90 mM Tris-HCl (pH 8.0), 90 mM 

boric acid (H3BO3) and 1 mM EDTA) and 0.01% (v/v) ethidium bromide (EtBr)]. The PCR 

product (5 µl) was mixed with Cresol red loading buffer (5 µl) [consisting of 0.02% (w/v) 

cresol red and 0.34% (w/v) sucrose) and loaded into the wells of the agarose gel. The products 

were resolved at 120 V for 1 hour in 1 × TBE buffer solution. A 100 base pair (bp) marker 

(Fermentas) established amplification of the correct fragment size. The DNA was visualised 

by ultraviolet light transillumination on the Multigenius Bio Imaging System (Syngene, 

Cambridge, United Kingdom (UK)). 

 

2.2.5 Heteroduplex Single-Strand Conformation Polymorphism (HEX-SSCP) Analysis 

 

The successfully amplified DNA fragments were subjected to HEX-SSCP analysis (Kotze et 

al, 1995) performed on a Hoefer vertical gel apparatus. The fragments were electrophoresed 

on a 12% (w/v) polyacrylamide (PAA) gel supplemented with urea [(NH2)2CO] [gel 

consisting of 7.5% (w/v) urea, 1.5 × TBE buffer (135 mM Tris-HCl (pH 8.0), 135 mM boric 

acid and 1.5 mM EDTA), 12% (w/v) PAA (1%C of a 40% stock [99 acrylamide (AA):1 

bisacrylamide (BAA)], 0.1% (w/v) ammonium persulphate (APS) and 0.1 % (v/v) TEMED. 

 

Gels were cast at room temperature and allowed to completely polymerise. Subsequently, the 

gels were placed into the Hoefer electrophoresis tank, which contained 1 × TBE buffer. The 

upper buffer chamber was filled with fresh 1.5 × TBE buffer. A volume of 15 µl of 

bromophenol blue loading buffer [consisting of 0.05% (w/v) bromophenol blue, 0.05% (w/v) 

xylene cyanol, 95% (v/v) formamide (de-ionised) and 20 mM EDTA] was added to the PCR 

products (20 µl). The solution was then heat denatured at 95ºC for 10 minutes and 

immediately placed on ice. Approximately 15 µl of the denatured PCR product was loaded on 

the gel and electrophoresed at 4ºC at 250 V for 18 hours. 

 

Following electrophoresis, the gels were dismantled and the DNA stained in a 0.01% (v/v) 

EtBr solution for 10 minutes. This was followed by 3 minutes of destaining in ddH2O. DNA 

fragments were visualised by ultraviolet light transillumination and photographed using the 

Multigenius Bio Imaging System (Syngene, Cambridge, UK).  
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2.2.6 Restriction Fragment Length Polymorphism (RFLP) Analysis 

 

RFLP analysis was performed for the CYBRD1 variant S266N and the HMOX1 variant 

IVS2+4T→C as successful genotyping of these two variants was not possible using the HEX-

SSCP images.  

 

The S266N variant in exon 4 of the CYBRD1 gene was digested with TspRI (recognition site 

5’ CAG↓TG 3’, New England Biolabs) to improve genotyping of this variant. The TspRI 

recognition site is abolished by the presence of this variant. In the absence of the variant two 

fragments of 87 bp and 130 bp result. Digestion of the variant DNA fragment produces three 

fragments of 217 bp, 130 bp and 87 bp in the heterozygous state and 1 fragment of 217 bp in 

the homozygous state. 

 

RFLP analysis was also used to genotype the IVS2+4T→C variant in the HMOX1 gene. Exon 

2 of the HMOX1 gene was digested with HpyCH41V (recognition site 5’ A↓CGT 3’, New 

England Biolabs). This restriction enzyme is an isoschizomer of MaeII. This variant creates 

an HpyCH41V recognition site within the exon 2 fragment. In the absence of the variant the 

DNA fragment remains uncut and produces a single 236 bp fragment. Digestion of the variant 

DNA fragment produces three fragments of 236 bp, 163 bp and 73 bp in the heterozygous 

state and two fragments of 163 bp and 73 bp in the homozygous state.  

 

All RFLP reactions were performed in a final volume of 20 µl that contained 10 µl of the 

relevant PCR product, 1 × buffer and 2 U of the applicable restriction enzyme. PCR products 

were incubated in a water bath for 16 hours to allow complete digestion. Incubation 

temperatures and buffer components for each restriction enzyme are supplied in Table 2.7.  

 

Electrophoresis of all of the digested PCR products was performed on a 2% (w/v) agarose gel 

(see Section 2.2.4). A volume of 10 µl of each digested PCR product was mixed with 10 µl 

Cresol red loading buffer and loaded into the wells of the agarose gel. The products were 

resolved at 100 V for 90 minutes in 1 × TBE buffer solution. The sizes of the digested DNA 

fragments were verified by loading a 100 bp DNA marker (Fermentas) along with the 

samples. The DNA fragments were visualised by ultraviolet light transillumination on the 

Multigenius Bio Imaging System (Syngene, Cambridge, United Kingdom (UK)) for 

successful genotyping. 
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Table 2.7. Table outlining restriction enzyme buffers and water bath incubation temperatures  

Gene Variant 
Restriction 

Enzyme 
NEBuffer Buffer Components 

Incubation 

Temperature 

(ºC) 

HMOX1 IVS2+4T→C HpyCH41V 1 

10 mM Bis Tris Propane-

HCl 

10 mM MgCl2 

1 mM DTT 

pH 7.0 at 25ºC 

37 

CYBRD1 S266N TspRI 4 

50 mM KAc, 

20 mM TA, 

10 mM MgAc, 

1 mM DTT 

pH 7.9 at 25ºC 

Supplemented with  

100 µg/ml BSA 

65 

Abbreviations: µg/ml, microgram per millilitre; BSA, bovine serum albumin; ºC, degrees Celsius; CYBRD1, 
cytochrome b reductase 1 gene; DTT, dithiothreitol; HCl, hydrochloric acid; HMOX1, haem oxygenase-1 gene; 
HpyCH41V, Escherichia. coli strain carrying the cloned HpyCH41 gene from Helicobacter pylori CH4; IVS, 
intervening sequence; KAc, potassium acetate; MgAc, magnesium acetate; MgCl2, magnesium chloride; mM, 
millimolar; N, asparagine; NEBuffer, New England Biolabs buffer; S, serine; TA, tris-acetate; TspR1, 
Escherichia coli strain carrying the cloned TspRI gene from Thermus species R. 
 

2.2.7 Semi-automated DNA Sequencing Analysis 

 

Samples showing aberrant banding patterns upon HEX-SSCP analysis were subjected to bi-

directional semi-automated DNA sequencing. The PCR products were purified prior to 

sequencing using the GenEluteTM PCR Clean-Up Kit (Sigma). 

 

The clean-up protocol was initiated with the insertion of a GenElute Miniprep Binding 

Column into the collection tube and addition of a volume of 500 µl of Column Preparation 

Solution to each column. Each tube was then centrifuged at 11 200 rpm (Centrifuge 5415D, 

Eppendorf) for 1 minute. The eluate was subsequently discarded. The PCR product was 

prepared by adding 5 volumes of Binding Solution to 1 volume of the PCR product. 

Following mixing, the solution was centrifuged for 1 minute at 13 000 rpm. After discarding 

the flow-through, 500 µl of Wash Solution was added to the column and it was centrifuged at 

13 000 rpm for 3 minutes. The column was transferred to a clean 2 ml collection tube and 50 

µl of ddH2O was applied to the centre of each column. The tube was incubated at room 
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temperature for 1 minute before the DNA was eluted by centrifugation at 13 000 rpm for 1 

minute. The purified DNA was subsequently stored at 4ºC. The constituents of the 

GenEluteTM PCR Clean-Up Kit (Sigma) Column Preparation, Binding and Wash Solutions 

were not made available by the manufacturer.  

 

Cycle sequencing was performed on a GeneAmp®PCR system 2700 thermocycler. Each 

reaction contained 3.3 ng of the relevant primer (Tables 2.1-2.6), 1 µl termination ready 

reaction mix [BigDye® Terminator v3.1 cycle sequence kit (Applied Biosystems)] and 9.9 ng 

of the purified PCR product.  

 

The cycle program consisted of an initial denaturation step of 10 seconds at 96°C followed by 

25 cycles of denaturation at 96°C for 10 seconds, annealing at 55°C for 10 seconds and 

extension at 60°C for 4 minutes. The samples were subsequently sent to a sequencing facility 

(Central Analytical Facility, Stellenbosch University) where they were loaded onto an ABI 

PRISM 3130X1 Genetic Analyser (Applied Biosystems) automated sequencer. Analysis of all 

resulting sequences was performed by a) visually examining the electropherograms and b) 

alignment of sequences with the reference sequence (accession numbers of reference 

sequences are listed in Tables 2.1-2.6) using BioEdit Sequence Alignment Editor v7.0.1 (Hall, 

1999). 
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Mutation analysis of six genes in an Indian family with Hereditary 

Haemochromatosis 
 

Abstract 
 

Hereditary haemochromatosis (HH) is a very common disease in individuals of northern 

European descent. The majority of patients are homozygous for the C282Y mutation in the 

HFE gene or compound heterozygotes for the C282Y and H63D mutations. Although 

prevalent in Caucasians, the disease is rare in Asians and Africans. The present study 

attempted to elucidate the gene variant, or variants, causing HH in an Asian Indian family as 

well as potential modifiers of the HH phenotype. Mutation analysis of the promoters and 

coding regions of six iron regulatory genes including HMOX1, HFE, HAMP, SLC40A1, 

CYBRD1 and HJV, was performed. Heteroduplex single-strand conformation polymorphism 

(HEX-SSCP) analysis and bi-directional semi-automated DNA sequencing analysis were 

employed to identify variants associated with HH in this family. Twenty four previously 

identified and five novel variants (HFE: 5’UTR-840T→G; CYBRD1: 5’UTR-1813C→T, 

5’UTR-1452T→C, 5’UTR-1272T→C; and HJV: 5’UTR-534G→T, 5’UTR-530G→T) as 

well as one known SLC40A1 repeat and two novel 5’UTR repeats (CYBRD1: 

[G(T)8G(T)6G(T)nG(T)9] where n represents zero or six repeats and HJV: (AAGG) presenting 

with 11 to 13 repeats) were identified in the Indian family. A propitious previously identified 

HAMP variant (5’UTR-335G→T) seems to be responsible for the iron overload phenotype 

observed in the two Indian probands. Variants identified in the HMOX1 and HFE genes may 

be modifying the effect of the HAMP promoter variant. 

 

Introduction 
 

Hereditary haemochromatosis (HH) is a common autosomal recessive disorder resulting from 

the disruption of iron absorption. The majority of patients have a mutation in the high-iron 

(HFE) gene, with C282Y homozygosity accounting for more than 80% of HH cases in 

Caucasians of northern European descent (Feder et al, 1996). The C282Y homozygous 

genotype results in the most severe form of HH, referred to as Type 1, and is presented by 

approximately five out of every 1000 individuals of northern European descent. However, the 

penetrance of this variant seems to be incomplete. The proportion of HH patients presenting 
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with the homozygous C282Y variant genotype differs in distinct populations and the variant 

allele is not present in the Asian and African populations (Merryweather-Clarke et al, 1997; 

Roth et al, 1997). Other types of haemochromatosis not associated with the HFE gene include 

Type 2 haemochromatosis resulting from mutations in the HAMP and HJV genes (Roetto et 

al, 2003; Papanikolaou et al, 2004), Type 3 resulting from mutations in the TFR2 gene 

(Camaschella et al, 2000), Type 4 associated with SLC40A1 mutations (Njajou et al, 2001) 

and Type 5 resulting from mutations in the H-ferritin gene (Kato et al, 2001). 

 

Although HH Types 1, 2 and 3 are distinct diseases, they do share similar disease phenotypes. 

Researchers have discovered that in cases of juvenile haemochromatosis where patients 

display mutations in the HJV gene, almost no urinary hepcidin is detected (Papanikolaou et al, 

2004). This may indicate that HJV and HAMP function in the same pathways and that HJV 

may regulate HAMP expression. Babitt et al (2006) revealed that HJV regulates hepcidin 

expression by acting as a cofactor in the BMP signalling cascade. Hepcidin expression is also 

diminished in patients with haemochromatosis due to mutations in HFE or TFR2. This 

implicates HFE and TFR2 in the regulation of hepcidin expression and how these two 

proteins regulate hepcidin needs to be investigated further (reviewed by Ganz and Nemeth, 

2006).  

 

HH is predicted to be rare in the Indian subcontinent. In various studies the frequency of the 

C282Y and H63D variants has been determined, but these variants are not associated with 

iron overload in India (Garewal et al, 2005; Dhillon et al, 2007). It is believed that 

haemochromatosis in India is of the non-HFE type but the gene causing the HH phenotype 

has not been elucidated as yet.  

 

Mutation analysis of six genes namely, the haem oxygenase-1 (HMOX1) gene, high-iron 

(HFE) gene, hepcidin antimicrobial peptide (HAMP) gene, solute-carrier family 40 (iron-

regulated transporter) member 1 (SLC40A1) gene, cytochrome b reductase 1 (CYBRD1) gene 

and hemojuvelin (HJV) gene, was performed in an attempt to elucidate the causative gene 

variant or variants associated with HH in this Indian family. 
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Materials and Methods 
 

Information provided for all study participants, detailed methodologies employed and 

statistical analysis performed are as outlined in Chapter 2. 

 

Results 
 

3.1 Body Iron Status 

 

The TS% and SF levels for the two probands (at diagnosis) are provided in Table 3.1. A TS% 

exceeding 45% and/or a SF level of more than 200 µg/l in females and 300 µg/l in males were 

indicative of iron overload. The TS% and SF levels for 20 of the phenotypically unaffected 

family members are also shown in Table 3.1. For one of the extended family members (III:19) 

only the TS% was provided. No iron parameters were available for three of the family 

members (III:3, III:5 and III:17). The iron parameters of the extended family members are 

provided as of date of study. 
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Table 3.1. Characteristics and iron indices of probands and unaffected family members 

Patient Sex Age 

Transferrin 

Saturation 

(%) 

Serum Ferritin 

(µg/l) 

Proband 1* Male 64 100 5220 

Proband 2* Female 61 58 595 

II:2 Male 63 15 29 

II:4 Female 60 30 191 

II:5 Male 57 29 37 

II:6 Female 52 18 25 

II:7 Male 50 22 277 

III:1 Male 42 30 196 

III:2 Female 36 24 100 

III:3 Male 23 unknown unknown 

III:4 Female 42 12 62 

III:5 Male 36 unknown unknown 

III:7 Female 43 13 15 

III:8 Female 41 26 118 

III:9 Male 40 40 137 

III:10 Female 39 33 213 

III:12 Male 34 29 264 

III:14 Female 34 23 115 

III:16 Female 27 34 108 

III:17 Male 29 unknown unknown 

III:19 Male 19 22 unknown 

III:20 Female 19 44 91 

III:21 Female 10 22 78 

III:22 Female 16 31 76 

III:23 Female 40 17 57 
* Iron parameters are given for the probands at diagnosis. 
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3.2 Mutation Analysis 

 

Mutation analysis of the six genes namely, HMOX1, HFE, HAMP, SLC40A1, CYBRD1 and 

HJV, in the two probands revealed several variations on HEX-SSCP analysis. Twenty four 

previously described single nucleotide substitutions were identified as well as a previously 

described repeat. In addition to these known variants, five novel single nucleotide 

substitutions and two repeats were identified in the two probands. All variants are shown in 

Table 3.2. The position of each variant and repeat identified is indicated on the reference 

sequence of each gene in Appendix 2. The genotypes of the two Indian probands for each 

variant are shown in Appendix 3. 

 

The polymerase chain reaction (PCR) could not be optimised for the amplification of the 

SLC40A1 promoter fragment 6 nor the CYBRD1 promoter fragment 2 (see primer Tables 2.4 

and 2.5). The SLC40A1 promoter region that was spanned by fragment 6 was however 

amplified using the adjacent forward and reverse primers namely, SP5 forward and SP7 

reverse (see Table 2.4). The resulting 840 bp fragment could not be analysed using HEX-

SSCP analysis so direct sequencing analysis was performed on this fragment. Likewise, the 

CYBRD1 promoter region spanned by the BP2 primers was amplified using the adjacent BP1 

forward and BP3 reverse primers (see Table 2.5). The resulting 747 bp fragment was 

subsequently subjected to direct sequencing analysis. Optimisation of PCR amplification for 

the HMOX1 promoter fragment 5 (Table 2.1), HAMP promoter fragment 2 (Table 2.3), and 

HJV promoter fragments 2 and 5 (Table 2.6) was unsuccessful and therefore mutation 

analysis of these fragments was incomplete.  

 

After initially being identified in the probands, all variants were screened for in the 23 

extended family members. The genotype of the family members for each variant is shown in 

Appendix 3. For some variants amplification of the respective PCR fragment was 

unsuccessful and therefore genotyping of that variant is incomplete. 
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Table 3.2. Variants initially identified in two probands of an Indian family and subsequently 

identified in the extended family members 
Gene 5’UTR/Exon/Intron Variant Reference 

HMOX1 5’UTR 5’UTR-495A→T rs2071746* 

 2 IVS2+4T→C rs17885925* 

 2 IVS2-19C→T rs7879606* 

HFE 5’UTR 5’UTR-1206C→G rs1800702* 

 5’UTR 5’UTR-467G→C rs2794720* 

 5’UTR 5’UTR-840T→G This study 

 2 H63D (g.189C→G) Feder et al, 1996 

HAMP 5’UTR 5’UTR-335G→T rs3817623* 

SLC40A1 5’UTR 5’UTR-1355G→C rs3811621* 

 5’UTR 5’UTR-750G→A rs13015236* 

 5’UTR 5’UTR-593C→T rs12693542* 

 5’UTR 5’UTR-501T→C rs6728200* 

 1 (CGG)8
# Lee et al, 2001 

 1 (CGG)7
# Lee et al, 2001 

 6 V221 (g.663T→C) Devalia et al 2002 

CYBRD1 5’UTR 5’UTR-1844C→G rs7585974* 

 5’UTR 5’UTR-1834G→A rs7586174* 

 5’UTR 5’UTR-1813C→T rs12692965 

 5’UTR 5’UTR-1459T→C rs10199858* 

 5’UTR 5’UTR-1452T→C This study 

 5’UTR 5’UTR-1272T→C This study 

 5’UTR 5’UTR-624G→A rs884408* 

 5’UTR 5’UTR-238A→G rs868106* 

 5’UTR 5’UTR-167C→G rs2356782* 

 5’UTR 5’UTR-163G→A rs3731976* 

 5’UTR G(T)8G(T)6G(T)6G(T)9
# This study 

 5’UTR G(T)8G(T)6G(T)9
# This study 

 2 IVS2+8T→C Zaahl et al 2004 

 4 S266N (g.797G→A) McKie et al 2001 

HJV 5’UTR 5’UTR-1406C→A rs1830823* 

 5’UTR 5’UTR-542A→G rs10910811* 

 5’UTR 5’UTR-534G→T This study 

 5’UTR 5’UTR-530G→T This study 

 5’UTR 5’UTR(AAGG)11
# This study 

 5’UTR 5’UTR(AAGG)12
# This study 

 5’UTR 5’UTR(AAGG)13
# This study 

Abbreviations: 5’UTR, 5-prime untranslated region; CYBRD1, cytochrome b reductase 1 gene; HAMP, hepcidin 
antimicrobial peptide gene; HFE, high-iron gene; HJV, hemojuvelin gene; HMOX1, haem oxygenase-1 gene; 
IVS, intervening sequence; N, asparagine; S, serine; SLC40A1, solute-carrier family 40 (iron-regulated 
transporter) member 1 gene; V, valine. #position of repeats indicated in Appendix 2; *refSNP ID (HapMap) 
available online at http://www.hapmap.org. 
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Haplotype analysis was performed to identify any genetic modifiers contributing to the iron 

overload phenotype in this family. The Cyrillic 2.01 program (Cherwell Scientific Publishing 

Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK) was employed to perform 

haplotype analysis for each of the genes under investigation. The variants identified in each of 

the genes were used as markers to construct the haplotypes. In each case, the wild type allele 

was denoted with a 1 and the variant allele was denoted with a 2. The length of the repeat 

represented the different allelic forms of the SLC40A1 and HJV repeats identified. The 

genotypes of individuals for the CYBRD1 repeat were represented with a 1 for allele 1 

(G(T)8G(T)6G(T)6G(T)9) and 2 for allele 2 (G(T)8G(T)6G(T)9) of the repeat. The genotypes of 

some individuals were not clearly distinguishable following HEX-SSCP or DNA sequencing 

analysis. Furthermore, the genotypes of some individuals were ambiguous in that they did not 

conform to the haplotypes presented in the Indian family. This ambiguity could not be 

explained by non-paternity or recombination. The genotypes of these individuals are denoted 

with question marks in the pedigree. These individuals will be re-analysed and their 

genotypes clarified employing semi-automated DNA sequencing analysis. Appendix 3 

outlines more accurately why the genotypes of these individuals were omitted from the 

haplotype analysis. 

