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Abstract 

A Banach space X over the field of real numbers ffi. has the Radon-Nikodym property 

(RNP) if for each finite positive measure space (0, I:,µ) and each X-valued, µ-continuous 

measure v on L; with bounded variation I vi, there exists a Bochner integrable function 

f : 0 --t X such that v (E) = f sf clµ for E E I:. 

The RNP has become a geometrical property when the following result was introduced: 

A Banach space X has the RNP if and only if each non-empty bounded subset of X is 

den table. 

Futhermore, a Banach space X has the Krein-Milman property (KMP) if each closed 

bounded convex subset of X is the closed convex hull of its extreme points. 

Lindenstrauss proved that if each nonempty closed bounded convex subset of a Banach 

space X contains an extreme point, then X has the Krein-Milman property. In particular, 

a Banach space with the RNP has the KMP. The converse remains an open question. In 

this thesis we examine conditions under which the KMP implies the RNP. 
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Opsomming 

Gestel X is 'n Banach-ruimte oor die liggaam R Dan het X die Radon-Nikodym-eienskap 

as vir elke eindige positive maatruimte (0, E, µ) en vir elke µ-kontinue aftelbaar addi­

tiewe maat v: E ~ X met begrensde variasie lvl, daar 'n Bochner-integreerbare funksie 

f: 0 ~ X bestaan sodanig dat v(E) = fe fdµ vir elke EE E. 

Die RN-eienskap het van die maatteoretiese na die meetkundige verskuif toe Rieffel aange­

toon het dat 'n Banach-ruimte X die Radon-Nikodym eienskap het as en slegs as elke 

nie-lee begrensde deelversameling van X induikbaar is. 

Verder, 'n Banach-ruimte X het die Krein-Milman-eienskap as elke nie-lee geslote be­

grensde konvekse deelversameling van X gelyk is aan die geslote konvekse omhulsel van 

sy ekstreempunte. Lindenstrauss het bewys dat as elke nie-lee geslote begrensde konvekse 

deelversameling van 'n Banach-ruimte X 'n ekstreempunt bevat, dan het X die Krein­

Milman-eienskap. In die besonder geld dat 'n Banach-ruimte met die Radon-Nikodym 

eienskap ook die Krein-Milman-eienskap het. 

Omdat die omgekeerde in die algemeen nie geld nie, word in hierdie tesis onclersoek in­

gestel na voorwaardes waaronder Krein-Milman wel vir Radon-Nikodym impliseer. 
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Historical Background 

There appear to be three aspects to the theory of differentiation of vector-valued mea­

sures, namely analytic, operator theoretic and geometric. While these aspects are 

mutually interrelated, we di cuss the analytic and geometric aspects only and separately 

in this thesis. 

The Radon-Nikodym theorem (also known as the Lebesgue-Nikodym theorem), was proved 

first by H. Lebesgue in 1904, in [29], where he gave a necessary and sufficient condition for 

a function defined on [0,1] to be expressible as an indefinite integral. In the following year, 

G . Vitali in [52] characterised such functions as the now familiar absolutely continuous 

functions. 

These results were extended by J. Radon in 1913 in [39], for a Borel measure in Euclidean 

space. They were further extended by 0. M. Nikodym in the general form in [34]. 

N. Dunford and B. J. Pettis in 1940, extended the Radon-Nikodym theorem for vector 

measures m with values in a separable dual Banach space, absolutely continuou with 

respect to a positive measureµ, such that JJm(E)JI < aµ(E) for E E R (a ring) and for 

ome a> 0. 

An extension of the Radon-Nikodym theorem for finitely additive measures was given by 

S. Bochner in [3], and by S. Bochner and R. S. Phillips in [4] . 

Not too surprisingly, the start of the theory of a vector-valued Radon-Nikodym theorem 

coincides with the introduction of the first vector-valued integration theory by S. Bochner. 

Bochner notes that if every X-valued function of bounded variation defined on [0,1] is dif­

ferentiable almost everywhere then each X-valued absolutely continuous function on [O 1] 

can be recovered from its derivative via the Bochner integral, where X is a Banach space. 

It was left open, however, whether any infinite dimensional Banach space had the afore­

mentioned property (called by some the Gel'fand-Frechet property, abbreviated GFP). 

J. Clarkson showed then that every uniformly convex Banach space is a Gel'fand-Frechet 

(GF) space. He also observed that l1 is a GF space, but Co and L1 [0, 1] are not. 

After the results of N. Dunford and B. J. Pettis [16], and those of Phillips [37] in 1940, 

on the representability of linear operators on L 1(µ) as Bochner integrals , however , few 
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direct substantive advanc s were noted until the late 1960's. N. Dunford and M. Morse 

extended Clarkson's obs rvation on li to the class of Banach spaces with boundedly com­

plete Schauder basis, (the Schauder basis (xn) is boundedly complete if for any equence 

( an)n~I of scalars such that supn_, II En=l anXn II < oo, then E:=l anXn converges). They 

also showed that Banach paces with boundedly complete bases are GF space . 

I. M. Gel'fand showed that £ 1 [0, l] was not isomorphic to any dual space. Furthermore, 

Bochner and Taylor has shown that the GF spaces were the same as those Banach spaces 

X with the property that , given a countably additive X-valued map F defined on a e7-

algebra, possessing finite variation IFI, then there exists a Bochner IF I-integrable function 

f such that F(A) = JA f di Fl for each A in the domain of F (this property is called the 

Radon-Nikodjrn Property). It is then from this point that we will build our discussion 

on the analytical aspects. 

On the geometric aspects, a great break-through in the theory of Radon-Nikodym was 

due to M. A. Rieffel who recovered a classical differentiation theorem of Phillips by intro­

ducing the geometric notion of dentability. 

In 1967, M. A Rieffel tied the Radon-Nikodym theorem (RN-theorem) in Banach spaces 

to the geometry via th notion of dentability, in [40]. The establishment of a close interre­

lationship between the Radon-Nikodym theorem and the Radon-Nikodym Property, and 

the geometry of Banach spaces, emerged from Rieffel's efforts. This is then the aspect of 

the RN-theorem that has seen the most spectacular advances in the recent years . 

An immediate consequence of Rieffel's Dentability theory is as follows: 

If every bounded subset of a Banach space is dentable, then the Banach space po sesses 

the RNP. 

After this result appeared there was a period of absorption of the notion of dentability. 

Then in 1973, Hugh Maynard introduced the notion of e7-dentability and characterised 

Banach spaces with the R P as spaces where bounded sets are e7-dentable. 

During 1973, W. J. Davis and R. R. Phelps, and independently E. Huff, proved the con­

verse of Rieffel's results and it states the following: 

ix 
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If a Banach space possesses the RNP, then every bounded non-empty subset of the Ba­

nach space is dentable. The combined effect, is thus: 

A Banach space possesses the RNP if and only if every bounded non-empty subset is 

dentable. 

The concurrent geometrical advances of J. Lindenstrauss and others on the existence of 

extreme points for not necessarily compact (closed bounded) convex subsets of certain Ba­

nach spaces, induced considerable research activity. A coherent picture of Banach spaces 

having the RNP developed from operator, martingale and geometrical perspectives. 

By the mid 1970's, the broad strokes were in place and a period of re-evaluation and re­

finement began. One of the upshots was the localisation of many of the early theorems on 

Banach spaces to the corresponding ones for closed bounded convex sets. What emerged 

was an elegant and comprehensive theory of sets with the RNP. By the late 1970's, em­

phasis shifted from the study of sets with the RNP, which until then had flourished, to 

an analysis of their place in the larger functonal analysis picture, especially their role in 

the structure of Banach spaces. 

This is where our discussion will commence, by using most of these results without prov­

ing them. This historical background was extracted from [14], which is an excellent source 

of information on this topic. 
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Introduction 

In this thesis we discuss the equivalence between the Radon-Nikodym Property (RNP) 

and the Krein-Milman Property (KMP) in Banach spaces and in their dual spaces. We 

will investigate when and in what spaces these properties are and are not equivalent . Our 

main aim is to investigate the conditions under which these two propertie are equivalent 

in a Banach space. 

The first chapter deals predominantly with the concepts and definitions necessary for 

a reader to get acquainted with the subject , and it lays a firm foundation for the rest 

of this thesis. As mentioned before, the Radon-Nikodym theorem is important and it is 

the base of our discussion for the RNP. The Radon-Nikodym Property and all t he known 

properties that are equivalent to the RNP, and those that are implied by the RNP, in 

both a Banach space X and its topological dual Banach space X* , are being discussed 

in the first chapter. The concept of dentability, introduced by M. A. Rieffel, will be 

discussed in an attempt to find properties equivalent to the RNP in a Banach space. On 

the other hand the separability property will be the backbone of those properties in 

t he dual Banach pace , equivalent to the RNP. 

Chapter two deals with Banach spaces and their topological dual spaces lacking the RNP 

and conditions sufficient for a Banach space to lack the RNP. It gives an idea as to how 

to distinguish between Banach spaces with and those without the RNP, and properties 

equivalent to and those not equivalent to the RNP. Some examples are given which are 

really useful to a better understanding of the properties and confirmation of that theory. 
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In the third chapter, we introduce the KMP (Krein-Milman Property), which is a prop­

erty generally implied by the RNP. The existence of extreme points is used to characterise 

those closed bounded and convex sets, and Banach spaces, with the KMP. 

The fourth and fifth chapters are aimed at discussing the lack of the KMP and of both the 

KMP and the RNP, respectively. The theory of martingales and trees will be introduced 

to characterise Banach spaces failing both the RNP and the KMP. 

The most important chapter of this thesis is the sixth, in which the equivalence of the 

RNP and the KMP is dealt with in depth, along with all other properties, that are equiv­

alent to both these two. Restrictions and conditions are imposed on Banach spaces and 

their dual Banach spaces, so as to ensure an equivalence between the RNP and the KMP 

in these spaces. Those restrictions and conditions are discussed in chapter six as well. 

We also consider some applications of the Radon-Nikodym theorem, in the last chap­

ter of this thesis, namely chapter 7. We are looking at the applications to Business 

Mathematics, amongst others, in this chapter and few applications in Pure Mathematics 

itself. 
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Chapter 1 

The Radon=Nikodym Property 

In this chapter we discuss the Radon-Nikodym Property and properties equivalent to it. 

We shall first discuss Rieffel's approach to the general Radon-Nikodym theorem for the 

Bochner integral, dating from 1967. Subsequently, the concept of dentability will be intro­

duced, and its role in the theory of the Radon-Nikodym Property (RNP) in real Banach 

spaces will be established. 

Notations and terminology: 

Throughout this thesis, 0 will denote a non-empty point set on which no topological 

structure is required. The symbol X will be used to denote a real Banach space, and X* 

will denote the topological dual of X. If A C X, then cl(A) will denote the strong (norm) 

closure of a set A, co(A) the convex hull of A and clco(A) its closure. 

The basis for this material is a a-finite positive measure space (0, E, µ), where E is a 

a-algebra of subsets of 0 and µ : E - JR+ is a countably additive measure. A function 

f : n - x is called a E-simple function if it is of the form f = l:iEl biXA; where I is 

a finite set, Ai E E and bi E X, for every i E /. We suppose that every simple function 

is in standard form, that is, the vectors bi are mutually distinct and the sets A E E are 

mutually disjoint, i E /. The Bochner integral of such a simple function f = l:iEI biXAi is 

defined as f fdµ = l:iEI biµ( Ai)· The linear space of all simple functions f : 0 -t X will 

be denoted by '11 x (E). A sequence Un)n?.I in W x (E) is called a mean Cauchy sequence if 

limm,n->oo J II fm - fn II dµ = 0. 

1 
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For such a sequence Un)n'?:.l in Wx(L:) it is easily seen that (f fndµ)n'?:.I is a Cauchy se­

quence in X. A function f : n--+ X is called Bochner integrable on n if it is a limit µ-a.e 

on n of a mean Cauchy sequence Un)n'?:.I in w x(L:); that is, J fdµ = limn-+oo J fndµ. 

The space of all Bochner integrable functions f: n--+ X will be denoted by L1(n, L:, µ, X). 

A function f : n --+ X is called µ-measurable (or just measurable) if there exists a se­

quence Un)n'?:.l in Wx(L:) such that fn--+ f pointwise µ-a.eon n. 

1.1 The Radon-Nikodym Theorem 

This section is dedicated to the Radon-Nikod:Ym Theorem as stated and proved by M. A. 

Rieffel in 1967. 

We first formulate the standard Radon-Nikodym Theorem in the case of a-finite mea­

sures and a non-negative measurable function. 

Theorem 1.1.1 [2, Theorem 8.9, p.85] 

Let (n, L:, µ) be a a-finite positive measure space, .X : L: --+ ~ a a-finite positive measure 

which is µ-continuous. Then there exists a non-negative measurable function f : n ---+ ~ 

such that .X(E) = f sf dµ for every E E L:. 

Moreover, the function f is uniquely determined µ-almost everywhere. 

Example 1.1.3 below shows that the Radon-Nikodym Theorem in the form of Theorem 

1.1.1 cannot be carried over to the case of the Bochner integral. We need, however, the 

following result. 

Theorem 1.1.2 [15, Proposition 7, p.123] 

Let (n, L:, µ) be a measure space and X be a Banach space, and let f : n --+ X be inte-

grable. Then J To fdµ = T(f fdµ) (1) 

holds for each T E X*. 

2 
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Proof 

The Bochner integrability of To f follows from that of f. If f is a simple integrable 

function in standard form J = 2::7=1 aiXA;, where ai # 0, i = 1, 2, ... , k, then 

f To f dµ = f T(2:7=l aiXAJdµ 

and 

= f 2:7=1 T(ai)XA;dµ 

= 2::7=1 T(ai)µ(Ai) 

T(f fdµ) = T(f 2::7=1 aiXA;dµ) 

= T(2:7=1 aiµ(Ai)) 

= 2::7=1 T(ai)µ(Ai)· 

Hence (1) holds for simple integrable functions. Next suppose that f is an arbitrary 

Bochner integrable function. If (! n)n> 1 is a Cauchy sequence in Ill x (E) converging µ-a.e 

to f, then (To fn)n~l is a Cauchy sequence in WJR(E) converging µ-a.e to To J, and then 

J(T o f)dµ = limn-+oo J(T O fn)dµ 

= T(limn-+oo J fndµ) 

= T(f fdµ). 

This completes the proof. 

Example 1.1.3 

D 

Let n = [O, l], and Ebe the u-algebra of Lebesgue subsets of [O, l], andµ the Lebesgue 

measure on E. Take X = £ 1 (0, E, µ,JR) and define m : E -t X by m(A) = XA for every 

A EE. Then mis is an X-valued measure. Furthermore, 

lml(A) =sup I:iEI llm(Ai)ll 
I 

= sup I:iEI µ(Ai) 
I 

= lµl(A) 

=µ(A) 

where the summation is over all classes of mutually disjoint sets in E, with uiEI Ai c A 

and I is a countable index set. Then lml = µ, and so m « µ. Now suppose that a 

Radon-Nikodym derivative f = ~~ exists; then 

m(A) = fA f (t)dµ(t) 

3 
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for each A EE. Let TE £ 00 (0, E, µ,JR)= X* = (£1)*. The notation (T, h) below denotes 

the value T(h), h EX. Then, 

IA (T, f(t)dµ(t) = (T, IA f(t)dµ(t)) (from Theorem 1.1.2) 

= (T,m(A)) 

= (T, XA) 

=IA T(t)dµ(t). 

Then (T, f(t)) = T(t) for µ-a. all t E [O, 1], that is, (T, J(t)) = T(t) for all t E [O, 1]\A(T), 

where µ(A(T)) = 0. Denote by {In : n E N} the class of all sub-intervals of [0,1] with 

rational endpoints. For each n E N, let Tn = XI,. E X*. Put A = U~=1 A(Tn) and let 

x E [O, 1]\A. Then, 

Ii,. f(x)(s)dµ(s) =I Tn(s)f(x)(s)dµ(s) 

= Tn(x) 

= 0, for X ~ In. 

Then, J(x)(s) = 0 for µ-almost alls E [O, 1] as long as x E [O, 1]\A; whence f: [O, 1] ___., X 

vanishes µ-a.e. But this contradicts the fact that I Bf dµ =XE i= 0 whenever µ(B) > 0 for 

any B E E. Consequently, the space £ 1 (0, E, µ,JR) does not satisfy the Radon-Nikodym 

Theorem in the form of Theorem 1.1.1. 

We now state and prove a theorem due to M. A Rieffel, where the construction of a 

Bochner integrable Radon-Nikodym derivative is shown, under suitable assumptions. 

Rieffel's Radon-Nikodym Theorem 1.1.4 [42, Main Theorem, p.466] 

Let (0, E, µ) be a O"-finite positive measure space, and X be a real Banach space. Let 

m : E ___., X be a measure. Then m is the indefinite integral with respect to µ of a Bochner 

integrable function f : 0 ___., x if and only if: 

1. m is µ-continuous, that is, m « µ. 

4 
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2. the total variation !ml of mis a finite measure on E. 

3. locally m somewhere has compact average range, that is, given E E E with 0 < 

µ(E) < oo, there is an F ~ E such that µ(F) > 0 and AF(m) = {:(g] : G ~ F, 

µ( G) > O} is relatively norm compact, or equivalently: 

3'. locally m somewhere has compact direction, that is, given E E E with 0 < µ(E) < 

oo, there is an F ~ E and a compact subset K of X not containing 0, such that 

µ(F) > 0 and m(G) is contained in the cone generated by K for all G ~ F. 

Following Rieffel, we first establish the necessity part of the Theorem 1.1.4 above. We 

need the following notations: 

If f : 0 ~ X is a measurable function and E E E, then the essential range off restricted 

to E, is the set , 

erE(J) = {b EX: Ve> 0, µ({x EE: llJ(x)-bll < e}) > O}. 

Note that, where Se(b) denotes the open ball with radius e and centre b: 

erE(J) = {b EX: Ve> 0, µ({x EE: f(x) E Se(b)}) > 0} 

= {b EX : Ve> 0, µ(En (J-1(Se(b)) > 0}. 

Furthermore, if D ~ X, then cone(D) will denote the cone with vertex 0 generated 

by D. Lastly, if J : 0 ~ X is Bochner integrable then the indefinite integral of J is the 

X-valued measure µ! defined by µ1(E) = JE fdµ, E E E. The average range of µ1 on 

E E E is defined by 

AE(µJ) = {µj/;/: FEE, F ~ E,O < µ(F)} . 

Theorem 1.1.5 [17, Theorem 15, p.22] 

If K is a subset of a Banach space X , the following are equivalent: 

l. K is sequentially compact 

2. cl(K) is compact 

3. K is totally bounded and cl(K) is complete. 

5 
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Theorem 1.1.6 [42, Proposition 1.1, p.469] 

If f : n ___, x is µ-measurable, then f is locally µ-almost compact valued, that is, given 

E E L: with µ(E) < oo and given e > 0, there exists a set Fe: E L:, Fe: c E such that 

µ(E\Fc:) < e and f(Fc:) is (norm) relatively compact subset of X. 

Proof 

Since f is µ-measurable, there exists a sequence Un)n~l in Wx(L:) converging to f µ-a.e. 

on X. By Egoroff 's Theorem, fn converges almost uniformly to f on E, that is, for every 

e > 0, there exists a set Ee: E L:, Ee: C E, with µ(Ee:) < e such that fn ___, f uniformly on 

E\Ec:· Let Fe: = E\Ec:· Then µ(E\Fc:) = µ(Ee:) < e and fn ___, f uniformly on Fe:. We 

show that f(Fc:) = {f(x) : x E Fe:} is totally bounded: 

Let r > 0 be arbitrarily chosen. Let no E N such that llJ(x) - fn0 (x)ll < r for every 

x E Fe:. Let R(fn0 ) = {b1, b2, ... ,bk}. Then R(fn0 ) C X. Consider the class of open balls 

{ B,.(bi) : i = 1, ... , k }. Now, 

XE Fe:=> llf(x) - fn 0 (x)ll < r 

=> f(x) E Br(fn0 (x)) 

=> J(x) E Br(bi), where bi= fn 0 (x) 

=> f(Fc:) c U~= 1 Br(bi) 

=> f(Fc:) is totally bounded. 

Then cl(f(Fc:)) is compact by Theorem 1.1.5, that is, f(Fc:) is a norm relatively com­

pact subset of X. D 

Proposition 1.1. 7 [42, Proposition 1.3, p.469] 

If f, g : f2 ___, X are µ-measurable, and if E, FE L:, then 

1. ers(f) is a closed subset of X 

2. er E (!) is contained in the closure of the range of f restricted to E 

3. If f = g µ-a.e. on E, then ers(f) = ers(g), provided (n, L:, µ) is complete 

4. If µ(E) = 0, then ers(f) = 0 

6 
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5. If F CE, then erp(f) C ere(!). 

Corollary 1.1.8 [42, Corollary 1.4, p.469] 

If f : n ---+ X is µ-measurable, then f is locally almost essentially compact valued, that 

is, given EE E with µ(E) < oo, and given c > 0, there exists a set F0 E E, F0 C E, such 

that µ(E\F0 ) < c and erp,(f) is compact. 

Proof 

From Theorem 1.1.6, there exists a set Fe: satisfying the hypothesis such that f(F0 ) is 

norm relatively compact, that is, clf(F0 ) is compact in X. We know that erp,(f) is 

closed (Proposition 1.1.7 (1)) and that erp,(f) c clf(F0 ) (Proposition 1.1.7 (2)). Because 

erp,(f) is then a closed subset of the compact set clf(F0 ), the set erp,(f) is itself compact 

in X. D 

Theorem 1.1.9 [17, Theorem 6, p.416] 

If X is a Banach space and A is a compact subset of X, then clco(A) is compact. 

Theorem 1.1.10 [42, Proposition 1.9, p.470] 

If f : n ---+ X is an integrable function, and if E E E is such that 0 < µ(E) < oo, then 

µJ/:/ E clco(ere(f)), so that Ae(µJ) C clco(ere(f)), where 

Ae(µJ) = {µj/;/: FE E,F C E,O < µ(F)} is the avarage range of µf on E. 

Proposition 1.1.11 [42, Proposition 1.12, p.472] Necessity: 

If f : n ---+ X is a Bochner integrable function, then the measure µ 1 : E ---+ X satisfies 

hypotheses 1,2,3, and 3' of Rieffel's theorem. In fact, hypothesis 3 can be strengthened: 

3a. locally m almost has compact average range, that is, given E E E and c > 0 with 

µ(E) < oo, there exists an F ~ E such that µ(E\F) < c and Ap(m) is relatively compact. 

Proof 

The fact that µ 1 satisfies hypotheses 1 and 2 of Theorem 1.1.4 follows from the fact that 

µ f is an indefinite integral, by the definition of µ f. 

7 

Stellenbosch University  https://scholar.sun.ac.za



We now show that 3a holds: 

If E E E with µ(E) > 0 and if c > 0 are given, there exists an F E E, F ~ E such 

that µ(E\F) < c and erp(J) is compact, by Corollary 1.1.8. Then clco(erp(J)) is also 

compact, by Theorem 1.1.9. Since Ap(µ1) ~ clco(erp(J)) (Theorem 1.1.10), so Ap(µ1) 

is relatively compact. 

