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(i) 

, 
RESUME. 

OBJECTIVE. 

High economic production has ever been the aim and aspiration 

of the agriculturist and no less that of the fruit farmer. In 

striving towards this aim the latter has for a long time been at 

a disadvantage with regard to control of his nutritional programme. 

Even on naturally fertile soil, the question continually arises as 

to what the correct fertilizer treatment should be to maintain high 

productivity and how such a decision can be arrived at. A satis-

factory answer to these questions could have been obtained from 

fertilizer trials if it was not such a difficult matter, in view 

of the extensive and long-term nature of such trials with fruit 

trees, to establish a sufficient number for each fruit species on 

different soil types and under different climatic conditions. 

Efforts to find a new approach to the problem have turned 

attention to the plant itself and its chemical make-up as affording 

the best index of its nutritional requirements. Intensive work in 

this direction has resulted in the evolution of a new tool in 

agriculture, the technique of diagnostic leaf analysis or 1Toliar 

diagnosis" as originally proposed by Lagatu and Maume in France 

and Thomas in u.s.A. A review of the literature is presented 

indicating the prodigous amount of research which has been applied 

to studies of the relationship between plant response and nutrient 

supply in terms of plant composition. Agriculturists have been 

quick to recognize the potentialities of leaf analysis as a prac­

tical guide in nutritional problems and advisory services based 

on foliar analysis have already been established for certain crops 

overseas. 

The experimental basis for formulating such a scheme for 

deciduous fruit in the Western Cape Province is provided by the 

factual evidence presented in this thesis. 

J 
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THE TECHNIQUE. 

The technique of diagnostic leaf analysis comprises sampling 

of leaves, preparation of sample for analysis and the analysis 

itself followed by interpretation of the analytical results by 

comparison with previously determined nutritional standards. 

Numerous factors were found to influence the final composition 

of the leaf sample as determined by analysis, such that strict 

adherence to a standardized procedure through all phases of 

sampling and preparation of leaf samples for analysis is required 

to eliminate or reduce errors likely to cause misleading inter­

pretations. Experimental data are presented suggesting how the 

leaf sample should be selected on a tree and how it should be 

handled, cleaned, dried, ground and stored to reduce sampling and 

other errors. 

The final procedure as adopted eliminates most of the poten­

tial sources of experimental error but two unavoidable sources of 

e~ror remain to be accounted for, that due to tree variation and 

seasonal effect. The variation in leaf composition from tree to 

tree was found to be very considerable, so that aampling from a 

large enough group of trees (6 to 10) to reduce the error involved 

is essential in order to obtain leaf data which correctly reflects 

the nutrient status of the portion of the orchard concerned. 

Secondly, on the grounds of marked consistency found in different 

fruit species as to seasonal and year to year variation in mineral 

nutrient concentration, correction factors have been formulated 

and are suggested as a means of overcoming these sources of error. 

THEORETICAL BASIS. 

A diagnosis of the nutrient status in terms of the analytical 

results as finally determined is obtained by comparison of the data 

with previously established leaf composition standards of reference 

and by correct interpretation of the deviations from these stan­

dards. 
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The theoretical basis for setting up these index values is 

discussed. The criterion used is based on the concept of Optimum 

Values which aaequately integrates the known relationships between 

plant response and nutrient supply in terms of internal nutrient 

concentration. A modification of this concept is proposed to the 

effect that for maximum growth and yield there exists an optimum 

range of nutrient concentrations with upper and lower limits for 

each of the functional elements, and that within this range the 

interrelationship between the individual nutrient elements is also 

optimal. 

Since no local fertilize~ trials with deciduous fruit trees 

are available and only one for grapes, data from highly productive 

plants in commercial orchards and vineyards were used to determine 

the upper and lower limits of the "optimum range", on the following 

premise. If leaf analysis data are available from a sufficient 

number of high performance orchards in different localities re­

presenting a wide range of nutrient supply and environment, the 

highest and lowest values obtained may be considered to represent 

a close approximation of the limits of the range required for 

optimum performance. It is contended that index values obtained 

in this way must be of practical value in assessing the nutrient 

status of fruit trees. It is further postulated that the lower 

limits for the micro-nutrients and even for magnesium may be 

justifiably adjusted according to the concentration levels as­

sociated with symptom expression. 

INDEX VALUES. 

The necessary data for determining standards of leaf com­

position were obtained from leaf analysis surveys of orchards and 

vineyards and from a grape fertilizer experiment in the Western 

Cape Province. Visual symptoms of prevailing nutritional dis­

orders are described (supplemented by photographic illustrations) 

and their relation to leaf composition indicated. Tentative 
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index values have been determined on the basis indicated for each 

fruit species, apple, pear, peach, apricot, plum, prune and grapes. 

These nutritional levels comprise upper and lower limits for the 

nutrients N, P, K, Ca, Mg 1 Mn 1 Fe and Cu, as well as the upper 

limits for B and Na. 

DIAGNOSTIC INTERPRETATIONS. 

Assessment of the nutrient status in terms of these index 

values suggests that many orchards and vineyards in the Western 

Cape Province, particularly prune, apricot and grapes, are suf­

fering from malnutrition in some form and are likely to show a mar­

ked response to nutritional treatment as suggested by foliar diag­

nosis. 

The use of diagnostic leaf analysis constitutes an important 

advance in dealing with orohard problems in that an immediate 

decision is possible regarding nutrient status and related aspects 

such as selection of suitable sites for fertilizer trials and 

adjustment of the fertilizer programme. 

J 
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- 1 -

I N T R 0 D U C T I 0 N 

The use of plant analysis has become firmly established as 

a means of studying the nutrient status of plants. Particular 

interest has centred on the potentialities of plant analysis as 

an aid in investigating nutritional disorders and determining 

the nutrient requirements of crop plants, as may be gathered 

from the comprehensive review of the subject by Goodall and 

Gregory (85). Attention has gradually shifted from the whole 

plant as a subject for analysis by early workers in this field, 

to the green leaf which in recent years has become the main 

subject for investigation in view of its sensitivity to change 

in nutrient supply and the convenience in sampling. 

A notable contribution to our knowledge of the fundamental 

relationship between leaf nutrient content and plant grm..rth has 

been presented by Lundegardh (118) who claimed that "growth is 

determined by the concentration of a nutrient in the green parts 

of a growing plant." After a careful study of the physiological 

processes governing the mechanism of nutrient absorption and 

utilization during growth, Lundegardh concluded from pot culture 

and field experiments that "fundamental plant physiological 

investigations have shown that leaf analysis, properly handled 

and granted certain assumptions, provides a usable reflection of 

plant growth, and that it has an adequate scientific basis as 

a method for the determination of manurial requirements, since 

at the same time it reflects the supply of nutrients from the 

soil. 11 

The practical application of leaf analysis as a means of 

assessing the nutrient status and nutrient requirements for 

optimal growth and yield of fruit trees, as with annual plants, 

depends on how closely nutrient supply and nutrient concentration 

in the leaf is related to growth or yield response and on how 
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well this relationship can be reduced to a relatively simple 

interpretation as for instance by the use of analytical 

reference values. A further criterion would be that nutri­

tional standards set up on this basis, if they are to be of 

practical value, should be applicable under a wide range of 

environmental conditions. 

Promising advances along these lines have already been 

achieved in the form of tentative leaf analysis standards for 

citrus and for some of the deciduous fruits. Standards fer the 

latter are still sketchy and inadequate, and since the a~proaeh 

is largely empirical their accuracy and general applicability, 

at least in a particular region, can only be established when 

sufficient data become available. It is generally aecepted 

that diagnostic leaf analysis provides a most useful if not 

essential contribution to supplement information obtainable 

from soil tests and examination of the environmental conditions 

affecting trees suffering from suboptimal nutrition. 

It is proposed in this investigation after reviewing the 

evidence available on nutrient content of plant tissues and the 

techniques employed in plant analysis diagnosis, to describe 

the steps taken to formulate an acceptable leaf analysis 

technique and to determine standards of reference for diagnosis 

of the nutrient status of deciduous fruit trees and vines in 

the Western Cape Province. The nutrient elements to be 

considered are nitrogen, phosphorus, potassium, calcium, 

magnesium, iron, manganese, copper, boron and zine, as well as 

chlorine and sodium in certain cases. 

J 
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1. FACTORS AFFECTING THE NUTRIENT CONTENT OF PLANT TISSUE. 

The nutrient-element content of plant tissue is subject 

to variation due to differences in supply of nutrien~ salts from 

the soil as well as to the nature of the plant and its root 

system, and the environment in which the plant grows (206). 

Marked differences in plant composition are brought about by 

these factors (152, 203) and in order to use plant analysis 

data correctly for diagnostic purposes it is important to know 

what influence they have on the relationship between plant 

nutrient content and yield (191). 

1.1 SOIL ENVIRONMENT. 

The quantity of available nutrients in the soil which a 

plant can absorb is limited to the distribution and absorbing 

capacity of the root system which in turn is influenced by the 

water supply, aeration, temperature and physical condition of 

the soil (216, 120). Assuming a favourable root environment, 

absorption of available plant nutrients takes place at a rate 

depending on the supply, ion exchange reactions, soil reaction 

(pH) and competition by other plants if present. Plant com­

position reflects the net uptake and as such eannot indicate 

the potential nutrient supply in the soil beyond the reach of 

the root system nor of that in the root area when other factors, 

physical or chemical, poor aeration or water depletion, restrict 

absorption by the roots. 

The absolute dependence of plant growth on favourable 

soil moisture conditions and the serious consequences which 

follow when plants are subjected to either extreme drought or 

waterlogged conditions are self evident. In the intermediate 

range of water supply the availability of nutrients is also 
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significantly influenced by the moisture content. An increase 

of the water supply accelerates leaching losses of nitrates, 

chlorides, calcium, magnesium, potassium and sodium (210). 

The supply of oxygen is usually reduced, decreasing the rate 

of respiration and thereby the rate of nutrient absorption. 

The tendency to create anaerobic conditions promotes reduction 

processes and accumulation of reduced forms of manganese and 

iron in acid soil which may have 
den~rrif;ca.r,oYI ser.s in 

toxic effects. Nitrification 

is reduce~Aand added nitrogen is assimilated and fixed by 

anaerobic micro-organisms. According to Boynton, magnesium 

deficiency in apple is common in wet years (210). Burtch 

et al found that a high soil moisture level together with low 

soil temperature is the condition most conducive to the 

development of iron derieieney ehloPOsis (39). 

Water depletion favours fixation rea:etiens resulting in 

reduced uptake particularly of potassium and phogphcrus and an 

increase in the magnesium content whereas nitrogen accumulates 

in the plant owing to reduced rate of growth (210). Lundegardh 

(118) found that the nitrogen and calcium content of cereal 

plants tended to increase in a dry season. Boron deficiency 
I 

symptoms are commonly induced during a drought on soils nor-

mally adequately supplied with boron (210, 228). 
I/lirf.-

Alternate wetting and drying of soils treated with 
A 

potassium salts causes rapid fixation of potassium in a non-

repl~ceable form whereas little fixation of this kind takes 

place when the soils are kept continuously moist (210). 

According to Lilleland and Brown (ll4),however, potassium 

absorption by peach trees was only significantly reduced 

under extreme conditions when soil moisture was below the 

wilting point for long periods each year. 

J 
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1.2 SOIL MANAGEMENT. • 

The nutrient composition of plants is influenced by 

fertilizer applications to the soil and by changes in cultural 

practices such as liming, crop rotation, drainage, tillage, 

irrigation, mulching, cover-cropping and incorporation of 

organic materials (206, 152). The addition of fertilizers 

to the soil may or may not increase the leaf content of the 

added element depending on the level of these nutrient elements 

and other elements present in the plant. Furthermore the mere 

addition of an eleme~t to the soil is no guarantee that it is 

being absorbed by the plant as the roots may be incapable of 

securing it. 

Fertilizer application may also affect the leaf concen­

tration of nutrient elements other than those added. The 

results of numerous fertilizer experiments serve to indicate the 

general trend of such effects in various fruit and crop plants:-

Heavy nitrogen dressings have been found to decrease the 

absorption by the plant of P* (47, 96, 136, 158, 215, 223), 

K (47, 136, 158, 215, 223), Cu (109, 135) and Zn (158), and 

to increase that of Mg (47, 96, 158, 215, 223), Ca {47, 135, 

158, 223) and Mn (14a). Application of rummonia-N induced Mg 

deficiency on acid soils whereas nitrate-N increased Mg absorp-

tion (135). 

An increase of the phosphorus supply has been found to 

reduce the absorption of N (72, 105, 136), K (72), Fe (22, 61, 

65, 80), Cu (16), Zn (16, 215), Mn (23) and to increase that of 

C a ( 7 2 ) , Mo ( 13 5 ) • Reuther et al {157) also found that high 

phosphate application induced Cu deficiency but that Zn and 

Mn absorption was increased. 

Potassium application reduced the absorption of Mg (46, 

96, 135, 136, 158, 215), Ca <46, 96, 135, 136, 145, 158), 

* For the sake of brevity the nutrient elements are designated 
by their chemical symbols. 
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Zn {158, 176), Cu (176), B (176). A high K supply usually 

increases the Fe content (22, 102, 215) but it has also been 

found to cause Fe deficiency chlorosis in apple and pear (116). 

¥m absorption was found to be decreased (215) or increased (23) 

by K application. 

A high calcium supply decreased the absorption of N (105), 

P (105), Mg (105, 135, 136), Mn (176, 215), B (176). Ca 

application also decreased K absorption (105, 136, 145) but 

it has also been reported that it increased the K content {135, 

139). 

Magnesium applications reduce the uptake of Ca (~6, 215)_, 

K <46), B (176), Mn (176), and increase that of P (132). 

The heavy metals Ni, Cu, Co, Cr, Mn and Zn at a high levol 

of supply induce Fe deficiency (39, 61, 96, 159, 184). Aecor­

ding to Smith (186) a high Cu, Zn, Mn level in sand cultures 

increased the uptake of K and decreased that of Ca and Mg in 

eitrus. A high Mn level of supply decreased the absorption of 

Ca (169, 176) and Mo (109, 135). 

Liming through its effect on the soil reaction decreases 

the availability and absorption of Mn (23, 154), Zn (154, 222), 

B (154), Cu (154), but increases that of Mo (2, 64), Nand P. 

Addition of sulphur or accumulation in the soil following 

S treatment of fruit trees, increases soil acidity and may 

increase the availability of Mn and Fe (215) and Cu. Boynton 

and Embleton (33) found that S treatment resulted in lower Ca 

and Mg levels in apple leaves and that soil Mg was lost more 

rapidly than K by leaching 5 resulting in Mg deficiency symptoms. 

According to Drosdoff and Lagasse (69) the addition of S 

greatly improved the effectiveness of dolomite in correcting 

Mg deficiency in tung. 

A permanent grass cover crop was found to depress the 

absorption of N by apple and pear trees whereas that of K and 
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P was increased (24, 152). 

1.3 CLIMATIC CONDITIONS. 

Growth and fruit production are directly affe~ted by 

temperature, light, humidity and rainfall. When growth is 

improved by favourable weather conditions the plants utilize 

more nutrients for the enhanced growth and fruiting. The soil 

may thus fail to meet the nutrient requirements of the crop in 

a favourable season even though adequate when the growth rate is 

low (206). As indicated by Nightingale (140), conditions of 

temperature and light directly affect photosynthetic activity 

and thereby the rate of assimilation and accumulation of car­

bohydrates which may affect nutrient concentration in the dry 

plant material if absorption of nutrient salts does not keep 

pace with carbohydrate accumulation. Wallace (215, 216) has 

reported that excessive light may intensify deficiencies of N, 

Zn, Mg and Fe. 

The intensity and distribution of the rainfall through 

its effect on soil moisture content may influence the availa­

bility and absorption of various nutrient salts by plants as 

indicated in the preceding Section 1.2. Irrigation will of 

course partly offset the effects which would otherwise have 

been experienced in a dry season. 

Apart from soil moisture relationships, climatic factors 

are largely beyond the control of man, and their influence on 

plant composition may possibly limit the applicability of 

analytical index values to a particular region or to regions 
• 

·with more or less similar climatic conditions. However, 

Lundegardh (118) claimed that variations in the climatic con-

ditions from year to year do not fundamentally affect absorption 

and storage of the main nutrient salts in the leaves of oats, 

wheat and timothy (in Sweden). 

J 
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1.4 PLANT FACTORS. 

Plants of different species and even different varieties 

of the same species may differ considerably in their nutrient 

uptake from the same soil (76). Such differences in uptake, 

frequently observed in varieties exhibiting deficiency symptoms 

when other varieties of the s~me species, or the same variety 

on a different rootstock, grow normally, are related to the 

kind and extent of root development rather than to differences 

in nutrient requirements (206). Smith and Wallace (187) 

suggested that citrus rootstocks may have specific ~ation­

exchange capacities which may explain the differential ability 

of roots to absorb nutrients and thus aecount for the observed 

influences of rootstock on scion composition. 

Many workers have noted significant differences in nutrient 

composition due to 

(1) the plant part sampled, which is important in any 

scheme of diagnostic plant analysis when the whole plant cannot 

be analysed. In fruit trees the bark, wood, roots, fruit and 

leaves, and even leaves from different positions on a tree, 

differ widely in nutrient composition (85). In the case of 

leaves their morphological position is important in deter-

mining which position on the tree is most suitable to provide 

a reliable reflection of the nutrient status and at the same 

time be convenient to sample (37, 85). 

Thus analytical data designed for the evaluation of 

comparative nutrient status must be based on a definite plant 

organ consistently sampled from the same position on the tree. 

(2) variety. Significant differences in leaf composition 

due to variety have been reported for apple (32, 75) pear 

(152) and citrus (55). 

{3) rootstock, in the case of 

citrus (55, 59, 6o, 87, 179, 212). 

;..' ~ \. 1 • 
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(4) size of crop, in the case of apple (47, 94, 122), 

peach (114), prune (113) and grapes (58). 

(5) stage of development. Numerous inveatigations ·have 

shown that the nutrient composition of plant organs changes 

markedly in relation to the stage of development of the plant. 

Such variations are capable of affecting the inter~retation of 

diagnostic leaf analysis (74) unless suitably evaluated as for 

instance by the use of curves representing the seasonal t~ends 

(15?), or as is usually done in routine work, by selecting a 

definite period during the growing season for sam~ling when 

the eomposition is relatively constant. 

No significant differences in leaf e~~oaition between 

trees of different ages have been found in the case of apple 

(75), pear (152~ peach (114) or oil palm (37). 
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2. NUTRIENT ABSORPTION AND DISTRIBUTION IN RELATION TO 

PLANT COMPOSITION. 

Some of the factors affecting nutrient composition of 

plants have been enumerated in Chapter 1. The processes 

governing the entry of nutrients into the plant and trans-

location within the plant may be examined more closely to 

indicate how they affect nutrient concentrations in the plant• 

The apparent ease with which plants grow masks a great 

number of complex processes many of which are still imperfectly 

understood. The factors governing absorption of nutrients 

have been intensively studied and prevailing concepts of ion 

exchange seem to fit in reasonably well with the observed 

accumulation of nutrient elements within the plant. Nutrient 

salts must be dissociated into their respeotive ions be.fore 

absorption is posxible and it is generally accepted that the 

main processes of entry into the root is by means of diffusion 

and ion exchange reactions (including contact ion exchange) at 

the root surface (120, 165}. It is also recognized that ion 

uptake and accumulation in the roots is closely associated 

with root respiration (80, 120, 143, 166), and that continued 

uptake and transport of nutrient salts from the roots, against 

the concentration gradient and absorption potential (143, 166), 

can only take place under aerobic conditions favourable to the 

respiration process (118). The latter is considered to supply 

positive H-ions for cation exchange and negative Hco3-ions for 

anion exchange (36). 

Two modes of entry of ions at the root surface are 

recognized (80): {a) passive and reversible processes of 

diffusion and exchange adsorption, which are consistent with 

phenomena connected with exudation of ions from the root, and 

(b) active transport and absorption against the concentration 
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gradient, an irreversible process. It is postulated that 

the nutrient ions arc carried across the cell walls beneath 

the root surface by a "carrier" system (77), the ion carrier 

complexes traversing membranes of limited permeability to free 

ions. The ions are then irreversibly released from the car-

riers at the inner surface of the membranes, accumulating in 

the cytoplasm and vacuole of the cell (166). After aecumu­

lation at the root tips, the nutrient ions are partly assimi­

lated and utilized there but the greater portion passes on into 

the conducting (xylem) tissues of the plant (15), and is tl:'a.ns. 

ported to the leaves by water movement implemented by root 

pressure and transpiration (120). 

A small portion of the nutrient ions are assimilated in 

transit to the leaves (15) so that the bulk of the nutrient 

salts are deposited at the main site of assimilation in the 

leaves and in the apical primordia. Metabolic use and trans­

piration are mentioned as two basic factors which influence the 

direction of movement within the plant (15). A variable pro­

portion of the mineral nutrients in the leaves are redistri­

buted to various parts of the plant depending on age of leaf and 

development of new tissues and fruit. 

2.1 PROCESSES AFFECTING THE EXTERNAL SUPPLY OF NUTRIENTS. 

The amount of mineral nutrients that can be taken up by 

plants varies according to the relative proportions of soluble, 

exchangeable and fixed forms (133) in the soil, and the rate 

of mineralization from the solid phase (194) and from organic 

residues. The available supply in the soil can vary from very 

low levels which give rise to deficiency effects on plant growth, 

to very high levels capable of producing toxic effects in the 

plant. 

In addition to the effects of physical condition of the 
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soil, water relationships and aeration of the soil, the amount 

of available nutrients that can be absorbed by plants is con-

ditioned by various processes such as cation exchange and 

precipitation reactions in the soil, cation exchange capacity 

of the roots and the processes of nutrient uptake. 

2.11 CATION EXCHANGE REACTIONS. 

The eation exchange capacity of the soil and degree of 

saturation of the exchange complex to a large extent determine 

' the fertility of a soil. The cation exehang~ oapaeity de~ends 

on (a) the clay content and type of clay minerals and (b) the 

humus content of the soil. Three main groups of clay minerals 

may be distinguished, Montmorillomite, Illite and Kaolinite, 

with typical exchange capacity ratings of 100, ~0 and less than 

10 milli-equ~valents per 100 grams of eolloidal material. 

According to Malherbe (121) most of the soils in the coastal 

regions of the Western Cape Province (about 8o%) have clay 

minerals of the Kaolinite group, the remainder belonging to 

the Illite group, and the arable soils usually are very low in 

humus content. The soils in this area therefore have an ex-

tremely low exchange capacity. Karoo soils on the other hand 

generally possess a consi~erable proportion of Montmorillomite 

minerals which would account for their greater fertility. 

Obviously the exchange capacity of soils in which 

Kaolinite colloids predominate, can be greatly improved by 

increasing the humus content with its relatively high exchange 

eapacity (about 200 m.e. per 100 gm.). In practice it is 

exceedingly difficult to build up the humus content in a warm 

climate by means of green manuring or application of organic 

material, but evidence has been obtained on a farm in the Elgin 

area that it is quite feasible under a system of permanent 

covercropping. 
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Cation absorption by plants is greatly influenced by 

the presence and nature of the colloids in the soil where 

plant roots must compete with the soil colloid for cations 

(68). Some soils are known to be strongly adsorptive forK 

(98), Cu (134) and P. The exchangeability of adsorbed cations 

increase from Na to K, Mg, Ca and finally H, and they tend to 

be most readily released from the colloid in the same order 

depending on the degree of saturation of the colloid or on change 

of concentration of complementary ions following fertilizer 

additions to the soil (133). 

2.12 PRECIPITATION REACTIONS. 

Reduction of nutrient availability brought about by 

chemical precipitation in the soil is mostly related to the 

nature of the soil reaction (pH). Phosphate is readily pre-

cipitated in very acid soil, and some of the micro-nutrients 

in alkaline soil. The practice of liming greatly influences 

the availability of soil nutrients through its effect on the 

soil reaction. The availability of N, P and Mo is improved 

by liming, whereas that of Fe, B, Zn, Mn and Cu is depressed. 

Copper may also be rendered less available in acidic peat 

soil (112). Under these conditions, if the supply of Zn, 

Mn and Cu is limited, microbial competition may also often give 

rise to deficiencies. 

Manganese in the bivalent form as found in acid soil is 

available to plants, but if the pH is raised above 6.0 it tends 

to be converted to higher oxides such as manganic oxide and 

manganese dioxide which are much less available (112). Gisiger 

(83) found that Mn is reasonably available in very alkaline 

soils and considers that Mn, in the intermediate pH range of 

6.0 to 7.9 when Mn deficiency usually occurs in plants, is 

biologically oxidized by soil micro-organisms which reduce its 
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availability. The harmful effect of reduced boron availability 

after excessive use of lime in acid soils is ascribed to reduced 

ability of B to protect the roots against an unfavourable con­

centration of OH-ions rather than to a precipitation effect. 

The so-called "lime-induced chlorosis" of calcareous soils 

falls in a special category since the observed effects are not 

eonfined simply to iron availability and the entire metabolism 

of the plant may be assumed to be disturbed (99). However, 

it is well known that Fe availability is depressed by high pH. 

In very acid soil Fe and Al tend to be precipitated upon addition 

of soluble phosphates. It has also been shown that Fe may be 

precipitated, presumably as ferric phosphate, at the root surfaee 

of bean plants grown at pH 7.0 in a high ?medium, thus reducing 

further absorption of Fe (15). 

The availability and absorption ef Fe has been found to be 

strongly affected by high coneentrations ln the growth medium of 

macro-nutrients, Ca, P, K and N (39), K and P (22), K (102), 

P (61, 65, Ro), as well as micro-nutrients (heavy metals), 

(39, 61, 96). Copper accumulation in orchard soil is cons:i.dered 

to be particularly conducive to the development of Fe deficiency 

(38, 39, 159, 186). 

2.13 CATION EXCHANGE CAPACITY OF ROOTS. 

Regarding the significance of the C.E.C. of plant roots in 

plant nutrition, Drake (68) found that plant species differ 

greatly in their ability to take up cations from the soil and 

that these differences may in part at least be ascribed to a 

specific capacity to exchange cations. Plants with high C.E.C. 

roots, e.g. lettuce, potatoes, tomato, were found to absorb 

relatively more Ca than K even to the extent of partial ex­

clusion of K (this can be overcome in practice by frequent top 

dressings of K). Sweetcorn plants on the other hand had low 

1 
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C.E.c. roots which absorb and take up relatively more K from 

the soil. 

Varying cation exchange capacities of roots has also been 

suggested as a possible explanation of differences in nutrient 

uptake by citrus rootstocks (187). 

ENTRY OF NUTRIENT IONS INTO THE ROOT TIP. 

The available evidence clearly supports the contention of 

Lundegardh (118) that ion exchange is the fundamental process in 

the uptake of nutrient salts. The observed effects of cation 

exchange reactions in the soil, complementary ion effects, ion 

antagonism, electrostatic balance of cations and anions, ion 

exchange at the root surface and the C.E.C. of roots, all seem 

to fit into a pattern in which ion exchange forms the central 

or controlling mechanism of absorption. Diffusion also plays 

a role, coupled with exchange adsorption, in the passive absorp­

tion of ions as contrasted with active absorption according to 

the categories proposed by Gauch (80), as mentioned above. 

The total absorption of individual ions from an unlimited 

supply in the soil cannot proceed beyond a certain limit when 

root injury and other toxicity effects set in. Plants may 

absorb and tolerate large quantities of certain elements, for 

instance citrus leaves have been found to contain over 9.0% K 

in the dry matter (5S), the normal content being about 0.5 to 

2.0%, and the Mn content (normally not more than about 150 

p.p.m.) may rise to more than 10,000 p.p.m. of dry matter in 

certain plants (215). The tolerance to other elements such 

as B is very much less. In saline soils the upper limit at 

which growth becomes affected is set by the rising osmotic 

pressure of the external medium (71, 224) and by decreasing 

aeration brought about by deterioration of the soil structure 

(120). 
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The mechanism controlling differential and selective 

absorption of ions by plants is not clear. It is·not ex-

plained by the process of ion exchange at the root surface (36) 

although it is evident that the C.E.C. of roots (68) and 

metabolic demand, as well as adjustment of cation-anion balance 

to maintain the acid-base equilibrium (204) within the plant, 

are involved. Mobility of ions influences ion accumulation Qs 

shown by Overstreet and Dean (143), who found that K, No
3

, NH4 

and Cl aeeumulate rapidly in root tissue, s~4 and Po4 less 

~a~idly, and Ca, Mg and Ba much more slowly. 

