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Abstract

Children have the ability to learn new words and corresponding visual objects from

only a few word-object example pairs. This raises the question of whether we can find

multimodal speech-vision systems which can learn as rapidly from only a few example

pairs. Imagine an agent like a household robot is shown an image along with a spoken

word describing the object in the image, e.g. teddy, monkey and dog. After observing a

single paired example per class, it is shown a new set of unseen pictures, and asked to

pick the “teddy”. This problem is referred to as multimodal one-shot matching. If more

than one paired speech-image example is given per concept type, it is called multimodal

few-shot matching. In both cases, the set of initial paired examples is referred to as the

support set.

This thesis makes two core contributions. Firstly, we compare unsupervised learning to

transfer learning for an indirect multimodal few-shot matching approach on a dataset of

paired isolated spoken and visual digits. Transfer learning (which was used in a previous

study) involves training models on labelled background data not containing any of the

few-shot classes; it is conceivable that children use previously gained knowledge to learn

new concepts. It is also conceivable that prior to seeing the few-shot pairs, a household

robot or child would be exposed to unlabelled in-domain data from its environment;

we therefore consider unsupervised learning for this problem which we are also the

first to do. In unsupervised learning, models are trained on unlabelled in-domain data.

From all our experiments, we find that transfer learning outperforms unsupervised learning.

Indirect models (which were used in our first contribution) consist of two separate

unimodal networks with the support set acting as a pivot between the modalities. In

contrast, a direct model would learn a single multimodal space in which representations

from the two modalities can be directly compared. We propose two new direct multimodal

networks: a multimodal triplet network (MTriplet) which combines two triplet losses, and

a multimodal correspondence autoencoder (MCAE) which combines two correspondence

autoencoders (CAEs). Both these models require paired speech-image examples for training.

Since the support set is not sufficient for this purpose, we propose a new pair mining

approach in which pairs are constructed automatically from unlabelled in-domain data using

iii
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Abstract

the support set as a pivot. This pair mining approach combines unsupervised and transfer

learning, since we use transfer learned unimodal classifiers to extract representations for

the unlabelled in-domain data. We show that these direct models consistently outperform

the indirect models, with the MTriplet as the top performer. These direct few-shot models

show potential towards finding systems that learn from little labelled data while being

capable of rapidly connecting data from different modalities.
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Uittreksel

Kinders het die vermoë om nuwe woorde en ooreenstemmende visuele voorwerpe te

leer van slegs ‘n paar oudiovisuele voorbeeldpare. Dit bring die vraag na vore of ons

veelvuldige-modaliteit oudiovisuele sisteme kan kry wat so vinnig van ‘n paar voorbeeldpare

kan leer. Stel jou voor dat daar vir ‘n agent soos ‘n huishoudelike robot, ‘n beeld met ‘n

gesproke woord wat die voorwerp in die beeld beskryf, gegee word, b.v. teddiebeer, apie en

hond. Nadat ‘n enkele voorbeeld paar per klas waargeneem is, word die agent gevra om

die “teddiebeer” in ‘n nuwe stel beelde te kies. Daar word na die probleem verwys as

veelvuldige-modaliteit eenskoot-passing. Indien meer as een oudiovisuele voorbeeld paar

gegee is vir elke konsep tipe, word dit veelvuldige-modaliteit meerskoot-passing genoem.

In beide gevalle verwys ons na die stel oorspronklike voorbeeldpare as die ondersteuningsstel.

Hierdie proefskrif maak twee kern bydraes. Eerstens, vergelyk ons sonder-toesig-leer

teenoor oordragsleer vir ‘n indirekte veelvuldige-modaliteit meerskoort-passing benadering

op ‘n datastel van ooreenstemmende beelde en gëısoleerde gesproke syfers. Oordragsleer

(wat in ‘n vorige studie gebruik is) behels die afrig van modelle op agtergrond data wat

nie enige van die meerskoot klasse bevat nie; dit word gemotiveer aangesien kinders

kennis gebruik wat hulle voorheen opgedoen het om nuwe konsepte te leer. Voor die

huishoudelike robot of kind die meerskoot pare sien, is dit ook moontlik dat hy/sy

vanaf die omgewing blootgestel word aan binne-domein data sonder annotasies. Ons

oorweeg daarom leer-sonder-toesig vir die probleem en is die eerstes om dit te doen.

In leer-sonder-toesig, word modelle afgerig op binne-domein data sonder annotasies.

Gebasseer op al ons eksperimente, vind ons dat oordragsleer beter as leer-sonder-toesig

presteer.

Indirekte modelle (wat in ons eerste bydrae gebruik is) bestaan uit twee aparte

enkelmodaliteit netwerke met die ondersteuningsstel wat dien as ‘n spilpunt tussen die

modaliteite. In plaas hiervan leer ‘n direkte model ‘n enkele veelvuldige-modaliteit-ruimte

waarin voorstellings vanaf twee modaliteite direk vergelyk kan word. Ons stel twee

nuwe direkte modelle voor: ‘n veelvuldige-modaliteit drieling-model (VMDrieling) wat

twee drieling koste-funksies kombineer, en ‘n veelvuldige-modaliteit korrespondensie-outo-

enkodeerder (VMOE) wat twee outo-enkodeerders (OEs) kombineer. Al die modelle vereis

v
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Uittreksel

gepaarde oudiovisuele voorbeelde tydens afrigting. Aangesien die ondersteuningsstel nie

voldoende is hiervoor nie, stel ons ‘n nuwe ontginningsskema voor waarin pare automaties

opgestel word vanaf binne-domein data sonder annotasies, met die ondersteuningstel wat

as ‘n spilpunt gebruik word. Hierdie ontginningsskema kombineer oordragsleer en leer-

sonder-toesig aangesien ons enkelmodaliteit klassifiseerders wat afgerig is met oordragsleer

gebruik om voorstellings vir binne-domein data sonder annotasies, te verkry. Ons wys

dat hierdie direkte modelle konsekwent beter presteer as die indirekte modelle, met die

VMDrieling as die beste presteerder. Hierdie direkte modelle toon potensiaal om sisteme

te vind wat van min geannoteerde data leer terwyl dit terselfdertyd data vanaf verskillende

modaliteite aanmekaar kan verbind.
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Chapter 1

Introduction

In the past couple of years deep learning (DL) has led to substantial improvements in

speech and image recognition systems. However, since DL methods are typically very data

dependant, this causes the ripple effect of current audio and vision recognition systems

requiring large amounts of transcribed speech and labelled image data. Since transcribing

and labelling data is expensive and time-consuming [2], this data dependency has led

to numerous research studies into one-shot learning [3–9] to find machine learning (ML)

solutions that use less transcriptions and labels. One-shot learning is a problem formulation

in which a model needs to learn a new concept from only one labelled example. One-shot

learning can be extended to few-shot learning in which a model learns a new concept from

a few labelled examples of the concept instead of just one. For example, in the one-shot

setting, imagine a model is presented with spoken words and their corresponding word

labels, e.g “cake”, “cookie”, “milk” and “juice”. After hearing these words with their

corresponding labels only once, the model is presented with another instance of the word

“cake” from which it should identify the cake label.

Humans are able to learn new words and objects in a one-shot (once-off) manner [10].

For example, after a child hears a novel word once, the child can infer the likely meaning

of the word [11]. However, young children do not only have the ability to learn new words

and objects from a few examples [12–15], but they can also learn the relationship between

concepts in different modalities from only a few paired examples [13]. For example, imagine

a child does not know what the following concepts are: a flower, bird, dog or cat. In order

for the child to learn these new concepts, he/she is shown an image of a flower, a bird, a

dog and a cat. With each image the spoken word describing the object in the image is

uttered. Afterwards, when asking the child to identify the image corresponding to the

word “flower”, the child can identify the visual instance of the flower. Note that this

is different from the one-shot learning framework described above, in which each given

example is from a single modality and paired with a label. Instead, here, a given paired

example contains items from two modalities without any explicit labelling. Borovsky et al.

[11] theorised that humans use specific information present in the object to learn the word,

1
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and vice versa. For example, to learn the word “bird”, a child might use visual information

like that a bird has wings and a beak.

Using the manner in which humans learn as inspiration, Eloff et al. [1] extended

unimodal few-shot learning to multimodal few-shot learning. Formally, instead of observing

an item together with a class label as in unimodal one-shot learning, a multimodal one-shot

learning model observes a pair of items coming from different modalities but representing

the same concept. I.e. multimodal one-shot learning refers to the problem of learning new

concepts from only one cross-modal paired example per concept, where each pair consists

of a pair of items from different modalities but of the same concept. In the multimodal

few-shot learning scenario, a model learns a new concept from a few cross-modal pairs of

the concept. This thesis specifically considers multimodal one- and few-shot learning of

spoken words and images.

1.1 Motivation

As discussed above, from only a few paired examples, children are able to learn new

words using the visual objects corresponding to the word, and vice versa. They do so

without having access to a lexicon representing the pronunciation of an individual word

and without any transcribed speech data or labelled objects. We ask whether we can

develop ML algorithms that can learn as rapidly from multimodal pairs as children.

Our multimodal few-shot learning models do not have access to transcribed speech or

pronunciation dictionaries to learn acoustic phonetic units (like phonemes or even smaller

units than phonemes) and sub-word structures (like syllables). Rather, these models use

speech-image pairs to infer the class of a word and corresponding image. More specifically,

the models learn a new class from only a few speech-image pairs of the class. As a result,

these few-shot models could provide ML solutions to reduce the dependency of conventional

automatic speech recognition systems on large amounts of transcribed speech data. Such

large datasets of transcribed speech are expensive to collect and for many low-resource

languages such datasets are not available [16]. Additionally, some low-resource languages

do not have a written form [2]. In this case, it could be easier (and more affordable) to ask

a native speaker of this language to give a few image examples of a word than attempting

to find a written form to represent the speech data.

Practical multimodal engineering systems could also benefit from these few-shot models

since they can quickly learn what the representations in different modalities of a new class

look like. For example, consider being able to teach an agent like a household robot a new

class by just showing the agent a visual instance while uttering the word corresponding

to the visual example. Examples of systems where this new functionality could be used

include Amazon’s virtual artificial intelligence assistant Alexa and the Google Home

system.

2
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1.2 Methodology and Goals

In a multimodal speech-to-image matching task, a model should match unlabelled unseen

spoken word queries to their corresponding images in a matching set of unseen unlabelled

images. To do this, the model is only given a multimodal support set which contains a few

speech-image pairs for each of these unseen classes. The multimodal support set can be

thought of as our (small) training dataset and the matching set as our test data. The goal

of this thesis is to use multimodal few-shot learning models to produce representations for

spoken words and images to do this multimodal matching task using one of two approaches.

The first approach we consider is an indirect two-step approach consisting of two

unimodal comparisons (a speech-speech and an image-image comparison). For these

unimodal comparisons, we use separate speech and vision networks to measure similarity

within a modality. To do this, the speech networks should produce similar representations

for word instances of the same class and the vision networks should produce similar

representations for image instances of the same class. We unpack this indirect approach in

more detail in the first subsection below.

This is not an easy task since speech and image data contains a lot of information

besides the class information. For the speech models to capture a spoken word’s class,

it should filter out nuisance information that could alter the acoustic properties of the

word [17]. For example, the word “hat” and “cat” said by the same person might appear

more similar than the word “hat” said by two different people. This is because spoken

words contain nuisance information like speaker identity and dialect as well as channel

noise which leads to acoustic variation between word instances of the same class [17, 18].

Likewise, the vision networks should filter out nuisance information when attempting to

find similar representations for images of the same class. The angles and colour shades of

objects in images are often nuisance information that can result in images of the same

class appearing to be from different classes [4].

As our second approach, we therefore consider finding similar representations not just

within a modality, but also across modalities. We do so in an attempt to remove nuisance

information from the speech and image signals. This means we attempt to find similar

representations in a single multimodal space for spoken words and images of the same

class. By using these directly comparable speech and image representations, we can do

the multimodal speech-to-image matching task using a direct approach which consists of

one single direct comparison between speech queries and matching images, as outlined in

more detail in Chapter 1.2.2 below.

3
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1.2. Methodology and Goals

1.2.1 Indirect Multimodal Few-Shot Learning

Indirect multimodal few-shot learning models consist of two unimodal networks (a speech

network and a vision network) and performs the task using a multimodal support set. To

do the multimodal speech-to-image matching task, the speech network is used to compare

a spoken word query to each spoken word instance in the multimodal support set to find

the query’s closest word instance. The vision network is then used to compare the paired

image of the closest word instance to each image in the matching set. The closest image

is taken as the query’s matching image. The speech and vision networks perform these

unimodal comparisons by using a representation for each instance and calculating the

cosine distance between the representations. These representations should be defined or

learned in some way, and we consider a number of approaches.

The indirect approach was originally proposed by Eloff et al. [1]. We re-implement the

multimodal few-shot learning study of [1], from which we build a reliable and reproducible

experimental setup. Before implementing their proposed multimodal few-shot models, we

implement their baseline which uses unimodal comparisons on raw speech and image data.

We use dynamic time warping (DTW) on the mel-frequency cepstral coefficients (MFCCs)

of spoken words for the speech-speech comparisons. For the image-image comparisons, we

use cosine distance between image pixels.

For the indirect multimodal few-shot models, Eloff et al. [1] considered unimodal speech

and vision classifiers and Siamese models trained in a transfer learning setting. Transfer

learning is a method of training a model on a different but related dataset not containing

any of the classes seen at test time [19, 20]. This training set containing the instances

from different classes than the test classes, is referred to as background data. Unimodal

classifier and Siamese models are trained on labelled background data. We then use these

models to produce feature representations for the unlabelled instances of the few-shot

classes (in-domain data) encountered in the matching task at test time. The hope is that

by explicitly training models to find similar representations for background classes, it

would also produce similar representations for unseen unlabelled data classes. The use

of transfer learning can be motivated by humans using previously acquired knowledge to

learn new concepts [11]. This means that when attempting to teach a child new concepts

by showing the child pairs of spoken words and corresponding images of these concepts, it

is conceivable that the child uses knowledge gained from previously learning other concepts

to quickly learn these new concepts.

However, it is also plausible that before a child is shown new examples of visual objects

paired with corresponding spoken words, the child could be exposed to a large amount of

unlabelled speech and visual data from its environment. Similarly, a robotic agent could

observe its surroundings, capturing unlabelled speech and image data with its sensors.

Some of these unlabelled examples could correspond to the classes of the example pairs.

4
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From this, we propose new indirect multimodal few-shot learning models which consists of

unsupervised unimodal speech and vision networks trained on unlabelled in-domain data.

In other words, we use data that contains unlabelled instances of the few-shot classes seen

at test time. (However, the training instances do not occur exactly in the matching task

at test time.) The hope is that the unsupervised models can infer the class information

from the unlabelled data in order to find similar representations for each few-shot class.

For these unsupervised models, we use autoencoder-like network structures: the

autoencoder (AE) and the correspondence autoencoder (CAE). An AE attempts to

reproduce its input at its output through a bottleneck feature layer. Similarly, the CAE

tries to reproduce an example of the same type or class as the input [21]. Our CAE is

trained on within-modality pairs consisting of an input instance and a pair from the same

class as the input instance. For the unsupervised CAEs we mine within-modality pairs in

an unsupervised fashion by using cosine distance over image pixels to find image-image

pairs and DTW over the MFCCs of spoken words to find speech-speech pairs.

To compare unsupervised learning to transfer learning for the indirect multimodal

matching task, we also consider transfer learned variants of these unsupervised CAEs.

The transfer learned variants are trained on ground truth pairs from background labelled

data not containing any of the few-shot classes seen during testing. These models are new

models that have not been considered before.

From our experiments, we conclude that the transfer learned models consistently

outperform the unsupervised models. It is plausible that children use both previously

acquired knowledge and domain specific information from unlabelled data, to learn new

concepts. Therefore, we asked whether these two methodologies might be complementary:

transfer learning from background data could capture general properties within a particular

modality, while unsupervised learning on unlabelled in-domain data could provide a way to

tailor representations to a specific test setting. We considered indirect models that consists

of unimodal models that combine the unsupervised and transfer learning approaches to

find representations for the unlabelled instances in the indirect matching approach. These

combination models also set the groundwork for the direct multimodal few-shot learning

models in the next subsection.

1.2.2 Direct Multimodal Few-Shot Learning

Our direct multimodal few-shot learning models aim to learn a multimodal embedding space

from only the few speech-image pairs in the multimodal support set. This multimodal

embedding space aims to map spoken words and images of the same class to similar

representations in a single joint space. From these directly comparable speech and image

representations, we can do the multimodal speech-to-image matching task using a direct

matching approach. The direct approach consists of a single direct comparison to match

5
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speech queries directly to matching images instead of using two unimodal comparisons via

the support set as in the indirect approach.

We propose two new multimodal networks for the direct few-shot models: the multi-

modal correspondence autoencoder (MCAE) and the multimodal triplet network (MTriplet).

The MCAE combines two unimodal CAEs which are connected at their bottleneck rep-

resentation layers in order to find similar representations for cross-modal inputs of the

same class. The MTriplet combines two triplet hinge losses. A triplet hinge loss aims to

learn a relative distance metric by minimising the distance between inputs from the same

class and maximising the distance between inputs from different classes. Our MTriplet

aims to learn a relative distance metric between cross-modal inputs by minimising the

distance between cross-modal inputs from the same class while simultaneously maximising

the distance between cross-modal inputs from different classes.

Both the MCAE and MTriplet requires paired in-domain data from the speech and

vision modalities. For the multimodal few-shot learning setting, we are provided with the

speech-image pairs in the multimodal support set. Since this small set of speech-image

pairs would not be sufficient to train a multimodal network directly, we mine speech-image

pairs from the unlabelled in domain data. Mining is a process where we use the multimodal

support set as a pivot between the unlabelled data: we consider a pair in the multimodal

support set which we use to find an image from the unlabelled image dataset matching the

support set pair’s image instance and a word instance from the unlabelled speech dataset

matching the support set pair’s word instance. We then pair up this matching image and

word instances to construct one mined speech-image pair. To do the comparisons between

items in the support set and in the unlabelled data, we again require some way to do the

comparison. For this purpose, we use transfer learned speech and vision classifiers (the

best indirect multimodal few-shot model). As a result, these direct multimodal models

combine unsupervised and transfer learning to learn directly comparable representations

for spoken words and images from only the few example pairs in the multimodal support

set. We show that this new combined direct approach outperforms all the previous models

for multimodal few-shot matching.

1.3 Project Scope and Contributions

The basic goal of this study is to consider various multimodal few-shot learning models

to perform a speech-to-image matching task using either an indirect two-step matching

approach or a direct matching approach. To create a reliable and reproducible experimental

setup to test these models, we consider the study by Eloff et al. [1] which is the first

multimodal few-shot learning study and the only other study on this topic besides our

work. In Chapter 3 we re-implement their proposed models and test these models on the

indirect matching approach.
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Our first contribution is a comparison of using unsupervised learning on unlabelled

in-domain data vs. transfer learning on labelled background (out-of-domain) data to do

indirect multimodal few-shot matching. These unsupervised indirect few-shot models which

has not been considered before consists of unimodal unsupervised speech and vision AEs

and CAEs trained on unlabelled in-domain data. For the comparison, we also propose new

transfer learned variants of these unsupervised CAEs by training the unimodal speech and

vision CAEs on labelled background data. We use these unimodal speech and vision CAEs

to construct transfer learned indirect few-shot models which has never been considered

before.

In Chapter 4, we evaluate these newly proposed models on the indirect matching

approach and compare them to the indirect classifier and Siamese few-shot models of

[1]. From this comparison, we find that the transfer learned few-shot models consistently

outperform the pure unsupervised few-shot models. This leads to our second contribution

in which we combine unsupervised and transfer learning to construct new indirect few-shot

models. While the first combined attempt does not result in improvements, these indirect

combination models set the groundwork for the direct multimodal few-shot learning models.

The direct multimodal few-shot models in Chapter 5 are our biggest contribution, since

to our knowledge, this is the first direct multimodal few-shot learning study that combines

the unsupervised and transfer learning methodologies. For the direct few-shot models, we

use transfer learned speech and vision classifiers to automatically construct speech-image

training pairs from unlabelled in-domain data in a novel pair mining scheme. The direct

models outperform the indirect models on a multimodal five-shot speech-to-image matching

task. We attribute this to two reasons: (1) in the direct matching approach, the word and

image representations are matched using a single direct comparison instead of the two

unimodal comparisons in the indirect approach which introduced a compounding of errors,

and (2) by learning similar representations for cross-modal and within-modality inputs of

the same class, we find representations which retains more class information and filters

out more nuisance information. Overall, the MTriplet came out as our best multimodal

few-shot learning model.

1.4 Thesis Overview

Chapter 2: Background. The thesis starts with a background chapter which explains

neural network fundamentals and the datasets we use throughout the thesis. This chapter

also discusses background literature and theory which focusses on unimodal few-shot

learning. Note that each of the subsequent chapters contains an introductory section

covering literature relevant to the content covered in that chapter.

Chapter 3: Multimodal Few-Shot Learning using Transfer Learning. We

7
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extend unimodal few-shot learning to multimodal few-shot learning and devote the entire

chapter to fully investigate, re-implement and improve the multimodal few-shot learning

study done by Eloff et al. [1]. This study, which proposed using transfer learned indirect

multimodal few-shot models, forms the basis of our work.

Chapter 4: Unsupervised vs. Transfer Learning for Multimodal Few-

Shot Learning. After implementing the indirect few-shot models proposed by Eloff

et al. [1], we propose unsupervised indirect few-shot models and additional transfer learned

variants of these unsupervised models. We conclude this chapter by considering indirect

models which are combinations of unsupervised and transfer learning. This lays the

groundwork for our direct multimodal few-shot learning models discussed in Chapter 5.

Chapter 5: Direct Multimodal Few-Shot Learning. We combine unsupervised

and transfer learning to obtain direct multimodal few-shot learning models. The direct

models aim to find direct mappings between spoken words and corresponding images so

that we can use these models in a direct multimodal speech-to-image matching approach.

Chapter 6: Summary and Conclusions. This thesis is concluded with a summary

of what we did and all the conclusions we made throughout the thesis. In this chapter,

we also discuss possible future work which could build on the work in this thesis. We

specifically give recommendations in order to extend this work to be applicable in practical

settings.

1.5 Code and Publications

The comparison of unsupervised and transfer learning models of Chapter 4 was submitted

to and accepted at Interspeech 2020 in a paper entitled Unsupervised vs. transfer learning

for multimodal one-shot matching of speech and images. We release the corresponding

source code for the experiments in Chapter 3 and 4 at :

https://github.com/LeanneNortje/multimodal_speech-image_matching.

We release source code for the experiments of Chapter 5 at :

https://github.com/LeanneNortje/direct_multimodal_few-shot_learning.
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Chapter 2

Background

This background chapter will cover concepts that the reader should be familiar with

in order to follow the subsequent chapters. Chapter 2.1 introduces unimodal few-shot

learning which is the key idea from which multimodal few-shot learning is developed in

Chapter 3. In Chapter 2.2 we describe the speech and image datasets used throughout

this thesis. Chapter 2.3 describes different types of networks we use to build our models

and the fundamental algorithms used to train these models. Particulars regarding the

implementation of our models, as well as the resources to reproduce the results of Chapters

3 to 5, are given in Chapter 2.4.

2.1 Unimodal Few-Shot Learning

Unimodal one-shot learning refers to the problem of learning new concepts from only one

labelled example per concept in a single modality. For the unimodal few-shot learning

setting, a few labelled examples per concept are given instead of just one.

Unimodal Few-Shot Learning entails learning new concepts from only a few

labelled examples per concept in a single modality.

We use blocks such as the one above to define specific concepts throughout this thesis.

In Chapter 2.1.1 we first explain the unimodal few-shot learning task, and then give one

approach to do this task. Chapter 2.1.2 gives more background on the origin of unimodal

few-shot learning and previous approaches for performing this task.

2.1.1 Unimodal Speech or Image Few-Shot Classification

Unimodal few-shot classification is a task in which a model is prompted to match an

unlabelled unseen query to its corresponding label after only seeing a unimodal support

set S. A unimodal support set contains data examples from a single modality where each

example is tagged with a text label. Unimodal few-shot classification can be considered

9
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Query: 𝐱∗

𝑎

"four"
"four"=ŷ 

𝑎

"oh"

"four"

"two"

"zero"

"one"

Support set 
  = {( , )𝐱

(𝑖)
𝑎 y

(𝑖)
𝑎 }𝐿

𝑖=1

(b) What we have: (c) Outcome

 → ( )𝐶 𝐱𝑎

Query: 𝐱∗

𝑎

("four")
 ?=ŷ 

𝑎

(a) Test question:

Figure 2.1: Unimodal one-shot speech classification leads to (a) the question shown at
test time. To answer this question, a model is only given (b) a supports set to (c) predict
the query’s class.

for any modality. For illustrative purposes, we start with the example of few-shot speech

classification and then also explain few-shot image classification.

During a few-shot speech classification task, a speech model is presented with an unseen

unlabelled speech query x∗a and prompted to match the query to its corresponding label

as illustrated in Figure 2.1(a). For the one-shot setting, the model is shown a unimodal

one-shot support set S containing one isolated spoken word x
(i)
a with a text label y

(i)
a

for each of the L word classes as shown in Figure 2.1(b). Although Figure 2.1(b) only

illustrates L = 5, the speech digit classes has eleven possible classes including “one” to

“nine” as well as “oh” and “zero” since the words “oh” and “zero” both refers to the digit

0. None of the speech queries x∗a occurs exactly in the support set. From this support

set, the model should learn a classification metric CS that can make predictions on an

unlabelled unseen test query x∗a as shown in Figure 2.1(c).

One approach to do the speech classification task is to simply use unimodal comparisons

to compare a query x∗a to each item in the support set and then predict the query’s label

as the label of the closest item, as illustrated in Figure 2.2(a). In our speech classification

example, the classifier CS used to do this classification task is an L-way one-shot speech

learning model which consists of an L-way one-shot speech support set and a speech model

capable of measuring within-modality similarity. This is just one (common) approach to

solve this task. Various others approaches are mentioned in the next section.

We can extend one-shot learning to K-shot learning. For unimodal L-way K-shot

learning, the unimodal support set S contains L classes and K labelled examples per class.

Throughout the thesis we use K-shot and few-shot interchangeably.

The one-shot image classification task shown in Figure 2.3 is done similarly as the

one-shot speech classification task in Figure 2.2. However, instead of using speech examples
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Query: 𝐱∗

𝑎

Support set 
  = {( , )𝐱

(𝑖)
𝑎 y

(𝑖)
𝑎 }𝐿

𝑖=1

=  “four”ŷ 
𝑎

 → ( )𝐶 𝐱𝑎

(a) Approach

Query: 𝐱∗

𝑎

=  “four”ŷ 
𝑎

(b) Outcome

 → ( )𝐶 𝐱𝑎

“oh”

“four”

“zero”

“two”

“one”

“four”“four”

Figure 2.2: One approach to do the speech classification task, is to find (b) a metric
CS to classify given speech inputs by (a) using the label of a query’s neighbour in the
support set.

we use image examples: a vision model is shown an unlabelled unseen image query x∗v and

is prompted to match the image query to its corresponding label. To do this, the model

is only given a unimodal K-shot image support set S which contains K image instances

x
(i)
v labelled with a text class label y

(i)
v for each of the L classes. Although Figure 2.3

illustrates a support set with only five classes, there are ten possible image digit classes (0

to 9 ). We specifically do this task by comparing x∗v to each image instance x
(i)
v in S and

the label of its closest item is taken as the image query’s predicted label.

A unimodal K-shot L-way classification task is implemented with unimodal episodes

Query: 𝐱∗

𝑣

Support set 
  = {( , )𝐱

(𝑖)
𝑣 y

(𝑖)
𝑣 }𝐿

𝑖=1

=  4ŷ 
𝑣

Query: 𝐱∗

𝑣

 ?=ŷ 
𝑣

 → ( )𝐶 𝐱𝑣

Support set 
  = {( , )𝐱

(𝑖)
𝑣 y

(𝑖)
𝑣 }𝐿

𝑖=1

(a) Test question: (b) What we have: (c) Approach

Query: 𝐱∗

𝑣

=  4ŷ 
𝑣

(d) Outcome

 → ( )𝐶 𝐱𝑎

Figure 2.3: Unimodal one-shot image classification where (c) illustrates how the model
makes its prediction for (a) the question shown at test time by using the support set in
(b). The outcome (d) is a metric CS to classify given image inputs.

11

Stellenbosch University https://scholar.sun.ac.za



2.1. Unimodal Few-Shot Learning

so that each episode is an instance of a K-shot classification task. Vinyals et al. [8] was

the first to use unimodal K-shot episodes and defined each episode to contain a set of

queries – a so called query set – and a unimodal K-shot L-way support set. The instances

in the query set and support set are from the same modality, e.g. either the vision or

speech modality. For each episode, the K-shot model under consideration is prompted to

match each query in the episode’s query set to its corresponding label in the episode’s

K-shot support set. Various studies uses this episode-idea to train few-shot learning

models [8, 10, 22–25]. However, in our few-shot experiments we do not explicitly train on

any episodes.

