
Metric reconstruction of multiple rigid objects

by

Jan Hendrik de Vaal

Thesis presented at the University of Stellenbosch in partial

ful�lment of the requirements for the degree of

Master of Science in Engineering

Department of Mathematical Sciences (Applied Mathematics)

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Study leader: Prof B.M. Herbst

March 2009



Copyright© 2009 University of Stellenbosch

All rights reserved.



Declaration

I, the undersigned, hereby declare that the work contained in this thesis is

my own original work and that I have not previously in its entirety or in part

submitted it at any university for a degree.

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J.H. de Vaal

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii



Abstract

Metric reconstruction of multiple rigid objects

J.H. de Vaal

Department of Mathematical Sciences (Applied Mathematics)

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Applied Mathematics)

March 2009

Engineers struggle to replicate the capabilities of the sophisticated human visual

system. This thesis sets out to recover motion and 3D structure of multiple rigid

objects up to a similarity. The motion of these objects are either recorded in a

single video sequence, or images of the objects are recorded on multiple, di�erent

cameras. We assume a perspective camera model with optional provision for

calibration information. The Structure from Motion (SfM) problem is addressed

from a matrix factorization point of view. This leads to a reconstruction correct

up to a projectivity � of little use in itself. Using techniques from camera auto-

calibration the projectivity is upgraded to a similarity. This reconstruction

is also applied to multiple objects through motion segmentation. The SfM

system developed in this thesis is a batch-processing algorithm, requiring few

frames for a solution and readily accepts images from very di�erent viewpoints.

Since a solution can be obtained with just a few frames, it can be used to

initialize sequential methods with slower convergence rates, such as the Kalman

�lter. The SfM system is critically evaluated against an extensive set of motion

sequences.
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Uittreksel

Metric reconstruction of multiple rigid objects

J.H. de Vaal

Department of Mathematical Sciences (Applied Mathematics)

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Tesis: MScEng (Applied Mathematics)

Maart 2009

Ingeneurs worstel om die kapasiteit van die geso�stikeerde menslike visuele

stelsel te repliseer. Die doelstelling van hierdie tesis is om die beweging en

3D struktuur van veelvoudige voorwerpe tot op 'n similariteit te rekonstrueer.

Die beweging van hierdie voorwerpe word of in 'n enkele videoreeks opgeneem, of

beelde van die voorwerpe word opgeneem op verskeie verskillende kameras. Ons

aanvaar 'n perspektief kamera model met optionele voorsiening vir kalibrasie

informasie. Die Struktuur vanuit Beweging (SvB) probleem word aangespreek

vanuit 'n matriks faktoriseerings oogpunt. Dit lei tot 'n rekonstruksie korrek

tot op 'n projektiwiteit � van min waarde op sy eie. Deur gebruik te maak van

kamera auto-kalibrasie tegnieke word die projektiwiteit opgradeer na 'n similar-

iteit. Hierdie rekonstruksie word ook op veelvoudige voorwerpe toegepas deur

middel van beweging segmentasie. Die SvB stelsel wat ontwikkel is in hierdie

tesis is 'n proseseerings algoritme wat min rame benodig vir 'n oplossing en aan-

vaar beelde van uit verskillende oogpunte. Aangesien 'n oplossing verkrygbaar

is van slegs 'n paar rame, kan dit ook gebruik word om sekwensiele metodes

met stadiger konvergensie te initialiseer, soos die Kalman �lter. Die SvB stelsel

word krities geëvalueer teen 'n omvattende stel bewegingsekwensies.
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Chapter 1

Introduction

The human visual system is a feat of biological engineering, equipped with high-

resolution, high-de�nition colour stereo cameras and a sophisticated processing

unit. It is able to perform the 3D reconstruction of multiple objects, processing

lighting, detail, perspective, structure and motion, literally within the blink of

an eye. We can fool the eye and the mind with optical illusions, but still we

struggle to mimic the 3D reconstruction capabilities of this incredible system.

Engineers have been able to design a number of similar systems, including

� Stereo vision that reconstructs an object from two images obtained from

two di�erently positioned, calibrated cameras.

� Structure from Motion (SfM) that reconstructs an object from its mo-

tion observed in multiple images, the images obtained either as a video

sequence from a single camera or from multiple cameras observing the

object. The cameras need not be calibrated.

� Shape from Shading that recovers the 3D shape of a surface from brightness

values observed in a single black and white image.

� Shape from Silhouette that reconstructs an object as the smallest volume

obtained from intersecting multiple cones, each cone generated by back-

projecting the object's silhouette in one of multiple images.

� Tomography reconstruction that reconstructs an object as the integral of

multiple projections. Each projection refers to cross-sectional information

of the extent to which the intensity of an energy beam is reduced as it

passes through the object and is obtained by illuminating the object from

di�erent directions.

Among these approaches to 3D reconstruction, SfM has the advantages of (1),

multiple image redundancy that can be used to retrieve scene geometry more

1
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accurately and (2), the fact that it does not require calibrated cameras. It is

therefore not surprising that it has found applications in a number of �elds:

� The 3D reconstruction of an environment is crucial to the navigation of

autonomous robots [3].

� In the �lm and gaming industry, motion capture is used extensively to

reconstruct 3D human motion. This motion is then used to create com-

puter generated characters with realistic movement. One example is the

2007 �lm Beowulf, loosely based on the old English poem, that is fully

computer generated and was created with motion capture techniques [17].

� In archeology, SfM is used to preserve world cultural heritage. In the

valley of Bamiyan, Afghanistan, approximately 1700 years ago, two large

standing Buddha statues, one of the two being the tallest representation

of standing Buddha in the world, were carved out of the sedimentary rock

of the region. In March 2001 the Taleban government militia demolished

the colossal statues. After the destruction a group from the Swiss Federal

Institute of Technology in Zurich, completed the computer reconstruction

of the Great Buddha from surviving photographic images, see [8]. This

computer reconstruction can serve as a basis for a physical reconstruction.

� It can even be used in the treatment of cancer. The medical radiation

treatment facility at iThemba Labs requires a precise and robust patient

positioning system and a SfM system to verify correct positioning has been

proposed [38].

Each SfM application has its own speci�c requirements and its own set of 3D re-

construction assumptions. Robot navigation, for example, typically takes place

in a static environment with rigid structure, that di�ers from human motion cap-

ture where the motion of human facial features is complex and elastic. Therefore,

to e�ciently reconstruct a range of objects from various sources, two popular

approaches to SfM were developed: the Kalman �lter approach introduced by

Azarbayejani and Pentland [1] and the matrix factorization approach intro-

duced by Tomasi and Kanade [34]. The Kalman �lter, developed by Rudolf

Kalman [15], is a recursive �lter that estimates the state of a dynamic system

from a series of incomplete and noisy measurements. The matrix factorization

approach is (typically) a batch processing algorithm that factorizes a large ma-

trix containing all of the features for all of the frames of a video sequence into two

matrices, one representing 3D structure and the other 3D motion. Both these

SfM approaches contain a feature tracker and a reconstruction process�the two

essential components of a SfM system.
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The �rst component, the feature tracker, as the name suggests, detects and

tracks a number of 2D features from one frame to the next in a motion se-

quence. These features are what we ultimately represent in 3D. The features

may be pixels, point-wise features de�ned by corners, distinct patches of tex-

tures, or parametric curves that form the outlines of objects or parts of objects.

Pixel-based feature tracking methods that take all of the pixels within a frame

into account are referred to as dense optical �ow methods. Point-wise feature

tracking, tracking a limited number of features instead of all of the pixels, is

referred to as sparse optical �ow methods.

The second component, the reconstruction process, recovers the 3D infor-

mation of the features moving across the 2D images of a video sequence. From

the small di�erences in the relative changes between the features in the video

sequence, the 3D structure is derived. This explanation is of course an over-

simpli�cation of a di�cult problem. If nothing is known of the objects that

caused the observed 2D motion, or the cameras providing the images, the num-

ber of degrees of freedom of the problem is large, and the problem becomes

hard, as will be explained in detail in subsequent chapters.

In order to make the problem tractable, some assumptions need to be made.

These include the type of camera to be used, and the kind of motion being

observed. One limiting assumption, for example, is the 3D to 2D projection of

the camera that can be approximated using one of a number of camera models.

Some of the most popular models in decreasing order of complexity are:

� The perspective camera model that provides a good approximation of a

real camera and the human eye.

� The paraperspective camera model which is an approximation of the per-

spective camera model. It accounts for the scaling e�ect as an object

moves toward or away from the camera as well as the di�erent angles

from which an object is viewed as it moves parallel to the camera's image

plane.

� The weak perspective camera model that only accounts for the perspective

scaling e�ect.

� The orthographic camera model that projects without accounting for either

scaling or angle.

For the application presented in this thesis, the number of independently moving

objects is limited. Some of the di�erent types of objects one might want to

consider include:
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� A rigid object, which is the idealization of a solid body that only rotates

and translates (rigid motion). It undergoes no deformation so that the

distance between any two points on the object is constant.

� An articulated object, which is an object that consists of multiple rigid

objects connected by joints.

� An elastic object, which is a solid body that deforms under stress. The

distance between any two points on the object is not necessarily constant.

This is a very di�cult object to model, since the relative motion between

projected features is not necessarily caused by the motion of the object.

In this thesis we only consider rigid objects.

As mentioned, each of the two SfM approaches has its limitations. The

Kalman �lter approach is limited in that it can only reconstruct a single rigid

object and the motion between frames typically has to be small (this makes it

ideal for real-time video). While the Kalman �lter approach does not require

a calibrated camera, the camera (or cameras) has to have a �xed calibration

with no change in calibration parameters from frame to frame. The Kalman

�lter approach reconstructs up to a similarity. The �rst Kalman �lter based

approach used the extended Kalman �lter (EKF) for reconstruction in the case

of a perspective camera model and a single rigid object [1], and was improved

by using the nonlinear unscented Kalman �lter (UKF) by Venter [39].

The matrix factorization approach, on the other hand, is able to handle fea-

tures from multiple rigid objects, large inter-frame motion and cameras with

di�erent calibration parameters. A straightforward matrix factorization, as-

suming a perspective camera, can do no better than a projective reconstruction

which is very general, and not very useful since it allows severe deformation of

an object. One has to resort to techniques from auto-calibration to upgrade the

projective reconstruction to a similarity.

The original matrix factorization algorithm of Tomasi and Kanade [34] as-

sumes an orthographic camera and a single rigid object. It was then extended to

the weak perspective camera model [9], the paraperspective camera model [21]

and �nally to the perspective camera model, with the projective reconstruction

limitation alluded to above, by Sturm and Triggs [31]. The matrix factorization

algorithm was also applied to multiple rigid objects by Costaira and Kanade [4]

assuming an orthographic camera model. The idea of auto-calibrating cameras

to upgrade a projective reconstruction originated with Faugeras, Luong and

Maybank [6]. First only cameras with �xed calibration were considered but

later less restrictive constraints were investigated. Triggs [37] introduced the

concept of the absolute dual quadric as a numerical device and investigated

nonlinear solution methods, improving auto-calibration performance.
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The objective of this thesis is to develop a full SfM implementation that

reconstructs up to a similarity transformation, the structure and motion of

multiple independently moving rigid bodies, assuming a perspective camera(s)

which is not required to be calibrated. We note that the matrix factorization

overcomes some of the limitations of the sequential Kalman �lter approach;

factorizing a few frames

� speeds up convergence

� allows for segmentation into di�erent objects.

Matrix factorization results can also subsequently be used to initialise a Kalman

�lter algorithm.

Since the matrix factorization method is limited to a projective reconstruc-

tion for a perspective camera, we follow it with a metric recti�cation through

auto-calibration techniques based on the absolute dual quadric. We further

adopt the Lucas and Kanade (LK) [18] sparse optical �ow feature tracker for

our SfM system and focus on developing the 3D reconstruction component.

During the development of the SfM system an issue arose in the metric rec-

ti�cation process. The process consists of estimating the absolute dual quadric

and is implemented as a constrained nonlinear optimization. This optimization

fails to converge to the correct solution under certain conditions. Basically what

happens is that the plane at in�nity may intersect the object, i.e. the recon-

structed object falls on both sides of the plane at in�nity. This of course has

to be corrected, and for that purpose the cheiral inequalities are used, as sug-

gested by Hartley [11] [10]. We use the cheiral inequalities for two purposes:

(1), to transform our initial projective reconstruction to a quasi-a�ne recon-

struction that ensures the plane at in�nity does not intercept the object and

(2), as a constraint to the nonlinear optimization. Using the cheiral inequalities

as a constraint to the nonlinear optimization in the calculation of the absolute

dual quadric is novel, to the best of our knowledge. Hartley used the cheiral

inequalities to construct a number of candidate pseudo-a�ne reconstructions

to be re�ned to an a�ne reconstruction that was converted to their Euclidean

reconstruction.

One other issue worth mentioning is adapting the motion segmentation al-

gorithm of Costeira and Kanade [4], developed for the orthographic camera

model, to a perspective camera model. It may come as a surprise, but as far as

we know this has not been done. The modi�cation is basically straightforward

and only requires the calculation of a set of correctly scaled projection depths

for all of the features. More detail is given in Chapter 4.

The SfM software implementation is developed in Python and thus cross-

platform and comes with a graphical user interface (GUI) for user-friendly use.
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It was developed in-house with contributions from open-source Python pack-

ages � e.g. OpenCV for Fundamental matrix calculations and feature track-

ing, CVXOPT for linear programming, SciPy for nonlinear optimization, and

MayaVi for 3D plotting.

1.1 Overview of this work

The �rst two chapters give the theoretical background that is required to follow

the arguments in the rest of the thesis. An understanding of projective geometry,

its strati�cation, and knowledge of the perspective camera model that is used is

crucial. An overview of projective geometry is given in Chapter 2, including a

layout of the di�erent strata and how to convert between them. The perspective

camera model is explained in Chapter 3.

The next two chapters develop the 3D reconstruction algorithm for the SfM

system. In Chapter 4 a matrix factorization algorithm is discussed that returns

a projective reconstruction of image features. Next, in Chapter 5 an auto-

calibration algorithm is presented, based on the absolute dual quadric to upgrade

the projective factorization of Chapter 4 to the desired metric reconstruction.

There is also a discussion of critical motion sequences, i.e. motion sequences that

do not allow a complete solution. While the reconstruction algorithm discussed

in Chapters 4 and 5 is limited to a single rigid object, Chapter 6 focuses on

extending the algorithm to multiple, independently moving, rigid objects.

With the reconstruction algorithm fully developed, in Chapter 7 we examine

the complication caused by the situation when the plane at in�nity intersects

the object. In Chapter 8 a variety of experiments are performed, ranging from

the purely synthetic to real sequences illustrating the performance of the SfM

system.

In the �nal chapter we review how we arrived at the proposed algorithms and

the results obtained. This work is then concluded with a number of suggestions

on future improvements.

Supplementary material is provided in the Appendix A where an overview

is given of the resources provided on an accompanying CD. It contains, among

other things, our SfM software and all the experimental sequences used in this

work. Appendix A also provides a user guide to the SfM software, including

descriptions of the most important modules and explaining how to use the GUI.



Chapter 2

Projective geometry

The 3D reconstructions studied in this work depend heavily on the camera

model that is adopted, a perspective camera. The transformations involved in

projecting 3D features onto the image plane are best described using projec-

tive geometry, with its underlying notion of homogeneous coordinates. In fact

metric reconstructions from multiple views are impossible without a reasonably

complete understanding of projective geometry. In this chapter the basic ideas

that will be used in the rest of the work are given. Without it, it will be hard

to follow the rest of the discussion. For a more thorough explanation the reader

should consult [22], [13] and [6].

2.1 Projective spaces

A point in the projective n-space, Pn, is represented by a (n+ 1) homogeneous

vector with coordinates, x = [x1, . . . , xn+1]T , and at least one of its elements is

not equal to zero. That means that all non-zero multiples of elements in Pn are

identi�ed, i.e. if x, y ∈ Pn then x and y are the same if, and only if, x = λy

for some non-zero real number λ.

A collineation is a mapping between projective spaces that preserve collinear-

ity, i.e. points connected by a straight line are mapped to points again con-

nected by a straight line. A collineation from Pm to Pn is represented by a

(m+ 1)× (n+ 1) matrix H. Points are transferred x→ x′ = Hx. Observe that

H and λH, with λ non-zero, represent the same collineation.

Note that there is a one-to-one correspondence between the Euclidean space

7
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Rn and the projective space Pn.

For p =


p1

p2

...

pn+1

 ∈ Pn ⇒ x =


p1
pn+1
p2
pn+1

...
pn
pn+1

 ∈ Rn.

Alternatively,

for x =


x1

x2

...

xn

 ∈ Rn ⇒ p =


x1

...

xn

1

 ∈ Pn.

Note that we have not said anything about pn+1 being non-zero. In fact p ∈ Pn

with pn+1 = 0 is perfectly well-de�ned. It is just the corresponding points in

Rn that are problematic. This is part of the power of projective geometry, and

it will prove useful to de�ne the points p ∈ Pn with pn+1 = 0 as the plane at

in�nity.

2.2 The projective plane

The projective plane is the projective space P2. A point in P2 is represented

by a homogeneous 3-vector x = [x, y, w]T . Line l is also represented by a

homogeneous 3-vector, i.e. l = [l1, l2, l3]T . A point x is on a line l if, and only

if,

lTx = 0. (2.1)

Alternatively, given a point x, one can also state that a line l passes through x

if, and only if, (2.1) holds. This interchangeability of lines and points is known

as the principle of duality.

A line l passing through points x1 and x2 is given by the vector product

l = x1 × x2. This can also be written as,

l = [x1]× x2 with [x1]× =

 0 w1 −y1

−w1 0 x1

y1 −x1 0

 .
The dual formulation gives the intersection point of two lines, x = l1 × l2.

All the lines passing through a speci�c point form a pencil of lines. The two

lines, l1 and l2 are distinct elements of the pencil. All the other lines can be
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obtained through l = λ1l1 + λ2l2 for non-zero scalars λ1 and λ2 with only the

ratio λ1
λ2

of importance.

2.3 Projective 3-space

Projective 3-space is the projective space of P3. A point in P3 is represented by

a 4-vector X = [X, Y, Z, W ]T . In P3 the dual entity of a point is a plane Π,

also represented by a 4-vector, i.e. Π = [π1, π2, π3, π4]T . A point X is located

on a plane Π if, and only if,

ΠTX = 0.

A line is given by the combination of two points, λ1X1 + λ2X2, or the

intersection of two planes, Π1 ∩Π2. Note that two parallel planes intersect in

a well-de�ned line, a line on the plane at in�nity, in P3. The plane at in�nity is

discussed in detail later in this chapter.

2.4 Projective transformations

A 2D homography maps lines to lines (P2 → P2) and is given by a non-singular

3× 3 homogeneous matrix H. A point x transforms under a homography with

x′ = Hx. (2.2)

Given a point x′ on line l′ where x′ is transformed by 2.1, we �nd that

0 = l′
T x′

= l′
T
Hx

= (HT l′)Tx,

implying x is on line l = HT l′. We therefore conclude that lines transform

under a homography as

l′ = H−T l. (2.3)

Reasoning similarly, the transformation of 3D points and planes in P3 is

given by:
X′ = HX

Π′ = H−TΠ,
(2.4)

where 3D homography H is a non-singular 4× 4 homogeneous matrix.
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2.5 Conics and quadrics

2.5.1 Conic

A conic is a curve in P2 described by the locus (collection of points which share

a property) of all points x satisfying the homogeneous quadratic equation

S (x) = xTωx = 0, (2.5)

where ω is a 3 × 3 symmetric matrix de�ned up to scale. Therefore, a conic

has 5 degrees of freedom. We do not distinguish between the matrix ω and the

curve it de�nes, and simply refer to the conic ω. In Euclidean geometry, proper

conics (conics that have full rank) are one of three types: hyperbola, ellipse or

parabola.

2.5.2 Line-conic intersection

Let x and x′ be two points de�ning a line. Any point on this line can be

represented by x + λx′. This point lies on a conic if, and only if,

S (x + λx′) = (x + λx′)ω(x + λx′) = 0
= xTωx + λxTωx′ + λx′Tωx + λ2x′Tωx′ = 0.

This can be written as

S (x) + 2λS (x,x′) + λ2S (x′) = 0 (2.6)

where

S (x,x′) = xTωx′ = S (x′,x) .

This means, in general, there are two intersection points between a conic and a

line. These intersections can be real or complex and can be obtained by solving

(2.6) for λ.

2.5.3 Tangent to a conic

The two intersecting points of a conic and a line coincide if the discriminant of

(2.6) is zero. Since it is an quadratic equation in λ, the discriminant can be

written as

4S (x,x′)S (x,x′)− 4S (x)S (x′) = 0.

If x is considered �xed and to belong to the conic S (x) = 0, the equation

becomes,

S (x,x′)S (x,x′) = 0.
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(i) conic ω (ii) dual conic ω∗

Figure 2.1: A conic ω and its dual ω∗.

This implies

S (x,x′) = 0 = xTωx′ =
(
ωTx

)T
x′ =

(
ωTx′

)T
x,

which is linear in the coe�cients of x′. This, according to (2.1), means there is

only one tangent for x and x′, therefore the same point on the conic. Then the

tangent l is represented by

l = ωTx = ωx, (2.7)

since ω is symmetric.

2.5.4 Dual conic

According to the duality principle one can also de�ne a dual conic ω∗ as the

lines tangent to a conic. It is represented by the adjoint matrix ω∗ of the conic

matrix ω, and is given by,

S
(
lT
)

= lTω∗l = 0,

where ω∗ is again a symmetric, homogeneous matrix, also with 5 degrees of

freedom.

When x belongs to a conic, i.e. xTωx = 0, the tangent, l = ωx, satis�es

lTω−1l = 0,

in the case when ω is non-singular. Thus the dual conic is represented by the

adjoint matrix ω∗ = ω−1 (assuming ω is full rank).
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(i) sphere (ii) ellipsoid (iii) hyperboloid (iv) paraboloid

Figure 2.2: Some quadric examples.

2.5.5 Transformation of conic and dual conic

We consider that transformation of a conic under a 2D homography, x′ = Hx

and l′ = H−T l. For x on the conic (2.5) it follows that

0 = xTωx = x′TH−TωH−1x′

0 = lTω∗l = l′THω∗HT l′
,

and thus
ω′ = H−TωH−1

ω∗′ = Hω∗HT
. (2.8)

This also implies that (ω′)∗ = (ω∗)′.

2.5.6 Quadric

In projective P3 space a similar concept to the conic exists, the quadric Q. A

quadric is a surface de�ned by the locus of all 3D points X that satisfy

XTQX = 0,

where Q is a 4 × 4 symmetric matrix de�ned up to scale. A quadric therefore

has 9 degrees of freedom. Note that the intersection of a plane with a quadric

is a conic.

2.5.7 Dual quadric

Similar to the dual conic, the dual quadric Q∗ is de�ned as the planes tangent

to the quadric, and is written as

ΠTQ∗Π = 0,

where Q∗ is a 4 × 4 symmetric matrix. The dual quadric also has 9 degrees of

freedom.
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2.5.8 Tangent to a quadric

Similar to (2.7), the tangent plane to a conic for point X on the conic is

Π = QX.

2.5.9 Relation between quadric and dual quadric

When X varies along the quadric it satis�es XTQX = 0 and therefore the

tangent plane Π to the quadric at X satis�es ΠTQ∗Π = 0. This again shows,

that the dual quadric is given by Q∗ = Q−1 (again provided Q is full rank).

2.5.10 Transformation of quadric and dual quadric

The transformations for quadrics and dual quadrics follow as in the case of the

conic and dual conic, and is therefore given by

Q′ = H−TQH−1

Q∗′ = HQ∗HT ,
(2.9)

where H is now a 3D homography. Again it is clear, (Q∗)′ = (Q′)∗ .

