
Integrating Bayesian Network Structure into

Normalizing Flows and Variational

Autoencoders

by

Jacobie Mouton

Thesis presented in partial ful�lment of the requirements for

the degree of Master of Science in Computer Science in the

Faculty of Science at Stellenbosch University

Supervisor: Prof. S. Kroon

March 2023

Declaration

By submitting this thesis electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the sole author
thereof (save to the extent explicitly otherwise stated), that reproduction and
publication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any quali�cation.

March 2023Date: .

Copyright© 2023 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Integrating Bayesian Network Structure into

Normalizing Flows and Variational Autoencoders

J. Mouton

Computer Science Division,
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.

Thesis : MSc (Computer Science)

March 2023

Deep generative models have become more popular in recent years due to their
good scalability and representation capacity. However, these models do not
typically incorporate domain knowledge. In contrast, probabilistic graphical
models speci�cally constrain the dependencies between the variables of inter-
est as informed by the domain. In this work, we therefore consider integrating
probabilistic graphical models and deep generative models in order to con-
struct models that are able to learn complex distributions, while remaining
interpretable by leveraging prior knowledge about variable interactions. We
speci�cally consider the type of domain knowledge that can be represented by
Bayesian networks, and restrict our study to the deep generative frameworks
of normalizing �ows and variational autoencoders.

Normalizing �ows (NFs) are an important family of deep neural networks for
modelling complex distributions as transformations of simple base distribu-
tions. Graphical �ows add further structure to NFs, allowing one to encode
non-trivial variable dependencies in these distributions. Previous graphical
�ows have focused primarily on a single �ow direction: either the normalizing
direction for density estimation, or the generative direction for inference and
sampling. However, to use a single �ow to perform tasks in both directions, the
model must exhibit stable and e�cient �ow inversion. This thesis introduces
graphical residual �ows (GRFs)�graphical �ows based on invertible residual
networks�which ensure stable invertibility by spectral normalization of its

ii

Stellenbosch University https://scholar.sun.ac.za

ABSTRACT iii

weight matrices. Experiments con�rm that GRFs provide performance com-
petitive with other graphical �ows for both density estimation and inference
tasks. Furthermore, our model provides stable and accurate inversion that is
also more time-e�cient than alternative �ows with similar task performance.
We therefore recommend the use of GRFs over other graphical �ows when the
model may be required to perform reliably in both directions.

Since �ows employ a bijective transformation, the dimension of the base or
latent distribution must have the same dimensionality as the observed data.
Variational autoencoders (VAEs) address this shortcoming by allowing prac-
titioners to specify any number of latent variables. Initial work on VAEs
assumed independent latent variables with simple prior and variational dis-
tributions. Subsequent work has explored incorporating more complex dis-
tributions and dependency structures: including NFs in the encoder network
allows latent variables to entangle non-linearly, creating a richer class of dis-
tributions for the approximate posterior, and stacking layers of latent vari-
ables allows more complex priors to be speci�ed. In this vein, this thesis
also explores incorporating arbitrary dependency structures�as speci�ed by
Bayesian networks�into VAEs. This is achieved by extending both the prior
and inference network with the above GRF, resulting in the structured in-
vertible residual network (SIReN) VAE. We speci�cally consider GRFs, since
the application of the �ow in the VAE prior necessitates stable inversion. We
compare our model's performance on several datasets to models that encode
no special dependency structures, and show its potential to provide a more in-
terpretable model as well as better generalization performance in data-sparse
settings. We also identify posterior collapse�where some latent dimensions
become inactive and are e�ectively ignored by the model�as an issue with
SIReN-VAE, as it is linked with the encoded structure. As such, we employ
various combinations of existing approaches to alleviate this phenomenon.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Die Integrasie van Bayesiaanse Netwerkstrukture in

Normaliserende Strome en Variasionele

Outo-enkodeerders

J. Mouton

Rekenaarwetenskapafdeling,
Stellenbosch Universiteit,

Privaat Sak X1, Matieland 7602, Suid-Afrika.

Tesis : MSc (Rekenaarwetenskap)

Maart 2023

Diep generatiewe modelle het die afgelope paar jaar gewild geword as gevolg
van hul goeie skaalbaarheid en verteenwoordigingskapasiteit. Hierdie modelle
inkorporeer egter nie tipies domeinkennis nie. In teenstelling hiermee beperk
gra�ese waarskynlikheidsmodelle spesi�ek die voorwaardelike onafhanklikhede
tussen die veranderlikes van belang soos deur die domein ingelig. In hierdie
werk oorweeg ons dus die integrasie van gra�ese waarskynlikheidsmodelle en
diep generatiewe modelle om sodoende modelle te konstrueer wat komplekse
verdelings kan leer, terwyl hul interpreteerbaar bly deur kennis oor veranderlike
interaksies te benut. Ons oorweeg spesi�ek die tipe domeinkennis wat deur
Bayesiaanse netwerke verteenwoordig kan word, en beperk ons studie tot die
diep generatiewe raamwerke van normaliserende strome en variasionele outo-
enkodeerders.

Normaliserende strome (NF'e) is 'n belangrike familie van diep neurale netwerke
vir die modellering van komplekse verdelings as transformasies van eenvoudige
basisverdelings. Gra�ese strome voeg verdere struktuur aan NF'e, wat `n mens
in staat stel om nie-triviale veranderlike afhanklikhede in hierdie verdelings
te enkodeer. Vorige gra�ese strome het hoofsaaklik op 'n enkele vloeirigting
gefokus: die normaliserende rigting vir digtheidskatting, of die generatiewe
rigting vir statistiese a�eiding en steekproefneming. Om egter 'n enkele stroom

iv

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL v

te gebruik om take in beide rigtings uit te voer, moet die model stabiele en doel-
tre�ende inversie toon. Hierdie tesis stel gra�ese residuele strome (GRF'e) bek-
end wat gebaseer is op inverteerbare residuele netwerke. GRF'e verseker sta-
biele inverteerbaarheid deur spektrale normalisering van hul gewigsmatrikse.
Eksperimente bevestig dat GRF'e kompeterende modeleringsvermoë bied in
vergelyking met ander gra�ese strome vir beide digtheidsskatting en a�eid-
ingstake. Verder bied ons model stabiele en akkurate inversie wat ook meer
tydsdoeltre�end is as alternatiewe strome met soortgelyke taakverrigting. Ons
beveel dus die gebruik van GRF'e aan wanneer die model vereis is om be-
troubaar in beide vloeirigtings te werk.

Aangesien strome 'n byektiewe transformasie gebruik, moet die dimensie van
die basis of latente verspreiding dieselfde dimensionaliteit hê as die waargenome
data. Variasionele outo-enkodeerders (VAE's) spreek hierdie tekortkoming aan
deur praktisyns toe te laat om enige aantal latente veranderlikes te spesi�seer.
Aanvanklike werk op VAE's het onafhanklike latente veranderlikes met een-
voudige verdelings aanvaar. Daaropvolgende werk het ondersoek ingestel na
die insluiting van meer komplekse verdelings en afhanklikheidstrukture: die
insluiting van NF'e in die enkoderingsnetwerk laat latente veranderlikes toe
om nie-lineêr te verstrengel wat 'n ryker klas verdelings vir die benaderde
posteriori-verdeling skep, en die stapeling van lae latente veranderlikes laat
toe dat meer komplekse priori-verdelings gespesi�seer word. In `n soortgelyke
trant ondersoek hierdie tesis die inkorporering van arbitrêre afhanklikheid-
strukture, soos gespesi�seer deur Bayesiaanse netwerke, in VAE's. Dit word
bewerkstellig deur beide die priori-verdeling en die a�eidingsnetwerk uit te
brei met die bogenoemde GRF, wat lei tot die gestruktureerde inverteerbare
residuele netwerk (SIReN) VAE. Ons oorweeg spesi�ek GRF'e, aangesien die
toepassing van die stroom in die VAE priori-verdeling stabiele inversie benodig.
Ons vergelyk ons model se modeleringsvermoë op verskeie datastelle teenoor
modelle wat geen spesi�eke afhanklikheidstrukture inkorporeer nie, en toon die
potensiaal daarvan om 'n meer interpreteerbare model te verskaf sowel as beter
veralgemeningsvermoë wanneer beperkte data beskikbaar is. Ons identi�seer
ook posteriori-ineenstorting�waar sommige latente dimensies deur die model
geïgnoreer word�as 'n probleem met SIReN-VAE, aangesien dit gekoppel is
aan die geënkodeerde struktuur. As sodanig evalueer ons verskeie kombinasies
van bestaande tegnieke om hierdie verskynsel te verhoed.

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

First and foremost my praise is to God for the blessing and grace to have been
able to complete this work.

I am immensely grateful to my supervisor, Prof Steve Kroon, for his continual
guidance and encouragement that frequently went that extra mile. I would
also like to thank my parents and friends for their love and support through
all the ups and downs of bringing this thesis to completion.

Lastly, I would like to thank the DeepMind scholarship programme for the
�nancial support needed to complete this work.

vi

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iv

Acknowledgements vi

Contents vii

List of Figures xi

List of Tables xiii

Acronyms and Abbreviations xiv

Notation xv

1 Introduction 1

1.1 Problem Statement & Research Questions 2
1.1.1 General Problem Statement 2
1.1.2 Context . 2
1.1.3 Research Questions . 3

1.2 Objectives . 4
1.3 Contributions . 5
1.4 Outline . 6

2 Background 7

2.1 Probabilistic Graphical Models 8
2.1.1 Bayesian Networks . 9

2.2 Probabilistic Latent Variable Models 11
2.2.1 Inference . 11

2.3 Normalizing Flows . 13
2.3.1 Finite Flows . 14

vii

Stellenbosch University https://scholar.sun.ac.za

CONTENTS viii

2.3.2 Continuous Flows . 22
2.3.3 Primary Applications of NFs 24
2.3.4 Invertibility of Flows in Practice 26

2.4 Variational Autoencoders . 28
2.4.1 Simultaneously Learning a Model and Approximate Pos-

terior . 28
2.4.2 The Evidence Lower Bound 29
2.4.3 Estimating the Marginal 32
2.4.4 Posterior Collapse . 33
2.4.5 Interpretability of Deep Latent Variable Models 34

2.5 Conclusion . 36

3 Literature Review 37

3.1 Normalizing Flows with Graphical Structures 37
3.1.1 Finite Flows with Graphical Structures 39
3.1.2 Continuous Flows with Graphical Structures 40
3.1.3 Related Work . 41

3.2 Adding Structure to VAEs . 42
3.2.1 Increasing Latent Space Complexity 43
3.2.2 VAEs with Graphical Structures 45

4 Graphical Residual Flows 47

4.1 Encoding Structure in Residual Flows 48
4.2 Extending MADE for Arbitrary Graphical Structures 50
4.3 Computing the Jacobian Determinant 52

4.3.1 Reducing Memory Requirements 53
4.4 Variational Inference . 54
4.5 Formalizing the Encoded Dependency Structure 57
4.6 Inverting GRFs . 61
4.7 Invertibility of Graphical Flows in Practice 62
4.8 LipMish Activation Function . 64
4.9 Conclusion . 67

5 Empirical Investigation I: GRF 68

5.1 Methodology . 68
5.1.1 Datasets & Bayesian Networks 69
5.1.2 Model Architectures & Training 72

5.2 Density Estimation & Inference Performance 73
5.3 Inversion . 75
5.4 Conclusion . 82

6 SIReN-VAE 84

6.1 Structuring VAEs with Graphical Residual Flows 85
6.1.1 Modi�cations to the Generative Phase 86

Stellenbosch University https://scholar.sun.ac.za

CONTENTS ix

6.1.2 Modi�cations to the Inference Phase 86
6.2 Posterior Collapse in a Structured Latent Space 88
6.3 Conclusion . 92

7 Empirical Investigation II: SIReN-VAE 93

7.1 Methodology . 94
7.1.1 Datasets & Bayesian Networks 95
7.1.2 Model Architecture & Training 96

7.2 E�ect of GRFs on the Latent Distribution 100
7.3 Incorporating Graphical Structures 102
7.4 Addressing Posterior Collapse 104

7.4.1 E�ect of Encoded Structure on Posterior Collapse 104
7.4.2 Mitigating Posterior Collapse 107

7.5 Interpretability of the Learned Latent Space 110
7.6 Bene�t of Incorporating Graphical Structures in Data-sparse

Settings . 113
7.7 Conclusion . 116

8 Conclusion 117

8.1 Summary & Key Findings . 117
8.1.1 Graphical Residual Flows 117
8.1.2 Structured Invertible Residual Network VAE 119

8.2 Future Work . 120

Appendices 122

A Empirical Investigations 123

A.1 Empirical Investigation I: GRF 123
A.1.1 Datasets & Bayesian Networks 123
A.1.2 Model Architectures . 124
A.1.3 Implementation Details 126
A.1.4 Additional Results . 127

A.2 Empirical Investigation II: SIReN-VAE 134
A.2.1 Datasets & Bayesian Networks 134
A.2.2 Model Architectures . 134

B Additional Theoretical Background 138

B.1 Key Mathematical Findings . 138
B.1.1 Leibniz Integral Rule . 138

B.2 Additional Derivations . 138
B.2.1 Lipschitz Constant of Composition of Functions 138
B.2.2 DReG Derivation . 139

C Reproducing SCCNF Article Results 142

Stellenbosch University https://scholar.sun.ac.za

CONTENTS x

List of References 144

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 Composing multiple �ow steps to increase complexity. 15
2.2 The MADE masking scheme. 19

3.1 BNs associated with a 1-step NF transformation. 38

4.1 The update to x at �ow step t of a graphical residual �ow. 49
4.2 Mask construction . 52
4.3 Reducing GRF memory requirements during training. 54
4.4 BN inversion schemes . 55
4.6 A normalizing GRF with two transformation steps. 58
4.7 Vanishing second derivatives of common smooth activations. . . . 65
4.8 The LipMish activation function. 66

5.1 BN graphs associated with the graphical datasets. 70
5.1 BN graphs associated with the graphical datasets (continued). . . . 71
5.2 Density estimation performance vs �ow depth. 75
5.3 Newton vs Banach �xed-point inversion 76
5.4 Inversion error of GNF-M and GRF on the Arithmetic Circuit dataset. 78
5.5 Inversion error of GNF-M and GRF on the Tree dataset. 78
5.6 Inversion error of GNF-M and GRF on the Protein dataset. 79
5.7 Inversion error of GNF-M and GRF on the EColi dataset. 79
5.8 Inversion error of GNF-M and GRF on the MEHRA dataset. 80

6.1 BN graphs encoded by di�erent VAE approaches. 84
6.2 The SIReN-VAE model. 87
6.3 Sampling from SIReN-VAE. 87
6.4 Range of BN graphs that can be encoded by SIReN-VAE. 87

7.1 BN graphs associated with the graphical datasets. 97
7.1 BN graphs associated with the graphical datasets (continued). . . . 98
7.2 Visualization of latent distributions on the OneHot dataset. 100
7.3 Samples drawn from di�erent models trained on MNIST. 101
7.4 Posterior collapse in the Arithmetic Circuit 2 and Arth BNs. 105
7.5 Measuring posterior collapse of the latent variables. 106
7.6 Mutual information between latent and observed variables of the

true and �tted distributions. 111

xi

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xii

7.6 Mutual information between latent and observed variables of the
true and �tted distributions (continued). 112

7.7 Negative ELBO vs training set size. 114

A.1 Flow performance for di�erent residual block activation functions. . 128
A.2 The true Tree BN graph and a modi�ed version that has the same

transitive closure. 130
A.3 The true Protein BN graph and a modi�ed version that has the

same transitive closure. 130
A.4 Flow performance for di�erent masking schemes. 131
A.4 Flow performance for di�erent masking schemes. 132
A.5 Newton-like vs Banach �xed-point inversion. 133

C.1 Reproducing the results presented in Weilbach et al. (2020). 143

Stellenbosch University https://scholar.sun.ac.za

List of Tables

5.1 Datasets' BN graph summary for empirical investigation I. 70
5.2 Density estimation performance. 74
5.3 Inference performance. 74
5.4 Inversion performance. 77
5.5 Inversion time using Banach vs Newton-like �xed-point inversion. . 80

7.1 Datasets' BN graph summary for empirical investigation II. 96
7.2 Performance of di�erent models on the OneHot and MNIST datasets.101
7.3 Performance of di�erent models on the graphical datasets. 103
7.4 Performance of SIReN-VAETrue when applying di�erent combina-

tions of posterior collapse mitigation techniques. 108
7.5 Performance of SIReN-VAEFC when applying di�erent combina-

tions of posterior collapse mitigation techniques. 109
7.6 Model performance when trained on limited training data. 115

A.1 Small �ow model architectures. 125
A.2 Large model architectures. 126
A.3 Performance of LipMish vs LipSwish. 127
A.4 E�ect of encoding di�erent BN graphs with the same transitive

closure as the true BN graph, into GRF. 129
A.5 Model architectures used for the OneHot dataset. 135
A.6 Model architectures used for the MNIST dataset. 136
A.7 Model architectures used for the graphical datasets. 137

xiii

Stellenbosch University https://scholar.sun.ac.za

Acronyms and Abbreviations

BN Bayesian network 2, 9

CAVI Coordinate ascent variational inference 13

DAG Directed acyclic graph 9

DLVM Deep latent variable model 28

DReG Doubly-reparameterized gradient 33, 91

ELBO Evidence Lower BOund 12

FID Fréchet Inception Distance 100

GNF-M Graphical normalizing �ow with monotonic transforma-
tions

63

GNF-A Graphical normalizing �ow with a�ne transformations 62

GRF Graphical residual �ow 5, 47

i.i.d. Independently and identically distributed 10

IWAE Importance weighted autoencoder 89

MI Mutual information 34, 35

MINE Mutual information neural estimation 35, 95

MLP Multi-layer perceptron 18

NF Normalizing �ow 2, 13

ODE Ordinary di�erential equation 13

PGM Probabilistic graphical model 1, 8

SCCNF Structured conditional continuous normalizing �ow 41

SIReN-VAE Structured invertible residual network VAE 5, 85

VAE Variational autoencoder 2, 28

VI Variational inference 11

WU Warm-up 88

xiv

Stellenbosch University https://scholar.sun.ac.za

Notation

x Observed variables 2

z Latent variables 2

p(·) Probability distribution function 2

q(·) Variational distribution function 12

θ Model parameters 85

φ Variational or inference model parameters 86

Lip(f) Lipschitz constant of a Lipschitz continuous function f 20

� Element-wise multiplication 32

KL(·||·) Kullback-Leibler divergence 10

G Bayesian network graph 9

Pa(·) Parent vertices in graph 9

[f(·)]i Component i of the output of a vector-valued function f 16

xv

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Machine learning addresses the task of constructing models of observed events
from data. The di�culty is that the available data rarely paints a complete
picture of the underlying system, and there are typically many unknown factors
at play. Fortunately, we can employ probability theory to express di�erent
forms of uncertainty and noise associated with these models, and this in turn
allows us to use Bayes' rule to make inferences about unknown quantities,
to update our models based on new observations, and to make predictions.
This approach is known as probabilistic modelling. One of the main classes
of probabilistic modelling is generative modelling. Probabilistic generative
models aim to learn how to generate new data from the same distribution as the
observations. Although there are various approaches to generative modelling,
the rise of deep learning in the past decade has lead to the widespread use of
neural methods�known as deep generative models. These models are capable
of learning complex distributions and leverage (stochastic) gradient descent
optimization with automatic di�erentiation software to e�ciently optimize the
model parameters.

One of the attractive properties of generative modelling, is that it allows practi-
tioners to constrain the generative process based on knowledge from the appli-
cation domain, while factors they either do not know or do not care about can
simply be treated as noise. One class of probabilistic generative models that
speci�cally constrains dependencies between the variables of interest by spec-
ifying conditional independencies, is probabilistic graphical models (PGMs).
Graphical models allow experts to specify domain knowledge about the rela-
tionships between variables, yielding more compact and interpretable models.
Although there are typically other ways in which generative models can be
informed by their application domain as well as other types of deep generative
models that are not necessarily probabilistic in nature, this work will focus on
the two classes of generative models discussed above: graphical models and
deep probabilistic generative models.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

1.1 Problem Statement & Research Questions

1.1.1 General Problem Statement

Deep generative models have become more popular in recent years due to their
good scalability and representation capacity. Unlike graphical models, they
typically, however, do not incorporate any speci�c domain knowledge which
could aid in their overall performance and interpretability. We are therefore
interested in combining the strengths of these two approaches. As such, the key
focus of this work is to investigate the integration of deep generative models
and probabilistic graphical models to construct interpretable models which can
learn complex distributions while leveraging prior knowledge about variable
interactions. Below, we provide the necessary context and scope within which
this idea is explored, and which leads up to our speci�c research questions.

1.1.2 Context

Two prominent classes of deep probabilistic generative models include normal-
izing �ows (NFs) (Rezende and Mohamed, 2015; Tabak and Turner, 2013) and
variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014). NFs combine a simple base distribution with a di�erentiable and bijec-
tive mapping between this base distribution and a more complex distribution.
Recently, Wehenkel and Louppe (2021) provided a new insight into the rela-
tionship between NFs and Bayesian networks (BNs)�a type of PGM with a
directed acyclic graph dependency structure. Speci�cally, the modelling as-
sumptions underlying certain types of transformations used in NFs correspond
to speci�c classes of BNs with prede�ned graphical structures. This natu-
rally gave rise to the question of whether one could use this correspondence
to encode an arbitrary BN dependency structure. This line of inquiry led to
graphical NFs, which use weight masking to encode a dependency structure
in the �ow architecture (Wehenkel and Louppe, 2021; Weilbach et al., 2020).
These studies have, however, only extended certain classes of �ows to incor-
porate graphical dependency information.

VAEs jointly train a generative model and inference network. Since �ows
employ a bijective transformation, the dimension of the base or latent dis-
tribution must have the same dimensionality as the observed data. VAEs
address this shortcoming by allowing practitioners to specify any number of
latent variables. The generative model and inference network correspond, re-
spectively, to the joint p(x, z) and an approximation to the posterior p(z|x)
in Bayes' rule: p(z|x) = p(x, z)/p(x). Here, x = {xi}Di=1 and z = {zi}Ki=1 are
sets of observed and latent variables, respectively. Since a BN's dependency
structure directly corresponds to the factorization of a joint distribution like
p(x, z) = p(x1, . . . , xD, z1, . . . , zK), it seems plausible to use this relationship
to inject domain knowledge into the model. We expect that incorporating vari-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

able dependency information from BNs into VAEs can improve some, if not
all aspects of their performance. Furthermore, since these models are typically
used in an unsupervised manner, learning meaningful representations informed
by the application domain, could aid in downstream tasks.

In order to limit the scope of our study, we considered only these two promi-
nent classes of deep generative latent variable models, namely NFs and VAEs.
Furthermore, we considered only the type of domain knowledge that can be
represented by a BN.

1.1.3 Research Questions

Various dependency structures in the VAE generative network, which are in-
trinsically linked with the factorization of p(x, z), have been explored to im-
prove performance (Burda et al., 2016; Sønderby et al., 2016). None of these,
to the best of our knowledge, consider incorporating arbitrary graphical struc-
tures over the latent variables and between the latent and observed variables,
based on the dependencies assumed to be present in the data. Besides using
structure to improve the performance of VAEs, some work has considered im-
proving modelling capability by increasing the complexity of the latent variable
distribution using NFs (Kingma et al., 2016; Rezende and Mohamed, 2015).
Based on this idea, we considered whether graphical �ows can be used as a ve-
hicle to inject domain knowledge into a VAE. However, if a �ow is to be used as
part of p(x, z) in the VAE decoder, it must be stably invertible in practice, to
allow both density calculation and sample generation (see Section 6.1). This
requirement is not generally met for most types of �ows (Behrmann et al.,
2021), and speci�cally not for those types of �ows that have previously been
extended to incorporate graphical dependency structures. We therefore addi-
tionally required a graphical �ow that guarantees stable and e�cient inversion.
One of the main paradigms for ensuring stable inversion of invertible neural
networks is bounding the Lipschitz constant of the transformation to a small
value (Behrmann et al., 2021). Since residual �ows (Chen et al., 2019) place
such an upper bound on the Lipschitz constant of each step of the �ow transfor-
mation by construction, we identi�ed this type of �ow as a potential candidate.
In light of the above, we posed two main research questions:

Research Question 1: Can a new type of graphical �ow be developed
by adapting standard residual �ows to encode arbitrary graphical structures,
while still providing competitive density estimation and inference performance
as well as stable inversion?

Research Question 2: Is it feasible to use these graphical residual �ows
to integrate information from a BN into a VAE, and is being able to do this
useful?

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.2 Objectives

We speci�ed the following objectives as stepping stones for investigating the
above research questions:

Research Question 1

� Perform a literature study pertaining to the �rst research question.

� Extend residual �ows to allow practitioners to specify and encode an
arbitrary BN dependency structure in the architecture of the �ow, while
maintaining theoretical invertibility.

� Implement a proof-of-concept system of the developed graphical residual
�ow.

� Compare this new graphical �ow to existing graphical �ows in terms of
density estimation and inference performance to determine whether it
provides competitive performance.

� Measure the e�ciency and stability of �ow inversion of this new approach
compared to that of existing graphical �ows, in practice.

Research Question 2

� Perform a literature study pertaining to the second research question.

� Develop a way of using the graphical residual �ow for encoding arbitrary
BN dependency structures in a VAE.

� Implement a proof-of-concept system for encoding a BN dependency
structure into VAEs using graphical residual �ows.

� Evaluate this new graphical VAE using datasets that have an associ-
ated BN structure, by comparison with models that encode no speci�c
dependency information.

� Identify and ameliorate any potential issues associated with this ap-
proach.

� Explore the extent to which the potential hypothesized bene�ts of this
graphical VAE are realized, which include:

� its application in data-sparse settings where utilizing domain knowl-
edge could aid the training process, and

� its potential to produce a more interpretable latent space.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

1.3 Contributions

Work from this thesis was presented at the Workshop on Deep Generative
Models for Highly Structured Data at the 2022 International Conference on
Learning Representations (Mouton and Kroon, 2022a,b). The work presented
in these papers and in this thesis makes the following contributions:

� We propose graphical residual �ows (GRFs)�an extension of residual
�ows (Chen et al., 2019) that encodes an arbitrary Bayesian network
structure between the variables of interest (Mouton and Kroon, 2022a,
see Chapter 4).

� This dependency structure is encoded using a new masking scheme, ex-
tending the work of Germain et al. (2015), that overcomes the shortcom-
ings of the schemes employed to encode structure in existing graphical
�ows.

� We show that GRFs exhibit more stable and e�cient �ow inversion than
alternative graphical �ows, while providing competitive density estima-
tion and inference performance (Chapter 5).

� We propose an alternative to Chen et al.'s (2019) LipSwish activation
function: a Lipschitz-constrained Mish (Misra, 2020) activation function
we call LipMish, which typically provides better modelling performance
on our chosen datasets (Section 4.8).

� Pursuant to the successful development of GRFs, we incorporate graph-
ical �ows into VAEs by extending both the decoder prior and inference
network with GRFs. The resulting model is called the structured in-
vertible residual network variational autoencoder (SIReN-VAE) (Mouton
and Kroon, 2022b, see Chapter 6).

� We identify posterior collapse (Razavi et al., 2019)�where some latent
dimensions become inactive and are e�ectively ignored by the model�as
an issue with SIReN-VAE, as the encoded structure plays a role in which
variables are more likely to collapse. We employ various combinations
of existing approaches to alleviate this phenomenon and show that this
leads to improved performance (Sections 6.2 and 7.4).

� We empirically show this model's potential for more e�ective training in
data-sparse settings as well as its ability to provide more interpretable
latent spaces (Sections 7.5 and 7.6), when practitioners know or can
hypothesize about certain latent factors in their domain, as well as their
relationships.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

1.4 Outline

The rest of this thesis is structured as follows: Chapter 2 introduces the neces-
sary background information on probabilistic modelling, with a speci�c focus
on generative modelling with Bayesian networks, normalizing �ows and vari-
ational autoencoders. Chapter 3 next provides an overview of relevant recent
literature, where we speci�cally consider existing graphical �ows as well as ap-
proaches that add structure to VAEs. Chapter 4 presents the proposed graph-
ical residual �ow, with Chapter 5 evaluating and comparing its performance
to alternative graphical �ow approaches. Based on the successful development
of GRFs, Chapter 6 continues by presenting the proposed SIReN-VAE model,
which integrates GRFs into a VAE. Chapter 7 evaluates the SIReN-VAE, and
analyses the results. This includes investigating the phenomenon of posterior
collapse, testing various remedies, as well as exploring the potential additional
bene�ts of the SIReN-VAE approach which include its higher degree of inter-
pretability as well as its ability to provide better generalization performance
in data-sparse settings. Finally, Chapter 8 provides an overview of the thesis
and some concluding remarks.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background

A key task in machine learning is modelling observed phenomena from data.
Since real-world events are usually in�uenced by unknown factors, data rarely
paints the complete picture. It is therefore bene�cial to incorporate uncertainty
into these models. This uncertainty is speci�ed in terms of probability distri-
butions, resulting in probabilistic models. Probabilistic modelling is a general
framework for constructing models that encode domain knowledge and uncer-
tainty about the complex systems we wish to reason about. These complex
systems are typically represented by a collection of interacting properties or
variables.

A speci�c class of probabilistic models, known as probabilistic generative mod-
els, aims to learn how to generate new data from the same distribution as
that which is speci�ed by the underlying, and unknown, complex system (or
�generative process�) that generated the observed data. Suppose this system is
characterized in terms of a set of D random variables, X = {X1, ..., XD}, the
values of which de�ne the state of the system. In order to reason probabilisti-
cally about the values of one or more of these random variables (possibly given
observations of one or more other variables), we can construct a joint distribu-
tion Pθ(X1, ..., XD), speci�ed by some parameters θ, over the space of possible
assignments to this set of random variables. Generative modelling aims to �nd
good values for θ such that Pθ(X1, ..., XD) is a good approximation to the true
underlying joint distribution. This approximate distribution should be �exible
enough to provide a su�ciently accurate model, while still allowing tractable
optimization of the model parameters. Furthermore, it is desirable that these
models allow us to incorporate prior knowledge about the true distribution.

There are various approaches to generative modelling. Traditional statistical
modelling assume the observed data arises from a �xed family of distributions,
and use direct analytical methods to obtain optimal values for the parameters
of these distributions. Another subclass, known as probabilistic graphical mod-
els (PGMs), explicitly models the factorization of the joint distribution. This
factorization implies a set of conditional independencies between the individ-

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 8

ual random variables of the joint. Some generative models introduce hidden
or latent variables to help explain the data. The presence of these latent
variables often renders direct analytical methods intractable and approximate
model-�tting approaches such as variational methods (Jordan et al., 1999) or
expectation maximization (Dempster et al., 1977) are therefore required. With
the advent of neural networks and deep learning, neural approaches to genera-
tive modelling have also become widespread. Two prominent families that we
focused on in this work, are variational autoencoders (VAEs) and normalizing
�ows (NFs). These models are capable of learning complex distributions, and
leverage (stochastic) gradient descent optimization using automatic di�erenti-
ation software to e�ciently optimize the models' parameters θ.

The rest of this chapter is structured as follows. Section 2.1 brie�y introduces
PGMs and provides an overview of the main concepts underlying the class of
Bayesian networks. Next, in Section 2.2, we discuss probabilistic generative
models that incorporate additional latent variables and describe di�erent tech-
niques to perform inference�estimating the posterior distribution of these la-
tent variables given the observations. Section 2.3 discusses the deep generative
modelling framework of normalizing �ows, including �nite �ows (Section 2.3.1),
continuous �ows (Section 2.3.2), the application of �ows to the key tasks of
probabilistic modelling and inference (Section 2.3.3), and the invertibility of
�ows in practice (Section 2.3.4). The �nal sections of this chapter introduce
VAEs as deep latent variable models (Section 2.4.1), and then discuss the evi-
dence lower bound used as training objective for VAEs (Section 2.4.2), how to
estimate the marginal distribution of the observed variables (Section 2.4.3), the
issue of posterior collapse (Section 2.4.4), and the concept of interpretability
in deep latent variable models (Section 2.4.5).

2.1 Probabilistic Graphical Models

Probabilistic modelling, and speci�cally generative modelling, typically in-
volves constructing a joint distribution, P (X), over a set of D random vari-
ables, X = {X1, ..., XD}. However, naïvely specifying or storing such a joint
distribution is generally intractable. For example, in the simple case where
each Xi is binary-valued, one already has to specify 2D−1 probabilities, which
is infeasible for all but the smallest values of D.

Fortunately, it is often the case that a given variable interacts directly with
only a limited number of other variables. As a result, there is limited depen-
dence between the various variables of the model. Knowledge of this structure
allows one to encode the joint distribution in a manner that is more compact
and tractable and enables modelling of distributions involving more variables.
PGMs make use of graph-based representations to represent this structure and
compactly encode the form of the joint distribution of X . In this graphical

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 9

representation, the random variables are denoted by vertices and the presence
of direct variable interactions, by edges. The two main types of PGMs are
Bayesian networks, which make use of a directed acyclic graph (DAG) repre-
sentation, and Markov networks, which encode the joint using an undirected
graph. Since this work focused primarily on Bayesian networks, we consider
this class of PGMs in more detail.

2.1.1 Bayesian Networks

A Bayesian network (BN) is a type of PGM that uses DAGs for its graphical
representation. Before fully de�ning a Bayesian network, we �rst formalize the
idea of independence and conditional independence between random variables.

De�nition 1 (Independence (Koller and Friedman, 2009)). Let X and Y be
sets of random variables. We say that X is independent of Y in distribution
P , denoted by (X ⊥ Y), if P (X, Y) = P (X)P (Y), where P (X) and P (Y) are
the marginal distributions.

De�nition 2 (Conditional independence (Koller and Friedman, 2009)). Let
X, Y and Z be sets of random variables. We say that X and Y are condi-
tionally independent given Z in P , denoted by (X ⊥ Y |Z), if P (X, Y |Z) =
P (X|Z)P (Y |Z).

BNs exploit the conditional independence properties of a given joint distribu-
tion P in order to obtain a compact graphical representation.

De�nition 3 (Bayesian network structure (Koller and Friedman, 2009)). A
BN structure G is a DAG whose vertices represent random variables X =
{X1, . . . , XD}. Let PaGXi denote the parent vertices of Xi in G and let NDGXi
denote the variables that are not descendants of Xi in G. Then G encodes the
following set of conditional independencies:{(

Xi ⊥ NDGXi
∣∣PaGXi) : i = 1, . . . , D

}
.

De�nition 4 (Factorization (Koller and Friedman, 2009)). Let G be a DAG
with vertices corresponding to random variables X = {X1, . . . , XD}. The joint
distribution P over X factorizes according to G if P has the necessary condi-
tional independencies such that it can be expressed as the following product of
conditional probability distributions:

P (X) =
∏
Xi∈X

Pi
(
Xi

∣∣PaGXi) . (2.1)

The above equation is called the chain rule for Bayesian networks. This pair,
consisting of a DAG G over X and a joint distribution P that factorizes ac-
cording to G, is known as a Bayesian network.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 10

De�nition 5 (Bayesian network). A Bayesian network (Koller and Friedman,
2009) is a pair B = (G, P) where P factorizes over the DAG G, and where P
is speci�ed by a set of conditional probability distributions associated with G's
vertices, corresponding to the factors in (2.1).

The above de�nitions provide two perspectives by which the graphical struc-
ture of a BN can be understood. First, as a data structure that provides the
skeleton by which a distribution can be factorized, and second as a compact
encoding of conditional independence statements about the distribution. The
latter interpretation provides a clear indication of how one might utilize infor-
mation from G when constructing deep generative models�by encoding these
conditional independencies between the variables X in the neural network
functions we construct.

Having speci�ed a factorization of the joint distribution, one still needs to
�t the parameters of the model to the data. Given a �nite number of inde-
pendently and identically distributed (i.i.d.) observations {xn}Nn=1, a popular
method for achieving this is maximum likelihood estimation. As stated previ-
ously, probabilistic generative modelling seeks to �nd a distribution p(x) that
provides a good approximation to the true joint distribution, p∗(x), underly-
ing the observed data. Let pθ(x) =

∏D
i=1 pθ(xi|PaGxi) denote a parameterized

family of distributions modelled by a BN with graph G and parameters θ.
Maximum likelihood estimation corresponds to minimizing (a Monte Carlo
estimate of) the forward Kullback-Leibler (KL) divergence1 (Kullback and
Leibler, 1951) of p∗(x) from pθ(x):

KL (p∗(x)|| pθ(x)) = Ex∼p∗ [log p∗(x)− log pθ(x)]

= −Ex∼p∗ [log pθ(x)] + const

≈ − 1

N

N∑
n=1

log pθ(xn) + const .

(2.2)

Thus, one is able to minimize a Monte Carlo approximation of the forward
KL-divergence between the true and approximate distributions by maximizing
the log-likelihood,

N∑
n=1

log pθ(xn) =
N∑
n=1

D∑
i=1

log pθ(xn,i|PaGxn,i) . (2.3)

Maximum likelihood estimation is naturally applicable for �tting a wide variety
of probabilistic models, including NFs as we discuss in Section 2.3.3.1.

1The KL-divergence (a.k.a. relative entropy) is a quantity from information theory that
measures the disparity between two probability distributions, p and q. It is non-symmetric
(i.e. generally KL(q(x)|| p(x)) 6= KL(p(x)|| q(x))), non-negative, and equal to zero only
when q(x) = p(x) .

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 11

2.2 Probabilistic Latent Variable Models

The approach followed in the previous section assumed that all the modelled
variables are observed. A potentially much more powerful generative model
can be created, however, by introducing unobserved variables, also known as
hidden or latent variables. Let pθ(x, z) be the joint distribution over the ob-
served variables x and additional latent variables z that do not form part of the
dataset. The marginal likelihood of x, also known as the (model) evidence, is
recovered by marginalizing over z, i.e. eliminating z from the joint distribution
by integrating it out:

pθ(x) =

∫
pθ(x, z) dz . (2.4)

The integral is replaced by a summation in the case where z is discrete.
Typically, however, this integral is intractable to compute, making maximum
marginal likelihood optimization of θ using Equation (2.2) infeasible. In fact,
calculating the evidence in the general case is known to be an NP-hard prob-
lem (Koller and Friedman, 2009).

The evidence is linked to the posterior distribution pθ(z|x) through Bayes'
theorem,

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
, (2.5)

where the terms pθ(x|z) and pθ(z) are known as the likelihood and prior,
respectively. Due to this relationship between the evidence and posterior,
maximizing the evidence pθ(x) can generally be tackled by approximating the
posterior distribution pθ(z|x). For Bayesian models, the task of conditioning
on the observations to obtain the posterior distribution pθ(z|x), is known as
inference.

2.2.1 Inference

Since the posterior is linked to the evidence through Bayes' rule, exact inference
can quickly become intractable for more complex models, thus necessitating
approximate inference techniques. A leading approximate inference method
is Markov chain Monte Carlo (MCMC) (Hastings, 1970). MCMC constructs
an ergodic Markov chain on z that has the posterior p(z|x) as its stationary
distribution, although it can struggle to converge in high dimensions. One can
then approximate expectations with respect to this posterior with empirical
estimates calculated using samples from the chain. While MCMC algorithms
are asymptotically exact, they are often unacceptably slow. In these settings,
variational inference (VI) (Jordan et al., 1999) provides a good alternative.
Note that there are also other approximate inference techniques not discussed
here, such as Laplace approximation, expectation propagation (Minka, 2001)
and loopy belief propagation (Murphy et al., 1999). We highlight VI, because

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 12

it is one of the key application domains of NFs, and because it lies at the heart
of VAEs.

