
.'

Efficiency Issues in the Design ora MOClel Checker

. ::~... '"
" ~.,

A THESIS PRESENTED IN PARTIAL FULFILMENT ..

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT THE UNIVERSITY OF STELLENBOSCH

By

J aco Geldenhuys

November 1999

. ~upervised by: P. J. A. de Villiers

mseyf
Rectangle

Declaration

I the undersigned hereby declare that the work contained in this thesis is my own original work

and has not previously in its entirety or in part been submitted at any university for a degree.

Signature, ~. j(-A, 2 . Z doo
Date: ... 7

11

Stellenbosch University https://scholar.sun.ac.za

mseyf
Rectangle

Summary

A model checker is a program that verifies, without human assistance, that the formal de­

scription of a system has specified, desirable properties. T~e development of model checking

algorithms is an active area of research, but most implementations are still prototypical in na­

ture. In consequence, knowledge about the design and implementation of a practical, efficient

model checker is limited.

In this thesis the most important design decisions involved in creating an efficient on-the-fly

model checker are identified and discussed. In short, there are three major tasks:

1. the generation of program states,

2. the detection of revisited states, and

3. the representation of states.

In all three cases the central goal is to generate as many states as possible and to generate

states as fast as possible. For each task, alternatives are described and compared.

The discussion of design issues is further supported in two ways. First, a detailed design and

implementation for a model checker is described to illustrate how design decisions affect each

other and ultimately the implementation. Second, the design arguments, based on more or

less realistic models, are validated through a thorough study of the performance of the various

components of the model checker.

III

Stellenbosch University https://scholar.sun.ac.za

Afrikaans summary

'n Modeltoetser is 'n program wat ~stel of die formele beskrywing van 'n stelsel oor wenslike,

vooraf-gespesifiseerde eienskappe beskik. Die ontwikkeling v~n algoritmes vir hierdie doel word

aktief nagevors, maar in die meeste gevalle is implementasies van modeltoetsers van 'n bloot

prototipiese aard. Gevolglik is kennis oor die ontwerp en implementering van 'n praktiese,

effektiewe modeltoetser so skaars soos hoendertande.

Hierdie tesis bespreek die belangrikste ontwerpsbesluite in die ontwikkeling van 'n effektiewe

modeltoetser. Drie hooftake word geldentifiseer:

1. die voortbrengs van state (programtoestande),

2. die herkenning van reeds bekende state, en

3. die interne voorstelling van state.

In al drie gevalle is die belangrikste doelwit om so veel as moontlik state voort te bring, en

om state so vinnig as moontlik voort te bring. Vir elke taak word alternatiewe bespreek en

vergelyk.

Die bespreking word verder op twee maniere ondersteun. Eerstens word 'n modeltoetser se

ontwerp en implementasie in detail beskryf om die invloed van ontwerpsbesluite op mekaar

en op die uiteindelike implementasie te illustreer. Tweedens word die argumente, tot dusver

gebaseer op redelike aannames, gevalideer deur 'n deeglike studie van die werkverrigting van

die modeltoetser se onderskeie onderdele.

IV

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements·

I have accrued quife a debt of gratitude while writing this thesis:

• First and foremost, I would like to thank my supervisor PieteI: de V'illiers for advice,

guidance and general kindness far beyond the call of duty.

• I am indebted to all the members, past and present, of the Hybrid/Gneiss project for

providing a stimulating work environment.

• My thanks to the Department of Computer Science at Stelleilbosch University and the

Software Systems Laboratory at Tampere University of Technology who have been gen­

erous with their time to allow me to finish this work.

• I gratefully acknowledge the financial support I received from the Foundation· for Research

and Development, the Harry Crossley Trust and the Stellenbosch 2000 Trust.

Finally, thank you to my forbearing family and friends for their loyal support and continuous

encouragement. Without you, ...

v

Stellenbosch University https://scholar.sun.ac.za

For MMSG and MEJO

vi

Stellenbosch University https://scholar.sun.ac.za

Contents

1 Introduction

2 An overview of model checking

2.1 Finite transition systems .

2.2 Temporallogic

2.2.1 CTL ..

2.2.2 Correctness specifications

2.3 Model checking algorithms

2.3.1

2.3.2

2.3.3

Automata-based algorithms

Structure-based algorithms

Avoiding redundant work

2.4 The state explosion problem.

2.5 Fairness

3 Design issues

3.1 Requirements

3.2 State generation

vii

1

4

4

7

8

9

9

10

11

11

12

13

16

18

20

Stellenbosch University https://scholar.sun.ac.za

3.3

3.4

3.5

3.2.1 The execution of transitions .

3.2.2 Non-determinism

3.2.3 Communication .

3.2.4 Dynamic process creation

The detection of revisited states.

3.3.1 State caching . .

3.3.2 Bitstate hashing

3.3.3 State caching v. bitstate hashing

3.3.4 Implicit representations

The representation of states

3.4.1

3.4.2

3.4.3

General issues. . . .

Representation· techniques

State compaction .

Fairness

3.5.1

3.5.2

3.5.3

Impartiality .

Strong fairness

Weak fairness .

4 Implementation of a model checker

4.1 State generation

4.1.1 Procedures Execute and Backtrack

4.1.2 The architecture of the abstract machine

4.1.3 The structure of the stack .

viii

21

26

28

32

33

33

35

35

36

36

37

39

41

44

44

45

46

47

48

49

51

62

Stellenbosch University https://scholar.sun.ac.za

4.2

4.3

4.4

State caching . .

State compaction

The implementation of fairness

Simplifying assumptions . ••••••• '0 •••••••••••••••••• 4.4.1

4.4.2

4.4.3

4.4.4

Procedures Push and Pop

Tarjan's original algorithm

Integration into Push and Pop .

5 Evaluation

5.1 State compaction

5.1.1

5.1.2

Number of compaction operations

Validating without compaction

- 5.2 State caching

5.3

5.4

5.5

5.2.1

5.2.2

The influence of cache size.

The influence of tolerance parameters

The cost of fairness

5.3.1

5.3.2

The detection of SCCs

Model checking overhead

Interpretation

5.4.1

5.4.2

Interpreter v. pre-compiled state generator

The composition of the instruction set

Overall performance

5.6 Summary

IX

63

65

66

67

67

68

71

76

78

78

79

80

81

84

86

87

88

89

90

92

94

96

Stellenbosch University https://scholar.sun.ac.za

6 Conciusion

A Model source code

A.l Model of seven dining philosophers (DP7)

A.2 Model of the elevator with three floors (EL3)

A.3 Model of the process scheduler with one process (PSI)

A.4 Model of the sliding window protocol with window size one (SWl)

B Model analysis details

B.l Measurements for dining philosophers models (DPn)

B.2 Measurements for elevator models (ELn)

B.3 Measurements for process scheduler models (PSn)

B.4 Measurements for sliding window protocol models (SWn)

C Abstract instruction set

C.l Arithmetic instructions

C.2 Memory manipulation instructions

C.3 List manipulation instructions.

C.4 Communication instructions.

C.5 Control flow instructions .

C.6 Miscellaneous instructions

D The ESML modelling language

D.l Constant, type and variable definitions.

D.2 Expressions

x

97

99

100

102

105

108

111

113

114

115

116

117

117

118

118

118

119

119

120

121

123

Stellenbosch University https://scholar.sun.ac.za

D.3 'Commands . . " ...

D.4 Processes and models

D.5 A grammar for ESML

Bibliography

Bibliographic cross-reference

xi

124

127

128

132

138

Stellenbosch University https://scholar.sun.ac.za

List of Tables

5.1 Models selected for performance measurements 77

5.2 Count of compaction operations for the sliding window protocol models (SWn) 78

5.3 Performance of the model checker with and without compaction.

5.4 Overhead of SCC detection

5.5 SCC sizes and stack requirements .

5.6 Four verification runs of the process scheduler model (PS2)

5.7 Execution profile of the model checker for EL4

5.8 Instruction frequency for DP9, EL4 and PS3

5.9 Comparison of Promela and ESML models

xii

80

87

88

89

91

92

95

Stellenbosch University https://scholar.sun.ac.za

..

List of Figures

2.1 State graph of FTS M 6

2.2 State graph representing the mutual exclusion problem . 6

2.3 Automaton that accepts AG(t::::} AF(c)) 10

2.4 Reduced state graph of the mutual exclusion problem· 13

2.5 State graph with fairness problems 13

3.1 Exhaustive depth-first exploration of a simple state graph 19

3.2 The transition table and code generated for process Counter 23

3.3 Abstract code for process Counter 25

3.4 ESML model of the mutual exclusion problem. 27

3.5 Interaction of channel queues and POLL commands 30

3.6 Process .state enumeration 41

4.1 Module structure of the model checker 48

4.2 Procedure Execute . . 49

4.3 Procedure Backtrack 51

4.4 Key data structures of the interpreter 52

4.5 Procedure Step 53

xiii

Stellenbosch University https://scholar.sun.ac.za

4.6 Implementation of the add instruction

4.7 Code generated for the assignment x : = x - 1

4.8 Implementation of the popVariable instruction .

4.9 Code generated for an IF command

4.10 Code generated for a POLL command

4.11 Implementation of the index instruction .

4.12 Illustration of the operation of the delta store

4.13 Definition of the StackEntry type

4.14 Definition of the CacheEntry type

4.15 Modified definition of the StackEntry type

4.16 Procedure GetValue ..

4.17 Procedure UpdateValue

4.18 Procedure Push .

4.19 Procedure Pop .

4.20 Depth-first search of state graphs

4.21 Tarjan's original algorithm.

4.22 SCC and depth-first stack

4.23 Modified procedure Push.

4.24 Modified procedure Pop .

5.1 Influence of cache size on performance for the elevator model (EL3)

5.2 Number of visits per state for the elevator model (EL3)

55

56

57

58

60

61

63

63

64

64

66

66

68

68

69

70

72

74

74

82

83

5.3 Details of influence of cache size on transitions for the elevator model (EL3) 84

XlV

Stellenbosch University https://scholar.sun.ac.za

5.4 Insertion algorithm for the state cache 85

xv

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Computer software is playing an ever-increasing role in our lives. At the same time, software

is growing in complexity to meet the demands of greater scale and functionality. And yet

we are still trapped in the midst of the software crisis that was identified in the mid sixties.

Despite advances in the. development of software, software remains expensive to produce and

its quality remains difficult to measure and ensure. While we can sometimes tolerate a degree

of unreliability, there are many cases where subtle errors in software can cause a catastrophic

loss in money, time and even human life.

One recourse for the development of systems for which correctness is critical, is the use of

formal methods. Over the last twenty years formal methods-the systematic application of

mathematical rigour to program development-has met with growing success. One aspect of

this has been the evolution of computer-aided verification, and one of the most successful of

these techniques is model checking.

A model checker is a program that verifies, without human assistance, that the formal descrip­

tion of a system has specified, desirable properties. It operates by investigating all the possible

states that the system can assume. The success of model checking is due to many factors: once

the user has specified the system and its correctness properties the process is fully automatic

and requires no expert or theoretical knowledge; it is fast compared to other methods of proving

correctness; in many cases a model checker can provide, at little additional cost, witnesses to

show why a property holds and even more useful counterexamples to show why a property fails

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

to hold; model checkers allow users to specify systems in an intuitive way and logics can easily

express many interesting concurrency properties.

Safety-critical software are often instances of reactive systems: programs that do not terminate

but engage in continuous interaction with their environment. Correctness is important because

reactive systems are often widely used (for example, communication protocols), perform life­

critical functions (aircraft control systems), or are expensive to produce and modify (embedded

control software for microprocessors) .. Reactive systems are complicated by the fact that they

usually consist of several processes executing concurrently. Model checkers are suitable tools

for the development of correct reactive systems.

The study of model checking algorithms is an active area' of research, but when it comes to

implementations the focus of most efforts falls on experimental purposes with more attention

paid to quickly obtaining a working prototype, and less to efficiency concerns. In consequence,

documentation about the design and implementation of a practical, industrial-strength model

checker is limited. (A singular exception is the SPIN system, which is arguably the most widely

used and best documented model checker at present [34].) As research in this field advances,

the application of model checking to meaningful real-world problems to obtain useful results

is becoming more viable, and consequently knowledge about the design of model checkers is

becoming increasingly valuable.

The goal of this thesis

There are several approaches to the model checking problem; we will concentrate on on-the-fiy

model checking, a suitable technique for the verification of software designs. In this thesis the

most important design decisions involved in creating an efficient on-the-fiy model checker are

identified and discussed. In short, there are three major tasks:

1. the generation of program states,

2. the detection of revisited states, and

3. the representation of states.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

In all three cases the central goal is to generate (and store). as many states as possible and

to generate states as fast as possible. For each task, alternative techniques are described and

compared.

The discussion of design issues is further supported in two ways. First, a detailed desig~ and

implementation of a model checker made by the author is described to demonstrate how design

decisions affect each other and ultimately also the implementation. Second, a thorough evalu­

ation of the model checker's performance lends weight to the central arguments by illustrating

the actual cost of design choices.

Thesis outline

Chapter 2: An overview of model checking introduces finite transition systems and

temporal logic, describes the model checking problem and presents a brief overview of on­

the-fly model checking. The major obstacle in model checking software is that the number of

states grow exponentially in the number of variables and processes; this so-called state explosion

problem is discussed, and lastly the issue of fairness is addressed.

Chapter 3: Design issues forms the core of the thesis. It defines the major components of

a model checker and their interface with the model checking algorithm. For each component

its critical issues are described and different design alternatives are presented and evaluated.

In Chapter 4: Implementation of a model checker the design of an actual model checker

is described down to the level of implementation, where appropriate. The model checker uses

an on-the-fly algorithm for a subset of CTL, a cache of compacted states, and includes support

for strong fairness. A central feature of this system is that states are generated by an abstract

machine interpreter.

Chapter 5: Evaluation presents the results of experiments conducted to measure the per­

formance of various components of the model checker. This includes the performance effects of

state compaction, state caching, SCC detection (for strong fairness), and interpretation. As a

benchmark, the model checker is compared to the SPIN system.

Lastly, a summary and conclusions are given in Chapter 6: Conclusion.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

An overview of model checking

A model checker is a program that verifies automatically that the formal description of a system

has specified, desirable correctness properties. This process involves three key -iIigredients:

• a formalism for describing the behaviour of systems in a formal and precise way,

• a formalism for expressing the properties to be verified, and

• an algorithm that will perform the verification.

These requirements are addressed in the first three sections of this chapter.

Unfortunately, model checkers cannot verify the correctness properties of arbitrarily large sys­

tems. Compared to actual implementations, the systems that can be verified are relatively tiny.

This limitation, known as the state explosion problem, is discussed in Section 2.4. A secondary

aspect of verification important for checking certain properties is fairness; this is the topic of

Section 2.5.

2.1 Finite transition systems

To study the properties of a concurrent system, its behaviour must b.e described in a precise

way: formal notation is needed. A suitable notation is a finite transition system (FTS). An

4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 5

FTS is a tuple M = (5, T, R, s) where

• 5 is a finite set of states,

• T is a finite set of transitions,

• R ~ 5 x T x 5 is the transition relation, and

• s E 5 is the initial state.

A state is a canonical description of a system at a specific moment in time. It uniquely identifies

the values of location counte!,s, variables, queue contents and other data structures. A transition

is an atomic step that makes a system change from one state into another. When (s, t, S') E R

it means that transition t is enabled in state s and its execution will change the state of the

system from s to S'. This is abbreviated as s ~ S' and state S' is called a successor state

of s. The set of all enabled transitions in state s is denoted by en(s). A path, or sometimes

execution path, is a (possibly infinite) sequence of states (1 = so, Sl, S2, . .. so that for all i > 1

there is a transition ti such that (Si-1, ti, Si) E R. In the case of a finite path, the sequence has

a last state Sn with n > 0, so that (Si-1,ti, Si) E R only for 1 < i ::;; n, and the length of the

path is said to be n. State S' is reachable from state s if there is a finite path (1 = so, Sl, ... , Sn

so that s = So and S' = Sn. This is written as S ~ S'.

An FTS is used to describe the behavioUr of a concurrent system that results from the in­

teraction of one or more processes. The set of transitions can be partitioned into a set

T = {To, Tl, ... , Tm}. Each Tk is the subset of T that contains the transitions that belong

to process k.

An FTS can be interpreted as a directed graph by taking 5 as the set of vertices and R as the

set of labeled edges. This is called a state graph, and it is useful for visualising the behaviour of

the system it describes. When an FTS is represented in this way, the initial state is indicated

by a source-less arrow pointing at its vertex.

Figure 2.1 shows an example of a state graph. It describes a process that starts in state

n (for goncritical). It then moves to state t (for trying). In this state the process tries to

enter state c (for fritical), where it performs critical operations before returning to state n.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 6

exit

Figure 2.1: State graph of FTS M

The transitions that are executed are try, enter, and exit, . and the underlying FTS is M =

({n, t, c}, {try, enter, exit}, R, n). The set R is R = {(n , try, t), (t, enter, c), (c, exit, n)} .

FTS M describes the behaviour of one process; the concurrent behaviour of two such processes

is depicted in Figure 2.2. The transition labels have been omitted for the sake of clarity.

The state names indicate the state of each of the two processes. For example, in state tc the

first process is in its trying state, while the second process is in its critical state. This state

graph represents an instance of the mutual exclusion problem: only one process at a time is

allowed to enter its critical state. For this reason, the state graph does not contain all possible

combinations of states of M: state cc is missing.

Figure 2.2: State graph representing the mutual exclusion problem

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 7

2.2 Temporallogic

Classical propositional logic has proven successful for reasoning about programs that accept

input, perform a computation to transform it, and to' finally yield output. It is convenient

to view these programs as relations from an initial state to a final state: One example of

this approach is Dijkstra's weakest precondition calculus [16]. However, concurrent systems

cp,nnot be adequately described in this way. For these systems the use of temporal logic is

recommended, since it can express the ordering of events in time without introducing time

explicitly. The use .of temporal logic for reasoning about concurrent systems was pioneered by

Pnueli in 1977 [45].

There are two varieties of temporal logic: linear time and branching time. Linear time temporal

logic (for example, (Propositional) Linear Time Logic (LTL) [41]) is concerned with logical

properties of a single execution path of a system. Linear temporal logic formulas express

properties that must hold for every possible path starting at the initial state. Since each

state . may have several possible successor states there may be many different paths that start

in the initial state. Any particular path is one "branch" of the tree of all possible future

states. Branching time temporal logic (for example, Computation Tree Logic (CTL) [10]) can

distinguish between properties that must hold in all possible futures and those that must hold

in at least one possible future.

Since their very formulation, there has been some deba~e over the relative merits of linear and

branching time temporal logic [18, 28, 39, 42]. In an attempt to resolve this question, Emerson

formulated a new temporal logic CTL* that contains both LTL and CTL [18, 19]. He showed

that the two logics are not comparable in expressive power. In other words, LTL can express

properties that CTL cannot, and vice versa.

Although both LTL and CTL are widely used for rtodel checking, in the rest of this thesis

correctness specifications are expressed in CTL.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 8'

2.2.1 CTL

CTL was introduced by Clarke and Emerson [10] in 1981. For our purposes, an informal

description suffices-for a thorough logical treatment the reader is referred to [17]. Formally,

the semantics of CTL is defined with respect to a K ripke structure, but the above definition

of an FTS is almost sufficient: the only addition is that of a set of atomic propositions. Each

element of this set is a proposition that has a value of either true or false in every state. An

example of an atomic proposition is x ~ 5: this formula is true in some states (those where x

has a value greater than or equal to five) and false in all others. Often atomic propositions are

not specified explicitly, but are referred to by names such as "p" and "q".

CTL contains all of the classical propositional calculus: atomic propositions (p, q, r, ...), bi­

nary operators (1\, V, =?, <=», and negation (--,). In addition, the logic contains eight temporal

operators. Each of these consists of two symbols: one path quantifier, either A ("for all execu­

tion paths") or E ("for at least one execution path"), and one state quantifier, G ("always"),

F ("eventually")' X ("next state"), or U ("until"). The resulting operators are interpreted in

the following way:

• AG (<p) along all paths, <p holds in all states

• EG(if;) along some path, if; holds in all states

• AF(if;) along all paths, there is a state where if; holds; if; is inevitable

• EF(if;) along some path, there is a state where <p holds; if; is possible

• AX (if;) if; holds in all successor states

• EX (if;) there is a successor state where if; holds

• A(if;U'l/J) along all paths, if; is true until 'l/J becomes true

• E(if;U'l/J) along some path, if; is true until 'l/J becomes true

A temporal formula if; is said to hold for FTS M if if; is true in the initial state s. If this is the

case, M is said to be a model for if;.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING

2.2.2 Correctness specifications

Typical examples of correctness specifications are safety properties, liveness properties, and

precedence properties:

• A safety property expresses the notion that "nothing bad will ever happen", by stating

that some invariant is true at all times. For example, AG(x ~ 1) asserts that x is greater

than or equal to 1 in every state.

• A liveness property states that the truth of one condition will always eventually be fol­

lowed by the truth of another: AG(trying => AF(critical)) asserts that wherever trying

holds, critical will also eventually become true. This is often used to specify that every

request will be met with a response, or that every message sent will be met with a reply.

• Precedence properties state that the truth of one property will be preceded by a period

of continuous truth for another: A(overflow U reset) asserts that overflow remains true

until the moment that reset becomes true.

2.3 Model checking algorithms

The last two sections describe a formalism for the modelling of system behaviour (FTSs) and a

formalism for the specification of correct behaviour (CTL). With this background, it is possible

to give an exact formal definition of the model checking problem: given as input an FTS M

and a temporal logic formula ¢, is M a model for ¢?

This question can be refined even further. The local model checking problem asks whether a

particular state, usually the initial state of a system, satisfies the correctness property, whereas

the global model checking problem aims to determine all states of the system that satisfy the

property. The global version of the problem clearly subsumes the local version.

The first algorithms to decide the model checking problem were developed independently in the

early 1980s by Clarke and Emerson [10] and by Queille and Sifakis [47]. These algorithms build

the entire state graph beforehand and then, starting with atomic propositions and gradually

,
IJ, S,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 10

examining longer sub formulas of the correctness specification, iterate over the state graph until

finally every state is marked with all subformulas of the correctness property that are satisfied

by that particular state.

Although the running time of the algorithm is 0((181 + IRI) x 14>1), where 181 is the number

of states in the state graph, IRI is the number of transitions, and 14>1 is the length of the

correctness property, this approach does not fare well in practice, since it is limited by the

amount of memory needed to store the state graph and the labelling information.

This problem can be overcome by switching to an on-the-fiy model checking algorithm. Instead

of computing the entire state graph beforehand, it is generated on-the-fly as it is being explored.

Only those parts of the state graph that are needed to check the property are generated. In

general, errors are found much earlier and the analysis can terminate as soon as an error is

found. Very different algorithms are required for on-the-fly model checking. Such algorithms

can be classified as one of two types: automata-based and structure-based.

2.3.1 Automata-based algorithms

Regular finite automata that recognise a language of only finite words can easily be extended

to D.-automata that can recognise infinite words. These automata make it possible to translate

a temporal logic formula to an equivalent automaton that recognises exactly those infinite

sequences of states that satisfy the formula. Figure 2.3 shows an automaton that accepts paths

that satisfy AG(t =? AF(c)) . Only paths that visit the state qo infinitely often are accepted.

-,tvc -,c

Figure 2.3: Automaton that accepts AG(t =? AF(c))

Using this knowledge, the model checking problem can be approached in a new way: given a

correctness property 4>, its negation -,4> is encoded as an D.-automaton Mo</>. By computing

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 11

the product of M-,rjJ and an FTS M and checking that this product is empty we can determine

whether M satisfies ¢>. If the product is not empty the FTS contains at least one path that

violates ¢>. The first automata-based model checking algorithms were developed for LTL by

Vardi and Wolper in 1986 [55]; other algorithms for VTL appear in [3, 12], an algorithm for

CTL appears in [4], and for CTL* in [5].

2.3.2 Structure-based algorithms

Several algorithms p.ave been developed that direct the exploration of the state graph based on

the structure of the temporal logic formula itself. Such structure-based algorithms (also known

as subgoaling or induction-based model checking) make use of the inductive definitions of CTL

operators. For example, when checking AG(¢» such an algorithm wouid make use of the fact

that AG(¢» = ¢> /\ AX(AG(¢»). It suffices to check that ¢> holds in the current state, and to

then explore all successor states (because of the AX operator) and check that AG(¢» holds in

each of them.

Another example illustrates how this approach can avoid unnecessary work: to check AG(¢> =>

'IjJ) the algorithm explores the state graph to find states where. ¢> holds. Only in those states is

the formula 'IjJ investigated.

Structure-based algorithms have been developed for CTL [20,56]' and CTL* [5].

2.3.3 Avoiding redundant work

In practice, the majority of states is reachable from the initial state via more than one path. It

is therefore possible that the same state is encountered more than once during the on-the-fly

exploration of the state graph. To avoid unnecessarily re-exploring states the state generator .

must store as many states as possible in the available memory. This task dominates the memory

requirements of most on-the-fly model checkers.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 12

2.4 The state explosion problem

The number of states in almost any system of interest, is huge. The size of the state space of a

system grows exponentially with the number of its processes and variables. This phenomenon

is known as the state explosion problem. At first sight, the state explosio~ problem appears

so formidable that model checking of practical systems seems to be hopeless. However, this

problem has been studied extensively in the literature-a recent survey is [53].

The major source of state explosion is the interleaving of the concurrent actions of component

processes. In the worst case, a system with n non-interacting processes each ~th k local

states has a total of kn global states. This state space con,tains all possible orderings of the

actions. However, many interleavings are equivalent as far as model checking the correctness

specification is concerned and by selecting a single, representative interleaving and ignoring

all other interleavings the amount of work required can be reduced. This idea has led to the

development of a series of techniques starting with ·stubborn sets [51, 52] in 1988 and including

persistent sets [24] and ample sets [44}. These techniques are widely known as partial order

methods.