2.6 The strati�cation of 3D geometry

We usually perceive the world as embedded in a 3D Euclidean space, a place

where measurements of distances and angles are well-de�ned. This viewpoint

is not mandatory, especially for arti�cial systems like robots. It is sometimes

desirable, or only possible, to deal with a more general, and therefore simpler,

geometric structure. These geometric structures can be thought of as di�erent

geometric strata. The simplest being projective, then a�ne, next metric and

�nally Euclidean structure. These strata can be considered as subgroups of

each other, e.g. the metric group is a subgroup of the a�ne group and both are

subgroups of the projective group.

Acting on the elements of these strata, some properties of the strata are left

invariant by these transformation groups. More precisely, an invariant is a prop-

erty of a geometric con�guration that is not altered by a transformation under

a speci�c group. Uncovering these entities allow us to upgrade the structure of

the geometry to a higher strata

In the following paragraphs the di�erent strata are shortly discussed along

with their associated groups of transformations, and their invariants.
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2.6.1 Projective stratum

This is the least structured, or most general stratum and therefore the one with

the least number of invariants. A projective transformation of P3 is represented

by the 4× 4 non-singular homogeneous matrix

Hp =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 =

[
A b

vT k

]
, (2.10)

with A a non-singular 3 × 3 matrix and b and v both 3-vectors. Since Hp is

homogeneous, only the ratios between its 16 elements are signi�cant. Therefore

it has 15 degrees of freedom.

For projective transformations, the most fundamental invariant is the cross-

ratio. Let Xi = X + λiX′, for i = 1, . . . , 4, be four di�erent collinear points.

The cross-ratio is then de�ned as

Cross (X1, X2, X3, X4) =
(λ1 − λ3) (λ2 − λ3)
(λ1 − λ4) (λ2 − λ4)

.

The cross-ratio does not dependent on the choice of reference points X and X′

and, as stated, is invariant under the group of projective transformations of P3.

A similar cross-ratio can be de�ned for four lines intersecting in a point or four

planes intersecting in a common line.

A number of further invariant properties can be be expressed in terms

cross-ratio constructions, e.g. concurrency, lines intersecting in a single point,

collinearity, points on a straight line and intersection of geometric objects.

2.6.2 A�ne strata

The a�ne group is located in between the projective and metric group with

more structure than the �rst and less than the latter. The a�ne stratum di�ers

from the projective by identifying a special plane, the plane at in�nity Π∞. The

plane at in�nity is de�ned as all the 3D homogeneous points X = [X, Y, Z, W ]T

with W = 0 and thus Π∞ has the canonical form e4 = [0, 0, 0, 1]T .
An a�ne transformation is given by the 4 × 4 non-singular homogeneous

matrix

HA =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1

 =

[
A a

0T 1

]
, (2.11)
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Figure 2.3: Projective (left) and a�ne (right) structures which are equivalent to

a cube under their respective ambiguities. The vanishing points obtained from lines

which are parallel in the a�ne stratum constrain the position of the plane at in�nity

in the projective representation.

with 3× 3 matrix A non-singular. It should be clear that a�ne transformations

of P3 has 12 degrees of freedom.

The plane at in�nity is an invariant under a�ne transformations and is the

fundamental invariant of the a�ne stratum, Π∞ = H−TA Π∞ or HT
AΠ∞ = Π∞.

Note that the positions of points at in�nity can change but these points stay

on the plane at in�nity. This has a useful interpretation: Since parallel planes

intersect on the plane at in�nity, after an a�ne transformation they still intersect

on the plane at in�nity Π∞. Consequently, a�ne transformations map parallel

planes to parallel planes.

From projective to a�ne

Starting with the plane at in�nity Π∞ in its canonical position given by e4 =
[0, 0, 0, 1]T , under a general projective transformation it is mapped to a �nite

position, i.e. Π∞ =
[
πT , 1

]T
when the last element is scaled to one. This

is, for example, the reason why parallel lines intersect at a �nite point under

the projective transformation induced by our cameras. The problem is to �nd

a transformation that maps the projective stratum onto an a�ne stratum. It

should be clear that this can only be done up to an arbitrary a�ne transforma-

tion.

The idea is to �nd the projective representation of the plane at in�nity in the

scene, as illustrated in Figure 2.3. Since we know that we are looking at a cube

under a projective transformation in the �gure, one can identify three vanishing

points, i.e. the three points on the plane at in�nity, by locating the intersection
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Figure 2.4: The absolute conic Ω∞ and the absolute dual quadric Q∗∞ in 3D space.

of what used to be parallel lines. These three points de�ne the projective rep-

resentation of the plane at in�nity. With the projective representation of the

plane at in�nity Π∞ and its canonical form e4 known, we now have to �nd the

transformation that maps the one to the other.

Since

e4 =


0
0
0
1

 = H−TΠ∞ orHT


0
0
0
1

 = Π∞,

the fourth row of H is determined. Thus a natural choice for the projective to

a�ne transformation, HPA is

HPA =

[
I 0

πT 1

]

where π is the �rst three rows of Π∞ when the last component is scaled to 1.

However any transformation of the form

HPA =

[
A 0

πT 1

]
(2.12)

with A non-singular also maps Π∞ to e4.

2.6.3 Metric stratum

This stratum corresponds to the set of similarity transformations. These trans-

formations consist of a scaling, an orthonormal rotation and a translation. It

corresponds to the Euclidean transformations but complements that with a scal-

ing. When no absolute yardstick is available, this is the highest level of geometric

structure that can be attained.
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The transformation is represented in Euclidean coordinates by

X̂′ = σ

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 X̂ +

 t1

t2

t3


= σRX̂ + t

(2.13)

with rij the elements of the orthonormal matrix R. The coe�cients rij are

related by six independent constraints that can be written as,

RTR = RRT = I. This leaves three degrees of freedom that de�ne the axis�

and angle of rotation. Rewriting (2.13) in homogeneous coordinates as

X′ = HMX, the transformation matrix has the form

HM =


σr11 σr12 σr13 t1

σr21 σr22 σr23 t2

σr31 σr32 σr33 t3

0 0 0 1

 =

[
σR t

0T 1

]
.

A similarity transformation has 7 degrees of freedom, 3 for rotation, 3 for

translation and 1 for scale.

In the metric case the fundamental invariants are relative lengths and relative

angles. Similar to the a�ne case, they are related by an invariant geometric en-

tity. Besides leaving the plane at in�nity unchanged, similarity transformations

leave the absolute conic, Ω∞, invariant.

The absolute conic is a speci�c conic located on the plane at in�nity that is a

virtual (conic of imaginary points), circle conic. The absolute conic is described,

in the metric stratum, by all 3D points X = [X, Y Z, W ]T that satisfy

X2 + Y 2 + Z2 = 0 and W = 0. (2.14)

Therefore, for Ω∞ in the metric stratum on Π∞, Ω∞ has the canonical form

ω = I.

This means that for points with W = 0 on Π∞, the de�ning equation is given

by

[X, Y, Z] I [X, Y, Z]T = 0 .

It is often more practical to represent the absolute conic with its dual entity,

Q∗∞, the absolute dual quadric. Figure 2.4 illustrates the geometric concept of

the absolute dual quadric, i.e. the planes tangent to Ω∞ so that Ω∞ is the �rim�

of Q∗∞. The absolute dual quadric is a degenerate dual quadric, i.e. the 4 × 4
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homogeneous matrix representing the dual quadric does not have full rank (a

rank of 3 instead of 4). Thus the absolute dual quadric has 8 degrees of freedom,

one less than full rank quadrics because of its zero determinant. The canonical

form of Q∗∞ in the metric stratum is

Q∗∞ = Ĩ =

[
I 0

0T 0

]
.

One way to show that Q∗∞ is a dual of Ω∞ is to consider the absolute conic

as the limit of a series of squashed ellipsoids, namely quadrics represented by

the matrix

Q =

[
I 0

0T k

]
.

As k →∞, the quadrics become increasingly close to the plane at in�nity, and

the only points the limit contain are [X, Y, Z, 0]T with X2 +Y 2 +Z2 = 0. These
points are points on the absolute conic. However the dual of Q is the quadric

Q∗ = Q−1 =

[
I 0

0T k−1

]
,

which in the limit become the absolute dual quadric Q∗∞ = Ĩ.

Note that Π∞ is the null-space of Q∗∞,

Q∗∞Π∞ = 0. (2.15)

It can easily be shown for the canonical case,

Ĩe4 =

[
I 0

0T 0

][
0

1

]
= 0.

It can now be veri�ed that similarity transformations leave the absolute conic

and its associated entities unchanged, using (2.8) and (2.9):

HM ĨH
T
M =

[
σR t

0T 1

][
I 0

0T 0

][
σR t

0T 1

]T
=

[
I 0

0T 0

]
= Ĩ

and
ω = I = σ−1R−T IR−1σ−1

ω∗ = I = σRIRTσ,

taking into account that we are dealing with homogeneous quantities. Con-
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Figure 2.5: A�ne (left) and metric (right) representation of a cube. The right angles

and the identical lengths in the di�erent directions of a cube give enough information

to upgrade the structure from a�ne to metric.

versely it is easy to show that the projective transformations that leave the

absolute dual quadric unchanged, form the group of similarity transformations,[
I 0

0T 0

]
= HP ĨH

T
P

=

[
A b

vT k

][
I 0

0T 0

][
AT v

bT k

]

=

[
AAT Av

vTAT vTv

]
.

Therefore AAT = I and v = 0 which exactly corresponds to the constraints for

a similarity transformation. The same could be done for the absolute conic and

the plane at in�nity.

From projective or a�ne to metric

It is often required to upgrade a projective or a�ne representation to metric.

This is done by retrieving the absolute conic or one of its associated entities.

Since the absolute conic is located at the plane of in�nity it is easier to retrieve

it once the plane is identi�ed, i.e. the a�ne structure has been recovered. It is

however possible to retrieve both entities at the same time. The absolute dual

quadric, Q∗∞, is especially suited for this purpose since it encodes both entities

at once.

Every known angle or ratio imposes a constraint on the absolute conic.

Knowing enough constraints allows for the conic to be uniquely determined,

e.g. In Figure 2.5 a cube is transformed so that its sides are orthogonal and all

have the same length. Once the absolute conic is identi�ed the geometry can

be upgraded from projective or a�ne to metric by bringing it to its canonical

(metric) form.

The procedure to go from projective to a�ne has already been explained in

the a�ne stratum section (1.2.2) so the discussion is now limited to the a�ne
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to metric case. In this case there must be an a�ne transformation that brings

the absolute conic to its canonical position; or, conversely, from its canonical

position to its position under the a�ne transformation. Using (2.9) and (2.11)

it follows that the absolute dual quadric under the a�ne transformation is given

by:

Q∗∞ =

[
A a

0T 1

][
I 0

0T 0

][
AT 0

aT 1

]
=

[
AAT 0

0T 0

]
.

Then the a�ne conic representation of the absolute conic and its dual have the

form

ω∗ = AAT and ω = A−TA−1.

One possible choice for the transformation from a�ne to metric, HAM is

HAM =

[
A−1 0

0T 1

]
(2.16)

so that[
I 0

0T 0

]
=

[
A−1AATA−T 0

0T 0

]
=

[
A−1 0

0T 1

][
AAT 0

0T 0

][
A−T 0

0T 1

]
,

where a valid A can be obtained from Q∗∞ through Cholesky factorization.

Combining (2.12) and (2.16),

HPM = HPAHAM =

[
I 0

πT 1

][
A−1 0

0T 1

]
=

[
A−1 0

πT 1

]

2.6.4 Euclidean stratum

Euclidean stratum does not di�er much from the metric stratum. The di�erence

is that scales are �xed and therefore not only can relative lengths be measured,

but also absolute lengths. The Euclidean transformation is represented in Eu-

clidean coordinates by

X̃′ =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 X̃ +

 t1

t2

t3


= RX̃ + t

(2.17)
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Stratum dof Transformation Invariants

projective 15 HP =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


cross-ratio

a�ne 12 HA =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1


relative distances,

along direction

parallelism,

plane at in�nity

metric 7 HM =


σr11 σr12 σr13 t1
σr21 σr22 σr23 t2
σr31 σr32 σr33 t3

0 0 0 1


relative distances,

angles,

absolute conic

Euclidean 6 HE =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1


absolute distances

Table 2.1: The number of degrees of freedom, transformations and invariants cor-

responding to the di�erent geometric strata (the coe�cients rij form orthonormal

matrices).

with R an orthonormal matrix. The Euclidean transformation then has the

homogeneous form of X′ = HEX with

HE =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 =

[
R t

0T 1

]
.

This transformation has 6 degrees of freedom, 3 for rotation and 3 for

translation. If R is a rotation matrix, detR = 1, then the transformation

represents a rigid motion in space.

2.6.5 Overview of the di�erent strata

The various strata are summarized in Table 2.1. Equivalent shapes for a cube

over the di�erent geometric strata are displayed in Figure 2.6.
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Figure 2.6: Shapes which are equivalent to a cube for the di�erent geometric ambi-

guities.



Chapter 3

Perspective camera model

This study is based on the perspective camera model, also known as the pin-hole

camera, which is an idealized mathematical model of real cameras. It is used

since it models most cameras, including the human eye, relatively well except

for some factors e.g. geometric distortions of the types that are caused by lenses.

The perspective camera is a central projection camera and is illustrated in

Figure 3.1. This means the projection process is completely determined by

choosing a �nite perspective projection center C and an image plane. The

projection of a scene point X is then obtained as the intersection of the line

passing through both X and C, with the image plane. All cameras modeling

Figure 3.1: Perspective projection with a camera center C, focal length f and prin-

cipal point p in the image plane.

23
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Figure 3.2: Perspective camera projection from a view parallel to the camera X-axis.

C is the camera center and p the principal point. The camera center is placed at the

coordinate origin and Z = 1 is the image plane.

central projection are specializations of the general projective camera model.

Using homogeneous coordinates we denote X = [X, Y, Z, W ]T as a 3D point

and x = [x, y, w]T as its 2D projection. The general projective camera is

represented by the mapping

x = PX, (3.1)

where the projection matrix P is an arbitrary 3×4 homogeneous matrix of rank

3. The rank 3 requirement arises, because any lesser rank maps onto a line or

point and not the required image plane. As a consequence of homogeniality, the

general projective camera has 11 degrees of freedom.

3.1 Perspective camera properties

Consider a 3D point X in the world coordinate system (WCS) and x its 2D

projection in pixel coordinates under the mapping x = PX with P the camera

projection matrix and C the camera coordinate system (CCS) camera center.

In the special case of Figure 3.2 with the camera center at the origin and the

image plane at Z = 1, it is clear from similar triangles that X centrally projects

to x = [X/Z, Y/Z, 1]T . According to [13] the perspective camera matrix can

be decomposed, in metric space, as

P = KR
[
I | −C̃

]
(3.2)

with C̃ the non-homogeneous coordinates of the camera center in the WCS,

R the 3 × 3 rotation matrix between the CCS and the WCS and K the 3 × 3
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Figure 3.3: The Euclidean transformation between the world and camera coordinate

system.

upper-triangular camera calibration matrix.

The decomposition in (3.2) can be rewritten as

KR
[
I | −C̃

]
= K

[
R | −RC̃

]
= K

[
R | t

]
where 3-vector t is the origin of the world coordinate system in terms of the

camera coordinate system, seen in Figure 3.3. The motion of the world coor-

dinate system relative to the camera is fully expressed with rotation matrix R

and translation vector t so that we may write, in Euclidean coordinates,

X̃cam = RX̃ + t = R
(
X̃− C̃

)
expressing the position of 3D WCS point X̃ in the camera coordinate system.

The pixel coordinates of the image and x are not necessarily in Euclidean

coordinates, with equal scales in both axes' directions. A typical example is a

CCD camera with non-square pixels. The camera calibration matrix K is a 2D

a�ne transformation matrix that contain the parameters that relate the CCS

to the image coordinate system. These parameters are intrinsic to a camera and

therefore called its internal parameters. Calibration matrix K has the general

form

K =

 α s x0

rα y0

1

 . (3.3)
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The calibration parameters are:

� α = fmx, representing the focal length f (distance between the center of

projection, COP, and the image plane) in terms of the pixel dimension in

the x-direction, mx.

� r = my
mx

, the aspect ratio between mx and my, the number of pixels per

unit distance in image coordinates in the x and y direction.

� x0, y0, with [x0, y0, 1]T the principal point of the camera. The principal

point is the camera center or COP in terms of the image coordinates.

� s, the skew parameter.

For a camera with �xed optics these parameters are identical for all images. For

cameras with zoom and focusing capabilities the focal length and possibly the

principal point can vary between images.

The perspective camera is de�ned as a special case of the general projection

camera for which the left hand 3× 3 submatrix of the camera matrix P is non-

singular. Assigning B to the left 3 × 3 submatrix of P , we can rewrite (3.2)

as

P =
[
B | p4

]
(3.4)

where p4 is the 4th column of P and

B
[
I | B−1p4

]
= B

[
I | −C̃

]
.

It is clear from (3.2) and (3.4) that one can factorize B = KR using RQ de-

composition (QR decomposition with some algebraic manipulation), where K

is the upper triangular camera calibration matrix of (3.3) and R the orthogonal

rotation matrix. We now show that the non-singularity of B ensures that all

perspective camera's have a �nite center represented by homogeneous 4-vector

C.

First it has to be shown that camera center C is the one-dimensional right

null-space of the camera matrix P . Consider a line in 3-space containing a

point C, any homogeneous 4-vector for which PC = 0, and any other point A.

Points on this line are presented by the join X (λ) = λA + (1− λ) C. Under

the mapping x = PX, points on this line are projected to

x = PX (λ) = λPA + (1− λ)PC = λPA

since PC = 0. This means all points on the line are mapped to the same point

PA, therefore the line must be a ray through the camera center.
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It follows that C is the homogeneous representation of the camera center

and the one-dimensional right null-space for P , since for all choices of A the

line X (λ) is a ray through the camera center. We can now see from (3.4) and

PC = 0 that C has the form

C =

[
−B−1p4

1

]
=

[
C̃

1

]
.

This clearly shows that the non-singularity restriction ensures that all perspec-

tive camera's have �nite centers.

3.2 Actions of the perspective camera

An overview is given of the action of the perspective camera on points, lines,

planes, conics and quadrics.

3.2.1 On points

forward projection

It has already been shown that points X in 3-space are projected with P to

image points x = PX.

back projection

Since all points on the ray through C̃ and x project onto x, it is impossible to

recover X given C̃ and x. But we can at least recover the ray.

We know two points on this ray. The �rst is the camera center C =[
C̃T , 1

]T
. When writing P as P = [B |p4], the camera center C̃ is given by

C̃ = −B−1p4. The second known point is the point where the back projected

ray intersects the plane at in�nity, X∞ =
[(
B−1x

)T
, 0
]T

. Writing the line as

the join of these two points on the ray,

X (µ) =

[
−B−1p4

1

]
+ µ

[
B−1x

0

]
=

[
B−1 (µx− p4)

1

]
.

3.2.2 On lines

forward projection

The camera center C and a 3-space line, not through C, de�ne a plane. Its

image is the intersection between this plane and the image plane. It is well
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known that two planes intersect in a line, therefore, a 3-space line projects to a

line in the image.

This is easily shown algebraically by denoting A, B points in 3-space and a,

b their images under P . Then the points X (µ) = A + µB on the line, which is

the join of A and B in 3-space, project to the points

x (µ) = P (A + µB) = PA + µPB = a + µb

which is the joining of a and b in the image.

back projection

The set of points that map to a line in the image is a plane in space de�ned by

the camera center and the image line, as was shown with the forward projection.

We will now show that the set of points mapped under P to a line l in the image,

is the plane PT l.

A point lies on l if, and only if, xT l = 0. Therefore, a 3-space point X maps

to l if, and only if, XTPT l = 0. This means that X lies on the plane Π = PT l,

the back projection of line l.

3.2.3 On planes

The imaging equation x = PX is a map from a point in the world coordinate

system to a point in the image coordinates. We are free to choose the world

coordinate system. Suppose we choose it so that the XY-plane corresponds to

a plane Π in the scene. This means points on the scene plane Π have zero

Z-coordinates. Denoting the columns of P as pi, i = 1 . . . 4, the image of a

point on Π is given by

x = PX = [p1, p2 ,p3, p4]


X

Y

0
1

 = [p1, p2, p4]

 X

Y

1

 .

This shows that the map between points xΠ = [X, Y, 1]T on Π and their

image x is a simple planar homography (plane to plane projective transforma-

tion), x = HxΠ. Where H is a 3 × 3 matrix of rank 3 (rank 3 is guaranteed

since P is rank 3).
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Figure 3.4: A conic ω back-projects to a degenerate quadric (cone) Qcone with camera

center C as the cone vertex (null space).

3.2.4 On conics

We now show that a conic ω back-projects under P to a cone. A cone is a

degenerate quadric Q, i.e. a quadric that does not have full rank,

Q = PTωP.

The projection is illustrated in Figure 3.4.

A point x lies on ω if xTωx = 0. A 3-space point X maps to x = PX which

lies on the conic ω if XTPTωPX = 0. Thus, if we take that Q = PTωP does

represents a quadric, then X lies on the quadric if 0 = XTQX with XTQX =
XTPTωPX. It follows that X lies on the quadric if, and only if, X maps to a

point on the conic so that Q is the back projection of conic ω.

Note that the null-vector, or cone vertex, of Q is the camera center C since

QC = PTω (PC) = 0.

3.2.5 On quadrics

Once more we show that the forward projection of dual quadric Q∗ is the dual

conic ω∗ given by

ω∗ = PQ∗PT . (3.5)

This is derived from the observation that lines tangent to a conic ω belonging

to the dual of the conic ω∗, or conic outline, satisfy lTω∗l = 0. These lines back
project to planes Π = PT l, as explained in section (3.2.2), and are tangent

to the quadric Q and belong to the dual Q∗ of the quadric if, and only if,
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ΠTQ∗Π = 0. It follows that for each line tangent to ω with back projected

plane tangent to Q,

0 = ΠTQ∗Π = lTPQ∗P l = lTω∗l.

3.3 Perspective camera calibration and the

image of the absolute conic

We now show that there exists a very important relation between the camera

calibration matrix K and the projection of the absolute conic Ω∞ in an image.

It will be shown that this relation is ω∞ =
(
KKT

)−1
, where ω∞ is a conic

known as the image of the absolute conic (IAC). It is later established that this

relation is essential for the auto-calibration of a camera.

First we must examine the map between the plane at in�nity Π∞ and the

image plane. Points on the plane at in�nity may be written as X∞ =
[
dT , 0

]T
,

and are imaged by the perspective camera, P = KR
[
I | − C̃

]
as

x = PX∞ = KR
[
I | − C̃

] [ d

0

]
= KRd.

This shows the mapping between Π∞ and the image plane is given by the

planar homography x = Hd with

H = KR. (3.6)

It is evident from (3.6) that the homography is independent of the position of

the camera center, C̃, and depends only on the camera's internal calibration

and its orientation with respect to the world coordinate system.

With the absolute conic Ω∞ residing on Π∞, we can compute its image

under the homography H. Equation (2.8) shows that under the homography

x = Hx a conic ω maps as ω′ = H−TωH−1. Since Ω∞ is in canonical form, it

is given by the conic ω = I on Π∞ and is mapped to

ω∞ = (KR)−T I (KR)−1 = K−TRR−1K−1 = K−TK−1. (3.7)

So the image and the dual image of the absolute conic (DIAC) is given by,

ω∞ =
(
KKT

)−1

ω∗∞ = KKT .
(3.8)

The image and dual image of the absolute conic is illustrated in Figure 3.5.
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Figure 3.5: The image of the absolute conic ω∞ and its dual ω∗∞ in the image plane.

Figure 3.6: Orthographic camera projecting perpendicularly onto its image plane.