In Chapter 3 we explain how unimodal few-shot learning can be extended to multimodal

few-shot learning, specifically for speech and images in our case. To implement multimodal

few-shot learning we extend the unimodal episodes to multimodal episodes as discussed in

Chapter 3.

2.1.2 Related Work

Our focus is not an exhaustive comparison between different models for unimodal few-shot

learning, but rather the extension of unimodal to multimodal few-shot learning. The goal

of this section is therefore to discuss unimodal few-shot studies that followed approaches

relevant to the approaches we use.

This section will mainly discuss speech or vision one- or few-shot learning since these

are the two modalities of interest to us. However, it is important to note that unimodal

one- or few-shot learning can be done in any modality like gesture recognition [26–28],

video [29] and robotics [30, 31].

2.1.2.1 Transfer Learning with Classifiers

Although a few researchers investigated (unimodal) one-shot learning as early as the 1980’s

and 1990’s, the groundbreaking ML methods to do one-shot learning was developed in

the early 2000’s [7]. In [3] and [4], Fei-Fei et al. uses transfer learning to construct a

variational Bayesian framework for one-shot learning of objects in images.

Transfer learning is a method that leverages existing data by training a model on a

different but related set of classes than the classes seen during test time [19, 20].

This training dataset containing items from different classes than the classes seen at test

time, is referred to as background data.

In Chapter 3 and 4, we consider separate speech and vision transfer learned models

trained on background data containing a large amount of classes. However, Fei-Fei et al.

[3, 4] only considers transfer learned vision models trained on images of objects from only

three background classes. For each of these three classes they train a probabilistic classifier
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2.1. Unimodal Few-Shot Learning

to predict the probability that an input image is of this class. To get a probabilistic model

capable of classifying a new unseen class, they average the model parameters of these

three models. Differently to our approach, they then update the model on the one or few

labelled image examples given for this new unseen class. When encountering an unlabelled

unseen image query, this new model predicts the probability that the query belongs to the

few-shot class. The probabilistic model in [3] is extended in [4] to enable the model to find

a classifier for a new unseen class from a larger number of background object classifiers.

A collection of studies [32, 33] by Lake et al. investigated compositional generative

Bayesian models to do one-shot learning of the Omniglot character images (which we

also use and introduce in more detail in Chapter 2.2.2.2). To do one-shot learning, their

Bayesian models use each character’s motor data [5, 34], where the motor data of a

character is the strokes used to write a character, i.e. the order, composition and direction

in which the subparts of a character is written. The probabilistic models in [32] and [33]

decompose the characters into common primitive subparts and generates new characters

from these primitive subparts.

Lake et al. [33] uses Bayesian program learning to learn a character classifier based on a

character’s unique composition and the relation between its primitive subparts. Similarly,

Lake et al. [32] uses hierarchical Bayesian program learning (HBPL) to learn a character

classifier by using the composition of a character and the order in which its subparts are

drawn. Similarly as our transfer learned vision models, both of these transfer learned

Bayesian classifiers are trained on background character classes from the Omniglot dataset.

However, since we do not have motor data for our few-shot digit classes, we only train our

models on the character images so that we can apply our models to the unseen few-shot

classes at test time. During the classification task, each Bayesian model of Lake et al.

[32, 33] calculates a classification score between the strokes present in the unlabelled

unseen query and each of the one-shot labelled character examples by using the motor data

of these instances. The query is classified according to the class of the one-shot character

image with the highest score to the query.

From the studies discussed in this section and in the next three subsections, it is

clear that transfer learning is a common approach to do one- or few-shot learning. In

Chapters 3 to 5 we will use transfer learning either in its pure form or in combination with

unsupervised learning to find multimodal few-shot learning models. Transfer learning can

be motivated by the observation that humans can call on prior knowledge when learning

new concepts [11].

2.1.2.2 Metric Learning

By utilising transfer learning, Koch [7] trains Siamese neural networks to distinguish

between features of background same/different pairs of handwritten characters in the

Omniglot dataset. Similarly to the approach we use in Chapter 3, [7] uses these Siamese
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2.1. Unimodal Few-Shot Learning

networks in the hope that these embedding models would generalise to such an extent

that it will also generalise to unseen classes for one-shot learning. Koch [7] specifically

attempts to find a Siamese network that maps the input images of an unseen one-shot

class to similar embeddings, i.e. a similarity metric that applies to unseen classes.

Metric Learning attempts to map inputs to an embedding space where the

embeddings of similar inputs are close to each other and the embeddings of different

inputs are far apart [35].

To learn this metric, [7] uses a modified L1 distance loss function where we instead use a

triplet hinge loss.

Is such a metric learning approach more beneficial to do few-shot learning than the

Bayesian approaches used in the previous subsection? For a one-shot task on the same

Omniglot test subset, [7] found that the Siamese network with one-shot accuracy of 92.0%

were outperformed by a HBPL model with a one-shot accuracy of 95.2%. From this it

seems like metric learning is inferior to a probabilistic classification approach. However,

the matching network proposed by Vinyals et al. [8] which learns a metric to do few-

shot learning, outperformed both the Siamese and probabilistic approach by achieving a

one-shot accuracy of 98.1% on the same Omniglot test subset.

Specifically, Vinyals et al. [8] used transfer learned matching networks to learn a metric

to do few-shot learning of either objects in ImageNet images or Omniglot character images.

The matching networks attempt to learn how to learn in the rapid few-shot manner

required to do few-shot learning at test time. This is done by using advances in attention

and memory to enable this rapid learning, as well as explicitly training the models using

background image classes on the same few-shot image classification task described in

Chapter 2.1.1. Similarly to our approach, a matching network can be seen as a weighted

nearest neighbour classifier since it learns embedding functions to find similar embeddings

for a query and its few same class instances in the support set. However, we do not

explicitly train our models on background few-shot tasks. They evaluate the matching

network trained on background Omniglot classes by using few-shot image classification

tasks on two datasets: the Omniglot test subset and the completely disjoint MNIST

dataset which contains our few-shot digit classes (we also use the MNIST dataset and

introduce it in more detail in Chapter 2.2.2.1).

Using the same few-shot task on the Omniglot test subset as Vinyals et al. [8], Snell

et al. [10] proposed prototypical networks for few-shot learning which achieved a one-shot

accuracy of 98.8%. Therefore, this approach followed by [10] improves the matching

network approach of [8] which achieved an accuracy of 98.1%. From these two studies, we

conclude that metric learning is an appropriate avenue to pursue for few-shot learning.

Similarly to us, Salakhutdinov et al. [36] uses the MNIST dataset as their few-shot

digit classes. More specifically, Salakhutdinov et al. [36] performs one-shot learning of
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objects in natural images or handwritten MNIST digit images. To do one-shot learning,

[36] uses a transfer learned hierarchical nonparametric Bayesian model trained on classes

not seen at test time. For example, they would train a model on the digit classes 0 to 8

and use the class 9 as the few-shot class. In contrast, we use all the digit classes as our

few-shot classes. We either train transfer learned vision models on background data not

containing any of digit classes or unsupervised unimodal or multimodal models trained on

unlabelled instances of the digit classes. For both of these approaches, we do not update

our models on the given examples of the few-shot classes. However, during the one-shot

classification task, Salakhutdinov et al.’s [36] Bayesian model uses the labelled example of

an unseen one-shot class to fine-tune a similarity metric for this new class.

2.1.2.3 Meta-Learning

On the same few-shot task approach as Vinyals et al. [8], Ravi and Larochelle [23] used

meta-learning to find a model capable of few-shot image learning.

Meta-Learning is to train a model referred to as a meta-learner on a variety of

learning tasks. The meta-learner is then used to train another model referred to as the

learner which is capable of learning a variety of new tasks from a small number of

training examples [25].

Ravi and Larochelle [23] trains a long short-term memory (LSTM) meta-learner neural

network which learns the exact optimisation required to train a learner that can be used

for few-shot learning. They use a classifier for the learner network.

Santoro et al. [24] used a memory-augmented meta-learner neural network trained on

background character classes to do few-shot character classification on the the Omniglot

test subset at test time. Mishra et al. [37] follows the same apporach as Santoro et al. [24],

but instead of a memory-augmented meta-learner, Mishra et al. [37] uses a meta-learner

network consisting of temporal convolutions and attention optimisation to find a learner

capable of few-shot character learning.

Finn et al. [31] extended the meta-learning approach to be model-agnostic: model-

agnostic meta-learning (MAML) uses the meta-learner to learn the standard model

parameters for any gradient decent trained model or learning problem. These standard

model parameters are then used for the learner network from which fast adaption (by

updating the model with the few-shot test classes) is possible. For the few-shot character

classification task on Omniglot images, MAML achieved a one-shot accuracy of 98.7%

and therefore outperforms the matching network approach with a one-shot accuracy of

98.1% [8]. However, this MAML approach just falls short of the prototypical network

approach with a one-shot accuracy 98.8% [10].

Although meta-learning has received significant attention for few-shot learning, recent

work by Tian et al. [38] shows that a simpler metric learning approach for few-shot
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image learning outperforms these complicated meta-learning approaches like MAML. On

background data, they trained a simple embedding model on the same few-shot task as

Vinyals et al. [8]. On top of the embeddings learned by the embedding model, they train

a classifier. The aim is to get good embeddings so that the embedding model produces

similar embeddings for unseen classes to do the few-shot classification task in a similar

setup as Vinyals et al. [8] (Chapter 2.1.1). We conclude that complex meta-learning

approaches are not necessary to do few-shot learning. Therefore, in Chapter 3 we will

focus on classification networks and compare these networks to Siamese networks which is

a well-established metric learning approach. Nevertheless, in Chapter 6 we note that a

thorough comparison could be useful in future work.

2.1.2.4 Unimodal Speech Classification

Although few-shot image classification has received significant attention, studies into

few-shot speech classification is limited. We will now consider two few-shot speech studies:

one study that uses transfer learning in a probabilistic approach and one that uses transfer

learning together with a metric learning approach.

Lake et al. [6] considers one-shot learning in the speech domain with a hierarchichal

hidden Markov model (HHMM). The HHMM utilises the composition of phoneme-like

(acoustic) units that each word in an utterance consists of. Two HHMMs are trained

using transfer learning whereafter both models are tested on one-shot learning of Japanese

spoken words. One HHMM is trained on background English speech data and the other one

on background Japanese speech data that does not contain any of the Japanese one-shot

word classes seen at test time.

We also train transfer learned speech networks on background data not containing any

of the few-shot digit classes seen at test time. We use these models to generalise to new

unseen classes by attempting to find similar embeddings for all the speech instances of

the same few-shot class. An unseen query can then be classified according to the label of

its closet embedding in the support set. In contrast, for the one-shot classification task

using each HHMM, the HHMM calculates a classification score between the unlabelled

unseen word query and each of the one-shot labelled word examples. The classification

score is calculated based on the ten most likely acoustic units in each word. The query

is classified according to the class label of the one-shot word example with the highest

classification score to the query.

On this task, the Japanese trained HHMM came closer to human performance than

the English trained HHMM. Lake et al. [6] concluded that the transfer of knowledge

between two data domains that contains more common properties (e.g. language) works

better for one-shot learning than two completely different data domains (e.g. from different

languages). Therefore, for our few-shot speech models, we ensure the training data and

few-shot test classes are from the same language (English).
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The same few-shot speech classification task approach we use for our speech models, is

also used by Parnami and Lee [22]. This few-shot speech task is simply the speech version

of the few-shot image task defined by Vinyals et al. [8]. Parnami and Lee [22] specifically

uses prototypical networks to learn a metric to do few-shot speech learning. Similarly

to the prototypical networks of Snell et al. [10] discussed above, they use a prototype

representation for each few-shot class which is the mean across the few labelled examples

given for the few-shot class. They use prototype representations for each few-shot class in

the support set instead of using the few examples separately like we do. Differently to our

speech models, [22] trains these prototype networks using few-shot speech classification

tasks on background data. At test time, these models are then used to few-shot learn

spoken keywords to do keyword spotting.

2.2 Data

This section discusses the speech (Chapter 2.2.1) and image (Chapter 2.2.2) datasets used

throughout the thesis, as well as the data processing done before training. Chapter 2.2.3

states some general details regarding the manner in which we use the data.

2.2.1 Speech Data

We parametrise all speech data, before training, with our version of Python speech

features [39] as mel-frequency cepstral coefficients (MFCCs) [40] using a window length of

25 milliseconds and a frame shift of 10 milliseconds. For each speech dataset, we perform

per speaker normalisation of the speech segments. By using existing forced alignments, we

split the speech sequences into isolated words. All speech models are trained on isolated

spoken words where each word is represented using static MFCCs. However, first and

second order derivatives are used in the DTW baseline of Chapter 3 where it is beneficial.

2.2.1.1 In-Domain Speech Data: TIDigits

The TIDigits corpus which contains eleven digit classes: “one” to “nine” as well as “oh”

and “zero” since the words “oh” and “zero” both refers to the digit 0. We use the TIDigits

corpus as our in-domain speech data. This means that we use the digit classes in this

dataset as the few-shot classes in all subsequent chapters.

The corpus consists of spoken digit sequences from 326 speakers with each speaker

uttering 77 digit sequences [41]. The spoken digit words in each sequence are isolated. A

few of these isolated spoken digit words are shown in Figure 2.4. We further divide these

isolated words into training, validation and test subsets with no speaker overlap between

subsets which results in an average of 1931 training instances per word class.
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“three”“zero”“one”

“seven”

“four”

“two”“five”“oh” “eight”

“six” “nine”

Figure 2.4: A few speech samples from the TIDigits corpus. For illustrative purposes
we show labels for the spoken word instances: in most of our experiments (apart from the
diagnostic experiments), no labels are used since the digit labels are our few-shot classes.

2.2.1.2 Background and Developmental Speech Data: Buckeye

For background and developmental speech data, we use the Buckeye corpus of English

conversational speech from 40 speakers [42]. As explained in Chapter 2.1.2.1, background

data does not contain any of the few-shot digit classes. We use this background speech data

to train transfer learned speech models. Development procedures are outlined in Chapters 3

to 5, but in short we use the development data to fine-tune model hyperparameters and

hard restrictions used to mine pairs.

Figure 2.5 shows some spoken word examples that occur in the Buckeye corpus, as well

as the process we follow to isolate spoken words using forced alignments of the utterances

contained in the TIDigits and Buckeye datasets. After isolating all the spoken words in

the Buckeye corpus, the corpus contains 8280 different word classes.

We divide the isolated words into training, validation and test subsets with no class

overlap between subsets and ensure that there are no instances of the above target digit

“the” “dog” “catches” “the” “grey” “cat”

“the” “dog” “catches” “the” “grey” “cat”

Figure 2.5: Isolating the words in the conversational spoken sequences of the Buckeye
corpus.
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classes in the background speech data. This results in an average of 25 training instances

per word class.

It is important to note that the Buckeye corpus (our background data) contains a large

number of classes with only about 25 examples per class, whereas the TIDigits corpus

(with our few-shot classes) contains only eleven word digit classes with a large number of

examples per class.

2.2.2 Image Data

We normalise all pixels of images in the MNIST image dataset discussed in Chapter 2.2.2.1

and the Omniglot image dataset discussed in Chapter 2.2.2.2 to be in the range of [0, 1]

and we ensure that all images are 28× 28 pixels.

2.2.2.1 In-Domain Image Data: MNIST

As our in-domain image data, we use the MNIST corpus which contains 28× 28 grayscale

handwritten digit images from the ten digit classes (0 to 9 ) [43]. This means we use the

digit classes in this dataset as the vision instances of our few-shot classes in the subsequent

chapters. A few of the digit images in the corpus are shown in Figure 2.6. The MNIST

images in Figure 2.6 are inverted variants of the actual MNIST images. We divide the

corpus into training, validation and testing subsets which results in an average of 5500

training instances per digit class.

2.2.2.2 Background and Developmental Image Data: Omniglot

For background and developmental image data we use the Omniglot corpus of handwritten

characters [33]. We use this background image data (that does not contain any image

Figure 2.6: A few digit image examples from the MNIST corpus.
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Figure 2.7: A few character images that occur in the Omniglot corpus.

instances of digit classes) to fine-tune the hyperparameters of the vision models and to

fine-tune the hard restrictions we use to mine pairs.

The corpus contains characters from 50 different alphabets ranging from common

languages like Latin to less common local dialects, as well as fictitious character sets like

Klingon [7]. The number of character classes per alphabet differs between 15 and 40 with

only 20 examples per character class. This results in 1623 different character classes which

we invert and downsample to 28× 28 pixels. A few Omniglot image examples are shown

in Figure 2.7.

In order to use the Omniglot corpus for background modelling, it needs to be in the

same format as the MNIST data. This would, for instance, allow a transfer learning model

trained on Omniglot to be used to process images from MNIST. To make the corpora

compatible, we therefore downsample the Omniglot images to have the same dimension

as the MNIST images. Furthermore, we invert the Omniglot images to use the same

convention as the MNIST images where a 1 indicates a white pixel and a 0 indicates a

black pixel. This ensures that the vision models trained on Omniglot is compatible to

the MNIST images seen at test time. It is important to note that the Omniglot corpus

contains 1623 different character classes with only 20 examples per class, whereas the

MNIST corpus contains only ten digit classes with a large number of examples per class.

We divide Omniglot into training, validation and testing subsets with no class overlap

between subsets and we ensure that there are no instances of the target digit classes in

the background image data.

2.2.3 Data Usage

It is important to note that although we use labelled in-domain datasets (TIDigits and

MNIST), we use them in an unlabelled manner for unsupervised or few-shot learning

setups. All few-shot matching experiments are performed on the MNIST and TIDigits test

subsets. This enables us to get accuracy scores for the unimodal and multimodal few-shot
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tasks (discussed in Chapter 3 and Chapter 5) by comparing predicted labels to the actual

labels.

2.3 Neural Networks

In this section we introduce the reader to the fundamentals of neural networks. This is not

an exhaustive discussion of the topic, we simply cover the fundamentals so that the reader

can follow subsequent chapters. These neural networks are used throughout the thesis.

Here we use the notation where a neural network is represented by a function gΦ(x),

where Φ is the trainable parameters of the network and x some input to the network.

Feedforward neural networks (FFNNs) and convolutional neural networks (CNNs) (Chap-

ter 2.3.1 and 2.3.2 respectively) are appropriate choices to model fixed-length inputs to

fixed-size feature embeddings. Recurrent neural networks (RNNs) (discussed in Chap-

ter 2.3.3) are more appropriate to model variable-length inputs to fixed-size feature

embeddings.

A single gΦ(x) function representing either a FFNN or a CNN or an RNN can be

used as part of a much larger model fΘ(x), where Θ is the trainable parameters of the

entire model. Multiple gΦ(x) functions can be used in various different configurations to

construct a model function. For example, fΘ(x) can be a chain of different gΦ(x) functions

representing different network types:

fΘ(x) = gΦRNN
( gΦFFNN

( gΦCNN
(x ) ) ), (2.1)

where x is the input to the model.

The shape and objective functions of a classifier, a Siamese neural network, an AE

and a CAE are considered in Chapters 2.3.4 to 2.3.7. An objective function sets out

some specific constraints for the model targets (outputs) which forces the model to learn

some internal structure that can produce targets meeting these constraints. The objective

function is also called a loss function which we denote as `. Although other studies may add

different meanings to these two terms, we use them interchangeably. Finally, Chapter 2.3.8

explains the algorithm used to train a model by using its specified loss function ` to learn

a suitable fΘ(x).

2.3.1 Feedforward Neural Networks

The information in a feedforward neural network (FFNN) flows from the network’s input x

to its output layer ŷ, without any feedback [44]. The network consists of a certain amount

of intermediate layers referred to as hidden layers, between the network’s input x and its

output ŷ. Each hidden layer consists of a weight matrix W ∈ R(N×M) and a bias vector
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𝐯
𝑖

𝐯
𝑖+1

Figure 2.8: A FFNN consists of a number of fully connected layers.

b ∈ R(N×1). The layer output is a vector v ∈ R(N×1) calculated as

v = σ(Wu + b), (2.2)

where σ is some activation function and u ∈ R(M×1) is the input vector to the layer.

Common activation functions include the sigmoid, tanh and ReLU functions. We mostly

use the ReLU activation function.

The hidden layers are called fully connected layers since each unit in the layer output v

is connected to each unit in the layer input u. Throughout this thesis, the chosen output

layer dimension N of a fully connected layer is given in the following format in figures

depicting model architectures: (N).

Multiple hidden layers can be connected by giving the output of one layer as the input

to another layer as illustrated in Figure 2.8. By connecting any number of hidden layers,

we construct a FFNN function gΦFFNN
(x). The input x to the FFNN is given as the input

to the first hidden layer and the last layer’s output is taken as the FFNN’s output ŷ.

We group all the trainable parameters of a FFNN under the variable Φ. The trainable

parameters of the entire network includes the trainable parameters W and b of each

hidden layer in the network.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are neural networks used for processing matrix-like

data [44] and consists of one or multiple convolutional layers. A convolutional layer consists

of N trainable filters f ∈ R(height×width) (also called kernels). Figure 2.9 shows the N filters

are a set of weights so that one of these filters f connects each unit in a so-called feature

map v ∈ R(N1×N2) to local patches in the input u ∈ R(M1×M2) to the layer [44]. Each unit

in the feature map is calculated with convolution using a particular (height×width) filter:

v[a, b] =

height∑
i

width∑
j

u[i, j] f [a− i, b− j], (2.3)

where a and b are some index positions corresponding to a unit in the feature map. The

output of a convolutional layer is therefore N feature maps v where each of the N filters f

produces a feature map from the input u. The filter dimensions and number of filters for
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Filter:  
Size: 

𝐟

(height × width)

Input:  
Size: 

𝐮

( × )𝑀1 𝑀2

Feature map:  
Size: 

𝐯

( × )𝑁1 𝑁2

Figure 2.9: The convolutional calculation of a convolutional layer.

a convolutional layer will be given in the following format in the figures throughout the

thesis: (height× width×N).

Convolutional layers are connected by giving the output feature maps of one layer

as the input to a subsequent layer. By connecting various convolutional layers we can

construct a CNN function gΦCNN
(x) from the network input x to its output ŷ, where Φ is

a grouping of the entire CNN’s trainable parameters. These trainable parameters include

each convolutional layer’s N filters f . The network’s input x is the input to the first

convolutional layer and the network’s output ŷ is the feature maps produced by the last

convolutional layer.

2.3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are used to process sequential data by using some

𝐖1

𝐖2

𝐛

𝐖1

𝐖2

𝐛

𝐖1

𝐖2

𝐛

𝐖1

𝐖2

𝐛

𝐖1

𝐖2

𝐛

𝐖1

𝐖2

𝐛

𝐮1 𝐮2 𝐮𝑖 𝐮𝑖+1 𝐮𝜂−1 𝐮𝜂

𝐯1 𝐯2 𝐯𝑖 𝐯𝑖+1 𝐯𝜂−1 𝐯𝜂

Figure 2.10: A recurrent layer in an RNN.
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inner structure sequence-based specialisation [44]. An RNN consists of one or multiple

recurrent layers where each layer shares its weights across each of the η inputs in a

sequence u = {u1,u2, . . . ,uη} as illustrated in Figure 2.10. For some time-sequence like a

speech segment u consisting of η frames ui over time, an RNN layer shares its weights

across each frame. Each recurrent layer has trainable weight parameters W1 ∈ R(N×N),

W2 ∈ R(N×M) and b ∈ R(N×1). By using W1, W2 and b, the recurrent layer produces an

output vi ∈ R(N×1) for each input ui ∈ R(M×1) to the layer.

The layer output v = {v1,v2, . . . ,vη} is calculated from the layer input u =

{u1,u2, . . . ,uη} by using the following standard sequence-based specialisation function:

vi = σ(W1vi−1 + W2ui + b), (2.4)

where σ is some activation function. W1 filters the sequence history vi−1 up until time

step i− 1 that is relevant to the input ui to its output vi. At the same time W2 filters

the relevant information in ui to vi. These weights can be seen as a method that controls

the flow of information from the previous (i− 1) and current (i) time steps to the layer

output v.

There are various sequence-based specialised configurations for RNNs that uses different

gates to filter and scale the importance of certain information to the layer output. An

LSTM adds an input, output and forget gate to the standard RNN [45] which enables the

LSTM to take long- and short-term dependencies into account. The standard RNN cannot

successfully handle long-term dependencies due to vanishing/exploding gradients [46]. A

gated recurrent unit (GRU) which is an improvement on the LSTM [46, 47], adds a reset

and update gate to the standard approach [45]. For all RNNs throughout this thesis we

use GRUs and give the output dimension N for a recurrent GRU layer in the following

format: (N).

Multiple recurrent layers can be connected by feeding the outputs of one layer

{v1,v2, . . . ,vη}, in order, as the inputs {u1,u2, . . . ,uη} of the next layer. By using

one or multiple connected recurrent layers, we can construct an RNN function gΦRNN
(x)

where Φ is all the network’s trainable parameters which includes the trainable weights

W1, W2 and b of each recurrent layer. The first recurrent layer’s input is the input to

the network x and the last recurrent layer’s output is the output of the network ŷ.

2.3.4 Classifiers

A classifier maps an input x(i) to a category or class [44], thereby constructing a model

function fΘ(x) between the input x(i) and its predicted class output ŷ(i) where Θ is all the

trainable model parameters. The general structure of a classifier is shown in Figure 2.11

where fθ(x) can be any one of the neural networks above (FFNN, CNN or RNN).

The output vector ŷ(i) has dimension N where N is equal to the number of possible
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𝐳
(𝑖)

( )𝑓𝜽 𝐱
(𝑖)

𝐱
(𝑖)

( )𝑓𝚯 𝐱
(𝑖)

�̂� (𝑖)

Figure 2.11: The general shape and structure of a classifier.

different classes. We use a softmax layer to produce ŷ(i) thereby ensuring that ŷ(i) contains

the probabilities that a given input x(i) belongs to each of the N classes. A softmax layer

takes an input vector z(i) and turns it into a probability distribution. Therefore all the

values in ŷ(i) sums to one. At test time the class with the highest probability is taken as

an input’s predicted class.

To train the classifier we use the multiclass log loss between the one-hot actual label

vector y(i) and the predicted class probabilities ŷ(i) for a single training instance:

`classifier( x(i),y(i) ) = −
N∑
c=1

y(i)
c log( ŷ(i)

c )

= −
N∑
c=1

y(i)
c log( fΘ(x(i))c ),

(2.5)

where c simultaneously steps through the corresponding class values in y(i) and ŷ(i).

In some cases we might want to train a classifier on one dataset or domain and use it

as a feature extractor for another. In these cases we can use the embedding z(i) calculated

by fθ(x(i)) as shown in Figure 2.11, as a latent feature representation for an input x(i).

2.3.5 Siamese Neural Networks

A Siamese network does not classify an input, but measures the similarity between inputs

[48, 49]. The network consists of identical subnetworks fΘ(x) with shared trainable model

parameters Θ as illustrated in Figure 2.12. Again, any of the networks above (FFNN,

CNN or RNN) can be used as the basis fΘ(x) of the Siamese neural networks. A given

input x(i) is encoded by the subnetwork fΘ(x) to its feature embedding z(i).

Ideally, inputs x
(i)
1 and x

(i)
2 of the same class should have similar feature embeddings

z
(i)
1 and z

(i)
2 , and inputs x

(i)
1 and x

(i)
2 of different classes should have different feature

embeddings z
(i)
1 and z

(i)
2 . Many studies [50–52] argued that this relative distance rather

than an absolute distance is more promising. To learn this relative distance metric, we

will use the triplet hinge loss to train the Siamese network.
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𝐳
(𝑖)

2

( )𝑓𝚯 𝐱
(𝑖)

2

𝐱
(𝑖)

2

𝐳
(𝑖)

1

( )𝑓𝚯 𝐱
(𝑖)

1

𝐱
(𝑖)

1

Relative distance metric

Figure 2.12: The Siamese neural network consists of two subnetworks with shared
parameters.

A triplet hinge loss has inputs x, xpair and xneg. Specifically, xpair is the positive anchor

of x (i.e. x and xpair are from the same class) and xneg is the negative anchor of x (i.e. x

and xneg are from different classes). The triplet hinge loss aims to push the embeddings

of x and xpair closer whilst pushing the embeddings of x and xneg further away from one

another [50–54] with regards to some margin parameter m as illustrated in Figure 2.13.

Logically, to do this the distance between the embeddings of x and xpair should be smaller

than the distance between x and xneg. The triplet hinge loss is given by:

ltriplet(x,xpair,xneg) = max{0,m+ d(x,xpair)− d(x,xneg)}, (2.6)

𝐱

𝐱neg

𝐱pair 𝐱

𝐱neg

𝐱pair

(a) Before training (b) After training

Figure 2.13: The aim of a triplet loss is to push the representations of inputs of the
same class together and the representations of inputs from different classes away from
each other.
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where

d(x1,x2) =
∥∥∥z1 − z2

∥∥∥2

2

=
∥∥∥fΘ(x1)− fΘ(x2)

∥∥∥2

2

(2.7)

is the squared Euclidean distance between the embeddings z1 and z2 corresponding to x1

and x2 and m is some margin parameter [50, 55].