Whereas MCMC takes a sampling approach, VI views inference as an opti-
mization problem. Let Q represent a family of distributions over the latent
variables. VI aims to �nd the member of this family, q∗ ∈ Q, that is closest to
the true posterior in terms of the (reverse) KL-divergence:

q∗(z) = arg min
q∈Q

KL(q(z)|| p(z|x)) . (2.6)

The distributions in Q are parameterized by a set of free variational param-
eters. The optimization problem presented in (2.6) therefore corresponds to
�nding a setting for these parameters such that the approximation is as close
as possible to the true posterior. In all cases of interest, we assume that we can
not directly compute the optimization objective given by Equation (2.6), since
the expression contains the intractable posterior distribution we are trying to
approximate in the �rst place. Fortunately, the de�nition of the KL-divergence
in (2.7) allows us to rewrite the expression in a form that provides us with an
alternative, tractable, objective:

KL(q(z)|| p(z|x)) = Ez∼q[log q(z)− log p(z|x)] (2.7)

= Ez∼q[log q(z)− log p(x, z)] + log p(x) . (2.8)

This change relies on the link between the posterior and the evidence through
Bayes' theorem, with the evidence term, log p(x), being constant with respect
to the choice of q(z). By using only the (negated) expectation term in (2.8)
as the objective, we obtain a quantity that is tractable to compute and which
is only a constant shift from the true KL-divergence. This objective is known
as the evidence lower bound (ELBO):

ELBO(q) = Ez∼q[log p(x, z)− log q(z)] . (2.9)

By maximizing the ELBO, we thus implicitly minimize the KL-divergence
between q(z) and p(z|x). As its name implies, the ELBO provides a lower
bound on the log marginal likelihood of the data:

log p(x) = ELBO(q) + KL(q(z)||p(z|x)) ≥ ELBO(q) . (2.10)

The last step above follows from the non-negativity of the KL-divergence.
The more complex the variational family Q, the more complex the above op-
timization problem. A common strategy for specifying Q is using a mean-�eld
variational family. Such a family partitions the latent variables into mutually
independent subsets, such that each is governed by a disctinct factor in the
variational distribution. This allows one to use a coordinate ascent approach
to optimize the ELBO. The resulting technique is called coordinate ascent

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 13

variational inference (CAVI), which climbs the ELBO to a local optimum. A
drawback of traditional CAVI is that it requires analytically deriving the up-
dates that must be applied to the variational parameters at each iteration.
Also, since one can have both latent variables that are local to speci�c data-
points and latent variables that are globally applicable to the entire dataset,
one has to optimize the local variational parameters before one can update the
global variational parameters. Traversing the entire dataset at each iteration
in this manner can become prohibitively slow for large datasets. An alter-
native approach is stochastic gradient-based optimization which allows VI to
scale to much larger datasets. In this setting, one can also employ automatic
di�erentiation software to more easily compute the gradients needed for each
update. This allows �tting more complex models, and is the main approach
to inference employed by the models investigated in this work.

2.3 Normalizing Flows

Normalizing �ows (NFs) (Rezende and Mohamed, 2015; Tabak and Turner,
2013) are a family of generative models that have tractable distributions in
that they can perform density estimation and/or sampling exactly and e�-
ciently. At its core, a �ow consists of a simple base distribution and a di�eren-
tiable bijective transformation that provides a mapping between this base dis-
tribution and the more complex model distribution. The change-of-variables
formula (Murphy, 2012, p. 50) allows one to keep track of the change in
density incurred by this transformation. NFs can be divided into two main
classes: �nite and continuous (or in�nitesimal) �ows. Finite �ows (Tabak and
Turner, 2013) create a complex bijective mapping by composing a �nite num-
ber of simpler transformations. Continuous �ows (Chen et al., 2018), on the
other hand, de�ne the �ow transformation in terms of an ordinary di�eren-
tial equation (ODE). Various techniques are employed to ensure that the �ow
computations remain tractable in both cases, and there is active research in
expanding the classes of transformations that can be used e�ectively in �ow
models.

The rest of this section provides further details on �nite and continuous �ows.
For �nite �ows, we discuss two of the main approaches to constructing tractable
transformations, namely autoregressive and residual �ows, and provide speci�c
examples that employ these approaches. Next, we discuss the application of
�ows to the tasks of density estimation and sampling, as well as variational
inference. We conclude the section by examining the invertibility of �ows in
practice. In these subsections, we address the topics and types of �ows that
are most relevant as background for subsequent chapters. Interested readers
are referred to the surveys of Kobyzev et al. (2021) and Papamakarios et al.
(2021) for a broader and more thorough discussion of normalizing �ows.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 14

2.3.1 Finite Flows

Let x ∈ RD be a random vector over which we wish to de�ne a joint distribu-
tion. The main goal of �ow-based modelling is to construct a function F that
provides a mapping between x and a random vector ε with a simpler known
distribution, p0. In order for F to be regarded as a valid �ow transformation,
it must be a di�eomorphism, i.e. F must be invertible and both F and F−1

must be di�erentiable. This requires that ε be a D-dimensional vector as well.
Let F : RD → RD be such a di�eomorphism, where

x = F−1(ε), and ε ∼ p0. (2.11)

The log density of x is then given by the change-of-variables formula:

log p(x) = log p0(F (x)) + log |det (JF (x))| , (2.12)

where JF (x) denotes the Jacobian of the transformation F at x. In practice, F
is typically implemented as a neural network and a common choice for the base
distribution is a standard normal distribution, p0 = N (0, ID). Section 2.3.3
discusses how Equation (2.12) is used during training and density estimation
with a �ow.

An immediate concern is that Equation (2.12) requires computing the determi-
nant of the transformation's Jacobian�a computation that generally requires
O(D3) time for the D ×D dimensional Jacobian,

JF (x) =

∂ε1
∂x1

· · · ∂ε1
∂xD

...
. . .

...
∂εD
∂x1

· · · ∂εD
∂xD

 . (2.13)

This is intractable for all but the smallest values of D. Since training a �ow
requires evaluating Equation (2.12), additional steps need to be taken to ensure
that the �ow remains e�cient, and more speci�cally, that |det (JF (x))| can be
computed in O(D) (or similar) time.

One of the overarching approaches for achieving this is constructing a single
NF as the composition of a series of simpler transformation steps. Such an
NF is known as a �nite NF. These individual transformations are chosen such
that they comply with the di�eomorphism requirement and such that their
Jacobian determinants can be computed e�ciently. By composing multiple
such transformations, a single complex �ow can be constructed that is more
expressive than any of its constituent parts. This construction is valid because
the composition of invertible and di�erentiable functions, is itself an invertible
and di�erentiable function. Let F1 and F2 be di�eomorphisms. The inverse
and Jacobian determinant of their composition F2 ◦ F1, is then given by

(F2 ◦ F1)−1 = F−1
1 ◦ F−1

2 (2.14)

det (JF2◦F1(a)) = det(JF2(F1(a))) · det(JF1(a)) . (2.15)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 15

Figure 2.1: Increasing the number of �ow transformation steps allows an NF
to more closely match the true data distribution. The last four �gures on the
right correspond to samples x = (f−1

1 ◦ . . . f−1
T)(ε) for ε sampled from the

standard normal base distribution p0, and where the �ows were constructed
using 2, 4, 8 and 16 transformation steps, respectively. Note that each �gure is
a kernel density estimate plot of samples from the corresponding distribution.

As a result, the computation of the �ow inverse and Jacobian determinant can
be localized to the individual �ow steps.

Revisiting Equation (2.12), we now let F be the composition of a series of
simpler transformations ft : RD → RD, t = 1, . . . , T . That is, we let F (x) =
(fT ◦ . . . ◦ f1)(x). The joint log density of x is then given by

log p(x) = log p0(F (x)) + log

∣∣∣∣∣
T∏
t=1

det
(
Jft(x

(t−1))
)∣∣∣∣∣

= log p0(F (x)) +
T∑
t=1

log
∣∣det

(
Jft(x

(t−1))
)∣∣ , (2.16)

where we introduce x(0) = x and x(t) = ft(x
(t−1)). Figure 2.1 provides an illus-

tration of how composing more transformation steps can increase the expres-
siveness of an NF. The name normalizing �ow is in reference to this procedure
of letting a variable `�ow' through a series of transformations that `normalizes'
the complex data distribution to a simpler known base distribution. A �ow
that instead transforms samples from the base distribution to samples from
the data distribution is known as a generative �ow�for further details, see
Section 2.3.3.2.2

Next, we discuss several of the main approaches to constructing suitable sim-
pler transformations where evaluating Equation (2.16) remains tractable.

2.3.1.1 Autoregressive Flows

One of the �rst and most popular approaches developed for designing �ow
components is to constrain their Jacobians to be triangular. This can be
achieved by enforcing an autoregressive transformation, i.e. ensuring that the

2`Normalizing �ow' is still widely used in the literature, regardless of the direction of
the transformation, but we keep this distinction for clarity in this work.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 16

transformation applied to component i of the input is only a function of that
component and all components with strictly lower indices. Recall that ft is
applied to x(t−1) to obtain x(t) at �ow step t. For autoregressive �ows, the ith

component of x(t) satis�es

x
(t)
i =

[
ft(x

(t−1))
]
i

= gt,i(x
(t−1)
i ; ct,i(x

(t−1)
<i)), i = 1, . . . , D (2.17)

where x<i = x1:i−1 denotes all components of x with an index less than i.
The invertible and di�erentiable function gt,i is known as the transformer 3

or normalizer, and is partially parameterized by the di�erentiable conditioner
function, ct,i. Note that the transformation of the ith component depends only
on components with strictly lower indices. Note that it is possible to compute
all D components of x(t) in parallel.

The inverse of the transformation step is given by

x
(t−1)
i =

[
f−1
t (x(t))

]
i

= g−1
t,i (x

(t)
i ; ct,i(x

(t−1)
<i)), i = 1, . . . , D . (2.18)

Computing x
(t−1)
i here requires evaluating the conditioner ct,i(x

(t−1)
<i), which

in turn requires the inverted values of all components with indices smaller
than i. This necessitates inverting the components sequentially, which makes
inversion less e�cient than the forward mapping which can be parallelized.
Note that although this setup requires the transformers gt,i to be invertible
in order to invert ft, it fortunately does not place the same restriction on the
conditioner functions ct,i. They can thus be made arbitrarily complex, which
aids the overall expressiveness of the �ow.

For these autoregressive transformations, the Jacobian is triangular. Since
x

(t)
i does not depend on x

(t−1)
j for any j > i, the partial derivative of x

(t)
i with

respect to x
(t−1)
j is zero. This means that the required Jacobian determinants in

Equation (2.16) can be computed in linear time as the product of the matrices'
diagonal terms:

log
∣∣det

(
Jft(x

(t−1))
)∣∣ = log

∣∣∣∣∣∣∣∣∣∣
det

∂[ft(x(t−1))]

1

∂x
(t−1)
1

· · · 0

...
. . .

...
∂[ft(x(t−1))]

D

∂x
(t−1)
1

· · ·
∂[ft(x(t−1))]

D

∂x
(t−1)
D

∣∣∣∣∣∣∣∣∣∣

= log

∣∣∣∣∣∏ ∂
[
ft(x

(t−1))
]
i

∂x
(t−1)
i

∣∣∣∣∣
=

D∑
i=1

log

∣∣∣∣∣∂
[
ft(x

(t−1))
]
i

∂x
(t−1)
i

∣∣∣∣∣ . (2.19)

3The term `transformer' in this context should not be confused with the well-known
transformer architecture used in natural language processing.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 17

The partial derivatives in this expression can be computed either analytically
or by making use of automatic di�erentiation, depending on the type of trans-
former and conditioner used. Note that the o�-diagonal Jacobian entries need
not be computed.

Next, we discuss speci�c examples of transformer functions as well as a general
approach for constructing conditoner functions such that the correct autore-
gressive structure is obtained.

A�ne Transformer

One of the simplest examples of an autoregressive �ow de�ned by a transformer-
conditioner pair, is the a�ne autoregressive �ow :

[ft(x
(t−1))]i = exp(st,i(x

(t−1)
<i)) · x(t−1)

i +mt,i(x
(t−1)
<i) , (2.20)

where ct,i(x
(t−1)
<i) =

[
st,i(x

(t−1)
<i),mt,i(x

(t−1)
<i)

]
denotes the conditioner functions

of the transformation. Note that Equation (2.20) is invertible and that the
inverse does not require computing the inverse of either st,i or mt,i:

[f−1
t (x(t))]i =

x
(t)
i −mt,i(x

(t−1)
<i)

exp(st,i(x
(t−1)
<i))

. (2.21)

Furthermore, the partial derivative of
[
ft(x

(t−1))
]
i
with respect to x

(t−1)
i is

simply exp(st,i(x
(t−1)
<i)) , so that

log
∣∣det

(
Jft(x

(t−1))
)∣∣ =

D∑
i=1

log
∣∣∣exp(st,i(x

(t−1)
<i))

∣∣∣ =
D∑
i=1

st,i(x
(t−1)
<i) . (2.22)

Examples of popular models that make use of a�ne transformations similar
to Equation (2.20) include NICE (Dinh et al., 2015), Real NVP (Dinh et al.,
2017), masked autoregressive �ows (MAF) (Papamakarios et al., 2017) and
inverse autoregressive �ows (IAF) (Kingma et al., 2016). Note that NICE and
Real NVP make use of an alternative coupling structure, where only one half
of the variables are updated at each �ow step conditioned on the other half,
which remains constant. This allows for more e�cient �ow inversion.

Integration-based Transformer

A de�nite integral of a strictly positive function, is a monotonically increasing
function. Wehenkel and Louppe (2019) proposed a transformer based on this
observation, with component i of its output given by

[f(x)]i =

∫ xi

0

hi(t; ci(x<i)) dt+ βi(ci(x<i)) , (2.23)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 18

where ci is a conditioner function (similar to s and m used in the a�ne trans-
former), and hi and βi are two neural networks with a strictly positive and a
real scalar output, respectively. A drawback of this approach is that without
constraining hi(·; ci(x)), the integral typically does not have an analytical solu-
tion, and thus requires additional numerical methods to solve the given prob-
lem. One example of how hi(·; ci(x)) could be constrained, is to de�ne it as a
nonnegative polynomial, in which case the integral can be computed analyti-
cally (Jaini et al., 2019). As an upside on the other hand, the required diagonal
entries of the Jacobian are simply given by hi(xi; ci(x<i)) for i = 1, . . . , D.

We discussed a�ne and integration-based transformers in detail here, because
they will be revisited in following chapters. Nevertheless, there are many
other types of autoregressive �ows. For example, the neural autoregressive
�ow of Huang et al. (2018a) applies non-linear transformations by constructing
the transformer as a multi-layer perceptron (MLP), with weights and biases
determined by the conditioner function. Additional restrictions are placed
on the weights and activation functions of the MLP to ensure invertibility.
Alternatively, the transformer can be implemented as a piecewise function of
simpler segments that are each easy to invert, known as a spline �ow (Durkan
et al., 2019; Conor Durkan and Papamakarios, 2019).

Constructing the Conditioners

Since the conditioners ct,i(·) do not need to be invertible, they could in prin-
ciple be implemented as separate and arbitrarily complex neural networks.
Training T × D separate networks can become prohibitively expensive, how-
ever. A general approach to overcome this is to share parameters between
these conditioners.

One of the most popular approaches, based on masking, uses a single net-
work for each timestep t that takes in x and outputs (ct,1, . . . , ct,D) in a single
forward pass. Note that each ct,i could also be a vector, consisting of, for
example, both the scaling and translation factors used in the a�ne transfor-
mation of Equation (2.20). The correct autoregressive structure is maintained
by removing edges in the network so that there is no path between xj and ct,i
for j ≥ i. Practically, these edges are removed by multiplying the network's
weight matrices by binary masking matrices. These binary masks e�ectively
switch connections between units of the network on and o� as per the desired
autoregressive structure.

Germain et al. (2015) provide a general procedure, referred to as the MADE
masking scheme, for constructing masks for neural networks with an arbitrary
number of hidden layers and hidden layer widths. The basic idea is to assign to
each unit n in the network a label dn ∈ {1, . . . , D}. Speci�cally, each input xi
and output ct,i are assigned dn = i and hidden units are uniformly randomly

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 19

(a) (b) (c) (d)

Figure 2.2: The MADE masking scheme. Each of (a)�(d) highlights the nodes
and edges in the subnetwork predicting the conditioners c1 to c4, respectively.
The number shown in each block corresponds to the unit's label. These as-
signments are used to construct the necessary masks such that the remaining
edges (as shown) force output i to be a function of only the input x<i. The
edges removed by the masks, as well as the bias terms, are not shown to avoid
cluttering.

assigned labels in {1, . . . , D − 1}. An edge is then retained between a unit n
in a hidden layer and a unit n′ in the previous layer (either the input layer
or another hidden layer) only if dn ≥ dn′ . An edge between a unit n′ in the
last hidden layer and a unit n in the output layer is retained only if dn > dn′ .
In this way, the output labelled dn = i will be a function only of inputs x<i.
Figure 2.2 provides an illustration of this masking scheme when x ∈ R4. We
next discuss an alternative type of �nite �ow known as a residual �ow.

2.3.1.2 Residual Flows

Residual �ows apply the following general transformation at �ow step t:

ft(x
(t−1)) = x(t−1) + gt(x

(t−1)). (2.24)

Such a transformation is of course not necessarily invertible, and computing
the Jacobian determinant is likewise not necessarily e�cient. Residual �ows
thus require constraints on gt to ensure invertibility of the transformation
and tractability of the Jacobian determinant computation. Planar and ra-
dial �ows (Rezende and Mohamed, 2015) make use of the matrix determinant
lemma (Murphy, 2012, Corollary 4.3.1) to ensure tractable computation of the
Jacobian determinant and are invertible under certain conditions. Sylvester
�ows (van den Berg et al., 2018) generalize planar �ows by instead making
use of Sylvester's determinant identity. Below we provide a more in-depth
discussion of an alternative type of residual �ow considered in more detail in
this thesis, that ensures invertibility by bounding the Lipschitz constant of the
�ow transformation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 20

Contractive Residual Flows

Building on the observation that the traditional residual network (ResNet) (He
et al., 2016) can be viewed as an Euler discretization of an ordinary di�eren-
tial equation (ODE), Behrmann et al. (2019) show that a �nite NF can be
constructed by changing the normalization scheme of the ResNet's weights.
Consider a ResNet F (x) = (fT ◦ . . . ◦ f1)(x), composed of blocks

x(t) := ft(x
(t−1)) = x(t−1) + gt(x

(t−1)) , (2.25)

with x(0) = x and residual blocks gt(x
(t−1)) implemented as neural networks.

This formulation is identical to Equation (2.24)�we only require each block
ft to be invertible and di�erentiable for F (·) to be regarded as a valid �-
nite NF. Contractive residual �ows satisfy this requirement by noting that
a su�cient condition for invertibility is that each residual block gt is con-
tractive (Behrmann et al., 2019), which is a special case of being Lipschitz
continuous.

De�nition 6 (Lipschitz Continuity (O'Searcoid, 2006)). Consider a metric
space (X, d) and the function f : X → X. The function f is Lipschitz contin-
uous if there exists a constant k ≥ 0 such that for all x, y ∈ X,

d(f(x), f(y)) ≤ k · d(x, y) . (2.26)

The value of k is known as the Lipschitz constant of f .

Note that we have assumed in the above de�nition that the function f has
the same domain and codomain. Lipschitz continuity can, however, be de�ned
more generally for mappings between di�erent metric spaces. Since we are
only considering �ows, F : RD → RD, the above de�nition is su�cient. We
will denote the smallest value of k for which (2.26) holds, by Lip(f).

De�nition 7 (Contraction (O'Searcoid, 2006)). A function f : X → X is a
contraction if f is Lipschitz continuous with Lip(f) < 1.

A residual �ow F is thus invertible, if Lip(gt) < 1 for t = 1, . . . , T . Let a
residual block g be the composition of L functions: g = φL ◦ . . . ◦ φ1. If g is
a neural network, this composition will typically be a combination of a�ne
transformations and non-linear activation functions. To reach our goal of en-
suring Lip(g) < 1, we can make use of the following property of the Lipschitz
constant of a composition of functions (for a derivation, see Appendix B.2.1):

Lip(f2 ◦ f1) ≤ Lip(f2)Lip(f1) . (2.27)

Thus, we have that

Lip(g) ≤
L∏
i=1

Lip(φi) , (2.28)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 21

and we can ensure that Lip(g) < 1 by ensuring that all Lip(φi) ≤ 1 and for at
least one φi, Lip(φi) < 1. The Lipschitz constant of a fully-connected a�ne
layer φi(x) = Wix + bi, under the Euclidean norm, is the spectral norm4 of
the weight matrix Wi (Miyato et al., 2018), denoted by ||Wi||s, which can
be computed using the power method (Von Mises and Pollaczeck-Geiringer,
1929; Gouk et al., 2021). As a result, we can ensure invertibility of the �ow
by implementing g as a composition of (1) activations h with Lip(h) ≤ 1,
such as tanh or LipSwish (Chen et al., 2019), and (2) a�ne layers with weight
matrices Wi satisfying ||Wi||s < 1. The spectral norm of each residual block's
weight matrices can be constrained to not exceed a desired scaling coe�cient c
by normalizing each Wi as follows:

W̃i = min(c, ||Wi||s) ·
Wi

||Wi||s
. (2.29)

Apart from ensuring invertibility of F , one must also be able to compute its
Jacobian determinant in a tractable way. Behrmann et al. (2019) showed that
the log Jacobian determinant of a block f can be expressed in terms of the
trace of the matrix logarithm, and use this to estimate log | det(Jf (x))| with a
truncated power series:

log | det(Jf (x))| = tr(log(I + Jg(x))) (2.30)

≈
n∑
k=1

(−1)k+1
tr(Jkg)

k
. (2.31)

The �rst line follows from the observation that Lipschitz-constrained perturba-
tions of the identity, x+g(x), will yield positive determinants (Behrmann et al.,
2019, Lemma 6) and then from applying the matrix identity, log det(A) =
tr(log(A)), for non-singular A ∈ RD×D (Withers and Nadarajah, 2010). This
trace can be expressed as an in�nite power series, which is truncated to provide
the (biased) estimate given in Equation (2.31). Each trace tr(Jkg) is further
estimated using the Hutchinsons trace estimator (Hutchinson, 1990), which
constructs a Monte Carlo approximation of the trace of a matrix A ∈ RD×D

via

tr(A) = Ep(v)

[
vTAv

]
≈ 1

N

∑
v∼p(v)

vTAv , (2.32)

where the distribution p(v) must satisfy E[v] = 0 and Cov(v) = ID, such as
the standard normal distribution, N (0, ID).

The bias of the estimator in Equation (2.31) grows, however, with both the
dimensionality of x and the Lipschitz constant of g (Chen et al., 2019). To

4The spectral norm of a matrixA is given by its largest singular value. It also corresponds
to the induced matrix norm of A in the special case that the Euclidean norm for vectors is
used.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 22

overcome this, Chen et al. (2019) propose to directly sample the number of
terms evaluated in Equation (2.31), that is, they sample n ∼ p(N). The only
constraint on the choice of p(N) is that it must have support over all of the
indices. By appropriately reweighting the terms of the series, one obtains an
unbiased estimator known as the �Russian roulette� estimator. While this
approach resolves the bias of the estimator, it has the drawback of requiring
unpredictable memory usage and run time as the number of terms used varies.

Since contractive residual �ows are not analytically invertible, Behrmann et al.
(2019) propose using a �xed-point iteration method to invert each block nu-
merically: to compute x = f−1

t (y), initialize x(0) = y and then apply the
following update until convergence:

x(n+1) = y − gt(x(n)) . (2.33)

According to the Banach �xed-point theorem, this method has a unique �xed-
point (Kreyszig, 1989, Theorem 5.1.2), and thus any starting value could in
fact be used. Using x(0) = y is typically a good choice, however, since y is
obtained from x only via a bounded perturbation of the identity.

Next, we consider continuous �ows which de�ne the �ow transformation im-
plicitly in terms of an ODE, instead of using T explicit transformation steps.

2.3.2 Continuous Flows

Finite �ows construct complex mappings by composing multiple simpler trans-
formation steps. Continuous �ows emerged from considering what would hap-
pen if more and more transformations were composed and the step-size of
each transformation was reduced. When this process is taken to the limit,
the discrete dynamics of the �nite transformation steps can be replaced by an
ordinary di�erential equation (ODE) describing the continuous-time dynamics
of the �ow transformation (Chen et al., 2018):

dx(t)

dt
= f(x(t), t) , (2.34)

where the ODE is speci�ed by the neural network f . Given data x, the nor-
malizing operation is achieved by solving the initial value problem, dx(t)

dt
=

f(x(t), t) with x(t1) = x, to obtain the state of the variables at time t0:

x(t0) = x(t1)−
∫ t1

t0

f(x(t), t) dt . (2.35)

Here, x(t0) corresponds to a sample from the base distribution p0. This initial
value problem can be solved by making use of a black-box di�erential equation
solver. The resulting model is known as a continuous normalizing �ow. For
continuous �ows, however, the log-density of x can no longer be computed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 23

using the standard change-of-variables formula given by Equation (2.12). In-
stead, the change in log-density arising from the �ow follows a second di�er-
ential equation,

d log p(x(t))

dt
= − tr

(
Jf(·,t)(x(t))

)
, (2.36)

known as the instantaneous change-of-variables formula (Chen et al., 2018).
By integrating over time to solve a second initial value problem, we can com-
pute the log-density of a data sample x under the model:

log p(x(t1)) = log p0(x(t0))−
∫ t1

t0

tr
(
Jf(·,t)(x(t))

)
dt . (2.37)

The above two di�erential equations (2.34 and 2.36) can be combined to give
the following initial value problem, which can be solved by integrating back-
wards in time from t1 to t0:[

x(t0)
log p(x(t1))− log p0(x(t0))

]
︸ ︷︷ ︸

solutions

=

[
x(t1)

0

]
︸ ︷︷ ︸
initial values

at t1

+

∫ t0

t1

[
f(x(t), t)

tr
(
Jf(·,t)(x(t))

)] dt︸ ︷︷ ︸
dynamics

, (2.38)

The solution consists of the data's corresponding sample from the base distri-
bution as well as the change in log-density incurred by the �ow transformation.
This solution exists and is unique only if f and its �rst derivatives are Lip-
schitz continuous (Khalil, 2002). This requirement can be satis�ed by using
only smooth Lipschitz activation functions to implement f . In practice, we set
t0 = 0 and t1 = 1.

Unlike the naïve O(D3) computational cost for computing the Jacobian de-
terminant of �nite NFs, continuous �ows have a O(D2) time complexity for
computing tr

(
Jf(·,t)(x(t))

)
, along with the additional cost introduced by the

numerical ODE solver. The cost of computing log p(x(t1)) can be further
reduced by making use of an unbiased estimator of the Jacobian trace (Grath-
wohl et al., 2019). Similar to the approach used for residual �ows, the trace
can be estimated using the Hutchinson's trace estimator given in (2.32):

d log p(x(t))

dt
= −Ep(v)

[
vTJf(·,t)(x(t))v

]
≈ − 1

N

N∑
i=1

vTi Jf(·,t)(x(t))vi where vi ∼ p(v).
(2.39)

The vector-Jacobian product, vTi Jf(·,t)(x(t)), can be computed e�ciently using
automatic di�erentiation software. By using a single Monte Carlo sample, i.e.
setting N = 1, one can obtain an unbiased stochastic estimator of the trace
with O(D) cost.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 24

Note that unlike �nite �ows, no restrictions have been placed on the structure
or Lipschitzivity of the neural network f . These models therefore have a `free-
form' Jacobian and tractability is maintained by making use of the estimator
in (2.39). Furthermore, the �ows can be inverted by simply performing the
integration in the opposite direction. This has essentially the same computa-
tional cost as a forward pass through the �ow.

2.3.3 Primary Applications of NFs

Given a trained �ow and the associated change-of-variables formula, one can
in principle perform two basic operations: calculate the density of a sample
and generate new samples. As such, �ows can be applied in a wide variety of
settings where a model is required to perform either one or both of these op-
erations. A typical form of application of an NF is for probabilistic modelling
of data, allowing the user to perform density estimation for observations (Pa-
pamakarios et al., 2017; Grathwohl et al., 2019) as well as to generate new
data points similar to the original data the �ow was trained on. Flows have
been used to generate data such as images (Dinh et al., 2015; Grathwohl et al.,
2019; Kingma and Dhariwal, 2018), video (Kumar et al., 2019), audio (van den
Oord et al., 2016) and text (Tran et al., 2019). Whereas the above application
focuses on modelling observed data and capturing its underlying distribution,
�ows can also be applied in the context of inference (Rezende and Mohamed,
2015) where one wishes to reason about unknown or hidden variables, given
the observed data. Below we discuss these two applications of �ows in more
detail.

2.3.3.1 Density Estimation & Sampling

Let pθ(x) denote the distribution modelled by an NF with the bijective trans-
formation Fx→ε. Here, θ denotes the parameters of the �ow and the sub-
script x→ ε indicates that a forward pass through the �ow is in the normal-
izing direction. Given a �nite number of i.i.d. samples {xn}Nn=1, we showed in
Section 2.1.1 that the parameters of this model can be optimized by maximiz-
ing the likelihood:

N∑
n=1

log pθ(xn) =
N∑
n=1

[log p0(Fx→ε(xn; θ))

+ log |det (JFx→ε(xn; θ))|] .

(2.40)

For continuous �ows one would similarly use the instantaneous change-of-
variables formula given by Equation (2.37). Since the �ow is typically im-
plemented using neural networks, this objective can be optimized by making
use of stochastic gradient descent and automatic di�erentiation libraries.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 25

The trained �ow can be used to calculate the density, under pθ, of new points
not seen during training, by using the change-of-variables formula (2.12). Fur-
thermore, by inverting Fx→ε one is able to generate new samples with similar
properties to the data the �ow was trained on:

x′ = F−1
x→ε(ε), where ε ∼ p0 . (2.41)

2.3.3.2 Variational Inference

NFs can be employed as the variational family in variational inference (Rezende
and Mohamed, 2015; van den Berg et al., 2018; Kingma et al., 2016) as dis-
cussed in Section 2.2.1. Given a model p(x, z), where x is observed and z is la-
tent, we wish to learn a distribution q(z|x) that provides a good approximation
to the true posterior p(z|x). Assume we have access to i.i.d. samples {xn}Nn=1

and are able to evaluate p(x, z) for a given pair of observed and latent vari-
ables. Also, let Q represent all the conditional distributions qφ(z|x) that can
be modelled by a �ow Fε→z, depending on the setting of its parameters, φ.
Here, the subscript ε→ z indicates that a forward pass through the �ow is in
the generative direction. Variational inference amounts to �nding the setting
of these parameters φ such that qφ(z|x) ∈ Q is as close as possible to the true
posterior, p(z|x).

The parameters φ can be optimized by minimizing the KL-divergence of qφ(z|x)
from the true posterior:

KL(qφ(z|x)|| p(z|x)) = Ez∼qφ [log qφ(z|x)− log p(z|x)]

= Ez∼qφ [log qφ(z|x)− log p(x, z)] + log p(x) . (2.42)

Since log p(x) is constant with respect to φ, the divergence in (2.42) can be
minimized by minimizing a Monte Carlo estimate of the expectation:

KL(qφ(z|x)|| p(z|x)) ≈ 1

N

N∑
n=1

[log qφ(zn|xn)− log p(xn, zn)] + const . (2.43)

Minimizing the expectation in (2.42) is equivalent to maximizing the ELBO,
Ez∼q [log p(x, z)− log qφ(z|x)], as discussed in Section 2.2.1. Each zn in (2.43)
is sampled from qφ by �rst sampling εn ∼ p0 and then passing εn through Fε→z

while conditioning on xn. There are several ways in which a �ow can be
conditioned on an observation. Some directly map xn to the parameters of the
�ow transformation, e.g. the weight and biases of a neural network (Rezende
and Mohamed, 2015). Others pass xn, along with zn, as the input to the
�ow (Wehenkel and Louppe, 2021). For autoregressive �ows, each zn,i would
then not only be dependent on zn,<i but also on xn. The density of zn is then
given by

log qφ(zn|xn) = log p0(εn)− log |det (JFε→z(εn;xn, φ))| , (2.44)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 26

where we made use of the identity∣∣det(JF−1
ε→z

(z))
∣∣ = |det(JFε→z(ε))|−1 . (2.45)

This identity follows from the inverse function theorem and a property of the
determinant of an inverse of an invertible matrix: det(A−1) = det(A)−1.

Unlike CAVI, which optimizes φ on a per-datapoint basis, only a single �ow
function is learned for the given training data and used for inference on new
data points. This process is therefore known as amortized variational infer-
ence (Gershman and Goodman, 2014), since the �ow can be used to infer the
latent state for new x not seen during training. The resulting �ow is also
known as an amortization artifact.

2.3.4 Invertibility of Flows in Practice

All normalizing �ows are invertible by de�nition. When an analytical inverse
is not available, one can invert a �ow with numerical methods, such as bi-
section search or �xed-point iteration methods. Recent work has shown that
theoretical invertibility does not always imply stable inversion in practice,
however (Behrmann et al., 2021). Indeed, depending on the model choices,
inversion can lead to exploding inverses or numerical errors. If this occurs, the
�ow has become numerically non-invertible and violates one of the core as-
sumptions needed to use it practically for exact density calculation. Based on
the discussion in the previous section, stable inversion is especially important
when using either Fx→ε to generate x for a given ε ∼ p0, or when using Fε→z

to compute the density for a z not generated by the �ow.

One of the key aspects that should be considered when analysing a �ow's
inversion stability, is its bi-Lipschitz properties. This pertains to the Lipschitz
continuity (De�nition 6) of both the forward and inverse �ow transformation.

De�nition 8 (Bi-Lipschitz Continuous). Consider a metric space (X, d) and
the Lipschitz continuous function f : X → X. If an inverse f−1 : X → X and
a constant k′ ≥ 0 exists such that for all x, y ∈ X,

d(f−1(x), f−1(y)) ≤ k′ · d(x, y) , (2.46)

then f is called bi-Lipschitz continuous.

Lipschitz and bi-Lipschitz continuity refers, however, only to the global Lip-
schitz properties of a �ows�for certain transformations it is only possible to
provide local Lipschitz bounds.

De�nition 9 (Local Lipschitz Continuity). Consider a metric space (X, d), a
function f : X → X and a closed ball Y = {x | d(x, x0) ≤ r}. The function f is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 27

called locally Lipschitz continuous about x0 if there exists some constant k ≥ 0
such that for every x, y ∈ Y :

d(f(x), f(y)) ≤ k · d(x, y) . (2.47)

To see why the Lipschitz constant of a �ow F a�ects the numerical stability
of inversion, we consider in more detail the role of imprecise �oating-point
computations in modern hardware (Behrmann et al., 2021). Let F (x) = y be
the exact �ow transformation and let Fδ1(x) = y + δ1 := yδ1 be the impre-
cise �oating-point calculation of the function value in practice with error δ1.
Assume for now that the inverse, F−1(yδ1) = xδ1 , can be computed exactly.
The existence of a Lipschitz constant for the inverse mapping places an upper
bound on the error of the reconstruction:

||x− xδ1||2 = d(F−1(y), F−1(yδ1))

≤ Lip(F−1) · d(y, yδ1)

= Lip(F−1) · ||y − (y + δ1)||2
= Lip(F−1) · ||δ1||2

(2.48)

where the distance metric used is the Euclidean norm. Naturally, the inverse
transformation will also introduce numerical errors due to inexact �oating-
point calculations. So, let F−1

δ2
(yδ1) = xδ1 + δ2. The reconstruction error is

then bounded as follows:

||x− (xδ1 + δ2)||2 ≤ ||x− xδ1||2 + ||δ2||2
≤ Lip(F−1) · ||δ1||2 + ||δ2||2 .

(2.49)

These bounds provide an indication of the role that a �ow's Lipschitz con-
stant can have on inversion stability. Although a �ow might be theoretically
invertible, numerical errors are always present. The Lipschitz constant places
a bound on how much these numerical errors can be ampli�ed when passing
values through the �ow or its inverse. Bounds on these constants therefore
play an important role in understanding and mitigating possible exploding
inverses.

Having introduced NFs, we next consider an alternative deep generative model
known as a variational autoencoder, which unlike NFs, does not require the
latent space to have the same dimension as the observations.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 28

2.4 Variational Autoencoders

Variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014) are one of the most popular families of deep generative models to have
emerged in recent years. The VAE framework provides a principled approach
to using stochastic gradient descent to simultaneously learn both a deep latent
variable model and a corresponding inference model. While the deep latent
variable model aims to capture the generating process underlying the observed
data, the inference network is encouraged to provide a good approximation to
the generative model's posterior distribution over the latent variables. The
following discussion of VAEs is inspired by the comprehensive introduction to
the topic by Kingma and Welling (2019). Interested readers are referred to
this work for further details and extensions of VAEs.

2.4.1 Simultaneously Learning a Model and

Approximate Posterior

Let pθ(x, z) be a latent variable model over observed variables x and latent
variables z, with free parameters θ. If this distribution is parameterized by
neural networks, i.e. θ consists of a network's weights and biases, then the re-
sulting model is known as a deep latent variable model (DLVM). As discussed
in Section 2.2, optimizing θ using maximum likelihood estimation is intractable
in this setting because one typically cannot easily compute the marginal distri-
bution, pθ(x). Therefore, based on the relationship between the evidence and
posterior distributions as captured by Bayes' theorem (2.5), maximizing the
evidence can generally be tackled by approximating the posterior distribution.

As discussed in Section 2.2.1, variational inference attempts to approximate
the true (intractable) posterior of a known model by �nding the member of
a family of approximate distributions over the latent variables, q∗ ∈ Q, that
minimizes the reverse KL divergence to the exact posterior:

q∗(z|x) = argmin
q(z|x)∈Q

KL (q(z|x)||p(z|x)) . (2.50)

If Q is parameterized by free variational parameters φ, this amounts to opti-
mizing φ such that qφ(z|x) ≈ p(z|x), using the ELBO as the objective function.

Similar to the DLVM described above, let qφ(z|x) be parameterized by a deep
neural network. A VAE is the result of combining such an inference model
with a DLVM, pθ(x, z). By maximizing the ELBO, the variational parame-
ters φ and the model parameters θ can be optimized simultaneously and e�-
ciently using stochastic gradient descent. In this setting, qφ(z|x) is also known
as the encoder, inference network, recognition network or guide, and pθ(x, z)
as the decoder or generative model. Unlike standard (mean-�eld) VI, which
optimizes the variational parameters on a per-datapoint basis, the inference

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 29

model of a VAE usually only consists of a single encoder neural network with
weights and biases given by φ. The inference model therefore acts as an amor-
tization artifact, since it makes use of a single set of parameters to model the
relationship between all observed data points and the latent space, whether
these data points were seen during training or not.

Typically, the VAE generative model pθ(x, z) factorizes as pθ(x|z)p(z). The
vanilla approach to constructing a VAE furthermore assumes that all the la-
tents are independent and makes use of simple distributions for both the prior
and likelihood. A generic con�guration for the generative model is (Kingma
and Welling, 2019):

p(z) = N (0, I) (2.51)

µ, logσ = DecoderNeuralNet(z; θ) (2.52)

pθ(x|z) = N (µ, diag(σ2)) (2.53)

where DecoderNeuralNet is a neural network parameterized by θ and x is as-
sumed to be continuous. For binary data, pθ(x|z) could instead be a component-
wise Bernoulli distribution. The vanilla inference network is similarly given by

µ, logσ = EncoderNeuralNet(x;φ) (2.54)

qφ(z|x) = N (µ, diag(σ2)) . (2.55)

Note that this model assumes the latent variables to be conditionally indepen-
dent given x. Since this is unlikely to hold in the true posterior, an alternative
approach would be to let the encoder neural network output not only the (log)
standard deviation for each latent variable, but also the covariances between
them.

2.4.2 The Evidence Lower Bound

As already discussed in previous sections, a VAE can be trained by maximizing
the evidence lower bound (ELBO). For the VAE, this objective can be rewritten
in several forms that each shed more light on its characteristics:

LELBO

θ,φ (x) = Ez∼qφ [log pθ(x, z)− log qφ(z|x)] (2.56)

= Ez∼qφ [log pθ(x|z)]−KL(qφ(z|x)||p(z)) (2.57)

= pθ(x)−KL(qφ(z|x)||pθ(z|x)) . (2.58)

Equation (2.57) is known as the prior-contrastive form of the ELBO. The �rst
term encourages the decoder to learn how to provide good reconstructions of
the data. The second acts as a regularizer, encouraging the posterior, qφ(z|x),
to be similar to the model prior, p(z) (Razavi et al., 2019). Equation (2.58),
known as the posterior-contrastive form, again provides the established result

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 30

that the ELBO is a lower bound on the model evidence:

pθ(x) = LELBO

θ,φ (x) + KL(qφ(z|x)||pθ(z|x))︸ ︷︷ ︸
≥0

≥ LELBO

θ,φ (x) , (2.59)

where the KL-divergence is non-negative by de�nition, and equal to zero if and
only if qφ(z|x) exactly matches the true posterior. Thus, the closer the ap-
proximate posterior to the true model posterior in terms of the KL-divergence,
the tighter the bound on the evidence. This view has inspired much subse-
quent work into creating more expressive inference networks than the original
approach in Equation (2.55). For example, Rezende and Mohamed (2015) pro-
pose extending the approximate posterior with an NF (see Section 3.2.1 for a
further discussion).

An important property of the ELBO is that it allows joint optimization of θ
and φ using stochastic gradient descent. The ELBO objective for a set of i.i.d.
data, X = {xn}Nn=1, is given by:

LELBO

θ,φ (X) =
N∑
n=1

LELBO

θ,φ (xn) . (2.60)

Analytically computing the gradient of this objective (∇θ,φLELBO

θ,φ (X)) is in-
tractable, so one generally makes use of estimators. An unbiased estimate
of the gradient of the objective with respect to the model parameters θ is
easy to obtain by simply swapping the gradient and expectation terms and
approximating the resulting expression using Monte Carlo sampling:

∇θLELBO

θ,φ (x) = ∇θEz∼qφ [log pθ(x, z)− log qφ(z|x)] (2.61)

= Ez∼qφ [∇θ(log pθ(x, z)− log qφ(z|x))] (2.62)

≈ 1

K

K∑
i=1

∇θ log pθ(x, zi) , (2.63)

where each zi is a random sample from qφ(z|x). An unbiased estimator
for ∇φLELBO

θ,φ (x) is not as easy to obtain. This is because the ELBO's ex-
pectation is taken with respect to the distribution qφ, with parameters φ, and
one cannot therefore directly swap the gradient and expectation terms as done
in (2.62).