3.4 Orthographic camera, an approximation to

the perspective camera

The orthographic camera model is the simplest of the a�ne camera models. The

a�ne camera models are de�ned by a center of projection (COP) located on the

plane at in�nity and the last row the projection matrix P equal to [0, 0, 0, 1].
The orthographic camera model is the special case where the normal of the

viewing plane (the camera direction) is parallel to one of the axes of the world

coordinate system. The WCS is typically chosen so that the Z-axis is parallel to

the viewing plane of the camera and thus all the 3D points project perpendicu-

larly onto the image plane by simply dropping their camera coordinate system

Z-coordinates.
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The orthographic projection is illustrated in Figure 3.6. The general ortho-

graphic camera matrix is then of the form

P =

 rT1 t1

rT2 t2

0T 1

 (3.9)

where r1 and r2 are the �rst two rows of rotation matrix R, and t1 and t2 the

�rst two components of translation vector t. The orthographic camera has only

5 degrees of freedom: 3 for rotation and 2 for translation.

The reason for consideration of the orthographic camera is that it is an

acceptable approximation when an object's thickness and its change in depth

between frames is small relative to the object's distance from the camera. In

these cases the depth recovery is di�cult and very sensitive to noise, making

the orthographic camera more reliable than some more complex models.



Chapter 4

Matrix factorization method

for projective reconstruction

Matrix factorization as a means for 3D reconstruction from a video sequence

was originally introduced by Tomasi and Kanade [34]. They developed it for

the case of a single object, motion within a single plane, and an orthographic

camera. Subsequently, Tomasi and Kanade [35, 33, 36] extended the planar

motion case to one with arbitrary 3D motion for a single object under ortho-

graphic projection. With this change to arbitrary motion, they extended the

camera coordinate system only formulation by introducing an additional world

coordinate system. All the feature vectors were now measured relative to a

world origin. This algorithm has been used as the basis for a number of algo-

rithms and adapted to di�erent types of motions, number of objects and camera

con�gurations.

4.1 Problem statement

Suppose we have a set of i = 1, . . . , N 3D features visible in f = 1, . . . , F
perspective images as image measurements. All measured features in this work

are points, i.e. not lines or curves. The projection of a 3D point i in image f

is visible in Figure 4.1. The goal is to recover the 3D structure, i.e. the 3D

coordinates (in the world coordinate system) of features, and motion from the

measured features.

We �nd it convenient to think of, and formulate the problem accordingly,

a stationary camera observing a moving scene. It simpli�es some of the repre-

sentations and is easily expandable to the case of multiple moving objects that

will be encountered later. Of course in reality it is only the relative motion

33
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Figure 4.1: The camera and the object coordinate system with their respective

coordinate centers C and O. Object point Xi project to image point xfi in frame f .

between camera and object that matters. A simple description of a static cam-

era observing a scene with a moving object, is with two coordinate systems. A

static camera coordinate system (CCS) with its origin the camera center, and

a moving world coordinate system �xed to the object, the object coordinate

system (OCS). The OCS origin is located at the object centroid. Both these

coordinate systems are shown in Figure 4.1.

We denote 3D features on the object with Xi = [Xi, Yi, Zi, Wi]
T , i =

1, . . . , N . If xfi is the projection of Xi onto the f -th frame then

xfi = P fXi. (4.1)

where P f is the (unknown) projection matrix. In fact, given xfi , f = 1, . . . , F
and i = 1, . . . , N , the problem is to recover P f , f = 1, . . . , F and Xi, i =
1, . . . , N .

At the �rst level the problem is straightforward. Gathering xfi for all 3D

features and frames in a big measurement matrix W , it should be possible to

write (4.1) for all 3D features and frames as the factorization of W,

W = MS.

Where M is a matrix containing the motion information and S a matrix con-

taining the 3D structure information. Thus the problem amounts to a matrix

factorization.

This however, is not straightforward for a perspective projection. There-
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fore we begin with explaining the relatively straightforward situation of feature

projection under an orthographic camera.

4.2 Orthographic camera

Before examining the projective matrix factorization algorithm, we �rst analyze

the simpler case of the orthographic camera. This conveys the primary ideas in

a simpler setting.

Suppose we take N features, xi = [xi, yi, 1]T , for i = 1, . . . , N , projected

according to (4.1) with P the projection matrix of an orthographic camera given

in (3.9). The feature vectors are all normalized so that the last element is equal

to one, therefore they equal the actual image measurements. These features are

tracked over F frames and collected in a single 2F ×N measurement matrix of

the form

W =



x1
1 · · · x1

N

y1
1 · · · y1

N

...
...

xF1 · · · xFN
yF1‘ · · · yFN


.

Each column of matrix W is then the trajectory of one feature over the frame

sequence and each grouping of two rows, all the features for that frame. We can

then represent W as the matrix product

W = MS

M =



ρ1T
1

ρ1T
2

...

ρFT1

ρFT2


S =

[
X1, · · · , XN

]
,

(4.2)

where ρfi
T
, i = 1, . . . , 2 and f = 1, . . . , F , is the i-th row of the f -th projection

matrix. The 2F × 4 matrix M and 4 × N matrix S now provide a compact

representation of the reconstructed motion and structure, respectively.

4.2.1 Structure and motion from factorization

Since M is 2F × 4 and S is 4 × N, W has a maximum rank of 4. In reality,

W is constructed from noisy measurements, e.g. noise in the feature tracking,
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and its rank can be much higher. The closest rank-4 matrix to noisy W in the

Frobenius norm can be obtained from singular value decomposition1 (SVD).

The SVD decomposes W as W = UΣV T . By denoting Σ4 as the 4 × 4
diagonal matrix of the four biggest singular values, revealing the most of the

matrix, U4 as the 2F × 4 truncated left singular matrix and V T4 as the 4 × N
truncated right singular matrix,

W4 = U4Σ4V
T
4 .

Matrix W4 is now the closest rank 4 approximation to noisy W . Denoting

Ŝ = U4Σ
1
2
4

M̂ = Σ
1
2
4 V

T
4 ,

we have a structure and motion factorization

W4 = M̂Ŝ

that correspond to (4.2).

Unfortunately this factorization is not the ideal, since for any 4 × 4 non-

singular matrix H, M ′ = M̂H and S′ = H−1Ŝ is also a possible solution as

M ′S′ = M̂HH−1Ŝ = W4.

Since the orthographic camera is an a�ne camera, this means the reconstruction

is only an a�ne reconstruction, i.e. reconstructed up to an a�ne transformation

from the desired metric reconstruction.

Fortunately for the orthographic case the calculation of the exact solution,

exact up to a similarity transformation from the original, is reasonably sim-

ple. Constraints on the metric motion matrix M can be used to determine the

rectifying homography H.

4.2.2 Exact solution

We require the rectifying homography H to upgrade the a�ne reconstruction

W4 = M̂Ŝ to the metric reconstruction W4 = MS =
(
M̂H

)(
H−1Ŝ

)
. We

denote the rectifying homography H as the concatenation of two blocks,

H = [HR|ht] .
1For more information consult [28]
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The �rst submatrix HR is a 4 × 3 matrix related to the rotational component

and the second block ht is a vector related to translation. Since

M = M̂H =
[
M̂HR|M̂ht

]
, (4.3)

we can impose separate constraints on the rotation and translation component

to solve for H.

Rotation constraints

From (4.2),

M =



ρ1T
1

ρ1T
2

...

ρFT1

ρFT2


with

[
ρfT1f

ρfT2

]
=

[
rfT1 tf1
rfT2 tf2

]
, for f = 1, . . . , F.

Since rotation is orthonormal,[
rfT1

rfT2

] [
rf1 rf2

]
=

[
1 0
0 1

]
for f = 1, . . . , F (4.4)

where rT1 , rT2 are the �rst and second row of rotation matrix R.

Combining (4.3) and (4.4) yields

m̂T
2j−1HRH

T
Rm̂2j−1 = 1 ∀j = 1, . . . , F

m̂T
2jHRH

T
Rm̂2j = 1 ∀j = 1, . . . , F

m̂T
2j−1HRH

T
Rm̂2j = 0 ∀j = 1, . . . , F

where m̂T
j is row j of matrix M . This over-constrained system can be solved

for entries of the 4× 4 matrix HRH
T
R .

To obtain HR from HRH
T
R we employ the SVD. Note that HRH

T
R has rank

3 since HR is 4× 3 and is symmetric. Therefore, given

HRH
T
R = U3Σ3V

T
3 ,

HR = U3Σ
1
2
3 .
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Translation constraints

Under the orthographic camera model, the projection of the object centroid

corresponds to the centroid of the projected object. Therefore,

M
(

1
N

∑N
i=1 Xi

)
= 1

N

∑N
i=1 wi,

i.e. MX̄ = w,

where wi is the i-th column of W4. Since the object coordinate system has an

arbitrary origin, we can choose

X̄ =
[
0T , 1

]T
which corresponds to centering the object around the object coordinate system

origin. It follows from (4.3) that

M̂ht =
[
M̂HR|M̂ht

] [ 0

1

]
= w

This is an over-constrained system from which we solve ht,

ht =
(
M̂T M̂

)−1

M̂Tw

where M̂+ =
(
M̂T M̂

)−1

M̂T is the pseudo-inverse of M̂ . This completes the

calculation of rectifying homography H and therefore metric reconstructed M

and S.

4.3 Perspective camera

Now we switch to the perspective camera. Recall our matrix factorization W =
MS, written component-wise as

xfi = P fXi, (4.5)

for i = 1, . . . , N and f = 1, . . . , F . The projection matrix P is now the per-

spective camera matrix as de�ned in (3.2). Even though the image projection

equation looks similar to the orthographic case, the Tomasi Kanade orthographic

factorization algorithm can not be applied directly to the perspective camera.

Since the perspective camera is a projective camera, this method is called pro-

jective matrix factorization.

Working in homogeneous coordinates, all coordinates are de�ned up to non-

zero scale factors. These scale factors are unknown but actually need to be taken
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Figure 4.2: If the camera matrix P = [B |p4] is normalized so that ‖b3‖ = 1 and

detB > 0, and x = λ [x, y, 1]T = PX, where X = [X, Y, Z, 1]T , then λ is the depth

of the 3D feature X from the camera center in the direction of the principal ray, b3,

of the camera.

into account when we place the multiple perspective projection equations in the

matrix factorization form of W = MS. The reason is that the scale factors

values are now dependent on both a 3D feature and a perspective projection

matrix, with all of the scale factors for the projected features in a single frame

dependent on the scaling of the same projection matrix and the scale factors for

the projection of a 3D feature across all of the frames dependent on the scaling

of a single 3D feature. Extracting these unknown scale factors and explicitly

writing them as λfi , the image feature vectors are now rede�ned with their

last coordinate equal to unity, xfi =
[
xfi , y

f
i , 1

]T
. The xfi and yfi values now

represent the actual measured image coordinates. We now have (4.5) in the

explicit form

P fXi = λfi

 xfi
yfi
1


= λfi x

f
i .

We now show that with a speci�c normalization these scale factors have a speci�c

meaning, they are the depths of the 3D features referred to as projective depths.

4.3.1 Depth of features

We examine the camera illustrated in Figure 4.2 with camera center C =[
C̃T , 1

]T
and camera matrix written in the form P = [B |p4], projecting a WCS

feature X = [X, Y, Z, 1]T =
[
X̃T , 1

]T
to image feature x = λ [x, y, 1]T = PX.

Then for ρT3 the 3rd row of P

λ = ρT3 X = ρT3 (X−C) ,
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since PC = 0 for the camera center. It now follows that

λ = ρT3 (X−C) = bT3
(
X̃− C̃

)
,

with bT3 the third row of B representing the principal ray direction. Therefore,

λ can be interpreted as the dot product between the principal ray direction and

the depth of the feature X from the camera center C. If the camera matrix is

normalized so that detB > 0 and ‖b3‖ = 1, b3 is a unit vector pointing in the

positive axial direction, then λ is the actual projective depth of feature X from

camera center C in the positive principal ray direction.

For the sake of completeness, we present the general case. For any homoge-

neous WCS feature X = [X, Y, Z, W ]T = W
[
X
W , Y

W , Z
W , 1

]T
= W

[
X̃T , 1

]T
,2

and for a camera matrix P that is not normalized, the projective depths are

de�ned as

λ = ρT3 (X−C) = WbT3
(
X̃− C̃

)
.

The actual depth of a general X in front of the principal plane now becomes

depth (X;P ) =
sign (detB)λ
W
∥∥bT3 ∥∥ . (4.6)

4.3.2 Projective factorization

With the camera matrix P = [B |p4] normalized so that
∥∥bT3 ∥∥ = 1 and detB >

0, x = [x, y, 1]T and X = [X, Y, Z, 1]T the new measurement matrix W is of

size 3F ×N and has the form,

W =


λ1

1x
1
1 λ1

2x
1
2 · · · λ1

Nx1
N

λ2
1x

2
1 λ2

2x
2
2 · · · λ2

Nx2
N

...
...

. . .
...

λF1 xF1 λF2 xF2 · · · λFNxFN


= MS,

(4.7)

with the the unknown projective depths λfi the actual depths from camera center

C in the positive direction of the principal ray. The matrices resulting from the

2Note that here W is the last component of WCS feature X = [X, Y, Z, W ]T and not the
measurement matrix.
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Figure 4.3: Motivation for the projective depth equation.

factorization are still mostly similar to the orthographic case,

M =


P 1

P 2

...

PF


S =

[
X1 X2 · · · XN

]
with motion matrix M now 3F × 4 and structure matrix S still 4×N .

It is clear from (4.7) that before factorization is possible these unknown

projective depths need to be determined.

4.3.3 Projective depth estimation

To recover the projective depths we give an intuitive argument. Visualize all

image features as 3D vectors embedded in Euclidean space, e.g. x1
i and x2

i in

Figure 4.3. In Figure 4.3 we have two cameras C1 and C2 with fundamental

matrix F12, both observing Euclidean WCS feature Xi.

The fundamental matrix F is a rank-2, 3 × 3 matrix which relates corre-

sponding points in stereo images. The line l = Fxf describes the epipolar line

on which the corresponding point xg must lie in the other image. Therefore, for

all pairs of points it holds that xg T Fxf = 0.
Xi is projected in image 1 to a feature represented by the 3D vector x1

i in the

coordinate system centered at C1, and in image 2 as the feature with 3D vector

x2
i in a coordinate system centered at C2. The baseline vector e12 = C̃1 − C̃2

is also displayed, along with its two image intersecting epipoles (intersection

of the baseline with the image plane) e1 and e2 and the epipolar line in each

image, l1 and l2. With the correct projective depths, λ1
i and λ2

i , Xi = λ1
ix

1
i
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and Xi = λ2
ix

2
i (Xi expressed in the appropriate coordinate system). λ1

ix
1
i and

λ2
ix

2
i along with e12 now form a closed triangle on their projective plane, with

Xi the triangle apex.

The vectors e12 × x1
i and e12 × x2

i are normal to the epipolar plane and,

with e12 and λ1
ix

1
i scaled as they are, the area of the epipolar plane triangle is

given by 1
2

∣∣e12 ×
(
λ1
ix

1
i

)∣∣. On the other hand, it follows from epipolar geometry

that the image 1 epipolar line l1, the projection of 3-space line F12 T
(
λ2
ix

2
i

)
,

is the projection of the epipolar plane in image 1. Since any feature
[
x1
i, y

1
i

]T
on the epipolar line in image 1 is normal to the image 1 epipolar line l1 (i.e.[
x1
i , y

1
2

]
l1 = 0), and the 3D vectors representing all the features on the epipolar

line lie on the projective plane - the vector F12 T
(
λ2
ix

2
i

)
is also normal to the

epipolar plane.

Thus F12 T
(
λ2
ix

2
i

)
and e12 ×

(
λ1
ix

2
i

)
are proportional, since they are in

the same direction. Then for the correct scaling of F12, they also have the

same size, and the area of the triangle is given by both 1
2

∣∣e12 ×
(
λ1
ix

1
i

)∣∣ and
1
2

∣∣∣F12 T
(
λ2
ix

2
i

)∣∣∣. The relation
(
F12 T x2

i

)
λ2
i =

(
e12 × x1

i

)
λ1
i

follows, which can be rewritten for the general case of frame f and g,(
Ffg T xgi

)
λgi =

(
efg × xfi

)
λfi . (4.8)

Note that in projective space the vectors in Figure 4.3 have meaning and that

(4.8) holds.

From (4.8) two observations can be concluded:

� Equality up to scale: The epipolar line in image f from Ffg T xgi is the

line through the feature xfi and the epipole ef in image f . This is just

the standard epipolar constraint.

� Equality of factors: if the correct projective depths are used along with

the correct scaling of Ffg and efg, the two terms are exactly equal (not

just up to scale). In this case the equation allows us to solve the projective

depths in projective space using fundamental matrices and epipoles.

Solving equation (4.8) in terms of λgi ,

λgi =

∥∥∥efg × xfi
∥∥∥2

(
efg × xfi

)T (
Ffg T xgi

)λfi . (4.9)

This equation can be recursively chained together to give estimates for the
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complete set of depths for feature i for all of the required frames, requiring a

known initial value, e.g. a known λ1
i .

The strategy is then to simulate a chain of F − 1 stereo cameras for all

of the F frames. This allows for the estimation of the minimum number of

fundamental matrices and epipoles to create the necessary set of homogeneous

equations to solve all the projective depths. The fundamental matrices are cal-

culated from corresponding feature pairs in a stereo view. RANSAC estimation

is used to calculate the fundamental matrices in this work. The epipoles are

then calculated from its property as the nullspace of a fundamental matrix. The

stereo camera chain setup can be either sequential or parallel. With a sequential

setup we sequentially pair frames starting from the �rst two and ending with

the last two so that we have the set of unique fundamental matrices
{
F ij
}
for

i = 1, . . . , F − 1 and j = 2, . . . , F . With a parallel setup, a single reference

frame is chosen and each each frame is paired with the reference frame (except

the reference frame with itself) e.g. with the �rst frame the reference frame

we have the set of fundamental matrices
{
F1j

}
for j = 2, . . . , F . Solving the

chains of equation (4.9) for all N features in each frame we have a complete

set of projective depths up to an overall scale factor. We still require a starting

projective depth for the chain though - here we choose an arbitrary initial value

of λ1
i = 1.
There is however one �aw in this argument. For an exact equality in our

equations we require a correct scaling of fundamental matrix F ij and efg and

since we have no knowledge of the camera matrices or the distance between the

camera centers, they can be recovered only up to an unknown scale factor. So

we don't know the scale factors in equation (4.8) and (4.9) after all!

Fortunately this does not turn out to be a problem. When our minimal set

of N (F − 1) non-redundant depth recovery equations are used, the overall scale

factor for each image absorbs the relative scale of the fundamental matrix F
and epipole e used for that image. Note that the arbitrary overall scale factor

also absorbs our arbitrary initial value for λ1
i = 1.

4.3.4 Structure and motion from factorization

Once we have obtained the correctly scaled projective depths, the measurement

matrix W of equation (4.7) should in theory again have a maximum rank of

4. The SVD factorization, similarly to the Tomasi and Kanade orthographic

factorization method, can now be applied, W = UΣV T . The best rank-4 ap-

proximated projective measurement matrix in the Frobenius norm is given by

W4 = U4Σ4V
T
4
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with Σ4 the 4 × 4 diagonal matrix of the four biggest singular values, U4 the

3F ×4 truncated left singular matrix and V T4 the 4×N truncated right singular

matrix. W4 is now factorised,

W4 = M̂Ŝ with

M̂ = U4Σ
1
2
4

Ŝ = Σ
1
2
4 V

T
4 ,

(4.10)

Unfortunately, just as in the orthographic case the factorization is not unique.

For any 4× 4 invertible matrix H,

M ′S′ =
(
M̂H

)(
H−1Ŝ

)
= M̂Ŝ = W4,

is also a possible solution. Unlike orthographic projection case, the perspec-

tive camera is a projective camera and the reconstruction is now only up to

projective transformation (not a�ne). This time the solution is not as simple

as merely applying the motion matrix M constraints. Determining the rectify-

ing homography H for the projective to the metric reconstruction is a complex

process thoroughly discussed in the next chapter.

4.4 Matrix factorization shortcomings

The Tomasi Kanade matrix factorization has a number of shortcomings, mostly

as a result of the use of a single measurement matrix for all the image features

in all the frames:

� The set of image features that are reconstructed must be visible in all the

frames, i.e. it can not handle occlusion. This can be partially overcome

by splitting the image sequence into subsequences.

� Additional images or image features cannot be added recursively.

� The projective factorization method can only reconstruct up to an arbi-

trary projective transformation.

4.5 Algorithm outline

The matrix factorization method steps are summarized in Algorithm 4.1. The

complexity of the method is dominated by the SVD computation which is

O
(

(m+ n)3
)
.
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Algorithm 4.1 Projective matrix factorization algorithm
Objective

Given a set of N features over F perspective images
{

xfi
}
, compute a projective

reconstruction
{
P f , Xi

}
of the image features.

Algorithm

1: Simulate F − 1 stereo cameras and estimate the fundamental matrices and
epipoles.

2: Determine the scale factors λfi using equation (4.9).
3: Build the rescaled measurement matrix W .
4: Compute the SVD of the measurement matrix W .
5: From the SVD, compute projective shape and motion.



Chapter 5

Auto-calibration method for

metric recti�cation

Auto-calibration or self-calibration is the process of determining internal camera

parameters directly from multiple uncalibrated images, see e.g. [13]. The idea

of auto-calibrating a camera originated with Faugeras, Luong and Maybank

[6] and avoids the onerous task of calibrating cameras using special calibration

objects. In our application it allows us to upgrade, or rectify, our projective

factorization, e.g. obtained in chapter 4, to the desired metric factorization

that is within a similarity transformation of the original scene.

It was shown in earlier chapters that the identi�cation of the absolute conic

allows for an upgrade to metric structure since it is the only conic invariant to

similarity transformations of the metric stratum. It was also shown that the

absolute conic projects to image of the absolute conic in each image. Based on

this, the root of the auto-calibration algorithm is the fact that a camera moves

rigidly, i.e. similarity transformations, and so the absolute conic is �xed under

camera motion when it is projecting in each image. Conversely, if a single conic

can be determined from the intersection of cones back-projecting from a conic

in each image, this conic is the absolute conic and the rectifying homography

can be inferred.

We proceed to �rst state the auto-calibration problem and then solve it with

an algorithm based on the absolute dual quadric.

5.1 Problem statement

We have a projective reconstruction
{
P f , Xi

}
for a video sequence of f =

1, . . . , F frames and i = 1, . . . , N features. We wish to determine the rectifying

46
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homography H such that
{
P fH, H−1Xi

}
=
{
P fM , XMi

}
is the metric recon-

struction. It will be shown that the solution requires placing known constraints,

for f = 1 . . . F , on camera calibration matrix Kf where P fM = Kf
[
Rf | tf

]
=

P fH. These constraints are related to constraints on the inverse of the pro-

jection of the absolute conic in an image, the dual image of the absolute conic

(DIAC) ω∗∞(and image of the absolute conic (IAC) ωf∞). This leads to equations

on the known projective cameras P f that solve the unknown homography H.

We begin by presenting the required form of the rectifying homography. This

is followed by deriving the auto-calibration equations necessary for solving the

homography.

The rectifying homography

The perspective projection matrices P f , xfi = P fXi, are related to metric P fM ,

where xfi = P fMXMi with

P fM = P fH, for f = 1 . . . F, (5.1)

where H is an unknown 4× 4 homography of 3-space.

Since we desire a metric reconstruction, we are not concerned with the ab-

solute rotation, translation or scale of the reconstruction. The OCS is chosen

to coincide with the �rst camera, so that R1 = I and t1 = 0. Then Rf and

tf determine the metric transformation between the f -th camera and the �rst,

with P 1
M = K1 [I |0] =

[
K1 |0

]
. Similarly, for the projective reconstruction, we

choose the canonical camera for the �rst view, so that P 1 = [I |0].
H is a projective transformation, H : P3 → P3, with the general form (see

(2.10)),

H =

[
A b

vT k

]
.

From (5.1)
P 1
M =

[
K1 |0

]
= [I |0]H

= [I |0]

[
A b

vT k

]
= [A |b] ,

which implies that A = K1 and b = 0. In addition, since H is non-singular, k

must be non-zero, so we assume k = 1 (this �xes the scale of the reconstruction).
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This shows that H is of the form

H =

[
K1 0

vT 1

]
.