We now show that 3' holds, that is, µf satisfies hypothesis 3' of Theorem 1.1.4: 

Given E E E with 0 < µ(E) < oo, choose Fo ~ E so that erp0 (J) is compact and 

µ(Fo) > 0. If erp0 (J) = {O}, the range of µf on F0 is {O} which is contained in a cone 

generated by any single point. If erp0 (f) =f. {O}, then there exists b E erp0 (J), with 

b =f. 0, and let o = ~- Let F = {x E Fo : llJ(x) - bll < o}, so that µ(F) > 0 and let 

K = cl co( er Fo (!)) so that K is compact and convex, and does not contain 0. Then µ,J/g/ 
is in K for all G ~ F, µ(G) > 0, and so µ1(G) is in a cone(K), for all G ~ F. D 

Note that 3a is a stronger version of 3, hence 3a implies 3. We shall return to this 

later. 

In order to prove that the hypotheses of the Main Theorem 1.1.4 are sufficient, we intro­

duce the following notations: 

Let II denote the set of all collections 7r, each consisting of a finite number of disjoint 

sets from E with strictly positive finite measure. Then II is essentially a directed set, 

when 7r1 ~ 7r is defined to mean that every element of 7r is, except for a null set, the union 

of the elements of 7r1. For each 7r E II, and each measurable function f : n ---+ X, which is 

integrable on sets of finite measure, define a function f7r by 

f7r = L(µ1(E)/ µ(E))XE, 
EE7r 

where µJ(E) = JE f dµ. Each f7r is a simple integrable function, and thus f7r E £P(O, E, µ, X), 

p E [1,oo). 

8 

Stellenbosch University  https://scholar.sun.ac.za



Definition 1.1.12 [42, Definition 2.1, p.474] 

Let (0, E, µ) be a a-finite measure space, and let m be an X-valued measure on E. If K 

is a closed convex cone in X, with vertex 0, then a µ-measurable set E is called K-pure 

for m : E ---+ X if m(F) E K for all F ~ E. If m « µ and if K is any closed convex 

subset of X, then a µ-measurable set E will be called K-pure form relative toµ, denoted 

otherwise by (K, µ)-pure, if m(F)/ µ(E) E K for all F ~ E with 0 < µ(E) < oo, that is, 

if Ae(m) ~ K. 

Decomposition Theorem 1.1.13 [42, p.475] 

Let (0, E, µ) be a a-finite measure space, and let m : E ---+ X be a vector measure 

on E which is µ-continuous. Let E E E and suppose that cl(Ae(m)) is compact. Let 

{B1, ... , Bn} be a collection of open convex subsets of X which covers cl(Ae(m)). Then 

there exists a collection of measurable sets {E1 , ... ,En} whose union is E such that Ei is 

(cl(Bi), µ)-pure for 1 ~ i ~ n. 

We are now set to prove the sufficiency part of the Main Theorem 1.4, and at the end of 

the proof we show that hypotheses 3, 3' and 3a are equivalent. 

Proposition 1.1.14 [42, p.477] Sufficiency: 

Assume first that m satisfies hypotheses 1, 2 and 3a (see the necessity part). 

We show that m is an indefinite integral with respect to µ, and our proof is divided into 

three parts as follows: 

We prove that U-rr : 7r E II} is a mean Cauchy net: 

Let c > 0 be given. Since lml is a finite measure, we can find E E E such that µ(E) < oo 

and lml(O\E) < ~· Since m is µ-continuous (hypothesis 1), so is lml since it is a finite 

measure (hypothesis 2). Then, since lml is a finite measure, there corresponds to every 

c > 0 a o > 0 such that if µ(F) < o then lml(F) < ~ for every set FE E since lml « µ. 

Choose E0 ~ E such that µ(Eo) < o and the average range cl(Ae\Eo) is compact. Let 

b1, .. , bn be elements of X which are (~µ(E))-dense in cl(Ae\e0 ), that is, if Bi denotes an 

open ball about bi with radius ~µ(E), then cl(Ae\Eo) ~ ur=iBi· Then, by the Decom-
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position Theorem 1.1.13, we can find disjoint sets E 1, ... ,En whose union is E\E0 , such 

that Ei is (bi, ~µ(E))-pure for each i. By eliminating those Ei which are null sets, by 

eliminating the corresponding bi, and then adjusting the remaining Ei by null sets, we 

can assume that µ(Ei) > 0 for each i because the remaining Ei are not null (but the bi 

need no longer be ~µ(E)-dense). 

Let 7ro = {Ei: 0 ~ i ~ n}, or, if µ(E) = 0, let 7ro = {Ei: 1 ~ i ~ n}, so that 7ro E II. 

We show that, if 7l' 2: 7ro, then 11!71' - f71'olli < E:: 

Assume µ(Eo) > 0, for it will be clear how the proof simplifies if µ(Eo) = 0. If 7l' > 7ro, 

then, except for possible null sets, 

where the Fin E = 0 for i = 1, .. ., k, and Ei = u;~1 Fij for i = 1, ... , n. This follows from 

the fact that Ei E 7ro and Fij E 7l' and by assumption the elements of 7ro are unions of 

elements of 7ro, for each i = 1, ... , n and 1 ~ j ~ ki· The elements of 7l' are mutually 

disjoint and have strictly positive measure. Then 

11!71' - f71'olli = J II f71'(x) - f71'o(x) II dµ(x) 

= 2::::7=1 llm(Fi)ll + 2:~~1 llm(Foj)/µ(Foj) - m(Eo)/µ(Eo)llµ(Foj) 

+ 2:~= 1 {2:~~ 1 llm(Fij)/µ(Fij)- m(Ei)/µ(Ei)llµ(Fij)} 

~Im I (D\E) + L:~~o llm(Foj)ll + llm(Eo)ll 

+ 2:~= 1 {2:~~ 1 (llm(Fij)/ µ(Fij) - bill+ llbi - m(Ei)/ µ(Ei)ll)µ(Fij)} 

~ ~ + ~ + ~ + (~µ(E))µ(Ui= 1 Ei) 

~ E: . 

Thus the net {!71' : 7l' E II} is a mean Cauchy net, and so converges in mean to some 

element f E L1(n, E, µ, X). In particular 

µ1(E) = { fdµ = lim { f71'dµ 
le 71' le 
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for every EE E. 

We now show that m(E) = µ1(E) for all EE E: 

Let E E E. If µ(E) = 0, the result follows from the µ-continuity of m, that is, since 

µ1(E) = fe fdµ, if µ(E) = 0 then µ1(E) = fe fdµ = 0 . If 0 < µ(E) < oo, let 7ro = {E}. 

Then 

l f 1rdµ = m(E) 

whenever 7r 2: 7ro and so 

The results when µ(E) = oo then follows from the a-finiteness ofµ. This concludes the 

proof of the sufficiency part. 

Lastly, we show that, the hypotheses 3, 3', and 3a are equivalent: 

Here our general assumption is that hypotheses 1 and 2 hold. 

3a=?3: This is obvious from the descriptions, that is, if locally m almost has compact 

average range, then it implies that m somewhere has compact average range. 

3a=?3': If m satisfies hypothesis 3a, then since we have proved so far, that for some Bochner 

integrable f, we have m = µf, which satisfy hypotheses 1, 2, 3', hence m satisfies 

hypothesis 3'. 

3' =?3: Let m satisfy 3'. Given E E E with 0 < µ(E) < oo, choose Fo ~ E and compact 

K ~ X not containing 0 such that µ(F0 ) > 0 and the range of m on F0 is contained 

in cone(K). Choose a constant c large enough so that the measure cµ - lml is not 

purely negative on Fo, and let F be the purely positive part of a Hahn decomposition 

of cµ - lml. Then µ(F) > 0 and llm(G)/µ(G)ll < c for G ~ F and µ(G) > 0. It 

follows that if tis the distance from K to 0, then m(G)/µ(G) is in clco(ckKU{O}) 

which is compact and so 3 is satisfied. 

3=?3a First we make this observation: AeuF ~ co(Ae U AF) for any E, F E E, so that 

cl(AeuF) is compact if cl(Ae) and cl(AF) are compact. Now let m satisfy hypothesis 

3, let E E E with µ(E) < oo be given. Let a = sup{µ(F) : F ~ E and cl(AF) is 

11 

Stellenbosch University  https://scholar.sun.ac.za



compact}. It suffices to show that a= µ(E): 

Let (Fi)i~l be a sequence of subsets of E such that µ(Fi) ---+ a and cl(AFJ is compact. 

By the observation made above we can assume that the Fi are increasing. Let E0 = 

UiFi so that µ(E0 ) =a. If a< µ(E), then µ(E\E0 ) > 0 so that by hypothesis 3 there 

exists an Fo ~ E\Eo such that µ(Fo) > 0 and cl(Ap0 ) is compact. Then cl(AFiuFo) 

is compact, and µ(Fi U F0 ) = µ(Fi)+ µ(Fo) ---+ µ(Fo) +a > a. But µ(Fi U F0 ) ~ a 

for all i E N since Fi U F0 ~ E for all i E N, hence µ(Fi U F0 ) ---+ µ(F0 ) +a> a leads 

to a contradiction to a definition of a supremum. 0 

It is now clear that the space £ 1 (0, E, µ, ~) of Example 1.1.3 has no Radon-Nikodym 

derivative because 3 (and also 3') in the statement of Theorem 1.1.4 does not hold. 

Henceforth, (0, E, µ) denotes a finite positive measure space. 

Rieffel [41] improved on his Radon-Nikodym Theorem, namely Theorem 1.1.4 above, 

by introducing the concept of dentability and attempted to characterise those subspaces 

of a Banach space that are dentable. 

1. 2 The RNP and Dentability 

In this section we introduce the terms dentable, c-dentable and s-dentable. These 

concepts provide us with the first concrete evidence that the Radon-Nikodym Property 

(RNP), which stems from the Radon-Nikodym Theorem, is a geometric property of Ba­

nach spaces. Rieffel [41, p.71], in an attempt to give a new proof of Phillips' Radon­

Nikodym Theorem [38, p.130], introduced the class of dentable subsets of a Banach 

space. In 1973, Maynard introduced the strictly larger class of s-dentable sets. There 

are different forms of dentability we will discuss and compare, that give different char­

acterisations of Banach spaces with the RNP. For brevity, we write RNP instead of the 

phrase Radon-Nikodym Property, and the RN-theorem will be used, to mean the Radon­

Nikodym Theorem. 
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Notations 

B0 (x) will denote the closed ball with radius c > 0 centered at x EX, X a Banach space. 

S0 (x) will denote the open ball with radius€> 0 centered at x EX. 

Definition 1.2.1 [13, Definition 3, p.61] 

A Banach space X has the RNP with respect to (0, E, µ) if for each µ-continuous vector 

measure m : E --t X of bounded variation, there exists a function f E £ 1(0, E, µ, X), 

such that m(E) = fe fdµ for all EE E. 

A Banach space X has the RNP if it has the RNP with respect to every finite measure 

space. 

In this section, we deal exclusively with the RNP in Banach spaces, and observe dif­

ferent characterisations of this property. 

Definition 1.2.2 [22] and [41, p.71] 

A set A in a Banach space X is dentable if for any € > 0 there exists x E A such that 

x ~ clco(A\B0 (x)). A point x EA is called a denting point of A if x ~ clco(A\B0 (x) for 

any E: > 0. 

It should be noted that the ball that is being used here is closed, even though some 

authors, such as Bourgin [7, p.18] and Diestel and Uhl [14, p.13], use the open ball. 

Remark 1.2.3 

Rieffel [41, p.75] remarked that all the geometric difficulties involved in obtaining the 

Radon-Nikodym theorem for the Bochner integral (of a function) with values in some 

Banach space are contained in the problem of determining which subsets of the Banach 

space are dentable. Rieffel [41] proved that any relatively norm compact convex subset K 

of a Banach space is dentable. He went about doing that using the following reasoning: 

l. He showed that any extreme point of a relatively norm compact convex subset K is 

a denting point of K. 
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2. For the general case, Rieffel [41] showed that if K is any subset of a Banach space, 

and if clco(K) is dentable, then so is K itself. 

So, the extreme points of sets have entered into the theories of dentability and the RNP 

- dentability assumptions are in a sense extremal in character. 

Rieffel [41, p.75] then turned to relatively weakly compact subsets of a Banach space and 

posed the question: 

Question 1.2.4 

Are relatively weakly compact subsets of a Banach space dentable? 

He could not answer this question completely, but stated that an extreme point is not 

necessarily a denting point in a closed bounded and convex subset of a Banach space X. 

Definition 1.2.5 [13, Theorem 10, p.138] 

Let D be a bounded subset of a Banach space X. 

1. A point x E Dis called an extreme point of D if x = >.y+ (1->.)z, for some>. E [O, 1] 

and for some y, z E D, then either y = x or z = x. 

2. A point x E D is called an exposed point of D if there is a functional f* E X* such 

that J*(x) > f*(y) for ally E D\{x}. 

3. A point x E D is called a strongly exposed point of D if there is a functional f* E X* 

such that J*(x) > J*(y) for ally E D\{x}, and such that f*(xn) ---+ f*(x) for 

(xn)n~l in D implies that Xn ---+ x. 

As Rieffel observed, if x is a strongly exposed point, then x is a denting point. It follows 

from the Definitions 1.2.2 and 1.2.5 (1) that a denting point of a set A is an extreme point 

of A. Consequently, a strongly exposed point of a set is an extreme point of that set. The 

converse, however, is not true, as the following example shows. 
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In ~2 , let K = co( {(x; y) E ~2 
: x2 + y2 = l} U {(1; -1)} ). The point (l; 0) is an 

extreme point of K, but (l; 0) is not an exposed point of K, hence also not a strongly 

exposed point of K. 

Hence a set of strongly exposed points a closed bounded convex subset of a Banach space 

is contained in the set of denting point of such a set, which in turn is properly contained 

in the set of extreme point of such a set. 

Rieffel [41] posed three more questions: 

Questions 1.2.6 

1. Which are the dentable subsets of C(T), the Banach space of all continuous 

functions on some compact Hausdorff space T? 

2. Which Banach spaces have the property that all non-empty bounded subsets are 

den table? 

3. Does there exist a closed set which has no strongly exposed points? 

In this thesis, some of these questions will be answered by means of known proofs from 

the literature. The answer to the second question is the core of this thesis. 

Question 1.2.4 had been answered in the affirmative by Troyanski [51] and partially by 

Diestel and Uhl [14, p.14]. Furthermore, Edelstein [18] gave an example of the unit ball 

in the conjugate space m (also denoted by l00 ) which is weak* -compact, but not dentable. 

It follows from the Definition 1.2.2 that a subset D of a Banach space X is non-dentable 

if there exists an c > 0 such that for each x ED, x E clco(D\Bc:(x)). We now present an 

example of a non-dentable set. 

Example 1.2.7 [13, Example 5, p.135] 

The closed unit ball D of £ 00 [0, l] is non-dentable: 
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Let f ED and let c > 0. 

Case 1: 

If llflloo > c, then for any m EN, there are disjoint Lebesgue measurable sets E 1, E2, ... , Em 

such that llfxe,.11 00 > c for each n = 1, ... , m. Setting fn = f - fXEn, one sees that 

II! - fnlloo = llfxsnlloo > c, n = 1, ... , m. 

Furthermore, II/ - L;;:i=l ~fnlloo ~ ~llflloo· 

Since~ can be made as small as we please, we see that, for 0 < c < 1, f E clco(D\B0 (f)) 

provided II! lloo > c. 

Case 2: 

If II! lloo ~ c < ~, then II/+ 2£X[o,1] - f lloo = 2£ and II! - 2cX[o,1] - f lloo = 2£. Setting 

Ji = f + 2£X[O,l] and h = f - 2cX[o,1], implies that llfilloo ~ c < 1 and llf - filloo = 2c, 

i = 1, 2. Therefore Ji, h E D\B0 (f) for i = 1, 2 but f = ~(!1 + f2). Thus, f ED implies 

f E clco(D\B0 (f)) for any f ED. Therefore Dis non-dentable. 

Definition 1.2.8 [10] 

A bounded set A is s-dentable if for each c > 0, there exists x 0 E A such that x 0 t/:. 

s(A\B0 (x 0 )), where s(B) = {L;:1 AiXi: Ai 2: 0, I: Ai= 1, {xi}c B}. 

The concept s-dentable is sometimes called a-dentable. 

C. Stegall [49] calls s(B) the sequential hull of B. 

If x is a denting point of a set A, then from Definition 1.2.2, x is not the limit of any se­

quence in co(A\B0 (x)). But the limit of a sequence in co(A\B0 (x)) has the form I::1 Aixi, 

where Ai 2: 0, L; Ai = 1, {xi} C A\B0 (x). It then follows from Definition 1.2.8 that x 

is an s-denting point of a set A. Consequently, dentable sets are s-dentable. How­

ever, Maynard [32] gave an example of a bounded set which is s-dentable, but not dentable. 

Example 1.2.9 [7, Example 2.1.6, p.18] 

Consider the Banach space C[O, 1] of continuous functions on [O, 1], with llJll = max{lf(t)I : 
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t E [O, 1],} for f E C[O, 1]. 

The closed unit ball K of C[O, 1] is s-dentable, non-dentable and fails the KMP: 

K has exactly two extreme points, namely, the functions Ji, h E C[O, 1] defined by 

fi(x) = 1,f2(x) = -1 for any x in [O, 1]. 

K is non-dentable: 

Suppose f EK and for any n E z+ choose functions ff, ... , J;:, in K so that ft(t) = f(t) 

for t ~ [i~l, *] and lft(t~') - f(tf)I > ~ for some tr E e~1 ' *). Then lift - !II > ~ for 

i = 1, ... , n and yet II 2:7=1 ~ft - !II :::; ~·It follows that f E clco(K\B~(f)) since n was 

arbitrary. Hence K is not dentable (and thus C[O, 1] fails the RNP). 

K is s-dentable: 

This follows by taking either extreme points (Ji or h) to be f 0 in Definition 1.2.8. 

Definition 1.2.10 [32, p.497] 

A Banach space X is said to be an s-dentable space if and only if every bounded set 

K c X is s-dentable. 

Maynard in [32] extended Rieffel's result and established the following theorem. 

Theorem 1.2.11 [32, Theorem 3.1, p.497] 

A Banach space X has the RNP if and only if X is an s-dentable space. 

Maynard left open, however, the question as to whether in a space X with the RNP, 

every bounded non-empty set is dentable. Davis and Phelps [10] answered this question; 

we shall refer to this result (Theorem 1.2.16) as the Davis-Phelps-Rieffel Theorem. 

In order to establish the Davis-Phelps-Rieffel Theorem, we must first prove three propo-

sitions. 

Proposition 1.2.12 [10, Lemma 1, p.119] 

A subset A of a Banach space X is non-dentable if and only if there exists an c > 0 such 
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that A c clco(A\B,,(x)) for each x E A. If A is closed and convex, this is equivalent to 

A= clco(A\B,,(x)) for each x EA. 

Proof 

If there exists a number c > 0 such that A C clco(A\B,,(x)) for each x E A, then A 

is non-dentable. For the converse, suppose that A is non-dentable. Then there exists 

2£ > 0 such that for each y E A, y E clco(A\B2,,(y)). Let x, y E A with llx - Yll > £. 

Then y E A\B,,(x) C clco(A\B,,(x)). If llx - Yll ~ £, then B,,(x) C B20 (y), so that 

A\B2,,(y) C A\B,,(x), and hence clco(A\B2,,(y)) C clco(A\B,,(x)). This completes the 

proof. D 

Proposition 1.2.13 [10, Lemma 2, p.120] 

Let C be a closed convex set in X with non-empty interior, denoted by intC, and sup­

pose that C in non-dentable. Then there exists £ > 0 such that for each x E C, intC C 

co(int(C\B,,(x))). In particular, intC is not s-dentable. 

Proof 

By Proposition 1.2.12, there exists a number£> 0 such that C = clco(C\B,,(x)) for each 

x E C. Put Ax = C\B,,(x). Then intAx = int(C\B,,(x)). For £ sufficiently small, it 

follows that intAx =-/= 0 for each x E C. Fix x and let A = Ax· Then C = clco(A). We 

want to show that int(clco(A)) C co(intA). We first show that AC cl(intA): 

If y E A, then y E C\B,,(x) (for x fixed), so that y E C and llx - Yll > £. Let 

z E intC. Then [z, x) c intC, and [z, x) n B,,(x) =-/= 0. Let u E [z, x) n B,,(x). There­

fore [u, y) C intC. Then for some v E [u, y) we have that [v, y) C int(C\B,,(x)). Thus 

y E cl(intA)). This now shows that Ac cl(intA). Then Ac cl(intA) c clco(intA), and 

so , co(A) C clco(intA). Using the fact that the interior of a convex set coincides with 

the interior of its closure, we now have that, 

intC = int(clco(A)) 

= int(co(A)) 

C int(clco(intA)) 
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= co(intA) 

= co(int(C\B0 (x))). 

This completes the proof of the Proposition. D 

Propositon 1.2.14 [10, Proposition, p.120] 

If a Banach space X contains a bounded non-empty non-dentable set, then it contains a 

bounded closed convex and symmetric set C which is non-dentable and which has non­

empty interior. In particular, X can be renormed so that the new unit ball is non-dentable 

and the interior of the new unit ball is not s-dentable. 

Proof 

If A is a bounded non-empty non-dentable non-empty subset of X, then the same is true 

of the sets A1 = AU (-A) (by definition of non-dentability), A2 = clcoA1 , (see [41, 

Proposition 2]) and A3 = B1(0) + A2. Let C = cl(A3). Again, by [41, Proposition 2], C 

is non-dentable. By Proposition 1.2.13, intC is not s-dentable. D 

What we have shown above is that every bounded subset of a Banach space X is dentable 

if and only if every bounded subset of X is s-dentable. This now yields the following 

result which is closely connected to Theorem 1.2.11. 

Definition 1.2.15 

A Banach space X is said to be a dentable space if and only if every bounded set K c X 

is dentable. 

The Davis-Phelps-Rieffel Theorem 1.2.16 [10, Corollary, p.121] 

A Banach space X has the RNP if and only if X is a dentable space. 

Hence, a Banach space X lacks the RNP if and only if there exists a bounded non-empty 

non-dentable set in X, see [23, p.160], [13, p.136]. This brings us closer to answering 

Question 1.2.6 (2). 
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Definition 1.2.17 [7, Definition 2.3.1, p.27] 

Let D be a bounded subset of a Banach space X and let f* E X*, f* =I- 0. Let M(D, f*) = 

sup{f*(x): x ED}. If a> 0, then the set S(D, J*, a)= {x ED: f*(x) > M(D, f*)-a} 

is called the slice of D determined by f* and a. 

Theorem 1.2.18 [7, Proposition 2.3.2, p.28] 

A bounded subset D of a Banach space X is dentable if and only if D has slices of arbi­

trary small diameter (if and only if X has the RNP). 

Proof 

If D is dentable and € > 0, choose x E D such that x ~ clco(D\B0 (x)). The Hahn­

Banach theorem guarantees that there is an f E X*, II f /I = 1, such that f ( x) > 

r > M(clco(D\B0 (x)),J), for some r E IR, in the notation of Definition 1.2.17. Let 

a= M(D, !) - r. Then S(D, f, a) c B 0 (x) n D and its diameter is at most 2€. 