2.3.6 Autoencoders

An autoencoder (AE) is an unsupervised neural network which aims to reconstruct its

input through a lower dimensional latent representation that acts as an information

bottleneck [56]. The bottleneck representation limits the amount of information that

flows to the output of the network ŷ(i). Therefore, the AE is forced to only capture the

information necessary to reconstruct the input x(i) at its output ŷ(i).

As shown in Figure 2.14, the AE’s encoder fθ(x(i)) encodes the input x(i) to the latent

embedding z(i). The embedding z(i) is used as a latent feature representation for a given

input x(i). The decoder fφ(z(i)) decodes z(i) to produce the network’s output ŷ(i).

The model function fΘ(x) is the combination of fθ(x(i)) and fΦ(z(i)), where Θ is all

the trainable network parameters θ of the encoder network fθ(x(i)) and φ of the decoder

network fΦ(z(i)). To learn fΘ(x), we use a squared loss,

`( x(i),y(i) ) = ||y(i) − fΘ(x(i))||22
= ||y(i) − ŷ(i)||22,

(2.8)

between the network’s output ŷ(i) and the desired output y(i). For the AE-loss, the target

𝐳
(𝑖)

( )𝑓𝜽 𝐱
(𝑖)

( )𝑓𝝓 𝐳
(𝑖)

𝐱
(𝑖)

𝐱
(𝑖)

( )𝑓𝚯 𝐱
(𝑖)

Figure 2.14: The general structure and parts of an AE.
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𝐳
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( )𝑓𝝓 𝐳
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𝐱
(𝑖)

𝐱
(𝑖)
pair

( )𝑓𝚯 𝐱
(𝑖)

Figure 2.15: The general shape and structure of a CAE.

y(i) is set to x(i) in Equation 2.8:

`AE( x(i),x(i) ) = ||x(i) − fΘ(x(i))||22
= ||x(i) − ŷ(i)||22.

(2.9)

2.3.7 Correspondence Autoencoders

The correspondence autoencoder (CAE) is identical to the AE with its encoder-decoder

structure as shown in Figure 2.15. However, instead of reproducing the input x(i) at its

output, it aims to produce another instance of the same class as the input x
(i)
pair (a pair of

the input) [21]. For the CAE-loss, we therefore set the target y(i) to x
(i)
pair in Equation 2.8:

`CAE( x(i),x
(i)
pair ) = ||x(i)

pair − fΘ(x(i))||22
= ||x(i)

pair − ŷ(i)||22.
(2.10)

Again, we use the embedding z(i) produced by the encoder fθ(x(i)) as the latent feature

representation for a given input x(i).

2.3.8 Optimisation of the Loss

To train neural networks, we use gradient decent to optimise the objective function

`
(
X(i),Y(i)

)
of the model fΘ(X(i)) under consideration. For a singular training example

all the models inputs are grouped under X(i), all its outputs are grouped under Ŷ
(i)

and

all its desired outputs are grouped under under Y(i). Our optimisation strategy is to

minimise the function `
(
X(i),Y(i)

)
of the model fΘ(X(i)) by calculating the derivative of

the function with respect to X(i) to obtain the function’s gradient `
′(

X(i),Y(i)
)
. We use
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this gradient `
′(

X(i),Y(i)
)

to update the trainable parameters Θ to improve the values

of the network outputs Ŷ
(i)

to be closer to its desired outputs Y(i) [44].

In order to adapt the Θ parameters for a single training example consisting of X(i) and

Y(i), we do a forward pass to get the value of `
(

X(i),Y(i)
)
. Thereafter we do a backward

pass to get `
′(

X(i),Y(i)
)

with respect to X(i). This process of calculating the model’s

gradients is known as backpropagation. Finally, we use the gradient `
′(

X(i),Y(i)
)

to

update Θ according to the following function:

Θ = Θ− β ` ′
(
X(i),Y(i)

)
, (2.11)

where the learning rate β scales the amount of `
′(

X(i),Y(i)
)

used to update Θ.

This entire process of using backpropagation on a single training example to update

the training parameters Θ is known as stochastic gradient decent (SGD). However, instead

of doing this for a single example at a time, we use the sum of `
(
X(i),Y(i)

)
over τ number

of training examples in a batch to update Θ:

Θ = Θ− β

(
1

τ

τ∑
i=1

`
′(

X(i),Y(i)
))

. (2.12)

This is known as minibatch SGD. Essentially, this means we update the parameters Θ in

a direction that results in a reduction of the loss with each subsequent batch of training

examples.

There are several extensions of SGD which improves model training and convergence.

We specifically use Adam optimisation [57], which incorporates an adaptive learning rate

so that each of the parameters in Θ are updated with its own local learning rate parameter.

2.4 Implementation and Resources

All neural networks we consider throughout the thesis are implemented in TensorFlow [58]

and Python. Each network we consider is trained using backpropagation (Chapter 2.3.8),

specifically using Adam optimisation [57], with a learning rate of 10−3. We use an Nvidia

GEFORCE RTX 2070 GPU with 8Gb memory to train our models.

In Chapters 3 to 5, we consider various models to embed spoken words and images to

a representation embedding z. We always use an embedding dimensionality of 130 for all

these representation embeddings. This is to ensure all the results across Chapters 3 to 5

are comparable.
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2.5 Chapter Summary

This chapter explained unimodal few-shot learning and discussed the approaches followed

by relevant studies in this field. We also gave general explanations of the neural network

building blocks that we will use to construct our models and the methods to train these

models. The speech and image datasets explained in this chapter will be used throughout

the rest of the thesis. In the next chapter, we look at the study done by Eloff et al. [1]

on multimodal few-shot learning which is a multimodal expansion of unimodal few-shot

learning. We devote the entire Chapter 3 to improve the experimental setup of Eloff et al.

[1], thereby developing our own experimental setup.
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Chapter 3

Multimodal Few-Shot Learning

using Transfer Learning

This chapter thoroughly investigates and re-implements the multimodal few-shot learning

models proposed by Eloff et al. [1], which specifically investigated multimodal few-shot

learning of digit words and images. We start this chapter by introducing the multimodal

speech-to-image matching task. After this, in Chapter 3.2 we briefly outline work that

inspired this task before explaining the various speech-vision few-shot models developed

by [1] in Chapter 3.3 and 3.4.

The goal of this chapter is to re-implement the models of Eloff et al. [1] as the baseline

for our multimodal (speech-vision) few-shot learning work in Chapters 4 and 5. We do

this for three reasons: (1) Eloff et al. [1] is the first study to consider multimodal few-shot

learning, (2) we also consider multimodal few-shot learning of spoken word and image

digits, and (3) this allows us to base our experimental framework on the one used in [1].

3.1 Multimodal Few-Shot Matching

Multimodal few-shot matching is the task of matching corresponding unlabelled inputs

from different modalities after being presented with only a multimodal support set [1].

Multimodal few-shot learning is the task of learning a new concept from a few

paired examples of this concept, where each pair consists of items from different

modalities but of the same concept.

These few cross-modal paired examples are known as a multimodal support set. Any two

modalities can be used for this matching task. We specifically use a speech-to-image

few-shot matching task as explained in Chapter 3.1.1. The speech-to-image matching

task is constructed from a unimodal speech classification task and a unimodal image

classification task as explained in Chapter 2.1.1 [1]. As a first approach to do this task,

we use an indirect matching approach discussed in Chapter 3.1.2.
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(b) What we have:(a) Test question:

“two”

“five”

“eight”

“three”

Support set 
  = {( , )𝐱

(𝑖)
𝑎 𝐱

(𝑖)
𝑣 }𝐿

𝑖=1

“zero”

Query: 𝐱∗

𝑎

“eight”

?

Matching set 
= {( )𝑣 𝐱

(𝑗)
𝑣 }𝑁

𝑗=1

(c) Outcome

Query 𝐱∗

𝑎

“eight”

Matching set 
= {( )𝑣 𝐱

(𝑗)
𝑣 }𝑁

𝑗=1

 → ( , )𝐷 𝐱𝑎 𝐱𝑣

=  8ŷ 𝑣

Figure 3.1: Multimodal one-shot speech-to-image matching is portrayed by (a) the
question shown at test time. By only using (b) the multimodal support set a model
should find (c) a distance metric DS(xa,xv) to solve this question.

3.1.1 The Multimodal Speech-to-Image Matching Task

At test time, a multimodal few-shot model is presented with an unseen unlabelled speech

query x∗a and prompted to identify the corresponding image of the same concept in a

matching setMv = {(x(j)
v )}Nj=1 of unseen unlabelled test images as shown in Figure 3.1(a).

To do this task, the model is only given a multimodal support set S = {(x(i)
a ,x

(i)
v )}Li=1

that consists of a speech-image pair for each of the L classes, where each pair contains an

isolated spoken word x
(i)
a and a corresponding image x

(i)
v of the same class as x

(i)
a . Although

Figure 3.1(b) illustrates a one-shot support set containing L = 5 classes, there are eleven

possible digit classes which includes the classes “one” to “nine” as well as “oh” and “zero”.

The image instances of both the digit classes “oh” and “zero”, are images of a 0. For the

one-shot case, the multimodal one-shot support set S illustrated in Figure 3.1(b), consists

of one example pair for each of the L classes. However, for the few-shot or K-shot setting,

a multimodal K-shot support set S = {(x(i)
a ,x

(i)
v )}L×Ki=1 consists of K speech-image pairs

for each of the L classes. Neither the speech query x∗a nor the matching set items Mv

occur exactly in the multimodal support set S
As illustrated in Figure 3.1(c), to match unlabelled speech queries xa to unlabelled

matching images, we need some distance metric DS(xa,xv) between speech instances xa

and image instances xv, i.e. for the K-shot setting we need a multimodal K-shot learning

model. More specifically, a multimodal K-shot learning model learns DS(xa,xv) from

a multimodal K-shot support set S. For the one-shot setting (K = 1) in Figure 3.1,

DS(xa,xv) is a multimodal one-shot learning model.
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3.1.2 An Indirect Matching Approach

To perform the speech-to-image matching task, we use an indirect matching approach which

consists of the multimodal support set S and two unimodal comparisons (speech-speech

and image-image comparisons) as illustrated in Figure 3.2(a). This indirect approach

forms a distance metric DS(xa,xv) between audio queries and test images as shown in

Figure 3.2(b). For the unimodal comparisons, we need separate unimodal speech and

vision networks that can produce feature representations from which within-modality

similarity can be measured. I.e. each unimodal model should produce similar feature

representations for all instances of an unseen few-shot class.

More formally, this indirect approach works as follows. First, we use a unimodal speech

network to extract speech representations za for the query x∗a and each x
(i)
a in S. We then

compare the query representation z∗a to each representation z
(i)
a in S to find the query’s

closest spoken neighbour in S. A unimodal vision network is then used to extract image

representations zv for this closest neighbour’s paired image x
(i)
v and each image x

(j)
v in

the matching set Mv. The representation of the paired image z
(i)
v is then compared to

each image representation z
(j)
v in Mv to find the closest image neighbour of z

(i)
v in Mv.

This closest image is taken as the model’s prediction for the query’s matching image. In

Figure 3.2(a), this is the image of the rightmost eight.

To evaluate the representations produced by the different unimodal models for the

unimodal comparisons in the speech-to-image matching task, we implement this task with

multimodal episodes. Each multimodal episode is an instance of a K-shot speech-to-image

matching task which contains a query set, a K-shot multimodal support set S and a

(b) Outcome

Query 𝐱∗

𝑎

“eight”

Matching set 
= {( )𝑣 𝐱

(𝑗)
𝑣 }𝑁

𝑗=1

 → ( , )𝐷 𝐱𝑎 𝐱𝑣

=  8ŷ 𝑣

(a) Approach

Query 𝐱∗

𝑎

“eight”

“two”

“five”

“eight”

“three”

Support set 
  = {( , )𝐱

(𝑖)
𝑎 𝐱

(𝑖)
𝑣 }𝐿

𝑖=1

Matching set 
= {( )𝑣 𝐱

(𝑗)
𝑣 }𝑁

𝑗=1

“zero”

 → ( , )𝐷 𝐱𝑎 𝐱𝑣

=  8ŷ 𝑣

Figure 3.2: One approach to do multimodal one-shot speech-to-image matching is to
(a) use speech-speech and image-image comparisons across the support set to obtain (b)
a distance metric DS(xa,xv).
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matching set Mv. For each episode, the episode’s K-shot support set should be used to

match each query in the episode’s query set to a matching image in the episode’s matching

set.

Similarly as Vinyals et al. [8], Ravi and Larochelle [23] and Eloff et al. [1], in this

chapter as well as in Chapter 4, we use cosine distance to compare within-modality

feature representations. Various unimodal embedding models to produce representations

for these speech-speech and image-image comparisons, are discussed in Chapter 3.3 and

Chapter 3.4.

3.2 Related Work

Due to DL there has been an abundance of advances in speech and image recognition

systems in recent years. However, these advances caused ML systems to become dependent

on complex deep neural networks with millions of parameters [59, 60]. As a result of this

increasing complexity, systems became heavily dependent on large datasets of labelled

image data or transcribed speech audio [2]. Most of these DL solutions only perform well

when the training and testing data domains are made up of the same distributions, i.e.

if the training and testing data are from the same domain (we refer to this setting as

“in-domain”). However, if the data distribution changes such as for instance the model

needs to be updated to include new data classes, the model has to be retrained from

scratch on a large amount of new labelled training data.

In practice, the recollection and labelling of data is expensive and time-consuming.

Therefore it would be useful to obtain models that can transfer the knowledge learned

from some labelled dataset to another unlabelled dataset. For example, Donahue et al.

[61] trained a model called DeCAF on a set of object recognition tasks. DeCAF can then

be applied to related but new tasks which has too few training data to properly train a

model from scratch.

In recent years unimodal few-shot learning, explained in Chapter 2.1, have been

investigated for the purpose of finding DL methods that can learn from few labelled data

examples. This was vaguely inspired by a child’s ability to learn rapidly in a weakly

supervised environment: children can learn new words and objects from only a few word

or object examples [12–15]. For example, after hearing a novel word once, a child can infer

the likely meaning of the word [11]. Additionally, it is plausible that children use existing

knowledge to learn new words and objects [11]. As a result transfer learning is the most

common approach to do unimodal few-shot learning as discussed in Chapter 2.1.2.

Moreover, children are able to learn the relationship between a new spoken word and

visual object from only a few paired examples [13]. This led Eloff et al. [1] to propose the

idea of multimodal few-shot learning as a solution towards acquiring systems that can

learn as rapidly with as limited supervision as children. In addition, multimodal few-shot
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models have the added benefit of learning what the data representations of a class look

like in two different modalities. This could lead the way to obtain multimodal engineering

systems that are less data-dependant and more efficient and flexible.

Specifically, Eloff et al. [1] investigated the use of transfer learning for multimodal

few-shot learning of isolated spoken digits paired with digit images. They construct a

multimodal few-shot learning model from two unimodal models (a speech network and

a vision network) and a multimodal support set as described in Chapter 3.1.2. For each

unimodal model to learn a distance metric within its specific modality, they attempt to

use transfer learning to find unimodal models which generalises to classes not seen during

training [7, 51, 61]. I.e. without any training, the models can find similar representations

for all the instances of the same unseen few-shot class.

For these speech and vision networks, Eloff et al. [1] trained supervised classifiers and

Siamese triplet networks on background data not containing any of the few-shot test classes.

A multimodal few-shot learning model therefore consists of separate unimodal speech and

vision versions of these networks, e.g. a multimodal few-shot classifier consists of a speech

classifier and an image classifier. They evaluated these models against a baseline which

uses direct unimodal comparisons on raw speech and image data (Chapter 3.3).

3.3 Baseline: Dynamic Time Warping and Pixels

As a baseline we use a method that uses no DL in order to determine whether using DL

solutions are necessary or beneficial to the speech-to-image matching task. To do this, the

baseline uses unimodal comparisons directly on raw speech and image data.

Specifically for the image-image comparisons, we flatten each two-dimensional image

to a vector of size 1× 784. The cosine distance over these flattened image pixels can then

be used to compare two images.

For the speech-speech comparisons, we use dynamic time warping (DTW) over the

MFCCs of spoken words. DTW is a method which uses dynamic programming to find

the optimal alignment between two vectorised time series (like speech utterances) of

variable length [2]. We add first (delta) and second (double-delta) order derivatives to

these MFCCs, since Kamper et al. [62] found that delta and double-delta features are

beneficial for DTW. Throughout this thesis when we use DTW, we use cosine distance as

the frame-level distance metric.

3.4 Unimodal Transfer Learning Models

To get within-modality metrics for the speech-to-image matching task, we consider unimodal

models that embeds all instances of a class to similar feature representations. Since the

unimodal models do not see any of the few-shot classes during training, the unimodal
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models should be able to generalise to such an extent that it would still produce similar

representations for an unseen class [8].

We consider transfer learned classifiers in Chapter 3.4.1 and Siamese triplet networks in

Chapter 3.4.2 for the unimodal models. More specifically for the speech models, we train

a supervised classifier and a supervised Siamese triplet network on labelled background

speech data. Similarly for the vision models, we train a supervised classifier and a

supervised Siamese triplet network on labelled background image data. The background

data does not contain any instances of the target few-shot classes seen at test time. The

hope is that features learned on the background data would transfer to the unseen classes

at test time.

A multimodal few-shot model consists of corresponding speech and vision networks,

e.g a multimodal few-shot Siamese triplet model consists of a speech Siamese triplet

network and a vision Siamese triplet network. To do unimodal comparisons at test time,

we extract representations for each instance seen in the speech-to-image matching task

from a multimodal few-shot model’s unimodal networks. For each word instance, we do

a forward pass through a multimodal few-shot model’s speech network and extract the

za embedding layer as the feature representation for the word instance. Similarly, for a

given image instance, we do a forward pass through a multimodal few-shot model’s vision

network and extract the zv embedding layer as the feature representation for the image.

𝐱
(𝑖)
𝑣

( )𝑓𝚯 𝐱
(𝑖)
𝑎 ( )𝑓𝚯 𝐱

(𝑖)
𝑣

Pre-processing of
spoken word (audio)

into MFCC

=  “nine”𝐱
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𝑎
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Figure 3.3: The multimodal classifier consists of (a) a speech classifier and (b) a vision
classifier. (a) A speech classifier RNN is used to learn feature representations for speech
data and (b) a vision classifier CNN is used to learn feature representations for image
data.
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3.4.1 Classifiers

To construct a multimodal classifier model, we train separate speech and vision classifiers

(Chapter 2.3.4). The architectures for the speech and vision classifiers we use, are shown in

Figure 3.3. Both these transfer learned classifier networks are trained with the multiclass

log loss in Equation 2.5 on background labelled data that does not contain any of the

few-shot classes seen at test time.

For the speech model fΘ(x
(i)
a ) shown in Figure 3.3(a), we use an RNN followed by two

fully connected layers, a latent representation layer z
(i)
a and then a softmax layer ŷ(i)

a . The

vision model fΘ(x
(i)
v ) shown in Figure 3.3(b) uses a CNN followed by a fully connected

latent representation layer z
(i)
v and then a fully connected softmax layer ŷ(i)

v . We consider

classifiers since, when given an input x(i), the feature embedding z(i) before the softmax

layer should contain the necessary information to predict the correct class of x(i). The

hope is that this knowledge would transfer to classes not seen during training.

3.4.2 Siamese Triplet Networks

Considering that the feature representations play a major role in the speech-to-image

matching task, we consider Siamese triplet networks. As discussed in Chapter 2.3.5, the

triplet hinge loss used to train a Siamese network, forces the network to learn a relative

distance metric between the feature representations from various classes: representations

from the same class should ideally be closer to one another than representations from

different classes.

𝐱
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( )𝑓𝚯 𝐱
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𝑎

( )𝑓𝚯 𝐱
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𝑎
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(28 × 28)

𝐳
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(b) Vision network(a) Speech network

Figure 3.4: The multimodal Siamese triplet model consists of (a) a speech Siamese
triplet network and (b) a vision Siamese triplet network. (a) A speech Siamese triplet
RNN is used to learn feature representations for speech data and (b) a vision Siamese
triplet CNN is used to learn feature representations for image data.
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A speech Siamese triplet network and a vision Siamese triplet network are trained on

background labelled data not containing any of the few-shot classes seen during testing.

The hope is that the Siamese networks will capture a relative distance metric that can

be transferred to distinguish between classes not seen during training. The multimodal

Siamese triplet model consists of this speech and vision Siamese triplet networks.

For the speech Siamese triplet network, we use an RNN followed by a fully connected

feature representation layer z
(i)
a with the specific architecture we use for this speech network

shown in Figure 3.4(a). The vision Siamese triplet network consists of a CNN followed

by a fully connected feature representation layer z
(i)
v where Figure 3.4(b) shows the exact

architecture we use for this network.

For each of these speech and vision Siamese triplet networks, a single training instance

consists of x, xpair and xneg. Similarly to Eloff et al. [1], we train the Siamese networks on

mini-batches using the batch all strategy. Hermans et al. [54] showed that this strategy

leads to better performance of the triplet network by pushing hard positive pairs closer

and hard negative pairs further away. Each mini-batch samples p classes with k examples

per class so that each mini-batch contains pk hard positive pairs (x,xpair). Therefore, for

each of the p sampled classes, the mini-batch consists of every possible pair that can be

made up from the sampled class and each of its k examples. To sample negative items, we

use the online semi-hard mining scheme: for each one of the pk positive pairs (x,xpair),

we find the most difficult negative pair (x,xneg) according to some constraints [52–54].

3.5 Experimental Setup

In Chapter 3.5.1 we discuss the implementation of the different multimodal few-shot

learning models (Chapter 3.4) and then evaluate these models on three possible tasks

discussed in Chapter 3.5.2.

3.5.1 Models

We train a supervised speech classifier RNN and a supervised speech Siamese triplet RNN

on labelled isolated words from the background Buckeye training set (Chapter 2.2.1.2)

which does not contain any of the few-shot digit classes seen at test time. To perform

early stopping, the speech models are validated on unimodal one-shot speech classification

using the Buckeye validation subset. The hyperparameters of the speech networks are

tuned on a unimodal one-shot speech classification task using the Buckeye test subset.

Similarly, we train a supervised vision classifier CNN and a supervised vision Siamese

triplet CNN on the background Omniglot character images (Chapter 2.2.2.2) that does

not contain any of the few-shot digit image classes seen during testing. The vision models

are validated on unimodal one-shot image classification using the validation subset of
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the Omniglot character images in order to perform early stopping. The vision networks’

hyperparameters are tuned on a unimodal one-shot image classification task using the

Omniglot test subset. All unimodal (speech and vision) models in this thesis are validated

and tuned in the same manner as set out here.

The speech classifier with architecture shown in Figure 3.3(a) is trained with a batch

size of 512. Figure 3.3(b) shows the architecture we use for the vision classifier trained

with a batch size of 64. For both the speech and vision Siamese triplet networks, we use

k = 8 and p = 88 since 88 is the maximum number of sampling classes we could fit on

a single GPU. Furthermore, we use m = 0.7 for the triplet margin (Chapter 2.3.5) and

we perform L2 normalisation on the feature representations before using them either in

training, validation or testing. The speech Siamese network with architecture shown in

Figure 3.4(a) is trained on 175 of the mini-batches described in Chapter 3.4.2. The vision

Siamese network is trained on 200 of these mini-batches with an architecture as shown in

Figure 3.4(b).

As described in Chapter 3.4, the multimodal few-shot learning models consists of

corresponding speech and vision networks, e.g. a multimodal classifier consists of a speech

classifier and a vision classifier.

3.5.2 Evaluation Setup

The multimodal few-shot classifier and Siamese models are evaluated on a multimodal

speech-to-image matching task, with the implementation of this task given in Chap-

ter 3.5.2.1. In order to investigate the performance of a multimodal few-shot learning

model’s different parts, we can also evaluate their separate speech and vision networks.

The speech classifier and Siamese RNNs are evaluated on a unimodal speech classification

task, with the implementation of this task given in Chapter 3.5.2.2. Similarly, the vision

classifier and Siamese CNNs are evaluated on a unimodal image classification task, with

the implementation of this task given in Chapter 3.5.2.3. All unimodal and multimodal

one- and five-shot experiments are done on the MNIST and TIDigits test subsets. We

report multimodal and unimodal accuracies with 95% confidence intervals averaged over

five models trained with different seeds.

3.5.2.1 Multimodal Speech-to-Image Matching Task Implementation

Chapter 3.1.2 discussed an indirect approach to do the multimodal speech-to-image

matching task. In the implementation of this task, each accuracy score is an average over

400 multimodal episodes sampled from the MNIST and TIDigits test subsets.

In each multimodal episode, a multimodal K-shot support set is constructed by

randomly sampling K spoken digit and image digit pairs for each of the L = 11 classes

(“one” to “nine”, as well as “zero” and “oh”). For the episode’s matching set, we sample

39

Stellenbosch University https://scholar.sun.ac.za



3.6. Experiments

ten digit images not in the support set. The matching set only contains ten digit images

since there are only ten unique handwritten digit classes. Therefore, if the speech query is

either a “zero” or an “oh”, it is counted as correct if the model’s prediction of a matching

image is that of a 0. Finally, within an episode, ten different speech query instances (also

not in the support set) are also sampled while keeping the support and matching sets

fixed. Each speech query has to be matched to the correct image in the matching set.

3.5.2.2 Speech Classification Task Implementation

The unimodal speech classification task is discussed in Chapter 2.1.1. Each reported

accuracy score is an average over 400 unimodal speech classification episodes sampled from

the TIDigits test subset. The speech classification episodes are sampled similarly to the

multimodal episodes above, but a matching set is not sampled and instead of a multimodal

K-shot support set, we sample a unimodal K-shot speech support. The unimodal K-shot

speech support set consists of K sampled spoken digits paired with their class labels for

each of the L = 11 classes. Within an episode, each of the ten sampled speech query

instances (which is not in the speech support set) should then be matched to the correct

label in the support set.

3.5.2.3 Image Classification Task Implementation

The unimodal image classification task is discussed in Chapter 2.1.1. Each unimodal image

classification accuracy score is an average over 400 unimodal image episodes sampled

from the MNIST test subset. The unimodal image classification episodes are sampled

similarly to the speech classification episodes above. However, instead of sampling ten

speech queries and a unimodal K-shot speech support set, we sample ten image query

instances and a unimodal image K-shot support set. For each of the L = 10 classes (0 to

9 since there are only ten unique image digit classes), the unimodal image K-shot support

set consists of K digit images paired with their class labels. Within each episode, each of

the sampled image queries (which is not in the image support set) should be matched to

its correct label in the image support set.

3.6 Experiments

Ultimately we want to test the multimodal models on the speech-to-image matching task

(Chapter 3.6.3). To get to this, we start with developmental experiments which investigates

Eloff et al.’s [1] experiments by implementing our model architectures and theirs in our

experimental environment. Before getting to the speech-to-image matching task, we first

consider the unimodal speech and vision networks that the multimodal few-shot models
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Table 3.1: The image classification results produced with Eloff et al.’s [1] code.

Model
10-way accuracy (%)

one-shot five-shot

Classifier CNN [1]
Before mistake fix 64.19 ± 0.70 85.11 ± 0.34

After mistake fix 64.23 ± 0.70 85.04 ± 0.35

Siamese CNN [1]
Before mistake fix 67.23 ± 0.86 86.58 ± 0.45

After mistake fix 69.46 ± 1.31 87.75 ± 0.69

comprises of, in isolation. To do this we evaluate the speech networks on a unimodal

speech classification task and the vision networks on a unimodal image classification task.

3.6.1 Comparing Our Results to Eloff et al.’s

Our speech models are not directly comparable to Eloff et al.’s [1] since we use RNNs

instead of CNNs. RNNs are more appropriate than CNNs to model variable length spoken

words (Chapter 2.3.3).

In contrast to the speech models, our vision models should be directly comparable

to Eloff et al.’s [1]. Their image classification results could not be reproduced by the

code they published. In addition a mistake in Eloff et al.’s [1] validation setup was found:

they trained and validated on exactly the same data. Table 3.1 shows the actual results

produced by their code before and after the mistake was fixed. We will compare our results

to the actual results produced by their code after the mistake was fixed.

In Chapter 3.6.1.1 we specifically consider whether our implementation is comparable

to Eloff et al.’s [1]. Since we use less sampling classes p than Eloff et al. [1], we investigate

in Chapter 3.6.1.2 whether this affects the results.

3.6.1.1 Our Implementation vs. Eloff et al.’s Implementation

We use a different architecture for the vision classifier and Siamese networks than Eloff et al.

[1] to ensure comparability across all models in Chapters 3, 4 and 5. In our environment,

we implement our architecture and Eloff et al.’s [1] architecture. Table 3.2 compares these

two architectures when used for the classifier, and Table 3.3 compares these architectures

when used for the Siamese network.

From Table 3.2 we can see the accuracy scores for different classifier architectures

are sufficiently similar. Our classifier scores are only slightly worse than Eloff et al.’s [1]

implementation of their architecture (Classifier after mistake fix). Although our classifier

architecture performs well enough in comparison to theirs, the same does not hold for our

Siamese architecture.
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Table 3.2: Our implementation of the classifier vision models with our architecture vs.
Eloff et al.’s [1] architecture.