 

3.2.1 HMOX1 gene 

 

Mutation analysis of the HMOX1 coding region and promoter revealed a previously described 

5’UTR variant (5’UTR-495A→T) as well as two known intronic variants (IVS2+4T→C and 

IVS2-19C→T). 

 

A single A to T nucleotide substitution was observed in the promoter region of the HMOX1 

gene 495 nucleotides upstream from the translation initiation site (5’UTR-495A→T) 

(HapMap; refSNP ID: rs2071746). This previously described variant was observed in the 

heterozygous state in both probands. Further analysis revealed eight (34.8%) homozygous 

variant and seven (30.4%) heterozygous family members.  

 

HEX-SSCP and sequencing analysis of exon 2 revealed two previously identified intronic 

variants. The first, a T to C transition, occurs four nucleotides from the end of exon 2 

(IVS2+4T→C) (HapMap; refSNP ID: rs17885925). This variant was identified in the 

heterozygous state in both of the probands. The variant allele creates a MaeII recognition site 
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(5’ A↓CGT 3’). RFLP analysis using the MaeII isoschizomer HpyCH41V was used for 

genotyping of the extended family members. The wild type sequence produced a 236 bp 

fragment while the heterozygous genotype produced three fragments of 236 bp, 163 bp and 

73 bp, respectively. The 73 bp fragment was not visible on the 2% (w/v) horizontal agarose 

gels but genotyping of this variant was still possible using the 236 bp and 163 bp fragments. 

Five extended family members (21.7%) were heterozygous for this variant while 17 (73.9%) 

presented with the homozygous wild type genotype. The homozygous state of this variant was 

not observed.  

 

The second previously described non-coding variant was a C to T transition located in intron 

2, 19 nucleotides upstream from exon 3 (IVS2-19C→T) (HapMap; refSNP ID: rs7879606). 

Proband 2 was heterozygous for this variant while proband 1 was homozygous wild type. 

Nineteen (82.6%) of the extended family members were homozygous wild type for this 

variant and four (17.4%) were heterozygous. The homozygous form of this variant was not 

observed. 

 

Annotation of the HMOX1 gene variants and the haplotypes constructed for the three variants 

in the HMOX1 gene are depicted in Figure 3.1.  
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Legend to Figure 3.1. 
Schematic representation of haplotypes constructed for the HMOX1 gene variants. i) Gene annotation indicating 
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene 
annotation is not drawn to scale and only indicates the positions of the variants. ii) Pedigree with constructed 
HMOX1 haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is 
annotated. Red, haplotype 1; yellow, haplotype 2; brown, haplotype 3; orange, haplotype 4. Abbreviations: 3’, 3-
prime end; 5’, 5-prime end; ATG, translation initiation site; HMOX1, haem oxygenase-1 gene; IVS, intervening 
sequence; UTR, untranslated region. 
 

3.2.3 HFE gene 

 

Mutation analysis of the HFE gene revealed three previously described variants (5’UTR-

1206C→G, 5’UTR-467G→C and H63D) and a single novel variant (5’UTR-840T→G) in the 

HFE gene. The common C282Y HFE variant was absent from both of the probands and all 

family members. 

 

HEX-SSCP analysis and bi-directional semi-automated DNA sequencing of promoter 

fragment 1 (Table 2.2) identified a known C to G transversion 1206 nucleotides upstream of 

the translation initiation site (ATG), 5’UTR-1206C→G, (HapMap; refSNP ID: rs1800702). 

This variant was initially identified in the heterozygous state in both probands. Subsequent 

genotyping of the extended family members revealed nine heterozygous individuals (39.1%) 

and two individuals (8.7%) who were homozygous for the variant allele. 

 

A previously described G to C transversion was identified 467 nucleotides upstream of the 

initiating ATG (5’UTR-467G→C) (HapMap; refSNP ID: rs2794720) in fragment 7 of the 

promoter (Table 2.2). Both probands were heterozygous for this variant. Analysis in the 

family members revealed eight heterozygous individuals (34.8%) and two (8.7%) individuals 

who were homozygous for the variant allele.   

 

A novel variant was identified in the 5’UTR of the HFE gene. This variant was observed 

following HEX-SSCP and sequencing analysis of fragment 3 of the promoter (Table 2.2). The 

variant is a T to G transversion at nucleotide position 840 upstream from the initiating ATG 

(5’UTR-840T→G). The HEX-SSCP gel and sequencing electropherograms of this variant are 

depicted in Figure 3.2. Both probands were heterozygous for this variant as well as three 

(13%) family members. The homozygous state of this variant was not observed. 
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Figure 3.2. Schematic representation of the novel 5’UTR-840T→G variant in the HFE 

promoter 
 

                                                   

                  

 
 
Legend to Figure 3.2. 
A. HEX-SSCP gel stained with EtBr and visualised using ultraviolet light transillumination. Arrow indicates 
aberrant band, Het = heterozygous banding pattern, N = homozygous wild type banding pattern. B. Sequencing 
electropherograms indicating (i) the wild type sequence and (ii) the 5’UTR-840T→G variant. Arrow indicates 
the point of variation, green adenine or A, blue cytosine or C, black guanine or G, red thymine or T. 
 

A missense mutation was observed in exon two of the HFE gene. The mutation is a 

previously described C to G transversion at nucleotide position 189 that results in the 

replacement of histidine with aspartic acid at amino acid position 63 (H63D) (Feder et al, 

1996). This mutation was not present in the two probands but was identified in the 

heterozygous state in four (17.4%) family members. 

 

The HFE gene annotation, as well as the haplotypes constructed for the four variants 

identified in the HFE gene, are shown in Figure 3.3. 

 

 

B. (i) 

B. (ii) 

A. 
Het    Het   N 
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Legend to Figure 3.3. 
Schematic representation of haplotypes constructed for the HFE gene variants. i) Gene annotation indicating the 
transcription initiation site and the position of variants used as markers for haplotype assembly. Gene annotation 
is not drawn to scale and only indicates the positions of the HFE variants. ii) Pedigree with constructed 
haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is annotated. Blue, 
haplotype 1; brown, haplotype 2; pink, haplotype 3. Abbreviations: 3’, 3-prime end; 5’, 5-prime end; ATG, 
translation initiation site; D, aspartic acid; H, histidine; HFE, high-iron gene; UTR, untranslated region. 
 

3.2.4 HAMP gene 

 

Mutation analysis of the HAMP gene revealed a single known variant in the 5’UTR (5’UTR-

335G→T) (HapMap; refSNP ID: rs3817623). This variant is a transversion of a G to T 

nucleotide at position 335 upstream relative to the initiating ATG. The variant was identified 

following HEX-SSCP and sequencing analysis of promoter fragment 4 of the gene and was 

observed in the homozygous state in both of the probands. None of the extended family 

members were homozygous for the variant allele but the heterozygous state was observed in 

16 (69.6%) of these individuals. 

 

Although only a single variant was identified in the HAMP gene, this variant was used to 

construct haplotypes for the Indian family. Annotation of the gene and the haplotypes 

constructed for the HAMP variant are shown in Figure 3.4. 
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Legend to Figure 3.4. 
Schematic representation of haplotypes constructed for the HAMP gene variant. i) Gene annotation indicating 
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene 
annotation is not drawn to scale and only indicates the position of the variant. ii) Pedigree with constructed 
haplotypes provided for each individual. Abbreviations: 3’, 3-prime end; 5’, 5-prime end; ATG, translation 
initiation site; HAMP, hepcidin antimicrobial peptide gene; UTR, untranslated region. 
 

3.2.5 SLC40A1 gene 

 

Five previously identified variants were identified in the SLC40A1 gene (5’UTR-1355G→C, 

5’UTR-750G→A, 5’UTR-593C→T, 5’UTR-501T→C and V221). The CGG microsatellite 

within the SLC40A1 promoter was also identified with either 7 or 8 repeats. 

 

HEX-SSCP analysis and sequencing of fragment 1 of this gene promoter revealed a known 

nucleotide substitution. The G to C transversion at nucleotide position 1355 upstream from 

the initiating ATG (5’UTR-1355G→C) (HapMap; refSNP ID: rs3811621) was identified in 

the heterozygous state in both of the probands. Screening of the extended family members 

revealed eight (34.8%) homozygotes and 13 (56.5%) heterozygotes.  

 

A known G to A transition at nucleotide position 750 upstream from ATG (5’UTR-750G→A) 

(HapMap; refSNP ID: rs13015236) was identified in the homozygous state in proband 1 and 

in the heterozygous state in proband 2. Subsequent screening of the extended family members 

revealed 14 (60.9%) heterozygous and five (21.7%) homozygous individuals.  

 

Direct sequencing analysis of the 840 bp SLC40A1 fragment revealed a nucleotide 

substitution of a C to a T at position 593 upstream from the initiating ATG. This variant was 

identified in the homozygous variant state in both of the probands. The variant (5’UTR-

593C→T) (HapMap; refSNP ID: rs12693542) presented in the heterozygous form in nine 

(39.1%) family members, while the homozygous variant genotype was observed in 13 

(56.5%) individuals.  

 

Sequencing analysis of 840 bp fragment revealed another variant. The 5’UTR-501T→C 

variant (HapMap; refSNP ID: rs6728200) is a T to C transition 501 nucleotides upstream 

from the initiating ATG. Both of the probands as well as all of the family members genotyped 

were homozygous for the variant C allele.  
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HEX-SSCP and sequencing analysis of the coding region of the SLC40A1 gene revealed a 

single synonymous variant in exon 6. The variant is a T to C transition at nucleotide position 

663 (g.663 T→C) that does not result in the replacement of the amino acid valine at amino 

acid position 221 (V221) (Devalia et al, 2002). This variant was identified in the 

heterozygous state in proband 1 but was absent from proband 2. Genotyping of the extended 

family members revealed 16 (69.6%) heterozygous individuals but the homozygous variant 

state was not observed.  

 

The previously described CGG microsatellite in the 5’UTR (Lee et al, 2001) was identified 

after direct sequencing of the 840 bp fragment. The repeat was observed in two allelic forms 

namely, allele 1: (CGG)8 and allele 2: (CGG)7. The two probands were both homozygous for 

(CGG)8 (allele 1). Eleven (47.8%) of the family members were also homozygous for allele 1. 

Genotyping further revealed 12 (52.2%) individuals who were heterozygous having both the 

(CGG)7 and (CGG)8 alleles. The homozygous (CGG)7 genotype was not observed.  

 

The SLC40A1 gene annotation and the haplotypes constructed for the variants identified 

within this gene are shown in Figure 3.5. 
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Legend to Figure 3.5. 
Schematic representation of haplotypes constructed for the SLC40A1 gene variants. i) Gene annotation indicating 
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene 
annotation is not drawn to scale and only indicates the positions of the variants. ii) Pedigree with constructed 
haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is annotated. Blue, 
haplotype 1; pink, haplotype 2; purple, haplotype 3. Abbreviations: 3’, 3-prime end; 5’, 5-prime end; ATG, 
translation initiation site; SLC40A1, solute carrier family 40 (iron-regulated transporter) member 1 gene; UTR, 
untranslated region; V, Valine. 
 

3.2.6 CYBRD1 gene 

 

Mutation analysis of the CYBRD1 promoter and coding region revealed ten previously 

described (5’UTR-1844C→G, 5’UTR-1834G→A, 5’UTR-1813C→T, 5’UTR-1459T→C, 

5’UTR-624G→A, 5’UTR-238A→G, 5’UTR-167C→G, 5’UTR-163G→A, IVS2+8T→C and 

S266N) and two novel (5’UTR-1452T→C and 5’UTR-1272T→C) variants. A repeat was also 

observed in the 5’UTR [G(T)8G(T)6G(T)nG(T)9] where n represents either zero or six repeats. 

 

Direct sequencing analysis of the 747 bp CYBRD1 promoter fragment, amplified using BP1 

forward and BP3 reverse primers according to Table 2.5, revealed four previously described 

variants. The first was a single nucleotide substitution observed 1844 nucleotides upstream 

from the initiating codon (5’UTR-1844C→G) (HapMap; refSNP ID: rs7585974). This variant 

was observed in both of the probands in the homozygous state. Subsequent genotyping of the 

extended family revealed 17 (73.9%) homozygous and five (21.7%) heterozygous individuals. 

The homozygous wild type genotype was not observed in this Indian family. The second 

known variant 5’UTR-1834G→A (HapMap; refSNP ID: rs7586174) was observed 1834 

nucleotides upstream from the initiating ATG. This variant was identified in the heterozygous 

state in both of the probands. Four (17.4%) family members were homozygous for this variant 

and 12 (52.2%) were heterozygous. The third previously described variant was a C to T 

transition 1813 nucleotides upstream from the first ATG codon (5’UTR-1813C→T) 

(HapMap; refSNP ID 12692965). This variant was absent from the two probands but was 

observed in the heterozygous state in five (21.7%) family members. This variant was not 

detected in the homozygous form. The fourth known single nucleotide substitution (T to C) 

was identified 1459 nucleotides upstream relative to the ATG (5’UTR-1459T→C). This 

previously described variant (HapMap; refSNP ID: rs10199858) was observed in the 

heterozygous state in both of the probands. Genotyping of the extended family revealed 10 

(43.5%) heterozygous and four (17.4%) homozygous individuals.  
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A repeat was observed in the promoter region of the CYBRD1 gene after direct sequencing 

analysis of the 747 bp fragment (primers BP1 forward and BP3 reverse according to Table 

2.5). The repeat, [G(T)8G(T)6G(T)nG(T)9] where n indicates either zero or six repeats, was 

present in two allelic forms; allele 1: [G(T)8G(T)6G(T)6G(T)9] and allele 2: 

[G(T)8G(T)6G(T)9]. Both probands as well as 10 (43.5%) family members were heterozygous 

for alleles 1 and 2 of the repeat. Eight family members (34.8%) were homozygous for allele 1, 

while four (17.4%) were homozygous for allele 2 of the repeat. The schematic representation 

of the two alleles of the repeat is shown in Figure 3.6.  

 

Direct sequencing analysis of the 747 bp fragment also revealed a novel T to C transition 

variant 1452 nucleotides upstream from the ATG initiation site (5’UTR-1452T→C). This 

variant was observed in the heterozygous state in the two probands as well as in 16 (69.6%) 

family members. The homozygous form of the variant was not identified. The schematic 

representation of this novel variant is depicted in Figure 3.7. 

 

Figure 3.6. Schematic representation of the [G(T)8G(T)6G(T)nG(T)9] repeat identified in the 

CYBRD1 promoter 
 

 

 

 

 

 

 
 

 

 

 

 

 
Legend to Figure 3.6. 
Sequencing electropherograms indicating (i) allele 1 [G(T)8G(T)6G(T)6G(T)9] and (ii) allele 2 
[G(T)8G(T)6G(T)9] of the [G(T)8G(T)6G(T)nG(T)9] repeat. Green adenine or A, blue cytosine or C, black 
guanine or G, red thymine or T. 
 

(i) 

(ii) 
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A second novel variant was identified following HEX-SSCP analysis of fragment 4 of the 

CYBRD1 promoter. A T to C transition was observed at nucleotide position 1272 upstream of 

the initiating ATG (5’UTR-1272T→C). Both probands were heterozygous for this variant. 

The variant was also found in the heterozygous state in five (21.7%) extended family 

members. The homozygous genotype was not identified in the family. The HEX-SSCP gel 

showing the heteroduplexes for the variant and the sequencing electropherogram of this 

variant are shown in Figure 3.8. 

 

Figure 3.7. Schematic representation of the novel 5’UTR-1452T→C variant in the CYBRD1 

promoter 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Legend to Figure 3.7. 
Sequencing electropherograms indicating (i) the wild type sequence and (ii) the 5’UTR-1452T→C variant. 
Arrow indicates the point of variation, green adenine or A, blue cytosine or C, black guanine or G, red thymine 
or T. 
 

A G to A transition 624 nucleotides upstream from the initiating ATG codon (5’UTR-

624G→A) (HapMap; refSNP ID: rs884408) was identified in the heterozygous state in both 

of the probands. Family member genotyping of this previously described variant revealed one 

(4.3%) homozygous and 12 (52.2%) heterozygous individuals. 

 

A known variant, which is an A to T transition, was identified 238 nucleotides upstream from 

the initiating ATG (5’UTR-238A→G) (HapMap; refSNP ID: rs868106). This variant was 

     (i) 

     (ii) 
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observed in the heterozygous state in both of the probands as well as in 12 (52.2%) family 

members, furthermore, the variant presented in the homozygous state in three family members 

(13%). 

 

Figure 3.8. Schematic representation of the novel 5’UTR-1272T→C variant in the CYBRD1 

promoter 
 

 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Legend to Figure 3.8. 
A. HEX-SSCP gel stained with EtBr and visualised using ultraviolet light transillumination. Arrow indicates 
aberrant band observed in the heteroduplex upon HEX-SSCP analysis, Het = heterozygous banding pattern, N = 
homozygous wild type banding pattern. B. Sequencing electropherograms indicating (i) the wild type sequence 
and (ii) the 5’UTR-1272T→C variant. Arrow indicates the point of variation, green adenine or A, blue cytosine 
or C, black guanine or G, red thymine or T. 
 

Following HEX-SSCP and sequencing analysis of fragment 10 of the promoter two 

previously described variants were identified. The first was a C to G transversion at 

nucleotide position 167 upstream from the initiating ATG (5’UTR-167C→G) (HapMap; 

refSNP ID: rs2356782). This variant was observed in the heterozygous state in both probands 

as well as in 10 family members. Four family members (17.4%) presented with the 

homozygous state of this variant. The second variant was a G to A nucleotide substitution 163 

nucleotides upstream relative to ATG (5’UTR-163G→A) (HapMap; refSNP ID: rs3731976). 

B. (i) 

B. (ii) 

N      N    Het    Het 

A. 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER THREE                                                                   RESULTS AND DISCUSSION 

 81
 

Both probands were heterozygous for this variant. One family member (4.3%) was 

homozygous for this variant while 11 (47.8%) were heterozygous. 

 

Mutation analysis of exon 2 of the CYBRD1 gene revealed a previously described intronic 

variant (IVS2+8T→C), located in intron 2 (Zaahl et al, 2004). This non-coding variant was 

identified in the heterozygous state in both of the probands. Due to inconclusive results 

following HEX-SSCP mutation analysis, genotyping of this variant in the extended family 

members was incomplete. This variant was ommitted from haplotype analysis due to the 

inconclusive genotyping results. The extended family members should be genotyped for this 

variant employing semi-automated DNA sequencing analysis but due to financial constraints, 

this was not done in the present study.  

 

A previously described exonic variant, which replaces serine with asparagine at amino acid 

position 266 (S266N) (McKie et al, 2001), was identified in exon 4 of the CYBRD1 gene. 

This variant results from a G to A transition at nucleotide position 797 (g.797G→A) and was 

observed in the heterozygous state in both probands. This variant abolishes a TspR1 

recognition site (5’ CAG↓TG 3’); therefore the extended family members were subjected to 

RFLP analysis for genotyping of this variant. The homozygous wild type genotype produced 

DNA fragments of 130 bp and 87 bp. The heterozygous genotype produced three fragments 

of 217 bp, 130 bp and 87 bp, respectively while the homozygous variant genotype only 

produced a single DNA fragment of 217 bp. Twelve family members (52.2%) were 

heterozygous for this variant and two (8.7%) were homozygous for the variant allele. 
 

The gene annotation and haplotypes constructed for 12 of the 13 CYBRD1 variants are 

depicted in Figure 3.9.  
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Legend to Figure 3.9. 
Schematic representation of haplotypes constructed for the CYBRD1 gene variants. i) Gene annotation indicating 
the transcription initiation site and the position of variants used as markers for haplotype assembly. Gene 
annotation is not drawn to scale and only indicates the positions of the CYBRD1 variants. ii) Pedigree with 
constructed haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is 
annotated. Pink, haplotype 1; blue, haplotype 2; green, haplotype 3; purple, haplotype 4. Abbreviations: 3’, 3-
prime end; 5-prime end; 3’, ATG, translation initiation site; CYBRD1, cytochrome b reductase 1 gene; IVS, 
intervening sequence; N, asparagine, S, serine; UTR, untranslated region. 
 