In considering the theory of contact ion exchange, that is, 

transfer of ions from soil to plant without an intermediate 

soluble phase, Jenny (101) postulated that in any soil both 

solution and contact mechanisms will be operating. As far as 

macro-nutrient cations are concerned the soil solution mechanism 

would be expected to predominate in sandy soils, whereas in clay 

soils contact would be the decisive factor. Also, the lower the 

salt content of the soil solution the greater will be the con­

tribution of contact exchange. For those micro-nutrient cati.ons, 

including Fe (and Mn), which are largely insoluble at higher 

pH values, contact exchange may well be the dominant mode of 

acquisition by roots, although chelation processes preslli~ably 

may also provide a source of available nutrients under these 

conditions. Chapman and Rayner (56) thought that citrus trees 

in the field acquired a portion of their phosphate by contact 

exchange. Jenny considered that the amount of nutrient ions 

absorbed is more than can be accounted for by those present in 

the soil solution. 

The theory of contact absorption is contested by Overstreet 

(143) who, although recognizing that the amount of nutrients 

present in the soil solution at any given time is inad~quate for 

the nutrition of plants, states that 11 apparently the soil 

solution is continuously renewed as it is unlikely that plants 
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obtain nutrient ions directly from the solid phase by contact 

feeding." 

2.2. PROCESSES AFFECTING THE INTERNAL NUTRIENT CONCENTRATION. 

Numerous processes are m2nifest within plants which deter­

mine the variable concentration of nutrients in different organs 

as found by plant analysis at the time of sampling. Movement 

and utilization of nutrients subsequent to absorption are in­

fluenced by root pressure, transpiration, photosynthesis, assi­

milation, development of meristematic tissues, redistribution 

and accumulation. 

The importance of enzyme systems in the internal life pro­

cesses of the plant is recognized and may well prove to be the 

key to the mechanism controlling nutrient content. Carbohydrate 

assimilation in the leaves is determined by the salt content as 

well as by co2 concentration, light intensity, water content 

and ehlorophyll content. Through their effect on carbohydr~te 

assimilation the nutrient salts influence the expansion of the 

assimilating surface and the chemical composition of the leaf 

(118). But until more is known of the function of mineral 

nutrients in activating enzyme systems, the significance of 

nutrient concentration in plant tissues and thus their relation­

ship to growth and fruiting are evaluated empirically by con­

sidering the net content of nutrients in so far as they can be 

determined by chemical analysis. 

For our immediate purpose the content and interrelationship 

of mineral elements in plants may be considered under the 

headings of mobility of ions, translocation and redistribution, 

ion equilibrium and rate of growth. 
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2.21 MOBILITY OF IONS. 

The rate of movement of ions in the plant is influenced 

by differences in apparent ionic diameter or size of ions (118), 

by interacting and reciprocating effects within the cation-anion 

equilibrium and by precipitation effects. N, P and K are 

readily mobile and redistributed from leaves to other parts 

of the plant (118, 225). The mobility of K appears to be 

accelerated by the presence of N0 3 (98). Contrary to pre-

vailing opinion, S also appears to be freely mobile as so4-ions, 

at least as much asP (80). Calcium is relatively immobile 

and there is no evidence of redistribution of Ca which tends to 

accumulate in roots and leaves (118). Little Ca is transferred 

to meristems (15). Magnesium is fairly mobile and accumulates 

in seeds, migrating from nearby leaves into fruit and inducing 

a deficiency in the leaves of citrus (225) and apple (130). 

The results as to mobility and redistribution of micro-

elements are not consistent. Migration of Zn and M~ from the 

leaf does not seem to be great and they probably migrate more 

readily from roots and stem than from the leaves (175, 225). 

According to Lundegardh (118), Cu, Mn and Fe are difficultly 

mobile. Fe apparently is not transferred from old to yoQ~g 

leaves (39) and withdrawal of Fe and B from older leaves does 

not constitute an important source of Fe and B to meristems 

( 15) • 

It has been shown that Ca, K and Mg tend to accumulate in 

newly grown terminal tissues, and Pin the bark and wood (SO). 

Large accumulations of Cu may occur in roots without change of 

leaf Cu (185). Thus plant analysis following differential 

fertilizer treatment is subject to different interpretations 

according to the plant part analysed. 

Apparently precipitation effects may also be involved in 

the accumulation of nutrient elements. It is possible that a 
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high or normal content of Fe, Mn, Zn and B in the presence of 

a high Ca level does not necessarily signify an adequate supply 

since a portion may be immobilized in the plant owing to lime­

induced effects (161~). According to Biddulph (15), precipita­

tion effects, for instance in the case of P and Fe, may occur 

at the root surface and again in the cells surrounding the 

xylem and at the xylem extremities. Direct evidence that 

mineral nutrients may concentrate in veins of leaves and become 

immobilized has been obtained for Fe using radioactive Fe55. 

At pH. 4.0, Fe may enter the roots unchecked and may be well 

distributed but at pH 7.0 Fe, if it is not precipitated at the 

root surface due to high P supply, is precipitated in the veins 

leaving a deficiency in the mesophyll. Wallihan (218) however 

found that Fe chlorosis in citrus is reflected by a critical 

concentration in the leaves and rejected the idea of partial 

immobilization. 

2.22 TRANSLOCATION AND REDISTRIBUTION OF IONS. 

Biddulph (15) states that two basic phenomena influence 

the direction of movement of mineral~ within a plant: metabolic 

use and transpiration. These may have a differential magnitude 

in branches of poor vigour. Weak branches of small diameter 

also set up frictional resistance to the flow of water resulting 

in reduced transpiration and decrease of all nutrients in a 

weak shoot (123). 

Nutrient salts deposited in the leaves are by no means 

static. The continual delivery of minerals via the transpi-

ration stream will result in accumulation in mature leaves in 

excess of their metabolic needs unless re-exported. 

instance has been found to move readily into mature leaves 

yet the P concentration remained below that in apical meristems. 

Mineral nutrients arriving in young leaves will be metabolized 
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and continuously exported to new developing leaves and thus 

incorporated in new protoplasm. 

The age of the leaf markedly affects the concentration 

of mineral elements in the leaf. Three phases in the life 

history of a single vegetative organ may be considered (225): 

(a) An initial period of growth (adolescence) in which nutrient 

ions rapidly accumulate in conjunction w.ith synthesis of new 

protoplasm. Gregory (225) found that more than 90% of N and 

P taken up by the developing cereal plant had been accumulated 

when the dry weight was only 25% of the final weight. (b) 

A period of constant weight (maturity) after cessation of growth 

when photosynthesis is the dominant function and carbohydrates 

are transferred to younger actively growing tissues. (c) A 

period of decline in weight and of internal disorganization 

(senescence). The migration of mineral elements from leaves 

of deciduous plants prior to leaf fall may amount to as much as 

90% of the maximum amount of N, P, K, Mg and Fe present (225). 

Translocation of nutrients occurs freely in any direction. 

It has been shown (15) that if the mineral, e.g. P or Fe, is 

mobile within the phloem tissue, it moves to and supplies 

actively growing areas at root and stem tips in spite of direct 

supnlies available to them. The most rapid movement is down-

wards in the phloem but ultimately they move upward again 

through the xylem. This equalizing mechanism permits growing 

areas to be supplied when metabolic use is exceeded or when the 

flow from the roots is impaired depending on solubility and 

mobility of the mineral elements. 

2.23 CATION-ANION BALANCE. 

Ion exchange phenomena presuppose independent absorption 

and transport in the plant of cations and anions ( ll.t3) so that 

an electrostatic balance of ions both within the plant and in 
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the nutrient substrate must be maintained (211). Organic 

acids increase in the plant when cation exceeds anion absorp-

tion, and diminish when anion exceeds cation absorption, thereby 

preserving the electrostatic equilibrium (204). Hoagland (98) 

found that when N is supplied in the form of NH
4 

a marked de­

crease in the concentration of organic acids in all parts of 

the plant takes place to compensate for the acidity produced 

by the NH4-ions; in the nutrient medium also, the solution 

becomes more acid because NH4-ions are removed more rapidly 

than 804 and P04-ions by the roots. 

A cation-anion balance in the plant may thus be considered 

as a fundamental phenomenon. Measurement of total cat].on and 

anion absorption by plants however is most difficult particular­

ly in view of the uncertainty as to whether N is absorbod in 

cationic or anionic form. However, it has been found that 

cations other than K, Ca, Mg and Na, and anions other than 

No3, P04, 80
4 

and Cl normally constitute only a small proportion 

of the total so that their omission does not greatly affect the 

trends observed in cation-anion relationships. 

Van Itallie (207) drew attention to an apparent constancy 

of the sum of the cation equivalents (Ca, Mg, K and Na) per 

unit weight of dry matter of Italian rye grass in spite of 

considerable variation in their concentrations in the plant 

due to differential additions in the nutrient medium. This 

tendency has also been noted for cations in other plants 

(209, 234) as well as for anions (110). Other workers showed 

that the summation values vary with varying supply of nutrient 

ions (e.g. Ca and K), and with plant species and yield (150, 

185, 211, 234). 

Wallace (211) summarized the available data on cation 

and anion equivalents summation values in whole plants for 

a large number of crop plants. The data indicate that different 

~ 
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species have widely different values and that considerable 

differences occur within each species, but that high cation 

summation values tend to be associated with high anion sum­

mation values, and low cation with low anion values. The 

cation-anion ratios were found to be practically constant 

(110 1 211) which is in accordance with the idea of an electro­

static equilibrium of ions in the plant. 

The constancy of the cation-anion ratio signifies that 

reciprocating effects will give rise to varying ionic ratios 

(209) so that an increase of any cation in the nutrient 

medium will result in a reduction in absorption of another 

cation or an increase in uptake of one or more anions. Thus 

the many observed effects of interaction of ions or ion anta­

gonism in the plant resulting from changes in the rate of 

supply are in a large measure an expression of mutual replace­

ment of ions operating within the framework of the cation-anion 

equilibrium. Potassium is the dominant cation controlling 

cation absorption (234) and No3 the dominant anion in anion 

absorption (211). Ion equivalent summation values and reci­

procating effects vary in different parts of the plant so tb.at 

an evruuation of leaf composition may be entirely different to 

that based on root composition or the composition of other 

plant parts (46, 50, 53, 185). 

2.24 RATE OF GROWTH. 

The factors discussed so far by no means exhaust the 

influences which affect the internal nutrient concentration. 

There is no doubt, as pointed out by Cain (52), that there 

are many unknown or little understood factors affecting tho 

efficiency with which the plant may utilize mineral nutrients 

available to the plant root and after absorption. 

A most important factor influencing the mineral concen-
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tration in the plant is the rate of growth as related to the 

amount of nutrients present in the plant and translocated to 

various parts. Since nutrient content is usually expressed 

in terms of concentration per unit dry weight of tissue, any 

internal plant factors which change the ratio of dry weight 

to mineral content of the leaf, irrespective of absorption by 

the roots, will influence the analytical results. Cain (52) 

found that about one third of the potassium in the apple tree 

is located in the fruit at harvest; thus a light fruit crop would 

permit more K to reach the leaves and give rise to a higher leaf 

content even without a change in absorption of K by the roots. 

Changes in the ratio of dry weight to mineral content are 

also evident following different rates of nutrient absorption. 

The elements N, K, Ca and P may be considered as the nutrients 

chiefly determinative of growth and yield (118). Thus a 

positive growth response following the increase of one of these 

nutrients may be accompanied by a decrease of other nutrients 

entirely due to the expansion of growth. The decrease in per­

centage content is thus a dilution effect since the total amount 

of the other nutrients in the plant have not changed or have 

even increased (50). 

A decreasing supply of N sufficient to reduce growth on 

the other hand may lead to an increased percentage of other 

nutrients if they continue to enter the plant at the same 

rate (50). Lundegardh (118) found that the K and P contents 

of cereal plants -v-ras increased by restriction of growth due 

to N deficiency. Chapman and Brown (55) have also found that 

N deficiency leads to higher K and P contents in citrus leaves, 

whereas Broeshart (37) found an increase of P, Ca, Mg and ash 

contents in oil palm leaves. In the same way, although not 

always through their effect on amount of growth, deficiencies 

of practically all nutrient elements have been found to affect 
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the level of other elements (37, 55, 57, 95). 

An enhanced rate of carbon assimilation and accumulation 

may likewise give rise to dilution effects, such as a lower 

percentage N, and conversely the percentage N may be higher 

when carbon accumulation is reduced as in dull weather even 

with no more N added to the soil (140). 
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3. CONCEPTS OF PLANT ANALYSIS. 

From the foregoing chapters it is evident that a great 

number of factors operating simultaneously are involved in 

building up the mineral composition as found by chemical 

analysis of the plant material. As stated by Ulrich (206), 

"the nutrient concentration of the plant at any particular 

moment is an integrated value of all the factors that in­

fluenced this concentration up to the time the sample was 

collected." 

3.1 RELATIONSHIP BE~1EEN NUTRIENT CONCENTRATION AND PLANT 

GROWTH. 

The internal nutrient concentration has been found to be 

associated with growth in such a way that growth would be 

optimal at a certain range of concentrations and suboptimal 

when the concentration was below or exceeded this range. 

Lundegardh (118) maintains that numerous experiments have shown 

unequivocally that the internal concentration level of nutrients 

reflects their effect on growth. 

The use of plant analysis for diagnosis of its nutrient 

status is based on this relationship between nutrient concen­

tration and plant performance (amount of growth or yield). 

The feasibility of using the nutrient composition for diagnosis 

depends on whether the relationship with growth holds irres~ective 

of those factors which influence plant composition and cannot 

be readily accounted for, such as soil and climatic conditions. 

Numerous investigations referred to in previous chapters have 

shown that plant composition can be sufficiently influenced 

by the plant factors (the plant organ sampled, plant species, 

variety, rootstock and stage of development) to affect seriously 

the interpretation of plant analysis. These plant factors c~n 
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be allowed for by establishing relationships for a particular 

variety and plant part sampled at a definite stage of growth. 

Assuming such a basis it remains to be seen whether the relaticn-

ship will hold under different conditions of soil and plant 

environment. 

In a critical review of concepts based on the relationship 

between nutrient supply or nutrient content of the plant and 

yield (dry matter produced), Macy (119) studied the Law of the 

Minimum first proposed by Liebig, that plant growth is directly 

proportional to the supply of the nutrient which is in minimum; 

the Law of Diminishing Returns, formulated by Mitscherlich, 

that the increase in yield per unit of limiting nutrient applied 

is directly proportional to the decrement from the maximum 

yield; the Minimum Percentage of Wolff; the Sufficiency concept 

of Pfeiffer, that the sufficiency of a nutrient is a function 

of its percentage content in the plant; and others. 

Realizing the significance of the "sufficiency" idea, 

Macy proposed a theory of the relationship between the percen~ 

tage content of a nutrient in a plant and the sufficiency of the 

nutrient for growth as a measure of the quantitative mineral 

nutrient requirements of the plant,-combining the concepts of 
c 

Liebig and Mitsherlich. Macy visualized a "critical percentage 11 

A 

of each nutrient in each kind of plant above which there is 

"luxury consumption" and below which there is "poverty adjust­

ment" which is almost proportional to the deficiency until a. 

"minimum percentage" is reached. Using data from Pfeiffer's 

work, he presented yield curves for oat plants with increasing 

Nor P supply (Fig. 1), and the corresponding nutrient content 

-response curves (Fig. 2). 

Considering the curve relating yield to internal concen­

tration (Fig. 2), three portions of the curve may be disting­

uished, (a) the minimum percentage portion where yield rises 

---------------------------~------
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although internal concentration remains constant (Liebig law), 

(b) poverty adjustment region in which both yield and internal 

concentration increase, the response decreasing with suf­

ficiency of nutrient (Mitscherlich law), and (c) luxury con­

sumption region in which yield remains constant with rising 

internal concentration. The transition from (b) to (c) was 

considered to be a fixed point on the curve designated as the 

"critical percentage" for each nutrient. Macy presented 

evidence that when other growth factors such as changing 

elimatic conditions from one yeaD to the other, affect the 

percentage content of a nutrient in the plant, the sufficiency 

of the nutrient is likewise affected so that the above 

relationships still hold. 

Steenbjerg (191) drew attention to the possibility that 

the yield curve, under conditions of low nutrient supply, may 

be S-shaped (Fig. 3). He found that increasing the Cu supply 

when at a low level, i.e. below the "point ri inflexion", 

increased yield at a faster rate than the rate of absorption 

of the element. Plotting Cu content against yield as in 

Fig. 4, it is evident that the percentage Cu may be at a 

point on the descending portion of the curve from which it is 

clear that the same Cu content may correspond to two very 

different yields. The existence of an S-shaped curve may 

thus affect the interpretation of chemical plant analysis and 

must be taken into account when considering the effect of 

differential fertilizer applications. 

In most cases of low nutrient level, however, the 

relationship between yield and internal concentration can be 

represented by a point situated on the ascending portion of the 

eurve when yield and internal concentration both increase 

(
11 poverty adjustment region" of Macy), even though not 

necessarily linearly. At very low levels the presence of 

deficiency symptoms would in any case indicate a potential 
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yield increase if the supply of the limiting nutrient is 

increased. 

3.2 THE RELATIONSHIP AS AFFECTED BY NUTRIENT BALANCE. 

The postulated relationships a& indicated by Macy aro 

considered to apply when one nutrient factor only is varied, 

other nutrient factors being held constant. He intimated 

however that the n critical" and 11 minimum11 percentages of 

nutrients in plants are not absolutely invariable. Goodall 

and Gregory (85) subsequently pointed out that in the case of 

a wide range of combinations of nutrient factors as found in 

the field, it is clear that the internal nutrient concentration 

of one only of these nutrients is unlikely to be related to 

yield over the whole range. "It has been shown that as the 

level of a nutrient not in ample supply is increased, other 

factors being held constant, both yield and internal nutrient 

concentration rise", but the relationship which tends to be 

linear at low levels will tend to disappear at higher levels 

depending on interacting factors which come into operation when 

the nutrient level is no longer limiting. 

Lundegardh (118) likewise indicated that for each nutrient 

element there is a range of values at low concentration, in 

which A strong positive correlation exists between the nutrient 

concentration and growth, for instance, at low concentration 

(deficiency level), theCa, P and N contents and growth are 

positively correlated. As the concentration increases into 

the optimum or super-optimma range, restriction of uptake of 

other elements come into play. According to Lundegardh, a 

positive growth response following a concentration increase 

of one factor may even be accompanied by a decrease in the level 

of an unchanged element, without prejudicing the postulated 

relationship between internal concentration and growth. 
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It is obvious that an evaluation of yield response in 

terms of the internal concentration of a nutrient must take 

into a~count the simultaneous influences of other nutrient 

factors since, as stated by Shear, Crane and Myers (176), the 

ultimate growth expression depends on both concentration and 

balance of all elements. "All other factors being constant, 

plant growth and symptom expression are functions of the two 

variables of nutrition, intensity and balance" ( 11 intensity 11 

being indicated by the total eq~ivalent concentration of all 

functional elements in the leaf, and "balance" referring to 

the relative proportions among the essential elements). "At 

any level of nutritional intensity there exists an optimum 

balance or proportion among the functional nutrient elements in 

the leaf at which maximum growth for that intensity level will 

result. The maximum potential growth and yield for any given 

plant will be obtained only when the proper balance between all 

cf the nutrients oocurs in combination with their optimum 

intensity." The importance of nutrient balance in optimum 

nutrition is generally accepted whereas the intensity factor 

is usually ignored in practical applications to field problems 

(161). 

Ulrich (206} combined the concept of critical nutrient 

levels within the plant with the ideas associated with the 

theory of limiting values. According to him, "the practicality 

of plant analysis must be ascertained empirically through 

comparison of nutrient concentrations of plants restricted in 

growth to those of plants not so restricted." Thus for any 

given element and plant part there is a "critical nutrient 

range" which may be defined as 11 that range of concentrations 

at which the growth of the plant is restricted in comparison 

to that of plants at a higher nutrient level. 11 Response in 

the field to addition of a nutrient to the soil depends on 
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whether the nutrient concentration is above or below the 

critical level; if above there would be no response, if below, 

the chance of a growth response increases rapidly as concen­

tration decreases, depending on the abundance of other growth 

factors and on time and duration of the deficiency. As to 

nutrient balance, Ulrich states that "plants with widely dif­

ferent nutrient composition have similar yields as long as the 

nutrient concentrations are well above the critical level, 

but at or below the critical level one element may affect the 

utilization of another and such a lack of balance is likely to 

affect plant growth." 

3. 3 OPTH'IAL NUTRIENT CONCENTRATION IN RELATION TO PLANT 

PERFORMANCE. 

Goodall and Gregory (85) postulated that there is an 

optimum level for each growth factor: "if all external factors 

including all nutrients except one, are maintained at optimal 

level, then growth will be a function solely of the available 

amount of this nutrient, and as the optimum level is approachod 

the maximum possible yield of the plant will be reached." The 

criterion proposed to define the optimum level was "response 

to increased uptake of a deficient nutrient by an improvement 

in development", which in practice would exclude those cases 

in which increased uptake of a deficient nutrient led t•'"' no 

improvement in development (e.g. Fe by immobilization in the 

leaf) and those in which the uptake of other nutrients are 

affected (e.g. by lime and sulphur). 

The idea of "optimum values" is also proposed by Wadleigh 

(209), that "for any given combination of environmental factors 

there is within a given plant tissue an optimum content and 

relationship of the mineral nutrients for maximum plant growth, 

and that deviations from this optimal nutritional status would 
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be accompanied by decreases from maximum growth." He states 

further that this theory is "not experimentally verifiable 

because of the extreme complexity of pertaining factors and 

because of the evidence that growth response is invariant ovor 

a considerable range in content of many of the nutrient 

elements." 

Shear, Crane and Myers (176) believed that "at the present 

stage of our knowledge it would be futile to set up specifie 

standards of optimum balance and intensity", and that "the 

significance of any given leaf composition cannot ~ evaluated 

intelligently unless the interactions between the elements 

eontributing to that composition are understood and eo:nside~ed•" 

To determine this, data would be required for eaeh erop to 

enable us to determine accumtoly the maximum potential economic 

yield for each crop and the leaf composition which is eorrelated 

with that response. 

Chapman and Brown (55) concurred with this contention, 

stating that "it will be difficult if not impossible to lay down 

a. law or principle applicable to all plants which completely 

describes the relationship of nutrient content to plant ~erfor­

ma.nce until more is known of plant growth and the functions and 

interrelations of nutrient elements." 

The general trend in ideas concerning the most suitable 

criterion for use in leaf analysis diagnosis may be summed u~ 

as follows. The original interpretll.tion of a fixed "oritieal 

percentage" of nutrient content (Macy), based on the classical 

concepts of the relationship between nutrient content and yield, 

has developed into the more recent conception of a "critical 

nutrient range" which takes into account normal variability and 

interaction of nutrient elements (Ulrich). Finally, the emphasis 

has passed from critical levels to "optimum values" (85, 176, 

209) which appear to afford the best approach as a basis for in-

Stellenbosch University http://scholar.sun.ac.za



,...-----------------------------~--~ 

- 33 -

terpreting leaf analysis data, according to the information 

available at the p~esent time. 
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4. TECHNIQUES OF LEAF ANALYSIS. 

Various schemes of leaf analysis based on the concepts 

discussed above have been proposed for the determination of 

nutrient requirements of fruit trees. Such practical schemes 

are naturally dependent on the use of appropriate analytical 

methods and suitable standards of reference whereby the nutrient 

composition of trees of unknown nutrient status may be evaluated. 

The practical apnlication of leaf analysis in this way hinges 

on the question of the criteria employed in interpreting the 

analytical data. 

4.1 SAMPLING AND ANALYTICAL PROCEDURE. 

The procedure to be followed in determining the nutrient 

status depends partly on the nature of·the plant species and the 

plant part selected for analysis. In view of the effects of 

translocation on the mineral composition of different plant 

organs an evaluation of nutrient status based on the compositi.on 

of whole plants would be ideal as is often done in the case of 

annuals, but this is hardly feasible with fruit trees. For 

practical reasons the sample selected for analysis must allow 

for rapid and convenient collection and at the same time must 

be suitable for the simultaneous determination of all nutrient 

elements and serve as a reliable reflection of the nutrient 

status. In the case of fruit trees the leaves would appear 

to be the obvious choice, although leaf data do not always 

provide the best index of the status of all nutrient elements" 

Analysis of leaf stalks or other plant organs may be moro 

informative (85}, but a compromise is often necessary since the 

simultaneous routine collection and analysis of samples of 

different plant organs would take up considerably more time. 
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Apart from the plant organ selected for analysis other 

factors which may influence leaf composition, such as time of 

sampling, variety, rootstock, size of crop, climate, must be 

considered with the object of establishing a standardized 

procedure which will reduce the error in interpreting leaf 

analysis data as much as possible. 

The necessity for accurate and reliable methods of leaf 

analysis is obvious. Analytical procedures which are capable 

of rapid execution without loss of accuracy are preferred and 

spectrographic methods have contributed a great deal towards 

this objective. Determination of the total content of nutrient 

elements has so far been favoured in most of the work on fruit 

crops. More rapid procedures, such as "tissue tests" i.e. 

determination of soluble or extractable nutrients present in 

fresh conducting tissues (?4, 137, 162), have been proposed 

particularly for annual plants (?L~), but in general these do 

not permit simultaneous analysis of all nutrient elements, and 

in any case, reliable tissue test methods are not yet available 

for the accurate determination of some of the micro-nutrient 

elements. 

4.2 LEAF ANALYSIS STANDARDS. 

A prerequisite for the use of leaf analysis for diagnostic 

purposes is the establishment of standards of reference with 

which leaf composition data of trees of unknown nutrient status 

may be compared. Such standards can be established by means 

of data from fertilizer experiments in the field, from pot 

culture experiments, from surveys of commercial orchards or 

from a combination of these. In recent years, one or more of 

these procedures have been employed by numerous investigators 

in determining nutrient standards and may be grouped according 

to the method employed, as follows: 

Stellenbosch University http://scholar.sun.ac.za



- 36 -

( i) Fertilizer experiments in the field, l-1-, 5, 6, 8, 

25, 26, 28, 30, 31, 34, 42, 44, 55, 67, 70, 136, 

137, 144, 161, 170, 172, 173, 190, 200, 208, 213. 

(ii) Controlled culture experiments, 40, 55, 56, 92, 128, 

183. 

(iii) Leaf analysis surveys in commercial orchards, 6, 9, 

10, 29, 35, 42, 45, 55, 58, 76, 93, 106, 114, 124, 

125, 152, 156, 177, 201, 220. 

Rather few of these investigations are supported by tree 

performance data in relation to differential nutritional 

treatments which must be considered as the ultimate basis for 

obtaining data from which analytical standards can be derived. 

As expressed by Goodall and Gregory (85), "the value of any 

method for determining fertilizer requirements from data of 

plant analysis depends upon the accuracy with which the response 

to fertilizer additions can be forecast." They state further 

that "it hardly needs stressing that the data collected for 

selecting a diagnostic technique, whether in artificial culture 

or in the field, should, if possible, cover the whole range 

of conditions to which it is intended the technique should 

subsequently be applicable." 

The dissimilarity from conditions in the field will re­

strict the use of artificial culture methods for determining 

standard values, particularly for fruit trees. 

Leaf analysis data obtained from a series of orchards are 

useful in establishing the range of nutrient content associated 

with a particular tree condition or growth characteristic under 

varying growing conditions, such as the critical nutrient level 

associated with symptom expression. A further application of 

the survey technique is designed to define the range of nutrient 

content of leaves associated with optimum growth and yield, 

making use of a comprehensive series of high performance 
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orchards (55). The average nutrient content thus determined 

cannot be assumed to represent a true optimal value (85, 161), 

but it constitutes a useful approach in view of the practical 

limitations pertaining to fertilizer experiments and pot culture 

work as far as fruit trees are concerned. Further discussion 

as to the merits of this method will be considered below. 

The establishment of fertilizer trials for fruit trees on 

a large enough scale to provide the data needed would be costly 

and hardly practicable since differential nutritional treatments 

covering all of the essential mineral nutrients must be ~on­

sidered, as well as such factors as varietal differences, 

duplication in many different localities and duration of the 

trials. With annuals on the other hand it is quite feasible as 

shown by the innumerable fertilizer experiments which have been 

and are still being carried out with annual crops. At best, 

the data from fruit tree fertilizer trials will become available 

at a slow rate, but their indispensibility in fixing precise 

critical levels for nutritional requirements and their value 

in checking index values determined in other ways are recognized 

( 85' 161). 

4.3 CRITERIA USED IN DETERMINING INDEX VALUES. 

Considerable divergence of opinion exists as to the best 

way of interpreting the analytical data with respect to 

evaluation of the nutrient status. Most workers have attempted 

to establish "critical" levels for each nutrient, expressed 

either as percentage content of dry plant material or as ratios 

between two or more elements, and more recently "optimum" or 

"normal" values have also been employed. 
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CRITICAL LEVELS OF NUTRIENT CONTENT. 

The idea of critical or threshold values of leaf com­

position is based on the relationship between percentage 

nutrient content and yield as conceived by Macy (119). As 

the concentration of one nutrient is increased, other growth 

factors being held constant, growth consis~ently improves 

throughout the deficiency range although not at a constant 

rate; increases in yield gradually diminish and disappear 

as the critical level (threshold optimum) is reached, beyend 

which luxury consumption takes place. Finally growth and 

yield deteriorate when the concentration reaches toxic pre­

portions or interferes with absorption of other elements. 