Conversely, if € > 0 is prescribed, and let S(D,f, a) be a slice of diameter less than 

€. If x E S(D, f, a), then clco(D\B0 (x)) C clco(D\S(D, f, a)) C 1-1((-00, r]) where 

r = M(D, !) - a. Since f(x) > r, it follows that x ~ clco(D\B0 (x)). That completes the 

proof. D 

Theorem 1.2.19 [36, Lemma 4, p.81] 

Suppose that every bounded subset of X is dentable (that is, suppose X has the RNP), 

and that g E X*, 11911 = 1. If € > 0 and if C denotes a non-empty bounded closed and 

convex subset of X with C\g-1 (0) =I- (/), then there exists a slice of C of diameter less than 

€which misses the set D = C n g-1(0). 

Thereom 1.2.20 [36, Theorem 5, p.82] 

Suppose that every bounded subset of Xis dentable (that is, X has the RNP), and that 

C is a bounded, closed and convex subset of X. Then C is the closed convex hull of its 

denting points. 
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I 
[ __ 

Proof 

By the separation theorem, it suffices to show that each slice S(g, (3, C) of C contains a 

denting point of C. By translation, we can assume that the origin is contained in the 

hyperplane 

{x EE: g(x) = M(g, C) - (3}, 

that is, that this is the same as g-1(0). Let C1 = S(g, (3, C) and apply Theorem 1.2.19 to 

get a slice of C1 which misses C n g-1(0) and has diameter less than ~· This slice is nec­

essarily a slice of C and is contained in C1 . We can continue by induction to get a nested 

sequence of slices of C whose diameters converge to O; their intersection is necessarily a 

denting point of C inside C1. 0 

Phelps [36] managed to prove Theorem 1.2.20 with denting points being replaced by 

strongly exposed points. 

Theorem 1.2.21 [36, Theorem 9, p.85], [13, Theorem 3, p.202] 

Let X be a Banach space. Then every bounded subset of X is dentable (that is, X has 

the RNP) if and only if every bounded closed convex subset of X is the closed convex hull 

of its strongly exposed points. 

Denote by D(A), SE(A) and E(A) the sets of all denting, strongly exposed and ex­

treme points of A, respectively. 

Using the paragraph just below Definition 1.2.5 we can now formulate: 

Proposition 1.2.22 

If A is a non-empty bounded closed convex subset of a Banach space X, then SE(A) c 

D(A) c E(A). 

A proof of this Proposition will be given after Theorem 1.2.24. 
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Definition 1.2.23 [30, p.526] 

Let A be a bounded closed and convex subset of a Banach space X. Then 

1. x is a point of continuity (PC) for A if the identity mapping id (A, weak) -+ 

(A, norm) is continuous at such x. 

2. x is a strongly extreme point of A if for any sequences (Yn)n~I and (zn)n~I in A, 

limn->oo ll~(Yn +Zn)- xii= 0 implies limn->oo llYn - xii= 0. 

3. x is a weak"-extreme point of A if x is an extreme point of A, where A is a weak* -

closure of A in X**. 

4. x E A is a very strong extreme point of A if for every sequence Un)n~I of A-valued 

Bochner integrable functions on [0,1], the condition limn_,oo II f0
1 

fn(t)dt - xii = 0 

implies limn_,oo f0
1 

llfn(t) - xlldt = 0. 

Theorem 1.2.24 [30, p.526] 

Let x be an element in a bounded closed convex set A of a Banach space. Then the 

following are equivalent: 

1. x is a denting point of A. 

2. x is a very strong extreme point of A. 

3. xis a PC for A, and xis an extreme point of A, (respectively, strong extreme point, 

weak*-extreme point of A). 

It is well-known that the closed unit ball Be in the space c of all convergent sequences has 

extreme points, but no denting points, see [23, p.163]. Hence, if x E E(Be), then such an 

x is not a PC of Be· 

Proof (of Proposition 1.2.22) 

Firstly, D(A) C E(A) follows from Theorem 1.2.24 above. 
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Secondly, we show that a strongly exposed point is a denting point: 

Let x be any strongly exposed point of A, that is, x E SE(A). Then there exists a 

slice S(A, f, a) = {x E A : f(x) > M(A, J) - a}, with f E X*, A C X, X Banach 

and A bounded, and M(A, f) = sup{f(x) : x E A} [7, p.27]. Hence A is dentable and 

x E S(A, f, a) with S(A, f, a) n clco(A\B(x, c) = 0 for some £ > 0 [7, p.28]. Hence x 

tJ. clco(A\B(x, c)) and then x is a denting point of A. This thus completes the proof of 

Proposition 1.2.22. 0 

Our important observation so far is the relation between the denting and extreme points 

in a bounded closed convex and dentable subset of a Banach space. Diestel and Uhl 

[14, p.14] state that in compact convex subset of a Banach space, denting points are all 

extreme points and extreme points are all denting points. That is, for B compact and 

convex in a Banach space X, D(B) = E(B). This result was in fact proved by Rieffel [41, 

p.72, proposition 1]. We are also interested in finding out in which Banach space(s) X 

the equality D(A) = E(A) holds for a bounded closed convex subset A of X. 

Theorem 1.2.25 [36, Theorem 2, p.80] 

If every bounded subset of the Banach space X is dentable, and if C is a bounded closed 

convex subset of X, then C is the closed convex hull of its extreme points. 

This theorem can be rephrased as follows: 

If a Banach space X has the RNP, then any closed bounded convex subset C of X equals 

clco(E(C)). 

We give a proof using results discussed by Diestel and Uhl [13, pp 217,218]. 

Proof (of Theorem 1.2.25) 

X has the RNP by Theorem 1.2.16. Let C be any bounded closed convex subset of X. 

Then C is dentable, and it follows that C has at least one denting point and thus an 

extreme point, see Theorem 1.2.24. Since C is a bounded closed and convex set with an 
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extreme point, C is the closed convex hull of its extreme points by a result of Linden­

strauss, see Diestel and Uhl , see section 1.8 and also [13, Conditions 20 and 20a, p.218]. 

Furthermore, using the fact that such a closed bounded and convex set C in the hypoth­

esis is the closed convex hull of its strongly exposed points (from Theorem 1.2.21 above), 

that is, C = clco(SE(C)) and the fact that a strongly exposed point is an extreme point, 

we have the following: 

Since SE(C) C E(C), then clco(SE(C)) C clco(E(C)), and since C = clco(SE(C)) then 

Cc clco(E(C)). 

We now show that clco(E(C)) CC: 

Since C is dentable, it has a denting point and hence an extreme point and thus E( C) =f. 0. 

But E( C) C C and thus clcoE( C)) C clco( C) = C since C is closed and convex. Hence 

C = clco(E( C)) and the proof is completed. D 

Remark 1.2.26 

It is important to note that the relationship between the denting points and the extreme 

points in very important in this discussion and we shall attempt and explore it extensively. 

Theorem 1.2.27 [11, Theorem 2, p.171] 

If X is a Banach space, then every weakly compact, convex subset A of X equals the 

closed convex hull of its strongly exposed points. 

Remark 1.2.28 

Huff and Morris [22] summarise some of the results we have observed thus far in the 

following manner: 

The RNP in a Banach space X has been shown to be equivalent to: 

1. Every non-empty closed, bounded and convex subset of X is the closed convex hull 

of its strongly exposed points (R.R. Phelps [36]). 

2. Every bounded subset of X is dentable [22]. 
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3. Every non-empty closed bounded convex subset of X is the closed convex hull of its 

extreme points (Lindenstrauss, see [36, p.80]). 

Definition 1.2.29 [23, p.157] 

A Banach space X has the Strong Krein Milman Property (SKMP) if every closed bounded 

(not necessarily convex) subset of X has an extreme point. 

Alternatively, a Banach space X has the SKMP if every bounded closed subset B of X con­

tains an extreme point of its closed convex hull (that is, x E B for some x E E(clco(B))) 

[14, p.34]. 

Theorem 1.2.30 [23], [14, p.34] 

Let X be a Banach space. X has the RNP if and only if X has the SKMP. 

Hence this result implies that: 

Every non-empty closed bounded subset of a Banach space X is dentable if and only if 

every non-empty closed bounded (not necessarily convex) subset of X has an extreme 

point. 

Alternatively, 

Every non-empty closed bounded subset of a Banach space X is dentable if and only 

if every non-empty closed bounded subset of X contains an extreme point of its closed 

convex hull. 

Proof (of Theorem 1.2.30) 

Let X have the RNP and C be any non-empty bounded closed subset of X. Then C 

is dentable and contains at least one denting point. Then C has an extreme point, see 

Theorem 1.1.24, hence X has the SKMP. 

Conversely, let X have the SKMP and B be any closed convex bounded subset of X. Then 

B has an extreme point. Hence X has the RNP, see section 1.8 and also [13, condition 

20, p.218]. 0 
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We now discuss the concept of c-dentability, introduced and discussed by Bourgin [7]. 

Definition 1.2.31 [7, Definition 2.1.5, p.18] 

Let D be a bounded subset of X. Then D is c-dentable if for each e > 0, there exists a 

point Xe: ED such that Xe: tJ. co(D\Bc:(xc:)). 

Proposition 1.2.32 

Dentability implies c-dentability for any bounded subset of a Banach space X. 

Proof 

If a bounded subset D of X is dentable, then for each e > 0 there exists Xe: E D such that 

0 

Question 1.2.33 

What is the relation (if any) between s-dentability and c-dentability? 

We show that c-denting points are s-denting points: 

Let x E D such that x tJ. co(D\Bc:(x)) for each e > 0. Then x =!= 2:~1 XiAi, Ai 2'.: 0, 

with 2:~1 Ai = 1 and {xi} E D\Bc:(x) for every n E N. Hence x =I= L::1 xi.Xi, Ai 2'.: 0, 

L:i Ai= 1, {xi} E D\Bc:(x) and thus x tJ. s(D\Bc:(x)). 

Thus we conclude that: 

D(C) c c-D(C) C s-D(C), where D(C), c-D(C) and s-D(C) denote the denting points, 

c-denting points and s-denting points of a bounded set C, respectively. 

Remark 1.2.34 

It is possible to carry the notion of RNP over from a Banach space X to a non-empty 

closed bounded convex subset of X. Subsequently, we discuss conditions under which a 

subset of a Banach space can have the RNP. 

26 

Stellenbosch University  https://scholar.sun.ac.za



Definition 1.2.35 [7, Definition 2.1.1, p.15] 

It is said that a (closed bounded and convex) set Kin a Banach space X has the RNP 

for (0, E, µ) if for each measu:re m : E __... X for which m « µ holds and for which its 

average range, A(m) = {m(A)/µ(A) : A EE, µ(A) > O} is contained in K, there exists 

an f E £ 1(0, E, µ, X) such that m(A) = JA fdµ for each A EE. The set K is said to have 

the RNP if K has the RNP for each finite positive measure space. Moreover, suppose 

that C is a closed convex, possibly unbounded, subset of X. Then C has the RNP if each 

of its bounded convex subsets has the RNP. 

Furthermore, a Banach space X has the RNP if every closed bounded and convex subset 

of X has the RNP, see [50, p.508]. 

Definition 1.2.36 [7, Definition 1.4.2, p.11] 

Suppose that (En : n E N) is a sequence of sub-CT-algebras of E and that En C Em when­

ever n ~ m. Suppose that fn E £1(0, E, µ, X) for each n E N. If the sequence Un)n>l 

satisfies the conditions 

1. fn is En-measurable for each n EN, and 

2. JA f ndµ = JA f mdµ whenever n < m and A E En, 

then the sequence Un, En)n~l is said to be an X -valued martingale. 

If each En is generated by countably many atoms (since µ(E) < oo, µ can have at most 

countably many atoms) and if Eis generated by U~=1 En, then Un, En)n>l is called an 

elementary martingale. A closed bounded convex set K C X has the Martingale Con­

vergence Property (MCP) for (0, E, µ) if whenever Un, En)n>l is a martingale for which 

U~= 1 En generates E and fn E £1(0,E,µ,X) for which fn(w) EK µ-a.eon 0 for each 

n EN, then there exists an f E £ 1(0, E, µ, X) for which f(w) EK µ-a.eon X such that 

limn_,00 llfn(w) - J(w)ll = 0 µ-a.eon X. The set K has the MCP if it has the MCP for 

each finite positive measure space (0, E, µ). The set K has the elementary MCP if the 

above conditions are required to hold only for elementary martingale Un, En)n~l which 
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are K-valued and such that U~=l En generates E. 

Remark 1.2.37 

In [7, p.12], it is shown that the unit ball of the space ea, and consequently c0 itself, lacks 

the MCP. 

The following results are vital for the subsequent development: 

Theorem 1.2.38 [7, Theorem 2.2.1-2.2.3, pp.19,20,21] 

Suppose that K is a non-empty closed bounded convex subset of X. Then, 

l. If K has the RNP for (n, E, µ), then K has the MCP for (n, E, µ). 

2. If K has the elementary MCP for the measure space ([0,1), Borel O"-algebra, Lebesgue 

measure), then K is subset s-dentable, that is, each of its bounded non-empty subset 

of K is s-dentable. 

3. If K is s-dentable, then K has the RNP. 

Proof (of 1) 

Assume that K has the RNP for (n, E, µ), that (En)n2'.l is an increasing sequence of O"­

algebras such that Eis generated by u:=l En, and that Un, En)n2'.I is a martingale taking 

its values in K. Let fin(A) = fA fndµ for each A EE. Then fin is an X-valued measure 

on E, and fin « µ. Also, An(fin) C K. Indeed, if A E E, µ(A) > 0, then we have for 

each F E X* that 

F(m;(11)) = µ(~) fA F o fndµ 

~ sup{F(x) : x EK}. 

Since K is a weakly closed convex set, ";;(~~) E K. Since Un, En)n2'.I is a martingale, it 

follows that lim fin(A) exits for each A E LJ:=1 En· We now show that this limit exists 
n 

for each A E E. Let M = sup{llxll : x E K}. Given c > 0 and A E E, find B E EN for 

some N such that µ(A6B) < 2~. If n 2: N, then 

II fA fndµ - fA fNdµll ~ II fa fndµ - fa fNdµll 
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+ JAL.B llfnlldµ + JAL.B llfNlldµ 
~ 2µ(A6B)M 

< c. 

Consequently, (mn(A))n>l is a Cauchy sequence and m(A) = limmn(A) exists for all 
- n 

A E E. The Hahn-Vitali-Saks Theorem implies that m is a measure. Then m « µ 

and An(m) C cl(LJ:'=1 An(m)) C K. Since K has the RNP for (0, E, µ) there is an 

J E £1 (0, E, µ, X) such that JA f dµ = m(A) for each A E E. For A E En we have 

JA f dµ = m(A) = mn(A) = JA fndµ. Then the conditional expectation of f gives 

En = fn µ-a.e. Then lim llfn(w) - J(w)ll = 0 µ-a.e. That is, K has the MCP for 
n 

(0, E, µ). D 

The theorem below summarises the RNP in a subset of a Banach space. 

Theorem 1.2.39 [7, Theorem 2.3.6, p.31] 

Suppose that K is a non-empty closed bounded convex subset of a Banach space X. Then 

the following statements are equivalent: 

1. K has the RNP. 

2. Each closed bounded convex separable subset of K has the RNP. 

3. K has the RNP for the measure space ([0,1), Borel a-algebra, Lebesgue measure). 

4. K has the MCP. 

5. K has the MCP for the measure space ([0,1), Borel a-algebra, Lebesgue measure). 

6. K is subset s-dentable. 

7. K is subset c-dentable. 

8. Each countable subset of K is c-dentable. 

9. K is subset dentable. 

10. Each subset of K has a slice of arbitrary small diameter. 

29 

Stellenbosch University  https://scholar.sun.ac.za



11. Each closed bounded convex subset of K is dentable. 

Proof 

1=?4 Theorem 1.2.38, condition 1 

4=?5 Follows from Theorem 1.2.38 and Definition 1.2.36. 

5=?6 Theorem 1.2.38, condition 2. 

6=?1 Theorem 1.2.38, condition 3. It follows from Definition 1.2.10 and Theorem 1.2.11. 

1=?3 Follows from Theorem 1.2.38 and Definition 1.2.36. 

3=?5 Theorem 1.2.38, condition 1. 

1=?2 From Definition 1.2.35 

2=?8 Let D be a countable subset of K. Then co(D) is countable and convex, so that 

Ki = clco(D) is a separable closed bounded convex set in K. By hypothesis Ki has the 

RNP, and by the equivalence between 1 and 6, Ki is subset s-dentable, and D is bounded 

in Ki. Since Ki is bounded, D is s-dentable, and in particular, c-dentable. 

9=?8 Let K be subset dentable, hence K is subset c-dentable since dentability implies 

c-dentability. Since any countable subset C of K is also bounded since K is bounded, C 

is c-dentable. 

6=> 7 Let N be any bounded subset of K, hence be c-dentable by hypothesis. Since c­

dentability implies s-dentability, N is s-dentable. Hence K is subset s-dentable. 

11=>8 Let F be any bounded subset of K, then clco(F) is closed convex and bounded, 

hence dentable by assumption. Then Fis also dentable (see paragraph below, [14, p.14]) 

and hence c-dentable. 

We have that 1, 3, 4, 5 and 6 are equivalent and that 1=>2=>8. It is evident that 9=>8, 

6=> 7 and 7=>8. 

11=>9 Let D be any non-empty bounded subset of K. Then clco(D) is a closed bounded 

convex subset of K, and it is dentable by hypothesis. Hence by Dis dentable (see a para­

graph below on facts refardinf dentability from [14,p.14]). Thus K is subset dentable. 

9=>11 Obviously, every closed convex subset of K is bounded, and also dentable by hy­

pothesis. 

9=?10 Theorem 1.2.18. 

8=>11 See [7, pp.31,32]. Again, if C is countable in K then C is bounded since K is 
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bounded. Hence C is dentable since K is dentable and has the RNP. Hence for any 

bounded closed and convex set N in K, N is den table whether countable or not because 

K has the RNP. 0 

Facts regarding the dentable sets and dentability [14, p.14]: 

For any bounded set B is a Banach space X, 

o If the closed convex hull of B is dentable, so is B. 

o If B is compact convex set, then extreme points in B are all denting point (and, of 

course, conversely). 

e Strongly exposed points of B are denting points. 

o If B is a weakly compact set, then B is dentable. 

Q If every countable set in B is den table, then so is B. 

In addition, a Banach space X is dentable if and only if X has the RNP, by Theorem 

1.2.16. 

1.3 The RNP and the Bishop-Phelps Property 

In this section, we introduce the Bishop-Phelps property (BPP), which originates from 

the Bishop-Phelps theorem, and discuss its relationship with the RNP. 

For notational convenience define for each x* E X* and M > 0 a closed convex cone 

K(x*, M) by K(x*, M) = {x E X : llxll ~ Mx*(x)}. If X and Y are Banach spaces, 

L(X, Y) denotes the set of all continuous linear operators on X into Y. 

In order to prove the Bishop-Phelps Theorem we need the following results. 

Lemma 1.3.1 [13, Lemma 1, p.188] 

Let C be a closed convex subset of X. If x* E X* and x* is bounded on C and M > 0, then 
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for each y E C there exists x 0 E C with x0 - y E K(x*, M) and such that x0 + K(x*, M) 

supports Cat xo in the sence that C n (xo + K(x*, M)) = {x0}. 

Lemma 1.3.2 [13, Lemma 2, p.188] 

Let x*, y* EX* with llx*ll = 1 = llY*ll· If E: > 0 and ly*(x)I ~ ~whenever llxll ~ 1 and 

x*(x) = 0, then either llx* - y*ll ~ E: or llx* + y*ll ~ E:. 

Proof 

Restrict y* to the null space of x* and then let z* be any Hahn-Banach (norm preserving) 

extension of this functional back to a member of X*. Consequently, II z* II ~ ~. Moreover, 

y* - z* vanishes whenever x* does hence y* - z* =ax* for some a. Now, 

ll - lall = lllY*ll - llY* - z*lll ~ llz*ll ~ ~· 

Thus if, a ~ 0, we have 

llx* - y*ll = 11(1 - a)x* - z*ll ~ ll - al+ llz*ll ~ c; 

but if a < 0, we have 

llx* + y*ll = 11(1 + a)x* + z*ll ~ ll +al+ llz*ll ~ E:. 

Hence for any such a the result holds, and the lemma is proved. D 

Lemma 1.3.3 [13, Lemma 3, p.188] 

Let x*, y* EX* with llx*ll = 1 = llY*ll· IfO < E: < 1andM>1+2c1 then llx*-y*ll ~ E: 

whenever y* is non-negative on K(x*, M). 

Proof 

Choose x E X such that llxll = 1 and 1 + 2C1 < Mx*(x). If y E X, llYll < 2c1 and 

x*(y) = 0, then we have 

llx ± Yll ~ 1 + 2c1 < Mx*(x) = Mx*(x ± y). 
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Accordingly, x±y E K(x*, M). By hypothesis, y*(x±y) ~ O; so ly*(y)I :S y*(x) :S llxll = 1. 

Lemma 1.3.2 now ensures that either llx* + y*ll :S €or llx* - y*ll :S €. 

We show that llx* + y* II :S € does not hold: 

Since € and M- 1 < 1, there is z E X such that llzll = 1 and max(c, M-1) < x*(z). But 

then llzll :S Mx*(z) and z E K(x*, M). Again y*(z) ~ 0 and hence€ < (x* + y*)(z) :S 

llx* + y* II· Hence only llx* - y* II :S € holds and the proof is complete. D 

The Bishop-Phelps Theorem 1.3.4 [13, Theorem 4, p.189] 

Let C be a closed bounded convex subset of a Banach space X. The collection of linear 

functionals that achieve their maximum values on C is norm dense in X*. 

Proof 

It is sufficient to approximate x* E X* with llx* II = 1 by funtionals that achieve their 

maximum values on C. Furthermore it can be assumed that 0 E C. Let 0 < € < 1 

and choose M > 1 + 2C1
. Since M > 1, K(x*, M) is a closed convex cone with non­

empty interior (if xo EX is chosen so that x*(xollxoll-1
) > M- 1 then K(x*,M) contains 

an open ball centered at xollxoll- 1 
). Apply Lemma 1.3.1 to C with z = 0 to obtain 

x0 E C n (x0 + K(x*, M)) such that x0 + K(x*, M) supports C at x0 in the sense of 

Lemma 1.3.l. Next, separate x0 + K(x*,M) from C by y* E Y* chosen such that 

supy*(x) = y*(xo) 
xEC 

= inf y*(x + xo) 
xEK(x•,M) 

= inf y*(x) + y*(xo). 
xEK(x•,M) 

With this y* we find that y*(x) ~ 0 for x E K(x*, M). It follows from Lemma 1.3.3 that 

llx* - y*ll :S €. Since y* achieves its maximum value at x0 EC, the proof is complete. D 

Definition 1.3.5 [6, p.266] 

A non-empty bounded and closed subset B of X is said to possess the Bishop-Phelps 

Property (BPP) whenever given any Banach space Y and any operator T E L(X, Y), 

there is an approximating sequence (T,,)n2'.l in L(X, Y), (llTn - Tll __... 0), where each Tn 

achieves its maximum norm N(Tn, B) on B where N(T,n, B) = sup{llTmxll : x E B}. 
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Furthermore, every bounded closed and convex subset B C X has the BPP, if and only 

if X has the BPP. 