3.2.7 HJV gene 

 

Mutation analysis of the HJV gene revealed two previously described (5’UTR-1406C→A and 

5’UTR-542A→G) and two novel variants (5’UTR-534G→T and 5’UTR-530G→T) in the 

HJV gene promoter. An AAGG variable number tandem repeat (VNTR) or microsatellite was 

identified in the promoter region with 11 to 13 repeats. No variants were identified in the 

coding region of the HJV gene. 

 

Following HEX-SSCP and sequencing analysis of fragment 1 of the HJV promoter a known C 

to A transversion was observed 1406 nucleotides from the initiating ATG (5’UTR-

1406C→A) (HapMap; refSNP ID: rs1830823). Both the probands were heterozygous for this 

variant as well as 16 family members (69.6%). The variant was identified in the homozygous 

state in two family members (8.7%).  

 

HEX-SSCP analysis of promoter fragment 6 (Table 2.6) did not yield clear results for 

genotyping so direct sequencing analysis was performed on this fragment for the two 

probands and extended family members. Sequencing analysis of this fragment revealed three 

variants in the 5’UTR. A previously described variant (5’UTR-542A→G) (HapMap; refSNP 

ID: rs10910811) is an A to G transition at nucleotide position 542 upstream relative to the 

initiating ATG. This variant was observed in the heterozygous form in both of the probands. 

Genotyping of the extended family members revealed nine (39.1%) heterozygotes and five 

(21.7%) homozygotes. Two novel G to T transversions were identified 534 and 530 

nucleotides upstream from ATG, respectively (5’UTR-534G→T and 5’UTR-530G→T). The 

5’UTR-534G→T variant was observed in the heterozygous state in both of the probands and 

in 14 (60.9%) family members. Both probands were also heterozygous for the 5’UTR-

530G→T variant as well as 14 (60.9%) of the extended family members. The homozygous 

state of both of these variants was not identified. The schematic representation of the 5’UTR-

534G→T and 5’UTR-530G→T variants are shown in Figure 3.10. An AAGG repeat was also 
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identified in this fragment with 11 (allele 1), 12 (allele 2) or 13 (allele 3) repeats. The AAGG 

VNTR was repeated 12 times in both of the probands (AAGG)12. Four family members 

(17.4%) were homozygous for allele 1 while six (26.1%) were homozygous for allele 2. 

Seven (30.4%) family members presented with the genotype of alleles 1 and 2. Allele 3 with 

allele 2 was observed in five (21.7%) family members. The homozygous state of allele 3 was 

not observed in this study. The three alleles of this repeat are depicted in Figure 3.11.  

 

Figure 3.10. Schematic representation of the novel 5’UTR-534G→T and 5’UTR-534G→T 

variants in the HJV promoter 
 

             

 

 

              
 

 

 

 

 

 

 

 

 

 
Legend to Figure 3.10. 
Sequencing electropherograms indicating (i) the wild type sequence and (ii) the 5’UTR-534G→T variant (solid 
arrow) and the 530G→T variant (dashed arrow). Arrows indicate the point of variation, green adenine or A, blue 
cytosine or C, black guanine or G, red thymine or T. 
 

 

 

 

 

 

 

 

 

 

   (i) 

   (ii) 
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Figure 3.11. Schematic representation of the novel AAGG repeat identified in the HJV 

promoter 
 

 

 

 

 
 

 

 

 

 
 

 

  

 
 
 
Legend to Figure 3.11. 
A. Sequencing electropherograms indicating (i) allele 1 (AAGG)11 (ii) allele 2 (AAGG)12 and (iii) allele 3 
(AAGG)13 (in the heterozygous state with allele 2) of the repeat in the HJV promoter. Green adenine or A, blue 
cytosine or C, black guanine or G, red thymine or T. 
 

The gene annotation for HJV and the haplotypes assembled for the HJV single nucleotide 

substitutions and repeat are shown in Figure 3.12.  

 

 

 

A (i) 

A (ii) 

  A (iii) 
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Legend to Figure 3.12. 
Schematic representation of haplotypes constructed for the HJV gene variants. i) Gene annotation indicating the 
transcription initiation site and the position of variants used as markers for haplotype assembly. Gene annotation 
is not drawn to scale and only indicates the positions of the HJV variants. ii) Pedigree with constructed 
haplotypes provided for each individual. Haplotypes are constructed in the order that the gene is annotated. Blue, 
haplotype 1; pink, haplotype 2; purple, haplotype 3; green, haplotype 4. Abbreviations: 3’, 3-prime end; 5’, 5-
prime end; ATG, translation initiation site; HJV, hemojuvelin gene; UTR, untranslated region.  
 

3.3 Summary of Haplotype Analysis 

 

The construction of haplotypes gives an indication of which haplotypes could be modifying 

the iron overload phenotype. Haplotypes that were identified in the two probands as well as 

unaffected family members suggest that this haplotype is not associated with disease 

development and can be excluded. Those haplotypes that were unique to the two probands 

were included and could be associated with the iron overload phenotype. Table 3.3 is a 

summary of the results obtained following haplotype analysis. 
 

Table 3.3. Summation of haplotype analysis 

Family members 

with same 

haplotype 

as probands
Gene 

Haplotype 

similarity in 

Proband 1 and 

Proband 2 Proband 1 Proband 2 

Include (√) or 

exclude (×) 

haplotype* 

HMOX1 Differ None None √ 

HFE Same None None √ 

HAMP Same None None √ 

SLC40A1 Differ II:2, II:6 II:5 × 

CYBRD1 Same II:2 II:2 × 

HJV Same II:5, II:7 II:5, II:7 × 
Abbreviations: CYBRD1, cytochrome b reductase 1 gene; HAMP, hepcidin antimicrobial peptide gene; HFE, 
high-iron gene; HJV, hemojuvelin gene; HMOX1, haem oxygenase-1 gene; SLC40A1, solute carrier family 40 
(iron-regulated transporter) member 1 gene. *Haplotypes were excluded if they were present in the probands as 
well as unaffected family members. The haplotypes were not contributing to the disease phenotype when 
considered on their own, but could still be associated with disease when considered in conjunction with other yet 
unidentified modulating genes.  
 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER THREE                                                                   RESULTS AND DISCUSSION 

 88
 

3.4 In Silico Analysis of Exonic Variants 

 

A previously described silent variant was identified in the SLC40A1 gene. This single 

nucleotide substitution preserves the valine amino acid at amino acid position 221 (V221) 

(Devalia et al, 2002). Another known exonic variant was identified in exon 4 of the CYBRD1 

gene. This nonsense mutation results in the replacement of the polar, hydrophilic amino acid 

serine with polar, uncharged asparagine at amino acid position 266 (S266N) (McKie et al, 

2001). The ESEfinder (ESE-Exonic Splice Element) program was used to analyse these 

variants to determine their possible effect on splicing (Cartegni et al, 2003; Smith et al, 2006) 

(http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi). No alteration in splicing was predicted 

in the presence of the variant allele of either the V221 variant or the S266N variant. 

 

3.5 In Silico Analysis of Intronic Variants  

 

Three known intronic variants were identified in this study. They included two identified in 

intron 2 of the HMOX1 gene (IVS2+4T→C and IVS2-19C→T) and one identified in intron 2 

of the CYBRD1 gene (IVS2+8T→C). These intronic variants were subjected to analysis using 

the Alternative Splice Site Predictor (ASSP) program (Wang and Marín, 2006) 

(http://www.es.embnet.org/~mwang/assp.html) to determine if splicing was affected in the 

presence of the variant allele. All the donor and acceptor sites present in the wild type 

sequences were preserved within the variant sequences. Therefore, this program did not 

predict any altered splicing patterns resulting from any of these variants. 

 

3.6 In Silico Promoter Analysis 

 

Variants identified within the 5’UTR of the various genes under investigation were subjected 

to in silico analysis to determine whether they disrupted any transcription factor binding sites 

(TFBS). Several programs are available for in silico analysis of gene regulatory regions. The 

TRANSFAC®7 database (http://www.gene-regulation.com/pub/databases.html#transfac) 

(Wingender et al, 2001) contains information on many transcription factors as well as their 

experimentally verified binding sites. All promoter variants were analysed using the PATCH 

program (http://www.gene-regulation.com/cgi-bin/pub/programs/patch/bin/patch.cgi), 

available within the TRANSFAC®7 database to identify putative TFBS that may be disrupted 

by these variants. The 5’UTR variants were also analysed using the non-redundant JASPAR 
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CORE database (http://jaspar.genereg.net/) (Sandelin et al, 2004). The default settings and 

parameters of these two software programs were applied when ascertaining if a nucleotide 

substitution disrupted a putative TFBS. Putative TFBS identified using PATCH and JASPAR 

CORE were analysed using the rVISTA program. The rVISTA program 

(http://genome.lbl.gov/vista/rvista/submit.shtml) (Loots et al, 2002) is another program 

available within the TRANSFAC®7 database. This program identifies conserved binding 

motifs and was employed to verify results obtained using PATCH and JASPAR CORE. The 

results obtained through in silico analysis of the promoter variants identified in each of the 

genes are shown in Tables 3.4-3.9.  
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Discussion 
 

A number of variants were observed in the six genes investigated in this Indian family. These 

included 24 previously identified variants, one known repeat, five novel single nucleotide 

substitutions and two novel repeats. These variants were either identified in the exonic, 

intronic or 5’UTR of the different genes under investigation. The 24 previously identified and 

the five novel variants all resulted from single nucleotide substitutions. 

 

Single nucleotide polymorphisms (SNPs) are single nucleotide positions within genomic 

DNA at which two or more different alleles occur in the general population. The least 

frequent allele must be present in 1% or more of a specific population for a nucleotide 

variation to be classified as a SNP. SNPs occur at a frequency of approximately one per 1000 

bp in the human genome (Taillon-Miller et al, 1998) and account for nearly 90% of all 

genetic variation observed (Collins et al, 1998). SNPs in the coding regions of genes or in 

their regulatory regions are more likely to be functional than those found in other regions. 

Association studies focussed on identifying candidate genes that may be involved in disease 

development are expensive as they involve searching the entire genome for these disease 

associations. SNPs are invaluable markers that can be employed to reduce the search region 

for disease causing loci from the whole genome to a smaller region associated with the 

disease. Finding SNPs in different populations, which could be associated with genes 

conferring susceptibility to disease in these populations, is thus essential.  

 

The HapMap project (The International HapMap Consortium, 2003) 

(http://www.hapmap.org) has developed a publicly accessible map of DNA sequence 

variation within the human genome and is still adding SNPs to the database. The study 

includes 270 individuals from three populations namely, European, Asian and African. 

Subjects include 30 family trios (two parents and an adult child) from Nigeria (African 

population), 45 unrelated Japanese and 45 unrelated Han Chinese individuals (Asian 

populations) and 30 family trios represented by the Centre d’Etude du Polymorphisme 

Humaine (CEPH) samples (European population). The CEPH samples came from a Utah 

population and individuals were of either northern or western European descent. This project 

aims to determine the frequency of SNPs in these populations and the degree of association 

between them. SNPs may occur with varying frequencies in different populations. Although 
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not all populations are represented, this project is an essential tool for the discovery of genetic 

variation and is a starting point for follow-up studies, in other populations, where this 

variation may be associated with health and disease.  

 

As mentioned previously, HH appears to be rare in the Indian population and very few studies 

have investigated the genetic factors involved in the pathogenesis of the disease. As the 

present study included the analysis of only a single Indian family, results obtained for the 

respective variants are not an indication of their frequencies in the general Indian population. 

The International HapMap Consortium does not include SNP information for the Asian Indian 

population and therefore results obtained in the present study were not compared to results 

included in the HapMap project. Allele frequencies of known variants obtained in the 

HapMap project are however listed in Table 3.10 to give an indication of the prevalence of 

these variants in different populations.  

 

Table 3.10. HapMap allele frequencies for known variants identified in this study  

HapMap Allele Frequencies Gene Variant HapMap  
refSNP ID 

Population 

Wild Type Allele* Variant Allele* 
European 0.609-0.542 0.391-0.458 

African-American 0.174-0.300 0.700-0.826 

Asian 0.523-0.474 0.477-0.526 
HMOX1 5’UTR-495A→T  

rs2071746 
 Sub-Saharan  

African 0.308 0.692 

European 0.978 0.022  IVS2+4T→C rs17885925 
African-American 0.935 0.065 

European 0.977 0.023  IVS2-19C→T rs7879606 

African-American 0.938 0.062 
European 0.479-0.600 0.400-0.521 
African-American 0.8 0.2 
Asian 0.229-0.330 0.670-0.771 HFE 5’UTR-1206C→G rs1800702 
Sub-Saharan  
African 0.842 0.158 

European 0.397 0.603 

Asian 0.670-0.733 0.267-0.330  5’UTR-467G→C rs2794720 

Sub-Saharan  
African 0.147 0.853 

European 1.000 0 
Asian 0.956-0.966 0.034-0.044 HAMP 5’UTR-335G→T rs3817623 
Sub-Saharan  
African 1.000 0 
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Table 3.10. HapMap allele frequencies for known variants identified in this study (Cont.) 

Abbreviations: 5’UTR, 5-prime untranslated region; CYBRD1, cytochrome b reductase 1 gene; HAMP, hepcidin 
antimicrobial peptide gene; HFE, high-iron gene; HJV, hemojuvelin gene; HMOX1, haem oxygenase-1 gene; 
IVS, intervening sequence; N, asparagine; S, serine; SLC40A1, solute-carrier family 40 (iron-regulated 
transporter) member 1 gene. *The wild type and variant alleles are as indicated in the naming of each variant 
(wild type allele → variant allele).  
 

Many variants were identified after mutation analysis of this Indian family. All variants 

identified in a single gene were considered together to construct haplotypes using the Cyrillic 

2.01 program (Cherwell Scientific Publishing Ltd, Magdalen Centre, Oxford Science Park, 

Oxford, UK). Haplotypes give a clearer indication of which variants identified in a gene may 

be functioning in concert and subsequently causing iron overload or modulating the HH 

HapMap Allele Frequencies Gene Variant HapMap 
refSNP ID 

Population 
Wild Type allele* Variant allele* 

SLC40A1 5’UTR-1355G→C European 0.725-0.729 0.271-0.275 
African-American 0.478 0.522 
Asian 0.838-0.896 0.104-0.162   rs3811621 
Sub-Saharan 
African 0.608 0.392 

European 0.400 0.600 
African American 0.770 0.230  5’UTR-750G→A rs13015236 
Asian 0.270-0.310 0.690-0.730 
European 0.293 0.707 
Asian 0.102-0.122 0.878-0.898  5’UTR-593C→T rs12693542 
Sub-Saharan 
African 0.551 0.449 

 5’UTR-501T→C rs6728200 Not Provided Not Provided Not Provided 
CYBRD1 5’UTR-1844C→G rs7585974* Not Provided Not Provided Not Provided 

 5’UTR-1834G→A rs7586174 Not Provided Not Provided Not Provided 
 5’UTR-1813C→T rs12692965 Not Provided Not Provided Not Provided 
 5’UTR-1459T→C rs10199858 Not Provided Not Provided Not Provided 
 5’UTR-624G→A rs884408 Not Provided Not Provided Not Provided 

European 0.370-0.500 0.500-0.630 
African-American 0.310 0.690  5’UTR-238A→G rs868106* 
Asian 0.045-0.103 0.897-0.955 
European 0.440 0.560  5’UTR-167C→G rs2356782 
Asian 0.160 0.840 
European 0.630 0.370  5’UTR-163G→A rs3731976 Asian 0.280 0.720 
European 0.208-0.271 0.792-0.729 
African-American 0.275 0.725 
Asian 0.021-0.176 0.979-0.824  IVS2+8T→C rs7586144 
Sub-Saharan 
African 0.158-0.167 0.842-0.833 

European 0.258-0.271 0.729-0.742 
African-American 0.109 0.891 
Asian 0.580-0.708 0.292-0.420  S266N 

(g.797G→A) 
rs10455 

Sub-Saharan 
African 0.042 0.958 

5’UTR-1406C→A rs1830823 Not Provided Not Provided Not Provided HJV 5’UTR-542A→G rs10910811 Not Provided Not Provided Not Provided 
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phenotype. The results obtained after haplotype analysis of each gene will be discussed 

further.  

 

HMOX1 gene 

 

Three previously described variants were identified after mutation analysis of the HMOX1 

promoter and coding regions. These included one promoter variant, 5’UTR-495A→T 

(HapMap; refSNP ID: rs2071746) and two intronic variants, IVS2+4T→C (HapMap; refSNP 

ID: rs 17885925) and IVS2-19C→T (HapMap; refSNP ID: rs 7879606) identified in intron 2 

of the gene.  

 

Probands 1 and 2 presented with two different haplotypes: proband 1 was heterozygous for 

the 5’UTR-495A→T and IVS2+4T→C variants and homozygous wild type for the IVS2-

19C→T variant while proband 2 was heterozygous for the promoter variant as well as both of 

the intronic HMOX1 variants (refer to Figure 3.2). Neither of these haplotypes was present in 

any of the extended family members.  

 

Both probands developed HH symptoms in the fifth decade of life. Individuals II:4, II:5, II:6 

and II:7 are all older than 50 years, heterozygous for the promoter variant, homozygous wild 

type for both intronic variants and did not present with elevated iron levels. These data 

indicate that heterozygosity for the 5’UTR-495A→T alone does not seem to be associated 

with disease development. Third generation family members III:8 and III:10 (see Figure 3.2) 

were heterozygous for both intronic variants as well as the promoter variant. Individuals III:8 

and III:10 are both females with ages of 41 and 39 years, respectively. Individual III:8 

presented with a TS% of 26% and a SF level of 118 µg/l. Individual III:10 presented with a 

TS% of 33% and a SF level of 213 µg/l. Because of the young age of these individuals, the 

iron overload phenotype may not be fully expressed. Individual III:10 does have a slightly 

elevated SF level (female reference range: 20-200 µg/l) but individual III:8 (same haplotype 

as III:10) does not seem to be displaying signs of iron overload and this presumably indicates 

that this haplotype may possibly not be associated with iron overload. The two probands 

presented with the variant allele for the promoter variant and were both heterozygous for the 

IVS2+4T→C variant. The IVS2-19C→T variant was not present in proband 1 and therefore 

does not seem to be associated with the HH phenotype and could be a common polymorphism 

in this family. Inheritance of the 5’UTR-495A→T variant allele (heterozygous state) and the 
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IVS2+4T→C variant could be modifying the iron overload phenotype observed in both of the 

probands but this needs to be investigated further.  

 

In silico analysis of the IVS2+4T→C intronic variant was performed. The ASSP program 

(Wang and Marín, 2006) (http://www.es.embnet.org/~mwang/assp.html) was employed to 

assess whether the intronic variant altered splicing of the HMOX1 gene. All splice donor and 

acceptor sites remained in tact in the presence of the variant allele indicating that this variant 

does not affect the splicing mechanism. Functional analysis of this variant using the minigene 

assay for intronic variants described by Baralle et al (2003) is necessary to determine if this 

variant is contributing to the disease phenotype.  

 

In silico analysis of the 5’UTR-495A→T variant using the JASPAR CORE program 

(http://jaspar.genereg.net/) (Sandelin et al, 2004) revealed that in the presence of the variant 

allele the putative TFBS for the Sry-related high-mobility group (HMG) box-9 (SOX9) and 

forkhead box protein L1 (FOXL1) transcription factors are both abolished. The program also 

predicted the creation of a putative hepatocyte nuclear factor 4-α (HNF4A) TFBS. To 

determine whether any of these putative TFBS are conserved within the human HMOX1 gene, 

in silico analysis was performed using the rVISTA program 

((http://genome.lbl.gov/vista/rvista/submit.shtml) (Loots et al, 2002). The three TFBS were 

conserved within the HMOX1 promoter but this program only confirmed the creation of the 

putative HNF4A transcription factor (See Table 3.4).  