One approach to handling this, known as the REINFORCE algorithm (Williams,
1992) or the score function estimator (Kleijnen and Rubinstein, 1996), makes
use of a di�erentiation rule called the log-derivative trick: ∇φqφ = qφ∇φ log(qφ).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 31

The gradient can then be rewritten as follows:

∇φLELBO

θ,φ (x) =∇φEz∼qφ [log pθ(x, z)− log qφ(z|x)] (2.64)

=∇φ

∫
(log pθ(x, z)− log qφ(z|x))qφ(z|x) dz (2.65)

=

∫
∇φ ((log pθ(x, z)− log qφ(z|x))qφ(z|x)) dz (2.66)

=

∫
(log pθ(x, z)− log qφ(z|x))∇φqφ(z|x) dz

+

∫
qφ(z|x)∇φ(log pθ(x, z)− log qφ(z|x)) dz (2.67)

=

∫
(log pθ(x, z)− log qφ(z|x))qφ(z|x)∇φ log qφ(z|x) dz

+ Ez∼qφ [∇φ log pθ(x, z)−∇φ log qφ(z|x)]︸ ︷︷ ︸
=0

(2.68)

=Ez∼qφ [(log pθ(x, z)− log qφ(z|x))∇φ log qφ(z|x)] (2.69)

where we have made use of the de�nition of an expectation, the Leibniz integral
rule (see Appendix B.1.1) and the log-derivative trick in lines (2.65), (2.66)
and (2.68), respectively. The second term in line (2.68) evaluates to zero,
because log pθ(x, z) does not depend on φ and thus ∇φ log pθ(x, z) = 0, and
because the expected value of the score function, Ez∼qφ [∇φ log qφ(z|x)], is also
zero (Roeder et al., 2017). Since the gradient has successfully been rewritten
as an expectation over a tractable distribution for sampling from, Monte Carlo
samples can be used to estimate the desired gradient. However, a drawback of
this approach is that the estimator has very high variance. Fortunately, there
exists an alternative method which overcomes this shortcoming, known as the
reparameterization trick (Kingma and Welling, 2014; Rezende et al., 2014).

An unbiased and lower-variance estimator of ∇φLELBO

θ,φ (x) can be obtained by
expressing z ∼ qφ(z|x) as an invertible and di�erential transformation of a
sample from another distribution, ε ∼ pε:

z = g(ε;φ,x) , (2.70)

where the distribution pε is independent of both φ and x. Under this change
of variable, one can use the law of the unconscious statistician to rewrite the
original expectation in terms of ε:

∇φLELBO

θ,φ (x) = ∇φEε∼pε [log pθ(x, g(ε;φ,x))− log qφ(g(ε;φ,x)|x)] . (2.71)

Similar to the analysis of ∇θLELBO

θ,φ (x) in (2.61) to (2.63), the order of the
gradient and expectation operators can now be exchanged, and the gradient

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 32

can be estimated using Monte Carlo sampling:

∇φLELBO

θ,φ (x) = Eε∼pε [∇φ(log pθ(x, g(ε;φ,x))− log qφ(g(ε;φ,x)|x))] (2.72)

≈ 1

K

K∑
i=1

∇φ (log pθ(x, g(εi;φ,x))− log qφ(g(εi;φ,x)|x)) , (2.73)

where a single Monte Carlo sample, i.e K = 1, is widely used.

For the vanilla inference network given by Equations (2.54) and (2.55), the
reparameterization trick is implemented as follows:

ε ∼ N (0, I) (2.74)

µ, logσ = EncoderNeuralNet(x;φ) (2.75)

z = σ � ε + µ (2.76)

where � denotes element-wise multiplication. In practice, these estimates
of the gradients ∇θLELBO

θ,φ (x) and ∇φLELBO

θ,φ (x), are computed using automatic
di�erentiation libraries.

2.4.3 Estimating the Marginal

Given a trained VAE, one can use the ELBO to compute a lower bound on the
marginal likelihood of new observed data. It is possible to tighten this bound
by using importance weighted samples (Rezende et al., 2014). Consider the
following approach to computing the log marginal:

log pθ(x) = log

[∫
pθ(x, z) dz

]
(2.77)

= log

[∫
pθ(x, z)

qφ(z|x)
qφ(z|x) dz

]
(2.78)

= logEz∼qφ

[
pθ(x, z)

qφ(z|x)

]
(2.79)

≈ log

[
1

K

K∑
i=1

pθ(x, zi)

qφ(zi|x)

]
(2.80)

where each zi ∼ qφ is a random sample from the VAE's inference network.
Since the �nal line above is a Monte Carlo estimator, taking K → ∞ re-
sults in the estimate converging to the actual log-marginal likelihood. The
terms wi = pθ(x, zi)/qφ(zi|x) are known as the importance weights. Note that
when K = 1, this estimate is exactly the ELBO estimate used for stan-
dard VAEs. This has led some to use this estimator, with larger values
of K, as the objective function for training VAEs, instead of the standard
ELBO. The resulting model is known as the importance weighted autoen-
coder (IWAE) (Burda et al., 2016).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 33

2.4.4 Posterior Collapse

Although the VAE framework has gained much popularity as a tool to learn
unsupervised representations, optimization of its parameters in general suf-
fers from a phenomenon known as posterior collapse�a subset of the latent
variables `collapses' to the uninformative prior during training. This results
in the generative model e�ectively ignoring these latent dimensions which is
undesirable when a goal of VAE training is to learn meaningful latent features.

As such, much work has focused on trying to understand this phenomenon and
to uncover its cause. Early work blamed the regularizing KL-divergence term
present in the prior-contrastive form of the ELBO objective, KL(q(z|x)||p(z)),
which encourages the posterior to be similar to the prior (Razavi et al., 2019;
Bowman et al., 2016). The most common approaches to addressing poste-
rior collapse therefore focus on diminishing the e�ect of this term. One such
approach, known as warm-up, is where a weight on the KL-term is annealed
between 0 and 1 over some initial number of epochs during training (Burda
et al., 2016; Bowman et al., 2016; Huang et al., 2018b). Alternatively, Razavi
et al. (2019) carefully choose the prior and variational family such that q(z|x)
is guaranteed to remain some minimal distance from the prior. Kingma et al.
(2016) implicitly impose the same constraint by ignoring the gradient of this
KL-term per dimension of z if the divergence is below a given threshold. Mc-
Carthy et al. (2020) argue that optimizing KL(q(z|x)||p(z)) decreases the mu-
tual information between the latent variables and the observed data and pro-
pose a modi�cation of the ELBO objective that promotes mutual information
between the latent and observed variables.

Since the above, and other similar approaches, do not fully resolve the opti-
mization issue posed by posterior collapse, additional factors that may lead
to collapse have also been investigated. He et al. (2019b) suggest that poste-
rior collapse could be caused by the inference network lagging behind the true
posterior during the early stages of training and recommend more aggressive
optimization of the inference network before each update of the generative
model. Since posterior collapse is commonly observed in VAEs with very �exi-
ble generative models, some argue that bad local minima in the loss surface of
deep autoencoder networks could be the direct cause of collapsed latents (Dai
et al., 2020). High-variance gradient estimates have also been suggested as
a potential cause for posterior collapse (Melis et al., 2022). Since stochas-
tic gradient descent optimization has a preference for �at minima (Hochreiter
and Schmidhuber, 1994), and the variance induced by the sampled latent vari-
ables can be reduced by ignoring them, this can lead to posterior collapse.
This motivates the use of low-variance gradient estimates such as the doubly-
reparameterized gradient (DReG) estimate proposed by Tucker et al. (2018).
The looseness of the ELBO objective can also allow the parameters of the VAE
to remain distant from their theoretical optimal setting, which could lead to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 34

posterior collapse (Melis et al., 2022). Using objectives with tighter bounds,
such as IWAE (Burda et al., 2016), have been proposed to mitigate this. It
has also been found that models that are optimal in terms of the ELBO and
marginal likelihood obtained, can di�er greatly in their corresponding posteri-
ors (Alemi et al., 2018), with some representations including collapsed latents.
The optimization task presented by the VAE framework is therefore often un-
derspeci�ed, which can be addressed by constraining the mutual information
between latent and observed variables (Melis et al., 2022).

Preventing posterior collapse is particularly desirable if we want the latent fac-
tors to represent meaningful encodings of the observed space. The �nal section
of this chapter therefore concludes by discussing the concept of interpretability
in the context of DLVMs.

2.4.5 Interpretability of Deep Latent Variable Models

The inclusion of latent variables in DLVMs such as VAEs not only help to make
the marginal distribution p(x) more expressive, but also provide a principled
way of learning lower-dimensional representations of complex data. These
representations or features can be useful in a wide range of downstream tasks.
The concept of interpretability comes in to play when we want to learn general
purpose features that could potentially help us to better understand the ap-
plication domain as well as the behaviour of the model. Building interpretable
models that produce explainable output have recently begun to receive re-
newed attention and fall under the umbrella term of explainable arti�cial in-
telligence (Samek et al., 2019).

A traditional way of obtaining interpretable features in VAEs is by encouraging
the model to learn disentangled representations, that is, representations that
capture independent factors of variation in the observed data. One of the
earliest examples of this is the β-VAE (Higgins et al., 2017). By noting how
each latent factor a�ects the generated data, one can try to assign human
interpretable meaning to these factors. For example, a β-VAE trained on
images of faces could learn factors that represent the colour of hair, or emotion
as expressed by a smile. Another approach that can a�ord the model a higher
degree of interpretability, is incorporating a form of factor analysis�learning
which subsets of observed variables are a�ected by which subsets of latent
factors (Ainsworth et al., 2018). These types of approaches help us to better
understand the relationships between the variables of the model, speci�cally
between the latent and observed variables. In Chapters 6 and 7 of this work,
we will also consider the relationships between individual latent variables as
informed by a Bayesian network.

One concept for measuring the relationship or dependence between variables
is mutual information (MI) (Shannon, 1948). MI is a more general metric

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 35

than the correlation coe�cient, which only captures linear dependence, and
is therefore more applicable in situations where highly non-linear deep neural
networks are employed.

2.4.5.1 Mutual Information

Given two real random vectors x and y, mutual information (MI) (Shannon,
1948) measures the mutual dependence between x and y and is de�ned as

I(x,y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
, (2.81)

where p(x,y), p(x), p(y) are the joint distribution and marginal distributions
of x and y, respectively. I(x,y) is equivalently the Kullback-Leibler divergence,
KL(p(x,y)||p(x)p(y)), of the joint distribution of x and y from the product
of their marginals. The intuition is that a larger divergence between the joint
and the product of the marginals implies a stronger dependence between x
and y.

MI is more general than the correlation coe�cient, which only captures lin-
ear dependence. Unfortunately, MI is intractable to compute in general�
Equation (2.81) can only be calculated exactly and e�ciently for discrete vari-
ables or a limited family of problems with known probability distributions for
which the integral represented by the expectation has a closed form solution.
As such, a range of approximation techniques have been developed for MI
estimation over the years. Early work employed kernel density estimators to
individually estimate the joint and marginal distributions from samples (Fraser
and Swinney, 1986). Approximating the MI naïvely then involves division of
the estimated densities, which can magnify estimation errors (Suzuki et al.,
2008). An alternative approach that avoids this division is to directly model
the density ratio, as is done by Suzuki et al. (2008). Other approaches to den-
sity estimation employ methods such as k-nearest neighbours (Kraskov et al.,
2004) or the Edgeworth expansion (van Hulle, 2005). The former requires
careful selection of an appropriate value for k, while the latter assumes the
target distribution to be approximately Gaussian distributed.

Since neural methods have become more e�ective in the past decade, more
recent approaches employ neural networks to estimate MI. The mutual infor-
mation neural estimator (MINE) of Belghazi et al. (2018) maximizes a tight
lower bound on the MI using stochastic gradient descent and backpropagation.
Belghazi et al. (2018) make use of the equivalence outlined above between
MI and the KL-divergence of the joint distribution from the product of the
marginals. Speci�cally, they employ the Donsker-Varadhan dual representa-
tion of the KL-divergence (Donsker and Varadhan, 1983):

KL(p||q) = sup
F :Ω→R

Ep[F]− logEq[eF] , (2.82)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 36

where the supremum is taken over all functions F such that the expectations
are �nite. If we let F be any family of functions satisfying the above constraint,
then Belghazi et al. (2018) show that the following lower-bound holds:

KL(p||q) ≥ sup
F∈F

Ep[F]− logEq[eF] . (2.83)

Given real random vectors x ∈ X and y ∈ Y , we can thus choose F to be the
family of functions Fθ : X × Y → R parameterized by a neural network with
parameters θ. Following from (2.83), we have the following lower-bound on
the MI between these random vectors:

I(x,y) ≥ Ep(x,z)[Fθ]− logEp(x)p(y)[e
Fθ] . (2.84)

By maximizing the right-hand side of the above inequality, Belghazi et al.
(2018) are able provide a general-purpose parametric neural estimator of MI.
The expectations in (2.84) are estimated using i.i.d. samples {(xn,yn)}Nn=1

drawn from the joint distirbution, p(x,y). Samples from the marginals are
obtained by simply dropping either xn or yn from (xn,yn). Since this approach
is �exible and can e�ciently be optimized for samples of continuous random
variables using stochastic gradient descent, we will employ this approach when
estimating MI in Chapter 7.

2.5 Conclusion

This chapter provided an overview of the prominent probabilistic generative
models investigated in this work, namely BNs, NFs and VAEs. The graphical
structure of a BN presents a compact encoding of conditional independence
statements about its associated distribution, and thus provides an intuitive way
of encoding domain knowledge about variable interactions. NFs and VAEs em-
ploy deep learning to learn complex distributions. Although NFs are speci�ed
by bijective transformations, and thus are theoretically invertible, their inver-
sion stability in practice in not always guaranteed, as was discussed in more
detail. The chapter was concluded with a discussion on the interpretability
of deep latent variables models, such as VAEs. Having presented the most
relevant background, we next provide an overview of recent literature relevant
to the investigations of this thesis. We speci�cally consider existing �ows that
incorporate information from a BN as well as approaches that add structure
to VAEs.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Literature Review

Unlike data-driven deep generative models, Bayesian networks (BNs) empha-
size modelling the joint distribution of a set of random variables as a product
of conditional distributions. BNs provide a principled way to specify structure
through the dependencies in these conditional distributions, and thus provide
an intuitive way of injecting domain knowledge into a model. BNs have been at
the heart of expert systems since before the advent of large data-driven mod-
els (Papaconstantinou et al., 1998; Diez et al., 1997), but they have received
progressively less attention in favour of purely data-driven models that are
capable of scaling to high-dimensional settings, such as deep generative mod-
els (Wehenkel and Louppe, 2021). Nevertheless, there has been work trying
to combine the strengths of these two approaches: the simplicity and inter-
pretability of BNs, and the scalability and representation capacity of deep gen-
erative models. Since we are speci�cally interested in the integration of BNs
and the deep generative model frameworks of NFs and VAEs, this chapter
primarily reviews relevant recent literature in this area. Section 3.1 considers
�ows that incorporate additional graphical structure, while Section 3.2 reviews
similar ideas in the context of VAEs.

3.1 Normalizing Flows with Graphical

Structures

Incorporating the dependency structure of BNs into NFs has only begun to
receive attention in the past two years. Wehenkel and Louppe (2020) provided
insight into the relationship between NFs and BNs: the modelling assump-
tions underlying the autoregressive and coupling transformations used in NFs
correspond to speci�c classes of BNs with prede�ned graphical structures and
learnable densities at each vertex in the graph. To see why this relationship
holds, recall that a BN speci�es the following factorization of the joint distri-

37

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 38

x1 x2

x3 x4

(a)

x1 x2

x3 x4

(b)

x1 x2

x3 x4

ε1 ε2

ε3 ε4

(c)

Figure 3.1: BNs associated with a 1-step NF transformation of a vector x ∈ R4

where the �ow has (a) an autoregressive structure and (b) a coupling structure.
In (c) the latent variables ε are shown explicitly for the coupling transformation
in (b). Here, undirected edges correspond to bijective transformations, whereas
directed edges are deterministic functions (Wehenkel and Louppe, 2020).

bution over the variables x ∈ RD:

p(x) =
D∏
i=1

pi(xi|xPa(i)) , (3.1)

where xPa(i) is the subvector of variables corresponding to the parents of xi in
the BN graph. For an autoregressive NF, the joint distribution pθ(x) induced
by the �ow transformation can similarly be factorized as the product of D
conditional distributions:

pθ(x) = pθ(x1)
D∏
i=2

pθ(xi|x<i) . (3.2)

We can make the connection between BNs and autoregressive �ows explicit if
we let xPa(i) in (3.1) equal x<i in (3.2). Flows with autoregressive transfor-
mations can therefore be viewed as fully-connected BNs that make no inde-
pendence assumptions about the data, as depicted in Figure 3.1a. Figure 3.1b
shows the BN associated with a coupling transformation applied to x ∈ R4

where one half of the variables (x3 and x4) are dependent on the other half (x1

and x2). Although not explicitly shown in Equation (3.2), each xi is a bijec-
tive transformation of a latent variable εi. This relationship is made clear in
Figure 3.1c. Note that the above argument, as presented by Wehenkel and
Louppe (2020), is only in the context of single-step �nite NFs that are applied
in the normalizing direction for density estimation. In Section 4.5 we also con-
sider �ows applied in the generative direction, as well as the e�ect of adding
more transformation steps on the induced dependencies between the variables
of the distribution represented by the �ow.

Based on the above relationship between NFs and BNs, Wehenkel and Louppe
(2021) explore how to encode a BN with an arbitrary graphical structure into
a �ow. They achieve this with graphical conditioners, which enforce the in-
dependence assumptions implied by the BN. These graphical conditioners can

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 39

been seen as sparse versions of the autoregressive conditioners presented in
Section 2.3.1.1 (in the same way that the BN is a sparsi�ed version of a
complete graph), and as such still yield triangular Jacobians. Wehenkel and
Louppe (2021) consider �nite �ows where each �ow step can be divided into
a transformer-conditioner pair. Similar work by Weilbach et al. (2020) con-
siders continuous �ows. They extend the continuous NF of Grathwohl et al.
(2019) to incorporate a given BN by encoding its graphical structure into the
weight matrices of the neural network. This results in sparse weight matrices
that enforce the necessary independencies between the variables. The work
of Wehenkel and Louppe (2021) and Weilbach et al. (2020) only consider au-
toregressive �nite �ows (Section 2.3.1.1) and continuous �ows (Section 2.3.2),
respectively, and only focus on applying their �ows in a single transformation
direction. We will therefore focus on constructing a graphical �ow that can
be safely used in both transformation directions via stable inversion guaran-
tees. We do this in Chapter 4 by extending a residual �ow (Section 2.3.1.2) to
incorporate arbitrary graphical structure.

Since, the work of Wehenkel and Louppe (2021) and Weilbach et al. (2020) are
the most explicit examples of models that combine BNs with normalizing �ows
and form the baseline for evaluating our proposed graphical residual �ow, we
present them in more detail in Sections 3.1.1 and 3.1.2. Section 3.1.3 provides
an overview of other works that deal with similar ideas.

3.1.1 Finite Flows with Graphical Structures

Consider a �nite �ow over x ∈ RD where each �ow step is constructed from a
transformer-conditioner pair as presented in Section 2.3.1.1, i.e.:

x
(t)
i =

[
ft(x

(t−1))
]
i

= gt,i(x
(t−1)
i ; ct,i(x

(t−1)
<i)), i = 1, . . . , D (3.3)

where gt,i is the invertible transformer which is partially parameterized by the
conditioner function, ct,i. To incorporate a BN's dependency structure, We-

henkel and Louppe (2021) replace the autoregressive conditioner, ct,i(x
(t−1)
<i),

with a graphical conditioner, ct,i(x
(t−1)
Pa(i)), so that the conditioner is only a func-

tion of xi's parents in the BN graph. As long as the variables are ordered
according to their topological ordering in the BN, then xPa(i) will be a subvec-
tor of x<i. The Jacobian therefore remains triangular, so its determinant can
still be computed in linear time. Wehenkel and Louppe (2021) introduce the
term graphical NF for these �nite �ows with graphical conditioners. Note that
we use this term in a wider sense as well, to refer to all normalizing �ows that
incorporate graphical structure through their architecture. In their study, We-
henkel and Louppe (2021) evaluate their graphical conditioner approach with

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 40

a�ne and monotonic transformers (as presented in Section 2.3.1.1):

A�ne: gi(xi; si(xPa(i)),mi(xPa(i))) = exp(si(xPa(i))) · xi +mi(xPa(i))

Monotonic: gi(xi; ci(xPa(i))) =

∫ xi

0

hi(t; ci(xPa(i))) dt+ βi(ci(xPa(i))) ,

where ci(xPa(i)) =
[
si(xPa(i)),mi(xPa(i))

]
denotes the conditioner functions of

the a�ne transformation, and the dependence on the time step has been
dropped for notational simplicity.

Although one could implement D separate conditioner functions, ci for i =
1, . . . , D, that each take a di�erent subset of variables, xPa(i), as input, We-
henkel and Louppe (2021) choose to use only a single neural network to imple-
ment their conditioner functions. To ensure that the correct independencies
are still maintained, they performD passes through this neural network, mask-
ing out those inputs during forward pass i that are not in xPa(i). An additional
one-hot encoded vector of length D encoding the value i is also added to the
input. This ensures that all root vertices, i.e. those vertices without any
parents in the graph, will not have the same output from the conditioner func-
tion. As suggested by (Wehenkel and Louppe, 2021) and (Lachapelle et al.,
2020), one could instead use a masking scheme similar to MADE (Germain
et al., 2015) (see Section 2.3.1.1), but for arbitrary graphical structures. In
Chapter 4 we present such an alternative masking scheme that only requires
a single pass through the conditioner neural network and does not require the
use of additional one-hot encoded inputs. Next, we discuss an approach to
incorporating graphical structure in continuous NFs.

3.1.2 Continuous Flows with Graphical Structures

Weilbach et al. (2020) explore incorporating a graphical structure into contin-
uous NFs. Consider a neural ODE system (Chen et al., 2018),

dx(t)

dt
= f(x(t), t) . (3.4)

Weilbach et al. (2020) consider neural networks f where each layer takes the
form,

g(x, t) = h((Wx)� η1(t)) + b� η2(t) , (3.5)

where η1 and η2 are time-dependent linear gating functions, h is any Lipschitz
smooth activation function, and W and b are the layer weights and biases,
respectively.

To incorporate a BN graphical dependency structure into such a �ow, Weilbach
et al. (2020) apply a binary adjacency matrix A as a mask to the weight
matrix W , where Aj,i = 1 if i = j or j ∈ Pa(i), else Aj,i = 0. This mask

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 41

ensures that output i of any speci�c layer is only dependent on the inputs to
that layer corresponding to xi and xPa(i). Each layer of this new �ow, termed
the structured conditional continuous NF (SCCNF), is thus given by:

g(x, t) = h((W � A)x� η1(t)) + b� η2(t) . (3.6)

One limitation of this approach is that it restricts the width of each layer of the
neural network to be the same as the dimension of x. To ease this restriction,
Weilbach et al. (2020) allocate a �exible number of auxiliary or nuisance vari-
ables to each variable in the �ow, creating an augmented neural ODE (Dupont
et al., 2019a), which has been shown to be more expressive and to generalize
better. Alternatively, the masking scheme that we present in Chapter 4, does
not have this limitation and allows arbitrary hidden layer widths. Weilbach
et al. (2020) show that using the SCCNF approach allows one to reduce not
only the number of model parameters but also the number of required inte-
gration steps without compromising the �ow performance, compared to the
standard continuous �ow of Grathwohl et al. (2019).

Apart from presenting a method for incorporating a graphical structure into
continuous NFs, Weilbach et al. (2020) also propose using the symmetrized KL-
divergence, also known as Je�rey's divergence (Nielsen, 2010), as an objective.
The symmetrized KL-divergence is a weighted sum of the forward and reverse
KL-divergences:

KLsym(p(z|x)|| q(z|x)) =
1

2
[KL(p(z|x)|| q(z|x)) + KL(q(z|x)|| p(z|x))] . (3.7)

They compare the e�ect of optimizing the symmetrized KL-divergence instead
of either the forward or reverse KL-divergence, and based on their experi-
mental results conclude that only optimizing the reverse KL-divergence does
not provide a strong enough learning signal. We were, however, unable to
reproduce these results and did not �nd the reverse KL-divergence to per-
form poorly. See Appendix C for further details. After a disussion with the
authors, it was found that the results presented in the original article were
indeed erroneous, and that using the reverse KL-divergence as objective leads
to comparable performance to when using the symmetrized KL-divergence (C.
Weilbach, personal communication, August 21, 2021).

3.1.3 Related Work

Weilbach et al. (2020) apply their graphical continuous �ows to obtain amor-
tized variational inference (VI) artifacts for input probabilistic programs, which
are models speci�ed in a probabilistic programming language (van de Meent
et al., 2018). Since these �ows only incorporate the graphical structure of the
input program and not the forms of its conditional distributions, Ambrogioni
et al. (2021b) propose an alternative approach they call cascading �ows, which

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 42

integrates automatic structured VI (Ambrogioni et al., 2021a) and normaliz-
ing �ows. The cascading �ows program interposes �ow transformations, based
on highway networks (Srivastava et al., 2015), between the conditional distri-
butions of the input program in order to guide it towards the approximate
posterior. Unlike the works of Wehenkel and Louppe (2021) and Weilbach
et al. (2020), which encode the dependency structure via the �ow architecture
itself, cascading �ows use multiple �ows placed between the conditional distri-
butions and use auxiliary variables to introduce necessary dependencies. Sil-
vestri et al. (2022) provide a more �exible extension of cascading �ows which
they call embedded-model �ows (EMFs). Unlike the graphical normalizing
�ows of Wehenkel and Louppe (2021), which generalize autoregressive depen-
dency structures to arbitrary DAG dependency structures and thus only con-
strain the conditional independencies of the �ow, EMFs additionally embed
the forward-pass of an input probabilistic program. Both cascading �ows and
EMFs require a user-speci�ed input probabilistic program. As such, they are
not directly applicable in our more general setting where we only assume to
have access to the graphical structure.

The application of normalizing �ows in the �eld of causality has also begun
to receive attention in recent years. Khemakhem et al. (2021) exploit the fact
that autoregressive �ows impose an ordering over the variables of interest,
which can be chosen in accordance with a potential or hypothesized causal
ordering, to show that these �ows are suitable for causal inference tasks such
as causal discovery and counterfactual predictions. Since a DAG dependency
structure with a suitable causal interpretation is important for causal inference,
Balgi et al. (2022) combine the above idea with the graphical �ow of Wehenkel
and Louppe (2021), and propose the causal graphical normalizing �ow (c-
GNF). Whereas the work of Khemakhem et al. (2021) only uses arbitrary
autoregressive structures, Balgi et al. (2022) can use a c-GNF to impose a
desired causal dependency structure with speci�c independencies.

3.2 Adding Structure to VAEs

The vanilla VAE architecture makes use of simple factorized Gaussian distribu-
tions for both the latents' prior and approximate posterior distributions (Kingma
and Welling, 2014). These choices can lead to over-regularization of the latent
space, resulting in poor latent representations and variational bounds (Ho�-
man and Johnson, 2016). As such, a great deal of subsequent work has focused
on understanding and improving the shortcomings of the standard VAE. Initial
work focused mainly on the inference gap�the mismatch between the approx-
imate posterior and the true posterior distribution of the model. Cremer et al.
(2018) further divide this gap into two contributing factors. The �rst is the ap-
proximation gap, which arises from the inability of the variational distribution
family of the inference network to match the true posterior distribution. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 43

second, known as the amortization gap, is caused by the di�erence between
amortizing the variational parameters over the entire training set in stead of
optimizing them on a per-datapoint basis, as is done in more traditional vari-
ational inference. A popular avenue to reduce the inference gap is to use more
powerful representations for the variational posterior distribution (Rezende
and Mohamed, 2015; Kingma et al., 2016; Webb et al., 2018; Vahdat et al.,
2020; Kim and Pavlovic, 2021).

Another issue that has been identi�ed is the prior hole problem (Rosca et al.,
2018): if the prior distribution does not match the aggregate posterior, de�ned
as qagg(z) := EpD(x)[q(z|x)] where pD(x) is the training data distribution, then
samples generated from areas that have high density under the prior, but low
density under the posterior, can be of suboptimal quality and not match the
training data. This has inspired works that use more complex prior distribu-
tions (Huang et al., 2017; Xu et al., 2019; Goyal et al., 2017; Takahashi et al.,
2019; Tomczak and Welling, 2018).

Many of the above approaches that try to increase the expressive power of the
prior and/or the posterior distribution, make use of structure. We provide an
overview of these methods in Section 3.2.1. We then narrow our discussion in
Section 3.2.2 to works that incorporate graphical structures, as informed by
either the application domain or the training data.

3.2.1 Increasing Latent Space Complexity

As discussed above, many works attempt to tighten the ELBO and improve
sample quality by increasing the expressive power of the approximate posterior
or prior of the VAE. One of the most commonly used approaches is adding
more layers of latent variables in order to incorporate a hierarchical structure
in the latent space (Rezende et al., 2014; Burda et al., 2016; Sønderby et al.,
2016; Vahdat and Kautz, 2020; Kingma et al., 2016). The joint probability
model then factorizes as

p(x, z) = p(x|z0)p(z0|z1) . . . p(zL−1|zL)p(zL) , (3.8)

for L additional layers of latent variables. The simplest approach to con-

structing the accompanying variational posterior is to assume it takes on a
complementary factorization (Burda et al., 2016),

q(z|x) = q(z0|x)q(z1|z0) . . . q(zL|zL−1) , (3.9)

where the dependencies between the variables have simply been inverted. This

approach therefore increases the complexity of the both the prior and approx-
imate posterior distributions. Both (3.8) and (3.9) require sampling and den-
sity evaluation to be tractable for each of the conditional distributions. These

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 44

conditional probability distributions can be as simple as Gaussians (Burda
et al., 2016), or be speci�ed by more complex models such as normalizing
�ows (Kingma et al., 2016). Note that more complex schemes, such as bi-
directional inference where each latent receives information from the layers
above and below it, are also employed (Kingma et al., 2016; Sønderby et al.,
2016).

Consider again the factorization of the hierarchical approximate posterior dis-
tribution, q(z|x), given in Equation (3.9). The dependencies present in this
distribution are simply the inverses of those present in Equation (3.8), i.e.
since zi is only dependent on zi+1 in p(x, z), zi+1 will only be dependent on
zi in q(z|x). Although this factorization simpli�es learning the approximate
posterior, it does not necessarily correspond to the conditional independencies
present in the true posterior.

Looking at the factorization of the VAE generative process, p(z)p(x|z), we
see that it corresponds to a BN graph over the observed and latent variables:
z → x (where we have not made any assumptions about the dependency
structure between the individual latent variables, which could for example be
independent or connected via a hierarchical structure as presented above).
Taking this further, Webb et al. (2018) showed the importance of having the
dependencies induced between the latent variables of the inference network be
faithful to the dependencies present in the generative model's BN, in order
for it to be able to learn an approximation close to the true posterior. As a
result, they propose an algorithm for inverting the BN network underlying the
VAE generative model (i.e. inverting the direction of the arrows in the graph
such that the �ow of information changes from z → x to x → z), in such a
way that the inverted structure over both the observed and latent variables
does not encode any conditional independencies not implied by the generative
model. For example, based on the BN structure underlying the standard VAE
model, its inference network should encode a fully-connected structure over
the latent variables. This is needed so that the inference network can take
into account the explaining-away e�ects between the latent variables in the
generative model, i.e. given an observation, the latent variables are no longer
independent as assumed by the vanilla VAE. Section 4.4 provides illustrated
examples and more details on the importance of faithful BN inverses in the
context of variational inference.

For the vanilla VAE, the issue of ensuring an appropriate posterior dependency
structure can be addressed by for example using a full covariance matrix in
the multivariate normal posterior distribution. Another approach is to extend
the inference network with a normalizing �ow (Rezende and Mohamed, 2015;
Kingma et al., 2016). This allows for more expressive distributions, by allow-
ing the latent variables to become entangled, potentially leading to a smaller
approximation gap. Other examples of more expressive posterior distribu-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 45

tions that have been used in the context of VAEs include undirected graphical
models such as Boltzmann machines (Vahdat et al., 2020), and Gaussian pro-
cesses (Kim and Pavlovic, 2021; Fortuin et al., 2020).

We next consider works focusing on constructing VAEs with more �exible and
expressive prior distributions. This is to allow a better match of the prior and
aggregate posterior, thus mitigating the prior hole problem. It is not only the
inference network that can be extended with normalizing �ows: some works
have also replaced the prior with a �ow. For example, both Huang et al.
(2017) and Xu et al. (2019) use Real NVP (Dinh et al., 2017) as a learnable
prior alongside the inference network, and show that this leads to a better
lower bound and reconstruction loss. Other approaches to constructing more
expressive and learnable priors have been proposed, such as the work of Goyal
et al. (2017), which combines tree-structured Bayesian nonparametric priors
with VAEs to induce a hierarchical structure of latent semantic concepts. Since
the optimal prior of the VAE in terms of maximizing the training objective
is given by the aggregate posterior, Takahashi et al. (2019) suggest using the
aggregate posterior as the prior. In this case, the KL-divergence can no longer
be calculated in closed form. Takahashi et al. (2019) therefore make use of a
density ratio trick to estimate the KL-divergence without explicitly computing
the aggregate posterior. The work of Tomczak and Welling (2018), presenting
the VampPrior��Variational Mixture of Posteriors� prior�is based on similar
ideas. This prior is given by a mixture of variational posteriors conditioned on
pseudo-inputs. These inputs are learned through backpropagation and can be
thought of as hyperparameters of the prior.

Next, we provide an overview of works that attempt to incorporate some
form of graphical structure�as informed by either the data or the applica-
tion domain�into VAE models.

3.2.2 VAEs with Graphical Structures

The work of He et al. (2019a), who also try to combine the strengths of
Bayesian networks and VAEs, is perhaps most closely aligned with our ob-
jectives. They do this by representing the latent prior distribution of the
VAE as a BN whose dependency structure is learned during training, and use
an inference network whose dependency structure mirrors that of the genera-
tive model. The conditional independencies between the latent variables are
controlled with a set of global binary gating variables. These gating vari-
ables switch the �ow of information between individual latent variables `on'
or `o�', and as such specify the dependencies between these variables. The
gating variables are jointly trained with the model and inference network pa-
rameters using a single objective. They empirically show that their proposed
Graph VAE outperforms the standard VAE (Kingma and Welling, 2014), lad-
der VAE (Sønderby et al., 2016) and a version of their model that encodes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LITERATURE REVIEW 46

a fully-connected BN, on several image datasets in terms of log-likelihood.
They make use of conditional Gaussian distributions for the individual latent
dimensions and do not consider potential independencies between the latent
and observed variables. We will instead consider using more �exible normal-
izing �ows to represent the latent distributions and will consider the potential
bene�ts of encoding a prede�ned dependency structure (between the latent
variables and between the latent and observed variables) as speci�ed by the
domain.

As with normalizing �ows, the application of VAEs in the context of causal
modelling is also a natural point at which to consider incorporating additional
graphical structure. An early example is the causal e�ect variational autoen-
coder (CEVAE) (Louizos et al., 2017), which is used to infer causal e�ects
from data. CEVAE speci�cally focuses on handling confounders (variables
that a�ect both an intervention and its outcome). Louizos et al. (2017) extend
the basic VAE model, which factorizes as p(x|z)p(z), by introducing new vari-
ables y and t and updating the architecture such that the model now factor-
izes as p(x|z)p(y|t, z)p(t|x)p(z), with a corresponding approximate posterior,
q(z|t,y,x)q(y|t,x)q(t|x). In this context, t is a treatment or intervention, y
is the outcome, z is an unobserved confounder and x is a noisy view of this
hidden confounder. Work by Kim et al. (2021b) builds on CEVAE by intro-
ducing additional variables within the causal structure, and propose a di�erent
factorization of the joint which is encoded via the generative model architec-
ture. These CEVAE-based approaches �t data to a prede�ned causal structure
which is independent of the dataset being considered. Sharma et al. (2021)
instead use an assumed causal structure between the variables of the dataset,
as represented by a BN DAG, by encoding this in a conditional VAE (Sohn
et al., 2015) to perform survival analysis. Unlike the Graph VAE of He et al.
(2019a), they only consider conditional independencies between the observed
variables, and make use of a simple Gaussian distribution as a prior over the
latent variables.

Johnson et al. (2016) propose a framework that combines the �exibility of
VAEs with the tractability of conjugate graphical model inference. They use a
conditional random �eld (CRF)�a type of undirected PGM�as a variational
family to capture the structure in the latent space, and learn inference networks
that output the required conjugate graphical model potentials in lieu of the
variational distribution's parameters. These potentials are then used in a
graphical model inference algorithm such as message passing.

Although the list of works presented in this chapter is far from comprehensive,
it provides a clear indication of the general interest in combining the strengths
of modern deep learning techniques and traditional graphical models, specif-
ically BNs, NFs and VAEs. In the next chapter, we present our approach to
encoding conditional independencies in a residual �ow.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Graphical Residual Flows

The graphical �ows presented in Section 3.1 do not emphasize providing stable
and accurate inversion, required for using a single �ow in both the normaliz-
ing and generative direction. All NFs are theoretically invertible, but stable
inversion is not always guaranteed in practice (Behrmann et al., 2021): if the
Lipschitz constant of the inverse �ow transformation is too large, numerical
errors may be ampli�ed, leading to exploding inverses. Residual �ows (Chen
et al., 2019) obtain stable inversion as a byproduct of their Lipschitz con-
straints, but do not encode domain knowledge about the target distribution's
dependency structure.

In this chapter, we therefore propose the graphical residual �ow (GRF), which
encodes domain knowledge from a BN into a residual �ow in a manner simi-
lar to the graphical NFs of Wehenkel and Louppe (2021) and Weilbach et al.
(2020). This model is presented in more detail in Section 4.1. These �ows cap-
ture a prede�ned dependency structure through masking of the residual blocks'
weight matrices. Previous masking schemes required either D passes through
the neural network (Wehenkel and Louppe, 2021) or restricted the width of
the network's hidden layers (Weilbach et al., 2020). We therefore propose a
novel scheme, based on the MADE approach discussed in Section 2.3.1.1, that
overcomes both these shortcomings. This new masking scheme is presented in
Section 4.2.

In contrast to traditional residual �ows, the incorporation of dependency infor-
mation also leads to tractable computation of the exact Jacobian determinant,
which is discussed in Section 4.3. We continue in Section 4.4 by considering
the application of these �ows to the task of amortized variational inference, in
which case one has to condition the �ow on a given observation. In Section 4.5,
we investigate whether the distribution represented by a GRF does indeed en-
code all the conditional independencies speci�ed by the provided BN. GRFs
cannot be inverted analytically, and one has to resort to numerical methods
as discussed in Section 4.6. Stable and accurate inversion is however achieved
by constraining a Lipschitz bound on the transformation which arises from

47

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 48

the invertible residual network architecture. In Section 4.7 we examine the
Lipschitz bounds of GRFs compared to existing approaches, and show that
previous graphical �ows do not o�er the same inversion stability guarantees.
Lastly in Section 4.8, we introduce a new Lipschitz-constrained activation func-
tion that is based on the Mish function proposed by Misra (2020). Since Misra
(2020) found that Mish either matched or improved the performance of the
non-monotonic function Swish (Ramachandran et al., 2017), we hope that this
function will give similar performance gains over the Lipschitz constrained Lip-
Swish function used by Chen et al. (2019) in residual �ows. The discussion
in this chapter is based in part on the work presented in Mouton and Kroon
(2022a).

4.1 Encoding Structure in Residual Flows

Assume a residual �ow F = fT ◦ . . . ◦ f1, where each residual block gt, t =
1, . . . , T , is a fully-connected neural network with a single hidden layer1 and
activation function h(·) where Lip(h) ≤ 1:

x(t) := ft(x
(t−1)) = x(t−1) + W̃2 · h(W̃1 · x(t−1) + b1) + b2 . (4.1)

Here, W̃i indicates a normalized weight matrix as in Equation (2.29), such
that Lip(gt) < 1. Similar to the work of Wehenkel and Louppe (2021) and
Weilbach et al. (2020), we can encode the graphical structure of a BN, by en-
suring that output i of each ft is only a function of those inputs corresponding
to xi and its parents in the BN graph. This can be achieved by suitably mask-
ing the weight matrices of each of the above residual blocks before applying
spectral normalization. Given a BN graph, G, over the components of x ∈ RD,
let W ′

i = Wi � Mi, i = 1, 2, be the new masked weight matrices where �
denotes element-wise multiplication, and the Mi are binary masking matrices
ensuring that component j of the residual block's output is only a function of
the inputs corresponding to {xj} ∪ PaGxj . The update to x(t−1) in block ft is
then de�ned as follows:

x(t) := x(t−1) + W̃ ′
2 · h(W̃ ′

1 · x(t−1) + b1) + b2 . (4.2)

The resulting �ow is called a graphical residual �ow (GRF). The masks M1

and M2 are constructed according to a variant of MADE (Germain et al.,
2015). MADE by default facilitates only fully-connected BN structures; our
generalization of MADE allows for arbitrary graphical dependencies and is
discussed in more detail in the next section. Figure 4.1 provides an illustration
of the structured update applied to x(t−1) by ft, as given in Equation (4.2).
Section 4.5 discusses the dependency structure induced between the variables
of the �ow when composing a number of these blocks.