The plane at in�nity Π∞ has the canonical metric form of e4 = [0, 0, 0, 1]T .
Its projective representation is given by (see (2.4)),

Π∞ = H−Te4 =

[
K1−T − K1−T v

0T 1

]
0
0
0
1


=

[
− K1−T v

1

]
.

(5.2)

Suppose we write Π∞ =
[
πT , 1

]T
, then, according to (5.2), π = − K1−T v

and similarly vT = −πTK1.

In summary,

H =

[
K1 0

−πTK1 1

]
, (5.3)

where K1 is the upper-triangular camera calibration matrix of the �rst camera

and the plane at in�nity in the projective reconstruction is given by Π∞ =[
πT , 1

]T
.

It follows from (5.3) that to transform a projective reconstruction to metric

requires 8 parameters (8 degrees of freedom), 3 entries for π and 5 entries for K.

This agrees with the requirements of �nding metric structure - specifying the

plane at in�nity and the absolute conic, which have 3 and 5 degrees of freedom

respectively.

The basic auto-calibration equations

We denote the known projective reconstruction cameras with P f =
[
Af |bf

]
.

From (5.1) and (5.3) it follows that

P fM = P fH

=
[
Af | bf

] [ K1 0

−πTK1 1

]
=

[
AfK1 − bfπTK1 | bf

]
.
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If we now write P fM = Kf
[
Rf | tf

]
=
[
KfRf |Kftf

]
, we obtain,

KfRf =
(
Af − bfπT

)
K1.

We can eliminate Rf by multiplication with
(
KfRf

)T
from the right,

Kf Kf T = KfRf Rf
T
Kf T

=
(
Af − bfπT

)
K1 K1 T

(
Af − bfπT

)T
.

In (3.8) it was noted that ω∗f∞ = Kf Kf T , where ω∗f∞ is the DIAC (dual im-

age of the absolute conic) in frame f . This substitution gives the basic equations

for auto-calibration,

ω∗f∞ =
(
Af − bfπT

)
ω∗1∞

(
Af − bfπT

)
ωf∞ =

(
Af − bfπT

)−1
ω1
∞
(
Af − bfπT

)−1
,

(5.4)

remembering that ωf∞ = ω∗f∞
−1 = Kf −T Kf −1

is the IAC (image of the

absolute conic) in frame f . These equations relate the unknown entries of ω∗f∞
and ωf∞, for f = 1 . . . F , and parameters of π with the parts Af and bf of the

known projective cameras.

The art of auto-calibration is to exploit the constraints on Kf , such that one

of the entries in ω∗f∞ or ωf∞ is zero. This, along with (5.4), generates equations

on the images of the absolute conic in di�erent images. All auto-calibration

methods are variations on solving these equations. A popular approach to solv-

ing these equations is based on the absolute dual quadric, examined in the next

section.

5.2 Auto-calibration using the absolute dual

quadric

A method based on the absolute dual quadric was �rst proposed by Heyden

and Aström [14], although they did not give the geometric meaning of their

constraint. Previous methods focused explicitly on the plane at in�nity and

the absolute conic. Triggs [37] removed scale factors as additional unknowns

by writing P 1 in canonical form and suggested nonlinear solution methods.

Pollefeys, Koch and van Gool [25] extended this method by showing that it

could be applied to di�erent cameras (cameras with di�erent intrinsic calibration

parameters).

The absolute dual quadric Q∗∞ was discussed in Section (2.6.3) and is a

degenerate dual quadric (a cone) represented by a 4×4 symmetric, singular and
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homogeneous matrix of rank 3. It is the dual entity of the traditional absolute

conic that is simpler to use. Since the absolute dual quadric encodes both the

absolute conic Ω∞ and plane at in�nity Π∞, required for metric geometry, it

allows us to go directly from a projective to a metric reconstruction. A more

strati�ed approach is possible with �rst, a projective to a�ne recti�cation based

on �nding Π∞, followed by an a�ne to metric recti�cation based on �nding Ω∞.
The drawback of this strati�ed approach is that it turns out to be an onerous

task to automatically �nd Π∞.

It is clear from (3.5) that Q∗∞ projects to the DIAC ω∗∞. If we further

consider (3.8),

Kf Kf T = ω∗f∞ = P fQ∗∞ P f
T
. (5.5)

The idea of camera calibration using Q∗∞ is to transfer intrinsic calibration

constraints from ω∗f∞ onto Q∗∞ via the known projective reconstruction cameras

P f . In this manner the matrix representing Q∗∞ in the projective reconstruction

is determined from known constraints on Kf . We then use (5.5) with the known

projection matrices to solve Kf for all f = 1, . . . , F .
Once Q∗∞ is determined, the rectifying homography H, which we ultimately

seek, can also be found. It is clear from (2.9) that the absolute dual quadric in

metric form,

Ĩ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
transforms with H to a projective reconstruction with

Q∗∞ = HĨHT . (5.6)

Note that this implies that the homography H is found through a matrix de-

composition of absolute dual quadric. Thus the auto-calibration is based on

specifying constraints on Kf to determine Q∗∞, and then from Q∗∞ determine

H.

For the sake of completeness, note that if we multiply out (5.6) for H given

by (5.3), then

Q∗∞ = HT ĨH =

[
K1 K1 T −K1 K1 T π

−πTK1 K1 T πTK1 K1 T π

]
=

[
ω∗1∞ −ω∗1∞π

−πTω∗1∞ πTω∗1∞π

]
.

(5.7)

This clearly shows how Q∗∞ encodes the absolute conic and plane at in�nity.

When combining (5.7) with (5.5) and denoting P f =
[
Af |bf

]
we again obtain
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Figure 5.1: The absolute conic Ω∞ projecting as IAC ω∞ in images. Each projection

is the result of a cone, with the camera center C as cone vertex, intersecting an image

plane.

the auto-calibration equation of (5.4),

ω∗f∞ = P fQ∗∞ P f
T

=
(
Af − bfπT

)
ω∗1∞

(
Af − bfπT

)
.

Figure 5.1 illustrates the concept of the absolute conic and its projection in the

images.

5.2.1 Constraints on the elements of Q∗∞

The objective is to estimate Q∗∞ in the projective reconstruction from con-

straints on ω∗f∞ (or ωf∞) as given in (5.5). There are two ways to acquire these

element constraints:

� Place constraints on the camera calibration parameters.

� Assume that the cameras have a constant calibration, i.e. they all have

the same K.

We next discuss the two cases separately.
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Camera calibration constraints

Since ω∗∞ = KKT and ω∞ = (ω∗∞)−1 = K−TK−1, for the camera calibration

matrix given by (3.3),

ω∗∞ =

 α2 + s2 + x2
0 srα+ x0y0 x0

srα+ x0y0 r2α2 + y2
0 y0

x0 y0 1

 (5.8)

and

ω∞ =
1

r2α4

 r2α2 −srα −x0r
2α2 + y0srα

−srα α2 + y2
0 rαsx0 − α2y0 − s2y0

−x0r
2α2 + y0srα rαsx0 − α2y0 − s2y0 r2α4 + α2y2

0 + (rαx0 − sy0)2

 .
These matrices are simpli�ed signi�cantly if we assume zero skew , i.e. s = 0,

ω∗∞ =

 α2 + x2
0 x0y0 x0

x0y0 r2α2 + y2
0 y0

x0 y0 1


and

ω∞ =
1

r2α2

 r2 0 −r2x0

0 1 −y0

−r2x0 −y0 r2α2 + y2
0 + r2x2

0

 . (5.9)

We can now clearly show how constraints on K imply constraints on ω∗∞ .

This leads to equations for the elements of Q∗∞. As an example, assume the

principal point is known. The image coordinate system can then be changed

so that the principal point coincides with the origin, i.e. x0 = 0, y0 = 0. The

DIAC in (5.8) now becomes

ω∗∞ =

 α2 + s2 srα 0
srα r2α2 0
0 0 1

 . (5.10)

The zero entries in (5.10) generate linear equations on Q∗∞,(
P fQ∗∞ P f

T
)

13
= 0 and(

P fQ∗∞ P f
T
)

23
= 0.

There is also the very useful case for ω∞, in (5.9), where zero skew alone gen-

erates a linear equation.

The possible equations that arise from constraints on ω∗∞ is summarized in
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Condition Constraint Type # constraints

zero skew

ω∗∞12ω∗∞33 = ω∗∞13ω∗∞23 quadratic F

p.p. at origin

ω∞13 = ω∞23 = 0 linear 2F

zero skew,

p.p. at origin ω∗∞12 = 0 linear F

�xed aspect ratio,

zero skew,

p.p. at origin

ω
∗f
∞11

ω
∗f
∞22

=
ω
∗g
∞11

ω
∗g
∞22

quadratic F-1

known aspect ratio,

zero skew,

p.p. at origin

r2ω∗∞11 = ω∗∞22 linear F

Table 5.1: Auto-calibration constraints derived from the DIAC. (p.p. is the principal

point)

Condition Constraint Type # constraints

zero skew
ω∞12 = 0 linear F

p.p. at origin
ω∞13 = ω∞23 = 0 linear 2F

�xed aspect ratio,

zero skew
ω
f
∞11

ω
f
∞22

=
ω
g
∞11

ω
g
∞22

quadratic F-1

known aspect ratio,

zero skew
ω∞11 = r2ω∞22 linear F

Table 5.2: Auto-calibration constraints derived from the IAC. (p.p. is the principal

point)

Table 5.1, and on ω∞ in Table 5.2.

Constant camera constraint

If the cameras have identical internal parameters, i.e. Kf = Kg for all 1 ≤
f, g ≤ F , then ω∗f∞ = ω∗g∞ which expands to P fQ∗∞ P f

T = P gQ∗∞ P g T . How-

ever since these are homogeneous quantities, the equality only holds up to a

non-zero scale. This still generates an extra �ve quadratic equations on the

parameters of Q∗∞,

ω∗f∞11

ω∗g∞11

=
ω∗f∞12

ω∗g∞12

=
ω∗f∞13

ω∗g∞13

=
ω∗f∞23

ω∗g∞23

=
ω∗f∞33

ω∗g∞33

. (5.11)
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5.2.2 Required properties for Q∗∞

In an arbitrary projective frame, the determined Q∗∞ has to satisfy a number of

properties in order to be valid. It must be singular, positive semi-de�nite and

have Π∞ as its null-vector.

Singularity

The absolute dual quadric is a degenerate quadric with a rank of 3. The singu-

larity property can be enforced by placing the nonlinear constraint, detQ∗∞ = 0.

Π∞ null-vector

From (2.15), Π∞ is the null-vector of Q∗∞. Given the parametrization Π∞ =[
πT , 1

]T
and

Q∗∞ =

[
ω∗1∞ −ω∗1∞π

−πTω∗1∞ πTω∗1∞π

]
,

this property can be enforced by placing the constraint

Q∗∞Π∞ = 0.

Positive semi-de�niteness

The absolute dual quadric is positive semi-de�nite (or negative semi-de�nite if

the sign is reversed), i.e. Q∗∞ is Hermitian (Q∗∞ = Q∗∞
H) and all its eigenvalues

are non-negative. This is obvious for the canonical form and is easily extended

to an arbitrary frame. This condition is related to ω∗∞ = PQ∗∞P
T that should

be positive de�nite. If ω∗∞ is not positive de�nite, it cannot be decomposed

with Cholesky factorization to compute the camera calibration matrix. This

condition can be enforced by placing the constraint,

for all eigenvalues λi, i = 1, 2, 3, of Q∗∞, λi ≥ 0.

5.2.3 Cheiral inequalities for Q∗∞

According to (4.6) the depth of a 3D feature X = [X, Y, Z, W ]T in front of the

image plane of camera P = [B |p4], where it was projected as x = [x, y, w]T ,
is given by

depth (X;P ) =
sign (detB)w
W
∥∥bT3 ∥∥ .

A feature X lies in front of a camera P if, and only if, depth (X;P ) > 0. If we
are only interested in if the feature is in front or behind the image plane, it is
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only necessary to consider

sign (depth (X;P )) = wW detB. (5.12)

The sign of depth (X;P ) is referred to as the cheirality of feature X, i.e. it

indicates whether a feature is in front or behind a camera.

In the metric frame, all valid 3D features projected to the camera image

are in front of the camera and therefore have a positive cheirality. Our goal

to transfer the positive cheiral requirements for cameras P fH and 3D features

H−1Xi, mapped by the the rectifying planar homography H, to constraints on

the parameters of Q∗∞. These constraints are called the cheiral inequalities.

We now derive an expression, in terms ofH, for the sign
(
depth

(
H−1X;PH

))
equation, where {P, X} is a projective reconstruction and H any projective pla-

nar homography.

sign
(
depth

(
H−1X;PH

))
in terms of any homography H

We de�ne C = [c1, c2, c3, c4]T to be the vector where

ci = (−1)i det P̂ (i) (5.13)

and where P̂ (i) is the matrix obtained by removing the i-th column from P , e.g.

P̂ (4) = B. We also denote

Pv =

[
P

vT

]
,

the 4×4 matrix made up of 3×4 matrix P augmented with a �nal row vT . The

co-factor expansion of the determinant along the last row gives detPv = vTC,

for C de�ned as in (5.13) and vT any vector. If we were to choose v = ρi, the

i-th row of P , then

ρTi C = detPρi = 0.

Since this is true for all i, it follows PC = 0, which means C is the null-vector

of P and therefore its camera center.

We can now reformulate (5.12) as

sign (depth (X;P )) = w
(
eT4 X

) (
eT4 C

)
, (5.14)

where e4 = [0, 0, 0, 1]T . Note that e4 is the vector representing the metric form

of the plane at in�nity and that X lies on the plane at in�nity if, and only if,

eT4 X = 0.
Consider any projective planar transformation H so that P ′X′ = PHH−1X.
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What happens now to C? We see that

det ((PH)HTv) = vTHCPH = detPv detH = vTC detH,

where vT is again any 4 − vector. Since the last expression is true for all v, it

follows that HCPH = C detH, or

CPH = H−1C detH. (5.15)

Now apply (5.15) to (5.14):

sign
(
depth

(
H−1X;PH

))
= w

(
eT4 H

−1X
) (

eT4 CPH

)
= w

(
eT4 H

−1X
) (

eT4 H
−1C

)
detH.

One may interpret e4 as the plane at in�nity Π∞ in the projective frame mapped

to in�nity, Π∞ = eT4 H
−1 with eT4 X′ = ΠT

∞HH
−1X. Finally denoting δ =

sign (detH), we obtain

sign
(
depth

(
H−1X;PH

))
= w

(
ΠT
∞X

) (
ΠT
∞C

)
δ.

Cheiral inequality constraints

We now know sign
(
depth

(
H−1Xi;P fH

))
= wfi

(
ΠT
∞Xi

) (
ΠT
∞Cf

)
δ, where{

P f , Xi

}
is a projective reconstruction and H any projective planar homogra-

phy. Now our goal is to �nd the constraints on our metric rectifying homography

H that ensures that the depth
(
H−1Xi;P fH

)
> 0 for all f and i.

We know that wfi > 0 for image features xfi =
[
xfi , y

f
i , w

f
i

]T
and that we

chose Π∞ =
[
πT , 1

]T
with π the same as in (5.3) and (5.7). The sign of the

depth equation then becomes

sign
(
depth

(
HXi, P

fH−1
))

=

[ π
1

]T
Xi

[ π
1

]T
Cf

 δ > 0 (5.16)

that must hold for all pairs (i, j).
Since we are free to multiply

[
πT , 1

]T
by −1 and have either δ = −1 or

δ = 1, the following inequalities follow directly from (5.16):

XT
i

[
π

1

]
> 0 for all i

δ Cf T

[
π

1

]
> 0 for all f.

(5.17)



Chapter 5. Auto-calibration method for metric recti�cation 57

These inequalities are called the cheiral inequalities and were �rst applied by

Hartley to 3D reconstruction and camera calibration in [10] and [11]. A valid

rectifying homography H then have to satisfy these inequalities for all features

i and cameras f with either δ = 1 or δ = −1. These equations are useful since
π is contained in the parametrization of Q∗∞ and therefore these constraints can

be applied without even calculating H. To enforce this condition, the cheiral

inequalities can, and should, be added as an extra constraint to the constrained

numerical optimization of Q∗∞.

5.2.4 Counting arguments

The number of constraints required to determine a full metric reconstruction

in our problem comes down to the number of constraints required to solve the

absolute dual quadric. The absolute dual quadric has 8 essential parameters,

taking into account that it is represented by a symmetric 4 × 4 matrix that is

homogeneous and singular. This, as expected, coincides with the number of

parameters for the rectifying homography, 5 for the absolute conic and 3 for the

plane at in�nity.

Consider F views and suppose k of the internal calibration parameters are

known in all the views and l of the internal calibration parameters are �xed

over all the views although unknown. Then k+ l ≤ 5, where 5 is the maximum

number of calibration parameters in the camera calibration matrix K, where

KKT = ω∗∞ = PQ∗∞P
T . A �xed and known calibration parameter (correctly

chosen according to Table 5.1 and 5.2) provides one constraint per view via the

condition ω∗f∞ = PfQ
∗
∞P

T
f , for a total of Fk constraints. A �xed but unknown

parameter (again chose correctly according to Table 5.1 and 5.2) provides one

fewer constraint, since just the value of the unknown parameter is missing. Thus

l �xed parameters provide a total of l (F − 1) constraints. The number of views
and constraints requirement for calibration is then

Fk + (F − 1) l ≥ 8. (5.18)

Table 5.2.4 gives a few examples of constraint sets and the minimum number

of views required. Note that it is possible to solve Q∗∞ for constant cameras

with unknown calibration using a minimum of 3 images. On the other hand,

the variable camera can be solved using a minimum of 9 images with at least

one �xed calibration parameter, or 8 images for one known parameter.

It is important to note that some known or �xed parameters only provide

a constraint if another parameter is known, use Table 5.1 and 5.2 as a guide.

Further note that using the minimum number of images is not recommended.
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Constraints Known Fixed min # images
zero skew

s 8

�xed aspect ratio,
zero skew

s r 5

known aspect ratio,
zero skew

s, r 4

only focal length
unknown

s, r, x0, y0 2

standard auto-calibration
problem

s, r, x0, y0, α 3

Table 5.3: Examples of minimum views required for auto-calibration.

5.2.5 Methods for solving Q∗∞

There are basically two approaches to solving Q∗∞: the linear approach and the

nonlinear approach. In our experience the nonlinear approach is, by far, more

robust.

linear-approach

The linear approach is fairly straightforward. Since Q∗∞ is a 4 × 4 symmetric

matrix, it has 10 unknown elements which are written as a vector x. The linear

constraints on Q∗∞ are assembled as rows in a matrix so that a matrix equation

of the form Ax = 0 follows. The solution to x is then the null space of A,

x ∈ null (A) . This is then typically solved by obtaining a least squares solution

via the SVD.

The singularity condition of Q∗∞ is not implicitly enforced here but can be

obtained postiori by setting the smallest (4th) singular value to zero. The main

di�culty of this approach is the di�culty in enforcing that Q∗∞ is positive semi-

de�nite. It is not clear how to enforce this constraint.

nonlinear approach

The recommended method is the nonlinear optimization approach. For the

known or �xed elements of Kf Kf T with all the projective cameras P f known,

we iteratively minimize the sum

e =
F∑
f=1

∥∥∥Kf Kf T − P fQ∗∞ P f
T
∥∥∥2

(5.19)

to solve unknown absolute dual quadric Q∗∞, where ‖M‖ is the Frobenius norm
of a matrix M , and Kf Kf T and P fQ∗∞ P f

T
are normalized to have unit

Frobenius norm. The motivation behind the unit Frobenius normalization is



Chapter 5. Auto-calibration method for metric recti�cation 59

to eliminate the unknown scale factors. The sum (5.19) will now be carefully

explained.

In the sum (5.19) not all matrix elements are necessarily included. The

one extreme is if all the Kf are the same, i.e. all the cameras have the same

calibration, then all matrix elements are included since

ω∗1∞ = K1 K1 T = Kf Kf T

and Q∗∞ =

[
ω∗1∞ −ω∗1∞π

−πTω∗1∞ πTω∗1∞π

]
.

On the other hand we have the extreme where none of the calibration parameters

for Kf and therefore Kf Kf T is known, or �xed. In this case none of the

elements of Kf Kf T can be included in (5.19) and Q∗∞ is unsolvable. For the

rest, suppose some calibration parameter is known. Tables 5.1 gave a summary

of the known calibration parameters that lead to known entries in Kf Kf T and

only those matrix entries will be included in (5.19).

Since the unknown elements of Kf Kf T are not included in the sum (5.19)

and the �xed entries of Kf are included in the parameters of K1, there are 8

unknown parameters of Q∗∞ to be estimated, 5 for K1 and 3 for Π∞ :

� α - The focal length in frame 1 in terms of the image x-direction pixel

dimension with an initialization value of 1.

� r - The 1st frame pixel aspect ratio with an initialization value of 1.

� s - The 1st frame skew with an initialization value of 0.

� (x0, y0) - The camera principal point in frame 1 with an initialization

value of (0, 0)

� π - The 3-vector from Π∞ =
[
πT , 1

]T
with an initialization value of

[0, 0, 0]T

Then to construct Q∗∞ for the sum (5.19):

K1 =

 α s x0

rα y0

1

 ,
ω∗1∞ = K1 K1 T and Q∗∞ =

[
ω∗1∞ −ω∗1∞π

−πTω∗1∞ πTω∗1∞π

]
,

according to the parametrization in (5.7). The given initialization corresponds

to ω∗1∞ = I and Q∗∞ = Ĩ, i.e. their canonical forms, see [37].



Chapter 5. Auto-calibration method for metric recti�cation 60

Note that if a known or �xed calibration parameter does not deliver a known

entry in the DIAC ω∗∞ = Kf Kf T , it could possibly deliver a known entry in the

IAC ω∞ = Kf −T Kf −1
. Consult Table 5.2 for a summary of the calibration

parameters that deliver known entries in the IAC. The alternative sum of

e′ =
F∑
f=1

∥∥∥∥Kf −T Kf −1 −
(
P fQ∗∞ P f

T
)−1

∥∥∥∥2

is then minimized (or a combination of both sums). An example is the often

used assumption of zero skew, s = 0, that gives a zero entry in Kf −T Kf −1
as

seen in 5.9. The zero skew assumption is especially useful when no calibration

parameters are known.

The minimization problem is most e�ectively solved using a constrained

optimization procedure. All known constraints on Q∗∞ should be added as

optimization constraints. This also helps to limit critical motions that will

be discussed later. These constraints include:

� known and �xed calibration parameters

� highly nonlinear singularity, detQ∗∞ = 0

� highly nonlinear positive semi-de�niteness, λi ≥ 0 for λi, i = 1, 2, 3, an
eigenvalue of Q∗∞

� null-vector constraint, Q∗∞

[
π

1

]
= 0

� the cheiral inequalities, XT
i

[
π

1

]
> 0 and δ Cf T

[
π

1

]
> 0 for all i

and f

All the conditions of Q∗∞ are implicitly met in this approach, since they are

added as constraints to the constrained optimization of the cost function.

In this work the optimization is implemented with the COBYLA (Con-

strained Optimization BY Linear Approximations) algorithm [26]. The con-

straints are all then rewritten so that they are added as a sequence of functions

that all must be >= 0 at each optimization iteration.

5.2.6 Camera calibration

Once Q∗∞ is determined, ω∗f is calculated using (5.5) for all frames f = 1, . . . , F .
Since Kf Kf T = ω∗f∞ , the upper triangular camera calibration matrix Kf for

each frame f is determined through a simple Cholesky factorization. This com-

pletes the auto-calibration part of the algorithm.
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Algorithm 5.1 Metric recti�cation using auto-calibration based on Q∗∞.
Objective

Given a projective reconstruction
{
P f , Xi

}
from a set of matched features Xi

across a set of views with constraints on the camera calibration matrices Kf ,
compute a metric reconstruction of the features and cameras.