 

SOX9 is a member of the SOX family of transcription factors. Members of this family all 

exhibit the same DNA-binding domain, which is known as the high-mobility group (HMG) 

box. SOX transcription factors bind to the minor groove of DNA and bend and unwind the 

DNA. This DNA bending seems to be essential for DNA transcription to occur (reviewed by 

Marshall and Harley, 2000). SOX9 plays an important role in human sex determination and 

chondrogenesis. Mutations in the SOX9 gene are responsible for the development of 

Campomelic dysplasia. This condition results in XY individuals being either intersex or 

developing male-to-female sex reversal. The SOX9 transcription factor has not been shown to 

regulate HMOX1 gene expression or be associated with iron overload and therefore loss of 

this putative TFBS does not seem to be a contributing factor to developing iron overload and 

therefore HH.  
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The FOXL1 transcription factor is a member of the winged helix/forkhead family of DNA 

binding factors and is only expressed in the gastrointestinal mesenchyme. This transcription 

factor is necessary for the maintenance of the gut (Kaestner et al, 1996). FOXL1 has been 

shown to regulate the proliferation and differentiation of the gut epithelium. FOXL1 seems to 

regulate the expression of factors that mediate epithelial-mesenchymal interactions and 

defects in the epithelium result when this precise control of expression is disrupted in the 

mesenchyme. Interestingly, Kaestner and colleagues (1997) observed that in Foxl1-deficient 

mice the expression of both bone morphogenetic protein 2 (BMP2) and BMP4 were 

drastically reduced. Therefore FOXL1 seems to be a regulator of BMP2 and BMP4 

expression. Interaction between FOXL1 and HMOX1 may possibly be necessary for FOXL1 

to perform its regulatory function and the 5’UTR-495A→T variant, which potentially disrupts 

their interaction, could result in a decrease in BMP2 and BMP4 expression. BMP2 and BMP4 

function in the BMP signalling pathway in which HJV acts as a coreceptor and positively 

regulates hepcidin expression (Babitt et al, 2006). HJV exhibits binding specificity for BMP2 

and to a lesser degree, BMP4, in the BMP signalling pathway. By disrupting the FOXL1 and 

HMOX1 interaction, this promoter variant may be decreasing hepcidin expression and 

causing iron overload. Another possibility is that the promoter variant is modifying the HH 

phenotype. The HH phenotype is highly variable and not all patients develop osteoporosis of 

any kind. Different patterns of osteoclast and osteoblast dysregulation have been associated 

with osteoporosis development (Byers et al, 1997). BMPs are essential regulators of 

osteoblast differentiation and disruption of this regulatory pathway might result in 

inappropriate osteoblast differentiation and eventually osteoporosis. 

 

Various hepatocyte-specific genes are regulated by hepatocyte nuclear factors (HNFs). 

Expression of these genes is dependent on the binding of a multitude of diverse HNF 

transcription factors. HNF transcription factors bind to gene regulatory regions and stimulate 

gene transcription (reviewed by Costa et al, 2003). HNF4A is a member of the steroid/thyroid 

nuclear receptor family and is expressed mainly in the liver but also in the kidneys and 

intestine. It is an essential regulator of liver metabolism and development. The 5’UTR-

495A→T variant creates a putative HNF4A site in the HMOX1 promoter. Creation of this 

TFBS may result in increased expression of the HMOX1 gene. It has been reported that 

HMOX1 plays a protective role in many cell types protecting them against damage that may 

be caused by oxidative stress (Yachie et al, 1999). An increase in HMOX1 expression 

increases the production of two strong antioxidants, bilirubin and biliverdin. Although the role 
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HNF4A plays in the regulation of HMOX1 expression has not as yet been described, it has 

been noted that HNF4A expression is also increased in the presence of oxidative stress 

induced by hepatitis C virus infection (Qadri et al, 2006). Therefore HNF4A and HMOX1 

may both function in the same antioxidant defence mechanism and HNF4A could regulate 

HMOX1 gene expression. Excess iron present in HH patients catalyses the conversion of 

hydrogen peroxide to free radicals. These free radicals cause oxidative stress in various 

tissues (Andrews, 1999). The creation of an extra putative HNF4A TFBS may disrupt 

HMOX1 gene expression within hepatocytes resulting in imperfect functioning of the 

antioxidant defence mechanism. This could ultimately result in hepatocyte damage in the 

presence of oxidative stress resulting from excess iron. The ALT level in proband 1 and the 

AST level in proband 2 were both slightly elevated at the time of diagnosis. Both of these 

enzymes are secreted by hepatocytes and elevated levels are observed when the liver is 

damaged. When proband 1 was initially diagnosed with HH he presented with established 

liver cirrhosis. Proband 2 has completed her phlebotomy course and her iron levels have 

stabilised and she has not developed liver cirrhosis. Therefore, the HMOX1 promoter variant 

may not be causing iron overload but could contribute to the liver damage that results in the 

presence of excess iron.  

 

HFE gene 

 

Three previously described variants (5’UTR-1206C→G, 5’UTR-467G→C and H63D) and 1 

novel variant (5’UTR-840T→G) were identified in the HFE gene in the Indian family.  

 

Feder and colleagues (1996) identified the variant H63D in many HH patients who carried a 

single C282Y mutation. Although approximately 80-90% of HH cases are the result of the 

C282Y homozygous genotype (Feder et al, 1996; Jazwinska et al, 1996; Beutler et al, 1996; 

Carella et al, 1997; Mura et al, 1997), 75% of individuals with one C282Y mutation are also 

compound heterozygotes with the H63D mutation (Robson et al, 2004). The homozygous 

H63D genotype has been implicated in a much milder form of the HH phenotype. Exactly 

how the H63D variant disrupts HFE function has not been elucidated yet. H63D is not located 

in the region of the HFE peptide that binds to the transferrin receptor (TFR) but it does form a 

salt bridge with the TFR-binding region of the α2 loop. Even though this variant forms the 

salt bridge, the H63D protein is still able to bind to TFR. Garewal et al (2005) ascertained the 

allele frequency of the C282Y and H63D HFE mutations in a North Indian population with 
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the beta thalassemia trait. They determined that both of these mutations are rare within the 

Northern Indian population and that the H63D mutation is not associated with iron overload 

in the beta thalassemia trait (reviewed by Poddar, 2006). In the present study, this variant was 

not identified in the two probands but it was observed in the heterozygous state in four 

unaffected family members (III:1, III:2, III:19 and III:21). These findings indicate that this 

variant does not seem to be associated with iron overload in this family.  

 

Haplotype analysis of the HFE gene revealed that only three haplotypes were inherited by the 

second generation family members. This indicated that the parents of the two probands 

presented with a common haplotype. The parents of the two probands were first cousins and 

therefore the presence of a shared haplotype is possible. The two probands presented with the 

same haplotypes. Both probands were heterozygous for the 5’UTR-1206C→G, 5’UTR-

840T→G and 5’UTR-467G→C variants while they were homozygous wild type for the 

H63D variant. Proband 2 was heterozygous for the 5’UTR-1206C→G, 5’UTR-467G→C and 

5’UTR-840T→G variants and homozygous wild type for the H63D variant. The haplotype 

observed in the two probands was not present in any of the extended family members. 

 

A haplotype similar to that identified in the probands was observed in individual II:5. The 

individual was heterozygous for the 5’UTR-1206C→G and 5’UTR-467G→C variants and 

homozygous wild type for the H63D variant. This family member was also homozygous wild 

type for the novel 5’UTR-840T→G variant while the probands were heterozygous for this 

variant. This indicates that this novel variant could possibly be associated with the iron 

overload phenotype.  

 

In silico analysis of the HFE promoter revealed that in the presence of the novel 5’UTR-

840T→G variant a putative PU.1 TFBS is abolished. This transcription factor binding site 

was also conserved within the HFE promoter region (see Table 3.5). 

 

Osteoporosis develops in many HH patients with HFE mutations but the mechanism involved 

in the development of osteoporosis has not been fully elucidated. The PU.1 transcription 

factor plays an important role in macrophage differentiation (Tondravi et al, 1997) and 

therefore modulates osteoclast development as osteoclasts are derived from these cells 

(Udagawa et al, 1990). The PU.1 transcription factor has been associated with osteoporosis 

development. Mice lacking a functional PU.1 gene developed osteoporosis as no 
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macrophages or osteoclasts were present (reviewed by Teitelbaum, 2000). As mentioned 

previously proband 1 presented with osteoporotic symptoms. Although the regulatory effect 

that PU.1 has on the expression of HFE has not yet been elucidated, it is possible that PU.1 

and HFE function in concert and that by disrupting their interaction, the novel 5’UTR-

840T→G variant could be responsible for the osteoporotic symptoms that developed. 

 

PU.1 has also been established as a regulator of T-cell development. PU.1 expression is 

tightly regulated during immune cell development and dysregulation of its expression may 

lead to immune disorders such as diabetes and arthritis (Fang, University of Missouri, 

Columbia, 2006) (available online: http://www.dana.org/grants/imaging/detail.aspx?id=4430). 

Proband 1 presented with non-insulin-dependent diabetes at diagnosis and later developed 

arthritis in his hips, knees and hands. Furthermore, patients with type 1 HH (HFE-associated) 

may also develop arthritis and diabetes. Hepcidin plays an important role in the immune 

response and by regulating the amount of available iron, regulates inflammation and infection 

(reviewed by Vyoral and Petrák, 2005). The 5'UTR-840T→G HFE variant as well as the 

5'UTR-335G→T HAMP variant disrupt a putative PU.1 TFBS. HFE and HAMP may 

function in the same immune cell regulatory pathway as PU.1 and by disrupting the 

interaction between PU.1 and these peptides; these two variants could be contributing to the 

development of the arthritis and diabetes observed in proband 1. 

 

The hepcidin levels of HH patients homozygous for the C282Y HFE variant are very low 

(Bridle et al, 2003). Hepcidin expression is also reduced in the Hfe-knockout mouse model 

(Ahmad et al, 2002). Furthermore, virtually no hepcidin is detected in the urine of individuals 

with HJV mutations. These findings indicate that HFE and HJV may function in the same 

regulatory pathway and regulate the expression of hepcidin. It has been shown that HJV 

positively regulates the expression of the HAMP gene via the BMP signalling pathway (Babitt 

et al, 2006). HFE could possibly also be involved in this regulatory pathway but its potential 

role needs to be investigated further.  

 

The HFE variant could also be modulating the iron overload phenotype by providing a 

protective effect against the severe iron overload that is usually associated with HAMP 

mutations (refer to section 1.1.2). As can be seen in Table 3.5 a putative specificity protein 1 

(SP1) TFBS is created in the presence of the 5'UTR-840T→G variant. SP1 is a ubiquitous 

transcription factor and has been implicated in the regulation of many genes. Although its role 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER THREE                                                                   RESULTS AND DISCUSSION 

 103
 

in the regulation of HFE transcription has not yet been elucidated, SP1 binding sites have 

been identified within the HFE promoter (Mura et al, 2004). By creating an additional SP1 

binding site this variant could increase HFE expression. Although the exact function of the 

HFE peptide in iron metabolism still remains unclear, it does seem to be involved in the 

regulation of the amount of iron absorbed from the gut lumen. Excess iron is absorbed in 

individuals with mutations in the HFE gene, such as C282Y, which result in diminished HFE 

availability. By potentially increasing the expression of HFE, the 5'UTR-840T→G variant 

could result in diminished iron absorption. This may counteract, but not completely make up 

for, the effects of the HAMP variant and may therefore be responsible for the less severe iron 

overload phenotype observed in the two Indian probands. Functional analysis of this variant 

needs to be performed to determine if the 5'UTR-840T→G variant is indeed a gain-of-

function variant.  

 

HAMP gene 

 

The Indian family analysed was highly consanguineous and only two family members were 

identified who presented with the HH phenotype. Furthermore, the probands are siblings and 

are the product of a first cousin relationship. This indicates that the HH phenotype is most 

likely inherited in an autosomal recessive manner and that a homozygous variant in any of the 

six genes would be a likely candidate as the causative variant.  

 

A single previously identified variant was identified in the promoter region of the HAMP gene 

(5’UTR-335G→T) (HapMap; refSNP ID: rs3817623). This variant was identified in the 

homozygous state in both probands but none of the extended family members presented with 

the homozygous genotype (see Figure 3.5). This variant was observed in the heterozygous 

state in 16 family members. All heterozygous family members presented with iron parameters 

within the normal range except individual III:7 who was iron deficient (SF level: 15 µg/l) and 

individual III:10 who presented with a slightly elevated SF level (213 µg/l). The heterozygous 

genotype does not seem to be associated with iron overload as heterozygous individuals with 

similar ages to the probands were identified (II:2, II:4, II:5 and II:6) and presented with 

normal iron parameters. The polymorphic allele has not been detected in the European or sub-

Saharan African populations but has been detected in the Asian population (0.034-0.044) 

(HapMap project). Furthermore, the variant genotype has been reported in the heterozygous 

state in the Asian population with a genotypic frequency of 0.068-0.089, however, the 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER THREE                                                                   RESULTS AND DISCUSSION 

 104
 

homozygous form has not been documented. It should be noted that this Asian population 

does not include Asian Indians but individuals from the Japanese and Han Chinese 

populations.   

 

In silico analysis of this promoter variant revealed that in the presence of the polymorphic 

allele three putative TFBS are abolished (see Table 3.6). These include the interleukin-4 

(IL4), vitamin D3 receptor (VDR) and spleen focus forming virus proviral integrating 

oncogene 1 (PU.1). Further analysis employing the rVISTA program did show that these 

three transcription factors are conserved within the HAMP promoter but did not confirm that 

they were abolished in the presence of the variant allele.  

 

PU.1 is an ETS-domain transcription factor. It plays an essential role in the development of 

myeloid and B-lymphoid cells. Tondravi et al (1997) demonstrated that PU.1 mRNA 

gradually increased as bone marrow macrophages differentiated into osteoclasts. They also 

noted that both osteoclast and macrophage development did not occur in PU.1 deficient mice 

and that these mice ultimately developed osteoporosis. Osteoporosis is a disease characterised 

by generalised low bone mass and microarchitectural deterioration of bone tissue. The bones 

of osteoporotic patients are more fragile and there is an increased susceptibility to fracture 

(reviewed by Rizzoli et al, 2001). Polymorphisms within VDR have been associated with a 

decreased bone mineral density and osteoporosis (Morrison et al, 1992; Gennari et al, 1998; 

Ferrari et al, 1999). Hepcidin could be functioning in the same pathway as the VDR and PU.1 

transcription factors and regulating osteoclast development and differentiation. Although not 

all HH patients develop osteoporosis, it is interesting to note that both of the transcription 

factors that are abolished by the 5’UTR-335G→T HAMP variant have been implicated in the 

development of this disease. Further research is necessary to determine the role that this 

variant may play in the development of osteoporosis in HH patients.  

 

Hepcidin is an essential peptide involved in the regulation of iron absorption in the intestine 

and iron recycling from macrophages. It has also been proposed as the key regulator of 

anaemia of inflammation (Fleming and Sly, 2001; Weinstein et al, 2002). Hepcidin 

expression induced in the presence of IL6 but not IL1-α or tumour necrosis factor (TNF)-α 

and therefore seems to be regulated by a type 2 acute phase response (Nemeth et al, 2003). 

The entire mechanism of hepcidin regulation has not as yet been elucidated. IL4 is a type two 

cytokine and may be involved in the regulation of hepcidin expression. Vogel and colleagues 
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(2002) attempted to determine the role mutated VDR plays in modifying the autoimmune 

response. The VDR binds to the active form of vitamin D (1,25-dihydroxyvitamin D3) and 

translocates to cell nuclei where it regulates a multitude of biological effects (Baker et al, 

1988). The authors noted that the binding of 1,25-dihydroxyvitamin D3 produced various 

effects including decreasing the expression of type 1 cytokines and increasing the expression 

of IL4 (Vogel et al, 2002). These results indicate that VDR and IL4 may play a role in the 

regulation of hepcidin. In the presence of the variant allele both of these putative TFBS are 

removed and this could ultimately influence the expression of the HAMP gene. Decreased 

expression of hepcidin has been implicated in the development of the severe iron overload 

disorder JH (Roetto et al, 2004; Matthes et al, 2004). The role that VDR and IL4 play in 

HAMP gene expression needs to be investigated further.  

 

Functional analysis of this variant is currently underway. Transcription activity from the 

mutated and wild type HAMP promoter is being investigated. Luciferase reporter constructs 

transfected with the mutated and wild type HAMP promoters have been developed to 

determine if this variant affects HAMP mRNA expression. Preliminary results indicate that 

mRNA expression from the HAMP promoter is strongly impeded in the presence of the 

5’UTR-335G→T variant. These preliminary findings provide supporting evidence that we 

have identified the variant causing HH within this Indian family. 

 

Genotyping of this variant in an unaffected, general population matched control cohort was 

not performed. The family under investigation was a first generation South African Indian 

family and screening of the South African Indian population may not be a true reflection of 

the prevalence of this variant in the Asian Indian population. Analysis and comparison of this 

variant in the Asian Indian population as well as the South African Indian population is 

necessary to determine if this variant is truly associated with HH in these general populations 

or if it is a private variant only causing HH in this family.  

 

SLC40A1 gene 

 

Mutation analysis of the SLC40A1 promoter and coding regions revealed five previously 

identified variants (5’UTR-1355G→C, 5’UTR-750G→A, 5’UTR-593C→T, 5’UTR-

501T→C and V221). The previously described CGG microsatellite within the SLC40A1 

promoter (Lee et al, 2001) was also identified with either 7 or 8 repeats.  
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As can be seen in Figure 3.6 only three different haplotypes were present in the second 

generation family members. As mentioned previously this could occur as the probands' 

parents were first cousins. The two probands presented with different haplotypes for this 

gene. Analysis of unaffected family members with similar ages to the probands revealed that 

individuals II:2 and II:6 presented with the same haplotypes as proband 1 and individual II:5 

presented with the same haplotypes as proband 2. As none of these family members was iron 

loaded, the SLC40A1 variants do not seem to be associated with the iron overload phenotype 

and may be common polymorphisms within this Indian family.  

 

CYBRD1 gene 

 

Ten previously described (5’UTR-1844C→G, 5’UTR-1834G→A, 5’UTR-1813C→T, 

5’UTR-1459T→C, 5’UTR-624G→A, 5’UTR-238A→G, 5’UTR-167C→G, 5’UTR-

163G→A, IVS2+8T→C and S266N) and two novel (5’UTR-1452T→C and 5’UTR-

1272T→C) variants were identified in the CYBRD1 gene. A repeat was also observed in the 

5’UTR [G(T)8G(T)6G(T)nG(T)9] where n represents either zero or six repeats. 

 

Haplotype analysis revealed that the two probands presented with exactly the same haplotypes 

(haplotype 1 and haplotype 2) (see Figure 3.11). The same haplotypes were also observed in a 

63-year-old male family member (II:2) who presented with normal iron parameters. This 

indicates that all of the variants identified within the CYBRD1 promoter and coding regions 

do not seem to be associated with the iron overload phenotype.  

 

HJV gene 

 

Two previously described (5’UTR-1406C→A and 5’UTR-542A→G) and two novel variants 

(5’UTR-534G→T and 5’UTR-530G→T) were identified within the HJV gene promoter 

region. An AAGG variable number tandem repeat (VNTR) or microsatellite was also 

identified in the promoter region with 11 to 13 repeats (allele 1 = 11, allele 2 = 12, allele 3 = 

13).  

 

The haplotypes constructed for the HJV gene were identical in the two affected probands (see 

Figure 3.14). The same haplotype was identified in two of the probands' siblings (II:5 and 

II:7). These two individuals had similar ages to the two probands but did not display 
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symptoms of iron overload as their iron parameters were within the normal range. These 

results indicate that the HJV gene variants identified in the Indian family are not associated 

with the iron overload phenotype.  

 

To conclude, mutation analysis of the HMOX1, HFE, HAMP, SLC40A1, CYBRD1 and HJV 

genes revealed many variants in the Indian family under investigation. Of the variants 

identified, the homozygous 5’UTR-335G→T variant identified in the HAMP promoter seems 

to be the most likely candidate responsible for the iron overload phenotype in the two Indian 

probands. HAMP variants are associated with the severe iron overload phenotype observed in 

JH. The two probands in this Indian family did not present with the severe iron overload 

phenotype but rather a milder form similar to classic or Type 1 HH. Variants within the 

HMOX1 (5’UTR-495A→T) and HFE (5'UTR-840T→G) genes could all be modulating the 

effect of the homozygous HAMP variant and producing the less severe iron overload 

observed. These variants may also, in part, be causing some of the symptoms characteristic of 

HH such as liver cell damage, liver cirrhosis and osteoporosis. The remainder of the single 

nucleotide substitutions identified in the six genes seem to represent common polymorphisms 

within this Indian family. Analysis within the general Indian population is required to 

determine if they are SNPs within this population. It should also be considered that the 

presence of mutations/variants within the unaffected family members could be providing a 

protective effect. This possibility needs to be investigated further.  