Convenient points on the growth curve which can be readily 

determined are those representing symptom expressions, i,e. 

the level below which deficiency symptoms appear or above which 

toxicity symptoms are evident. These levels are often fawly 

sharply defined and have suggested the use of 11 limiting11 values 0 

However, more often than not, there is a considerable overlap 

necessitating the use of a range of values for each nutrient 

in place of a rigid percentage level. 

Among the workers who have recorded critical nutrient 

levels for leaves of fruit trees (deciduous and citrus), the 

large majority have used visible deficiency or toxicity symptoms 

as the criterion for determining the standard values: (a) those 

concerned with macro-nutrient elements, u, 5, 7, 28, 29, 30, 

31, 4o, 56, 62, 70, 85, 111, 115, 124, 137, 152, 156, 172, 173, 

174, 208, 213, and (b) those concerned with micro-nutrient 

elements 18, 2!), 26, 34, 42, 44, '-1-S, 51+, 55, 67, 76, 85, 93, 

108, 111, 125, 128, 170, 174, 200, 228. 

The threshold level for symptom expression is however 

often inadequate as a measure of plant performance since a 

yield response is possible in many cases at a level considerably 
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higher than that at which deficiency symptoms disappear. Thus 

data on the yield responses of plants at varying levels of 

nutrition, as in fertilizer trials, and data on their compo­

sition are usually required b~fore standard values of practical 

significance can be set up (85, 205). On this basis standards 

have been determined indicating the transition level between 

deficiency and sufficiency of a nutrient (85) which corresponds 

to the critical percentage of Macy (119) or the critical nutrient 

range of Ulrich (206). 

Several investigators have presented sets of standards for 

individual nutrients as for instance Chapman and Brown (55) who 

specified different levels at which a growth or yield response 

would be considered (a) highly probable, (b) possible, (c) 

doubtful and (d) no response. Goodall and Gregory (85) quote 

other examples of such verbal descriptions. 

In general as stated by Goodall and Gregory, it will be 

unsatisfactory to base conclusions from diagnostic analysis en 

the data for a single element since the response to an increase 

of one nutrient has been shown to be dependent on the l'~Vtt-1 of 

other nutrients. Lundegardh (118) for instance, has shown that 

the effect of N or K fertilization on oat yield is increased at 

higher levels of P, and expressed the relationship in the form 

of a verbal description of the yield increments to be expected 

with fertilizer treatment at different levels of nutrient con­

tent. For instance, a good expectation of a yield increase may 

be obtained when 

K content is 10-20 m.e ./100 gm. and P content <4. 5 m.e ./100 gm. 

II 20-30 II II II 4.5-6.5 II 

II II " " II 

Such a scheme would naturally become involved as more nutrients 

are considered, and it would be difficult if not impossible to 

express the simultaneous effects on yield of more than two 
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nutrients by means of a simple numerical value. 

Few such attempts have been made to relate growth and 

yield of fruit trees with two or more nutrients. The use of 

standards evaluated for individual nutrients, as is often done, 

may thus lead to erroneous diagnoses unless suitably qualified 

by recognition of the characteristic interactions between 

various elements as indicated by Broeshart (37) and Reuther 

and Smith (161). 

NUTRIENT RATIOS. 

As opposed to or in conjunction with nutritional standards 

based on percentage concentration of individual nutrient 

elements, many workers have attempted to establish critical 

values of various nutrient ratios. In general these have been 

based on acceptance of the theory of ion antagonism and the be­

lief that the proportion of certain elements in the plant is 

related more closely to growth and yield than are the individual 

nutrient concentrations. 

A special diagnostic procedure based on leaf analysis which 

has become known as the "method of foliar diagnosis", was first 

used in France by Lagatu and Maume, and later in the United 

States by Thomas (198) and Thomas and Mack (196, 197) and 

associates. By this method a series of tests on a selected 

organ of a given crop is made during the growing season to evaluate, 

the nutrient intensity (sum of percentages of N, P and K or Ca, 

Mg and K) and nutrient quality (the ratio of these elements as · 

percentages of the total milli-equivalents of each set of three). 

The percentage values are graphically represented as 3-component 

systems using trilinear ordinates and an equilateral triangle to 

indicate the course of nutrition during the season. 

Criticizing the use of ratios as an index of nutrient status, 

Goodall and Gregory (85), state that "it is not to be denied 
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that the ratios of nutrients within the plant may sometimes 

give useful indications as a supplement to those derived from 

the actual concentrations, but to use such ratios without con­

sideration of the individual concentration data is in most cases 

unjustified." Considering the various ratios proposed as 

criteria for diagnostic purposes, such as P/N, Ca/K or Ca + Mg/K, 

Fe/Mn, Ca/B, as well as the proportions of N, P, K and K, Ca, 

Mg proposed by the "foliar diagnosis" school, they came to the 

following conclusion, that "there is no reason to suppose that 

ratios in general are likely to be of greater use in diagnostic 

work than the content of the elements individually. This is not 

to deny that diagnosis of the nutritional status in respect of one 

element on a basis of its concentration in the plant may not 

need modification according to the level found for another 

element. But the computation of ratios is not in general the 

best way of making allowance for such effects, and its adoption 

as a general practice may well obscure relationships which other­

wise would be patent. 11 

Many of the observed relationships and interactions between 

nutrient elements which have inspired the use of nutrient ratios 

are not fundamental but fortuitous and become apparent only as the 

result of growth and translocation processes and of mutual re­

placement of ions Bithin the framework of the cation-anion 

equilibrium. Cain (50) has shown that changes in the nutrient 

content of the foliage of apple trees does not necessarily re­

flect corresponding changes in the shoot tissue nor can they be 

interpreted always as representing changes in the uptake from 

the soil. He showed (49) that the total K and total P content 

of apple leaves was greatly reduced, whereas that of the dormant 

shoot was increased, by nitrogenous fertilizers. 

Cain (50) concluded that the so-called 11 interactions 11 are 

to a large extent misconstrued as. indicating ionic antagonisms 
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or synergisms in the plant or at the absorbing surface of the 

roots, whereas many of the observed changes in the percentage 

content of one nutrient ion in the plant tissue induced by 

addition of another to the nutrient substrate can possibly be 

explained either by growth dilution or changes in distribution 

as a result of stimulated metabolic activity and differential 

rates of translocation. He found with apple trees grown in 

sand culture that one ion has little if any .direct effect on 

the total absorption of another by the tree although the per­

centage content of one ion may be decreased by the application 

of another if its rate of absorption does not keep pace with the 

enhanced rate of growth stimulated by the added ion. If the 

addition of one ion caused an increase in dry weight' of the plant, 

there was generally more total absorption of all nutrient ions 

determined, although some plant parts may show a net loss of some 

ions. If there was no growth response only the ion applied was 

absorbed in greater quantity. 

Regarding the frequently abserved interaction or antagonism 

between nutrient ions in plant tissue, already referred to (85), 

Cain found (51) that the apparent relationship between K and Mg 

in apple trees "is associated enttrely within the plant and is 

in no way related to external supply except as the external sup­

ply of one element influences its own absorption by the plant." 

According to Chapman and Brown (55), little if anything is to 

be gained, so far as specific K diagnosis is concerned, from the 

use of nutrient ratios, since all the available evidence indicates 

that total K on a percentage dry matter basis correlates well 

with K status. York, et al (233), from rufalfa studies in the 

greenhouse, came to the same conclusion regarding the reciprocal 

relationship between Ca and K: "as far as the relation of K 

supply to growth is concerned, there appears to be little need 

or justification for considering ratios of these elements when 

the dominant factor is apparently the absolute amount of K 
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available to the plant." 

The well-known Fe/Mn"antagonism'~ thought to be due to 

their respective oxidation-reduction potentials, has likewise 

been disproved by Hewitt (97}, Moreover, Mn apparently is 

much less effective in producing iron chlorosis than other 

heavy metals (39, 109), and recent evidence seems to indicate 

that the rigid reciprocal relationship previously ascribed to 

the Fe/Mn ratio (81, 189) does not hold in view of results 

showing independent effects of these elements at both deficiency 

and excess levels (97, 142, 149). Iron ·and Mn deficiencies 

may occur simultaneously in the same plant and toxic effects of 

excess Mn can readily be distinguished from Fe deficiency (209). 

Although considerable evidence indicates that Fe chlorosis is 

caused by a simple deficiency, Gauch (80) quotes several inves­

tigations which strongly suggest that chlorotic symptoms are 

induced by a high level of P, and that both P and Cu may reduce 

the availability of Fe in the plant and cause chlorosis. 

Regarding the reciprocal effects of Ca and B, and Mg and 

B, Wadleigh (209) contends that 11 it is doubtful that the various 

ratios between B and nutrient cations are effective per se in 

plant metabolism and they only become apparent owing to the 

differential effect of B and other nutrients upon specific 

enzyme systems. Wadleigh postulates that "progress in assessing. 

the physiolo~ical role of the cations will p~obably continue to 

develop through cognizance of a concept of balance among the 

cations; not by calculating mathematical ratios of cations within 

the gross herbage of the plant, but by assaying the effect of 

relative cationic activities upon specific enzyme systems within 

the plant. The latter are fundamental in plant nutrition when 

one considers that plant growth is largely the resultant of 

enzymatically controlled energy transfers." 
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4.33 OPTIMUM VALUES. 

In this instance the criterion of nutrient level as related 

to yield is the optimum value (85, 176, 209) as opposed to 

critical nutrient levels associated with the onset of deficiency 

symptoms or yield restriction as discussed in Section 4.31. 
According to Smith and Taylor (177) the concept of "optimum va­

lues" maintains that there is a specific leaf concentration for 

each of the essential elements which is correlated with optimal 

response in te:rms of yield or other characteristics and that 

these concentrations or optimum values hold over a wide range 

of soil types and under a variety of climatic conditions. The 

leaf composition will therefore reflect the potentialities of 

the desired response. As the optimal nutrient level of each 

factor, depending on all factors simultaneously, is approached, 

the maximum possible yield of the plant will be reached (85). If 

the leaf concentrations are at optimal levels then it must follow 

that the intensity of nutrition and nutrient element balance 

also are optimum (177), and thus the concepts of nutrient inten­

sity and balance are also completely accounted for (176). 

Broeshart (37) found that the use of critical nutrient 

levels or interpretations based on nutrient ratios gave er­

roneous results in the case of the oil palm. Palms with an 

adequate supply of plant nutrients, whether growing in a light 

sand, a heavy clay soil or a culture solution, had a "normal" 

or "optimal" leaf composition associated with maximal growth 

and production. The optimum values were determined from the 

results of a large number of fertilizer trials and a sand 

culture experiment, and were found to be identical for young 

and old plants. 

In addition to fertilizer experiments, leaf analysis of 

high performance trees, using a comprehensive group of orchards 

to represent a wide range in nutrient supply, is accepted by 
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several workers (6, 8, 10, 35, 37, 55, 106, 114, 177, 201, 220) 

as a useful approach in establishing optimum values of nutrient 

content, if supported by evidence that such standards have a 

fixed or unique value (55). In this scheme the mean of the 

range .of concentrations for a sufficient number of orchards 

with good crop performance is considered by Smith and Taylor 

(177) to provide an approximate but pr~ctical optimum value. 

If accurately determined for a certain crop, these 11 optimum 

values" could be used as standards with which to compare 

analysis of leaves from plants making unsatisfactory growth, or 

from those showing deficiency or toxicity symptoms, and fertilizer 

application could then be made with the aim of raising or lowering 

each concentration towards that of the optimum. 

It is true that, as found by several workers (85, 106, 

152 and others), normal growth and yield may occur accompanied 

by considerable variation in composition as to the general level 

of nutrients as well as to the relative amounts of the nutrients 

present in the foliage. Thus the mean value obtained will be 

susceptible to change depending on the level of fertility and 

mineral status of the soils occupied by the orchards selected. 

The influence on the mean value of relatively high concGntrations 

within the luxury consumption range and of relatively low con­

centrations in the deficiency range will however tend to be 

diminished by employing the data from a comparatively large num­

ber of orchards. 

A serious drawback may be the lack of evidence implicit in 

the data that fertilizer applications to trees, in which the 

internal nutrient concentration falls below the mean optimum 

value, will be followed by a yield increase. This is stressed 

by Goodall and Gregory (85): "until the investigator has data 

on the yield responses of plants at varying levels of nutrition 

and on their composition, he is hardly in a position seriously 
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to consider setting up standard values for internal nutrient 

concentrations." However, the means of obtaining such direct 

evidence are limited except in extensive factorially designed 

fertilizer experiments where the level of one element is varied 

at constant levels of the other elements, which as already in­

dicated is most difficult to achieve on a sufficiently extensive 

scale in the case of fruit trees. 

It is evident also that the mean optimum value determined 

will depend in large measure on the basis of selecting the 

orchard for obtaining the analytical data. Good performance 

in orchards may be considered to include high quality fruit as 

well as high yield backed by satisfactory growth vigour of the 

trees. Such a criterion of economic production will necessarily 

be arbitrarily fixed as judged by tree records and experience. 

Healthy tree growth is a necessary prerequisite and trees 

showing visible symptoms of deficiency or excess are preferably 

excluded, although good performance as to fruit quality and 

yield is not always synonymous with the absence of such symptoms. 

Deficiency symptoms may disappear at a level far short of 

maximal growth and yield but, on the other hand, they may also 
above 

be evident at a level well e~yanj the threshold for optimum 

yield. 

High yielding trees have been found to show considerable 

chlorosis due to Mg deficiency (136), and yield was reduced 

only when Mg deficiency was severe (141, 183). Mild Mn de-

ficiency symptoms have also been observed in high yielding fruit 

trees. On the other hand, Chapman and Brown (55) found that a 

yield response is probable in citrus and that deficiency symp­

toms are likely to be present when leaf analysis indicates K 

values below a certain critical level (0.40% D.M.), but there 

l 

was evidence that under certain conditions fruit size and quality 

may be influenced by marked increases in K above this level. 
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Similar results forK have been found in peach (94). 

In some cases fruit quality may be the primary consideration. 

According to Hill, quoted by Bould (27), a marked decrease in 

quality oecurred in Nprthern Spy fruit from trees with N above 

1,9 to 2.0% in dry leaf material, and a similar decrease occurred 

in the Me Intosh variety with foliage N above 2.0 to 2.1%. A 

sharp increase in bitter pit also occurred when leaf N exceeded 

2.3%. Weeks, et al (223) found that an increase in leaf N of 

0.1% over the range 1.86 to 2.16% (D.M.) caused a decrease of 

14% in "fancy grade" fruit (Me Intosh apple), whereas an increase 

of 0,1% in leaf K over the range 0.85 to 1.56% gave an increase 

of 7% in fancy grade fruit. 

The status of N and K is also closely associated with 

quality in pineapples (155). Chapman and Rayner (56) found 

that raising the P level in citrus leaves decreased fruit quality 

while increasing yield, and that the best results as to both 

quality and yield would be achieved by a P level maintained just 

slightly above the critical deficiency level. 

In other eases as with some of the micro-nutrients deficiency 

levels based on symptom expression may coincide with the level at 

which maximal potential yield is seeured. In this connection the 

conclusion of Smith (186) may be mentioned that increasing the 

leaf content of Zn, Mn and Cu above the threshold values for 

symptom expression was without benefit to citrus trees in sand 

culture as to vegetative growth and fruiting. The heavy metals 

seem to be in the same class with Mg in this respect. With Cu 

and Zn, deficiency results directly in restriction of growth so 

that in their case the onset of deficiency symptoms marks a 

critical level which is more definitely defined in relation to 

yield than in the case of Mg and Mn deficiencies. 

It is evident that the use of the mean optimum value may 

lead to an incorrect diagnosis and that some other criterion 
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is called for to mark the limits of an optimum range of nutrient 

content since the mean optimum value of a nutrient in any case 

does not necessarily reflect the minimum requirement for that 

element, and nutrient levels above or below the mean may equally 

well be associated with maximum economic production. In applying 

a standard optimum range instead of a critical percentage level 

for the purpose of diagnosis, a decision has still to be taken 

as to whether the percentage content falls within that range so 

that the necessity for establishing upper and lower limits for 

the optimum range is evident. These may be fixed according to 

the frequency distribution of deviates from the mean value (58, 

107) or simply the minimum (10, 136) and maximum values obtained 

in high yielding orchards, but preferably by direct evidence of 

reduced yield or inferior quality of fruit from the results of 

carefully performed fertilizer experiments (55) when available. 

4-34 INTERPRETATION OF LEAF ANALYSIS DATA ACCORDING TO OPTIMUM 

VALUES. 

Having established the optimum values for the various 

nutrient elements, it becomes possible to evaluate leaf analysis 

data from orchards for which a nutrient diagnosis is required. 

By comparison with the standard values it will be evident which 

elements need adjustment. However, the deduction that a yield 

response will follow such adjustment is not always justified in 

view of the fact that the internal concentration level of one 

element and the response to an increase of it are often influenced 

by the concentration level of other elements and such interactions 

must be borne in mind in assessing the need for adjustments. 

According to Shear et al (176), the cation-anion ratio is also 

of significance since any change in the accumulation of cations 

must be balanced by an equivalent accumulation of anions (the 
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cation-anion ratio within the leaf being a constant), and many 

ions, organic and inorganic, are involved in these interactions 

besides the more common nutrient ions. These workers consider 

that "the significance of any leaf composition cannot be evalua-

ted intelligently unless the interactions between the elements 

contributing to that composition are understood and considered. 

To attempt to alter the nutritional status of a plant without 

allowing for the interactions which will take place between the 

elements applied and those already available to or present in the 

plant may be futile. This may even reduce yield by creating a 
II less favourable balance. · 

Lundegardh (118) has pointed out that analytical data may 

be wrongly interpreted when one element is limiting growth. 

With low concentrations of K and P in the soil, these nutrients 

may reach high values in the leaves and stems under conditions 

of N deficiency when plant growth is restricted and the organs 

remain small in relation to the absorptive area of the roots. 

Thus low N values although rare under field conditions provide 

warning against over-valuation of the K and P values. 

Chapman and Brown (55) have found that a deficiency of 

either N, P, Mg, Ca, Zn or Fe was accompanied by a higher level 

of K in citrus leaves. Thus if the citrus tree is more lacking 

in some other element than in K, the latter will accumulate in 

the leaf giving the impression that K is well supplied and that 

the tree will not respond to K fertilization. This will not 

invalidate diagnosis by leaf analysis as long ax a deficient 

supply of K will be reflected in percentage leaf K, but it will 

be difficult to predict what the K status will be when other 

limiting conditions are corrected. 

Reuther and Smith (161) stressed the predominating in­

fluence of N in citrus leaf analysis interpretation: "if the 

probable level of N nutrition is not known by either actual leaf 

analysis or previous experience it is almost pointless to at-

~---------------~~--~----
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tempt to classify the status of any of the other nutrients. 

When the N concentration in leaves is low or deficient P, S 

and K are likely to be higher and Mg lower than would be the 

case in the foliage of comparable trees adequately supplied 

with N. Abnormally high N concentration in leaves is usually 

associated with low concentrations of P, S and K and sbmetimes 

one or more of the heavy metals." 

Low K values are nearly always associated with high Ca and 

Mg values. Deficiencies of Fe, Cu, Zn·, Mn and Mo are typically 

associated with high N and K and low Ca in the leaves. Low B 

concentration in citrus leaves is likely to be associated with 

relatively high P and Mg and low K values (161), .but in peach 

Mn and K were found to accumulate in the leaves when B was 

deficient (57, 95). 

Broeshart (37) found that deficiencies of either N, P, K, 

Ca or Mg in oil palm leaves were accompanied by a decrease or 

increase in the content of one or more of the other elements. 

Thus a low content of a particular element in the leaf does not 

necessarily mean that it is deficient. On the other hand a 

medium to normal concentration of an element is no guarantee 

that it is not seriously deficient. He concluded that a satis­

factory basis for the diagnosis of deficiencies from leaf 

analysls data is afforded by recognition of the characteristic 

deviations from the "normal" leaf composition of the contents 

of all the elements in the leaf tissue a.s indicated from the 

results of a large number of fertilizer experiments. Thus a 

correct interpretation of the analytical results will be 

facilitated by a knowledge of these characteristic deviations. 

4.4 CONCLUSIONS. 

Summing up the above, it appears that the chemical compo­

sition of a particular kind of leaf of a particular variety at 

Stellenbosch University http://scholar.sun.ac.za



- 51 -

a definite stage of growth can be satisfactorily interpreted 

by comparison with standard optimum ranges based on data from 

high yielding trees in good performance orchards or fertilizer 

experiments. The optimum range with upper and lower limits of 

nutrient content evidently provides a more satisfactory b~sis 

for assessing the nutrient status and nutrient requirements than 

either threshold levels alone or mean optimum values since at the 

same time it takes account of the normal variation in nutrient 

content axsociated with maximum yield. Furthermore, critical 

ratios of nutrient elements based on leaf analysis are unlikely 

to be of greater diagnostic value than that provided by percentage 

content of individual nutrients although it is recognized that 

the level of other nutrient elements may modify the significance 

of the analytical data. 

In applying diagnostic leaf analysis to problems of nutri-

tion in the field it is necessary to bear in mind for the sake 

of perspective that in general a reliable estimate of tree re-

sponse to fertilizer addition may be obtained with the aid of 

leaf analysis data when used in conjunction with other methods 

of diagnosis (217) such as visual evaluation of symptoms of de­

ficiency or excess, diagnosis by means of the plant injection 

technique developed by Roach (163) or by nutrient test sprays, 
O.t1 d pQrtt'c.u Ia .-1'1 
&I lJill 91 inspection of the root environment and evaluation of 

pathological factors which may affect tree growth (120, 161, 215). 

Complete reliance on leaf analysis data may lead to erroneous 

conclusions and in any case as pointed out by Cain (52), "the 

mathematical precision with which leaf analysis data are sometimes 

interpreted for fertilizer requirements is unjustified in the 

face of the many factors affecting plant response whose influence 

is unknown or cannot be anticipated or controlled." Cain con-

siders that to achieve the greatest efficiency of diagnostic 

techniques in forecasting fertilizer needs and response, a 

I 

Stellenbosch University http://scholar.sun.ac.za



---------------------~~~~----------

- 52 -

sampling period of at least three years is needed followed by 

repeat samplings every second or third year. By observing the 

response to fertilizer treatment suggested by the first leaf 

analysis, further sampling will provide analytical data which 

can be more accurately interpreted in terms of adjustment of 

the rate of fertilizer application. 
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P A R T II 

FORT1ULATION OF A LEAF SAMPLING 

AND 

ANALYTICAL PROCEDURE FOR DECIDUOUS FRUITS 

--------- ... 
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1. INTRODUCTION. 

It is evident from Part I that a great many factors besides 

nutrient supply may cause variation in leaf composition and thus 

influence the interpretation that may be placed on analytical data 

obtained fo~ the purpose of evaluating the nutrient status of fruit 

trees. 

The first objective in establishing an acceptable leaf ana­

lysis technique therefore is to eliminate or reduce to a minimum 

whatever errors can be avoided. Such errors comprise those which 

may arise from the human element during the course of selection·of 

samples, time of sampling, preparation of sample for analysis and 

the analytical determination itself. 

Having determined a reliable procedure for collecting samples 

on a tree and analyzing the leaves, it is possible to evaluate the 

influence of tree variation and the variation caused by seasonal, 

varietal and rootstock factors which may introduce errors which 

are partly unavoidable but which should be clearly recognized be­

fore attempting to draw conclusions on nutrient status. 

These considerations set the pattern followed by the writer 

in attempting to develop a suitable technique of leaf analysis which 

would be applicable under local conditions. The experimental work 

on this project which was started in 1949 had to be fitted in with 

other work as time permitted and thus it has taken several years 

to complete this phase of the work. For the same reason the scope 

of the investigation had to be narrowed down to the extent that 

analysis of leaves only was considered. 

1.1 PLANT ORGAN FOR ANALYSIS. 

It is generally accepted that the leaf is the most suitable 

organ for analysis in the case of fruit trees {55, 79, 85, 198), 

as indicated also by Goodall and Gregory (85) in their discussion 
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on the relative merits of different plant organs for diagnostic 

analysis. 

The organ selected of course would be the one which provides 

the widest differences in composition at varying levels of nutri-

tion. Thus roots, stems, bark and fruit in turn may supply the 

most sensitive reflection of supply of a particular nutrient. 

Ulrich (206) found that petioles gave the best index of K and No3 
in the grape, whereas K and P in bunch stalks as well as in 

petioles were found by Piaget (146) and Pienaar (148) to be more 

sensitive to nutrient supply than in the leaves. Fruit has also 

been found to be more sensitive as an index of the B status of a 

tree (89, 126). However, these organs usually provide a less 

satisfactory index of other nutrient elements, and since a complete 

picture of the whole nutritional complex is desired as is possible 

with leaf analysis, the latter is to be preferred. In addition to 

being suitable for the simultaneous determination of all the nu­

trient elements the leaves provide a sample which is easily acces­

sible and can be quickly collected. 

For the same reason, total analysis of the whole leaf was 

preferred to the more rapid tissue tests of Emmert (74), ~icholas 

(137) and others, which at best can have only a limited objective 

owing to the difficulty of accurately determining micro-nutrients 

at low concentrations in the sap of conducting tissues, such as 

stems, petioles and midrib. In the case of grape leaf sampling, 

considerations of expediency in handling and drying induced the 

writer to adopt the procedure of removing petioles when sampling, 

admittedly a concession to convenience. 

The analytical results reported in this thesis thus refer 

without exception to whole-leaf samples in the case of deciduous 

fruit and to whole-leaf blades with petioles discarded in the case 

of grape leaves. 
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1.2 ANALYTICAL PROCEDURE. 

There is no need to stress the necessity for the utmost 

accuracy and precision in analytical procedure. New methods and 

refinements in analytical tecm1ique both chemical and spectro­

graphic, have greatly improved the accuracy and reproducibility 

of analytical results in recent years but it is all too often taken 

for granted that a good method is sufficient in itself whereas the 

best of methods in the hands of incompetent or careless analysts 

may fail to give reliable results. This of course applies with 

equal force to the whole sequence of steps which together make up 

the technique of leaf analysis from sampling to analytical result. 

Another important consideration in any leaf analysis scheme 

is the time factor. In order to expedite analytical determinations 

several workers have resorted to quick methods based on extraction 

of plant sap in fresh conducting tissues (74, 137, 162). Apart 

from the fact that some of the functional elements, particularly 

micro-elements at deficiency levels, cannot be determined with 

sufficient accuracy in this way, the nutrients present in plant 

sap at best reflect only what is available at the time of sampling 

and thus may be subject to variation due to wide fluctuations in 

the soil as shown later for soluble N fractions (Table 15). This 

may be an advantage in the case of annuals when considering the 

flow of nutrients which the plant can obtain from the soil (73) at 

the time of analysis. With perennials, total analysis of the whole 

leaf determines the nutrients assimilated in the leaf tissue in 

addition to the soluble inflow, providing a reflection of a sum­

mation of the effects of environment over a long period and thus 

a more reliable index of the nutritional potential. 

The analytical data presented herein, accordingly, are based 

entirely on total quantitative analysis of dried leaf tissue. 

Results are expressed as a percentage or parts per million of the 

ovendry material which is considered to be the most suitable basis, 
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in preference to a fresh weight basis or to total nutrient content 

on an absolute basis which are unduly subject to variation in weight 

and size of leaf, The analytical methods employed at the W.P. 

Fruit Research Station in obtaining the data presented in this 

thesis were selected for accuracy and reproducibility of results, 

and in this selection the rapidity of carrying out determinations wa. 

an important consideration for obvious reasons. 

1.3 METHODS OF ANALYSIS. 

The writer was responsible for the experimental work reported 

herein and all phases of leaf sampling as well as preparation of 

leaf samples for analysis but not for the actual analytical deter-

minations which were carried out by his colleagues in the analytical 

branch. 

The elements Ca, Mg, K, Na, Fe, Mn and Cu were determined 

spectrographically and N, P, B and Cl by chemical methods. The 

spectrographic analyses were carried out by Dr. W.J. Pienaar, 

using the Hilger Littrow Quartz Spectrograph according to methods 

developed and perfected by him ( 147, 11~8). The percentage standard 

error for each element was found to be less than 6%. 
The chemical determinations were carr-ied out under the direc-

tion of Mr. A.J. Buys, the procedure briefly being as follows: 

Total N was determined according to a modification of the A,O.A.c. 

Kjeldahl method distilling into a saturated boric acid solution 

and using methylene blue indicator in the final titration with 

For P, B and Cl the dry material was ashed with 

magnesium acetate and aliquots of the H2so4 extract used for the 

determination of (a) P, according to the molybdenum-blue colorime-

tric method with hydroquinone or ammonium vanadate as reducing 

agent, using the Evelyn photoelectric colorimeter, (b) B, by 

addition of quinalizarin reagent and colorimetric measurement of 

the yellow colour 1-n the Evelyn, and (c) Cl, by precipitating with 

AgNo3 and titrating with KCNS. The percentage standard error 

Stellenbosch University http://scholar.sun.ac.za



- 58 -

found for N and P was less than 3%, and for B and Cl about 10%. 