Architecture 10-way accuracy (%)

one-shot five-shot

Their implementation
Classifier after mistake fix
(from Table 3.1, row 2)

64.23 ± 0.70 85.04 ± 0.35

Our implementation
Our architecture 63.23 ± 1.42 82.90 ± 1.12

Eloff et al.’s [1] architecture 61.96 ± 2.21 81.42 ± 1.48

Table 3.3 shows our Siamese architecture and Eloff et al.’s [1] Siamese architecture

trained on p = 96 sampling classes. From this we see the Siamese triplet model is very

sensitive to the architecture used. Comparing our implementations (Table 3.3, rows 2

and 3) to their implementation (Table 3.3, row 1), we see that our implementation of

their architecture (Table 3.3, row 3) performs almost the same as their implementation

(Table 3.3, row 1). However, our architecture (Table 3.3, row 2) significantly underperforms

in comparison to theirs. Although our architecture performs worse, we keep this architecture

since it is comparable to the architectures of the vision models we use throughout this

thesis.

Except for the different Siamese architectures, the remaining difference between our

results and that of Eloff et al. [1] in Table 3.2 and Table 3.3, can be attributed to the

episode setup. Before training any models, we sample 400 of the following fixed episodes:

� validation episodes from the background data,

� unimodal test episodes from the in-domain data and from the background data,

� multimodal test episodes from the in-domain data.

These episodes are kept fixed across all models, whereas Eloff et al. [1] samples a random

episode upon demand. We found that this causes reproducibility issues: model accuracies

change depending on the sampled episode instances at that instance. However, our setup

Table 3.3: Our implementation of the Siamese vision models with our architecture vs.
Eloff et al.’s [1] architecture trained with p = 96.

Architecture 10-way accuracy (%)

one-shot five-shot

Their implementation
Siamese after mistake fix
(from Table 3.1, row 4)

69.46 ± 1.31 87.75 ± 0.69

Our implementation
Our architecture 63.28 ± 1.30 83.98 ± 0.44

Eloff et al.’s [1] architecture 68.70 ± 3.21 86.29 ± 1.88
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Table 3.4: Our vision Siamese triplet networks trained with different amounts of sampling
classes p.

Amount of sampling classes p 10-way accuracy (%)

one-shot five-shot

96 (from row 1 of Table 3.3) 63.28 ± 1.30 83.98 ± 0.44

88 64.78 ± 1.60 84.75 ± 1.32

produces more reliable and reproducible results since all models are tested on the same

fixed episodes.

3.6.1.2 The Number of Sampling Classes p

For the speech Siamese triplet network, we could only fit a maximum of 88 sampling

classes in the memory of a single GPU. Thus, for the speech and vision networks in the

multimodal Siamese model to be compatible, we have to use 88 sampling classes for both

the speech and vision Siamese triplet networks. Table 3.4 shows that different values of

p for the vision Siamese networks, leads to similar image classification accuracy scores.

Therefore, using p = 88 does not negatively influence the performance of the vision Siamese

triplet network.

3.6.2 K -Shot Unimodal Classification Tasks

Before getting to the multimodal matching results, we firstly evaluate the multimodal

models’ speech and vision networks separately on unimodal classification tasks. Table 3.5

presents the unimodal one- and five-shot 11-way speech classification results for the speech

classifier and Siamese networks against a DTW baseline. It shows that both transfer

learning models outperform the DTW baseline with the classifier RNN achieving the

highest accuracies on the one- and five-shot speech classification tasks.

Table 3.6 shows the results for the pixel baseline and the vision classifier and Siamese

networks on unimodal one- and five-shot 10-way image classification tasks. From these

Table 3.5: Unimodal one- and five-shot speech classification accuracies of the unimodal
speech transfer learning models vs. a DTW baseline.

Model
11-way accuracy (%)

one-shot five-shot

Baseline DTW 65.90 ± N/A 89.45 ± N/A

Transfer
learning models

Classifier RNN 86.87 ± 0.83 95.40 ± 0.50

Siamese RNN 83.52 ± 2.56 94.34 ± 0.86
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Table 3.6: Unimodal image transfer learning models vs. a pixel baseline on unimodal
one- and five-shot image classification tasks.

Model
10-way accuracy (%)

one-shot five-shot

Baseline Pixels 44.58 ± N/A 67.75 ± N/A

Transfer
learning models

Classifier CNN 63.23 ± 1.42 82.90 ± 1.12

Siamese CNN 64.78 ± 1.60 84.75 ± 1.32

results, we see the trend seen in Table 3.5 does not hold for our vision networks: both

transfer learning models outperform the pixel baseline, but the Siamese CNN achieved the

highest accuracies on the one- and five-shot image classification tasks.

Since the trends in the unimodal speech and image classification accuracies differ, we

conclude that the best unimodal one- or few-shot architecture (classifier or Siamese) is

dependent on the modality it is applied to. However, a recent study by Tian et al. [38]

found that a simple classifier-like model performed best on a five-way one- or five-shot

image classification task. Therefore, we note the classifier might be the best approach

for unimodal few-shot classification until the data classes becomes harder to differentiate

between. The relative distance learned by the Siamese triplet network might just work

better for the image digit classes since the digits are harder to differentiate between, e.g. a

3 and an 8 looks very similar.

3.6.3 K -Shot Multimodal Matching

Finally, we get to the results of the main task considered in this thesis: the multimodal

speech-to-image matching results. The models presented here is a re-implementation

of the models developed by Eloff et al. [1] in a consistent framework, and will serve as

the baselines in all subsequent chapters. After glueing the speech and vision networks

together to form the multimodal few-shot models, we use these models to perform the one-

and five-shot 11-way speech-to-image matching tasks with the results shown in Table 3.7.

Table 3.7: Multimodal transfer learning models on multimodal one- and five-shot
speech-to-image matching tasks.

Model
11-way accuracy (%)

one-shot five-shot

Baseline DTW + Pixels 31.80 ± N/A 41.88 ± N/A

Transfer
learning models

Classifier 56.80 ± 1.19 59.67 ± 1.73

Siamese 54.83 ± 1.80 59.25 ± 0.79
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Both transfer learning models outperform the DTW and pixel baseline on the one- and

five-shot multimodal matching tasks. This proves that the use of DL is in fact beneficial

for this multimodal matching task. As we can see from Table 3.7, despite the fact that

the classifier only slightly outperforms the Siamese model, the classifier proved to be the

most accurate model on the one- and five-shot matching tasks.

Comparing Table 3.7, Table 3.5 and Table 3.6 we see that the speech-to-image matching

scores are consistently lower than the unimodal (speech and image) classification scores.

This leads us to conclude that the there is a compounding of errors across the multimodal

support set.

Further speech-to-image matching analysis on the appropriate models of this chapter,

is done in the next chapter. This chapter simply intends to show that we were able to

construct a robust experimental framework and that our results are reliable.

3.7 Chapter Summary

This chapter introduced the multimodal speech-to-image matching task and how a previous

study used transfer learned multimodal few-shot learning models to do this task. We

re-implemented the experiments in [1] and found that Eloff et al.’s [1] results are not

reproducible. After investigation we found that this was due to episodes being randomly

sampled, as well as a mistake in the training setup (the same data was used for training

and validation). We based our experimental setup from Eloff et al.’s [1], but improved this

setup by sampling fixed episodes before any training is done. This leads to a reproducible

setup since all the models are tested on the same fixed episodes.

Based on our re-implementation, the multimodal classifier was identified as the best

multimodal few-shot model. In Chapter 4, we use this multimodal classifier as our new

baseline for a comparison of unsupervised vs. additional transfer learning models on the

same indirect two-step approach to do the speech-to-image matching task (Chapter 3.1.2)

used in this chapter. In Chapter 5, we will compare these models which follows an indirect

matching approach to models which learns a single multimodal embedding space to do the

matching task in a direct manner.
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Chapter 4

Unsupervised vs. Transfer

Learning for Multimodal

Few-Shot Learning

In this chapter we consider unsupervised models to learn representations for the multimodal

speech-to-image matching task introduced in Chapter 3.1. This can be motivated by

the theory that, before a child is shown new examples of visual objects paired with

corresponding spoken words to do a speech-to-image matching task, the child could be

exposed to a large amount of unlabelled speech and visual data from its environment. Some

of these unlabelled examples could correspond to the classes of the example pairs in the

speech-to-image matching task. Motivated by this observation, we ask how unsupervised

models trained on unlabelled in-domain data compares to transfer learning from background

data (the approach followed in Chapter 3 and by previous work [1]) to do the speech-to-

image matching task.

Unsupervised learning is a more difficult learning task than supervised learning since

unsupervised models are trained without labelled data. However, this gives the model

more flexibility to find the natural structure emerging from the data itself [63]. The hope

is that this natural structure can be used to find similar representations for instances of

the same unlabelled few-shot class. For our specific case of multimodal few-shot matching,

these unsupervised models have the benefit that they are trained on unlabelled in-domain

data. This means that, although the data is unlabelled, the model sees some examples of

the few-shot digit classes from which it might learn in-domain class specific information. In

contrast, although transfer learning models can be trained in a supervised way on labelled

data, they are trained on background data and therefore never observe the few-shot classes.

This raises the question: although unsupervised learning relies on proxy losses, can it

perform better than transfer learning for multimodal few-shot matching?

We specifically consider two unsupervised learning strategies, the AE and the CAE

trained on pairs discovered in an unsupervised fashion. In Chapter 4.4, these unsupervised
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models are compared to a transfer learned CAE (trained on ground truth background

pairs) as well as the best transfer learned model from Chapter 3, the classifier.

The unsupervised and additional transfer learned multimodal few-shot learning models

are combined in the same manner as the models in Chapter 3, e.g. an unsupervised

multimodal CAE consists of an unsupervised speech CAE and an unsupervised vision

CAE. After introducing the unsupervised multimodal models in Chapter 4.2.1, we discuss

the additional transfer learned multimodal models in Chapter 4.2.2. The content of this

chapter is published at Interspeech 2020 in a paper entitled Unsupervised vs. transfer

learning for multimodal one-shot matching of speech and images [64].

4.1 Related Work

For the unimodal speech models in this chapter, we consider unsupervised or transfer

learned sequence-to-sequence RNN AEs and CAEs. These models are used to produce

a fixed dimensional representation embedding for a given variable duration spoken word

consisting of a sequence of acoustic frames. The motivation to find fixed dimensional

representations for variable length word instances is two fold: (1) it enables us to compare

the variable length word instances that occurs in a speech-to-image matching episode,

to each other, and (2) we can remove nuisance information like speaker information and

channel noise from the representations to find similar representations for same class word

instances. Essentially, this is also the goals of acoustic word embedding models [18, 65–67].

To accomplish this, all these acoustic word embedding studies use RNNs to map words

consisting of variable length acoustic frame sequences, to fixed-size embeddings.

In order for these embeddings to be representative of the word class, Kamper [18] and

Chung et al. [65, 68] considered unsupervised methods. Kamper [18] and Chung et al.

[65] used sequence-to-sequence AE models with an encoder RNN to encode a variable

length word instance to a fixed representation. Thereafter a decoder RNN attempts to

reconstruct the input sequence from this representation. The intuition behind this is

that the representation would summarise the input word (its class) in such a way that

the input can be reconstructed from it. Specifically, Chung et al. [65] used a denoising

AE to produce word representations for a query-by-example spoken term detection task.

Similarly, Kamper [18] trained an AE as well as a variational autoencoder (VAE) and a

CAE (Chapter 2.3.7) on words isolated from entire spoken utterances using unsupervised

term discovery. To train the CAE, training pairs are mined in an unsupervised fashion.

This CAE produced more similar acoustic word embeddings for a specific word class

than either the AE and VAE. Furthermore, the CAE’s embeddings where more successful in

identifying word instances of the same class than a DTW baseline (Chapter 3). Holzenberger

et al. [67] reaffirmed this by using an AE RNN to learn acoustic word embeddings which

outperformed a DTW baseline in a word discrimination task. This strengthened the
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motivation to use speech models which is similar to the acoustic word embedding models.

Similarly to the unimodal speech models, we consider unsupervised or transfer learned

AEs and CAEs for the unimodal vision models. For the image instances in a speech-to-

image matching episode, instead of RNNs we use CNNs to get fixed smaller dimensional

representation embeddings. Koutńık et al. [69] and Hinton [70] aimed to reduce the

dimensionality of input images by finding fixed dimensional features for images using

unsupervised CNN networks. Specifically, Koutńık et al. [69] used a CNN encoder to feed

smaller dimensional representations to a classifier. Hinton [70] used an AE pretrained

as a restricted Boltzmann machine to improve the smaller dimensional representations

produced by the standard AE.

Such unsupervised vision studies which uses autoencoder-like architectures to find

representations for images that is both representative of the image and reduces the

dimensionality of images, are limited. Other unsupervised vision studies [71, 72] used

autoencoders to find representations for inpainting (image restoration), which is different

to the type of representation we aim to learn. Pathak et al. [71] specifically uses an AE

CNN that takes in an image with a cut out patch as its input, and aims to produce the

patch at its output. To predict the missing parts in a patch, the smaller dimensional

representations should capture the surrounding context of the patch. Similarly, Xie et al.

[72] uses a stacked sparse denoising AE to remove noise pixels form an image by using the

context information (captured in its representations) around the pixel.

4.2 Unsupervised and Transfer Learning Models

Similarly to Chapter 3, in this chapter we also use an indirect approach to do multimodal

few-shot learning: as described in Chapter 3.1.2, we use two unimodal comparisons (a

speech-speech and a image-image comparison) and a multimodal support set to perform

the multimodal few-shot matching task. In this section we therefore discuss different

methods to learn features in a single modality. Specifically, we consider unimodal models

in two settings: unsupervised models trained on unlabelled in-domain data (Chapter 4.2.1)

and transfer learned models trained on labelled background data (Chapter 4.2.2). We

compare the performance of these models on a multimodal few-shot matching task to the

baselines established in Chapter 3.

To quickly summarise the intuition behind transfer learning (from Chapter 3), the

labelled background speech and image data does not contain any of the few-shot classes

seen during test time. Therefore, the transfer learned models should use the knowledge

gained from these background classes to generalise to the unlabelled unseen few-shot classes.

In contrast, the unlabelled in-domain speech and image data includes unlabelled instances

of the few-shot classes we see during test time. These in-domain training instances do

not occur exactly in the few-shot test episodes. The unsupervised models should learn
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how to generalise to the unlabelled few-shot classes by using the natural structure of each

few-shot class that emerges from the in-domain data.

Specifically for the unsupervised unimodal models, we consider two objective functions,

an AE and a CAE. The CAE is generally trained on neighbour pairs obtained from data

labels. However, since we do not have labels for the in-domain data, we mine within-

modality (speech-speech and image-image) pairs from the unlabelled in-domain data to

train unsupervised speech and vision CAEs. This pair mining process will be described in

Chapter 4.3.1.

Thereafter, to get a clear comparison of unsupervised learning vs. transfer learning, we

train transfer learned variants of the unsupervised autoencoder-like models (on ground

truth pairs from the background data). An AE is unsupervised in nature since it does not

use labels during training. Therefore, we do not consider a transfer learned AE. We also

do not consider unsupervised variants of the classifier and Siamese models of Chapter 3.

This choice is based on Kamper et al.’s [62] work which showed that an unsupervised

speech CAE outperformed unsupervised classifier and Siamese speech models.
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Figure 4.1: The AE, CAE and AE-CAE model architectures. (a) A speech RNN is
used to learn feature representations for speech data and (b) a vision CNN is used to
learn feature representations for image data.
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4.2.1 Unsupervised Models

We consider an unsupervised AE (Chapter 4.2.1.1) and two unsupervised variants of the

CAE: a standard CAE (Chapter 4.2.1.2) and an AE-CAE (Chapter 4.2.1.3). The only

difference between these three models, as discussed in Chapters 4.2.1.1 to 4.2.1.3, is the

specified output y each network aims to produce. Figure 4.1 shows the architecture for

each of the unsupervised (a) speech and (b) vision AE, CAE and AE-CAE networks.

Specifically for the vision networks, we use unlabelled in-domain images to train

unsupervised vision networks with the AE, CAE and AE-CAE loss functions. Similarly

for the speech networks, we use unlabelled in-domain spoken words to train unsupervised

speech networks using the AE, CAE and AE-CAE loss functions.

4.2.1.1 Unsupervised Autoencoder

As a recap from Chapter 2.3.6, a unimodal autoencoder aims to reconstruct its input

through a bottleneck feature representation. The multimodal AE consists of a unimodal

speech AE as illustrated in Figure 4.1(a) and a unimodal vision AE as illustrated in

Figure 4.1(b). For the vision AE, a CNN encoder fθ(x
(i)
v ) encodes the input x

(i)
v to the

latent representation vector z
(i)
v . A decoder with transposed convolutions fφ(x

(i)
v ) then

decodes z
(i)
v to the network output ŷ(i)

v . Similarly for the speech AE, an RNN encoder

fθ(x
(i)
a ) produces the fixed-sized latent representation vector z

(i)
a which is then used to

condition an RNN decoder fφ(x
(i)
a ) to produce the network output ŷ(i)

a .

Both the speech AE fΘ(x
(i)
a ) and the vision AE fΘ(x

(i)
v ) are trained with the AE loss

function given in Equation 2.9. From this loss function, we see the intuition behind these

AEs is that it will produce feature representations z(i) with only the necessary information

(the class) to reconstruct the input.

4.2.1.2 Unsupervised Correspondence Autoencoder

Intuitively the features produced by the above AE will also have to capture unique specifics

of the current input besides its class to reconstruct it, e.g. the angle and style of the object

in an image input. However, we do not want the feature representations to contain this

nuisance information. To overcome this we look at a more complex, and perhaps a more

difficult objective to learn: a CAE.

As explained in Chapter 2.3.7, the CAE and AE have identical structures, but instead

of attempting to reproduce the input at its output like the AE, the CAE aims to produce

a pair of the input at its output through the smaller dimensional (bottleneck) feature

representation. The intuition is that the CAE will produce features z(i) that are invariant

to properties not common to the input and the input pair, while only capturing aspects

that are (such as the class).
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The multimodal CAE consists of a speech CAE shown in Figure 4.1(a) and a vision

CAE shown in Figure 4.1(b). Each unimodal CAE which has an identical encoder-

decoder structure as the above unimodal AEs, is trained with the CAE loss function

in Equation 2.10. For training, a unimodal CAE requires within-modality input-output

pairs where the input instance and output instance of each pair are of the same class and

modality. Since our in-domain data is unlabelled, we mine speech-speech and image-image

pairs in some unsupervised manner to train the unsupervised speech and vision CAEs.

For the image-image pairs, we mine unsupervised pairs that are predicted to be of

the same class by using cosine distance over flattened images from the unlabelled in-

domain data. Similarly, DTW over the unlabelled in-domain spoken words are used

to find unsupervised speech-speech pairs that are predicted to be of the same class.

The image-image and speech-speech pair mining process is discussed in further detail in

Chapter 4.3.1.

4.2.1.3 Unsupervised AE-CAE

Lastly we consider the AE-CAE. This model is pretrained with the AE loss function

(Equation 2.9) before switching to the CAE loss function (Equation 2.10). More specifically,

both the speech AE-CAE and vision AE-CAE are pretrained with the AE loss function

before switching to the CAE loss function. The multimodal AE-CAE consists of a speech

AE-CAE as shown in Figure 4.1(a) and a vision AE-CAE as shown in Figure 4.1(b). Each

unimodal AE-CAE has the same encoder-decoder structure as the above unimodal AEs

and CAEs.

The pretraining of the speech and vision AE-CAEs as AEs, are done exactly the same

as the training of the unsupervised speech and vision AEs described above. The training

of these unimodal AE-CAEs as CAEs, use the same unsupervised mined within-modality

pairs than the unimodal unsupervised speech and vision CAEs described above. By

pretraining the CAEs as AEs, the hope is that the model will take advantage of the

initialisation provided by the AEs to find a better local minimum for the CAE-loss.

4.2.2 Additional Transfer Learning Models

In Chapter 3 we considered transfer learning models using classifiers and Siamese triplet

networks. Here we also consider transfer learned variants of the CAE and AE-CAE

approaches discussed in Chapter 4.2.1.2 and Chapter 4.2.1.3, i.e. supervised CAE and

AE-CAE networks. The difference is that instead of mining unsupervised input-output

training pairs, we train these supervised models on ground truth pairs from the background

data by using the actual data labels. These transfer learned models were not considered

in [1].

The multimodal transfer learned CAE consists of a speech CAE as shown in Figure 4.1(a)
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and a vision CAE as shown in Figure 4.1(b). The unimodal CAEs have an identical

encoder-decoder structure as the unimodal CAEs in Chapter 4.2.1.2. However, the

unimodal transfer learned CAEs are trained on ground truth pairs from the labelled

background data that does not contain any of the few-shot testing classes. For the speech

CAE, we use the true word labels of the background data to find input-output pairs so

that the input instance and output instance within each pair are from the same word class.

Similarly for the vision CAE, we use the true labels of the background training images to

find an input instance and an output instance from the same class to form input-output

training pairs.

Similarly to the unsupervised multimodal AE-CAE in Chapter 4.2.1.3, the multimodal

transfer learned AE-CAE consists of a speech AE-CAE as shown in Figure 4.1(a) and a

vision AE-CAE as shown in Figure 4.1(b). Both the unimodal speech and vision AE-CAEs

are pretrained with the AE loss function on within-modality (labelled) background data

not containing any few-shot classes seen at test time. Although the background data

is labelled, the AEs do not require any labels during training. After pretraining the

unimodal AE-CAEs, we train these models with the CAE loss function on ground truth

within-modality pairs from the background labelled data. The ground truth image pairs

are the same pairs used to train the transfer learned vision CAE above. In addition, the

ground truth word pairs are the same pairs as the training pairs that the above transfer

learned speech CAE is trained on.

4.3 Experimental Setup

Before training the unsupervised CAEs and AE-CAEs, we mine speech-speech pairs for the

speech networks and image-image pairs for the vision networks (Chapter 4.3.1). Thereafter

we train the unimodal unsupervised and transfer learned models (Chapter 4.2) according

to the implementation discussed in Chapter 4.3.2. After training, we pair up corresponding

unimodal vision and speech models to construct multimodal few-shot learning models in

the same manner as Chapter 3. These models are evaluated on the tasks discussed in

Chapter 4.3.3.

4.3.1 Unsupervised Within-Modality Pair Mining

To mine image-image pairs we flatten all the MNIST images from images of size 28× 28

pixels to a vector of size 1× 784 pixels. We then use cosine distance over the flattened

pixels to find images that are most alike. Each image x in the MNIST dataset is compared

to each other image in the same dataset. A given image x and another image (not x) with

the smallest cosine distance to x, are predicted to be of the same class and taken as an

image-image pair. We therefore obtained paired training data from the domain in which
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we will be doing few-shot classification, but without access to any labels.

In a similar way, to find speech-speech pairs, we use DTW over the MFCCs of spoken

word instances to find word instances that are most similar to one another. Each word

instance x in the TIDigits corpus is compared to every other word instance in the corpus.

A word instance x and another word instance (not x) with the smallest DTW distance

score, are predicted to be of the same word class. To ensure that both instances in

a speech-speech pair are from different speakers, we take the two word instances from

different speakers with the smallest DTW distance as a speech-speech pair. We do this

to obtain speaker invariant feature representations for the multimodal few-shot matching

task and explicitly consider experiments that measures whether this actually leads to

speaker invariant features. The intuition behind this design choice is that it will ensure

the unsupervised speech CAE and AE-CAE do not retain any speaker information in their

produced feature representations. Logically, if both instances in a speech pair are from

different speakers, these speech networks would filter out the speaker information from the

representation since it is not something that the input and output pair have in common

and therefore would not be helpful to produce the input pair.

4.3.2 Unimodal Model Implementations

All the unsupervised and transfer learned autoencoder-like models have identical architec-

tures for the speech networks shown in Figure 4.1(a) and the vision networks shown in

Figure 4.1(b).

Unsupervised speech RNNs are trained using the AE, CAE and AE-CAE loss functions

(Chapter 4.2.1) on unsupervised speech-speech pairs which are mined from the unlabelled

isolated digit words in the TIDigits training set (Chapter 4.3.1). Unsupervised vision

CNNs are trained with the AE, CAE and AE-CAE loss functions (Chapter 4.2.1) on

unsupervised image-image pairs mined from the unlabelled digit images in the MNIST

training set (Chapter 4.3.1).

The transfer learned speech RNNs are trained using the CAE and AE-CAE loss

functions (Chapter 4.2.2) on ground truth speech-speech pairs from the labelled isolated

words in the Buckeye training set. The actual Buckeye data labels are used to find

speech-speech pairs so that both instances in a pair are from the same word class.

The transfer learned vision CNNs are trained using the CAE and AE-CAE loss functions

(Chapter 4.2.2) on ground truth image-image pairs from the labelled character images in

the Omniglot training set. Using the Omniglot image labels we setup image-image pairs

so that both images in a pair are form the same character class.

We use the same validation and hyperparameter tuning setup discussed in Chapter 3.5.1

to validate and tune the unimodal speech and vision models in this chapter. To obtain the

batch size used to train each model, we tune the parameters of each vision model on the
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Table 4.1: The batch sizes used to train each unimodal unsupervised or transfer learned
speech or vision network.

Model
Batch size

Speech network Vision network

Unsupervised models

AE 128 1024

CAE 256 1024

AE-CAE 256 1024

Transfer learned models
CAE 128 512

AE-CAE 256 1024

Omniglot test subset and each speech model on the Buckeye test subset. The resulting

batch sizes used to train each model, are reported in Table 4.1.

4.3.3 Evaluation Setup

For our main experiments, the multimodal few-shot learning models are tested on the

multimodal speech-to-image matching task. For this task, we use the same implementation

of the indirect approach to do the speech-to-image matching task given in Chapter 3.5.2.1.

The unimodal speech and vision networks in a multimodal model is also evaluated

separately. We do this in order to gain insights into the performance of the different parts of

the multimodal models. The unimodal vision networks are evaluated on a unimodal image

classification task with this task implementation given in Chapter 3.5.2.3. Chapter 3.5.2.2

describes the unimodal speech classification task implementation that is used to evaluate

the unimodal speech networks. In these tasks, we use a confusion matrix to obtain finer

analysis of which classes is correctly predicted and which classes the model confuses.

The confusion matrix is employed in either the speech-to-image matching task, the

speech classification task or the image classification task. The confusion matrix breaks

a model’s performance down by reporting for each input given to a model, what is the

model’s prediction of the input’s class and what is the input’s actual class. From this

matrix we can see a finer breakdown of how exactly classes are misclassified.

From the entries in the confusion matrix we can calculate the recall score. The recall

score for a certain class indicates which fraction of all the input queries of this class, is

correctly predicted. Specifically, the recall equation for a certain class is:

Recall =
True positives

Number of actual positives
. (4.1)
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4.4 Experiments

Firstly in Chapter 4.4.1, as our main experiments, we evaluate the unsupervised and

transfer learned multimodal models (Chapter 4.2) on the multimodal speech-to-image

matching task. To further investigate what attributes to these results, Chapter 4.4.2

considers the performance of the multimodal models’ vision and speech networks in

isolation on the unimodal classification tasks. Chapter 4.4.3 goes further by evaluating how

good the speech networks are at discarding speaker information. In the last subsections,

we then present some experiments towards combining transfer learning and unsupervised

learning (details are given at the start of Chapter 4.4.4).

4.4.1 Multimodal K -Shot Speech-to-Image Matching

Our main experiments in Table 4.2 shows multimodal one- and five-shot 11-way results

for the multimodal transfer learned and unsupervised models. By comparing the top and

bottom sections, we see that on both the one- and five-shot multimodal matching tasks,

the transfer learned multimodal classifier outperforms all other unsupervised and transfer

learning approaches. None of the unsupervised models perform as well as their transfer

learned variants, e.g. the transfer learned CAE has consistently higher one- and five-shot

accuracies than the unsupervised CAE. From this we conclude that using prior knowledge

from background data results in more useful feature representations for the speech-to-image

matching task than using unsupervised learned domain-specific information.

To analyse the results of the multimodal classifier (our best model) further, we consider

its confusion matrix on the five-shot 11-way multimodal matching task. By considering

the class “one”, we see that the classifier mostly predicts queries of the class “one” to

have a matching image of a 1. This holds for all the classes, however, for some classes

the model gets more confused than for others: when giving the classifier a query of an

Table 4.2: Multimodal unsupervised vs. transfer learned models on multimodal one-
and five-shot 11-way speech-to-image matching tasks.