The basis of these techniques is to define conditions under which some enabled transitions

may be safely ignored while preserving the property under investigation. Figure 2.4 shows

the reduced state graph of the mutual exclusion problem to preserve the property AG{t ~

AF{c)) for the "left-hand" process (cf. Figure 2.2). This reduction is based on the technique

described in [23]. In each of the reduced states, indicated by the darker circles, only one of all

possible transitions was retained. One of eight states and five of fourteen transitions have been

eliminated.

For large state graphs partial order techniques can lead to dramatic increases in both runtime

and memory efficiency. Although these techniques are useful for alleviating the state explosion

problem, they are, due to the limited scope of this thesis, not discussed further.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 13

Figure 2.4: Reduced state graph of the mutual exclusion problem

2.5 Fairness

A last but important aspect of model checking is illustrated by the state graph in Figure 2.5.

Does the formula AF(p) hold for this system? In other words, do all paths starting at So

eventually reach a state where p is true? Apparently there is a valid, infinite execution path

au = So , SI, So , S1, So,··· that violates the formula, since p is false in both So and SI and

therefore false in every state along this path. Even though the transition t2 can make p true,

and is infinitely often enabled along au, it is never executed. Does it make sense to ignore the

transition in this way?

Figure 2.5: State graph with fairness problems

Even though it is the task of a model checker to investigate every possible execution path, the

behaviour typified by au is often undesirable: it is in some sense unfair, and should be excluded

to obtain a more reasonable model of the system.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 14

Consider another example. A system consists of two processes: R, representing a reactive

system, and_E, its environment. Although they interact from time to time, each process

should be allowed to execute internal actions. However, unless the system specifically disallows

it, one possible execution path could contain an infinite number of transitions of E without

ever giving R the opportunity to progress. This is clearly unacceptable.

The kind of restriction placed on the set of accepted execution paths is called fairness con­

straints [21]. In [19] three main forms of fairness are identified:

• Impartiality (or unconditional fairness): a path is impartial if every process is executed

infinitely often along the path.

• Weak fairness: a path is weakly fair if every transition that is enabled almost everywhere

(in other words, in every state of the path from a certain state onwards), is executed

infinitely often.

• Strong fairness: a path is strongly fair if every transition that is enabled infinitely often,

is executed infinitely often.

It is obvious that strong fairness subsumes weak fairness, while impartiality subsumes both

strong and weak fairness. In prac~ice, however, impartiality usually eliminates many paths of

interest.

Fairness is a desirable property for a model checker to support. Not all temporal logic formulas

are affected by fairness. For example, safety properties are valid (or invalid) independently

of fairness constraints. On the other hand, liveness and precedence properties are, in general,

difficult to model check without specifying fairness constraints.

Model checkers without support for fairness would report numerous errors similar to Uu above.

The user of such a model checker has two choices. Firstly, it is possible to explicitly add

fairness constraints to the correctness specification in the form of extra clauses. In the above

case it would have been possible to check the property and at the same time ensure impartiality

towards the process containing transition t2 by extending the specification. It would in fact

be even more desirable to encode strong fairness in this example, but unfortunately CTL is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. AN OVERVIEW OF MODEL CHECKING 15

limited to impartiality and weak fairness [18]. LTL, on the other hand, can express all three

forms of fairness.

The second option is to encode restrictions in the moqel itself. For instance, in the example

above a counter could be introduced to ensure that the, first transition is chosen only a fixed

number of times before the model checker is forced to explore transition t2"
, ,

Model checkers with "native" (built-in) support for fairness automatically ignore all unfair paths

and allow users to concentrate on the essentials of the model. On the other hand, the danger

exists that the corr,ectness of a model will rely on fairness constraints that are not available in

a realistic execution environment; users should be made aware of such assumptions.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Design issues

The design of a model checker starts with the selection of a model checking algorithm. This

entails a choice between L'rL and CTL or perhaps some other temporal logic, between local

and global algorithms, and between structure-based and automata-based algorithms.

Once an algorithm has been selected, it can usually be implemented in a few hundred lines of

code. The focus then turns to the on-the-fiy generation of states, and here the objectives are

simple:

• explore as many states as possible, and

• explore the states as fast as possible.

Another important design decision is the choice of language in which models are expressed.

Finite transition systems do not provide adequate abstractions required by users to describe

complex models. Instead, systems are usually described in a more expressive, higher-level

specification language. The semantics of the specification language dictate to some extent the

design of the state generator, so it is important to study the issues before selecting or designing

a language.

16

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 17"

Guiding" principles

Apart from the stated objectives, there are some overriding, implicit goals such as ensuring

that state exploration is performed correctly and that the implementation is easy to maintain.

The following guidelines, although obvious, are invaluable:

• Prefer simple mechanisms to complex ones. Often a designer faces the option of imple­

menting a complex mechanism to reduce storage or runtime requirements. Sometimes

such a mechanism can lead to a dramatic increase in performance (as is the case with

symbolic model checking [43]), but more often the ultimate effect of an idea is not entirely

clear. All other things being equal, simple mechanisms are easier to implement correctly

and should be preferred to more complex schemes.

• Space efficiency trumps time efficiency. In many cases a trade-off between space and time

efficiency is possible. Space efficiency is more important than runtime efficiency, since

it is usually more acceptable to wait longer for a result, than to find that the analysis

cannot be complefed because the model checker has run out of memory.

• Keep the design structured. The different tasks of the model checker should be relegated to

different components that interact only through ~ell-defined interfaces. Although skeptics

claim that a structured design removes opportunities for optimisations, this approach has

proven itself time and again. Our experience has been that, even though a model checker

may not be large in terms of lines of code, the different algorithms and their interaction

can be exceedingly complex. The separation of concerns afforded by modularisation and

encapsulation can aid the development of a reliable model checker greatly.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 18

3.1 Requirements

To a model checking algorithm the rest' of a model checker is simply an engine that explores the

state graph on-the-fiy in depth-first order. The model checking algorithm guides the exploration

with the following three basic functions:

ExecuteO: Generate the next state from the current state

BacktrackO: Fall back one state

Evaluate(p): Evaluate atomic proposition p in the current state

Procedure Backtrack does not return a value, and Evaluate returns' either true or false to

indicate the value of the atomic proposition. The Execute routine can return the following

values depending on the structure of the state ?raph:

• Forward: a new state has been generated and has become the current state.

• Revisit: a state was generated but it has been explored before. The current state remains

unchanged.

• Loop: a state was generated but it forms a cycle. The current state remains unchanged.

• AllChildrenExplored: all the children of the current state have been explored. The

current state remains unchanged.

• Complete: similar to AllChildrenExplored. In addition, the current state is the root

(initial state) of the state graph.

Figure 3.1 illustrates the interaction between the model checking algorithm and the state gen­

erator during the exhaustive exploration of a simple state graph. The initial state is state 1.

Each row of the table shows the current state, the routine called by the model checking algo..

rithm, the resulting state (the new current state), and the value returned by the routine. As

the example shows, a complete exploration of the state graph requires 2181 - 1 + C calls of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 19

Current state Call Next state Return value
1 Execute 2 Forward
2 Execute 3 Forward

3 Execute 3 Loop

3 Execute 3 AllChildrenExplored
3 Backtrack 2
2 Execute 2 AllChildrenExplored
2 Backtrack 1
1 Execute 4 Forward
4 Execute 4 Revisit
4 Execute .4 . AllChildrenExplored
4 Backtrack 1
1 Execute 1 Complete

Figure 3.1: Exhaustive depth-first exploration of a simple state graph

Execute and lSI - 1 calls of Backtrack, where lSI is the number of states in the state graph,

and C is the number of loops and revisits.

The functioning of the state exploration engine can be broken into three important tasks:

• the generation of states,

• the detection of revisited states, and

• the efficient internal representation of states.

These tasks are discussed in Sections 3.2, 3.3, and 3.4 respectively. Section 3.5 considers the

question of how fairness can be supported efficiently.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 19

Current state Call Next state Return value

1 Execute 2 Forward

2 Execute 3 Forward

3 Execute 3 Loop

3 Execute 3 AU ChildrenExplored

3 Backtrack 2
2 Execute 2 All ChildrenExplored

2 Backtrack 1

1 Execute 4 Forward
4 Execute 4 Revisit

4 Execute 4 All ChildrenExplored

4 Backtrack 1
1 Execute 1 Complete

Figure 3.1: Exhaustive depth-first exploration of a simple state graph

Execute and lSI - 1 calls of Backtrack, where lSI is the number of states in the state graph,

and C is the number of loops and revisits.

The functioning of the state exploration engine can be broken into three important tasks:

• the generation of states,

• the detection of revisited states, and

• the efficient internal representation of states.

These tasks are discussed in Sections 3.2, 3.3, and 3.4 respectively. Section 3.5 considers the

question of how fairness can be supported efficiently.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 20·

3.2 State generation

Specification languages allow the user to describe a system as a set of processes acting on a

set of variables. Each process is a sequence of commands that form the transitions of the state

graph. Although state generation will be discussed on a general level, it :will be convenient

to refer to a concrete example from time to time. In this section examples are expressed in

the ESML specification language [14]. A full description of this language can be found in

Appendix D, although the examples will be simple enough to make the meaning clear.

To explore a state graph the state generator must keep track of the following information:

• the current state that records the current value of the variables of the system; since the

state is not just a single value, but rather the values of a set of variables, this data

structure is known as the state vector;

• the depth-first stack that stores the states ·on the current execution path and the last

transition explored in each state;

• the transition table that encodes all possible transitions;

• the activation list that stores information about the processes that are active in the

current state; and

• the state store that records all unique states to detect when states are revisited.

When Execute is invoked, it searches for an enabled transition to explore. To avoid re-exploring

a transition that has already been tried it uses the information about the last transition stored

in the depth-first stack. When a suitable transition has been found, it is executed to generate

a potentially new state. This state is checked to see whether it appears on the stack (Loop)

or in the state store (Revisit). If no transitions can be found to explore, Execute returns

AllChildrenExplored or Complete.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 21

3.2.1 The execution of transitions

Each transition of the state graph can -be viewed as a guarded command pair guard ~ action.

The guard checks that the transition is enabled, and the action is a set of assignments (changes

to the current state) that effect the transition. For example, the assignment n : = n + 1 can

be viewed as the guarded command

(loc = 4) ~ n := n + 1; loc:= 5

The location counter of the process that contains the assignment is stored in the loc vari­

able. The guard is satisfied when the location of the assigninent is reached (location 4 in this

example). The action effects the assignment and updates the location counter.

Pre-compiled transition systems

One way to encode such transitions is to parse the specification of the system and to translate it

to equivalent code in a suitable programming language. The code is then compiled and linked

with the rest of the model checker to form an executable image. This approach is used in the

SPIN system to translate Promela models to C code [34], and in a previous model checker

developed at the University of Stellenbosch to translate ESML models to Modula-2 code [58].

The translator generates one procedure for each process in the specification. This procedure

contains the actions for the transitions of the corresponding process. An additional procedure

is generated to initialise the transition table with the correct values. For example, consider the

following ESML process definition:

1 PROCESS Counterj
2 VAR n: intj
3 BEGIN
4 n := OJ
5 DO n<10 -> n := n + 1
6 [] n=10 -> n := 0
7 END
8 END Counterj

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 22

The process -initialises the value of n to O. The DO command has the same semantics as the

repetition construct in Dijkstra's guarded command language [16]: it executes while one or

more of the guards are true. If n is less than 10, it is incremented; if n is 10, its value is reset

to O.

The generated code and the appropriate fragment of the transition table is shown in Figure -3.2.

The first field Process of the transition table identifies the process to which the transition

belongs (in the example the Counter process's number was arbitrarily chosen to be 2). The

Number field stores the transition number, the NextTransition field stores the location of the

next transition, and the Action field identifies the corresponding action of the transition. Each

guard of the DO construct is encoded as a separate transi~ion. The NextGuard field of the

transition table stores the location of the next guard to be executed in case the current transition

fails.

Additional code is generated to initialise the transition table:

1 PROCEDURE InitTransitionTable;

2 BEGIN

3

4 MakeTrans(2, 0, 1, 1, empty);
5- MakeTrans(2, 1, 2, 2, empty);

6 MakeTrans(2, 2, 1, 3, empty);

7 MakeTrans(2, 3, 4, 4, empty);

8 MakeTrans(2, 4, 1, 5, empty);

9 MakeTrans(2, 5, 6, empty, empty);

10 MakeTrans(2, 6, empty, 6, empty) ;

11

12 END InitTransitionTable;

When Execute has selected a process from the activation list, it retrieves the process's location

counter from the state vector. The location counter is-the number of the transition the process

is about to execute. It looks up the transition in the transition table and calls the corresponding

process procedure (such as CounterProcess) to which it passes the current state vector and the

value of the Action field for the selected transition. The CASE in procedure CounterProcess

selects the appropriate action to execute. When the procedure returns, Execute checks whether

a new state has been generated and acts accordingly.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES

Process Number N ext Transition
2 0 1

2 1 2

2 2 1

2 3 4
2 4 1

2 5 6
2 6 -

Action
1
2

3
4

5

-
6

. NextGuard
-

3
-
5
-

DO

-

n := 0

n < 0

n := n + 1

n = 10
n := 0

END
END Counter

1 PROCEDURE CounterProcess(VAR state: StateVector; action: INTEGER);
2 VAR expr: INTEGER;
3 BEGIN
4 CASE action OF
5 1: IF TRUE THEN
6 SetVar(state, pos_n, 0);
7 SetVar(state, pos_loc, 1)

8 END

9 I 2: IF GetVar(state, pos_n) < 10 THEN
10 SetVar(state, pos_loc, 2)
11 END
12 I 3: IF TRUE THEN
13 expr := GetVar(state, pos_n) + 1;

14 SetVar(state, pos_n, expr);
15 SetVar(state, pos_loc, 1)
16 END
17 I 4: IF GetVar(state, pos_n) = 10 THEN
18 SetVar(state, pos_loc, 4)
19 END
20 I 5: IF TRUE THEN
21 SetVar(state, pos_n, 0);
22 SetVar(state, pos_loc, 1)
23 END
24 I 6: (* Remove the Counter process from the activation list *)

25 END
26 END CounterProcess;

Figure 3.2: The transition table and code generated for process Counter

23

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 24

Our experience with a model checker that uses this approach has taught us that it is complex

and error-prone. The generated code is difficult to read and relate to the original model. A

frequent problem was that correcting the code generation for one model, catlsed the translator

to generate erroneous code for another. A part of the complexity of this approach stems from

the fact that the semantics of the specification language must be encoded. almost entirely in

the generated transition system.

Interpreted transition systems

An alternative to pre-compiling the transition system is to encode each action'as a set of

instructions that are interpreted to execute the transition.

Since the mid seventies, designers of compilers have advocated specialised abstract machines

for high-level languages [6, 38, 49, 60, 61]. The use of an interpreter has several advantages:

code generation is simpler when the target instruction set is specifically designed for the high­

level language in question, and it is easy to check that the correct instructions are generated.

Interpreters also offer greater security and portability than compilers. Moreover, an inter­

preter consists of instructions that can be tested separately---:a very attractive feature for the

generation of states.

The abstract code for the Counter process is shown in Figure 3.3. The target machine in this

case is a straight-forward stack-based abstract machine. When abstract code is generated, the

transition table is not needed. The location counter of each process stores the address of the

next instruction it is about to execute. The abstract inte,rpreter decodes and executes the code

until it reaches an instruction that triggers a transitionj then Execute examines the new states

and handles it appropriately.

The instructions in Figure 3.3 are interpreted as follows: pushValue 0 pushes the constant 0 on

the expression stack, and storeVariable 1 removes the value and stores it at variable address

1 (the address of n). The guard 120 instruction signals to the interpreter that the following

few instructions are the guard of a DO command and that, should this guard fail, the next guard

can be found at address 120. The pushVariable 1 instruction at address 106 places the value

of n on the stack and pushValue 10 places 10 on the stack. The ifless instruction removes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES

100 pushValue 0
102 storeVariable 1

104 guard 120

106 pushVariable 1

108 pushValue 10
110 ifless
111 pushVariable 1
113 pushValue 1
115 add

116 storeVariable 1

118 jump 104
120 guard 133
122 pushVariable 1
124 pushValue 10
126 if equal
127 pushValue 0
129 storeVariable 1
131 jump 104
133 endguards

134 terminate

n := 0

DO
n < 10 ->

n := n + 1

jump to start of DO
[]

n = 10 ->

n := 0

jump to start of DO
END DO
END Counter

Figure 3.3: Abstract code for process Counter

25

the top two elements of the stack and checks whether they satisfy the less-than relation. If

so, a transition has been completed and the location counter is advanced to the next address,

111. Otherwise, the interpreter will execute the next guard at address 120. The instructions

at addresses 111-116 encode another assignment, and the jump 104 at address 118 directs the

flow of control back to the beginning of the DO-this command will also trigger a transition ..
to prevent the interpreter from getting stuck in a non-terminating cycle. The instructions

for the second guard (addresses 120-131) are similar. The endguards instruction indicates

that there are no more guards to evaluate. If none of the guards evaluated to true and the

endguards instruction is reached, the interpreter advances the location counter to the next

address, since the DO has then terminated. Lastly, the terminate instruction terminates the

executing process.

Although it is generally accepted that interpretation of programming languages is slower than

executing native machine instructions, the same is not necessarily true for model checking. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES

actions of transitions involve complex operations and there are several other tasks that need

to "be handled during model checking. For these reasons, the overhead of interpretation may

turn out to be negligible. Furthermore, the complexity of the action code shown in Figure 3.2

is distributed among different abstract instructions. The implementation of each instruction

is independent of that of others. In contrast to the generated transition system, the abstract

code is easy to read when one is familiar with the instructions.

Non-determinism, communication, and dynamic process creation

Figure 3.4 shows an ESML model of the mutual exclusion problem. The model defines two

processes, Semaphore and User that communicate via the global communication channel s.

The channel is of type serna, which can convey two messages, P and V. Semaphore manages a

Boolean semaphore called free. When it receives a P request and the semaphore is available,

it is granted and set" to FALSE. Upon receiving a V request th~ semaphore is released. The

User process can either stay in its noncritical region or" cycle through its noncritical, trying

and critical regions. This choice is made non-deterministically by the DO command in line 23.

Before the User process enters the critical region it requests the semaphore, which it releases

again after leaving the critical region.

This model illustrates the use of three kinds of transitions that require special attention: non­

deterministic choice (lines 23 and 24), communication (lines 13, 14, 24, and 26), and process

creation (lines 31-32). These issues are addressed in the sections below.

3.2.2 Non-determinism

The state generator must ensure that all non-deterministic choices are explored. In general,

non-determinism is not difficult to implement but care must be taken to handle all cases

correctly.

In the case of a pre-compiled transition system this means that the NextGuard field is used to

evaluate all guards of a DO construct. When falling back, Execute examines the NextGuard field

of the last transition to execute to determine whether there are other guards to investigate.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES

1 MODEL ME;
2 TYPE

~ region = noncrit, try, crit;
4 sema = {P, V};

·5 VAR
6 s: sema;
7

8 PROCESS Semaphore(IN s: sema);
9 VAR free:· BOOLEAN;

10 BEGIN
11 free := TRUE;
12 DO TRUE ->
13 POLL s?P & free -> free := FALSE
14 [] s?V -> free := TRUE
15 END .)

16 END
17 END Semaphore;
18

19 PROCESS User(OUT s: sema);
20 VAR r: region;
21 BEGIN
22 r := noncrit;
23 DO TRUE -> SKIP
24 [] TRUE -> r := try; s!P;
25 r := crit;
26 r := noncrit; s!V
27 END
28 END User;
29

30 BEGIN
31 User(s); User(s);
32 Semaphore(s)
33 END ME

Figure 3.4: ESML model of the mutual exclusion problem

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES

The abstract machine interpreter must also cater for this situation. If falling back, the last

instruction to execute was a guard instruction, the address of the next guard is fetched and it

is executed.

3.2.3 Communication

Processes can communicate with each other in two ways: either through shared variables, or

through message passing. Shared variables are simpler: apart from assignments, no other

operations or data .structures are required. However, message passing is often a more accurate

and convenient way. of describing process interaction. Message passing entails cOnlmunication

channels between processes, the messages themselves, and' SEND and RECEIVE operations to

dispatch outgoing and accept incoming messages. Two forms of message passing are commonly

used~ asynchronous and synchronous.

Asynchronous communication

Asynchronous communication makes use of communication queues to pass messages between

processes. The SEND operation is always enabled as long as the communication queue is not

full; the sender's message is inserted into the queue immediately and the process can continue

execution. Similarly, RECEIVEs are enabled as long as there are waiting messages in the queue.

The semantics of the specification language must define what happens when the queue is either

full or empty. The operation can either fail, or block until a message or open slot becomes

available. In the SPIN system the user can specify the behaviour of operations under these

conditions [30].

The communication queues must form part of the state vector: a state where a message is

waiting in a queue is clearly different from a state where the queue is empty. To avoid arbitrarily

large state vectors, communication queues are bounded in length. A model is only correct under

the assumption of specific queue bounds. A similar model with shorter or longer queues does not

necessarily satisfy the same correctness property. The bounds that can be model checked are

usually much smaller than those of actuaJ systems: an accepted and usually valid simplification

is that if a model is correct for queues of a certain length is that it will also be correct for longer

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 29

queues. The user is obliged to find a minimum, hopefully representative, configuration of a

system.

Asynchronous SEND operations carry the same cost as two variable assignments, but RECEIVEs

are somewhat more expensive, since the head message must be copied to the process variables,

the queue contents must be shifted along one slot, and the queue length must be decremented.

If there are n messages waiting in a queue, a RECEIVE is equivalent to n + 2 assignments.

Storing these queues as circular buffers is not viable, since the same queue contents can be

stored shifted at different offsets in the buffer, causing a considerable increase in the number

of states.

Synchronous communication

In the case of synchronous message passing both SEND and RECEIVE operations .block and are

not enabled until a suitable partner becomes available. At this point the processes synchro­

nise: both operations become enabled and can execute simultaneously in a single transition.

Messages are never stored "between processes" but are instantaneously moved from the sender

process to the receiver process. This form of communication is popular since it is generally

accepted that synchronous communication is simpler to use and implement.

It is often useful for a receiver process not to block on a single message, but to be ready to send

and receive one of several messages. This need is addressed by a selective receive operation

such as the POLL command of the ESML specification language [14J. It consists of one or

more guarded commands: the guards in this case are communication operations. The POLL

command blocks until one or more guards are enabled. It then non-deterministically selects

one of the enabled guards, and executes its corresponding action. For example, the following

POLL command blocks until it can send message a on channel chO, or receive on channels ch1

or ch2.

1 POLL

2 SEND(chO, a) -> A

3 [] RECEIVE (ch1 , b) -> B

4 [] RECEIVE (ch2 , b) -> C
5 END

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 30

When a communication operation is reached, the state generator must determine whether a

synchronisation partner is immediately available, or whether the communicating process must

block while it waits for a matching operation. One way of storing information about the

availability of partners is by using channel queues: each channel has a corresponding queue

where waiting partners are stored as they arise. Only process identification numbers are stored

in this queue. A communication operation checks the channel queue for a partner, which it

removes from the queue. If no partner is available, the communicating process joins the queue

and cannot proceed until a partner arrives to remove it. At, any point the queue will contain

only sending or only receiving partners. If more than one synchronisation partner is available,

the state generator must explore all possible synchronisations.

The POLL operation introduces several complications: several channel queues may have to

be checked (one for each guard) and, if no partners are available, the process must join all

these queues. When another command synchronises with a POLL guard, the polling process is

removed from all queues it has joined, since once one POLL guard is selected, the other guards

are disabled. Furthermore, enough information must be stored on the stack so that channel

queues can be restored to their previous values when backtracking. These problems escalate

when one POLL operation is allowed to synchronise with another POLL.

Process P l Process P2

POLL POLL
SEND(chO,a)-> ... SEND(chO,b)-> .. .

[] RECElVE(chl,x)-> ...
END

[] SEND(ch2,c)-> .. .
[] SEND (ch3 ,d) -> .. .
END

Channel chO queue: ~~
Channel ch1 queue: ~
Channel ch2 queue: ~
Channel ch3 queue: ~

Process P3

POLL
RECElVE(chO,y)-> ...

[] SEND(chl,e)->.,.
END

(senders)

(receiver)

(sender)

(sender)

Figure 3.5: Interaction of channel queues and POLL commands

As an example, consider the scenario shown in Figure 3.5. Processes PI and P2 have reached

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 31

their POLL commands in that order. In both cases no synchronisation partners were available

and the processes were inserted in the appropriate channel queues. When process P3 reaches

it POLL command, the state generator' must check channel queues chO and- ch1 (the channels

addressed by its guard statements). For the first guard two channels are available: if P3

synchronises with PI, process PI must be removed from channel queues chO and ch1; if it

synchronises with P2, process P2 must be removed from channel queues chO, ch2 and ch3. The

second guard can synchronise only With P2 in which case process P2 is once again removed from

channel queues chO, ch2 and ch3. In total, process P3 can synchronise in three ways, yielding

three transitions fr9m the state. If the last guard of process P2 addressed channel ch2 instead

of ch3, P2 would appear tWice in channel queue ch2, alloWing P3 to synchronise with it in two

ways, and resulting in four transitions.