As regards Zn determinations, which were recently begun using 

a polarographic method, no analytical data are presented here since 

there has not been sufficient time to test the accuracy of the re­

sults obtained. 

Steyn (193) claims relatively high precision with the colorime­

tric and flame photometric methods used in analyzing citrus leaf 

samples. His percentage analytical error was calculated from data 

for 16 parallel determinations on different portions of a well 

mixed sample, evidently in consecutive aliquots. The reproducibi­

lity values in the analytical work of Pienaar (147, 148) and Buys 

(private communication) mentioned above, refer to precision in a 

broader sense embracing repetition of determinations over long 

periods of a year or more, and using different sets of standards 

and reagents; thus a much more exacting test and correspondingly 

more appropriate as a test of precision. 

1.4 STATISTICAL TREATMENT OF DA'rA. 

The statistical variability of data, significance of dif­

ferences and analysis of variance were determined according to 

standard formula and methods as described by Saunders and Rayner 

(168) and Love (117). 
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2. PREPARATION OF SAMPLE FOR ANALYSIS. 

Since the dried leaf material serves as the starting point 

for analytical determinations, factors which may cause a loss or 

gain in dry weight and thus influence the ratio of mineral content 

to dry material, must be considered in order to reduce the experi­

mental error as far as possible. 

Leaf contamination is a serious hazard capable of causing com­

pletely misleading analytical results particularly in the case of 

the micro-nutrients, and must obviously be avoided or eliminated. 

2.1 CLEANING OF FRESH SAMPLES. 

The removal of surface contamination is essential when dealing 

with the micro-nutrient content of leaves since a very small amount 

of contamination may cause large errors in analytical results. 

The main sources of extraneous deposits are dust and spray residues. 

The chief element in dust contamination likely to affect the ana­

lytical results is probably Fe, but Cu contamination of citrus 

leaves has been reported (193) and other micro-nutrients and Ca 

may also be present depending on the origin of the dust and the 

proximity to industrial works (85). 

Quite recently, failure to recognize the contribution of Fe 

in dust to over-estimation of the nutrient-content, led to what 

may well be a doubtful concept of Fe immobilization in leaf tissue 

(218). 

2.11 DUST DEPOSITS. 

l 

Removal of the dust film on leaves can be readily accomplished 

by washing or by wiping the leaf surface with damp muslin or cheese­

cloth. The latter procedure is unduly time-consuming and washing 

can be more satisfactorily carried out in practice when large 
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numbers of samples are involved. The possibility that washing 

may leach out some of the mineral constituents (85) has been in­

vestigated but no evidence of leaching losses occurred when the 

leaves were immersed for a short time (91, 138, 195). Washing 

with distilled water alone has been found inadequate to remove in-

soluble contaminants and recently various detergent solutions with 

or without dilute HCl have come into general use for cleaning leaf 

samples for analysis (34, 125, 138, 161, 180, 193, 195, 218). 

Analytical results at Stellenbosch prior to 1953 occasionally 

indicated abnormally high Fe values. Leaf samples at that time 

were thoroughly washed in water only but the high Fe values obtained 

raised the suspicion that dust contamination was responsible and 

that the washing procedure was inadequate to remove all traces of 

dust. Accordingly the effect of including a liquid detergent, 

Agral LN, in the washing procedure was investigated. 

Identical midshoot leaf samples from Kakamas peach and Wem­

mershoek apple trees were collected on 6/2/53 at the University 

farm, Welgevallen, at Stellenbosch, and treated as follows prior 

to drying and analysis: 

(A). Not washed. 

(B). Washed in 3 changes of tapwater. 

(C). Washed in a 0.1% solution of Agral LN followed by 

washing in 4 changes of tapwater. 

The analytical results presented in Table 1 show certain signifi­

cant effects of washing procedure as determined statistically by 

analysis of variance. The differences in Cl (peach) and B (apple), 

although significant at the .05 probability level, may be ascribed 

to analytical errors since they befr no relation to the conditions 

of the experiment. Both apple and peach samples show a pronounced 

and significant decrease in apparent Fe content after washing in 

tapwater and the Fe values are consistently further reduced when 

Agral was used. The high Fe values obtained in analyzing the 

unwashed leaves thus clearly indicated the presence of dust 
I 
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TABLE 1. - EFFECT OF WASHING PROCEDURES A, B AND C ON COM­

POSITION OF PEACH AND APPLE LEAVES (6/2/53). 

AVERAGE OF DUPLICATE SAMPLES, EXPRESSED AS PER­

CENTAGE OR PPM ON DRY WEIGHT BASIS. 

N p K Ca M~ Mn Fe Cu B Na Cl 
1o % % % ppm ppm ppm ppm % % 

Peach Xli 

(A) 3.10 .132 2.63 2.13 .52 59 320 10.1 36 .o42 .14 

(B) 3.06 .129 2.58 ~.19 .49 59 172 11.2 40 .041 .12 

(C) 3.09 .129 2.40 2.33 ·49 56 137 10.0 34 .038 .09 

s.D •• os:M 36 .03 -
AJ2:ele 

(A) 2.18 .177 2.32 1.57 ·39 85 621 11.0 43 .039 .18 

(B) 2.28 .179 2.36 1.62 .38 73 213 10.3 56 .033 .20 

(C) 2.33 .169 2.36 1.46 ·39 75 133 11.3 48 .032 .16 

S.D. .051€ 95 12 

Xsignificant difference at the .05 probability level. 
liliDecimal values are presented without the usual zero. 

TABLE 2. - EFFECT OF WASHING TREATMENTS B, D AND E ON eOM­

POSITION OF PEACH AND APPLE LEAVES ( 2414/53). · 

AVERAGE OF DUPLICATE SAMPLES, EXPRESSED ON DRY 

WEIGHT BASIS. 

N p K Ca 
~ 

l'fln Fe Cu B Na C1 
% % % <fu ppm ppm ppm ppm % % 

Peach 

(B) 2.51 .113 1.71 2.94 .66 90 162 8.4 30 .059 .23 

(D) 2.52 .115 1.76 2.82 .70 91 128 9·7 28 .037 .24 

(E) 2.62 .116 1.74 2.78 ·77 92 149 8.4 28 .039 .24 

S.D • • 05 32 

~EEl e. 

(B) 1.69 .138 1.84 1.83 .47 71 278 11 38 .052 .28 

(D) 1.68 .133 1.?6 1.62 ·49 68 216 14 35 .044 .26 

(E) 1.68 .130 1.90 1.65, .49 67 255! 12 4o .• o~-7 r .29 , 
: ; , . 1 I 
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contamination. Washing with the detergent was evidently also 

more efficient than washing with tapwater only and the Fe values 

obtained must therefore be much nearer to the true Fe content of 

the leaves. 

Another detergent Teepol 410 (a sodium higher alkyl sulphate) 

which had come into general use as a spreader for spraying purposes 

and as a liquid soap, proved to be equally effective in removing 

dust deposits from leaves, as indicated in Table 2. The data were 

obtained from identical midshoot leaf samples collected at the 

University Farm on 24/4/B3 and washed as follows: 

(B). 3 changes of tapwater. 

(D). Once in 0.15% Teepol solution, then 4 changes of tap­

water. 

(E). Once in a solution containing 0.15% Teepol and 1% HCl, 

then 4 changes of tapwater. 

The further addition of 1% HCl, frequently used to remove spray 

deposits, did not annear to provide any additional advantage over 

Teepol by itself and was actually less effective in removing Fe 

contamination. The Na content of the leaves was not affected by the 

presence of Na as a constituent of Teepol, so that washing once 

with a solution of 0.15% Teepol in tapwater followed by rinsing in 

tapwater seemed to be completely satisfactory. 

Since leaf samples for analysis usually consist of about 120 

leaves it was found convenient to wash each sample by hand in a 

large glass basin, 4 inches deep and 10 inches in diameter. Stir­

ring by hand was adequate and obviates scrubbing with a handbrush 

as done by Smith et al (180). The sample is immersed in 3 litres 

of tapwater containing 5 ml. of Teepol and well agitated by hand 

for 3 minutes after which the soap solution is decanted off. Tap-

water is introduced, stirring all the time and decanting as soon 

as the basin is full. Rinsing is repeated 2 or 3 times and the 

leaves finally shaken to remove excess water before inserting the 

sample in a clean paper bag and transferring to the drying oven. 
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The tapwater originally employed in washing leaf samples 

was relatively pure with an exceedingly low conductivity rating 

equivalent to that of distilled water. Since 1953 however when 

a new storage dam was inaugurated by the municipality, the con­

ductivity of the water was found to show a higher rating and it 

was considered advisable to wind up the washing process with a 

final rinsing in distilled water even though tests on 9/2/54 and 

11/3/54 failed to show any discrepancy in the analytical results 

which may have been associated with the use of tapwater only. As 

indicated in Table 3, the Ca and Cl values which are most likely 

to be affected by a change of water supply, do not show any dif-

ference due to rinsing in distilled water. 

TABLE 3· - EFFECT OF RINSING IN DISTILLED WATER (D) AS 

COMPARED WITH TAPWATER (T) AFTER WASHING 

WITH TEEPOL, ON COMPOSITION OF PEACH (9{2/54) 

AND APPLE (11/3/54) LEAVES. AVERAGE OF RE­

PLICATE SAMPLES EXPRESSED ON DRY WEIGHT BASIS. 

N p K Ca 
~ Mn Fe Cu B Na Cl 

</o </o </o </o ppm ppm ppm ppm </o </o 

Peach 

( T) 2.86 .120 2.51 2.14 .L.3 183 120 6.7 31 .022 .12 

(D) 2.7~ .120 2.53 2.14 .43 187 123 7.2 32 ,019 .12 
" 

AEEle 

( T) 1.91 .110 2.07 1.24 ·34 192 247 7-3 35 .034 .22 

(D) 1.92 .113 2.01 1.24 ·33 188 267 7.6 36 .030 .23 
. 

2.12 SPRAY RESIDUES. 

Foliage sprays commonly used as fungicides, insecticides and 

nutrient sprays often contain mineral elements such as Zn, Mn, Cu, 
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Fe, and even N and P. Analysis of sprayed leaves will thus 

reflect that portion which presumably has been absorbed into the 

leaf cells as well as the residue adhering to the surface which 

is not removed by washing, as shown by the following assays: 

Kakamas (24/10/50) and Boland (16/1/51) peach leaves with a 

normal content of less than 20 p.p .m. !'In gave values· of 310 and 274 

p.p.m. respectively after spraying with MnS04. Bose pear leaves 

(29/10/51) analyzed after spraying with a Cu fungicide gave a Cu 

value of 240 p.p.m. as compared with 8 p.p.m. in the case of un­

sprayed leaves. Boland peach leaves (18/1/56) with a content of 

6 p.p.m. Cu in unsprayed leaves, gave a value of 148 p.p.m. Cu two 

months after spraying with Cu and Zn. Waltham Cross grape leaves 

(18/11/54) sprayed with Zn, Mn and Cu gave values of 518 p.p.m. 

Mn and 288 p.p.m. Cu. The usual washing procedure removed the 

greater part of the spray residue as shown by the Cu values for 

Elberta peach leaves (7/12/55); leaves sprayed with Cu, not washed 

350 p.p.m., after washing 92 p.p.m., as compared with unsprayed 

leaves, 17 p.p.m. 

Just how much of the element found by analysis after washing 

is actually absorbed and active in leaf metabolism is difficult to 

determine. 

In contrast to the micro-elements, N values are proportionate­

ly much less increased by foliage sprays containing N, as indicated 

by data for Early Dawn peach leaves sprayed with 0.5% and 1.0% 

urea solutions. Midshoot leaf samples were collected at the 

University farm, Stellenbosch 1 on 9/11/49 before applying the 

sprays on the same day. Subsequent samples were taken in the same 

positions on the trees over a period of 16 days. All samples were 

washed in tapwater prior to analysis. The results for total N are 

shown in Table 4. 

------
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TABLE 4. - TOTAL N CONTENT OF PEACH 

LEAVES BEFORE AND AFTER 

SPRAYING WITH UREA. PER­

CENTAGE ON DRY WEIGHT 

BASIS. 

Date Unsprayed 0.5% urea 1.0% urea 

9.11.49 3.8 3.8 3·9 

10.11.49 3·7 4.0 4·5 

11.11.49 4.0 4.1 4.3 

14.11.49 3.8 3.9 4.1 

17.11.49 3.8 3.8 4.0 

21.11.L~9 3-7 3.8 3.8 

25.11.49 3.8 3·6 3·9 

Spraying leaves which contained 3.9% N resulted in a maximum 

value of 4.5% N, 24 hours after application of 1.0% urea. Since 

the increment disappeared after 12 days there is no evidence here 

of a persistent residue effect due to the urea sprays. Even if 

l 

a N residue amounting to a hypothetical N value of 500 p.p.m. did 

persist, it would not measurably affect leaf N values in the normal 

range of 20,000 to 40,000 p.p.m. Matlock and Childers (123) 

also found that the N content was not affected by N spray deposits. 

It may be concluded that analytical values for micro-elements 

in leaves which have been sprayed with mixtures containing them 

are not trustworthy however thoroughly the leaves have been washed. 

Taylor {195) found that wiping leaves individually was superior to 

washing with a detergent to remove Fe spray residues from the 

leaves. Washing in an acidulated solution with or without a deter-

gent is also fairly effective (34, 91, 161, 180, 219). Neverthe-

less, it is generally accepted that the portion of the spray 
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remaining in the leaf even after the best cleaning procedure is 

not all absorbed (34, 125, 177, 195, 219). According to 

·wallihan and Herschberg (219), there is a strong fixation of Zn 

on the leaf surface which cannot be completely removed by washing. 

Thus, as stated by Taylor (195), it appears that little credence 

can be placed in an analysis for any element which has been in­

cluded in spray materials using the cleaning procedures employed 

at the present time. There is no evidence to doubt this standpoint 

in so far as the micro-elements are concerned, and accordingly ana­

lytical results in this thesis for such elements which have been 

applied in sprays prior to sampling are omitted altogether. 
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2,2 HANDLING OF FRESH LEAF SAMPLES. 

During routine sampling work, a delay in drying the leaves 

is often unavoidable when collected at a distance from the labora-

tory, During the delay, they may become wilted and even desic­

cated before they can be cleaned and dried, In order to determine 

the effect of such delays, identical midshoot leaves from Kakamas 

peach and Wemmershoek apple trees were collected at the University 

farm, Welgevallen, on 9/2/54 and 11/3/54 respectively, and kept at 

room temperature for different periods before washing and drying. 

As indicated in Table 5, other factors having been kept constant, 

a delay of up to 5 days when the leaves were practically air-dry, 

had no measurable effect, as determined statistically by analysis 

of variance, on the nutrient content except Fe. 

TABLE 5. - EFFECT OF DELAY IN WASHING ON COMPOSITION 

OF PEACH AND APPLE LEAVES. AVERAGE OF RE­

PLICATE SAMPLES, EXPRESSED ON DRY WEIGHT 

BASIS. 

Delay N p K Ca M} Mn Fe Cu B Na 
% % % % ;o ppm ppm ppm ppm % 

Peach 

Pirect 2.85 .117 2.71 2,00 .430 214 126 6.9 31 ,017 

~4 hrs. 2.86 .120 2.51 2.14 .433 183 120 6.7 31 .022 

5 days 2.90 .121 2.52 2.22 .455 212 228 8.1 31 ,020 

~.D • • 05 35 

AEEle 

Pirect 1.93 .119 2,11 1.21 ·340 197 222 7.1 40 ,029 

24 hrs. 1.92 .112 2.01 1.24 ·330 189 267 7.6 36 .030 

5 days 1.93 .112 1.99 1,21 .345 204 316 8.1 34 .032 

S.D. .05 67 
I I 

Cl 
% 

.13 

,12 

.12 

.23 

.23 

.17 
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The marked apparent increase in Fe content with delayed 

washing may be explained, as discussed in Section 2.11, as being 

due to incomplete removal of Fa-containing dust from the leaves 

which after 4 or 5 days were comparatively dry, preventing thorough 

cleansing of the leaf surfaces. 

There was no evidence here of a general apparent increase in 

nutrient content which as found by Smith (178), Goodall and Gregory 

(85) and Steyn (193) may result from dry weight losses through reg-

piration prior to drying. As a precaution however, leaf samples 

collected at some distance from the laboratory should be kept cool 

and preferably refrigerated to reduce the rate of respiration. 

This would also tend to retard desiccation of the leaves which in 

any case must be prevented, as the results show. 

I 

J 
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2.3 USE OF PAPER BAG CONTAINERS. 

It is necessary at this stage to point out that brown paper 

bags have been used throughout this investigation not only to 

convey fresh leaf samples to the laboratory but also to hold the 

cleaned samples during the drying process. After washing and 

final rinsing in distilled water the last drops are shaken off 

and the leaves placed in clean paper bags which are then imme­

diately transferred to the drying oven. Quick transfer after was­

hing was considered necessary to prevent loss of mineral substances 

by leaching. 

It was observed that even after shaking off most of the dis­

tilled water and quickly transferring to the oven, some moisture 

collected in drops on the leaves and ran down to the bottom of 

the paper bag. After removal from the oven the paper was usually 

found to be slightly stained, suggesting the possibility of ex-

trusion of cell sap from the heated leaf tissue. Since the dis-

colouration might conceivably include mineral substances which 

may have leached out of the leaves during the initial stages of 

drying, this point was investigated by drying leaf samples in 

paper bags and in porcelain dishes. Identical midshoot leaf 

samples were collected from Kakamas peach trees at the University 

farm and treated in duplicate as follows:-

(A) Samples washed as usual in Teepol solution and 

rinsed in distilled water, shaking off the last 

drops and transferring immediately in porcelain 

dishes to the drying oven. 

(B) As for (A) using paper bag containers. 

(C) Samples placed in paper bags without shaking 

off drops of water and left for 3 hours at 

room temperature before transferring to the 

oven. 

With regard to Treatment (C), it was observed that considerable 
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run-off occurred in the paper bags staining the whole of the base 1 

whereas only a few small stains resulted from Treatment (B). 

The analytical results for Treatments (A) and (B) presented 

in Table 6 are practically identical, indicating that the com­

position of the samples, as regards the nutrient elements at any 

rate, was not altered by using paper containers according to the 

routine procedure. 

TABLE 6. - COMPOSITION OF PEACH LEAVES 

AS AFFECTED BY TREATMENTS A, 

B AND C (SEE TEXT). DRY 

WEIGHT BASIS. 

Nutrient (A) (B) (c) 

N % 2.71 2.73 2.77 
p " .113 .111 .113 

K " 1.70 1.72 1.72 

Ca II 2.39 2.35 2.41 

Mg " .46 .47 .46 

Na II .023 .022 .024 

Mn ppm 76 74 75 
Fe " 172 176 203 

Cu " 5·2 5.1 5·5 
B II 30 25 50 

Regarding Treatment (C), the extensive run-off and staining 

of the paper prior to drying did not decrease the concentration 

of K and Na which of all nutrient elements are most likely to be 

lost by leaching. Presumably some organic substance does leach 

out from the leaves to produce the dark coloured stains since an 

empty paper bag soaked in water developed no more than a pale 

brown stain after drying in the oven. 
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However, the most striking result of. Treatment (C) was the 

marked increase in the Fe and particularly in the B values as 

compared with the standard Treatment (B). The higher B values 

for Treatment (C) can only be ascribed to contamination from the 

paper bags used after washing, which according to a recent report 

may contain a certain amount of B. Winsor (226) drew attention 

to the fact that B is used in modern paper manufacture and that 

it also forms an ingredient of the adhesives used in making paper 

bags. He found that soil samples, when damp and dried in paper 

bags, picked up 100 to Boo% of their content of B from that pre­

sent in the paper. 

The possibility of such B contamination is a potential risk 

if wet leaves are kept in contact with brown paper for some time 

before drying as in Treatment (C). The increase in Fe content 

may conceivably have been picked up in the oven from the metal 

shelf through the moist paper. In view of these results it has 

evidently been a wise precaution to shake off the drops thoroughly 

from the leaves and immediately transferring to the oven although 

the original purpose was to prevent leaching from the leaves and n~t 

contamination from the paper. The procedure of conveying fresh 

leaf samples to the laboratory in paper bags may introduce a 

further hazard although sampling conditions rarely involve moist 

or wet leaves which would exclude the possibility of contamina­

tion. 

A substitute for brown paper containers such as cloth bags 

for fresh samples and muslin for drying, as used by Steyn (193), 

is considered advisable even though no evidence of contamination 

resulted from the existing procedure. As a further precaution 

the metal shelves in the drying oven should be covered with blot-

ting paper. 
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2.4 DRYING OF LEAF SAMPLES. 

In routine analytical work it is of great advantage to con­

vert the fresh sample material into a stable dry condition which 

would be unaffected by enzyme action and be suitable for storage 

until such time when the samples can be conveniently analyzed. 

The accuracy of analytical data expressed as a percentage of the 

dry material is directly influenced by the dry weight determi­

nation; the term "dry weight" implying moisture-free material. 

In practice the moisture is usually removed by some form of 

heating but experience has shown that it is most difficult to re­

move the last traces of moisture without some caremelization and 

even decomposition of the plant material. Thus the "dry weight" 

may vary to the extent that moisture may be incompletely removed 

due to inadequate heating or that some loss of weight {decompo­

sition) may occur due to excessive heating. This will be re­

flected in a lower or higher percentage content of the nutrient 

elements. 

During the course of analytical work on orange pulp and 

rind in 1934 the writer found a much higher loss in weight when 

drying at 100° C than at 70° and 50° c. Moreover both materials 

continued to lose weight over a. period of 5 days of drying at 

100° c, suggesting thermal decomposition. Samples dried at 

70° C however showed relatively little change in weight after 

24 hours of drying, the loss in weight for rind increasing gra­

dually fro~ 65.0% after 24 hours drying to 65.5% after 5 days, 

and that for pulp increasing from 86.6% to 87.1% over the same 

period. Drying samples at 50° C required an unduly long period 

to attain a fairly constant dry weight. 

Consequently when the work on leaf analysis was commenced 

in 1949 it was assumed that a. drying treatment of 2 days at 70° c, 

consistently applied, would provide a. satisfactory dry weight 

basis for routine analysis. Since a convection type of electrical 

oven was used, this was modified to the extent of holding the 
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oven temperature at 90° to 100° c for a short time, usually 

about 30 minutes, to drive off excess moisture at the beginning 

of ~he drying period when a large batch of samples had to be 

dealt with. 

A further precaution observed in ensuring a reliable dry 

weight basis was that, since dried material showed signs of 

stickiness during the grinding process, leaf powder samples were 

redried overnight (18 hours) at 70° C as a regular practice prior 

to analysis. 

Reference to the literature on the subject of drying tech­

niques, indicates that most workers favour a drying temperature 

of 60° to 70° C, but the only critical study made until now 

appears to be that recently presented by Steyn (193) in a compre­

hensive investigation of the errors involved in the various steps 

from sampling to analysis of citrus and pineapple leaves. Ac­

cording to Steyn, the object in drying plant material for analysis 

must be to apply a sufficiently high temperature to remove mois­

ture and to destroy enzymes but not high enough to induce apprecia-

ble thermal decomposition. Steyn found that thermal decomposi-

tion becomes increasingly predominant over moisture loss at tem-

peratures above 50° c. Although citrus leaf samples can be 

satisfactorily dried at 50° C in a forced draught oven the dried 

material may not be stable since some enzymes will only be des­

troyed at a temperature above 60° C as shown by further loss in 

weight during storage of citrus samples which had been dried at 

50° C. Steyn finally adopted 65° C as the drying temperature 

since after drying at this temperature there was no evidence of 

enzymatic activity and thermal decomposition was probably less 

than 1%. He also found that citrus leaf powder picked up 3 to 

5% moisture during the grinding process and that redrying was 

therefore necessary. Since leaf powder proved to be much more 

susceptible to thermal decomposition than the fresh material and 
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lost weight rapidly at 105° c, he adopted the procedure of 

drying leaf powder at 65° C for 24 hours. 

The leaf drying procedure as used in the present investi­

gation for deciduous fruit is thus tn close agreement with that 

proposed by Steyn for citrus leaves, the only material difference 

being a slightly higher drying temperature, namely 70° c, for 

both fresh material and leaf powder. The drying treatments as 

to temperature and duration of drying, were consistently applied 

as a standardized procedure and as such may be expected to pro­

vide a strictly comparable dry weight basis. 
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2.5 GRINDING OF DRIED MATERIAL. 

The dried leaves must be reduced to a uniform powder to 

provide fully representative aliquot samples for analysis. 

Considering the large amount of material which had to be handled, 

mechanical grinding was imperative and a Wiley Intermediate 

mill was used at first, grinding to a fineness sufficient to 

pass the J-1-0 mesh sieve. The error due to metal contamination 

particularly Fe and Cu from the use of the Wiley mill was con­

sidered to be insignificant since there was practically no dif­

ference in mineral composition between identical apple leaf 

samples gr~und in the Wiley mill and in a porcelain mortar as 

shown in Table 7. 

TABLE 7. - EFFECT OF GRINDING DRY APPLE LEAVES IN 

A WILEY MILL (A) AND IN A PORCELAIN 

MORTAR (B) ON THEIR COMPOSITION. 

N p K Ca M~ Mn Fe Cu B Na Cl 
1o % % % ppm ppm ppm ppm % o1 lO 

(A) 2.45 .099 1.27 .90 ·33 27 64 4.0 35 • oJ-J.l+ .12 

2.53 .093 1.27 .85 .32 28 67 '+·4 30 .042 ,16 

(B) 2.44 .095 1.17 ·93 ·33 25 66 3·7 31 .045 .10 

2.42 .098 1.20 .97 ·33 26 64 4.0 32 .o44 .12 

Very rarely, however, occasional high Cu values occurred 

during the analytical work which Dr. Pienaar (private communiea­

tion) found to be due to fragments of copper wire present in the 

leaf sample which evidently had broken loose from a sieve, so 

that as a precaution sieves were frequently replaced. Further 

.evidence showed that samples ground in a porcelain ball mill 

contained slightly less Fe than the same sample after regrinding 
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in the Wiley mill, so that the possibility cannot be excluded 

that leaf powder may pick up traces of metal from knife blades 

and sieves during the grinding process when using a Wiley mill. 

In order to eliminate possible error from this source all 

leaf samples have for some time been ground solely in a porce­

lain ball mill. This precaution is in accordance with the ex­

perience of Goodall and Gregory (85) and Steyn (193) who cite 

cases of serious Fe and Cu contamination from the Wiley mill. 

Steyn could find no difference in composition of citrus leaf 

samples ground in an agate ball mill as compared with an agate 

mortar and pestle. 
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2.6 STORAGE OF LEAF POWDER. 

The final stage of leaf sample preparation consists of 

transferring the oven-dried material to air-tight glass con­

tainers, grinding the contents and storing in cupboards until 

the analytic~l determinations can be carried out. It is gene· 

rally assumed that such sterilized moisture-free leaf powder 

may be stored indefinitely without change of composition. Steyn 

(193) however produced evidence indicating that citrus and pine­

ap~le leaf powder was subject to decomposition resulting in 

appreeiable loss of N. He found that citrus leaf powder lost 

1.2% of its N after two months storage and that this loss gra­

dually increased to 10% after 5 months storage. On the basis of 

these results he concluded that citrus leaf powder cannot be 

safely stored for longer than two months prior to analysis. 

This point ~as checked at Stellenbosch by repeating N 

determinations on half a dozen samples which had been stored for 

longer than six years. The samples were selected at random from 

different fruit species as indicated in Table 8. The data show 

a small but consistent decrease from the original values, con­

firming the finding that leaf powder loses N during storage al­

though not to the extent as found by Steyn. 
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TABLE 8. • EFFECT OF STORAGE ON N CONTENT OF LEAF POWDER. 

Sample 
Original analysis Repeat analysis 

% Variety 
NC\ Decrease 

Date faN Date "/aN 
(D.M.) ( D .M.) 

588 Apple 7/2/51 2.33 12/8/58 2.30 1.3 

773 Pear 22/4/52 2.06 " 2.00 2.9 

651 Peach 30/1/52 2.82 " 2.63 6.7 

689 Apricot 25/4/52 2.02 " 1.95 3·5 

7'-+.5 Prune 26/3/52 2.34 II 2.14 8.5 

683 Orange 21/3/52 2.24 II 2,20. 1.8 

Mean 4.1 

The average reduction in N content over the six~year period 

amounted to 4.1"/o. Accordingly, the N loss over a period of six 

months, which is normally ample to complete the analytical deter­

minations, may be expected to be considerably less and unlikely 

to influence the interpretation of results, 

Furthermore, there was no evidence of change in the content 

of K, Ca, Mg, Fe, Mn, Cu and Na for several samples originally 

ana~yzed in 1955 which Dr. Pienaar (private communication) hap­

pened tore-analyse two years later, in 1957, so that the dry 

weight evidently did not change during this time 

There appears to be no reason to question the validity of 

analytical data for samples which have been stored prior to 

analysis according to the existing procedure but as a precaution 

it is evidently desirable that N determinations should be carried 

out without undue delay. 
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2.7 PROCEDURE ADOPTED. 