Algorithm

1: Use ω∗f∞ = P fQ∗∞ P f
T
along with constraints on the elements of ω∗f∞ from

Kf , constraints derived from properties of Q∗∞ and constraints supplied by
the required properties of Q∗∞ to estimate Q∗∞.

2: Decompose Q∗∞ as HĨH−1 with assistance from eigenvalue decomposition,
where Ĩ is the matrix diag (1, 1, 1, 0).

3: Apply H−1 to the features and H to the projection matrices to acquire a
metric reconstruction.

5.3 Extracting the rectifying homography

Given an already determined Q∗∞ in a speci�c projective frame, we now wish to

determine the rectifying homography H. It was shown in (5.6) that the absolute

dual quadric has the decomposition

Q∗∞ = HT ĨH.

Extracting H is therefore the simple matter of decomposing Q∗∞.

This decomposition is easily achieved by either parametrising Q∗∞ according

to (5.7) and constructing H according to (5.3), or with the eigenvalue decom-

position of Q∗∞ = EΛE−1. Then

H = E Λ′
1
2

with Λ′ the matrix Λ with its 0 eigenvalue replaced by 1. Note that H is

the rectifying homography for cameras, Pm = PH, and H−1 the rectifying

homography for features, XM = H−1X.

5.4 Algorithm outline

The steps in the auto-calibration algorithm based on the absolute dual

quadric is summarized in Algorithm 5.1. We now have a method, summa-

rized in Algorithm 5.2, to reconstruct from features in perspective images the

3D structure and motion of a single rigid object up to a similarity.
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Algorithm 5.2 Metric reconstruction of a single rigid object.
Objective

Given a set of N features over F perspective images
{

xfi
}
belonging to a rigid

object, recover the 3D structure and motion of the object up to a similarity.

Algorithm

1: Determine a projective reconstruction
{
P f , Xi

}
for the image features using

the projective matrix reconstruction algorithm ( Algorithm 4.1).
2: Rectify the projective reconstruction to a metric reconstruction with a trans-

formation obtained through auto-calibration based on the absolute dual
quadric Q∗∞ (Algorithm 5.1).

5.5 Critical motion sequences

It is important to note that a metric reconstruction from a video sequence is

not necessarily guaranteed. A sequence of camera motions that does not allow

the complete determining of the rectifying homography H is termed a critical

motion sequence (CMS). This is the case when a motion sequence does not lead

to a unique solution to the auto-calibration problem. The resulting metric 3D

reconstruction is then degenerate and falls somewhere between projective and

metric.

Critical motion sequences have been systematically classi�ed by Sturm [29]

in the case of constant internal parameters. This classi�cation has been extended

to more general calibration constraints, i.e. varying focal length, in [30, 22]. A

geometric analysis by Pollefeys and van Gool, [23], is also worth mentioning.

Metric reconstruction depends on identifying the absolute conic Ω∞ which

is �xed under similarity transformations. An auto-calibration solution method

based on the absolute dual quadric was proposed, (from (5.5))

ω∗f∞ = P fQ∗∞ P f
T

= Kf Kf T , (5.20)

for image frame f = 1, . . . , F , where Kf is the camera calibration matrix for

frame f . Problems arise when the absolute conic is not the only full-rank virtual

conic to satisfy the constraints on the camera calibration parameters in (5.20),

when projecting in each image. If that is the case then there is no way to

distinguish the absolute conic.

It is clear from (5.20) that the possibility of a motion sequence being critical

depends on the number of constraints that are imposed for auto-calibration.

The extremes are all parameters known, in which case almost no critical motions

exist; and no constraints at all in which case all motion sequences are critical.
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Known intrinsic
camera parameters

Type of IAC Type of cone

α, r, x0, y0, s
centered circle,
known radius

absolute cone

r, x0, y0, s
centered circle

circular cone

r, s
circle

elliptic cone

x0, y0, s
centered ellipse,

axis aligned with image
elliptic cone

s
ellipse,

axis aligned with image
elliptic cone

-
ellipse

elliptic cone

Table 5.4: Possible types of IAC and re-projection cones for a set of known intrinsic

camera parameters.

When there is an ambiguity in the intrinsic camera parameters an equivalent

ambiguity exists in ω∞ and therefore other conics φ exist which are potential

ω∞. Further, as seen in Section 3.2.4.1, for every potential IAC φ there exists a

reprojection cone � and then possibly a potential absolute conic Φ, formed from

all of the reprojection cones intersecting a plane in space with the same conic.

We know the absolute conic Ω∞ projects as a circle, centered at the point

closest to the center of projection, on the image plane when it is viewed em-

bedded in metric space (before it is transformed by camera calibration to pixel

coordinates). This projection is a similarity transformation from the plane at

in�nity to the image plane. Then in each image, the IAC ω∞ = K−TKT is rep-

resented by an ellipse centered at the principal point, the aspect ratio between

its axes similar to that of the pixel coordinates and the skew the deviation of its

axes from the image axes. Note that both Ω∞ and ω∞ are virtual conics and are

not visible. If some intrinsic parameters are known, it allows us to transform

the IAC to constrain its shape, and in some cases the shape of the reprojec-

tion cone. The di�erent possibilities are summarized in Table 5.4. The �rst

column contains the camera calibration parameters which are assumed known,

the second and third column gives the corresponding type of IAC and virtual

re-projection cone.

The goal is to only provide a overview of critical motion sequences and most

results will be stated without proof. For a more thorough analysis the reader

should consult the sources previously mentioned. To provide this overview we

follow Sturm's approach, and look for all motion sequences that allows a speci�c

potential absolute conic (PAC) Φ to solve (5.5) for all frames. The PAC Φ is

de�ned as:
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� a full-rank virtual conic that is not Ω∞

� that projects an virtual ellipse (conic) φf , f = 1, . . . F , in the image plane

of camera f .

Note that the conic φf is a potential IAC. This task is typically split in two

parts, looking for PAC on the plane at in�nity and looking for PAC outside the

plane at in�nity.

5.5.1 Potential absolute conic on the plane at in�nity

The problem in this case is relatively simple. Consider Φ is on the plane at

in�nity. According to (3.6), geometric entities on the plane at in�nity Π∞
project according to H = KR, thus depending only on the camera orientation

and not position. For example points X∞ =
[
dT , 0

]T
on Π∞ project according

to x = KRd, independent of position.

Let the image plane be viewed embedded in metric space, instead of in pixel

coordinates, so that

x′fi = Kf −1
xfi

ω′∞ = Kf T ω∞K
f = Kf T

(
Kf −T Kf −1

)
Kf = I = ω′∗∞

φ′f = Kf T φKf .

The homography between the plane at in�nity and the image plane of camera

f is now given by Hf = Rf and the projection of the potential absolute conic

Φ to a conic in each 3D image plane is given , according to (2.8) (and the fact

that conics are symmetric), by

φ′f = Rf
−T

Φ Rf
−1

= RfΦ Rf
T
. (5.21)

We now determine all rotations Rf for which Φ is not the absolute conic.

Let x be an eigenvector of Φ with eigenvalue λ. From (5.21) we can write

RfΦ = φ′fRf and it follows,

Rfλx = RfΦx = φ′fRfx = λRfx,

that x is also an eigenvector of φ′f with eigenvalue λ. This is valid for all

eigenvectors x of Φ. Thus, it follows that Rf conserves the eigenspaces and φ′f

and Φ have the same eigenvalues for all f .

There are three possible eigenvalue combinations: a triple eigenvalue, one

double eigenvalue and one single eigenvalue,

or three single eigenvalues.
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� one triple eigenvalue: Only the absolute conic itself corresponds to a triple

eigenvalue, so it is ignored.

� one double eigenvalue and one single eigenvalue: φf and Φ are circles.

The eigenspace corresponds to a plane Π and a line l perpendicular1 to

plane Π. Since the rotation R conserves Π and l, it must be either the

identity transformation I, a rotation about l by an arbitrary angle, or a

rotation by 180o about a line on Π, incident with l.

� three single eigenvalues: φf and Φ are ellipses. The eigenspace consists of

three mutually orthogonal lines. Besides the identity transformation, only

rotations of 180o around any of these lines leave Φ unchanged.

Depending on the known intrinsic parameters and the constraints they place on

a potential IAC (Table 5.4), the set of critical motions is determined from one

of the three possible eigenvalue combinations.

5.5.2 Potential absolute conic outside the plane at

in�nity

In this case the problem is more complicated. Consider Φ not on the plane at

in�nity. Contrary to Φ on the plane at in�nity, the projection of conics now

depend on both camera orientation and position. The problem can however

be separated in two parts. First all camera positions are determined. For Φ a

PAC, all possible camera positions are vertices of cones that contain Φ. Then

the possible camera orientations that leave each cone unchanged are determined.

As seen in Table 5.4, for some intrinsic constraints there are constraints on

the possible cones. For the case where all intrinsic parameters are known, the

cone is an absolute cone (i.e. has a triple eigenvalue). And the case where all

intrinsic parameters are known but the focal length, the cone is a circular cone

(i.e. double and single eigenvalue). For the rest the cone is an elliptic cone (i.e.

three single eigenvalues).

The possible orientations of the cameras now depend on the shape of the

virtual cones. From [29]:

� Any rotation around the vertex of an absolute cone leave the cone globally

unchanged.

� Arbitrary rotations around the main axis (the line from the vertex of a cone

to the center of its base) or rotations by 180o about axes perpendicular

but incident with the main axis leaves a circular cone unchanged.

� Rotations by 180o about an axis of the elliptic cone leaves it unchanged.
1Eigenvectors of symmetric matrices corresponding to di�erent eigenvalues are orthogonal.
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Description #t #R Ambiguity Ω∞ dof

Planar motion ∞2 ∞ scaling axis

perpendicular to plane
1

Pure translation ∞3 1
a�ne transformation

5

Orbital motion ∞ 1
projective distortion

along rotation axis
2

Pure rotation 1 ∞3 arbitrary position

for plane at in�nity
3

Table 5.5: Practically important critical motion sequences for constant intrinsic pa-

rameters.

Description #t #R Ambiguity Ω∞ dof

Translation and rotation

about optical axis
∞3 2×∞

scaling optical axis
1

Hyperbolic and/or

elliptic motion
2×∞ 2×∞

one extra solution
-

Forward motion
∞ 2×∞

projective distortion

along optical axis
2

Pure rotation
1 ∞3

arbitrary position

for plane at in�nity
3

Table 5.6: Practically important critical motion sequences for varying focal length.

5.5.3 Practically important critical motion sequences

We are now interested in speci�c descriptions of critical motion sequences that

may have practical signi�cance. It is useful since these motions can then be

avoided when acquiring an image sequence for auto-calibration and reconstruc-

tion. In Table 5.5.3 we provide details on CMS cases where all intrinsic parame-

ters are constant and in Table 5.5.3 for CMS cases where all intrinsic parameters

are known except for focal length. The number of possible positions and ori-

entations that the critical motion can consist of is presented, along with the

ambiguity inherent in the motion and the number of degrees of freedom on the

absolute conic Ω∞. Note that ∞i indicates an in�nite number in i dimensions

and i×∞ an in�nite number for i cases.

5.5.4 Reducing ambiguities

It is possible to reduce the degree of ambiguity in a scene if prior knowledge of

the scene structure or camera is available. A known or partially known cam-

era calibration should always be used if available. Another way of discarding

ambiguous solutions is to analyze reconstructions with respect to physical con-

tradictions, e.g. to see whether a reconstructed point lies behind a camera by
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which it is actually seen. However, the best way to counter critical motion se-

quences, is to avoid them by using motion sequences that are clearly �far� from

critical. Take the orbital motion sequence which is adequate for modeling but

critical if the camera is not calibrated; including rotations about the optical axis

turns this sequence into non-critical.
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Motion Segmentation

So far we have assumed a scene contains a single moving object. We now focus

on dynamic scenes consisting of multiple moving objects. Figure 6.1 illustrates

a scene consisting of two objects, each with their associated object coordinate

systems. Motion segmentation is the segmentation of individual objects, with

unique motions, from a background. It is essential to the understanding and

reconstruction of dynamic scenes. The terms �motion segmentation� and �mo-

tions� are preferred to �object segmentation� and �objects� since as long as two

separate objects move as a single rigid object they obey our de�nition of a sin-

Figure 6.1: The coordinate system of two bodies relative to a camera coordinate

system.

68
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gle rigid object. Thus, �object� segmentation is based on separate, independent

motion.

Ever since Tomasi and Kanade in [36] introduced the matrix factorization

method based on the idea that the trajectories of general motion under an a�ne

projection span a 4-dimensional linear manifold, this geometric constraint has

become the basis for motion segmentation. The �rst algorithm was presented

by Costeira and Kanade in [4] for the segmentation of image features captured

by motion tracking.

6.1 Problem statement

Suppose we have a scene with two motions, each assigned their own de�ned

object coordinate systems (OCS) centered at their respective feature centroid.

Each motion has Ni, i = 1, 2, features so that a total of N = N1 + N2 are

tracked over F perspective camera images. These features are scaled with their

correct set of projective depths, calculated according to the matrix factorization

algorithm of Chapter 4, for projective reconstruction and collected in the 3F×N
measurement W from (4.7).

Suppose that we somehow know the classi�cation of these features and could

permute the columns of matrixW so that the �rst N1 columns belong to motion

1 and the last N2 belong to motion 2. Matrix W then has the canonical form

W ∗ =
[
W1 | W2

]
. (6.1)

Each of the submatrices Wk, k = 1, 2, is the measurement matrix for motion

k and is reduced SVD decomposed to form a rank-4 perspective measurement

matrix

Wk = UkΣkV Tk .

Each of the 2 motions, according to Chapter 4 and 5, has a projective recon-

struction and rectifying homography Hk to form a metric reconstruction,

Wk = MkSk = M̂kHkH
−1
k Ŝk,
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for k = 1, . . . , 2. Equation (6.1) then has the canonical factorization

W ∗ = [M1 |M2]

[
S1

S2

]

with [M1 |M2] = [U1 |U2]

[
Σ

1
2
1

Σ
1
2
2

][
H1

H2

]

and

[
S1

S2

]
=

[
H−1

1

H−1
2

][
Σ−

1
2

1

Σ−
1
2

2

][
V T1

V T2

]
.

(6.2)

By denoting

M∗ = [M1 |M2] , S∗ =

[
S1

S2

]
, H∗ =

[
H1

H2

]
,

U∗ = [U1 |U2] , Σ∗ =

[
Σ1

Σ2

]
and V ∗ T =

[
V T1

V T2

]

we can express the matrix factorization and metric reconstruction for multiple

motions as
W ∗ = M∗S∗

M∗ = U∗Σ∗
1
2H∗

S∗ = H∗−1Σ∗−
1
2V ∗T ,

(6.3)

which is similarly to the single object case.

From (6.2) and Section 4.3.4 it is clear that W1 and W2 each have a rank

of 4 and therefore that W ∗ has a theoretical rank of 8, assuming of course the

motion vectors span 3D. Consequently a noisy W has a rank of at least 8.

In reality we do not know which features belong to which motion and so

W , with its columns a mixture of motion 1 and 2, can not be placed in its

canonical form W ∗. We can still however apply the reduced SVD to W to

obtain W = UΣV T . It appears that all that has to be done now to calculate

the metric reconstruction is to �nd the rectifying homography H∗. There is,

however, a fundamental �aw in this reasoning.

A rectifying homography H is computed from the motion of a single object,

that is, by assuming that the measurement matrix consists of features from a

single object. This is evident in the projective factorization of Section 4.3.4 and

especially equation (4.10) where a rank greater than 4 (maximum rank for a

single 3-space rigid motion) would result in projection matrices that are not of

the required shape of 3× 4 and reconstructed features which are not in 3-space.

Thus the required conditions are only available after motion segmentation which

involves obtainingW ∗. Another problem is that we do not necessarily know how

many motions there are and therefore how many classi�cations of features are
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required to avoid mixed motions and erroneous results.

Consequently, the motion segmentation process reduces to two objectives:

� Determine how many motions there are in the scene and therefore the

rank constraint that applies.

� Discover which features belong to which motion so that the correct columns

ofW can be grouped to allow for the metric reconstruction for each motion

object.

6.2 Motion Subspaces

We return to ourN features tracked over F frames. Suppose all the features have

already been scaled with the correct set of projective depths so that λfi x
f
i =[

λfi x
f
i , λ

f
i y
f
i , λ

f
i

]T
is the i-th feature in the f -th frame. Stacking all of ith

feature's scaled coordinates over the F frames vertically (the ith column of

measurement matrix W ), we have single vector of the form

wi =
[
λ1
ix

1
i , λ

1
i y

1
i , λ

1
i , . . . , λ

F
i x

F
i , λ

F
i y

F
i , λ

F
i

]T
(6.4)

that represents the image motion, or trajectory, of the i-th feature in a 3F -
dimensional space (or over F frames in 3D space).

Taking a step back, consider the perspective projection of the ith 3D feature

in frame f . This projection is given by

λfi x
f
i = P fXi =

[
Bf | −Bf C̃f

]
Xi = Xiaf + Yibf + Zicf + df

where

Xi =


Xi

Yi

Zi

1

 , Bf =
[
af , bf , cf

]
, and df = −Bf C̃f .

If we de�ne 3F -dimensional vectors m0 =
[
a1 T , · · · aF T

]T
, m1 =

[
b1 T , · · · bF T

]T
,

m2 =
[
c1 T , · · · cF T

]T
and m3 =

[
d1 T , · · · dF T

]T
, it follows from (6.4) that

wi = Xim0 + Yim1 + Zim2 + m3,

i = 1, . . . , N . This result shows that the set ofN trajectories {wi}, i = 1, . . . , N ,

belongs to a 4-dimensional subspace spanned by the vectors {m0, m1, m2, m3}.
This is true for perspective cameras with the image features scaled with the

correct projective depths.
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It follows that each independent motion occupies a unique 4-dimensional

subspace spanned by vectors {m0, m1, m2, m3}. Therefore, the process of

segmenting N features into O separate motions is equivalent to grouping the N

features into O distinct 4-dimensional subspaces.

6.3 Number of Motions

It has been reported that estimating the number of motions is more di�cult

than segmentation itself [4, 7]. At �rst glance, one can determine the number

of independent motions from the rank of the measurement matrix. In practice

however, measurement noise greatly increases the rank estimated from real world

measurements, throwing o� motion estimates. Many studies have been done for

estimating the number of motions automatically, but as stated in [32], none

of them is really satisfactory. This is because the number of motions is not

well-de�ned; one moving object can also be viewed as multiple objects moving

similarly, and there is no rational way to unify similarly moving objects into one

except using heuristic thresholds or ad-hoc criteria.

Gear [7] attempted a complicated statistical analysis for estimating the

number of motions and concluded that individual points were likely to be judged

as independently moving. This makes sense because saying that each point is

moving independently (but coincidentally in unison) is always a more likely

interpretation than saying that the motions of di�erent points are constrained,

as long as the judgment is based on statistical likelihood alone.

It is assumed in this work that the number of motions are determined from

manual observation, and provided as an input. The required rank is then given

by

r = 4O, (6.5)

where O is the number of independent motions.

6.4 Subspace separation

Consider the general noisy measurement matrix W . In terms of the trajectory

vectors discussed, it can be expressed as

W = [w1, w2 · · ·wN ] ,

where the N trajectories {wi} belong to a r-dimensional subspace L ⊂ R3F .

The problem is that shape and motion interact in W . It is indicated in (6.2)

that the example measurement matrix's rank is generated by two subspaces, L1
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and L2 of rank r1 and r2 respectively. In the example the measurement matrix

is rank-8. In general it would be rank-4O given by (6.5) for O subspaces, and

the subspaces rank-4 each. These two subspaces are represented by a block

diagonal S∗. However, the recovered shape space V T , obtained from the SVD

of non-canonical W , is a linear combination of the two subspaces and has lost

the block diagonal structure.

Matrix V T can be interpreted as consisting of N column vectors vi,

V T =
[

v1 v2 . . . vN
]
.

Each vector vi is unit length since V T is orthonormal and has r components

(is a r-vector) from the reduced SVD, where r is the rank of W . Vector vi is

a new representation for trajectory wi, which was linearly transformed from its

redundant R3F space to Rr space while preserving the subspace property.

There is however a construct that preserves the original subspace structure,

shape interaction matrix G. Matrix G is a N ×N matrix de�ned

G = V V T . (6.6)

Each of the matrix entries are an "interaction" between rank reduced trajecto-

ries,

Gij = vTi vj . (6.7)

The entry Gij in terms of column vectors wi and wj from measurement matrix

W is then given by

Gij = wT
i UΣ−2UTwj . (6.8)

Equation (6.8) is obtained when inserting

vi = Σ−1UTwi

in equation (6.7) with

wi = UΣvi

from the SVD of W .

Matrix G is uniquely computable from W without segmentation, since V

is uniquely obtained from the SVD of W . Another useful property of G is

that permuting the columns of W does not change the set of values {Gij},
only their arrangement. Swopping columns k and l of W result in swopping

columns k and l of V T which now swop both the rows and columns k and l for

symmetric G, but not its entry values. The swopping clearly also goes the other

way and swopping rows and columns k and l in G will result in a swopping of



Chapter 6. Motion Segmentation 74

Figure 6.2: Segmentation process

columns k and l in W . Therefore, if we can successfully swop the entries of

G so that it is in block-diagonal form with each block representing a motion,

the corresponding swopping of columns in W would place it in canonical form

W ∗. This relationship between sorting G and permuting the columns of W is

illustrated in Figure 6.4.

According to the subspace separation theorem stated in [16] we can use

G to separate subspaces, since the (ij)-th element of G is zero if the i-th and

j-th feature belong to di�erent subspaces. The subspace separation theorem

is rigorously proved by Kanatani in [16]. Here we adopt the more intuitive

argument in reference to the Tomasi-Kanade matrix factorization of Costeira

and Kanade [4]. They prove the case for orthographic cameras but the argument

is applicable to perspective cameras without requiring any alteration.

Since the set of values {Gij} does not change, let us compute block-diagonal
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G∗ from W ∗. Substituting (6.3) into (6.6) we obtain,

G∗ = V ∗V ∗T

= S∗TH∗TΣ∗H∗S∗

= S∗T
(
H∗−1Σ∗−1H∗−T

)−1
S∗

= S∗T
[(
H∗−1Σ∗−

1
2V ∗T

)(
V ∗Σ∗−

1
2H∗−T

)]−1

S∗ = S∗T
(
S∗S∗T

)−1
S∗

=

[
ST1

ST2

][
Λ−1

1

Λ−1
2

][
S1

S2

]

=

[
ST1 Λ−1

1 S1

ST2 Λ−1
2 S2

]

where Λ∗ = S∗S∗T and Λi = SiS
T
i . Each entry of G∗ then has the value

G∗ij =


ST1 Λ−1

1 S1 if feature trajectory i and j both belong to object 1

ST2 Λ−1
2 S2 if feature trajectory i and j both belong to object 2

0 if feature trajectory i and j both belong to di�erent objects.
(6.9)

These values
{
G∗ij
}
, which are equal to {Gij}, have another crucial property

in that they are invariant to the motion speci�cs. This is the case since only the

structure matrix S and not the motion matrix M is included in equation (6.6).

In other words, irrespective of the actual motion of the objects, for di�erent

motion subspaces, these objects will produce the same entries in G.

To summarize:

� Knowing only the number of motions and not actual segmentation of the

motions, we can compute a matrix G whose elements Gij can be inter-

preted as the interaction between feature i and j. If the value of Gij is

non-zero, features i and j belong to the same motion.

� Subspace separation is reduced to swopping pairs of rows and columns

of G until it is in block diagonal form G∗. Once this is achieved, the

corresponding permutations of the columns applied to W will place it in

canonical formW ∗ with the subspaces separated. All the features are now

assigned to their respective motion and reconstruction can commence.

6.5 Separation procedure

In the presence of noise all the elements ofG, in general, are non-zero irrespective

of subspaces. This ensures that the subspace separation procedure is not a trivial

endeavour.
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Two possible subspace separation procedures are discussed shortly, an ele-

mentary greedy algorithm and a method based on spectral clustering for better

reliability and speed.