1The rest of this discussion is easily extended to residual blocks with more hidden layers.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 49

Figure 4.1: The update to x(t−1) at �ow step t of a graphical residual �ow.
Edges removed by the masks M1 and M2 are not shown. The remaining

edges encode the graphical structure of the given BN. Matrices W̃ ′
1 and W̃ ′

2

are the masked and spectrally normalized weight matrices. The bias terms are
omitted to reduce clutter. See Section 4.2 for a discussion on how associating
each neural network unit with a speci�c subset of variables can be used to
construct the masks.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 50

4.2 Extending MADE for Arbitrary Graphical

Structures

The original approach employed by MADE (Germain et al., 2015) was aimed
at enforcing an autoregressive structure between the variables of interest by
suitably masking the weight matrices of a neural network (See Section 2.3.1.1).
This autoregressive structure is equivalent to encoding a fully-connected BN
graph. We are interested in using a similar approach to encode a BN with an
arbitrary dependency structure.

Given a BN graph G, the corresponding joint distribution over the variables x ∈
RD will factorize as follows:

p(x) =
D∏
i=1

pi(xi|PaGxi) . (4.3)

For a given residual block's neural network that takes x as input, the goal
is to have the output units associated with xi be computed from only those
input units associated with xi and its parents. This means that there should
be no computational paths between an input and an output unit if there is
no direct dependency between the associated variables in G. This can be
achieved by applying a masking matrix to the weights of each neural network
layer (which can be of arbitrary width) such that at least one weight on any
such computational path is set to zero.

We begin by assigning a speci�c subset of variables to each unit in the neural
network. Speci�cally, each input unit is assigned a unit set containing its cor-
responding input variable: {xi}. Each output unit is assigned a set consisting
of its associated variable and that variable's parents in the BN: {xi} ∪ PaGxi .
Lastly, each hidden unit is uniform randomly assigned one of the following
sets: {xi} or {xi} ∪ PaGxi where i can be any of 1, . . . , D.2

A correct mask can then be constructed by ensuring that it zeroes out any
weight between two neural network units if the set assigned to the unit in the
next layer is not a superset of the set assigned to the unit in the previous
layer. This has the implication that any path from input to output for any
variable with one or more parents has a single associated set switch from {xi}
to {xi} ∪ PaGxi . Algorithm 1 details the above masking scheme and Figure 4.2
provides an illustration of how this scheme encodes the desired dependency
structure in the residual block for the BN given in Figure 4.1.

2To prevent situations where there are no valid paths from an input to the corresponding
output, we require at least one unit in each hidden layer to be associated with {xi}. Also
note that MADE typically does not include i = D as an input, since each output j is only
dependent on the inputs i = 1, . . . , j − 1, and so no output units will be dependent on
the highest input dimension. For GRFs however, we require self-dependence, i.e. output j
should also be a function of input j. Otherwise we will simply have an a�ne transformation
with a �xed scaling factor of one.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 51

Algorithm 1 Computing mask matrices for arbitrary graphical structures.

Require: BN graph G, hidden layer widths H1, . . . ,HL

1: D ← |G| . Input/output dimension
2: M1 ← zeros(H1, D) . Initialize �rst mask as H1 ×D matrix of zeros
3: for l← 2 to L do

4: Ml ← zeros(Hl, Hl−1)
5: end for

6: ML+1 ← zeros(D,HL)
7:

8: possible_assignments = [] . List of possible assignments to hidden units
9: for i← 1 to D do

10: possible_assignments.append({i})
11: possible_assignments.append({i} ∪ PaGi)
12: end for

13: for l← 1 to L do . Initialize subsets assigned to hidden units
14: hidden_subsets[l] = []
15: for i← 1 to D do . Ensure at least one valid path
16: hidden_subsets[l].append({i})
17: end for

18: for i← D + 1 to Hl do

19: j ∼ Uniform(1, 2D)
20: hidden_subsets[l]append(possible_assignments[j])
21: end for

22: end for

23:

24: for h← 1 to H1 do . Create mask between input and �rst hidden layer
25: for i← 1 to D do

26: if hidden_subsets[1][h] ⊇ {i} then
27: M1[h, i]← 1
28: end if

29: end for

30: end for

31:

32: for l← 2 to L do . Create masks between hidden layers
33: for h1← 1 to Hl do

34: for h2← 1 to Hl−1 do

35: if hidden_subsets[l][h1] ⊇ hidden_subsets[l − 1][h2] then
36: Ml[h1, h2]← 1
37: end if

38: end for

39: end for

40: end for

41:

42: for i← 1 to D do . Create mask between �nal hidden and output layer
43: for h← 1 to HL do

44: if {i} ∪ PaGi ⊇ hidden_subsets[L][h] then
45: ML+1[i, h]← 1
46: end if

47: end for

48: end for

49: return [M1, . . . ,ML+1]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 52

(a) (b)

(c) (d)

Figure 4.2: Mask construction. Edges are retained only when the set in the
next layer is a superset of the set in the previous layer. Edges removed by
the masks are not shown. The coloured units in each sub�gure correspond
to the computational path of the variable with the same colour in the BN in
Figure 4.1. Since x1 has no parent vertices in this BN, its update (a) will
not depend on any other variables. The updates to variables (b) x2, (c) x3

and (d) x4 at each �ow step are only functions of the current states of these
variable and their respective parents in the BN, as desired.

4.3 Computing the Jacobian Determinant

Since we are enforcing the BN's DAG dependency structure between the vari-
ables of the �ow, we are in e�ect encoding a `sparse' autoregressive structure.
That is, if the variables were ordered according to their topological order-
ing in the BN, the update applied to each variable will only be conditioned
on those variables with a strictly lower index (though not necessarily on all
variables with a lower index). This construction would result in a triangular
Jacobian Jft(x) for which the determinant is easy to compute exactly as the
product of the matrix's diagonal terms. This is in contrast to standard residual
�ows, which require approximation of the Jacobian determinant.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 53

Note further that it is not necessary for the variables to actually be ordered
in their topological ordering. It is su�cient to know that some permutation
of the variables exists for which the correspondingly permuted version of the
Jacobian is triangular. This is true, because the application of a permutation
matrix exchanges both the rows and columns of the matrix, so the diagonal
entries remain unchanged (just reshu�ed). Furthermore, permutations are
volume-preserving operations (i.e., the Jacobian determinants are ±1) which
will make no contribution to the change-of-variables formula, and can thus
be ignored in practice. The logarithm of the Jacobian determinant of the
complete �ow F , follows as

log |det(JF (x))| =
T∑
t=1

D∑
i=1

log

∣∣∣∣∣∂
[
ft(x

(t−1))
]
i

∂ x
(t−1)
i

∣∣∣∣∣ (4.4)

=
T∑
t=1

D∑
i=1

log

∣∣∣∣∣1 +
∂
[
gt(x

(t−1))
]
i

∂ x
(t−1)
i

∣∣∣∣∣ . (4.5)

If residual block gt is constructed with a single hidden layer as in Equation 4.2,
then the partial derivative of [gt(x

(t−1))]i with respect to input i, is given by:

∂
[
gt(x

(t−1))
]
i

∂ x
(t−1)
i

=

[
W̃ ′

2 · diag

(
∂ h(W̃ ′

1 · x(t−1) + b1)

∂ x(t−1)

)
· W̃ ′

1

]
ii

. (4.6)

In practice one can use automatic di�erentiation to compute the above quan-
tities, without explicitly computing the full matrix multiplications in this ex-
pression.

4.3.1 Reducing Memory Requirements

Naïve computation of Equation (4.5) does however have a drawback. Re-
call that log |det(JF (x))| is used as part of the objective when training a �nite
�ow. Vanilla (stochastic) gradient descent optimization with backpropagation,
computes the gradient of the objective at the end of a forward pass. Since the
forward pass involves T �ow steps, this requires storing the computational
graphs of all T Jacobian determinant computations in order to perform back-
propagation for gradient computation. A�ne �ows, for example, primarily
only need to store the computation graph of the output of the conditioner
function in Equation (2.20) for optimization, since the scaling components are
already the required diagonal terms of the Jacobian as given Equation (2.22).
GRFs, on the other hand, require storing the computation graphs of the out-
puts of the residual blocks as well as the �rst derivatives of these outputs
with respect to the inputs. Since these computational graphs are much more
involved, training can consume a sizeable amount of memory, that increases
linearly with the number of �ow steps used.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 54

Figure 4.3: Peak memory usage during training of �ow models for density
estimation on various datasets (Arithmetic Circuit, Tree, Protein and EColi).
Note the memory savings obtained by partially computing the gradients during
the forward pass.3See Section 5.1.1 for further information on the datasets and
�ow models.

As in Chen et al. (2019), we overcome excessive memory usage by partially
computing the gradients during the forward pass. To achieve this, we leverage
the fact that the gradient of the log Jacobian determinant term for the entire
�ow decomposes across the �ow steps and can be written as the sum of the
gradients of the individual �ow steps' log Jacobian determinants:

∇θ log |det(JF (x))| =
T∑
t=1

∇θ log |det(Jft(x(t−1)))| . (4.7)

As a consequence, we can compute the contribution of each block's transforma-
tion to the gradient of the �ow's log Jacobian determinant directly after com-
pleting the forward pass for that block. This allows one to immediately release
the memory associated with the computational graph of log |det(Jft(x(t−1)))|,
which results in a signi�cant reduction in peak memory consumption during
training for graphical residual �ows. Figure 4.3 provides an indication of the
memory-savings that can be achieved when partially computing the gradients
at each �ow step during a forward pass rather than at the end, as is tradition-
ally done.

4.4 Variational Inference

In the previous sections we presented the GRF in the context of density es-
timation where all variables are observed and we apply the �ow in the nor-
malizing direction to obtain the density of a datapoint x. As introduced in

3This memory-saving technique is a general improvement �rst used by Chen et al. (2019).
Memory consumption was, however, not an issue for the datasets we considered in this thesis
when evaluating GRFs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 55

Section 2.3.3.2, �ows, and speci�cally GRFs, can also be applied in the con-
text of variational inference, where we have access to a latent variable model
p(x, z) and wish to obtain a good approximation to the posterior distribution
of the latent variables, p(z|x). In this setting, one typically only has access
to the forward BN that models the generating process for an observation x.
That is, the BN generally encodes the following factorization of the joint:
p(x, z) = p(x|z)p(z).

In order to construct a �ow that is conditioned on the observation x and which
takes the BN's dependency structure into account, we must �rst invert the BN.
That is, given a graphical model capturing independence assumptions about
the generative model, we wish to �nd a graphical model capturing the implied
independence information about the corresponding posterior. Figure 4.4 pro-
vides a comparison of various inversion schemes for a simple BN. A heuristic
approach is to simply invert the directionality of the edges in the BN (Kingma
and Welling, 2014; Ranganath et al., 2015). A more principled, yet still heuris-
tic, approach is to invert the directionality of the edges and additionally insert
edges between variables that share children in the forward BN (Stuhlmuller
et al., 2013; Paige and Wood, 2016). However, both of these approaches retain
conditional independencies that may not be present in (or `are not faithful
to') the original distribution, and therefore cannot accurately represent the
true posterior. An alternative method is therefore to make no independence
assumptions at all about the posterior distribution, and use a fully-connected
graph for the inverted BN (Le et al., 2017). The drawback of this approach
is that it ignores information available in the forward BN, which can lead to
reduced performance for �nite network capacities and training budgets.

z0 z1

z2 z3

x0 x1

(a)

z0 z1

z2 z3

x0 x1

(b)

z0 z1

z2 z3

x0 x1

(c)

z0 z1

z2 z3

x0 x1

(d)

z0 z1

z2 z3

x0 x1

(e)

Figure 4.4: BN inversion schemes. Given (a) the forward BN, heuristic ap-
proaches either (b) only invert the edges or (c) invert all the edges and connect
the vertices that share children in the forward BN. These approaches do not
capture the true independence assumptions encoded by the forward BN, which
could lead to poor modelling performance. Alternatively, one could make no
independence assumptions and (d) use a fully-connected BN, but this ignores
information available to us via the forward BN. Instead, Webb et al. (2018)
propose an algorithm for providing (d) an inverse that encodes independencies
faithful to the forward BN and is minimal in terms of its number of edges.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 56

Algorithm 2 Graph Inversion (Webb et al., 2018)

Require: BN graph G, latent variables Z
1: J ← moralize(G) . Add undirected edges between variables that share a

child in G and remove directionality of the rest of the edegs
2: Set all vertices of J to be unmarked
3: H ← {variables(G), ∅} . Create a fully disconnected graph
4: S ← all z ∈ Z without parent latent in G
5: while S 6= ∅ do
6: Select v ∈ S that adds the fewest edges to J in the next step
7: Add edges in J between unmarked neighbours of v
8: Make unmarked neighbours of v ∈ J , v's parents in H
9: Mark v and remove from S
10: for unmarked latents child u of v in G do
11: Add u to S if all its parent latents in G are marked
12: end for

13: end while

14: return H

Fortunately, a more elegant solution has been provided by Webb et al. (2018),
who propose a tractable algorithm for computing an approximate minimal
inverse faithful to the graphical structure of the generative model. This inverse
is faithful in the sense that it does not encode any independence statements
not implied by the generative model, and it is minimal in that it is a local
minimum in terms of the number of required edges (corresponding to a local
maximum in terms of the number of true independence statements that it does
encode). We can therefore use this algorithm to generate faithful and minimal
inverse BNs to use when constructing �ows as variational inference artifacts.
Algorithm 2 provides the pseudocode for inverting a BN according to Webb
et al. (2018). Note that their algorithm produces natural inverses, i.e. the
topological ordering of the latent variables in the inverted BN is the inverse of
the topological ordering of the latent variables in the forward BN (although
it is also possible to obtain in inverse where the order of the random choices
remains the same as in the forward BN).

Having obtained an inverted BN that encodes the joint factorization: p(x, z) =
p(z|x)p(x), we can now construct a generative GRF over the latent variables
that is conditioned on x. Each block of this �ow is de�ned as follows for
residual blocks with a single hidden layer:

z(t) = ft(z
(t−1);x) := z(t−1) + W̃ ′

2 · h(W̃ ′
1 · y(t−1) + b1) + b2 , (4.8)

where W ′
i = Wi � Mi, for i = 1, 2, y(t−1) = z(t−1) ⊕ x with ⊕ denoting

concatenation, and z(0) = ε ∼ p0 is a sample from the known base distribution.
The binary masksM1 andM2 are again constructed using the method detailed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 57

in Section 4.2. When the above �ow is used as a variational inference artifact q,
the training objective is to maximize the ELBO, Ez∼q[log p(x, z)− log q(z|x)].

Imposing a graphical structure on the update in Equation (4.8) does, however,
place a lower bound on the number of �ow steps, T , that should be used.
Since the task is to infer the latent distribution given an observation x, it is
necessary that the information contained in x is shared with all latent variables.
Given the above �ow construction, note that after one �ow step, only those
latent variables that are children of x in the inverted BN will have received
information about x. After the next �ow step, all latent variables within
distance of two of an observed variable in the inverted BN will have received
some information regarding the observed state through their parent vertices.
Following this pattern, one sees that the required number of �ow steps is
dependent on how long it takes for information to propagate from x to all of z.
Speci�cally, T should be chosen such that

T ≥ max
xi∈x,zj∈z

d(xi, zj) , (4.9)

where d(·) is the graph distance between any observed and latent vertex, with
d(xi, zj) = 0 when there is no path between xi and zj. That is, T should be
greater than or equal to the `longest shortest path' between any observed and
latent vertex.

4.5 Formalizing the Encoded Dependency

Structure

In the preceding sections, we discussed an approach to incorporating a pre-
de�ned graphical structure into residual �ows. These graphical residual �ows
can be applied in either the normalizing direction to calculate the density of an
observation, or in the generative direction to sample a latent variable from the
inferred posterior while conditioning on an observation. We include a given
dependency structure in the manner discussed above as an inductive bias in
the �ows we construct. We now investigate whether the distribution repre-
sented by a given GRF does indeed encode all the conditional independencies
speci�ed by the provided BN.

We �rst consider a normalizing GRF with a single �ow step, F (x) = ε, which
encodes the following BN chain structure: x0 → x1 → x2. Let the bijective
transformations applied to each of the dimensions be given by F0(x0) = ε0,
F1(x1;x0) = ε1 and F2(x2;x1) = ε2, where each transformation is conditioned
on a subset of x, as encoded by the masking scheme in line with the pro-
vided BN. A graphical illustration of this �ow is given in Figure 4.5a. Note
that these individual bijective transformations are implemented using a single
residual block neural network, as presented in Section 4.1. We treat them

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 58

x0 x1 x2

ε0 ε1 ε2

F0 F1 F2

(a) Normalizing GRF

z0 z1 z2

ε0 ε1 ε2x

F0 F1 F2

(b) Generative GRF

Figure 4.5: A graphical illustration of the transformation applied by (a) a
one-step normalizing GRF and (b) a one-step generative GRF when encoding
the chain dependency structures: x0 → x1 → x2 and x → z0 → z1 → z2,
respectively. The variables of the base distribution are represented by ε0, ε1
and ε2. Undirected edges represent a bijective transformation (F0, F1 or F2)
between the associated variables with the small arrow indicating the direction
of the forward mapping of the �ow. Directed edges indicate the additional
variables these bijective transformations are conditioned on as speci�ed by the
given BN and enforced by the presented masking scheme.

as separate functions here to simplify the discussion, and also no not con-
sider their dependence on the parameters of this network. We are interested
in whether the distribution represented by the �ow, p(x), respects the condi-
tional independence assumptions speci�ed by this BN.

x0 x1 x2

ε0,0 ε0,1 ε0,2

ε1,0 ε1,1 ε1,2

Figure 4.6: A normalizing
GRF with two transforma-
tion steps.

As an example, we note that after a single trans-
formation step, the distribution of x2 will only
depend on x1 as desired, since it can be com-
puted as: log p(x2|x1) = log p0(F2(x2|x1)) +
log |det(JF2(x2;x1))|. It is easy to see that for
any variable, its density under the �ow can be
computed knowing only its parents, and that it is
thus conditionally independent of all other ances-
tors in the BN. Therefore, the distribution repre-
sented by a normalizing GRF with a single trans-
formation step will adhere to the conditional in-
dependencies speci�ed by the BN, which is in line
with the argument presented in Section 3.1. This
is because the bijective transformation associated
with each variable will only be conditioned on the
parents of that variable within the BN graph.

Additional dependencies are however introduced when the number of �ow steps
is increased. Considering Figure 4.6, which depicts a 2-step normalizing GRF,
one can note that when computing the latent representation of x2, informa-
tion will `leak' from x0 via the intermediate transformations of the observed
variables, in this case ε0,1. If enough transformation steps are applied, the dis-
tribution of any observed variable will ultimately depend on all its ancestors in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 59

the BN graph. As a result, the encoded structure may end up corresponding
to a graph with more connections than the original BN. In the worst case,
this BN structure may correspond to the transitive closure of the original BN
structure.

Next, consider a generative GRF with a single �ow step, z = F (ε;x) for
ε ∼ p0, which encodes the following BN chain structure: x → z0 → z1 →
z2. Again, let the bijective transformations applied to each of the dimensions
be given by z0 = F0(ε0;x), z1 = F1(ε1; ε0) and z2 = F2(ε2; ε1), where each
transformation is conditioned on a subset of ε, and only F0 is conditioned on
the observation, x. A graphical illustration of this �ow is given in Figure 4.5b.
We are interested in whether the distribution of the generated samples, q(z|x),
respects the conditional independence assumptions speci�ed by this BN.

The BN speci�es that z2 is conditionally independent of z0 and x, given z1.
That is, q(z2|z0, z1, x) = q(z2|z1) should hold in the distribution represented
by the �ow. Since z2 is a bijective transformation of ε2 conditioned on ε1, we
can compute:

log q(z2|z0, z1, x)

= log p0(F−1
2 (z2; ε1)) + log

∣∣∣det(JF−1
2

(z2; ε1))
∣∣∣

= log p0(F−1
2 (z2|F−1

1 (z1;ε0))) + log
∣∣∣det(JF−1

2
(z2;F−1

1 (z1;ε0)))
∣∣∣

= log p0(F−1
2 (z2;F−1

1 (z1;F−1
0 (z0;x)))) + log

∣∣∣det(JF−1
2

(z2;F−1
1 (z1;F−1

0 (z0;x))))
∣∣∣ .

By expanding the expression in this way, we make clear the direct dependence
of z2 on z0 and x�knowing only z1 is not su�cient to specify q(z2|z1, z0, x).
This dependence arises from the fact that the bijective transformation be-
tween z2 and ε2 is only speci�ed once ε1 is known, and ε1 is a function of both
z1 and z0. Thus, q(z2|z0, z1, x) 6= q(z2|z1). In this way, each variable could
be dependent on all its ancestors in the BN, and the dependency structure
induced by the �ow may again ultimately correspond to the transitive closure
of the encoded BN.

We therefore have that for both a normalizing and generative GRF, the de-
pendency structure induced by the �ow could correspond to the encoded BN's
transitive closure. In the worst-case scenario, this transitive closure corre-
sponds to a fully-connected graph, in which case one would seemingly not
have gained any bene�t from encoding the given structure in this way. The
dependencies induced by these graphical �ows are arguably more subtle, how-
ever. For normalizing GRFs, each variable only receives information from
its ancestors via intermediate bijective transformations of its parents. Even
though there is some `information leakage', it would not be unreasonable to
expect that the distribution of a given variable will be more strongly in�uenced
by its parents, rather than by the potentially `diluted' information the variable

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 60

receives about the rest of its ancestors. The degree of information leakage for
generative GRFs is even less clear. This is primarily because each variable is
in fact never a direct function of its parents, but rather depends on bijective
transformations of these parents where each bijection is itself conditioned on
those variables' parents. For example, we showed that knowing only the parent
of z2 is not su�cient to calculate its density (if ε is unknown), and one addi-
tionally needs knowledge of its ancestors, including the observation x. When
performing density estimation with a generative �ow, this dependence is thus
already introduced after only one �ow step. When generating new samples,
one however still needs three �ow transformations for a generated sample of z2

to contain any information about the observed state (similar to how ε1,2 only
receives information about x0 after two steps in the normalizing GRF depicted
in Figure 4.6). Therefore, even though GRFs cannot in general guarantee that
the distribution represented by the �ow respects the independence statements
speci�ed by the encoded BN, we still expect these �ows to incorporate an
inductive bias that encourages the variables to adhere to the desired depen-
dency structure. See Appendix A.1.4.2 for empirical results supporting this
argument.

Future work is needed to analyse the extent of information leakage as well
as its e�ect on overall performance, compared to alternative approaches that
more strictly adhere to the BN structure. Any signi�cant information leakage
between outputs could for instance be estimated using conditional mutual in-
formation (Wyner, 1978), and an alternative model could for example use a
separate �ow at each node in the BN. For generative graphical �ows, this con-
struction would however require sequential evaluation of these sub-�ows, since
each node �rst requires samples from all its parent variables to be generated.
As such, this approach would scale with the length of the longest path in the
BN, which could slow down training and application of the model.

Another argument for why it is not necessarily crucial that we capture the exact
BN in the �ow model, is that BNs in the real-world are rarely guaranteed to
be exactly correct and are usually obtained from either a structure learning
process or are hypothesized by domain experts. Allowing the model to capture
additional dependencies could therefore be bene�cial in this setting, whilst still
guiding the training process according to prior beliefs about the domain. Since
GRFs incorporate BN dependency information in the same way as GNF and
SCCNF (only the masking scheme di�ers�the overall dependency structure
between the (�nal and intermediate) variables of the �ow remain the same),
the above arguments hold for these graphical �ows as well.

We have now considered both transformation directions in which a GRF can
typically be applied: in the normalizing direction for density estimation and
in the generative direction for inference, as well as the dependency structure
induced by �ows applied in these di�erent directions. Next, we consider how to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 61

invert these �ows once they have been trained. This is necessary, for example,
when one wants to generate new samples using a �ow trained for density esti-
mation, or when one wants to evaluate the density of sample z not generated
by a �ow trained in the generative direction.

4.6 Inverting GRFs

Similar to standard residual �ows, the inverse of a GRF is not avaiable in closed
form. Thus, we resort to numerical methods such as the Banach �xed-point
approach (2.33) to compute x = f−1

t (y) for each block ft. From the Banach
�xed-point theorem, we have that after n iterations of Equation (2.33), the
bound on the inversion error is given by (Kreyszig, 1989, p. 302)

||x− x(n)|| ≤ Lip(gt)
n

1− Lip(gt)
||x(1) − x(0)|| . (4.10)

This shows that the Banach �xed-point approach converges exponentially in
the number of iterations n, and that the rate is also dependent on the magni-
tude of the residual block's Lipschitz constant. While smaller Lipschitz con-
stants lead to faster convergence and a smaller upper bound on the error, they
also limit the expressivity of each �ow step. Using the Banach �xed-point ap-
proach therefore introduces a trade-o� between inversion speed and the �ow's
modelling capabilities with a certain number of steps.

Unlike general contractive residual �ows, we showed in Section 4.3 that we
are able to compute the diagonal entries of the Jacobian matrix exactly in
the GRF setting. This derivative information allows us to use an alternative
�xed-point iteration method that does not force this trade-o�. Speci�cally, we
can invert each block numerically using the Newton-like �xed-point method
proposed by Song et al. (2019). To compute x = f−1

t (y), the following update
is applied until convergence:

x(n+1) = x(n) − α(diag(Jft(x
(n))))−1[ft(x

(n))− y] , (4.11)

using the initialization x(0) = y. This is an approximation of the relaxed mul-
tivariate Newton's method for inverting this �ow, which is given by x(n+1) =
x(n) − λ(Jft(x

(n)))−1[ft(x
(n)) − y], with a relaxation factor 0 < λ < 2. Using

only the diagonal terms instead of computing and inverting the full Jacobian,
speeds up the inversion process at the potential cost of less e�ective individ-
ual iterations. Song et al. (2019) show that the iterative method presented in
Equation (4.11) will converge locally for 0 < α < 2. Note that this convergence
is not necessarily to the correct x: we implicitly rely on the assumption that it
is unlikely inversion will fail using the initialization x(0) = y. We empirically
demonstrate that the convergence rate of this inversion procedure does not ex-
hibit the same dependence on the Lipschitz constant as the Banach �xed-point

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 62

Algorithm 3 Fixed-point iteration to compute x = f−1
t (y) (Song et al., 2019).

Require: 0 < α < 2
1: Initialize x0 ← y
2: while not converged do
3: Compute ft(xn−1)
4: Compute diag(Jft(xn−1))
5: xn ← xn−1 − α(diag(Jft(xn−1)))−1[ft(xn−1)− y]
6: end while

7: return xn

approach (see Section 5.3), and we are not aware of any theoretical bounds on
the convergence rate that are dependent on the transformation's Lipschitz con-
stant. We thus expect Equation (4.11) to perform better when larger Lipschitz
bounds for the residual blocks (≈ 0.99) are used (which is desirable for more
expressive �ow steps). As with the Banach �xed-point approach, the number
of iterations needed for convergence is not known beforehand. Algorithm 3
describes the pseudocode of this Newton-like �xed-point method.

4.7 Invertibility of Graphical Flows in Practice

The Lipschitz constants of the forward and inverse transformation of an invert-
ible neural network quantify its worst-case stability (Behrmann et al., 2021).
Bounds on these constants therefore play an important role in understanding
and mitigating possible exploding inverses. Below we compare the worst-case
inversion stability of the di�erent graphical normalizing �ows implied by their
corresponding Lipschitz constants. Since a graphical residual �ow places a
strict bound on its Lipschitz constant, this type of �ow should be expected to
provide better inversion stability than alternative approaches.

A�ne Graphical Normalizing Flows

Recall that each �ow step of a graphical normalizing �ow (Wehenkel and
Louppe, 2021, Section 3.1.1) with a�ne transformations (GNF-A) is given
by:

f(x) = exp(s(x))� x +m(x) , (4.12)

where outputs i of s(·) and m(·) are functions of only those inputs correspond-
ing to the parents of xi in the associated BN graph. No global bounds can be
placed on the Lipschitz constant of this type of �ow, which complicates the
task of ensuring stable inversion in all scenarios. Behrmann et al. (2021) pro-
vide the following simple illustration of why GNF-A only has local Lipschitz
bounds. Assume x consists of two variables, x0 and x1, where x1 is dependent

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 63

on x0 in the corresponding BN. Let [F (x)]1 = x1 exp(s(x0)) be the transforma-
tion applied to x1 by a single-step GNF-A, where s(x0) = [s(x)]1 is the second
output dimension of the conditioner function s(·) and the dependence on only
x0 has been made explicit. The output of the conditioner function [m(x)]1 is
taken to be 0 for simplicity. Then

∂[F (x)]1
∂x0

= x1
∂ exp(s(x0))

∂x0

= x1 exp(s(x0))s′(x0) . (4.13)

Thus, if x1 may grow arbitrarily large, this derivative will be unbounded, which
could allow the Jacobian, JF (x), to have an unbounded Frobenius norm. Due
to the equivalence of norms in �nite dimensions, this in turn can induce an
unbounded spectral norm of the Jacobian. Lastly, we consider the following
theorem (Federer, 1996; Kim et al., 2021a): if F : RD → RD is a Lipschitz
continuous and di�erentiable function under the Euclidean norm, then

Lip(F) = sup
x∈RD
||JF (x)||2, (4.14)

where || · ||2 denotes the spectral norm. Based on Equation (4.14), we conclude
that if the spectral norm of the Jacobian is unbounded, then no global Lipschitz
bound can be obtained.

Monotonic Graphical Normalizing Flows

We can employ a similar illustration to investigate the Lipschitz bounds of a
GNF with monotonic transformations (GNF-M), as presented in Section 3.1.1.
Again, assume x consists of two variables, x0 and x1, where x1 depends on x0

in the corresponding BN. The transformation applied to x1 by a single-step
GNF-M is then given by [F (x)]1 =

∫ x1
0
h(t, c1(x0)) dt+ β(c1(x0)). We take the

partial derivative of the above transformation and apply Leibniz's integral rule
(see Appendix B.1.1) and the chain rule:

∂[F (x)]1
∂x0

=
∂

∂x0

∫ x1

0

h(t, c1(x0)) dt+
∂β(c1(x0))

∂x0

=

∫ x1

0

∂h(t, c1(x0))

∂c1(x0)

∂c1(x0)

∂x0

dt+
∂β(c1(x0))

∂x0

.

(4.15)

The integrand above is the product of the derivatives of two neural networks
with respect to their inputs. For general networks, this integrand's shape
will depend not only on the chosen activation functions, but also the weights
obtained during training. If x1 may grow arbitrarily large, and if the area
under the curve given by the integrand is not bounded by some maximum
value as x1 increases, then we can apply similar reasoning as above to show
that this �ow has no global Lipschitz bounds.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 64

Thus, either the architecture of the �ow must be adapted to ensure that this
integral remains bounded as a function of x1 > 0, or other techniques must be
used to improve local stability, as discussed in Behrmann et al. (2021).

Structured Conditional Continuous Normalizing Flows

The structured conditional continuous normalizing �ow (SCCNF) of Weilbach

et al. (2020), is de�ned by a neural ODE, dx(t)
dt

= f(x(t), t), where t ∈ [0, 1],
and f is a neural network masked such that it encodes a given BN dependency
structure. A global Lipschitz bound for this transformation needs to hold for
all t ∈ [0, 1]. This bound is a standard result and is given by Behrmann et al.
(2021):

Lip(F) ≤ eLip(f)·t . (4.16)

The inverse of an SCCNF is simply given by dx(t)
dt

= −f(x(t), t), and thus its
Lipschitz bound is unchanged, i.e. Lip(F−1) = Lip(F).

Graphical Residual Flows

Residual �ows implement strict Lipschitz bounds to ensure the transformation
remains bijective. Since graphical residual �ows only extend residual �ows in
terms of the connectivity between the variables of the �ow, the same Lipschitz
bounds will hold. Let F (x) = x+ g(x) be a transformation step in a GRF. By
construction, Lip(g) < 1, to ensure invertibility. A (non-trivial) upper bound
on the Lipschitz constant of this contractive residual block g implies Lipschitz
bounds for both F and F−1 (Behrmann et al., 2019):

Lip(F) ≤ 1 + Lip(g) and Lip(F−1) ≤ 1

1− Lip(g)
. (4.17)

This bi-Lipschitzivity is an attractive property for stable and e�cient inversion
of the �ow step.

4.8 LipMish Activation Function

GRFs impose strict Lipschitz bounds to facilitate both theoretical and numer-
ical invertibility. As such, the activation functions used in the residual blocks
need to be chosen accordingly. Here, we propose a new Lipschitz-constrained
activation function based on the Mish activation function of Misra (2020).

The training objective of the GRF contains the �rst derivatives of the residual
block activation functions through the Jacobian term. Thus, the gradients
used during training will depend on these activations' second derivatives. For
many of the common smooth activation functions, the second derivative is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 65

(a) (b) (c)

Figure 4.7: Vanishing second derivatives of common smooth activations with
the required Lipschitz bound Lip(h) ≤ 1, when their �rst derivatives approach
one. The �rst derivative of the residual block's activation function is present in
the training objective of GRFs. The behaviour of the second derivative when
the �rst derivative of these activation is close to one, as shown in the shaded
areas, can thus lead to vanishing gradients.

close to zero (`vanishes') in the region where the �rst derivative reaches its
maximum. For example, as shown in Figure 4.7a, the second derivative of the
popular ReLU activation function is zero everywhere except at zero, and more
speci�cally, it is zero everywhere that the �rst derivative is at its maximum
of one. Even though the activation functions presented in Figure 4.7a satisfy
the required Lipschitz constraint, their second derivative vanishes in the region
that the �rst derivative is close to one. This issue is similar to the problem of
saturated activation functions, only in this case it applies to the �rst and second
derivative of the function. Instead, we would prefer an activation function, h,
which adheres to the imposed Lipschitz bounds, i.e. Lip(h) ≤ 1, and for which
the second derivative does not vanish in region where the �rst derivative is close
to one. Some smooth non-monotonic activation functions with this behaviour
have previously been identi�ed (Chen et al., 2019). For example, Chen et al.
(2019) use a scaled version of the non-monotonic Swish activation function,
Swish(x) = x/(1 + exp(−softplus(β) · x)) (Ramachandran et al., 2017), called
LipSwish, such that Lip(LipSwish) ≤ 1:

LipSwish(x; β) =
1

1.1
·
(

x

1 + e−softplus(β)·x

)
, (4.18)

where an additional positive scaling factor is obtained by passing a parameter
β ∈ R through a softplus function.

As an alternative, we instead consider the smooth non-monotonic activation
function Mish (Misra, 2020): Mish(x) = x tanh(softplus(x)). Similar to Swish,
the Lipschitz constant of Mish is not bounded by one. Thus, a scaling factor is
needed to ensure adherence to the imposed Lipschitz constraint. We call the
resulting scaled activation the �LipMish� function:

LipMish(x) =
x

1.088
tanh(softplus(softplus(β) · x)) .

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 66

(a) (b)

(c)

(d) (e)

Figure 4.8: The LipMish activation function. Figure (a) indicates how the
necessary scaling factor (1/1.088) is obtained: it is the point where the �rst
derivative of Mish is maximal (which corresponds to the root of the second
derivative). By scaling Mish with this factor, one obtains (b) a non-monotonic
function, LipMish, that adheres to the constraint Lip(LipMish) ≤ 1, and whose
second derivative does not vanish in the region where the �rst derivative is max-
imal. Figure (c) provides a comparison between the �rst and second derivatives
of LipSwish and the proposed LipMish function. Similar to LipSwish, incorpo-
rating an additional parameter β ∈ R, allows LipMish to have di�erent degrees
of curvature as shown in(d) and (e).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. GRAPHICAL RESIDUAL FLOWS 67

As with LipSwish, we have incorporated an additional positive scaling factor
for x within the softplus function, which allows LipMish to have di�erent
degrees of curvature. For example, if we take the limit softplus(β) → 0,
LipMish becomes a linear function and if softplus(β)→∞, LipMish simpli�es
to ReLU. The scaling factor of (1/1.088) ensures that Lip(LipMish) ≤ 1 for
all β. Figure 4.8 provides more details on how this scaling factor is obtained
and illustrates di�erent characteristics of LipMish.

4.9 Conclusion

In this chapter we have proposed a new graphical �ow based on residual �ows,
that encodes the conditional independencies of a BN by applying a novel mask-
ing scheme to the weight matrices of the �ow's residual blocks. We showed how
this �ow can be applied for the tasks of density estimation and variational infer-
ence, and discussed the dependency structure induced between the variables by
the architecture of the �ow. We also discussed the inversion guarantees GRFs
provide compared to existing graphical �ows. In the next chapter we proceed
by evaluating GRFs on a range of datasets that each have an associated BN,
and con�rm that these �ows provide accurate inversion performance.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Empirical Investigation I:

Graphical Residual Flows

This chapter presents an empirical investigation comparing the performance
of our proposed GRF model to existing graphical �ows. More speci�cally, the
goals of this chapter were as follows:

1. To evaluate the key task performance of GRFs compared to existing
�nite and continuous graphical �ows when encoding conditional inde-
pendence information from a dataset's associated BN graph. The key
tasks identi�ed were:

a) density estimation, and

b) amortized inference.

2. To empirically analyse the accuracy and e�ciency of inverting GRFs
compared to existing approaches.

Section 5.1 gives an outline of the methodology employed to achieve these
goals. This includes an overview of the datasets used, as well as the training
setup and model architectures. Sections 5.2 and 5.3 provide and critically
discuss the experimental results in line with goals 1 and 2 above, respectively.

5.1 Methodology

We evaluated our proposed GRFs by comparing them to existing graphical
�ow models using various performance metrics. These comparisons were per-
formed using both synthetic and real-world datasets, where the domain prob-
lem represented by each dataset has an associated true or hypothesized BN
structure (although we typically refer to the �dataset's BN� for short). We
speci�cally compared GRFs to the graphical normalizing �ow (GNF) proposed

68

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 69

by Wehenkel and Louppe (2021) (see Section 3.1.1), and the structured con-
ditional continuous normalizing �ow (SCCNF) presented by Weilbach et al.
(2020) (see Section 3.1.2). For GNFs, we considered both a�ne and mono-
tonic transformation functions, denoted by GNF-A and GNF-M, respectively.

First, we measured the density estimation performance of the di�erent ap-
proaches for a given set of observed variables, x, of which the true joint distri-
bution was assumed to factorize according to a given BN. Similarly, we mea-
sured the models' performance as variational inference artifacts for a given set
of observed and latent variables. In this setting, the model p(x, z) was known
and the structure of the inverse BN was obtained using the faithful inversion
algorithm of Webb et al. (2018) discussed in Section 4.4. Lastly, the e�ciency
and accuracy of inverting the respective �ows were analysed empirically. We
also veri�ed empirically whether the Newton-like inversion algorithm, given by
Equation (4.11), requires fewer iterations per �ow step than the Banach �xed-
point approach and whether or not the number of required steps is dependent
on the Lipschitz constant of the �ow.

Below we provide more details regarding the datasets used during the in-
vestigation (Section 5.1.1) and the chosen model architectures and training
procedures (Section 5.1.2).

5.1.1 Datasets & Bayesian Networks

The various performance metrics of the di�erent graphical �ow models were
evaluated using both synthetic and real-world datasets that each have an as-
sociated true or hypothesized BN structure. The synthetic datasets were gen-
erated from fully speci�ed BNs. These consisted of the Arithmetic Circuit
dataset used by Weilbach et al. (2020) and Wehenkel and Louppe (2021), an
adaptation of the Tree dataset used by Wehenkel and Louppe (2021) as well
as an adaptation of a Gaussian BN, EColi, from the BN repository of Scutari
(2022). The Arithmetic Circuit and Tree BNs were designed to represent com-
plex conditional distributions with non-trivial dependency structures, whereas
the EColi BN is based on the assumed gene association network of the Es-
cherichia coli bacteria. We also considered two real-word datasets. The �rst
is related to human proteins (Sachs et al., 2005), and the second, MEHRA,
to the relationship between air pollution, weather and health (Vitolo et al.,
2018). Figure 5.1 illustrates the BN graphs associated with each of these
datasets, with a summary of their properties given in Table 5.1. Further infor-
mation on the real-world datasets and the speci�cations of the synthetic BNs
is given in Appendix A.1.1. Since variational inference requires knowledge of
the model p(x, z), which is unavailable for the real-world datasets, we did not
consider these datasets for the variational inference tasks.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 70

Table 5.1: A summary of the BN graphs associated with each dataset. D
and K denote the number of observed and latent variables in each graph,
respectively, and E denotes the number of directed edges. We also provide the
longest shortest path between any observed and latent vertex reachable from
that observation in the inverted graph, G−1. This is the minimum number of
�ow steps required for inference as discussed in Section 4.4.