Model
11-way accuracy (%)

one-shot five-shot

Transfer
learning models

Classifier (from row 2 in Table 3.7) 56.80 ± 1.19 59.67 ± 1.73

CAE 46.60 ± 0.69 53.82 ± 1.07

AE-CAE 48.15 ± 1.21 56.81 ± 1.21

Unsupervised
models

AE 28.99 ± 0.84 38.68 ± 1.51

CAE 42.75 ± 0.62 52.15 ± 0.69

AE-CAE 42.81 ± 1.01 50.28 ± 0.29
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Table 4.3: The confusion matrix produced by the multimodal classifier on the five-shot
11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 1312 67 50 200 88 87 133 88 127 109 64

2 36 1053 127 57 13 55 113 78 26 80 87

3 16 181 1164 14 154 9 99 125 69 62 38

4 81 39 19 1112 25 119 52 80 139 102 60

5 32 24 161 27 1143 98 14 152 59 98 44

6 48 79 28 119 96 1153 9 133 57 152 124

7 96 162 110 52 23 2 1167 70 196 67 80

8 73 109 106 80 132 122 60 800 178 116 82

9 65 40 57 104 43 48 177 174 892 112 93

0 16 81 23 70 38 102 46 80 57 952 1188

Total 1775 1835 1845 1835 1755 1795 1870 1780 1800 1850 1860

“eight”, the model often confuses the query as a 9, 5, 6 or 3. Since the word “eight” does

not sound acoustically similar to a “nine”, “five”, “six” or “three”, we suspect that the

confusion lies in the vision networks since an 8 looks visually very similar to a 9, 5, 6 or

3. To see whether this pattern holds for the other multimodal models, we analyse the

results of the classifier, transfer learned CAE and unsupervised CAE on a five-shot 11-way

matching task further in Chapter 4.4.1.1.

4.4.1.1 Finer-Grained Analysis

Analysing these results further in order to better understand the differences between the

different models, we consider the per-digit recall scores in Table 4.4 for the classifier, transfer

learned CAE and unsupervised CAE on the five-shot 11-way multimodal matching task.

From these recall scores, we see that for four of the eleven classes, one of the CAE models

achieve higher recall scores than the classifier. Therefore, in Table 4.5 we look at sniplets

from the confusion matrices of the classifier, transfer learned CAE and unsupervised CAE.

Table 4.5 specifically considers the three query classes that the CAEs are the least accurate

in predicting correctly: “two”, “five” and “nine”. The entire confusion matrices for the

Table 4.4: The per-digit recall scores of the multimodal classifier vs. multimodal CAEs
on a five-shot 11-way speech-to-image matching task.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven”“eight” “nine” “oh” “zero”

R
ec

a
ll
(%

)

Classifier 73.92 57.38 63.09 60.60 65.13 64.23 62.41 44.94 49.56 51.46 63.87

Transfer learned CAE 74.87 45.67 55.18 50.25 41.94 56.77 59.41 43.09 39.50 57.89 68.82

Unsupervised CAE 78.37 37.87 51.27 44.14 41.20 47.74 59.20 45.11 41.78 59.78 65.22
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Table 4.5: Some of the confusion matrix classes produced by the multimodal classifier
and CAEs on the five-shot 11-way speech-to-image matching task.

Predicted image class

1 2 3 4 5 6 7 8 9 0

Actual
speech
digit
class

“two”

Classifier 67 1053 181 39 24 79 162 109 40 81

Transfer learned CAE 158 838 182 53 25 74 202 127 44 132

Unsupervised CAE 260 695 136 108 27 86 188 112 92 131

“five”

Classifier 88 13 154 25 1143 96 23 132 43 38

Transfer learned CAE 146 25 208 73 736 107 71 104 133 152

Unsupervised CAE 117 17 258 74 723 132 62 127 120 125

“nine”

Classifier 127 26 69 139 59 57 196 178 892 57

Transfer learned CAE 159 35 71 240 109 57 159 201 711 58

Unsupervised CAE 92 68 72 306 140 68 130 126 752 46

transfer learned and unsupervised CAEs can be seen in Table A.1 and Table A.2.

Just considering class “five” in Table 4.5, we see that the classifier mostly predicts a

given query of a “five” to belong to the image class of a 3, 5 or 8. A “five” and a “three”

or “eight” do not sound acoustically similar but they do look very alike. Therefore, we

suspect that the confusion between a “five” and an 8 or 3 lies in the vision networks since

a 5 and an 8 or 3 are (subjectively) visually similar, but this will be fully discussed in the

next section.

The classifier confuses classes less often than the CAEs since it predicts a larger fraction

of the queries of a “five” as a 5 (recall 65.13%). From Table 4.5, we see that the transfer

learned CAE mostly confuses a query of a “five” as a 3, 0, 1 or 9. This is surprising since

neither of these classes are acoustically similar and only a 5 and a 3 or 0 (if the curved

part of the 5 is drawn bigger than the rest of the 5 ) looks similar. However, it mostly

confuses a query of a “five” as a 3.

Similarly, the unsupervised CAE mostly confuses a query of a “five” as a 3. Although

less, it also often confuses a “five” to be a 6, 8 or 0. This is less surprising since although

acoustically different, the 5 looks more similar to a 3, 6, 8 or 0. Although the results for

the unsupervised CAE are more logical, the transfer learned CAE predicts a slightly larger

fraction of the queries of a “five” as a 5. Such per class trends differ between models.

Furthermore, the models that achieves the highest recall scores for each class, differs.

However, the classifier achieves the highest recall scores for most of the classes (Table 4.4).

Overall we conclude that the CAEs find less distinctive representations per class for the

speech-to-image matching task than the classifier. This is the case irrespective of whether

they are trained on out-of-domain labelled background data or in-domain unlabelled data.
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Table 4.6: Unsupervised vs. transfer learning unimodal speech models on unimodal one-
and five-shot 11-way speech classification tasks.

Model
11-way accuracy (%)

one-shot five-shot

Transfer
learning models

Classifier RNN (from row 2 in Table 3.5) 86.87 ± 0.83 95.40 ± 0.50

CAE RNN 79.89 ± 1.32 92.16 ± 0.90

AE-CAE RNN 80.02 ± 1.04 93.91 ± 0.25

Unsupervised
models

AE RNN 53.82 ± 1.70 75.58 ± 1.54

CAE RNN 75.80 ± 1.76 95.14 ± 0.80

AE-CAE RNN 77.01 ± 1.29 93.30 ± 0.56

4.4.2 K -Shot Unimodal Classification Tasks

In the preceding section we considered the results of the multimodal models by using the

indirect approach to do the multimodal matching tasks. In order to obtain finer insights

into the performance of these models, we also considered the per-digit performance of

some of these models. To further extend this analysis, we now turn to the performance

of the individual unimodal models used in the two-step indirect multimodal matching

approach. The goal is not to obtain the best possible unimodal results here, but to use the

analysis that follows to gain insights into which part of the indirect multimodal matching

approach leads to decreased performance.

Table 4.6 shows one- and five-shot 11-way speech classification results. Similar to the

trend we see in the multimodal models from Table 4.2, all transfer learning speech models

in the top section outperform their unsupervised counterparts in the bottom section.

The classifier RNN from Chapter 3 still achieves the highest one- and five-shot speech

classification accuracies.

Table 4.7: Unsupervised vs. transfer learning unimodal image models on unimodal one-
and five-shot 10-way image classification tasks.

Model
10-way accuracy (%)

one-shot five-shot

Transfer
learning models

Classifier CNN (from row 2 in Table 3.6) 63.23 ± 1.42 82.90 ± 1.12

CAE CNN 58.23 ± 0.83 78.16 ± 0.87

AE-CAE CNN 59.36 ± 0.60 79.60 ± 0.60

Unsupervised
models

AE CNN 49.71 ± 0.96 66.84 ± 0.99

CAE CNN 54.98 ± 0.90 77.62 ± 0.69

AE-CAE CNN 54.41 ± 0.59 76.67 ± 0.91
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Table 4.8: The per-digit recall scores of the speech classifier vs. speech CAEs on a
five-shot 11-way speech classification task.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven”“eight” “nine” “oh” “zero”

R
ec

a
ll
(%

)

Classifier 94.02 99.13 97.17 95.79 98.25 99.95 99.24 97.37 98.22 86.13 97.16

Transfer learned CAE 91.36 88.75 96.62 94.37 95.27 97.93 94.85 90.85 92.44 81.55 89.19

Unsupervised CAE 95.16 88.86 96.51 96.12 95.38 98.58 98.05 96.66 98.28 88.29 95.26

The unimodal image classification results seen in Table 4.7 shows a very similar trend

to unimodal speech classification (Table 4.6) and multimodal speech-to-image matching

(Table 4.2): the transfer learning vision models outperform all the unsupervised vision

models with the classifier CNN still achieving the overall highest image classification

accuracies.

Considering the per-digit recall scores for the five-shot speech classification tasks as

shown in Table 4.8, we see that the scores for the CAE RNNs are quite competitive to

the classifier RNN. From the confusion matrices for the three speech models (Table 4.9,

Table C.1 and Table C.2) considered in Table 4.8, we see that overall the speech networks

produces high recall scores: they less often confuse a query of a certain class to be of

another class. From the confusion matrix for the speech classifier RNN on the five-shot

11-way speech classification task in Table 4.9, we see that it rarely confuses classes, e.g. a

“six” is misclassified only once as a “seven”. Classes that the speech models sometimes

confuses are the classes “nine” and “one”, as well as “two” and “zero”. This makes sense

since a “one” and a “nine” ends on the same consonant followed by the same vowel (“ne”).

Similarly, a “two” and a “zero” ends on the same vowel.

Table 4.9: The confusion matrix produced by the speech classifier RNN on the five-shot
11-way speech classification task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
speech
class

“one” 1730 0 5 0 3 0 0 4 26 58 1

“two” 0 1824 12 4 0 0 11 1 0 5 31

“three” 0 2 1754 2 1 0 0 7 0 4 4

“four” 0 0 10 1753 10 0 0 1 0 58 5

“five” 2 0 0 12 1744 0 1 3 0 52 0

“six” 0 0 2 1 0 1834 0 18 0 0 0

“seven” 1 3 6 3 1 1 1831 0 0 1 8

“eight” 3 0 13 1 1 0 0 1777 2 40 0

“nine” 98 0 0 0 5 0 1 9 1768 31 1

“oh” 5 0 1 21 10 0 0 5 4 1559 1

“zero” 1 11 2 33 0 0 1 0 0 2 1744

Total 1840 1840 1805 1830 1775 1835 1845 1825 1800 1810 1795
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Table 4.10: The per-digit recall scores of the vision classifier vs. vision CAEs on a
five-shot 10-way image classification task.

Actual image query digit class

Model 1 2 3 4 5 6 7 8 9 0

R
ec

a
ll
(%

)

Classifier 97.35 77.85 85.05 82.75 86.70 84.20 83.35 62.30 77.95 91.50

Transfer learned CAE 98.55 74.80 75.95 71.20 69.85 80.70 80.60 67.30 68.45 94.25

Unsupervised CAE 98.75 68.00 79.50 68.05 69.10 75.85 82.70 70.30 70.20 93.70

The per-digit recall scores of the CAE CNNs and classifier CNN on a five-shot 10-

way image classification task shown in Table 4.10, vary more than the speech scores.

Additionally, the image recall scores for the classes 2 to 9 are significanly lower than

the scores for the classes 1 and 0 (similarly to the trend seen in the multimodal recall

scores). These scores for classes 2 to 9 are also significantly lower than their corresponding

speech scores. To investigate why this happens and why this trend is reflected in the

multimodal scores, we consider sniplets from the confusion matrices of the vision classifier

CNN, transfer learned CAE CNN and unsupervised CAE CNN (Table 4.11) on the classes

2, 5 and 9 considered in Chapter 4.4.1. The entire confusion matrices for these vision

models can be seen in Table E.1, Table E.2 and Table E.3.

Just considering the unsupervised CAE CNN, we see that it mostly confuses an image

query of a 5 to be a 3. This is understandable since these two written characters can look

very alike as illustrated in Figure 4.2. However, a “five” and a “three” does not sound

acoustically alike. This is reflected by the performance of the unsupervised CAE RNN

(Table C.2). The unsupervised CAE RNN only predicted a query of a “five” to be a “three”

three times out of the 1775 queries of a “five” that were considered. We conclude that

the multimodal unsupervised CAE confuses a query of a “five” to be that of a 3 since its

vision network confuses these classes. To prove this for the unsupervised CAE, Figure 4.2

Table 4.11: Some of the confusion matrix classes produced by the vision classifier CNN
and CAE CNNs on a five-shot 10-way image classification task.

Predicted image class

1 2 3 4 5 6 7 8 9 0

Actual
image
digit
class

2

Classifier 57 1557 93 12 7 28 106 88 4 48

Transfer learned CAE 106 1496 64 17 12 38 157 66 11 33

Unsupervised CAE 240 1360 72 51 7 33 141 54 19 23

5

Classifier 28 0 68 1 1734 74 7 52 10 26

Transfer learned CAE 63 3 151 26 1397 95 9 91 46 119

Unsupervised CAE 39 8 192 48 1382 76 13 112 65 65

9

Classifier 42 12 31 59 19 10 120 116 1559 32

Transfer learned CAE 34 10 36 208 53 30 103 117 1369 40

Unsupervised CAE 34 8 30 271 45 27 87 59 1404 35
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Figure 4.2: Six examples where each pair in the figure shows the multimodal unsuper-
vised CAE predicting a query of a “five” to belong to a support set word instance of a
“five”, but predicting this instance’s paired image of a 5 (left instance in each pair) to be
a 3 (right instance of each pair).

shows some of the queries of a “five” which were correctly matched to an instance of a

“five” in the support set. These support set instances of a “five” with their paired images

of a 5 (left instance in each pair in Figure 4.2) are then confused by the unsupervised

vision CNN to belong to images of a 3 (right instance in each pair).

For each of the query classes “two” to “nine”, the multimodal models confuse each

of these query classes with an incorrect image class because the vision networks confuses

these two classes (Table 4.4, Table 4.8 and Table 4.10). This is understandable since the

image classes are visually (at a subjective level) more alike than the spoken digit classes.

Comparing the speech classification, image classification and speech-to-image matching

accuracies (Table 4.2, Table 4.6 and Table 4.7 or Table 4.4, Table 4.8 and Table 4.10), we

see that the multimodal scores are consistently lower than the corresponding unimodal

scores. From the analysis we see that the errors made by the vision and speech networks

are amplified by their union in the multimodal speech-to-image matching task. I.e. in

the two-step indirect matching approach, the speech model could make a mistake in the

speech-speech comparisons and pick the wrong (but acoustically similar) item in the

support set. This leads to a misclassification even if the image-image comparisons selects

the correct image matching the wrong support set item. The speech-speech comparison

could also identify the correct support set item, but then the vision model could make a

mistake in the image-image comparison by then selecting the wrong image from the test

set. Therefore, there is a compounding of errors in this two-step approach.

From this discussion, it is evident that the transfer learning approach originally followed

in [1] outperforms the unsupervised and transfer learned approaches developed in this

chapter.

61

Stellenbosch University https://scholar.sun.ac.za



4.4. Experiments

4.4.3 Speaker Invariance of the Unimodal Speech Networks

For the indirect multimodal few-shot matching approach, to do the speech-speech compar-

isons, we need similar representations for spoken word instances. Therefore, a representa-

tion for the word “one” said by a speaker should be similar to the representation for the

word “one” said by another speaker. A stumbling block in a lot of speech models, is that

representations of the word “one” and “done” said by the same speaker would be more

similar than the representations of the word “one” said by different speakers. In order to

evaluate whether the features produced by our speech models, are invariant to speaker

information, we test each unimodal speech network on a harder speech classification task.

In each episode of this speech classification task, we sample only one query and a

support set containing K examples for each of the L = 11 classes. We sample the instances

in the support set in the following manner: all K examples of the same class as the query,

are from different speakers than the query. Additionally, the rest of the examples, which

are from different classes than the query, are said by the same speaker than the query.

Table 4.12 shows the one- and five-shot 11-way speech classification scores of the speech

networks on 400 of these hard speech episodes. From these scores, we see that the classifier

RNN achieves the highest accuracies on this hard task. Comparing the top and bottom

sections, we also see that the transfer learned speech models outperform their unsupervised

variants. We therefore conclude that the classifier produces representations that contains

less speaker information than any of the other unsupervised or transfer learned networks.

It seems like the classifier is our best model since the word representations of the classifier

retains more class information and less speaker information.

Table 4.12: The speaker invariance of the unimodal speech models on hard unimodal
one- and five-shot 11-way speech classification tasks.

Model
11-way accuracy (%)

one-shot five-shot

Transfer
learning models

Classifier RNN 84.30 ± 1.19 92.45 ± 0.83

CAE RNN 62.85 ± 2.68 78.90 ± 0.75

AE-CAE RNN 59.90 ± 1.34 79.15 ± 1.74

Unsupervised
models

AE RNN 30.65 ± 1.67 41.35 ± 1.31

CAE RNN 55.45 ± 2.82 87.75 ± 1.98

AE-CAE RNN 50.45 ± 2.47 72.00 ± 3.28

62

Stellenbosch University https://scholar.sun.ac.za



4.4. Experiments

4.4.4 Towards Combining Transfer and Unsupervised Learn-

ing

In the preceding sections we concluded that transfer learning outperforms unsupervised

learning on the indirect multimodal matching approach. Despite this conclusion, we

ask whether these two methodologies might be complementary: transfer learning might

learn certain beneficial general aspects, while unsupervised learning might learn beneficial

domain specific aspects. The combination of the two methodologies might lead to better

overall performance. Since the direct multimodal matching approach in the next chapter

relies on the combination of these two methodologies, we perform an initial investigation

by using the combination of these methodologies for the indirect multimodal matching

approach.

We propose two models that combine unsupervised and transfer learning: the Unsuper-

vised CAE with transfer learned classifier pairs and the Transfer learning + unsupervised

fine-tuning with transfer learned classifier pairs. Table 4.13 shows the results of these two

new combination models we propose. The Unsupervised CAE with cosine pairs (Table 4.13,

row 2) is repeated from row 5 in Table 4.2.

For the standard unsupervised vision CAE (Unsupervised CAE CNN with cosine pairs),

we found nearest neighbour image-image pairs using cosine distance (Chapter 4.2.1.2).

Instead, to find image-image pairs, we now use cosine distance over the representations for

the unlabelled in-domain images where the representations are extracted from the transfer

learned vision classifier (trained on background images). We train the Unsupervised CAE

CNN with transfer learned classifier pairs on these new image-image pairs.

For the Unsupervised CAE RNN with transfer learned classifier pairs we find new speech-

speech pairs by using cosine distance over the representations for the unlabelled in-domain

word instances, where the representations are extracted from the transfer learned speech

Table 4.13: Multimodal one- and five-shot 11-way speech-to-image matching using
multimodal models that combine unsupervised and transfer learning.

Model
11-way accuracy (%)

one-shot five-shot

Transfer learning classifier (from row 2 in Table 3.7) 56.80 ± 1.19 59.67 ± 1.73

Unsupervised CAE with cosine pairs 42.75 ± 0.62 52.15 ± 0.69

Unsupervised CAE with transfer learned classifier pairs 48.66 ± 1.14 55.59 ± 0.71

Transfer learning + unsupervised fine-tuning with transfer
learned classifier pairs CAE

54.32 ± 2.19 59.37 ± 1.80

Oracle pairs CAE 89.19 ± 0.69 92.81 ± 0.47
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classifier (trained on background words). Similarly to the standard unsupervised speech

CAE (Unsupervised CAE RNN with cosine pairs) that used a cosine DTW metric over

word instances to find speech-speech pairs (Chapter 4.2.1.2), we use speaker information

to ensure that these new speech-speech pairs are from different speakers.

We see that this Unsupervised CAE with transfer learned classifier pairs (Table 4.13,

row 3) gives a small improvement over the standard CAE (Unsupervised CAE with cosine

pairs). By additionally initialising speech and vision CAEs by training it on ground truth

pairs from the labelled background data and then fine-tuning it on the in-domain classifier

generated pairs above (Transfer learning + unsupervised fine-tuning with transfer learned

classifier pairs CAE, row 4), we get a further improvement.

Although neither of these combination models could outperform the transfer learned

classifier (Table 4.13, row 1), performance improved over both the standard unsupervised

approach and the transfer learned variants of the unsupervised approach. This trend holds

for the confusion matrices (Table A.3 and Table A.4) and recall scores (Table B.1) of

these combination models. We also conclude that neither of the combination models could

overcome the compounding of errors or find more general representations for the indirect

multimodal matching approach than the classifier.

In order to see if it is at all possible to achieve better performance with the CAE

by using more accurate training pairs, we also give the accuracy scores (Table 4.13, row

5) of a CAE trained only using correct in-domain pairs. We see that this oracle model

outperforms all other approaches, indicating that, if we were able to improve the CAE’s

training pairs, we might be able to take advantage of an unsupervised learning scheme.

Although the oracle model is the most accurate in correctly predicting a query of a certain

class, in its confusion matrix in Table A.5 we see there still exists a bit of confusion between

certain classes.

In order to see what happens in these combined models, we do a finer-grained analysis

in Chapter 4.4.4.1.

4.4.4.1 Understanding the Combined Models

Similar to how we analysed the performance of the transfer learned and unsupervised

multimodal models on the indirect multimodal matching approach in Chapter 4.4.2, here

we also briefly perform finer-grained analysis of the combined multimodal models on the

indirect matching approach. Our goal is to determine whether the trends in the combined

transfer learning + unsupervised learning approach are different to those observed for the

approaches in isolation.

To gain more insight into the performance of the combined models, we consider the

speech and vision networks of the combination models in isolation on the unimodal

classification tasks. Table 4.14 shows the one- and five-shot 11-way speech classification

scores for the combination models’ speech networks. From these results, we see that
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Table 4.14: Unimodal one- and five-shot 11-way speech classification using unimodal
speech models that combine transfer and unsupervised learning.

Model
11-way accuracy (%)

one-shot five-shot

Transfer learning classifier RNN (from row 2 in Table 3.5) 86.87 ± 0.83 95.40 ± 0.50

Unsupervised CAE RNN with cosine pairs 75.80 ± 1.76 95.14 ± 0.80

Unsupervised CAE RNN with transfer learned classifier pairs 78.16 ± 2.81 95.75 ± 0.98

Transfer learning + unsupervised fine-tuning with transfer
learned classifier pairs CAE RNN

88.16 ± 1.56 97.91 ± 0.30

Oracle pairs CAE RNN 95.65 ± 0.75 98.67 ± 0.58

differently to the trend we see in the multimodal results (Table 4.13), the Transfer learning

+ unsupervised fine-tuning with transfer learned classifier pairs CAE RNN outperforms

the classifier RNN baseline from Chapter 3. From the per-digit speech recall scores of this

speech combination model shown in Table D.1, we see that it achieves the highest recall

scores for seven of the few-shot classes. The classifier has the highest recall scores for the

other four classes. In addition, this combination model achieves recall scores that are very

close to oracle results. Since the speech results seems quite promising, we now turn to the

vision results to investigate why the combined multimodal models are still outperformed

by the multimodal transfer learned classifier.

Table 4.15 shows the one- and five-shot 10-way image classification scores for the vision

models. These results follow the same trend as the multimodal results in Table 4.13:

the classifier CNN is more accurate than the vision combination models. However, these

vision combination models shows improvement over the standard unsupervised CAE CNN

Table 4.15: Unimodal one- and five-shot 10-way image classification using unimodal
image models that combine transfer and unsupervised learning.

Model
11-way accuracy (%)

one-shot five-shot

Transfer learned classifier CNN (from row 2 in Table 3.6) 63.23 ± 1.42 82.90 ± 1.12

Unsupervised CAE CNN with cosine pairs 54.98 ± 0.90 77.62 ± 0.69

Unsupervised CAE CNN with transfer learned classifier pairs 57.57 ± 0.63 79.65 ± 0.69

Transfer learning + unsupervised fine-tuning with transfer
learned classifier pairs CAE CNN

60.48 ± 1.63 81.60 ± 1.52

Oracle pairs CAE CNN 94.12 ± 0.49 97.57 ± 0.31
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(Table 4.15, row 2). This is also reflected in the image recall scores in Table F.1. Overall,

the image recall scores for some classes (2 to 9 ) are still lower than for others (1 and 0 ),

i.e. the vision networks of the combination models does not improve the recall scores of

these classes.

The oracle image recall scores in Table F.1 are promising leading us to conclude that

improving the image pairs of the unsupervised CAE could lead to better unimodal and

multimodal scores. However, recalling the multimodal results of the oracle models above,

we notice that there still exists some (although less) confusion when using the very accurate

oracle speech and vision networks for the indirect approach to do the speech-to-image task

(Table B.1). I.e. the multimodal oracle results have lower recall scores than its vision and

speech components because of a compounding of errors in the matching task.

This leads us to ask whether we can get rid of this compounding of errors by reducing

the two unimodal comparisons in the indirect speech-to-image matching approach to a

single multimodal comparison where speech and image instances can be compared directly

in a single embedding space. A direct approach that combines unsupervised and transfer

learning to find similar representations for words and images of the same class might also

add the necessary information required to more accurately distinguish between the image

digit classes.

4.5 Chapter Summary

In this chapter we compared unsupervised and transfer learning models for the multimodal

few-shot learning setting. We are the first to consider unsupervised learning for this

task. However, the transfer learned models consistently outperformed the unsupervised

models on the speech-to-image matching task. After considering the oracle experiments

for the unsupervised models, we saw that by improving the unsupervised models’ pairs we

can find some unsupervised scheme that outperforms the pure transfer learning models.

Therefore we combined the unsupervised and transfer learning methodologies by using

transfer learning to find pairs for the unsupervised models. We also pretrained one of

these unsupervised models on background data before training it on the pairs generated

using transfer learning. However, we found these combination models just fell short of the

multimodal transfer learned classifier.

On the two-step indirect matching approach, these combination models could not

overcome the compounding of errors across the support set that emerged from the purely

transfer learned and unsupervised models. In addition, the models considered in this

chapter could not find clearly distinguishable features for the image few-shot classes, i.e.

the models confuse image classes that are visually too similar.

In an attempt to eliminate this compounding of errors and find better image represen-

tations, in the next chapter we consider models that directly maps images and spoken
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words into a single joint multimodal space. Specifically extending the initial experiments in

Chapter 4.4.4, we consider combining the unsupervised and transfer learning methodologies

to get direct multimodal few-shot learning solutions to do the multimodal speech-to-image

matching task using a direct approach.
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Chapter 5

Direct Multimodal Few-Shot

Learning

In the previous chapters we followed an indirect approach to do multimodal few-shot

learning of speech and images: a speech network measures similarity between spoken words

and a vision network measures similarity between images. At test time, we use these

networks to do speech-speech and image-image comparisons across a multimodal few-shot

support set to indirectly match unseen unlabelled word queries to unseen unlabelled

matching images.

Indirect Multimodal Few-Shot Learning involves learning two separate

unimodal spaces and using a multimodal few-shot support as a pivot between the two

unimodal spaces.

In contrast, in this chapter we consider direct multimodal few-shot learning models

which learns a direct mapping between spoken words and images from only the few

examples in the multimodal support set. These direct models can measure similarity

between the speech and vision domains in a single joint space, so that a single direct

comparison can be used in the multimodal speech-to-image matching task to match unseen

unlabelled word queries to unseen unlabelled matching images.

Direct Multimodal Few-Shot Learning refers to the task of learning a single

multimodal embedding space from a multimodal few-shot support set so that observations

from the two modalities can be directly compared.

For instances of the two modalities to be directly comparable, the multimodal embedding

space should map cross-modal instances of the same class to similar representations. Specif-

ically for our setting, this multimodal embedding space should find similar representations

for spoken word and image digits of the same class.

By attempting to find modality invariant representations per class, we hope to eliminate

the phenomenon that emerged from the unimodal models of Chapter 4: some classes
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are often confused to be of another class since some of their instances appear to be very

similar. For instance, the unimodal vision models often confused a 5 and a 3 since some

instances of 5 ’s and 3 ’s are visually similar. However, the unimodal speech models could

clearly distinguish between a “five” and a “three” since these two words are acoustically

different. The intuition is that during training the direct model will notice that although

a 5 and a 3 are visually similar, their corresponding word classes sound different and

from this realise that the two images are from two different classes. Therefore, if classes in

either one of the two modalities are hard to distinguish between, a direct model uses the

complementary speech and vision signals to hopefully learn a distance metric that can

better distinguish between classes.

This manner of using complementary speech and vision signals to reduce confusion

between classes of either a speech or a vision model, is motivated by how humans learn.

Borovsky et al. [11] theorised that humans use specific information present in an object

to learn its corresponding word, or vice versa [11]. For example, when humans learn the

name of a novel dog breed, they might use visual information specific to the breed (e.g. the

colour and size of the specific dog breed) to learn the word. Furthermore, children are able

to learn a new spoken word from its corresponding visual object, or vice versa, from only

a few paired examples [13]. Before seeing these paired examples it is plausible that a child

might have seen or heard unlabelled instances of these paired examples. This in-domain

specific knowledge obtained in an unsupervised fashion or prior knowledge gained from

learning other classes, might aid them in learning these new words and objects.

Therefore, to obtain direct multimodal few-shot learning models, we combine transfer

learning with unsupervised learning: unimodal speech and vision transfer learned models,

along with a multimodal few-shot support set, are used to mine unsupervised cross-modal

(speech-image) pairs from unlabelled in-domain data. On these unsupervised mined speech-

image pairs, we train multimodal models which should learn similar representations for

cross-modal instances of the same class.