6.5.1 Greedy algorithm

The greedy algorithm is a straightforward separation method where trajectories

wi and wj are grouped for a large |Gij |. It is initially assumed that each

trajectory belongs to its own subspace Li, i = 1, . . . N . The similarity measure

sαβ between subspace Lα and subspace Lβ is de�ned as

sαβ = max
wi∈Lα,wj∈Lβ

|Gij | .

Subspaces are repeatedly merged for large sαβ until, typically, the number of

subspaces corresponds to the observed number of motions. Progressively inter-

changing the corresponding rows and columns of G will eventually place it in

an approximately block diagonal form. A variation of this method was adopted

in [4].

6.5.2 Spectral clustering

Spectral clustering, according to [2], refers to a class of techniques that rely on

the eigenstructure of a similarity matrix (shape interaction matrix G in our case)

to partition features into disjoint clusters � where features in the same cluster

have a high similarity and features in di�erent clusters have a low similarity.

This technique was �rst applied to motion segmentation by Yan and Pollefeys

in [40]. Given that there are O observed motions and therefore O motion

subspaces, the goal is to segment the features into O clusters.

For motion segmentation based on spectral clustering, Yan and Pollefeys

recommend recursive 2-way clustering, aka Shi-Malik algorithm, detailed in [27].

The recursive 2-way clustering algorithm, applied to motion segmentation, will

partition a set of features into two separate sets, according to the eigenvector

that corresponds to the second-smallest eigenvalue of the Laplacian matrix

L = I −D− 1
2GD−

1
2

of G, where D is the diagonal matrix

Dii =
N∑
j=1

Gij .

A Laplacian matrix is a matrix representation of a graph, so that the motion



Chapter 6. Motion Segmentation 77

Algorithm 6.1 Recursive 2-way clustering algorithm applied to subspace sep-
aration.
Objective

Separate shape interaction matrix G into O independent motion subspaces by
placing it in block diagonal form with the recursive 2-way clustering algorithm.

Algorithm

1: From the similarity matrix G, calculate the Laplacian matrix L.
2: Initially segment the features into two clusters C1 and C2.
3: while the number of clusters M = |{C1, C2, . . . , CM}| is less than O do

4: for i = 1, . . . ,M do

5: compute the shape interaction matrix Gi from only the features as-
signed to cluster Ci.

6: Use Gi to calculate Laplacian matrix Li and partition cluster Ci further
into two clusters, C1

i and C2
i .

7: Calculate a Cheeger constant for each of the partitionings C1
i and C2

i ,
see [20].

8: end for

9: The cluster Cj with the highest valued Cheeger constant for its partition-
ing into C1

j and C2
j , is removed and replaced by C1

j and C2
j in the set of

clusters. All other partitions C1
i and C2

i
, i = 1, . . . ,M with i 6= j, are

ignored.
10: end while

11: Once all O clusters are found, G can be placed in block diagonal form where
each block is a cluster.

segmentation problem is interpreted as a graph cutting (or graph partitioning)

problem for matrix L. A numerical measure for the quality of a graph cut is

the Cheeger constant [20]. If the two graph partitions, after a cut was made,

have few links between them then the Cheeger constant is large. Otherwise, if

the two partitions have many links between them, the Cheeger constant is small

(but positive).

An outline for the recursive 2-way clustering algorithm applied to subspace

separation is given in Algorithm 6.1.

6.6 Algorithm outline

The motion segmentation algorithm is summarized in Algorithm 6.2. The

complexity of this algorithm is dominated by the method employed to block-

diagonalize G.

Once motion segmentation is completed it is possible that there are outlier

trajectories assigned to a subspace. The matrix factorization algorithm assumes

a maximum rank of 4 and auto-calibration assumes a single object, therefore
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Algorithm 6.2 Motion Segmentation algorithm
Objective

Given a set of N features over F perspective images
{

xfi
}

belonging to O

independent rigid motions, calculate which features belong to which motion.

Algorithm

1: Determine the scale factors λfi using equation (4.9) and build the rescaled
measurement matrix W .

2: Determine the theoretical rank r of W from the number of observed mo-
tions.

3: Decompose W = UΣV T using SVD truncated to the r biggest singular
values.

4: Compute shape interaction matrix G using V T .
5: Block-diagonalize G, so that each block represents a motion.

both processes are negatively e�ected with an outlier. The recommended course

of action is to liberally remove possible outliers after segmentation. The outlier

removal method implemented in this work is rudimentary: at each segmentation

of features into two clusters (step 9 in Algorithm 6.2), all features are removed

which have an a�nity that deviates from the cluster's mean a�nity more than

a certain threshold than the cluster's a�nity standard deviation.

By extending Algorithm 5.2 with Algorithm 6.2, we have reached the ob-

jective of this thesis � to develop a full SfM implementation that reconstructs,

up to a similarity transformation, the structure and motion of multiple inde-

pendently moving rigid bodies, assuming a perspective camera(s) which is not

required to be calibrated. This SfM system is summarized in Algorithm 6.3.
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Algorithm 6.3 Metric reconstruction of multiple rigid objects.
Objective

Given a set of N features over F perspective images
{

xfi
}
belonging to O inde-

pendent rigid motions, recover the 3D structure and motion up to a similarity
for each object associated with a motion.

Algorithm

1: Segment the features into O groups, where each group's features all undergo
the same independent rigid motion (Algorithm 6.2).

2: for j = 1, . . . , O do

3: Determine a projective reconstruction
{
P f , Xi

}
for the image features of

motion j using the projective matrix reconstruction algorithm (Algorithm
4.1).

4: Rectify the projective reconstruction of motion j to a metric reconstruc-
tion with a transformation obtained through auto-calibration based on
the absolute dual quadric Q∗∞ (Algorithm 5.1).

5: end for



Chapter 7

Implementation issue:

quasi-a�ne reconstruction

A 3D projective reconstruction is very general and allows for severe deformations

of an object, to the extent that the object might not be recognizable. In fact,

it can happen that the plane at in�nity Π∞ passes right through the object as

illustrated in Figure 7.1 (taken from [12]) and Figure 7.2. The comb example

from Figure 7.1 deals with a 2D feature set, but the principle is the same.

This can happen during the �rst projective reconstruction of the object

and if this happens, the nonlinear optimization algorithm used to estimate the

absolute dual quadric Q∗∞, presented in Section 5.2.5, often fails to converge to

the correct solution. Accordingly, it is necessary to move the plane at in�nity Π∞

(i) Comb (ii) Non-quasi-a�ne re-sampling of comb

Figure 7.1: Picture of a comb and a non-quasi-a�ne re-sampling of the comb.

80
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(i) Face (ii) Non-quasi-a�ne resampling of face

Figure 7.2: Picture of a face and a non-quasi-a�ne re-sampling of the face.

through a projective transformation H (this causes no additional problems since

the reconstruction is anyway only accurate up to a projective transformation),

to in�nity

HTΠ∞ =


0
0
0
1

 ,
where e4 = [0, 0, 0, 1] is the canonical form of the plane at in�nity. This ensures

that it does not pass through the structure. To achieve this, H has the form

H =

[
I 0

− 1
π4

[π1, π2, π3] 1
π4

]
where Π∞ = [π1, π2, π3, π4]T and π4 6= 0.

(7.1)

But Π∞ is not known, and not trivial to �nd, as discussed in Chapter 6. For-

tunately there is a relatively simple way of ensuring that Π∞ does not pass

unwittingly through the structure. We proceed to �rst de�ne the problem and

then to solve it.

7.1 Problem statement

A subset B of Rn is called convex if any line segment joining two points in B

lies entirely in B. The convex hull of B is the smallest convex set containing

B. We are concerned with 3D point sets, so n = 3. We view R3 as a subset

of P3 consisting of all �nite points. The in�nite points constitute the plane

at in�nity Π∞, i.e. P3 = R3 ∪ Π∞. Thus a subset of P3 is called convex

if and only if it is contained in R3 and convex in R3. This implies that a

convex set does not contain any points at in�nity. Now let B be a subset of
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R3 and H a projective transformation of P3. The transformation H is said to

be quasi-a�ne with respect to B if it preserves the convex hull of B, otherwise

it is called non-quasi-a�ne. Points X = [X, Y, Z, W ]T ∈ P3 with W 6= 0
and X̃ = [X/W, Y/W, Z/W ]T ∈ R3 form a convex set, therefore a quasi-a�ne

transformation ensures that the object remains on one side of the plane at

in�nity. Thus, by de�nition, a quasi-a�ne reconstruction (a reconstruction that

di�ers from the full metric reconstruction by an quasi-a�ne transformation) lies

at one side of the plane at in�nity.

7.2 Transformation to quasi-a�ne

Suppose we have an Euclidean reconstruction with cameras P jE , j = 1, . . . , F ,
observing the points Xi E , i = 1, . . . , N , in front of the cameras. Let xji be the

corresponding image features, i.e. xji = P jE XE i. Now suppose that we have

a projective reconstruction
{
P j , Xi

}
from the features xji , such that P jXi =

λjixi, then it can be shown (see [13]) that if Xi is �nite for all i and the depths

λji have the same sign for all j and i, then a quasi-a�ne transformation H exists

taking each Xi to XE i. This implies that the reconstruction lies at one side of

the plane at in�nity. Therefore we are looking for a projective transformation

so that all the reconstructed points are �nite, and all the depths have the same

sign. The �rst step is to adjust the given projective reconstruction, both the

projective cameras P j as well as the projective feature Xi, by multiplication

with −1 if necessary, so that λji is positive whenever xji exists.

The next step is to �nd the transformation H that will transform the pro-

jective reconstruction to a quasi-a�ne reconstruction for which all the points

lie in front of the camera. Writing the plane that is mapped by H to in�nity,

as v, the condition that the points lie in front of the camera is given by

depth(Xi;P j)
.= (vTXi)(vTCj)δ > 0

where Cj is the camera center of camera P j and δ = sign(detH). Since we are
free to multiply the homogeneous quantity v by −1 if necessary, we may assume

that (vTC1)δ > 0 for the �rst camera P 1. We therefore arrive at the cheiral

inequalities,

vTXi > 0, for all i

δvTCj > 0, for all j. (7.2)

Since the Xi and Cj are known we can solve this set of inequalities for v. The

only quantity that is unknown is δ. Since it can only be ±1 we need to try both
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signs, if necessary. The cheiral inequalities are solved using linear programming.

More detail is given in a moment. Assume for now that v has been solved,

the question then is to construct a suitable transformation H, given v. Since

H maps v to in�nity, it follows that

H−Tv =


0
0
0
1

 ,
or

v = HT


0
0
0
1

 .
Thus H is any transformation such that its last row is v and detH .= δ. If the

last component of v is non-zero then one can choose the �rst three rows of H

to be of the form ±
[
I | 0

]
.

7.2.1 Solving the cheiral inequalities

The cheiral inequalities may be solved using linear programming (LP) tech-

niques. As it stands, if vector v is a solution then so is av for any positive

factor a. We can restrict the solution domain further by normalizing each point

Xi to size 1 for all i and each camera center Cj to size 1 for all j and then

adding the further inequalities

−1 < vi < 1 for v = [v1, v2, v3, v4]T .

It is further possible to have one less variable to estimate by translating,

using an a�ne transformation, the centroid of the 3D features Xi to the origin.

Since the plane at in�nity cannot cross the convex hull, it cannot cross the

origin. This says that the last component v4 of v is non-zero and that we can

then write

v =

[
ṽ

1

]
. (7.3)

The quasi-a�ne transformation H then has the new form,

H =

[
I 0

ṽT 1

]
.

To achieve a unique solution we also need to specify an objective function to
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Algorithm 7.1 Computing a quasi-a�ne reconstruction.
Objective

Given a set of 3D features Xi and cameras matrices P j constituting a projec-
tive reconstruction from a set of image features, i.e. P jXi = λjix

j
i , compute a

projective transformation H transforming the projective to a quasi-a�ne recon-
struction.

Algorithm

1: Replace some camera matrices P j with −P j and some features Xi with
−Xi as required to ensure that each λji > 0.

2: Move the feature's centroid to the origin with a�ne transformation H by
replacing Xi with H−1Xi and P j with P jH.

3: Normalize each feature Xi to size 1 then calculate the camera centers Cj

according to (5.13) followed by a normalization to size 1.
4: Form the cheiral inequalities (7.4).
5: For each of the values δ = ±1, calculate a solution to the cheiral inequalities

(if it exists) . Let the solution be ṽδ.
6: The matrix Hδ is the required transformation and has the form

Hδ =
[

I 0
ṽTδ 1

]
.

If both H+ and H− exist, then they lead to two oppositely orientated quasi-
a�ne reconstructions.

be maximized. An appropriate strategy is to maximize the extent to which each

of the cheiral inequalities is solved. To do this we introduce further variables d1

and d2. The inequalities of (7.2) combined with (7.3) then become

XT
i

[
ṽ

1

]
> d1 for all i

δCjT

[
ṽ

1

]
> d2 for all j.

(7.4)

We seek to maximize d1 and d2 while satisfying all of the inequalities. We now

have a standard LP problem that can be readily solved. A popular choice is the

the simplex method. If a solution exists for which d1 > 0 and d2 > 0 then it is

the desired solution.

7.3 Algorithm outline

The quasi-a�ne reconstruction algorithm is summarized in Algorithm 7.1 and

should be applied after projective reconstruction and before metric recti�cation.
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Algorithm 7.2 Revised metric reconstruction of multiple rigid objects.
Objective

Given a set of N features over F perspective images
{

xfi
}
belonging to O inde-

pendent rigid motions, recover the 3D structure and motion up to a similarity
for each object associated with a motion.

Algorithm

1: Segment the features into O groups, where each group's features all undergo
the same independent rigid motion (Algorithm 6.2).

2: for j = 1, . . . , O do

3: Determine a projective reconstruction
{
P f , Xi

}
for the image features of

motion j using the projective matrix reconstruction algorithm (Algorithm
4.1).

4: Prevent the plane at in�nity Π∞ from passing through the projective
reconstructed structure, and as a result algorithms possibly failing to
converge, by transforming the projective reconstruction to a quasi-a�ne
reconstruction (Algorithm 7.1).

5: Rectify the projective reconstruction of motion j to a metric reconstruc-
tion with a transformation obtained through auto-calibration based on
the absolute dual quadric Q∗∞ (Algorithm 5.1).

6: end for

The solving of this implementation issue leads to a revising of our SfM

system, summarized in Algorithm 6.3, by extending it with Algorithm 7.1. The

�nal version of the SfM system, which is the objective of this thesis, is now

summarized in Algorithm 7.2.



Chapter 8

Experimental investigation

We now put the algorithms discussed in this study to the test. This chap-

ter consists of two parts. The �rst part focuses on analyzing our full metric

reconstruction system and the experiments are:

� Cube sequences

� Pure synthetic sequence

� Noisy synthetic sequence

� Quasi-real sequence

� Quasi-real face sequence

� Real sequences

� Lego sequence

� Medusa sequence

The second part of the chapter focuses on analyzing our motion segmentation

system and the experiments are:

� Quasi-real cube sequences

� Background removal

� Multiple motion segmentation

� Real sequence

� Lego sequence

86
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8.1 Cube sequences

This section covers three experiments that deal with the metric reconstruction of

cubes. The �rst experiment uses a pure synthetic cube motion sequence created

in Python. The second experiment is performed on the same sequence, but it is

corrupted with controlled amounts of measurement noise. The third experiment

makes use of a software rendered cube and a feature tracker to select and track

cube features.

The cube, its motion and the camera calibration parameters are similar in

all three of the experiments. The cube has an edge length of 2 and in the

�rst frame its centroid is at a distance of 6 from the camera center. The cube

translates and rotates at a constant speed in each of the x, y and z directions

for a total of 50 frames. The projection of the cube onto its images is performed

according to the perspective camera model with each image of size 640 × 480.
The calibration parameters of the perspective camera is given by,

s = 0, r = 1.0, x0 = 0.0, y0 = 0.0 and α = 1.0

so that

Kf
ref =

 α s x0

0 rα y0

0 0 1

 = I,

�xed for all frames f = 1, . . . , F , is the camera calibration matrix.

A reconstruction is done for each even-numbered frame starting from the

4th frame. Note that the matrix factorization and auto-calibration algorithms

are batch-processing procedures, therefore a reconstruction at a speci�ed frame

number is a full reconstruction from the �rst frame until the speci�ed frame.

To include in the experiments a comparison of the in�uence of the number

of known calibration parameters on reconstruction accuracy, we do a series of

reconstructions for each of the eight di�erent calibration assumptions. The

di�erent assumptions are given in Table 8.1.

Since the ground truth is known for all of the experiments in this section, we

can determine and compare the accuracy of the experimental results. To do this

we �rst have to de�ne the measures of accuracy for the experimental results.

The accuracy criteria are �rst given then followed by the �rst cube experiment.

8.1.1 Accuracy criteria

We want to determine the accuracy in reconstructing structure, motion and

unknown camera calibration parameters. For that we need an appropriate error

measure. Since the reconstruction is only up to a similarity, for comparison
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Calibration assumption
Known calibration

parameters
Fixed calibration

parameters

a s, r, x0, y0, α
b s r, x0, y0, α
c s, r x0, y0, α
d s, r, x0, y0 α
e s
f s, r
g s, r, x0, y0

h s, r, x0, y0, α

Table 8.1: Camera calibration assumptions.

purposes, we need to map reconstructions to ground truth using a similarity

transformation.

Structure error

We de�ne the L2-norm of the distance between the i-th estimated 3D feature

Xi and its ground truth reference Xref
i as

es i =
∥∥∥Xref

i −HXi

∥∥∥ ,
where

H =

[
σR t

0T 1

]
is a similarity transformation with translation vector t, rotation matrix R and

scaling σ. The Euclidean 3D features are normalised so that the last element

of their homogeneous vector representation is 1. The similarity transformation

H attempts a transformation of the estimated features, reconstructed up to

a similarity transformation in the metric strata, to their Euclidean equivalent

with optimal orientation, position and scale so as to give a consistent Euclidean

error estimate.

To estimate the similarity transformation H, the centroid of the features is

�rst translated to the origin so that t = 0. Now only four parameters have to

be estimated:

� θx � x-axis rotation angle with rotation matrix Rx

� θy � y-axis rotation angle with rotation matrix Ry

� θz � z-axis rotation angle with rotation matrix Rz

� σ � scaling,
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so that

H =

[
σRxRyRz 0

0T 1

]
.

The previously mentioned COBYLA non-linear constrained optimization algo-

rithm is now used to minimize the error e =
∑N
i=1

∥∥∥Xref
i −HXi

∥∥∥ to estimate

these parameters. The parameters are initialised with

θx = 0, θy = 0, θz = 0, σ = 1

and have constraints

0 ≤ θx, θy, θz ≤ 2π.

We use the well-known Root-Mean-Square Error (RMSE) to calculate the

reconstruction error

es =

√√√√ 1
N

N∑
i=1

es 2
i ,

where N is the number of features. The unbiased sample variance of the struc-

ture is de�ned as

σ2
s =

1
N − 1

N∑
i=1

(es i − es i)
2
,

where the mean is de�ned as

es i =
1
N

N∑
i=1

es i .

Motion error

The motion error consists of both a rotation error and a translation error. With

the completion of a metric reconstruction, for each frame f = 1 . . . F we have

an estimated projection matrix Pf = Kf
[
Rf | tf

]
, where the motion for each

frame f relative to the �rst, f = 1, is represented by a rotation matrix Rf and

translation vector tf . We �rst de�ne the rotation error.

Any 3D rotation can be described by a (normalized) axis of rotation a and

an angle of rotation φ. To keep the rotation accuracy simple, the error in the

angle of rotation is ignored and the rotation error de�ned as the error in the

rotation axis. For frame f the positive angle between the estimated rotation

axis af and the ground truth reference rotation axis afref is given by

θf = arccos
(∣∣∣af T afref

∣∣∣) .
The di�erence between the estimated and reference rotation axis for frame
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f is then de�ned as

efr =
θf

π/2
,

so that 0 ≤ efr ≤ 1. The rotation error is then

er =

√√√√ 1
F − 1

F∑
f=2

efr
2
,

where F is the total number of frames. The unbiased sample variance of rotation

is de�ned as

σ2
r =

1
F − 2

F∑
f=2

(
efr − efr

)2
,

where the mean is de�ned as

efr =
1

F − 1

F∑
f=2

efr .

Note that the �rst frame does not contain motion and is therefore not included

in the error calculation.

We now de�ne the translation error. We de�ne the L2-norm of the di�erence

between estimated and reference translation as

eft =
∥∥∥tfref − tf

∥∥∥ ,
where the estimated and reference translation are both normalized to size 1.
We again use the RMSE to now calculate the translation error,

et =

√√√√ 1
F − 1

F∑
f=2

eft
2
,

where F is the total number of frames. The unbiased sample variance of trans-

lation is de�ned as

σ2
t =

1
F − 2

F∑
f=2

(
eft − e

f
t

)2

,

where the mean is de�ned as

eft =
1

F − 1

F∑
f=2

eft .

Again the �rst frame is not included in the calculation since there is no motion.
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Calibration error

We de�ne the Frobenius norm of the di�erence between the reference and esti-

mated calibration parameters as

efc =
∥∥∥Kf

ref −K
f
∥∥∥ ,

whereKf is the camera calibration matrix for frame f . The calibration matrices

are normalised so that matrix elementKf
33 = 1 and Kf

ref 33
= 1. The calibration

error is then

ec =

√√√√ 1
F

F∑
f=1

efc
2
,

where F is the number of frames. The unbiased sample variance of the calibra-

tion is then de�ned as

σ2
c =

1
F − 1

F∑
f=1

(
efc − efc

)2
,

where the mean is de�ned as

efc =
1
F

F∑
f=1

efc .

Note that for a camera with �xed calibration, efc is the same for each frame.

8.1.2 Pure synthetic cube

This Python generated sequence serves as a sanity check, to check the validity

of our reconstruction algorithms and the capability of their implementation

under ideal circumstances. Since the sequence is synthetic, no feature tracking

is performed and therefore there are no measurement noise or potential for

erroneous tracking. The cube is also assumed to be be transparent. The 2D

features of the cube projections that we attempt to reconstruct, include each of

the eight cube corners and the centers of each of the twelve cube edges, for a

total of 20 features.

The structure error values for all the assumptions over the 50 frames are

given in Figure 8.1, rotation errors in Figure 8.2, translation errors in Figure

8.3 and calibration errors in 8.4. The dark bar in the histograms, Figure 8.5,

is the average error over the 50 frames, and the light bar is the error value

associated with the frame that returned the most accurate structure.

Note that there is a clear correlation when comparing the error results for

the structure, rotation, translation and calibration. An assumption performing
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Figure 8.1: Structure accuracy of the pure synthetic sequence.

well in one of the criteria is also performing well in the rest. This is especially

clear for assumptions e through h.

Figure 8.1 illustrates the reconstruction error over 50 frames for all the cal-

ibration assumptions, and Figure 8.5 (i) the average and best structure error.

We observe for all of the assumptions that the structure accuracy improves

with a frame increase up to about frame 30, ignoring a spike here and there,

where they have all converged to an error value less than es = 0.2. From there

the structure accuracy stays more or less constant. Inspecting Figure 8.5 (i),

assumption h, with all calibration parameters known, clearly gives the best av-

erage and single structure error, as expected. Its best accuracy with an error

value of es = 0.0008, and variance of σ2
s = 8×10−8, for frame 42 is near perfect.

Assumptions g and d, with only the focal length unknown, both return a very

good average and best error. Assumption a with no parameters known, but

all �xed, returns the weakest average- and best error. The average structure

error as well as the best structure error visibly improves with an increase in the

number of known calibration parameters. Again this is no surprise.

Assumption e, with only the skew known, performs surprisingly well, better
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Figure 8.2: Rotation accuracy of the pure synthetic sequence.

than calibration assumptions a and b, even though a and b both have more

known parameters. This performance could be attributed to the adaptability of

e, with many unknowns that aren't �xed, and maybe to a bit of luck. It should

also be noted that assumption e is theoretically only able to give a solution after

8 frames, according to equation (5.18).