Examples 1.3.6 [13, p.216] 

The space li and all reflexive Banach spaces have the BPP, (closed unit balls of these 

spaces may have the BPP). 

Proposition 1.3. 7 [6, Proposition 1, p.266] 

Let C be any non-empty separable bounded closed and convex subset of X. If C has the 

BPP, then C is dentable. 

The similar result was stated by Bourgin in [7, p.388]. 

Remark 1.3.8 

Suppose one can show that there exists an x in C (in Proposition 1.3. 7 above), strongly 

exposed by at least one term Tn, of an aproximating sequence (T,1 )n;::i in L(X, Y). Such 

an element x E C would be a strongly exposed point, hence a denting point, hence C 

would be dentable. 

From Proposition 1.3.7 above we realise that if any bounded closed and convex subset C 

of X has the BPP, then C is dentable and hence X has the RNP. This is formally stated as, 

Corollary 1.3.9 [6, Corollary 2, p.266] 

A Banach space with the BPP has the RNP. 

Proof 

Let X be a Banach space with the BPP. Then every bounded closed and convex subset of 

X has the BPP, see Definition 1.3.5. Let C be any non-empty separable bounded closed 

and convex set in X. By Definition 1.3.5, Chas BPP. Then C is dentable by Proposition 

1.3.7 above. Since dentability is separably determined, that is every separable subset of 
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X is dentable if and only if X is dentable, then X is dentable. A dentable Banach space 

has the RNP, see Theorem 1.2.16, hence X has the RNP. D 

Remark 1.3.10 

In the proof above we used the fact that a dentable Banach space X has the RNP, see 

Definition 1.2.15 and Theorem 1.2.16. Hence a Banach space X has the RNP if and only 

if X is dentable if and only if any of its bounded subsets is dentable. This result was 

also mentioned by Bourgain [5, p.135], and it is vital for our subsequent discussion and 

developments. 

Bourgain [6] extended Corollary 1.3.9 above to: 

Theorem 1.3.11 [6, Theorem 7, p.269] 

A Banach space X has the BPP if and only if it has the RNP. 

Proof 

We only need to establish the sufficiency part of this implication. 

Let B be any non-empty bounded closed and convex set in X. Since X has the RNP, 

every bounded subset of X is dentable, including B and all its subsets, see Theorem 

1.2.39. Then for any Banach space Y, the set of those operators T E L(X, Y) which at­

tain their maximum norm N(T, B) on B is dense in L(X, Y) (by the BP-theorem 1.3.4). 

Hence B has the BPP. It follows that X has the BPP, see Definition 1.3.5. D 

The result of Theorem 1.3.11 above gives us an important characterisation of Banach 

spaces with the RNP. We shall explore in subsequent chapters if the BPP in X is equiv­

alent to the property that, every bounded closed convex subset, say C, in X equals the 

closed convex hull of its extreme points. 
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1.4 The RNP, Decomposition and Bushes 

In an attempt to find sufficient conditions for a Banach space to possess the RNP, we 

introduce the notion of bushes in, and decompositions of, Banach spaces. This section is 

dedicated to the partial progress that has been made on this subject. 

Definition 1.4.1 [25, p.255] 

A bush in a Banach space X is a bounded partially ordered subset B for which each 

member has at least two (finitely many) successors and is a convex combination of its 

successors, and there is a positive separation constant 8 such that II v - u II;::: 8 if v is 

a successor of u, and B has a first member to which each member of B can be joined 

by a linearly ordered chain of successive members of B. Such a bush is also called a 8-bush. 

Proposition 1.4.2 

A bush in a Banach space X is a bounded non-dentable subset of X. 

Proof 

Let B be any bush. Then B is bounded and each element b E B is a convex combi­

nation if its successors. Suppose B is dentable. Then there exists b0 E B, which is a 

denting point in B, such that (by Definition 1.2.2) b0 ~ clco(B\Bc:(b0 )), for any c: > 0. 

Then b0 ~ co(B\Bc:(b0 )) C clco(B\Bc:(b0 )), which means b0 cannot be written as a convex 

combination of elements in B\Bc:(b0 ), hence elements of B, including its successors. This 

follows from the fact that the separation constant can be bigger than the radius of the 

arbitrary ball centered at any point in the bush, that is c: < 8, for a separation constant 

8. This contradicts the fact that B is a bush. Hence a bush is non-dentable. 0 

Also, Bourgin [7, p.34] remarked that a 8-bush is not c-dentable, hence non-dentable. 

Lemma 1.4.3 [13, p.216] 

A bounded infinite 8-bush can be found inside any non-s-dentable set. 
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Theorem 1.4.4 [7, p.31] 

A Banach space X has the RNP if it does not contains a bush. 

Proof 

Suppose a Banach space X lacks the RNP. By Theorem 1.2.11 and Definition 1.2.10 X 

contains a bounded non-s-dentable set A. But then A contains a bush by Lemma 1.4.3, 

which contradicts the hypothesis that X does not contain a bush. Hence X has the RNP 

and the proof as complete. D 

See Proposition 2.3.3 for an extension of this result. 

Definition 1.4.5 [31, Definition 1.g.1, p.47] 

A Schauder decomposition of Banach space X is a sequence (Xn)n2::l of non-trivial closed 

subspaces of X such that every x E X can be expressed uniquely in the form x = z::::::=l Xn, 

where Xn E Xn for every n EN. 

Moreover, if dim(Xn) < oo for all n E N, then such a decomposition is said to be finite 

dimensional, and is denoted by FDD. 

Definition 1.4.6 [43, p.160] 

A Schauder decomposition (Xn)n2::l of X is called boundedly complete if whenever (Z::::::'=i Xn)m2::1 

is a bounded sequence with Xn E Xn for every n E N, then z::::::=l Xn converges. 

Definition 1.4.7 [31, p.1&18], [13, p.64] 

A sequence (xn)n2::l in a Banach space X is called a Schauder basis of X if for every 

x EX, there exists a unique sequence of scalars (an)n?:l such that x = z::::::=l anXn. 

A Schauder basis (xn)n2::l of X is called boundedly complete if for each scalar sequence 

(an)n?:l such that sup II Z:::::~= l akxkll < oo, the eries Z:::::n=l anXn converges. 
n 
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Theorem 1.4.8 [13, Theorem 6, p.64] 

If a Banach space X has a boundedly complete Schauder basis, then X has the RNP. 

Theorem 1.4.9 [5, p.135] 

A Banach space X possesses the RNP if and only if every subspace with finite dimensional 

Schauder decomposition has the RNP. 

Bourgain [5] proved this theorem in two cases, firstly, where every bounded closed convex 

subset of X has a PC and secondly, where X has a bounded closed convex set without a 

PC. Schachermayer [47, p.100] gives a simplified proof of the case where every bounded 

closed convex subset of X has a PC. 

With respect to the above theorem by Bourgain [5], it is worth noticing that, if a Banach 

space X has the FDD, then the space X is reflexive (see, Lindenstrauss and Tzafriri [31, 

p.47]), and a reflexive space has the RNP (see [7, p.74]). 

Definition 1.4.10 [43, p.167] 

If (Xi)i~l is a decomposition for a Banach space, with Xi C X, for each i 2'. 1, then 

(Hi)i~l is a skipped-blocking of (Xi)i~l if there exist sequences of positive integers (mk) 

and (nk) so that mk < nk + 1 < mk+l and each H k equals the closed linear subspace 

spanned by (Xi)~mk. 

Definition 1.4.11 [24, p.912] 

A finite dimensional Schauder decomposition, FDD, is basic if and only if each member 

x E X has a unique representation as x = I::=l Xn, where Xn E Xn for all n E N, and con­

vergence is convergence in norm. Furthermore, such a decomposition is unconditionally 

basic if the convergence is unconditional for each x (hence the series I::=l Xn converges 

unconditionally; for a definition of unconditional convergence visit Lindenstrauss and 

Tzafriri [31 , p.15]). Henceforth , an unconditionally basic FDD is denoted by UBFDD , 

and whenever the UBFDD is skipped-blocking, it is then denoted by UBSBFDD. 
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Theorem 1.4.12 [24, p.913] 

If a Banach space X has UBSBFDD, then X has the RNP if and only if X does not have 

a subspace isomorphic with Co· 

A Banach space, as we shall see in subsequent chapters, not having a subspace isomorphic 

with c0 , or not having an isomorphic copy of c0 , or not containing a subset of c0 , also 

has the property that every closed bounded convex subset, say M, in X is such that 

M = clco(E(M)). Theorem 1.4.12 above gives us a characterisation of those Banach 

spaces in which the RNP and this above-mentioned property are equivalent. Such spaces 

will be discussed thoroughly toward the end of this thesis. 

1.5 The RNP and Dual spaces 

This section is devoted to an exposition of the connection between dual spaces and the 

RNP. As will be seen, separability plays a vital role in this discussion. 

Dunford-Pettis Theorem 1.5.1 [13, Theorem 1, p.79], [11, p.225] 

If X is a Banach space and X* is separable, then X* has the RNP. 

In order to prove this theorem we require the following result. 

Lemma 1.5.2 [11, Lemma 5, p.225] 

Let X be a Banach space with separable dual X*. Let B be a non-empty closed bounded 

convex subset of X*, let D be the weak* -closure of B, and let E denote the set of extreme 

points of D. Then B n E is weak* -dense in E. 

Proof 

The set Dis weak*-compact and convex. By [11, Lemma 4, p.222] the set Z of all points 

of continuity of the identity map on D between the weak* and norm topologies relativised 
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to D intersects E in a weak*-dense G0-subset of E. Let z E Z. Since B is weak*-dense 

in D, there is a net Uo:) of members of B converging weak* to z. But z E Z, so the net 

Uo:) converges to z in the norm topology. Thus z EB. It follows that Z CB, and hence 

by [11, lemma 4, p.222] we have B n Eis weak*-dense in E. D 

Proof of Theorem 1.5.1 

Due to Theorem 1.2.39 we need only to show that each non-empty norm-closed bounded 

convex subset B of X* has a denting point. Using the notation of Lemma 1.5.2, for any 

such B, any extreme point z of D which belongs to Z are extreme points of B. Given 

c > 0. Since z E Z, there is a weak*-open subset W of X* such that z E W n D and the 

norm-diameter of W n D ~ c. Now, z is not an element of the weak* -closed convex hull of 

D\W (Milman's Theorem) and so z is not in the norm-closed convex hull of D\W. Since 

B\ {f E X* : II! - zll ~ c} C D\ W, it follows that z is not in the norm-closed convex hull 

of B\ {! E X* : II! - zll ~ c }. Consequently, z is a denting point of B. This completes 

the proof. D 

Definition 1.5.3 

The RNP in a Banach space X is said to be separably determined if and only if each 

separable subspace of X has the RNP. 

The next result will strengthen Theorem 1.5.1 to obtain a more general result. 

Theorem 1.5.4 [28, p.497]. 

Let X be a Banach space. The following are equivalent: 

1. X possesses the RNP. 

2. Every closed subspace of X possesses the RNP. 

3. Every closed separable subspace of X possesses the RNP. 

4. X is separably determined. 
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Since every separable closed subspace Y of a reflexive Banach space X is a separable dual 

space, it follows from Theorem 1.5.4 that every such Y has the RNP, from which it follows 

that a reflexive Banach space X possesses the RNP. 

We can now formulate a more general theorem. 

Theorem 1.5.5 [49, p.218), [28, p.498] 

A dual X* of a Banach space X possesses the RNP if and only if every (closed) separable 

subspace Y of X has a separable dual Y*. 

Similar to the Dunford-Pettis Theorem (Theorem 1.5.1) above, Bourgin [7, p.75] stated 

that all separable dual Banach spaces have the RNP. 

Remark 1.5.6 

The Dunford-Pettis result can also be stated as follows: 

l. If D c X* is a weak*-compact and separable set, then D is subset s-dentable [7, 

p.71]. 

2. If X* is separable, then its closed unit ball Bx· is weak*-compact and norm sepa­

rable, and hence, (by 1 above), subset s-dentable. Thus, by Bourgin [7, p.31], Bx· 

has the RNP and so has X*. 

3. A set D has the RNP. 

Definition 1.5. 7 [28, p.498] 

A Banach space X is called quasi-separable if for each separable subspace Y of X, Y* is 

separable ( <=:> X* possesses the RNP). 

Hence, by Theorem 1.5.5, X is quasi-separable if and only if X* has RNP. 
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Remark 1.5.8 [28, p.498] 

If X is quasi-separable then every continuous linear closed image of X is also quasi­

separable. For, if K is a continuous linear closed image of X, then K* is isomorphic to 

a subspace of X*, and then K* has the RNP. Hence K is quasi-separable (see Kuo [28, 

p.498]). 

There are cases where both X* and X** (and hence X) have the RNP. For this pur­

pose, we turn to quotient spaces. We first recall some results from [28]. 

On account of Theorem 1.5.5, the quasi-separability concept is equivalent to the posses­

sion of the RNP by X*. It is not known whether a Banach space X is quasi-separable if 

the closed unit ball Bx•• of X** is weak* -sequentially compact. This can be equivalently 

translated as whether a conjugate space X* has the RNP if Bx·· is weak*-sequentially 

. compact. 

Definition 1.5.9 [28, p.498] 

A Banach space X is said ·to be weakly compactly generated (wcg) if it is the closed span 

of some weakly compact subset C of itself, that is, if the linear span of C is dense in X. 

Weakly compactly generated Banach spaces will again be discussed Section 1.6. 

Theorem 1.5.10 [9, Theorem 3.6, p.908] 

Let X1 and X2 be Banach spaces where X1 is quasi-reflexive. If x; is isomorphic to X2, 

then X 1 is insomorphic to X 2 . 

Theorem 1.5.11 [28, p.501] 

Let X be a Banach space such that X** / X* is separable. Then both X** and X* have 

the RNP. 

Proof 

In view of Theorem 1.5.5 it suffices to show that every closed separable subspace of X 
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(respectively, X*) has a separable dual. Let Y be a closed separable subspace of X. By 

Theorem 1.5.10, Y** /Y is isomorphic to a subspace of X** / X because Y** c X**. By 

hypothesis, X** / X* is separable, hence X** / X is separable. It follows that, Y** /Y is 

separable because Y** /Y c X** / X. Thus Y** is separable, hence Y* is separable. Hence 

by Theorem 1.5.5, X* has the RNP. 

Let K be a closed separable subspace of X*. Then there exists a separable subspace W of 

X such that K is isometrically isomorphic to a subspace of W* . K* is thus a continuous 

linear image of the separable space W**, and hence K* is separable. Consequently, X** 

has the RNP. This completes the proof. D 

Proposition 1.5.12 [28, p.501] 

If both X** and X* have the RNP, then every closed separable subspace of X has a 

separable second dual. 

Proof 

If Y is a separable closed subspace of X, then Y* is separable, by Theorem 1.5.5. That 

is, since X* has the RNP, then every separable subspace Y of X has a separable dual. 

But Y** is isometrically isomorphic to a subspace of X**, and deducing from the result 

of Theorem 1.5.5, X** has the RNP if and only if every separable subspace Y* of X* has 

a separable dual Y**. Hence, since Y* is separable, Y** is separable. D 

We realise that the combined effect of the Theorem 1.5.11 and Proposition 1.5.12 above, 

gives the following: 

If X is a Banach space such that X** / X* is separable, then every closed separable sub­

space of X has a separable second dual (and also a separable dual). 

It should be noted that if given X** and X* have the RNP, it does not necessarily imply 

that X** / X is separable. See [28, p.502] for a reference with counter-examples. 
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Corollary 1.5.13 [49, p.222] 

1. If X* has the RNP and the space Y is isomorphic to a quotient space of X, then 

Y* has the RNP. 

2. If there is a subspace Y of X such that Y* and (X/Y)* have the RNP, then X* has 

the RNP. 

Proof 

1. This follows from the fact that Y c X and every separable subspace K of Y is also in 

X. Hence K* is separable since X* has the RNP, see Theorem 1.5.5. Consequently 

Y* has the RNP. 

2. Suppose µ : X --t X\Y is the canonical quotient operator. Let M be a separable 

subspace of X. Since µ is onto, there exists a separable subspace W of X, Mc W 

and µ(W) is closed in X\Y. Let 'I/; : W --t µ(W), 'I/; = µjw, the restriction ofµ to 

W. The kernel of the operator 'I/; is W n Y. Both µ(W) and W n Y are separable 

and their duals have the RNP, so their duals are separable. Then W* is separable, 

hence M* is separable. Since M was arbitrarily chosen in X, X* has the RNP. 0 

In the proof above the following were employed: 

Q If A c B and B* is separable, then A* is separable. 

o If W is separable and µ is onto and structure preserving map, then µ(W) is sepa­

rable. 

Corollary 1.5.14 [13, Corollary 10, p.198] 

Let X be a Banach space and Y be a Banach space which is a continuous linear image of 

closed subspace of X. If X* has the RNP, then Y* has the RNP. 

Proof 

If K is a separable closed subspace of Y, then K is a continuous linear image of a closed 

subspace V of X. Since X* has RNP and Vis separable, then V* is separable, by Theorem 
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1.5.5. Since K is a quotient of V, K* is a subspace of V*, and K* is separable since V* is 

separable. Hence K, a separable subspace of a Banach space Y has a separable dual K*. 

Since K was arbitrarily chosen, then any such K in Y has a separable dual, hence Y* has 

RNP. D 

Remark 1.5.15 

In the proof above, we assume that there exists f : X ---+ J(X), for f continuous and 

linear, and there exists V, a closed subset of X, such that f(V) = Y, with V* = Y. 

We then show that Y* = V** has the RNP, that is, there exists a separable subspace K 

of Y = V* such that K* is separable. 

The RNP is a useful tool in studying spaces of operators. If X and Y are Banach spaces, 

then L(X, Y) denotes the space of continuous linear operator from X to Y. The following 

results are known, see [14, p.39]: 

1. If the Banach spaces X* and Y have the RNP and if every continuous linear operator 

from X to Y is compact, then L(X, Y) has the RNP. 

2. If L(X, Y) has the RNP and if Y has a complemented subspace with an uncondi­

tional basis, then every operator T E L(X, Y) is compact. 

1.6 The RNP and Weakly Compactly Generated spaces 

One way new classes of spaces have been shown to possess the RNP is by showing that 

separable subspaces are subspaces of separable duals. For this purpose, we investigate 

weakly compactly generated spaces. In this section, spaces that are generated by weakly 

compact sets are being discussed, and the existence of the RNP is investigated. 

Notations 

Bx, Bx•, Bx·· denote the closed unit balls of X, X* and X** respectively. 
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Definition 1.6.1 [28, p.498], [11, p.143] 

A Banach space X is weakly compactly generated (wcg) if it is the closed linear span of 

some weakly compact subset C of itself, that is, if the linear span of C is dense in X. 

Definition 1.6.2 [28, p.499] 

A compact Hausdorff space S is Eberlein compact if it is homeomorphic to a weakly com­

pact subset of some Banach space. 

Kuo [28, p.499] asserts that, due to the Eberlein-Smulian Theorem, S is sequentially 

compact if it is Eberlein compact, that is, if it is homeomorphic to a weakly compact 

subset of some Banach space. Futhermore, Kuo [28] asserts that if X* is isomorphic to a 

subspace of a weakly compactly generated (wcg) space, then X* has the RNP. 

Remark 1.6.3 [28, p.498] 

A Banach space X is wcg if and only if the unit ball Bx· is Eberlein compact in its 

weak* -topology. 

This is similar to Corollary 3 in [11, p.148]. In particular Bx· is weak* -sequentially 

compact. 

Theorem 1.6.4 [28, p.499] 

Let X be a Banach space. Suppose that Bx·· is Eberlein compact in the weak*-topology. 

Then X* possesses the RNP. 

Proof 

In view of Theorem 1.5.5, it suffices to show that every closed separable subspace Y of 

X has a separable dual Y*. For this purpose, let Y be a closed separable subspace of X. 

Then By is weak*-dense in Br· (Goldstine's theorem). Thus, Br· is weak*-separable. 

Let J: Y ___, X be the inclusion map. Then J** : Y** ___, X** is a weak*-isomorphism of 
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Y** onto y..L..L = {! E X** : J(y) = 0 for all y E y..L }, with J**(Br·) = By.J.J.. Then 

ByH is weak*-separable. Moreover, ByH is weak*-closed in Bx••, which is Eberlein 

compact by hypothesis, whence ByH is itself Eberlein compact. Now ByH is metrizable 

because a separable Eberlein compact space is metrizable. This then implies that Br· is 

metrizable. Therefore, Y* is separable, which completes the proof. D 

Theorem 1.6.5 [28, p.499], [11, p.226] 

Suppose X* is isomorphic to a subspace of a wcg Banach space W. Then X* possesses 

the RNP. 

Proof 

In the view of Theorem 1.5.5, it suffices to show that every closed separable subspace Y 

of X has a separable dual Y*. So, let Y be a closed separable subspace of X. Applying the 

same argument as in the proof of Theorem 1.6.4, we see that Br· is weak* -separable. Let 

(x~*)n::::i be a weak*-dense sequence in ByH and J: X* --t W be an isomorphism. Then 

J* : W* --t X** is surjective. By the Open Mapping Theorem, there exists a bounded se­

quence ( w~)n::::i in W* such that J*w~ = x~*. Denote by Z the weak* -closure of ( w~)n::::i. 

By the hypothesis W is wcg, Bw· is the Eberlein compact in the weak* -topology and 

hence Z is also Eberlein compact. This together with the separability of Z implies that 

Z is a compact metric space in the weak*-topology. J*(Z) is then weak*-compact and 

contains (x~*)n::::i C By.J.J.. Hence, J*(Z) = ByH. Moreover, being a continuous image 

of a compact metric space, ByH is compactly metrizable. Therefore, Br· is metrizable 

and Y* is separable. This completes the proof. D 

Diestel and Uhl [14, p.7] show that weakly compactly generated (wcg) dual spaces possess 

the RNP. The same result was also stated by Kuo [28] and it is to be stated subsequently. 

The proof of this result as given by Diestel and Uhl [14] goes as follows: 

If Y is a separable subspace of a wcg space X*, then there exists a separable subspace S 

of X such that Y is a subspace of S*. 

Then S* is separable: 
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Clearly S* is a quotient of X*, thus S* is also wcg. Let K be a weakly compact convex 

subset of S* that generates S*. Then K is a weak* -separable. But S is separable so K is 

weak*-metrizable, hence K is weak*-separable. But since K is compact in both Hausdorff 

topologies (weak and norm), it follows that those topologies coincide on K, that is, K is 

weakly separable. Then K is norm separable and thus S* is separable, and is the closed 

linear span of K. Hence X* has the RNP. 

Theorem 1.6.6 [11, p.226] 

Suppose Xis a Banach space whose dual is a wcg subspace of some Banach space Y. Then 

X* has the RNP. 

The method of the proof once again is to show that if A is an arbitrary closed separable 

subspace of X, then A* is separable. 