BN Real/Synthetic D K E max
xi,zj∈G−1

d(xi, zj)

Arithmetic Circuit Synthetic 2 6 8 3
Tree Synthetic 1 6 8 2

Protein Real 11 0 20 N/A
EColi Synthetic 29 15 59 4

MEHRA Real 10 0 10 N/A

z0 z1

z3 z2

x0

z4

z5

x1

(a) Arithmetic Circuit

PKCPIP2 Raf

Plcγ PKA
Mek

PIP3 Jnk P38
Erk

Akt

(b) Protein

z0 z1 z2 z3

z4 z5

x0

(c) Tree

wd co pm10

t2m

blh ws

ssr

no2 so2 pm25

(d) MEHRA

Figure 5.1 (Continued on following page): BN graphs associated with the
graphical datasets. White nodes indicate latent variables, whereas shaded
nodes are observed. Since the real-world datasets are only used in density
estimation tasks, and not inference, all variables are observed. All datasets
include values for all latent variables.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 71

b1191 eutG

�xC sucA

ibpB

ygbD

yjbO

cchB

yceP tnsA

atpG

sucD
gltA�gD

dnaJ

ygcE

yhdM

yfaD

asnA

cspG
atpD

lcdA lacA

cspA

yecO

yedE

aceB

lacY

y�AhupB pspBpspA lpdA yheL
lacZ nuoM

ycgX b1963dnaG

folK

dnaK

b1583

yaeM

mopB

(e) EColi

Figure 5.1 (Continued): BN graphs associated with the graphical datasets.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 72

5.1.2 Model Architectures & Training

Architectures To provide more informative comparisons between the �ows,
we considered two model sizes for each approach on each task. Smaller models
had a maximum capacity of 5000 trainable parameters, and are denoted by a
subscript S, e.g., GRFS. Larger models had a maximum capacity of 15000 pa-
rameters, and are denoted by the subscript L. The details of the small and large
�ow architectures used for each of the datasets are given in Appendix A.1.2.
The chosen architectures were obtained by performing a grid search over �ow
depth and neural network width, while using density estimation performance
as a metric and adhering to the model size restriction. These same archi-
tectures were used for inference in each model size group, except when the
number of �ow steps was less than the longest shortest path between any ob-
served and latent vertex, as given in Table 5.1. In these cases, the number of
steps were increased to the appropriate value, while the hidden layer widths
were decreased in order to comply with the parameter capacity restrictions.

Each residual block and conditioner neural network of the GRF and GNF mod-
els had a single hidden layer, since it was found that adding more hidden layers
had very little impact on the overall performance compared to adding more
�ow steps. The integral neural network of all monotonic �ows consisted of one
hidden layer of size 100, with ELU activation functions on both the hidden and
�nal layer. The activation functions used in the conditioner neural networks
of GNF and in the main �ow transformation neural network of SCCNF are
the same as those used in the original studies of Wehenkel and Louppe (2021)
and Weilbach et al. (2020). For all the GRF models we used the proposed
LipMish activation function, which is shown to outperform LipSwish on the
graphical datasets in Appendix A.1.4.1. The hyperparameter c, constraining
the spectral norm in the graphical residual �ow, was set to 0.99 in all cases.
Setting c close to one is desirable, since it makes each �ow step less restrictive,
and thus allows better modelling performance with fewer transformation steps.

To further provide a fair comparison, we used a single masking scheme to
encode conditional independencies in all of the graphical �ow models. Since
our proposed approach, as presented in Section 4.2, overcomes the shortcom-
ings of the schemes employed by Wehenkel and Louppe (2021) and Weilbach
et al. (2020), we used this approach to encode the information from a BN
into not only the GRF, but also GNF and SCCNF. Appendix A.1.4.3 provides
additional results supporting our use of this new masking scheme.

Training All �ows were trained using the Adam optimizer (Kingma and Ba,
2015) (with the default setting for the parameters β1 = 0.9, β2 = 0.999) with an
initial learning rate of either 0.01 or 0.001 and a batch size of 100. The learning
rate was decreased by a factor of 10 each time no improvement in the loss was
observed for a set number of consecutive epochs, until a minimum learning rate

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 73

of 10−6 was reached, at which point training was terminated. This `reduce on
plateau' learning is similar to the one used by Webb et al. (2018). The initial
learning rate and duration before learning rate reduction was chosen based on
the lowest validation loss obtained over the grid {0.01, 0.001} × {10, 20, 30}.
The training, validation and test sets of the synthetic datasets consisted of
10 000, 5000 and 5000 instances, respectively. The MEHRA dataset was ran-
domly split into 4000 training, 1000 validation and 1885 test instances. For
the Protein dataset we used the same test set as used by Wehenkel and Louppe
(2021), which consists of 1672 samples. We randomly split their training set to
obtain a training and validation set of 9000 and 1000 instances, respectively.
All datasets were standardized before training.

All experiments were conducted on a machine with a 16-core Intel Core i9-
11900 (2.5 GHz), 32 GB of RAM and a single Nvidia GeForce RTX 3070
Graphics Processing Unit.

5.2 Density Estimation & Inference

Performance

Table 5.2 provides the average negative log-likelihood (− log p(x)) achieved by
each model on the test set for the di�erent datasets over �ve independent runs.1

Here, we assumed all variables to be observed, and used the BN structures il-
lustrated in Figure 5.1. We also performed inference on the synthetic datasets.
Table 5.3 provides the average ELBOs achieved by each model for these infer-
ence tasks. To further illustrate the characteristics of the di�erent �ow models,
we also determined the density estimation performance as a function of the
�ow depth for the Protein dataset (where for the �nite �ows, �ow depth refers
to the number of �ow steps, and for SCCNF, to the number of layers in its
neural network). Figure 5.2 plots the average negative log-likelihood versus
�ow depth achieved over �ve independent runs for the di�erent approaches.
Except for the �ow depth, the architectures of these models were the same as
given in Table A.1, and did not necessarily adhere to a speci�c size budget.

We found that GRFs provided competitive density estimation and inference
performance compared to GNF-M and SCCNF, with the GRF models achiev-
ing the best performance on the majority of the datasets. It is expected that
these three models should in general provide similar performance since residual
�ows, �ows with monotonic transformations and continuous �ows are all highly
�exible models that can model a wide range of distributions. GNF-A, with
its reliance on simple a�ne transformations, was however unable to provide

1For all performance metrics reported here and in Chapter 7, we report the average and
standard deviation calculated over the average performances of the model on the test set
over the di�erent runs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 74

Table 5.2: Density estimation performance of the di�erent models. Each entry
indicates the average negative log-likelihood on the test set (lower is better)
over �ve independent runs, with the standard deviation given in the subscript.
A standard deviation of less than 0.005 is indicated with ∆. Bold indicates
the best average result in each model size category.

Flow
Arithmetic
Circuit

Tree Protein EColi MEHRA

GNF-AS 1.26±0.02 9.32±∆ 6.93±0.90 40.11±0.01 12.90±0.02

GNF-MS 1.19±0.07 8.65±0.01 −3.00±0.77 40.13±0.01 11.74±0.02

SCCNFS 0.86±0.01 8.59±0.01 −4.88±0.21 40.12±0.02 11.80±0.05

GRFS 1.25±0.01 8.64±0.01 −5.26±0.01 40.06±∆ 11.66±0.02

GNF-AL 1.41±0.16 9.32±∆ 6.92±0.57 40.11±∆ 12.93±0.03

GNF-ML 1.14±0.04 8.65±0.01 −5.48±0.23 40.13±∆ 11.67±0.02

SCCNFL 0.85±∆ 8.59±∆ −5.60±0.05 40.08±0.01 11.76±0.02

GRFL 1.11±0.01 8.64±∆ −6.11±0.01 40.06±∆ 11.61±0.03

Table 5.3: Inference performance of the di�erent models. Each entry indi-
cates the average negative ELBO on the test set (lower is better) over �ve
independent runs, with the standard deviation given in the subscript. A stan-
dard deviation of less than 0.005 is indicated with ∆. Bold indicates the best
average result in each model size category.

Arithmetic
Circuit

Tree EColi

GNF-AS 4.90±0.79 2.36±0.04 34.98±∆

GNF-MS 3.96±0.19 1.72±0.01 34.99±0.01

SCCNFS 4.01±0.07 1.78±0.01 35.24±0.01

GRFS 4.19±0.19 1.74±∆ 34.96±∆

GNF-AL 4.59±0.28 2.38±0.05 34.98±∆

GNF-ML 3.92±0.08 1.70±∆ 34.98±0.01

SCCNFL 3.97±0.03 1.76±0.01 35.24±0.01

GRFL 3.71±0.14 1.71±∆ 34.96±∆

matching performance for these primary modelling tasks. The only dataset on
which GNF-A did relatively well was the EColi dataset, which is likely due to
the fact that the conditional distribution of each of the observations is a simple
Gaussian. We also found that GRFs typically required more transformation
steps than either GNF-M or SCCNF, as shown in Figure 5.2. This is due to
the Lipschitz constraint placed on each of the residual blocks, which limits the
representation capacity of any single step.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 75

Figure 5.2: Density estimation performances (average negative log-likelihood)
as a function of �ow depth on the Protein dataset. For the �nite �ows (GNF-A,
GNF-M and GRF), �ow depth refers to the number of �ow steps, whereas for
the continuous �ow (SCCNF), it is the number of hidden layers in its neural
network. GRF typically requires more �ow steps to achieve performance com-
parable to GNF-M and SCCNF. GNF-A reaches its maximum representation
capacity within only a few �ow steps and is not able to match the performance
of the other �ows.

The main reason for introducing GRFs is their potential to provide more ac-
curate inversion. Having established that this new graphical �ow provides
key task performance comparable to the best existing graphical �ows, we next
proceeded to investigate the inversion accuracy of the various approaches.

5.3 Inversion

Before evaluating the inversion performance of the graphical �ows, we �rst
con�rmed the computational advantage of using the Newton-like inversion pro-
cedure of Equation (4.11) to invert the �ow steps of a GRF, rather than the
Banach �xed-point iteration method. Although the latter ensures convergence
to the correct inverse no matter the starting point, its convergence rate is
heavily dependent on the choice of the hyperparameter c in Equation (2.29),
which controls the Lipschitz bound on the residual block. As illustrated in Fig-
ure 5.3 for the Arithmetic Circuit dataset, it required many more iterations
per block to invert a �ow with c = 0.99 using the Banach �xed-point iteration
method than with the update of Equation (4.11). In fact, fewer iterations were
required with c = 0.99 for Equation (4.11) than with c = 0.7 for the Banach
�xed-point method. Setting c close to one is desirable, since it makes each
�ow step less restrictive, and thus allows better modelling performance with
fewer transformation steps. Similar behaviour as depicted in Figure 5.3, was
observed for the other datasets as well (see Appendix A.1.4.4).

Having established the preference for inversion of GRFs with the Newton-like
inversion procedure of Equation (4.11), we next explored the inversion stability

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 76

Figure 5.3: Using the Newton-like inversion procedure of Equation (4.11) re-
quired far fewer iterations per block to accurately invert a GRF than using the
Banach �xed-point approach. The plot shows the average reconstruction error
(log-scale) for 100 samples from the Arithmetic Circuit test set. Note that all
the plots for the Newton-like inversion procedure, corresponding to di�erent
values of c, overlap.

and e�ciency of GRFs compared to alternative graphical models with similar
task performance, namely GNF-M and SCCNF. Note that while we could
expect GNF-As to exhibit fast and accurate inversion, their relatively poor task
performance makes them irrelevant for our purposes. We therefore proceeded
by inverting the two �nite �ows, GNF-M and GRF, using the Newton-like
inversion procedure given by Algorithm 3. We considered values for the step-
size α in the set {0.1× t | t = 1, . . . , 19} and the inversion process was deemed
to have converged when a reconstruction error of less than 10−4 was achieved.
To better illustrate potential inversion instability, we performed the inversion
process above on a per-data-point basis2 for 100 test data points from each
dataset. For each data point, we noted the value of α that required the fewest
iterations, N , for convergence. Table 5.4 summarizes these results, where we
have recorded the number of data points for which the desired reconstruction
error of 10−4 was achieved, within N ≤ 50 iterations in the case of GNF-M and
GRF. We also measured the time it took to invert the �ow for the entire batch
using the settings that allowed the most data points to achieve the desired
reconstruction error. In Table 5.5 we compare these timings to the inversion
time using the Banach �xed-point approach for the GRFs on the same 100
test samples. Figures 5.4 to 5.8 show the average reconstruction error over the
100 test samples (inverted as a batch), for di�erent values of α, when varying
the number of iterations used at each step while inverting the �nite �ows.
Since we do not have direct access to the Jacobian for the transformation
applied by SCCNF, we did not use the above approach for the continuous
�ows. Instead, we inverted SCCNF by simply executing the integration in the
opposite direction. Figures 5.4 to 5.8 are therefore not applicable for SCCNF.

2In practice one would typically invert the sample as a single batch.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 77

Table 5.4: Comparison of the inversion performance for the di�erent �ow mod-
els on 100 test data points from each of the datasets. Bold indicates the best
results in each column. N and α are not applicable for SCCNF. Ranges indi-
cate di�erent optimal settings for N and α for di�erent data points. Inversion
time is measured for the smallest N ≤ 50 that allowed the most data points
in the batch to have a reconstruction error of less than 10−4, and is the time
taken to invert the entire batch.

BN Flow
Converged within

50 steps
N α

Inversion
time (ms)

Arithmetic
circuit

GNF-MS 99 4�42 0.3�1.1 226.17
SCCNFS 82 � � 294.63
GRFS 100 4�5 1.0 50.15

GNF-ML 100 5�12 1.0 141.83
SCCNFL 97 � � 540.38
GRFL 100 3�4 1.0 91.88

Tree

GNF-MS 100 4�9 0.9�1.0 53.67
SCCNFS 98 � � 140.51
GRFS 100 3�5 1.0 49.73

GNF-ML 98 4�47 0.4�1.0 488.51
SCCNFL 94 � � 392.97
GRFL 100 4�6 0.9�1.0 122.27

Protein

GNF-MS 97 9�50 0.5�1.4 145.88
SCCNFS 93 � � 186.08
GRFS 100 5�7 0.9�1.0 71.90

GNF-ML 100 5�32 0.8�1.2 268.28
SCCNFL 81 � � 890.38
GRFL 100 4�8 0.9�1.0 265.23

EColi

GNF-MS 100 7�45 0.4�1.0 182.40
SCCNFS 23 � � 121.66
GRFS 100 5�6 1.0 57.91

GNF-ML 100 6�8 1.0 98.90
SCCNFL 6 � � 516.53
GRFL 100 4�5 1.0 101.90

MEHRA

GNF-MS 100 3�11 0.9�1.0 32.91
SCCNFS 100 � � 94.27
GRFS 100 3�4 1.0 48.15

GNF-ML 100 3�7 0.8�1.1 62.81
SCCNFL 99 � � 190.92
GRFL 100 3�4 1.0 89.69

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 78

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL
Figure 5.4: Reconstruction error achieved when inverting GNF-M and GRF
on 100 test samples from the Arithmetic Circuit dataset. The reconstruction
error is plotted as a function of the number of iterations used to invert each
�ow step, for di�erent values of the step-size, α.

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL
Figure 5.5: Reconstruction error achieved when inverting GNF-M and GRF
on 100 test samples from the Tree dataset. The reconstruction error is plotted
as a function of the number of iterations used to invert each �ow step, for
di�erent values of the step-size, α.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 79

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL
Figure 5.6: Reconstruction error achieved when inverting GNF-M and GRF on
100 test samples from the Protein dataset. The reconstruction error is plotted
as a function of the number of iterations used to invert each �ow step, for
di�erent values of the step-size, α.

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL
Figure 5.7: Reconstruction error achieved when inverting GNF-M and GRF on
100 test samples from the EColi dataset. The reconstruction error is plotted
as a function of the number of iterations used to invert each �ow step, for
di�erent values of the step-size, α.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 80

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL
Figure 5.8: Reconstruction error achieved when inverting GNF-M and GRF
on 100 test samples from the MEHRA dataset. The reconstruction error is
plotted as a function of the number of iterations used to invert each �ow step,
for di�erent values of the step-size, α.

Table 5.5: Inversion time of GRF for the Banach and the Newton-like �xed-
point inversion schemes on a batch of 100 test samples. In each case, the con-
vergence criterion is a reconstruction error of less than 10−4. For the Newton-
like inversion scheme, α = 1 in all cases.

BN Flow
Inversion time (ms)

Banach Newton

Arithmetic
circuit

GRFS 595.56 50.15
GRFL 958.41 91.88

Tree
GRFS 125.21 49.73
GRFL 573.10 122.27

Protein
GRFS 598.97 71.90
GRFL 533.79 265.23

EColi
GRFS 61.61 57.91
GRFL 120.30 101.90

MEHRA
GRFS 148.26 48.15
GRFL 359.15 89.69

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 81

One of the main paradigms for enforcing global stability for �ow inversion
is using Lipschitz-constrained �ow transformations (Behrmann et al., 2021).
In the case of GRFs, this stability is automatically achieved as a byproduct
of the �ow design, and based on the results in Table 5.4, we see that GRFs
showed excellent inversion accuracy when compared to the other models with
similar task performance. Even though GRFs typically required more �ow
steps than GNF-M or SCCNF, each step was relatively fast to invert and the
GRF models had the fastest inversion times on the majority of the datasets
when using the Newton-like �xed-point approach. As shown in Table 5.5,
this Newton-like inversion scheme also provided much faster inversions than
the Banach �xed-point approach. Note that the hyperparameter c = 0.99
was used for all models, which was shown in Figure 5.3 to slow down the
Banach approach. Even though the Newton-like approach, unlike the Banach
approach, does not guarantee convergence to the correct inverse, we did not
�nd this to be an issue in our experiments and the Newton-like approach
provided accurate inversion of GRFs in all cases. The Newton-like �xed-point
approach is therefore a promising alternative for inverting GRFs, instead of
the more traditional Banach inversion scheme.

GNFs with monotonic normalizers were not able to match the inversion ac-
curacy of GRFs. These �ows can, depending on the architecture and learned
weights, have either potentially very large Lipschitz bounds, or have no global
Lipschitz bounds at all�see Section 4.7. This helps to explain the poor inver-
sion results observed for GNF-M on some of the datasets. For these models,
more care needs to be taken when choosing a value for α. Table 5.4 shows
that α typically had to be set to a very small value to try to obtain accurate
inverses for all data instances, which slows down inversion. Taking too large
a step can result in large inversion errors as clearly seen in Figures 5.4a, 5.5b,
5.6a and 5.7a. Only on the MEHRA dataset did GNF-M provide good inver-
sion performance. In contrast, the GRF achieved good inversion performance
on all datasets by simply setting α = 1, as can be seen in the �nal two plots
of Figures 5.4 to 5.8. GNF-M can also be inverted using bisection search as
proposed in the original work by Wehenkel and Louppe (2021). However, bi-
section search requires choosing two appropriate starting values to guarantee
convergence within a reasonable amount of steps, which cannot easily be auto-
mated. This approach also tends to be slower than the proposed Newton-like
inversion scheme.

While SCCNFs have global Lipschitz bounds, these are not controlled during
training and numerical instability can thus occur. Although we did not observe
any exploding inverses, running the integration in the opposite direction in
order to invert SCCNF, was not able to provide the speci�ed reconstruction
accuracy on many of the test instances. This is perhaps due to the black-box
ODE solver only providing an approximation to the true inverse transform.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 82

Furthermore, although SCCNF only requires a single step to perform inversion,
this step is relatively slow compared to the �nite �ows.

If a �ow, like GNF-M for example, has become numerically non-invertible on
certain data points, then the computed densities of these points are no longer
reliable, because the change-of-variables formula relies on accurate inversion.
Behrmann et al. (2021) further showed that �ows that do not impose some sort
of constraint on the Lipschitz constant of their transformation tend to have
large reconstruction errors on out-of-distribution data, i.e. data instances lying
outside the distribution of the data points the �ow was trained on. For real-
world datasets, where it is expected that one would come across outlier data
points, this could be an issue. This idea also extends to sampling from a �ow
trained in the normalizing direction. For complex datasets, it could be that
the region in the latent space that the �ow has learned to map observations
to, does not completely match the true base distribution used during training.
That is, there might be regions within the base distribution that a forward
pass through the �ow does not map any data samples to. This is similar to
the prior-hole problem discussed in the context of VAEs in Section 3.2. When
generating new samples using this �ow, one �rst samples from the base distri-
bution and it could then be likely that some of these samples lie within these
regions not utilized by the �ow. When inverting the �ow on these samples, it
is tantamount to presenting the �ow with out-of-distribution data. The above
issue emphasizes the need for �ows that are expressive enough to learn a com-
plex mapping that fully utilizes the base distribution, while remaining stably
invertible in practice.

5.4 Conclusion

This chapter evaluated the proposed GRF model, which incorporates graphi-
cal dependency information from a BN into a residual �ow, by comparing it
to existing graphical �ows on synthetic and real-world datasets. Section 5.2
evaluated the performance of various graphical �ows on two key tasks, namely
density estimation and variational inference. It was found that GRFs provide
competitive performance for both density estimation and variational infer-
ence, compared to GNF-M and SCCNF. Finite graphical �ows with simple
a�ne transformations were unable to match the performance of the above
three models for these primary modelling tasks.

The main reason for introducing GRFs is their potential to provide more accu-
rate inversion. Having established that these new graphical �ows provide key
task performance comparable to the best existing graphical �ows, we proceeded
in Section 5.3 to investigate the inversion accuracy of the various approaches.
It was found that the global Lipschitz bounds of the GRF residual blocks af-
ford it a greater degree of inversion stability and accuracy than alternative

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EMPIRICAL INVESTIGATION I: GRF 83

�ows, and that GRFs typically exhibit faster inversion than alternative �ow
models with comparable modelling performance.

In summary, GRFs are on par with existing graphical �ows in terms of mod-
elling ability, and additionally guarantee stable inversion in practice due to
the strict Lipschitz bounds placed on each of the �ow steps. These �ows are
therefore a better choice than GNF-M or SCCNF when a single �ow will be
used in both transformation directions. Next, we incorporate graphical de-
pendency information into an alternative type of deep generative model�the
variational autoencoder�and speci�cally consider how to do this using the
proposed GRF.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

SIReN-VAE: Structured Invertible

Residual Network VAE

VAEs provide a natural bridge between graphical models and deep neural net-
works. The generative model of the vanilla VAE introduced in Section 2.4.1
can be viewed as a BN (skeleton) due to the very speci�c independence assump-
tions made in the model: the generative model is of the form p(x|z)p(z) where
the prior factorizes as

∏
i p(zi), see Figure 6.1a. In the case where the latent

variables have a hierarchical structure (introduced in Section 3.2.1), the BN in-
stead corresponds to the factorization p(x|z0)p(z0|z1) . . . p(zL−1|zL)p(zL), see
Figure 6.1c. The inference networks of the above VAE models similarly corre-
spond to speci�c BNs, depending on the dependencies induced by the chosen
variational family. Figure 6.1 provides diagrams of the BN graphs associated
with a vanilla and hierarchical VAE's generative and inference networks. Since
the conditional factors can be speci�ed using deep neural networks, VAEs pro-
vide an intuitive way of combining BN structures with the modelling capacity
of deep learning.

Most prior work has restricted its attention to the above generic BN structures
in the generative model of a VAE. Furthermore, the dependencies induced by

(a) Vanilla VAE
generative model

(b) Vanilla VAE
inference network

(c) Hierarchical VAE
generative model

(d) Hierarchical VAE
inference network

Figure 6.1: BN graphs encoded by the generative model and inference network
of di�erent VAE approaches. The latent variables in the (a) prior and (b)
variational posterior of a vanilla VAE are completely independent. Hierarchical
VAEs (c) and (d) have layers of latent variables, in this case two.

84

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 85

the inference network are typically only based on a heuristic inverse of the
dependencies in the generative model. This limits the ability of the variational
distribution to learn an approximation close to the true posterior (Webb et al.,
2018). Here, we consider how to specify an arbitrary BN dependency structure
over the latent variables and between the latent and observed variables of the
VAE. We speci�cally consider using graphical residual �ows (GRFs) in both the
prior and posterior of a VAE to achieve this objective, since it has been shown
in Chapter 5 that they provide good modelling capability while maintaining
stable and accurate inversion performance. These �ows allow the user to inject
domain knowledge or prior beliefs, as speci�ed by a BN, into a VAE model with
minimal e�ort. GRFs (as with other �ows) further increase the representation
capacity of the variational posterior of a VAE, which is considered by many to
be an advantageous extension of the standard VAE model�see Section 3.2.1.
Using GRFs and the faithful inversion scheme of Webb et al. (2018), we are
also able to encode an informed dependency structure in the inference network
based on the dependencies of the generative model. The resulting structured
invertible residual network VAE (SIReN-VAE) is presented in Section 6.1.
Section 6.2 provides additional details on various approaches we considered
for tackling posterior collapse. The discussion in this chapter is based in part
on the work presented in Mouton and Kroon (2022b).

6.1 Structuring VAEs with Graphical Residual

Flows

If we wish to construct a VAE, and have prior beliefs about the data generating
process, then it seems bene�cial to incorporate this knowledge in the VAE. In
what follows, we assume that we have access to a BN specifying a suggested
dependency structure over D observed and K latent variables. Our goal is to
suitably incorporate this dependency information into the VAE's generative
and inference networks. Using θ for the generative network parameters, this
means that we ideally want the likelihood pθ(x|z) and prior pθ(z) to factorize
according to the BN's conditional independencies. However, Webb et al. (2018)
also showed the value of encoding the generative model's true inverted depen-
dency structure as far as possible in the VAE's inference network. That is,
the structure of the inference network should respect knowledge about p(z|x)
which can be deduced from the factorization of p(x, z). Approximating the
posterior distribution p(z|x) in such a way requires inverting the BN (so that
edges go from x to z) while taking into account the independencies encoded by
the model (as discussed in Section 4.4). We use GRFs to incorporate these de-
sired structures into the generative and inference network of a VAE, yielding
the structured invertible residual network (SIReN) VAE. The modi�cations
applied to a vanilla VAE to obtain the SIReN-VAE are discussed below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 86

6.1.1 Modi�cations to the Generative Phase

SIReN-VAE encodes a given BN's prior latent structure by replacing the stan-
dard normal prior of the vanilla VAE with a (normalizing) GRF. Similar to
the standard VAE, the likelihood has an appropriate form depending on the
data, e.g. for continuous observations, it could be a fully-factorized Gaussian
distribution, while for binary data each observed component could be speci�ed
by a Bernoulli distribution. The parameters of the likelihood are output by a
neural network denoted by DecoderNN that takes a latent vector z as input.
To encode the conditional independencies between the latent and observed
variables in the BN, the decoder neural network is also masked according to
the scheme discussed for GRFs in Section 4.2. In summary, for continuous
observations with a Gaussian distribution:

pθ(z) = p0(GRFn(z; θ)) |det(JGRFn(z; θ))| (6.1)

µ, logσ = DecoderNN(z; θ) (6.2)

pθ(x|z) = N (µ, diag(σ2)) . (6.3)

The subscript n in line (6.1) above indicates that the �ow is in the normalizing
direction, and we set p0 to N (0, IK). An illustration of this generative model
is given in the right panel of Figure 6.2.

In order to generate new instances using the above model, one has to invert the
GRFn of the prior, as illustrated in Figure 6.3. This makes sampling slower
than with regular VAEs. A key bene�t of GRFs over other graphical �ows,
however, is that they are designed to provide stable inversion, as shown in the
previous chapter. The inversion time per �ow step of a GRF is also relatively
low compared to other graphical �ows with similar modelling capability. This
motivates our use of GRFs instead of other existing graphical �ows.

6.1.2 Modi�cations to the Inference Phase

For constructing the inference network, the BN used for the generative phase
is inverted using the minimally faithful inversion algorithm proposed by Webb
et al. (2018). Similar to the prior, the inference network, with parameters φ, is
de�ned as a GRF conditioned on x, which encodes this inverse BN structure:

z = GRFg(ε;x, φ) where ε ∼ p0 (6.4)

qφ(z|x) = p0(ε)
∣∣det(JGRFg(ε;φ))

∣∣−1
. (6.5)

Here, the subscript g denotes that this �ow is in the generative direction (for a
more in depth discussion on conditional GRFs, refer back to Section 4.4). An
illustration of this inference network is given in the left panel of Figure 6.2.
Using GRFs, SIReN-VAE is thus able to encode a wide range of di�erent
dependency structures in a VAE as shown in Figure 6.4.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 87

Figure 6.2: SIReN-VAE encodes the BN's graphical structure into the decoder
(right) via masking of the normalizing GRF (GRFn) and decoder neural net-
work (DecoderNN) weights. The inference network (left) similarly encodes the
inverted BN structure in its generating GRF (GRFg).

Figure 6.3: Sampling from
SIReN-VAE requires inverting
GRFn in the prior for a sam-
ple ε from the �ow's base dis-
tribution.

(a) (b)

(c) (d)

Figure 6.4: The generative model of SIReN-
VAE can encode a range of BN graphs,
from (a) fully-connected to (c) sparser de-
pendency structures. The inference network
encodes a minimal and faithful inverse of
this dependency structure, as shown in (b)
and (d), respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 88

6.2 Posterior Collapse in a Structured Latent

Space

As discussed in Section 2.4.4, posterior collapse is one of the most common
challenges encountered when �tting VAEs. Burda et al. (2016) found that
latent variables in the higher layers of a hierarchical VAE are more prone to
collapse than those directly connected to the observed variables. This sug-
gests that the structure of dependencies in the latent distribution in�uences
the likelihood of various latent variables becoming inactive during training.
Since SIReN-VAE can encode arbitrary BN structures (including a hierarchi-
cal latent distribution as a special case) we expect similar challenges with
posterior collapse. Our desire for the learned latent distribution to respect
the provided BN structure and utilize all the latent dimensions, especially for
interpretability, further motivates trying to prevent posterior collapse. Below
we present, in more detail than in Section 2.4.4, several approaches from the
literature that we investigate for this purpose.

Warm-up

The regularizing KL-divergence term (also known as the variational regular-
ization term) present in the prior-contrastive form of the ELBO objective,

LELBO(x) = Ez∼q[log pθ(x|z)]−KL(qφ(z|x)|| p(z)) , (6.6)

plays a role in posterior collapse, since it encourages the posterior to be similar
to the uninformative prior (Razavi et al., 2019; Bowman et al., 2016). As such,
one of the �rst and most simple remedies proposed is to add a weight to the
KL-term that is then shifted from 0 to 1 over an initial number of epochs during
training (Burda et al., 2016; Bowman et al., 2016; Huang et al., 2018b). This
strategy, known as warm-up (WU), helps to diminish the initial e�ect of the
KL-term and thus helps prevent posterior collapse. This new objective is given
by:

LWU
t (x) = Ez∼q[log pθ(x|z)]− βt ·KL(qφ(z|x)|| p(z)) (6.7)

= Ez∼q [log pθ(x|z) + βt · (log p(z)− log qφ(z|x))] , (6.8)

where βt ∈ R is increased linearly from 0 to 1 during the �rst NWU epochs, i.e.

βt = min

(
1,

t

NWU

)
. (6.9)

The KL-divergence term therefore ultimately has the same e�ect as in the
original objective, only its initial e�ect is reduced to allow training to �nd a
location with good reconstruction loss.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 89

Importance-weighted Objective

The looseness of the ELBO objective has also been identi�ed as a potential
source of posterior collapse as it can allow the parameters of the model to settle
away from their theoretically optimal setting (Melis et al., 2022). A remedy for
this concern is to use an objective with a tighter bound, such as the importance
weighted objective of the importance weighted autoencoder (IWAE) (Burda
et al., 2016). Let wi = pθ(x, zi)/qφ(zi|x) for zi ∼ q(z|x) be the importance
weights, then

LIWK (x) = Ez1:K∼qφ(·|x)

[
log

1

K

K∑
i=1

wi

]
(6.10)

= − logK + Ez1:K∼qφ(·|x)

log

(
K∑
i=1

exp (logwi)

)
︸ ︷︷ ︸

log-sum-exp

 , (6.11)

where the second term in the expectation can be stably computed using the
log-sum-exponent trick. Burda et al. (2016) showed that LIWK is at least as
tight as LELBO and that it converges to the marginal likelihood pθ(x) (under
mild conditions) as K → ∞. This objective is equivalent to the standard
ELBO for K = 1:

LIW1 (x) = LELBO(x) = Ez∼qφ(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
. (6.12)

Doubly-reparameterized Gradient (DReG) Estimator

Another factor that can contribute to posterior collapse is the adverse ef-
fect of high-variance gradient estimators on optimization (Melis et al., 2022).
If qφ is reparameterizable, i.e. z = g(ε;φ), where g is some deterministic and
di�erentiable function and ε ∼ pε does not depend on θ or φ, then the repa-
rameterization trick (Kingma and Welling, 2014; Rezende et al., 2014)�see
Section 2.4.2�allows us to rewrite the expectation in line (6.10) above, with
respect to ε1:K . This allows one to exchange the gradient and expectation
operators so that the standard gradient of LIWK with respect to the inference

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 90

network parameters is given by:

∇φLIWK (x) = ∇φEz1:K∼qφ(·|x)

[
log

1

K

K∑
i=1

pθ(x, zi)

qφ(zi|x)

]

= ∇φEε1:K∼pε

[
log

1

K

K∑
i=1

pθ(x, g(εi;φ))

qφ(g(εi;φ)|x)

]
(6.13)

= Eε1:K∼pε

[
∇φ log

1

K

K∑
i=1

wi

]
(6.14)

= Eε1:K∼pε

[
K∑
i=1

1∑
j wj
∇φwi

]
(6.15)

= Eε1:K∼pε

[
K∑
i=1

wi∑
j wj
∇φ logwi

]
, (6.16)

where wi = pθ(x, zi)/qφ(zi|x) are the importance weights, and we applied the
log-derivative (or score function) trick in line (6.16): ∇φwi = wi∇φ logwi.

To see why this gradient has high variance when estimated with Monte Carlo
samples, Roeder et al. (2017) expand the total derivative of logwi with respect
to the variational parameters, denoted by ∇TD

φ logwi, into two terms:

∇TD
φ logwi = ∇zi logwi∇φ zi +∇φ logwi (6.17)

= ∇zi logwi∇φ zi +∇φ log pθ(zi,x)︸ ︷︷ ︸
=0

−∇φ log qφ(zi|x) (6.18)

= ∇zi logwi∇φ zi −∇φ log qφ(zi|x) , (6.19)

where ∇zi logwi∇φ zi is known as the path derivative1, and ∇φ log qφ(zi|x) as
the score function component. Note that the path derivative measures the
dependence of the total derivative on φ only through the sample zi = g(εi;φ),
while the score function measures the dependence on logwi directly and con-
siders zi as constant. Although increasing K in LIWK provides tighter evidence
bounds, Rainforth et al. (2018) showed that the gradient estimator (6.16) for
the inference network gradually becomes noisier as K increases. Furthermore,
Roeder et al. (2017) found that the score function can contribute signi�cant
variance to the gradient estimate since it will not be zero even if qφ(zi|x)
exactly matches the true posterior. As such, Roeder et al. (2017) suggest
dropping ∇φ log qφ(zi|x) when K > 1. Tucker et al. (2018), however, argue
that this results in a biased estimator and show how one can instead esti-
mate∇φ log qφ(zi|x) using a second application of the reparameterization trick,

1Note that we have abused notation here to simplify the exposition. The path derivative
is a vector-matrix multiplication and is more correctly given by (∇zi logwi)

TJg(φ).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 91

which results in an unbiased and lower-variance gradient estimator called the
doubly-reparameterized gradient (DReG) estimator. This DReG estimator is
given by:

∇φ Ez1:K∼qφ(·|x)

[
log

1

K

K∑
i=1

wi

]
= Eε1:K∼pε

 K∑
i=1

(
wi∑
j wj

)2

∇zi logwi∇φ zi

 .
(6.20)

See Appendix B.2.2 for the full derivation.

In practice, one typically makes use of automatic di�erentiation libraries to
e�ciently compute the required gradients. However, naïvely applying auto-
matic di�erentiation will not result in the gradients being computed according
to the right-hand side of Equation 6.20. One therefore has to take special
care that the way in which the loss is calculated, forces an automatic di�er-
entiation library to compute the gradients in the desired manner. Speci�cally,
the DReG estimator can be implemented implicitly by ensuring that the com-
putational path from φ to logwi passes strictly through zi. This forces any
automatic di�erentiation library to apply the chain rule: ∇zi logwi∇φ zi as in
Equation (6.20).

Recall that logwi = log pθ(x, zi)−log qφ(zi|x). For generative GRFs, log qφ(zi|x)
is typically calculated as

log qφ(zi|x) = log p0(εi)− log
∣∣det

(
JGNFg(εi;x, φ)

)∣∣ , (6.21)

where εi ∼ p0 is a sample from the base distribution. Note that this expression
does not include the sampled zi and one can therefore not obtain the desired
gradient ∇zi logwi∇φ zi using automatic di�erentiation as is. In order to im-
plement the DReG estimator, one has to invert the �ow such that log qφ(zi|x)
is given by

log qφ(zi|x) = log p0(GNF−1
g (zi;x, φ)) + log

∣∣∣det
(
JGNF−1

g
(zi;x, φ)

)∣∣∣ . (6.22)

Now, both log pθ(x, zi) and log qφ(zi|x) are computed using the sample zi.
However, unlike for log pθ(x, zi), the calculation of log qφ(zi|x) involves the
parameters φ not only through zi, but also directly through GNF−1

g (·;x, φ).
In order to force gradient information to pass only through zi, we employ a
similar strategy as Roeder et al. (2017) by treating φ in Equation (6.22) as
constant. This will then force gradient information about φ to pass strictly
through z, as required. Automatic di�erentiation libraries have functions that
can be used to stop the �ow of gradient information and cause a variable to be
treated as constant during backpropagation. For example, in PyTorch (Paszke
et al., 2019) one can call the detach() function on a given tensor. Algorithm 4
provides the pseudocode for constructing the objective as described above, so

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIREN-VAE 92

Algorithm 4 DReG Estimation.

Require: Variational parameters φ, data x
Return: Unbiased low-variance estimate of ∇φLIWK (x)
1: ε1, . . . , εK ∼ p0

2:

3: def w(ε, φ) :

4: z← GRFg(ε;x, φ)
5: φ′ ← stop_grad(φ) . Treat φ as constant

6: q ← p0(GNF−1
g (z;x, φ′))

∣∣∣det
(
JGNF−1

g
(z;x, φ′)

)∣∣∣
7: return

p(x,z;θ)
q

8:

9: return ∇φ

∑K
i=1

(
stop_grad

(
w(εi,φ)∑
j w(εj ,φ)

))2

logw(εi, φ)

that the gradients are computed according to Equation (6.20). Note that this
also requires the term (wi/

∑
j wj)

2 to be treated as constant.

When using DReG with SIReN-VAE, it is crucial to use a �ow that is invertible
in practice .2 A drawback of this approach is therefore that each inversion step
requires a number of iterations to converge when using the Newton-like inver-
sion procedure discussed in Section 4.6. This inversion slows down training
and also results in larger memory consumption since the computation graphs
of the inversion iterations of each �ow step need to be stored to facilitate
backpropagation.

6.3 Conclusion

In this chapter we have proposed a new graphical VAE that employs GRFs and
masking of the decoder neural network to encode an arbitrary BN structure
between the latent variables and between the latent and observed variables of
the model. Since we desire for the learned latent distribution of SIReN-VAE
to respect the provided BN structure, we are especially interest in prevent-
ing posterior collapse. Since the three mitigation techniques discussed in this
chapter, namely warm-up, importance weighted objectives and lower-variance
gradient estimates, address some of the main previously identi�ed causes of
posterior collapse, we hope that they will aid SIReN-VAE in learning mean-
ingful latent representations. We continue in the next chapter by evaluating
SIReN-VAE on a range of datasets. We speci�cally examine the occurrence of
inactive latent variables and assess the e�ectiveness of the above remedies.

2This is in line with work done by Vaitl et al. (2022), who show how to use the path
derivative for any NF that is invertible in practice. This work was published after the work
reported on in this thesis was completed.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Empirical Investigation II:

Structured Invertible Residual

Network VAE

This chapter presents an empirical investigation into the performance of the
proposed SIReN-VAE model, in order to shed light on its strengths and short-
comings. More speci�cally, the goals of this chapter were as follows:

1. To quantify the e�ect of using GRFs as the latent prior and variational
approximate posterior in a VAE.

2. To evaluate the modelling performance of SIReN-VAE when encoding a
dataset's associated BN graph, as compared to the standard VAE and a
SIReN-VAE where no independence assumptions are made.