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER FOUR                                           CONCLUSIONS AND FUTURE PROSTECTS 

 108
 

 

 

 

 

 

 

 

 

 

CHAPTER FOUR 

 

 

CONCLUSIONS AND FUTURE PROSPECTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER FOUR                                           CONCLUSIONS AND FUTURE PROSTECTS 

 109
 

4. Conclusions and Future Prospects 
 

Hereditary haemochromatosis (HH) is one of the most common genetic disorders in people of 

northern European descent. Iron homeostasis is disrupted in patients with HH and this results 

in uncontrolled iron absorption from the gut lumen. The excess iron is stored in various 

tissues where it may damage cell membranes, proteins and DNA. Treatment of the disease by 

regular phlebotomy is cheap and relatively non-invasive. If the disease progresses 

undiagnosed and untreated it can result in the development of diabetes mellitus, skin 

hyperpigmentation, liver cirrhosis and primary liver cancer. Although well characterised in 

the Caucasian population, iron overload in non-Caucasians is not well defined and the gene 

aberrations associated with non-Caucasian iron overload still remain to be identified. Iron 

overload and specifically, hereditary haemochromatosis, is predicted to be rare and not well 

documented within the Asian Indian population. Various research groups have determined 

that iron overload in Indians is not associated with the C282Y or H63D mutations in HFE and 

is of the non-HFE type. 

 

The aim of this study was to identify known and novel variants within iron regulatory genes 

that were contributing to the HFE-associated HH phenotype observed in two probands from 

an Indian family. Six genes involved in iron regulation were screened including the HMOX1 

gene, HFE gene, HAMP gene, SLC40A1 gene, CYBRD1 gene and the HJV gene. Mutation 

analysis of these genes in the two Indian probands and 23 of their unaffected family members 

revealed 24 previously described single nucleotide variants, five novel single nucleotide 

variants, one previously described microsatellite within the SLC40A1 gene and two novel 

repeats, one in the 5’UTR of the CYBRD1 gene and another in the 5’UTR of the HJV gene. 

 

As mentioned previously it has been reported that haemochromatosis in the Indian population 

is not associated with the common HFE gene mutations C282Y and H63D. Both of these 

mutations were not present in the two probands. The C282Y mutation was not observed in 

any of the unaffected family members but the H63D variant was present in the heterozygous 

state in four family members who presented with normal iron parameters. Therefore the 

C282Y and H63D mutations are not playing a role in iron loading within this Indian family. 

These results corroborate the findings of other researchers who have analysed these mutations 
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in the Indian population and reported that iron overload on the Indian subcontinent is not 

associated with the two common HFE mutations (Garewal et al, 2005; Dhillon et al, 2007). 

 

Haplotype analysis was performed for the variants identified in each of the genes investigated. 

The probands’ haplotypes constructed for the SLC40A1, CYBRD1 and HJV variants were also 

observed in unaffected family members, indicating that the variants in these three genes are 

not associated with the HH phenotype observed in the two probands. The prevalence of these 

variants within the probands and unaffected family members indicates that these variants are 

common polymorphisms in the Indian family. Further analysis in a larger study cohort from 

the general Indian population is necessary to confirm if these variants are polymorphisms in 

the general Indian population rather than being common only in this highly consanguineous 

family. 

 

The previously described 5’UTR-335G→T variant identified in the HAMP gene was 

observed in the homozygous state in both affected probands. This variant was observed in the 

heterozygous state in 16 unaffected family members. The Indian family under investigation is 

a highly consanguineous one and the two probands are the product of a consanguineous 

relationship. The fact that only two individuals are afflicted with HH increases the likelihood 

that the iron overload disorder is inherited in an autosomal recessive manner in this family. 

Therefore, a homozygous variant identified in the two probands, but absent in the 

homozygous variant form from the unaffected family members, would be a likely candidate 

for causing the disease phenotype.  

 

Preliminary results from functional analysis of this HAMP promoter variant have indicated 

that expression from the mutated HAMP promoter is greatly inhibited. This preliminary data 

supplies supporting evidence that the 5’UTR-335G→T HAMP variant is responsible for the 

iron overload phenotype observed in the two Indian probands. 

 

Mutations in the HAMP gene have previously been associated with the severe iron overload 

observed in juvenile haemochromatosis patients. Patients with JH exhibit symptoms more 

severe than those with Type 1 HH. The two probands identified in this study do not exhibit 

symptoms of JH but of the less severe Type 1 or HFE-associated HH. A possible explanation 

for the less severe HH phenotype observed in the two probands is that variations in other iron 

regulatory genes are involved in the pathogenesis of HH. Variants identified in other genes 
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may be modifying the effects of the homozygous HAMP promoter variant resulting in the less 

severe phenotype. 

 

Haplotype analysis of the variants identified in the HMOX1 and HFE genes indicated that 

variants unique to the haplotypes observed in the two probands might be modulating the iron 

overload phenotype. These variants include: 5’UTR-495A→T (HMOX1) and 5’UTR-

840T→G (HFE). These variants may also be responsible for the symptoms that manifested 

within the two probands.  

 

Future researchers should investigate the role that the HMOX1 and HFE gene variants play in 

the modification of the HH phenotype. Multiple families and a larger group of unrelated 

affected Indian HH patients should be analysed to either corroborate or refute the findings of 

this study. Animal models should also be developed with knock-in of the HAMP variant in 

conjunction with the HMOX1 and HFE variants to determine how they affect iron 

homeostasis.  

 

A limitation of the present study was that the study cohort only included members from a 

single highly consanguineous family. The prevalence of the variants identified is not a good 

indication of the prevalence of these variants in the Asian Indian population as they would 

understandably be more common in this family. In this family the two probands were siblings 

and there were no affected family members in the successive generation. This limited the 

efficiency of haplotype analysis, as it could not be determined for certain which was the 

variant haplotype. A further limitation was that haplotype analysis was incomplete for many 

of the third generation family members as the haplotypes of only one parent was established. 

Future studies should include the analysis of various multi-generation families with affected 

family members in different generations to improve the efficacy of haplotype analysis. 

 

Another limitation of this study was the effectiveness of the screening technique. Although 

many known and novel variants were identified there is a possibility that additional variants 

were overlooked. Evidence to support this is provided by the fact that only a single variant 

was identified in the HAMP gene. Furthermore, genotyping of some of the variants was 

inconclusive for various family members following HEX-SSCP analysis and therefore 

haplotype analysis was incomplete for these individuals. Single-strand conformation 

polymorphism (SSCP) analysis is predicted to exhibit a specificity of 70-100% when DNA 
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fragments of 130-250 bp are analysed (Xiao and Oefner, 1992; Bonner and Ballard, 1999). 

The size of all the DNA fragments analysed in the present study, with the exception of the 

HMOX1 exon 3 fragment amplified with primer set 3A, exceeded 250 bp. Although the 

variant detection rate of this technique was improved by the combined analysis of 

heteroduplexes (HEX-SSCP analysis), the size of the DNA fragments could influence the 

efficacy of this screening technique. Future research should focus on either optimising the 

HEX-SSCP technique for each DNA fragment analysed or should employ a more sensitive 

screening technique. Larger DNA fragments (198-732 bp) can be analysed using denaturing 

high-performance liquid chromatography (dHPLC) analysis and the sensitivity of this 

technique is reportedly 92-100% (Underhill et al, 1997). This technique is superior to SSCP 

analysis in terms of its sensitivity and efficiency. More costly screening techniques are also 

available such as bi-directional semi-automated DNA sequencing analysis and DNA chip 

technology. Bi-directional semi-automated DNA sequencing allows for the identification of 

all variants within a DNA fragment and is considered to be the most effective screening 

technique available (Kristensen et al, 2001). DNA chips allow for the detection of a multitude 

of known variants in different genes. DNA chips could be constructed for known variants 

implicated in the pathogenesis of HH and assist in the simultaneous detection of alleles 

associated with the disease. Bi-directional semi-automated DNA sequencing and chip 

technology is more effective than SSCP but also more costly and therefore are not viable 

options in all research laboratories.  

 

Another limitation was observed after employing semi-automated DNA sequencing analysis 

for the genotyping of some variants in the extended family members. Various individuals 

presented with genotypes that were ambiguous and did not conform to the haplotypes present 

in the family. The genotypes of these individuals were subsequently omitted from the 

haplotype analysis as the ambiguity could not be explained by non-paternity or 

recombination. The sequencing electropherograms for these individuals were double-checked 

by the researcher and supervisor and the same results were obtained. A possible explanation 

for the observed discrepancy is that the samples were swapped in the sequencing laboratory 

and that the incorrect sample was sequenced. Samples should always be double-checked and 

labelled carefully to prevent this from occurring.  

 

PCR amplification was not optimised for fragment 5 of the HMOX1 promoter, fragment 2 of 

the HAMP promoter and fragments 2 and 5 of the HJV promoter. Therefore the mutation 
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analysis of these promoter regions was incomplete. Future researchers should attempt to 

optimise the PCR technique for these fragments or should redesign primers flanking the 

relative regions. Mutation analysis of these fragments could possibly reveal additional 

variants in the promoters of these three genes that may be associated with the iron overload 

phenotype. Genotyping of the IVS2+8T→C CYBRD1 intronic variant was incomplete as 

HEX-SSCP results were unclear. The genotypes of the family members for this variant need 

to be clarified employing semi-automated DNA sequencing analysis. 

 

HH is rare in the Indian population and the causative gene has not yet been elucidated. The 

homozygous 5’UTR-335G→T HAMP variant seems to be causing HH in the Indian family 

investigated in this study. Further analysis within the general Asian Indian population is 

necessary to determine whether this variant is associated with HH in other Indian patients or 

if it is a private variant which is only present in this highly consanguineous family. Future 

research should also focus on identifying any genetic factors that could be modifying the 

expression of this variant. The identification of the involvement of the homozygous 5’UTR-

335G→T HAMP variant in the pathogenesis of HH in these two Indian probands may assist 

in the elucidation of the elusive iron loading gene in the Asian Indian population. 
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APPENDIX 1: LIST OF CHEMICALS/REAGENTS USED IN THIS 

STUDY AND THEIR SUPPLIERS. 
 

Chemical/Reagent Supplier 

Acrylamide Sigma-Aldrich 

Agarose Laboratory Specialist Services 

APS Merck 

Bisacrylamide Sigma-Aldrich 

Bromophenol blue Seabreeze Suppliers 

Cresol red Merck 

ddH2O Adcock-Ingram 

dNTPs (dATP, dTTP, dCTP, dGTP) Fermentas 

EDTA Seabreeze Suppliers 

EtBr Fluka 

EtOH Seabreeze Suppliers 

Formamide (De-ionised) Merck 

H3BO3 Seabreeze Suppliers 

KCl Roche Diagnostics 

KHCO3 Merck 

KH2PO4 Seabreeze Suppliers 

NaCl Fluka 

Na2HPO4 Seabreeze Suppliers 

Urea Sigma-Aldrich 

NH4Cl Seabreeze Suppliers 

PBS Fluka 

Proteinase K Roche Diagnostics 

SDS Seabreeze Suppliers 

Sucrose Seabreeze Suppliers 

Taq polymerase Fermentas 

TEMED Fluka 

Tris-HCl  Fluka 

Xylene cyanol Fluka 
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APPENDIX 2: PROMOTER AND CODING REGIONS OF HMOX1, HFE, 

HAMP, SLC40A1, CYBRD1 AND HJV GENES INDICATING PRIMER 

BINDING POSITIONS AND VARIANTS IDENTIFIED IN THIS STUDY. 
 

Promoter (5’ to 3’) and coding regions (5’ to 3’) of the respective genes were selected from 

Ensembl and GenAtlas. The primers designed for the analysis of the promoter regions are 

highlighted in various colours (described below). Primers designed for the analysis of the 

exons of each gene are indicated using various text colours. Arrows flank the primers with 

arrowheads indicating the orientation of each primer. The translation initiation site (ATG) and 

the stop codon (TGA, TAA or TAG) are indicated in bold red text. Variation detected in the 

current study is highlighted in grey and the superscript number indicates the nucleotide 

position (described below). The 5’UTR and introns of genes are indicated in lowercase text 

while the mRNA encoding regions (transcripted regions) are indicated in uppercase. The bold 

mRNA regions are those that form part of the translated peptide (translated). Variants 

identified in the present study are highlighted in grey and the superscript number indicates the 

nucleotide position, which is indicated in the key.  

 

HMOX1 promoter sequence 

[ENSG00000100292 (Ensembl)] 
 

acagggtctccctatgttgcccaggccagtctcgaactcaaagcaatcttcccacctcgactgggctcaaagcgc

tcttcccacctcaacctcccaaagtactgggactacaggtgtgagctaccatgccaggcctgaaagccatcttaa

aaaaaaaatcttagaatgagaatcacagtattgggaaaggactgtatgaatcatctggtccattcgttttgtcct

ctgggttcacccagtgaccctatttcccccgagttctaaggagtccacctcatgcagaattgattcaataggcga

tcagcaagggccagctctgctctgggccctgagcaggcactgagtataagtcagacctgaatgtgcctggaagag

tgtcccacgcattccagcagggaagcagtttgtatgacaggtgtcccagtccaggcggataccaggtgctgccag

agtgtggaggaggcaggcggggacttagtctcctccctgggtttggacactggcatcctgctttatgtgtgacac

cactgcacccctctgagcctcggtttccccatctgtaaaatagaagcgatctaccctcacaggtcagttgtaggg

atgaaccatgaaaatactagagtctctgttttttgacaggaactcaaaaaacagatcctaaatgtacatttaaag

agggtgtgaggaggcaagcagtcagcagaggattccagcaggtgacattttagggagctggagacagcagagcct

ggggttgctaagttcctgatgttgcccaccaggcta1ttgctctgagcagcgctgcctcccagctttctggaacc

ttctgggacgcctggggtgcatcaagtcccaaggggacagggagcagaagggggggctctggaaggagcaaaatc

acacccagagcctgcagcttctcagatttccttaaaggttttgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtatg

tgtgtgtgtgtgtgtgtgtgtgtgtgttttctctaaaagtcctatggccagactttgtttcccaagggtcatatg

actgctcctctccaccccacactggcccggggcgggctgggcgcgggcccctgcgggtgttgcaacgcccggcca

gaaagtgggcatcagctgttccgcctggcccacgtgacccgccgagcataaatgtgaccggccgcggctccggca
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gtcaacgcctgcctcctctcgagcgtcctcagcgcagccgccgcccgcggagccagcacgaacgagcccagcacc

ggccggATGgagcgtccgcaacccgacaggcaagcgcggggcgcgggacgcgggacgggcgcctttctctcccaa

ccctgcttgcgtcctagccccaccccgggacactgccacacagcgacagagcccaggagccagaaacttgggctc 

 

HMOX1 coding regions 

[NM_002133 (GenAtlas)] 

 

Exon 1 
gccagactttgtttcccaagggtcatatgactgctcctctccaccccacactggcccggggcgggctgggcgcgg

gcccctgcgggtgttgcaacgcccggccagaaagtgggcatcagctgttccgcctggcccacgtgacccgccgag

cataaatgtgaccggccgcggctccggcagTCAACGCCTGCCTCCTCTCGAGCGTCCTCAGCGCAGCCGCCGCCC

GCGGAGCCAGCACGAACGAGCCCAGCACCGGCCGGATGGAGCGTCCGCAACCCGACAGgcaagcgcggggcgcg

ggacgcgggacgggcgcctttctctcccaaccctgcttgcgtcctagccccaccccgggacactgccacacagcg

acagagcccaggagccagaaacttgggctctggagtcaggaggtgcggggttctgatcctgcctgtgcccgtagg

gtagttggagggag 

 

Exon 2 
gggattacaggcgtgagccaccgtgcccagccacaaggctgcatcttaaagcgattgagaacgtggcctgaatga

ggatgggagtctcttgaaggcctgcccacaggtgggaggctcagcagttgggaaggaccccacccccagccagct

ttgtgttcacctttcccatttcctcctcagCATGCCCCAGGATTTGTCAGAGGCCCTGAAGGAGGCCACCAAGGA

GGTGCACACCCAGGCAGAGAATGCTGAGTTCATGAGGAACTTTCAGAAGGGCCAGGTGACCCGAGACGGCTTCAA

Ggtat2gtggcttggtgggactagccctggtggagggtgtggcaggtgtgggtggacccaaggctcagaccagtg

gtttaagtggggatgctgagggaccagatgggcatgtccaatagaatcatcttaaaaatgatgacactgaggctc

agagagggaaggtgagttacccaaggtcacac 

 

Exon 3 
Tcctcttgtaaaaacccctctggctgctgtgtgaagaggattgtagcgaggggtggcagaaggagtcagagccca

gctgcgaagtgaggagggcctttccaaaggcagtagtggacgggacggacagaggtgggggtcttctatgtggct

ggcggcctgacc3tgctcactctgctttcagCTGGTGATGGCCTCCCTGTACCACATCTATGTGGCCCTGGAGGA

GGAGATTGAGCGCAACAAGGAGAGCCCAGTCTTCGCCCCTGTCTACTTCCCAGAAGAGCTGCACCGCAAGGCTGC

CCTGGAGCAGGACCTGGCCTTCTGGTACGGGCCCCGCTGGCAGGAGGTCATCCCCTACACACCAGCCATGCAGCG

CTATGTGAAGCGGCTCCACGAGGTGGGGCGCACAGAGCCCGAGCTGCTGGTGGCCCACGCCTACACCCGCTACCT

GGGTGACCTGTCTGGGGGCCAGGTGCTCAAAAAGATTGCCCAGAAAGCCCTGGACCTGCCCAGCTCTGGCGAGGG

CCTGGCCTTCTTCACCTTCCCCAACATT 

                                        GCCTGGCCTTCTTCACCTTC 

GCCAGTGCCACCAAGTTCAAGCAGCTCTACCGCTCCCGCATGAACTCCCTGGAGATGACTCCCGCAGTCAGGCAG

AGGGTGATAGAAGAGGCCAAGACTGCGTTCCTGCTCAACATCCAGgtgagggtcgggcagcctggggcagcctct

gcctccccccgttgttcctccaagggacccttctcattgtaggggagggtgctataggtcatggttaacacaggg

aaccagagttccagcactgccacttactagctgggtgatcttgggcaaatgccttcatctctctgtacctcagtt 
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Exon 4 
gcccatcttggcctcccaaagtgctgggattacaggggcgcaccaccgtgtccggccaatatttttcttaccatc

ttgttatttccaaagtatttcctaacacaacttaaggtcctaccttcagctgggacctggtagcatctctcactg

agataggcatgtgtgtcttttgtcttttagCTCTTTGAGGAGTTGCAGGAGCTGCTGACCCATGACACCAAGGAC

CAGAGCCCCTCACGGGCACCAGGGCTTCGCCAGCGGGCCAGCAACAAAGTGCAAGgtgagagcatccaggaaggg

gcacttcctctgggctacacatggagggacttggctgtctgactgtagtatctctattcctctgttttctgaatg

tttggtggtggtgggtgttgtttcctgctgccccaccccactgcccctgtaaggacaggttctcgctatattgcc

caggccagtc 

 

Exon 5 
cgtctttgaaggtattcaagcagtggctagagggacacctgtctgtggtcttgcagaatcctggcgttgggcagt

gactgtaccacagaccctgaggccgctctgctttgctttcctatgacatcagacaccctgatgcacgcccacctg

ttaatgaccttgccccattttctctttcagATTCTGCCCCCGTGGAGACTCCCAGAGGGAAGCCCCCACTCAACA

CCCGCTCCCAGGCTCCGCTTCTCCGATGGGTCCTTACACTCAGCTTTCTGGTGGCGACAGTTGCTGTAGGGCTTT

ATGCCATGTGAATGCAGGCATGCTGGCTCCCAGGGCCATGAACTTTGTCCGGTGGAAGGCCTTCTTTCTAGAGAG

GGAATTCTCTTGGCTGGCTTCCTTACCGTGGGCACTGAAGGCTTTCAGGGCCTCCAGCCCTCTCACTGTGTCCCT

CTCTCTGGAAAGGAGGAAGGAGCCTATGGCATC 

              GGAAGGAGCCTATGGCATC 

T 

TTCCCCAACGAAAAGCACATCCAGGCAATGGCCTAAACTTCAGAGGGGGCGAAGGGATCAGCCCTGCCCTTCAGC

ATCCTCAGTTCCTGCAGCAGAGCCTGGAAGACACCCTAATGTGGCAGCTGTCTCAAACCTCCAAAAGCCCTGAGT

TTCAAGTATCCTTGTTGACACGGCCATGACCACTTTCCCCGTGGGCCATGGCAATTTTTACACAAACCTGAAAAG

ATGTTGTGTCTTGTGTTTTTGTCTTATTTTTGTTGGAGCCACTCTGTTCCT 

                                       CACTCTGTTCCT 

GGCTCAGC 

GGCTCAGCCTCAAATGCAGTATTTTTGTTGTGTTCTGTTGTTTTTATAGCAGGGTTGGGGTGGTTTTTGAGCCAT

GCGTGGGTGGGGAGGGAGGTGTTTAACGGCACTGTGGCCTTGGTCTAACTTTTGTGTGAAATAATAAACAACATT

GTCTGatagtagcttgaagtagttttcatgggctttgttattcttggggaactgaccttttcctccctggtttct

tgcgtgctcggtaggagaagtggtgatagggggttggcaggagctggtctgtttgagaatacagaaggtgagctt

ttcttttctttttttttttttttgagatggagtct 

 