It is not necessary to store channel queues as part of the state vector, since the same information

is already available in the location counters of the processes (which can be found in the state

vector). In fact, it is possible to implement synchronous communiCation without channel queues

in the following way: when a communication operation tries to execute, it scans through the

activation list to find other processes that are ready to perform a matching operation. It does

this by examining the location counters and next transitions of processes. If a synchronisation

partner is found, both processes execute a combined transition. OtherWise, the communication

operation remains disabled.

When channel queues are used to support synchronous communication, SEND and RECEIVE

operations carry the same cost as assignments; the POLL operation requires more overhead.

Very little space is required to store channels: if P is the set of processes and chan(p) is the

maximum number of guards in any of its POLL commands, 1 if it contains only SEND and

RECEI~ commands, or 0 if it contains no communication ,operations, the maximum number of

processes that can be present in the channel queues is

L chan(p)
pEP

Each channel queue ch must cater for max{ chans(ch), chanR(ch)} entries, where chans(ch)

is the total number of SENDs that address channel ch, and chanR(ch) is the total number of

RECEIVEs that address channel ch, counted throughout the model.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 32

When scanning is used for synchronous communication no extra storage space is required. Each

communication operation has to check every other process, but scanning through the activation

list is just as fast as scanning through channel queues.

3.2.4 Dynamic process creation

Some specification languages allow for the creation of new processes during the exploration

of the state graph. It is therefore possible that states along different branches of the state

graph can contain qifferent processes. When a new process is created its variables are added to

the state vector, which must grow to accommodate the additional variables. The state vector
. .

must also store information about the number of active processes as well as their order of

activation. Unless this signature information is present, it is possible that states containing

different processes are mistaken for each other.

Furthermore, it is possible that equivalent states cannot be recognised as such. Consider the

case where a non-deterministic choice is made to either activate process PI and then process'

P2 , or to activate P2 and then PI' As far as the model checking algorithm is' concerned,

the resulting states are equivalent, but since their process activation order is different, this

equivalence cannot be recognised. Despite its artificial nature, this example represents a real

problem that could arise in complex models.

Usually the state vector cannot grow arbitrarily large and some upper limit is placed on the

number and size of processes. When a process terminates, its portion of the state vector must

be reclaimed, or must remain unused during the rest of the analysis. The former option requires

that th,e state vector be rearranged, while the latter results in wasted bits in the state vector.

Transitions that create or destroy processes also modify the activation list. These modifications

must be undone when the state generator backtracks.

These complications must be weighed against the usefulness of dynamic process creation. A

study of ESML and Promela specifications found no models that depend on this feature, or

cannot be trivially modified to avoid it. Consequently, this feature has been eliminated from

ESML.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 33

Dynamic object creation

To our knowledge there are no specification languages that allow the dynamic creation of data

objects. This feature leads to the same problems caused by dynamic process creation, but it is

not as easily dismissed. As the power of model checkers Increase it is inevitable that users will

require this feature. (Ideas on extending SPIN in this way can be found in [15J.) Moreover,

dynamic objects usually have a high turnover, thus exacerbating the problems described.

3.3 The detection of revisited states

To avoid the redundant effort of re-exploring large parts of the state space, the system must be

able to detect when a state is reached a second time, or being "revisited". To accomplish this,

as many as possible of the reached states are stored in memory and each new state is checked

to establish whether it is really a new state, or whether is has been generated before.

The state store has the following interface:

Insert (s): Insert state s into the state store.

Lookup(s): Check whether state s is present in the state store.

It is tempting to consider the use of dynamic data structUres such as binary search trees. Apart

from the storage overhead of storing pointers and the runtime overhead of memory management,

operations on such complex data structures can be expensive. Usually the sequence of states

passed to the Insert routine resemble each other closely, leading to unbalanced trees. Although

operations for balanced trees cost O(log n) where n is the number of states stored in the tree,

the hidden multiplicative constant in this time bound is usually prohibitively large.

3.3.1 State caching

Most model checkers store states in a table which is accessed by means of closed hashing. Hash

collisions are resolved by double hashing to avoid clustering as far as possible. The first slot of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 34

the hash table probed for state s is hl(S). If s is not found in t~s position an offset 8 = h2(S)

is calculated and the next slots probed ~e 'hl(S) + 8, then hl(S) + 28, then hl(S) + 38,

While the hash table remains relatively empty, hashing provides roughly constant time access

to the states. As the table fills up, the number of collisions increase and the access time

deteriorates until the table is full and the analysis must be aborted. Fortunately, this can be

remedied by using the fact that states in the table may be overwritten. If such a "lost" state

is subsequently revisited, the state and its children are re-explored .. This does not invalidate

the analysis, but simply leads to extra work. Moreover, the children of the revisited but lost

state may still be in. the table and may prevent the re-exploration of the entire subgraph.

Clearly, the quality of the hash functions is critical to the performance of the state cache.

However, it is difficult to exploit knowledge about the nature of the model to produce an

intelligent hash function. Because of the high frequency of lookups, it is important that the

hash function remains as simple and fast to compute as possible. It is important that no bits of

the state vector are ignored by the hash function. Consequently, a function based on low-level

bit manipulation operations works well.

Since the state table does not st'ore all visited states, but merely a subset, this technique is

known as state caching [31J. In addition, the cost of insertion and searching can be controlled

by limiting the number of probes. For example, when the limit is exceeded during an Insert

operation, an older state is immediately replaced. Empirical results show that a cache of states

can be effective for state graphs 2-3 times the size of the table.

Holzmann has investigated several strategies for selecting which state to overwrite. These

strategies included replacing most frequently visited states, least frequently visited states, small­

est subgraph states (states that form the root of the smallest subgraph of the state graph), ran­

dom states from largest class (a class is formed by all states visited equally often), and random

replacement. His results show that random replacement is the best strategy-the probability

of revisiting a state is not strongly correlated with the number of previous visits [31J.

Unfortunately, this approach and those presented below suffer from poor locality of reference.

Sequential operations are unlikely to access the same part of the state table and therefore

swapping memory pages to disk does not help but hinders the efficiency of state caching.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 35

3.3.2 Bitstate hashing

An alternative that makes more effective use of memory, is the bitstate hashing technique [32,

33]. This technique uses a large fixed-size array of bits to keep track of visited states. When a

new state is generated, a hashing function is used to coinpute an index into the bit array for

the value of the state. The corresponding bit is set to indicate that the state has been visited

and can be checked to detect when the state is revisited.

Unfortunately, this technique has a serious drawback. While any errors found during the

analysis are genuine, bitstate hashing cannot guarantee that the correctness property holds for

a model. Hashing conflicts cannot be resolved in the usual way because information about the

original state is not stored in the bit array. Two states may therefore map to the same bit

without the model being able to detect it. If the system visits the second of the two states, it

will erroneously decide that the state has been explored before and that it is being revisited.

In this case some parts of the state graph may be ignored.

This problem is ameliorated by the observation that since the size of the bit array is very

large, the probability of collisions is exceedingly small. Moreover, collisions do not necessarily

result in false positives. Holzmann has suggested the simultaneous use of two bit arrays with

statistically independent hash functions [34]. Another approach is to use a single bit array and

to rerun the analysis several times, each time with an independent hash function. Wolper and

Holzmann have made careful studies of the trade-offs involved in using multiple bit vectors,

multiple runs with a single a bit vector, and also other approaches [36, 63].

3.3.3 State caching v. bitstate hashing

When the state vector is large, state caching can handle only relatively small models. On a

typical workstation with 64 megabytes of memory, M = 229 bits are available for the state

store. If each state vector is stored in S = 213 bits (the default state vector size in SPIN),

only N = M / S = 216 or roughly 65000 states can be checked. In this case the bitstate hashing

technique is clearly superior, since only trivial models can be checked with a state cache.

However, the techniques discussed in Section 3.4 make it possible to compress the same states to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES ,36

roughly S = 28 bits, allowing N = 221 or roughly 2 million states to be checked. Furthermore,

the use of partial order techniques makes it possible to efficiently check state graphs of up to

roughly 25 times the size of the state c'ache, yielding N = 226 states [26].

Given the capability of the state cache in combination .with effective state compression and

optionally partial orders, it makes sense to use bitstate hashing only as a last resort, and to

prefer state caching for the normal operation of a model checker.

3.3.4 Implicit representations

Several implicit state representation schemes have been sug~ested. These techniques use spe­

cialised graph encodings [27], minimised automata [37] or BDDs [59] to represent the set of

reached states. Such techniques can have a dramatic impact on the memory requirements:

in [37] results show that in gener~l, memory use is reduced by a factor of 4 and in some cases

by a factor of 17. Unfortunately, these gains come with at least a tenfold increase in execution

time, and in some cases additional training runs are required to yield results. As noted in [27],

due to their high runtime costs, such schemes cannot be used for the normal operation of a

model checker when the probability of finding an error is high and the duration ofruns is low.

3.4 The representation of states

The representation of states is a critical part of the model checker, since it affects every aspect

of its operation. To the rest of the system only the following interface is available:

Compare(Sl! S2): Check whether two states are equal.

Assign(v, s): Assign a copy of state s to state variable v.

GetValue(s, i): Return the value of variable i in state s.

SetValue(s, i, v): Set the value of variable i in state s to v.

Ideally, these operations should be encapsulated in a module that exports the state vector as an

abstract data type to the rest of the model checker. This allows the underlying implementation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 37 .

to be changed without affecting the rest of the system.

3.4.1 General issues

The routines above must be implemented as efficiently as possible. However, aside from the

primary objectives of using as little memory as possible per state, and making the operations

as fast as possible, several other considerations should be taken into account.

The relative frequency of operations

One guideline when selecting a representation scheme is the relative frequency of operations:

not all operations occur with the same frequency and therefore it makes sense to optimise the

commoner operations while allowing less frequent operations to be more expensive.

The Assign operation is used to copy state vectors to the stack and the state table, resulting

in two calls for each unique state that is explored. Compare is used when checking a new'

state against the states on the stack (for detecting loops) and the states in the state table (for

detecting revisits). The frequency of this operation depends on the load of the state table: if

the state table is relatively empty, there will, on average, be only one Compare instruction for

each unique state. If the state is represented explicitly as a string of b bits, the cost of the

Assign operation is n(b) and that of Compare is O(b); if a more complicated, say graph-based,

representation is used, these operations may be more expensive.

Get Value operations are used whenever the value of a variable is accessed. Several variables

are examined to evaluate the transition guard and the right-hand side of assignments. Each

transition will involve at least one Set Value operation to update the value of the location

counter for the process that executed the transition. Most transitions also change the value of

a variable; each change requires further Set Value operations.

In practice the following trend emerges: Get Value is the most frequent operation, and Assign

the least frequent. The relative frequency of Set Value and Compare operations depend on the

specific state graph. For large models we found that the number of Compare's dominate.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 38

Fixed v.· variable length state vectors

Fixed length state vectors are desirable since this simplifies the implementation of the interface

by eliminating checks for special conditions. If states of varying lengths are allowed the state

table must be implemented as a table of pointers, rather than an array of states. The use

of dynamic memory to allocate storage space for states incurs further overhead on the state

manipulation operations. If states are discarded (overwritten in the state table) the problem

of memory fragmentation must be addressed in some way, resulting in yet more overhead.

However, it is sometimes necessary to add variables to the state vector during the analysis of

a model, as when a new process is created. This problem is overcome by fixing the size of

the state vector to some upper approximation of the maximum required size. Although the

unused bits of some, perhaps even most, states are wasted, this approach is runtime efficient

and usually a reasonably tight approximation is possible. An extra field is needed to describe

the active length of each state vector. When variables in the state vector is guaranteed not to

be used again, it is possible to reuse the space they occupied, but this operation is generally

too expensive to implement and requires that the state vector contains additional information

to describe its composition.

Explicit v. implicit storage of variables

Some representation schemes allocate a fixed set of bits to each variable, making it possible to

extract the value of variables directly from the state vector. This explicit storage of variables

stands in contrast to other, implicit approaches where variable values are encoded in more

complicated ways and where it is not possible to associate a fixed set of bits with each vari­

able. Explicit storage is obviously preferable to implicit encodings that require computation to

yield variable values, especially in light of the fact that Get Value is the most frequently used

operation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 39

Duplication of state information

Many of the problems surrounding state representation can be resolved by. maintaining both

a compressed and uncompressed copy of the current state vector. GetValue operations fetch

values from the uncompressed copy while SetValue acts on both data structures. Only com­

pressed state vectors are stored in the state table. It is therefore never necessary to uncompress

states and techniques that yield small states quickly can be used, even if the uncompression

operation is expensive.

3.4.2 Representation techniques

The simplest approach to the representation of states is to allocate one integer per variable and

store each variable in its own slot. Compound variables (such as arrays, records and queues) are

stored element by element. This technique requires bn bits of storage, where n is the number

of variables and b is the number of bits used to store an integer. The result of encoding the

variables of the mutual exclusion ESML model in Figure 3.4 and choosing b = 16 will result in

a state vector of 96 bits (LC is the process location counter):

Semaphore User! User2

free I LC r I LC r I LC

95 ... 80 79 ... 64 63 . .. 48 47 .. . 32 31. .. 16 15 ... 0

Clearly most of the bits in this representation are wasted. For instance, the free variable

uses only one of the 16 bits it occupies. By allocating only as many bits as is necessary

to store the values of a variable, a much smaller state vector is obtained. Assuming that

I LCSemaphore I = 9 (meaning the location counter of process Semaphore can assume 9 different

values) , and ILCUserl = 11 , a state vector with 17 bits is obtained:

Semaphore Useq User2

free I LC r I LC r I LC

16 15 ... 12 11 . . . 10 9 . .. 6 5 . .. 4 3 . . . 0

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 40

If the number of values variable Vi can assume is lVii, and there are n variables, the number of

bits required by this representation is

n

L:Pog2lvill
i=l

For both these techniques the Get Value and Set Value routines can be implemented efficiently,

using bit manipulation in the case of the second technique. The Assign and Compare operations

are expensive for the first, simpler technique since state vectors are larger. Both yield fixed­

length state vectors in which variables are represented explicitly.

State enumeration

Optimally, if there are n states in the state graph, each state can be represented in pog2 n 1
bits. Unfortunately, this idea has two flaws: (1) it is generally not known beforehand what the

value of n is, and (2) each state must be assigned a unique number in the range O ... n - l.

There is no natural mapping from state vectors to such numbers, and this idea can only be

implemented using a lookup table, that requires storing each full state vector, thus defeating

the object of using only flog2 n 1 bits per state.

A variation of this idea is to break states into smaller units, either arbitrarily or on process

boundaries [35, 59]. The parts are then enumerated separately with smaller lookup tables

and the results are combined to form a smaller state. Figure 3.6 shows how this idea can be

applied to the mutual exclusion model. The local states of processes are stored in separate

lookup tables. The global state vector shown at the bottom is the combination of indices

of local states in the respective lookup tables. In the example, m bits are required where

m = flog2 ks 1 + pog2 kUll + pog2 kU21·

Hashing can be used to implement local state lookups efficiently. Get Value entails extracting

the local process state from the state vector and looking up the variable value in the lookup

table using the local state as an index. Set Value computes the new local process state, performs

a lookup to determine the index of the local state, and updates the global state with the

computed index. Assign and Compare operate on the global state in a straightforward manner.

The memory needed for lookup tables is usually negligible, compared to the memory required

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES

-2

ks

Semaphore
free LC

TRUE 5

I

User!
r LC

- o noncrit 0

kUl

~

2 I 0

m-1

-1

kU2

I 1 I
o

User2
r LC

try 3

Figure 3.6: Process state enumeration

41

for the state store. This technique yields fixed-length state vectors in which variables are

represented explicitly but indirectly.

The main drawback of the technique is that the analysis must be aborted when any lookup

table fills up. For optimal compression the sizes ki of the lookup tables must be as small as

possible while still accommodating all local states. In practice, determining suitable upper

approximations for ki is difficult and is accomplished by performing "training runs" that try

to estimate the number of local states. Holzmann has studied this and similar approaches

and found that states can be compressed by a factor of 0.27, but only at the expense of a

threefold increase in running time, excluding the time taken by training runs [35J. As in the

case of bitstate hashing and implicit representations of the state table, this technique is a useful

alternative in the last resort, but less suited for the default operation of a model checker.

3.4.3 State compaction

We now present a technique that produces highly compacted, fixed length states that makes

it possible to update individual variables without recompacting the state [22J. A similar idea

was presented in cite [Section 5.1JVIS93 but was only applied to record fields. Most variables

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 42

in validation models range over only a few values and a significant reduction in state size

is possible by simply placing tighter bounds on the ranges of variables and packing them

into the minimum space required. Users can easily supply the information needed to do this

if the validation language supports user-definable types. For example, type definitions such

as ProcNumber = 0 .. 4 are easy to use and provide enough information to store variables in

compacted form.

A small example will illustrate the basic idea. Assume that a model contains three variables

VI, V2, and V3 which can respectively assume values from the ranges 0 ... 4, 0 ... 2, and 0 ... 6.

The compacted form V of each given state is computed as

V V3+7(V2+3vd

V3 + 7 V2 + 7 . 3VI

Each variable can be thought of as a digit in a variable radix representation of V. It is clear

from the first line that "digit" V3 can range over its seven values O ... 6 without affecting the

other variables. Similarly, the other variables can range over their respective values without

influencing V3. Two constant factors are associated with each variable Vi. These factors, known

as the lower and upper factors of each variable, are denoted by v! and vf respectively. In the

example above, v~ = 1, v~ = 7, v~ = 7, v~ = 7·3 = 21, vi = 21, and vt = 7·3·5 = 105.

These factors are used as masks to extract and update the value of a specific variable in the

compacted representation of a state.

A state can now be encoded as a single large integer V. The interface is implemented as follows:

Assign(V, Vs): Assign V +- Vs.

Get Value (V, i): To obtain the value of variable Vi the higher factor is used to strip out

all variables to the right of Vi and the lower factor is used to strip out all variables to

the left of Vi.

Vi = (V mod vf) divv!

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 43

Setv'alue(V, i, vi): To change the value of.a variable, if the value of Vi changes to vL

the updated state vector is

V' V - v! . V· + vi . v!
~ ~ ~ ~

The cost of a Get Value operation is two multiplications , and that of a Set Value operation is

two additions and one multiplication. These are the only runtime costs associated with these

operations. The costs of Compare and Assign depend on the length of the state vector.

Assume that the number of values allowed for variable Vi is denoted by IVil and that the lower

and upper factors associated with Vi are denoted by vi and ·vi, respectively. The lower factor

of variable VI is 1 and its upper factor is IVII. For i > 1 the lower and upper factors of variable

Vi are given by

vi = vi- I

If the form of the state vector remains fixed, the computation of the lower and upper factors

can occur during the initialisation of the system. However, the computation is simple enough

to be performed during the execution of the model- this approach was implemented in [22] .

The number of bits required to store a compacted state with n variables is

For instance, the number of bits required to store VI, V2, and V3 in the example above is

pog25 . 3 . 71 = 7. If state compaction is applied to the mutual exclusion model, the state

vector can be stored in 15 bits.

This scheme recommends itself in many ways: operations are not expensive either in terms of

time or space; variables are represented explicitly in that their values can easily be extracted

from a compacted state; it does not lead to variable length encoding although the active part

of a state vector can grow and shrink easily (although it may require the one-time computation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 44

of lower and tipper factors for the new Variables); and the scheme is optimal in the sense that

no explicit encoding can use fewer bits ..

3.5 Fairness

Section 2.5 briefly outlined the basic ideas involved in fairness and introduced the three major

forms: impartiality, weak fairness and strong fairness. As noted, fairness constraints can either

be added to the correctness specification or a model checker can offer intrinsic support for

some form of fairne·ss. The former option has no influence on the state generator; ~his section

investigates the latter option.

The task of implementing fairness is simplified by the fact that finite execution paths are neither

fair nor unfair. Finite paths are usually undesirable in a concurrent system and are reported as

deadlocks. Only infinite paths are relevant to fairness and the only source of infinite paths is

cycles in the state graph. Since every cycle forms an infinite path, all cycles must be detected

and checked for fairness.

3.5.1 Impartiality

To implement impartiality, every cycle must be checked to contain at least one transition from

each process (using the r partition described in Section 2.1). One way of achieving this is by

storing on the depth-first stack along with every state a counter for each process. A counter

is incremented whenever the corresponding process executes a transition. When a cycle is

detected the current set of counters is compared to the set of counters found on the stack. If

one or more counters are equal the corresponding processes have not had an opportunity to

execute and the transition that forms the cycle can be ignored, since it does not forin part of

an impartial path.

Impartiality is not very expensive to compute: one increment operation per transition and O(P)

comparisons per cycle are needed, where p is the number of processes. The counters are only

needed for states on the stack; states that have been moved to the cache are known to satisfy

the specification in an impartial way.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 45

3.5.2 Strong fairness

Strong fairness is easily implemented by detecting strongly connected components (sees). An

see is a sub graph of the state graph such that there is a path between any two states of the

subgraph. In other words, every state is reachable from' every other. Every state graph can be

partitioned into a finite number of sees. For example,' the state graph in Figure 2.5 consists of

a single see, since every state can be reached from every other state. For every infinite path

in a state graph, there is a single see that contains its infinite tail. (The states of its finite

"prefix" that lie outside the see are not important in this case.)

The goal is therefore to detect each see and to check that the strongly fair pathS it contains

satisfy the correctness specification. If an see contains one infinite path that satisfies the

correctness specification, all its strongly fair paths must satisfy it; the transition that leads to

the state where the specification is true cannot be ignored indefinitely by any strongly fair path.

To check for strong fairness, it is therefore sufficient' to check that the correctness property is

satisfied by at least one infinite path in each see. There are several algorithms for detecting

sees; the most widely known is a linear-time algoiithmdue to Tarjan [50].

How is an see checked to contain an infinite, satisfying path? Associated with each state is a

flag called good children. This flag indicates that the correctness specification is satisfied by the

marked state or one or more of its descendants. A state can propagate the flag up to its parent

state, since, if it has any "good children", so does its parent. However, it cannot pass it down

to its descendants. As soon as a state is found that satisfies the specification, its goodchildren

flag is set.

Tarjan's algorithm ensures that an see is detected only when all its members have been

explored and the root of the see is the current state. The model checking algorithm must

postpone reporting errors until an see root has been found. If the goodchildren flag is set for

the root state of the see, it implies that all strongly fair paths in the see satisfy the correctness

specification. If the flag is not set, an see has been found in which the specification is not

true for any path and therefore not for any strongly fair path. In this case, the validator will

abort the analysis and report the error.

The detection of sees is not expensive in terms of runtime: Tarjan's algorithm operates in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DESIGN ISSUES 46

O(n) time, where n is the numb~r of states in the state graph: Moreover, the algorithm can

be modified to operate on-the-fiy as the state graph is generated; such an implementation is

described in the next chapter. However, this algorithm requires that states are retained on

a stack until their entire see has been recognised. Depending on the structure of the state

graph, this may cause a considerable increase in the memory needed to store the stack. In the

worst case the entire state graph will be stored on the stack until the analysis is completed.

3.5.3 Weak fairness

It seems that built-in support for weak fairness requires significant computation. For- every cycle

that is detected the model checker must check that every ignored transition is not enabled in at

least one other state of the cycle (therefore not continuously enabled), or that such a transition

cannot lead to a satisfaction of the correct specification. Only then has a cycle been found

that is weakly fair and violates the specification. Regrettably tb.ere is, as far as we know, no

. literature that addresses this question.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Implementation of a model checker

This chapter describes the design and implementation of a practical model checker to illustrate

the issues discussed in Chapter 3. The model checker is the third in a generation of model

checkers [2, 13, 40, 58] developed at the University of Stellenbosch, and as such, there are

several "givens", inherited from its predecessors:

• A structure-based on-the-fly model checking algorithm for a subset of CTL is used.

• Models are written in ESML (Extended State Machine Language) [14]. ESML was de­

signed to meet the needs of reactive systems, namely complex data structures.

In addition, the following techniques were selected from those described in the previous chapter:

• The model checker interprets abstract code to execute transitions.

• State caching is used.

• States are represented using the state compaction technique described in Section 3.4.3.

• The model checker has built-in support for strong fairness.

Oberon was selected to implement the model checker [62]. Oberon is a strongly typed lan­

guage that supports modularisation-two important features for developing any piece of large

47

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 48

software . . The model checker comprises roughly 1900 lines of code and the ESML compiler a

further 3700 lines.

The structure of the model checker is shown in Figure 4.1. As indicated, the model checking

algorithm interfaces with the state generator (module Machine) only. The depth-first stack is

implemented in module Trace, and the state cache in module Cache. All the modules of the

state generator use module Compact which abstracts the State type.

I. Model checking I
algorithm J Machine

f
Trace

T

Cache

T

Compact

Figure 4.1: Module structure of the model checker

4.1 State generation

The state generator interacts with the model checker by means of three main routines: pro­

cedure Execute selects a process and transition and invokes the interpreter to execute the

instructions. If a new state is generated, it is placed on the stack. Backtrack simply removes

the top state of the stack. These operations correspond to moving down and up along an

edge in the state graph. Evaluate(p) returns a Boolean result to indicate whether the atomic

proposition p holds in the current state. Other, minor routines are used for secular duties such

as reporting the number of states explored.

Stellenbosch University https://scholar.sun.ac.za

···:J:~;r··
". ~.

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

4.1.1 Procedures Execute and Backtrack.

49

Procedure Execute is shown in Figure 4.2. Its actions are embedded inside,a loop that iterates

until it successfully generates a state, runs out of transitions, or detects. a transition error.