Leaf samples are collected in clean brown paper bags or 

preferably cloth bags and transferred to the laboratory as 

quickly as possible. A delay of a few days necessitated by 

sampling at some distance from the laboratory is no disadvantage 

provided the samples are kept cool and refrigerated if possible. 

The fresh leaves are cleaned by washing with a detergent 

and water. A glass basin with a diameter of 10 inches and 4 
inches deep has been found satisfactory for handling samples 

of 100 to 120 leaves.. Each sample in turn is agitated by 

hand for 3 minutes in 3 litres of a solution of 0.15% Teepol 

410, the liquid is deeanted off and the sample rinsed in two 

changes of tapwater and finally in distilled water. 

After the final rinse, drops are shaken off as thoroughly 

as possible, the sample is placed in a clean paper or preferably 

muslin bag and transferred directly into an electric drying oven. 

When a large batch of samples are washed the drying temperature 

is held at about 90° C until the last sample is ready when the 

temperature is allowed to settle down to a constant level at 

70° c. The drying period is 48 hours for a convection-type 

oven and 24 hours for a forced-draught oven. 

The dried leaves on removal from the oven are transferred 

to airtight glass containers, ground in a porcelain ball mill 

and stored in a dark cupboard. The leaf powder is re-dried at 

70° C for 18 hours before weighing out aliquots for analysis. 

Nitrogen determinations should be carried out without undue delay. 

Analytical values for micro-nutrients obtained by analysis 

of leaves previously sprayed with mixtures containing them, are 

not admissible as data for nutrient status evaluation. 
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3. SELECTION OF THE LEAF SAMPLE. 

Since leaves vary considerably in composition from one 

position to another on a tree, it is necessary to select com­

parable samples the composition of which is not influenced by 

positional effects which may prejudice the interpretation of 

the analytical data when used for diagnosis of the nutrient 

status. 

The influence of sampling at different times during the 

day and of the personal factor in sampling will also be con­

sidered in this chapter. 

3.1 POSITION OF LEAF ON SHOOT. 

Leaves on shoots of deciduous fruit trees are readily acces­

sible whatever the species, and as such are convenient to 

collect. Leaf composition,however, varies according to Ghe po­

sition of the leaves on a shoot as found in the case of Elberta 

peach leaves picked on the same day at Tulbagh (2/3/1_~9) from the 

tip, middle and base of shoots (Table 9). 

TABLE 9. - COMPOSITION OF LEAVES FROH DIFFERENT 

POSITIONS ON ELBERTA SHOOTS, EXPRES­

SED AS % OF DRY MATERIAL. 

Sample N p K 

Terminal leaves 1.95 .201 1.47 

Midshoot " 1.70 .181 1.81 

Basal i1 1.65 .172 2.23 

The analytical data in Table 9 show a gradient in N and P 

content increasing from basal to termtnal leaves while K shows 

a marked trend in the opposite direction. Frear et al (79) 
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found similar gradients in peach shoot leaves. According to 

McClung and Lott (126), N, Mg, Zn and Cu showed a consistent 

gradient decreasing from terminal to basal leaves; Ca, Fe and 

Al were lower and B higher in terminal than in basal and mid­

shoot leaves; P and Mn were not measurably different. 

These differences may be expected to be reflected to a 

varying degree in the composition of random samples, In Table 10 

the analytical values for random leaf samples, collected from 3 

Kakamas peach trees and 2 individual Golden Delicious apple trees 

at the University farm, are comuared with corresponding values 

for midshoot leaf samples from the same trees. Marked differen­

ces in composition are shown as to most of the nutrient elements. 

It is obvious that variation in random samples may occur in any 

direction depending on the proportion of leaves which may happen 

to be included from different positions. This can be avoid@d 

by selecting only leaves from a particular position on the shoots. 

In the sampling study by Frear et al (79) it was found that 

the basal leaves were most suitable for estimating the level of 

K supply available to the trees, but that terminal leaves fur­

nished the highest degree of correlation between leaf K and 

potash application. Goodall (84) thought that the spur leaves 

were superior to basal shoot leaves for the diagnosis of K de­

ficiency in apple trees. He also studied the suitability of 

basal, middle and apical spur leaves and basal shoot leaves but 

could find no evidence for choosing one type of leaf rather than 

another for diagnosis of Ca, Mg, K, Mn and Fe status. 

Shoot leaves, however, should be preferred to spur leaves 

if only for the reason that spur leaves may be hard to find 

on certain kinds of fruit trees and on young trees. Moreover, 

shoot growth is continuous over a portion of the season and 

is more likely to provide sound leaves suitable for analysis. 

During the period of active growth, shoots also provide new 

Stellenbosch University http://scholar.sun.ac.za



- 82 -

TABLE 104 ~ COMPOSITION OF MIDSHOOT (M} AND RANDOM (R) LEAF 

SAMPLES FROM THE SAME TREES ( 19/2/52). !?B! 
WEIGHT BASIS. 

Peach Apple A Apple B 

~utrient 
Max. 

% Diff. 
M R M R M R 

N % 2.94 2.90 2.36 2.38 2.46 2.38 3 

p % .120 .126 .089 .125 .114 .105 40 

K % 3.01 2.86 1.70 1.65 2.10 2.22 6 

Ca. fo 2.20 1.83 1.26 1.70 .96 1.16 35 

Mg % -44 .49 .15 .23 .23 .30 53 

Na % .036 .033 .OJ-tO ,033 .029 .024 18 

C1 % .18 .16 .17 .27 .13 .12 59 

Mn ppm 63 54 70 86 6o 61 23 

Fe ppm 227 193 190 158 140 144 17 

Cu ppm 23 13 21 27 16 18 43 

B ppm 24 25 22 28 26 25 27 
' 

leaves of the same physiological age. Leaf growth on spurs is more 

nearly determinate and thus subject to aging and damage which may 

complicate sampling later in the season. 

As pointed out by Goodall and Gregory (85), basal or terminal 

leaves may provide better indices of deficiency depending on the 

mobility of the nutrient in the plant. Thus for the highly mobile 

K and to a lesser extent N and P, the older leaves would be prefer­

able, whereas for Ca and B which are not at all readily remobilized 

the younger leaves would provide a better reflection of a deficiency. 

Selection of basal or apical leaves may involve sampling leaves 

which are severely chlorotic or necrotic. Young terminal leaves are 

invariably more severely affected with chlorosis or necrosis due 

to Zn, Cu or Fe deficiency, with dwarfing due to Zn deficiency or 
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with necrosis due to Na or Cl toxicity, whereas basal leaves may 

be severely chlorotic or necrotic as a result of Mn, Mg or K 

deficiency. The following cases illustrate the impression obtained 

from analyzing such samples as compared with midshoot samples on the 

same tree (Table 11): 

(A) Ohenimuri apple leaves (Stellenbosch, 2/3/55), 

small and chlorotic varying from midshoot to 

terminal leaves on shoots showing· Zn deficien­

cy symptoms. 

{B) Golden Delicious apple leaves (Stellenbosch, 

11/3/54) from base of shoots, all affected 

with chlorosis due to Mg deficiency. 

(C) w.w. Pearmain apple leaves (Ceres, 25/1/56), 

all severely affected with marginal necrosis 

due presumably to Mg deficiency. (This 

sample was not washed which accounts for its 

relatively high Fe value.) 

The analytical results in Table 11 show that tho content of 

several nutrients in affected leaves differs ~idely from that of 

midshoot leaves, although some but certainly not more than a small 

part of this difference may be ascribed to positional effect. A 

more definite diagnosis of the deficiency concerned is furnished 

by the relatively low values for Mg, but it is evident also that 

the level of other nutrients in the affected leaves is unduly dis­

turbed so that the composition of the midshoot leaves would more 

correctly reflect the general nutritional condition of the trees 

in question. Goodall (84), comparing the mineral content of 

scorched and healthy leaves from the same apple tree, found Mg 

and Mn to be significantly lower in severely scorched leaves and 

considered that the latter should be avoided in sampling. He 

found no significant difference in composition between slightly 

scorche~ and healthy leaves. 
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TABLE 11. - COMPOSITION OF MIDSHOOT LEAVES (M) COMPARED 

WITH THAT OF LEAVES SHOWING SEVERE SYMPTOMS 

OF NUTRIENT DEFICIENCIES (A, B Al'ID C) ON THE 

SAME TREES. DRY WEIGHT BASIS. 

Ohenimuri G. Delicious w.w. Pearmain 

Nutrient 
M A M B M c 

N % 2.32 1.97 1.92 1.65 1.82 1.60 

p % .101 .o64 .119 .114 .103 .081 

K " 1.49 1.22 1.35 1.57 3.16 3.33 

Ca " .88 .78 ·99 1.09 .48 .22 

Mg II ·39 .38 .21 .15 ·33 .11 

Na 11 .021 .031 .029 .037 .oo6 .034 

Cl " .14 .15 .17 .23 .07 .09 

Mn ppm 36 20 259 331 29 14 

Fe II 75 72 126 145 44 123 

Cu II 4.4 3.1 4·9 4.6 4·7 5.2 

B II 29 30 26 30 47 54 . 

It may be concluded that it will be difficult to find a 

single position for sampling which will be optimal in all re­

snects. Basal or apical leaves on shoots may be preferable 

for deficiency diagnosis of particular nutrients but such 

leaves are also more likely to reflect a nutrient content dif­

fering from the general nutritional condition of the tree. 

Midshoot leaves would thus appear to be the best choice and 

more likely to provide a suitable sample under adverse conditions 

for studying the status of all nutrients. Since a single samp­

ling position had to be selected for the present investigation, 

the writer decided to concentrate on midshoot leaf samples. 

In collecting samples, trees and leaves showing mechanical 
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damage or pathological symptoms were consistently avoided. 

Thomas et al (199), in studying the composition of diseased 

and healthy leaves from the same peach tree infected with 

Bacterium pruni, found that the concentration of N, P, K, Ca 

and Mg was significantly lower in diseased leaves, indicating 

a rate of metabolism similar to that of leaves undergoing the 

normal process of senescence. Boynton and Compton (32) also 

state that any conditions resulting in inability of the root 

system or conducting tissue to function normally will be likely 

to reduce the K, Mg and N content in fruit tree leaves. 

The above considerations apply to leaf samples from deci­

duous fruit trees. In the case of grape vines, leaf position 

was not specifically investigated. As a tentative procedure 

based on practical considerations of ease of sampling, the basal 

leaves were provisionally selected as the sample for analysis 

since intertwining of canes and the practice of topping of shoots 

would complicate satisfactory sampling in other positions,where­

as basal leaves provide a definite position where comparable 

samples can be conveniently picked. Actually the first normal 
fro.m 

sized leaf not higher than the fifth node ~ the base of fruiting 

shoots, is selected on each of two or three branches per vine, 

collecting about 30 to 40 leaves per sample. 

Stellenbosch University http://scholar.sun.ac.za



- 86 -

3.2 SELECTION OF SHOOTS ON TREE. 

A certain amount of variation in composition of midshoot 

leaves may arise depending on the position of the shoots from 

which the leaf sample is collected. A comparison was made of 

terminal shoots on one-year old wood with shoots arising from 

older wood which usually are more vigorous and may be referred 

to as "vegetative" shoots. Midshoot leaf samples were collected 

from terminal and vegetative shoots on the same trees, namely 

Royal apricot (2/1/53), Alma apple (15/1/53) and Bon Chretien 

pear {30/1/53), at the University farm, Stellenbosch. 

TABLE 12. - COMPOSITION OF MIDSHOOT LEAVES ON TERMINAL SHOOTS 

(T) AS COMPARED WITH THAT ON VEGETATIVE SHOOTS (V) 

ON THE SA~lli TREES. DRY WEIGHT BASIS. 

Apricot Apple Pear 

~utrient 
Max. 

% Diff. 
T v T v T v 

N % 3.33 3.11 2.58 2.44 2.63 2.48 7 
p II .145 .158 .172 .288 .140 .147 67 

K II 3.43 3.83 2.07 2.60 1.52 1.78 25 

Ca II 1.35 1.}+8 1.58 1.59 1.36 1.30 10 

Mg " ·37 .39 .28 .25 .30 .27 11 

Na " .025 .025 .038 .037 .036 .033 8 

Cl. " .15 .14 .22 .16 .10 .11 27 

Mn ppm 54 59 86 83 99 82 17 

Fe II 110 115 174 173 135 151 12 

Cu II 6.3 5·7 8.3 8.0 12 12 9 
B " 35 37 35 36 26 31 19 

The analytical results in Table 12 show reasonably good 

agreement in some of the nutrient values as between the two sets 
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of samples, but wide differences also occur such as for P, K 

and Cl in the apple leaf samples, indicating that the values 

for vegetative shoots deviate sufficiently from those for termi­

nal shoots to bias interpretation of the results. Consequently 

it was decided to avoid vegetative shoots as well as excessively 

vigorous and weak terminal shoots when collecting leaf samples. 

In this connection it may be mentioned that Matlock and Childers 

(123) found that spur leaves from weakly growing spurs also con­

tained less Ca, K and Mn than did leaves from spurs of good vigour. 

To represent the nutritional condition of the tree as a 

whole, a leaf sample should obviously be drawn uniformily from 

shoots around the periphery of the tree. The practice was 

fu~ther adopted of taking the sample more or less at shoulder 

height to avoid possible gradients from top to bottom. 

In studying such positional effects in relation to compo­

sition of citrus leaves, Chapman and Brown (55) compared samples 

from different positions around the tree but found no difference 

in composition except that the Ca concentration tended to be a 

little higher in leaves picked on the South and West sides. 

Bathurst (6) produced evidence showing that the N content of 

leaves on the northern aspect was significantly higher than 

that on the South side. Chapman and Brown also found that leaves 

from the top of the tree were somewhat lower in N1 P and K and 

slightly higher in Ca and Mg than were leaves from the middle 

and lower parts of the tree. 

These findings emphasize the neceasity of collecting 

samples at regular intervals around the tree and only at a 

definite height, the mi«dle part around the periphery of the 

tree evidently being the most convenient. 
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3.3 EFFECT OF FRUIT CROP ON LEAF COMPOSITION. 

Since K and B (89) and poxsibly other nutrients accumulate 

in fruit it is quite possible that the size of the crop on a tree 

may influence the concentration of nutrients in the leaves. 

Evidence in this connection was produced by Lilleland (113). 

1
Leaf data from paired adjacent prune trees, one' of which was com­

pletely defruited, showed that as the season advances the dif­

ference in P levels becomes increasingly greater. Early season 

leaf levels of 0.22 and 0.21% become 0.25% and 0.13% for non­

bearing and bearing trees, respectively. 

Lilleland and Brown {114) found that the K content of leaves 

on heavily bearing peach trees was lower than on defruited trees. 

By defruiting the trees they showed that with practically no dif­

ference in leaf K at the beginning of the season the non-fruiting 

trees show an ever-increasing leaf level as the season advances 

while the bearing trees show a decrease. May values of 1.12% 

and 1.18% become 0.98% and 1.66% in August for bearing and non­

bearing trees, respectively. In their survey of leaf K in 

California peach orchards they also found that several of the 

orchards with highest leaf K had the lightest crops. 

According to McClung {126) the fruit crop had little effect 

on the nutrient composition of peach leaves but K was lower and 

Ca and Mg slightly higher in leaves from trees with a crop. 

Havis and Gilkenson {94) found that heavy pruning usually in­

creased leaf K in peach. 

In the case of citrus, Chapman and Brown (55) could find 

no difference in K content of leaves from fruit bearing twigs 

as compared with non-fruit bearing twigs. However the concen-

trations of Mg, K, N and P in leaves from bearing trees were 

all slightly lower than those in leaves of trees from which all 

fruit had been removed. They considered that the differences 

were not large enough to affect the interpretation of the results. 
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In studying biennial bearing in Miller's Seedling apple, 

Mason (122) found highly significant differences in the compo­

sition of leaf samples from the terminal portion of shoots, 

taken at the same time from fruiting and non-fruiting trees. 

The N, P, Ca, Mg and Mn contents were all higher in leaves of 

trees in their "on" year but there was no significant difference 

in the Fe or K content. 

Regarding grapes, Cook (58) reported that several of the 

highest yielding vineyards showed increasingly lower P levels in 

the leaves as the season advanced, and lower yielding vineyards 

had higher P values. 

The evidence on the whole thus indi~ates that leaf compo­

sition will be influenced by size of crop on the trees sampled 

and when there is a tendency to biennial bearing, but there is 

no agreement in the work reported above as to a consistent 

effect of size of crop on concentration of individual nutrients. 

The only contribution the writer can offer on this subject 

is that oceasional pronounced differences in leaf composition 

were found when vegetative shoots were compared with terminal 

shoots around the tree, the latter invariably being fruit bearing 

shoots (Table 12). On the other hand, removal of the fully 

matured crop did not appear to alter the seasonal nutrient trends 

in Kakamas peach leaves (Fig. 5 ). 

Until further data become available it will have to be 

recognized that variation in yield may have a potential in­

fluence on leaf composition and that when considering the 

nutrient status of trees varying markedly from the average in 

production, it cannot at present be predicted exactly to what 

extent the analytical values will be biased. 
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3.4 DIURNAL VARIATION. 

Since the rate of carbon assimilation changes according to 

the light intensity during the day (140), the nutrient content 

may likewise vary in relation to changes in the dry weight of 

the leaves. As indicated by Goodall and Gregory (85), the 

concentration of N and some of the mineral elements has been 

found to fluctuate during the day but most of these variations 

have been observed as occurring in the plant sap. In a recent 

investigation Steyn (193) produced evidence of a small increase 

in nutrient concentration of lemon leaves from 7 A.M. to midday. 

The percentage content of N, P, K and Ca increased by 4.3, 2.5, 

4.0 and 2.5% respectively. 

As no data on diurnal variation in the nutrient content of 

the leaves of deciduous fruit trees were available, this question 

was investigated by the writer at Stellenbosch. Comparable mid­

shoot leaf samples were collected from the same shoots at three 

different times, 9 A.M., midday and 5 P.M., which would more than 

cover the period during which sampling would normally be carried 

out. Samples were obtained at the University Farm for each of the 

sampling times, from 

(A) Kakamas peach trees on 15/1/53 

(B) II " " II 6/3/53 
(C) Alma apple trees on 15/1/53 

(D) Granny Smith apple trees on 6/3/53-

The analytical values agree very closely, as indicated in 

Table 13, and statistical treatment of the results by analysis 

of variance showed that there were no significant differences 

due to time of sampling during the day. Nor was there any e~i­

dence of a general trend towards higher values from 9 A.M. to 

12 noon similar to those found by Steyn (193), except perhaps 

for K which increased slightly in three of the sampling groups. 

Comparison of the means indicates that the differences for the 
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TABLE 13. - COMPOSITION OF COMPARABLE PEACH (A AND B) AND APPLE 

(C AND D) MIDSHOOT LEAF SAMPLES COLLECTED AT DIFFER­

ENT TIMES DURING THE DAY. DRY WEIGHT BASIS. 

~ariety Nutrient 9 A.M. Noon 5 P.M. Nutrient 9 A.M. Noon 5 P.M. 

A 
B 
c 
D 

Mean 

A 
B 
c 
D 

Mean 

A 
B 
c 
D 

Mean 

A 
B 
c 
D 

Mean 

A 
B 
c 
D 

Mean 

N % 3·33 3.28 3.28 p % .156 .155 .15t 
2.97 2.80 2.4Z_ .111 .111 .ll,g 
2.56 2.48 2. .173 .162 .15 
2.10 2.09 2.13 .097 .104 .lOC 

2.74 2.66 2.71 .134 .133 .133 

K % 2.68 2.86 2.51 Ca % 1.83 1.83 1.84 
2.70 2.86 2.71 2.26 2.32 2.43 
2.07 1.95 2.16 1.65 1.~9 1.5b 
1.79 1.95 1.86 .82 • 7 ·93 

·-·· 

2.31 2.41 2.31 1.64 1.65 1.69 

Mg% .42 .1.~5 .41 Na% .027 .023 .02~ 
.52 -55 ·57 .025 .027 .02 
.27 .2R .26 .040 .037 .038 
.22 .2 .26 .031 .032 .035 

.36 .37 ·37 .031 .030 .031 

···-· 

Mn ppm gg 55 ~3 Fe ppm 146 146 137 

~i 8~ 1~3 192 234 
85 1 1 172 161 
60 62 64 190 224 211 

66 68 68 178 184 186 

Cu ppm 7.0 6.8 6e7 B ppm 30 29 28 
7.1 ~.1 7ol 56 §~ 55 
9.0 .o 9.0 35 32 
6.2 6.7 6.4 32 32 30 

7.3 7.2 7.3 I 38 38 36 
I I I t 

other nutrients were negligible so that the not very conclusive 

trend for K may be merely due to chan.ee. ' Accordingly, it may 

be concluded from this evidence that sampling can be safely car­

ried out at any time between 9 A.M. and 5 P.M. without pre­

judicing the interpretation of results. 
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3.5 SAMPLER ERROR. 

The leaf samples from which the analytical data reported 

in this thesis have been obtained, were all collected personally 

by the writer. Duplicate samples taken over a considerable 

period have consistently shown very close agreement in analyti­

cal values. In fact the values usually varied so little that 

taking duplicate samples as a regular routine was abandoned for 

reasons of economy and saving of time. 

As an example of the reproducibi~ity in analytical results 

obtained by successive sampling of the same trees, the values 

presented in Table 13 may be referred to. Midshoot samples were 

colleeted at 9 A.M., midday and 5 P.M. but since the results 

showed no significant differences it may be concluded that be­

sides indicating no signifieant diurnal variation in composition 

there was also no significant difference between the triplicate 

samples when collected by one person as in this case. 

There is evidence, however, that significant errors may be 

introduced by allowing other persons to collect samples (6). 

Comparison of deviations in composition of midshoot leaf samples 

collected from the same trees by the writer and a colleague 

serves to confirm that even a standardized system of sampling 

may be subject to personal errors. Four parallel sets of com­

posite samples were obtained from replicated fertilizer plots in 

an experimental block of w.w. Pearmain apple trees at Ceres 

(24/4/56). The analytical results in Table 14 indicate that 

the samples collected by sampler (B) differed quite considerably 

in composition from those collected by the writer (A). The 

mean percentage deviation calculated by averaging the deviations 

from the A values for each group of trees as a percentage of the 

mean of the (A) values, vary from 1.6% to 13.8%. In comparison 

the mean percentage deviation in composition of triplicate samples 

collected by the writer at Stellenbosch (from Table 13) showed 
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TABLE 14. - COMPARISON OF DEVIATIONS IN THE COMPOSITION OF 

MIDSHOOT APPLE LEAF SAMPLES COLLECTED FROM THE 

SAME GROUPS OF TREES BY SAMPLERS A AND B WITH 

THOSE IN PEACH SAMPLES COLLECTED BY SAMPLER A 

(FROM TABLE 13). DRY WEIGHT BASIS. 

Mean % Deviation 

Nutrient Sampler Group Group Group Group 
1 2 3 4 Vars. 

Groups A to D 
1 to 4 (Table 13) 

N % A i:~4 1.~7 1.75 1.78 1.5 
B 1. 1 1.75 1.76 1.6 

p II A .156 .160 .184 .18J 2.5 
B .164 ,164 .211 .199 8.4 

K II A 1.70 1.57 1.62 2.08 3·4 
B 1.58 1.50 1.56 2.00 4.7 

Ca " A 1.58 1.45 1.K8 1.41 2.3 
B 1.55 1.49 1. 1 1.49 5·3 

Mg " A .22 .24 .2~ .16 3-5 
B .20 .23 .2 .19 8.2 

Na 11 A .017 .016 .015 .01~ 3·9 
B .016 .017 .013 .01~ 8.6 

Mn ppm A .27 31 31 27 2.5 
B 32 34 34 32 13.8 

Fe II A 69 70 67 ~g 5-4 
B 75 73 76 7.8 

Cu " A 3.9 4.0 3 .t~. a·9 3.2 
B 3-9 4-4 3-5 .o 3.9 

B II A ~g 55 6o 63 4.4 
B 55 71 58 10.1 

much better agreement, varying from 1.5% to only 5.4%, as indi­

cated in the last column of Table 14. 

In addition to the overall deviation noted, several nutrients 

in (B) samples were consistently higher or lower in composition 

than in (A) samples for all the groups, such that the differences 

in K, ¥m and Fe values were even statistically significant as 
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calculated by applying Student's t-test to the data. This is 

rather surprising since it would appear to be comparatively easy 

to select midshoot leaves around the trees. It is clear that 

persons entrusted with sampling must be carefully briefed to 

avoid or minimize error due to personal factors. 
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3.6 PROCEDURE ADOPTED. 

In view of the factors considered above which are capable 

of influencing leaf composition when selecting leaf samples, 

it is essential that a 'standardized procedure should be consix-

tently followed to eliminate errors from this source or to re-

duce them to a minimum. 

The procedure adopted is as follows. In the case of fruit 

trees, select midshoot leaves on terminal, usually fruit bearing, 

shoots of average length and vigour, situated within easy reach 

around the periphery of the tree and more or less at shoulder 

height. The sample should be taken uniformily around each tree 

from current shoots borne on one-year old wood, avoiding vegeta-

tive shoots. In the case of vines, the first normal sized leaf 

below the fifth nodef~mthe base of fruiting shoots is selected. 

The sample may be collected at any time during the day from 

9 A.M. to 5 P.M. All samples should be collected by the same 

person unless assisted by a helper who is thoroughly conversant 

with the sampling procedure and has been previously trained by 

the regular sampler. 

The actual leaves selected should be free from disease, 

insect or mechanical damage. The presence of mild symptoms of 

nutritional deficiencies is no disadvantage but severely scorched 

leaves should be avoided. The sample should be selected only 

from shoots on branches of uniform vigour. Trees or vines 

showing root or trunk injury must be avoided. Samples from 

trees which have abnormally small crops should be marked for 

special consideration when interpreting the results. 
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4. TIME ·OF SAMPLING. 

Experience has shown that leaf composition varies during 

the course of a season and also from one season to the next. 

The magnitude of such variation may be considerable, and com-

pletely misleading interpretations could be placed on analytical 

data depending on the time of sampling as shown in the following 

investigation. 

Seasonal data on leaf composition were obtained from samples 

collected in an orchard and vineyard at Welgevallen, the Univer­

sity farm at Stellenbosch. The orchard consists of different 

varieties and fruit species planted in unreplicated blocks ad­

jacent to each other, in 1919, on an alluvial sandy loam derived 

from Table M.ountain Sandstone, granite and Malmesbury Shale. 

The vineyard also consists of different varieties, planted in 

19~3, but is located at some distance from the orchard on a 

brown hillside loam derived from Malmesbury Shale. 

Both 6rchard and vineyard soils are fairly d~ep and well 

drained. They have a good waterholding capacity and are not 

irrigated. According to Greenstein (86), the phosphate content 

was relatively low as well as the base exchange capacity. Gene­

ral orchard practices have been applied as under commercial 

conditions. 

The fertilizer programme for the orchard since 1949 con­

sisted of an annual application of 600 lbs. of rock phosphate 

(Langfos) per morgen in autumn before planting lupins as a 

green manuring crop which is supplemented in spring with a 

dressing of 200 lbs. of ammonium sulphate per morgen. The 

vineyard received the same nitrogen treatment annually in spring 

but lupins, fertilized with 400 lbs. of fertilizer mixture H, 

were grown in one row and compost applied in the next, alter-

nating each year. 
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Soil data obtained during the 1950/51 season are presented 

in Table 15 to indicate seasonal variation in certain soil fac­

tors. Representative composite first and second foot soil 

samples were periodically collected in selected areas in the 

orchard and vineyard, using a Veihmeyer sampling tube. The 

nitrate- and ammonia-nitrogen contents were determined in the 

soil extracts using Morgan's sodium acetate mixture, the elect­

rical resistance of moistened samples being measured with a 

Leeds and Northrupp Ohmmeter, and the pH of 1:1 soil water sus­

pensi~ns with a Beekman pH meter. 

Acc~rding to the data, as supplied by the analytical sec­

tion of the W.P. Fruit Research Station, the ammonification 

process showed a steadily increasing rate of activity until 

mid-December after which the ammonia-N concentration gradually 

dropped to a low level. The nitrate-N values in both soils 

remained fairly constant at a low level until November or 

December after which a higher level prevailed until April. 

Nitrification was evidently promoted by the higher temperatures 

in summer so that soil moisture content must have been adequate 

for bacterial activity during this period. The rate of evolu ... 

tion of soluble N corresponds roughly to that found later by 

Fourie (78) in Bien Donne soils. 