3. To explore how much of an issue posterior collapse is when encoding
various dependency structures, and to test the e�ectiveness of the various
mitigation techniques discussed in the previous chapter.

4. To investigate the extent to which the potential hypothesized bene�ts of
SIReN-VAE are realized, speci�cally:

a) to test whether encoding a dataset's associated dependency struc-
ture with SIReN-VAE results in models with a higher degree of
interpretability, and

b) to assess whether SIReN-VAE provides better generalization per-
formance in data-sparse settings.

Section 7.1 outlines the methodology employed to achieve these goals. This
includes an overview of the datasets used, as well as the training setup and
model architectures. Sections 7.2 to 7.6 provide and critically discuss the
experimental results in line with each of the goals above.

93

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 94

7.1 Methodology

As an initial investigation, we veri�ed whether the more complex latent dis-
tributions enabled by our choice of using a GRF prior and posterior in the
SIReN-VAE model, results in better modelling performance than the vanilla
VAE architecture. For the purpose of validating our basic model architecture,
independent of any assumed BN dependency structure, we did not assume
any conditional independence in this setting, and simply used our graphical
�ows to encode a fully-connected BN structure. We measured the e�ect of
the GRFs by �rst replacing only the inference network by a GRF, and there-
after also adding a GRF to the latent prior of the VAE. More information is
provided in Section 7.1.1 about the datasets used in this investigation.

Next, we investigated the bene�ts of incorporating the conditional indepen-
dencies from a BN into a SIReN-VAE using GRFs. We began by comparing
SIReN-VAE models with various encoded dependency structures on a number
of synthetic and real-world datasets, where the domain problem represented by
each of these datasets has an associated true or hypothesized BN structure. We
considered fully-connected dependency structures (denoted by SIReN-VAEFC),
structures equal to the datasets' associated BN graphs (SIReN-VAETrue), as
well as random dependency structures (SIReN-VAERand). Since we expected
posterior collapse to be a potential problem, we continued the study by testing
for inactive units in the trained models. Based on these results, we further in-
vestigated whether or not the position and neighbourhood of a latent variable
within the BN plays a role in whether the corresponding SIReN-VAE latent
variable collapses. We continued by evaluating the e�ectiveness of various com-
binations of warm-up, importance-weighted objectives and DReG estimates in
combatting posterior collapse. Section 7.1.1 provides more information about
the graphical datasets used during the above investigations, with Section 7.1.2
detailing the chosen model architectures and training procedures.

Finally, we explored the extent to which the additional hypothesized bene�ts
of using the proposed SIReN-VAE approach for datasets with an associated
BN dependency structure, are realized. We hypothesized that incorporating
the conditional independencies speci�ed by a BN leads to improved perfor-
mance in data-sparse settings. To test this, we compared the generalization
performance of SIReN-VAETrue to SIReN-VAEFC and standard VAEs, when
training these models on only a small subset of the original training set. An-
other anticipated bene�t is the potential of a more interpretable latent space.
As discussed in Section 2.4.5, a central aspect of interpretability in deep latent
variable models is understanding the relationships between (latent and ob-
served) variables. Considering the synthetic datasets, where we know exactly
how the true latent variables a�ect each other and the observations, the ideal
would be if the model is able to learn the true prior conditional distributions
that gave rise to the observations. Doing so from only the given conditional

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 95

independence structure is a challenging problem, as many di�erent con�gura-
tions of the conditional latent distributions might lead to the same observed
data. For real-world datasets, where we typically only have access to a hypo-
thetical BN, this is an even more di�cult task. The aim is therefore not to
learn the true underlying distributions, but rather, given the additional condi-
tional independence structure, to explore whether the �tted individual latent
distributions of SIReN-VAETrue play a similar role within the BN as their true
counterparts. Since we have access to the true latent variables of the synthetic
datasets, we investigated this by computing the mutual information (MI) be-
tween samples drawn from the inferred latent distribution of a SIReN-VAETrue

model for a given set of observations and the true latent variables that gave
rise to those observations. MI is a more general measure of the dependence
between variables than linear correlation, but is generally intractable to com-
pute exactly. We therefore used a neural-network-based MI estimator known
as MINE (Belghazi et al., 2018), which was described in Section 2.4.5.1.

7.1.1 Datasets & Bayesian Networks

For the initial study, where we investigated the e�ect of using GRFs on the
complexity of the learned latent space of a VAE, we considered two datasets:
OneHot (Mescheder et al., 2017; Takahashi et al., 2019) and MNIST (LeCun
et al., 2014; Deng, 2012). OneHot's training and test sets consisted of �ve-
dimensional, one-hot encoded vectors: [1, 0, 0, 0, 0]T , [0, 1, 0, 0, 0]T , [0, 0, 1, 0, 0]T ,
[0, 0, 0, 1, 0]T and [0, 0, 0, 0, 1]T . MNIST is an image dataset of greyscale hand-
written digits in the range 0 to 9 where digits are size-normalized and centred
in �xed-sized images of size 28 × 28. The training and test sets consisted of
50 000 and 10 000 instances, respectively. The dataset was binarized by �rst
standardizing all images and then setting each pixel to 0 or 1 depending on
whether the normalized value is negative or positive, respectively.

As in Chapter 5, we also evaluated our SIReN-VAE model by making use of
various synthetic and real-world datasets that each have an associated true or
hypothesised BN graph. These datasets will be referred to as the graphical
datasets. The synthetic graphical datasets were generated from fully speci�ed
BNs. For each BN, all leaf nodes were considered observed, and the rest were
taken to be latent. Since VAEs are typically used to encode information into
a lower-dimensional representation, we only considered the datasets from the
GRF investigation for which there were fewer latent than observed variables.
We therefore again used the EColi and MEHRA datasets presented in Chap-
ter 5. We also used an altered version of the Arithmetic Circuit dataset, where
the number of observed variables had been increased from 2 to 10 (see Ap-
pendix A.2.1 for more detail). Lastly, we introduced a second, larger Gaussian
BN, Arth, which, like EColi, is also from the BN repository of Scutari (2022).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 96

Based on the current methodology of using neural networks and standard gra-
dient descent optimization, we were limited to datasets of continuous variables.
Figure 7.1 illustrates the BN graphs associated with these datasets. Table 7.1
provides a summary of the properties of the BNs, with EColi and MEHRA
included for completeness. Further information on the speci�cations of the
synthetic BNs is given in Appendix A.2.1.

Table 7.1: A summary of key properties of the BN graphs associated with each
dataset. D and K denote the number of observed and latent variables in each
graph, respectively, and E is the number of directed edges. We also provide the
longest shortest path between any observed and latent vertex reachable from
that observation in the inverted graph, G−1. This is the minimum number of
�ow steps needed for inference as discussed in Section 4.4.

BN Real/Synthetic D K E max
xi,zj∈G−1

d(xi, zj)

Arithmetic Circuit 2 Synthetic 10 5 15 3
EColi Synthetic 29 15 59 4
Arth Synthetic 67 40 150 5

MEHRA Real 7 3 10 2

7.1.2 Model Architecture & Training

Architectures We began the empirical investigation in Section 7.2 by ex-
amining the e�ect on the learned latent distributions when using GRFs for the
prior and posterior of a VAE. We considered a VAE where only the inference
network of a vanilla VAE was replaced by a (generative) GRF, and the prior
remained a standard Gaussian distribution. We denote this by VAE+GRFg.
We also considered a VAE where both the prior and posterior latent distri-
butions were enhanced with GRFs, denoted by VAE+GRFg+GRFn. This is
the SIReN-VAE model, although we did not assume any speci�c conditional
independencies at this point. Details on the exact model architectures used
for each of the datasets in this setting is given in Appendix A.2.2.1.

For the rest of the investigation, we considered incorporating various de-
pendency structures into a SIReN-VAE. These dependency structures were
either fully-connected, random, or adhered to the true dependency struc-
ture associated with the given dataset. We denote these models by SIReN-
VAEFC, SIReN-VAERand and SIReN-VAETrue, respectively. SIReN-VAEFC

made no independency assumptions and used GRFn and GRFg to encode
a fully-connected structure between the latent variables of the generative and
inference model. In this setting, each observed variable was conditioned on all
latent variables. For a speci�c dataset, SIReN-VAERand encoded a BN graph

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 97

with the same number of edges as the graph encoded by SIReN-VAETrue, but
where these edges had been assigned to random pairs of vertices at initial-
ization. Care was however taken that all observed variables were connected
to at least one latent variable, and that no latent variables were completely
disconnected from the graph. This was done by �rst connecting each observed
variable to a random latent variable, and if disconnected latent variables re-
mained, connecting each remaining one to another latent or observed variable.
Any remaining edges were assigned between a random latent variable and an-
other latent or observed variable. Both SIReN-VAEFC and SIReN-VAERand

used the same latent dimension as SIReN-VAETrue (i.e. the true BN).

b1191 eutG

�xC sucA

ibpB

ygbD

yjbO

cchB

yceP tnsA

atpG

sucD
gltA�gD

dnaJ

ygcE

yhdM

yfaD

asnA

cspG
atpD

lcdA lacA

cspA

yecO

yedE

aceB

lacY

y�AhupB pspBpspA lpdA yheL
lacZ nuoM

ycgX b1963dnaG

folK

dnaK

b1583

yaeM

mopB

(a) EColi

Figure 7.1 (Continued on following page): BN graphs associated with the
graphical datasets. White nodes indicate latent variables, whereas shaded
nodes are observed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 98

z1 z0

z2

z3

z4

x0

x1 x2

x3 x4

x5

x6

x7

x8

x9

(b) Arithmetic Circuit 2

z0 z1 z2

x0

x2 x1

x3

x4 x5
x6

(c) MEHRA

81
144

248
377

793

368

108

767

111

61 622 636

665

666

712 211

198

570
38

135
219

234
576

699

460

464

256
554

585 598

623

378

651

783
640

781
187

126
454

547

558

269
679

181

422
13

714

629

736

47

331

479

627
677

342

363

739

96

161

738

480

86

209

444

540
63

414

452

289

272

726

786

539

778
4

93

197

360

596
758

78

603

686

779

560

281

661

20
26

100

296

412

245

496

537
8

299

519

328

600

443

101

565

573

226

155

798

(d) Arth

Figure 7.1 (Continued): BN graphs associated with the graphical datasets.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 99

Details on the exact model architectures used for each of the datasets is given
in Appendix A.2.2.2. Brie�y, each GRFn and GRFg had �ve �ow steps, where
each residual block had a single hidden layer of width 100 and used the LipMish
activation function. Similarly, the decoder neural network had a single hidden
layer of width 100. The number of �ow steps were chosen so that for all datasets
the inference network would have enough steps in line with the longest shortest
path presented in Table 7.1. As found during the GRF investigation, adding
more hidden layers to the residual blocks had very little impact compared to
adding more �ows steps and we therefore only considered using one hidden
layer in all residual blocks. The hyperparameter c, used for constraining the
spectral norm of GRF residual blocks, was set to 0.99 in all cases, to allow
each step to have as much expressive capacity as possible.

When SIReN-VAE models were compared to the vanilla VAE architecture, the
vanilla VAE encoder and decoder neural networks used an architecture corre-
sponding to the SIReN-VAE decoder: these networks had a single hidden layer
with 100 hidden units. The vanilla VAE also used the same latent dimension
as the given SIReN-VAE model. Since the Arth BN is much larger than the
others we considered, we set the hidden layer width to 200 units in all residual
blocks and decoder (and encoder) neural networks for this dataset only.

Training All models were trained using the Adam optimizer (Kingma and
Ba, 2015) (with default parameters β1 = 0.9 and β2 = 0.999) with an initial
learning rate of either 0.01 or 0.001 and a mini-batch size of 100 instances.
The learning rate was decreased by a factor of 10 each time no improve-
ment in the loss was observed for a set number of consecutive epochs, until
a minimum learning rate of 10−6 was reached, at which point training was
terminated. The initial learning rate and duration before learning rate re-
duction was chosen based on the lowest validation loss obtained over the grid
{0.01, 0.001} × {10, 20, 30}. The training, validation and test sets of the syn-
thetic datasets consisted of 10 000, 5000 and 5000 instances, respectively. The
MEHRA dataset was randomly split into 4000 training, 1000 validation and
1885 test instances.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 100

7.2 E�ect of GRFs on the Latent Distribution

We investigated the e�ect of using GRFs to represent the latent variables'
distribution in a VAE. We proceeded by �rst replacing only the inference net-
work of a standard VAE with a (conditional) generative GRF, denoted by
VAE+GRFg. Next, we also replaced the prior latent distribution with a nor-
malizing GRF. The resulting model, denoted by VAE+GRFg+GRFn, corre-
sponds to a version of our proposed SIReN-VAE that encodes a fully-connected
BN. Figure 7.2 shows the learned latent distributions of these models on the
OneHot dataset, and Figure 7.3 shows some samples drawn from these mod-
els after being trained on MNIST. We also summarize di�erent performance
metrics for these models on the OneHot and MNIST datasets in Table 7.2.
Speci�cally, we estimated the log-evidence (log p(x)) of new test data under
the model using 50 importance weighted samples per test point, as detailed in
Section 2.4.3, and calculated the average reconstruction error. For MNIST, we
also measured the quality of the images generated by the trained models using
the Fréchet Inception Distance (FID) score (Heusel et al., 2017), which mimics
human perception of similarity between model generated and true images. To
compute the FID scores, we used the implementation of Seitzer (2020) which
is a port of the o�cial implementation of FID to PyTorch.

Figure 7.2: Visualization of latent distributions on the OneHot dataset. Each colour
corresponds to the latent representation of one dimension of the one-hot encoded ob-
served vectors. The �rst row plots samples drawn from the learned prior, p(z), of
each of the models. In the rightmost panel, p0(ε) = N (0, I2)�see inset�is the base
distribution of the �ow, GRFn. The second row plots samples drawn from the poste-
rior, q(z|x). Increasing the complexity of the inference network, as in VAE+GRFg,
allows the aggregate posterior to more closely match the prior. Adding a �ow prior,
allows VAE+GRFg+GRFn to learn a much more semantically meaningful latent
space, with clear separation between the encodings of the di�erent classes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 101

(a) (b) (c)

Figure 7.3: Samples drawn from (a) VAE, (b) VAE+GRFg and (c)
VAE+GRFg+GRFn trained on MNIST. We plot the conditional means given
samples drawn from the prior.

Increasing the complexity of the inference network, by for example using a
GRF, allowed the aggregate posterior to more closely match the prior. Col-
umn 2 of Figure 7.2 shows this clearly for VAE+GRFg and the OneHot dataset.
In contrast, the restrictive Gaussian variational posterior of the standard VAE
combined with the over-regularization incurred by the Gaussian prior did not
allow this, and caused the posterior distributions of the di�erent classes of
OneHot to overlap as can be seen in column 1. This made it more di�-
cult for the generative model to accurately decode the latent variables, which
could explain the poorer log-evidence and reconstruction error on this dataset.
When extending the prior of the VAE with a GRF as well, the resulting model
achieved the highest log-evidence for both datasets, with − log p(x) on OneHot
being very close to the optimal value of − log(5) ≈ 1.61. We also noted that
in the case of OneHot, VAE+GRFg+GRFn learned a much more semantically

Table 7.2: Performance of di�erent models on the OneHot and MNIST
datasets: − log p(x) denotes the average negative log-evidence of the test data;
RE denotes the average reconstruction error on the test data, which for each
test point is measured as the Frobenius norm between the expected value of
the reconstruction and the true observation; FID is the Fréchet Inception Dis-
tance score for MNIST. Lower is better in all cases. The best result in each
column is given in bold.

Model
OneHot MNIST

− log p(x) RE − log p(x) RE FID

VAE 1.90 0.25 82.30 3.86 119.96
VAE+GRFg 1.66 0.04 65.57 3.25 109.83
VAE+GRFg+GRFn 1.63 0.01 59.40 3.03 99.25

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 102

meaningful latent space, with clear separation between the encodings of the
di�erent classes. On MNIST, incorporating GRFs led not only to a better
log-evidence and lower reconstruction error, but also to visually higher quality
generated samples.

As discussed in Section 3.2.1, increasing the modelling capacity of either the
inference network or the model prior can lead to improved performance by
reducing the approximation gap and mitigating the prior hole problem. We
are therefore not surprised that the bottom row in Table 7.2 shows the best
performance measurements for both datasets. Having validated that our use of
GRFs allows for more complex latent priors while still allowing the aggregate
posterior to match this prior, we next investigated using these �ows as a vehicle
to inject domain knowledge about the dependency structure between variables.

7.3 Incorporating Graphical Structures

We next applied our SIReN-VAE model to datasets that have an associated
true or hypothesised BN dependency structure. Table 7.3 presents the re-
sults for these models for the graphical datasets from Table 7.1. We com-
pared encoding a fully-connected structure (SIReN-VAEFC), a random struc-
ture (SIReN-VAERand), and the true dependency structure (SIReN-VAETrue),
via the GRFs. We again estimated the average log-evidence using 50 impor-
tance weighted samples per test point. We also determined the number of
latent variables that had collapsed during training. To measure whether a
speci�c latent variable z has become inactive and collapsed towards the (unin-
formative) prior, we used the same statistic as presented by Burda et al. (2016):
Az = Varx∼pD(Ez∼q(z|x)[z]), where pD is the training data distribution.1 This is
based on the assumption that if a latent dimension encodes useful information
about the data, then it should change as the observations change. As in Burda
et al. (2016), a latent dimension is deemed inactive if Az ≤ 0.01.

In these initial experiments, SIReN-VAETrue was not able to match the perfor-
mance of SIReN-VAEFC in terms of log-evidence on most of the datasets. We
also note that except for Arth, the model that achieved the best log-evidence
also had the fewest collapsed latent variables. Models with more collapsed
variables, must e�ectively represent the same observation space with a smaller
latent dimension, which could partially explain their poorer performance. We
will continue our investigation of this phenomenon and possible remedies in
the next section.

1Note that this di�ers slightly from the notation used in Burda et al. (2016): Az =
Covx(Ez∼q(z|x)[z]), but since covariance is measured between two variables, denoting the
statistic as the variance over the expected values of the latent variables given the data, is
more suitable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 103

Table 7.3: Performance of di�erent models on the graphical datasets, where
− log p(x) denotes the average negative log-evidence of the test data. We also pro-
vide the number of inactive units after training. All results are averages over �ve
independent runs, with standard deviation given in the subscript. A standard devi-
ation of less than 0.005 is indicated with ∆. Lower is better in all cases. The best
average result for each dataset is given in bold.

BN Model − log p(x)
Number of

Inactive Units

A
ri
th
m
et
ic

C
ir
cu
it
2 VAE 9.78±0.01 2.00±0.00

SIReN-VAEFC 9.76±0.02 0.00±0.00

SIReN-VAERand 11.09±0.32 1.20±0.75

SIReN-VAETrue 10.03±0.01 2.00±0.00

E
C
ol
i

VAE 35.03±0.02 5.00±1.26

SIReN-VAEFC 35.03±0.03 0.00±0.00

SIReN-VAERand 41.63±0.53 1.80±1.47

SIReN-VAETrue 34.99±0.01 0.00±0.00

A
rt
h

VAE 37.43±0.09 25.25±7.27

SIReN-VAEFC 37.55±0.06 7.20±2.40

SIReN-VAERand 40.81±0.18 5.20±2.04

SIReN-VAETrue 37.73±0.05 14.80±0.33

M
E
H
R
A VAE 7.63±0.02 0.00±0.00

SIReN-VAEFC 7.57±0.01 0.00±0.00

SIReN-VAERand 8.91±0.24 0.00±0.00

SIReN-VAETrue 8.37±0.06 0.00±0.00

Even though SIReN-VAETrue had no collapsed variables when trained on the
MEHRA dataset, it was still not able to match the performance of SIReN-
VAEFC. BNs constructed for real-world domains tend to focus more on the key
in�uences between variables. As such, smaller interactions may be neglected,
which could have limited SIReN-VAETrue's ability to achieve comparable log-
evidence scores. In all cases, SIReN-VAERand did signi�cantly worse than the
other models on the main tasks. This shows that the encoded structure does
play a signi�cant role in modelling performance and that using the true (or hy-
pothesised) BN structure aids in learning appropriate observational and latent
distributions. We therefore did not consider SIReN-VAERand in subsequent
investigations. We note that SIReN-VAEFC did not notably outperform the
standard VAE on the EColi and Arth datasets. This is possibly due to the
fact that the variables of these two synthetic datasets have relatively simple
Gaussian conditional distributions. The extra complexity added by the �ows
could therefore have been redundant while complicating optimization.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 104

7.4 Addressing Posterior Collapse

As observed in the previous section, SIReN-VAETrue sometimes su�ers from
posterior collapse. Although not as severe as with the vanilla VAE�likely
because SIReN-VAETrue can obtain a tighter variational bound due to the
complexity added by the �ows�we are especially motivated to avoid posterior
collapse for SIReN-VAE in order to learn meaningful latent distributions in
line with the provided BN structure. Before considering di�erent remedies for
this issue in Section 7.4.2, we �rst investigated whether the position of a latent
variable within the BN graph gives any indication of its propensity to collapse.

7.4.1 E�ect of Encoded Structure on Posterior Collapse

Establishing correspondence between the position of a latent variable within
the BN graph and the likelihood that it will collapse, would suggests that
encoding the BN structure into the VAE further contributes to posterior col-
lapse, in addition to the general factors discussed in Section 2.4.4. To obtain
insights into whether this is the case, we visualize in Figure 7.5 the logarithm
of the average value of Az for each latent variable in each dataset. The aver-
ages were computed over the �ve runs used to the generate the results of the
previous section. For comparison, we do the same for the vanilla VAE and
SIReN-VAEFC models of the previous section.

We would expect the indices of collapsed latent variables to be arbitrary if
the encoded structure plays no role. The average Az value over multiple runs
should then result in all latent variables having a similar average activity score.
This is what we would expect for the vanilla VAE, where the latent variables are
independent and have the same prior distribution. Considering Figure 7.5, this
was indeed the case as the average activity of the vanilla VAE's latent variables
was far more uniform than, for example, the activity of SIReN-VAETrue's latent
variables.

For both SIReN-VAEFC and SIReN-VAETrue we see some patterns in the activ-
ity of the latent variables emerge. Interestingly, for SIReN-VAEFC, the higher
the index of the latent, the lower its activity was on average. For the fully-
connected BNs, each variable was conditioned on all variables with a lower
index. This suggests that the model may tend to de-emphasize latent vari-
ables that are conditioned on many other latent variables. Figure 7.5 shows
that when posterior collapse occurred in SIReN-VAETrue, it tended to happen
for certain latent variables far more than for others�unlike with the vanilla
VAE. This is perhaps most apparent for the Arithmetic Circuit 2 dataset de-
picted in Figure 7.5a. where it is clear that z0, z1 and z3 were the most prone
to collapse. Figure 7.4 highlights these vertices within the corresponding BN
structure. We note that there is structural symmetry between vertices z0 and
z1 of the Arithmetic Circuit 2 dataset, which could explain why the model

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 105

chose to ignore one of them during each run. Further inspection of the posi-
tions of the collapsed variables in the BNs depicted in Figure 7.4 shows that
regularly collapsing variables typically only shared edges with other latent
variables, and not with any observed variables. Prominent examples of this
are the various intermediate nodes in chains of latent variables in Figure 7.4b.
These results corroborate the �ndings of Burda et al. (2016), who observed
that the latent variables in the higher layers of a hierarchical VAE (which do
not directly in�uence any observed variables) are more prone to collapse. Note
that no posterior collapse occurred for MEHRA, where there is only a single
layer of hidden variables that are all connected to observations.

z1 z0

z2

z3

z4

x0

x1 x2

x3 x4

x5

x6

x7

x8

x9

(a) Arithmetic Cir-
cuit 2

z4x11

x22
x33

z39

x32

z7

x63

z8

z2 x49 x51

x55

x56

x59 x17

z9

z24x4

x10
x18

x20
x46

z32

x37

x38

x23
x44

z26 x48

x50

x34

x53

z38x52

z37
x15

x9
x36

x43

z22

x24
z31

x14

z15
x2

z33

z30

x60

z1

z13

z19

z29
x57

x29

x31

x61

x7

x13

z35

x39

z5

z10

17

x42
z3

z14

z18

z12

z11

z34

x65

z21

x64
x0

x6

x16

x30

x47
x62

x5

z28

x58

z36

z23

x25

x54

z0
x3

z6

x26

x35

x21

x40

x41 x1

x27

z20

x28

z27

z16

x8

x45

z25

x19

x12

x66

(b) Arth

Figure 7.4: Posterior collapse for SIReN-VAETrue in the Arithmetic Circuit 2 and
Arth BNs. White nodes indicate latent variables, whereas shaded nodes are observed.
Nodes with red labels typically collapsed. These typically have symmetry with other
latent variables, as between z0 and z1 in (a), or are only connected to other latent
variables and not to any observed variables. Note that for MEHRA and EColi, no
posterior collapse occurred.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 106

(a) Arithmetic Circuit 2

(b) EColi

(c) Arth

(d) MEHRA

Figure 7.5: The average of the latent variable activity statistic, Azi , over �ve
independent runs for each of the latent variables zi, i = 0, . . . , K − 1 of the
graphical datasets. The top, middle and bottom bars for each dataset cor-
respond to the vanilla VAE, SIReN-VAEFC and SIReN-VAETrue models, re-
spectively. Each entry corresponds to the (logarithm of the) average activity
statistic Azi , of a speci�c latent variable, zi. The lower this value, the darker
the corresponding block. Note that log(Azi) ≤ log(0.01) ≈ −4.6 is the point
at which a latent variable is declared collapsed. We use logarithms here in
order to better distinguish the typically inactive and active latent variables.
We observed that when SIReN-VAETrue was trained on the Arithmetic Cir-
cuit 2 dataset, either z0 or z1 collapsed during a given run, but never both.
We make this clear by providing two separate plots: the �rst row in (a) for
SIReN-VAETrue gives the average activity statistics over the runs where z0

collapsed, and the second gives the statistics over the runs where z1 collapsed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 107

7.4.2 Mitigating Posterior Collapse

Since we would like the learned latent distribution of SIReN-VAETrue to re-
spect the provided BN structure and thus utilize all the latent dimensions,
the fact that aspects of the encoded structure make posterior collapse more
likely, makes it doubly important for us to try to address it in some way.
We therefore next proceeded to investigate the e�cacy of warm-up (WU),
importance-weighted (IW) objectives and doubly-reparameterized gradient es-
timates (DReG) in combatting this posterior collapse.

Table 7.4 provides the results when training SIReN-VAETrue on the graphical
datasets using di�erent combinations of these interventions. We present the
results also for datasets where no posterior collapse occurred, since we want
to �nd a generally applicable approach. As in Table 7.3, we estimated the
average log-evidence using 50 importance weighted samples per test point, as
well as the number of latent variables that collapsed during training. Since
we found that a certain subset of latent variables was more prone to collapse
than others, we compared two di�erent approaches to warm-up. The standard,
more naïve, approach applied the warm-up factor, β, to all latent variables,
and is denoted by WUall. For the Arithmetic Circuit 2 and Arth datasets,
where posterior collapse occurred in the previous section, we also applied the
warm-up term to only those latent variables that typically collapsed during the
earlier runs as identi�ed in Figure 7.4. We denote this `retrained' approach by
WUselect:

LWUselect

t (x) = Ez∼q

[
log pθ(x|z) +

K∑
i=1

(βcit) · (log pi(zi)− log qi,φ(zi|PaGzi))

]
,

where βt ∈ R is increased linearly from 0 to 1 during the �rst NWU epochs, PaGzi
are the parent vertices of zi in the dataset's associated BN graph, G, and ci = 1
if zi typically collapsed earlier, else ci = 0. For comparison, Table 7.5 gives
the results when training SIReN-VAEFC using the same mitigating techniques
(where we only applied warm-up if the original model had collapsed variables).
In all cases, a default warm-up period of NWU = 100 was chosen. If this did not
lead to a reduction in the number of collapsed variables, warm-up periods in the
list [50, 70, 125, 150] were also considered in order. Only for the Arth dataset
was it necessary to choose an alternative warm-up period, where NWU = 75
was used. For the Arithmetic Circuit 2 and MEHRA datasets, the models
using the IW objective employed k = 32 importance weighted samples. For
the Gaussian BNs, EColi and Arth, only k = 8 importance weighted samples
were used since further increasing k did not lead to notably better results.
Additionally, using DReG estimates comes at both a time and memory cost
such that using a larger number of importance weights slowed down training
and also led to out-of-memory errors for these larger BNs.2

2In these situations, using the memory-saving technique for the GRF, as discussed in
Section 4.3.1, proved useful. We did not implement it for models applying warm-up, however,
due to time constraints and because we did not �nd it necessary to consider larger values
of k for the EColi and Arth datasets.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 108

Table 7.4: Performance of SIReN-VAETrue on the graphical datasets when
applying di�erent combinations of posterior collapse prevention techniques,
namely: warm-up (WU), importance weighted objectives (IWAE) and doubly-
reparameterized gradient estimates (DReG). Warm-up is applied to either all
latents (WUall), or to a selected subset that is prone to collapse (WUselect).
The performance metrics are the same as those for Table 7.3.

BN Model − log p(x)
Number of

Inactive Units

A
ri
th
m
et
ic

C
ir
cu
it
2

SIReN-VAETrue 10.03±0.01 2.00±0.00

SIReN-IWAETrue 9.86±0.04 1.00±0.00

SIReN-IWAETrue+DReG 9.80±0.02 1.00±0.00

SIReN-VAETrue+WUall 10.11±0.08 1.00±0.00

SIReN-IWAETrue+WUall 9.86±0.08 1.00±0.00

SIReN-IWAETrue+DReG+WUall 9.88±0.06 1.00±0.00

SIReN-VAETrue+WUselect 9.82±0.02 0.00±0.00

SIReN-IWAETrue+WUselect 9.80±∆ 0.00±0.00

SIReN-IWAETrue+DReG+WUselect 9.80±0.02 0.00±0.00

E
C
ol
i

SIReN-VAETrue 34.99±0.01 0.00±0.00

SIReN-IWAETrue 34.98±∆ 0.00±0.00

SIReN-IWAETrue+DReG 34.98±0.01 0.00±0.00

SIReN-VAETrue+WUall 34.99±0.01 0.00±0.00

SIReN-IWAETrue+WUall 34.99±0.01 0.00±0.00

SIReN-IWAETrue+DReG+WUall 34.99±∆ 0.00±0.00

A
rt
h

SIReN-VAETrue 37.73±0.05 14.80±0.33

SIReN-IWAETrue 37.49±0.26 11.00±1.10

SIReN-IWAETrue+DReG 37.30±0.53 6.00±1.41

SIReN-VAETrue+WUall 37.65±0.08 11.20±0.98

SIReN-IWAETrue+WUall 37.48±0.47 10.20±1.33

SIReN-IWAETrue+DReG+WUall 37.27±0.54 7.80±1.33

SIReN-VAETrue+WUselect 37.71±0.03 9.80±2.64

SIReN-IWAETrue+WUselect 37.42±0.24 7.00±2.28

SIReN-IWAETrue+DReG+WUselect 37.43±0.22 1.80±0.98

M
E
H
R
A

SIReN-VAETrue 8.37±0.06 0.00±0.00

SIReN-IWAETrue 8.19±0.06 0.00±0.00

SIReN-IWAETrue+DReG 8.08±0.02 0.00±0.00

SIReN-VAETrue+WUall 8.66±0.26 0.00±0.00

SIReN-IWAETrue+WUall 8.39±0.24 0.00±0.00

SIReN-IWAETrue+DReG+WUall 8.23±0.08 0.00±0.00

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 109

Table 7.5: Performance of SIReN-VAEFC on the graphical datasets when
applying di�erent combinations of posterior collapse prevention techniques,
namely: warm-up (WU), importance weighted objectives (IWAE) and doubly-
reparameterized gradient estimates (DReG). Warm-up is applied to all latents.
The performance metrics are the same as those for Table 7.3. We include the
best performing SIReN-VAETrue (in terms of − log p(x)) from Table 7.4, for
ease of comparison.

BN Model − log p(x)
Number of

Inactive Units

A
ri
th
m
et
ic

C
ir
cu
it
2 SIReN-IWAETrue+DReG+WUselect 9.80±0.02 0.00±0.00

SIReN-VAEFC 9.76±0.02 0.00±0.00

SIReN-IWAEFC 9.73±0.01 0.00±0.00

SIReN-IWAEFC+DReG 9.73±∆ 0.00±0.00

E
C
ol
i

SIReN-IWAETrue+DReG 34.98±0.01 0.00±0.00

SIReN-VAEFC 35.03±0.03 0.00±0.00

SIReN-IWAEFC 35.04±0.01 0.00±0.00

SIReN-IWAEFC+DReG 35.06±0.01 0.00±0.00

A
rt
h

SIReN-IWAETrue+DReG+WUall 37.27±0.54 7.80±1.33

SIReN-VAEFC 37.55±0.06 7.20±2.40

SIReN-VAEFC+WUall 37.33±0.02 3.40±1.02

SIReN-IWAEFC+WUall 37.21±0.14 2.40±2.15

SIReN-IWAEFC+DReG+WUall 37.13±0.02 1.00±1.10

M
E
H
R
A SIReN-IWAETrue+DReG 8.08±0.02 0.00±0.00

SIReN-VAEFC 7.57±0.01 0.00±0.00

SIReN-IWAEFC 7.58±0.03 0.00±0.00

SIReN-IWAEFC+DReG 7.50±0.03 0.00±0.00

Based on the results in Table 7.4, we cannot single out a single combination of
posterior collapse mitigation techniques that provided the best performance for
all the datasets, although the addition of these remedies did in general improve
the log-evidence and decrease the number of collapsed variables if there were
any. We do however take note of the following patterns. For the two datasets
where posterior collapse did occur, warm-up aided in reducing the number of
ignored latent variables and improving the log-evidence of the model on the
test set. When no posterior collapse occurred in the original model, warm-up
either did not improve the log-evidence, or led to poorer performance. For
the Arithmetic Circuit 2 and Arth datasets, the retrained (WUselect) warm-up
approach resulted in the fewest collapsed variables. In all cases, the best per-
forming model per dataset incorporated the IW objective and DReG estimates.
This indicates that a tighter variational bound and lower-variance gradient es-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 110

timates are important in mitigating posterior collapse. Using DReG led to
signi�cantly higher time and memory usage, however. It is not clear how
worthwhile the use of DReG to improve results is, given this additional cost.
Future work could potentially consider alternative approaches to mitigating
posterior collapse that do not impose these additional costs.

Although warm-up, importance weighted objectives and doubly-reparameterized
gradient estimates also helped to improve the performance of SIReN-VAETrue,
it was still not able to quite match the performance of SIReN-VAEFC on most
of the datasets. This is perhaps most noticeable for the real-world MEHRA
dataset, where the issue is that the hypothesized BN might not capture all
the subtle dependencies present in the data. We therefore consider alternative
bene�ts of the proposed approach.

7.5 Interpretability of the Learned Latent

Space

One of the anticipated bene�ts of incorporating hypothesized BN dependency
structures into the VAE model is the potential of a more interpretable latent
space. Since we had access to the true latent variables of the datasets,3 we
began to investigate whether this bene�t is being realized by estimating the
mutual information (MI) between the (aggregate) inferred latent distribution
of a SIReN-VAETrue model given a set of observations and the true latent
distribution that gave rise to those observations. More information is pro-
vided below. Mutual information was estimated using the MINE approach
of Belghazi et al. (2018), as discussed in Section 2.4.5.1. We used the Py-
Torch implementation of MINE by Tegnér (2020), who reproduced the results
of Belghazi et al. (2018). We made use of the default settings of the provided
implementation, and estimated MI using the same number of samples as in
the respective datasets' training sets.

Speci�cally, we estimated I(z∗i , zj), the MI between each true latent variable z∗i ,
and each latent variable of the model, zj, using the samples of the true latent
variables associated with the given dataset's training set of observations, and
samples from the inferred latent distributions of SIReN-VAETrue given these
observations, respectively. The zj samples were obtained by sampling a single
point from qφ(z|x) for a given observation. Additionally, we also estimated
the MI between all pairs of true latent variables, I(z∗i , z

∗
j), and compared this

to the MI between all pairs of latent variables from the SIReN-VAETrue prior.

3For the synthetic datasets, the latent variables were sampled from the known model
and used to condition the distributions from which the observations were sampled. For the
real-world MEHRA dataset, we assumed certain dimensions to be latent for our purposes,
and as such have access to the true `latent' data corresponding to the observations.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 111

Similarly, we also compared the MI between the true latent and observed vari-
ables, I(z∗i , x

∗
j), to the MI between the model's latent and observed variables

I(zi, xj), where zi and xj are drawn from pθ(x, z). Figure 7.6 gives the results
for the graphical datasets. In each case, we used the SIReN-VAETrue model
that achieved the best average log-evidence as given in Table 7.4 of the previ-
ous section, where this model could employ any combination of the posterior
collapse mitigation techniques.

(a) Arithmetic Circuit 2

(b) EColi

Figure 7.6 (Continued on following page): Visualization of the MI between
latent and observed variables of the true and �tted distributions for di�erent
BNs. For each dataset, the entries correspond to (for i, j = 0, . . . , K − 1
and k = 0, . . . D − 1) the MI between: the true and inferred latent variables,
I(z∗i , zj) (left); the true latent and observed variables, I(z∗i , z

∗
j) and I(z∗i , x

∗
k)

(top right); and the latent and observed variables sampled from the model,
I(zi, zj) and I(zi, xk) (bottom right). Since MI is symmetric, we only plot the
upper triangle of the matrices corresponding to I(z∗i , z

∗
j) and I(zi, zj). The

higher the MI, the darker the associated entry.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 112

(c) Arth

(d) MEHRA

Figure 7.6 (Continued): Visualization of the MI between latent and observed
variables of the true and �tted distributions for di�erent BNs.

If SIReN-VAETrue learns meaningful latent representations, with each latent
variable a�ecting its neighbourhood in a way similar to the true hidden vari-
able, we would expect the MI between z∗i and zi to be high as well as for
I(z∗i , zj) ≈ I(z∗j , zi). Visually, this means that we expect the left-most matrix
plots of Figure 7.6a to 7.6d to be approximately symmetric and to have a no-
ticeable line on the diagonal. For the synthetic datasets, we see that this holds
most noticeably for the EColi dataset (Figure 7.6b). The two plots on the right
of Figure 7.6b are also nearly identical, suggesting that SIReN-VAETrue very
closely mimics the dependencies of the true model in terms of the MI between
variables. Although arguably not as distinct, similar trends are evident for
the other datasets as well. For example, for the real-world MEHRA dataset,
two out of the three latent variables of the model have very high mutual in-
formation with their true counterparts. Although the two right-most plots of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 113

Figure 7.6d are not as similar as those of the synthetic datasets, this is ex-
pected since the hypothesized BN does not encode all the subtle dependencies
that are present in the data.

We do however note that the mutual dependencies evident in these plots corre-
spond to the encoded dependency structures of each dataset. One could there-
fore conclude that these models have been a�orded additional interpretability
in that one has better insights into which latent variables directly in�uence
each other, than for example in a VAE that encodes no special dependency
structure. This could aid in more controlled sample generation, where one
could target certain observed variables using the latent variables that they are
most dependent on. This could also allow one to assign speci�c meaning to
each of the latent factors of SIReN-VAETrue, corresponding to their meaning in
the original BN, as for example in the MEHRA BN where the latent variables
represent atmospheric conditions.

Next, we investigated another potential strength of the proposed SIReN-VAETrue

method: its potential to generalize well when trained on only a small number
of instances.

7.6 Bene�t of Incorporating Graphical

Structures in Data-sparse Settings

As a �nal investigation, we evaluated the performance of the standard VAE,
SIReN-VAEFC and SIReN-VAETrue (initially without any posterior collapse
measures) when trained on only a limited number of training instances. We
again measured the models' performance over �ve independent runs, where for
each run we train the model on only 2× |G| instances sampled from the origi-
nal training set, where |G| = D +K is the number of vertices in the dataset's
corresponding BN. We also trained the models while applying selected poste-
rior collapse prevention techniques from Section 7.4. Speci�cally, we retrained
using all combinations of the importance-weighted objective and warm-up.
For simplicity, we only considered the naïve warm-up approach where warm-
up is applied to all latent variables. The results are given in Table 7.6. We
only provide the combination of posterior collapse mitigation techniques that
achieved the lowest negative log-evidence. Figure 7.7 additionally shows the
performance of the di�erent models (without posterior collapse measures) on
each of the datasets, for varying training set sizes.