1 PROCEDURE Execute(): INTEGER;

2 VAR result: INTEGER;

3 BEGIN

4 LOOP

5 Reschedule;

6 IF no (more) transitions enabLed THEN

7 RETURN AllChildrenExplored or Complete

8 END;

9

10 result := Step(sch);

11 Trace.Update(sch);

12
13 IF result = Progress THEN

14 update the Location counter of the executed process
15 CASE Trace.Push(state) OF

16 Trace. Inserted: RETURN Forward

17 Trace.Revisit: RETURN Revisit

18 Trace.Loop: RETURN Loop

19 END
20 ELSIF result = NOProgress THEN

21 (* do nothing *)

22ELSIF result = TransitionError THEN'

23 RETURN Error

24 END

25 END

26 END Execute;

Figure 4.2: Procedure Execute

Its first task is to find a transition to execute. It invokes procedure Reschedule (line 5): this

routine searches for a process that is ready to execute a transition. If no executable transitions

are found by Reschedule, procedure Execute will return AllChildrenExplored (line 7). This

signals that the current execution path is a dead-end and the model checking algorithm is

expected to call procedure Backtrack and explore other branches of the state graph. In the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 50

special caSe where the entire state graph has been explored, Complete is returned in line 7. . .

When an enabled transition is found, it is executed by the interpreter, procedure Step, that is

invoked in line 10. The sch variable is a record that stores scheduling information; it identifies

the transition that was selected for execution. After Step has returned, the stack is updated

by the call to Trace. Update to reflect the fact that the transition has been explored. It is

critical to record this fact, so that, if the current state is reached again when falling back, the

same transition is not re-explored.

The interpreter returns one of three values:

• Progress (line 13): The interpreter executed the transition and a new state has been

reached. In line 14 the location counter of the executed process is updated and the state

is pushed onto the stack in the next line. If this operation is successful Execute returns

the value Forward. If the state is already present in the cache or on the stack, Execute

returns Revisit or Loop, respectively. In this case the state is not added to the stack.

The model checker may respond to the situation as it sees fit and then call Execute once

again to generate further states.

• NoProgress (line 20): The interpreter was unable to complete the execution of the tran­

sition. This occurs when a communication instruction is identified by Reschedule as a

potentially enabled transition, but upon further investigation by the interpreter it turns

out not to be enabled. Control therefore returns to the top of the loop and another

transition is investigated.

• TransitionError (line 22): The interpreter has encountered an error (such as division

by zero, or the removal of the head element from an empty list) while executing the

transition. In this case Execute returns the value Error, and the model checker aborts

the analysis of the model.

In contrast to Execute, procedure Backtrack (Figure 4.3) is simple: it consists of one invocation

of Trace. Pop. The call removes the top state of the stack and moves it into the cache of visited

states. This implies that the state complies with the correctness specification. Backtrack is

invoked by the model checker when it reaches a dead-end in the state graph, or when it has

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF "A MODEL CHECKER 51

explored an execution far enough to determine whether the correctness specification holds or

not.

1 PROCEDURE Backtrack;
2 BEGIN
3 Trace.Pop(state, sch, store)
4 END Backtrack;

Figure 4.3: Procedure Backtrack

4.1.2 The architecture of the abstract machine

The design of the interpreter is based on the requirements of the ESML language, a complete

description of which can be found in Appendix D. Special attention was paid to instructions

to implement the language's support for lists as native data structures, concurrent processes,

synchronous communication, and non-deterministic choice. The implementation of the abstract

interpreter is straightforward: the data structures of the abstract machine, the implementation

of procedure Step and the instruction set are discussed below. (The author wishes to thank

Hans Loedolff who designed an initial version of the machine.)

Data structures

The key data structures of the abstract machine are shown in Figure 4.4.

The memory of the interpreter is called the store. The store holds the abstract code, variable

space, and the expression stack. The abstract code starts at position 0 and contains the

abstract machine code for the model. It is followed directly by the variable space, where all

model variables and location counters are stored. The variable space is divided into regions

called frames, with one frame allocated per process. The first word of each frame holds the

process's location counter and the rest of the frame holds its local variables. The machine uses

an expression stack that starts at the highest store address and grows down towards the start

of the abstract code. The stack pointer sp holds the address of the top word of the stack.

The compacted state vector is stored in variable state. It contains an exact, compacted copy

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 53

IF and POLL constructs that contain several guarded commands it is necessary to identify the

particular guard that was executed. This information is stored in the Guard field. Furthermore,

a communication command can synchronise with more than one partner and more than one

guard of a POLL command, and therefore the same information (CProcess, CGuard) is stored for

the synchronisation partner. The state generator uses this record to select the next instruction

to execute.

Procedure Step

The interpreter for the abstract machine is implemented by a single procedure called Step,

which is outlined in Figure 4.5.

1 PROCEDURE Step(VAR sch: ScheduleInfo): INTEGER;
2 VAR transition: BOOLEAN; loc, result: INTEGER;
3 BEGIN
4 loc:= store [activation[sch.process] . frame] ;
5 transition := FALSE;
6 REPEAT
7 CASE store[loc] OF

8 I instrO: codeo
9 I instrl: codel

10

11 END
12 UNTIL transition;

13 RETURN result
14 END Step;

Figure 4.5: Procedure Step

The core of procedure Step is a fetch-decode-execute cycle. Line 4 calculates the address of the

next instruction to execute (the fetch) and the case statement in line 7 decodes the instruction

and selects the appropriate action (the execute). Each case interprets a single instruction:

instri is a constant that identifies the instruction and codei implements the meaning of the

instruction. The transition flag indicates whether a transition has taken place, and the

outcome of the transition execution is stored in result: this is either Progress, NoProgress, or

TransitionError.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 54

In general, each code fragment follows the same pattern:

1. It checks for transition errors (stich as division by zero) and sets result if necessary;

2. it executes the action of the instruction (by making assignments to the various data

structures of the machine); and

3. it advances the location counter loc and sets the transition flag if necessary.

The instruction ~et

The instruction set was designed to support efficient and reliable model checking, while meeting

the needs of ESML. Since the machine is abstract, the instruction set is not constrained by

typical considerations of hardware. Each instruction has only one format and the addressing

modes are simple. This simplifies and speeds up instruction decoding. A stack-based instruction

set was selected to simplify code generation as well as the implementation of instructions. The

machine has no registers apart from sp, which can only be manipulated indirectly. When the

value of an operand is fixed (for example, the target address for an unconditional jump), it is

stored in the code directly after the instruction. Otherwise, ali instruction fetches its operands

from the stack where they are placed by the preceding instructions .

. There are six classes of instructions.

1. Arithmetic: About one third of instructions implement arithmetic operations. These

instructions are needed to evaluate ESM:L expressions.

A typical instruction of this type is add, shown in Figure 4.6. The instruction replaces

the top two elements of the expression stack by their sum. The diagram shows a snapshot

of the store before and after the execution of the instruction. At the top of each snapshot'

the code and location counter is shown, and at the bottom the machine's expression stack

and stack pointer.

In principle, the add instruction should check that the stack contains at least two ele­

ments, but it is more efficient to rely on the ESML compiler to guarantee this condition.

The instruction therefore performs no checks. Instead, it immediately adjusts the stack

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 55

1 add:

2 INC(sp);

3 store Esp] := store [sp] + store[sp-l];

4 INC(loc)

10 c add add
10 c

5 p-+ a
b 5 p-+ a+b

Before Mter

Figure 4.6: Implementation of the add instruction

pointer, performs the addition, and advances the location counter. It does not change

either result or transition.

Other arithmetic instructions are the integer operations sub, mul, div, mod (remainder),

chs (change sign); integer comparisons compare, equal, neq, greater, geq, less, leq;

Boolean operations and, or, not; and expression subroutine instructions evaluate, ~nd.

The instructions generated for expressions are not stored within the main body of code,

but appears grouped in expression subroutines at the end of the abstract code. When the

value of an expression is needed, an expression subroutine is invoked with the evaluate

instruction. The suproutine returns to the caller when an end instruction is reached.

Figure 4.7 illustrates the use of expression subroutines. It shows the code generated for

the assignment command x : = x - 1. The address of variable x is 13. The pushValue

instruction (address 105) places the target address for the assignment on the stack;

evaluate invokes an expression subroutine to calculate the value of the right-hand side

and place it on the stack; popVariable (address 109) removes two operands from the

stack and stores the new value at variable address. 13. When the subroutine is invoked,

it places the value of x on the stack (addresses 240 and 242), places the constant 1 on

the stack (address 243) and performs a subtraction (address 245). The end instruction

at address 246 returns to the subroutine caller.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

240
105 pushValue' 13 ./ 242
107 evaluate 240 ~ . 243

109 popVariable _______ 245
... 246

pushValue 13
pushVariable .
pushValue 1
sub
end

Figure 4.7: Code generated for the assignment x : = x - 1

56

Apart from the SKIP command, all ESML commands (assignments, IF, DO, and commu­

nication cominands) involve the evaluation of expressions. Expression subroutines were

introduced to allow expression code to be translated t.o the native instruction set of the

physical machine, but this idea has not been implemented (see Section 5.4.2).

2. Memory transfer: These instructions move values between the variable space and the

expression stack. Variable addresses are relative to the frame of the current process and

can be checked to ensure that a process does not read or write outside its frame. This

check is not performed by the interpreter that instead relies on the compiler to perform

scope checking. As an example of a memory transfer instruction, the implementation

of the popVariable instruction, that removes Ii value from the stack and stores it in a

variable, is shown in Figure 4.8.

Line 2 calculates the variable address by adding ~he variable's offset a to the start of the

current process's frame. The check in line 4 tests that the new value does not exceed

the variable's range; cardinali tymap stores the maximum value of each location of the

. variable store. If this is not the case, the compacted state is updated (line 8) and the

change is affected in the variable store (line 9).

The other memory transfer instructions are pushValue, pushVariable, pushVariable­

Range, popVariableRange, pushParameter, andpushParameterRange.

3. List manipulation: The ESML language incorporates lists as a primitive type: Initially

the abstract machine handled lists orthogonally as just another data type that is manip­

ulated on the stack. For example, the assignment

p := q <2> r

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

store
o

program
code

variable
space

sp_

expression
stack

state
110010 111011.

activation
Id #Params Code F'rame

sch
Process, Guard

CProcess, CGuard

Figure 4.4: Key data structures of the interpreter

52

of the variable space, in other words, all local variables and location counters. Each program

variable therefore has two representations in the abstract machine: it is stored once in the

variable space and once in the compacted state vector. This duplication is necessary because

the variable space is too large to act as the canonical representation of the current state-in

the case of the mutual exclusion example of the previous chapter, the variable space is roughly

ten times larger than the compacted state vector. On the other hand, extracting the values of

variables from the state vector is too inefficient due to the large number of variable accesses

and the fact that the state vector is compacted. To maintain the consistency of the state vector

and the variable space, both the compacted state and the store must be updated whenever the

value of a variable changes.

Information about active processes are stored in an activation list called activation. For each

process the activation list contains one entry that stores a unique number for the process, its

number of parameters, code address and frame address. The process's location counter is not

stored in this table, but in the first word of its variable frame. ESML does not allow dynamic

creation of processes and the information in the table remains static during the analysis.

Lastly, the sch record stores scheduling information that determines which instruction the

abstract machine is about to execute next. The record identifies the process that executed

the last transition. The Process field stores the number of this process. In the case of DO,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 57

1 popVariable:

2 addr := activation[proc] . frame + store[sp+l];

3 (* aaar now contains the position of the variabLe i'n the store *)

4 IF (store[sp] < 0) OR (store[sp] >= cardinalitymap[addr]) THEN

5 aispLay message "Variable out of , range"

6 result := TransitionError

7 ELSE

8 State.UpdateValue(state, addr, store[addr] - store[sp]);

9 store [addr] := store[sp];

10 result := Progress

11 END; .
12 INC(sp, 2);

13 INC(loc);

14 transition := TRUE

10 c-- popVariab1e popVariab1e
10 c--

addr ~-- v

s p-- a a
v v

s p--

Before After

Figure 4.8: Implementation of the popVariable instruction

concatenates the lists q, <2>, and r and stores the result in list p. To execute this

command the interpreter must push the contents of the three lists onto the stack, perform

the concatenation operations twice and then move the result from the stack to the storage

space for p. In addition to the list elements themselves, each list has a length attribute

that must be manipulated correctly.

This approach proved complicated and inefficient. A study of existing ESML models

revealed that the use of lists was restricted to the modelling of queues. The language was

therefore modified to remove the general list operations of concatenation, list formation

and list assignment. These were replaced by the following routines: LEN (list) returns the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 58

length of the list, the EMPTY (list) routine empties the list, HEAD (list) returns the first

element of the list, and the REMOVE (list) routine removes the head element. APPEND (list,

x) and PREPEND(list, x) insert element x at either end of the list. These routines are

implemented with the length, head, empty, remove, append, and prepend instructions.

The remove and prepend instructions are still somewhat expensive, since they cause the

contents of the list to be shifted one position forward or backward, but this cannot be

avoided. The instructions are however much simpler than before.

4. Control flow: The ESML IF and DO control structures are translated with a guards in­

struction, followed by a code fragment for each of the construct's guarded commands.

An example of code generated for an IF construct is s~own in Figure 4.9. Each guarded

command fragment starts with a (guardExpr, next Guard) pair, such as those at addresses

102 and 107 in the example. The first number in the pair is the address of the expression

subroutine that evaluates the guard; in the example, the subroutine at address hi eval­

uates gi and the subroutine at address h2 evaluates g2. The second number in the pair

is the address of the next guard. Each pair is followed by the code for the corresponding

action.

1 IF 100 guards 112

2 gi ->

3 ci
4

{ 102 (hi, 107)
104 code for Cl

105 jump 113

5 [] g2 ->

6 c2
7

(07 (h2, 112)

109 code for C2

110 jump 113

8 END 112 trap

9 113

Figure 4.9: Code generated for an IF command

The code for an IF construct ends with a trap instruction that aborts analysis of the

model when all guards are false, in keeping with the semantics of Dijkstra guarded com­

mands. Of course, when an IF guard is satisfied and its action is executed, the analysis

must not abort. Therefore, each action code Ci is followed by a jump over the trap. In

the case of a DO construct there is no trap instruction; instead, each action ends with a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 59

jump that directs the flow of control back to the start of the DO.

There are three other control flow instructions: skip encodes the ESML SKIP command,

and activate and terminate create and destroy processes. Although the original defi­

nition of ESML allowed dynamic activation of processes, this feature has been eliminated

to avoid the obstacles described in Section 3.2.4. Instead, the main body of the model

(between the last BEGIN and END keywords) lists the processes that are active when the

analysis begins, together with t,heir parameters. This simplification has further bene­

fits: ESML's original support for nested process definitions is rendered obsolete, since

only globally-visible processes can be activated by the main process, and it allowed the

compiler to determine the number of processes and their order of activation during com­

pilation, and to determine the allocation of bits in the state vector.

5. Communication: Send (!) and receive (?) commands are translated with bang and hook

instructions. The hook instruction is interesting in that it is passive and never executes

a transition. All communication is effected by the sending process. The bang instruction

therefore scans through the list of active processes to search for communication partners,

as described in Section 3.2.3.

When a partner is found, the interpreter chec:ks the other conditions before allowing the

communication to succeed. Because of the semantics of communication in ESML, this

process is quite complex. Consider the following two synchronising commands:

channel! signal (data) 1\ conditionl

channel? signal(var) 1\ condition2

After checking that the channel and signal values match, the interpreter evaluates condi­

tion1. If this is satisfied, the data expression is evaluated and the result is copied to the var

variable in the receiving process's frame. The interpret~r then evaluates the condition2

expression. If this last condition is satisfied, the communication succeeds; otherwise, all

_ changes are undone and the interpreter reports NoProgress. All expression evaluations

involve the execution of expression subroutines.

It is clear that these instructions are expensive to interpret, but this cost cannot be

avoided. Simplifying the semantics of ESML was considered, but unfortunately the ma­

jority of models rely heavily on these commands.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 60

The translation of the selective receive (POLL) command is similar to that of IF and

DO discussed above. Instead of a guards instruction, a poll instruction is generated,

and each guard pair contains a ' communication instruction. An example is shown in

Figure 4.10. The expressions y+l, x, and x>2 are evaluated by the subroutines at addresses

hy+l , hx, hx>2 respectively. The fourth operand of the bang and hook instructions is 1

in both cases and indicates the storage space required by the y+l and x expressions; the

..L operand of the bang instruction means that there is no extra condition to be satisfied.

1 POLL 240 poll 262

2 ch!a(y+l) -> {242 (bang ch a hY+l 1 ..L J 252)

3 Ci 249 code for. Cl

4 250 jump 240

5 [] ch?b(x) & (x>2) ->
(52

(hook ch b hx 1 hx>2 J 262)
6 c2 259 code for C2

7 260 jump 240

8 END 262

9

Figure 4.10: Code generated for a POLL command

6. Miscellaneous instructions: The outString, outValue, out Range and outLn instructions

provide a means of displaying values-an invaluable feature when developing models.

Array manipulation is simplified by the index instruction that performs range checking

and calculates the address of an array element. The implementation of index is shown

in Figure 4.11.

The instruction has two code operands: s is the array element size, and m is the array size.

Array indices range from 0 to m-l. The array index and the array base address are placed

on the stack. The test in line 2 checks that the array index i satisfies the array bound

condition. If it is violated, the interpreter displays an appropriate message, and sets the

values of result and transition. Otherwise, it adjusts the stack pointer, calculates the

address of the element, and advances the location counter to the next instruction.

The last special instruction is selectProc. When a process evaluates an expression, it

may only access local variables and therefore all variables addresses are treated as offsets

within the frame of the current process. In contrast, the CTL correctness specification

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 61

1 index:
2 IF store[sp] >= store[loc+2] THEN

3 d.ispLay message "Range check error"

4 result := Error;

5 transition := TRUE

6 ELSE

7 INC(sp);

8 store [sp] := store[sp] + store[sp-1] * store[loc+1];

9 INC(loc, 3)

10 END;

10 C-+ index index
s s
m m

10 C-+

s p-+ i i
b s p-+ b+i*s

Before After

Figure 4.11: Implementation of the index instruction

can refer to any variable in any process. To select the appropriate frame in which a

variable is located, the selectProc instruction is used.

Not all instructions can complete transitions and several instructions may execute before the

transition flag is set. This amounts to a primitive form of atomic coarsening of actions [45]

and is similar to the d_step construction used in the SPIN system [34]. The following conditions

cause a transition to complete:

1. The value of a variable is changed

2. A communication instruction completes successfully

3. A guard evaluates to true

4. A jump instruction is executed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 62 "

5. A transition error occurs or a trap instruction is executed

It is possible to coarsen transition even " further: condition 1 can be made stronger by restricting

it to variables that appear in the correctness specification, and condition 3 can be omitted.

4.1.3 The structure of the stack

The depth-first stack of the model checker is implemented in module Trace. During the analysis

the stack stores current depth-first path and is used for cycle detection and for backtracking.

Since it contains the exact sequence of states up to the current state, the stack can also provide

the user with an error trail when a violation of the correctness specification is found.

When the model checker backtracks, the previous value of state is restored from the stack.

It is also necessary to restore the machine's variable space to its previous value, but it is not

viable to store the entire variable space on the stack because of its size. An alternative is to

uncompact state and to reconstruct the variable in this way, but this introduces significant

overhead. A third and simpler technique was adopted: all changes to variables are recorded

and this record is then later used to undo all changes.

Every time a variable is changed, its address and previous value are pushed onto a special,

independent stack called delta. Each entry of the depth-first stack maintains a pointer to the

first of its changes. When the model checker backtracks, changes are popped from the delta

stack and applied to the variable space until the first of the changes is reached.

The operation of this scheme is illustrated by Figure 4.12. In state s variable x is stored at

address 13 and has the value 10. 'Transition t corresponds to the assignment x : = x-1. When

t is executed, address 13 and value 10 is stored in the delta stack and x is decremented. When

falling back, the actions of transition t are undone: the last of these changes (there may be

others) restores the value of x in the variable space to 10.

The stack data structure is implemented as an array of StackEntry records, shown in Fig­

ure 4.13. The state and sch fields store the state and scheduling information needed during

the depth-first exploration; the delta field stores the address of the first of the changes that

lead to the state stored in the stack entry.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 63

delta stack
Address Value

t
x:=x-l

~
f- I s' I t

13 10 I-top

Figure 4.12: Illustration of the operation .of the delta store

1 StackEntry = RECORD
2 state: Compact.State;
3 sch: Schedulelnfo;

4 delta: LONGINT
5 END

Figure 4.13: Definition of the StackEntry type

4.2 State caching

The model checker uses a state cache with hashing as described in Section 3.3.1.

An early version of the model checker stored stack and cache states separately. When a new

state was not found in the cache, linear search was used to check whether the state appeared in

the stack and formed a cycle. An execution profile revealed that the linear search accounted for

the largest portion of model checking time, and prompted a new implementation of the stack.

One option is to manage the stack as a second closed hash table similar to the state cache. The

stack order is preserved by adding a field to each stack entry that threads the stack through

the hash table. The main difficulty with this approach is that when a state has been fully

explored, it must be removed from the hash table; this turn out to be an expensive operation.

An attractive alternative is store the stack states directly inside the cache. At first we were

reluctant to tamper with the simplicity of the cache. Experience with an earlier model checker

Stellenbosch University https://scholar.sun.ac.za

~:;t~1~:~·
:.:~

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 64

had shown that adding flags to cache states can .complicate the management of the cache

beyond measure, but the inefficiency of linear search demanded action.

1 CacheEntry = RECORD
2 state: Compact.State;
3 flag: LONGINT
4 END

Figure 4.14: Definition of the CacheEntry type

Finally, the following scheme was adopted: Each entry in the cache consists of a state and a

flag (Figure 4.14). If the entry is unused, the value of the flag is -2. Otherwise, the entry

contains either a "stack state" or a true "cache state". For cache states, the flag is set to -1.

A zero or positive value means that the state is part of the stack, and the value of the flag

indicates the state's position in the stack.

When a new state is generated, it is searched for in the cache. If found, a negative flag signifies

that the state is being revisited, while a positive values tells the position of the state in the

stack. If a state is not found, it is immediately inserted with the stack pointer as its flag value.

This task is performed by procedure New-Insert, which combines the functionality of the Insert

and Lookup routines described in Section 3.3. Once a state has been fully explored and must

move from the stack to the cache, its flag is merely set to -1.

The stack data structure is retained to store information about scheduling, backtracking and

fairness. An additional field pos identifies the location of the state in the cache; the complete

definition of stack entries is shown in Figure 4.15. The fields in lines 5 and 6 are discussed in

Section 4.4.

1 StackEntry = RECORD
2 pos: LONGINT;

3 sch: ScheduleInfo;
4 delta: LONGINT;

5 pre, 11: LONGINT;

6 goodchildren: BOOLEAN
7 END

Figure 4.15: Modified definition of the StackEntry type

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 65"

This implementation of the stack solves an important problem with regard to fairness. As

mentioned in the previous chapter, a state must remain on the stack until its entire sec has

been detected. After the changes above these states are stored in the state cache where they

need to be stored in any case if they satisfy the correctness specification. In the case where

they violate the correctness property, they are never changed to "cache states"; rather, the

analysis aborts as soon as model checking algorithm detects the violation.

Although the stack has only been modified in a minor way, its efficiency has improved dramat­

ically. However, a new hurdle is introduced: "stack states" may not be overwritten by newer

states, since this would corrupt the depth-first stack. This is easily avoided by testing that the

flag is negative before overwriting a cache entry. The imp~ct of this change on the efficiency

of the cache is fully described in Section 5.2.2.

4.3 State compaction

The state" compaction scheme described in Section 3.4.3 is used. As was noted there, an

important attribute of this scheme is its simplicity and during the implementation only one

complication arises: due to the large number of variables, it is not practical to store and

manipulate the entire compacted state as a single number.

Variables are therefore grouped into cells. Each cell is compacted separately and variables

may not be split over more than one cell. Variables are allocated to cells in their order of

appearance and when the compacted number grows too large for a cell, the next cell is used.

As a result, the last few bits of a cell may remain unused. The problem of finding an optimal

arrangement of variables is equivalent to the bin packing problem and requires unaffordable

overhead, though no new data structures would be needed to store such alternative variable

orderings. In practice, the current strategy works well and few bits are wasted.

The Compact modules exports an abstract type State which is simply an array of words of type

LONGINT. Each variable in the model is given a unique number, called its index. Two tables

facilitate the implementation: cellmap maps each index to the word where it is stored, and

factormap maps each index to its lower factor. Since the upper factor of variable i is equal to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER . 66'

the lower' factor of variable i + 1, it is unnecessary to store upper factors.

The implementations of the GetValue and UpdateValue operations are shown in Figures 4.16

and 4.17. Since the interpreter has access to the values of the variable store, GetValue is not

used, except during initialisation. UpdateValue is almost identical to the Set Value routine

described in Section 3.4.3: instead of the new value of the variable, it is invoked with the value

(v~ - Vi), the difference between then new and the old value of the variable.

1 PROCEDURE GetValue(VAR s: State; index: INTEGER): INTEGER;
2 VAR k: LONGINT;
3 BEGIN .

4 k := s[cellmap[index]];
5 IF factormap[index+l] > 1 THEN
6 RETURN SHORT(k MOD factormap[index+l] DIV factormap[index])

7 ELSE
8 RETURN SHORT(k DIV factormap[index])
9 END

10 END GetValue;

Figure 4.16: Procedure GetValue

1 PROCEDURE UpdateValue(VAR s: State; index, delta: INTEGER);
2 BEGIN
3 s[cellmap[index]]:=

4 s [cellmap [index]] + f.actormap [index] * delta
5 END UpdateValue;

Figure 4.17: Procedure UpdateValue

4.4 The implementation of fairness

Strong fairness has already been discussed in Sections 2.5 and 3.5. The latter explained the

two elements of the implementation: the detection of strongly connected components (Sees)

using Tarjan's algorithm, and the use of the goodchildren flag to indicate whether or not an

see satisfies the correctness specification. These elements are implemented by modifying the

operation of the depth-first stack.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

4.4.1 Simplifying assumptions

As noted, module Trace stores the current execution path in an array called stack. The stack

pointer top points to the first open slot in the stack and the top element is stack [top-l] . For

the sake of clarity, three simplifications about the struct'ure of the stack are made:

The delta field is an index into a table which records all the changes made to the machine's

variable store. When the model checker backtracks, this table is used to undo the changes and

restore the variable store to a previous state. The operation of the del ta field is straightforward,

but since it is not relevant to fairness, it is ignored in the rest of this chapter.