The concentration of soluble salts in the two soils as in­

dicated by the electrical resistance readings showed considerable 

variation but no seasonal trend. The soil reaction also re-

mained fairly constant except for a substantial increase in pH 

values late in the season. The values obtained indicate that 

the orchard soil was slightly acid, whereas the surface soil in 

the vineyard was practically neutral in reaction. 
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TABLE 15, - NITRATE AND AMMONIA-NITROGEN, ELECTRICAL RESISTANCE 

AND pH OF SOIL SAMPLES FROM WELGEVALLEN, STELLEN­

BOSCH. 

Orchard site Vineyard site 

Date 
Sample 
depth N0 3-N NH4-N Resist. No3-N NH4-N Resist. pH pH 

ppm ppm ohms. ppm ppm ohms. 

18.10.50 1-12" 5·9 11.5. 1700 5.8 8.7 9.8 1500 6.9 
12-24" 4.3 10.6 3200 5-l 6.1 12.5 1300 5·9 

25.10.50 1-12" 6.1 1~.o 1400 5.8 4.4 13.5 1200 6.4 
12-24" 3.6 1 • 0 2700 5.1 2.9 12.5 1600 5·7 

1.11.50 1-12 11 5·5 18.4 1,00 6.0 8.1 17.8 1300 6.9 
12-24" 2.6 18.9 3 00 5.4 2.6 15.5 2100 5·9 

8.11.50 1-12" 23.8 21.~ 1000 5·9 7·7 18.9 1100 6.5 
12-24" 7.3 16. 2800 5·2 4-7 16.3 2000 5·9 

15.11.50 1-12 11 8.9 1,.5. 1000 5·8 8.0 12.8 1000 6.8 
12-24" 1.7 1 .6 3500 5.1 2.6 14.6 1600 6.1 

13.12.50 1-12 11 28.8 29.0 Boo 6.0 12.1 31.4 900 6.6 
12-24" 9-4 29.8 1900 5·3 7.8 28.2 1200 5·9 

10. 1.51 1-12" 17-5 22.8 1100 5.8 18.8 24.0 900 6.8 
12-24tt 6.1 24.0 2900 5.2 5·3 21.5 1900 5·9 

?. 2.51 1-12tt 26.5 20.4 1000 5-7 12.1 22.8 1000 6.7 
12-24" 8.2 18.7 2700 5·7 6.6 20.9 1400 6.0 

7. 3.51 1-12" 30-5 ,.5 1100 5·8 ,.2 4.6 1100 6.7 
12-24" 7.6 .6 3200 5.6 .7 5·5 1400 6.1 

1t. 1-12 11 8.2 4-51 29.5 700 5.9 1~.5 7.8 900 6.~ 12-24" 11.1 6.9 1900 5·5 3 .o 6.2 1000 6 • I 
! ' ! .......... - .. 
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~.1 SEASONAL CHANGES IN KAKAMAS PEACH LEAVES. 

Midshoot leaves were collected at weekly intervals through­

out the 1949/50 season on 4 Kakamas peach trees at Welgevallen. 

The number of leaves was recorded and percentage dry weight 

determined for each sample to provide data on leaf weight, 

total amount of nutrient per leaf and percentage content on the 

dry weight basis, as indicated in Table 16. The weekly data 

were condensed by averaging the values for each 4 consecutive 

sampling dates, entering each group average under the mid-date 

for the sampling period. 

It is evident that considerable variation in dry weight 

of leaves and nutrient content occurred during the season, and 

that the change in percentage dry weight obscures the apparent 

trends in actual nutrient content when expressed as percentages 

on ovendry material basis. 

In order to illustrate the proportional differences between 

the trends for the various elements, a log transformation of the 

values was employed in drawing the curves shown in Figure 5 

after first converting the actual values to a percentage of the 

data as obtained on 14/11/49. 

4.11 ABSOLUTE CONTENT. 

Considering first the absolute amount of nutrient per leaf, 

it is evident that leaf N remained fairly constant throughout 

the season from November to June. This may be interpreted as 

indicating that the amount of N translocated to other parts 

practically balances the amount entering the leaf. The curve 

shows very little change in direction, in contrast to the marked 

fluctuations in available introgen in the soil by ammonification 

and nitrification, particularly in November and December, as 

was indicated in Table 15. 
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TABLE 16. - COMPOSITION OF MIDSHOOT PEACH LEAVES, EXPRESSED 

AS WEIGHT OF NUTRIENT PER LEAF AND WEIGHT OF 

NUTRIENT PER 100 GRAMS OF DRY MATERIAL(% D.M.). 

Date Leaf Wt. N p K Ca. Mg Mn 
mgrn mgrn mgm mgm mgm mgrn pg 

14.11.49 152 6.47 .458 4·79 2.14 .44 10.1 

12.12.49 205 7.32 -458 6.57 3.03 ·59 13.3 

9. 1.50 228 7-27 .362 7-27 3.90 .76 15.7 

6. 2.50 257 7.28 ·340 7.71 4.61 .96 19.6 

6. 3.50 249 6.77 ·303 6.72 5.19 1.00 20.6 

3. 4.50 269 6.42 .300 5·97 5.81 1.08 23.2 

1. 5-50 269 6.38 .328 4.86 6.21 1.13 23.6 

29. 5.50 269 6.48 .369 4·53 6.77 1.16 22.9 

Dry Wt. N p K Ca M~ Mn 
% % % % % ppm 

14.11.49 31.5 4.28 .305 3-13 1.40 .290 66.8 

12.12.49 34.1 3·57 .223 3.21 1.48 .288 65.0 

9. 1.50 36.3 3.20 .159 3.20 1.71 .333 69.0 

6. 1.50 39·3 2.83 .132 2.99 1.79 .373 76.0 

6. 2.50 l.J-0.4 2.72 .122 2.70 2.08 .402 83.8 

3. 4.50 41.6 2.38 .111 2.22 2.16 .401 86.0 

1. 5-50 41.3 2.38 .121 1.81 2.31 .419 87.8 

29. 5-50 41.5 2.41 .137 1.69 2.52 .430 85.3 

P is used up and translocated more rapidly than the amount 

entering the leaf until May when accumulation sets in. K ac-

cumulates fairly rapidly until February after which it moves 

out of the leaves at a more rapid rate than the rate of entry. 

Ca, Mg and Mn accumulate consistently throughout the season. 

Midshoot leaves maintain a fairly consistent physiological 

age while the shoots increase in length, in this case until the 
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end of January when shoot growth ceased, ao that up to the latter 

stage no major physiological change in the tree, except that due 

to tree growth and fruit development, would be expected to in­

fluence the nutrient composition. After cessation of shoot 

growth the midshoot leaves are subject to aging processes which 

would tend to increase the K concentration and.decrease that of 

Nand P (see Table 9), even though nutrient supply in the soil 

does not change. The results, however, showed no change in the 

K, N and P trends after sho~t growth ceased, nor was there any 

indieation of an increased rate of nutrient accumulation in the 

leaves after the crop was harvested in the beginning of March. 

The late season accumulation of P in May to June does not appear 

to be associated with removal of crop. 

The curves thus appear to reflect characteristic changes 

in nutrient content subject to normal processes of movement to 

the leaves, assimilation and accumulation in the leaves and trans­

location to other parts. The absence of change following ces­

sation of shoot gr~wth and removal of fruit serves to support 

the selection of midshoot leaves for diagnostic analysis. 

4.12 PERCENTAGE CONTENT. 

Since nutrient content in diagnostie leaf analysis is in­

variably and more conveniently expressed in terms of weight of 

nutrient per 100 grammes of dry leaf material, that is, as a 

percentage on a dry weight basis, it must be recognized that 

the seasonal trends determined on this basis must differ from 

the "per leaf" trends in aecordanee with the change in percentage 

dry weight of leaves occurring during the season. The 11 percen­

tage11 curves as shown in Figure 5 obviously differ markedly from 

the "per leaf 11 curves and as such obscure the actual changes 

occurring in the leaf. This is no disadvantage as long as the 

characteristic "percentage" curves for the various nutrients a:rae 
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not interpreted as true changes in actual nutrient content. 

Due to the increase in dry weight, the percentage values 

for some of the nutrients (N and K) now show a fairly consistent 

decline during the season, whereas others (Ca, Mg, Mn) show a 

relatively small gradient as compared with the "per leaf" curves. 

The percentage shows a much steeper decline but also increases 

at the end of the season in accordance with the "per leaf" 

values. 

The seasonal trends for most nutrients are evidently of 

sufficient magnitude to render leaf analysis data useless for 

diagnostic purposes unless reference is made to the time of 

sampling. For instance, N and P values obtained by analyzing 

samples collected in December may be erroneously construed as 

indicating an adequate nutritional status if compared with 

standard values which have been determined from the nutrient con­

tent in February. 
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4.2 SEASONAL TRENDS IN PERCENTAGE NUTRIENT CONTENT. 

In or·der to test the consistency of the trends as found 

for Kakamas in 1949/50, and if possible to establish standard 

gradients for future diagnostic interpretations, seasonal 

variations were investigated in the case of a number of v~rieties 

during successive seasons from 1950 to 1953. 

Midshoot leaf samples were consistently collected from the 

same trees (basal leaves in the case of grape vines) at the 

University farm, throughout each season or until such time as 

defoliation or other factors terminated sampling. Early leaf 

fall occurred in the case of apricot probably owing to drier 

soil conditions in the apricot block, whereas some of the peach 

varieties suffered from early infestation of rust,and severe 

wind damage invariably carried away most of the midshoot plum 

leaves each January. 

The samples were analyzed for N, P, K, Ca, Mg, Mn, Cu and 

B, but the Cu and B data are incomplete since these elements 

were not determined prior to 1951, and the apple and pear 

samples of 1951 were contaminated with copper fungicide spray 

residue (see Section 2.12). Iron data are not submitted since 

the samples at that time were not adequately washed to remove 

dust contamination (see Section 2.11). 

The analytical results showed relatively more variability 

early in the season and again towards the end of the season so 

that only the data for the four-month period from December to 

March will be considered here. Data for weekly and fortnightly 

samples were pooled so as to present a uniform series each year 

for five sampling dates, viz. December 4, January 3, January 31, 

February 26 and March 26. The actual sampling dates coincided 

within a day or two in each year. No attempt is made to relate 

the sampling dates to actual stage of development for individual 

varieties which in fact showed little variation from year to 

J 
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year, nor to that for different varieties which of course varies 

a. great deal: 

The varieties considered and their reference letters as 

used in Figures 6 to 13 are as follows:-

Peach 

Apple 

Pear 

Plum 

Apricot 

Grape 

K 

E 

B 

G 

A 

s 

D 

BC 

SR 

R 

w 

H 

Kakama.s 

Early Dawn 

Babcock 

Goldmine 

Alma 

Granny Smith 

Golden Deli.c.ious 

Bon Chretien 

Santa Rosa 

Royal 

Waltham Cross on rootstock 1202 

White Ha.nepoot on 420A. 

The results are presented graphically in Figures 6 to 13, 

using the same scale for each nutrient in turn to facilitate 

comparisons, and grouping the data according to variety and to 

season. As already mentioned the data from which the graphs 

have been constructed are derived from average or single deter­

minations from single plots and thus lack evidence of statis­

tical significance. It is contended, however, that since 

samples were drawn from the same trees at each sampling date, 

which as has been shown in Section 3.5, does not involve an 

appreciable experimental error, the data. so obtained are directly 

comparable, and, since a. considerable number of comparisons are 

available, may be expected to provide a. reliable reflection of 

seasonal variations, though not of varietal differences. 

The conclusions may be considered under two headings, 

that concerning variation during the season for which all the 

data including that provi~ed by different varieties are appli­

oable, and that concerning only the variation from year to year. 

J 
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~.21 SEASONAL VARIATION. 

Refe~ence to the curves shows that there is a distinct 

and consistent downward trend in the N and P values (Figures 

6 and 7), and an equally distinct upward trend inCa (Figure 8). 

The K curves (Figure 9) in general show a slight downward 

tendency with the possibility of a small initial rise before 

levelling off and then declining; the K curves for plum and 

apricot do not provide a definite picture owing to insufficient 

data for February and March. The Mg curves (Figure 10) show a 

slight upward tendeney except in the case of plum and pea~. The 

Mn and B curves (Figures 11 and 12) for grapes show wide fluc­

tuations lacking a definite trend; the Mn curves for the other 

fruit species with the exception of that for plum show a con­

sistent though slight upward tendency, while the B curves show 

~elatively little change and lack consistency. The Cu curves 

(Figure 13) on the whole show a tendency to fall a little at the 

start before levelling off. 

In studying these curves in relation to selection of a 

suitable stage during the season for routine collection of samples 

for diagnostic analysis, it is evident that since the P values 

fall rather sharply and some of the K values tend to rise between 

December 4 and January 3, this period should preferably be avoided. 

Furthermore, apricot and plum leaf samples are often difficult 

to find after February owing to leaf fall,, so that the best 

time of sampling would appear to fall between beginning January 

and end February. In order to arrive at a numerical estimate 

of seasonal variation during this period, the means of the values 

for January 3, January 31 and February 26 for all va~ieties and 

seasons were calculated, as shown in Table 17, grouping deci­

duous fruit trees and grape vines separately. 
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TABLE 17. -SEASONAL VALUES CALCULATED AS A GENERAL MEAN FOR 

ALL VARIETIES AND SEASONS. 

<fa Diff. from 
Jan. 31 value 

Nutrient Jan. 3 Jan. 31 Febr. 26 element 
Jan. 3 Febr. 26 

Peach 2 aEEle 2Eear 2aEricot 

N % 2.96 2.78 2.45 + 6 - 12 

p % .168 .144 .127 + 17 - 12 

K % 2.53 2.53 2.39 0 - 6 

Cu ppm 10.7 8.8 8.8 + 21 0 

Ca % 1.34 1.45 1.64 - 8 + 13 

Mg % .303 .325 -341 - 7 + 5 

Mn ppm 63 69 72 - 9 + 4 

B ppm 
f 29 29 29 0 0 

GraEe 

N % 1.86 1.82 1.50 + 2 - 18 
p % .167 .137 .107 + 22 - 22 

K % .67 .64 ·52 + 5 - 19 
Cu ppm 11 11 11 0 0 

Ca % 1.84 1.90 2.22 - 3 + 17 

Mg % .60 l .60 • 70 0 + 17 
~ 1 ; 

The mathematical means indicate substantially the same trends 

as deduced from the individual curves, N, P, K and Cu showing a 

downward gradient and Ca, Mg and Mn an upward gradient whereas 

B remains constant. In view of the variability in the Mn and B 

values for grapes no definite trends for these elements can be 

presented in the case of grapes. 
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Taking the January 31 samples as a basis for comparison, 

it is evident that the values for samples collected four weeks 

earlier or later may differ by as much as 20%. On the whole, 

the values deviated more in February than in January. 

It is obvious that considerable error will be incurred 

by using analytical values without reference to what may be 

termed the characteristic seasonal drift in percentage nutrient 

concentration unless sampling is consistently carried out on a 

particular date each year. In practice, collection of a large 

number of samples must necessarily be spread over a considerable 

period so that a correction factor or reference curves will have 

to be used to eliminate or reduce this source of error. The 

gradients found are not linear and apply to fruit trees growing 

at Stellenbosch. More intensive sampling during the two month 

period as well as data for other fruit growing districts are 

required before reliable reference curves for each nutrient and 

fruit species can be established. 

Discussion. 

Nume~ous rererences in the literature indicate general agree­

ment that seasonal variation must be taken into account when inter­

preting leaf analysis data for both deciduous and citrus fruit 

varieties (47, 52, 55, 58, 70, 74, 84, 94, 103, 104, 114, 122, 

126, 153, 161, 167, 177, 181, 182). 

The information concerning deciduous fruit varieties, 

however, is far from complete and certain discrepancies as to 

the direction of change have been reported. The percentage N 

has consistently been found to decrease during the season (32, 

58, 122, 126, 153, 167, 177). The percentage P also decreased 

(58, 122, 126, 153, 167, 177) but Proebsting and-Brown (153) 

found that apricots showed a distinct increase in P which is at 

variance with the consistent downward trend found for apricots 
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in the present investigation (Figure 7). Calcium increased 

consistently and Mg also (32, 47, 122, 126, 153, 167) but a 

decrease of Mg in apple has also been reported (177). 

According to Smith and Taylor (177) B, Zn and Cu values 

decrease and Mn and Fe increase. Similar trends for these 

elements were found by McClung and Lott (126) except that B 

increased. Epstein (76) found no definite trend for Mn in 

basal peach leaves, whereas in the present investigation Mn 

in midshoot leaves increased during the season and B remained 

constant. 

The decrease inK (32, 47, 58, 122, 126, 153, 167, 177) 

and the initial rise before levelling off and decreasing as re­

ported for apricot and peach by Proebsting and Brown (153), is 

consistent wit4 the results obtained in the present investigation. 

Havis and Gilkeson (94) reported a rather disturbing relationship 

with level of K supply in peach.. They found that leaf K de­

creased when the rate of K fertilization was low but that it 

increased throughout the season when there was no crop and the 

level of K supply to the soil was high. 

These results appear to indicate that seasonal trends may 

vary in different countries and even in different varieties growing 

under the same conditions. A definite decision as to whether 

specific trends are typical under all conditions and as to what 

factors influence them does not seem possible until more data 

become available, but in the meantime a series of observations 

in a particular area, such·as those obtained at Stellenbosch, 

may tentatively be considered to represent the trends applicable 

to that area. 

Regarding the possible modifying effect of level of nutri­

tion, Jones and Parker (104) ce~e to the conclusion that this 

has little effect on the seasonal changes in mineral composition 

of orange leaves, and considered the seasonal trends obtained 



-109 -

for N, P, K. Ca, Mg and Na, as typical under the climatic con­

ditions prevailing in the coastal valleys of Southern California. 

Reuther and Smith (161) also concluded that most nutrient 

elements have distinctive overall seasonal trends of concen­

tration in citrus leaves, which are not fundamentally altered 

by soil, climate or cultural factors but may be displaced up­

ward or downward in response to the level of supply. 

It appears, however, from the data of Proebsting and 

Brown (153) and those obtained by the writer, that inconsistencies 

are more likely to occur in the early part of the season owing 

to varying climatic conditions which may affect rate of growth 

and thus the ratio of nutrient to dry weight, whereas later in 

the season, for instance during January and February when 

weather conditions are generally more stable, the trends in 

nutrient concentration are more likely to be consistent. In the 

northern hemisphere, the midsummer months, July and August, are 

also considered to be the most suitable months for leaf sampling 

(32, 52, 114, 126, 167). 

Cain (52) found that a single sample taken during the two­

week period following cessation of terminal growth was quite 

satisfactory for routine diagnostic work, thus eliminating the 

need for seasonal curves. Goodall and Gregory (85) also implied 

that a constant stage of development should be considered as a 

basis for recurrent analysis and not a constant sampling date. 

However, the data in Figures 5 to 13 do not indicate any definite 

change in direction of seasonal trends following cessation of 

either terminal growth or removal of fruit, so that sampling 

during the relatively stable months of January and February 

seems justifiable, irrespective of the actual stage of develop­

ment, even though this period may not always coincide with the 

optimum stage when, as pointed out by Goodall and Gregory, the 

proportional difference in nutrient content is greatest and most 

likely to give a correct forecast of a yield increase. 
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4.22 YEAR TO YEAR VARIATION. 

Reporting on seasonal trends in citrus, Reuther and Smith 

{161) stated that the climatic conditions such as rainfall and 

temperature prevailing during the season, affect leaf composition 

directly and also indirectly through accumulation or depletion 

of carbohydrates which sometimes appreciably changes the ratio 

of mineral constituents to dry matter. They concluded that these 

variations in leaf composition from season to season were gene-

' rally not large enough to cause major changes in nutrient status 

classification except in cases that lie in the range between 

deficiency and adequacy. Chapman and Brown (55) found fairly 

wide K fluctuations from one year to the next in citrus leaves 

from trees not deficient in K, whereas fairly uniform values were 

found under conditions where K deficiency was at a constant level. 

Wide variations of up to 20% and more have been found in 

deciduous fruits (70, 114, 153) but the widest differences in 
\ 

successive years appear to accompany samples collected either 

early or late in the season whereas the midseason period parti­

cularly under a uniform system of fertilization may not by subject 

to as wide variations. 

The Stellenbosch results indicate considerable variation 

from one season to the next even during the midseason period. 

To obtain some idea of these differences the data for January 3, 

January 31 and February 26 were averaged to eliminate within-

season variation and the means expressed as percentages of the 

1952 values, as indicaten in Tables 18 and 19. These mean 

values show wide differences for some fruit species, the maximum 

difference varying from 16% for N (apple) to 46% forB (plum), 

and even greater differences accurred in some of the yearly values 

for individual sampling dates. 

A feature of these variations is that with a few exceptions 

the 1951 and 1953 values for fruit tree species are fairly 
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TABLE 18. - YEARLY VARIATION IN COMPOSITION OF MIDSHOOT 

LEAVES OF FRUIT TREE SPECIES, EXPRESSED AS 

PERCENTAGES OF THE 1952 VALUES • 

N 

p 

K 

Ca 

Mg 

Mn 

B 

• • 

Peach Plum Apricot Apple Pear Mean % Dif'f. 
from 1952 values 

1951 98 96 91 84 102 
1952 100 100 100 100 100 
1953 102 93 100 91 104 

1951 107 126 113 108 127 
1952 100 100 100 100 100 
1953 97 122 95 106 118 

--

1951 92 91 96 96 106 
1952 100 100 100 100 100 
1953 83 92 93 110 97 

1951 97 103 105 101 104 
1952 100 100 100 100 100 
1953 99 122 138 116 133 

1951 So 100 94 90 75 
1952 100 100 100 100 100 
1953 94 121 143 110 107 

1951 97 87 95 96 ~1 
1952 100 100 100 100 100 
1953 113 119 120 100 121 

1951 - - - - -
1952 100 100 100 100 100 
1953 92 146 113 105 125 

; 

TABLE 19. - YEARLY VARIATION IN COMPO­

SITION OF BASAL LEAVES OF 

GRAPE VINES, EXPRESSED AS 

PERCENTAGES OF THE 1952 

VALUES. 

N p K Ca Mg Mn B 

1951 99 134 116 122 99 135 -
1952 100 100 100 100 100 100 100 

1953 101 123 104 106 103 102 106 
I 

- 6 

- 2 

+ 16 

+ 7 

- 4 

- 5 

+ 2 

+ 21 

- 12 

+ 15 

- 7 

+ 15 

-
+ 16 
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consistently either higher or lower than those for 1952, so 

that the data may be condensed by determining the overall mean 

percentage differences from the 1952 values to provide a gene­

ral evaluation of seasonal effect (see last column in Table 18). 

Evidently large seasonal differences occurred which in the case 

of Ca, Mg, Mn and B, could not have been caused by fertilizer 

applications since phosphate fertilizer containing Ca was applied 

at the same rate each year and the other nutrients were not used. 

The reason for the differences must therefore be ascribed to the 

differential effects of changing environmental conditions which 

may modify availability of nutrients and absorption capacity of 

roots. Reference to weather records at the University farm, 

Welgevallen, indicated that although the mean summer temperatures 

showed little change from year to year, the amount of rainfall 

during the midsummer months showed wide differences, as indi­

cated in Table 20. Since irrigation was not applied, the soil 

moisture content was evidently at a lower level in the 1951/52 

season. 

TABLE 20. - TOTAL MONTHLY RAINFALL (INCH­

ES) AT WELGEVALLEN. 

1950/51 1951/52 1952/53 

November 3.17 2.91 4.19 

December 2.44 .o4 ·35 
January 1.39 .05 .42 

February .14 .26 .o6 

Assuming that moist soil conditions favour the efficiency 

of P absorption (70) and that a higher rainfall may lead to loss 

of N by leaching (78), these conditions may account for the higher 

P and lower N leaf values found in the 1951 and to a less extent 
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in the 1953 samples. 

Mg is also fairly readily lost by leaching whereas moiste~ 

soil conditions favour the availability of Mn and B, which may 

account for the lower Mg content in 1951 and the higher Mn and 

B values in 1953, respectively. The Mg and Ca values in 1953 

and the Mn value in 1951 1 however, show changes in the o~posite 

direction. 

Thus, although some of the differences seem to conform to a 

pattern, it would be impossible to predict how seasonal factors 

will inrluence the content of all nutrient elements in the leaf. 

The magnitude of the seasonal diffe~enoaa ~erv~d were such that 

diagnostic interpTatations are bound to be seriously aff'ected. 

The deviations shown by the grape lear data ror some or the 

nutrient elements correspond to those shown by the fruit tree data, 

but marked discrepancies also occur particularly in the K and 

Mn values, probably on ao~ount or differences in nutrient supply 

and in absor~tion capacity of the plant species. 

CONCLUSION. 

There appears to be no reasen to doubt that considerable 

yearly variation in nutrient content does occur even under a 

unirorm system of annual fertilizer applications. Some of the 

deviation may be ascribed to analytical error, but climatic 

factors may largely be held responsible for differences in nutrient 

absorption and growth, and this would undoubtedly inrluence leaf 

composition. Differences in nutrient content of up to 20% from 

one year to the next cannot be consid3red as exceptional, and 

fully bears out the conclusion of Proebsting and Brown (153) 

that "rigid general standards of adequacy or deficiency based 

on a single sample have little validity in the face of the 

variability in response found in different seasons", unless 

prore•ly taken into account. 
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The variation occurring during a particular season of 

. course, may be accounted for by seasonal reference curves si~·~e 

typical seasonal gradients in nutrient content for each fruit 

species have been found to be quite consistent from year to 

year. Appropriate procedures of allowing for these sources of 

variation are suggested in Part III (Section 2.4). 
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5. VARIETAL AND ROOTSTOCK EFFECTS. 

5.1 PLANT SPECIES. 

That different plant genera vary asto their mineral re­

quirements and composition is understandable but even the more 

closely related species of one genus such as different species 

of fruit trees show large differences in capacity for absorp-

tion and accumulation of nutrient elements. Associated with 

their capacity for differential uptake of nutrients, fruit species 

aiso difer as to their critical or optimum leaf nutrient levels. 

Different fruit species may thus require different nutrient stan­

dards as has been shown by investigations on both citrus (161) 

and deciduous fruit trees (32). This does not exclude the pos­

sibility that different fruit species may show the same response 

at a common critical level of a particular nutrient. For in­

stance, in the case of Mn content it was found (76) that the 

critical minimum level tended to be about the same for all fruit 

species studied. 

5.2 VARIETAL DIFFERENCES. 

There appears to be considerable evidence of differences in 

leaf composition between varieties but in this case there is also 

strong evidence that these differences are relatively small and 

unlikely to affect interpretations based on comparison with stan­

dards determined for varieties of the same species. 

Chapman and Brown (55) found that the composition of leaves 

is definitely affected by rootstock and variety; the ability of 

the plant to secure adequate K or other nutrients from a soil 

may be influenced by variety, rootstock and various scion-root 

combinations. However, results showed that the critical nutrient 

level for K in citrus leaves is constant and that this value 
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holds irrespective of rootstock or variety. The same views 

as to varietal differences were proposed by Reuther and Smith 

(161) in connection with citrus varieties, Ulrich (206) for 

grapes, Lilleland and Brown (114) and Emmert (75) for peach 

varieties, and others (85). 

Goodall and Gregory (85), in their review of earlier work, 

state that most investigators agree that varietal differences 

in nutrient content are usually relatively small and that since 

they represent simply differing ability to absorb nutrients 

from the substrate i? question and not differing reaction to a 

given internal concentration, standard values may apply without 

modification according to variety. 
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5.3 ROOTSTOCK EFFECT. 

Significant differences in leaf composition due to the in­

fluence of the rootstock on the scion have been found by many 

investigators (50, 55, 59, 60, 84, 87, 161, 179, 187, 212). 

Some of these differences are probably associated with differences 

in root distribution (203) enabling some rootstocks to absorb a 

greater amount of nutrients than others, At least some of the 

differences are related to the ability of various rootstocks to 

differentially absorb nutrients from the soil (212). Smith and 

Wallace {187) pointed out that rootstocks may have specific 

cation-exchange capacities, and the differential ability of roots 

to absorb nutrients may thus account for some of the observed 

influences of rootstock on scion composition. 

Evidende of such rootstock effects was obtained from an 

experime.ntal pear orchard established for the purpose of deter­

mining the influence of various pear and quince rootstocks on 

performance of Bon Chretien pear trees. The orchard is located 

on a deep alluvial acid loamy sand at Bien Donne , the experimen­

tal farm of the W.P. Fruit Research Station. The trees were plan­

ted in 1943 in randomized blocks with 3 replications, each plot 

consisting of 5 trees. Pruning, spraying and cultural practices 

were applied uniformily throughout the orchard each year. 

The rootstocks used and data on yield and volume of growth, 

according to data for 1957 and 1958, supplied by the Pomology 

Section, are indicated in Table 21. The yield and tree volume 

data, arranged in order of total yield per tree, indicate that 

yield is associated quite definitely with growth vigour, the 

lower yielding trees being also smaller in size. 