The rotation, translation and calibration error results are similar to the

structure results discussed above, except for a slightly better rotation perfor-

mance for assumption a in Figure 8.5 (iii) and a dramatically more erroneous

translation performance for assumption a in Figure 8.5 (iv). It seems that the

translation accuracy is more sensitive to the number of known calibration pa-

rameters than the rest. Note that the constant non-zero calibration error for

assumption h in Figure 8.4 is not a mistake. We would expect an error of zero

since all the calibration parameters are known. The reason it is not zero is that

before and during reconstruction, scaling of the image features typically occur.

This can be understood in the following way.

A 2D feature scaling is the result of a left multiplication of a measurement
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Figure 8.3: Translation accuracy of the pure synthetic sequence

xfi with a matrix H, where

H =

 σ 0 0
0 σ 0
0 0 1

 .
The e�ect it has on the calibration matrix Kf is given by

Hxfi = HP fXi

= H
(
Kf

[
Rf | tf

])
Xi

= K ′
f [
Rf | tf

]
Xi
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Figure 8.4: Calibration parameter accuracy of the pure synthetic sequence.

where
K ′

f = HKf

=

 σ 0 0
0 σ 0
0 0 1


 α s x0

0 rα y0

0 0 1


=

 σα σs σx0

0 σrα σy0

0 0 1

 .
In our experiment, with Kf = I, we have

K ′
f =

 σ 0 0
0 σ 0
0 0 1


so that the reconstructed focal length is no longer (in our experiment) α = 1.
This is also the reason why if not all the rescaling and the scale factors are

known, the focal length should not be assumed known but best left to auto-
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Figure 8.5: The average error (dark bar) and the error for the frame with the lowest

structure error (light bar) for the pure synthetic sequence.

calibration.

The structure error is arguably the most important reconstruction criteria.

We proceed to display the structure, rotation, translation and calibration values

for a speci�c frame for one of the worst performing assumptions, assumption

a, and one of the best performing assumptions, assumption g. This based on

the structure error. We do this for the frame in which the assumption returned

its best structure error (the smallest). In Figure 8.7 we display the values

generated at frame 40 for assumption a, with all of its parameters �xed and

none known, where it returned a structure error of es = 0.1107 with a variance

of σ2
s = 0.0007, indicating the e�ect of the number of frames. In Figure 8.8

we display the values generated at frame 30 for assumption g, with all of its

parameters known except for focal length, where it returned a structure error

of es = 0.0356 with a variance of σ2
s = 9× 10−5.

We see almost perfect structure for g while the structure of a visibly deviates

from the ground truth. An ellipse, as given in Figure 8.6, succinctly displays

all of the calibration parameters in one �gure. The tilt of the ellipse is given by

the skew, its center is the principal point, its x-radius equals α and the y-radius
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Figure 8.6: Ellipse representation of camera calibration.

equals rα. Studying the calibration error of Figure 8.7 (ii) and Figure 8.8 (ii),

for assumption a the sphere is slightly o�-center and narrower at the sides while

for g it is a perfect circle with a slight radius di�erence from the ground truth.

The performance of both the rotation and translation graphs are very similar,

with the translation of g being quite impressive. It seems the z-component of

the rotation axis for both assumptions deviates slightly more than the other

components, from the reference values.

The synthetic cube experiment has made it clear that the more calibration

parameters you know the better your chance of a good reconstruction. In the

case of not knowing a signi�cant number of calibration parameters, you are at

least generally guaranteed a good rotation and translation reconstruction. It is

further recommended to auto-calibrate the focal length. If the estimated focal

length di�ers from the ground truth it is of no real concern since image features

typically are scaled, so long as the calibration ratio r is the same.
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Figure 8.7: The estimated structure, rotation, translation and calibration parameters

for assuming calibration a, given for frame 40.
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Figure 8.8: The estimated structure, rotation, translation and calibration parameters

for assuming calibration g, given for frame 30.
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8.1.3 Synthetic cube with measurement noise

We now corrupt the synthetic motion sequence in Section 8.1.2 with measure-

ment noise. Four di�erent noise models are investigated, all zero-mean and

Gaussian distributed with variances of 0.0001, 0.001, 0.01 and 0.1 respectively.

This sub-pixel noise is added, for each frame, to the features located in the syn-

thetic images. Note that the images are scaled to size 640 × 480. We perform

this experiment on two calibration assumptions: the �rst with none of the cal-

ibration parameters known but all of them �xed (assumption a) and secondly

all the calibration parameters known except the focal length that is assumed

not to be �xed (assumption g).

We start with comparing the noise models in terms of structure, rotation,

translation and calibration error for assumption a. The structure error com-

parison is given in Figure 8.9, the rotation error comparison in Figure 8.10, the

translation error comparison in Figure 8.11 and the calibration error comparison

in Figure 8.12. Again the average error over all the frames, and the error that

coincides with the frame that returned the best structure error, is displayed in

Figure 8.13.

The structure, rotation and calibration error against the number of frames

look very similar for all the error models. The translation error against the

number of frames, Figure 8.11, on the other hand show a visible increase in the

error with an increase in noise, which is more prominent with the lower frames.

The histograms for the structure and calibration error again don't indicate any

clear deterioration with noise increase while the rotation, Figure 8.13 (iii), shows

a slight error increase starting from noise model 0.001. With Figure 8.13 (iv)

we can clearly see that the translation is more sensitive to noise and also has

an increasing error, much more prominent than rotation, starting from noise

model 0.001. It is clear the reconstruction algorithm is robust against noise,

especially for structure and calibration, and only really shows an error increase

with translation values.

We now proceed to display the structure, rotation, translation and calibra-

tion values for assumption a for the measurement noise model with variance

σ2 = 0.1 for the frame that returned best structure error. The best structure

error was returned for frame 50 with es = 0.0906 and variance of σ2
s = 0.0005,

both actually lower than the best structure error and variance for the pure

synthetic case.

The cube now di�ers from the ground truth in that it is narrower at the

top instead of wider, as in the case of zero noise. This time there is an unex-

pected improvement in the calibration parameter accuracy, with a slightly more

accurate ratio and principal point and a much improved focal length estimate.
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Figure 8.9: Structure accuracy of the noisy synthetic sequences assuming calibration

a. The noise increases from noiseless in (i) to noise with a variance of σ2 = 0.1 in (v).

The noise in�uence is apparent in the rotation and translation in Figure 8.14

(iii) and (iv) with the zig-zag lines. The translation deviation from the ground

truth is most prominent as we expected with the z-component most sensitive.

The translation error variance is σ2
t = 0.0047 which is relatively high for the

translation error of et = 0.0786.
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Figure 8.10: Rotation accuracy of the noisy synthetic sequences assuming calibration

a. The noise increases from noiseless in (i) to noise with a variance of σ2 = 0.1 in (v).
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Figure 8.11: Translation accuracy of the noisy synthetic sequences assuming calibra-

tion a. The noise increases from noiseless in (i) to noise with a variance of σ2 = 0.1

in (v).



Chapter 8. Experimental investigation 104

0.0

0.5

1.0

1.5

2.0

2.5

(i) 0.0

0.0

0.5

1.0

1.5

2.0

2.5

(ii) 0.0001

0.0

0.5

1.0

1.5

2.0

2.5

(iii) 0.001

0.0

0.5

1.0

1.5

2.0

2.5

(iv) 0.01

4 8 12 16 20 24 28 32 36 40 44 48

frame

0.0

0.5

1.0

1.5

2.0

2.5

c
a
li
b
ra

ti
o
n
 e

rr
o
r

(v) 0.1

Figure 8.12: Calibration parameter accuracy of the noisy synthetic sequences assum-

ing calibration a. The noise increases from noiseless in (i) to noise with a variance of

σ2 = 0.1 in (v).
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Figure 8.13: The average error (dark bar) and the error for the frame with the lowest

structure error (light bar) for the noisy synthetic sequences assuming calibration a.
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Figure 8.14: The estimated parameters for the noisy synthetic sequence with variance

σ2 = 0.1 noise assuming calibration a, given for frame 50.
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Figure 8.15: Structure accuracy of the noisy synthetic sequences assuming calibration

g. The noise increases from noiseless in (i) to noise with a variance of σ2 = 0.1 in (v).

We now compare the noise models in terms of structure, rotation, translation

and calibration error for assumption g. The structure error comparison is given

in Figure 8.15, the rotation error comparison in Figure 8.16, the translation

error comparison in Figure 8.17 and the calibration error comparison in Figure

8.18.

The results are very similar to those of assumption a, so that with an increase

in noise there is very little di�erence in structure and calibration parameter ac-

curacy, while a slight increase in rotation and a dramatic increase in translation

occurs. The error increase for rotation and translation is only more prominent

in assumption g and now especially dramatic for translation.

We again display the structure, rotation, translation and calibration values

for the measurement-noise model with variance σ2 = 0.1 for frame 50 which

again has the lowest structure error. The structure error for frame 50 is es =
0.0351 which is slightly lower than the pure synthetic case and has a variance

of σ2
s = 0.0002 which is much greater than for the pure synthetic case.

The cube in Figure 8.20 (i) looks no di�erent than in the case for no noise



Chapter 8. Experimental investigation 108

0.00

0.05

0.10

0.15

(i) 0.0

0.00

0.05

0.10

0.15

(ii) 0.0001

0.00

0.05

0.10

0.15

(iii) 0.001

0.00

0.05

0.10

0.15

(iv) 0.01

4 8 12 16 20 24 28 32 36 40 44 48

frame

0.00

0.05

0.10

0.15

ro
ta

ti
o
n
 e

rr
o
r

(v) 0.1

Figure 8.16: Rotation accuracy of the noisy synthetic sequences assuming calibration

g. The noise increases from noiseless in (i) to noise with a variance of σ2 = 0.1 in (v).

and again is very similar to the ground truth. The focal length estimate is now

much lower than the estimate for zero noise with the ellipse having a smaller

radius. Again the noise in�uence is visible in the rotation and translation plots

with the zig-zag lines. As with assumption a, the translation deviation from the

ground truth is most prominent and even more so now. The sensitivity of the

z-component of translation to noise is also visible here. The translation's error

variance is now σ2
t = 0.0069 which is large compared to the translation error of

et = 0.0897.
It can be concluded from this experiment, which includes controlled amounts

of measurement noise in the synthetic motion sequence, that the reconstruction

algorithm and its implementation is very robust in respect to measurement-noise

and survives all of the noise models exceptionally well. The increase in noise is

only really visible in the motion values with no clear evidence in either structure

and calibration. The robustness to measurement noise would be the result of the

batch-processing nature of the reconstruction algorithm. The batch-processing

nature of the reconstruction algorithm leads to a very large number of values
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Figure 8.17: Translation accuracy of the noisy synthetic sequences assuming calibra-

tion g. The noise increases from noiseless in (i) to noise with a variance of σ2 = 0.1

in (v).

involved in a single reconstruction process and the noise therefore averages out.

The noise averaging out for a large number of values is especially true for the

structure which is a single vector for each feature that is calculated over all of

the F frames and is not value calculated for each frame such as the motion.

The structure is therefore more resistant to the noise than the motion, as was

observed.
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Figure 8.18: Calibration parameter accuracy of the noisy synthetic sequences assum-

ing calibration g. The noise increases from noiseless in (i) to noise with a variance of

σ2 = 0.1 in (v).
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Figure 8.19: The average error (dark bar) and the error for the frame with the lowest

structure error (light bar) for the noisy synthetic sequences assuming calibration g.
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Figure 8.20: The estimated parameters for the noisy synthetic sequence with variance

σ2 = 0.1 noise assuming calibration g, given for frame 50.
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(i) First frame (ii) Last frame

Figure 8.21: Features detected and tracked on the quasi-real cube.

8.1.4 Quasi-real cube sequence

In this experiment the cube and its motion is generated with POV-Ray and the

perspective projected images all generated with POV-Ray's perspective camera

model. POV-Ray is a ray tracing program available for a variety of computer

platforms. The cube's structure, motion and the camera's calibration are all

the same as in the synthetic experiment (and the �noise� experiment). The only

di�erence in the motion sequence is that the cube has been rotated in the �rst

frame to reduce feature occlusion through the sequence and to therefore provide

more features to the tracker. The Lucas and Kanade (LK) tracker [18] imple-

mented in OpenCV is used. OpenCV is a cross-platform open source computer

vision library. The purpose of the LK feature tracker is to detect and track point-

wise features in each frame. The cube is textured with a chess-board pattern

to simplify the tracking and error calculation process by providing predictable

easy-to-track features. Since this experiment makes use of non-synthetic images

and a tracker, it therefore has an unknown amount of measurement-noise and

the possibility of erroneous tracking and feature occlusion is a reality. The LK

tracker successfully tracked 16 features, with their position in the �rst and last

frame illustrated in Figure 8.21.

The quasi-real cube sequence is now reconstructed over the 50 frames for as-

sumptions a through g, from Table 8.1, of the camera's calibration. Assumption

h is not used since the scaling of the projected features in the generated images

are not known. For a reconstruction at a certain frame the structure error is

given in Figure 8.22, the rotation error in Figure 8.23, the translation error in

Figure 8.24 and the calibration error in Figure 8.25. A set of histograms is

again provided in Figure 8.26 with the dark bar the average error over all of the

frames and the light bar the error that coincides with the frame that returned

the lowest structure error.

The results from this experiment di�er signi�cantly from the previous two.
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Figure 8.22: Structure accuracy of the quasi-real sequence.

For the �rst time the �xed calibration assumptions outperform the rest in terms

of structure accuracy. With no calibration parameters explicitly known, assump-

tion a has greater average structure accuracy than assumption f which knows

both the skew and the ratio and is almost as accurate as the average of as-

sumption g. Assumption a's best structure error is actually lower than that of

assumption g. We would expect that the extra parameters that are known with

a �xed calibration would improve accuracy but it never had a visible in�uence

with the synthetic tests.

Another di�erence from the synthetic tests is that the assumptions where

the principal point is known, d and g, does not perform as well. They performed

2nd and 3rd best after assumption h, with all parameters known, in the pure

synthetic test and now assumption d has a higher average error than assumption

b which is �xed and only knows the skew. A larger error with a known principal

point would be the result of the actual principal point not being where we expect

it to be. We assume that measurement noise or erroneous tracking has caused

the principal point to shift from where it theoretically should be, so that it is

not at the origin, i.e. the precise center of the images, anymore.
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Figure 8.23: Rotation accuracy of the quasi real sequence.

The structure error still converges to a value close to or below es = 0.2 at

frame 30, so the structure accuracy has not degraded signi�cantly from a pure

synthetic sequence to a quasi-real sequence. The average rotation errors has

also stayed more or less the same when consulting the average rotation error in

Figure 8.5 (iii) and Figure 8.26 (iii). But there is an unmistakable increase in

the translation error. Where most of the average translation errors were below

et = 0.1 for the pure synthetic experiment, they have all basically doubled to

above et = 1.5 for the quasi-real experiment. To investigate further we again

proceed to display the structure, rotation, translation and calibration values

for assumption a and g for the frame where they returned the lowest structure

error.

Assumption a returned its lowest structure error of es = 0.0606 with a

variance of σ2
s = 0.0005 at frame 30. This is more accurate than for the best

pure synthetic accuracy. The reconstructed features with a �tted �at-shaded

surface is displayed in Figure 8.27 and the estimated parameters in Figure 8.28.

We observe in Figure 8.28 (i) that the structure and rotation is very close to

the ground truth as the error values suggest. The estimated calibration ellipse is
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Figure 8.24: Translation accuracy of the quasi real sequence.

o�-center which reinforces our suspicion that the principal point is not exactly at

the center anymore. The translation �gure nicely displays the large translation

error values that were reported. The translation estimate is again visibly the

most sensitive to noise.

We now consider assumption g. Assumption g returned its lowest structure

error of es = 0.0878 with a variance of σ2
s = 0.0007 at frame 50. These values

are much higher than those returned with the pure synthetic experiment. The

reconstructed features with a �tted surface is displayed in Figure 8.29 and the

estimated parameters in Figure 8.30.

The structure values deviate slightly more from the ground truth than those

of assumption a, while the rotation value's di�erence from the ground truth is

much more visible. The translation is again dramatically more erroneous and

sensitive. The negative results from assuming to know the wrong principal point

is evident in Figure 8.30 (iv).

We conclude from this experiment that the reconstruction algorithm and

its implementation returns reliable results even when the feature tracking is

not synthetic. When it comes to noise, the translation estimates are the most
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Figure 8.25: Calibration parameter accuracy of the quasi real sequence.

sensitive and absorb most of the error. It is further illustrated that assuming a

�xed camera, when it is relevant, can improve accuracy and that auto-calibrating

the principal point leads to more accurate results than just assuming to know

a principal point that is not exact.
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Figure 8.26: The average error (dark bar) and the error for the frame with the lowest

structure error (light bar) for the quasi-real sequence.

Figure 8.27: Reconstructed quasi-real cube for frame 30 assuming calibration a.
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Figure 8.28: The estimated parameters for the quasi-real sequence assuming calibra-

tion a, given for frame 30.

Figure 8.29: Reconstructed quasi-real cube for frame 50 assuming calibration g.
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Figure 8.30: The estimated parameters for the quasi-real sequence assuming calibra-

tion g, given for frame 50.
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Pure synthetic Noisy 0.0001 Noisy 0.001 Noisy 0.01 Noisy 0.1 Quasi-real

es 0.1107 0.0880 0.0865 0.0989 0.0906 0.0606

σ2
s 0.0007 0.0009 0.0008 0.0007 0.0005 0.0005

er 0.0377 0.0129 0.0251 0.0318 0.0384 0.0316

σ2
r 5× 10−6 5× 10−6 4× 10−6 2× 10−5 0.0002 2× 10−5

et 0.0289 0.0677 0.0386 0.0295 0.0786 0.1314

σ2
t 2× 10−6 3× 10−6 3× 10−6 0.0006 0.0047 0.0023

ec 0.6213 0.1651 0.1852 0.5245 0.1518 0.2251

σ2
c 0.0 0.0 0.0 0.0 0.0 0.0

Frame 40 46 48 38 50 30

Table 8.2: Summary of results for calibration assumption a.

Pure synthetic Noisy 0.0001 Noisy 0.001 Noisy 0.01 Noisy 0.1 Quasi-real

es 0.0356 0.0428 0.0360 0.0416 0.0351 0.0878

σ2
s 9× 10−5 0.0002 0.0002 0.0001 0.0002 0.0007

er 0.0358 0.0222 0.0157 0.0504 0.0431 0.0526

σ2
r 4× 10−6 7× 10−6 3× 10−5 1× 10−4 0.0007 0.0004

et 0.0063 0.0076 0.0057 0.0216 0.0897 0.1240

σ2
t 1× 10−5 1× 10−5 1× 10−5 0.0003 0.0069 0.0013

ec 0.0863 0.1094 0.4316 0.0557 0.4061 0.4499

σ2
c 7× 10−5 2× 10−5 1× 10−5 6× 10−6 6× 10−5 5× 10−5

Frame 30 28 48 34 50 50

Table 8.3: Summary of results for calibration assumption g.

8.1.5 Comparison of calibration assumptions a and g

The results for calibration assumptions a and g, are summarized in Table 8.2

and 8.3 for easy comparison. We include the error and variance values for all the

experimental sequences for the frame in which the reconstruction returned the

lowest structure error. Note again that the reconstruction accuracies are better

for assumption g with more constraints known, the reconstruction error and

variance increases as the experiments become less ideal and that the structure

accuracy is more stable than that of the motion.

8.2 Quasi-real face sequence

We now attempt the reconstruction of a more complex scene. Toulouse de

Margerie created a 3D model of his head in POV-Ray [5] and added some motion

to display the 3D structure of his model. The objective of this experiment is
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(i) Frame 1 (ii) Frame 50

Figure 8.31: The (i) �rst and (ii) last frame of the head motion sequence with the

tracked features.

to re-create a 3D model of his face from images of a small sub-sequence of his

POV-Ray motion sequence. To be able to recognize the resulting face model,

a relatively large number of features need to be tracked and they have to be

reasonably uniformly arranged. We therefore place a grid over the face texture.

From a 50-frame sub-sequence with a continuous clear view of the face,

1098 features were successfully detected and tracked. The �rst and last frame

along with the tracked features are given in Figure 8.31. Neither the camera

calibration and motion during the sub-sequence is known, nor the 3D position of

the tracked 2D features, therefore an error comparison is not possible. Observing

resemblance to the source motion sequence will have to do for an accuracy test.

The best reconstruction was obtained by assuming a camera with �xed cali-

bration and with skew s = 0 and ratio r = 1. Auto-calibration returned a focal

length of α = 0.9121 and a principal point of x0 = 0.1096 and y0 = 0.02778
relative to the center of the image plane after rescaling. The re-created 3D

face is shown in Figure 8.32. The model was obtained by simply �tting a �at

shaded surface on the reconstructed features. Despite an arguable resemblance

to Toulouse without the correct face texture applied, the 3D model is de�nitely

a face and has the right dimensions. We can clearly make out complex facial

features like eyes, nose and mouth. Applying the reconstruction algorithm to
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(i) Front view (ii) Side view

Figure 8.32: Reconstructed head structure assuming a �xed camera calibration with

skew s = 0 and ratio r = 1.
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Figure 8.33: Reconstructed head motion assuming a �xed camera calibration with

skew s = 0 and ratio r = 1.

a denser arrangement of more features and applying the face texture, the 3D

model is sure to have undeniable resemblance.

With the ground truth of the motion not known, the calculated rotation

axes and translation are plotted for each frame in Figure 8.33. Note that the

translation values are not normalized since nothing is being compared, unlike

with the previous translation plots. The lines are smooth in the motion �gures

and are representative of the smooth motion of the head. The motion in the sub-

sequence resembles orbital motion around the y-axis which is visible with the

signi�cantly higher ay values of the rotation axes. The reconstruction further

interpreted a slight translation in the x direction.

This experiment demonstrates that the reconstruction algorithm manages

more complex structures and can be applied with con�dence.
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(i) Frame 1 (ii) Frame 50

Figure 8.34: The (i) �rst and (ii) last frame of the Lego motion sequence with the

tracked features.

8.3 Real sequences

This section covers two more reconstruction experiments on real sequences that

thoroughly test the capability of the SfM algorithm. The �rst experiment is

performed on a sequence of a structure built from Lego. The �nal experiment

is from an archaeological excavation recorded on a hand-held camera.

8.3.1 Lego sequence

This experiment examines the reconstruction of a Lego structure rotating on a

turntable, i.e. orbital motion, for 50 frames. The Lego structure along with the

tracked features can be seen in Figure 8.34. The LK feature tracker successfully

tracked 145 robust features.

Inspection of Figure 8.34 shows that the straight real-world vertical lines

are curved, i.e. barrel distorted, as if mapped around a sphere. This e�ect is

especially visible with the right vertical edge of the right-hand cabinet. This

distortion is the result of lens distortion � a common occurrence when working

with real images and is not present in synthetic or quasi-real motion sequences

(unless simulated on purpose). Lens distortion is not included in our camera

model, nor is it recti�ed with the implementation of the reconstruction algorithm
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(i) Front view (ii) Top view

Figure 8.35: Reconstructed Lego structure assuming a �xed camera calibration with

skew s = 0 and ratio r = 1.

itself. Since we use a linear camera model (no radial distortion) it is of interest

to learn how much radial distortion a�ects the reconstruction. Of course it is

possible to remove radial distortion through a calibration process � the main

idea behind this study is to investigate the use of uncalibrated cameras.

With no ground truth available for this experiment, the reconstructed struc-

ture is compared with the images to get a sense of accuracy. Based on this

criteria, the most accurate reconstruction was the one obtained by assuming

that all the cameras have a �xed calibration with skew s = 0 and ratio r = 1.
The camera calibration was further estimated by auto-calibration to have a

principal point of x0 = −0.0029 and y0 = 0.1087 relative to the center of the

image plane after rescaling and focal length, in terms of the pixel dimension

in the x-direction, of α = 0.9574. The reconstructed structure is displayed in

Figure 8.35. The reconstructed structure looks very convincing with no ob-

vious deviation from the images or outlier features. Figure 8.35 (ii), the top

view, is especially impressive � illustrating the large depth di�erence that was

reconstructed and the right angle between the two sides of the Lego structure.