It follows immediately that all wcg dual spaces (and most particularly, all reflexive Ba­

nach space) possesses the RNP. 

Corollary 1.6. 7 [28, Corollary 2.3, p.500] 

If X* is wcg then X* has the RNP. 

Lemma 1.6.8 [28, Lemma 3.4, p.502] 

If Z is a wcg subspace of a Banach space such that Y / Z is separable, then Y is wcg. 

Proof 

Because Y / Z is separable, there exists a separable subspace W c Y such that Z + W is 

dense in Y. Since both W and Z are wcg, it follows that Y is wcg. 0 

Theorem 1.6.9 [28, p.502] 

If X** / X* is separable, then X* is wcg. 
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Proof 

Under the given hypothesis, there exists a separable subspace Z such that X/Z is reflex­

ive. Then z1- is reflexive and X* jz1- is separable. It then follows from Lemma 1.6.8 that 

X* is wcg. D 

It then follows from Corollary 1.6.7 and Theorem 1.6.9 above that if X** / X* is sepa­

rable X* has the RNP. 

Example 1.6.10 [11], [14, p.7] 

All reflexive Banach spaces and c0 (I') are wcg spaces. Reflexive Banach spaces are wcg 

dual spaces, hence they have the RNP. On the other hand, c0 (I') is wcg but fails the RNP 

(see, Remark 1.7.14). 

This follows from the fact that eo(r) is not a dual space. Note that wcg Banach spaces can 

possess the RNP only if they are dual spaces. The space £ 1 (0, E, µ,IR) is wcg, because 

the set {XA : µ(A) < oo} is relatively weakly compact by the classical Dunford-Pettis 

criterion and has a dense linear span. 

For any set r, the space c0(r) is wcg because the set { e'Y 'Y E r} of unit vectors is 

relatively weakly compact and has a dense linear span. 

It is interesting that wcg Banach spaces can be characterised in terms of the ranges 

of linear operators on reflexive spaces as follows, 

Theorem 1.6.11 [11, p.163] 

A Banach space X is wcg if and only if there exists a reflexive Banach space Y and a 

one-to-one continuous linear operator TE L(Y, X) such that T(Y) is dense in X. 

Examples of wcg spaces [11, p.143]: 

0 eo(r), r any set. 

o £ 1(µ), µany O"-fi.nite measure (also stated in [28, p.500]). 
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o l 1 (r), r any countable set. 

1. 7 Asplund spaces, Dual spaces and the RNP 

In this section we study the connection between Asplund spaces and dual spaces with the 

RNP. Separability has been used thus far to characterise dual Banach spaces with the 

RNP, and this section follows suit. 

Notations 

C(X) denotes the collection of continuous complex-valued functions defined on a Banach 

space X, and C(X)* its dual. 

Definition 1.7.1 [7, Definition 5.1.1, p.117], [11, p.247] 

If X is a Banach space, D C X and F : X --t JR a function, then F is called D-differentiable 

at x EX if there is an f EX* such that limt_,o+ supdED I F(x+tdj-F(x) - f(d)I = 0. When 

the set of directions D is the unit ball of X, F is Frechet defferentiable at x. 

A convex function is a function whose value at the midpoint of every interval in its domain, 

does not exceed the average of its values at the ends of the interval. Generally, suppose Z 

is a convex set in a Banach space X. Then for any function f : Z --t X, if for any x, y E Z, 

with x-/- y, and any A E (0, 1), we have f(Ax + (1 - A)y) ::; Af(x) + (1 - A)f(y), we say 

f is convex. 

Definition 1.7.2 [45, p.105], [33, p.735] 

A real Banach space X is called an Asplund space if every continuous convex real-valued 

function defined on a non-empty open convex subset D of X is Frechet-differentiable on 

a dense G 6-subset of D. 

Remark 1.7.3 [33, p.735] 

Asplund spaces are sometimes called the strongly differentiable spaces. 

If X is a Banach space, then the dual space X* is called a (DA)-space if it satisfies the 
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following condition (*): 

If K is a weak* -compact convex s'ubset of X*, then K is the weak* -closed convex hull of 

those of its points strongly exposed by funtionals on X. 

Proposition 1.7.4 [13, p.213] 

The dual X* of an Asplund space X satisfies condition (*) above, and so it is a (DA)-space. 

One of the main theorems by Namioka and Phelps [33] establishes the converse to Propo­

sition 1.7.4, that: If X* is a (DA)-space, then Xis an Asplund space (see Theorem 1.7.10). 

Proposition 1.7.5 [See 45, p.105] 

A Banach space X is an Asplund space if and only if each separable subspace of X has a 

separable cl ual. 

In view of Theorem 1.5.5, it follows that the interest in Asplund spaces is motivated 

by the result: 

A Banach space X is an Asplund space if and only if its dual X* has the RNP. 

This result is influenced by the following proposition: 

Proposition 1.7.6 [33, p.741] 

Suppose that X is an Asplund space. Then the following hold: 

1. X* has the RNP. 

2. Every separable subspace of X has a separable dual. 

Does the converse hold? 

If X* has the RNP, does this imply that X is an Asplund space? 

The affirmative answer follows from the following theorem by Stegall [50, p.515]. 
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Theorem 1.7.7 [50, p.515], [7, p.132] 

A Banach space X is an Asplund space if and only if X* has the RNP. 

Proof 

Suppose X is an Asplund space. Then X* has the RNP, by Proposition 1.7.6 above. 

Conversely, if X* has the RNP, then every separable subspace of X has a separable dual 

(Theorem 1.5.5). Hence Xis an Asplund space, by Proposition 1.7.5. D 

Remark 1.7.8 [14, p.35] 

If Xis Asplund, then X* has the RNP; if X* is wcg, then Xis Asplund. As a consequence 

of Theorems 1.7.7 and 1.5.5, and Proposition 1.7.6, we have: 

X is an Asplund space if and only if X* has the RNP if and only if every separable 

subspace Y of X has a separable dual Y*. 

Corollary 1.7.9 [33, p.742] 

Let X be a separable Banach space. Then X is an Asplund space (that is, X* has the 

RNP) if and only if X* is separable. 

Proof 

Let X be Asplund, then by Proposition 1.7.6, every separable subspace of X has a sepa­

rable dual. Since X is a separable subspace of itself, X* is separable. 

Conversely, let X* be separable. Then X* has the RNP, see Theorem 1.5.1, and X is 

separable. Thus Xis an Asplund space, see Theorem 1.7.7. D 

The following theorem is interesting in that it characterises those dual spaces with the 

RNP whose closed subspaces have the RNP. 

Theorem 1.7.10 [33, p.742] 

If M is a closed linear subspace of an Asplund space X, then M is an Asplund space. 
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In other words: If M is a closed linear subspace of a space X with X* having the RNP, 

then M* possesses the RNP. 

Theorem 1.7.11 [33, p.739] 

If X is a Banach space such that X* is a (DA)-space, then X is an Asplund space. 

Namioka and Phelps [33, pp.745, 746] mention two open questions and results related 

to these: 

1. From Proposition 1.7.6: If X* is a (DA)-space, then X* has the RNP. Is the converse 

true? If so, it would provide a very interesting characterisation of Asplund spaces 

as precisely the preduals of spaces with the RNP. 

2. Is the existence of an equivalent norm which is Frechet differentiable on X\ {O} 

either a necessary or a sufficient condition for X to be an Asplund space? 

An affirmative answer to 1 would provide an affirmative answer to the sufficiency por­

tion of 2. Indeed, if the norm in X is Frechet differentiable, then the norm continuity of 

the differentiable map, together with the Bishop-Phelps density Theorem 1.3.4, see [13, 

p.189], show that every separable subspace of X has a separable dual, hence X* has the 

RNP, this would then imply that X is an Asplund space. 

Definition 1.7.12 [33, p.746] 

A Banach space X is dispersed if every nonempty subset of X has a (relative) isolated 

point. 

Theorem 1.7.13 [33, pp.746,747] 

Let X be a compact Hausdorff space. Then C(X) is an Asplund space if and only if X is 

dispersed. 

We present a proof in one direction: 
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Proof 

Let X be embedded in C(X)* with the relative weak*-topology. If C(X) is an Asplund 

space, then C(X)* is a (DA)-space and if A c Xis non-empty, then there exists a relative 

weak*-open non-empty subset U of A of diameter less than 1. But if x, y E X such that 

x =I= y, then llx - Yll > 1, say llx - Yll = 2. Thus U consists of a single point, that is, an 

isolated point of A. Hence X is dispersed. 0 

It is known (see [33, p.749]) that the space C(X)* has the RNP if and only if X is 

dispersed. Hence we have the following; 

Corollary 1.7.14 [33, p.749] 

Let X be compact Hausdorff space. Then C(X) is an Asplund space if and only if C(X)* 

has the RNP. 

This result follows from Theorem 1.7.7. 

Remark 1.7.15 

1. If X is a Banach space and if X* is separable then, X* has the RNP( see Theorem 

1.5.1), and X is an Asplund space (see Proposition 1.7.6). 

2. If X is a Banach space and if X is reflexive, then X is an Asplund space (see [33, 

p.735]); by Proposition 1.7.6, X* has the RNP. All Hilbert spaces are thus Asplund 

spaces, and their duals have the RNP. 

3. An example of an Asplund space which fails the RNP: 

If r is any set, then the space eo(r) is Asplund (see [33, p.741]) and it fails the RNP. 

But its dual l 1 (r) has the RNP, because li (r) is a (DA)-space. 

All reflexive Banach spaces (see [7, p.74]), and Hilbert spaces (see [27, p.241]) have the 

RNP. 
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Theorem 1.7.16 [7. p.74] 

Let K be a weak* -compact convex set in X* for which E(K) is norm separable. Then K 

has RNP, K is itself norm separable and K = clco(E(K)). 

Since strongly exposed points are extreme point in any closed bounded and convex subset 

of a Banach space, then Theorem 1.7.16 above is related to Remark 1.7.4 stated earlier. 

In this following section, we summarize properties that are equivalent to the RNP. 

1.8 Overview of the RNP and equivalent properties 

Each of the following conditions is sufficient and necessary for a Banach space X to have 

the RNP [13, p.217]: 

l. Every closed linear subspace of X has the RNP. 

2. Every separable closed linear subspace of X has the RNP. 

3. Every function f : [O, l] ---+ X of bounded variation is differentiable a.e. 

4. Every absolutely continuous function f : [O, l] ---+ X is differentiable a.e. In this case 

f(b) - f(a) = J: f'(t) dt for any a and b E [O, l]. 

5. Every bounded subset of X is dentable. 

6. Every closed bounded convex subset of X is dentable. 

7. Every bounded subset of X is a-dentable (s-dentable). 

8. Every non-empty closed bounded subset of X contains an extreme point of its closed 

convex hull. 

9. Every non-empty closed bounded convex subset of X is the closed convex hull of its 

denting points. 

10. Every non-empty closed bounded convex subset of X has a strongly exposed point. 
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11. Every non-empty closed bounded convex subset of X is the closed convex hull of 

its strongly exposed points. 

If X is isomorphic to a dual space of a Banach space Y, then the following are 

equivalent to those above: 

12. Every separable subspace (of) Y has a separable dual. 

13. Every separable subspace of X is isomorphic to a subspace of a separable dual. 

14. Every non-empty closed bounded convex subspace of X has an extreme point. 

15. Every non-empty closed bounded convex subset of X is a closed convex hull of its 

extreme points. ( 14)=?15) is in [7, p.39]). 

It is worth noting that, all conditions stated in Theorem 1.2.39 are sufficient for the ex­

istence of the RNP in a Banach space X. This follows from the fact that, if any bounded 

closed and convex subset of X has the RNP, X has the RNP as well [50, p.508]. 

Proposition 1.8.1 

Each of the following conditions is sufficient for a dual Banach space X* (exclusively) to 

possess the RNP, 

1. Every separable subspace of X has a separable dual. 

2. X is quasi-separable. 

3. Every continuous linear closed image of X is quasi-separable. 

4. X* is isomorphic to a subspace of a wcg Banach space. 

5. X* is wcg (weakly compactly generated). 

6. X is an Asplund space. 

Proofs for these conditions follows from Theorem 1.5.5, Definition 1.5.7, Remark 1.5.8, 

Theorem 1.6.5, Corollary 1.6.7, and Theorem 1.7.6 respectively. 
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Corollary 1.8.2 [7, p.67) 

Let Cc X be a closed convex set. If Chas the RNP then each closed bounded subset of 

C contains an extreme point of its closed convex hull. 

This statement is similar to 10)=>8) above, where C is replaced by X, and X is a larger 

space. 

Proof 

Suppose C has the RNP, then by 10) above, every non-empty closed bounded convex 

subset of Chas a strongly exposed point. Let D be any closed bounded subset of C, then 

clco(D) c C, say K = clco(D), has a strongly exposed point, say x, which is in C since 

K is closed bounded and convex in C. Hence E(clco(D)) =f=. (/) =f=. E(K). We need to show 

that there exists an element y E D such that y E E(K) : 

From the above, there exists x a strongly exposed point in K, that is, x E SE(K). Since 

strongly exposed points are extreme points then x is an extreme point in clco(D). The 

above proof is slightly modified from the original proof. D 

Examples 1.8.3 

Examples of spaces with RNP [13, p.218] 

o reflexive spaces. 

o separable (dual) spaces. 

o Duals of Asplund space (denoted by (DA)-space) [14, p.31]. 

o weakly compactly generated (wcg) duals, and their dual subspaces. 

o spaces with boundedly complete basis (Theorem 1.4.10) 

o l1(r), r any non-empty set (proof [7, p.76], [13, p.8, Corollary 8] and [41, p.76]). 

o the spaces of unconditionally convergent series in X if X has RNP. 

o X**, X* when X** / X* is separable. 
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Almost each of the above-mentioned examples where proven in this chapter. 

Examples of spaces without RNP [13, p.219] 

e £ 1 [O, l] (because it contains a 8-tree, which is a 8-bush, which in turn is a bounded 

and non-dentable set, see Proposition 1.4.2 and [7, p.15]). 

o co (because its closed unit ball have no extreme points [14, p.23], and it is non­

dentable [41, p.77]). 

o c (because the closed unit ball in c is non-dentable [23, p.163]). 

o l00 (because it contains a copy of co ). 

o £ 00 [0, l] (the closed unit ball of £ 00 [0, l]) is non-dentable, see Example 1.2.7). 

o X*, if X contains l1 (because (l1)* = l00 C X* ). 

Each of these examples of the spaces without the RNP stated above must negate at least 

one of those conditions stated under the overview heading. Which ones in particular? 

More on these will be discussed in the following chapter and reasons will be given as to 

why they lack the RNP. 
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Chapter 2 

Spaces failing the RNP 

In this chapter we discuss and characterise Banach spaces failing the RNP. The chapter 

is divided into three sections, namely, using dentability, decomposition, and separability 

(especially in dual spaces), as characterisations of Banach spaces failing the RNP, in sec­

tions one, two and three, respectively. 

Examples of such spaces were already mentioned in previous sections. Some of the prop­

erties equivalent to a lack of RNP in Banach spaces will be compared to those discussed 

earlier. 

2.1 Lack of the RNP and dentability 

In this section we discuss the lack of the RNP in Banach spaces and characterise such 

spaces by dentability property or perhaps the lack of a dentable subset. 

Notations 

Bx denotes the closed unit ball of a Banach space X. 

Theorem 2.1.1 [23, Theorem 2, p.160] 

For a Banach space X, the following are equivalent: 

1. X fails the RNP. 

2. There exists a bounded non-dentable subset in X. 
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Proof 

The result follows directly from Theorem 1.2.16. 0 

Remark 2.1.2 

Considering the fact observed earlier , see Theorem 1.2.16, that, a Banach space possesses 

the RNP if and only if each of its non-empty bounded subsets is dentable, it is inevitable 

that the existence of a bush in any Banach space X would lead to the lack of the RNP 

in such a space, since a bush is non-empty bounded non-dentable subset, see Proposition 

1.4.2. Bushes and the lack of the RNP shall be discussed in subsequent sections. 

In fact, the equivalence of 1 and 2 in Theorem 2.1.l (see [10, p.121]) had some inter­

esting spin-offs: 

o Lindenstrauss used it to show that the RNP implies the KMP. 

o Huff and Morris [22] used it to show that KMP implies the RNP in dual spaces (this 

implication is still open for arbitrary non-dual Banach spaces). 

o Edgar generalised Lindenstrauss' result by obtaining a Choquet-type representation 

theorem for bounded closed convex subsets of a Banach space with the RNP. 

£ 00 [0, l] is an example of a non-dentable Banach space, see Example 1.2.7, hence £ 00 [0, l] 

fails the RNP. 

Theorem 2.1.3 [23, Theorem 4, p.161] 

X is a Banach space, the following are equivalent: 

1. X does not have the RNP. 

2. There exists a bounded closed convex subset in X which does not have an extreme 

point. 

3. There exists a closed bounded convex set A C X such that no nontrivial f E X* 

attains its supremum on A (hence there exists no strongly exposed point in A). 
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The equivalence between 1 and 2 follows from Theorem 1.2.25 and Section 1.8 overview 

summary condition 14. The equivalence between 1 and 3 follows from Theorem 1.2.21. 

In the previous chapter we gave an overview of the conditions sufficient for a Banach 

space to have the RNP. Below we state few conditions sufficient for a Banach space to 

lack the RNP. 

Proposition 2.1.4 

A Banach space X fails the RNP if any one of the following holds: 

1. There exists a closed linear subspace of X that fails the RNP. 

2. There exists a separable closed linear subspace of X failing the RNP. 

3. There exists a closed bounded convex non-dentable subset in X. 

4. There exists a bounded non-dentable subset of X (see, [13, p.133]). 

5. There exists a bounded non-a-dentable subset in X (see, [13,p.132]). 

6. There exists a non-empty closed bounded convex subset of X which is not a closed 

convex hull of its denting/strongly exposed/extreme points. 

7. X has no BPP. 

8. X has a bounded infinite c5-tree (i.e a sequence whose successive terms has a distance 

of at least c5 > 0 between them, see [13, Corollary 5, p.127]). 

We need to comment only on 4, 5 and 8: 

If a set is non-a-dentable (similarly, non-s-dentable) then it is non-dentable. This follows 

from the fact dentable sets are s-dentable (see below Definition 1.2.8), and if a set is a 

bounded infinite c5-tree then it is non-a-dentable because of the separation constant c5 > 0. 

The concept of c5-tree to be discussed thoroughly subsequently. 

As a consequence of Theorem 1.2.39 we subsequently state conditions sufficient for a non­

empty closed bounded and convex subset K of a Banach space X, to lack the RNP. 
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Proposition 2.1.5 

For a non-empty bounded closed and convex subset K of a Banach space X to fail the 

RNP, the following are sufficient: 

1. There exists a closed bounded convex separable subset of K failing the RNP. 

2. K fails the MCP. 

3. There exists a bounded non-s-dentable (hence non-c-dentable, hence non-dentable) 

set in K. 

4. There exists a countable non-c-dentable subset in K. 

5. There exists a closed bounded non-dentable convex subset of K. 

2.2 Lack of the RNP in Dual spaces 

This section is aimed at characterising those dual Banach spaces failing the RNP. Sepa­

rability plays an important role in such a charaterisation. 

Theorem 2.2.1 [13, Theorem 6, p.195] 

If a Banach space X has a separable subspace whose dual is not separable, then X* lacks 

the RNP. 

The proof of Theorem 2.2.l above follows from the result that if X* has the RNP, then 

each separable subspace of X has a separable dual, see Theorem 1.5.5. 

Corollary 2.2.2 [49, Corollary 2, p.219] 

If X is a Banach space such that there exists a separable subspace Y of X, such that 

Y* is non-separable (equivalently, X* does not have RNP), then there exists a separable 

subspace Z of X*, such that Z is not isomorphic to a subspace of a separable dual space. 

Corollary 2.2.2 above follows from the fact that a Banach space X has a dual X* with 
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the RNP if and only if each of the separable subspaces of X has a separable dual (see 

Theorem 1.5.5). So, if we can find a separable subspace Zin X with non-separable dual, 

then we would have the lack of the RNP in X*. Such Z is assumed to be separable in a 

dual space, but it is not a separable dual itself, and this is really interesting. 

We have observed in the preceeding chapter, conditions sufficient for a dual space to 

possess the RNP. We now state conditions sufficient for a dual Banach space X* to lack 

the RNP. 

Proposition 2.2.3 

Each of the following is sufficient for a dual Banach space X* to lack the RNP: 

1. X is not quasi-separable (that is, X has a separable subspace whose dual space is 

not separable). 

2. X is not Asplund. 

Proposition 2.2.3 follows from Definition 1.5.7 and Proposition 1.7.7: 

X is an Asplund space if and only if X* has the RNP if and only if X is quasi-separable. 

2.3 Lack of the RNP, bushes and decompositions 

In this section we discuss how the existence, or perhaps the lack of, bushes and decom­

positions in Banach spaces can influence the lack of the RNP in such spaces. 

Definition 2.3.1 [24] 

A bounded closed convex subset K of a Banach space X has the point-of-continuity prop­

erty (PCP) if for each closed subset C of K, there exists a point x E C such that the 

weak and norm topologies (restricted to C) coincide at x. 

Remark 2.3.2 

It should be noted however that if every bounded closed convex subset of X has a PC then 
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X has the PCP but the converse does not hold in general. This follows from observing 

that not all closed bounded subsets C in the Definition 2.3.1 above are convex. If K in 

X has the PCP, and all such subset C in K are convex, then K would have the property 

called the convex-point-of continuity property, also known as the CPCP. 

Proposition 2.3.3 [21, p.347] 

A Banach space X fails the RNP if and only if it contains a bush. 

Proof 

Let X fail the RNP. Then X contains a bush (Theorem 1.4.4). 

Conversely, 

Let X contain a bush, then there exists a bounded non-dentable subset in X, see Propo­

sition 1.4.2. Hence X fails the RNP, and this completes the proof. D 

In the proof above we used the fact that a bush is a bounded non-dentable subset, proved 

in the preceeding chapter in which a bush was defined. As a consequence of Proposition 

2.3.3 above, we believe the following Proposition is worth mentioning: 

Proposition 2.3.4 

A Banach space X has a bounded non-clentable subset if and only if X has a bush. 

Proof 

It follows from Theorem 2.1.1 and Proposition 2.3.3 that if X has a bounded non-dentable 

subset then X fails the RNP and hence contains a bush. Conversely, if X contains a bush 

then X has a bounded non-dentable set since a bush is bounded and non-dentable. D 

Theorem 2.3.5 [25, p.256] 

There is a Banach space X which is a subspace of a Banach space Z for which X and Z 

have the following properties: 

1. Z has an UBFDD (hence is contained in a space with unconditional basis, [31, 
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p.51]). 

2. X fails the RNP. 

3. X has no subspace isomorphic with Co· 

4. X has PCP. 

5. X fails KMP. 

6. X does not have an UBFDD (hence Z\X has an UBFDD). 

We need properties 1 and 2, that is, the Banach subspace X of a Banach space Z with 

an UBFDD, fails RNP. 