The goodchildren field stores the flag that was described in Section 3.5. It plays a direct role

in the fairness algorithm of the model checker, as the section explained. When a new state

is pushed onto the stack, its goodchildren field is set to false; the flag of the top element

can subsequently be tested with procedure GetGoodChildren and it can be set to true with

procedure SetGoodChildren. When a state is popped from the stack and the flag is set, it is

automatically propagated to the predecessor state by the stack. This flag is discussed at the

end of this section, but will be ignored for the time being.

A last simplification concerns the integration of the stack and the cache that was discussed in

Section 4.2. To simplify the presentation, the rest of this section ignores this optimization and

assumes that stack entries have a field state. In the code that follows states are still explicitly

inserted into the cache when they are popped from the stack.

4.4.2 Procedures Push and Pop

Stack entries are added and removed with procedures Push and Pop (shown in Figures 4.18

and 4.19).

Push: Procedure Find determines whether state s has been encountered before (line 4). It

searches through the stack and then through the cache. If s is found in the stack, its position

is assigned to local variable k, and Loop is returned (line 12). If s is not in the stack but in

the cache, k is assigned -1, and Revisit is returned (line 10). 'rhe last possibility is that s is

an entirely new state in which case k is assigned - 2, the state is inserted into the stack, the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

1 PROCEDURE pushes: State): INTEGER;

2 VAR k: INTEGER;

3 BEGIN

k := Find(s);

IF k = -2 THEN

4

5

6

7

8

9

stack [top] . state := s;

INC(top);

10

11

RETURN Inserted

ELSIF k = -1 THEN

RETURN Revisit

ELSE

12 RETURN Loop

13 END

14 END Push;

(* s is revisited *)

(* s is on the stack *)

Figure 4.18: Procedure Push

stack pointer is advanced, and Inserted is returned (lines 6-8).

1 PROCEDURE pope);

2

3

BEGIN

DEC(top);

4 Cache.Insert(stack[top].state)

5 END Pop;

Figure 4.19: Procedure Pop

68

Pop: As soon as a state is popped from the stack, it is moved to the cache. "Invalid" states

are never inserted in the cache: when a violation of the correctness specification is found, the

model checking algorithm does not pop the state, but aborts the analysis immediately and

dumps the states of the current execution path (stack [0 .. top-1]) to a file instead. From this

information the user can reconstruct the events that led to the error.

4.4.3 Tarjan's original algorithm

Tarjan's algorithm [1, 50J relies on depth-first numbering to find strongly connected components

(SCCs). It is a recursive algorithm that explores a directed graph in depth-first order and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 69

numbers 'the vertices as they are visited. Figure 4.20(a) shows an example of such numbering

and illustrates the four types of edges that are found in state graphs:

1. Tree edges lead to new vertices found during the search (represented by the solid lines in

the graph);

2. Forward edges lead from ancestors to descendants but are not tree edges (represented by

the dotted lines from vertex 1 to 4 and from vertex 5 to 4);

3. Back edges lead from descendants to ancestors, possibly from a vertex to itself (the dashed

line from vertex 3 to 1); and

4. Cross edges connect vertices that are neither ancestors nor descendants of one another

(the dashed line from vertex 4 to 3) .

(a) (b)

Figure 4.20: Depth-first search of state graphs

The first step in the development of the algorithm, is the insight that each see forms a subtree

of the depth-first tree. Therefore each see has a "root," its smallest (shallowest) vertex. The

algorithm uses depth-first numbers to find these roots and so to identify the sees. To aid in

finding the roots a function called Lowlink is defined as follows (v is the depth-first number of

vertex v):

Lowlink(v) = min ({v} U {w I there is a cross edge or back edge

from a descendant of v to w, and

the root of the see containing w

is an ancestor of v})

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 70

Figure 4.20{b) illustrates the condition in the last part of the function. A cross edge leads from

a descendant of v to w, where the root r of the see containing w, is an ancestor of v.

In [1] it is proved that a vertex r is the root of an see if and only if Lowlink{r) = r. Procedure

Tarjan in Figure 4.21 implements a recursive depth-first search that calculates Lowlink and

consequently also all the sees.

1 PROCEDURE Tarjan{v: Vertex);

2 VAR w, x: Vertex;
3 BEGIN
4 INC{nodes);
5 v.dfnr := nodes;
6 v.lowlink := v.dfnr;
7 v.marked := TRUE;

8 push v on stack;
9 FOR each descendant w of v DO

10 IF NOT w.marked THEN
11 Tarjan{w);

·12 v.lowlink := MIN{v.lowliDk, w.lowlink)
13 ELSIF (w.dfnr < v.dfnr) AND w is· on the stack THEN
14 v.lowlink := MIN{v.lowlink, w.dfnr)

15 END
16 END;

17 IF v.lowlink = v.dfnr THEN

18 REPEAT pop x from stack UNTIL x = v
19 END
20 END Tarjan;

Figure 4.21: Tarjan's original algorithm

The code consists of three parts: lines 4-8 initialise the attributes of a new vertex, lines 9-16

contain code to explore descendants, and lines 17-19 contain code that is executed after a

vertex has been fully explored. Variable nodes counts the number of vertices encountered so

far. The value of the lowlink attribute is calculated in three places. In line 6 the value is

initialised to the depth-first number of v. In line 12 the (possibly smaller) Lowlink value is

propagated back to a predecessor after a descendant has been explored, and line 14 calculates

the value for a cross or back edge (the scenario in Figure 4.20{b)).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 71

Lemmas in [1 J prove that when an see is found, its· vertices occupy the top entries of the stack

and can all be popped at once. The root is the last vertex removed from the stack. In line 18

the states of the see are repeatedly popped until the root is reached.

4.4.4 Integration into Push and Pop

The algorithm' in Figure 4.21 can be merged with procedures Push and Pop after making the

following observations:

1. Line 11 is unnecessary, since the recursive calls to procedure Tarjan have been replaced

. by calls made to Push and Pop from outside the module.

2. The original algorithm uses two stacks: an explicit stack is manipulated in lines 8, 13

and 18, and an implicit procedural stack is used by the recursive call in line 11. The

current depth-first stack called stack corresponds to the procedural stack. The explicit

stack is used by the original algorithm to store the elements of an see until the entire

see has been detected.

It is unnecessary to create an additional stack .for sees; the behaviour of the existing

depth-first stack can be modified to perform this task. One physical stack is used to

implement two conceptual stacks, the depth-first stack and the see stack. All new

states are added to the physical stack and therefore to both conceptual stacks at once.

States are removed from the depth-first stack once they have been explored, and are later

removed from the see stack when the entire see has been explored. States remain

longer on the see stack. In other words, the depth-first stack contains a subset of the

states on the see stack. The see stack retains the nor!llaJ ordering meaning that the

predecessor of stack en] is stack [n-i]. The stack pointer top points to the first empty

slot just beyond top see stack element. For the ordering of the depth-first stack a pre

field is introduced to point to a state's depth-first predecessor. The pre field defines the

thread of the depth-first stack that winds through the states of the see stack. A new

variable dftop points to the top element of the depth-first stack.

This scheme is illustrated in Figure 4.22: there are seven states numbered 0 to 6 on the

physical stack, all of which belong to the see stack, and top points to the first empty

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

top-

pre
, , , , , , , 'J ' , :0:: ::: :::: :::: :::: :: : ::J : :~: :

'1:: ::::: :: :::: :: :::: ::1:1::
2 i '

::i:: ::::> >::::::::: 1f '
4 l
:5:":-':-':": ' ':-':-' :- ' "-dftop , , , , , , , '1'! '
' . ':-': " :-':-':-':-' :-' :- ' :-
6

Figure 4.22: see and depth-first stack

72

slot. Only the gray states (0, 1, 3 and 5) belong to the depth-first stack. The pre field

indicates the predecessor of each state and dftop identifies the top element of this stack.

If state 5 is popped from the depth-first stack, dftop is updated to point to state 3.

State 5 however remains on the stack as part of the see stack.

3. The value of lowlink for a particular vertex is not calculated by a single expression, but

it is assigned an initial value in line 6 and is adjusted in lines 12 and 14 as information

becomes available. The Lowlink value for a particular state can change over time and

cannot be stored as a local variable in either Push or Pop. Therefore each element of

the stack must store its own copy of its Lowlink value. A lowlink field is added to the

definition of each stack entry.

4. The original algorithm uses the marked flag to determine whether a node is new or being

revisited. In procedure Push this information is provided by the Find procedure. It is

therefore unnecessary to include an explicit flag in the new algorithm.

5. The original algorithm uses depth-first numbering to (1) detect back/cross edges and

(2) to provide an ordering of the vertices. The first task can be accomplished by searching

through the stack-if a state is already present on the stack, it represents a back or cross

edge. The second task is performed by ordering vertices according to their position in

the physical stack. This ordering is only valid while a vertex remains on the stack, but

this is also the only time during which the ordering is needed. The position in the stack

indicates the order in which vertices were encountered, and therefore the stack ordering

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 73

is equivalent to depth-first ordering in this respect.

The modified algorithms

Procedure Tarjan in Figure 4.21 can now be inserted piecewise into the new versions of Push

and Pop shown in Figures 4.23 and 4.24. Unless noted otherwise, line numbers refer to the

a,lgorithm in Figure 4.21.

Lines 4-5 and 7 can be omitted since depth-first numbers are not calculated explicitly and

vertices are not labeled with the marked flag anymore. The actions of line 6 and 8 are performed

by procedure Push in the case of a new vertex.

The FOR-loop in line 9 specifies that the code in lines 10-15 must be executed for each descendant

of v. Both procedures Push and Pop are called once for each state (or descendant), so it is

clear that the code must be inserted into these procedures. The first test in line 10 checks

for new states and therefore seems to belong with lines 6-8 of Figure 4.18. Closer inspection,

however, shows that the resulting action (line 12) happens after the recursive call to Tarjan

has completed (after it has been explored), when vertex w propagates its value to its parent,

vertex v. It therefore belongs in procedure Pop. The second IF in line 13 applies its action

to back or cross edges and therefore belongs in procedure Push just before Loop is returned in

line 12 of Figure 4.18.

Finally, lines 17-19 are performed after vertex v has been fully explored and they therefore

belong at the end of procedure Pop. The test in line 17 to check whether an SCC has been

found, is replaced by stack [dftop] .lowlink = dftop. The removal of the top element in

lines 3-4 of the original Pop procedure (Figure 4.19) is guarded by this test to mirror the

conditional removal of states as in Figure 4.21.

This implementation of Tarjan's algorithm changes the runtime efficiency of the stack oper­

ations by only a constant factor. Memory is of course affected more seriously, since in some

cases many states are retained on the stack. This issue is addressed in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER

1 PROCEDURE pushes: State): INTEGER;
2 VAR k: INTEGER;
3 BEGIN
4 k := Find(s);
5 IF k = -2 THEN (* s is new = tree edge *)

6 stack[top].state := s;
7 stack[top].lowlink := top;
8 stack[top].pre := dftop;
9 dftop := top;

10 INC (top) ;
11 RETURN Inserted
12 ELSIF k = -1 THEN (* s is revisited = .forward edge *)

13 RETURN Revisit
14 ELSE (* s is on the stack = cross/back edge *)

15 stack[dftop].lowlink := MIN(stack[dftop].lowlink, k);
16 RETURN Loop
17 END
18 END Push;

1 PROCEDURE pope);
2 VAR pre: INTEGER;
3 BEGIN

Figure 4.23: Modified procedure Push

4 pre:= stack [dftop] .pre;
5 stack[pre] .lowlink := MIN(stack[pre].lowlink, stack [dftop] .lowlink);
6 IF stack[dftop].lowlink = dftop THEN
7 WHILE top > dftop DO
8 DEC(top);
9 Cache. Insert (stack [top] . state)

10 END
11 END;
12 IF (Good >= dftop) THEN Good := pre END;
13 dftop := pre
14 END Pop;

Figure 4.24: Modified procedure Pop

74

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. IMPLEMENTATION OF A MODEL CHECKER 75

The goodchildren flag

One line of procedure Pop in Figure · 4.24 remains unexplained. When the model checking

algorithm determines that the correctness property is satisfied by the current state, it sets the

goodchildren flag by calling procedure SetGoodChildren. Until now it was intimated that an

individual flag is stored on the stack for each state. However, it is sufficient to store a single

pointer to indicate the deepest stack position with this property.

When a new state is added to the stack, the goodchildren pointer Good remains at its current po­

sition, since it is not known whether the new state satisfies the specification. SetGoodChildren

simply sets the pointer to the current top stack state. When the top state is removed from the

stack and the state has the goodchildren property, Good is set to its predecessor, as is done in

line 12 of Figure 4.24.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Evaluation

Until now, design decisions have been motivated with arguments about conceptual clarity and

efficiency. This chapter investigates whether these arguments hold true. It addresses the

following questions:

• Is state compaction affordable? Do memory gains outweigh runtime overhead, or should

compaction be removed?

• Does the performance of the cache/stack design correspond to results reported in the

literature such as [26]7

• What is the runtime overhead incurred by strong fairness?

• What is the runtime overhead incurred by interpretation?

• How does the composition of the instruction set influence the performance? Which in­

structions are inefficient and how can the abstract machine be improved?

• How does the model checker compare to a more established system like SPIN?

Results are summarised at the end of the chapter.

Experiments were conducted on an SGI Indy workstation with a 150MHz MIPS R4400 processor

and 64 megabytes of physical memory. Swapping is avoided by minimising the system load to

76

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EVALUATION 77

guarantee access to as much physical memory as possible. Time measurements are made using

a standard Unix system call, getrusage, that returns information about resource usage. All

measurements include the time spent inside the model checker process and the time spent by

the operating system executing the model checker's system calls, but it excludes time waiting

for 10 request completion. In all cases the elapsed physical time is close to the given times

(within 4% of) . All time measurements are given in seconds and are averaged over a number

of runs .

Care was taken to select representative ESML models. When modelling a reactive system,

it is sound practice to start out with a restricted model and extend it in several refinement

steps. It is therefore important to know how the model d~ecker behaves when the scale of a

model is increased. Four models were selected to make measurements, they appear in Table 5.1

and their source code can be found in Appendix A. They were chosen to represent different

levels of communication activity and data requirements. For example, the dining philosophers

models contain little data and a medium amount of communication, while the process scheduler

models contain a high amount of both data and communication. The first three model types

are parameterised in the number of processes, and the sliding window protocol models in the

size of the window. In total there are 12 variations that range in size from approximately 8500

to 2.6 million unique states.

Model

DPn

ELn
PSn

SWn

Description

Classical problem of n dining philosophers, n = 7,8,9
Elevator model for n floors, n = 3,4
Process scheduler for 11, processes, n = 1,2,3

Sliding window protocol for n-slot window [54], n = 1,2,3,9

Table 5.1: Models selected for performance measurements

Except where noted otherwise, models are analysed for deadlock freedom, and runs are perfect,

meaning that the state cache is made large enough to ensure that no states are ever. replaced.

Imperfect runs are investigated in Section 5.2. In most of the sections that follow, results

are given only for selected models that exhibit typical behaviour; full results can be found in

Appendix B.

Stellenbosch University https://scholar.sun.ac.za

· CHAPTER 5. EVALUATION 78

5.1 State compaction

State vectors are implemented as an ' abstract data type by the Compact module. As the

name implies, the state operations use the technique for compacting states as described in

Section 3.4.3. However, since all these operations are fully encapsulated by this module, their

implementation can be changed without affecting the rest of the system. This allows alternative

forms of state compaction to be tested. In this section, the state compaction technique is

compared to an implementation that performs no compaction at all, to determine what the

cost of performing compaction is.

5.1.1 Number of compaction operations

Table 5.2 presents a count of how many state operations were executed. It contains information

about the sliding window protocol models (SWn), their number of states and transitions and the

number of Compare, Assign and UpdateValue operations. Compare tests whether two state

vectors are equal, Assign assigns one compacted state vector to another, and UpdateValue

updates the value of one of the variables stored in a state vector.

Model

SW1
SW2

SW3
SW9

States
22464

100426
235098

2673976

Transitions
98449

447608

1052442
12050941

Compare

90373
539143

1679839
25313655

Assign

22464
100426

235098
2673976

UpdateValue

121998
563375

1341667
16382794

Table 5.2: Count of compaction operations for the sliding window protocol models (SWn)

The most apparent feature of this table is the exact correspondence between the number of

unique states and the number of Assign operations. Since these runs are all perfect, each state

is inserted into the cache exactly once, and this is the only time that the Assign operation is

used .

A second observation is that the number of UpdateValue operations is of the same order as

the number of transitions . The UpdateValue operation is used to update the location counter,

which happens once for every transition. It is also used for variable assignments and from

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EVALUATION 79

this fact 'the number of variable assignments 'can be calculated. For example, SW3 produces

1341667 - 1052442 = 2898225 variable assignments.

Lastly, the absence of GetValue operations, that were described in Section 3.4.3, is noted.

When the value of a variable is needed, it is not extracted from the compacted state with a

GetValue operation, but taken directly from the variable space instead. Sirice the state vector

and the variable space are kept consistent, the value is the same. The time spent on the

operations is discussed in the next section.

5.1.2 Validating without compaction

It seems reasonable to assume that there is a fair amount of overhead involved with compaction:

removing the redundancy from the uncompacted state vector requires processing. Moreover,

the goal of compaction is to improve memory usage, even at the (very likely) expense of

processing time. It is therefore expected that the speed of the model checker will increase when

compaction is removed.

Very few changes are needed to disable compaction. Compare and Assign perform no calcula­

tions on the state vector, but merely compare and copy it word for word, and their execution

times are directly proportional to the size of the state vector. In fact, the code for Compare

and Assign remains unchanged. The UpdateValue operation modifies only a single word of

the state vector and therefore its execution time is constant. When compaction is disabled, the

UpdateValue operation does. not make use of the formulas of Section 3.4.3 anymore, but stores

the values directly in the state vector with a simple assignment.

To measure such a speed increase, these changes were made; the results of this experiment are

shown in Table 5.3. Since the changes are transparent to the rest of the model checker, the

usage counts in Table 5.2 remain exactly the same. The largest models (EL4 and SW9) could

no longer be run, due to their excessive memory requirements.

Surprisingly, the speed of the analysis decreased: the models took between 1.25 (DP8) and

1.84 (EL3) times longer to analyse without compaction, and required more than three times

more memory. The explanation for the decrease in runtime lies in the fact that the longer state

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EVALUATION

Compaction No compaCtion
Model Bits Time Bits Time

DP7 50 8.11 272 10.19

DP8 54 29.35 304 36.83

DP9 58 102.20 336 133.52

EL3 89 10.76 432 19.78

EL4 107 341.18

PSI 59 1.13 320 1.70

SW1 43 3.15 240 4.71

SW2 53 13.79 288 20.38

SW3 56 33.74 336 34.35

SW9 89 471.89

Table 5.3: Performance of the model checker with and without compaction
(Time measurements are given in seconds)

80

vectors are costly to compare and assign. The time saved by not compacting is negated by

the overhead of Compare and Assign operations. The same behaviour was observed when the

author modified the SPIN system to use this state compaction technique [22].

The size of the uncompacted state is equal to the size of the variable space, and in fact the

state vector and the variable space are identical. Every component of the state vector is stored

in one 16-bit word, and therefore the uncompacted state size is a multiple of 16. It would

be possible to store variables more compactly according to one of the methods mentioned in

Section 3.4, but only at the expense of increased running time.

5.2 State caching

Apart from the complexity of the model checking algorithm, the most important factors in the

performance of the model checker are the storage of states in the cache and the generation of

states. In this section, the parameters of cache performance are evaluated.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EVALUATION 81

5.2.1 The influence of cache size

How do we expect the cache with its dosed hashing scheme to behave? (l) If the size of the

cache is larger than the size of the state space, the cache acts as a perfect store. Collisions are

exceptional and hardly any states should ever be replaced. (2) If the cache size is slightly less

than the size of the state space, collisions are more frequent and a small number of states are

replaced, but cache performance is still acceptable.· (3) If the cache size approaches a certain

critical size (which depends on the particular model, but is usually about half of the state space

size), the number of collisions and replacements increases dramatically. (4) A cache size less

than the critical size leads to an explosion in the number of transitions caused by the cache

only storing a small region of the state graph. This forces the model checker to unpecessarily

re-analyse many if not most states.

To confirm this description, the EL3 model was analysed 10 times with different cache sizes.

The results are shown by the solid curve in Figure 5.1. The cache size started at 90000 states

arid was decreased in each run by a variable amount. The number _of transitions explored

is used as a measure of performance. This provides more accurate results and contains more

information that time measurements, butin all cases the running time follows a similar pattern.

While the cache size is greater than the number of unique states, cache performance is satis­

factory. As the cache size approaches the number of states however, performance deteriorates

and even for a cache size only slightly less than the number of states, the number of transitions

is unacceptably high. The .6.-symbol at the top of the solid curve marks a point at which the

cache size is 99.3% of the state space, but the number of transitions is about 2.5 times the

normal figure of 323839.

The outcome of this test was in sharp contrast with the description of expected behaviour and

with the results reported in [26J. The sudden, dramatic increase in the number of transitions

means that many states are revisited, but not found in the cache, and are therefore re-explored,

leading to the escalation in the number of transitions. A possible explanation for the discrep­

ancy is a higher number of visits per state. In [26J the authors claim that each state is visited

3 times on average, based on the ratio of transitions to unique states. The corresponding ratio

for the 12 representative ESML models ranges from 3.8 to 5.6, and for the EL3 model it is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EVALUATION

Transitions (thousands)