Here, SIReN-VAETrue clearly outperformed the other models, and consistently
achieved a better log-evidence on all datasets when trained on a small train-
ing set. Promisingly, SIReN-VAETrue performed the best on the real-world
dataset MEHRA, even though it did not perform as well as SIReN-VAEFC

when trained on a larger training set. When enough data was available, we

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 114

argued that the subtle dependencies between variables perhaps not encoded
into the MEHRA BN, might have been the reason that SIReN-VAETrue did not
match the performance of SIReN-VAEFC in that setting. When only limited
data was available, it was perhaps precisely this coarser-grained structure that
prevented SIReN-VAETrue from over�tting and allowed it to achieve better
generalization performance. We therefore speculate that the increased spar-
sity of the neural network weights of SIReN-VAETrue, in line with the true (or
hypothesized) BN independencies, provides a better inductive bias and thus
poses an easier learning task than those posed by the other models, resulting
in better generalization to the test set. SIReN-VAETrue is thus valuable in
data-sparse settings when one has access to prior knowledge in the form of a
BN.

(a) Arithmetic Circuit 2 (b) EColi

(c) Arth (d) MEHRA

Figure 7.7: Negative ELBO (lower is better) vs training set size achieved by the
standard VAE, SIReN-VAEFC and SIReN-VAETrue on the test set of the various
BNs. We considered training sets with sizes of 2, 8, 16 and 32 times the number of
vertices in the datasets corresponding BN. Error bars show one standard deviation
from the mean over 5 independent runs. SIReN-VAETrue consistently performs the
best when limited training data is available.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 115

Table 7.6: Performance of various models on the graphical datasets when
trained on only 2× |G| samples, where |G| = D +K is the number of vertices
in the corresponding BN. Given, is the negative log evidence (− log p(x)) of
test data under each of the models, as well as the number of inactive units
after training. All results are the average over �ve independent runs, with
standard deviation given in the subscript. Lower is better in all cases. The
best results for each dataset are given in bold.

BN Model
2× |G| training samples

− log p(x)
Number of

Inactive Units

A
ri
th
m
et
ic

C
ir
cu
it
2

VAE 13.90±0.73 0.00±0.00

IWAE 13.28±0.95 0.00±0.00

SIReN-VAEFC 13.14±0.78 0.00±0.00

SIReN-IWAEFC 12.78±0.43 0.00±0.00

SIReN-VAETrue 12.29±0.84 2.60±0.49

SIReN-IWAETrue+WUall 11.88±0.27 0.00±0.00

E
C
ol
i

VAE 40.91±1.07 0.00±0.00

IWAE 40.39±0.22 0.00±0.00

SIReN-VAEFC 38.84±0.22 0.00±0.00

SIReN-IWAEFC 38.86±0.28 0.00±0.00

SIReN-VAETrue 37.54±0.33 4.20±0.75

SIReN-IWAETrue+WUall 37.45±0.41 0.00±0.00

A
rt
h

VAE 64.22±2.14 0.00±0.00

IWAE 56.39±2.33 0.00±0.00

SIReN-VAEFC 43.35±0.10 2.40±1.36

SIReN-IWAEFC+WUall 43.02±0.80 7.40±3.93

SIReN-VAETrue 41.56±0.53 19.40±2.06

SIReN-IWAETrue+WUall 41.09±0.42 15.00±1.26

M
E
H
R
A

VAE 10.57±0.21 0.00±0.00

IWAE 10.41±0.29 0.00±0.00

SIReN-VAEFC 10.56±0.32 0.50±0.50

SIReN-IWAEFC 10.47±0.45 0.33±0.75

SIReN-VAETrue 10.60±0.05 1.33±1.11

SIReN-IWAETrue 10.36±0.27 0.50±0.50

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. EMPIRICAL INVESTIGATION II: SIREN-VAE 116

7.7 Conclusion

This chapter evaluated the proposed SIReN-VAE model on a number of syn-
thetic and real-world datasets. Section 7.2 started o� by studying the e�ect
of incorporating GRFs into the prior and inference model of a VAE. The re-
sults obtained are not surprising and align with previous work that showed that
more complex latent distributions improve overall performance by reducing the
approximation gap and mitigating the prior hole problem. This motivates our
use of GRFs as a means to inject conditional independence assumptions into a
VAE. Sections 7.3 and 7.4 next evaluated SIReN-VAE on a number of datasets
with associated BN graphs. We found that the SIReN-VAE models encoding
the associated BN's dependency structure (SIReN-VAETrue) did not in general
match the performance achieved by a SIReN-VAE encoding a fully-connected
structure (SIReN-VAEFC). However, we also noted that SIReN-VAETrue suf-
fers more severely from posterior collapse, and that the likelihood of a variable
collapsing is linked to its position within the encoded BN. By applying various
posterior collapse mitigation techniques, such as warm-up, an importance-
weighted objective and low-variance gradient estimates, the performance of
SIReN-VAETrue could be signi�cantly improved. This makes SIReN-VAETrue

more competitive with SIReN-VAEFC, although it is still not able in general
to match the performance of the fully-connected version when enough data is
available. Sections 7.5 and 7.6 concluded by exploring additional advantages
of using SIReN-VAETrue. Section 7.5 showed that SIReN-VAETrue is able to
learn individual latent variable representations that in general have a strong
correspondence with their true counterparts, which could aid in providing more
interpretable models. In Section 7.6 it was shown that SIReN-VAETrue is able
to provide better generalization performance than SIReN-VAEFC and a stan-
dard VAE (in terms of log-evidence achieved) in a data-sparse setting.

In summary, encoding a dataset's BN dependency structure does not lead
to signi�cantly better generalization performance than simply using a fully-
connected structure when enough data is available. The key bene�ts of SIReN-
VAETrue are thus its ability to provide more nuanced interpretability and to
allow stable training with good generalization on small training sets. Practi-
tioners who elicit BNs typically omit unknown factors, because they cannot in
general use them in current modelling frameworks. SIReN-VAETrue provides
a framework in which such latent factors can be considered. Based on the
results found in this chapter, we therefore suggest that SIReN-VAETrue might
be of use when practitioners know or can hypothesize about the dependency
structure of certain latent factors in their domain, especially if they wish to
to interpret the model according to the chosen dependency structure. SIReN-
VAETrue could also facilitate higher quality data augmentation from limited
real-world data.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Conclusion

Deep generative models have gained widespread popularity in recent years
due to their scalability and representation capacity, but unlike probabilistic
graphical models, they typically do not incorporate speci�c domain knowledge.
In light of this, this work considered the problem of integrating graphical
models and deep generative models as a way to construct interpretable models
that are able to learn complex distributions while leveraging prior knowledge
about variable interactions. In order to make the scope of our work feasible,
we limited our study and re�ned our research questions to consider only the
probabilistic generative modelling frameworks of normalizing �ows (NFs) and
variational autoencoders (VAEs), as well as the type of domain knowledge
that can be encoded using Bayesian networks (BNs). Below we summarize
our approach and discuss the key �ndings which contribute to addressing the
problem stated above. We conclude the chapter with an overview of potential
avenues for further work.

8.1 Summary & Key Findings

8.1.1 Graphical Residual Flows

Graphical �ows, which can be viewed as a con�uence of BNs and NFs, have
only previously been designed for certain classes of �ows. Furthermore, ex-
isting graphical �ows do not in practice guarantee stable inversion, leading
sometimes to exploding inverses. Residual �ows on the other hand, provide
stable inversion due to the Lipschitz bound placed on each transformation
step. We therefore posed the question of whether one could adapt standard
residual �ows to allow one to encode an arbitrary graphical structure, while
still providing competitive density estimation and inference performance as
well as stable inversion. Our main contribution in line with this �rst research
question is the graphical residual �ow (GRF)�an extension of residual �ows
that encodes an arbitrary BN dependency structure between variables of in-

117

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 118

terest through masking of the �ow's residual block weights. In this respect,
we propose a novel masking scheme extending that in MADE (Germain et al.,
2015), that encodes a desired dependency structure by applying binary masks
to the neural network weights of the �ow's residual blocks, ensuring that each
residual block's output corresponding to vertex i in the BN, is only a direct
function of the inputs corresponding to i and its parent vertices. Enforcing an
(implicit) topological ordering over the variables by encoding a BN dependency
structure has the additional bene�t of ensuring that the Jacobian matrix of
the �ow transformation is triangular up to a permutation, allowing e�cient
and exact computation of the change-of-variables formula.

We evaluated our proposed GRFs by comparing them to existing graphical �ow
models on a range of synthetic and real-world datasets, that each have an as-
sociated true or hypothesized BN structure. We found that GRFs achieved
density estimation and inference performance comparable to the best per-
forming existing graphical �ows, namely the structured conditional continuous
NF (SCCNF) of Weilbach et al. (2020) and the graphical NF with a mono-
tonic normalizer (GNF-M) of Wehenkel and Louppe (2021). More speci�cally,
GRFs achieved the best density estimation performance on three out of the
�ve considered datasets, and the best variational inference performance for
two out of the three datasets that could be used in this setting. Our proposed
masking scheme can be used as a drop-in replacement for GNF and SCCNF
and addresses the drawbacks of previous masking approaches: it only requires
a single pass through the neural network and does not restrict the hidden
layer width. We therefore recommend using our masking scheme as a means
to encode domain knowledge in all the graphical �ows we considered in this
work.

Furthermore, we empirically showed that GRFs additionally provide stable
and e�cient inversion: all GRF models showed consistent convergence to the
correct inverse on all datasets when using a Newton-like �xed-point inversion
algorithm. SCCNF and GNF-M, which do not place any speci�c bounds on
the Lipschitz constants of their transformations, could not match the inversion
accuracy of GRFs. The small Lipschitz bounds imposed by GRFs do how-
ever necessitate �ows with a larger number of transformation steps in order to
achieve similar performance to SCCNF and GNF-M. Fortunately, the inversion
time per step is relatively fast when using a Newton-like �xed-point inversion
scheme, and we found that GRFs required less time in general to invert a batch
of samples than either SCCNF or GNF-M. This Newton-like �xed-point inver-
sion was also much faster than the traditional Banach �xed-point approach,
speci�cally because we use Lipschitz bounds close to one which slows down
the convergence rate of the Banach �xed-point approach. Our proposed GRF
aptly �lls a gap in the literature on graphical �ows, and we conclude that they
are a good alternative to existing approaches�especially when one requires a
single �ow with high representation capacity that is to be used in both trans-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 119

formation directions, for example when a �ow trained for density estimation is
used to generate new samples as we do in the latent prior of the SIReN-VAE.

8.1.2 Structured Invertible Residual Network VAE

Normalizing �ows are bijective transformations and thus require their latent
space to have the same dimensionality as the observed space. VAEs, on the
other hand, allow the practitioner to specify the number of latent variables.
Furthermore, both (graphical) NFs and vanilla VAEs only handle the situation
where no assumptions are made about the dependency structure between the
latent variables. The second half of our work therefore focused on bridging
this gap by specifying a generative model that allows practitioners to encode
their knowledge or beliefs about the dependency structure of the latent space.
Speci�cally, we posed the question of whether one could use graphical �ows
to sensibly integrate information from a BN into a VAE, and in what situ-
ations this would be useful. We proposed replacing the Gaussian prior and
variational posterior distributions of a standard VAE with graphical NFs as
a means to inject domain knowledge about the dependencies between latent
variables. Since the �ow in the prior is likely to be used in both transformation
directions�in the normalizing direction during training and in the generative
direction when generating new samples with the VAE�we decided to use our
GRFs, as they provide both good modelling capability and stable and accurate
inversion. The resulting model was termed the structured invertible residual
network (SIReN) VAE.

As with GRFs, we evaluated SIReN-VAE on a range of synthetic and real-world
datasets that each have an associated true or hypothesized BN structure. We
found that SIReN-VAEs encoding the BN's dependency structure (denoted by
SIReN-VAETrue) could in general not outperform (in terms of log-evidence), a
SIReN-VAE that made no independence assumptions about the latent space
and simply encoded a fully-connected structure (denoted by SIReN-VAEFC).
On each dataset, SIReN-VAETrue, however, markedly outperformed a SIReN-
VAE that encoded a random dependency structure with the same number of
edges as the true BN. This clearly shows that encoding the wrong indepen-
dencies is detrimental to model performance. However, when enough data is
available, and when one only cares about achieving the best model �t to the
observed data, it is safer to make no assumptions about the dependence struc-
ture over the variables. We argue rather that the value of SIReN-VAETrue lies
in its ability to provide a more interpretable latent space and to provide bet-
ter modelling performance in data-sparse settings. We found that the latent
variables inferred by SIReN-VAETrue had relatively high mutual information
with their true counterparts and that the mutual information between di�er-
ent variables of the trained SIReN-VAETrue model (both latent and observed)
corresponded to the strength of the mutual information between the variables

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 120

of the true data. This allows us to better understand the interactions be-
tween the latent and observed variables of the model as it corresponds to the
encoded BN, which in turn enhances the interpretability of the model. The
interpretability a�orded by the encoded structure could aid, for example, in
more nuanced sample generation, where one could control the conditional dis-
tributions of certain observed variables using the latent variables that they are
most dependent on. Furthermore, it was found that SIReN-VAETrue noticeably
outperformed SIReN-VAEFC on all datasets when both were trained on only a
small number of training instances. We speculate that the increased sparsity of
the neural network weights of SIReN-VAETrue, in line with the true (or hypoth-
esized) BN independencies, poses an easier learning task than those posed by
models that do not include such information, resulting in better generalization
to the test set.

Unknown or latent factors are typically omitted by practitioners when eliciting
BNs, because they cannot in general use them in current modelling frameworks.
SIReN-VAE provides a framework that does allow practitioners to encode their
beliefs about the underlying system. Based on the results found in this work,
we suggest that SIReN-VAEs might be of use when practitioners know or
can hypothesize about the dependency structure of certain latent factors in
their domain, especially if they wish to interpret the model according to these
variables and their dependency structure, and/or limited data are available.

A key challenge with SIReN-VAETrue, is that it is susceptible to posterior col-
lapse. Apart from the known causes of posterior collapse in regular VAEs, we
found that the encoded BN structure is an additional contributing factor, with
certain variables being much more likely to collapse based on their position
within the dependency graph. Since posterior collapse is a common issue with
VAE optimization, numerous remedies have been proposed in previous works.
We speci�cally considered various combinations of warm-up, an importance
weighted objective and lower-variance gradient estimates. SIReN-VAETrue

models implementing one or more of these techniques typically achieved bet-
ter performance and had fewer collapsed latent variables. Since we would like
the learned latent distribution of SIReN-VAETrue to respect the provided BN
structure and utilize all the latent dimensions, this is an issue that one should
be cognisant of when training these models and, depending on the encoded
structure, it is likely that one or more prevention techniques will be needed to
obtain good performance.

8.2 Future Work

Based on the work presented in this thesis, we now propose a number of poten-
tial avenues for further work, starting with several short-term improvements
and leading up to broader concepts and ideas.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION 121

To improve and further con�rm the �ndings of this work, the proposed graph-
ical models could be evaluated on a larger collection of datasets, especially
real-world datasets, that have an associated BN graph. Since the MEHRA
dataset was created by �ltering out certain discrete variables, a simple �rst
step could be to create alternative MEHRA datasets by �ltering out di�erent
values, and investigating whether similar results are obtained. Furthermore,
we used a relatively coarse-grained approach to hyperparameter tuning and
model selection, often performing grid search over only a small selected num-
ber of parameter values and choosing model architectures that can be used for
all datasets. Although we believe the chosen approach gives valuable insights,
further optimization of hyperparameters and model architectures could be ben-
e�cial. Also, since we found that incorporating additional domain knowledge
into a SIReN-VAE allowed it to perform better than alternative models in
data-sparse settings, it would be interesting to investigate whether the same
holds for GRFs.

It is common that BNs are de�ned over sets of both continuous and discrete
variables. Unfortunately, stochastic neural networks cannot backpropagate
through discrete samples. This complicates the task of training deep generative
models for datasets that include discrete variables (and thus limited the real-
world datasets that we considered in this study). It would greatly broaden the
number of settings in which GRFs and SIReN-VAEs could be applied if they
are able to handle both continuous and discrete variables. One of the most
desirable directions for future work is therefore to focus on combining existing
gradient estimation approaches for handling discrete variables (Bengio et al.,
2013; Tran et al., 2019) with the models proposed in this work.

Graphical residual �ows that encode a fully-connected structure, allow one
to bypass the Russia Roulette estimator of regular contractive residual �ows
entirely, by setting the �ow up to be e�ectively autoregressive. This allows
exact density calculation and avoids the unpredictable time and memory usage
introduced by the Russia Roulette estimator. Future work could investigate
how fully-connected GRFs and standard contractive residual �ows di�er in
terms of training time and ultimate performance in light of this.

In order to make the scope of our work feasible, we limited our study to
the probabilistic generative modelling frameworks of NFs and VAEs. Another
natural extension of our work is therefore to consider incorporating BN depen-
dency information into other types of generative models, for example di�usion
models which have recently gained in popularity (Ho et al., 2020; Weilbach
et al., 2021). Alternatively, one could consider how to incorporate di�erent
forms of domain knowledge. For example, undirected graphical models allow
one to encode bidirectional interactions between variables such as is present
between the pixels of an image. Such extensions would signi�cantly increase
the range of application domains for dependency-aware generative modelling.

Stellenbosch University https://scholar.sun.ac.za

Appendices

122

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Empirical Investigations

A.1 Empirical Investigation I: GRF

A.1.1 Datasets & Bayesian Networks

Arithmetic Circuit The synthetic arithmetic circuit BN is the same as
that used by Weilbach et al. (2020) and Wehenkel and Louppe (2021). See
Figure 5.1a in the main text for a diagram of this BN. For density estimation
tasks, all variables were observed. For amortized inference tasks, variables z0

to z5 were latent, while x0 and x1 were observed. This distribution consists of
heavy-tailed densities which are linked through non-linear dependencies:

z0 ∼ Laplace(5, 1)

z1 ∼ Laplace(−2, 1)

z2 ∼ N (tanh(z0 + z1 − 2.8), 0.1)

z3 ∼ N (z0 × z1, 0.1)

z4 ∼ N (7, 2)

z5 ∼ N (tanh(z3 + z4), 0.1)

x0 ∼ N (z3, 0.1)

x1 ∼ N (z5, 0.1).

Tree This is another synthetic dataset. It is adapted from the model given
in Wehenkel and Louppe (2021) to obtain a fully-speci�ed model for which
the joint density can be computed in closed form (as needed for the inference
tasks). Instead of using the circles 2D dataset from Grathwohl et al. (2019)
as in Wehenkel and Louppe (2021), the �rst two variables are sampled from a
2D Gaussian mixture model, GMM2, which consists of two equally weighted
components with means at (1, 1) and (−1,−1) and shared covariance matrix
0.2 × I2. As in Wehenkel and Louppe (2021), the second pair of variables

123

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 124

is sampled from a GMM with 8 equally weighted components with means at
(0, 1.5), (1, 1), (1.5, 0), (1,−1), (0,−1.5), (−1,−1), (−1.5, 0) and (−1, 1) and
shared covariance matrix 0.1 × I8. See Figure 5.1c in the main text for a
diagram of this BN.

z0, z1 ∼ GMM2

z2, z3 ∼ GMM8

z4 ∼ N (max(z0, z1), 1)

z5 ∼ N (min(z2, z3), 1)

x0 ∼ N
(

1

2
(sin(z4 + z5) + cos(z4 + z5)), 1

)
Protein This real-world dataset consists of 11 observed variables contain-
ing information about multiple phosphorylated human proteins (Sachs et al.,
2005)�see Figure 5.1b for a diagram of the BN dependency structure. The
BN structure encodes the cellular signalling network that is believed to exist
between these proteins.

EColi The EColi dataset was generated using a fully-speci�ed BN adapted
from the BN repository of Scutari (2022). All vertices are (conditionally) Gaus-
sian, with means given by a linear combination of the parents. Certain leaf ver-
tices were removed from the original BN (namely nmpc and ftsJ), in order to
obtain a BN with fewer latent than observed variables. This was done to make
the BN more applicable for the SIReN-VAE setting as well. The following
vertices were considered to be latent: {asnA, atpD, b1191, cspA, cspG,

dnaK, eutG, fixC, icdA, lacA, lacY, sucA, yedE, ygcE, yheI}, while
the rest were considered observed. See Figure 5.1e for a diagram of the BN.

MEHRA The Multi-dimensional Environment-Health Risk Analysis dataset
(MEHRA) was assembled by Vitolo et al. (2018) to help model air pollution,
climate and health in English regions using a BN. We only consider the sub-
graph of the BN obtained during the study corresponding to the continuous
variables. As such, only a subset of the original dataset corresponding to a �xed
set of discrete variables is used. This reduced dataset consisted of all observa-
tions of the continuous variables for the following setting of the observed vari-
ables: {Region=Greater London Authority; Zone=Greater London Urban

Area; Type=Traffic Urban; Year=2014; Season=Winter}.

A.1.2 Model Architectures

Tables A.1 and A.2 provide the model architectures used in the experiments
of Sections 5.2 and 5.3. To provide more informative comparisons between the
�ows, we considered two model sizes for each approach on each task. Smaller

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 125

models had a maximum capacity of 5000 trainable parameters, and are denoted
by a subscript S, e.g., GRFS (Table A.1). Larger models had a maximum
capacity of 15000 parameters, and are denoted by the subscript L (Table A.2).
The chosen architectures were obtained by performing a grid search over �ow
depth and neural network width, using density estimation performance as a
metric while adhering to the model size restriction. These same architectures
were used for inference in each model size group, except when the number of
�ow steps was less than the longest shortest path between any observed and
latent vertex, as given in Table 5.1 for each BN and as discussed in Section 4.4.
In these cases, the number of steps were increased to the appropriate value,
while the hidden layer widths were decreased in order to comply with the
parameter capacity restrictions.

Table A.1: Small �ow model architectures. The hidden layer width and choice
of activation function are the settings used for the conditioner neural network
for GNF-A and GNF-M, the residual block for GRF, and the main �ow trans-
formation neural network for SCCNF, respectively. If the architecture had to
be updated for inference tasks, the new number of �ow steps and hidden layer
width is given in brackets.

BN Flow
Number of
parameters

Number of
�ow steps*

Hidden
layer width

Activation
function

A
ri
th
m
et
ic

ci
rc
ui
t

GNF-AS 4416 4 200 ReLU
GNF-MS 4552 2 (3) 50 (30) ReLU
SCCNFS 4621 3 140 Tanh
GRFS 4296 8 125 LipMish

T
re
e

GNF-AS 4832 4 250 ReLU
GNF-MS 4934 2 75 ReLU
SCCNFS 4415 3 125 Tanh
GRFS 4576 8 125 LipMish

P
ro
te
in

GNF-AS 4812 4 175 ReLU
GNF-MS 4897 1 150 ReLU
SCCNFS 4788 3 150 Tanh
GRFS 4788 9 100 LipMish

E
C
ol
i

GNF-AS 4852 4 140 ReLU
GNF-MS 4664 1 (4) 100 (60) ReLU
SCCNFS 4699 3 250 Tanh
GRFS 4347 9 100 LipMish

M
E
H
R
A GNF-AS 4760 4 150 ReLU

GNF-MS 4976 1 125 ReLU
SCCNFS 4355 3 150 Tanh
GRFS 4797 9 125 LipMish

*For SCCNF, this instead refers to the number of layers in the neural network.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 126

Table A.2: Large model architectures. The hidden layer width and choice of
activation function are the settings used for the conditioner neural network for
GNF-A and GNF-M, the residual block for GRF, and the main �ow transfor-
mation neural network for SCCNF, respectively.

BN Flow
Number of
parameters

Number of
�ow steps*

Hidden
layer width

Activation
function

A
ri
th
m
et
ic

ci
rc
ui
t

GNF-AL 14796 9 300 ReLU
GNF-ML 14508 4 125 ReLU
SCCNFL 13312 5 150 Tanh
GRFL 14518 17 200 LipMish

T
re
e

GNF-AL 14490 10 300 ReLU
GNF-ML 14208 4 150 ReLU
SCCNFL 13828 5 140 Tanh
GRFL 14625 15 215 LipMish

P
ro
te
in

GNF-AL 13788 9 225 ReLU
GNF-ML 14691 3 150 ReLU
SCCNFL 14765 5 170 Tanh
GRFL 1896 28 100 LipMish

E
C
ol
i

GNF-AL 14472 9 190 ReLU
GNF-ML 13992 3 (4) 100 (90) ReLU
SCCNFL 13165 5 300 Tanh
GRFL 14944 16 200 LipMish

M
E
H
R
A GNF-AL 14220 9 200 ReLU

GNF-ML 14928 3 125 ReLU
SCCNFL 14214 5 175 Tanh
GRFL 14382 17 200 LipMish

*For SCCNF, this instead refers to the number of layers in the neural network.

A.1.3 Implementation Details

All models were implemented and trained using the PyTorch (Paszke et al.,
2019) machine learning framework. For the GNF (Wehenkel and Louppe,
2021) and SCCNF (Weilbach et al., 2020) models, we used the publicly avail-
able implementations provided by the respective authors. These were only
adapted in terms of the masking scheme used to encode the desired BN de-
pendency structure. To invert the BNs, we used an implementation of the
faithful inversion algorithm of Webb et al. (2018), which was obtained directly
from the authors.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 127

A.1.4 Additional Results

A.1.4.1 Performance of the LipMish Activation Function

Table A.3 gives the performance results of GRF on the di�erent datasets when
using either the LipSwish or LipMish activation functions. Apart from the ac-
tivation function, the model architectures were the same as for GRFS and
GRFL used in Sections 5.2 and 5.3, and as detailed in Tables A.1 and A.2. We
also determined the negative log-likelihoods achieved by GRF as a function
of the �ow depth, when using di�erent residual block activations. Figure A.1
plots these results for the tanh, ELU, LipSwish and LipMish activation func-
tions on the di�erent datasets. The models used to generate these plots all
had residual blocks with one hidden layer of 100 units, and di�erent activation
functions and number of �ow steps as indicated.

Based on the results in Table A.3, we see that LipMish typically slightly out-
performed LipSwish. It achieved the best performance on all datasets except
for density estimation on the Arithmetic Circuit dataset and inference on the
EColi dataset. Figure A.1 further supports these results, with LipMish per-
forming on par and often better than other activations. These results mo-
tivated our use of LipMish instead of alternative activation functions in the
experiments of Sections 5.2 and 5.3.

Table A.3: Density estimation and variational inference performance of GRFS
and GRFL when using either the LipMish or LipSwish activation function.
Apart from the activation function, the model architectures are the same as
detailed in Tables A.1 and A.2. Lower is better in all cases. Note that the
real-world Protein and MEHRA datasets were not used for the inference tasks.

BN Flow
Density estimation (NLL) Inference (−ELBO)
LipSwish LipMish LipSwish LipMish

Arithmetic
Circuit

GRFS 1.270±0.03 1.248±0.01 4.219±0.18 4.194±0.19

GRFL 1.107±0.01 1.110±0.01 3.766±0.12 3.713±0.14

Tree
GRFS 8.649±∆ 8.642±0.01 1.739±∆ 1.738±∆

GRFL 8.649±∆ 8.645±∆ 1.705±∆ 1.705±∆

Protein
GRFS −5.230±0.02 −5.265±0.01 � �
GRFL −6.035±0.07 −6.111±0.01 � �

EColi
GRFS 40.062±∆ 40.059±∆ 34.986±0.04 34.964±∆

GRFL 40.064±∆ 40.062±∆ 34.962±∆ 34.963±∆

MEHRA
GRFS 11.665±0.01 11.660±0.02 � �
GRFL 11.623±0.04 11.612±0.03 � �

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 128

(a) Arithmetic Circuit (b) Tree

(c) Protein (d) EColi

(e) MEHRA

Figure A.1: Negative log-likelihood achieved by GRF models for varying �ow
depths and di�erent residual block activation functions (tanh, ELU, LipSwish
and LipMish) on each of the datasets. Lower is better.

A.1.4.2 Dependency Structure Induced by GRFs

In Section 4.5, we showed that both normalizing and generative GRFs allow
additional information to leak from the ancestors of a variable when multiple
�ow steps are composed. This can result in the �nal distribution represented
by the �ow not necessarily respecting the conditional independencies speci�ed
by the provided BN structure. If enough steps are composed, additional de-
pendencies between each variable and all of its ancestors may be induced, in
which case the dependence structure induced by the �ow will correspond to
the transitive closure of the BN graph G, denoted by TC(G). However, we
argued that the manner in which the BN graph is encoded still provides a
strong enough inductive bias to encourage the resulting distribution to respect
the provided dependence structure.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 129

Here, we provide preliminary empirical results supporting this claim. If the
induced dependence structure fully corresponds to TC(G), then another BN
graph, G ′, where TC(G ′) = TC(G), should provide similar performance. We
investigated this for the Tree, Protein and EColi datasets by constructing such
alternative graphs and measuring the density estimation performance when
encoding either G or G ′. These G ′ graphs can be constructed by removing
each edge in the original graph that does not change its transitive closure, and
adding the same number of new edges that are in the transitive closure of G,
but not in G itself. The type of edge that can be removed without changing
the transitive closure, is any edge between a child and one of its parents where
this parent is also an ancestor of another one of the child's parents. The above
construction ensures that G ′ has the same number of edges as G, as well as
a matching transitive closure, while specifying a di�erent set of independence
assumptions. We also compared using G and G ′ to using a graph G ′min, where all
possible edges have been removed such that TC(G ′min) = TC(G). Figures A.2
and A.3 show the graphs G, G ′ and G ′min used for the Tree and Protein datasets,
respectively. Since the Arithmetic Circuit and MEHRA BNs do not have any
such edges that can be used to randomize the dependence structure, we did
not consider them here. Table A.4 provides the modelling performance of
the small and large GRF models when encoding either G, G ′ and G ′min for
density estimation. The architectures of these models were the same as given
in Tables A.1 and A.2.

Table A.4: Density estimation performance of GRFS and GRFL when en-
coding either the true BN graph, G, or alternative graphs G ′ and G ′min where
TC(G) = TC(G ′) = TC(G ′min) still holds. TC is the transitive closure of a
graph. For each BN, we provide the number of edges that were either removed
or placed between di�erent child-ancestor pairs to obtain the graphs G ′min and
G ′, respectively. Each entry corresponds to the average over the test set for �ve
independent runs, with standard deviation given in the subscript. A standard
deviation of less than 0.005 is indicated with ∆. Lower is better in all cases.
The best performance in each group is indicated with bold.

BN #Edges Flow
Density estimation (NLL)

G G ′ G ′min

Protein 9
GRFS −5.26±0.01 −4.87±0.04 −4.41±0.11

GRFL −6.12±0.01 −5.85±0.13 −5.65±0.09

EColi 12
GRFS 40.06±∆ 40.10±0.01 40.27±0.10

GRFL 40.06±∆ 40.07±∆ 40.10±0.02

Tree 2
GRFS 8.64±0.01 8.66±∆ 8.65±∆

GRFL 8.64±∆ 8.66±∆ 8.65±∆

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 130

The results show that models encoding the original dependency structure pro-
vided the best modelling performance in all cases. This is most noticeable for
the real-world Protein dataset. Even for the simple Gaussian EColi BN and for
the Tree BN where only two edges had been changed, the original BN graph
still provided the best performance. We suspect therefore that even though
information leakage may occur, the direct dependencies encoded by the �ow
given the BN, still play a more important role in informing the resulting dis-
tribution. While the GRF formulation does allow dependencies corresponding
to the transitive closure of the encoded BN graph, we expect the forms of
the dependencies on variables beyond the underlying graph to be quite con-
strained, making learning more sophisticated dependencies between vertices
not connected in the underlying BN more di�cult. Although future work
should investigate this issue in more detail, the above results help to motivate
our use of GRFs as presented in Chapter 4.

z0 z1 z2 z3

z4 z5

x0

(a) G

z0 z1 z2 z3

z4 z5

x0

(b) G′

z0 z1 z2 z3

z4 z5

x0

(c) G′min

Figure A.2: Illustration of the BN graphs encoded into the GRFs presented
in Table A.4 for the Tree dataset. Red edges in (a) the true BN graph were
removed and placed between di�erent child-ancestors pairs to create (b) a
di�erent graph with the same transitive closure as (a), or removed entirely to
obtain (c) a graph with the minimum number of edges that still has the same
transitive closure as (a).

PKCPIP2 Raf

Plcγ PKA
Mek

PIP3 Jnk P38
Erk

Akt

(a) G

PKCPIP2 Raf

Plcγ PKA
Mek

PIP3 Jnk P38
Erk

Akt

(b) G′

PKCPIP2 Raf

Plcγ PKA
Mek

PIP3 Jnk P38
Erk

Akt

(c) G′min

Figure A.3: Illustration of the BN graphs encoded into the GRFs presented in
Table A.4 for the Protein dataset.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 131

A.1.4.3 Using Di�erent Masking Schemes to Encode Domain

Knowledge

In Section 5.2 we compared the density estimation and inference performance
of the di�erent graphical �ow approaches when using the new masking scheme
we presented in Section 4.2 to encode domain knowledge in each of these
�ows. Below we provide a few examples comparing the performance of GNF-
A, GNF-M and SCCNF when using their original masking schemes to encode
dependency information versus using our masking scheme. Except for the hid-
den layer widths, the GNF-A and GNF-M models had the same architectures
as given in Table A.1 when using either masking scheme. We reduced the
hidden layer widths of the conditioner function neural networks when using
the masking scheme of Wehenkel and Louppe (2021), so that all models had
approximately the same number of free parameters. When using the mask-
ing scheme of Weilbach et al. (2020) for SCCNF, the hidden layer widths are
required to be the same as the dimensionality of the data. The rest of the
continuous �ow architecture remained the same as detailed in Table A.1.

For GNF-A and GNF-M, our approach performed as well or even better than
the original masking scheme used by Wehenkel and Louppe (2021). Addition-
ally, it only required a single pass through the neural network. Our masking
scheme also signi�cantly outperformed the original scheme used in SCCNF

(a) GNF-AS (b) GNF-MS (c) SCCNFS

(d) GNF-AS (e) GNF-MS (f) SCCNFS

Figure A.4 (Continued on following page): Negative log-likelihood achieved
on the Arithmetic Circuit (a)�(c), Tree (d)�(f) and Protein (g)�(i) validation
sets during training by GNF-A, GNF-M and SCCNF when using the masking
schemes presented in the original works versus using our proposed masking
scheme.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 132

(g) GNF-AS (h) GNF-MS (i) SCCNFS
Figure A.4 (Continued): Negative log-likelihood achieved on the Arithmetic
Circuit (a)�(c), Tree (d)�(f) and Protein (g)�(i) validation sets during training
by GNF-A, GNF-M and SCCNF when using the masking schemes presented
in the original works versus using our proposed masking scheme.

when no auxiliary variables were employed. The small �xed size of the hidden
layers when using the original masking scheme, is too restrictive and limits the
�exibility of this approach.1

1Since we were only interested in the e�ect of the masking scheme, we did not consider
augmenting the input space of SCCNF in this setting. Augmented NFs (Huang et al., 2020;
Dupont et al., 2019b) provide additional �exibility by allowing the model to learn functions
in a higher dimensional space. Augmentation is therefore a general potential improvement
that can be applied to the discrete �ows as well, independent of the masking scheme.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 133

A.1.4.4 Flow Inversion

Figure A.5 gives the inversion performance of the Banach and Newton-like
�xed-point approaches on the remaining datasets not presented in Section 5.3.

(a) Tree (b) Protein

(c) EColi (d) MEHRA

Figure A.5: Using the Newton-like inversion procedure of Equation (4.11)
requires far fewer iterations per block to accurately invert a GRF than using
the Banach �xed-point approach. The plots show the average reconstruction
error (log-scale) for 100 samples from the respective data sets. Note that all
the plots for the Newton-like inversion procedure, corresponding to di�erent
values of c, overlap in each �gure. Also note the change in the range of the
x-axis in each �gure.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 134

A.2 Empirical Investigation II: SIReN-VAE

A.2.1 Datasets & Bayesian Networks

Since VAEs are typically used to encode information into a lower-dimensional
representation, we only considered the datasets from the GRF investigation
for which there are fewer latent than observed variables. Thus, in addition to
EColi and MEHRA from Appendix A.1.1 we also used the following datasets:

Arithmetic Circuit 2 This Arithmetic Circuit BN is an adaptation of the
one described in Appendix A.1.1, where we have added more observed vari-
ables. Variables z0 to z4 are latent, while x0 to x9 are observed. See Figure 7.1b
for a diagram of the BN dependency structure. This distribution consists of
heavy-tailed densities which are linked through non-linear dependencies:

z0 ∼ Laplace(5, 1)

z1 ∼ Laplace(−2, 1)

z2 ∼ N ((z0 × z1)/7.9− 7, 0.1)

z3 ∼ N (7, 2)

z4 ∼ N (tanh(z2 + z3), 0.1)

x0 ∼ N (tanh(z0 + z1 − 2.8), 0.1)

x1 ∼ N (tanh(z1), 1.1)

x2 ∼ N (tanh(z2 + z3), 0.1)

x3 ∼ N (z2 + 8, 0.1)

x4 ∼ N (σ(z3 − 7), 1.1)

x5 ∼ N ((z2 × z4)/6.1, 0.1)

x6 ∼ N (z4, 1.1)

x7 ∼ N (z4, 0.1)

x8 ∼ N (tanh(z4), 2.1)

x9 ∼ N (sin(z4), 1.1).

Arth The Arth dataset was generated using a fully-speci�ed BN from the
BN repository of Scutari (2022). All vertices are (conditionally) Gaussian,
with means given by a linear combination of the parents. All leaf vertices
were considered to be observed, and the rest were taken to be latent. See
Figure 7.1d for the corresponding BN graph.

A.2.2 Model Architectures

A.2.2.1 E�ect of GRFs on the Latent Distribution

We document here the network architectures used in the experiments of Sec-
tion 7.2. The models used for the OneHot and MNIST datasets had di�erent
architectures, as detailed in Tables A.5 and A.6 below. For each dataset we
trained three models: a vanilla VAE (with a factorized Gaussian posterior
distribution), a VAE with the posterior augmented by a generative GRF (de-
noted by VAE+GRFg) and a VAE where both the posterior and prior had

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 135

been augmented with GRFs (denoted by VAE+GRFg+GRFn). For these ex-
periments we assumed no speci�c independencies. As such, the GRFs encoded
a fully connected structure and no masking was applied to the decoder neu-
ral networks (since all observations were dependent on all latent variables).
The output of the decoder neural networks of all the models corresponded to
the parameters of Bernoulli distributions associated with each of the observed
dimensions.

A.2.2.2 Incorporating Graphical Structures

Table A.7 provides the network architectures used in the experiments of Sec-
tions 7.3 to 7.6. The models had the same network architectures for all of the
datasets, except Arth. For Arth, the hidden layers of the neural networks had
a width of 200 units, not 100. The weights of the decoder neural network and
all residual blocks were masked according to the given BN structure.

Table A.5: Model architectures used for the OneHot dataset. The input di-
mension was 5, and all three models used a latent dimension of size 2. All
GRFs had 5 transformation steps. For GRFg, the input dimension of the �rst
linear layer of each step was larger to accommodate conditioning on the ob-
servation. That is, the �rst linear layer of each residual block of GRFg was
Linear(2+5, 100), whereas for GRFn, it was Linear(2, 100).

Model Architecture

VAE
Encoder Linear(5, 100) → ReLU → Linear(100, 4)

Decoder
Linear(2, 100) → ReLU → Linear(100, 5)
→ Sigmoid

VAE+GRFg

Encoder GRFg using residual blocks below

Decoder
Linear(2, 100) → ReLU → Linear(100,5)
→ Sigmoid

Residual Block
Linear(2+5, 100) → LipMish
→ Linear(100, 2)

VAE+GRFg+GRFn

Encoder GRFg using residual blocks below

Decoder
GRFn → Linear(2, 100) → ReLU
→ Linear(100, 5) → Sigmoid

Residual Block
Linear(2(+5), 100) → LipMish
→ Linear(100, 2)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 136

Table A.6: Model architectures used for the MNIST dataset. The input di-
mension was 1 × 28 × 28, and all three models used a latent dimension of
size 128. All GRFs had 5 transformation steps. For GRFg, the input dimen-
sion of the �rst linear layer of each residual block was larger to accommodate
conditioning on the observation.

Model Architecture

VAE

Encoder
Conv(1× 28× 28, 16× 14× 14) → ReLU
→ Conv(16× 14× 14, 32× 7× 7)
→ ReLU → Linear(32× 7× 7, 128)

Decoder

Linear(128, 32× 7× 7) → ReLU
→ Deconv(32× 7× 7, 16× 14× 14)→ ReLU
→ Deconv(16× 14× 14, 1× 28× 28)
→ Sigmoid

VAE+GRFg

Encoder GRFg using residual blocks below

Decoder

Linear(128, 32× 7× 7) → ReLU
→ Deconv(32× 7× 7, 16× 14× 14)→ ReLU
→ Deconv(16× 14× 14, 1× 28× 28)
→ Sigmoid

Residual Block
Linear(128+784, 500) → LipMish
→ Linear(500, 128)

VAE+GRFg+GRFn

Encoder GRFg using residual blocks below

Decoder

GRFn → Linear(128, 32× 7× 7) → ReLU
→ Deconv(32× 7× 7, 16× 14× 14)→ ReLU
→ Deconv(16× 14× 14, 1× 28× 28)
→ Sigmoid

Residual Block
Linear(128(+784), 500) → LipMish
→ Linear(500, 128)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. EMPIRICAL INVESTIGATIONS 137

Table A.7: Model architectures used for the graphical datasets. All GRFs had 5
transformation steps, with each residual block having the same architecture as
given below. D indicates the number of observed variables, and K the number
of latent variables associated with each dataset's BN. Although not indicated
here, the weight matrices of the linear layers in the decoder neural network
and residual blocks of SIReN-VAE were masked according to the encoded BN
structure. For GRFg, the input dimension of the �rst linear layer of each
residual block was larger to accommodate conditioning on the observation.