For these multimodal models we consider two multimodal networks: a multimodal

correspondence autoencoder (MCAE) discussed in Chapter 5.3.1 and a multimodal triplet

network (MTriplet) discussed in Chapter 5.3.2. These multimodal few-shot learning models

are used in a direct approach to do the speech-to-image matching task. In Chapter 5.5

we then compare these direct few-shot models to the transfer learned and unsupervised

multimodal few-shot models of Chapter 4.
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(b) Using direct multimodal comparisons learned from (a) Using the support set  and unimodal comparisons
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Figure 5.1: (a) Indirect multimodal one-shot speech-to-image matching using a multi-
modal support set and two unimodal comparisons (Chapter 3 and Chapter 4), and (b)
direct multimodal one-shot speech-to-image matching (Chapter 5).

5.1 A Direct Approach to Multimodal Speech-to-

Image Matching

To do the multimodal speech-to-image matching task discussed in Chapter 3.1.1 at test

time, a multimodal few-shot learning model DS(xa,xv) is prompted to match an unseen

unlabelled speech query x∗a to a matching image from a matching set Mv = {(x(j)
v )}Nj=1

of unseen unlabelled images. For the direct approach to do this matching task, we find

a direct distance metric DS(xa,xv) between cross-modality (as well as within-modality)

inputs to directly match speech queries to matching images. As illustrated in Figure 5.1(b),

we find this metric using only a multimodal K-shot support set S consisting of K isolated

spoken words x
(i)
a each paired with a corresponding image of the same class x

(i)
v for each of

the L classes. Therefore, we need some direct multimodal few-shot learning model which

uses a multimodal support set S to learn a single joint (multimodal) space from which

we obtain a direct distance metric DS(xa,xv). I.e. in this multimodal space, cross-modal

inputs of the same class should have similar representations. In Chapter 5.3 we discuss the

different direct multimodal few-shot models we consider to learn this multimodal space.

Specifically to perform this direct matching approach, from these direct few-shot models

we extract representations z∗a for each speech query x∗a and representations z
(v)
v for each

image x
(i)
v inMv. Thereafter, we compare the representation z∗a of each speech query x∗a to

the representations z
(i)
v of each test image x

(i)
v inMv. The image x

(i)
v with a representation

z
(i)
v that has the smallest cosine distance to the query’s representation z∗a, is chosen as the

query’s matching image. Figure 5.2 illustrates this multimodal z-space where the query

representation of a “three” lies close to the image representation of a 3 and the query
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“three”

“eight”

Figure 5.2: The multimodal z-space maps spoken words and images of the same class
to similar representations.

representation of an “eight” lies close to the image representation of an 8.

5.2 Related Work

Although we consider multimodal few-shot learning, we need some multimodal network

which can jointly model two modalities and their relationship to one another. There is a

rich history of multimodal models which are trained to directly represent two different

modalities within a single shared space [63, 73–76]. Most importantly for us is the recent

work by Harwath et al. [63, 75, 76]. We should emphasise that these studies do not consider

multimodal few-shot matching, but (typically) train their models on large amounts of

paired data in the two modalities.

Harwath et al. [63, 76] attempts to find a relative similarity metric between images and

spoken audio captions by mapping images and their spoken audio captions to joint [63]

or separate [76] image and speech representations. This is done by using a multimodal

triplet hinge loss and two CNN subnetworks, a speech network and a vision network. The

multimodal triplet loss combines two unimodal triplet hinge losses in order to get a relative

distance metric between cross-modal inputs: it finds a mapping in which cross-modal

observations from the same class are closer to one another than cross-modal observations

from different classes. Similarly, we also consider a speech-vision triplet model trained on

a modified version of the multimodal triplet loss used by Harwath et al. [63, 76]. We refer

to this model as the MTriplet.

The original model from Harwath et al. [63, 76] uses CNNs for the speech and vision

subnetworks, whereas our MTriplet consists of a CNN vision network and an RNN speech

network. Harwath et al. [63, 76] uses labels to pair up images with corresponding descriptive

captions to train their multimodal models. However, we consider this model in the few-shot
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learning setting by training the model on cross-modal pairs mined from a multimodal

support set in an unsupervised fashion. Therefore the focus of the MTriplet is to find a

relative distance metric for cross-modal inputs. Instead of this relative distance metric,

other multimodal modelling studies aim to just find similar representations for same class

observations from different modalities.

Some of these multimodal models consists of two autoencoder-like subnetworks where

each subnetwork represents one of the two modalities of interest [77–79]. These subnetworks

are then connected to one another by a multimodal loss term connecting their representation

layers. Ngiam et al. [79] used AEs, as well as a restricted Boltzmann machine and a deep

belief network, to get joint audio and video frame representations. Silberer and Lapata

[78], Socher et al. [80] and Weston et al. [81] finds joint image and text representations

by using stacked bimodal AEs [78] or some probabilistic models [80, 81]. Feng et al.

[77] learns separate image and text representations using a vision AE and a text AE

connected at their bottleneck representation layers. Each within-modality AE does not

only attempt to reconstruct its same-modality input, but also the cross-modal input given

to the other modality AE. We consider a similar multimodal network which we refer to

as the MCAE. But instead of AEs we use CAEs and we consider the network in the

multimodal speech-image few-shot learning setting to find separate spoken word and image

representations: the MCAE is trained on cross-modal pairs mined from a multimodal

few-shot support set. Furthermore, each CAE in the MCAE does not attempt to produce

the other modality CAE’s output as well.

As far as we know, we are the first to use the MCAE structure. Additionally, this

is only the second study that considers direct multimodal few-shot learning. The first

study was a preliminary study of direct multimodal few-shot learning by Eloff [82], which

combined the transfer learning and meta-learning approaches to train a model with a

similar structure than our MTriplet. Differently to Eloff [82], we train the MTriplet on

cross-modal pairs mined in an unsupervised manner. Our direct multimodal study has

not yet been compared to Eloff’s [82], but this should be done in future work (see the

discussion in Chapter 6.4).

5.3 Direct Multimodal Few-Shot Learning

In Chapter 3 and Chapter 4 we considered multimodal models consisting of separate

unimodal speech and vision networks. These multimodal models where used to do the

multimodal speech-to-image matching task in an indirect two-step approach. Now we

consider multimodal models that find a direct distance metric between spoken words

and images by learning a single multimodal embedding space. Using this direct distance

metric, we can perform the multimodal speech-to-image matching task using a single direct

comparison between speech queries and matching images as illustrated in Figure 5.1(b).
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However, to learn the multimodal embedding space, the multimodal models are only

provided with a multimodal support set consisting of a few ground truth speech-image

pairs.

Since such a small number of speech-image pairs would not be sufficient to train a

model capable of successfully learning a mapping between spoken words and images, we

mine cross-modal (speech-image) pairs from unlabelled spoken words and images to train

these models on. The process we use to obtain these mined cross-modal pairs using

transfer learned unimodal speech and vision models and a multimodal support set, is

explained in detail in Chapter 5.3.3.1. Since the speech-image training pairs are mined

from unlabelled data and is never checked to be correct, the direct models are trained on

unsupervised cross-modal pairs. The classes of these unlabelled cross-modal pairs seen by

the multimodal models during training, are also seen at test time. However, the instances

seen during training do not occur exactly at test time.

By mining the unsupervised speech-image pairs using transfer learned unimodal models,

we combine transfer learning and unsupervised learning to obtain multimodal few-shot

learning models. It is important to note that these multimodal models are multimodal

few-shot learning models since it learns from only the few speech-image pairs given for

each of the few-shot classes seen at test time, in contrast to most of the models mentioned

in Chapter 5.2.

We consider two direct multimodal few-shot learning models: the MCAE discussed

in Chapter 5.3.1 and the MTriplet discussed in Chapter 5.3.2. Both direct models learn

separate speech and image representations which can be directly compared. To do this

each direct model aims to learn a multimodal space [63, 83, 84] in which speech and image

representations of the same class are mapped to similar latent representations. Both these

models rely on paired input, which we obtain in an unsupervised way using the mining

process. We first describe the two models, and then describe the mining procedure in

much more detail in Chapter 5.3.3.

5.3.1 Multimodal Correspondence Autoencoder

The multimodal correspondence autoencoder (MCAE) learns a multimodal embedding

space by attempting to learn similar latent representations for speech and image inputs of

the same class. To do this the MCAE uses a modified version of the standard CAE loss

function (Equation 2.10).

The MCAE consists of two CAEs, a speech CAE RNN fΘ(x
(i)
a ) and a vision CAE

CNN fΘ(x
(i)
v ) as illustrated in Figure 5.3. Each CAE consists of an encoder which encodes

an input to a bottleneck latent representation and a decoder that should ideally decode

the latent representation to a pair of the input.

Specifically for the speech subnetwork fΘ(x
(i)
a ) of the MCAE, the speech encoder

73

Stellenbosch University https://scholar.sun.ac.za



5.3. Direct Multimodal Few-Shot Learning

𝐱
(𝑖)
𝑣

�̂� (𝑖)𝑣

( )𝑓𝜽 𝐱
(𝑖)
𝑎

( )𝑓𝝓 𝐳
(𝑖)
𝑎

( )𝑓𝜽 𝐱
(𝑖)
𝑣

( )𝑓𝝓 𝐳
(𝑖)
𝑣

Pre-processing of
spoken word (audio)

into MFCC

=  “nine”�̂� (𝑖)𝑎

=  “nine”𝐱
(𝑖)
𝑎

(400)

(400)

(400)

(400)

(3 × 3 × 64) (3 × 3 × 32) (3 × 3 × 1)

(3 × 3 × 128) (3 × 3 × 64) (3 × 3 × 32)

(28 × 28)

(28 × 28)

𝐳
(𝑖)
𝑎

(400)

(130)

(3 × 3 × 128 = 1152)

𝐳
(𝑖)
𝑣 (130)

(a) Speech network (b) Vision network

( )𝑓𝚯 𝐱
(𝑖)
𝑎 ( )𝑓𝚯 𝐱

(𝑖)
𝑣

Figure 5.3: A CNN is used for the vision subnetwork of the MCAE to learn rep-
resentations for image data and an RNN is used for the speech subnetwork to learn
representations for speech data.

RNN fθ(x
(i)
a ) encodes the input x

(i)
a to the fixed dimensional latent representation z

(i)
a .

Thereafter, the speech decoder RNN fφ(z
(i)
a ) is conditioned on z

(i)
a to produce the network’s

output ŷ(i)
a . The speech CAE is trained with the standard CAE loss function:

`a(x
(i)
a ,x

(i)
apair

) = ||x(i)
apair
− fΘ(x(i)

a )||22
= ||x(i)

apair
− ŷ(i)

a ||22.
(5.1)

Similarly for the vision subnetwork fΘ(x
(i)
v ) of the MCAE, the vision CNN encoder

fθ(x
(i)
v ) encodes the input x

(i)
v to the latent representation z

(i)
v . The vision decoder fφ(z

(i)
v )

consisting of transposed convolutions, decodes z
(i)
v to produce the output of the network

ŷ(i)
v . The vision CNN is also trained with the standard CAE loss function:

`v(x
(i)
v ,x

(i)
vpair

) = ||x(i)
vpair
− fΘ(x(i)

v )||22
= ||x(i)

vpair
− ŷ(i)

v ||22.
(5.2)

Finally, the MCAE is constructed by linking the speech and vision CAEs with a

multimodal loss term `z. The goal of this loss term is to force the speech and image

representations for paired speech-image inputs to be similar. For `z we use a squared loss
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between the speech representation z
(i)
a and image representation z

(i)
v :

`z(x
(i)
a ,x

(i)
v ) = ||z(i)

a − z(i)
v ||22.

= ||fθ(x(i)
a )− fθ(x(i)

v )||22.
(5.3)

By combining `a, `v and `z, we obtain the MCAE objective function for a single training

example:

`MCAE

(
x(i)
a ,x

(i)
apair

,x(i)
v ,x

(i)
vpair

)
= αa`a(x

(i)
a ,x

(i)
apair

) + αv`v(x
(i)
v ,x

(i)
vpair

) + αz`z(x
(i)
a ,x

(i)
v ),

(5.4)

where αa, αv and αz are some weighting constants and each MCAE training example

consists of x
(i)
a , x

(i)
apair, x

(i)
v and x

(i)
vpair . In each training example x

(i)
a and x

(i)
v is an unsu-

pervised mined speech-image pair. From this speech-image pair, we mine unsupervised

within-modality positive pairs: x
(i)
apair from x

(i)
a and x

(i)
vpair from x

(i)
v .

The intuition is that the reconstruction loss terms will force the model to learn the

information common to within-modality inputs of the same class while at the same time

the multimodal loss term forces the model to only learn the information common to

cross-modal inputs, i.e. the class. This should lead to similar latent representations for

speech and image inputs of the same class.

𝐱
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𝑎

Figure 5.4: A CNN is used for the vision subnetwork of the MTriplet to learn rep-
resentations for image data and an RNN is used for the speech subnetwork to learn
representations for speech data.
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5.3.2 Multimodal Triplet Network

The multimodal triplet network (MTriplet) architecture consists of two subnetworks, a

speech RNN network fΘ(x
(i)
a ) and a vision CNN network fΘ(x

(i)
v ) as shown in Figure 5.4.

The speech subnetwork fΘ(x
(i)
a ) encodes a speech input x

(i)
a to a representation z

(i)
a .

Similarly the vision subnetwork fΘ(x
(i)
v ) encodes an input image x

(i)
v to a representation

z
(i)
v .

From this we see that the MTriplet draws inspiration from Siamese networks [48, 49].

A Siamese network learns a relative distance metric in which the distance between inputs

of the same class should ideally be smaller than the distance between inputs from different

classes as discussed in Chapter 2.3.5. The MTriplet aims to learn a similarity metric between

speech and image inputs by combining two unimodal triplet hinge losses (Chapter 2.3.5)

into a multimodal triplet hinge loss [63, 76]. The aim of the multimodal triplet hinge

loss is to push cross-modal representations of the same class towards each other while

simultaneously pushing cross-modal representations from different classes away from each

other as illustrated in Figure 5.5. Specifically, the distance between the representations of

inputs from the same class (x
(i)
a and x

(i)
v ) should to be smaller than the distance between

the representations of inputs from different classes (x
(i)
a and x

(i)
vneg , as well as x

(i)
aneg and x

(i)
v ).

We modify the loss used in Harwath et al. [63, 76] to obtain our version of a multimodal

triplet hinge loss `MTriplet:

`MTriplet(x
(i)
a ,x(i)

aneg ,x
(i)
v ,x(i)

vneg) = max
{

0,m + d(z(i)
a , z(i)

v )− d(z(i)
a , z(i)

vneg)
}

+ max
{

0,m + d(z(i)
a , z(i)

v )− d(z(i)
aneg , z

(i)
v )
}

= max
{

0,m + d(fΘ(x(i)
a ), fΘ(x(i)

v ))− d(fΘ(x(i)
a ), fΘ(x(i)

vneg))
}

+ max
{

0,m + d(fΘ(x(i)
a ), fΘ(x(i)

v ))− d(fΘ(x(i)
aneg), fΘ(x(i)

a ))
}

(5.5)
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𝐱𝑎neg
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𝐱𝑣neg

𝐱𝑣

(a) Before training (b) After training

Figure 5.5: The logic behind the MTriplet loss function.
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where m is a margin parameter and

d(z1, z2) = 0.5×
(

1− z1 · z2

||z1|| ||z2||

)
(5.6)

is the cosine distance between representations z1 and z2. Therefore, a single MTriplet

training example consists of x
(i)
a , x

(i)
aneg , x

(i)
v and x

(i)
vneg , where x

(i)
a and x

(i)
v are mined speech-

image pairs from the same class and x
(i)
aneg and x

(i)
vneg are mined negative pairs from any

other class than x
(i)
a and x

(i)
v . This means that all the positive and negative pairs within a

training example, is obtained in an unsupervised manner.

The intuition behind the MTriplet is that it will learn to distinguish between inputs

from the same class and inputs from different classes regardless of which modalities the

inputs are from.

5.3.3 Pair Mining

Since we train the MCAE and MTriplet as few-shot learning models, the only ground truth

pairs we are provided with, is the speech-image pairs in the given multimodal support set

S. This small set of pairs would not be sufficient for training a multimodal model. We

therefore use this multimodal support set S to mine speech-image pairs from a larger set

of unlabelled in-domain data.

5.3.3.1 Cross-Modal Pair Mining

To obtain speech-image pairs from the unlabelled in-domain data, we use the multimodal

support set S to mine pairs. More concretely, we use the support set S as a pivot between

the unlabelled data in the two modalities. Figure 5.6 illustrates this mining process. For

instance, using the support set pair of an eight (the third item in the support set), we

find the images in the in-domain image dataset whose closest image in the support set, is

the image of the 8. Similarly for spoken word instances in the in-domain speech dataset,

we find the word instances whose closest word instance in the support set, is the word

instance of the “eight”. From these word and image instances matched to the pair of an

eight, we choose a speech instance and an image instance and pair them up. Figure 5.6

shows that some of these pairs are correct like the paired speech-image pair of an eight,

while some could be incorrect like the speech-image pair that should consist of an “eight”

and an 8 but instead consists of an “eight” and a 3.

In order to mine speech-image pairs from the multimodal support set S, we need

speech-speech and image-image metrics. We use the transfer learning methodology to

learn these metrics. More specifically, we use the speech and vision classifiers (trained

on background labelled data) from Chapter 3 to extract representations for unlabelled

in-domain speech and image inputs. The hope is that these unimodal models produce
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“two”

“five”

“eight”

“three”

Support set 
  = {( , )𝐱

(𝑗)
𝑎 𝐱

(𝑗)
𝑣 }𝐿

𝑗=1

“zero”

“two”

“two”

“two”

“two”

“three”

“three”

“three”
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“five”

“five”

“five”

“five”

“eight”

“eight”

“eight”

“zero”

“zero”

“zero”

“zero”

“one”

“one”

“one”

“one”

“four”

“four”

“four”

“four”

“six”

“six”

“six”

“six”

“seven”

“seven”

“seven”

“seven”

“nine”

“nine”

“nine”

“nine”

“oh”

“oh”

“oh”

“oh”

“eight”“eight”

“eight”

A wrong speech-image pair A correct speech-image pair

Figure 5.6: After all image and word instances in the datasets are matched to a support
set pair, a random image and word matched to a pair in the support set, is paired up.
Labels are shown purely for illustrative purposes. Since we use no labels to pair up the
spoken word and images, all the pairs would not be correct.

similar representations for within-modality inputs of the same class. Unlabelled spoken

words are fed to the speech classifier from which the representation layer z is extracted

to represent the given speech input. Similarly, unlabelled images are fed to the vision

classifiers from which the representation layer z is extracted to represent the given image.

We extract representations for all the spoken words and images in the in-domain

speech and image datasets, as well as the word and image instances in the sampled

multimodal support set S. The word and image instances in S does not occur exactly

in the in-domain speech and image datasets. To mine speech-image pairs, we use the

extracted representations in unimodal speech-speech and image-image comparisons across

the sampled few-shot support set S. More specifically, we use a smallest cosine distance

metric to match the representation of each speech example in the unlabelled in-domain

speech dataset to the representation of a speech instance in S. Similarly, we use a smallest

cosine distance metric to match the representation of each image example in the unlabelled

in-domain image dataset to the representation of an image instance in S.

To set up the speech-image pairs, we take each speech-image pair in the multimodal

support set S and randomly pick a speech example matched to the pairs’ speech instance

and an image example matched to the pairs’ image instance. The chosen speech example

and image example is then used as a speech-image pair (x
(i)
a , x

(i)
v ) as illustrated in Figure 5.6.
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We remove this word and image examples from the matched examples so that they only

occur in one speech-image pair. For each pair in the multimodal support set S, this process

is repeated untill we run out of speech or image examples matched to the specific support

set pair.

As illustrated in Figure 5.6, all the unsupervised mined cross-modal pairs would not

be correct since we do not use any labels to check whether these pairs are correct. We

expect this will have an effect on the direct models’ ability to find similar representations

for same class speech and image inputs.

Together with these cross-modal pairs, we also need within-modality (speech-speech

and image-image) positive pairs for the MCAE and negative pairs for the MTriplet. This

is discussed in the next two subsections.

5.3.3.2 Within-Modality Positive Pair Mining

To train the MCAE in Figure 5.3, we see that besides for the input speech-image pair, we

also need an output speech instance and an output image instance from the same class

as the input pair. For the multimodal few-shot learning setting we only have access to

labels in the given multimodal support set S. Therefore, we cannot use class labels to

sample within-modality positive pairs (x
(i)
a , x

(i)
apair) and (x

(i)
v , x

(i)
vpair). From a speech-image

input pair (x
(i)
a , x

(i)
v ), we mine a positive image pair x

(i)
vpair from its image instance x

(i)
v and

a positive word pair x
(i)
apair from its word instance x

(i)
a .

It is important to note that the positive image pairs we mine here are not the same

pairs as the image pairs in Chapter 4.4.4 which are mined using the vision classifier. These

image pairs from Chapter 4.4.4 did not use the hard restrictions we use in this section.

However, the speech positive pairs in this section are mined similarly as the speech pairs

in Chapter 4.4.4 which are mined using the speech classifier and hard speaker restrictions.

To mine hard positive speech pairs, we use the transfer learned speech classifier of

Chapter 3 (trained on background labelled words) to extract feature representations for

all the unlabelled spoken word instances in the in-domain speech dataset. We calculate

the cosine distance between the representation of a spoken word x
(i)
a in a speech-image

pair (x
(i)
a , x

(i)
v ) and the representation of every other word x

(j)
a in the in-domain speech

dataset. Thereafter, we take the spoken word x
(j)
a from a different speaker than x

(i)
a and

with a word representation that has the smallest cosine distance to the representation of

x
(i)
a , as the hard speech pair x

(i)
apair for x

(i)
a .

In a similar manner we find image pairs by first extracting feature representations for

all the unlabelled image instances in the in-domain image dataset by using the transfer

learned vision classifier (trained on background labelled images) of Chapter 3. We calculate

the cosine distance between the representation for the image x
(i)
v in a speech-image pair

(x
(i)
a , x

(i)
v ) and the representation of every other image x

(j)
v in the in-domain image dataset.

The image x
(j)
v with a representation that has the smallest cosine distance within the range
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of [0.05, 0.25] to the representation of x
(i)
v , is taken as the hard image pair x

(i)
vpair for x

(i)
v .

The range [0.05, 0.25] is chosen and tuned on the test subset of the developmental

image dataset. Logically image pairs with cosine distances in this range should be hard

positive image pairs since cosine distance values are in the range of [0, 1], where a value of

0 means the pairs are identical and a value of 1 means the pairs are the most different

they could possibly be.

5.3.3.3 Within-Modality Negative Pair Mining

From the MTriplet in Chapter 5.3.2, we see that except for the speech-image input pair, we

also need a negative speech instance and a negative image instance from different classes

as the input pair.x To sample within-modality negative pairs (x
(i)
a , x

(i)
aneg) and (x

(i)
v , x

(i)
vneg),

we cannot use labels since for multimodal few-shot learning we only have access to labels

in the given multimodal support set S. From a speech-image input pair (x
(i)
a , x

(i)
v ), we

mine a negative image pair x
(i)
vneg from its image instance x

(i)
v and a negative word pair

x
(i)
aneg from its word instance x

(i)
a .

To sample hard speech negatives (x
(i)
a , x

(i)
aneg), we follow a similar procedure than mining

hard speech positive pairs above. We start by using the transfer learned speech classifier

(trained on background labelled words) of Chapter 3 to extract feature representations

for all the unlabelled spoken word instances in the in-domain speech dataset. Next, we

calculate the cosine distance between the representation of a spoken word x
(i)
a in a speech-

image pair (x
(i)
a , x

(i)
v ) and the representation of each other word x

(j)
a in the in-domain

speech dataset. We take the spoken instance x
(j)
a from the same speaker as x

(i)
a and with a

cosine distance in the 50th to 70th percentile of closest cosine distances to the representation

of x
(i)
a , as the hard negative pair x

(i)
aneg for x

(i)
a . These hard percentile constraints are tuned

on the test subset of the developmental speech dataset.

To mine hard image negative pairs (x
(i)
v , x

(i)
vneg), we use the transfer learned vision

classifier (trained on background labelled images) of Chapter 3 to extract feature represen-

tations for each unlabelled image example in the in-domain image dataset. Thereafter,

the cosine distance between the representation of the image x
(i)
v in a speech-image pair

(x
(i)
a , x

(i)
v ) and the representation of each other image x

(j)
v in the in-domain image dataset,

is calculated. The cosine distance between the representation of x
(j)
v and the representation

of x
(i)
v which lies in the range of [0.6, 0.8] and in the 50th to 70th percentile of closest cosine

distances to the representation of x
(i)
v , results in the hard negative image pair (x

(i)
v , x

(i)
vneg).

The range [0.6, 0.8] and the hard percentile constraint are tuned on the test subset of

the developmental image dataset. Since cosine distance values are in the range of [0, 1],

then logically image negative pairs with cosine distances in the range [0.6, 0.8] should be

hard negative image pairs.
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5.4 Experimental Setup

In Chapter 5.4.1 we discuss the implementation of the direct multimodal few-shot learning

models which is trained on mined speech-image pairs. Thereafter, we evaluate these models

using the tasks discussed in Chapter 5.4.2.

5.4.1 Models

Both the MCAE and MTriplet are trained on in-domain mined pairs of isolated spoken

digits and handwritten digit images from the MNIST and TIDigits datasets. To mine

cross-modal and within-modality training pairs as described in Chapter 5.3.3, we use the

MNIST and TIDigits training subsets. Specifically to mine training speech-image pairs, we

sample a multimodal five-shot 11-way support set from these training subsets and remove

all instances in this support set from the training subsets. Since we use a multimodal

five-shot support set to mine speech-image training pairs, the MCAE and MTriplet are

multimodal five-shot models.

We validate the MCAE and MTriplet by performing early stopping using the model

objective function on in-domain mined validation pairs. For the cross-modal and within-

modality validation pairs, we use the MNIST and TIDigits validation subsets. To mine

speech-image validation pairs, we specifically sample another multimodal five-shot 11-way

support set from these validation subsets and remove all instances in this support set from

the validation subsets.

Both the training and validation multimodal five-shot support sets sample five spoken

word and image digit pairs for each of the L = 11 classes (“one” to “nine”, as well as

“zero” and “oh”). Chapter 3.5 discusses the training and validation of the transfer learned

speech and vision classifiers used for cross-modal and within-modality pair mining.

The MCAE architecture is given in Figure 5.3 with the alphas in the MCAE-loss `MCAE

(Equation 5.4) set to: αa = 0.3, αv = 0.3 and αz = 0.4. Figure 5.4 gives the MTriplet

architecture and the loss margin m in the MTriplet-loss `MTriplet (Equation 5.5) is set to

m = 0.2. We do not tune the direct models’ hyperparameters, but report model stability

over five different batch sizes B = {16, 32, 64, 128, 256}.

5.4.2 Evaluation

To evaluate the direct MCAE and MTriplet approaches for multimodal speech-to-image

matching, we sample 400 multimodal episodes where each episode samples ten different

spoken digit queries and a matching set Mv. As a recap from Chapter 3.5.2.1, there are

only ten unique handwritten digit classes. Therefore, we sample ten different digit images

for the matching set Mv.
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At test time, each of the ten queries has to be matched directly to the correct image

in the matching set as described in Chapter 5.1. Similarly to the indirect approach

implementation in Chapter 3.5.2.1, in the direct approach, if a model is given a speech

query which is either a “zero” or an “oh”, it is counted as correct if the model’s matching

image prediction is that of a 0. This is a multimodal five-shot speech-to-image matching

task since the model used a five-shot 11-way support set to mine the cross-modal training

pairs.

Since we use a multimodal five-shot support set to mine the cross-modal pairs for the

direct multimodal few-shot learning models, we have to compare these direct models to the

indirect multimodal five-shot learning models. I.e. we use the multimodal five-shot speech-

to-image matching accuracies reported in Chapter 3 and Chapter 4. For comparability, we

also test the direct models on the exact same five-shot episodes as these indirect models.

We just do not use the sampled multimodal five-shot 11-way support set in these episodes.

At test time, all multimodal speech-to-image matching tasks are performed on the

TIDigits and MNIST test subsets. The scores reported for the MCAE and MTriplet are

averaged over five models each trained with a different batch size. Each model with a

specific batch size is also trained with five different seeds. Scores are reported with 95%

confidence intervals.

To further investigate the performance of the direct few-shot models, we evaluate the

speech and vision subnetworks of a direct model in isolation. The speech subnetworks

are evaluated on a unimodal speech classification task using the TIDigits test subset as

discussed in Chapter 3.5.2.2. Similarly, we evaluate the vision subnetworks on a unimodal

image classification task by using the MNIST test subset as discussed in Chapter 3.5.2.3.

Similarly as Chapter 4, we use confusion matrices and per-digit recall scores to aid in

further analysis of the results achieved on these unimodal and multimodal tasks.

5.5 Experiments

In Chapter 5.5.1 we evaluate the MCAE and MTriplet on the direct approach to do

the speech-to-image matching task. At the same time we compare these models to the

multimodal models used to do this task with the indirect approach in Chapter 4.