800 -

700 -

600 -

500 -

400 -

:68.193

L~

~~~.~?~ ..................................... ':~'.'~':':~ .... :.:.:.:.:.:.:.: •....... ,., ..... j""'''--'----<l>------e ........ . 
3001----r-,---r-,---r-,---r-,---.-,---.,---,,---,,---,,---~ 

o 10 20 30 40 50 60 70 80 90 100 

Cache size (thousand states) 

Figure 5.1: Influence of cache size on performance for the elevator model (EL3) 

4.75, which is certainly higher than the cited value of 3. In fact, it is possible to measure 

the distribution of state visits, as shown in Figure 5.2. The histogram reveals that very few 

states are visited only once, and that there are even states with up to 14 visits. Close to three 

quarters of the states are visited four or more times. 

How could this hypothesis-that the different behaviour of the cache is due to the high ratio of 

transitions to unique states-be tested? It is not possible to manipulate the average number 

of revisits in a particular model: this .is an inherent property of the state graph produced by 

the transition semantics of ESML. The user has no direct control over the state space. The 

investigation of this problem led to the discovery of a programming error in the Cache module. 

The erroneous code disregarded all replacements: instead of overwriting the older state, both 

the older and the newer state were discarded. 

This example of debugging underscores the importance of thorough measurements of a model 

checker: intricate errors are not always visible or are easily misinterpreted during the normal 

operation of the system. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 83 

% of unique states 
30~----------------------------------------------------~ 

20 

10 

o 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Number of visits 

Figure 5.2: Number of visits per state for the elevator model (EL3) 

After the error was corrected, the test was repeated, and the corrected resu~ts are shown by the 

dotted curve in Figure 5.1. The corrected cache now exhibits the behaviour reported in [26]: the 

cac):le remains effective for cache sizes less than the number of unique states, until the cache 

size approaches a critical size (roughly 60% of the state space size), where the performance 

deteriorates rapidly. Before 50% is reached, the cache becomes totally ineffective. In general, 

the cache can handle state spaces 1.7 to 2.0 times the size of the cache. The figure is slightly 

lower than that reported in [26], but this discrepancy can be explained by the state revisit ratio 

discussed above. 

The curve in Figure 5.1 may create the impression that the number of transitions increase 

smoothly as the size of the cache is decreased. However, a more accurate picture is shown in 

Figure 5.3. The presentation is slightly different: along the horizontal axis the cache size is 

shown as a ratio to the number of unique states (cache size/68193) , while along the vertical 

the number of transitions is shown as an inverse ratio to the number of transitions in the state 

graph (323839/ transitions). 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 84 

Ratio of necessary to unnecessary transitions 
1.0~--------------------~--------~-------------------------. 

0.8 

0.6 

':" 

0.4 

0.2 
• 0, • 

• 0' "o. 

.. ....; .............. 01 .. ....... 

..• -:' : ....• : .. ~.:::~ .. ~.:-........ 
..... . .... . " 

•• 0."0· 

0°' ...... 

.... 

---_ ... _--­.....-a. ........... -.:-. .... - .... ~ 

0.04---------~---------r---------.--------~---------,--------~ 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 

Ratio of cache size to unique states 

Figure 5.3: Detailed measurement of influence of cache size on transitions for the elevator 
model (EL3) 

The s~all fluctuations in Figure 5.3 are due to the influence of the cache size on the hash 

function. Since the hash value of a state is calculated modulo the cache size, different cache 

sizes affect the distribution of the hash function. This causes different states to be replaced in 

each run. In some cases replaced states are visited again, and in other cases they are not; the 

cumulative effect of these differences explains the variations observed. 

5.2.2 The influence of tolerance parameters 

Size is not the only factor in the performance of the state cache. This section considers the 

cache insertion algorithm shown in Figure 5.4. It takes as input a state 5 and returns either 

revisit or new, or aborts the analysis with a message that the cache is full. Here revisit means 

that the state is either a regular cache state or a stack state, in which case a cycle has been 

detected. 

Variable x stores the primary hash value for state 5, and d the secondary hash value which will 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 

1 PROCEDURE NewInsert (s: State)j 
2 VAR x, d, n: LONGINTj 
3 BEGIN 
4 x := hashl(S)j 
5 d := hash2(S)j 
6 n := OJ 

7 WHILE n < C DO 
8 IF cache[x] = S THEN RETURN revisit ENDj 
9 rF cache[x] is empty THEN cache[x] := Sj RETURN new ENDj 

10 x := (x + d) MOD sizej 
11 INC(n} 
12 ENDj 
13 . (* ready to replace another state if necessary *) 

14 WHILE n < P DO 
15 IF cache[x] = S THEN RETURN revisit ENDj 
16 IF cache[x] is replaceable THEN cache[x] := Sj RETURN new ENDj 
17 x := (x + d) MOD sizej 
18 INC(n) 
19 ENDj 
20 Abort the analysis---the cache is full 

21 END NewInsertj 

Figure 5.4: Insertion algorithm for the state cache 

85 

be added to x, if necessary; variable n counts the number of collisions. The first while-loop 

resolves collisions until a certain number of them has been encountered, and the second while­

loop searches for a replaceable state. In line 16 replaceable means that the cache slot is empty 

or contains a regular cache state. Therefore, the assignment in line 16 is not necessarily a 

replacement-the cache slot could be empty. (As an aside, the error referred to in the previous 

section, was caused by switching lines 15 and 16, thereby masking out revisits.) 

The algorithm contains two parameters that determine how "tolerant" the cache behaves: C 

(line 7) specifies the number of collisions that is allowed before the algorithm is prepared to let 

the new state replace another, older state; and P (line 14) is the total number of unsuccessful 

probes that is allowed before the algorithm concludes that the cache is full and aborts the 

analysis. It is clear that 0 < C ~ P. 

When the value of C is small, the algorithm is quick to decide that s is a new state and only a 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 86 

few collisions are tolerated before s replaces another state. This behaviour leads to clustering 

around the collision slots. Although each invocation of the algorithm is fast, many more states 

are replaced and the algorithm has to be invoked many more times. On the other hand, when 

C is large and the cache fills up, many collisions may be resolved to find an empty slot. It 

takes a long time to insert each state, but the algorithm makes thorough use of the cache and 

fewer replacements are performed. . 

If the stack states were not stored in the cache, the P parameter would be unnecessary, since 

the test in line 16 would be true before the first iteration of the while-loop. As long as the 

number of stack states is small relative to the size of the cache, the iterations of the second 

while loop stay small-it never has to seek long to find a no.n·stack slot. 

When P = C, no replacements whatsoever are allowed. In this case, the larger the value 

of C (and P) the more use is made of the cache; maximal use is made of the cache, when 

C = cache size. When P is only slightly larger than C, the algorithm is quick to abort the 

analysis, often unnecessarily, since a few· more probes might find an empty slot. When P is 

much larger than C, the algorithm again makes very thorough use of the cache, but the extra 

work performed may be unnecessary since, with little room in the cache, it is likely that the 

analysis is aborted anyway as the exploration of the state graph progresses. 

For the analyses in this chapter the value of C is 100 and P is 200. However, these values are 

not relevant, since in the perfect runs, the value of C is never exceeded, and in the imperfect 

runs in this section P is never exceeded. 

5.3 The cost of fairness 

The model checker supports strong fairness with two mechanisms: Tarjan's algorithm for de­

tecting SCCs and the goodchildren flag for recording the presence of satisfying paths. The 

authors of [25J are pessimistic about the performance of this approach; instead, they· adopt an 

alternative that requires less memory, but may in the worst case do double the work by visiting 

each state twice. This raises questions about the efficiency of the implementation of fairness. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 87 

5.3.1 The detection of SCCs 

Table 5.4 shows the running costs associated with detecting sees in terms of the maximum 

stack depth and the running time in seconds. The models were first analysed for deadlock 

freedom with the sec detection disabled (this is called normal operation), and then with sec 

detection enabled, but without the use of the goodchildren flag. 

There is not too significant a difference (a maximum of 9.7%) in execution times between the 

two approaches, suggesting that sec detection is not expensive in terms of runtime. The only 

extra work that is required to detect sees, is the calculation of the Lowlink(·) function. This 

involves a single test and assignment per state, and an extra assignment that is performed 

in some states (those that satisfy the special condition discussed in Section 4.4). As during 

normal operation, each visited state is still pushed on and popped from the stack exactly once, 

although the removal of a state may be postponed until its entire sec has been detected. 

Normal operation sec detection 
Model Depth Time Depth Time 
DP8 27617 29.35 86154 31.98 
EL4 2109 341.18 2325 374.55 
PS2 10895 19.07 49606 19.19 
SW3 2589 33.74 3972 36.25 

Table 5.4: Overhead of sec detection 
(Time measurements are given in seconds) 

Memory requirements, on the other hand, increase dramatically for some models. Initially it 

was feared that in all but a few cases the entire state graph would form a single sec and 

reside on the stack for the duration of a verification run. In this case the space requirements 

of the stack would change from roughly logarithmic to strictly linear in the number of states. 

Fortunately, contrary to these expectations, most of the models consist of many small sees. 

In addition, a large number of single-state sees are formed for every model. 

As Table 5.5 shows, in the case of EL4 and SW3 the size of the largest sec is negligible 

relative to the size of the state graph, and little additional stack space is required. For DP8 

and PS2 the opposite is true: the largest sec is more than half the size of the state graph 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 88 

for DP8 and the stack requirements increased more than threefold. All models investigated 

have fallen into one of these two classes (either small SCCs/small stack requirements or large 

SCCs/significant stack requirements) . At this stage, no explanation for this is forthcoming and 

the phenomenon deserves attention. Further investigation may lead to techniques that reduce 

the space requirements. 

Largest SCC as % SCC:normal 
Model of unique states stack size ratio 

DP8 57.13 3.12 

EL4 0.02 1.10 
PS2 35.60 4.55 
SW3 0.80 1.53 

Table 5.5: SCC sizes and stack requirements 

As explained in Section 4.2, the stack does not store state vectors, but only references to their 

positions in the cache. The stack contains only auxiliary information (for example, the lowlink 

field), and its size is independent of the size of the state vector. Moreover, for large models, 

the size of the stack is small compared to the size of the state cache. 

5.3.2 Model checking overhead 

The overhead associated with the operation of the goodchildren flag is more difficult to 

measure. It involves one test and a possible assignment (to propogate the goodchildren flag 

to the parent state) for every state that is removed from the stack, and one assignment each 

time the model checking algorithm finds that a state satisfies the CTL correctness specification. 

Space requirements are negligible: as explained in Section 4.4.4, a single pointer suffices. 

Since this flag records the presence of satisfying paths in the state graph, its use depends on the 

particular nature of the model and the correctness specification. Different CTL specifications 

can lead to very different explorations of the same state graph. To gauge the influence of the 

implementation of fairness, some actual properties are checked. Table 5.6 gives the results of 

runs of the process scheduler model (PS2) with four different correctness specifications. 

The first run checks for deadlock freedom, while the others deal with properties of variable 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 

Property States Transitions Time Result 
Deadlock detection 131688 576867 19.07 no deadlock 
AG(DeviceDriver.id < 3) 131688 576867 23.20 satisfied 
AF(DeviceDriver.id = 2) 73592 322571 12.87 satisfied 
AF(DeviceDriver.id = 3) 49606 204577 8.00 violated 

Table 5.6: Four verification runs of the process scheduler model (PS2) 
(Time measurements are given in seconds) 

89 

id in process DeviceDriver. The second run checks a safety property (invariant) and does 

not require fairness (therefore the goodchildren flag is not used and SCCs are not detected). 

It claims that the value of variable id in process DeviceDri ver is always less than 3. The 

difference in the times of the first two runs gives an indication of the overhead involved in 

checking that Boolean expression DeviceDriver. id < 3 is true in every state of the state graph. 

The last two runs check liveness properties and require fairness. These give an indication of 

the performance of the model checker when checking meaningful specifications. As the third 

run illustrates, the system does not need to explore all states to establish the validity of these 

properties- it completed the analysis after exploring little more than half of the states. The 

fourth run terminated even quicker when a violation of the correctness specification was found. 

Moreover, the state graphs explored by these runs are not similar to the state graph of the first 

two runs. While checking liveness properties the exploration of some paths may be terminated 

early, leading to different revisits and a different structure for the state graph. 

The most important observation is that the detection of fairness does not have a significant 

influence on the performance of the model checker. At least about 25000 transitions were 

analysed per second during all four runs shown above. (This is the standard rate, as is shown 

in Section 5.5.) 

5.4 Interpretation 

Although interpretation of programming languages is less efficient that native code generation, 

it is not clear cut that this is also true for state generation. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 90 

Since an implementation of a pre-compiled state generator is not available, and since there are 

significant differences between the new design and our older model checkers as well as the other 

model checkers like SPIN, we have to' make an analytical instead of empirical comparison. 

5.4.1 Interpreter v. pre-compiled state generator 

The validator is driven by the on-the-fly CTL model checking algorithm, as explained in Chap­

ter 3. As it explores the state graph, it repeatedly invokes procedure Machine. Execute to 

generate the next :;;tate. Each invocation of Execute involves the following steps (d. Figure 4.2, 

page 49): 

1. Reschedule is called to find a suitable transition; 

2. Step interprets the transition's machine code; it may call 

(a) itself to evaluate expressions 

(b) Trace. Change and Compact. UpdateValue when updating variables 

(c) Synchronise to handle communication 

3. Trace. Update marks which transition has been selected; 

4. Trace. Push adds the new state to the stack. 

5.' Trace. Change and Compact. UpdateValue updates the location counter; 

Steps 1 and 2 may be repeated a number of times while the selected transition involves a 

communication instruction that cannot synchronise in the current state. Such a transition is 

not truly enabled, but this can only be established by calling Step. 

In a pre-compiled state generator steps 1 and 2 would be replaced with pre-compiled code, 

but steps 3-5 would remain the same. A pre-compiled state generator would still have to 

call Trace. Change and Compact. UpdateValue as in step 2(b) to update variables during as­

signments. Unless it maintains an uncompacted copy of the state, similar to the machine's 

variable store, it would also have to call Compact. GetValue every time the value of a variable 

was needed. Hence, the only procedures that truly belong to the interpreter are Synchronise, 

Step and Reschedule. In Table 5.7 an execution profile for a run of the model checker on the 

EL4 model is shown. When running times of the interpreter procedures are accumulated, the 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 91 

interpret~r runs for 52.4% of the time. For the other models, the total ranges from 49.3% to 

64.4%. 

Module Procedure 

1.5% Logic CheckDeadlock 1.5% 
57.6% Machine Synchronise 3.7% 

Step 37.9% 
Backtrack 0.1% 
Reschedule 10.8% 
Execute 5.1% 

14.3% Trace Undo 5.2% 
Push 2.6% 
Pop 1.6% 
SetGoodChildren 0.0% 
Update 1.2% 
St-epUpdate 0.6% 
Change 3.1% 

19.2% Cache Clear 0.3% 
Hash! 4.0% 
Hash2 2.1% 
Newlnsert 11.0% 
Lookup 1.2% 
SetFlag 0.6% 

6.8% Compact Compare 3.4% 
Assign 0.5% 
Update Value 2.9% 

Table 5.7: Execution profile of the model checker for EL4 
(Total running time is 341.18 seconds) 

As the examples in Section 4.1.2 show, the fetching and decoding costs are small, and the 

real cost of interpretation lies in the execution of instructions. However, the actions of the 

interpreter while executing instructions are close to that of a pre-compiled state generator: 

variables are tested to see whether a transition is legal, and assignments are made to instantiate 

the transition. There are no extra procedure calls in the case of the interpreter. 

Furthermore, a single transition such as the assignment x : = ! is turned into several microtran­

sitions: pushAddress addrx, pushValue 1, popVariable. Fortunately, the microtransitions are 

"glued" together and executed within a single invocation of Step. In fact, this idea is taken 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 92 

even further: ESML processes have no shared memory so that the only points of interference 

are communication commands and assignments that affect the truth value of the correctness 

specification. The interpreter can therefore carry out instructions until such an interference 

point or a rescheduling point (a point where processes should be given the opportunity to inter­

leave) is reached. This implements the technique described in [58 (Section '7.1)], and amounts 

to the "virtual coarsening of atomic actions" suggested in [46] . 

5.4.2 The composition of the instruction set 

Table 5.8 shows the eight most frequently executed instructions for each of three models. The 

table indicates how many times each instruction is executed compared to other instructions. 

For example, during the analysis of DP9, 31.69% of executed instructions were pushValue 

instructions. Although this table gives no indication of the cost of each instruction, it does 

allow for some important observations. 

DP9 EL4 PS3 
Instruction % Instruction % Instruction % 
pushValue 31.69 pushValue 30.24 pushValue 23.95 
end 16.15 end 12.74 end 17.72 
bang 11.36 pushVariable 9.51 guards 11.60 
pushVariable 10.40 guards 6.17 hook 11.14 
guards 7.23 pushParameter 6.05 bang 7.45 
index 5.66 hook 6.02 poll 7.17 
add 2.84 evaluate 4.47 pushVariable 4.18 
mod 2.81 popVariable 4.47 jump 3.82 
Other 11.86 Other 20.33 Other 12.97 

Table 5.8: Instruction frequency for DP9, EL4 and PS3 

The most frequent instructions by far are pushValue and end. Together they account for 

roughly two fifths of all executed instructions. Their implementations are relatively straight­

forward and leave little room for optimisation, but it is possible to optimise their use. 

The pushValue instruction places a constant value on the stack. It is used in three situations: 

to generate constants during expression evaluation, to compute the addresses for variables, and 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 93 

to compute record field offsets. Little can be done in the case of expression constants, but easy 

optimisations are possible in the other two cases: 

1. The value of variable x is placed on the stack with pushValue addrx, pushVariable. A 

new instruction loadVariable addrx could replace this combination .. That this may be 

a prudent optimisation is suggested by the relatively high frequency of pushVariable 

instructions. 

2. To place the address of record field r 0 x on the stack, the compiler generates the follow­

ing instructio"ns: pushValue addrr , pushValue offsetx , add. The calculation of addrr 

could be arbitrarily complex (consider for instance r[~:z:pressionJ ox), but the last two 

instructions could be replaced with an instruction addOffset offsetx . This change will 

have no effect on the models in this chapter, but it would of course benefit models that 

make use of records. 

The end instruction terminates an expression subroutine that was invoked either explicitly' 

by an evaluate instruction, or implicitly by another instruction that needs to evaluate an 

expression, such as a guarded command. In fact, almost all instructions invoke an expression 

subroutine. As explained in Section 4.1.2, the motivation behind these subroutines is the idea 

that if frequently used, they could be translated to the native instruction set to boost the 

performance of the model checker. As the tables above show, arithmetic instructions are not 

that common compared to other instructions. The increase in performance afforded by native 

expression instructions would not justify the effort. An easier and surer improvement is the 

total elimination of this feature. This would eliminate the end instruction and the associated 

procedure call. 

The next most frequent instructions are guards and pushVariable. Both the guarded com­

mand iteration (DO) and selection (IF) commands are translated to a guards instruction. None 

of the models contain deadlock; all make use of nonterminating loops and this account for the 

high frequency of guards instructions. Moreover, every satisfied guard that is executed, is 

counted as an instance of a guards instruction. 

Among the DP9 instructions, add and mod appear an equal number of times, while index is 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 94 

twice as common as either of the first two instructions. This pattern is explained by the fact that 

DP9 uses an array data structure which is invariably accessed as s [k] and s [(k+l) MOD m]. 

5.5 Overall performance 

The overall performance of the model checker is assessed in a comparison with the SPIN system 

(version 2.9.7) [34J. SPIN differs from the system described in this thesis in a number of ways: 

most importantly, it uses the automata-theoretic approach to perform LTL model checking, 

but can also check exclusively for deadlock. SPIN supports no particular formpf fairness; 

instead, a "second search" technique is used to verify liveness properties that are specified as 

part of the correctness specification [25J. Models are written in Promela, a modelling language 

for protocols [30J. Promela supports dynamic process creation, a rich set of control structures 

and synchronous as well as asynchronous, buffered communication between processes. Promela 

control structures include all those of ESML, except for the POLL command which cannot be 

exp~essed in Promela. On the other hand, the ESML type system contains fewer but more 

versatile data structures than that of SPIN. 

Another, more important difference lies in the transition systems produced by Promela and 

ESML models: the difference in the ratio of transitions to unique states has already been 

noted in Section 5.2: ESML models usually result in state graphs with a higher number of 

transitions per state. Also, depth-first search paths in ESML models are usually deeper than 

those in Promela models. The comparison of the dining philosophers ESML model (DP9) and 

the Promela model of a flow control layer (pftp) is typical in this regard: both models have 

roughly the same size (in terms of unique states); for pftp the transition to state ratio is 2.96, 

and the deepest path is 5780 states long; for DP9 the transition to state ratio is 5.57, and the 

deepest path is 62280 states long. 

Because of these differences, any comparison of the "same" model in both languages would 

be misleading. Instead, Table 5.9 gives performance figures for four Promela models (dis­

tributed with the SPIN system), three ESML models with roughly corresponding sizes, and a 

fourth, larger ESML model. The last column of Table 5.9 gives an indication of the memory 

requirements in megabytes. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 95 

Promela models 

Model States Transitions Transitions Memory per second 

leader 45885 185032 19917 9.544 

snoopy 91920 305460 24052 10.607 

pftp 439895 1301624 · 18424 56.175 

sort >526031 >2661181 19677 70.204 · 

ESML models 

Model States Transitions Transitions Memory per second 

DP7 44544 203233 25060 1.551 
SW2 100426 447608 32459 3.002 
DP9 420096 2338593 22883 9.461 

PS3 2016168 9908147 28519 42.132 

Table 5.9: Comparison of Promela and ESML models 
(Memory requirements are given in megabytes) 

All models were analysed for deadlock freedom (invalid endstates in SPIN terminology). SPIN's 

exhaustive search was used: in this mode, states are stored in a table similar to the state cache, 

but no states are replaced and, when the table is full, the analysis of the model is aborted (as in 

the case of the sort model) . Similarly, the ESML models were analysed with enough memory 

to ensure that no cache state replacements occur. 

The model checker compares favourably to SPIN both in the number of transitions it is able 

to check per second as well as in the memory required to do so. In [57(Section 5.1.4)] SPIN is 

reported to be 30% faster than the previous version of the model checker; as the table shows, the 

new design can analyse roughly the same number of transitions per second as SPIN. Moreover, 

the new system requires less memory and is therefore able to analyse far larger models than 

the SPIN system. 

The largest ESML model analysed to date is a description of the VMTP protocol [9] . It 

generated 6.67 million unique states and 28.69 million transitions, took 2283 seconds (elapsed 

time) on a SPARCserver 1000, and required 111.905 megabytes of memory. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EVALUATION 96 

5.6 Summary 

In summary, this chapter contains the following results: 

• The compaction technique reduces the size of the state vector and th~ memory require­

ments roughly 5 times, and decreases runtime by a factor of 0.54-0.80. 

• The state cache behaviour conforms to that described in the literature: it is able to 

support a state space of twice its size without seriously affecting performance. 