HMOX1 Key: 

Promoter Region Coding Regions 

Fragment 1 (XP1) Fragment 4 (XP4) Fragment 1 (X1) Fragment 4 (X4) 

Fragment 2 (XP2) Fragment 5 (XP5) Fragment 2(X2) Fragment 5A (X5A) 

Fragment 3 (XP3) Fragment 6 (XP6) Fragment 3A (X3A) Fragment 5B (X5B) 

  Fragment 3B (X3B) Fragment 5C (X5C) 

  Fragment 3C (X3C)  

Variants: 1 = 5’UTR-495 A→T, 2 = IVS2+4T→C, 3 = IVS2 -19C→T 
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HFE promoter sequence 

[ENSG00000010704 (Ensembl)] 
 

aatttgctagatatgtaaaggtttggagcaaatcaggtgtattaaatttattaatattgtttgaaatgtctaagg

caataattcccaaacttcgttgagggagaaggaaagcttttaaaatcccattgcccaggtggcatcccatactgt

tactgggaattatgcattgggatggatcctttaaccgaggagattattatagccggagctctgaac1cagcaatc

tcagttcttgtgatagtgagcaaagaactacaaactaacaccaaaatgcaagcttaaagcaaagtttattgaagc

acaataatacactctgagggacagcgggcttatttctgcgaagtgaactcagcacttctttacagagctcaaggt

gcttttatggggtttgtggggaggagttgaggtttgggctgtatctgagtgacaggatgatgttatttgattgaa

gtgtatagctatacaatctaaaattaaactgtgcatggtcttacctataatttgttaagaaaagcctcccaggga

tgggggggcaaaactgtatgtaaattctattataatgatggcatgatgaacttggggt2gaacttgaagacaggc

ttttgtgttgttgggcatgtgccaccttagggaatttccacctgtaccctcctttctctttctccaggatatttt

ggccacagactttatcataaactccatcccttagggtggcattagggtagtcttgggcctgaatttaggtgggcc

agtggctgtcttagtgacagcctttccgctctcttctgtcatcccctcccaactgctaatgtctaactacctaac

aattacccattaaatcagtgtgtctggggttaggagcaggcctcaatatgtttaatcattctccagataatccc 

              gtgtctggggttaggagcag 

aatactgtaaagtttgtgaaacacttgtcagataattcaattatgaaggctgtggaag3gtgtttcagtaggatc

taattggttaatgttatgacttaattaatttgaatcaaaaaacaaaatgaaaaagctttatatttctaagtcaaa

taagacataagttggtctaaggttgagataaaatttttaaatgtatgattgaattttgaaaatcataaatattta

aatatctaaagttcagatcagaacattgcgaagctactttccccaatcaacaacaccccttcaggatttaaaaac

caagggggacactggatcacctagtgtttcacaagcaggtaccttctgctgtaggagagagagaactaaagttct

gaaagacctgttgcttttcaccaggaagttttactgggcatctcctgagcctaggcaatagctgtagggtgactt

ctggagccatccccgtttccccgccccccaaaagaagcggagatttaacggggacgtgcggccagagctggggaa

atgggcccgcgagccaggccggcgcttctcctcctgatgcttttgcagaccgcggtcctgcaggggcgcttgctg

cgtgagtccgagggctgcgggcgaactaggggcgcggcgggggtggaaaaatcgaaactagctttttctttgcgc

ttgggagtttgctaactttggaggacctgctcaaccctatccgcaagcc 

 

HFE coding regions 

[NM_000410 (GenAtlas)] 
 

Exon 1 
aaaaagctttatatttctaagtcaaataagacataagttggtctaaggttgagataaaatttttaaatgtatgat

tgaattttgaaaatcataaatatttaaatatctaaagttcagatcagaacattgcgaagctactttccccaatca

acaacaccccttcaggatttaaaaaccaagGGGGACACTGGATCACCTAGTGTTTCACAAGCAGGTACCTTCTGC

TGTAGGAGAGAGAGAACTAAAGTTCTGAAAGACCTGTTGCTTTTCACCAGGAAGTTTTACTGGGCATCTCCTGAG

CCTAGGCAATAGCTGTAGGGTGACTTCTGGAGCCATCCCCGTTTCCCCGCCCCCCAAAAGAAGCGGAGATTTAAC

GGGGACGTGCGGCCAGAGCTGGGGAAATGGGCCCGCGAGCCAGGCCGGCGCTTCTCCTCCTGATGCTTTTGCAGA

CCGCGGTCCTGCAGGGGCGCTTGCTGCgtgagtccgagggctgcgggcgaactaggggcgcggcgggggtggaaa

aatcgaaactagctttttctttgcgcttgggagtttgctaactttggaggacctgctcaaccctatccgcaagcc

cctctccctactttctgcgtccagaccccgtgagggagtgcctaccactgaactgca 
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Exon 2 
aagcacacaaggaaagagcacccaggactgtcatatggaagaaagacaggactgcaactcacccttcacaaaatg

aggaccagacacagctgatggtatgagttgatgcaggtgtgtggagcctcaacatcctgctcccctcctactaca

catggttaaggcctgttgctctgtctccagGTTCACACTCTCTGCACTACCTCTTCATGGGTGCCTCAGAGCAGG

ACCTTGGTCTTTCCTTGTTTGAAGCTTTGGGCTACGTGGATGACCAGCTGTTCGTGTTCTATGATC4ATGAGAGT

CGCCGTGTGGAGCCCCGAACTCCATGGGTTTCCAGTAGAATTTCAAGCCAGATGTGGCTGCAGCTGAGTCAGAGT

CTGAAAGGGTGGGATCACATGTTCACTGTTGACTTCTGGACTATTATGGAAAATCACAACCACAGCAAGGgtatg

tggagagggggcctcaccttcctgaggttgtcagagcttttcatcttttcatgcatcttgaaggaaacagctgga

agtctgaggtcttgtgggagcagggaagagggaaggaatttgcttcctgagatcatttggtccttggggatggtg

gaaatagggacctattcctttggtt 

 

Exon 3 
aggttgtcagagcttttcatcttttcatgcatcttgaaggaaacagctggaagtctgaggtcttgtgggagcagg

gaagagggaaggaatttgcttcctgagatcatttggtccttggggatggtggaaatagggacctattcctttggt

tgcagttaacaaggctggggatttttccagAGTCCCACACCCTGCAGGTCATCCTGGGCTGTGAAATGCAAGAAG

ACAACAGTACCGAGGGCTACTGGAAGTACGGGTATGATGGGCAGGACCACCTTGAATTCTGCCCTGACACACTGG

ATTGGAGAGCAGCAGAACCCAGGGCCTGGCCCACCAAGCTGGAGTGGGAAAGGCACAAGATTCGGGCCAGGCAGA

ACAGGGCCTACCTGGAGAGGGACTGCCCTGCACAGCTGCAGCAGTTGCTGGAGCTGGGGAGAGGTGTTTTGGACC

AACAAGgtatggtggaaacacacttctgcccctatactctagtggcagagtggaggaggttgcagggcacggaat

ccctggttggagtttcagaggtggctgaggctgtgtgcctctccaaattctgggaagggactttctcaatcctag

agtctctaccttataattgagatgtatgagacagcc 

 

Exon 4 
ctccaagtgacactgtgttagagtccaatcttaggacacaaaatggtgtctctcctgtagcttgtttttttctga

aaagggtatttccttcctccaacctatagaaggaagtgaaagttccagtcttcctggcaagggtaaacagatccc

ctctcctcatccttcctctttcctgtcaagTGCCTCCTTTGGTGAAGGTGACACATCATGTGACCTCTTCAGTGA

CCACTCTACGGTGTCGGGCCTTGAACTACTACCCCCAGAACATCACCATGAAGTGGCTGAAGGATAAGCAGCCAA

TGGATGCCAAGGAGTTCGAACCTAAAGACGTATTGCCCAATGGGGATGGGACCTACCAGGGCTGGATAACCTTGG

CTGTACCCCCTGGGGAAGAGCAGAGATATACGTGCCAGGTGGAGCACCCAGGCCTGGATCAGCCCCTCATTGTGA

TCTGGGgtatgtgactgatgagagccaggagctgagaaaatctattgggggttgagaggagtgcctgaggaggta

attatggcagtgagatgaggatctgctctttgttagggggtgggctgagggtggcaatcaaaggctttaacttgc

tttttctgttttagagccctcaccgtctggcaccct 

 

Exon 5 
cagcccctcattgtgatctggggtatgtgactgatgagagccaggagctgagaaaatctattgggggttgagagg

agtgcctgaggaggtaattatggcagtgagatgaggatctgctctttgttagggggtgggctgagggtggcaatc

aaaggctttaacttgctttttctgttttagAGCCCTCACCGTCTGGCACCCTAGTCATTGGAGTCATCAGTGGAA

TTGCTGTTTTTGTCGTCATCTTGTTCATTGGAATTTTGTTCATAATATTAAGGAAGAGGCAGGGTTCAAgtgagt

aggaacaagggggaagtctcttagtacctctgccccagggcacagtgggaagaggggcagaggggatctggcatc 
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Exon 6 
aggtgaggagaccagttagaaagccaataagcatttccagatgagagataatggttcttgaaatccaatagtgcc

caggtctaaattgagatgggtgaatgaggaaaataaggaagagagaagaggcaagatggtgcctaggtttgtgat

gcctctttcctgggtctcttgtctccacagGAGGAGCCATGGGGCACTACGTCTTAGCTGAACGTGAGTGAcacg

cagcctgcagactcactgtgggaaggagacaaaactagagactcaaagagggagtgcatttatgagctcttcatg 

 
HFE Key: 

Promoter Region Coding Regions 

Fragment 1 (HP1) Fragment 5 (HP5) Fragment 1 (H1) Fragment 3B (H3B) 

Fragment 2 (HP2) Fragment 6 (HP6) Fragment 2A (H2A) Fragment 4 (H4) 

Fragment 3 (HP3) Fragment  (HP7) Fragment 2B (H2B) Fragment 5 (H5) 

Fragment 4 (HP4) Fragment 8 (HP8) Fragment 3A (H3A) Fragment 6 (H6) 

Variants: 1 = 5’UTR-1206C→G, 2 = 5’UTR-840T→G, 3 = 5’UTR-467G→C, 4 = H63D 
 

 

HAMP promoter sequence 

[ENSG00000105697 (Ensembl)] 

 
agtgccttttctgtaaagtgaaggaaatgagtgtccgacggggaggaggttcctaaaagggagcagggtctgggg

agcccaggcctctggggttgggtgactgagaaggcagcccctgaatacagagcagagctgaaggtggggcagtaa

gtgctgctgggagaacaggcagcacaggctgagttggtgcagaagtgagtcaacatatgtgccatcgtataaaat

gtactcatcggactgtagatgttagctattactattactgctattttatgttttatagacagggtctcactctgt

cacccaggctggagtgcagtcacacaatcatagctcactgcaacctcagcctcctgggcttaagcgatctgcctc

agcctcccaagtagctgggactacagatgtgtgccaccacgcctggctaaatttgtttaaaattttttttgtaga

gatggggtctccctatgttgcccaggctagtcttgaacttctgggctcaagcgaccctcctgccttggcctccca

aattgctgggattacaggcataagccactgtgctgggccatattactgctgtcatttatggccaaaagtttgctc

aaacattttccagttaccagagccacatctcaagggtctgacactgggaaaacaccacgtgcggatcgggcacac

gctgatgcttgccctgctcagggctatctagtgttccctgccagaacctatgcacgtgtggtgagagcttaaagc

aatggatgcttcccccaacatgccagacactcctgaggagcctggcggctgctggccatgccccgtgtgcatgta

ggcgatggggaagtgagtggaggagagcggaaccttgattctgctcatcaaactgcttaaccgctgaagcaaaag

gggg1aacttttttcccgatcagcagaatgacatcgtgatggggaaagggctccccagatggctggtgagcagtg

tgtgtctgtgaccccgtctgccccaccccctgaacacacctctgccggctgagggtgacacaaccctgttccctg

tcgctctgttcccgcttatctctcccgccttttcggcgccaccaccttcttggaaatgagacagagcaaagggga

gggggctcagaccaccgcctcccctggcaggccccataaaagcgactgtcactcggtcccagacaccagagcaag

ctcaagacccagcagtgggacagccagacagacggcacgatggcactgagctcccagatctgggccgcttgcctc

ctgctcctcctcctcctcgccagcctgaccagtggctctgttttcccacaacaggtgagagcccagtggcctggg

tccttagcagggcagcagggatgggagagcc 
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HAMP coding regions 

[NM_021175.2 (GenAtlas)] 
 

Exon 1 
ggctgagggtgacacaaccctgttccctgtcgctctgttcccgcttatctctcccgccttttcggcgccaccacc

ttcttggaaatgagacagagcaaaggggagggggctcagaccaccgcctcccctggcaggccccataaaagcgac

tgtcactcggtcccagacaccagagcaagcTCAAGACCCAGCAGTGGGACAGCCAGACAGACGGCACGATGGCAC

TGAGCTCCCAGATCTGGGCCGCTTGCCTCCTGCTCCTCCTCCTCCTCGCCAGCCTGACCAGTGGCTCTGTTTTCC

CACAACAGgtgagagcccagtggcctgggtccttagcagggcagcagggatgggagagccaggcctcagcctagg

gcactggagacacccgagcactgagcagagctcaggacgtctcaggagtactggcagctgaacaggaaccaggac

aggcacggtggctcatgcctgtaatcccagcactttgg 

 

Exon 2 
tttttttttaggaaaagccgcccatgggaaggtgagcagaagcaagaaagcaaggcccctcctaagagtccattt

gagctctgggtttaaaccacttggagaggagcaggttgccgggagccagtctcagaggtccactgggccccctgc

catcctctgcacccccttctgctttcacagACGGGACAACTTGCAGAGCTGCAACCCCAGGACAGAGCTGGAGCC

AGGGCCAGCTGGATGgtgagcgcaacagtgatgcctttcctagccccctgctccctccccatgctaaggccggtt

ccctgctcacattcccttccttcccacagcccatgttccagaggcgaaggaggcgagacacccacttccccatct

gcattttctgctgcggctgctgtcatcgatcaaagtgtgggatgt 

 

Exon 3 
ccatcctctgcacccccttctgctttcacagacgggacaacttgcagagctgcaaccccaggacagagctggagc

cagggccagctggatggtgagcgcaacagtgatgcctttcctagccccctgctccctccccatgctaaggccggt

tccctgctcacattcccttccttcccacagCCCATGTTCCAGAGGCGAAGGAGGCGAGACACCCACTTCCCCATC

TGCATTTTCTGCTGCGGCTGCTGTCATCGATCAAAGTGTGGGATGTGCTGCAAGACGTAGAACCTACCTGCCCTG

CCCCCGTCCCCTCCCTTCCTTATTTATTCCTGCTGCCCCAGAACATAGGTCTTGGAATAAAATGGCTGGTTCTTT

TGTTTTCCaaaccagagtgtctgttgtcctttctctctgccgagtgtctgtgctaagagcttgtcctgaccctgc 

 

HAMP Key: 

 

Promoter Region Coding Regions 

Fragment 1 (PP1) Fragment 4 (PP4) Fragment 1 (P1) 

Fragment 2 (PP2) Fragment 5 (PP5) Fragment 2 (P2) 

Fragment 3 (PP3) Fragment 6 (PP6) Fragment 3 (P3) 

Variant: 1 = 5’UTR-335G→T 
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SLC40A1 promoter sequence 

[ENSG00000138449 (Ensembl)] 

 
gaatccagctgcacccaccccgtagacctttggggctcctgattgagagtgcagatacagggcacatactcatgc

gtggctcccttcactactgggtgtcagtctggcctgtgctcaaggtgtggcatctggttggagtttcaatatgta

ggatccactaccagggttttcgtgagattaagaagggtaaggtaacctactggcaaaaggggctggtatgcccca

ggggttggtttggcacagcaggattaaaacgaagtcaaccaaggctag1agtctggtgttctttagtcattcacc

tcaccctccaggaggccaccgaatggctttatctggacagggacagatccagggacacaactgggataaccggta

ttcctggtaagcctgtcactggggcatttggaggttaggtggggaagggacgcgcgcgtgggggcggggtgagag

ggtacagagggagaaggaatgatggtgaagggtttgctggggctgcagcatcctcattctgtctccaggacggat

ttggaggccccagtttggggatacgggtaggtctgtaactcgctgcgggacttcacctttgcaagcctccgtttg

ctcctctcaagagggatggactctgatctttgcgcccccttcctgccctttgattctggttctttgagggaagcc

ctgctatgcagtccggggaaggaaaggcattctctgctgcaggcgggccggaatgggacggccaggaaagcggcc

tctgtggcatgaattatatttatttagatacctgtattaaaaattattttcgttaaaaaaggaatccccacccac

caagctcgcgctggagctttgcactgcgaccgtccggcggccgccctttccctg2aactgcggggtagccggtgc

gcagcgctttcttccagcacctgacgcttagtttcgcgcagaatctccctacgccgccccgccggctc3cacgcg

ccttcctccttttcccagccccacggccgccccccgaggttgccctcgcggcttcccggagagcaggaaaacccg

gggagtggaacgcgtcgaggcgaaggtccccgcaagccgcgcagggtgtctgcggccggttggacgcttgcgccc

ggggt4gggcgactcctccgggcaagggcgcggggacggcccggcgcgcaaggttgacgggagctcgtctcgcgc

cgcggggacgcccgggcggccctgaaggggacggggcggccccagtcggaggtcgcagggagctccgcccccgac

tcggtataagagctgggcccggcccacggcggcggcggcggcggcgg5agagagctggctcagggcgtccgctag

gctcggacgacctgctgagcctcccaaaccgcttccataaggctttgcctttccaacttcagctacagtgttagc

taagtttggaaagaaggaaaaaagaaaatccctgggccccttttcttttgttctttgccaaagtcgtcgttgtag

tctttttgcccaaggctgttgtgtttttagaggtgctatctccagttccttgcactcctgttaacaagcacctca

gcgagagcagcagcagcgatagcagccgcagaagagccagcggggtcgcctagtgtcatgaccagggcgggagat

cacaaccgccagagaggatgctgtggtgagtgtcgttgaccgaaagcatatggtggaaacccaggtggggctttg

gagacaagcaactctacacgagttctggaggaatgtggctctgctgtgaaccatagctttgtaaaaagatccttt

gactcatatttggtggacgttaaggaagaaaggaaattcagggtgtgggaaaaggggtttgcacacaggcacgga

tggagtagattgggcagtttggattgccttgtgtaaaaaagaaacaaaac 
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SLC40A1 coding regions 

[NM_014585 (GenAtlas)] 

Exon 1 
cggcttcccggagagcaggaaaacccggggagtggaacgcgtcgaggcgaaggtccccgcaagccgcgcagggtg

tctgcggccggttggacgcttgcgcccggggtgggcgactcctccgggcaagggcgcggggacggcccggcgcgc

aaggttgacgggagctcgtctcgcgccgcgGGGACGCCCGGGCGGCCCTGAAGGGGACGGGGCGGCCCCAGTCGG

AGGTCGCAGGGAGCTCCGCCCCCGACTCGGTATAAGAGCTGGGCCCGGCCCACGGCGGCGGCGGCGGCGGCGGAG

AGAGCTGGCTCAGGGCGTCCGCTAGGCTCGGACGACCTGCTGAGCCTCCCAAACCGCTTCCATAAGGCTTTGCCT

TTCCAACTTCAGCTACAGTGTTAGCTAAGTTTGGAAAGAAGGAAAAAAGAAAATCCCTGGGCCCCTTTTCTTTTG

TTCTTTGCCAAAGTCGTCGTTGTAGTCTTTTTGCCCAAGGCTGTTGTGTTTTTAGAGGTGCTATCTCCAGTTCCT

TGCACTCCTGTTAACAAGCACCTCAGCGAGAGCAGCAGCAGCGATAGCAGCCGCAGAAGAGCCAGCGGGGTCGCC

TAGTGTCATGACCAGGGCGGGAGATCACAACCGCCAGAGAGGATGCTGTGgtgagtgtcgttgaccgaaagcata

tggtggaaacccaggtggggctttggagacaagcaactctacacgagttctggaggaatgtggctctgctgtgaa

ccatagctttgtaaaaagatcctttgactcatatttggtggacgttaaggaagaaaggaaattcagggtgtggga

aaagg 

 