Leaf samples were collected from each plot on 4/3/57, con­

sisting of 190 midshoot leaves, that is, 20 leaves from each 

of 5 trees per plot. They were washed, dried, ground and 

analyzed according to the standard procedure. The analytical 
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TABLE 21. - AVERAGE YIELD AND TREE VOLUME OF BON CHRETIEN 

PEAR TREES ON DIFFERENT ROOTSTOCKS. 

Av. yield Tree 
Rootstock per tree. volume. 

(lbs.) (cu. metres) 

B 12 M pear selection 320 113 

B 10 Kieffer C selection 290 110 

B 15 Tol II pear selection 270 137 

B 4 EP 4162 pear selection 260 8) 

B 14 W Pear A selection 250 78 

A Quince A seedling 240 76 

B Quince B selection 150 65 

B 9 Kieffer B selection 135 52 

B 13 W Pear A selection 105 37 

c Quince B with intermediate 95 47 

B. Hardy stock 

results, presented in Table 22, were statistically evaluated by 

analysis of variance for randomized blocks. As indicated, highly 

significant differences, even at a probability level of .001, 

occur in all nutrients except P, Fe and B. These differences 

occur between the quince and pear groups as well as between root-

stocks of the same species. 

If the differences, as found, are interpreted as reflecting 

not only the differing ability of the various rootstocks to ab­

sorb nutrients from the soil, it remains to be seen to what 

extent growth and yield are associated with the internal nutrient 

content as found by leaf analysis. 

Referring to the tree performance data in Table 21 and the 

leaf analysis data in Table 22, both arranged in order of yield 

per tree, it will be seen that the trees with the poorest per­

formance (B, B9, Bl3 and C) also have the lowest leaf contents 

-----------------------
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TABLE 22. - MEAN COMPOSITION OF MIDSHOOT PEAR LEAVFS ON DIFFERENT 

ROOTSTOCKS. DRY WEIGHT BASIS. 

\ 

S.D. 
S.D. 

Root- N p K Ca M~ Na Mn Fe · I Cu B 
stock % % % % % ppm ppm ppm ppm 

Bl2 2.16 .136 1,80 1.24 .16 .009 162 148 8.7 72 

BlO 2.02 .118 1.49 1.43 .20 .009 60 98 7.0 65 

Bl5 2.12 .112 1.51 1.48 .20 .011 91 106 10.0 73 

B4 2.09 .122 1.60 .98 .30 .012 228 119 8.3 72 

Bl4 2.07 .124 1.48 1.05 .24 ,010 131 134 7.0 75 

A 2.18 .124 1.57 1,01 .20 ,010 198 114 8.3 73 

B 1.89 ,106 1.92 .87 .18 .011 90 117 5·7 59 

B9 1.79 .100 1.48 1.35 .25 .011 72 114 6.5 46 

Bl3 1.56 .104 1.24 ·73 .29 .051 92 112 6.1 70 

c 1.72 .104 1.56 .92 .23 .016 104 127 5.1 58 

at .o5* .18 N.S~D. .28 .16 .05 .010 6o N.S.D • 1.% N.S.D, 
e.t ,001 -33 N.S.D. ·53 .29 • 091 • 018 112 N.S.D.1 2. N,S.D. 

t I . I I 

* Significant Difference at .05 and ,001 probability levels. 

of one or more of the nutrients N, P, K.and Ca. If the low 

yield and poor growth are taken as evidence of near-deficiency 

effects, the concentrations of these nutrients may also be con-

sidered as lying at or ne.ar the critical minimum level. If so, 

it must be concluded that certain rootstocks had the effect of 

reducing nutrient content in scion leaves to deficiency levels 

whereas other rootstock scion combinations provided good perfor­

mance trees with leaf nutrient contents at a higher level. There 

is an exception in the case of Mg, however, in that the best 
. 

rootstock for growth, Bl2, had the lowest Mg content in the scion 

leaves. 

The results demonstrate that great differences in nutrient 

content as well as in growth and yield can be caused through the 
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influence of rootstock on scion characteristics. Such wide 

differences may not occur in practice since the pear seedling 

rootstocks used commercially never show the marked scion dif­

ferences in growth and yield which occur in the experimental 

block under discussion. However, considerable variation in 

composition may be expected as a result of the variability in­

herent in seedling stock as commonly used in nurseries. Unfor­

tunately, there are no means of avoiding this source of variation, 

but that due to the rootstock species at any rate may be elimi­

nated by grouping together varieties grafted on a common root­

stock species, such as plum, apricot and prune which are commonly 

grafted on either peach or plum stock. 

Considering the main question of adequacy and evaluation of 

nutrient content in relation to growth determination, the existence 

of variation in leaf composition caused by rootstock effects is 

actually irrelevant, although of interest as regards the potential 

utilization of the available nutrient supply in the soil. The 

essential point is whether the nutrient content, which represents 

the resultant of all factors influencing absorption, is associated 

with a particular reaction in the plant. 

In view of the statement by Goodall and Gregory (85) that 

since varietal differences represent simply differing ability to 

absorb nutrients from the substrate in question and not differing 

reaction to a given internal concentration, it may be argued that 

the same applies to rootstock differences and that index values 

may thus also apply without modification according to rootstock. 

This contention is supported by the evidence presented above for 

pear rootstocks and is in accordance with results for K in citrus 

which led Chapman and Brown (55) to conclude that the critical 

nutrient level for K in citrus leaves holds irrespective of 

rootstock. 
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5.4 CONCLUSIONS. 

Considering its bearing on diagnostic work, it is clear 

from the evidence that standards of reference for leaf composi­

tion cannot be expected to apply more widely than within a par­

ticular species of fruit tree. Reports on varietal differences 

all indicate that standard values will apply without modification 

according to variety within a given species, so that orchards can 

be grouped simply according to species such as apple, peach, 

apricot, etc. 

The kind of rootstock used is bound to influence the efficien­

cy of absorption and nutrient content by virtue of the variability 

in the stock used by nurseries at the present time, so that it 

will be difficult to classify orchards in this respect. Seedling 

stock in any case cannot be traced and the variability from this 

source is unavoidable. With plum, prune and apricot a distinction 

between peach and Marianna plum rootstocks may be of value in at 

least eliminating the variation contributed by these rootstock 

species. However since it may reasonably be assumed that dif­

ferences in leaf composition caused by the rootstock do not affect 

the reaction of the plant to internal concentration, the rootstock 

effect may be ignored when considering the adequacy of the nutrient 

levels as found in the leaves. 
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6. SAMPLING IN THE ORCHARD. 

Having determined how to select a leaf sample on a tree 

with the minimum of errol', the next step is to define in what 

manner a sample must be collected to give a true reflection of 

the nutrient status of the group ef trees for which a diagnosis 

is required. Since soil variation directly affects leaf composi­

tion, the question of orchard representation is not considered at 

this juneture, only tree variation as may occur in a comparatively 

small group of trees covering a limited soil area which may be 

assumed to be uniform. 

In studying the variation in K centent of peach leaves, 

Lilleland and Brown (114) f~und considerable variation from tree 

to tree, even between adjacent t~ees which appeared to be uniform 

in growth and on a uniform soil. They considered that such varia­

bility between trees may be of commen occurrence. They found 

that averages for 10 trees showed satisfactory agreement and con­

sidered a sample frem 10 t~ees sufficiently accurate for a foliar 

survey·. Chapman and Brmm {55) later adopted the procedure of col­

lecting 15 to 20 leaves from each of 5 to 10 representative trees 

which they thought sufficed to give a reliable reflection of K 

status in the particular part of the citrus orchard. 

Reuther and Smith (161) considered that the trees sampled 

should be reasonably uniform and either in a compact group or 

grouped according to a particular tree condition. They reported 

that samples of 10 leaves per tree from 5 trees are adequate for 

most elements (although only N, P and K were considered), and that 

analysis of such samples will approximate the composition of the 

entire population of leaves in a block of about 60 to 120 trees 

with a standard error for a single sample of about 5 to 10%. 

Bathurst (6) recommended picking 10 to 16 leaves from each of 2 

percent of the trees when determining N and P status. 
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When the present investigation was started, the writer pro­

ceeded on the assumption that a sample of 12 to 20 leaves per tree 

from a group of 10 to 6 trees, that is 120 leaves per sample, 

would adequately refleet the nutrient status of the particular part 

of the orchard concerned. Twenty leaves seemed from practical 

considerations to be the minimum to represent all branches around 

a large tree and 12 for small trees. Sam~les were, of course, 

consistently collected from midshoot leaves on shoots of average 

length, borne on one.year old wood and well distributed around the 

periphery of the tree at about shoulder height, 



Tree 

1 
2 

R 5 
6 

~ 
9 

10 
11 
12 

Mean 

% SE 

- 124 -

6.1 PEACH ORCHARD 

In an attempt to gauge the efficiency of the sampling proce­

dure, a group of 12 Elberta peach trees, growing in a row adjacent 

to each other in an experimental orchard at Bien Donne, were in­

dividually sampled on 7/2/56, collecting 100 leaves per tree. The 

15 year old trees were reasonably uniform in growth, size and 

yield, and showed mild symptoms of Zn deficiency, The soil is a 

uniform deep alluvial loamy sand, rather high in available Mn. 

The leaf composition data are presented in Table 23, together 

with the percentage Standard Error as calculated for each nutrient. 

LEAF COMPOSITION DATA OF INDIVIDUAL PEACH TREES GROWING 
, 

IN A ROW ADJACENT TO EACH OTHER (BIEN DONNE). DRY WEIGHT 

BASIS. 

' 
N p K Ca M~ Na Cl Mn Fe Cu B 
% % % % % % ppm ppm ppm ppm 

3·0~ .13~ 1.~~ 1.82 .42 ,013 ,07 180 129 4.7 g9 2.8 . .13 1.9 1,62 ·34 .011 .07 191 149 ].2 
86 2,86 .1R8 2-~~ 1.42 .34 .013 .07_ 196 1 2 6.5 

2.84 .1 1 1.7 1.48 .32 .014 .06 172 153 ~:K 86 
2.92 .lal 2.0~ 1.36 .32 .01 .07 138 126 81 
3.18 .1 3 2.3 1.53 .32 .012 .09 136 140 6.5 ~~ 2.99 .140 2.07 2.06 .39 .016 .10 125 1)-J-2 6.4 2.92 .149 1.6? 2.02 -39 ,013 .12 9~ 123 5· ~~ 2,92· .1 1 2.08 1.~1 .30 .011 .o8 79 142 5·7 
3.16 .155 1.~5 1. 1 •44 .010 .o8 97 128 5·K 81 
3.18 .137- 1. 3 2.42 • 3 .012 .10 135 146 6. ~t 

-

2.91 .126 1.58 2.40 ·52 .013 .09 152 141 6.4 

2.98 .140 1.93 1.79 ·37 .013 .o8 141 138 6.0 78 
··-

4.2 5-3 11.8 20.6 17.2 12.5 20.8 27.4 6.6 25.1 16.3 
' 

The percentage dry weight data (not shown in Table 23) were rela­

tively constant, the percentage S.E., namely 2:4%, indicating that 

variability in percentage dry weight evidently could not have ac­

counted for the considerable variation in composition from tree 
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to tree which amounted to over 20% for Ca and Mn. Even when 

allowance is made for analytical error considerable variation re-

mains. 

It was clear that a fairly large number of trees would have 

to be sampled in order to obtain a composite sample which would 

correctly represent the nutrient status of this group. Assuming 

that the mean calculated from the data for 12 trees is a correct 

estimate of the composition of the whole block of 50 trees, it 

is possible to determine statistically the number of trees that 

should be sampled within a certain degree of precision. An ap-

propriate formula based on consideration of the significance of 

differences between means, appears to be that of Paterson as 

described by Love (117), as follows: 

where 

n = t xJ2 x s.E. or 2t2 x S.E.2 
D2 D 

n = no. of replicates, or trees in this case. 

D = difference that is deslred to be measured. 

t = reading from table of t values for a desired 

probability and the no. of degrees of freedom 

from which S.E. was determined. 

S.E. = standard error of a single observation. 

Employing this formula and substituting percentage S.E. 

and percentage difference for the actual values, the number of 

trees required for sampling to give mean values differing from 

the "true" mean by 10% and 20% at the 0.05 level of significance 

was calculated for each nutrient as indicated in Table 24. The 

values obtained show that a relatively large number of trees must 

be sampled to ensure that the composition does not differ by more 

than 10% from that representing the "true" mean, in fact only N, 

P and Fe will be accurately reflected to within 10% by a composite 

sample from less than the number actually sampled. The variation 
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TABLE 24. - NUMBER OF PEACH TREES TO SAMPLE 

TO SHOW SIGNIFICANT DIFFERENCES 

{D) OF 10% AND 20% AT A PROBABI­

LITY LEVEL OF 0.05, AS CALCULA-

TED FROM TABLE 23. 

Nutrient % s.E. D. = 10% D. = 20% 

N 4.2 2 1 
p 5-3 3 1 

K 11.8 14 4 
Ca 20.6 41 11 

Mg 17.2 29 8 

Na 12.5 16 4 
Cl 20.8 lt-2 11 

Mn 27.4 73 19 

Fe 6.6 5 2 

Cu 25.1 61 16 

B 16.3 26 7 

Mean 15.3 28 7 

for several elements is such that differences of as much as 20% 

from the true mean are possible when using composite samples from 

less than 10 trees. 
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6.2 APPLE ORCHARD. 

A projected Zn Mn experiment in a high-yielding Ohenimuri 

apple orchard at Elgin provided the opportunity of examining the 

variability in leaf composition of 20 two-tree plots distributed 

over the experimental block of 10 x 25 trees. The 24 year old 

trees were comparatively uniform in growth, size and yield. The 

plots were selected on the basis of a uniform intensity of Zn and 

Mn deficiency symptoms. The soil is a brown Bokkeveld loam over­

lying gravel. Leaf samples comprising 50 midshoot leaves from 

each of two trees per plot were collected on 26.2.57, cleaned, 

dried and analyzed according to the standard procedure. 

The analytical results are tabulated in Table 25 which also 

shows the means and percentage S.E. as calculated from the data 

for each plot. Further statistical treatment was employed as with 

the peach data, to determine the number of plots required to show 

significant differences of 10% and 20% (Table 26). 

The results show that with the variability occurring in the 

apple block, a composite sample must be drawn from all the plots 

actually sampled, in the case of several nutrients, if it is 

required to provide a mean value which does not differ signifi­

oantly from the "true" mean by more than 10%. This situation cor­

responds fairly closely with that found in the case of the peach 

data. The variability, probably owing to soil variation, is even 

greater than in the peach Block since 6 plots (12 trees) are re­

quired to represent all the nutri~nts to within 20% of the Block 

mean as compared with 7 trees in the case of the peach. 
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TABLE 25. - LEAF COMPOSITION DATA FOR TWO-TREE PLOTS DISTRI­

BUTED OVER AN EXPERIMENTAL BLOCK OF APPLE TREES 

(ELGIN). DRY WEIGHT BASIS. 

Plot N p K Ca 
~ 

Na Mn Fe Cu B 
% % % % % ppm ppm ppm ppn: 

1 1.92 .116 1.40 1.4IJ ·35 .014 11.0 67 3·1 35 

2 2,05 .123 1.14 1.47 .41 .014 8.3 82 3·4 33 

3 1.97 .147 1.05 1.36 ·38 ,019 8.3 84 4.1 39 

4 1.98 .163 1.37 1.36 .29 .017 9.6 72 3·9 41 

5 2.08 .183 1.30 1.35 ·33 .018 8.9 74 4.4 41 

6 2.05 .120 1.50 1.06 .29 .017 8.4 87 3.2 42 

7 2.08 .135 1.47 1.29 .32 .016 7.4 84 3·4 37 

8 2.03 .127 2,02 .96 .29 .019 7.8 95 3.1 45 . 
9 2.01 .124 1.30 1.09 .31 .019 6.5 78 3.1 33 

10 2.06 .147 1.24 1.25 .,30 .019 7.0 73 1.!-eO 35 

11 2,01 .131 1.15 1.47 ·35 ,017 7.1 79 3·7 39 

12 2.03 .112 1.50 .98 .31 .013 6.2 74 2.9 31 

13 2.02 .126 1.h5 1.24 ·37 .016 7.0 86 3·4 33 

14 2.03 .126 1.27 1.24 o28 .019 8.8 79 3·5 37 

15 1.97 .129 1.40 1,09 .28 .015 7.3 74 2.9 41 

16 2.09 .124 2.25 .81 .29 .016 6.8 82 2.8 37 

17 2,00 .131 1.72 .98 .38 .018 6.1 102 3·2 66 

18 1.98 .135 1.40 1.23 .30 ,016 8.6 72 3 .. 1 60 

19 2.09 .126 1.60 .86 .23 ,011 6.4 73 2.6 62 

20 2.17 .125 1.51 1.16 .29 .015 8.5 85 2.9 56 

~ean 2.03 .133 1.L~5 1.18 .32 ,016 7.8 80 3·3 42 

fa SE 2.8 12.5 19.8 16.8 13.8 13.8 16.1 10,6 14.1 24.E 
l 
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TABLE 26. - NUMBER OF TWO-TREE PLOTS TO SAM­

PLE TO SHOW SIGNIFICANT DIFFEREN­

CES (D) OF 10% AND 20% AT A PRO­

BABILITY LEVEL OF 0.05, AS CALCU-

LATED FROM TABLE 25. 

Nutrient % s.E. D. = 10% D. = 20% 

N 2.8 1 1 
p 12.5 14 ~-

K 19.8 35 9 
Ca 16.8 25 7 
Mg 13.8 17 5 
Na. 13.8 17 5 
Mn 16.1 23 6 

Fe 10,6 10 3 
Cu 14.1 18 5 

B 24.8 54 14 

Mean 14.5 22 6 
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6.3 COMPARISON OF PEACH AND APPLE DATA. 

The data for peach and apple may now be used to estimate the 

error involved in following the procedure of drawing samples from 

6 to 10 trees as used in the present investigation as well as 

from for instance 20 trees, which in the case of the apple data 

would correspond to 3, 5 and 10 plots respectively. A difference 

between the sample mean and the true mean to be significant at the 

0.05 probability level, can be calculated from Paterson's formula, 

since n is known, as follows: 

The two sets of data obtained in this way are given in Table 27 

for comparison. 

TABLE 27. - PERCENTAGE DIFFERENCE FROM THE 11 TRUE11 l"f.EAN 

PEACH AND APPLE LEAF COMPOSITION, AT THE 

0.05 PROBABILITY LEVEL, WHEN COMPOSITE SAM­

PLES ARE DRA~N FROM 6, 10 OR 20 TREES. 

Peaoh Apple 

Nutrient 
6 10 20 6 10 20 

Trees Trees Trees Trees Trees Trees 

N 6 ~ ~ 
5 4 3 

p 7 21 17 12 
K 15 12 34 27 19 

Ca 27 21 14 ~~ 23 16 
Mg 22 17 12 19 13 
Na 16 13 9 24 19 13 
Cl 27 21 15 - - -
Mn 35 27 19 28 22 15 
Fe 9 7 5 18 14 10 
Cu 32 25 17 24 19 13 

B 21 17 11 34 27 23 

Mean 20 16 10 24 19 13 

I 
f 
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The data show that wide ~ifferences must be allowed for most 

nutrient elements when samples are drawn from 6 or 10 trees. In­

dividual nutrients show evidence of different degrees of variabi­

lity for peach as compared with apple, due evidently to differen­

tial response in the two situations. The average error involved 

for all nutrients amounts to 20% for peach and 24% for apple when 

6 trees are sampled. These values of course include analytical 

errors which have not been deducted, and in the case of the apple 

data soil variation will account for some error due to distribution 

of plots as indicated by the larger differences for the same number 

of trees sampled as compared with those for the compact group of 

peach trees. 

On the basis of these results therefore, the error due to 

analysis and tree variati~n may be sueh that differences between 

leaf analyses which are to be compared with each other, must ex­

ceed 20% in order to be significant when samples are drawn from 

6 trees. If 20 trees per sample were used, the precision would 

increase to the extent that differences exceeding about 10% 

would be significant. 
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6.4 DISCUSSION. 

In a recent study of tree variation in citrus orchards, 

Steyn (193) found a considerable sampling error of about the same 

magnitude as found above, from which he concluded that sampling 

only a small percentage of trees in an orchard may lead to entire­

ly faulty interpretations as regards some of the nutrients, par­

ticularly if the orchard is a poor one. 

Steyn set out first to determine how many leaves must be 

picked f!'om a single tree to reflect the 11 true 11 values of the 10 

nutrient elements in those leaves falling in the sampling cate-

gory. Comparing the analytical values for sets of 25, 100 and 

675 leaves he found that a 25 leaf sample will represent most of 

the elements to within 10% of the true values in a tree. 

In his study on tree variation, Steyn selected a group of 

outwardly homogenous trees and of average size in each of 3 or-

chards, good, average and poor. The analytical results for in-

dividual trees in each group were treated statistically to deter-

mine the number of trees which sheuld be sampled in each to re-

present the various elements within a certain degree of precision. 

The formula used was 

which is identical to that of Paterso~ as quoted by Love (117), 

used for the peach and apple data above. 

In his calculations, Steyn adjusted the Coe"fficient of 

Variation (% S.E.) for each element by subtracting the analytical 

variance found in his analytical determinations from the variance 

as found in each block of trees. His values for analytical error 

were exceptionally low and did not materially alter the magnitude 

of the total error. Steyn's data indicating the sampling error 

found for each element and the minimum number of trees to be 

sampled to represent the various elements to within 10% and 20% 
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of the mean values at a probability of 19 to 1, are reproduced 

in Table 28. 

TABLE 28. - DATA ON CITRUS ACCORDING TO STEYN (193) FROM 

HIS TABLES 28, 30, 32 AND 33, INDICATING THE 

% S.E. AND THE MINIMUM NUMBER OF TREES TO 

SAMPLE IN BLOCKS A, B AND C FOR A GIVEN DE­

GREE OF REPRESENTATION AT THE 5% POINT • 

. 
Block A Block B Block C 

Element 
% % % D = D = D = D = D = D = 

s.E. 10% 20% s.E. 10% 20% s.E. 10% 20% 

N 5·3 3 1 2.2 1 1 7.0 6 2 

p 3.6 2 1 6.8 5 2 5·4 4 1 

K 15.8 23 6 10.8 11 3 25.2 71 18 

Ca 7.2 5 2 8.1 6 2 11.6 16 4 
Mg 18.3 31 8 23.5 51 13 71.4 574 143 
Na 27.1 67 17 11.4 12 3 15.8 28 7 
Fe 8.0 6 2 19.2 34 9 10.3 12 3 
Mn 16.9 26 7 11.4 12 3 6.1 5 2 

Zn 20.0 37 10 7.9 6 2 23.2 61 16 

Cu 18.3 31 8 13.6 17 5 8.5 9 3 

Mean 14.1 24 7 11.5 16 5 18 ·5 79 20 
~ 

Block A comprised 16 large, high-yielding 40 year old orange trees 

showing Zn deficiency symptoms, Block B consisted of 16 medium 

sized, high-yielding 18 year old trees showing Mg deficiency symp­

toms, and Block c,8 poor, low-yielding 25 year old trees affected 

with Mg, Cu and Zn deficiency symptoms. 

As the data (Table 28) show, the variability in the poor 

orchard is relatively much greater than in Blocks A and B, due 1 
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however, mainly to the abnormally high value for one element, 

Mg, the analysis of which would seem to be suspect. The other 

nutrients in Block C on the whole show a degree of variability of 

much the same magnitude as in Blocks A and B, though differing 

individually. Steyn argues that when the concentration of an 

element was at a deficient level the variation tends to be ex­

ceptionally large. This does not seem to apply in all cases since 

Block C was also deficient in Cu and yet showed only moderate 

variation as to this element. Moreover, the Elgin apple orchard 

was seriously deficient in Mn (Table 25) and yet showed only a 

moderate degree of variation in Mn content. 

Comparing the tree variation as found in the peach (Table 24) 

and apple (Table 26) orchards with that in the citrus orchards 

(Table 28), it is evident that these orchards have much in common 

as to variability in leaf composition. If this is a feature of 

orchards in general, as appears to be the case, much greater dif­

ferences must be attributed to tree variation than is generally 

supposed and sampling from a small number of trees for diagnostic 

purposes is open to criticism. Statistical treatment showed that 

this source of error can be reduced by employing a larger number 

of trees, preferably not less than 10, when collecting samples 

for analysis, in order to obtain a reliable estimate of the nu­

tritional condition of the trees in a particular locality. Samp­

ling from 20 trees will provide even better representation subject 

to the condition that they comprise a compact group homogenous as 

to growth characteristics and on a uniform soil. 

In practice however sampling from as many as 20 trees is cum­

bersome and time-consuming since the selection of a compact group 

of homogenous trees becomes more difficult as the number increases 

while at the same time augmenting the magnitude of soil variation. 

In view of these circumstances then, sampling from 10 homogenous 

trees in a compact group and on a uniform soil would seem to be 
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the more reliable course to follow in diagnostic work. The size 

of the sample likewise should be limited to fit in with an ef­

ficient system of washing, drying and storage. Samples of 100 

to 150 leaves can be conveniently handled so that 10 to 15 leaves 

from each of 10 trees, carefully sGlected to represent all the 

branches around each tree, would be required. Larger samples 

from each of a larger number of trees may be more representative 

but a compromise is evidently necessary to avoid errors imposed 

by too unwieldly a procedure. 
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6.5 CONCLUSION. 

For the sake of perspective it may be pointed out that the 

existence of relatively large differences in leaf composition from 

tree to tnee, which appears to be a characteristic feature of 

fruit trees, does not invalidate conclusions drawn from leaf ana­

lysis designed to identify a particular nutritional disorder or to 

evaluate the response to fertilizer applications in experimental 

procedure. In the former case tree variation is irrevalent, and 

in the latter, analysis of variance applied to a factorial lay­

out will account for tree variation since variance is based on 

the behaviour of all the trees in the experimental block. 

The question of tree variability however becomes of paramount 

importance in interpretation of analytical results obtained for 

the purpose of evaluating the nutrient status of orchards when 

the leaf composition of a group of trees is to be compared with 

a previously determined standard composition. It is essential, 

then, to employ data which correctly reflects the nutritional 

condition of the majority of the trees concerned, which can be 

achieved, as the results show, only by avoiding sampling from 

too small a number of trees. As indicated above 10 trees per 

sample will be adequate. A smaller number may sometimes be justi-

fiable but less than 6 trees per sample is likely to provide 

quite misleading results. 

Furthermore, the results obtained for the trees sampled can­

not be expected to apply more widely than to the particular locali-

ty, and by no means to a large orchard. Owing to soil variation 

and differential response in various parts of an orchard, composite 

samples from trees scattered throughout the orchard are bound to 

provide average values liable to obscure specific nutritional 

disorders the evaluation of which is necessary to predict what 

treatment will prevent further deterioration. Steyn {193) pro-
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posed that orchards should be divided into small uniform blocks, 

sampling at least 20% of the trees in each block. Such inten­

sive sampling will be difficult to achieve in practice except 

in exceptional cases. A reasonable approach in advisory work 

would seem to be an evaluation of the nutrient status in one or 

two problem localities selected according to a particular soil 

or growth condition while recognizing that not all parts of the 

orchard will respond equally to treatment based on the sample 

data. 
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P A R T III 

DETERMINATION OF LEAF NUTRIENT STANDARDS 

.. ___________ _ 
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1. INTRODUCTION. 

The various steps which constitute the teahnique of diagnos­

tic leaf analysis include sampling and preparation of sample for 

analysis which have been dealt with in Part II, then the actual 

chemical determinations followed by interpretation of the analy­

tical results by comparison with previously determined nutritional 

standards. 

For the purpose in view, namely diagnosis of the nutrient 

status of trees in commercial orchards, it is necessary to have 

some criterion by which a decision as to the adequacy or not of 

the leaf composition as found by analysis can be reached. Such 

a standard of reference must be capable of indicating the level or 

range of nutrient values at which maximum growth and yield may be 

expected. 

From theoretical eonsiderations, as discussed in Chapter 3 

of Part I, it is clear that the relationship between yield or 

growth and internal nutrient concentration which may be linear 

at low levels will be influenced at higher levels by the concen­

tration of other nutrients through metabolic interactions which 

come into play when the nutrient level is no longer limiting. 

Individual nutrients thus cannot be considered independently as 

entities in relation to response. The ultimate growth expression 

depends on both concentration and balance of all the functional 

elements so that maximum potential growth and yield is possible 

only when the concentration of each nutrient as well as the inter­

relationship between nutrients are both optimal (176, 198). 