The reconstructed motion is illustrated in Figure 8.36 by plotting the rota-

tion axes and translation. Since there is no ground truth available the validity

of the estimates motion cannot be proved. Again, with no comparison taking

place, the translation values are not normalized. The Lego motion sequence

consists of orbital motion about the y-axis which is visible in the rotation plot

with its large values for the y-component of the rotation axes. There is also

a slight z-component to the rotation axes that could mean that the rotation

platform is slightly tilted. The rotation is also clearly constant according to the

plot. The translation reconstruction shows a slight translation in the x-direction
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(i) Rotation axes (ii) Translation

Figure 8.36: Reconstructed Lego motion assuming a �xed camera calibration with

skew s = 0 and ratio r = 1.

which may, or may not, be correct for the motion sequence with orbital rotation

about the y-axis. The turntable was hand-cranked and this can be seen with

the slightly jerky lines in the motion �gure.

The reconstruction of the structure and motion of the real Lego motion

sequence looks to be a success when using the source images as comparison,

with no ground truth available. This in spite of the presence of lens distortion.

8.3.2 Medusa sequence

The second real test sequence was obtained from an archaeological excavation

in the ancient city of Sagalassos in Turkey. This experiment uses 100 frames

of a video of the head of Medusa decorating a fountain [24]. This video was

recorded by a person walking with a hand-held camera and the reconstruction

will surely test the versatility and robustness of our algorithm. The LK feature

tracker successfully detected and tracked 728 features over the 100 frames. The

Medusa head, along with the tracked features, can be seen in the �rst and last

frame of the sequence in Figure 8.37. Note that since this is a real test sequence

with no arti�cial markers, the reconstruction does not include many visible facial

features.

Again we have no ground truth data and compare the reconstruction with

the source video for a measure of accuracy. The reconstruction most resembling

the source video was obtained by assuming a camera with skew s = 0, ratio
r = 1 and the rest of the calibration parameters not �xed. The choice of skew

s = 0 and ratio r = 1 seems to be a reliable assumption for unknown calibration.

Auto-calibration calculated a focal length, in terms of the pixel dimension in the

x-direction, of α = 0.861 and the principal point of x0 = 0.0056 and y0 = 0.0369,
relative to the center of the image plane after rescaling, for the the reference

frame. A front and side view of the reconstruction is given in Figure 8.38. The
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(i) Frame 1 (ii) Frame 100

Figure 8.37: The (i) �rst and (i) last frame of the Medusa motion sequence with the

tracked features.

(i) Front view (ii) Side view

Figure 8.38: Reconstructed Medusa structure assuming a camera calibration with

skew s = 0 and ratio r = 1.

reconstructed features are �tted with a �at-shaded surface to make the scene

more visible. The Medusa head is clearly visible on the reconstructed wall, in

Figure 8.38 (i), with the hair nicely textured. The right half of the face can also

be seen in the reconstruction with a hint of the eye and mouth. The side view

in Figure 8.38 (ii) gives a nice idea of the depth of the face.
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Figure 8.39: Reconstructed Medusa motion assuming a camera calibration with skew

s = 0 and ratio r = 1.

The reconstructed motion for each frame is given in Figure 8.39 with the

rotation axes in Figure 8.39 (i) and the translation in Figure 8.39 (ii). The lines

in the �gure are very jerky which accurately represents the shakiness of the video

�lmed by a walking person. The source video displayed orbital motion about

the y-axis and translation in the x-direction, with the cameraman focusing on

the Medusa while walking around it, and this is clearly visible in the motion

plots with the large y-component of the rotation axes and the slight translation

in the x-direction.

This experiment con�rms the robustness and the versatility of our algorithm

since a real motion sequence from a hand-held camera, of unknown calibration,

in motion can be accurately reconstructed.

8.4 Summary of the metric reconstruction

results

The metric reconstruction system was tested on various data sets, varying from

the ideal to the unfavorable and the ill-de�ned in terms of measurements, feature

tracking and calibration parameters. From these metric reconstruction exper-

iments we observe that the reconstruction algorithm and its implementation

performs well for synthetic, noisy, quasi-real and real data.

We conclude from the series of cube experiments that the more calibration

parameters you know, the greater the reconstruction accuracy � but, if the prin-

cipal point (x0 and y0) and the focal length in terms of the pixel dimension in

the x-direction (α) are not exactly known, better results are obtained by auto-

calibrating them instead of assuming a wrong value. For all of the sequences

where the camera calibration was unknown, the best results were obtained by
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assuming a calibration of skew s = 0 and ratio r = 1. This assumption is there-

fore recommended for reconstructions where the camera calibration is unknown.

We further observe that the structure accuracy stays more or less the same for

less ideal experiments while the motion error and error variance increase as the

experiments become less ideal. The quasi-real, face sequence results showed

that the system is capable of reconstructing complex structures such as facial

features. Finally the real-world sequences show that the system is robust and

versatile enough to reconstruct real scenes under real conditions with unknown

calibration.

This completes our metric reconstruction experiments; next we focus on

motion segmentation.
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(i) First frame (ii) Last frame

Figure 8.40: Features detected and tracked on the quasi-real cube.

8.5 Cube Sequence for motion segmentation

In this section we again use quasi-real cubes, except here the motion segmen-

tation algorithm and its implementation will be put to the test. This section

consists of two tests. In the �rst we attempt to separate the features on a cube

in motion from those of the stationary background and in the second we attempt

to segment the features from four cubes with di�erent motion.

8.5.1 Background removal

The motion sequence used in this experiment is the same one from Section 8.1.4,

the only di�erence being that the motion now takes place in front of a station-

ary background (added with POV-ray). The LK feature tracker successfully

tracked 84 features. These features belong to both the stationary background

and the cube in motion and have to be segmented before 3D reconstruction is

possible. The segmentation of foreground features (cube features) from those

of a background is also called background removal. The �rst and last frames of

the scene, along with the tracked features, are shown in Figure 8.40. We now

apply motion segmentation.

The result of motion segmentation, in the �rst and last frame, is visible in

Figure 8.41. The features were successfully segmented into 39 blue features

belonging to the background (referred to as motion 1 in the �gure) and 43 red

features belonging to the cube (referred to as motion 2 in the �gure). Outlier

removal did not remove any features and neither were there any misclassi�ed

features.

The perfect result of this experiment clearly shows that the motion segmen-

tation is more than capable of segmenting motion from a stationary background

under near-ideal circumstances.
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(i) First frame

(ii) Last frame

Figure 8.41: Motion segmentation of quasi-real cube.

8.5.2 Multiple motion segmentation

We now face a more complex problem. This experiment attempts to segment

the features of four cubes with di�erent motions. This motion sequence consists

of 50 frames of 640 × 480 images created with POV-Ray. The LK tracker

successfully detected and tracked 191 features that belong to all four of the

cubes. The �rst and last frame of the scene along with the tracked features can

be seen in Figure 8.42. We now apply motion segmentation.

The motion segmentation result for the �rst and last frame is visible in

Figure 8.43. The algorithm segmented 72 features to cube 1, 29 features to 2,

48 features to cube 3 and 29 features to cube 4. This leaves 13 features that are

not accounted for and therefore were thrown out in the outlier removal process.

On closer inspection of the outliers, 12 were correctly assigned and unnecessarily
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(i) First frame (ii) Last frame

Figure 8.42: Features detected and tracked on 4 quasi-real cube.

removed. The last remaining feature was assigned to cube 2 while located on

cube 3 and was successfully picked up by outlier removal.

The motion segmentation of quasi-real motions, based on this experiment,

can be considered reliable since after outlier removal all of the features were

assigned to their correct motion.

8.6 Real sequence for motion segmentation

We now attempt motion segmentation for real motion sequences. The objective

of this experiment is to segment the rotating Lego structure of Section 8.3.1

from the background. The LK feature tracker tracked 230 features, a mix of

Lego and background, that can be observed for the �rst and last frame in Figure

8.44.

The motion segmentation results presented for the �rst and last frame can be

seen in Figure 8.45. The algorithm assigned 86 blue features to the background

(referred to as motion 1 in the �gure) and 143 red features to the Lego (referred

to as motion 2 in the �gure). This leaves one feature thrown out with the outlier

removal procedure. At closer inspection this feature was correctly assigned and

unnecessarily removed.

Examining Figure 8.45 we observe that 2 features on the upper left corner of

the Lego are erroneously assigned to the background. Fortunately none of the

background's features were assigned to the Lego and it (the Lego structure) can

still be fully reconstructed without a problem. The background, on the other

hand, undergoes no motion and therefore a metric reconstruction is anyway not

possible.

The motion segmentation performed reasonably well for this real sequence

with metric reconstruction still possible for the result. Still, an inspection of

the motion segmentation results for real sequences is recommended, since it is
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(i) First frame

(ii) Last frame

Figure 8.43: Motion segmentation of 4 quasi-real cube.

(i) First frame (ii) Last frame

Figure 8.44: Features detected and tracked on Lego.
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(i) First frame

(ii) Last frame

Figure 8.45: Motion segmentation of Lego.

possible for the outlier removal process to miss misclassi�ed features.

8.7 Summary of the motion segmentation

results

The motion segmentation algorithm and its implementation, just as the metric

reconstruction system, were exposed to various types of data. The experimental

results are encouraging, with good performance in the quasi-real experiments

and slightly worse performance for the real experiment. The motion segmenta-

tion system is reliable for background removal and multiple motion segmentation

for quasi-real data, but have to be double-checked for real data. The removal
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of potential outliers after motion segmentation was shown to be of great impor-

tance.

This concludes the motion segmentation experiments and the chapter on

experimental investigation.



Chapter 9

Conclusion

This thesis set out to recover the motion and 3D structure of multiple rigid

objects, each moving independently, up to a similarity transformation. These

objects are observed as collections of features tracked in a single-camera video

sequence, or images from multiple cameras. We assume a perspective camera

model but do not require the cameras to be calibrated.

Two popular SfM approaches exist�the Kalman �lter approach introduced

by Azarbayejani and Pentland [1] and the matrix factorization approach intro-

duced by Tomasi and Kanade [34]. The Kalman �lter approach is a sequential

algorithm that does not allow for motion segmentation. It also assumes a small

change in feature positions between frames, takes a while to converge and as-

sumes a camera (or cameras) with �xed calibration. The matrix factorization

algorithm, on the other hand, is typically a batch processing algorithm. It

allows for motion segmentation and readily accepts images from very di�erent

viewpoints. It requires few frames for a solution, and supports cameras with dif-

ferent calibration parameters. Since a solution can be obtained with just a few

frames, the matrix factorization solution can be used to initialize a sequential

method such as the Kalman �lter.

Once the set of projective depths has been calculated, a matrix factorization

implementation gives a reconstruction up to a projectivity. The main di�culty

is the upgrading from a projective to a metric reconstruction. The �rst di�culty

is to ensure that the reconstructed object and camera centers are on the same

side of the plane at in�nity in the projective reconstruction. This is enforced by

means of the cheiral inequalities.

For the upgrading (or metric recti�cation) process, ideas from automated

camera calibration were used, based on the absolute dual quadric. These ideas

were �rst introduced by Triggs [37] and modi�ed with an additional performance

enhancing constraint, again using the cheiral inequalities mentioned above. The

136
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basic idea is that the absolute dual quadric is invariant to similarity transforma-

tions and contains the absolute conic and the plane at in�nity which are both

required for a metric recti�cation.

The fact that the camera calibration parameters are assumed unknown is of

importance as it makes for a versatile system. Our system allows the user to

provide any known parameters, but does not demand such information. The

worst case is if a motion sequence is obtained from multiple cameras, each with

a di�erent calibration and all calibration parameters unknown. In this situa-

tion auto-calibration cannot be performed and the best possible solution is a

projective reconstruction. The situation becomes easier when a single camera

is used or multiple cameras with a �xed calibration (the same in all frames)

are used, but all the calibration parameters still unknown. In this situation

a metric reconstruction is possible using a minimum of 3 frames. Our experi-

ments show that it typically achieves the weakest, but probably still acceptable,

reconstruction.

We also experimented with situations where di�erent combinations of pa-

rameters are assumed to be known. It is found that the more parameters that

are known, the better the reconstruction accuracy. It is further found that just

assuming the widely applicable zero skew s = 0 and unit pixel aspect ratio r = 1
yields reliable and accurate reconstructions and is recommended if no calibra-

tion parameters are known. In addition, the fewer parameters that are known,

the more frames that are needed to estimate the metric reconstruction. This

ranges from a minimum of two frames, with all parameters known, to up to to

a minimum of eight frames, with parameters not �xed and only one known.

Note that under certain conditions, depending on the motion in a video

sequence, a metric reconstruction is not possible. These motions are referred

to as critical motions. In these conditions the �nal reconstruction is somewhere

between projective and metric.

It was further demonstrated that the reconstruction is robust to random

noise. Only when the variance exceeds σ2 = 0.001 do we notice a signi�cant

deterioration in the accuracy. The translation values tend to be the most sen-

sitive.

For motion segmentation, we adopted ideas from Costaira and Kanade [4]

that assumed an orthographic camera model and modi�ed them for the per-

spective camera model. Our experiments show that the motion segmentation

process, including outlier removal, is robust for objects with independent mo-

tion.

One practical application of the batch process described here, is it to use it

with a sequential method such as the Kalman �lter approach to SfM, to speed

up convergence. The system can also be used purely to auto-calibrate cameras
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or segment features into di�erent objects each to be reconstructed separately

by any other SfM system. Another important application is the reconstruction

of archaeological and historical sites from photographic evidence. We provide

experimental evidence for the e�cacy of this technique.

9.1 Future work

This work leaves considerable room for future research:

Dense feature reconstruction

The SfM system developed in this work makes use of the LK feature tracker

which is a sparse optical �ow tracker. The reconstruction process could just as

well be applied to a dense optical �ow tracker that reconstructs all of the pixels

for each frame in a sequence. This would result in greatly increased detail for

successful reconstructions. Note that the uncertainty in the input data would in-

crease with a dense feature reconstruction, since feature correspondences would

become more unreliable.

Segmenting dependent motion

The current motion segmentation assumes independent motion; objects with

dependent motion or overlapping motion subspaces will only confuse it. A

modi�cation to allow the accurate segmentation of dependent motion, and a

method of knowing their dependencies, would allow for the reconstruction and

assembling of articulated objects. This would enable the reconstruction of more

complex objects by approximating them as a single articulated object. A possi-

ble example would be the recognition of sign language performed by a human,

represented as an articulated 3D model.

Reconstruct more complex motions

This work is limited to rigid objects. An extension that would allow the 3D

reconstruction of more complex objects and motions, e.g. elastic objects under-

going deformation, could also be considered. This is undoubtedly a challenging

problem but would have many important applications. An example is the ac-

curate 3D reconstructing of human organs for medical examination.

Sequential algorithm

In [19] Morita and Kanade focus on developing the matrix factorization batch

programming method into a sequential algorithm. The original Tomasi and



Chapter 9. Conclusion 139

Kanade algorithm is robust and accurate but is di�cult to apply to real-time

applications and is thus limited to o�-line computations. The reason for this

limitation is that it is based on a batch-type operation with the computational

e�ort further dominated by the large cost of the SVD. The sequential method

has results very close to the accuracy and robustness of the original method.

The key to developing such a sequential method is to observe that the shape

of a rigid object does not change over time. The shape space is stationary

and it should therefore be possible to derive the structure for frame f from the

structure of the previous frame without performing expensive computations.

In the sequential algorithm the original SVD is replaced with an updating

computation for only the four dominant eigenvectors which can be performed

in O
(
N2
)
operations compared with the full SVD requiring O

(
FN2

)
opera-

tions, where N is the number of features and F the total number of frames.

This method produces estimates of shape and motion at each input frame. A

covariance-like matrix is stored instead of feature positions (measurement ma-

trixW ), and so its size remains constant as the number of frames increase. This

also allows the algorithm to handle in�nitely large sequences.

Note that the Morita-Kanade sequential algorithm is based on an ortho-

graphic camera, which is not as complex as the perspective camera, and excludes

the complex metric recti�cation of a projective reconstruction. This sequential

algorithm, extended successfully for perspective cameras, should increase the

application potential of the algorithm presented in this work.
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Appendix A

Software overview

The supplementary information provided in this appendix act as a guide for this

study as supplied on CD. The CD contains all resources including experimental

sequences, SfM system developed and literature used. The directory structure

of the CD is shown in Figure A.1. The CD resources are discussed in Section

A.1 and a guide the SfM system provided in Section A.2.

Figure A.1: Supplementary CD directory structure.

A�1



Appendix A. Software overview A�2

A.1 Resources

This document, in electronic format, is provided in the root directory of the CD.

All literature used in this study, that is available in electronic format, is provided

under papers/. The videos and images that were used for experimentation in

Chapter 8 are provided under media/. Any POV-Ray scripts that were used

to generate images are also included there. The SfM system that was developed

as an implementation of this study and used for experimentation, and all scripts

used to analyze the system's results are provided (including source code) under

fas3d/. Some of the software required for the SfM system and the compilation of

this document is provided under software/. This document was developed with

LYX, a cross platform and open source document processor. This document's

source is located under thesis/.

A.2 Guide to the SfM system

The SfM system was developed in Python 2.5 and requires a compatible Python

interpreter. The following open source Python packages are used in the system

and need to be installed:

� CVXOPT 0.9 for linear programming during quasi-a�ne reconstruction

� Matplotlib 0.90 for the plotting of the experiment graphs

� MayaVi 1.5 for displaying the 3D reconstructed structure

� Numpy 1.0.3 for various mathematical functions

� OpenCV 1.0 for the LK feature tracker and the calculation of fundamental

matrices

� PyVTK 0.4.74 for converting 3D feature positions to a format usable by

MayaVi

� SciPy 0.5.2 for the COBYLA (Constrained Optimization by Linear Ap-

proximation) nonlinear optimizer used during auto-calibration and for text

�le input and output

� wxPython 2.8.4.0 for generating the system GUI

All of these packages are found in the Ubuntu Linux repository. Since Python

and all of the listed packages are cross-platform, the SfM system can be run on

multiple platforms.
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The SfM system is located in the fas3d/ directory on the supplementary

CD, shown in Figure A.1. The main system modules are located in the root di-

rectory, additional supporting modules are located in the jhpak/ subdirectory,

the �les of the 2D features to be reconstructed are located in the data/ subdi-

rectory, all the reconstruction results are stored in the results/ subdirectory

and the Python scripts that analyze the results are stored in the analysis/

subdirectory.

A.2.1 Module descriptions

The system performs 3D reconstruction from 2D features which it accepts in a

single text �le. The feature �le is typically located in the data/ subdirectory

and has a table structure � each column represents the trajectory of a single

feature and each row represents a frame and lists the coordinates of all features

for that frame.

We provide a short description for the most important Python modules of

the system:

� ReconFrontEnd.py creates and manages the user interface for a single

rigid object

� ReconMultiFrontEnd.py extends ReconFrontEnd.py to create and man-

age the user interface for multiple rigid objects

� SingleBodyReconstruct.py manages the reconstruction of features be-

longing to the same rigid object

� MultiBodyReconstruct.py extends SingleBodyReconstruct.py to man-

age the reconstruction of multiple rigid objects

� getfeat_text.py retrieves the 2D features from �le

� MotionSegmentation.py segments the 2D features into di�erent motions

(rigid objects)

� ./jhpak/NormalizedCuts.py performs the graph cutting tasks related to

the spectral clustering algorithm for motion segmentation

� ProjectiveReconstrut.py does a projective reconstruction of a single

rigid object

� MatrixFact.py performs tasks related to the matrix factorization algo-

rithm, e.g. calculating projective depths

� QuasiAffineReconstruct.py upgrades a projective reconstruction to a

quasi-a�ne reconstruction
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� AutoCalibration.py recti�es a projective or quasi-a�ne reconstruction

to a metric or a�ne reconstruction through auto-calibration

� ./jhpak/jhmayavi.py uses MayaVi and VTK to generate 3D �gures of

the reconstructed structure

Following the reconstruction of the features assigned to rigid object i, all of the

estimated results (if desired) are written to a text �les:

� ./results/Featresultsi contains the segmented features

� ./results/Sresultsi contains the reconstructed structure

� ./results/Presultsi contains the projection matrix for each of the F

frames, the projection matrix for frame f stores its reconstructed motion

and camera calibration, P f = Kf
[
Rf | tf

]
� ./results/K1resultsi contains the �rst (reference) camera calibration

matrix K1 that is required to calculate each of the succeeding calibration

matrices Kf

A.2.2 Script description

Additional scripts are provided for functionality relating to the SfM system and

to perform analysis of the system's results. We provide a short description of

each:

� Tracker.py tracks features across a sequence of images

� Video2Imgs.py converts a video to a sequence of images

� ./analysis/Experiments.py creates pure and noisy cube data sets

� ./analysis/Analysis.py analyzes and plots the reconstruction results

for a synthetic cube sequence

� ./analysis/Analysis_quasi.py analyzes and plots the reconstruction

results when the ground truth is known

� ./analysis/Analysis_real.py analyzes and plots reconstruction results

when no ground truth is known

� ./analysis/MetaAnalysis.py performs multiple reconstructions and re-

construction result analysis

� ./analysis/MotsegAnalysis.py analyzes and plots motion segmenta-

tion results
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(i) Data tab (ii) Reconstruction tab

(iii) Camera tab (iv) Advanced tab

(v) Objects tab

Figure A.2: The SfM GUI with tabs.

A.2.3 Graphical user interface (GUI)

The SfM system comes with its own GUI for user-friendly operation. The GUI

is named fas3d (factorize auto-calibrate segment 3D) pronounced �fazed�. It was

developed using wxPython and is initialized by running fas3d (fas3d.bat or

fas3d.pyw under Windows). The GUI consists of a number of tabs, each tab

contains user de�nable options that in�uence the reconstruction process and

results. The GUI and its di�erent tabs are displayed in Figure A.2. Note that

all of the GUI images in this section were taken of the GUI run under Ubuntu

7.10 and appearance may di�er under other operating systems.

To attempt a reconstruction � we start in the �DATA� tab, Figure A.2 (i),
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and select which text �le, containing the 2D features for all of the frames, should

be reconstructed. There is also the option to select which subset of frames are

to be considered in the reconstruction process. We proceed to the �RECON-

STRUCTION� tab, Figure A.2 (ii), and select the type of reconstruction from

the list (in decreasing quality): metric, a�ne, quasi-a�ne, projective and 2D.

The orientation of the quasi-a�ne solution to be considered is also selected, the

options are either positive, negative or the recommended option of selecting the

best of both automatically. In the �CAMERA� tab, Figure A.2 (iii), one can

choose whether the camera observing the scene has a �xed or variable calibra-

tion and which calibration parameters, if any, are known. The �ADVANCED�

tab, Figure A.2 (iv), contains options for advanced users. It makes it possible

to change the image standardization size, the minimum distance of a feature

from the epipolar line before it is considered an outlier, the desired projection

depth precision, the minimum cheirality of the �nal solution and the output

verbosity during reconstruction. Finally, the �OBJECTS� tab, Figure A.2 (v),

is where the observed number of independent motions or rigid objects are indi-

cated and it contains further advanced options relating to motion segmentation.

It provides options for selecting a motion segmentation error, the dimension of

the motion subspaces and the severity of outlier removal. A GUI con�guration

can be saved to disk on the menu bar, File→ Save con�guration �le, and later

loaded, File→ Open con�guration �le.

When the desired feature �le is chosen and the options changed to the desired

values � click on the �GO� button to begin reconstruction. When 3D recon-

struction is completed, all of the calculated motion segmentation, structure,

motion and camera calibration values are written to �le and the 3D structure

is displayed using MayaVi. The GUI displaying the 3D structure, following the

reconstruction of the face sequence from Section 8.2, is given in Figure A.3.
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Figure A.3: GUI displaying the reconstructed 3D structure �tted with a �at-shaded

surface.
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