Exon 2 
aatggtattaagtgaacgaaatacatcggttcataggtaacttgataaaatgtacgtggtttgtcctgcaaagta

gtttttaataatcatgttctaatgagatcaaatggataagcattctgccctcagctcattaagtgactaccatcg

ctttttgtcaccccgcctgtgtctttgcagGATCCTTGGCCGACTACCTGACCTCTGCAAAATTCCTTCTCTACC

TTGGTCATTCTCTCTCTACTTGGgtaagtgagaatgcatagtcttacaacacagttgcgcaattttttatttcct

ttcgttctagccagttgtattaagccaacttccagttttgtcaagcagttaaagaaataaatcatccaagtacac

atgctttaatgaaaacgttatttacatcgaagatctttccccatgagtgttag 

 

Exon 3 
ccattgtgctgggatgaacgttttaacatctgagcagtattcaatctaagagtaattactgactttgaaagtctc

ataatgtagccaggaagtgcccttttgataaggaagcaacttcctgagtacaatagactagaaacgaaaaatatt

ccatcaaaacattttctcttttcatttaagGGAGATCGGATGTGGCACTTTGCGGTGTCTGTGTTTCTGGTAGAG

CTCTATGGAAACAGCCTCCTTTTGACAGCAGTCTACGGGCTGGTGGTGGCAGGGTCTGTTCTGGTCCTGGGAGCC

ATCATCGGTGACTGGGTGGACAAGAATGCTAGACTTAAAGgtgagtgttgttatataattaagcccttttattca

tgggaccaatgcctgagctacctctgtagcaaaggaaacaacaaactaggagagaaacaaccagggaatgtctgc

atgccacacttgagggaggagggcttagatggcaccacctctggatggagggtcccatggctcccacaca 

 

Exon 4 
tgacttcagaaaggttttctttttatctggtaataattaggtctgtgtattaatgtattatagtagaacaattat

gtgtggataagaacagtctcactgagacattttgatgtaatgtacactttctctcttcctctgcacagTGGCCCA

GACCTCGCTGGTGGTACAGAATGTTTCAGTCATCCTGTGTGGAATCATCCTGATGATGGTTTTCTTACATAAACA

TGAGCTTCTGACCATGTACCATGGATGGGTTCTCgtaagttctcaatgagattcttgatggcagaaaattgaata

tctggtagtggtaaaggatgaaaatgctttgaagctatttttttttttggccagtgtgaccttttaatattgatt

tctgtgtctactgtaatatcccctatagtttgttttgttgtt 
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Exon 5 
cattgactactggtattcattcagtttcatatctataacgtaaaatgatttcttataaatgaaattaaaatactt

tttttatcattccaccaaagactattttaaactgccttgtttagtgacatatgtacagtgtggtaaactgacatt

ataactcatttttttcttgtcattctttagACTTCCTGCTATATCCTGATCATCACTATTGCAAATATTGCAAAT

TTGGCCAGTACTGCTACTGCAATCACAATCCAAAGGGATTGGATTGTTGTTGTTGCAGGAGAAGACAGAAGCAAA

CTAGCAAgtaatttggctttctcttttaatgaaatgagcatgttaggattcactttaaatcggtggtgataaatg

aggctgtaagccttgtatttttgttctgggtattttttaagaatgataaattgaaagcatactttttttcttacc

ttattgtcagttttagtgctgatttatctcactgtta 

 

Exon 6 
gtgggacttgacccaaacaacaaatatttttccaacaaaatgtctttcttacaaatgtacttttagaaaaccaca

ttttaggaatctatactcttggtttacagctttgtattgtgtaaatgggcagtctctctttgatgggtttgcaca

cttacctgcctctttcacctgcctctctagATATGAATGCCACAATACGAAGGATTGACCAGTTAACCAACATCT

TAGCCCCCATGGCTGTTGGCCAGATTATGACATTTGGCTCCCCAGTCATCGGCTGTGGCTTTATTTCGGGATGGA

ACTTGGTATCCATGTGCGTGGAGTACGTT6CTGCTCTGGAAGGTTTACCAGAAAACCCCAGCTCTAGCTGTGAAA

GCTGGTCTTAAAGAAGAGGAAACTGAATTGAAACAGCTGAATTTACACAAAGgtaaactgaacacaatgatctct

ccttttgttctcatgttcagaccttaaatgttggtgaagatcaaaactattttgaatttgtatcaggttttatta

ccagtgggggccagatgaggttaaatatatcgctttggtagacgaggcaagagcaggcttttgaggatctaggga

aaaactc 

 

Exon 7 
acttgatgattattccttggctggaattcttagattattagtaaaagaaaatacatattacaatgtctaaccaag

ggtacccattgggaaggggaatagaaggaaaaaaagtactactaataattggcttttatttctacatgtcctccc

caacaaaataatggtatcttttcttaacagATACTGAGCCAAAACCCCTGGAGGGAACTCATCTAATGGGTGTGA

AAGACTCTAACATCCATGAGCTTGAACATGAGCAAGAGCCTACTTGTGCCTCCCAGATGGCTGAGCCCTTCCGTA

CCTTCCGAGATGGATGGGTCTCCTACTACAACCAGCCTGTGTTTCTGGCTGGCATGGGTCTTGCTTTCCTTTATA

TGACTGTCCTGGGCTTTGACTGCATCACCACAGGGTACGCCTACACTCAGGGACTGAGTGGTTCCATCCTCAGTA

TTTTGATGGGAGCATCAGCTATAACTGGAATAATGGGAACTGTAGCTTTTACTTGGCTACGTCGAAAATGTGGTT

TGGTTCGGACAGGTCTGATCTCAGGATTGGCACAGCTTTCCTGTTTGATCTTGTGTGTGATCTCTGTATTCATGC

CTGGAAGCCCCCTGGACTTGTCCGTTTCTCCTTTTGAAGATATCCGATCAAGGTTCATTCAAGGAGAGTCAATTA

CACCTACCAAGATACCTGAAATTACAACTGAAATATACATGTCTAATGGGTCTAATTCTGCTAATATTGTCCCGG

AGACAAGTCCTGAATCTGTGCCCATAATCTCTGTCAGTCTGCTGTTTGCAGGCGTCATTGCTGCTAGAATCGgta

agaaatctctttttatatattaatgaactaaagtgtctttttgtaatgtaggttcagagaatccattaataaatg

atctgaaatgttccctaaatgttaatttaagcaaaatccactcttacgaaatttttattttacatatttatactt

tatatttattgtgttttttattttata 
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Exon 8 
ataacccaatatttatttatgaaaaataattcttaaggcaaggctatggtatatttaaggtgacttaaagacagt

caggctaaaatgtatattttgcatatgtcaacagatttttatctgtgatttgaaatgtatgcctgtaaactaaaa

tctaatctttaaaaaaatattttattatagGTCTTTGGTCCTTTGATTTAACTGTGACACAGTTGCTGCAAGAAA

ATGTAATTGAATCTGAAAGAGGCATTATAAATGGTGTACAGAACTCCATGAACTATCTTCTTGATCTTCTGCATT

TCATCATGGTCATCCTGGCTCCAAATCCTGAAGCTTTTGGCTTGCTCGTATTGATTTCAGTCTCCTTTGTGGCAA

TGGGCCACATTATGTATTTCCGATTTGCCCAAAATACTCTGGGAAACAAGCTCTTTGCTTGCGGTCCTGATGCAA

AAGAAGTTAGGAAGGAAAATCAAGCAAATACATCTGTTGTTTGAGACAGTTTAACTGTTGCTATCCTGTTACTAG

ATTATATAGAGCACATGTGCTTATTTTGTACTGCAGAATTCCAATAAATGGCTGGGTGTTTTGCTCTGTTTTTAC

CACAGCTGTGCCTTGAGAACTAAAAGCTGTTTAGGAAACCTAAGTCAGCAGAAATTAACTGATTAATTTCCCTTA

TGTTGAGGCATGGAAAAAAAATTGGAAAAGAAAAACTCAGTTTAAATACGGAGACTATAATGATAACACTGAATT

CCCCTATTTCTCATGAGTAGATACAATCTTACGTAAAAGAGTGGTTAGTCACGTGAATTCAGTTATCATTTGACA

GATTCTTATCTGTACTAGAATTCAGATATGTCAGTTTTCTGCAAAACTCACTCTTGTTCAAGACTAGCTAATTTA

TTTTTTTGCATCTTAGTTATTTTTAAAAACAAATTCTTCAAGTATGAAGACTAAATTTTGATAACTAATATTATC 

 

SLC40A1 Key: 

Promoter Region Coding Regions 

Fragment 1 (SP1) Fragment 5 (SP5) Fragment 1A (S1A) Fragment 7A (S7A) 

Fragment 2 (SP2) Fragment 6 (SP6) Fragment 1B (S1B) Fragment 7B (S7B) 

Fragment 3 (SP3) Fragment 7 (SP7) Fragment 2 (S2) Fragment 7C (S7C) 

Fragment 4 (SP4)  Fragment 3 (S3) Fragment 8A (S8A) 

  Fragment 4 (S4) Fragment 8B (S8B) 

  Fragment 5 (S5) Fragmetnt 8C (S8C) 

  Fragment 6 (S6)  

Variants: 1 = 5’UTR-1355G→C, 2 = 5’UTR-750G→A, 3 = 5’UTR-593C→T,  

4 = 5’UTR-501T→C, 5 = (CGG) repeat, 6 = V221 
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CYBRD1 promoter sequence 

[ENSG00000071967 (Ensembl)] 
 

ggggctttggttcaaattggtttgggtgggcgggcactttgaaaatccatttgtcacactaaacggcaagtccag

gtccaggaggttcctgtcttccctctctcaagagcaaactgcaagtagtttcattgcaggataaggccaagccca

ccgctgcccatgctgtttttgttttgtttccagacagagtctagctgtcaccaggctgcagtgcagtggtgcgat

catac1ctctcctgag2ctcaagtgattctcttgcctc3cacctcccaaagccctgggattacagctgtgagacac

ctcatggggacccggtttactgggttttttttgttttttgttttttgttttttttt4gagacagagtctcacttt

gtcacccaagctgaagtgcagtggtgcaacctcagctcactgcagcctcgaccttctgggctcaagtgatcctcc

ttcctcagtcccccaagtagctggggctacaggtgcatgcatttgtattttcagtagagacagggtttcaccttg

ttgcccaggctgttctcaaactcctggactcaagtgatctgcccgccttagcctcccaaagtgctaagattacag

gtgtgaggcactgcgcct5ggccttt6actgttaacttaaaacaaaaaattataaatttgaaaaaagaggagactt

tatttcttataaaaggttatagcctgcaaggaggccattccataggctgataaacatagcctctggcctaagacc

agagacaggcacttggaaggcagaggggttggggtaggagctttatgctgaacagt7ttggccaaacatacatac

gtaacaggttacaggaggagctatgaatattaatggaggtggtccttacacatgcatattgaacaaacatgcatg

taacatgttctctttggggtggagacttaacatttaattgtattacttcaaatacatttaaatgtattacttcaa

acctacacttcaaaaggtcttttcaggacgtgaatgcatacaagtgcacaatccctgtacactggccagaaccgg

tccatggtcggtcttcttatcatgaaaaagttcctgaaatcagcccagtgaaagctgtagttctggctggtgcaa

caggggttcagctggtcagcatctgtgaactgattaagttgtaattgttttaatattgcttatctcaagccagtg

cttgtttagcctctagaggaaaagaaaacctttgtggcagttagaccatagtttatttcttaagtgtaggagtgt

gtgacttaggtcctttttataatttgatgtcttattgctacaaagagtctgttctgtccgccttatgatttctat

tttaaacattaatgctagtcagctgttgagtctaaattccaaaatggagggggtagacttcccttccggctgtag

ctagaaactcagctttaaggtttttctggg8gtctgcttggccaaggaggtccattcagtcagtgaggggcttag

gattttatttttagtttacaccaccttacaggttcctccttaacaccctttgatgtcagagacagccaattctcc

agcactgtggctaaggaggcttcgttagtagttaaaagcacacacataaccctacccaacggatccctctcttct

cttaaccaagagggcgcaccactgccctactcaacctccccacaaataaggacgagacacgggaagtgttaaaag

caagtggtgagtataaaatcctcggaattttctctttgagcaactaactaggtctgttactgaagccctctgcga

gcttggatgctggacgagggagagggtgaggccaccaggcaa9tgagcgccctcggcggccgcgtgatcccgggg

gtggggcccatttctgagttggggccagctccccacccc10caag11aggccccacattccgggccagcagcccag

aaagtccctccccgcaggcggagacagccccaagaagtcgacgccccggtcccgccgcccggccactacccagag

ggctgccgccgcctctccaagttcttgtggcccccgcggtgcggagtatggggcgctgatggccatggagggcta

ctggcgcttcctggcgctgctggggtcggcactgctcgtcggcttcctgtcggtgatcttcgccctcgtctgggt

cctccactaccgagaggggcttggctgggatgggagcgcactagagtttaactggcacccagtgctcatggtcac

cggcttcgtcttcatccagggcatcggtactggcacc 
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CYBRD1 coding regions 

[NM_024843 (GenAtlas)] 

 

Exon 1  
gccaccaggcaatgagcgccctcggcggccgcgtgatcccgggggtggggcccatttctgagttggggccagctc

cccacccccaagaggccccacattccgggccagcagcccagaaagtccctccccgcaggcggagacagccccaag

aagtcgacgccccggtcccgccgcccggccACTACCCAGAGGGCTGCCGCCGCCTCTCCAAGTTCTTGTGGCCCC

CGCGGTGCGGAGTATGGGGCGCTGATGGCCATGGAGGGCTACTGGCGCTTCCTGGCGCTGCTGGGGTCGGCACTG

CTCGTCGGCTTCCTGTCGGTGATCTTCGCCCTCGTCTGGGTCCTCCACTACCGAGAGGGGCTTGGCTGGGATGGG

AGCGCACTAGAGTTTAACTGGCACCCAGTGCTCATGGTCACCGGCTTCGTCTTCATCCAGGGCATCGgtactggc

acctcctgggggggtgcggggaggaaagcggggagaacggcgggggcagagggtcctccgtgaagccccttccag

ctgaggaagtgctggaggatcgcggggcccggaggagtgcggtgaggagcgcgcgggaagccaagtcggctgggc

gggagggaggctggctggctct 

 

Exon 2 
tcctccaccgtcccctagagggagccactgagaggcaggggtaacatggggaagaggggagaagcaaaagccaag

ggaaaaaggtttcaaaaagggagtgtccagtgtgtcaaactgttcattttgtgttgtttaaaaaacaaaacaaaa

cacattctgtgtcctttcgtctttccctagCCATCATCGTCTACAGACTGCCGTGGACCTGGAAATGCAGCAAGC

TCCTGATGAAATCCATCCATGCAGGGTTAAATGCAGTTGCTGCCATTCTTGCAATTATCTCTGTGGTGGCCGTGT

TTGAGAACCACAATGTTAACAATATAGCCAATATGTACAGTCTGCACAGCTGGGTTGGACTGATAGCTGTCATAT

GCTATTTGTTACAGgtcagtat12ttcagtgtatttacaagcaagttataaaaacaattcagagactgtaaatgtt

ttcttttctttttttttttttttttttttgagacagagtctcgcttagccacccaggctggagtgcagtgctgcg

atcttggctcactgcaaccactgtctccagggttcaagtgattct 

 

Exon 3 
atgagaaggtgataaaaggggttacattaggtagtggaactggagcgaggaaacttcattttctaccctttggtt

ctatatgaaaggttttgtcatattacacatattgctttttaaataatttaaaattagtttagaacttaaaattaa

atgataacctttgcactttttggtgtttagCTTCTTTCAGGTTTTTCAGTCTTTCTGCTTCCATGGGCTCCGCTT

TCTCTCCGAGCATTTCTCATGCCCATACATGTTTATTCTGGAATTGTCATCTTTGGAACAGTGATTGCAACAGCA

CTTATGGGATTGACAGAGAAACTGATTTTTTCCCTgtaagttgcatagtcttcttaattgtaatacttaagccac

aaaatgttaaatacttgttcactgggaaaatgtaataaaaatataacaaaattttttagatattaaaattaaaaa

atattttaaagaatttgttatatcatataggtaatatgatattactaaaagtttagaaggaccaa 
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Exon 4  
tcaatttcattatatattcccgagtgaattgtagcataatttatatttctccttaatagcaagctttgagagttt

acattgaaactgtactagtgtgcattttgagcagataaattcaagactgttttgcatgttgctgtatcatcctgt

ttgtaattggatacatctcttatttcatagGAGAGATCCTGCATACAGTACATTCCCGCCAGAAGGTGTTTTCGT

AAATACGCTTGGCCTTCTGATCCTGGTGTTCGGGGCCCTCATTTTTTGGATAGTCACCAGACCGCAATGGAAACG

TCCTAAGGAGCCAAATTCTACCATTCTTCATCCAAATGGAGGCACTGAACAGGGAGCAAGAGGTTCCATGCCAGC

CTACTCTGGCAACAACATGGACAAATCAGATTCAGAGTTAAACAG13TGAAGTAGCAGCAAGGAAAAGAAACTTAG

CTCTGGATGAGGCTGGGCAGAGATCTACCATGTAAaatgttgtagagatagagccatataacgtcacgtttcaaa

actagctctacagttttgcttctcctattagccatatgataattgggctatgtagtatcaatatttactttaatc

acaaaggatggtttcttgaaataatttgtattgattgaggcctatgaactgacctgaattggaaaggatgtgatt 

 
CYBRD1 Key: 

 

Promoter Region Coding Regions 

Fragment 1 (BP1) Fragment 6 (BP6) Fragment 1 (Cy1) Fragment 4A (Cy4A) 

Fragment 2 (BP2) Fragment 7 (BP7) Fragment 2 (Cy2) Fragment 4B (Cy4B) 

Fragment 3 (BP3) Fragment 8 (BP8) Fagment 3 (Cy3)  

Fragment 4 (BP4) Fragment 9 (BP9)   

Fragment 5 (BP5) Fragment 10 (BP10)   

    

    

Variants: 1 = 5’UTR-1844C→G, 2 = 5’UTR-1834G→A, 3 = 5’UTR-1813C→T,  

4 = G(T)8G(T)6G(T)nG(T)9 repeat, 5 = 5’UTR-1459T→C, 6 = 5’UTR-1452T→C,  

7 = 5’UTR-1272T→C, 8 = 5’UTR-624G→A, 9 = 5’UTR-238A→G, 10 = 5’UTR-167C→G, 11 

= 5’UTR-163G→A, 12 = IVS2+8C→T, 13 = S266N 
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HJV promoter sequence 