Definition 2.3.6 [7, p.34] 

A <5-bush (or simply a bush) which has exactly two branches at every point, each of which 

is the midpoint of its branching point, is called a <5-tree. Thus formally, a <5-tree is a 

sequence (xn)n~I such that Xn = ~X2n + ~X2n+I and llx2n - Xnll = llx2n+1 - Xnll 2: <5 for 

each n E N,<5 > 0. 

Remark 2.3. 7 

Bourgin [7, p.34] mentions that a closed bounded convex set K which contains a <5-tree 

for some o > 0, lacks the RNP. The reason is that, such K contains a non-dentable set if 

it contains a <5-tree for some <5 > 0, which means that K is not subset dentable. Thus K 

fails the RNP (see Theorem 1.2.39). The converse does not hold! That is, if K fails fails 

the RNP, it doesn't necessarily have a <5-tree for some <5 > 0 : there exists a subspace B 

of £ 1 [0, 1] which lacks RNP, but which contains no bounded <5-tree for some <5 > 0, see [7, 

p.34]. 

We repeat the definition of an FDD in the following form: 

Definition 2.3.8 [5, p.135] 

(Pn, M11 )n~1 is a finite dimensional Schauder decomposition for a Banach space X if and 

only if each Pn is a continuous linear projection of X onto the finite dimensional Mn, 
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PnPm = 0 if n =I- m and x = L::1 Pi(x) for each x E X. The partial sum operators Sn 

are defined by Sn = L:~=l Pi. 

Since (Sn)n~l is pointwise convergent (that is, Sn(Y) ~ S1(y), for ally E X), and S1 

an identity operator, it is uniformly bounded (that is, supn II Sn(x)ll < oo for all Sn in 

(Sn)n~l)· 

We denote by G(Mn, n) the number supn II Snll, which is called the Grynblum constant of 

the decomposition. 

Theorem 2.3.9 [5, Theorem 2, p.136] 

If X fails the RNP, then for every .X > 1, there exists a closed subspace X>. of X without 

the RNP and with a finite dimensional Schauder decomposition with Grynblum constant 

at most .X. 

Proof 

Indeed, X >. fails the RNP by the Overview in section 1.8. If we take P1 = S1, P2 = S2 -S1, 

P3 = S3 - S2, ... , Pn+l = Sn+l - Sn. Then Pn are mutually disjoint for each n, and 

(Pn, PnX)n~l is a finite dimensional Schauder decomposition of X with G(PnX, n) ~ .X. 

This completes the proof. 0 

The reader is referred to [5] and references stated there, for a more elegant proof. Theo­

rem 2.3.9 can be rephrased as follows: If X fails the RNP, then there exists a subspace 

X>. of X with the FDD failing the RNP. This result follows from the fact that, a Banach 

space X has the RNP if and only if each of its subspaces with the FDD has the RNP as 

well [5, p.135]. 
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Chapter 3 

The Krein=Milman Property 

In this chapter, we discuss the Krein-Milman Property (KMP) and properties that are 

equivalent to it. We first state the Krein-Milman theorem from which the KMP originates. 

Extreme points, dentability and separability are used to characterise Banach spaces with 

the KMP, as well as the existence of the RNP is such spaces. 

3.1 The Krein-Milman Theorem 

In this section we state the Krein-Milman Theorem and give its proof as it is important 

for the rest of this chapter. We use the formulation by Rudin [44]: 

Krein-Milman Theorem 3.1.1 [44, p.75] 

Let X be a Banach space such that f : X ---+ C is injective for all f E X*, (that is, X* 

separates points of X). If K is a non-empty compact convex set in X, then K is the 

closed convex hull of its extreme points, that is, K = clco(E(K)), where E(K) denotes 

the set of all extreme points of K. 

The proof of the above theorem can be found in [44, p.75]. We shall instead give the 

proof by Diestel [12], which we feel is so elegant and easy to follow it is noteworthy. We 

also state the theorem the same way Diestel [12, p.148] did. 
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Definition 3.1.2 (12, p.148], (44], (23, p.157] 

A subset A of a convex set B is extremal (or an extreme set) in B if A is a non-empty 

convex subset of B with the property that should x, y E B and >.x + (1 - >.)y E A, for 

some>. E (0, 1), then x, y E A. 

The extreme points of a set K are the extreme sets that consist of just one point, and each 

extreme point in K cannot be written as a convex combination of two distinct points of K. 

Theorem 3.1.3 [12, p.148] 

Let K be a non-empty compact convex subset of a Banach space X. Then K has an 

extreme point and is in fact the closed convex hull of its extreme points. 

Proof 

Let !:::.. be the collection of all non-empty closed extremal subsets of K (hence K E !:::..). 

Since K is convex and it is a convex subset of itself, then for any x, y E K, >.x+(l->.)y E K 

for some>. E (0, 1). Hence K is an extremal subset of K, and since it is closed, it is in!:::... 

There is an ordering in !:::.. defined by Ki :S K2 whenever K2 ~ Ki. The compactness of 

K along with the classical Zorn's lemma, produce a maximal K 0 E !:::... 

We claim that Ko is a singleton: 

Indeed if x, y E K0 , such that x i= y, there is a linear continuous function f on X with 

f(x) < f(y). Then Kon {z: f(z) =max f(K0 )} is a proper closed extremal subset of K0 . 

Note that f is one-to-one, hence {z: f(z) = maxf(K0 )} is a singleton. This implies that 

K0 n {z: f(z) = maxf(K0 )} is a singleton and a proper subset of K0 . Hence it is not 

possible that Kon {z: f(z) = maxf(K0)} is an extremal subset of K0 , and we have a 

contradiction. 

Hence K has an extreme point. 

We now show that K = clco(E(K)), KE!:::..: 

Let C be the closed convex hull of set of extreme points of K. We need to show that 

C=K: 

Let however x E K\ C: 

Then there exists a linear continuous function f on X such that max f ( C) < f ( x). Look-
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ing at {z EK: f(z) = ma.xf(K)}, we should see a closed extremal subset of K which 

entirely misses C, that is, {z E K : f(z) = max f(K)} n C = 0. On the other hand, 

each closed extremal subset of K contains an extreme point on K. Hence there exists 

no extreme point outside C, hence K\C = 0. Then all extreme points are in C, hence 

C=K D 

3.2 The KMP and extreme points 

In this section we discuss how the existence of extreme points in Banach spaces and/ or 

in their bounded subspaces influence the existence of the KMP in such spaces. 

Definition 3.2.1 [13, Definition 6, p.190] 

A Banach space X has the Krein-Milman Property (KMP) if every closed bounded convex 

subset of X is the closed convex hull of its extreme points. 

Theorem 3.2.2 [13, Theorem 7, p.190] 

If each non-empty closed bounded convex subset of a Banach space X contains an extreme 

point then X has the KMP. 

Proof 

Let B be any non-empty closed bounded convex subset of X, and let E = clco(E(B)), 

where E(B) denotes the set of extreme points of B. 

We need to prove that E = B : 

Suppose E =/= B, then by the separation property of X* and the Bishop-Phelps theorem 

(Theorem 1.3.4), there exists x* EX* such that supx*(E) < supx*(B) = x*(b0 ) for some 

b0 EB. (E c B). By the choice of x* and b0 , the set C = {b EB: x*(b) = supx*(B)} 

is non-empty closed bounded convex in X. By hypothesis, C has an extreme point and 

by the choice of x*, its easy to see that an extreme point of C is an extreme point of B 

(that is, C n B =/= 0 because they have an extreme point in common). This contradicts 

C n E = 0, since E c B, from assumption. Hence E = B. D 
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This theorem above was also stated by Diestel [11, Proposition 1, p.230]. 

Theorem 3.2.3 [11, Theorem 1, p.231] 

If a Banach space X possesses the RNP then X possesses the KMP. 

Proof 

If B be a non-empty closed bounded convex subset of X. Then B and all its subsets 

are dentable. Let E > 0 be given. Since B is dentable, there exists an x1 E B such that 

x1 ~ clco(B\B~(x 1 )) = C1. By the Hahn-Banach theorem, there exists f EX* such that 

sup f(C1) < f(x 1). By the Bishop-Phelps Theorem 1.3.4, we can select f EX* such that 

supfi(C1) < supfi(B) = fi(bo) for some bo EB. 

Let B1 = {b E B : fi(b) = fi(bo)}. Then B1 is non-empty, closed and bounded convex 

subset of B. Since B is dentable, so is B1 by assumption. Moreover B has a norm 

diameter ~ E. Thus there exists an x2 E B1 such that x2 ~ clco(B1 \B~(x2)) = C2. By 

the Hahn-Banach theorem, there exists f E X* which separates x2 from sup h( C2) < 

sup f2(B1) = h(b1) for some b1 E B1. 

Let B2 = {b E B1 : h(b) = h(b1)}. Then B2 is a non-empty closed bounded con­

vex subset of B1. Moreover, B2 has a norm diameter less than ~· By induction we 

obtain a sequence (Bn)n?.l of non-empty closed bounded convex subsets of B such that 

B 2 B1 2 B2 2 ... 2 Bn 2 ... where the norm diameter of Bn is ~ 2~, and Bn+l is a 

face of Bn. Let {x} = nr;;: Bn· Then x is an extreme point of B. In fact, if x = h + ~z 
with y, z E B, then for each n fn(x) = 4fn(Y) + ~fn(z). Hence, if x E nr;;: Bn, we have 

y, z E nr;;: Bn which means that x = y = z and xis an extreme point. 0 

Our main aim is to establish conditions under which the RNP and the KMP are equiv­

alent. Since we have established thus far that the RNP implies the KMP (see Theorem 

3.2.3), the conditions that are sufficient for a Banach space to have the RNP are also 

sufficient for a Banach space to have the KMP. We state some of them below. 
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Definition 3.2.4 [7, Definition 3.1.2, p.40] 

A closed convex subset Kofa Banach space Xis said to have the Krein-Milman Property 

(KMP} if each closed bounded convex subset A of K satisfies A= clco(E(A)). 

Proposition 3.2.5 

Each of the following conditions is sufficient for a Banach space X to possess the KMP: 

1. Every closed linear subspace of X has the RNP 

2. Every bounded subset of X is dentable/ a-dentable/s-dentable 

3. Every separable closed linear subspace has the RNP 

4. Every non-empty closed bounded convex subset of X is a closed convex hull of its 

denting/ strongly exposed/ extreme points. 

Proofs of these conditions follow from the fact that X has the KMP if it has the RNP, 

from Theorem 3.2.3 above. In addition, if any bounded closed and convex subset of X 

has the RNP (hence den table), then X has the RNP, hence X has the KMP, see Theorem 

1.2.39. Thus each of the conditions in Theorem 1.2.39, is sufficient for the existence of 

the RNP in X, hence of the KMP in a Banach space X. 

3.3 The KMP and dual spaces 

In this section we discuss the KMP in dual Banach spaces, and investigate what charac­

teristics are needed for a dual of a Banach space to possess the KMP. The separability 

property is used mostly to determine such characteristics. 

Lemma 3.3.1 [Stegall; see 13, p.194] 

Let X be a separable Banach space whose dual X* is non-separable. Then for each c > 0 

there is a non-empty weak* -compact subset ~ of the unit ball Bx· of X*, a Haar sys­

tem of closed and open subsets (Cn)n~l of ~ and a sequence (xn)n~l in X such that 

llxnll ~ 1 +€for all n E N and lx*(xn) - xc,.(x*)I < €2-k for all k = 0, 1, 2, ... , all n with 
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2k ~ n < 2k+l and all x* E .6.. In addition, the sequence ( Cn)n?:I may be chosen so that 

the weak* -diameter of Cn tends to zero as n approaches infinity. 

Theorem 3.3.2 [Stegall; see 13, p. 195] 

If a Banach space X has a separable subspace Y whose dual is not separable, then there 

is a bounded infinite o-tree in X*. Consequently, if a Banach space X has a subspace 

whose dual is non-separable, then X* lacks the RNP. 

Proof 

Employ Lemma 3.3. l to produce a non-empty weak* -compact subset .6. of X*, a Haar 

system ( Cn)n?:I of subsets of .6. (with C1 = .6.) and a sequence (Yn)n?:I in Y such that 

llYnll ~ ~for all n EN and such that Jy*(yn)- xcJy*)I < 2-k-3 for all k = 0, 1, 2, ... ,all n 

with 2k ~ n < 2k+l and all y* E .6.. Also, choose ( Cn)n?:I so that the limit of the weak* -

diameter of Cn tends to zero as n approaches oo. Let Ebe the er-field generated by ( Cn)n?:I 

and let µ be the unique countably additive finite measure on E such that µ( Cn) = 2-k 

for 2k ~ n < 2k+I. Each ¢ E C(.6.) is E-measurable because o( Cn) approaches zero as 

n approaches oo. Then, if y E Y, it follows that (Ty)(y*) = y*(y), y* E .6., defines a 

linear operator T : Y ~ L 00 (µ) which is bounded. Since L 00 (µ) is injective, T has a 

bounded linear extension, again denoted by T, to all of X. In this notation, the condition 

ly*(yn) - xc.Jy*)I < 2-k-3 for all k = 0, 1, 2, ... , all n with 2k ~ n < 2k+l and ally* E .6. 

translates into 

(1) 

for all n. By considering L1(µ) as a subspace of (L00 (µ))* L~(µ), consider the se-

quence (r:i~~)))n?:l· This sequence is bounded, by the definition ofµ and the fact that 

T is bounded. The fact that ( Cn)n?:I is a Haar system, and the definition ofµ guarantee 

that this sequence is a tree in X*. We proceed by showing that this is a fs-tree in X*. 

To this end note that 

ll r•(xcj)) _ r•(xc2H 1))ll = _1_JIT*( )- 2T*( )JI 
µ(Cj) µ(C2H 1) µ(Cj) Xcj Xc2j+1 

= µ(bj) llT*(xc2J - T*(xc2j+Jll 

~ 9µtc1) IT*(xc21 - Xc2j+1)(Y2i)I 
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= 9µ(8cj) fci T(y2j)(Xc2j - Xc2i+J dµ 

2: 9µ?c)f cj XC2j (xc2j - XC2j+1) dµ 

- ft. IT(y2j) - Xc2jllxc2j - Xc2j+1I dµ 
> _s_[µ(Cj) _ lµ(Cj) . µ(C·)] 
- 9µ(Cj} 2 2 8 J 

= ~ - 11sµ(Cj) 

2: ts. 
A . ·1 h d b d h h llT•(xc.) r•(xc2-))ll 7 s1m1 ar met o can e use to s ow t at µ(Cj} - µ(C2i5 2: 18 . This proves the 

first assertion. The second assertion follows from the fact that if Y* is not separable, then 

it (and hence X* ) contains a bounded infinite c5-tree, which is by definition a bush, and 

by Theorem 1.4.4, X* lacks the RNP. D 

Theorem 3.3.3 [13, p.196] 

If a Banach space X has a separable subspace Y whose dual Y* is non-separable, then 

X* lacks the KMP. 

Proof 

We employ the following from the proof of Theorem 3.3.2: the sequences (Yn)n2'.l and 

(Cn)n2'.l and the operator T: X ---'* £ 00 (µ). The space £ 1(µ) will be regarded as a sub­

space of L~(µ), and L~(µ) will be regarded as the space of all finitely additive measures 

on E that vanishes when µ vanishes, equipped with the variation norm. Let C be the 

weak*-closed convex hull of {µ(g~)} in L~(µ), let x~ = T*(µ(g:)), let D be the weak*­

closed convex hull of the set {x~} EX*, and let K = {x* ED: lim x*(yn) = O}. Then 
n->oo 

C and D are weak* -compact convex subsets of their ambient spaces. The set K is convex 

(by the definition of convexity) and K is bounded (being a subset of D). 

K is non-empty: 

lx~(Ym)I = IT(µ(d;)(Ym)I 

= µ(bn) I Jc,. T(ym)dµI 

~ lµ(bn) fen IT(ym) - Xc,Jdµ + µ(bn) Jc,. XcmdµI 
< µ(Cm} , µ(Cn} + µ(CmnC,.) 
- 8 µ(Cn} µ(Cn) 

from line (1) in Theorem 3.3.2. Now lim µ(Cm) = 0 implies that lim x~(Yn) = 0. This 
m--+oo n--+oo 
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shows that x~ EK; so K =I (/J 

K is norm closed: 

Let x* be a norm cluster point of K and let c > 0. Then there exists y* E K such that 

llx* - y*ll < 211 ~nll for all n E N. Since y* E K there is a positive integer m such that 

ly*(yj)I < ~ for j ~ m. Thus, when j ~ m, 

lx*(yj)I :::; lx*(yj) - y*(yj)I + ly*(yj)I 

= €. 

Hence, x* E K and K is norm closed. 

E(K) = (/J: 

Note that, from what we have above 

x~(Ym) = µ(bn) Jc,. T(ym)dµ 

= µ(bn) [fen (T(ym) - Xc,Jdµ +µ(Cm n Cn)] 
> -µ(Cm) 
- 8 

since llT(ym) - xc,J 00 < µ(~m). Since lim µ( Cn) = 0, it follows that lim inf x* (Ym) ~ 0 
n-+oo m 

for all x* E D. From this it follows that E(K) c E(D). We now show that E(D)nK = 0. 

Let e* E E(D). Since T*(C) = D, it follows that Cn (T*)- 1({e*}) is a non-empty con­

vex weak*-closed subset of C. From the Krein-Milman Theorem we obtain an extreme 

point (3 of A= C n (T*)- 1({e*}). If p E E(A), let p = (1 - a)x + ay with a E [O, 1] 

and x, y E C. Then T*(p) = e* = (1 - a)T*(x) + aT*(y) from which it follows that 

T*(p) = T*(x) = T*(y), so that p E E(C). The weak*-closure of C(d;,)} in L':x,µ is 

a weak*-compact set whose closed convex hull is C. Since (3 E E(A), we have that 

(3 E E(C), it follows from Milman's Theorem that the finitely additive measure (3 is in 

the weak* -closure of C(g~)}. Hence there is a net ( µ(g:) )aEA in the set C(g~)} such that 

(J(E) = li!11fE[µ(g:)Jdµ for all EEL:. In particular, (J(Cm) = li!11fcJµ(g:)Jdµ for all m. 

B t . ~ - 1 [~ XC2ktl l •t c 11 th t ~ d E(C) d ~ d E(C) u smce (C ) - -2 (C ) + (C ) i 10 ows a (C ) 'F , an so (C ) 'F . µ k µ 2k µ 2k±l µ k µ a 

Thus, the net Ucm µ(g:)dµ)aEA is a convergent net of O's and l's. Then, (J(Cm) = 0 or 

1 for all m. In addition, for all k, L,~:2
1

k-l (3( Cn) = (3(6.) = li!11 f c:. µ(g:) clµ = l. Then, 

(J(Cm) = 1 for infinitely many m. If (J(Cm) = 1, then 

le*(ym) - ll = le*(ym) - fJ(Cm)I 
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= IT*,6(ym) - ,6(Cm)I 

= I JLi T(ym) - XCm d,6j 

~ ll,611 llT(ym) - XCm II 
<l 
- 8 

since ll,611 ~ 1 and llT(ym) - Xc,J ~ µ(~m) ~ k· 
Then, e*(ym) ~ ~ for infinitely many m. Thus lim e*(xm) =f. 0, and e* ~ K. This then 

m 

shows that E(D) n E(K) = 0, hence E(K) = 0 since E(K) c E(D). We deduce from 

Definition 3.2.1 that X* lacks the KMP. 0 

Thus, if X* has the KMP, every separable subspace Y of X has a separable dual Y*. 

This means that (by Theorem 1.5.5), if X* lacks the RNP, then X* lacks the KMP. 

We shall discuss more of the dual spaces lacking the KMP later in the subsequent sec­

tions. But then, if X* has the RNP, X* has the KMP. 

Theorem 3.3.3 above can be reformulated as follows: 

If a Banach space X is non-quasi-separable, then X* lacks the KMP. That is, if X* has 

the KMP, then X is quasi-separable (see Definition 1.5.7). 

If f EX*, f =/:- 0, let M(D, !) = sup{f(x): x ED}. 

Proposition 3.3.4 [7, Proposition 3.1.1, p.39] 

Let C be a closed convex subset of a Banach space X. If each closed bounded convex 

subset of C has at least one extreme point, then each such set is the closed convex hull 

of its extreme points. 

Proof 

Let K be a closed bounded convex subset of C, let Ki = clco(E(K)), and suppose that 

Ki is a proper subset of K. By the separation theorem there is an f E X* such that 

M(Ki, !) < r < M(K, f) for some r E R Let K2 = 1-i[r, oo) n K. Let y E E(K2 ), 

where E(K2 ) =f. 0 by hypothesis. Since y ~ Ki, y ~ E(K), and thus y is interior to the 
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L -

line segment [x, z] in K with f(x) < r < f(z). Let w be the endpoint of the ray from x 

through z intersected with K. Then f(w) > r, so that w ~ E(K). On the other hand, if 

w were interior to some non-trivial line segment in K it would follow that y ~ E(K), a 

contradiction. 

Proposition 3.3.5 [7, Proposition 3.1.3, p.40] 

Reflexive Banach spaces have the KMP. 

Proof 

D 

If we let X to be a reflexive Banach space, and K be any closed bounded convex subset of 

X, then K, being weakly compact and convex, has at least one extreme point, and hence 

E(K) is non-empty. Hence K has at least one extreme point, and thus it is the closed 

convex hull of its extreme points, by Proposition 3.3.4, that is K = clco(E(K)). Since K 

was arbitrarily chosen, every such K in X is the closed convex hull of its extreme points. 

Thus X has the KMP. D 

Remark 3.3.6 

Proposition 3.3.5 can also be established using our earlier result (see Example 1.6.9) that 

reflexive Banach spaces have the RNP. Since RNP implies the KMP, a reflexive Banach 

space has the KMP. 

Subsequently we look at the subsets of a dual Banach space having the KMP, and then 

at the dual Banach spaces having the KMP. 

Definition 3.3.7 [7, Definition 3.5.3, p.54] 

A bounded subset A C X* is weak*-dentable if and only if for each c: > 0 there exists a 

point x0 EA such that x0 ~ w*-cl(co(A\B0 (x0 ))), where w*-cl(B) is the weak* closure of 

B. 
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Theorem 3.3.8 [7, Theorem 4.2.13, p.91] 

Let C be a weak* -compact convex subset of a dual space X*. Then the following are 

equivalent: 

1. C has the RNP. 

2. C has the KMP. 

3. If Y is a separable subspace of X, then CIY is separable, where Cly = {fly : f E 

C} c Y*. 

4. C contains no 8-tree for any 8 > 0. 

5. C is subset weak* -dentable. 

Proof 

1 ::::? 2 Since C is a weak* -compact convex subset of X*, it follows that C is a closed 

bounded convex subset of X* (see, Rudin [44, p.66]). Then C has the KMP if C 

has the RNP (by Lindenstrauss theorem , see [7, p.49]). 

1 {::} 4 If C contains a bounded 8-tree for some 8 > 0, then C contains is a bounded non­

dentable set. Thus, C is not subset dentable and fails the RNP. The converse also 

holds, see Proposition 2.1.4 (8). (A set C is subset dentable if every bounded subset 

of C is den table.) 