To obtain further insight, in Chapter 5.5.2 we isolate the speech and vision networks

that the direct and indirect few-shot learning models consist of, and test these networks

in isolation on unimodal classification tasks. Chapter 5.5.3 considers what effect the

unsupervised mined pairs (in which not all the pairs are correct) have on the direct

few-shot models. Lastly, Chapter 5.5.4 evaluates whether the representations produced by

the direct models’ speech networks, are speaker independent.
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Table 5.1: Multimodal five-shot 11-way speech-to-image matching using the direct
approach (direct models) vs. the indirect approach (indirect models).

Model five-shot 11-way

accuracy (%)

Indirect multimodal
few-shot learning models

Transfer learned classifier (from Table 4.13 row 1) 59.67 ± 1.73

Unsupervised CAE (from Table 4.13 row 2) 52.15 ± 0.69

Transfer learning + unsupervised fine-tuning
with transfer learned classifier pairs CAE (from
Table 4.13 row 4)

59.37 ± 1.80

Direct multimodal
few-shot learning models

MCAE with mined pairs 74.87 ± 1.86

MTriplet with mined pairs 85.49 ± 1.35

5.5.1 Multimodal Five-Shot Speech-to-Image Matching

The main experiments of this chapter is shown in Table 5.1 which reports the multimodal

five-shot 11-way speech-to-image matching accuracies. On this task, we consider the

indirect few-shot models of Chapter 4, as well as the direct few-shot models of this chapter.

The goal of this section is to establish whether the direct approach could eliminate the

compounding of errors phenomenon that occurred in the indirect matching approach. In

addition, this section intends to investigate whether learning a maping of spoken words

and images to a single joint space, results in more accurate feature representations.

The top section of Table 5.1 shows the accuracies of the multimodal few-shot learning

models of Chapters 3 and 4 on the indirect two-step matching approach. The bottom

section reports the accuracies of the models considered in this chapter on the direct

matching approach. From these results we see the direct few-shot models outperform the

indirect transfer learned and unsupervised few-shot models, as well as the indirect model

which is a combination of the unsupervised and transfer learning approaches (Transfer

learning + unsupervised fine-tuning with transfer learned classifier pairs CAE ). Since the

direct models are also a combination of unsupervised and transfer learning, we conclude

that unsupervised and transfer learning can be complementary and work quite well when

combined in a direct multimodal few-shot manner.

From Table 5.1 we see that from all the models and approaches considered (in the

entire thesis), the MTriplet is our best performing model. The MTriplet achieves an

accuracy of 85.20% which outperforms even the MCAE (our second-best model) by a

margin of roughly 10%. From this we conclude that the MTriplet produces the most general

modality-invariant feature representations per class. To test this, Table 5.2 considers the

per-digit multimodal recall scores for the models considered in Table 5.1.

The MTriplet achieves the highest per-digit recall scores for ten of the eleven classes

by mostly achieving recall scores that are even significantly higher than that of its closest
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Table 5.2: The per-digit recall scores of the MCAE and MTriplet on a five-shot 11-way
speech-to-image matching task.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

R
ec

a
ll
(%

)

Classifier (Table 4.4,
row 1)

73.92 57.38 63.09 60.60 65.13 64.23 62.41 44.94 49.56 51.46 63.87

Unsupervised CAE
(Table 4.4, row 3)

78.37 37.87 51.27 44.14 41.20 47.74 59.20 45.11 41.78 59.78 65.22

Transfer learning +
unsupervised
fine-tuning with
transfer learned
classifier pairs CAE

82.59 48.50 54.47 53.24 49.74 57.10 67.49 54.66 48.22 65.68 70.97

MCAE 96.01 81.09 76.38 61.92 74.64 87.52 85.07 58.91 75.00 52.75 74.82

MTriplet 96.75 88.74 87.18 87.47 87.19 96.75 88.11 74.54 86.34 65.58 82.33

competitor (the MCAE). This means that for the majority of digit classes, the MTriplet

predicts the biggest fraction of word queries from a certain class to belong to its correct

matching image. Logically this makes sense since the MTriplet objective function aims

to distinguish between cross-modal representations of the same class and cross-modal

representations from different classes. Similarly, the MCAE’s objective function aims

to produce similar representations for same class cross-modal inputs. However, we can

attribute their underperformance to the MTriplet to the idea that they should also retain

enough information in the representations in order to produce a within-modality pair

instance from the representation of an input. In retrospection, this would logically lead to

within-modality nuisance information in the representations.

From Table 5.2, we also see that the MTriplet has significantly lower per-digit recall

scores for the classes “eight” and “oh” than for the other classes. Specifically, the class

“oh” is the only class in which the MTriplet does not achieve the highest recall score. To

investigate this phenomenon, we consider the confusion matrix produced by the MTriplet

in Table 5.3.

Just considering the class “oh” from these results, we see the MTriplet mostly confuses

a speech query of an “oh” to be a 9. Since an “oh” and a “nine” does not sound acoustically

similar, we hypothesise that it might be that the MTriplet confuses images of a 0 and a 9

since they can look visually similar. However, we see that the MTriplet does not make the

same mistake of predicting queries of a “zero” to be of a 9. This means that for the class

“zero” the MTriplet did not confuse images of a 0 and a 9. A similar trend is seen in the

MCAE’s confusion matrix in Table A.6, but the MCAE confuses speech queries of the

class “oh” to belong to an 8.

To further investigate this, in Table 5.4 we look at the confusion matrices for some

classes produced by the models in Table 5.1 and Table 5.2. This table specifically considers
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Table 5.3: The confusion matrix produced by the MTriplet with mined pairs on the
five-shot 11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” “five” “six” “seven” “eight” “nine” “oh” “zero”

1 8587 22 32 142 17 5 167 27 174 307 23

2 10 8142 770 26 0 16 195 203 23 56 553

3 3 319 8042 27 758 7 172 433 10 48 40

4 73 28 33 8025 56 80 154 437 106 486 46

5 3 2 119 113 7646 43 87 343 25 546 159

6 29 39 2 226 63 8683 4 171 3 63 574

7 7 438 118 32 17 8 8238 35 193 229 166

8 16 57 69 35 61 107 54 6634 664 380 39

9 130 7 35 365 103 0 172 600 7771 1069 43

0 17 121 5 184 54 26 107 17 31 6066 7657

Total 8875 9175 9225 9175 8775 8975 9350 8900 9000 9250 9300

the class “oh” and “zero” to investigate the phenomenon seen in the MTriplet, as well

as the class “five” which was considered in Chapter 4. Considering the class “five”, we

see that the direct multimodal few-shot learning models confuses a query of a “five” to

belong to a 3 (or any of the other nine classes) much less than what we see in the indirect

Table 5.4: Some of the confusion matrix classes produced by the direct and indirect
multimodal few-shot learning models on the five-shot 11-way speech-to-image matching
task. In order for the confusion matrices produced by the direct few-shot models (trained
on five different batch sizes and five different seeds) to be comparable to those of the
indirect models (trained on one batch size with five different seeds), we scale the direct
models’ scores down in this table. ∗The transfer learning + unsupervised fine-tuning with
transfer learned classifier pairs CAE.

Predicted image class

1 2 3 4 5 6 7 8 9 0

Actual
speech
digit
class

“five”

Indirect classifier 88 13 154 25 1143 96 23 132 43 38

Indirect unsupervised CAE 117 17 258 74 723 132 62 127 120 125

Indirect combination model∗ 99 19 241 59 873 123 49 121 93 78

MCAE 40 2 263 24 1310 18 36 24 30 8

MTriplet 3 0 152 11 1529 13 3 12 21 11

“oh”

Indirect classifier 109 80 62 102 98 152 67 116 112 952

Indirect unsupervised CAE 23 66 70 88 115 154 95 49 84 1106

Indirect combination model∗ 21 39 51 66 106 162 64 45 81 1215

MCAE 87 62 16 164 118 55 64 193 115 976

MTriplet 61 11 10 97 109 13 46 76 214 1213

“zero”

Indirect classifier 64 87 38 60 44 124 80 82 93 1188

Indirect unsupervised CAE 22 60 54 37 112 159 81 30 92 1213

Indirect combination model∗ 21 60 51 44 87 138 53 18 68 1320

MCAE 4 171 10 94 11 60 70 10 38 1392

MTriplet 4 111 8 9 32 115 33 8 9 1531
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Table 5.5: Multimodal speech-to-image matching using the direct models and the direct
approach vs. the indirect approach with a one-shot support set.

Model

MCAE MTriplet

Direct approach 74.87 ± 1.86 85.49 ± 1.35

Indirect approach 66.37 ± 2.62 76.18 ± 1.48

models. This trend holds for the class “zero” as well. However, the trend does not hold

for the class “oh”. We see that the MCAE and MTriplet confuses the class “oh” just as

much as the indirect models. In fact, the indirect combination model (Transfer learning +

unsupervised fine-tuning with transfer learned classifier pairs CAE ) confuses the class “oh”

a bit less than the MTriplet and much less than the MCAE. This phenomenon in the class

“oh” is investigated further in Chapter 5.5.2, but first we gain some further insights into

the performance of the direct models.

5.5.1.1 Direct vs. Indirect Matching

The indirect approach to do the multimodal speech-to-image matching task requires

two unimodal comparisons contrary to the one direct comparison required by the direct

approach. In order to investigate the effect of using one vs. two comparisons, in Table 5.5

we separate the speech and vision subnetworks of the direct models so that we can use

the respective speech and vision subnetworks as though they are separate networks and

then apply these unimodal networks in an indirect (Chapter 3 and Chapter 4) matching

approach.

Table 5.5 shows that using just one direct comparison in this multimodal matching

task leads to higher matching accuracies than using two unimodal comparisons. From this,

we conclude that the direct models perform better since there is no compounding of errors

with just one comparison than with two unimodal comparisons as we saw in Chapter 4.

5.5.1.2 The Effect of the Hard Within-Modality Pairs

We train the MTriplet and the MCAE on mined cross-modal pairs, as well as within-

modality speech or image positive or negative pairs mined with the hard restrictions set out

in Chapter 5.3.3.2 and Chapter 5.3.3.3. Similarly, each of the combination speech CAEs

in Chapter 4 were trained on the same hard speech positive pairs used to train the MCAE.

However, the corresponding combination vision CAEs were not trained on the same hard

image positive pairs used to train the MCAE (Chapter 5.3.3.2). Therefore, we ask which

part of the direct few-shot models’ mined pairs attributed to the performance boost.

Perhaps it is the speech-image pairs that forces the model to learn modality invariant
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Table 5.6: Using hard within-modality positive image pairs on the vision CAE from
Chapter 4.4.4. Both the “easier” and hard within-modality positive pairs are mined from
representations extracted from a classifier.

Model
11-way accuracy (%)

One-shot Five-shot

CAE (Table 4.13, row 3) 48.66 ± 1.14 55.59 ± 0.71

CAE with hard positive pairs 48.27 ± 1.08 56.15 ± 0.50

representations for the same class. Or perhaps it is the hard mined within-modality pairs.

To test whether the cross-modal pairs or within-modality positive pairs contributes

most to the MCAE’s performance, we consider the indirect multimodal few-shot CAE

trained on pairs mined from classifier representations in Chapter 4.4.4. The training pairs

of this multimodal CAE’s vision network were not mined using hard restrictions. We

compare this model in Table 5.6 to an indirect multimodal CAE with a vision network

trained on the hard positive pairs mined from classifier representations.

Table 5.6 shows the hard positives pairs makes an insignificantly small difference to

the one- and five-shot matching accuracies. This means a multimodal CAE trained on the

same hard within-modality pairs as the MCAE does not improve the multimodal CAE in

Chapter 4.4.4 which is trained on pairs mined from classifier representations. Although

training on the combination of hard within-modality pairs together with the speech-image

pairs could be the reason for the performance boost, we conclude that the speech-image

pairs is the main contributor.

5.5.2 Unimodal Five-shot Classification Tasks

In order to investigate the performance contribution of the various parts of the direct

multimodal five-shot learning models, we disconnect the direct models’ speech and vision

subnetworks. These separate networks are then tasked on unimodal five-shot classification

tasks and compared to the unimodal five-shot classification accuracies reported in Chapter 4.

The goal of this section is not to find the best unimodal results, but to gain insights into

the performance of the multimodal models discussed in the previous subsection.

Table 5.7 shows the unimodal five-shot 11-way speech classification results for the

speech networks of the direct and indirect multimodal few-shot learning models. Although

not by far, it is surprising to see that the speech network of the indirect combined model

(Transfer learning + unsupervised fine-tuning with transfer learned classifier pairs CAE

RNN ) outperforms the speech networks of both the MTriplet and MCAE since the MTriplet

and MCAE outperforms the combined model on the multimodal matching task. In order

to gain a bit more insight as to why this is happening, in Table 5.8 we consider the per-digit
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Table 5.7: The unimodal five-shot 11-way speech classification task performed on the
speech networks of the direct and indirect multimodal five-shot learning models.

Model five-shot 11-way

accuracy (%)

Indirect multimodal
few-shot learning models

Transfer learned classifier RNN (from Table 4.14
row 1)

95.40 ± 0.50

Unsupervised CAE RNN (from Table 4.14 row 2) 95.14 ± 0.80

Transfer learning + unsupervised fine-tuning
with transfer learned classifier pairs CAE RNN
(from Table 4.14 row 4)

97.91 ± 0.37

Direct multimodal
few-shot learning models

MCAE speech RNN 95.65 ± 1.09

MTriplet speech RNN 97.25 ± 0.65

unimodal recall scores for the results reported in Table 5.7.

From Table 5.8 we see that for the per-digit speech recall scores, the speech network of

the combined model achieves the highest accuracies for five of the eleven classes, while

the classifier achieves the highest accuracies for three of the classes. The MTriplet only

achieves the highest accuracies for two of the classes and the MCAE only for one of the

classes. However, the MTriplet consistently achieves competitive results to those achieved

by the classifier and combined speech network. A possible explanation might be that the

speech networks of the indirect few-shot models captures within-modality information in

their representations which helps them to outperform the MTriplet and MCAE by a small

margin. In order to make logical conclusions from what this means with respect to the

Table 5.8: The per-digit recall scores of the speech networks of the MCAE and MTriplet
on a five-shot 11-way speech classification task.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

R
ec

a
ll
(%

)

Classifier (Table 4.8,
row 1)

94.02 99.13 97.17 95.79 98.25 99.95 99.24 97.37 98.22 86.13 97.16

Unsupervised CAE
(Table 4.8, row 3)

95.16 88.86 96.51 96.12 95.38 98.58 98.05 96.66 98.28 88.29 95.26

Transfer learning +
unsupervised
fine-tuning with
transfer learned
classifier pairs CAE
RNN

99.57 97.72 97.78 98.69 98.37 98.31 98.70 98.08 98.50 95.30 97.10

MCAE speech RNN 98.37 94.15 94.98 95.16 96.17 96.02 97.51 90.67 96.20 95.85 97.05

MTriplet speech
RNN

98.02 94.74 96.94 97.92 98.41 98.94 98.12 95.05 98.31 94.88 98.46
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Table 5.9: The unimodal five-shot 10-way image classification task performed on the
vision networks of the direct and indirect multimodal five-shot learning models.

Model 10-way five-shot

accuracy (%)

Indirect multimodal
few-shot learning models

Transfer learned classifier CNN (from Table 4.15
row 1)

82.90 ± 1.12

Unsupervised CAE CNN (from Table 4.15 row 2) 77.62 ± 0.69

Transfer learning + unsupervised fine-tuning
with transfer learned classifier pairs CAE CNN
(from Table 4.15 row 4)

81.60 ± 1.52

Direct multimodal
few-shot learning models

MCAE vision CNN 90.06 ± 0.93

MTriplet vision CNN 90.46 ± 0.61

multimodal results, we first have to consider the unimodal five-shot image classification

scores of the corresponding vision networks.

Table 5.9 shows the unimodal five-shot 10-way image classification results achieved by

the vision networks of the direct and indirect multimodal few-shot learning models. The

trend seen in the image classification scores are similar to the trend seen in the multimodal

speech-to-image matching accuracies in Table 5.1. However, there is one exception: the

vision network of the MTriplet does not outperform the vision network of the MCAE by

such a large margin than what is seen in the direct multimodal matching accuracy scores.

To see what happens in these two vision networks, Table 5.10 considers the per-digit

unimodal recall scores for the results reported in Table 5.9.

Table 5.10: The per-digit recall scores of the vision networks of the MCAE and MTriplet
on a five-shot 10-way image classification task.

Actual image query digit class

Model 1 2 3 4 5 6 7 8 9 0

R
ec

a
ll
(%

)

Classifier
(Table 4.10, row 1)

97.35 77.85 85.05 82.75 86.70 84.20 83.35 62.30 77.95 91.50

Unsupervised CAE
(Table 4.10, row 3)

98.75 68.00 79.50 68.05 69.10 75.85 82.70 70.30 70.20 93.70

Transfer learning +
unsupervised
fine-tuning with
transfer learned
classifier pairs CAE
CNN

99.05 75.25 81.45 73.70 73.70 82.90 83.70 77.30 73.75 95.20

MCAE vision CNN 99.15 89.33 92.57 77.63 88.37 95.81 91.05 80.56 88.71 97.43

MTriplet vision
CNN

99.00 89.33 91.20 86.26 93.17 94.90 89.53 78.94 86.47 95.83
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From the results in Table 5.10, we see that the MCAE achieves the highest recall scores

for seven of the classes, while the MTriplet achieves the highest recall scores for two of

the classes. For the query class “two”, the MCAE and MTriplet both achieve the highest

recall score. Since the MCAE and MTriplet can classify image digits more accurately than

the indirect models, we conclude that the direct models use the information provided by

the word signals to better distinguish between the image classes. Overall, the MCAE

achieves the highest recall scores for most of the digit classes with the MTriplet achieving

competitive results to those of the MCAE. However, since the MCAE has significantly

lower per-digit recall scores for the class 4 and 5 than those of the MTriplet, it results in

the MCAE being a bit less accurate than the MTriplet on the unimodal five-shot image

classification task.

Considering these speech and image classification scores together, we notice that

although the MTriplet’s speech network is not as specialised as some of the unimodal

speech networks in the indirect models, it still performs competitively. This small price we

pay is worth it since modelling the speech and image classes into a joint embedding space

helps to better distinguish between the image digit classes and to find directly comparable

speech and image representations. Therefore, we conclude that the MTriplet performs

the best on the multimodal speech-to-image matching task since (1) its performance is

consistently good over both modalities, and (2) it produces similar representations for

speech and image instances of the same class.

The MCAE’s vision network just falls short of the MTriplet’s on the image classifi-

cation task, but its speech network is outperformed by both the speech networks of the

MTriplet and the indirect combined multimodal model. This will be investigated further

in Chapter 5.5.4. We conclude that the MCAE performs second best on the multimodal

speech-to-image matching task since (1) their vision network performs really well and its

speech network performs competitively enough to the best performing speech networks,

and (2) it is able to find similar speech and image representations for the same class.

In Chapter 4 we noticed that the unimodal results of the indirect multimodal few-shot

learning models are consistently lower than their multimodal results. However, from the

speech results in Table 5.7 and Table 5.8, the vision results in Table 5.9 and Table 5.10, as

well as the multimodal results in Table 5.1 and Table 5.2 of the direct multimodal few-shot

learning models, we see that although the multimodal results might still be a bit lower

than the unimodal results, it is much less than what we observed from the indirect models.

Lastly, we recall the phenomenon we saw in the MTriplet and MCAE in Chapter 5.5.1

where these direct models achieved lower per-digit recall scores for the class “oh” than

some of the indirect models. Specifically for the MTriplet, we saw that it confuses the

class “oh” to be that of a 9. Initially we hypothesised that since the words “oh” and “nine”

are not acoustically similar, the network might not learn how to distinguish between the

visual instances of a 0 and 9 since they can (in a subjective view) be visually very similar.
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However, we concluded that since the MTriplet does not confuse queries of the class “zero”

to be a 9, the phenomenon in the class “oh” cannot be attributed to the visual instances

of a 9 and 0 being too similar.

From the image recall scores for the class 0 in Table 5.10, we see that the MTriplet’s

vision network performs quite well. Its complete confusion matrix in Table E.4 shows that

an image query of a 0 is rarely confused to be of a 9. Turning to the speech recall score

of the class “oh”, we see that the MTriplet’s speech network again performs quite well

and its confusion matrix in Table C.3 shows that a speech query of an “oh” is hardly ever

confused to belong to the class “nine”. From this we conclude that although the MTriplet

could find similar within-modality representations for images of 0 ’s and for the words

“oh”, it could not find sufficiently similar cross-modal representations for the words of an

“oh” and images of a 0.

We see a similar phenomenon in the MCAE, where its speech network finds similar

representations for the words “oh” (Table 5.8) and its vision network finds similar repre-

sentations for the images of a 0 (Table 5.10), but the representations of an “oh” is not

similar enough to the representations of a 0. Since some of the unsupervised cross-modal

pairs are incorrect, in the next subsection we investigate whether these incorrect pairs

causes this confusion in the MTriplet and MCAE.

5.5.3 Is it possible to improve the MCAE and MTriplet?

We train the MCAE and MTriplet on mined unsupervised cross-modal pairs which means

some of these cross-modal pairs might be incorrect since they are never checked. The

goal of this subsection is to investigate whether this is the reason why the direct few-shot

learning models cannot find similar enough cross-modal representations for some of the

digit classes. To do this, we consider oracle results for the MTriplet and the MCAE.

The oracle results in Table 5.11 are idealised experiments showing the performance of

the MCAE and MTriplet trained only on ground truth speech-image pairs and ground

truth positive or negative within-modality pairs. We use the actual data labels to obtain

Table 5.11: Multimodal five-shot 11-way speech-to-image matching accuracies using the
direct approach with the MTriplet and the MCAE trained on mined cross-modal pairs,
as well as their oracle results.

Model five-shot 11-way accuracy (%)

MCAE with mined pairs (Table 5.1, row 4) 74.87 ± 1.86

Oracle MCAE 93.64 ± 1.61

MTriplet with mined pairs (Table 5.1, row 5) 85.49 ± 1.35

Oracle MTriplet 99.10 ± 0.14
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Table 5.12: The per-digit recall scores of the MCAE and MTriplet trained with mined
pairs on a five-shot 11-way speech-to-image matching task, as well as their oracle results.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

R
ec

a
ll
(%

) MCAE 96.01 81.09 76.38 61.92 74.64 87.52 85.07 58.91 75.00 52.75 74.82

Oracle MCAE 96.81 89.71 96.13 96.59 92.55 98.99 95.12 93.44 93.24 80.75 96.96

MTriplet 96.75 88.74 87.18 87.47 87.19 96.75 88.11 74.54 86.34 65.58 82.33

Oracle MTriplet 99.53 99.07 99.49 99.07 98.37 99.73 99.54 99.62 99.77 98.65 98.26

ground truth within-modality and cross-modal pairs. Since the few speech-image pairs

from a multimodal support set are not the only data labels we use, it is important to note

that the oracle models are not multimodal few-shot learning models.

From Table 5.11 we see that the oracle results achieves significantly higher accuracy

scores than their multimodal few-shot learning counterparts. This leads us to believe

that an improvement in the accuracy of the mined pairs could lead to an even bigger

performance boost for the direct models. To gain more insight into whether the oracle

models finds more general cross-modal representations for the same class, we consider the

per-digit recall scores in Table 5.12.

The recall scores shows that the oracle models significantly improves the recall scores

of each class. Specifically for the class “oh” which emerged as a problem class for the

direct few-shot models, we see that for both the oracle MCAE and MTriplet, the recall

scores for the class “oh” is significantly higher. Therefore, we conclude that the incorrect

cross-modal pairs are to blame for the direct models’ low recall scores for the class “oh”. If

we could improve the accuracy of the cross-modal pairs, we could find significantly better

recall scores for all of the digit classes.

5.5.4 Speaker Invariance of the Speech Networks from the

Direct Multimodal Models

Although we do not need the word representations in the direct matching approach to

necessarily be speaker invariant, it is a good criterion to see whether the word represen-

tations only retains class information and filters out nuisance information like speaker

identity. If a representation contains speaker information, the words “zero” and “oh” said

by the same speaker might have more similar representations than the representations of

the word “oh” said by two different speakers. We evaluate the word representations of the

MTriplet and MCAE on the same hard five-shot 11-way speech classification tasks used in

Chapter 4.4.3 to test the speaker invariance of the word representations produced by the

indirect few-shot models’ speech networks.

This hard five-shot speech classification task uses episodes containing a single word
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Table 5.13: The speaker invariance of the MCAE and MTriplet’s speech networks on a
five-shot 11-way speech classification task.

Model five-shot 11-way accuracy (%)

Indirect multimodal
few-shot learning

models

Classifier RNN (Table 4.12, row 1) 92.45 ± 0.83

Unsupervised CAE RNN
(Table 4.12, row 5)

87.75 ± 1.98

Transfer learning + unsupervised
fine-tuning with transfer learned
classifier pairs CAE RNN

93.00 ± 1.08

Direct multimodal
few-shot learning models

MCAE RNN 32.37 ± 5.22

MTriplet RNN 95.84 ± 1.25

query and a five-shot speech support set. All the instances in the support set which are

from the same class as the query, is sampled to be from a different speaker than the query.

Each other instance in the support set which is from a different class as the query, is

sampled to be from the same speaker as the query.

Table 5.13 shows the five-shot 11-way speech classification accuracies of the speech

networks from the direct and indirect multimodal few-shot learning models. From these

results, we see that the MTriplet produces the most speaker invariant representations.

Once again this just proves that the MTriplet finds the most general representations per

class. However, the MCAE achieves the lowest scores on this hard speech classification

task, which is surprising since the MCAE performs fairly well on the classification and

matching tasks throughout this chapter. This leads us to believe that the MCAE’s speech

network does not filter out enough nuisance information form its word representations.

We therefore conclude that this is why the MCAE’s speech network is outperformed

by the speech networks of the MTriplet and the indirect combination model as seen in

Chapter 5.5.2. In the same chapter we saw that the MCAE’s vision network has the

highest per-digit recall scores for most of the image classes. Therefore, we might be able

to obtain a direct multimodal few-shot learning model that outperforms even the MTriplet

if we are able to improve the MCAE’s speech network.

5.6 Chapter Summary

In this chapter we explained the direct approach to do multimodal few-shot speech-to-image

matching. For this direct approach we require direct multimodal few-shot learning models.

We proposed and implemented two new direct multimodal few-shot learning models: the

MCAE and the MTriplet. The MCAE is a completely new model, whereas the MTriplet

trained on unsupervised in-domain cross-modal pairs has never been considered for this
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task.

These direct few-shot models outperformed the indirect few-shot models of Chapter 4

which includes the purely unsupervised and transfer learning indirect models, as well as

an indirect few-shot model which is a combination of unsupervised and transfer learning.

Surprisingly the speech network of the indirect combination model outperformed the

speech networks of the MCAE and MTriplet. However, the vision networks of this

indirect combination model and the rest of the indirect models, struggled to find similar

representations for each image digit class. This resulted in the indirect models often

confusing the digit classes. To overcome this, the direct few-shot models used the spoken

word information to find similar representations for each image digit class. This led to

the vision networks of the direct models outperforming the vision networks of the indirect

models.

Furthermore, the direct models found directly comparable representations for words

and images, i.e. similar representations for spoken words and images of the same class. We

concluded that although the speech networks of the direct models performed a bit worse

than the indirect combination model’s, the small price we pay is worth it to find much

better image representations, as well as directly comparable cross-modal representations.

By using these cross-modal representations in the direct matching approach, we eliminated

the compounding of errors that emerges from the two-step indirect matching approach in

Chapter 4.

The MTriplet came out as the best model outperforming even the second best model,

the MCAE, by a significant margin. This indicates an objective function focussing on

the similarity and dissimilarity of cross-modal input representations based on their class,

works best. Upon further investigation into the MTriplet, we used the oracle experiments

to show that a further improvement of its cross-modal pairs could lead to even better

performance. Future work will focus on finding a better unsupervised mining process, as

well as building more multimodal datasets to investigate the performance of these direct

models on more difficult multimodal tasks.
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Chapter 6

Summary and Conclusions

This thesis considered direct and indirect multimodal few-shot learning models to perform

multimodal speech-to-image matching. In this multimodal matching task a model is given

a few paired speech-image examples which it should use to match a given speech query to

a matching image in a test set. We specifically considered both transfer and unsupervised

learning: we compared the two methodologies within an indirect matching approach and

then combined the two methodologies in a direct approach where speech and images are

mapped to a single shared space.

6.1 Indirect Multimodal Few-Shot Learning

In Chapter 3, we re-implemented the indirect few-shot learning models proposed by Eloff

et al. [1]. An indirect multimodal few-shot learning model consists of a speech and a

vision network where each network aims to find similar representations for within-modality

inputs of the same class. To do the speech-to-image matching task, an indirect model uses

its speech network to do speech-speech comparisons to find a given speech query’s closest

speech instance in a multimodal support set of paired speech-image examples. Then the

indirect model uses its vision network to do image-image comparisons to find the closest

image instance in a matching set of images for the closest spoken instance’s paired image.

Eloff et al. [1] specifically considered an indirect multimodal few-shot classifier and

an indirect multimodal few-shot Siamese model. These indirect few-shot models consists

of corresponding unimodal networks, e.g. the indirect multimodal classifier consists of a

speech classifier and a vision classifier. Both networks in a multimodal model are trained

on labelled background data not containing any of the few-shot digit classes seen at test

time. Therefore, transfer learning is used to train these unimodal models since they are

trained on out-of-domain data and then applied to do a task on unseen in-domain classes.