• The detection of SCCs has little effect on the runtime of the model checker. In some cases 

the additional memory requirements are negligible, but at other times memory require­

ments are doubled. Model checking realistic claims have little effect on the performance. 

• The interpreter accounts for 49.3-64.4% of the runtime. It was argued that a pre-compiled 

state generator cannot avoid this overhead. The instruction set can be optimised in several 

small ways, but no major improvements are possible. 

• Overall, the model checker compares favourably to the SPIN system. The systems can 

explore roughly the same number of states per second (in the order of 25000), but the 

ESML model checker requires only about half as much memory as SPIN for the same 

number of states. In 64 megabytes of memory about 2000000 states can be analysed 

without overwriting states in the cache or making use of swapping. 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6 

Conclusion 

This thesis examined the issues involved in providing efficient support for Oli-the-fly model 

checking algorithms. From the discussion in Chapter 3, the implementation described in Chap­

ter 4 and the results in Chapter 5, the following picture emerges: 

• Generation of states: We presented intuitive arguments that the use of an abstract ma­

chine is simpler and more reliable that pre-compiled transition systems. We also argued 

in Section 5.4 that in the context of model checking interpretation is not much less ef­

ficient than pre-compilation of transition systems. Although no direct comparison was 

possible, interpretation did not penalise the model checker to such an extent that it is 

significantly less efficient than a model checker such as SPIN. 

• Representation of states: We presented a simple technique that yields compact states but 

is runtime efficient at the same time. More advanced compression techniques incur too 

high an overhead exactly when it is least affordable--when runtimes are long. 

• Detection of revisited states: When used in combination with the state compaction tech­

nique, state caching can handle large state graphs efficiently, making it unnecessary to 

resort to bitstate hashing. 

• Fairness constraints: Fairness is essential for checking liveness properties. As noted in 

Section 2.5, specifying fairness constraints as part of the correctness property is cumber­

some and CTL is not even capable of expressing all major forms of fairness. We therefore 

97 
-4 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSION 

elected to implement native strong fairness and showed that it is runtime efficient. In 

some cases, a significant amount of extra storage is required for SCC detection, but this 

task is often performed as part of model checking CTL anyway. It is not clear which 

approach-builtin fairness, or fairness expressed as part of the correctness specification­

is more efficient; this is open question and material for future work. 

In its present state the model checker provides ~ valuable basis for exploring new ideas. The 

modular structure facilitates changes; this has already proven invaluable for conducting experi­

ments and for making the modifications necessary for the measurements presented in Chapter 5. 

Although they were not discussed in this thesis, partial ord~r techniques are popular because 

they are simple to implement and can significantly reduce the number of states explored, thereby 

boosting the performance of the state cache. We have made a preliminary implementation of 

the technique in [23] and have obtained promising results. 

Final thoughts 

There can be little doubt that the use of formal methods is on the increase [11, 48]. The state 

explosion problem notwithstanding, there seems to be a trend towards the direct verification 

of large programs written in conventional programming languages such as Java and C. Rather 

than focus on demonstrating complete correctness, the goal is to improve the quality of software 

by detecting as many bugs or design flaws as possible, and integrating formal verification arid 

testing techniques. At the same time, more advanced techniques for model checking continue 

to be developed. 

Cynics may argue that this trend may cause programmers to become more complacent about 

rigorous thinking, but to serious developers of critical software this comes as good news. 

Stellenbosch University  https://scholar.sun.ac.za



Appendix A 

Model source code 

99 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

A.I Model of seven dining philosophers (DP7) 

1 MODEL DiningPhi17; 
2 CONST 
3 max =7; 
4 TYPE 
5 int = O .. max; 

·6 prot = {down(int), up(int)}; 
7 sticks = ARRAY [max] OF BOOLEAN; 
8 VAR 
9 p: prot; 

10 

11 PROCESS Chopstick(IN p: prot); 
12 VAR s: sticks; k: inti 
13 BEGIN 
14 k:= 0; 
15 DO k < max -> 
16 s[k] := TRUE; k := k + 1 

17 END; 
18 s[O]:= FALSE; 
19 s [1] := FALSE; . 
20 

21 DO TRUE -> 
22 POLL p?up(k) & (s[k] & sECk + 1) MOD max]) -> 
23 s [k] : = FALSE; 
24 sECk + 1) MOD max] := FALSE 
25 [] p?down(k) & -(s[k] OR sECk + 1) MOD max]) -> 
26 s [k] : = TRUE; 
27 sECk + 1) MOD max] := TRUE 
28 END 
29 END 

30 END Chopstick; 
31 

32 PROCESS PhilO(OUT p: prot); 
33 BEGIN 
34 DO TRUE -> 
35 (* eat *) 

36 p!down(O); 
37 (* meditate *) 

38 p!up(O) 
39 END 

100 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 101 

40 END PhilO; 
41 

42 PROCESS Phil(OUT p: prot; nr: int) ; 
43 BEGIN 
44 DO TRUE -) 
45 (* meditate *) 

46 p!up(nr); 
47 (* eat *) 

48 p!down(nr) 
49 END 
50 END Phil; 
51 

52 BEGIN 
53 Chopstick(p); 
54 PhilO(p) ; 
55 Phil (p, 1); Phil(p, 2) ; Phil(p, 3) ; 

56 Phil(p, 4); Phil(p, 5) ; Phil(p, 6) 

57 END DiningPhil7 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

A.2 Model of the elevator with three floors (EL3) 

1 MODEL Elevator3; 
2 CONST 
3 floors = 3; max = 5; 
4 TYPE 
5 int = O .. max - 1; 

·6 state = resting, goingup, goingdn; 
7 random = {value(int)}; 
8 control = {dest(int), opendoor(int), getoff(int)}; 
9 lift = {upat(int), dnat(int)}; 

10 button = {up(int), dn(int), goto(int)}; 
11 queue = ARRAY [floors + 1] OF inti 
12 VAR 
13 r: random; c: control; 1: lift; b: button; 
14 

15 PROCESS Random(OUT r: random); 
16 VAR seed: inti 
17 BEGIN 
18 DO TRUE -) seed := (3 * seed + 4) MOD max; r!value(seed) END 
19 END Random; 
20 

21 PROCESS Person(floor: inti IN r: random; IN c: control; OUT b: button); 
22 VAR x: inti 
23 BEGIN 
24 DO TRUE -) x := floor; 
25 DO x = floor -) r?value(x); x := x MOD floor + 1 END; 
26 IF x < floor -) b!dn(floor) [] x ) floor -) b!up(floor) END; 
27 c?opendoor(floor); 
28 b!goto(x); 
29 c?getoff(x) 
30 END 
31 END Person; 
32 

33 PROCESS Lift(IN c: control; OUT 1: lift); 
34 VAR s: state; f, d: inti 
35 BEGIN 
36 f:= 1; s := resting; 
37 DO s = resting -) 
38 c?dest(d); 
39 IF d < f -) s := goingdn [] d )= f -) s := goingup END 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

40 [] s = goingup -> 
41 c?dest(d); 
42 IF f = d -> l!upat(f); s := resting 
43 [] f # d -> f := f + 1 

44 END 
45 [] s = goingdn -> 
46 c?dest(d); 
47 IF f = d -> l!dnat(f); s := resting 
48 [] f # d - > f : = f - 1 

49 END 
50 END 
51 END Lift; 

52 

53 PROCESS Control(IN b: button; OUT c: control; .IN 1: lift); 
54 VAR uq, dq, out: queue; d, f: inti 
55 BEGIN 
56 DO TRUE -> 
57 POLL b?up(f) -> uq[f] := uq[f] + 1 
58 [] b?dn(f) -> dq[f] := dq[f] + 1 
59 [] l?upat(f) -> 
60 DO uq[f]>O -> 
61 c! opendoor(f);. 
62 b?goto(d); out[d] := out[d] + 1; 
63 uq[f] : = uq[f] - 1 

64 END; 
65 DO out [f) >0 -> 
66 c!getoff(f); 
67 out [f) : = out [f) - 1 

68 END; 

69 d := f + 1; 

103 

70 DO (d <= floors) & -«uq[d] > 0) OR (out[d] > 0)) -> d := d + 1 END; 
71 IF d > floors -> d := f - 1; 
72 DO (d > 0) & -«dq[d] > 0) OR (out[d] > 0)) -> d := d - 1 END 
73 END 
74 [] l?dnat(f) -> 
75 DO dq[f] > 0 -> 
76 c ! opendoor (f) ; 
77 b?goto (d) ; 
78 out [d) : = out [d) + 1; 
79 dq[f] := dq[f] - 1 

80 END; 
81 DO out [f) > 0 -> 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 104 

82 c!getoff(f); 
83 out [f] : = out [f] - 1 
84 END; 
85 d:=f'-l; 
86 DO (d > 0) & -«dq[d] > 0) OR (out[d] > 0)) -> d := d - 1 END; 

87 IF d = 0 -> d : = f + 1; 
88 DO (d <= floors) & -«uq[d] > 0) OR (out[d] > 0)) ~> d := d + 1 END; 
89 IF d > floors -> d .- 0 [] d <= floors -> SKIP END 
90 END 
91 [] c!dest(d) & (d # 0) -> SKIP 
92 END 
93 END 
94 END Control; 
95 

96 BEGIN 
97 Random(r); 
98 Person(l, r, 
99 Person(2, r, 

100 

101 

102 

Person(3, r, 
Control(b, c, 
Lift(c, 1) 

103 END Elevator3 

c, b); 
c, b); 
c, b) ; 
1) ; 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

A.3 Model of the process scheduler with one process (PSI) 

1 MODEL Scheduler1; 
2 CONST 
3 nullproc = 0; qmax = 2; 
4 TYPE 
5 procid = 0 .. 2; 

·6 readyrequest = {selectproc(procid), enterproc(procid)}; 
7 runningrequest = {newproc(procid), kcall(procid), int, tick}; 
8 iocommand = {doio(procid), iocomplete}; 
9 devicecommand = {startio}; 

10 continue = {resume (procid)}; 
11 procqueue = LIST [qmax] OF procid; 
12 VAR 
13 chO: readyrequest; 
14 ch1: runningrequest; 
15 ch2: continue; 
16 ch3: iocommand; 
17 ch4: devicecommand; 
18 

19 PROCESS User(id: procid; OUT run: runningrequest; OUT rr: readyrequest; 
20 

21 

IN c: continue); 
VAR p: procid; 

22 BEGIN 
23 

24 

rr!enterproc(id); 
DO TRUE -> 

25 POLL c?resume(p) & p = id -> SKIP END; 
26 run!kcall(id) 
27 END 
28 END User; 
29 

30 PROCESS Timer(OUT run: runningrequest); 
31 BEGIN 
32 DO TRUE -> run!tick END 
33 END Timer; 
34 

35 PROCESS Ready(IN rr: readyrequest; OUT run: runningrequest); 
36 VAR p: procid; q: procqueue; 
37 BEGIN 
38 p:= nullproc; EMPTY(q); 
39 DO TRUE -> 

105 

Stellenbosch University  https://scholar.sun.ac.za



· APPENDIX A. MODEL SOURCE CODE 

40 POLL rr?selectproc(p) -> 
41 IF LEN(q)·> 0 -> P := HEAD(q); REMOVE(q); run!newproc(p) 
42 [] LEN(q) = 0 -> run!newproc(nullproc) 
43 END 

44 [] rr?enterproc (p) -> 
45 IF P # nullproc -> APPEND(q, p) 
46 [] P = nUllproc -> SKIP 
47 END 

48 END 
49 END 
50 END Ready; 
51 

52 PROCESS Running(OUT rr: readyrequest; IN run: runningrequest; 
53 OUT io: iocommand; OUT c: continue); 
54 TYPE procstate = 0 .. 1; 

55 VAR curproc: procid; state: procstate; 
56 BEGIN 
57 rr!selectproc(nullproc); run?newproc(curproc); 

·58 IF curproc # nUllproc -> c!resume(curproc) 
59 [] curproc = nullproc -> SKIP 
60 END; 
61 DO TRUE -> 
62 POLL run?kcall(curproc)-> io!doio(curproc) 
63 [] run?int -> io!iocomplete 
64 [] run?tick -> SKIP 
65 END; 
66 rr!selectproc(curproc); run?newproc(curproc); 
67 IF curproc # nullproc -> c!resume(curproc) 
68 [] curproc = nullproc -> SKIP 
69 END 
70 END 
71 END Running; 
72 

73 PROCESS DeviceDriver(OUT rr: readyrequest; IN io: iocommand; 
74 OUT dc: devicecommand); 
75 VAR curproc, id: procid; rq: procqueue; idle: BOOLEAN; 
76 BEGIN 
77 EMPTY(rq); idle := TRUE; 
78 DO TRUE -> 
79 POLL io?doio(id) & idle -> curproc := id; dc!startio; idle := FALSE 
80 [] io?doio(id) & -idle -> APPEND (rq, id) 
81 [] io?iocomplete -> 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

82 rr!enterproc(curproc); 
83 IF LEN(rq) = ° -) idle .:= TRUE 
84 [] LEN(rq) ) ° -) cur~roc := HEAD(rq); REMOVE(rq); dc!startio 
85 END 

86 END 
87 END 
88 END DeviceDriver; 
89 
90 PROCESS Device(OUT rr: runningrequest; IN dc: devicecommand); 
91 VAR idle: BOOLEAN; 
92 BEGIN 
93 idle:= TRUE; 
94 DO TRUE -) 
95 POLL dc?startio & idle -) idle := FALSE END; 
96 

97 

idle := TRUE; rr!int 
END 

98 END Device; 
99 

100 BEGIN 
101 Timer(ch1); User(1, ch1,' chO, ch2); 
102 Ready(chO, ch1); Running(chO, ch1,ch3, ch2); 
103 DeviceDriver(chO, ch3, ch4); Device(ch1, ch4) 
104 END Scheduler1 

107 

Stellenbosch University  https://scholar.sun.ac.za



·APPENDIX A. . MODEL SOURCE CODE 108 

A.4 Model of the sliding window protocol with window size 

one (SWl) 

1 MODEL SlidingWindow1; 
2 CONST 
3 N = 1; M = 2*N; (* N is the window size *) 

.4 TYPE 
5 int = O •• M; 
6 set = ARRAY [N] OF BOOLEAN; 
7 C = {org, ·msg(Int), set (Set)}; 
8 VAR 
9 in, out, sf, fr, rb, bs: C; 

10 

11 PROCESS Forward(IN sf: Cj OUT fr: C)j 
12 VAR n: int; 
13 BEGIN 
14 sf?msg(n) ; 
15 DO TRUE -> sf?msg(n) 
16 [] TRUE -> fr!msg(n) 
17 END 
18 END Forward; 
19 

20 PROCESS Backward(IN rb: C; OUT bs: C); 
21 VAR s: setj 
22 BEGIN 
23 rb?set(s); 
24 DO TRUE -> rb?set(s) 
25 [] TRUE -> bs! set (s) 
26 END 
27 END Backward; 
28 

29 PROCESS Send(IN in, bs: C; OUT sf: C); 
30 VAR n, m, x: inti s: set; 
31 BEGIN 
32 x:= 0; 

33 DO x < N -> 

34 s[x]:= TRUE; x := x + 1 
35 ENDj 
36 m:= OJ n := 0; 
37 DO TRUE -> 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

38 ·POLL in?org & (n # m + N) -> 
39 n : = (n + 1) MOD M 
40 [] sf!msg(x) & (x < n) -> 
41 SKIP 
42 [] bs?set (5) -> 
43 DO -s[m MOD N] & (m < n) -> 
44 m : = (m + 1) MOD M 
45 END 
46 END; 
47 x := m; 

48 DO -sEx MOD N] & (x < n) -> 
49 x := (x + 1) MOD M 
50 END 
51 END 
52 END Send; 
53 

54 PROCESS Receive(IN fr: C; OUT rb, out: C); 
55 VAR n, x: inti 5: set; 
56 BEGIN 
57 x·= 0; 

58 DO x < N -> 
59 s[x];= FALSE; x := x + 1 

60 END; 
61 n:= 0; 
62 DO TRUE -> 
63 POLL out!org & sEn MOD N] -> 
64 sEn MOD N] := FALSE; 
65 n := (n + 1) MOD M 
66 [] fr?msg(x) -) 
67 IF x >= n -> sEx MOD N] := TRUE 
68 [] x < n -> SKIP 
69 END 
70 [] rb! set (5) & -5 [n MOD N] -> 
71 SKIP 
72 END 
73 END 
74 END Receive; 
75 

76 PROCESS Source(OUT in: C); 
77 BEGIN 
78 DO TRUE -> in!org END 
79 END Source; 

109 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. MODEL SOURCE CODE 

80 
81 PROCESS Sink(IN· out: C); 
82 BEGIN 
83 DO TRUE -> out?org END 
84 END Sink; 
85 

86 BEGIN 
87 Source(in); Send(in, bs, sf); 
88 Sink(out); Receive(fr, rb, out); 
89 END SlidingWindowl 

Forward (sf , fr); 
Backward(rb, bs) 

110· 

Stellenbosch University  https://scholar.sun.ac.za



Appendix B 

Model analysis details 

Details of the experiments described in Chapter 5 are given below. Sections B.1-BA contain 

information about the four sets of models: DPn (dining philosophers), ELn (elevator), PSn 

(process scheduler) and SWn (sliding window). 

As explained in Chapter 5, tests were conducted on an SGI Indy workstation with a 150MHz 

MIPS R4400 processor and 64 megabytes of physical memory. Swapping was not disabled, but 

tests were run with a minimal system load to guarantee access to as much physical memory 

as possible. Time was measured using the standard Unix getrusage system call, that returns 

information about the use of resources. This includes the time spent executing the process and 

its system calls (excluding time waiting for 10 request completion). 

Each table contains the following information: 

• Unique is the number of unique states in the state graph. Revisits is the number of states 

that were revisited (Le. reached more than once). Loops is the number of cycles detected 

in the state graph. Transitions is the number of transitions executed and is equal to 

the sum of the first three fields. The Transitions/state ratio gives an indication of the 

number of revisits per state. 

• Time is the time in seconds required to check for deadlock freedom with state compaction. 

Transitions/second is the number of transitions checked per second. 

111 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. MODEL ANALYSIS DETAILS 112 

• Bits is the size of the compacted state vector. The fraction of the potential state space 

that is reached is Unique/2Bits . The minimum number of bits required to represent the 

unique states is pog2 Unique 1. Processes is the number of processes in the model. 

• Cache size is given in the form 230K+1, meaning that memory is reserved for 230001 

cache entries (here K denotes a unit of 1000 entries). Probes is the ·maximum number 

of probes necessary to find a state in the cache. Depth is the length of the longest path 

explored. Delta is the maximum number of (16 bit) words required for delta storage. 

Memory is given in megabytes and includes the requirements of the cache, stack and 

delta storage: 

• Without compaction: Time is the time in seconds required to check for deadlock free­

dom without state compaction. Transitions/second is the number of transitions checked 

per second. Bits is the size of the uncompacted state vector. The memory in megabytes 

required for the state cache, stack and delta storage is Memory. The ratio of the com­

pacted and uncompacted times is the Slowdown factor. In the case of EL4, PS3 and SW9 

is was not possible to perform these analyses, since the memory required exceeded that 

of the workstation. 

The number of Compare and UpdateValue operations remain the same as when com-· 

paction is active, but are given as an estimate of the extra work. The number of Assign 

operations is equal to the number of unique states, as explained in Section 5.1.1. 

• With sec detection: Time is the time in seconds required to check for deadlock 

freedom with state compaction and see detection activated. The memory in megabytes 

required for the state cache, stack and delta storage is Memory. Largest is the number 

of states in the largest see, and Number is the number of different sees. Depth is the 

maximum number of states on the stack during the analysis. The space required for delta 

storage is the same as before, since the storage of undo information is not affected by 

see detection. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. MODEL ANALYSIS DETAILS 113 

B.l Measurements for dining philosophers models (DPn) 

Property DP7 DP8 DP9 

Unique 44544 137664 420096 
Revisits 116916 395453 1342591 
Loops 41773 164132 575906 
Transitions 203233 697249 2338593 
Transitions / state 4.56 5.06 5.57 

Time 8.11 29.35 102.20 
-Transitions / second 25060 23756 22883 

Bits 50 54 58 
Unique / 2Bits 4x1O-11 8xl0-12 2x1O-12 

flog2 Unique 1 16 18 19 
Processes 8 9 10 

Cache size 100K+l 200K+3 600K+l 
Probes 8 23 24 
Depth 9109 27617 62280 
Delta 34504 104602 236058 
Memory 1.551 3.423 9.461 

Without compaction 

Time 10.19 36.83 133.52 
Transitions / second 19950 18933 17515 
Bits 272 304 336 
Memory 4.282 9.673 30.555 
Slowdown 1.26 1.25 1.31 
Compare 223812 1027369 3540667 
UpdateValue 301920 1033632 3459168 

With sec detection 
Time 8.86 31.98 114.45 
Memory 2.132 5.166 15.836 
Largest 24344 78653 207178 
Number 583 10626 24583 
Depth 27329 86154 266184 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. MODEL ANALYSIS DETAILS 114 

B.2 Measurements for elevator models (ELn) 

Property EL3 EL4 
Unique 68193 1633032 

Revisits 210585 6179698 

Loops 44341 1273869 

Transitions 323839 9086599 

Transitions / state 4.75 5.56 

Time 10.76 341.18 

Transitions/second 30094 26633 

Bits 89 107 

Unique/2Bits 1x10-22 1xlO-26 

rlog2 Unique 1 17 21 

Processes 6 7 

Cache size 150K+1 2250K+1 

Probes 12 35 

Depth 856 2109 

Delta 3070 7578 

Memory 2.381 44.053 

Without compaction 
Time 19.78 

Transitions / second 16376 

Bits 432 512 

Memory 7.069 149.522 

Slowdown 1.84 

Compare 390948 18406626 

UpdateValue 483252 13640289 

With see detection 
Time 10.74 374.55 

Memory 2.381 44.053 

Largest 405 405 

Number 21221 605918 

Depth 997 2325 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. MODEL ANALYSIS DETAILS 115 

B.3 Measurements for process scheduler models (PSn) 

Property PSt PS2 PS3 

Unique 8456 131688 2016168 

Revisits 19211 377595 6933306 

Loops 4448 67584 958673 

Transitions 32115 576867 9908147 

Transitions / state 3.80 4.38 4.91 

Time 1.13 19.07 347.43 

Transitions / second 28420 30256 28519 

Bits 59 . 69 78 

Unique/2Bits l xl0- 14 2x1O-16 7xl0-18 

pog2 Unique 1 14 18 21 

Processes 6 7 8 

Cache size 100K+l 200K+3 2500K+l 

Probes 3 22 52 

Depth 1358 10895 80729 

Delta 4515 36785 275913 

Memory 1.242 3.540 42.132 

Without compaction 
Time 1.70 26.25 

Transitions / second 18902 21978 

Bits 320 352 416 

Memory 4.367 9.790 139.788 

Slowdown 1.50 1.38 

Compare 29061 1014524 21462052 

UpdateValue 46034 803842 13713588 

With sec detection 
Time 1.23 19.19 364.92 

Memory 1.305 4.759 54.726 

Largest 3451 46894 468544 

Number 3788 71541 1362232 

Depth 3865 49606 483699 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. MODEL ANALYSIS DETAILS 116 

B.4 Measurements for sliding window protocol models (SWn) 

Property SWl SW2 SW3 SW9 
Unique 22464 100426 235098 2673976 

Revisits 61080 286649 681441 7974994 
Loops 14905 60533 135903 1401971 
Transitions 98449 447608 1052442 12050941 

Transitions/state 4.38 4.48 4.48 4.51 

Time 3.15 13.79 33.74 471.89 

Transitions / second 31254 32459 31193 25538 

Bits 43 53 56 89 

Unique/2Bits 3x10- 9 1x10- 11 3x10-12 4x1O-21 

pog2 Unique 1 15 17 18 22 

Processes 6 6 6 6 

Cache size 250K+7 250K+7 350K+3 3500K+17 
Probes 3 10 25 52 

Depth 665 1791 2589 9561 

Delta 2004 5456 7887 29025 
Memory 2.965 3.002 4.209 55.057 

Without compaction 

Time 4.71 20.38 54.35 

Transitions / second 20907 21966 19365 

Bits 240 288 336 624 
Memory 8.825 9.838 16.514 287.480 

Slowdown 1.50 1.48 1.61 
Compare 90373 539143 1679839 25313655 
UpdateValue 121998 563375 1341667 16382794 

With see detection 
Time 3.41 14.92 36.25 446.47 
Memory 2.965 3.033 4.241 55.276 
Largest 564 1222 1926 8124 

Number 1479 26033 66017 887165 
Depth 825 2486 3972 16842 

Stellenbosch University  https://scholar.sun.ac.za



Appendix C 

Abstract instruction set 

The following sections document the instruction set of the abstract machine. The meaning of 

each instruction is given in a pseudo-code notation that refers to the machine's stack as s[] and 

to the stack pointer as t. The top element is s[t], the next to top element s[t-1]' and so on, and 

the stack grows upwards from O. The variable frame of the current process is referred to as v[] 

and its parameters as p[] . The 1.. sign represents a special value that denotes "undefined". 

C.l Arithmetic instructions 

mul s[t-1]:= s[t-1] x s[t]; decrement t 

div Check that s[t] =1= 0; s[t-1]:= s[t-1] div s[t]; decrement t . 

mod Check that s[t] =1= 0; s[t-1] := s[t-1] mod s[t]; decrement t 

chs s[t] := -s[t] 

compare n 

equal 

neq 

greater 

geq 

less 

leq 

and 

or 

s[t-2n+1] := 1 if s[t . . . t-n+1] = s[t-n .. . t-2n+1] elementwise, 
otherwise 0; decrement t by 2n - 1 

s[t-1] := 1 if s[t] = s[t-1], otherwise 0; decrement t 

s[t-1] := 1 if s[t] =1= s[t-1]' otherwise 0; decrement t 

s[t-1] := 1 if s[t] > s[t-1]' otherwise 0; decrement t 

s[t-1] := 1 if s[t] 2 s[t-1] , otherwise 0; decrement t 

s[t-1] := 1 if s[t] < s[t-1]' otherwise 0; decrement t 

s[t -1] := 1 if s[t] ::; s[t -1], otherwise 0; decrement t 

s[t-1] := 1 if s[t] = s[t-1] = 1, otherwise 0; decrement t 

s[t-1] := 1 if s[t] = 1 V s[t-1] = 1, otherwise 0; decrement t 

117 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ABSTRACT INSTRUCTION SET 118 

not 

evaluate a 

end 

s[t-l] := 1 if s[t] = 0, otherwise 0; decrement t 

Evaluate the expression subroutine at address a; the instructions 
at address a will place the result on the stack 

Return to the caller of the expression subroutine 

C.2 Memory manipulation instructions 

pushValue x 

pushVariable 

pushVariableRange n 

popVariable 

popVariableRange n 

pushParameter 

increment t; s[t]:= x 

s[t] := v[s[t]] 

s[t ... t+n-l] := v[s[t] .. . s[t]+n-l]; increment t by n - 1 

v[s[t-l]] := s[t]; decrement t by 2 

v[s[t] ... s[t]-n+l] := s[t-l ... t-n]; decrement t by n+ 1 

s[t] := p[s[t]] 

pushParameterRange n s[t . .. t+n-l] := p[s[t] ... s[t]+n-l]; increment t by n - 1 

C.3 List manipulation instructions 

length s[t] := length of list at v[s[t]] 

head e s[t ... t+e-l] := the e-word head element of the list at v[s[t]]; 
increment t by e - 1 

empty n 

append e 

prepend e 

remove e 

Empty the n-word list at v[s[t]]; decrement t 

Append s[t-l ... t-e] to the list at v[s[t]]; decrement t by e + 1 

Prepend s[t-l .. . t-e] to the list at v[s[t]]; decrement t by e + 1 

Remove the e-word head element of the list at v[s[t]]; decrement t 

C.4 Communication instructions 

bang ch san c 

hook ch san c 

poll a 

Send signal s over channel chi if a =I 0, the n-word result of 

expression subroutine a is send along as data; if c =I..l, expression 
subroutine c must evaluate to 1 for the instruction to succeed 

Receive signal s over channel chi if a =I 0, the result of expression 
subroutine a is the address where n words of received data is 

stored; if c =I..l, expression subroutine c must evaluate to 1 for the 
instruction to succeed 

Evaluate the guarded communication commands up to address a 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ABSTRACT INSTRUCTION SET 119 

C.5 Control flow instructions 

activate n a v p ch 

terminate 

guards a 

jump a 

·skip 

trap 

Activate the process with name n located at code address aj v and 

p are the size of the variable frame and the parameters, respec­

tivelyj ch is the number of channel parameters 

Terminate the current process 

Evaluate the guarded commands up to address a 

Jump to address a 

Advance to the next instruction 

Report an execution failure 

C.6 Miscellaneous instructions 

out String 

out Value 

outRange n 

outLn 

index b m 

selectProc n 

Display the string of characters s[t ... t-k+l]' where s[t-k] = OJ 
decrement t by k + 1 

Display s[t] j decrement t 

Display s[t ... t-n+l]j decrement t by n 

Start a new line 

Check that s[t] < mj s[t-:-l]:= s[t-l] + b x s[tJ; decrement t 

Select the variable frame of process n 

Stellenbosch University  https://scholar.sun.ac.za



Appendix D 

The ESML modelling language 

ESML (Extended State Machine Language) is a high-level specification language designed 

for the modelling of reactive systems [14]. The design of ESML was inspired by CSP [29], 

Joyce [7, 8], and Promela [30]. Joyce is a strongly typed, concurrent programming language 

for distributed systems and is based on CSP and Pascal. Promela is a high-level specification 

language originally designed for protocol specification and used in the SPIN system [34]. 

ESML has the following important properties: 

• Complex data structures such as records, arrays, and queues are intrinsic objects in the 

language. 

• Concurrent processes that communicate via synchronous message passing are supported. 

Since communication instructions were identified as a common source of errors. in [7], 

messages and communication channels are strongly typed. 

• Dijkstra guarded command-style control structures with non-deterministic choice offer a 

mechanism for control flow abstraction. 

120 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 121 

D.I Constant, type and variable definitions 

Constants, user types and variables are defined following the CaNST, TYPE and VAR keywords, 

respectively. The scope of an identifier extends from the end of its definition to the end of the 

block in which it is defined. Its block can either be the entire model, or a single process. 

Constants 

ESML allows the d.efinition of integer and Boolean constant expressions (i.e., expressions that 

can be evaluated at compile time), following the keyword CaNST. There are two' predefined 

Boolean constants, TRUE and FALSE. 

CaNST 

windowsize = 5; 
maxmsgnumber = 2 * (windowsize + 1); 
lossychannel = TRUE; 

bigmodel = lossychannel OR (maxmsgnumber >= 20); 

Basic types 

Instead of a set of.predefined types ESML offers only the BOOLEAN primitive type. New types 

can be defined by the user after the keyword TYPE. 

Integer types are constructed using the subrange type construction. Subranges are specified by 

giving a lower and upper bound. This may seem restrictive, but it is easy to use and allows the 

encoding of assumptions about the ranges of variables. Assignments to variables are checked 

during the analysis of models to ensure that a variable is not assigned a value outside its range. 