3::::? 5 Let C have a subset, say F, which is not weak*-dentable. Since FCC C X*, X* 

lacks the RNP. Hence there exists a separable subset Y in X such that Y* or Cly is 

non-separable, see Theorem 1.5.5. In addition, see [7, p.94], where it is shown that 

the negation of 5 implies the negation of 3. 

5 ::::? 1 Since weak* -dentable sets are dentable, then the fact that C is subset weak* -dentable 

implies that it is subset dentable. Hence C has the RNP (see Theorem 1.2.39). 

3::::? 1 Let B = {hi : i EN} be a countable subset of C and let Ac Bx, be a countable set 

with llhi - hjll = supxEA(hi(x) - hi(x)), for all i,j EN, where Bx is a closed unit 
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ball in X. Let Y be the closed span of A; then Y is separable. By hypothesis Cly 

is separable and since Cly is weak*-compact and convex, Cly is subset s-dentable 

( a weak*-compact separable subset of a dual space is subset s-dentable [7, p.71]). 

But for id:Y ---+ X, the inclusion map id*:X* ---+ Y* is an affine isometry on B and 

id*(B) = Bly C Cly is s-dentable. Hence B is itself s-dentable. Since B is an 

arbitrary countable subset in C which is s-dentable, C has the RNP, by Theorem 

1.2.39. 

5 =? 4 Suppose C contains a 8-tree for some 8 > 0. Then C fails to be subset dentable and 

hence fails to be subset weak*-dentable. Thus C contains no 8-tree for some 8 > 0, 

if it is subset weak* -dentable. 

4 =? 5 If C contains no 8-tree for some 8 > 0, then it is subset dentable, hence subset 

weak* -den table. 

4 =? 3 If C contains no 8-tree for some 8 > 0, then C is subset dentable and hence C 

has the RNP. Hence, for every separable subset Y of X, Y* is in X*. Hence Cly is 

separable. D 

Properties 1 and 2 are equivalent and this will be discussed and proved in chapter six. 

The following theorem is a global translate of more local theorems stated by Bourgin [7]: 

Theorem 3.3.9 [7, Theorem 4.4.1, p.111] 

For a dual space X*, the following are equivalent: 

1. X* has the RNP. 

2. X* has the KMP. 

3. If Y is a separable subspace of X, then Y* is separable. 

4. X* contains no bounded 8-tree for any 8 > 0. 

5. For each weak*-compact convex subset of K of X*, K = w*-cl(co(w*-SE(K))). 

6. Each bounded subset of X* is weak* -dentable. 
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The above Theorem 3.3.9 is an extension of results on a subset of a dual Banach space 

(Theorem 3.3.8 above) to a dual Banach space itself. In fact, 1 <=> 2 <=> 3 <=> 4 <=>5 <=> 6 

follows from Theorem 3.3.8 applied to the closed unit ball Bx· of X*. 

Since all finite dimensional normed spaces and all Hilbert spaces have the RNP, all finite 

dimensional normed spaces and all Hilbert spaces have the KMP. A proof to these follows 

from the fact that the RNP implies the KMP. 

As we have observed thus far that, in dual spaces the RNP implies the KMP, then condi­

tions sufficient for a dual Banach space to possess the RNP are also sufficient for a dual 

Banach space to possess the the KMP. 

Proposition 3.3.10 

The following conditions are sufficient for a Banach space X* to possess the KMP. 

1. Every separable subspace of X has a separable dual (Theorem 1.5.5). 

2. X is quasi-separable (Definition 1.5.7). 

3. Every continuous linear closed image of Xis quasi-separable (Remark 1.5.8). 

4. X* is isomorphic to a subspace of a wcg Banach space (Theorem 1.6.5). 

5. X* is wcg (weakly compactly generated) (Corollary 1.6.7). 

6. X is an Asplund space (Proposition 1.7.6). 

These conditions follow from the fact that the RNP implies the KMP in dual Banach 

space (see Theorems 1.5.5 and 3.3.9), and Proposition 1.8.1. 

Examples 3.3.11 

The following are examples of spaces with the KMP: 

0 Reflexive spaces (Proposition 3.3.5). 
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o weakly compactly generated (dual) spaces (e.g. reflexive Banach spaces). 

o dual spaces with the RNP. 

o All separable dual spaces. 

Remark 3.3.12 

It is noteworthy that in any Banach space X, the RNP implies the KMP. If a Banach 

space is a dual space, the KMP implies the RNP as well. It is then our intention to 

explore conditions under which the KMP would implies the RNP in any Banach space. 

3.4 The KMP, decompositions and bushes 

In this section we discuss how decompositions and bushes influence the existence of the 

KMP in Banach spaces. 

As a consequence of Theorems 1.4.4 and 3.2.2, we have the following: 

Proposition 3.4.1 

If X contains no bush, then X has the KMP. 

As a consequence of Theorems 1.4.8 and 3.2.2, we have the following: 

Proposition 3.4.2 

If X has a boundedly complete Schauder basis, then X has the KMP. 

As a consequence of Theorem 1.4.9 and Theorem 3.2.2, we have: 

Proposition 3.4.3 

If every subspace of a Banach space X with FDD has the RNP, then X has the KMP. 

Consequently, we formulate the following proposition as an overview of these above: 

Proposition 3.4.4 

Let X be a Banach space. Then X has the KMP if either one of the following holds, 
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1. X contains no bush. 

2. X has a boundedly complete Schauder basis. 

3. Every subspace of X with the FDD has the RNP. 

The proof for this proposition follows from the preceeding propositions. 
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Chapter 4 

Lack of the KMP in Banach spaces 

In this chapter we deal with those Banach spaces that fail the Krein-Milman property. 

All these spaces fail the Radon-Nikodym property as well. Lack of extreme points, lack 

of separable dual subspace and the existence of non-separable dual spaces will be used to 

characterise Banach space without the KMP. 

4.1 Lack of the KMP and extreme points 

The aim of this section is to illustrate the lack of the KMP in Banach spaces by showing 

the lack of extreme points in such spaces. 

Example 4.1.1 [7, p.38) 

The Banach space eo, of all sequences converging to zero, fails the KMP: 

It is sufficient to show that, for K, the closed unit ball in Co, E(K) = 0 : 

It is clear that K is convex and that an interior point of K cannot be an extreme point 

of K. Consider then a boundary point x = (xi) E K. Then II x II= 1 and limi-+oo Xi = 0. 

Select a term Xn of x such that lxnl < ~ · Let a = (Yi), /3 = (zi) be the points of Kin Co 

defined by the following equations, Xi = Yi = Zi for i # n, Yn = Xn - ~ and Zn = Xn + ~ . 

Then a# /3, a# x # /3, 11 a 11= 11 /3 II= 1, limi_, Zi = limi-+oo Yi and x = ~a+ ~/3 . Then 

for any arbitrary boundary point x in K , we have that x tj. E(K), hence E(K) = 0. By 

Definition 3.2.1, Co fails the KMP. 
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Example 4.1.2 [7, p.18] 

Consider the Banach space C[O, 1] of continuous functions on [O, 1], with 11!11 = max{lf(t)I : 

t E [O, 1],} for f E C[O, 1]. 

The closed unit ball K of C[O, 1] is s-dentable, non-dentable and fails the KMP: 

K has exactly two extreme points, namely, the functions Ji, h E C[O, 1] defined by 

fi(x) = 1, h(x) = -1 for any x in [O, l]. 

K is non-dentable: 

Suppose f EK and for any n E z+ choose functions f'{', .. ., f':: in K so that JI'(t) = f(t) 

for t ~ [i~l' *] and l!I'(tr) - f(ti)I > ~ for some ti E e~1 ' *). Then ll!I' - !II > ~ for 

i = 1,. . .,n and yet 112:~:: 1 *JI'- !II :S ~·It follows that f E clco(K\B~(f)) since n was 

arbitrary. Hence K is not dentable (and thus C[O, 1] fails the RNP). 

K is s-dentable: 

This follows by taking either extreme points (Ji or h) to be f 0 in Definition 1.2.8. 

K fails the KMP: 

Let C1 = {! E K : f (0) = O}. Clearly C1 is a closed bounded convex subset of K, 

moreover E(C1) = 0. That is, for any f E C1, pick a,€ E JR+ such that lf(t)I < 1-€ for 

t E [O,a], let g(t) = csin(~), t E [O,a], and g(t) = O,t ~ [O,a], then f ±g E C1, hence 

~(! + g) + ~(! - g) = f ~ E(C1). 

Since f E C1 was arbitrarily chosen, then E(C1) = 0, Thus K contains a closed bounded 

convex subset without extreme points, hence K does not have KMP. In fact, C[O, 1] fails 

the KMP, and thus fails the RNP. 

We state below, conditions that are consequences of a lack of the KMP in a Banach 

space X. 

That is, the lack of the KMP in a Banach space implies each of the following: 

1. There exists a closed linear subspace failing the RNP. 

2. There exists a separable closed linear subspace without the RNP. 

3. There exists a bounded non-dentable/non-u-clentable/non-s-dentable subset in X 
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(hence without an extreme point). 

4. There exists a closed bounded convex subset of X, that cannot be written as a closed 

convex hull of its denting/strongly exposed or extreme points (hence contains no 

extreme points). 

Proof 

If X fails the KMP, then X fails the RNP. Thus, each of the conditions above is the 

consequence of X lacking the RNP. Suppose X lacks the KMP. Then X fails the RNP 

and thus there exists a closed linear subspace of X failing the RNP. We take X to be a 

closed linear subspace of itself, hence condition 1 is implied by a lacks the KMP in X. 0 

The proofs for all others follow the similar line of reasoning. 

4.2 Lack of the KMP in Dual spaces 

The aim of this section is to show that the existence of non-separable dual spaces implies 

the lack of the KMP. A few examples of Banach spaces without the KMP are given. 

Example 4.2.1 [7, p.50] 

The Banach space l00 lacks the KMP: 

The closed unit ball of c0 (which is a closed bounded convex set) lacks extreme points 

and is a subset of l00 • This follows from the fact that ea C l00 • Hence l00 lacks the KMP, 

and consequently the RNP. 

The following theorem is a consequence of Theorem 3.3.9 (2 and 3). 

Theorem 4.2.2 [13, Theorem 7, p.196] 

If a Banach space X has a separable subspace Y whose dual Y* is non-separable, then 

X* lacks the KMP. 

We observed in the preceeding sections that, if a Banach space X has a separable subspace 
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whose dual is not separable, then X* lacks the RNP. Then, this fact and the results of 

Theorem 4.2.2 above lead us to the following: 

X* lacks the RNP implies X* lacks the KMP. 

Proposition 4.2.3 

Each of the following conditions is sufficient for a dual Banach space X* to lack the KMP: 

1. There exists a separable subspace of X with a non-separable dual. 

2. There exists a separable subspace of X which is not isomorphic to a subspace of a 

separable dual. 

3. X is not quasi-separable. 

4. X is not a wcg space, neither is it isomorphic to a subspace of a wcg Banach space. 

5. X is not an Asplund space and is not reflexive. 

The proofs of these conditions above follows from Proposition 3.3.10 and the fact that, if 

X* lacks the RNP, then X* lacks the KMP, see Theorem 3.3.9. 

Examples 4.2.4 

The following are examples of spaces lacking the KMP: 

o dual spaces without the RNP (Theorem 3.3.9). 

o Co (because its closed unit ball lacks extreme points, Example 4.1.1). 

o [00 (proved earlier, Example 4.2.1). 

e L1(0, 1) (because it contains an infinite tree, see [13, pp.123,124], Theorems 2.2.1 

and 4.2.2). 
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Chapter 5 

Spaces without trees and failing the 

RNP 

In this section, we characterise Banach spaces failing the RNP and lacking the bounded 

6-tree, and in most cases failing the KMP as well. Any Banach space fails the RNP if it 

fail the KMP. 

We know that if a Banach space X contains a bounded 6-tree, then X fails the RNP 

(see, Remark 2.1.4). For several years it was unknown whether the converse was true, 

that is, whether a Banach space had a bounded 6-tree precisely when it lacked the RNP. 

In 1979, Bourgin (see [7] for all the references) outlined a counterexample. Only an out­

line of the construction is given below, see [7, p.265]. 

It will be convenient to think of trees in terms of the range of a certain type of a mar­

tingale. For each n EN, let Dn denote the a-algebra of subsets of [0,1] generated by the 

sets {[~, ;jn) : 1 ~ j ~ 2n} and let A denote the Lebesgue measure on B([O, 1]), the 

Borel a-algebra on [0,1]. Then a dyadic martingale is one based on ([0,1], B([O, 1]), A) 

in which the nth a-algebra is Dn. Then the martingale is of the form (F,11 Dn)· If X is a 

Banach space and (Fn, Dn) is an X-valued dyadic martingale, then Fn+l is constant on 

each atom of Dn+l and hence the (constant) value of Fn on [ ~, f,,) is the average of the 

value of Fn+l on @.:;:;, ;{:;:}) and the value of K+1 on @,:;:~, 2,7L ). Thus the range of a 

dyadic martingale may be viewed as a tree and evidently each tree in X arises from some 
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dyadic martingale in this manner. A dyadic martingale (Fn, Dn) giving rise to a bounded 

6-tree satisfies llFn+i(t) - Fn(t)ll 2: 6 for each n and each t E [O, 1), and hence it satisfies 

the inequality: 

Jio,l) llFn+1(t) - Fn(t)lld,\(t) 2: 6 for each n EN. 

More generally, let (Fn)n;:::i be an increasing sequence of finite sub-a-algebras of B([O, l]). 

Then the range of an X-valued martingale (Fn, Gn) is a bush (and each bush in a Banach 

space appears as a range of some martingale (Fn, Gn) for an appropriate choice of finite 

a-algebra Gn, n EN). Consequently in part 3 of the main theorem of this chapter, The­

orem 5.2, the special case Gn = Dn for each n gives a stronger conclusion that X has no 

bounded 6-tree for any 6 > 0. 

The proof of Theorem 5.2 below is omitted because it spans the best of 32 pages in 

[7]. 

The following terminology will be used: 

(a) For any X-valued martingale (Fn, Gn), the difference sequence associated with (Fn, Gn) 

is the sequence (Dn)n>l of functions where D1 = F1 and for each n > 1, Dn = 
Fn - Fn-l· 

(b) The norm on the Banach space L.\-( ,\) will be denoted by 11-111, and the norm on 

£1(,\) will be denoted by 1-1· 

Definition 5.1 [7, p.290] 

A Banach space X satisfies the Schur property if each sequence in X which tends to 0 

weakly, tends to 0 in norm. 

Theorem 5.2 (Bourgin, Rosenthal) [7, Theorem 7.3.2, p.267] 

Let (qn)n>l be an increasing sequence of positive integers. Then there is a subspace X 

of £1(,\) such that whenever (Gn)n;:::i is an increasing sequence of finite sub-a-algebras of 

B([O, 1]) which is dominted by (qn)n;:::1, then: 
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1. X fails the RNP. 

2. the closed unit ball Bx of X is relatively compact in the topology of convergence 

in >.-measure. 

3. limn_,00 inf llDnll1 = 0 whenever (Fn, Gn) is a bounded X-valued martingale with 

associated difference sequence (Dn)n?.l· 

4. X has a strong Schur property. In particular, each weakly convergent sequence 

converges in norm. 

5. X lacks the KMP. 

The required Banach space X is constructed by the following theorem: 

Theorem 5.3 [7, p. 281] 

There is an increasing sequence (Xm)m?.l of finite dimensional subspaces of £ 1(>.) such 

that the Banach space X = £ 1(>.) - closure of U~=1Xm, has the following properties: 

1. X fails the RNP. 

2. For each n and each f E Bx, d(J, Bx,J) < o(~, Xn)· In particular, X has relatively 

compact unit ball in the topology of convergence in >.-measure. 

The fact that the constructed space X also lacks the KMP is independently due to Bour­

gin and Elton, see [7, p.265] for the references. 

Examples 5.3 

The following are examples of spaces failing both the RNP and the KMP: 

o Non-separable dual spaces. 

0 Co· 

0 C([O, l]). 
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o dual spaces without the RNP. 

It should be noted however that, dual Banach spaces fail both the RNP and the KMP, 

if they fail one of these properties, due to the established equivalence between these 

properties in dual Banach spaces. 

On the other hand, non-dual Banach spaces lack both of these properties if they lack 

the KMP, since the existence of the RNP implies the existence of the KMP in non-dual 

Banach spaces. If we can show that non-dual Banach spaces fail the KMP if they fail 

the RNP, we would be a step closer to establishing the equivalence of these properties in 

non-dual spaces. 
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Chapter 6 

Equivalence between the RNP and 

the KMP 

To this point, we have gathered some information on the Banach spaces with the RNP 

and those with the KMP. Futhermore, we have observed conditions sufficient for a Banach 

space to possess either RNP or KMP and/or both. From this point, we will discuss 

conditions under which the RNP and the KMP are equivalent in Banach spaces. 

6.1 Equivalence in Banach spaces 

We have seen that, in general, if a Banach space possesses the RNP, then it also possesses 

the KMP. It has been left as an open question as to whether the converse holds. Reseachers 

on this topic have put restrictions and imposed conditions on Banach spaces, to effect the 

equivalence between the RNP and the KMP in such spaces. Those conditions will be 

discussed in this section. 

We will show that in Banach spaces with unconditional bases, with strongly regular sets, 

with convex point-of-continuity property, with decompositions, and those isomorphic to 

their squares, the RNP and the KMP are equivalent. 
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6.1.1 Unconditional bases, the RNP and the KMP 

Definition 6.1.1.1 (31, pp.1 and 18] 

An unconditionally convergent Schauder basis (xn)n~l of a Banach space X is called an 

unconditional basis of X. 

Huff and Morris ([22] and [23]) assert that in a Banach space with unconditional basis, 

the RNP and the KMP are equivalent. We rephrase this assertion as follows: 

Proposition 6.1.1.2 [22, p.105] 

Let X be a Banach space with unconditional basis. Then X has the RNP if and only if 

X has the KMP. 

Proof 

We know in general that a Banach space possesses the KMP if it possesses the RNP. 

To prove the converse it is sufficient to show that if a Banach space X has an uncondi­

tional basis and if every separable subspace of X has the KMP, then every such subspace 

is isomorphic to a subspace of a separable dual. Since every separable subspace of X is 

contained in a separable subspace with an unconditional basis, we may assume that X 

itself is separable. 

If X has the KMP, then X contains no isomorphic copy of c0 (since ea lacks the KMP by 

Example 4.1.1) and the basis of Xis boundedly complete3 , by the results of James and 

Karlin, see [22, p. 105]. By Theorem 1.4.8, X has the RNP. D 

On the other hand, the above proof can be slightly modified, using the following use­

ful assertion by Huff and Morris [22, p.105] that: 

In a Banach space with unconditional basis, RNP and KMP are separably determined. 

If X is a Banach space with unconditional basis and possessing the RNP, then by the 

above assertion, every separable subspace of X has the RNP. Since the RNP implies the 

KMP in any Banach space, then every separable subspace of X has the KMP. Hence X 
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has the KMP since KMP is separably determined. 

For the converse suppose X have the KMP. Thus every separable subspace Y of X has the 

KMP, and Y is isomorphic to a subspace of a separable dual (as in a version of the proof 

of Proposition 6.1.l.2 above). Hence Y has the RNP. This implies that any separable 

subspace of X has the RNP, and by Huff and Morris's [22] assertion above, X has the 

RNP, and the result follows. 

3Question 6.1.1.3 

Is it accurate to assume or deduce that if a Banach space contains no copy of ea, then it 

has a boundedly complete basis? 

It is worth noting that a Banach space X with a boundedly complete basis has the 

RNP, by Theorem 1.4.8, hence does not contain a copy of c0 . The converse does not hold 

in general since £ 1 (µ) (µ non-atomic) contains no copy of c0 and has no boundedly c~m­

plete basis, because £ 1 (µ) fails the RNP. This answers the Question 6.1.1.3 in the negative. 

Theorem 6.1.1.4 [48, p.683] 

If D is a closed convex bounded subset of a Banach space X with an unconditional basis 

and D fails the RNP, then there exists a closed convex set C c D with no extreme point. 

Proof 

If D fails the RNP, then, by Theorem 1.2.39, D is non-dentable. By the Overview in 

Section 1.8, X lacks the RNP, and also lacks the KMP, by Proposition 6.1.1.2. Hence 

there exists a closed convex set C C D with no extreme points. D 

Corollary 6.1.1.5 

If a bounded closed convex set D in X with an unconditional basis fails the RNP, then 

D fails the KMP. 

This results follows directly from the proof of Theorem 6.1.1.4 and from Definition 3.2.4. 
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6.1.2 Strongly regular sets, the RNP and the KMP 

In this section we investigate the equivalence of the RNP and the KMP for strongly reg­

ular sets in real Banach spaces. 

Definition 6.1.2.1 [48, Definition 1.2, p.674] 

A bounded convex (closed) subset D of a Banach space Xis strongly regular if for every 

convex set C in D and c > 0, there exists slices S1, S2, ... ,Sm of C such that the arithmetic 

mean of the diameters of these slices is less than c. 

If D is a bounded convex subset of a real Banach space X, a slice of D will be a set 

S(x*, a) = {x E D : (x*, x) > Mx· - a}, where x* is an element of the unit sphere of X*, 

a > 0, and Mx· = sup{ (x*, x) : x E D}. The definition of a slice was given in Definition 

1.2.17. 

Schachermayer [48] shows that for strongly regular sets, the RNP and the KMP are 

equivalent. 

Theorem 6.1.2.2 [48, p.674] 

Let X be a Banach space and D be a strongly regular convex bounded and closed subset 

of X. Then D has the RNP if and only if D has the KMP. 

Proof 

If D has the RNP, then D has the KMP (see Theorem 1.2.39 and Definition 3.2.4). 

Now for the converse. By assumption, D has the KMP and it is strongly regular. It 

suffices to show that any bounded subset of D has a denting point, or that any convex 

closed and separable subset C in D which has an extreme point by assumption, also have 

a denting point: 

Since D is strongly regular and C is convex in D, then there exists c > 0 and slices 

S1, S2 , ... ,Sm of C with diam(m- 1 2:;~1 Sj) < c. By Bourgin [7], if n'f~ 1 Sj -=/= 0, then 

x E nj=1 Sj is a denting point. If Sr n Sk = 0, r, k :5 m, r -=/= k, there exists S1 -=/= (i) and 
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there exists x E S1 C C C D, such that x is the denting point of C. In addition, since 

diam(m- 1 ~~1 Sj) < c, then Chas a slice of arbitrary small diameter, and by Theorem 

1.2.39 (10), C is dentable. Thus D has the RNP, by Theorem 1.2.39 (9). 0 

Corollary 6.1.2.3 

If we assume X fails the RNP, then D also fails the RNP and hence D fails the KMP, as 

proven above. Thus, there exists a bounded closed convex subset, say F, in D, hence in 

X, such that F cannot be expressed as a closed convex hull of its extreme points. Then 

if follows that X fails the KMP. 

Corollary 6.1.2.4 

If a convex bounded closed subset D of X is strongly regular and fails the RNP, then 

there exists a closed bounded convex and separable subset C of D which does not have 

an extreme point. 

This then implies that the RNP and the KMP are equivalent in a Banach space X if 

each closed bounded and convex set D in X is strongly regular. 