As in [1], we compared these transfer learned models to a baseline which uses speech-

speech and image-image comparisons on raw speech and image inputs for the indirect

matching approach. We repeated the experiments of [1] in order to improve the experimen-
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tal setup and to ensure that all the models in this thesis would be comparable. As a side

effect, we fixed an error in the validation setup of [1]. This resulted in a more reproducible

setup which samples fixed episodes beforehand instead of sampling an episode on demand.

After improving the experimental setup and evaluating the indirect classifier and Siamese

few-shot models against the baseline, the classifier was identified as the best model.

In Chapter 4, we made our first novel contributions: indirect multimodal few-shot

learning models that uses unsupervised learning. The idea behind using unsupervised

learning is that before teaching an agent like a household robot new concepts from a

few speech-image pairs per concept, it would be exposed to unlabelled in-domain data of

these concept classes from its environment. Specifically, we considered three unsupervised

objectives: the autoencoder (AE), correspondence autoencoder (CAE) and AE-CAE. These

unsupervised models consists of an unsupervised speech network and a corresponding

unsupervised vision network which are trained on unlabelled in-domain data. This means

that during training the models see unlabelled instances of the few-shot digits seen at test

time. Since the CAEs and AE-CAEs requires training pairs, we find unsupervised image

pairs using cosine distance and unsupervised spoken word pairs using speaker information

and dynamic time warping (DTW). We compare these unsupervised indirect few-shot

models to the transfer learned classifier of Chapter 3, as well as transfer learned variants of

the unsupervised CAE and AE-CAE. Similarly to the unsupervised indirect models, their

transfer learned variants consist of a transfer learned speech network and a transfer learned

vision network. The speech and vision transfer learned CAEs are trained on ground truth

pairs from the background data which is obtained by using the actual data labels.

The motivation behind unsupervised and transfer learning are quite different. Transfer

learning can be thought of as a way to re-use existing knowledge to make sense of un-

seen classes. In contrast, unsupervised learning involves an approach which learns from

unlabelled observed data within the domain in which it will be used. From our compari-

son of the proposed indirect models, it became clear that transfer learning consistently

outperformed unsupervised learning. To determine whether it is at all possible to obtain

an unsupervised approach that could outperform the transfer learning approaches, we

performed oracle experiments on the unsupervised models. From the oracle experiments

we saw that by improving the pairs used to train the unsupervised models, we can find

some unsupervised scheme that outperforms the pure transfer learning models.

As a preliminary investigation to determine whether the use of transfer learning

can improve the unsupervised pairs, we used the transfer learned classifiers to extract

representations which can then be used to obtain training pairs from the unlabelled

in-domain data. We used these pairs to train unsupervised speech and vision CAEs to

construct a new unsupervised indirect multimodal CAE. Additionally, we combined the

unsupervised and transfer learning methodologies by pretraining a speech CAE and a

vision CAE on ground truth pairs from the labelled background data before switching

96

Stellenbosch University https://scholar.sun.ac.za



6.2. Direct Multimodal Few-Shot Learning

to training these networks on the unsupervised pairs mined using the transfer learned

classifiers. Unfortunately, after evaluating these indirect combination models we found it

to just fall short of the transfer learned indirect classifier. However, these combination

models showed improved performance over the pure unsupervised approach.

To gain further insights into the indirect multimodal few-shot models’ performance, we

also evaluate their speech and vision networks on unimodal speech or image classification

tasks. In a unimodal classification task a model is given a support set containing a few

unimodal labelled examples which it uses to predict the label of a given query. Specifically,

by using the unimodal network, the given query is compared to each one of these labelled

examples in the support set so that the query is classified according to the label of the its

closest example.

From the unimodal and multimodal results we came to two conclusions. Firstly,

since the unimodal classification results of the separate speech and vision networks are

consistently higher than the multimodal speech-to-image matching results, there is a

compounding of errors due to the two unimodal comparisons across the multimodal

support set. Secondly, the vision networks could not find similar representations for images

of the same digit classes. This resulted in the indirect multimodal few-shot models not

being able to clearly distinguish between the image digit classes.

6.2 Direct Multimodal Few-Shot Learning

In Chapter 5, we combined the unsupervised and transfer learning approaches to obtain

direct multimodal few-shot learning models in an effort to find more distinctive image

representations for each digit class and to eliminate the compounding of errors in the

indirect approach. These direct models attempts to learn a single multimodal space in

which speech and image representations can be compared directly. Specifically, these

models aim to find similar representations for speech and image instances of the same

class. We then use these direct few-shot models to do the speech-to-image matching task

in a direct approach: to match a given speech query to its matching image, the speech

and image representations are compared directly in a joint space.

We proposed and implemented two direct multimodal few-shot learning models, the

multimodal correspondence autoencoder (MCAE) and the multimodal triplet network

(MTriplet). As a further contribution, the MCAE is an entirely new model. The MTriplet

is based on previous models, but the MTriplet has not yet been trained on unsuper-

vised mined cross-modal pairs and used for few-shot matching. For training, both the

MCAE and MTriplet requires speech-image pairs, as well as positive (MCAE) or negative

(MTriplet) speech-speech and image-image pairs. Within the mining procedure, we use

the transfer learned classifiers to extract representations for speech and image instances

from the unlabelled in-domain data. To mine training speech-image pairs, we use these

97

Stellenbosch University https://scholar.sun.ac.za



6.3. Contributions

representations and the multimodal support set to pair up unlabelled in-domain speech

and image instances. We also use these speech and image representations together with

some hard restrictions to obtain image-image and speech-speech positive and negative

pairs. None of these pairs are checked to be correct. Therefore the direct models learn a

multimodal space from only the few ground truth speech-image pairs in the support set.

The results of our direct few-shot models showed that they outperform all the indirect

few-shot models with the MTriplet achieving the highest multimodal matching accuracy

scores. In order to further investigate the direct few-shot models, we performed oracle

experiments for both direct models and we disconnected the speech and vision subnetworks

of these direct models to test these subnetworks in isolation on unimodal classification

tasks. From these extensive experiments we concluded that the direct models outperform

the indirect models since they learn similar representations for speech and image inputs

of the same digit class. These representations can be directly compared in the direct

matching approach and therefore avoid the compounding of errors that emerged from the

indirect approach.

6.3 Contributions

In order to emphasise the contributions of this thesis, we briefly state the aspects of the

thesis we were the first to consider. The unsupervised unimodal AE, CAE and AE-CAE

speech and vision models proposed in Chapter 4 has never been considered to construct

indirect multimodal few-shot learning models. Similarly, we were also the first to consider

transfer learned variants of this unsupervised indirect multimodal few-shot CAE and AE-

CAE. Our study, to our knowledge, has also been the only one that combined unsupervised

and transfer learning to obtain indirect few-shot models for the indirect matching approach.

We are the first to consider the MCAE and MTriplet in a direct few-shot learning approach

which combines the unsupervised and transfer learning methodologies to learn similar

representations for speech and image inputs of the same class.

6.4 Recommendations for Future Work

Future work should look into finding more accurate methods of mining unsupervised cross-

modal pairs, as well as speech-speech and image-image positive (MCAE) and negative

(MTriplet) pairs. From our experiments in Chapter 5 we could already conclude that

an improvement in the cross-modal and within-modality training pairs, will improve the

direct few-shot MTriplet and MCAE. We could explore combining the CAE and triplet

losses since Last et al. [85] has also found (on a different task than ours) that the CAE

and triplet losses can be complementary.
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Another avenue to pursue might be to investigate how these models can be used in the

field of natural language processing. This will probably involve extending direct few-shot

learning to consistently master new classes from a few speech-image pairs per new class as

the model encounters these classes in its environment. To do this, meta-learning could be

considered. Concretely, Eloff [82] performed preliminary studies into direct multimodal

few-shot learning by considering a network similar to the MTriplet but using transfer

learning in a meta-learning approach. The meta-learning approach is very different from

the direct models proposed here. The two approaches could be compared in future work.

This would require us to ensure that the results from [82] are reproducible (potentially

incorporating some of the changes we had to make, as outlined in Chapter 3) and then

applying the models to the same datasets within the same training regime.

Unlabelled multimodal datasets that consists of data in one modality and corresponding

data from another modality, are scarce. Therefore, future work should investigate the

collection of more multimodal datasets. Besides needing more multimodal datasets, in

order to clearly investigate the feasibility of multimodal few-shot learning, we also need

more realistic datasets which are applicable to real practical settings. To a large extent,

MNIST is considered a toy problem which means future work should look into using

natural images for multimodal few-shot learning.

6.5 Overall Summary and Conclusions

This thesis demonstrated two approaches for multimodal few-shot learning: a direct and an

indirect approach. These few-shot models were used to do a multimodal speech-to-image

matching task in which speech queries have to be matched to matching images after seeing

only a few ground truth speech-image pairs (the multimodal support set). The indirect

models attempt to find similar representations for within-modality inputs of the same class,

which are used in the indirect approach to do the multimodal matching task. We compared

using the unsupervised and transfer learning methodologies for these indirect models. In

contrast, we showed that the direct few-shot models which combined the unsupervised

and transfer learning methodologies to find similar representations for speech and image

inputs of the same class, are more accurate than the indirect models.

More specifically, we showed that the direct few-shot learning MTriplet was our best

model since its objective function focusses on distinguishing between speech and image

representations from the same class and speech and image representations from different

classes. The MCAE’s objective function also attempts to produce similar representations

for speech and image inputs of the same class. However, the MCAE should also retain

enough information in the representations to be able to produce other within-modality

instances of the same class from these representations. Upon retrospection, this is not ideal

since the aim of direct multimodal few-shot learning is to only learn which characteristics
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inputs from the same class across different modalities have in common. Overall, these direct

few-shot models shows promise for finding systems that do not require large amounts of

labelled data while simultaneously being able to quickly link data from different modalities.
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[69] J. Koutńık, J. Schmidhuber, and F. Gomez, “Evolving deep unsupervised convolutional

networks for vision-based reinforcement learning,” in Proc. GECCO, 2014.

[70] G. E. Hinton, “Reducing the dimensionality of data with neural metworks,” Science,

2006.

[71] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders:

feature learning by inpainting,” in Proc. CVPR, 2016.

[72] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural

metworks,” in Proc. NIPS, 2012.

[73] K. Barnard, P. Duygulu, D. Forsyth, and N. de Freitas, “Matching words and pictures,”

Mach Learn, vol. 3, 2003.

[74] R. Socher and L. Fei-Fei, “Connecting modalities: Semi-supervised segmentation and

annotation of images using unaligned text corpora,” in Proc. CVPR, 2010.

[75] D. Harwath and J. Glass, “Deep multimodal semantic embeddings for speech and

images,” in Proc. ASRU, 2015.

[76] D. Harwath, W.-N. Hsu, and J. Glass, “Learning hierarchical discrete linguistic units

from visually-grounded speech,” arXiv:1911.09602, 2020.

[77] F. Feng, X. Wang, and R. Li, “Cross-modal retrieval with correspondence autoencoder,”

in Proc. ACM, 2014.

[78] C. Silberer and M. Lapata, “Learning grounded meaning representations with autoen-

coders,” in Proc. ACL, 2014.

[79] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep

learning,” in Proc. ICML, 2011.

[80] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning through

cross-modal transfer,” in Proc. NIPS, 2013.

[81] J. Weston, S. Bengio, and N. Usunier, “Large scale image annotation: learning to

rank with joint word-image embeddings,” Mach Learn, vol. 81, 2010.

106

Stellenbosch University https://scholar.sun.ac.za



References

[82] R. Eloff, “Multimodal one-shot learning of speech and images,” Thesis, Stellenbosch

University, Stellenbosch, 2020.

[83] K. Leidal, D. Harwath, and J. Glass, “Learning modality-invariant representations

for speech and images,” in Proc. ASRU, 2017.

[84] D. Harwath, A. Recasens, D. Suris, G. Chuang, A. Torralba, and J. Glass, “Jointly

discovering visual objects and spoken words from raw sensory input,” in Proc. ECCV,

2018.

[85] P.-J. Last, H. A. Engelbrecht, and H. Kamper, “Unsupervised feature learning for

speech using correspondence and Siamese networks,” IEEE Signal Process. Lett.,

vol. 27, 2020.

107

Stellenbosch University https://scholar.sun.ac.za



Appendix A

The confusion matrices of the

multimodal models

In Chapter 4 we consider multimodal few-shot learning models which perform a multimodal

speech-to-image matching task using an indirect approach. Specifically, we consider these

models on an indirect five-shot 11-way speech-to-image matching task. Table A.1, Table A.2,

Table A.3 and Table A.4 shows the confusion matrices for some of these tasks. Table A.5

shows the confusion matrix for the multimodal CAE trained on oracle pairs and applied

to the indirect five-shot 11-way speech-to-image matching task.

The multimodal few-shot learning models considered in Chapter 5 performs the mul-

timodal speech-to-image matching task using a direct approach. Table A.6 shows the

confusion matrix for one of these models, the MCAE, on a direct five-shot 11-way multi-

modal speech-to-image matching task.

Table A.1: The confusion matrix produced by the multimodal transfer learned CAE on
the five-shot 11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 1329 158 71 71 146 63 138 128 159 78 21

2 63 838 140 76 25 82 126 110 35 62 86

3 23 182 1018 28 208 27 59 167 71 50 32

4 32 53 44 922 73 196 78 104 240 94 43

5 30 25 200 54 736 82 46 95 109 138 99

6 49 74 31 154 107 1019 42 125 57 157 144

7 79 202 92 67 71 15 1111 62 159 51 48

8 84 127 140 119 104 136 71 767 201 59 42

9 68 44 83 255 133 28 154 166 711 90 65

0 18 132 26 89 152 147 45 56 58 1071 1280

Total 1775 1835 1845 1835 1755 1795 1870 1780 1800 1850 1860
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Table A.2: The confusion matrix produced by the multimodal unsupervised CAE on
the five-shot 11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 1391 260 128 113 117 66 123 145 92 23 22

2 108 695 176 127 17 87 114 143 68 66 60

3 32 136 946 47 258 48 49 141 72 70 54

4 1 108 41 810 74 206 92 87 306 88 37

5 37 27 228 53 723 127 50 145 140 115 112

6 29 86 46 155 132 857 21 102 68 154 159

7 61 188 54 58 62 52 1107 52 130 95 81

8 55 112 116 91 127 113 59 803 126 49 30

9 28 92 70 313 120 95 177 118 752 84 92

0 3 131 40 68 125 144 78 44 46 1106 1213

Total 1775 1835 1845 1835 1755 1795 1870 1780 1800 1850 1860

Table A.3: The confusion matrix produced by the multimodal unsupervised CAE with
transfer learned classifier pairs on the five-shot 11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 1425 221 150 88 119 77 89 111 79 23 15

2 84 828 137 86 25 92 125 122 51 34 65

3 36 121 991 40 212 33 59 133 54 46 49

4 23 92 44 891 67 196 78 96 308 70 42

5 51 20 194 47 819 103 36 151 118 94 66

6 15 77 44 180 138 897 25 118 82 153 127

7 52 170 59 87 39 44 1143 53 153 72 67

8 66 130 144 83 137 113 51 807 131 50 26

9 21 77 58 285 108 90 149 150 774 74 75

0 2 99 24 48 91 150 115 39 50 1234 1328

Total 1775 1835 1845 1835 1755 1795 1870 1780 1800 1850 1860

Table A.4: The confusion matrix produced by the multimodal transfer learning +
unsupervised fine-tuning with transfer learned classifier pairs CAE on the five-shot 11-way
speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 1466 175 77 44 99 70 84 63 65 21 21

2 75 890 139 68 19 82 118 90 42 39 60

3 32 138 1005 29 241 33 46 112 63 51 51

4 22 81 37 977 59 153 70 87 311 66 44

5 26 25 265 32 873 106 27 117 86 106 87

6 19 53 47 145 123 1025 16 109 60 162 138

7 57 208 70 61 49 21 1262 49 129 64 53

8 53 103 115 84 121 122 41 973 133 45 18

9 24 84 67 357 93 51 136 140 868 81 68

0 1 78 23 38 78 132 70 40 43 1215 1320

Total 1775 1835 1845 1835 1755 1795 1870 1780 1800 1850 1860
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Table A.5: The confusion matrix produced by the multimodal CAE with oracle pairs
on the five-shot 11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 1715 18 14 19 13 12 10 5 23 5 3

2 5 1634 7 2 0 0 26 21 1 3 17

3 0 46 1776 0 60 1 7 4 6 0 0

4 5 9 3 1669 13 10 9 7 213 14 1

5 3 0 21 1 1550 15 3 6 26 13 3

6 1 12 1 13 37 1733 2 35 0 13 14

7 5 51 8 3 27 0 1786 8 22 8 6

8 1 37 9 8 23 12 1 1675 35 10 3

9 40 2 5 113 29 1 19 12 1463 3 2

0 0 26 1 7 3 11 7 7 11 1781 1811

Total 1775 1835 1845 1835 1755 1795 1870 1780 1800 1850 1860

Table A.6: The confusion matrix produced by the MCAE with mined pairs on the
five-shot 11-way speech-to-image matching task.

Actual speech digit class

“one” “two” “three” “four” “five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
image
class

1 8521 26 84 689 201 34 15 465 685 434 23

2 10 7440 1118 98 8 47 285 343 52 311 853

3 23 454 7046 82 1317 30 311 247 319 83 51

4 59 44 26 5681 120 382 178 571 192 819 469

5 63 13 303 511 6550 148 130 256 271 590 54

6 5 94 25 496 89 7855 63 1293 28 275 302

7 14 459 409 89 179 99 7954 97 239 318 349

8 49 236 74 93 121 317 55 5243 377 966 51

9 125 49 116 229 147 28 238 324 6750 575 190

0 6 360 24 1207 43 35 121 61 87 4879 6958

Total 8875 9175 9225 9175 8775 8975 9350 8900 9000 9250 9300
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Appendix B

The per-digit recall scores of the

multimodal models

Chapter 3 and Chapter 4 considers using unsupervised or transfer learning or a combination

of these two methodologies for indirect multimodal few-shot learning. These models are

used on an indirect approach to do a multimodal five-shot 11-way speech-to-image matching

task. The per-digit multimodal recall scores for these models are reported in Table B.1.

Table B.1: The per-digit recall scores of the multimodal combination models on a
five-shot 11-way speech-to-image matching task.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

R
e
c
a
ll

(%
)

Classifier 73.92 57.38 63.09 60.60 65.13 64.23 62.41 44.94 49.56 51.46 63.87

Unsupervised CAE 78.37 37.87 51.27 44.14 41.20 47.74 59.20 45.11 41.78 59.78 65.22

Unsupervised CAE
with transfer learned
classifier pairs

80.28 45.12 53.71 48.56 46.67 49.97 61.12 45.34 43.00 66.70 71.40

Transfer learning +
unsupervised
fine-tuning with
transfer learned
classifier pairs CAE

82.59 48.50 54.47 53.24 49.74 57.10 67.49 54.66 48.22 65.86 70.97

Oracle pairs CAE 96.62 89.05 96.26 90.95 88.32 96.55 95.51 94.10 81.28 96.27 97.37
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Appendix C

The confusion matrices of the

speech models

Chapter 4 considers various indirect multimodal few-shot learning models which consist

of separate speech and vision networks. Table C.1 and Table C.2 shows the confusion

matrices of these speech networks on unimodal five-shot 11-way speech classification tasks.

Chapter 5 considers direct multimodal few-shot learning models. After disconnecting

the direct models’ speech and vision subnetworks, we use the speech subnetworks to do

unimodal five-shot 11-way speech classification tasks. Table C.3 shows the confusion matrix

for the MTriplet’s speech network on a unimodal five-shot 11-way speech classification

task.

Table C.1: The confusion matrix produced by the speech transfer learned CAE RNN
on the five-shot 11-way speech classification task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
speech
class

“one” 1681 0 3 1 7 0 0 25 102 66 1

“two” 0 1633 20 8 0 1 20 26 0 10 129

“three” 0 53 1744 4 2 1 3 50 6 7 2

“four” 0 5 5 1727 25 0 2 1 0 75 7

“five” 3 0 6 28 1691 4 9 7 17 83 0

“six” 0 3 1 1 0 1797 24 15 0 0 6

“seven” 0 13 5 5 1 17 1750 0 1 4 35

“eight” 6 16 13 1 0 7 2 1658 3 48 0

“nine” 123 2 4 1 11 0 0 25 1664 34 12

“oh” 27 6 0 38 38 0 0 17 6 1476 2

“zero” 0 109 4 16 0 8 35 1 1 7 1601

Total 1840 1840 1805 1830 1775 1835 1845 1825 1800 1810 1795
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Appendix

Table C.2: The confusion matrix produced by the unsupervised speech CAE RNN on
the five-shot 11-way speech classification task.

Actual speech digit class

“one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
speech
class

“one” 1751 0 2 10 5 0 0 4 26 16 0

“two” 0 1635 33 1 0 1 12 15 0 2 43

“three” 0 49 1742 1 4 0 2 2 2 0 1

“four” 11 5 0 1759 25 3 1 3 0 47 9

“five” 1 0 0 27 1693 0 8 1 1 71 0

“six” 0 9 0 5 0 1809 10 11 0 0 7

“seven” 0 23 3 2 6 12 1809 1 0 19 20

“eight” 5 34 11 1 0 4 0 1764 0 37 0

“nine” 67 0 5 0 21 0 0 13 1769 16 5

“oh” 5 15 2 16 21 0 3 11 1 1598 0

“zero” 0 70 7 8 0 6 0 0 1 4 1710

Total 1840 1840 1805 1830 1775 1835 1845 1825 1800 1810 1795

Table C.3: The confusion matrix produced by the speech network of the MTriplet with
mined pairs on the five-shot 11-way speech classification task.

Actual speech digit class

“one” “two” “three” “four” “five” “six” “seven” “eight” “nine” “oh” “zero”

Predicted
speech
class

“one” 9018 2 13 5 2 0 0 7 96 44 6

“two” 0 8716 157 3 0 28 62 132 0 6 90

“three” 0 141 8749 1 28 3 13 109 0 4 1

“four” 6 47 19 8960 22 0 14 0 1 119 1

“five” 1 5 25 48 8734 17 37 33 18 167 1

“six” 0 7 0 3 12 9078 0 42 0 1 0

“seven” 0 85 12 5 4 8 9052 1 0 9 14

“eight” 0 61 42 2 9 40 0 8673 11 24 0

“nine” 139 1 3 12 36 0 0 108 8848 83 9

“oh” 36 36 3 96 27 0 14 20 19 8587 16

“zero” 0 99 2 15 1 1 33 0 7 6 8837

Total 9200 9200 9025 9150 8875 9175 9225 9125 9000 9050 8975
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Appendix D

The per-digit recall scores of the

speech models

Chapter 3 and Chapter 4 considers using unsupervised or transfer learning or a combination

of these two methodologies for indirect multimodal few-shot learning. The speech networks

of these few-shot models are used on unimodal five-shot 11-way speech classification tasks.

The per-digit speech recall scores for these tasks are reported in Table D.1.

Table D.1: The per-digit recall scores of the speech combination models on a five-shot
11-way speech classification task.

Actual speech query digit class

Model “one” “two” “three” “four” five” “six” “seven” “eight” “nine” “oh” “zero”

R
e
c
a
ll

(%
)

Classifier RNN 94.02 99.13 97.17 95.79 98.25 99.95 99.24 97.37 98.22 86.13 97.16

Unsupervised CAE
RNN with cosine pairs

95.16 88.86 96.51 96.12 95.38 98.58 98.05 96.66 98.28 88.29 95.26

Unsupervised CAE
RNN with transfer
learned classifier pairs

98.37 94.84 95.73 98.09 97.69 98.31 97.72 96.60 98.17 94.31 96.27

Transfer learning +
unsupervised
fine-tuning with
transfer learned
classifier pairs CAE
RNN

99.57 97.72 97.78 98.69 98.37 98.31 98.70 98.08 98.50 95.30 97.10

Oracle pairs CAE RNN 99.77 96.14 98.28 99.56 98.65 99.84 99.08 99.18 99.44 98.23 99.39
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Appendix E

The confusion matrices of the

vision models

The indirect multimodal few-shot learning models in Chapter 3 and Chapter 4 consist of

separate speech and vision networks. Table E.1, Table E.2 and Table E.3 show the confusion

matrices of these vision networks on unimodal five-shot 10-way image classification tasks.

In Chapter 5 we consider direct multimodal few-shot learning models which consists

of speech and vision subnetworks. These vision subnetworks are used to do unimodal

five-shot 10-way image classification tasks. Table E.4 shows the confusion matrix for the

MTriplet’s vision network on a unimodal five-shot 10-way image classification task.

Table E.1: The confusion matrix produced by the vision classifier CNN on the five-shot
10-way image classification task.

Actual image digit class

1 2 3 4 5 6 7 8 9 0

Predicted
image
class

1 1947 57 12 83 28 61 49 75 42 10

2 13 1557 57 15 0 7 65 68 12 15

3 6 93 1701 3 68 1 44 90 31 3

4 13 12 0 1655 1 54 26 67 59 23

5 0 7 85 7 1734 39 3 96 19 3

6 4 28 0 62 74 1684 0 88 10 36

7 7 106 56 31 7 3 1667 38 120 31

8 7 88 62 60 52 67 24 1246 116 19

9 0 4 16 57 10 13 98 138 1559 30

0 3 48 11 27 26 71 24 94 32 1830

Total 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
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Appendix

Table E.2: The confusion matrix produced by the transfer learned vision CAE CNN on
the five-shot 10-way image classification task.

Actual image digit class

1 2 3 4 5 6 7 8 9 0

Predicted
image
class

1 1971 106 16 35 63 42 57 56 34 5

2 8 1496 100 32 3 11 85 61 10 8

3 5 64 1519 6 151 2 39 90 36 3

4 3 17 5 1424 26 89 20 68 208 12

5 2 12 152 15 1397 38 7 66 53 16

6 0 38 13 133 95 1614 0 109 30 49

7 3 157 63 28 9 2 1612 26 103 10

8 6 66 87 70 91 56 28 1346 117 5

9 0 11 33 225 46 10 98 137 1369 7

0 2 33 12 32 119 136 54 41 40 1885

Total 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Table E.3: The confusion matrix produced by the unsupervised vision CAE CNN on
the five-shot 10-way image classification task.

Actual image digit class

1 2 3 4 5 6 7 8 9 0

Predicted
image
class

1 1975 240 31 58 39 54 68 79 34 5

2 12 1360 76 42 8 22 73 58 8 7

3 2 72 1590 11 192 4 40 63 30 3

4 0 51 8 1361 48 81 16 48 271 9

5 5 7 129 17 1382 59 11 101 45 19

6 0 33 24 112 76 1517 2 82 27 50

7 3 141 36 45 13 3 1654 38 87 16

8 1 54 51 39 112 73 14 1406 59 6

9 1 19 35 293 65 38 63 95 1404 11

0 1 23 20 22 65 149 59 30 35 1874

Total 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Table E.4: The confusion matrix produced by the vision network of the MTriplet with
mined pairs on the five-shot 10-way image classification task.

Actual image digit class

1 2 3 4 5 6 7 8 9 0

1 9900 21 11 18 6 97 25 76 34 11

2 35 8933 188 20 1 8 304 158 4 26

3 4 151 9120 16 150 0 142 358 80 6

4 3 65 14 8626 17 45 32 250 330 37

5 0 0 321 21 9317 145 5 236 90 107

6 36 46 11 313 198 9490 0 297 1 54

7 13 422 95 115 3 0 8953 92 440 83

8 9 127 208 258 201 85 43 7894 282 46

9 0 24 25 600 57 3 436 527 8647 47

0 0 211 7 13 50 127 60 112 92 9583

Total 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
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Appendix F

The per-digit recall scores of the

vision models

The multimodal few-shot learning models in Chapter 3 and Chapter 4 use unsupervised or

transfer learning or a combination of these two methodologies. The vision networks are

used to do unimodal five-shot 10-way image classification tasks where Table F.1 shows the

per-digit image recall scores of these tasks.

Table F.1: The per-digit recall scores of the vision combination models on a five-shot
10-way image classification task.

Actual image query digit class

Model 1 2 3 4 5 6 7 8 9 0

R
e
c
a
ll

(%
)

Classifier CNN 97.35 77.85 85.05 82.75 86.70 84.20 83.35 62.30 77.95 91.50

Unsupervised CAE
RNN

98.75 68.00 79.50 68.05 69.10 75.85 82.70 70.30 70.20 93.70

Unsupervised CAE
CNN with transfer
learned classifier pairs

99.05 75.25 81.45 73.70 73.70 82.90 83.70 77.30 73.75 95.20

Transfer learning +
unsupervised
fine-tuning with
transfer learned
classifier pairs CAE
CNN

98.95 72.25 80.50 73.70 71.90 77.45 81.35 74.25 70.55 95.60

Oracle pairs CAE CNN 100.00 97.05 98.75 96.75 97.70 96.75 99.05 96.80 93.00 99.85
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