[ENS00000168509 (Ensembl)] 

 
agaagagtgctatgagggcctctagactctgtattaaaatagagccaactggtaaagatggcttagtgattgtgt

tggttattactgagtgtcaatttgattggattgaaggatacaaagtattgatcctgggtgtgtctgtgagggtgt

tgccaaaagaaattaacatttgagtcagtgggctgggaaaggcagatccacccttaatctgggtgagcacaatct

aattcactgccagcacagctagaataaaaagcaggcagaaaaatatgaaaggagagactggcc1tagcctcccag

cctacatatttctcccatgctggatgcttcctgcccttgaacatcagactccaagttcttcaattttgagactga

gactggctctccttgcccctcaagcttgcagacagcctactgtgggaccctgtgatcgtgtaagttaatacttaa

taaattcccctttatttatatatctacctatatagatatccatatctatatagatattaataaatctagagagac

agaaagcagactggtgatggccagtctagatggctagatagatagacatggatatagatatagatctctatatag

atagaggtagatacagatatagatatatgccctattagttctgttcctctagagaaccctaatacagtgaccgta 

             gaccgta 

tttggaatcggtcctt 

tttggaatcggt 

ctgttaatttcacttggcaagtactaaaagatgatgatctcagatatacctatggctgcaaaaacatgacatggc

taaatcccttggttgcagtatctcttttcttttttaaggggggtgggggggcgggtctcactgttgcccaggctg

gagtgcaatggcgttatcatagctcactgcagcctcaaactcctgcgctcaagtgaccctcctgcctcagctccc

aaagtgctgagattttgcaatatttatggtcacaagattatgttattccataaaagtatctttctgaggctaggc

atgttggttcacacttgtaatcccagcactctgagaggctgagatggaaggattcattgaggcaaggagttcaag

accagcctggtcaacatagtgagacctcatctcggaaggaaggaaggaaggagggagggagga2agggagggagt

gaaggaaggaaggaaggaagg4aag5gaaggaaggaaggaaggaaggaaggaagg3aaaagtatatttttgaatct

ttttctatttctccaactctttctttagaagaattctatttccattctttcttcacctctttgcctttgttagcc

ttctctccaagcaaatcgggagcctttattttttgtgtattcatgagggagaggaagatgaattgctgtacaaac

taaagtaatgaaaatggagtaggtaggaggatagacagctgcaaggatctgagctggatagactgaacaaaccct

catcctaagcaactcacagctcagatttcttctctggacagctggcttttttcgtccttctgaaatactctgcaa

agataggagaggggctatgaactacctctgctatggatcttattcaaagtcagctacctcctagatactatctgt

agaacctaaatgtaatattcagcatagcagggatgaacatggtaaatgaaaggtatccaattgcccactgtaatt

tttaaaggccaggagctcaacattattgaaaatgctggagggctgcctggagtaggcagtgaccacagagtcaca

caagctggaattggatatccaacttgtctgtcatatttctctcctccctccctgacttggcactcaatactccat

attctttctaatcctctaaccctccccactcccccaactcccacaccctacccccaccaacgttcctggaatttt

ggacttagctatttttaaaaccgtcaactcagtagccacctccctccctgctcagctgtccagtactctggccag

ccatatactcccccttccccccataccaaaccttctctggttccctgacctcagtgagacagcagccggcctggg

gacctgggggagacacggaggaccccctggctggagctgacccacagagtagggaatcatggctggagaattgga

tagcagagtaatgtttgacctctggaaacagtaagtcaaaatgaaattgcaattcctttaa 
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HJV coding regions 

[ENS000001698509 (Ensembl)] 
 

Exon 1 
taaaggtatccaattgcccactgtaatttttaaaggccaggagctcaacattattgaaaATGCTGGAGGGCTGCCTGGAGT

AGGCAGTGACCACAGAGTCACACAAGCTGGAATTGGATATCCAACTTGTCTGTCATATTTCTCTCCTCCCTCCCT

GACTTGGCACTCAATACTCCATATTCTTTCTAATCCTCTAACCCTCCCCACTCCCCCAACTCCCACACCCTACCC

CCACCAACGTTCCTGGAATTTTGGACTTAGCTATTTTTAAAACCGTCAACTCAGTAGCCACCTCCCTCCCTGCTC

AGCTGTCCAGTACTCTGGCCAGCCATATACTCCCCCTTCCCCCCATACCAAACCTTCTCTGGTTCCCTGACCTCA

GTGAGACAGCAGCCGGCCTGGGGACCTGGGGGAGACACGGAGGACCCCCTGGCTGGAGCTGACCCACAGAGTAGG

GAATCATGGCTGGAGAATTGGATAGCAGAGTAATGTTTGACCTCTGGAAACAgtaagtcaaaatgaaattgcaat

tcctttaataagcttttatattgaagttagacttttataaaattacaaacacctacttggatgtctctcgtccaa

atgctgggatctctccctaccaaggtgccccaatctccatttctctttctgtcttatttctttctggcctctggc

ctctagctttttgaagtttaattctctgtctctcctctggcagtcttagccctctctttaccttattacctcaag 

 

Exon 2 
ggcttaactgccacacttatagtttgaggaactccaatctccccaaattccagtctgttcatccttttcttgatc

tccccagattcactccacattatccttaccaatcttcaattcttctctctctccatgtccagccaaatttctttt

ttcagTCACTTACAGGGCTTCCGGTCAAAATTCACTAGGTAGGAGGGTCATCAGCTGGGAAGAACCGGCGCCTGG

GAAACCTGGCTGGATAGGTATGGGGGAGCCAGGCCAGTCCCCTAGTCCCAGGTCCTCCCATGGCAGTCCCCCAAC

TCTAAGCACTCTCACTCTCCTGCTGCTCCTCTGTGGACATGgtaaggaagggccagggaagggtttggggaaatc

tagagggtaggctgctatgtaggggtgggcatgtgagcctgaatgagtgaggagagataggcgctgagagtcccg 

 

Exon 3 
agatgtggcaggcttacacacttttagtaagacagccgagagaactagggactagggggttgggggctggggaag

gcccttagttaggttttaggaaggctggaaacccctgatgagatttggaagagttatgagcaaactacactccga

tagagcagaggtctgaggaccgtctcacaatcctctcccttctgtctttagCTCATTCTCAATGCAAGATCCTCC

GCTGCAATGCTGAGTACGTATCGTCCACTCTGAGCCTTAGAGGTGGGGGTTCATCAGGAGCACTTCGAGGAGGAG

GAGGAGGAGGCCGGGGTGGAGGGGTGGGCTCTGGCGGCCTCTGTCGAGCCCTCCGCTCCTATGCGCTCTGCACTC

GGCGCACCGCCCGCACCTGCCGCGGGGACCTCGCCTTCC 

                       GACCTGATGATCCAGCACAA 

ATTCGGCGGTACATGGCATCGAAGACCTGATGATCCAGCACAACTGCTCCCGCCAGGGCCCTACAGCCC 

CTCCCCCGCCCCGGGGCCCCGCCCTTCCAGGCGCGGGCTCCGGCCTCCCTGCCCCGGACCCTTGTGACT 

                                                     CCGGACCCTTGTGACT 

ATGAAGGCCGGTTTTCCCGGCTGCATGGTCGTCCCCCGGGGTTCTTGCATTGCGCTTCCTTCGGGGACC 

ATGA 

CCCATGTGCGCAGCTTCCACCATCACTTTCACACATGCCGTGTCCAAGGAGCTTGGCCTCTACTGGATAATGACT

TCCTCTTTGTCCAAGCCACCAGCTCCCCCATGGCGTTGGGGGCCAACGCTACCGCCACCCGGAAGgtcaggcact

caatcttccttccgatccacctcatgagattcttccacgggcaccattcctccccatccccactattcaacagca 
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Exon 4 
tttccctctcctaggaagttgccacgattaagtagagagggggttaagtagggatgaggtaatactggaacataa

ataggagaagggatcaaggattgagggccatagtagtcctgcatctctacttggatcagatctctaactatgtat

gaggtctgattggggggaagatgcactgaacccaaaatgaactgttttccctcttgtcctcacagCTCACCATCA

TATTTAAGAACATGCAGGAATGCATTGATCAGAAGGTGTATCAGGCTGAGGTGGATAATCTTCCTGTAGCCTTTG

AAGATGGTTCTATCAATGGAGGTGACCGACCTGGGGGATCCAGTTTGTCGATTCAAACTGCTAACCCTGGGAACC

ATGTGGAGATCCAAGCTGCCTACATTGGCACAACTATAATCATTCGGCAGACAGCTGGGCAGCTCTCCTTCTCCA

TCAAGGTAGCAGAGGATGTGGCCATGGCCTTCTCAGCTGAACAGGACCTGCAGCTCTGTGTTGGGGGGTGCCCTC

CAAGTCAGCGACTCTCTCGATCAGAGCGCAATCGTCGGGGAGCTATAACCATTGATACTGCCAGACGGCTGTGCA

AGGAAGGGCTTCCAGTGGAAGATGCTTACTTCCATTCCTGTGTCTTTGATGTTTTAATTTCTGGTGATCCCAACT

TTACCGTGGCAGCTCAGGCAGCACTGGAGGATGCCCGAGCCTTCCTGCCAGACTTAGAGAAGCTGCATCTCTTCC

CCTCAGATGCTGGGGTTCCTCTTTCCTCAGCAACCCTCTTAGCTCCACTCCTTTCTGGGCTCTTTGTTCTGTGGC

TTTGCATTCAGTAAGGGGACCATCAGTCCCATTACTAGTTTGGAAATGATTTGGAGATACAGATTGGCATAGAAG

AATGTAAAGAATCATTAAAGGAAGCAGGGCCTAGGAGACACGTGAAACAATGACATTATCCAGAGT 

                                                            CTGCATTCC 

CAGATGAGGCTGCAGTCCAGGGTTGAAATTATCACAGAATAAGGATTCTGGGCAAGGTTACTGCATTCC 

GGATCTCTGTG 

GGATCTCTGTGGGGCTCTTCACCAATTTTTCCAGCCTCATTTATAGTAAACAAATTGTTCTAATCCATTTACTGC

AGATTTCACCCTTATAAGTTTAGAGGTCATGAAGGTTTTAATGATCAGTAAAGATTTAAGGGTTGAGATTTTTAA

GAGGCAAGAGCTGAAAGCAGAAGACATGATCATTAGCCATAAGAAACTCAAAGGAGG 

                                     TGTGTGTGTAAGGTATGTTCTGC 

AAGACATAATTAGGGAAAGAAGTCTATTTGATGAATATGTGTGTGTAAGGTATGTTCTGCTTTCTTGATTCAAAA

ATGAAGCAGGCATTGTCTAGCTCTTAGGTGAAGGGAGTCTCTGCTTTTGAAGAATGGCACAGGTAGGACAGAAGT

ATCATCCCTACCCCCTAACTAATCTGTTATTAAAGCTACAAATTCTTCACACCATCctctgttgcctatgttgaa

tctctttacagatgcttgaaatggagtaaatgcaatgtgttcactccactgaaagagggctcggaagtatcagat

actgttgctatctcagggagtttacaggctattggagagacaaaaccaattcacatgaaagagtgatgagtgtgt 

 

HJV Key: 

Promoter Region Coding Regions 

Fragment 1 (JP1) Fragment 6 (JP6) Fragment 1 (J1) Fragment 4B (J4B) 

Fragment 2 (JP2) Fragment 7 (JP7) Fragment 2 (J2) Fragment 4C (J4C) 

Fragment 3 (JP3) Fragment 8 (JP8) Fragment 3A (J3A) Fragment 4D (J4D) 

Fragment 4 (JP4) Fragment 9 (JP9) Fragment 3B (J3B) Fragment 4E (J4E) 

Fragment 5 (JP5) Fragment 10 (JP10) Fragment 3C (J3C) Fragment 4F (J4F) 

  Fragment 3D (J3D) Fragment 4 G (J4G) 

  Fragment 4A (J4A) Fragment 4H (J4H) 

Variants: 1 = 5’UTR-1406C→A, 2 = 5’UTR-542A→G, 3 = (AAGG) repeat,  

4 = 5’UTR-534G→T, 5 = 5’UTR-530G→T  
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APPENDIX 3: GENOTYPES OF TWO INDIAN PROBANDS AND 

EXTENDED FAMILY MEMBERS. 
 

The genotypes of the two Indian probands and extended family members are provided in the 

tables below. The genotypes are denoted WT when the individual presented with the 

homozygous wild type genotype, HET when they were heterozygous and HOM when they 

presented with the homozygous variant genotype. The genotypes of some of the individuals 

are not indicated. Genotypes were omitted for three possible reasons: either 1) amplification 

of the relevant DNA fragment was unsuccessful and mutation analysis was incomplete, 2) 

DNA fragments were successfully amplified and HEX-SSCP analysis was performed but the 

genotype of the individual was unclear or 3) results from HEX-SSCP, RFLP or semi-

automated DNA sequencing analysis were ambiguous and genotypes were not consistent with 

the haplotypes present in the family. The genotypes of these individuals will be clarified 

employing semi-automated DNA sequencing analysis. The reason for the ambiguity (option 

1, 2 or 3) is colour coded and the key is given at the end of this appendix.  

 

HMOX1 gene 

Variants
Sample 5'UTR-495A/T IVS2+4T/C IVS2 -19C/T

Proband 1 HET HET WT
Proband 2 HET HET HET

II:2 WT HET WT
II:4 HET WT WT
II:5 HET WT WT
II:6 HET WT WT
II:7 HET WT WT
III:1 HOM WT WT
III:2 - WT WT
III:3 HOM WT WT
III:4 WT WT WT
III:5 WT WT WT
III:7 - HET HET
III:8 HET HET HET
III:9 HET - WT
III:10 HET HET HET
III:12 - HET HET
III:14 HOM WT WT
III:16 HOM WT WT
III:17 HOM WT WT
III:19 HOM WT WT
III:20 HOM WT WT
III:21 HOM WT WT
III:22 WT WT WT
III:23 WT WT WT
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HFE gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variants
Sample 5'UTR-1206C/G 5'UTR-840T/G 5'UTR-467G/C H63D

Proband 1 HET HET HET WT
Proband 2 HET HET HET WT

II:2 WT HET WT -
II:4 WT HET WT WT
II:5 HET WT HET WT
II:6 HOM WT HOM -
II:7 HET WT HET WT
III:1 HET WT HET HET
III:2 HET WT HET HET
III:3 WT - WT WT
III:4 WT HET WT WT
III:5 WT WT WT WT
III:7 HET WT HET WT
III:8 HET WT HET WT
III:9 HET WT HET WT
III:10 WT - WT WT
III:12 HET - WT WT
III:14 WT WT WT WT
III:16 WT WT WT WT
III:17 WT WT WT WT
III:19 HOM WT HOM HET
III:20 HET WT HET WT
III:21 WT - WT HET
III:22 WT WT WT WT
III:23 WT WT WT WT
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HAMP gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variant
Sample 5'UTR-335G/T

Proband 1 HOM
Proband 2 HOM

II:2 HET
II:4 HET
II:5 HET
II:6 HET
II:7 WT
III:1 HET
III:2 HET
III:3 HET
III:4 WT
III:5 HET
III:7 HET
III:8 HET
III:9 HET

III:10 HET
III:12 HET
III:14 WT
III:16 WT
III:17 HET
III:19 WT
III:20 HET
III:21 WT
III:22 WT
III:23 HET
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SLC40A1 gene 

* The genotype of each individual is indicated with the number of (CGG) trinucleotide repeats presented. 

 

Variants
Sample 5'UTR-1355G/C 5'UTR-750G/A 5'UTR-593 C/T 5'UTR-501 T/C (CGG) repeat * V221V

Proband 1 HET HOM HOM HOM 8 HET
Proband 2 HET HET HOM HOM 8 WT

II:2 HET HOM HOM HOM 8 HET
II:4 HOM HET HOM HOM 8 HET
II:5 HET HET HOM HOM 8 WT
II:6 HET HOM HOM HOM 8 HET
II:7 HOM HET HOM HOM 8 HET
III:1 HOM HET HET HOM 7/8 HET
III:2 WT HET - - 7/8 HET
III:3 HET HET HET HOM 7/8 HET
III:4 HOM HOM HOM HOM 8 HET
III:5 HET HOM HOM HOM 8 HET
III:7 HET HET HET HOM 7/8 WT
III:8 HOM HET HOM HOM 7/8 HET
III:9 HET WT HET HOM 7/8 HET
III:10 HET HET HET HOM 7/8 WT
III:12 HOM HET HET HOM 7/8 HET
III:14 HET HET HOM HOM 8 WT
III:16 HOM HET HOM HOM 8 HET
III:17 HET HET HOM HOM 8 HET
III:19 HET HOM HET HOM 7/8 WT
III:20 - - HOM HOM 8 WT
III:21 HET WT HET HOM 7/8 HET
III:22 HET WT HET HOM 7/8 HET
III:23 HOM HET HOM HOM 7/8 WT
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CYBRD1 gene (Cont.) 

 

Variants 
Sample 5'UTR-624G/A 5'UTR-238A/G 5'UTR-167C/G 5'UTR-163G/A S266N 

Proband 1 HET HET HET HET HET 
Proband 2 HET HET HET HET HET 

II:2 HET HET HET HET HET  
II:4 HET WT WT WT HET 
II:5 HET HET HET HET HET 
II:6 HET WT WT WT HET 
II:7 HET WT WT WT HET 
III:1 HET HET HET HET WT 
III:2 WT HOM HOM HOM HET 
III:3 HET HET HET HET WT 
III:4 - WT WT WT - 
III:5 HET - WT WT - 
III:7 - HOM HOM HET - 
III:8 - HOM HOM HET - 
III:9 HET HET HET WT HET 

III:10 - HET HOM HET - 
III:12 HOM WT WT WT - 
III:14 HET HET HET HET HET 
III:16 HET WT WT WT HET 
III:17 HET HET HET HET HET 
III:19 - WT WT WT - 
III:20 WT HET HET WT HOM 
III:21 HET HET HET HET HET 
III:22 HET HET HET HET HET 
III:23 HET HET - - HOM 
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HJV gene 
 

* The genotype of each individual is indicated with the number of (AAGG) tetranucleotide repeats presented. 

 

Key to reason for omission of genotypes: 
 

 

 

 

Variants
Sample 5'UTR-1406C/A 5'UTR-542A/G (AAGG) repeat * 5'UTR-534G/T 5'UTR-530G/T

Proband 1 HET HET 12 HET HET
Proband 2 HET HET 12 HET HET

II:2 HET HET 11 HET WT
II:4 HET HET 11/12 HET WT
II:5 HET HET 12 HET WT
II:6 HET - 11/12 HET HET
II:7 HET HET 12 - HET
III:1 HET WT 12 WT -
III:2 HET WT 12 WT HET
III:3 - HOM 11/12 HET HET
III:4 HOM HOM 11/12 HET HET
III:5 HOM - - - -
III:7 HET HOM 12/13 HET HET
III:8 HET HOM 12/13 HET HET
III:9 WT HET 12/13 HET HET
III:10 WT HET 12/13 HET HET
III:12 HET HOM 12/13 HET HET
III:14 HET WT 11 WT WT
III:16 HET WT 11 HET WT
III:17 WT - 12 WT HET
III:19 HET HET 11/12 WT HET
III:20 - - 11 HET WT
III:21 HET HET 11/12 - WT
III:22 HET HET 11/12 - WT
III:23 HET WT 12 HET HET

 

   (1) Unsuccessful amplification 

   (2) HEX-SSCP analysis was performed but the results were unclear

   (3) Inconsistent genotype
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APPENDIX 4: ABSTRACT OF WORK PRESENTED AT 2006 SASHG 

CONGRESS. 

 
Oral presentation: 12th biennial Congress of the South African Society of Human Genetics 

(SASHG) congress, Golden Gate – March 2007. 

 
IRONING OUT HAEMOCHROMATOSIS: A STUDY OF AN INDIAN FAMILY 

 
MA Hallendorff1, RJ Hift2, MG Zaahl1 

1Department of Genetics, University of Stellenbosch, South Africa 
2Department of Medicine, University of Cape Town, South Africa 

 
Hereditary haemochromatosis (HH) is a disease characterised by iron overload. Excess iron 

can cause damage to various tissues and organs if the disease goes untreated. Most cases of 

HH in Caucasians of European descent are caused by mutations in the haemochromatosis 

(HFE) gene. Various other genes have also been found to play a role in other forms of 

haemochromatosis. The disease demonstrates genetic heterogeneity. This heterogeneity has 

hinted at the possibility of modifier genes altering the disease phenotype. In this study an 

Indian family with classic clinical symptoms of HFE haemochromatosis, but no HFE 

mutations, was investigated. The two probands, a brother and sister, both have typical 

hereditary haemochromatosis but do not have the common C282Y or H63D mutations in the 

HFE gene. The probands also do not have any of the less common mutations in the HFE 

gene. Seven genes involved in iron metabolism were screened (promoter and coding region). 

These genes are the genes that encode cytochrome b reductase 1 (CYBRD1), heme oxygenase 

1 (HMOX1), hepcidin antimicrobial peptide (HAMP), hemojuvelin (HJV), ferroportin 1 

(SLC40A1), ceruloplasmin (CP), and the high iron gene HFE. Mutation analysis of these 

genes was performed using polymerase chain reaction (PCR), heteroduplex single strand 

conformational polymorphism (HEX-SSCP) detection and semi-automated DNA sequencing 

techniques. These procedures were applied to identify any known and/or novel variations in 

the genes that may be associated with a predisposition to hereditary haemochromatosis in 

non-Caucasian individuals. Various mobility shifts were identified by HEX-SSCP analysis. 

Variants were confirmed in the HJV, HAMP, HMOX1, SLC40A1, and HFE promoter regions 

using bi-directional semi-automated DNA sequencing. Variants were also identified in the 

coding regions of the HMOX1, SLC40A1, CYBRD1 and HJV genes. The extended family of 
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the probands will be screened for the various variants found to define haplotypes that may 

contribute to the pathogenesis of haemochromatosis in this family. Our findings could 

contribute to elucidating the cause of non-HFE related iron-overload in non-Caucasian 

populations. 
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