Model Architecture

VAE
Encoder Linear(D,100) → ReLU → Linear(100,K×2)

Decoder Linear(K,100) → ReLU → Linear(100,D×2)

SIReN-VAE

Encoder GRFg

Decoder
GRFn → Linear(K,100) → ReLU
→ Linear(100,D×2)

Residual Block Linear(K(+D),100) → LipMish → Linear(100,K)

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Additional Theoretical

Background

B.1 Key Mathematical Findings

B.1.1 Leibniz Integral Rule

For an integral of the form:∫ b(x)

a(x)

f(x, t) dt where −∞ < a(x), b(x) <∞ , (B.1)

The Leibniz integral rule (Protter and Morrey, 2009, Chapter 8) states that
the derivative of the integral with respect to x is given by

d

dx

(∫ b(x)

a(x)

f(x, t) dt

)
= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x)

+

∫ b(x)

a(x)

∂

∂x
f(x, t) dt .

(B.2)

In the special case where both a(x) and b(x) are constant functions, i.e. a(x) =
a and b(x) = b, the above expression simpli�es to:

d

dx

(∫ b

a

f(x, t) dt

)
=

∫ b

a

∂

∂x
f(x, t) dt . (B.3)

B.2 Additional Derivations

B.2.1 Lipschitz Constant of Composition of Functions

Consider the metric space (X, d) and let f : X → X and g : X → X be
two Lipschitz continuous functions with (smallest) Lipschitz constants equal

138

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. ADDITIONAL THEORETICAL BACKGROUND 139

to kf and kg, respectively. We wish to determine the Lipschitz constant of the
composition (g ◦ f). Per De�nition 6, we have that the following holds for any
x, y ∈ X:

d(f(x), f(y)) ≤ kf · d(x, y) and

d(g(x), g(y)) ≤ kg · d(x, y) .

Based on the above, we have that

d(g(f(x)), g(f(y))) ≤ kg · d(f(x), f(y)) ≤ kg · kf · d(x, y) . (B.4)

Thus, the Lipschitz constant of (g ◦ f) is simply given by kg · kf .

B.2.2 DReG Derivation

Here, we provide the derivation of the doubly-reparameterized gradient esti-
mator discussed in Section 6.2, viz.1

∇φ Ez1:K

[
log

1

K

K∑
i=1

wi

]
= Eε1:K

 K∑
i=1

(
wi∑
j wj

)2

∇zi logwi∇φ zi

 , (B.5)

where wi = pθ(x, zi)/qφ(zi|x). This exposition closely follows the original
derivation given in Tucker et al. (2018), and repeats some of the results already
provided in Section 6.2 for context.

If qφ is reparameterizable, i.e. z = g(ε;φ), where g is some deterministic and
di�erentiable function and ε ∼ pε does not depend on θ or φ, then the standard
gradient of LIWK with respect to the inference network parameters is given by:

∇φLIWK (x) = ∇φEz1:K∼qφ(·|x)

[
log

1

K

K∑
i=1

wi

]
(B.6)

= Eε1:K∼pε

[
∇φ log

1

K

K∑
i=1

wi

]
(B.7)

= Eε1:K∼pε

[
K∑
i=1

1∑
j wj
∇φwi

]
(B.8)

= Eε1:K∼pε

[
K∑
i=1

wi∑
j wj
∇φ logwi

]
, (B.9)

where we applied the log-derivative (or score function) trick in line (B.9):
∇φwi = wi∇φ logwi. The reparameterization trick (Kingma and Welling,

1Note that we again abuse notation here and in the rest of this section to simplify the
exposition. The path derivative, ∇zi logwi∇φ zi, is a vector-matrix multiplication and is
more correctly given by (∇zi logwi)

TJg(φ).

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. ADDITIONAL THEORETICAL BACKGROUND 140

2014; Rezende et al., 2014)�see Section 2.4.2�allows us to write the above
expectation with respect to ε1:K , which allows one to exchange the gradient
and expectation operators.

To derive the DReG estimator, we begin by expanding the total derivative of
logwi with respect to the variational parameters φ, into a path derivative and
score function component (Roeder et al., 2017):

∇TD
φ logwi = ∇zi logwi∇φ zi −∇φ log qφ(zi|x) . (B.10)

Note that the path derivative measures the dependence of the total derivative
on φ only through the sample zi = g(εi;φ), while the score function measures
the dependence on log qφ(zi|x) directly and considers zi as constant.

We substitute Equation (B.10) back into (B.9):

∇φLIWK (x) = Eε1:K∼pε

[
K∑
i=1

wi∑
j wj

(∇zi logwi∇φ zi −∇φ log qφ(zi|x))

]
(B.11)

For now, we only consider the score function component, ∇φ log qφ(zi|x). First
note that:

Eε1:K

[
K∑
i=1

wi∑
j wj
∇φ log qφ(zi|x)

]
=

K∑
i=1

Eε1:K

[
wi∑
j wj
∇φ log qφ(zi|x)

]

=
K∑
i=1

Eε−iEεi

[
wi∑
j wj
∇φ log qφ(zi|x)

]
, (B.12)

where ε−i = ε1:i−1,i+1:K are all the ε1:K without εi. It therefore su�ces to
consider only the inner expectation in (B.12) for each of the K terms.

Since the score function treats zi as a constant, we can freely change the
random variable that the expectation is taken over from εi back to zi:

Eεi

[
wi∑
j wj
∇φ log qφ(zi|x)

]
= Ezi

[
wi∑
j wj
∇φ log qφ(zi|x)

]
(B.13)

Next, we note that the right-hand side of Equation (B.13) resembles the RE-
INFORCE gradient term (Williams, 1992, see Section 2.4.2). One can then
use the following equivalence between the REINFORCE gradient and the repa-
rameterization trick gradient (for a derivation, see Tucker et al. (2018)):

Ez∼qφ [f(z)∇φ log qφ(z|x)] = Eε∼pε [∇zf(z)∇φ z] , (B.14)

where z = g(ε;φ). If we let f(z) = wi/
∑

j wj, and apply the above iden-
tity, i.e. apply the reparameterization trick for a second time, then the inner

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. ADDITIONAL THEORETICAL BACKGROUND 141

expectation in (B.12), where we have substituted it with (B.13), becomes:

Ezi

[
wi∑
j wj
∇φ log qφ(zi|x)

]

= Eεi

[
∇zi

(
wi∑
j wj

)
∇φ zi

]

= Eεi

[(
1∑
j wj
− wi

(
∑

j wj)
2

)
∇ziwi∇φ zi

]

= Eεi

[(
wi∑
j wj
− w2

i

(
∑

j wj)
2

)
∇zi logwi∇φ zi

]
, (B.15)

where we have applied the log-derivative trick in the �nal line. Finally, we
substitute (B.15) back into the right-hand side of (B.11):

∇φLIWK (x)

= Eε1:K

[
K∑
i=1

wi∑
j wj

(∇zi logwi∇φ zi −∇φ log qφ(zi|x))

]

= Eε1:K

[
K∑
i=1

[
������������wi∑

j wj
∇zi logwi∇φ zi −

(
�
�

��
wi∑
j wj
− w2

i

(
∑

j wj)
2

)
∇zi logwi∇φ zi

]]

= Eε1:K

 K∑
i=1

(
wi∑
j wj

)2

∇zi logwi∇φ zi

 . (B.16)

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Reproducing SCCNF Article

Results

Weilbach et al. (2020) propose using the symmetrized KL-divergence, also
known as Je�rey's divergence (Nielsen, 2010), as an objective when train-
ing their graphical continuous NFs for the task of variational inference. The
symmetrized KL-divergence is a weighted sum of the forward and reverse KL-
divergences. They experimentally compare the e�ect of optimizing the sym-
metrized KL-divergence instead of either the forward or reverse KL-divergence.
The results presented in the original article, for the Arithmetic Circuit BN,
are given in Figure C.1a, C.1c and C.1e. Based on the poor performance of
the reverse KL-divergence in these experiments, they conclude that it does not
provide an adequate learning signal and is therefore not su�cient for training
models on BNs such as Arithmetic Circuit.

However, we were unable to reproduce these results using the implementation
of the technique provided by the authors. Figures C.1b, C.1d and C.1f show
the results we obtained when using the same settings as described in the article.
It is clear that the reverse KL-divergence objective performs adequately, even
outperforming the forward KL-divergence objective in terms of symmetrized
KL-divergence obtained. We subsequently con�rmed with the authors that
their original results were erroneous (C. Weilbach, personal communication,
August 21, 2021), and we thus used only the reverse KL-divergence for SCCNF
in all our work, in line with the other models used.

142

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. REPRODUCING SCCNF ARTICLE RESULTS 143

(a) Original (b) Reproduced

(c) Original (d) Reproduced

(e) Original (f) Reproduced

Figure C.1: Reproducing the results presented in Weilbach et al. (2020). The
top, middle and bottom row show the forward, reverse and symmetric KL-
divergence, respectively, when optimizing either the forward, reverse or sym-
metric KL-divergence for the Arithmetic Circuit BN. Plots (a), (c) and (e)
show the original results presented by Weilbach et al. (2020), whereas (b), (d)
and (f) show the results we were able to produce using the same settings as
the original work.

Stellenbosch University https://scholar.sun.ac.za

List of References

Ainsworth, S.K., Foti, N.J., Lee, A.K.C. and Fox, E.B. (2018). oi-VAE: Output
interpretable VAEs for nonlinear group factor analysis. In: Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Conference on Machine Learning,
vol. 80 of Proceedings of Machine Learning Research, pp. 119�128. PMLR.

Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R.A. and Murphy, K. (2018).
Fixing a broken ELBO. In: Dy, J. and Krause, A. (eds.), Proceedings of the 35th
International Conference on Machine Learning, vol. 80 of Proceedings of Machine
Learning Research, pp. 159�168. PMLR.

Ambrogioni, L., Lin, K., Fertig, E., Vikram, S., Hinne, M., Moore, D. and van
Gerven, M. (2021a). Automatic structured variational inference. In: Banerjee,
A. and Fukumizu, K. (eds.), Proceedings of The 24th International Conference on
Arti�cial Intelligence and Statistics, vol. 130 of Proceedings of Machine Learning
Research, pp. 676�684. PMLR.

Ambrogioni, L., Silvestri, G. and van Gerven, M. (2021b). Automatic variational
inference with cascading �ows. In: Meila, M. and Zhang, T. (eds.), Proceedings of
the 38th International Conference on Machine Learning, vol. 139 of Proceedings
of Machine Learning Research, pp. 254�263. PMLR.

Balgi, S., Peña, J.M. and Daoud, A. (2022). Personalized public policy analysis in
social sciences using causal-graphical normalizing �ows. Proceedings of the AAAI
Conference on Arti�cial Intelligence, vol. 36, no. 11, pp. 11810�11818.

Behrmann, J., Grathwohl, W., Chen, R.T.Q., Duvenaud, D. and Jacobsen, J.-H.
(2019). Invertible residual networks. In: Proceedings of the 36th International
Conference on Machine Learning, pp. 573�582. PMLR.

Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R. and Jacobsen, J.-H. (2021). Un-
derstanding and mitigating exploding inverses in invertible neural networks. In:
Proceedings of The 24th International Conference on Arti�cial Intelligence and
Statistics, pp. 1792�1800. PMLR.

Belghazi, M.I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A. and
Hjelm, D. (2018). Mutual information neural estimation. In: Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Conference on Machine Learning,
vol. 80 of Proceedings of Machine Learning Research, pp. 531�540. PMLR.

144

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 145

Bengio, Y., LÃ©onard, N. and Courville, A. (2013). Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432.

Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R. and Bengio, S.
(2016). Generating sentences from a continuous space. In: Proceedings of The
20th SIGNLL Conference on Computational Natural Language Learning. Associ-
ation for Computational Linguistics.

Burda, Y., Grosse, R.B. and Salakhutdinov, R. (2016). Importance weighted au-
toencoders. In: Bengio, Y. and LeCun, Y. (eds.), 4th International Conference on
Learning Representations.

Chen, R.T.Q., Behrmann, J., Duvenaud, D. and Jacobsen, J.-H. (2019). Residual
�ows for invertible generative modeling. In: Advances in Neural Information
Processing Systems, pp. 9916�9926. Curran Associates, Inc.

Chen, R.T.Q., Rubanova, Y., Bettencourt, J. and Duvenaud, D. (2018). Neural
ordinary di�erential equations. In: Advances in Neural Information Processing
Systems, pp. 6572�6583. Curran Associates, Inc.

Conor Durkan, Artur Bekasov, I.M. and Papamakarios, G. (2019). Cubic-spline
�ows. In: ICML Workshop on Invertible Neural Nets and Normalizing Flows.

Cremer, C., Li, X. and Duvenaud, D. (2018). Inference suboptimality in variational
autoencoders. In: International Conference on Machine Learning, pp. 1078�1086.
PMLR.

Dai, B., Wang, Z. and Wipf, D. (2020). The usual suspects? Reassessing blame for
VAE posterior collapse. In: Daumé III, H. and Singh, A. (eds.), Proceedings of
the 37th International Conference on Machine Learning, vol. 119 of Proceedings
of Machine Learning Research, pp. 2313�2322. PMLR.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), vol. 39, no. 1, pp. 1�38.

Deng, L. (2012). The MNIST database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 141�142.

Diez, F.J., Mira, J., Iturralde, E. and Zubillaga, S. (1997). DIAVAL, a Bayesian
expert system for echocardiography. Arti�cial Intelligence in Medicine, vol. 10,
no. 1, pp. 59�73.

Dinh, L., Krueger, D. and Bengio, Y. (2015). NICE: Non-linear independent compo-
nents estimation. In: Conference on Learning Representations, Workshop Track
Proceedings.

Dinh, L., Sohl-Dickstein, J. and Bengio, S. (2017). Density estimation using Real
NVP. arXiv preprint arXiv:1605.08803.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 146

Donsker, M.D. and Varadhan, S.R.S. (1983). Asymptotic evaluation of certain
Markov process expectations for large time. Communications on Pure and Applied
Mathematics, vol. 36, no. 2, pp. 183�212.

Dupont, E., Doucet, A. and Teh, Y.W. (2019a). Augmented neural ODEs. In:
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché Buc, F., Fox, E. and Garnett,
R. (eds.), Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc.

Dupont, E., Doucet, A. and Teh, Y.W. (2019b). Augmented neural ODEs. In: Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E. and Garnett,
R. (eds.), Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc.

Durkan, C., Bekasov, A., Murray, I. and Papamakarios, G. (2019). Neural spline
�ows. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E. and Garnett, R. (eds.), Advances in Neural Information Processing Systems,
vol. 32. Curran Associates, Inc.

Federer, H. (1996). Geometric Measure Theory. Springer. ISBN 978-3-540-60656-7.

Fortuin, V., Baranchuk, D., Raetsch, G. and Mandt, S. (2020). GP-VAE: Deep
probabilistic time series imputation. In: Chiappa, S. and Calandra, R. (eds.),
Proceedings of the Twenty Third International Conference on Arti�cial Intelligence
and Statistics, vol. 108 of Proceedings of Machine Learning Research, pp. 1651�
1661. PMLR.

Fraser, A.M. and Swinney, H.L. (1986). Independent coordinates for strange attrac-
tors from mutual information. Physical Review A, vol. 33, pp. 1134�1140.

Germain, M., Gregor, K., Murray, I. and Larochelle, H. (2015). MADE: Masked
autoencoder for distribution estimation. In: Proceedings of the 32nd International
Conference on Machine Learning, pp. 881�889. PMLR.

Gershman, S. and Goodman, N. (2014). Amortized inference in probabilistic reason-
ing. In: Proceedings of the Annual Meeting of the Cognitive Science Society.

Gouk, H., Frank, E., Pfahringer, B. and Cree, M.J. (2021). Regularisation of neural
networks by enforcing Lipschitz continuity. Machine Learning, vol. 110, no. 2, pp.
393�416.

Goyal, P., Hu, Z., Liang, X., Wang, C., Xing, E.P. and Mellon, C. (2017). Non-
parametric variational auto-encoders for hierarchical representation learning. In:
2017 IEEE International Conference on Computer Vision (ICCV), pp. 5104�5112.
IEEE Computer Society. ISSN 2380�7504.

Grathwohl, W., Chen, R.T.Q., Bettencourt, J., Sutskever, I. and Duvenaud, D.
(2019). FFJORD: free-form continuous dynamics for scalable reversible generative
models. In: 7th International Conference on Learning Representations.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 147

Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, vol. 57, no. 1, pp. 97�109. ISSN 00063444.

He, J., Gong, Y., Marino, J., Mori, G. and Lehrmann, A. (2019a). Variational au-
toencoders with jointly optimized latent dependency structure. In: International
Conference on Learning Representations.

He, J., Spokoyny, D., Neubig, G. and Berg-Kirkpatrick, T. (2019b). Lagging inference
networks and posterior collapse in variational autoencoders. In: 7th International
Conference on Learning Representations. OpenReview.net.

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image
recognition. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770�778. IEEE.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S. (2017).
GANs trained by a two time-scale update rule converge to a local Nash equilib-
rium. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 6629�6640. Curran Associates Inc., Red Hook, NY, USA.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S. and Lerchner, A. (2017). beta-VAE: Learning basic visual concepts with a con-
strained variational framework. In: International Conference on Learning Repre-
sentations.

Ho, J., Jain, A. and Abbeel, P. (2020). Denoising di�usion probabilistic models.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. and Lin, H. (eds.), Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 6840�6851. Curran
Associates, Inc.

Hochreiter, S. and Schmidhuber, J. (1994). Simplifying neural nets by discovering
�at minima. In: Tesauro, G., Touretzky, D. and Leen, T. (eds.), Advances in
Neural Information Processing Systems, vol. 7. MIT Press.

Ho�man, M.D. and Johnson, M.J. (2016). ELBO surgery: Yet another way to
carve up the variational evidence lower bound. In: NIPS Workshop: Advances in
Approximate Bayesian Inference.

Huang, C.-W., Dinh, L. and Courville, A. (2020). Augmented normalizing �ows:
Bridging the gap between generative �ows and latent variable models. arXiv
preprint arXiv: 2002.07101.

Huang, C.-W., Krueger, D., Lacoste, A. and Courville, A. (2018a). Neural autore-
gressive �ows. In: Proceedings of the 35th International Conference on Machine
Learning, pp. 2078�2087. PMLR.

Huang, C.-W., Tan, S., Lacoste, A. and Courville, A.C. (2018b). Improving ex-
plorability in variational inference with annealed variational objectives. In: Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N. and Garnett,
R. (eds.), Advances in Neural Information Processing Systems, vol. 31. Curran
Associates, Inc.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 148

Huang, C.-W., Touati, A., Dinh, L., Drozdzal, M., Havaei, M., Charlin, L. and
Courville, A. (2017). Learnable explicit density for continuous latent space and
variational inference. In: ICML Workshop on Principled Approaches to Deep
Learning.

Hutchinson, M. (1990). A stochastic estimator of the trace of the in�uence matrix
for Laplacian smoothing splines. Communications in Statistics - Simulation and
Computation, vol. 19, no. 2, pp. 433�450.

Jaini, P., Selby, K.A. and Yu, Y. (2019). Sum-of-squares polynomial �ow. In:
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, vol. 97 of Proceedings of Machine Learning Re-
search, pp. 3009�3018. PMLR.

Johnson, M.J., Duvenaud, D.K., Wiltschko, A., Adams, R.P. and Datta, S.R. (2016).
Composing graphical models with neural networks for structured representations
and fast inference. In: Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I. and
Garnett, R. (eds.), Advances in Neural Information Processing Systems, vol. 29.
Curran Associates, Inc.

Jordan, M., Ghahramani, Z., Jaakkola, T. and Saul, L. (1999). An introduction to
variational methods for graphical models. Machine Learning, vol. 37, pp. 183�233.

Khalil, H.K. (2002). Nonlinear Systems. Pearson. ISBN 978-0-13-067389-3.

Khemakhem, I., Monti, R., Leech, R. and Hyvarinen, A. (2021). Causal autore-
gressive �ows. In: Banerjee, A. and Fukumizu, K. (eds.), Proceedings of The
24th International Conference on Arti�cial Intelligence and Statistics, vol. 130 of
Proceedings of Machine Learning Research, pp. 3520�3528. PMLR.

Kim, H., Papamakarios, G. and Mnih, A. (2021a). The Lipschitz constant of self-
attention. In: Meila, M. and Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning
Research, pp. 5562�5571. PMLR.

Kim, H., Shin, S., Jang, J., Song, K., Joo, W., Kang, W. and Moon, I.-C. (2021b).
Counterfactual fairness with disentangled causal e�ect variational autoencoder.
Proceedings of the AAAI Conference on Arti�cial Intelligence, vol. 35, no. 9, pp.
8128�8136.

Kim, M. and Pavlovic, V. (2021). Reducing the amortization gap in varia-
tional autoencoders: A Bayesian random function approach. arXiv preprint
arXiv:2102.03151.

Kingma, D.P. and Ba, J. (2015). Adam: A method for stochastic optimization.
In: Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning
Representations.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 149

Kingma, D.P. and Dhariwal, P. (2018). Glow: Generative �ow with invertible 1x1
convolutions. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N. and Garnett, R. (eds.), Advances in Neural Information Processing
Systems, vol. 31, pp. 10236�10245. Curran Associates, Inc.

Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I. and Welling,
M. (2016). Improving variational inference with inverse autoregressive �ow. In:
Advances in Neural Information Processing Systems, pp. 4743�4751. Curran As-
sociates, Inc.

Kingma, D.P. and Welling, M. (2014). Auto-encoding variational Bayes. In: 2nd
International Conference on Learning Representations, pp. 14�16.

Kingma, D.P. and Welling, M. (2019). An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307�392. ISSN
1935-8237.

Kleijnen, J.P. and Rubinstein, R.Y. (1996). Optimization and sensitivity analysis of
computer simulation models by the score function method. European Journal of
Operational Research, vol. 88, no. 3, pp. 413�427. ISSN 0377-2217.

Kobyzev, I., Prince, S.J. and Brubaker, M.A. (2021). Normalizing �ows: An intro-
duction and review of current methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 43, no. 11, pp. 3964�3979.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press. ISBN
978-0-262-01319-3.

Kraskov, A., Stögbauer, H. and Grassberger, P. (2004). Estimating mutual informa-
tion. Physical Review E, vol. 69.

Kreyszig, E. (1989). Introductory functional analysis with applications. Wiley. ISBN
0-471-50731-8.

Kullback, S. and Leibler, R.A. (1951). On information and su�ciency. The Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79�86. ISSN 00034851.

Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine, S., Dinh, L. and Kingma,
D. (2019). VideoFlow: A conditional �ow-based model for stochastic video gener-
ation. In: ICML Workshop on Invertible Neural Networks and Normalizing Flows.

Lachapelle, S., Brouillard, P., Deleu, T. and Lacoste-Julien, S. (2020). Gradient-
based neural DAG learning. In: International Conference on Learning Represen-
tations.

Le, T.A., Baydin, A.G. and Wood, F. (2017). Inference compilation and universal
probabilistic programming. In: Singh, A. and Zhu, J. (eds.), Proceedings of the
20th International Conference on Arti�cial Intelligence and Statistics, vol. 54 of
Proceedings of Machine Learning Research, pp. 1338�1348. PMLR.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 150

LeCun, Y., Cortes, C. and Burges, C.J. (2014). The MNIST database of handwritten
digits. Data retrieved from http://yann.lecun.com/exdb/mnist/.

Louizos, C., Shalit, U., Mooij, J.M., Sontag, D., Zemel, R. and Welling, M. (2017).
Causal e�ect inference with deep latent-variable models. In: Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. and Garnett,
R. (eds.), Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc.

McCarthy, A.D., Li, X., Gu, J. and Dong, N. (2020). Addressing posterior collapse
with mutual information for improved variational neural machine translation. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pp. 8512�8525. Association for Computational Linguistics, Online.

Melis, G., György, A. and Blunsom, P. (2022). Mutual information constraints
for Monte Carlo objectives to prevent posterior collapse especially in language
modelling. Journal of Machine Learning Research, vol. 23, no. 75, pp. 1�36.

Mescheder, L., Nowozin, S. and Geiger, A. (2017). Adversarial variational Bayes:
Unifying variational autoencoders and generative adversarial networks. In: Pre-
cup, D. and Teh, Y.W. (eds.), Proceedings of the 34th International Conference
on Machine Learning, vol. 70 of Proceedings of Machine Learning Research, pp.
2391�2400. PMLR.

Minka, T.P. (2001). Expectation propagation for approximate Bayesian inference. In:
Proceedings of the Seventeenth Conference on Uncertainty in Arti�cial Intelligence,
pp. 362�369. Morgan Kaufmann Publishers Inc. ISBN 1558608001.

Misra, D. (2020). Mish: A self regularized non-monotonic activation function. In:
31st British Machine Vision Conference.

Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y. (2018). Spectral normalization
for generative adversarial networks. In: 6th International Conference on Learning
Representations.

Mouton, J. and Kroon, S. (2022a). Graphical residual �ows. In: ICLR Workshop
on Deep Generative Models for Highly Structured Data.

Mouton, J. and Kroon, S. (2022b). SIReN-VAE: Leveraging �ows and amortized
inference for Bayesian networks. In: ICLR Workshop on Deep Generative Models
for Highly Structured Data.

Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
ISBN 978-0-262-01802-9.

Murphy, K.P., Weiss, Y. and Jordan, M.I. (1999). Loopy belief propagation for
approximate inference: An empirical study. In: Proceedings of the Fifteenth Con-
ference on Uncertainty in Arti�cial Intelligence, pp. 467�475. Morgan Kaufmann
Publishers Inc. ISBN 1558606149.

Stellenbosch University https://scholar.sun.ac.za

http://yann.lecun.com/exdb/mnist/

LIST OF REFERENCES 151

Nielsen, F. (2010). A family of statistical symmetric divergences based on Jensen's
inequality. arXiv preprint arXiv:1009.4004.

O'Searcoid, M. (2006). Metric Spaces. Springer Undergraduate Mathematics Series.
Springer London. ISBN 9781846286278.

Paige, B. and Wood, F. (2016). Inference networks for sequential Monte Carlo in
graphical models. In: Balcan, M.F. and Weinberger, K.Q. (eds.), Proceedings of
The 33rd International Conference on Machine Learning, vol. 48 of Proceedings of
Machine Learning Research, pp. 3040�3049. PMLR.

Papaconstantinou, C., Theocharous, G. and Mahadevan, S. (1998). An expert system
for assigning patients into clinical trials based on Bayesian networks. Journal of
Medical Systems, vol. 22, no. 3, pp. 189�202.

Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S. and Lakshmi-
narayanan, B. (2021). Normalizing �ows for probabilistic modeling and inference.
Journal of Machine Learning Research, vol. 22, no. 57, pp. 1�64.

Papamakarios, G., Pavlakou, T. and Murray, I. (2017). Masked autoregressive �ow
for density estimation. In: Advances in Neural Information Processing Systems,
pp. 2335�2344. Curran Associates, Inc.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chin-
tala, S. (2019). PyTorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.
and Garnett, R. (eds.), Advances in Neural Information Processing Systems 32,
pp. 8024�8035. Curran Associates, Inc.

Protter, M.H. and Morrey, Jr, C.B. (2009). Intermediate Calculus. 2nd edn. Springer.
ISBN 978-1-4612-7006-5.

Rainforth, T., Kosiorek, A., Le, T.A., Maddison, C., Igl, M., Wood, F. and Teh,
Y.W. (2018). Tighter variational bounds are not necessarily better. In: Dy, J. and
Krause, A. (eds.), Proceedings of the 35th International Conference on Machine
Learning, vol. 80 of Proceedings of Machine Learning Research, pp. 4277�4285.
PMLR.

Ramachandran, P., Zoph, B. and Le, Q.V. (2017). Searching for activation functions.
arXiv preprint arXiv:1710.05941.

Ranganath, R., Tang, L., Charlin, L. and Blei, D. (2015). Deep exponential families.
In: Lebanon, G. and Vishwanathan, S.V.N. (eds.), Proceedings of the Eighteenth
International Conference on Arti�cial Intelligence and Statistics, vol. 38 of Pro-
ceedings of Machine Learning Research, pp. 762�771. PMLR.

Razavi, A., van den Oord, A., Poole, B. and Vinyals, O. (2019). Preventing pos-
terior collapse with delta-VAEs. In: 7th International Conference on Learning
Representations. OpenReview.net.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 152

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing �ows.
In: Proceedings of the 32nd International Conference on Machine Learning, pp.
1530�1538. PMLR.

Rezende, D.J., Mohamed, S. and Wierstra, D. (2014). Stochastic backpropagation
and approximate inference in deep generative models. In: Xing, E.P. and Jebara,
T. (eds.), Proceedings of the 31st International Conference on Machine Learn-
ing, vol. 32 of Proceedings of Machine Learning Research, pp. 1278�1286. PMLR,
Bejing, China.

Roeder, G., Wu, Y. and Duvenaud, D.K. (2017). Sticking the landing: Simple, lower-
variance gradient estimators for variational inference. In: Guyon, I., von Luxburg,
U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc.

Rosca, M., Lakshminarayanan, B. and Mohamed, S. (2018). Distribution matching
in variational inference. arXiv preprint arXiv:1802.06847.

Sachs, K., Perez, O., Pe'er, D., Lau�enburger, D.A. and Nolan, G.P. (2005). Causal
protein-signaling networks derived from multiparameter single-cell data. Science,
vol. 308, no. 5721, pp. 523�529.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K. and Muller, K.-R. (2019).
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. 1st edn.
Springer. ISBN 3030289532.

Scutari, M. (2022). Bayesian network repository.
Available at: https://www.bnlearn.com/bnrepository/

Seitzer, M. (2020). pytorch-�d: FID Score for PyTorch. https://github.com/

mseitzer/pytorch-fid. Version 0.2.1.

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379�423.

Sharma, A.K., Kukreja, R., Prasad, R. and Rao, S. (2021). DAGSurv: Directed
ayclic graph based survival analysis using deep neural networks. In: Balasub-
ramanian, V.N. and Tsang, I. (eds.), Proceedings of The 13th Asian Conference
on Machine Learning, vol. 157 of Proceedings of Machine Learning Research, pp.
1065�1080. PMLR.

Silvestri, G., Fertig, E., Moore, D. and Ambrogioni, L. (2022). Embedded-model
�ows: Combining the inductive biases of model-free deep learning and explicit
probabilistic modeling. In: The Tenth International Conference on Learning Rep-
resentations. OpenReview.net.

Sohn, K., Lee, H. and Yan, X. (2015). Learning structured output representation
using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M. and Garnett, R. (eds.), Advances in Neural Information Processing
Systems, vol. 28. Curran Associates, Inc.

Stellenbosch University https://scholar.sun.ac.za

https://www.bnlearn.com/bnrepository/
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

LIST OF REFERENCES 153

Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K. and Winther, O. (2016).
Ladder variational autoencoders. In: Lee, D., Sugiyama, M., von Luxburg, U.,
Guyon, I. and Garnett, R. (eds.), Advances in Neural Information Processing
Systems, vol. 29. Curran Associates, Inc.

Song, Y., Meng, C. and Ermon, S. (2019). MintNet: Building invertible neural net-
works with masked convolutions. In: Advances in Neural Information Processing
Systems, pp. 11004�11014. Curran Associates, Inc.

Srivastava, R.K., Gre�, K. and Schmidhuber, J. (2015). Highway networks. arXiv
preprint arXiv:1505.00387.

Stuhlmuller, A., Taylor, J. and Goodman, N. (2013). Learning stochastic inverses. In:
Burges, C., Bottou, L., Welling, M., Ghahramani, Z. and Weinberger, K. (eds.),
Advances in Neural Information Processing Systems, vol. 26. Curran Associates,
Inc.

Suzuki, T., Sugiyama, M., Sese, J. and Kanamori, T. (2008). Approximating mutual
information by maximum likelihood density ratio estimation. In: Saeys, Y., Liu,
H., Inza, I., Wehenkel, L. and van de Pee, Y. (eds.), Proceedings of the Workshop
on New Challenges for Feature Selection in Data Mining and Knowledge Discovery
at ECML/PKDD, vol. 4 of Proceedings of Machine Learning Research, pp. 5�20.
PMLR.

Tabak, E.G. and Turner, C.V. (2013). A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, vol. 66, no. 2,
pp. 145�164.

Takahashi, H., Iwata, T., Yamanaka, Y., Yamada, M. and Yagi, S. (2019). Vari-
ational autoencoder with implicit optimal priors. In: Proceedings of the Thirty-
Third AAAI Conference on Arti�cial Intelligence and Thirty-First Innovative Ap-
plications of Arti�cial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Arti�cial Intelligence. AAAI Press. ISBN 978-1-57735-
809-1.

Tegnér, G. (2020). mine-pytorch: Mutual Information Neural Estimation. https:

//github.com/gtegner/mine-pytorch.

Tomczak, J. and Welling, M. (2018). VAE with a VampPrior. In: Storkey, A. and
Perez-Cruz, F. (eds.), Proceedings of the Twenty-First International Conference
on Arti�cial Intelligence and Statistics, vol. 84 of Proceedings of Machine Learning
Research, pp. 1214�1223. PMLR.

Tran, D., Vafa, K., Agrawal, K., Dinh, L. and Poole, B. (2019). Discrete �ows:
Invertible generative models of discrete data. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché Buc, F., Fox, E. and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, vol. 32. Curran Associates, Inc.

Stellenbosch University https://scholar.sun.ac.za

https://github.com/gtegner/mine-pytorch
https://github.com/gtegner/mine-pytorch

LIST OF REFERENCES 154

Tucker, G., Lawson, D., Gu, S. and Maddison, C.J. (2018). Doubly reparameterized
gradient estimators for Monte Carlo objectives. In: 1st Symposium on Advances
in Approximate Bayesian Inference, pp. 1�14.

Vahdat, A., Andriyash, E. and Macready, W. (2020 13�18). Undirected graphical
models as approximate posteriors. In: III, H.D. and Singh, A. (eds.), Proceedings
of the 37th International Conference on Machine Learning, vol. 119 of Proceedings
of Machine Learning Research, pp. 9680�9689. PMLR.

Vahdat, A. and Kautz, J. (2020). NVAE: A deep hierarchical variational autoencoder.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. and Lin, H. (eds.),
Advances in Neural Information Processing Systems, vol. 33, pp. 19667�19679.
Curran Associates, Inc.

Vaitl, L., Nicoli, K.A., Nakajima, S. and Kessel, P. (2022). Gradients should stay on
path: Better estimators of the reverse- and forward KL-divergence for normalizing
�ows. Machine Learning: Science and Technology, vol. 3, no. 4.

van de Meent, J.-W., Paige, B., Yang, H. and Wood, F. (2018). An introduction to
probabilistic programming. Foundations and Trends® in Machine Learning, pp.
1�209.

van den Berg, R., Hasenclever, L., Tomczak, J. and Welling, M. (2018). Sylvester
normalizing �ows for variational inference. In: Proceedings of the 34th Conference
on Uncertainty in Arti�cial Intelligence, pp. 393�402. AUAI Press.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. and Kavukcuoglu, K. (2016). WaveNet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499.

van Hulle, M.M. (2005). Edgeworth approximation of multivariate di�erential en-
tropy. Neural Computation, vol. 17, no. 9, pp. 1903�1910. ISSN 0899-7667.

Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A. and Russell, A. (2018). Modeling
air pollution, climate, and health data using Bayesian networks: A case study of
the English regions. Earth and Space Science, vol. 5, no. 4, pp. 76�88.

Von Mises, R. and Pollaczeck-Geiringer, H. (1929). Praktische Verfahren der Gle-
ichungsau�ösung [Practical methods of solving equations]. Journal of Applied
Mathematics and Mechanics, vol. 9, no. 2, pp. 152�164.

Webb, S., Golinski, A., Zinkov, R., Siddharth, N., Rainforth, T., Teh, Y.W. and
Wood, F. (2018). Faithful inversion of generative models for e�ective amortized
inference. In: Advances in Neural Information Processing Systems, pp. 3070�3080.
Curran Associates, Inc.

Wehenkel, A. and Louppe, G. (2019). Unconstrained monotonic neural networks.
In: Advances in Neural Information Processing Systems. Curran Associates, Inc.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 155

Wehenkel, A. and Louppe, G. (2020). You say normalizing �ows I see Bayesian
networks. In: 2nd Workshop on Invertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models (ICML).

Wehenkel, A. and Louppe, G. (2021). Graphical normalizing �ows. In: Proceedings
of The 24th International Conference on Arti�cial Intelligence and Statistics, pp.
37�45. PMLR.

Weilbach, C., Beronov, B., Wood, F. and Harvey, W. (2020). Structured conditional
continuous normalizing �ows for e�cient amortized inference in graphical models.
In: Proceedings of the 23rd International Conference on Arti�cial Intelligence and
Statistics, pp. 4441�4451. PMLR.

Weilbach, C., Harvey, W. and Wood, F. (2021). Graphically structured di�usion
models. arXiv preprint arXiv:2210.11633.

Williams, R.J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, vol. 8, no. 3�4, pp. 229�256.
ISSN 0885-6125.

Withers, C.S. and Nadarajah, S. (2010). log det a = tr log a. International Journal of
Mathematical Education in Science and Technology, vol. 41, no. 8, pp. 1121�1124.

Wyner, A. (1978). A de�nition of conditional mutual information for arbitrary en-
sembles. Information and Control, vol. 38, no. 1, pp. 51�59. ISSN 0019-9958.

Xu, H., Chen, W., Lai, J., Li, Z., Zhao, Y. and Pei, D. (2019). On the necessity
and e�ectiveness of learning the prior of variational auto-encoder. arXiv preprint
arXiv:1905.13452.

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	Notation
	Introduction
	Problem Statement & Research Questions
	General Problem Statement
	Context
	Research Questions

	Objectives
	Contributions
	Outline

	Background
	Probabilistic Graphical Models
	Bayesian Networks

	Probabilistic Latent Variable Models
	Inference

	Normalizing Flows
	Finite Flows
	Continuous Flows
	Primary Applications of NFs
	Invertibility of Flows in Practice

	Variational Autoencoders
	Simultaneously Learning a Model and Approximate Posterior
	The Evidence Lower Bound
	Estimating the Marginal
	Posterior Collapse
	Interpretability of Deep Latent Variable Models

	Conclusion

	Literature Review
	Normalizing Flows with Graphical Structures
	Finite Flows with Graphical Structures
	Continuous Flows with Graphical Structures
	Related Work

	Adding Structure to VAEs
	Increasing Latent Space Complexity
	VAEs with Graphical Structures

	Graphical Residual Flows
	Encoding Structure in Residual Flows
	Extending MADE for Arbitrary Graphical Structures
	Computing the Jacobian Determinant
	Reducing Memory Requirements

	Variational Inference
	Formalizing the Encoded Dependency Structure
	Inverting GRFs
	Invertibility of Graphical Flows in Practice
	LipMish Activation Function
	Conclusion

	Empirical Investigation I: GRF
	Methodology
	Datasets & Bayesian Networks
	Model Architectures & Training

	Density Estimation & Inference Performance
	Inversion
	Conclusion

	SIReN-VAE
	Structuring VAEs with Graphical Residual Flows
	Modifications to the Generative Phase
	Modifications to the Inference Phase

	Posterior Collapse in a Structured Latent Space
	Conclusion

	Empirical Investigation II: SIReN-VAE
	Methodology
	Datasets & Bayesian Networks
	Model Architecture & Training

	Effect of GRFs on the Latent Distribution
	Incorporating Graphical Structures
	Addressing Posterior Collapse
	Effect of Encoded Structure on Posterior Collapse
	Mitigating Posterior Collapse

	Interpretability of the Learned Latent Space
	Benefit of Incorporating Graphical Structures in Data-sparse Settings
	Conclusion

	Conclusion
	Summary & Key Findings
	Graphical Residual Flows
	Structured Invertible Residual Network VAE

	Future Work

	Appendices
	Empirical Investigations
	Empirical Investigation I: GRF
	Datasets & Bayesian Networks
	Model Architectures
	Implementation Details
	Additional Results

	Empirical Investigation II: SIReN-VAE
	Datasets & Bayesian Networks
	Model Architectures

	Additional Theoretical Background
	Key Mathematical Findings
	Leibniz Integral Rule

	Additional Derivations
	Lipschitz Constant of Composition of Functions
	DReG Derivation

	Reproducing SCCNF Article Results
	List of References