In addition, this mechanism leads to smaller states. Enumeration types provide a symbolic set 

of values. 

CaNST 

maxprocess = 10; 
TYPE 

processnumber = O .. maxprocess-l; 
processstate = running, ready, blocked, zombie; 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 122 

Although'the values of integer variables are restricted by their type, integer expressions may 

assume any value, so that the following assignment to a variable of type processnumber is 

legal: 

p := (123 * p) MOD maxprocess; 

Variables of different subrange types may be mixed in the same expression, as long as the 

resulting value is a valid value in the subrange of the variable to which it is assigned. 

Structured types 

More complex data types are defined with tuple, array or list constructions. These allow the 

grouping of related data, the mapping of integers to other data, and the modelling of queues. 

CONST 
maxbitset = 16; 

TYPE 
processrecord = ( 

id, parentid: processnumber; 
state: processstate );' 

bit set = ARRAY [maxbitset] OF BOOLEAN; 
processqueue = LIST [10] OF processrecord; 

Tuple fields are accessed as (variable access). (field identifier). Tuple field may be of any type, 

including other tuple types, but excluding alphabets types defined in the next section. Nested 

definitions (i.e., anonymous tuples) are not allowed. Entire tuples may be assigned to each 

other, but not to variables of another tuple type. 

An array is indexed with integers in the range 0 ... n - 1, where n is the declared size of the 

array; index range checking is performed during the analysis. List contents are manipulated 

using list operations described below. 

An array or list can have any base type including other arrays or lists, but excluding alphabet 

types. As with tuples, the base type must be an identifier: definitions of the form ARRAY [k] 

OF ARRAY [j] OF Tare, not allowed. The sizes of arrays and lists must be non-zero positive 

integer constants. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 123 

Alphabet types 

The messages that are sent between processes are defined by alphabet typ~s. Communication 

channels too are typed and may only carry messages of an appropriate type. An alphabet is 

a set of messages {mo, ml, · .. ,mn }. Each message consists of a signal Si and optionally an 

accompanying data value of type ti, written Si(ti) . In the following example ack and nak are 

signals without data, while the schedule message carries a value of type processrecord. 

TYPE 
protocol { schedule(processrecord), ack, nak }i 

D.2 Expressions 

Arithmetic based on the usual operations addition ("+"), subtraction ("-"), multiplication 

("*"), integer division (DIV), modulo (MOD), and unary negation ("-"), is supported as is 

Boolean expressions with conjunction ("&"), disjunction (OR), and Boolean negation ("-"), and 

relational operators ("=", "#", "<", "<=", ">", ">="). Relational operators return a BOOLEAN 

result . Parenthesis ("(", ")") can be used to group sub expressions appropriately. 

Two special operators are defined for list types: LEN(list) returns the length of list and 

HEAD (list) returns the first element of list without removing it from the list. 

Operators have the following precedence: 

6 ( ) 

5 LEN HEAD 

4 - -(unary) 

3 & * DIV MOD 

2 OR + -(binary) 

1 = # < <= > >= 

Operators with higher precedence are evaluated first. Operators with the same precedence are 

evaluated in the order that they appear in an expression. Short circuit evaluation of Boolean 

expressions is guaranteed by the language. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 124 

D.3 Commands 

The state of a model is changed by executing commands. 

The simplest command is SKIP which has no effect other. than advancing the location counter. 

However, it plays an important role in ESML, since empty sequences of commands are not 

allowed. This makes models easier to read and prevents unintentional omission of commands 

in the specification. 

Assignment and list commands 

Values are assigned to variables with the": =" command. Before a value is stored in an integer 

variable, it is checked to ensure that value is valid for the variable's range. The left-hand side 

of the assignment must be a valid variable access as defined by the grammar (see Section D.5). 

x := (x + 1) MOD 7 
b[2] := b[l] * b[O] 
process.state := running 

It is permitted to assign an expression to a variable of the same type, even entire tuples, lists 

and arrays. However, assignment to communication channel variables is not allowed. 

There are four special list commands: EMPTY(list) discards the contents of list and sets length to 

0, REMOVE(list) discards the item at the head of the list, and PREPEND(list, x) and APPEND (list , 

x) insert the value x at the head and tail of the list, respectively. 

Communication commands 

Processes exchange messages by means of communication commands that operate on com­

munication channels. There are two commands that perform communication: ! (send) and 

? (receive). Signal s and the value of expression e are sent on channel ch by the command 

ch!m(e). Similarly, signal s is received on channel ch and its associated data stored in variable 

v by the command ch?m(v). A channel parameter that is marked with the OUT keyword cannot 

be used for send commands; similarly, a channel parameter marked with the IN keyword can 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 125' 

only be uSed for receive commands. 

A pair of send and receive commands synchronise when they are both ready to execute and 

communicate the same signal over the same channel. Communication is blocking and a process 

must wait until a communication partner is found and the message transferred, before it can 

proceed. 

The first command in the following example receives a data message and stores the accompa­

nying value in the third element of array x, the second accepts the signal ack, and the third 

command sends a setmsg message with the value of msgnr + 1. 

in?data(x [2]) 

in?ack 
out!setmsg(msgnr + 1) 

Note that the names of messages must be constants; the following code is not legal ESML: 

v := oak; 

out!v 

Control structures 

The ESML control structures are patterned after Dijkstra guarded commands [16]. Each control 

structure contains a list of G ~ A pairs, where the guard G is a Boolean expression and the 

action A is a sequence of commands that is executed only if the guard is satisfied. ESML 

supports the following three constructs: 

• IF: All. guards are evaluated, one true guard is selected non-deterministically, and its 

action is executed. At least one IF guard must be true; if this is not true, the analysis of 

the model is aborted and the error is reported to the user. 

• DO: All guards are evaluated, one true guard is selected non-deterministically, and its 

action is executed. This process is repeated until all guards are false. 

• ·POLL: The guard-action pairs of this structure have a special form: (C & G) ~ A, 

where G and A are the same as above and C is a communication command. If the 

communication command is a send (!), can execute and G evaluates true before the 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 126 

execution of the command, the guard is satisfied. If the communication command is a 

receive (?), can execute and G evaluates to true after the command, the guard is satisfied. 

The DO blocks until one or more guards is satisfied, at which point one of the satisfied 

guards is selected non-deterministically, and its action is executed. This command does 

not repeat like the DO command. 

'rhe following IF command increments x if it is odd, or halves it when it is even: 

IF x MOD 2 = 1 -) x := x + 1 

[] x MOD 2 = 0 -) x := x DIV 2 

END 

The following example illustrates the use of non-determinism. The first guard of the DO con­

struct checks that the queue q is non-empty; if so, the first element of the queue is removed and 

sent via channel out. The second guard is satisfied when the queue is not full; a new element is 

received via channel in and appended to the queue. While the queue is neither full nor empty, 

anon-deterministic choice is made. 

DO 
LEN(q) ) 0 -) 

x := HEAD(q); 
REMOVE(q); 

out!send(x) 

[] LEN(q) < max -) 

in?recv(x); 
APPEND(q, x) 

END 

Because reactive processes are not supposed to terminate the following construction is common 

in ESML models: 

DO TRUE -) 

(* receive and react on messages from the environment *) 

END 

The last example illustrates the use of the POLL command. The construct is ready to accept 

the reset signal via the control channel, or to send the val message with the value of local 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 127 

variable n: via the client channel, unconditionally. It accepts the inc signal via channel client 

only if n is less than max, and the dec signal via channel client only if n is greater than O. 

POLL 
control?reset -> n := 0 

[] client! val (n) -> SKIP 
[] client?inc &; n<max -> n := n + 1 
[] client?dec &; n>O -> n := n - 1 

" END 

Process activation 

New proce"sses are created by an activation command similar to procedure invocation. The 

actual arguments passed to the process must must match the formal parameters in number 

and type. During activation, storage is allocated for the local variables. 

Producer (in) ; 
Consumer(out); 

Buffer(in. out. 10. FALSE) 

Trace commands 

The TRACE command are useful when developing models. Such a command displays the values 

its arguments. It can take an arbitrary number of arguments, including string constants. Non­

integer values are mapped to integer values: FALSE maps to 0, and TRUE to 1. Members of an 

enumeration type is numbered sequentially with the first member numbered 0; these numbers 

are printed by the TRACE command when displaying a variable of this type. 

TRACE("process id=". pr[x+1].id) 

D.4 Processes and models 

Processes have the following structure: 

PROCESS name (parameters); 
CaNST constant definitions 
TYPE type definitions 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 

VAR variable definitions 

BEGIN 

commands 

END namej 

128 

The constant, type and variable definitions are optional, but, when present, are local to the 

process and not visible to other processes. Parameters are read-only and cannot appear on the 

left-hand side of assignments. Channels that are passed as parameters can be prefixed with 

either the IN or OUT modifiers to indicate that the process can only send or only receive on the 

channel. Channels without these keywords can be used for both sending and receiving. 

An ESML model has the following structure: 

MODEL namej 

CoNST constant definitions 

TYPE type definitions 
VAR variable definitions 

process definitions 

BEGIN 

activation commands 

END namej 

ASSERT correctness specification 

Constant and type definitions are optional, but, when present, are global and visible to all 

processes. Only channel variables are allowed and this is the only place where they can have 

any function; local channel variables have no function. 

The main body (between the last BEGIN and END keywords) may contain only activation com­

mands and no activation commands are allowed in process bodies. 

D.5 A grammar for ESML 

Model 

(model) ::= MODEL name "j" (declarations) { (process) } (body) ASSERT (ctl formula). 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 

(process) 0::= PROCESS name (parameter list) (declarations) (body). 

(body) ::= BEGIN (command list) END name "i". 

Declarations 

(declarations) ::= [ (constant part) ] [ (type part) ] [ (variable part) ]. 

(parameter list) ::= [ "(" (parameter) { "i" (parameter) } ")" ] "j". 
(parameter) ::= [ IN I OUT] (variable definition). 

(constant part) ::= CaNST (constant definition) { (constant definition) }. 

(constant definition) :: = name "=,, (constant expression) "i". 

(type part) ::= TYPE (type definition) { (type definition) }. 

(type definition) ::= name "=,, (type) "i". 

(type) ::= (subrange type) I (enum type) I (list type) I (array type) 

I (tuple type) I (alphabet type). 

(subrange type) ::= (constant expression)" . . " (constant expression). 

(enum type) ::= name { "," name }. 

(list type) ::= LIST "[" (constant expression) "]" OF name. 

(array type) ::= ARRAY "[" (constant expression) "]" OF name. 

(tuple fype) ::= "(" (variable definition) { "i" (variable definition) } ")". 

(alphabet type) ::= "{" (symbol) { "," (symbol) } "}". ° 

(symbol) ::= name [ "(" name ")" ]. 

(variable part) :: = V AR (variable definition) "i" { (variable definition) "i" }. 

(variable definition) ::= name { "," name } ":" name. 

Commands 

(command list) ;;= (command) [ "i" (command list) ]. 

(command) :;= (access command) I (if command) I (do command) I (poll command) 

I (trace command) I (list command) I SKIP. 

(access command) :;= (variable access) (access). 

(access) ::= (assignment) I (io command) I (arguments). 

(assignment) ;: = ": =" (expression). 

(io command) ::= (bang) I (hook). 

(arguments) ::= ["(" (expression) {"," (expression)} ")"]. 

(bang) ;:= "!" name [ "(" (expression) ")" ]. 

(hook) ;:= "?" name [ "(" (variable access) ")" J. 
(if command) ::= IF (guard list) END. 

(do command) ::= DO (guard list) END. 

(guard list) ::= (guard) [ "[]" (guard list) ]. 

(guard) ::= (expression) "->" (command list). 

(poll command) ::= POLL (poll list) END. 

129 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 

(poll list)· ::= (poll) [ "[]" (poll list) ]. 

(poll) ::= (variable access) (io command) [ "&" (expression) ]"~>" (command list). 

(trace command) ::= TRACE "(" (trace. expression) { "," (trace expression) } ")". 

(trace expression) :: = (expression) 1 string. 

(list command) ::= EMPTY "(" (expression) ")" 1 REMOVE "(" (expression) ")" 

APPEND "(" (expression) "," (expression) ")" 

1 PREP END "(" (expression) "," (expression) ")". 

Expressions 

(constant expression) ::= (expression). 

(expression) ::= (primary) [ (primary operator) (expression) ]. 

(primary operator) ::= "&" 1 OR. 

(primary) ::= (secondary) [ (secondary operator) (primary).]. 

(secondary operator) ::= "<" 1 "<=" 1 ">" 1 ">=" 1 "=" 1 "#". 
(secondary) ::= (term) [ (adding operator) (secondary) ]. 

(adding operator) ::= "+" 1 "-". 

(term) ::= (factor) [ (multiplying operator) (term) ]. 

(multiplying operator) ::="*" 1 DIV 1 MOD. 

(factor) ::= number 1 TRUE 1 FALSE 1 (variable access) 1 (list operation) 

1 "(" (expression) ")" I. "-" (expression) 1 "-" (factor). 

(list operation) ::= LEN "(" (expression) ")" 1 HEAD "(" (expression) ")". 

(variable access) ::= name { "." name 1 "[" (expression) "J" }. 

CTL 
(ctl formula) ::= (subformula) [ (ctl operator) (ctl formula) ]. 

(ctl operator) ::= "&" 1 OR 1 "=>". 
(subformula) ::= AG (ctl formula) 1 EG (ctl formula) 1 . AF (ctl formula) 1 EF (ctl formula) 

1 AX (ctl formula) 1 EX (ctl formula) 1 A "(" (ctl formula) u (ctl formula) ")" 

130 

1 E "(" (ctl formula) u (ctl formula) ")" 1 "-" (subformula) 1 "(" (ctl formula) ")" 

1 ( expression) . 

Tokens 

name ::= letter { letter 1 digit}. 

number ::= digit { digit }. 

letter ::= "a" 1 ... 1 "z" 1 "A" 1 .:. 1 "Z". 
digit ::= "0" 1 ... 1 "9". 

string ::= """ { char} """. 

char ::= Any printable ASCII character. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. THE ESML MODELLING LANGUAGE 131' 

Comments 

Comments are delimited by "( *" and "*)" and may be nested. 

List of keywords 
A AF AG APPEND ARRAY 

ASSERT AX BEGIN CONST ·DIV 

DO E EF EG EMPTY 

END EX FALSE HEAD IF 

IN LEN LIST MOD MODEL 

OF OR OUT POLL PREP END 

PROCESS REMOVE SKIP TRACE TRUE 

TYPE U VAR 

Stellenbosch University  https://scholar.sun.ac.za



Bibliography 

[1] A. V. Aho, J: E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer 

Algorithms. Addison-Wesley Publishing Company, 1974. 

[2] D. C. Barnard. Reducing the state explosion problem during model checking. Master's 

thesis, University of Stellenbosch, March 1991. 

[3] H. Barringer, M. Fischer, and G. Gough. Fair SMG and linear time model checking. In 

Proceedings of the International Workshop oOn Automatic Verification Methods for Finite 

State Systems, Lecture Notes in Computer Science #407, pages 133-150. Springer-Verlag, 

June 1989. 

[4] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching­

time model checking. In CAV'g4: Proceedings of the 6th International Conference on 

Computer-Aided Verification, Lecture Notes in Computer Science #818, pages 142-155. 

Springer-Verlag, June 1994. 

[5] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for CTL*. 

In Proceedings of the 10th IEEE Symposium on Logic in Computer Science, pages 388-397. 

IEEE Computer Society Press, June 1995. 

[6] P. Brinch Hansen. Programming a Personal Computer. Prentice Hall, Englewood Cliffs, 

1982. 

[7] P. Brinch Hansen. Joyce-a programming language for distributed systems. Software­

Practice and Experience, 17(1}:29-50, January 1987. 

132 

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHY 133 

[8] P. Biinch Hansen. A Joyce implementation. Software-Practice and Experience, 17(4):267-

276, April 1987. 

[9] D. R. Cheriton. VMTP: a transport protocol for the next generation of communication 

systems. In Proceedings of the 4th Symposium on Communications Architectures and 

Protocols, pages 406-415. ACM, August 1986. 

[10] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using 

branching time temporal logic. In Logic in Programs: Workshop, Yorktown Heights, NY, 

Lecture Notes in Computer Science #131, pages 52-71. Springer-Verlag, May 1981. 

[11] E. M. Clarke and J. M. Wing. Formal methods: state of the art and future directions. 

ACM Computing Surveys, 28(4):626-643, December 1996. 

[12] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms 

for the verification of temporal properties. In CA V'90: Proceedings of the 2nd International 

Conference on Computer-Aided Verification, Lecture Notes in Computer Science #531, 

pages 233-242. Springer-Verlag, June 1990. 

[13] P. J. A. de Villiers. A mqdel checker for transition systems. In Proceedings of the 6th 

Southern African Computer Symposium, pages 262-275, July 1991. 

[14] P. J. A. de Villiers and W. C. Visser. ESML-a validation language for concurrent systems. 

In Proceedings of the 7th Southern African Computer Symposium, 1992. 

[15] C. Demartini, R. Iosif, and R. Sisto. dSPIN: a dynamic extension of SPIN. In Proceedings 

of the 6th SPIN Workshop, September 1999. 

[16] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, 1976. 

[17] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of 

Theoretical Computer Science, volume B, pages 995-1072. Elsevier/The MIT Press, 1990. 

[18] E. A. Emerson and J. Y. Halpern. "Sometimes" and "not never" revisited: on branching 

time versus linear time. In Proceedings of the 10th Annual ACM Symposium on Principles 

of Programming Languages, pages 127-140, January 1983. 

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHY 134 

[19] E. A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic strikes 

back. Science of Computer Programming, 8(3):275-306, January 1987. 

[20] J.-C. Fernandez and L. Mounier. Verifying bisimulation on-the-fiy. In FORTE'90: Pro­

ceedings of the IFIP TC6/WG6.1 3rd Internationq,l Conference on Formal Description 

Techniques, 1990. 

[21] N. Francez. Fairness. Springer-Verlag, 1986. 

[22] J. Geldenhuys and P. J. A. de Villiers. Runtime efficient state compaction in SPIN. In 

Proceedings oj-the 5th SPIN Workshop, Lecture Notes in Computer Science #1680, pages 

12-21. Springer-Verlag, July 1999. 

[23] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching 

time logic model checking. In Proceedings of the 3rd Israeli Symposium on the Theory of 

Computing and Systems, pages 130-139, 1995: 

[24] .P. Godefroid. Using partial orders to iniprove automatIc verification methods. In CAV'90: 

Proceedings of the 2nd International Conference on Computer-Aided Verification, Lecture 

Notes in Computer Science #531, pages 176-185. Springer-Verlag, June 1990. 

[25] P. Godefroid and G. J. Holzmann. On the verification of temporal properties. In Pro­

ceedings of the 13th IFIP Symposium on Protocol Specification, Testing, and Verification, 

pages 109-124" May 1993. 

[26] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In CAV'92: 

Proceedings of the 4th International Conference on Computer-Aided Verification, Lecture 

Notes in Computer Science #663, pages 175-186. Springer-Verlag, June 1992. 

[27] J.-C. Gregoire. State space compression in SPIN with GETSs. In Proceedings of the 2nd 

SPIN Workshop, August 1996. 

[28] D. Gries. Is sometime ever better than alway? ACM Transactions on Programming 

Languages and Systems, 1(2):258-265, October 1979. 

[29] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 

21(8):666-677, August 1978. 

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHY 135 

[30] G. J .. Holzmann. Basic SPIN Manual. AT&T Bell Laboratories, Murray Hill, New Jersey 

07974. 

[31] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64{1O):2413-2433, December 

1985. 

[32] G. J. Holzmann. On limits and possibilities of automated protocol analysis. In Proceedings 

of the 6th IFIP Symposium on Protocol Specification, Testing, and Verification, June 1987. 

[33] G. J. Holzmann. An improved protocol reachability analysis technique. Software-Practice 

and Experience, 18(2):137-161, February 1988. 

[34] G. J .. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Software 

Series, 1991. 

[35] G. J. Holzmann. State compression in SPIN: recursive indexing and compression training 

runs. In Proceedings of the 3rd SPIN Workshop, April 1997. 

[36] G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design, 

13(3):287-305, November 1998. 

[37] G. J. Holzmann and A. Puri. A minimized automaton representati9n of reachable states. 

Software Tools for Technology Transfer, 3(1), 1999. 

[38] P. Klint. Interpretation techniques. Software-Practice and Experience, 11 (9):963-973, 

November 1981. 

[39] L. Lamport. "Sometime" is sometimes "not never" -on the temporal logic of programs. In 

Proceedings of the 7th Annual ACM Symposium on Principles of Programming Languages, 

pages 174-185, January 1980. 

[40] H. L. Loedolff, P. J. A. de Villiers, and W. C. Visser. Validation of reactive programs 

which incorporate structured data. Technical ReportRW /VER/93/01/01, Department of 

Computer Science, University of Stellenbosch, August 1993. 

[41] Z. Manna and A. Pnueli. Verification of concurrent programs, part I: the temporal frame­

work. Technical Report STAN-CS-81-836, Department of Computer Science, Stanford 

University, July 1981. 

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHY 136 

[42] Z. Manna and R. Waldinger. Is "sometime" sometimes better than "always"? Communi­

cations of the ACM, 21(2):159-172,' February 1978. 

[43] K. L. McMillan. Symbolic Model Checking: an Approach to the State Explosion Problem. 

PhD thesis, Carnegie Mellon University, May 1992. , 

[44] D. Peled. All from one, one for all: on model checking using representatives. In CAV'93: 

Proceedings of the 5th International Conference on Computer-Aided ,Verification, Lecture 

Notes in Computer Science #697, pages 409-423. Springer-Verlag, June 1993. 

[45] A. Pnueli. The temporal semantics of concurrent programs. In Proceedings of the 18th 

IEEE Symposium on the Foundation of Computer Science, pages 46-57. IEEE Computer 

Society Press, October 1977. 

[46] ,A. Pniieli. Applications of temporal logic to the specification and verification of reactive 

systems: a survey of current trends. In Current Trends in Concurrency: Overview and 

Tutorials, Lecture Notes in Computer Science #224, pages 510-584. Springer-Verlag, 1986. 

[47] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. 

In Proceedings of the 5th' International Symposium in Programming, Lecture Notes in 

Computer Science #137, pages 337-351. Springer-Verlag, 1982. 

[48] J. Rushby. Mechanized formal methods: Progress and prospects. In Proceedings of the 16th 

Conference on the Foundations of Software Technology and Theoretical Computer Science, 

Lecture Notes in Computer Science #1180, pages 43-51. Springer-Verlag, December 1996. 

[49] A. S. Tanenbaum. Implications of structured programming for machine architecture. Com­

munications of the ACM, 21(3):237-246, March 1978. 

[50] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing, 

1(2):146-160, June 1972. 

[51] A. Valmari. Error detection by reduced reachability graph generation. In Proceedings of 

the 9th European Workshop on Application and Theory of Petri Nets, pages 95-112,1988. 

[52] A. Valmari. A stubborn attack on state explosion. In CA V'90: Proceedings of the 2nd 

International Conference on Computer-Aided Verification, Lecture Notes in Computer 

Science #531, pages 156-165. Springer-Verlag, June 1990. 

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHY 137 

[53] A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic Models, 

Lecture Notes in Computer Science #1491, pages 429-528. Springer-Verlag, 1998. 

[54] J. L. A. van de Snepscheut. The sliding-window protocol revisited. Formal Aspects of 

Computing, 7(1):3-17, 1995. 

[55] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri­

fication. In Proceedings of the 1st IEEE Symposium on Logic in Computer Science, pages 

332-344. IEEE Computer Society, June 1986. 

[56] B. Vergauwen and J. Lewi. A linear local model checking algorithm for CTL .. In CON­

CUR '93: Proceedings of the 4th International Conference on Concurrency Theories, Lec­

ture Notes in Computer Science #715, pages 447-461. Springer-Verlag, August 1993. 

[57] W. C. Visser. An execution environment for a validation language. In Proceedings of the 

7th National Masters and PhD Computer Science Students Conference, pages 233-244, 

July 1992. 

[58] W. C. Visser. A run-time environment for a validation language. Master's thesis, University 

of Stellenbosch, October 1993. 

[59] W. C. Visser. Memory efficient state storage in SPIN. In Proceedings of the 2nd SPIN 

Workshop, pages 21-35, August 1996. 

[60] D. H. D. Warren. An abstract PROLOG instruction set. Technical Report 309, Artifi­

cial Intelligence Center, Computer Science and Technology Division, SRI International, 

October 1983. 

[61] N. Wirth. Pascal-S: a subset and its implementation. Technical report, ETH Ziirich, June 

1975. 

[62J N. Wirth and J. Gutknecht. Project Oberon: The Design of an Operating System and 

Compiler. Addison-Wesley Publishing Company, 1992. 

[63J P. Wolper and D. Leroy. Reliable hashing without collision detection. In CAV'93: Proceed­

ings of the 5th International Conference on Computer-Aided Verification, Lecture Notes 

in Computer Science #697, pages 59-70. Springer-Verlag, June 1993. 

Stellenbosch University  https://scholar.sun.ac.za



Bibliographic cross~reference 

[1 J 68, 70, 71 [17J 8 

[2J 47 [18J 7, 15 

[3J 11 [19J 7, 14 

[4J 11 [20J 11 

[5J 11 [21J 14 

[6J 24 [22J 41, 43,80 

[7J 120 [23J 12,98 

[8J 120 [24J 12 

[9J 95 [25J 86,.94 

[IOJ 7,8, 9 [26J 36, 76, 81, 83 

[l1J 98 [27J 36 

[12J 11 [28J 7 

[13J 47 [29J 120 

[14J 20, 29, 47, 120 [30J 28, 94, 120 

[15J 33 [31J 34 

[16J 7, 22, 1,25 [32J 35 

138 

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHIC CROSS-REFERENCE 139 

[33] 35 [49] 24 

[34] 2, 21, 35, 61, 94, 120 [50] 45,68 

[35] 40, 41 [51]12 

[36J 35 [52J 12 

[37J 36 [53J 12 

[38J 24 [54J 77 

[39J 7 [55J 11 

[40J 47 [56J 11 

[41J 7 [57J 95 

[42J 7 [58J 21, 47, 92 

[43J 17 [59J 36,40 

[44J 12 [60J 24 

[45J 7, 61 [61J 24 

[46J 92 [62J 47 

[47J 9 [63J 35 

[48J 98 

Stellenbosch University  https://scholar.sun.ac.za