6.1.3 Convex-Point-of-Continuity Property, the RNP and the 

KMP 

The aim of this section is to show that in Banach spaces with the CPCP, the RNP and 

the KMP are equivalent, firstly using strong regularity and secondly, using the relation 

between the denting and extreme points in bounded closed and convex subsets of Banach 

space with the CPCP. 

Definition 6.1.3.1 [48], [47, p.96] 

A closed bounded and convex subset C of a Banach space X has the Convex Point-of­

Continuity Property (CPCP) if for every convex subset D C C and c > 0, there exists a 

relatively weakly open subset U C D with diam(U) < c, alternatively, if for every closed 
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convex bounded subset D of C, the map (D, weak)~ (D, norm) has a point of continu­

ity, see Definition 1.2.23. A Banach space X has the CPCP if every bounded closed and 

convex subset K of X has a PC (point-of-continuity). 

Remark 6.1.3.2 

An important observation by Bourgain (see Schachermayer [48, p.683]) is that, a set D 

in a Banach space having the CPCP is strongly regular. In light of this, we use the result 

in the preceeding Theorem 6.1.2.2 that, for D strongly regular, D has the RNP if and 

only if D has the KMP. The following result by James [24] is then immediate: 

The proof of the Proposition below follows the same reasoning as the one provided earlier, 

where X (or D in that case) is strongly regular. 

Proposition 6.1.3.3 [24, p.913] 

Let X be a space with the CPCP. Then X has the RNP if and only if X has the KMP. 

Proof 

Let X have the RNP and the CPCP. Then X has the KMP. For the converse, each 

bounded closed convex subset K of X has the CPCP, hence each K is strongly regular 

by Remark 6.1.3.2. By the second part of the proof of Theorem 6.1.2.2, K is dentable. 

We deduce that X has the RNP. In addition, for the proof of the converse, any such K 

is the closed convex hull of its extreme points and K has a PC, by assumption. If x is 

a PC in K, it is sufficient to show that x is an extreme point in K. We know already 

that x E clco(E(K)). It would follow from Lin, Lin and Troyanski [30, p.256] that, such 

x E K is a denting point in K, and thus K is dentable. Since K is an arbitrary bounded 

(closed and convex) subset in X, then X has the RNP. D 

6.1.4 Decomposition, the RNP and the KMP 

In this section we investigate how decompositions in Banach space contribute to the equiv­

alence between the RNP and the KMP. 
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James [25] has shown that if X is a space with UBFDD (Definition 1.4.11), then the 

RNP and the KMP are equivalent in X. James [24, p.917] mentions that for a bounded 

closed subset of Banach space with UBSBFDD, the RNP and the KMP are equivalent. 

We rephrase it as follows: 

Proposition 6.1.4.1 [24, p.917] 

Let X be a Banach space with UBSBFDD and B be a bounded closed convex subset of 

X. Then B has the RNP if and only if B has the KMP. 

Proof 

If X has the UBSBFDD, then X has the UBFDD. Let B be any bounded (convex) closed 

subset of X. If B has the RNP, then B is dentable in X and thus X has the RNP. From 

the above assertion by James [25], and the fact that X has the UBFDD, and X has the 

RNP, then X has the KMP. Since B has the RNP, then it has the KMP. 

Conversely, if B has the KMP and X has the UBSBFDD, then X has the UBFDD and 

by James [25], B has the RNP. D 

6.1.5 A Banach space X isomorphic to its square X 2 , the RNP 

and the KMP 

In this section, we present another condition on a Banach space that guarantees the equiv­

alence between the RNP and the KMP, namely, if a Banach space is isomorphic to its 

square. 

Notations 

X 2 denotes X x X and A '.:::::'. B denotes that A is isomorphic to B, for Banach spaces A 

and B. 

We first introduce a notion intermediary to the RNP and the KMP. 
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Definition 6.1.5.1 [46, p.329] 

A separable Banach space X has the Integral Representation Property (IRP) if for every 

bounded closed convex subset C of X and every x E C there is a probability measure µ 

on the extreme points of C such that xis the barycentre ofµ, that is, x = fc cdµ(c), and 

µ(extreme points of C) = 1, see also [13, p.145] and [7, p.178]. 

It was shown by Edgar (see [46, p.329] and [13, p.145]), that the RNP implies the IRP in 

the case that C is separable. There still does not exist a general result on the extension 

to the non-separable case. It is also true that the IRP implies the KMP. The respective 

converses to these two implications are still open, see [46, p.329]. It has already been 

shown that a Banach space X has the RNP if and only if l2(X) (or any other appropriate 

space of sequences in X) has the IRP, see [46, p.329]. Also, if X is isomorphic to its 

square Xx X, denoted by X 2
, then l2(X) has the IRP if and only if X has the IRP [46, 

p.329]. In this case, the IRP and the RNP are equivalent. Note that, 

l2 (X) = {(xnk~1: Xn EX, ll(xn)ll 2 = I::'=1 \lxnll 2 < oo}. 

Definition 6.1.5.2 [46, p.330] 

Let (n, E, µ) be a probability space. A bounded linear operator T: £ 1(n, E, µ) --+ X, X 

a Banach space, is called representable if there is a function F E £ 00 (n, E, P) such that 

for every f E £ 1(n,E,µ), Tf(w) = J f(w)F(w)dP(w). 

Theorem 6.1.5.3 [46, p.333] 

A separable Banach space X has the RNP if and only if l2(X) has the KMP. 

The lengthy proof of this theorem is bases upon several preliminary results on repre­

sentability in [46]. 

Definition 6.1.5.4 [46, Definition 3.1, p.335] 

A Banach space X semi-embeds into a Banach space Y if there is an injective continuous 

operator j : X --+ Y such that the image of the unit ball in X under j is closed in Y. 
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It is known that a separable Banach space X that semi-embeds into a Banach space 

Y which has the RNP, has already the RNP, see [46, p.335]. For the purpose of the KMP, 

a stronger notion than semi-embedding is needed. 

Definition 6.1.5.5 [46, Definition 3.2, p.335] 

A Banach space X ~-embeds into a Banach space Y if there exists an injective operator 

f : X -+ Y which maps closed bounded convex sets into closed bounded convex sets. 

Theorem 6.1.5.6 [46, Proposition 3.3, p.335] 

If a Banach space Y has the KMP and the Banach space X ~-embeds into Y, then X has 

the KMP. 

Proof 

If X fails the KMP, then there exists a closed bounded closed convex set C in X which 

has no extreme points. If f: X-+ Y is a ~-embedding, then f(C) is closed bounded and 

convex in Y and has no extreme points, hence contradicting the hypothesis that Y has 

the KMP. 0 

Corollary 6.1.5.7 [46, Corollary 3.4, p.335] 

If the Banach space Xis separable and if l2 (X) ~-embeds into X, then X has the KMP 

if and only if X has the RNP. 

The proof follows from Theorems 6.1.5.6 and 6.1.5.3. 

Corollary 6.1.5.8 [46, Proosition 3.5, p.335] 

If X x X ~-embeds into X, then l2 (X) ~-embeds into X. 

The main result in the paper [46] is: 

Theorem 6.1.5.9 [46, Corollary 3. 7, p.335] 

If X is a separable and if X x X ~-embeds into X (in particular, if X is isomorphic to 
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X x X), then X has the KMP if and only if X has the RNP. 

Proof 

Suppose X x X ~-embeds into X, and let X have the KMP. Then, by Corollary 6.1.5.8 

above, l 2(X) ~-embeds into X. Thus X has the RNP, by Corollary 6.1.5.7. 

For the converse, suppose X x X ~-embeds into X, and let X have the RNP. Then, by 

Corollary 6.1.5.8 above, l 2 (X) ~-embeds into X. Thus X has the KMP, by the above 

Corollary 6.1.5.7. D 

6.1.6 Banach lattices, the RNP and the KMP 

In this section we introduce the concept of Banach lattices as Banach spaces in which the 

RNP and the KMP are equivalent. 

Definition 6.1.6.1 [7, p.422] 

A partially ordered Banach space (X, II.II) is a Banach lattice if 

o x :S y implies x + z :S y + z for each x, y, z E X. 

o 0 :S tx whenever 0 :S x EX and 0 :St ER 

o for each x, y E X, there exists a least upper bound written x Vy. 

o llxll :S llYll provided that lxl :S Jyl where lxl means x V (-x). 

Theorem 6.1.6.2 [7, Theorem 7.13.1, p.423] 

Let X be a Banach lattice. Then X has the RNP if and only if X has the KMP. 

Theorem 6.1.6.3 [7, Theorem 7.13.2, p.423] 

Let X be a separable Banach lattice. If X has the RNP then X is isometrically isomor­

phic to the dual of a Banach lattice. 

Theorem 6.1.6.2 gives another characterisation of a Banach space in which the RNP 
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and the KMP are equivalent. The proofs of both Theorems 6.1.6.2 and 6.1.6.3 involve the 

notion of order dentability [7, p.423]. 

6.2 Overview of conditions in a non-dual Banach space 

The following are conditions sufficient for the RNP and the KMP to be equivalent in a 

Banach space X : 

o X has an unconditional basis. 

o X has strongly regular, closed convex bounded sets. 

o X has the convex point-of-continuity property. 

o X has Finite Dimensional Schauder Decomposition .. 

0 x is isomorphic to its square, that is, x '.'.:::: X 2 = x x x. 

o X is a Banach lattice. 

6.3 Equivalence in Dual spaces 

In this section, we show that in dual Banach spaces the RNP and the KMP are equivalent. 

We start with the general dual space and continue to specific dual spaces, namely separable 

dual and reflexive space. 

6.3.1 Equivalence in general dual Banach spaces 

Huff and Morris [22] state and prove that every dual Banach space with KMP has the 

RNP. We find the same result in [7, p.111]. 

Theorem 6.3.1.1 [7, Theorem 4.4.1, p.111] 

Let X* be a dual space, then X* has the RNP if and only if X* has the KMP. 

The proof follows from the following results: 
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1. X* has the RNP if and only if every separable subspace in X has a separable dual 

(Theorem 1.5.5). 

2. X* has the KMP if and only if every separable subspace of X has a separable dual 

(Theorems 3.3.3 and 3.3.9). 

The alternative proof of Theorem 6.3.1.1 is given by Huff and Morris [22, p.104]. 

6.3.2 Separable duals, the RNP and the KMP 

Separable dual Banach spaces are dual Banach spaces in any case, hence Davis and Phelps 

[10] state that, in separable dual spaces, the RNP and the KMP are equivalent, and we 

rephrase it as follows: 

Proposition 6.3.2.1 

Let X* be a separable dual Banach space. Then X* has both the RNP and the KMP. 

The proof of this follows from Theorem 6.3.1.1 above. Furthermore, a separable dual 

space has both the RNP [7, p.74] and the KMP (Theorem 3.3.9). 

6.3.3 Reflexive spaces, the RNP and the KMP 

Davis and Phelps [10] state that, in reflexive Banach spaces, the RNP and the KMP are 

equivalent, and we state this formally as follows: 

Proposition 6.3.3.1 [10, p.121] 

Let X be a reflexive Banach space. Then X has both the RNP and the KMP. 

This result has already been stated in Examples 1.8.3 and 3.3.11. 
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6.3.4 Summary on the equivalence in dual Banach spaces 

This section is aimed at listing those conditions equivalent to both the RNP and the KMP 

in dual Banach space X*, and they are as follows: 

1. X* has RNP. 

2. X* has KMP. 

3. If Y is a separable subspace of X, then Y* is separable. 

4. X* contains no bounded cl-tree for any cl > 0. 

5. For each weak*-compact convex subset K of X*, K = w*cl(co(w*-SE(K)), that is, 

weak* -closure of the convex hull of weak* -strongly exposed points. 

6. Each bounded subset of X* is weak* -dentable. 

7. Every separable subspace of X* is a subspace of a separable dual (see [13, p.198]) 

Proofs can be found in [7, pp.91,111 and 112]. 
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Chapter 7 

Applications of the Radon-Nikodym 

theorem 

The Radon-Nikodym theorem has many applications in more than few branches of math­

ematics, especially in the Business Mathematics. In this chapter we will try and explore, 

without diverting from our main discussion, these applications as briefly as possible. 

7.1 Subalgebras 

This section introduces the notion of a subalgebra and it is intended to introduce some 

notation for section 7.2. 

Definition 7.1.1 [19, p.109] 

Let n be a set and Ebe a a-algebra of subsets of n. A a-subalgebra of Eis a a-algebra T 

of subsets of n such that T ~ E. If (0, E, µ) is a measure space and Tis a a-subalgebra 

of E, then (0, T, µIr) is again a measure space, where µIr denotes the restriction ofµ to T. 

Lemma 7.1.2 [19, p.109] 

Let (0, E, µ) be a measure space and T a a-subalgebra of E. A real-valued function f 

defined on a subset of n is µIr-measurable if and only if: 

1. f is µ-integrable. 
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2. dom f is µIT-co-negligible. 

3. f is µlrvitually measurable, and in this case J f d(µIT) = J f dµ. 

Proof 

Note first that if f is µIT-simple, that is, expressible as L:~=O aiXEi where ai E JR, Ei ET 

and µIT(Ei) < oo for each i, then J fdµ = L:~=O aiµ(Ei) = J fd(µlr ). 

Let Uµ. (respectively Uµ.tr) be a set of non-negative µ-integrable (respectively µIr-integrable) 

functions. 

Suppose J E Uµ.tr· Then there is a non-decreasing sequence Un)n?.l of µIr-simple functions 

such that J(x) = limn-+oo fn µlr-a.e and J fd(µlr) = limn-+oo J fnd(µlr). But every fn is 

also µ-simple, and J f ndµ = J J nd(µlr) for every n, and J = limn-+oo Jn µ-a.e. Hence we 

have, 

J f d(µlr) = limn-+oo J f nd(µlr) 

= limn-+oo J J ndµ 

= J limn-+oo fndµ 

= J fdµ. 

Hence f E Uw 

Now suppose f is µIr-integrable. Then f is the difference of two members of Uµ. lr• so is 

µ-integrable, and J fdµ = J fd(µlr). 

Also conditions 2 and 3 are satisfied (see [19]). 

Conversely, 

Suppose f satisfies conditions 1 to 3. Then Ill E Uµ., and there is a co-negligible set E ~ T 

and !Is, the restriction of f to E, is T-measurable. Accordingly (If I) Is, the restriction 

of Ill to E, is T-measurable. Now, if€> 0, then 

(µlr){x: x EE, IJl(x) 2: €} = µ{x: x EE, IJl(x) 2: €} 

~: f lfld(µlr) 

< oo, 

moreover 

sup{f gd(µIT) : g is a µIr-simple function, g ~ If I µlr-a.e.} 

= sup{f gdµ : g is a µIr-simple function, g ~ If I µlr-a.e.} 
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~ sup{f gdµ : g is a µ-simple function, g ~ Ill µ-a.e.} 

~ J If Idµ < oo . 

Hence Ill E Uµ,Jr· Consequently f, being µIr-virtually T-measurable, is µIr-integrable. 

The essential point is that, while a µIr-negligible set is always µ-negligible, a µ-negligible 

set need to be µIr-negligible. D 

Example 7.1.3 [19, p.110] 

Let (0, E, µ) be [0,1] 2 with Lebesgue measure. Let T be the set of those members of E 

expressed as F x [O, 1], for some F ~ [O, 1]; it is easy to see that Tis a a-subalgebra of 

E. Consider f, g : 0 --+ [O, 1] defined by saying that, 

f(t, u) = 1 if u > 0, 0 otherwise 

g(t, u) = 1 if t > 0, 0 otherwise 

Then both f and g are µ-integrable, being constant µ-a.e. But only g is µIr- integrable, 

because any non-negligible E E T includes complete vertical section { t} x [O, 1], so that f 

takes both values 0 and 1 on E. If we set, 

h(t, u) = 1 if u > 0, undefined otherwise, 

Then again, h is µ-integrable but not µIr-integrable as there is no co-negligible member 

of T included in the domain of h. 

7.2 Conditional Expectation and the Radon-Nikodym 

theorem 

This section is devoted to an application of the Radon-Nikodym theorem, in abstract 

probability theory. 

Remark 7.2.1 [19, p.110] 

Let (0, E, µ) be a probability space. For any µ-integrable real-valued function f defined 

on a co-negligible subset of 0, we have a corresponding indefinite integral v1 : E --+ JR 

given by the formula v1(E) = JE f dµ for any E E JR (by the Radon-Nikodym theorem). 
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We know that VJ is countably additive and truly continuous with respect toµ, which in 

the present context is the same as saying that it is absolutely continuous. Now consider 

the restrictions vJlr, µJr of VJ andµ (respectively) to the a-algebra T. It follows directly 

from the definition of 'countably additive' and 'absolutely continuous' that vJJr is count­

ably additive and absolutely continuous with respect to µIr, therefore truly continuous 

with respect to µJr. 

Consequently, the Radon Nikodym theorem tells us that there is a µJr-integrable function 

g such that (vJJr )F = JF f d(µlr) for every F E T. 

Definition 7.2.2 [19, p.111], [8, p.153] 

A conditional expectation off on T is a µJr-integrable function g such that 

JFgd(µJr) = fpfdµ for every FE T. 

Hence, for such g we have, 

JF gd(µJr) = Jg x XFd(µJr) 

= f g X XFcl(µJr) 

= JF gelµ, for every F E T 

Also, g is almost everywhere equal to a T-measurable function defined everywhere on 

n which is also a conditional expectation of f on T. 

Remark 7.2.3 [8, p.218] 

With the Radon-Nikodym theorem at our disposal, we can verify the existence of condi­

tional expectation for integrable function very simply: 

The bounded measure (vJJr)F = JFgd(µJr) is absolutely continuous with respect to µJr, 

whenever VJ « µ. This means that the Radon-Nikodym theorem has been used to define 

conditional expectation of a function f on a a-subalgebra T. 
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7 .3 Additional Applications 

There are some applications of the Radon-Nikodym theorem, in theories of exchange econ­

omy and the non-atomic games. 

Remark 7.3.1 

The pure exchange economy is simply the trades that are being made between consumers 

and producers or manufacturers, see [26, p.144]. A µ-mixing sequence {On} is a se­

quence of µ-measure-preserving automorphisms of a measure space (A, E, µ) such that 

µ(Sn OnT) ---> µ(s)µ(T), for Sand Tin E, see [1, p114]. 

Without sidetracking from the main theme below we cite instances where the Radon­

Nikodym theorem has been applied. 

o In proving the result of the theorem on [26, p.224], Klein used the Radon-Nikodym 

theorem where he defined the functions n(.,p) and ~(S,p) such that ~(S,p) = 

J8 n(.,p)dv. Hence showing that n(.,p) is av-integrable function and ~(S,p) can 

be expressed as its integral any S E E with (A, E, v) a (probability) measure space. 

o Secondly, the Radon-Nikodym theorem is used in a proof the result in [1, p.121, 

Lemma 15]. Aumann and Shapley [1] show that for 'I/; non-negative measure with 

'I/;«µ and {On} a µ-mixing sequence, limn_,001/;(0nT) = µ(T)'l/;(I) for all measurable 

sets T. Aumann and Shapley [1] use the fact that 'l/;(OnT) = fr g(t)dµ(t) for some 

g 2: 0 an integrable (characteristic) function, see [1, p.121]. This is the application of 

the RN-theorem in that the image of a 'I/; is expressed as an integral of an integrable 

function g, where 'I/; and g have the same domain. 

It is clear that the Radon-Nikodym theorem is an important theorem and it is useful not 

only if Pure Mathematics. However, there are several applications in Pure Mathematics 

itself. For example in [13, chapter IV] one finds applications of the Radon-Nikodym 

theorem to, 

l. the isolation of the dual of £ 71 (µ, X), for 1 :::; p < oo, 

2. the finding of the weakly compact subsets of £ 1 (µ, X), 
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3. a characterisation of a Gel'fand space in terms of the RNP with respect to Lebesgue 

measure on the Borel sets in [0,1], 

4. a study of operators on Lp(µ, X) that are defined by means of Pettis and Bochner 

integrals, 

5. show that if X is a complemented infinite dimensional subspace of £ 1 (µ, X) and if 

X has the RNP, then X is isomorphic to li. 
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CONCLUSION 

Our main aim was to find those Banach spaces in which the RNP and the KMP are 

equivalent, hence explore their characteristics. 

We started with the characterisation of Banach spaces with the RNP, using predominantly 

a geometric property called 'dentability'. Furthermore, we witnessed how the different 

forms of dentability, namely, s-dentability and c-dentability, contribute to the existence 

of the RNP in Banach spaces. 

In dual Banach spaces, in particular, separability of Banach spaces and of their dual 

spaces leads to the existence of the RNP. 

Banach spaces with the KMP, on the other hand, are characterised by the existence of 

extreme points, which in some cases are connected to denting points. The relation be­

tween denting points and extreme points in some cases, gave us the most important link 

between the RNP and the KMP. This is simply because the existence of denting points 

leads to the existence of the RNP, and the existence of extreme points leads to that of 

the KMP. 

We mostly used the fact that the existence of the RNP implies the existence of the KMP, 

which leads to the fact that, conditions sufficient for existence of the RNP, are also suffi­

cient for the existence of the KMP. 

From this point on, our aim shifted to exploring the converse, that is, the conditions and 

restrictions imposed on the Banach spaces with the KMP to have the RNP, hence es­

tablishing the equivalence between these properties. Exploring this converse, we realised, 

it would be made much simplier if we first find out what conditions and characteristics 

sufficient for a Banach space to lack either the RNP, the KMP or both of them, and that 

is what we did in chapters 2, 4 and 5. 

We feel that the core of this thesis is chapter 6, in which conditions sufficient for the RNP 

and the KMP to be equivalent in a Banach space, or simply conditions and characteristics 

making it possible for the KMP to imply the RNP, are being explored and discussed. 

We firstly looked at this equivalence in Banach spaces (not necessarily dual) and found 

out that, existence of unconditional basis, bounded strongly regular set, convex-point-of-
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continuity property (or existence of a PC in every bounded closed convex subset), finite 

dimensional Schauder decomposition (FDD), isomorphism between the Banach space and 

its square, are all sufficient restrictions and characteristics of a Banach space in which the 

RNP and the KMP are equivalent. 

Secondly, in dual Banach spaces, separable duals, reflexive spaces are examples of Banach 

spaces in which the RNP and the KMP are equivalent. The separable dual of a separable 

subspace of a Banach space, leads to the equivalence of the RNP and the KMP in such 

dual Banach space. 

It is noteworthy that the relationship between the denting points and the extreme points, 

especially in a closed bounded ( dentable) convex subset of a Banach space X, is the key to 

solving the equivalence between the RNP and the KMP. To prove the equivalence between 

the RNP and the KMP, we only need to prove that any Banach space X failing the RNP 

also fails the KMP. This means that if X has a bounded closed convex non-dentable set, 

say B, then it suffices to show that Bis not equal to the closed convex hull of its extreme 

points. 

Lastly, we looked at applications of the RN-theorem which makes for an interesting read. 

It is interesting to see that the RN-theorem is applicable in disciplines such as economy 

and probability analysis. 

We hope you enjoyed reading through this thesis as much as we enjoyed putting it to­

gether! 
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