Ulrich (206) proposed the term "critical nutrient range" to 

indicate the range of concentrations at which the growth of the 

plant is restricted in comparison with that of plants at a higher 

nutrient level; at or below this level one element may aff~ct the 

utilization of another and such a lack of balance is likely to 
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affect plant growth. This idea developed into the more appro­

priate concept of "optimum values" as postulated particularly by 

Goodall and Gregory (85), Wadleigh (209) and Smith and Taylor 

(177). According to the latter, the concept of "optimum values" 

maintains that there is a specific leaf concentration for each of 

the essential elements which is correlated with optimal response 

in terms of yield or other characteristics, and that these concen­

trations or optimum values hold over a wide range of soil types 

and under a variety of climatic conditions. The leaf composition 

will therefore reflect the potentialities of the desired response. 

As the optimal nutrient level of each factor, depending on all 

factors simultaneously, is approached the maximum possible yield 

of the plant will be reached. 

Experience has shown that high performance in fruit trees 

is accompanied by considerable variation in leaf composition as 

to both concentration and interrelationships between nutrients. 

Accordingly, if considered realistically the concept of "optimum 

values" should have a broader meaning than that originally pro­

posed and interpreted by Smith and Taylor (177) and others as a 

specific level or narrow range of values representing the ideal 

composition. If nutrient concentrations above or below this op­

timum value are also associated with maximum performance, it is 

evidently of greater value in diagnostic work to have information 

on the limits of the whole range in composition which may be as­

sociated with the maximum production potential. 

Considering the "optimum range" ax now visualized, it is 

evident that it may include relatively high concentrations ap­

proaching luxury consumption which however will be no disadvantage 

since as long as maximum production is possible the nutrient balan­

ce or interrelationship between nutrients must still be favourable. 

Nutrient values at the lower limit of the range associated with 

maximum production must likewise be considered adequate. Under 



these conditions the ratios between nutrient elements may vary 

considerably as for instance between a nutrient {Mg) at the lower 

limit and another (K) near the upper limit, and vice versa. 

According to the concept however the lowest value in the "optimum 

range" will be above the level at which its concentration in re­

lation to an excess of another will result in unfavourable meta-

belie interactions which may have an adverse effect on growth. 

According to Ulrich (206), growth is adversely affected through 

unfavourable utilization of one nutrient as influenced by another 

only when its concentration is at or below the "critical level", 

or lower limit of the optimum range in the present case. 

In accordance with the idea of an optimum range in nutrient 

concentration, representing or associated with high performance, 

it is necessary that the upper and lower limits of the range be 

established for the purpose of diagnostic comparisons. The 

critical percentage content associated with the appearance of 

deficiency symptoms may be assumed to mark the lower limit for Mg 

and the micro-nutrients since as discussed in Section 4.33 of 

Part I (page ~7 ) there is at present not sufficient evidence to 

indicate that performance of fruit trees is improved by these 

nutrients at concentrations higher than the level associated with 

the disappearance of visible deficiency symptoms, except perhaps 

in the case of Bin grapes (170). But in the case of N, P, K 

and Ca it is known that these nutrients definitely influence yield 

and quality of fruit at concentrations well above the threshold 

level for symptom expression. For these elements therefore the 
of th~ oprlw,um t-.::u~,ge 

lower limitAmust represent the threshold level for maximum produc-

tion, that is, the level above which no further improvement in 

performance due to increased nutrient supply would be likely to 

occur. 

In similar vein it may be contended that the upper limit 

for both macro- and micro-elements would be marked by the level 



at which luxury consumption begins to disturb the nutrient 

balance by intefering with the absorption and utilization of 

other elements, or when the concentration reaches toxic propor­

tions, as reflected by deterioration in growth and yield of 

fruit. 

The most reliable method of establishing these limits is 

by means of a large number of factorially designed fertilizer 

experiments in different localities, through which data can be 

obtained on yield response and internal nutrient concentration at 

different levels of supply of one nutrient at constant (adequate) 

levels of all the other functional elements. Recent work by the 

French workers, Prevot and Ollagnier (151), demonstrates what 

has been achieved in connection with groundnuts and palms in 

Tropical Africa. They showed that diagnoses based on the inter­

relationships between macro-nutrients may lead to a more complete 

interpretation of leaf analysis data as provided in such factorial 

experiments than by the use of critical levels of individual 

elements al~ne. As already indicated such data from a sufficient 

number of factorial experiments are not available for deciduous 

fruit in South Africa and are not likely to be for a long time. 

Another approach is by considering the leaf composition of 

trees known to have a record of high performance as to yield 

and quality of fruit. If leaf analysis data are available from 

a large number of such orchards in different localities repre­

senting a wide range of nutrient supply, the highest and lowest 

values may be considered to represent a close approximation of the 

limits required for maximum production. Such data can be obtained 

from a leaf analysis survey of high producing orchards. The 

lower limit of the optimum range, as indicated above, will be 

s~bject to adjustment on the basis of critical threshold levels 

for deficiency symptoms which may be determined from a survey 

covering localities varying in fertility and including poorly 
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nourished orchards. If the appropriate surveys are comprehensive 

enough, a sufficient number of low and high values will be avail­

able from which reliable index values may be deduced for future diag 

nostic interpretations. 

In accordance with these considerations, the required data 

have been sought on the basis of extensive leaf analysis surveys, 

firstly for the purpose of fixing threshold levels of symptom 

expression and secondly, for determining the limits of the opti­

mum range. 

After reviewing the technique of leaf analysis (already 

discussed in detail in Part II), a description will be given in 

the following pages of the visual symptoms of nutritional disorders, 

followed by presentation of leaf analysis data from surveys in re­

lation to symptom expression and to high performance, and finally 

consideration of the data for determination of index values. 
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2. TECHNIQUE OF LEAF ANALYSIS FOR NUTRITIONAL DIAGNOSIS. 

The procedure followed in obtaining data for determination 

of nutrient standards and which will be applicable also for deter­

mining the nutrient status of trees of unknown nutrition, may be 

briefly reviewed. The experimental evidence as to sampling and 

other errors as discussed in Part II emphasize the necessity for 

attention to detail and for particular care in following a stan­

dardized procedure which will eliminate or minimize errors likely to 

cause erroneous results and misleading interpretations. The 

procedure considered most likely to accomplish this, in addition 

to reliable methods of analysis, was adopted as follows:-

2.1 SAMPLING IN THE ORCHARD, 

This subject has been discussed in Cha~ter 6 of Part II 

(pages 122 to 137 ) • Each sample must c~ns ist of 100 to 150 

midshoot leaves selected according to a particular tree condition 

from a compact group of 6 to 10 trees in the orchard under con­

sideration. The trees must be uniform as to growth vigour and 

size and on a uniform soil. 

In practice sampling was varied according to the size of the 

trees~ ranging from 10 - 15 leaves from each of 10 small trees to 

20 - 25 leaves from each of 6 large trees. 

In the case of grape vines two basal leaves on fruiting shoots 

from each of 15 - 20 adjacent vines were collected for each sample. 

2.2 SELECTION OF LEAF SAMPLE. 

The procedure for selecting leaves on each tree has been 

described in Section 3. 6 of Part II (page 95 ) • 
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2,3 PREPARATION OF FRESH SAMPLE FOR ANALYSIS. 

The particulars regarding cleaning, drying, grinding and 

storage of leaf samples are as stated in Section 2,7 of Part II 

(page 79 ) • 

2,4 TIME OF SAMPLING. 

The experimental evidence presented in Chapter 4 of Part II 

( pp. 96 to 121 ) indicated that marked seasonal and year to year 

variation in nutrient concentration must be taken into account 

when using leaf analysis data for diagnostic PU!~oses, It was 

found that leaf composition appeared to be most stable during the 

months January and February, and that leaf sampling is best 

carried out during this period. Even then, substantial differences 

in concentration oecurred from January 3 to February 26 and from 

one year to the next. 

(a) Within season variation. 

The effect of seasonal variation in analytieal values must 

be considered since it would be impossible to collect all samples 

on a particular day or even within the space of a week or two. 

Seasonal gradients in nutrient eontent as determined for each 

fruit species were found to be quite consistent in successive 

years so that the variation during a particular season can be 

simply corrected by reference to the typical seasonal curves 

applicable to each nutrient. The gradients for apple, pear, peach, 

apricot, plum and prune were found to correspond fairly well and 

may be grouped together, leaving grapes with its own set of cor­

rection curves. 

This means that analytical data for samples collected at any 

time during January and February are corrected for seasonal effect 

by adjustment to a specified sampling date which may be conveniently 
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fixed at January 31 using the correction curves presented in 

Figure 14. _ These curves represent the percentage deviation in 

relation to the values obtained for January 31 (from data in 

Table 17 on page 106). The correction for sampling dates other 

than January 31, then, is obtained by multiplying the analytical 

value for each nutrient by 100 and dividing by the appropriate 

percentage value from Figure 14. 
There is evidence that the shape of the seasonal curves may 

vary in regions differing widely in climatic conditions so that 

reference curves should be drawn up for distinctive regions. 

Fur.thermore, since the curves are not linear over the two-month 

period, sampling at more frequent intervals than was the case in 

obtaining the data presented in Table 17, will improve the relia­

bility of adjustments. Until further refinements can be effected, 

however, the use of the available data in Table 17 can be expected 

to reduce seasonal error sufficiently to justify corrections on 

this provisional basis. 

(b) Year to year variation. 

Differences in nutrient content of as much as 20% from one 

year to the next were found for trees receiving a uniform system 

of annual fertilizer applications. As discussed in Section 4.22 

of Part II (page 112 ) , these differences arise mainly as the 

result of changing environmental conditions which modify the 

availability of nutrients and the absorption capacity of the roots.· 

A change in the fertilizer programme will of course. differentially 

influence the nutrient content apart from the general fluctuation 

due to climate. 

Although nutrient status diagnosis by comparison with stan­

dard index values in a particular year is not affected by year 

to year differences, the nutrient status may be erroneously 

considered adequate in one year when a high level prevails whereas 
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it may be at a marginal or inadequate level in the next. 

The writer proposes to overcome this source of variation 

by means of reference data obtained each year whereby standard 

index values for each nutrient can be adjusted to the level ap­

plicable to any particular year. Permanent reference plots for 

each fruit species will be marked off in different localities 

according to the main climatic regions and leaf samples collected 

each year from the same trees. By limiting the reference plots 

to high performance orchards where a change in fertilizer regimen 

is unlikely to be necessary, the change in nutrient content oc­

curring in successive years may be assumed to represent that due 

specifically to climatic factors. 

2.5 VARIETAL GROUPING. 

As indicated in Chapter 5 of Part II (page 121 ), for 

purposes of nutritional diagnosis, standards of leaf composition 

will apply without modification according to variety or rootstock. 

Forthe purpose of determining nutrient standards therefore varieties 

of the same species may be grouped together irrespective of 

rootstock. 
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3. NUTRITIONAL LEVELS ASSOCIATED WITH SYMPTOM EXPRESSION. 

Extreme deficiencies and excesses of essential nutrients 

in plants are characterized by specific abnormal growth manifes­

tations depending on the physiological functions of the nutrient. 

The symptoms are usually sufficiently distinctive to identify the 

nature of the disorder. Symptom expression thus provides a most 

convenient criterion for spotting serious nutritional disorders 

and this forms the basis of the well known technique of visual 

diagnosis of malnutrition. Although by no means infallible it 

makes possible diagnosis at a glance and as such has been found 

invaluable in practice, particularly for fruit trees. 

Certain conditions may restrict the use of visual diagnosis. 

Symptoms of nutritional disorders may sometimes be confused with 

other physiological or pathological manifestations or they may 

not be easily identifiable when deficiency symptoms of one element 

resemble those of another. For instanee, a definite decision is 

often difficult in the case of deficiencies of K and Mg and ex­

cess of Na or Cl. With multiple deficiencies the symptoms of 

one may be masked by those of another since the most deficient 

element tends to dominate symptom expression. The writer has 

often found that correction of Zn deficiency symptoms by Zn treat­

ment was followed by appearance of Mn deficiency symptoms and vice 

versa. Such plants invariably show a deficient level of Mn by 

leaf analysis. On the other hand, symptoms of two or more de­

ficiencies frequently occur simultaneously on the same tree such 

as those due to Zn and }fu 1 or Zn and Mg, or Zn, Mn and Mg or Zn, 

Mn and Fe, as observed in the Western Cape Province. 

Nevertheless, by far the majority of cases permit a definite 

diagnosis at least in so far as Mg and the trace elements are 

concerned, as repeatedly substantiated by the writer through leaf 

analysis and response to treatment. Symptoms of N, P, K and Ca 
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deficiencies as a rule are not very much in evidence owing to 

the relatively high levels of supply maintained in most commer­

cial orchards by regular applications of fertilizers containing 

them. Phosphorus and Ca deficiencies in any case cannot be 

satisfactorily identified on the basis of visual symptoms and 

those of N and K only when acute. 

In general, symptom expression is reflected in leaf com­

position, deficiency symptoms appearing at a certain low con-

·centration and toxicity symptoms at a certain high concentration 

of the nutrient concerned. The transition points tend to corres­

pond to more or less definite concentration levels but are not 

fixed in relation to nutrient content so that lack of symptoms 

is no guarantee that the plant is not seriously deficient. When 

dealing with a large number of suboptimal orchards it is possible 

to correlate leaf nutrient concentration with symptom expression 

and fix a nutrient level below which deficiency symptoms will 

occur more often than not and above which they are unlikely to 

occur very often. 

As intimated in the Introduction to Part III (page 14~, 

this threshold level for symptom expression in the case of Mg 

and the trace elements may provisionally be considered to coincide 

with the level at which maximum economic production is possible. 

A brief description of the visual symptoms of malnutrition 

are given below, indicating only the more prominent features 

which in the opinion of the writer may be most helpful as a basis 

for identification purposes. The symptoms encountered in South 

African orchards have already been recorded by the writer (14, 

14a). A somewhat more comprehensive account is presented here, 

supplemented by the photographic illustrations of symptoms found 

in the Western Cape Province and by reference to other sources 

as indicated. All of the essential nutrient elements are con­

sidered except S and Mo since there is no local evidence which 
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would suggest that the supply or leaf content of these nutrients 

constitutes a nutritional problem at present. 
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3.1 DEFICIENCY SYMPTOMS. 

NITROGEN. 

Common symptoms are lack of green colour and,restriotion 

of growth. Leaves are smaller than usual, yellowish green and 

ultimately show yellow, red or purple tints. The older leaves 

are affected first and drop prematurely. Shoots are short, thin 

and few. Blossoming, fruit set and yield are reduced. Fruits 

remain small, become highly flushed and have good flavour and 

keeping quality (63, 129, 202, 216). 

Beeause of its rapid renewal growth, peach is particularly 

susceptible to N deficiency in spring, in spite of heavy dres­

sings of N fertilizers. This was strikingly illustrated a few 

years ago in the Outeniqua Pass area where heavy rain fell early 

in October leaching out the available N applied earlier. Marked 

yellowing and red spotting of the older leaves was observed in 

samples submitted for diagnos-is. On another occasion young Early 

Dawn peach trees at Banhoek exhibited yellowish foliage and marked 

purplish tinting on the older leaves (the N content of ovendry 

midshoot leaves, as adjusted to January 31, was found to be 2.11%). 

The effects of N deficiency are insiduous and unless acute as 

in neglected orchards, may escape positive diagnosis, so that 

symptom expression cannot be regarded as a reliable index of N 

status. 

Since quality and colour of fruit are closely associated 

with the level of N supply, a common practice with grape growers 

in certain areas is to restrict the supply of N with the object 

of inducing early ripening pa~ticularly of Waltham Cross grapes •. 

In such vineyards, as well as in heavily bearing orchards, pale 

green and even greenish yellow foliage is frequently encountered 

at the picking stage. 
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PHOSPHORUS. 

A characteristic feature of P deficiency is the dark 

green colour of the foliage and the tendency of the leaves 

to develop purple or bronze tints especially in cool weather. 

Fruits may be highly flushed but unlike those subject to N 

deficiency they have a green ground colour, high acidity and 

roor keeping quality (216). 

Apart from the abovementioned features the deficiency effects 

of P closely resemble those due to N deficiency, resulting in 

restriction of growth, blossoming and fruiting (63, 129, 202, 216). 

Thus distinctive symptoms that will accurately identify P de­

ficiency in fruit trees are limited. 

Symptoms are probably more common in yeung trees in which 

the reserve supply of P is still small. Only two positive oases 

of P deficiency have been encountered by the writer, in both 

cases young peach trees growing in acid sandy soil at George and 

Plettenberg Bay. 
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POTASSitJM. 

Marginal scorch of the older leaves is characteristic of K 

deficiency in fruit trees. The scorch may vary from necrotic 

spotting as reported for peach and grape (63, 216) to a well 

defined necrosis of the leaf margin, col~ured black in pears and 

brown or gray in other fruits. Necrosis may be preceded or 

accompanied by yellowing or interveinal chlorosis as in prune 

(Plates 1 and 2), peach, plum and apple (216). 

Potassium is readily mobile so that linear growth is not 

much affected at first although twigs are slender, but an acute 

deficiency results in stunted growth and die-back of shoots and 

branches. The first leaves to be affected are those on the lower 

half of shoots in midsummer and even if severely scorched they show 

little tendency to drop. An acute deficiency in peach may cause 

leaf necrosis on emerging growth in spring. Anothe~ early symptom 

in peach is crinkling and rolling of the leaves. Fruit bud 

formation is restricted and fruit tends to be small and poorly 

coloured (63, 88, 127, 129, 202, 216). 

Typical marginal scorch due to K deficiency resembles and 

may be confused with heat and drought scorch and 11bralt1 in.jury. 
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K deficiency. 

K deficiency. 

PLATE 1 

Chlorosis and scorch of ~rune leaves, 
var. D1Agen (Ceres, 14/3/56) 

PLATE 2 

Chlorosis and scorch of ~une leaves, var. 
D1Agen (Laingsburg, 18/2/54) 
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MAGNESIUM. 

Moderate to severe symptoms of Mg deficiency have been 

encountered in South African apples, prunes and grapes (Plates 

3, 4 and 5). The deficiency produces a distinctive form of leaf 

chlorosis arising as a pale green discolouration near the leaf 

margin which changes to bright yellow (or red in the case of 

certain grape varieties) until a broad marginal zone is affected 

extending inwards between the main veins. Chlorosis appears in 

midsummer and devel~ps first on the older leaves at the base of 

current shoots or on spurs, spreading until all the foliage is 

affeeted. Chlorosis is often accompanied or followed by marginal 

scorch. Fruiting generally does not show signs of deteriorating 

until vigour and sho~t growth have been markedly reduced. 

Chlorosis in apple invariably follows the pattern as illus­

trated, having been observed in White Winter Pearmain, Golden 

Delicious, Starking and Granny Smith. The central purple tinting 

and brown necrosis found on Mg deficient leaves of Cox Orange 

Pippin and Lane's Prince Albert (131, 216) have not been encoun­

tered in apple varieties grown in South Africa. 

No marked tendency of leaves affected with either chlorosis 

or necrosis to drop early has been observed locally but this 

appears to be a common feature in other countries (63, 129, 130, 

131, 172, 216). 

Magnesium deficiency symptoms have rarely been encountered 

in pear, peach and plum in South Africa. The symptoms found on 

peach and pear trees follow the usual pattern of marginal 

chlorosis and necrosis (Plates 6 and 8) but in pear central in­

terveinal chlorosis and necrosis may also occur (Plate 7). 



Mg deficiency. 

Mg deficiency. 

PLATE .3 
• 

Chlorosis of grape leaves, var. Waltham Cross 
(left) and Barlinka (right) (Bien Donne, 2/3/53) 

PLATE 4 
Chlorosis of apple leaves, var. W.W. Pearmain 
(Ceres, 17/3/53) 



Mg deficiency, 

Mg deficiency. 

PLATE 5 

Chlorosis of prune leaves, var. President 
(Banhoek, 19/2/54) 

PLATE 6 

Marginal chlorosis and scorch of peach leaves, 
var. King Edward (Bien Donne, 3/3/54) 



Mg deficiency. 

Mg deficiency. 

'PLATE 7 

Central chlorosis and necrosis of pear leaves, 
var. Orange Bergamotte (Bien Donne, 3/3/5!.~) 

PLATE 8 

Chlorosis of pear leaves, var. Louis Bonne 
(Bien Donne, 3/3/54) 
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CALCIUM. 

Calcium deficiency results in breakdown of the meriatematic 

tissues in both root and stem (129), the most prominent feature 

being death of the growing points of terminal shoots followed by 

scorching of tip leaves and die-back. The most pronounced effect 

is injury to root tips resulting in abnormally short and thick 

roots. This restricts growth and may be associated with tip and 

marginal necrosis of terminal leaves followed by die-back (63, 

88, 129, 216). 

Due to lack of mobility of Ca in the plant during the growing 

season, tip growth of young trees is particularly susceptible to 

Ca deficiency. Owing to liberation during the dormant season of 

insoluble Ca stored in mature tissues, older trees rarely show 

breakdown at the growing tips (63) • 

• 
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"Little leaf" is probably the most distinotive symptom of 

Zn deficiency. New growth in spring is checked in one or more 

terminal parts of the tree, shoots fail to elongate or have short 

internodes, and the leaves remain small and narrow and usually 

chlorotic between the main veins. Rosettes of small chlorotic 

leaves are also common in peach and apple. Terminal leaves on 

current shoots may develop interveinal chlorosis and in the case 

of peach, wavy margins (Plates 9 to 14). 

Fruit buds on affected twigs usually fail to develop and if 

they do the fruits remain small; in peach and apricot they may 

be pointed and flattened (Plate 9). The stunted branches are 

prematurely defoliated but generally survive until winter when 

they die back to a varying extent. 

The above symptoms of Zn deficiency correspond to those re­

corded elsewhere (11, 13, 21, 25, 43, 63, 129, 202, 216, 221). 

In the case of grapes a widened petiole sinus is another charac­

teristic feature of Zn deficiency if associated with chlorosis and 

dwarfing of terminal leaves (58). 



Zn deficiency. 

Zn deficiency. 

PLATE 9 

"Little leaf" and malformed peach fruit, var . 
Duke of York. Normal shoot and fruit on left 
(Banhoek, 12/12/54) 

PLATE 10 

"Little leaf" and leaf chlorosis on peach branch, 
var. Kakamas (Banhoek, 23/12/52) 



Zn deficiency. 

Zn de.ficiency. 

PLATE 11 

"Little leaf" on apple shoots, var. Ohenimuri 
(Elgin, 7/12/53) 

PLATE 12 

"Little leaf" and chlorosis of grape leaves 
(Simondium, 28/11/50) 



Zn deficiency. 

Zn deficiency. 

PLATE 13 

"Little leaf11 and terminal die-back on apricot 
branch, var. Royal (La Motte, 22/11/52) 

PLATE 14 
"Little leaf" of plum shoots, var. Methley 
(Elsenburg, 4/11/53) 
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MANGANESE. 

Interveinal chlorosis of the leaves is the main feature 

of Mn deficiency in all fruits (Plates 15 to 20) except pears 

in which case the leaves turn greenish yellow, as in N deficiency, 

without much evidence of a chlorosis pattern. Chlorosis in­

variably appears first in the older fully expanded leaves at the 

base of current shoots, and on spurs (Plate 17). If the de­

ficiency is acute, all the leaves become chlorotic and somewhat 

reduced in size, shoot growth is restricted, and premature de­

foliation and die-back of terminals may occur. Fruiting is not 

usually directly affected unless the deficiency is serious in 

which case fruit buds may be devitalized to such an extent that 

blossoming and fruit set are sometimes markedly reduced. 

According to overseas reports Mn chlorosis of peach and 

apricot leaves is often accompanied by necrotic spots which may 

fall out (202, 229). Otherwise the symptoms reported (21, 129, 

202, 216, 229) are as described above. 



Mn deficiency. 

Mn deficiency. 

PLATE 15 

Chlorosis of peach leaves, var. Duke of York 
(Banhoek, 30/11/51) 

PLATE 16 

Chlorosis of apple leaves, var. Ohenimuri. Normal 
leaf on lert (Elgin, 20/ll/50) 



.. Mn deficiency. 

Mn deficieney. 

PLATE 17 

Chlorosis of older leaves on plum branch, va~ • 
Santa Rosa. Normal leaves at tip of shoot 
(Banhoek, 4/11/53) 

PLATE 18 

Chlorosis of plum leaves~ var, Santa Rosa. IJormal 
leaf on right (Banhoek, 30/11/51) 



Mn deficiency. 

Mn deficiency. 

PLATE 19 

Chlorosis of.apricot leaves, var, Royal 
(Paarl, 29/11/51) 

PLATE 20 

Chlor~sis of grape leaves, var. Steen 
(Stellenbosch, 21/1/53) 
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IRON. 

As with Mn deficiency, leaf chlorosis is the most outstanding 

feature of Fe deficiency but unlike the former the first signs 

of chlorosis always appear in the young terminal leaves of cur­

rent shoots, eventually spreading to older leaves (Plates 21 

to 23). The chlorosis pattern resembles a network of green 

veins on a yellowing background but severely chlorotic leaves 

become totally bleached, followed by more or less necrosis and 

shedding. Although the young terminal leaves are first affected, 

the terminal growing points of shoots remain active for a time so 

that there may be fair extension growth on chlorotic trees, but 

growth vigour ultimately deteriorates, leaf size is reduced, 

shoot growth is arrexted, fruiting deteriorates and shoots or 

branches die back. 

Essentially the same symptoms have been found to occur 

in other countries. In severe cases, fruiting is reported to be 

seriously affected, flowering being rextricted and fruits re­

duced in size and highly coloured (11, 63, 129, 202, 216). 

Grape vines appear to be far less susceptible to Fe deficien­

cy than stone and pome fruits. 



Fe deficiency. 

Fe deficiency. 

PLATE 21 

Chlorosis of peach leaves, var. Kakamas 
(Robertson, 5711/53) 

PLATE 22 

Chlorosis of peach leaves, var. Kakamas. Greener 
leaves at base of shoots (Robertson, 22/12/54} 



Fe deficiency, 

Cu defieieney, 

PLATE 23 

Chlorosis of apricot leaves on terminal por~ions 
of ~hoots, var. Royal (Robertson, 22/12/54) 

PLATE 24 
Withering of apical leaves and tips of applG 
shoots, var. Golden Delicious (Piketberg 1 31/3/56) 
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COPPER. 

The only deciduous fruits known to be affected with visual 

symptoms of Cu deficiency in South Africa at present are apple 

and pear. Leaf symptoms usually appear early in summer in the 

form of a necrosis of the terminal leaves on actively growing 

current shoots; in pears the leaf tips turn black whereas in 

apples reddish necrotic spots may appear in the leaves prior to 

tip and marginal scorch (Plates 24 and 27). This is followed 

by a certain amount of defoliation as the shoots die back in 

summer, the withered portion becoming characteristioally curved to 

one side, These effects have suggested the descriptive terms 

"summer die-back" and "wither tip". 

The bark on the older wood tends to become necrotic and deep­

ly fissured, This rough bark condition has consistently been ob­

served in both apple and pear orchards affected with summer die­

back symptoms (Plates 25, 26 and 28). 

Similar symptoms in apple and pear have been reported locally 

(3) and overseas (26, 129, 221). In the ease of peach, plum 

and apricot, die-back of growing tips with rosette and multiple 

bud development as well as a variable amount of interveinal 

chlorosis in terminal leaves have been reported (3, 11, 26, 129, 

216). 



Cu deficiency. 

Cu deficieney. 

PLATE 25 

Bark necrosis and "wither tip" symptoms on apple 
branch, var. Golden Delicious (Piketberg, 2571~5~ 

PLATE 26 

Bark necrosis of al'P'le branches,_ var. \.~Tint e r 
Banana (Langkloof, 6/2/56) 

L__ ____________ ·- - --. 



Cu deficiency. 

Cu deficiency. 

PLATE 27 

Ti~ scorch of apical pear leaves, var. Bon . 
Chretien (Langkloof, 24/2/55) 

PLATE 28 

Bark necrosis of pear branches, var. Beurre 
Hardy (Ceres, 2177/55) 
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BORON. 

According to overseas reports, fruit symptoms are probably 

the most distinctive feature of B deficiency in apple (12, 21, 

43, 63, 129, 216, 221), pear (21, 129, 221), apricot (21, 129, 

221, 230), plum (21) and prune (.93): of these fruits, apple trees 

appear to be most susceptible to B deficiency, the fruit developing 

distinctive symptoms known as drought spot (external cork) or 

oorky core (internal cork) which are reported to be more pre­

valent after a spell of hot dry weather. In apricot the de­

ficiency causes brown spotting in the fruit flesh. 

Boron is not stored in plant tissues nor transferred to 

regions of new growth so that interruption of supply may induce 

symptoms at any time during the season. 

Young growing tissues may be affected, giving rise to death 

of growing points and various grewth abnormalities in the dif­

ferent fruit species, such as dwarfing, chlorosis and thickening 

of terminal leaves with smooth margins, and excessive branching, 

resetting and die-back (63, 128, 129, 192, 216, 230). Excessive 

wilting of flowers shortly after bloom ("blossom blast 11
) has also 

been ascribed to B deficiency (228). 

Bark symptoms may also occur in apple and pear in the form 

of blisters (apple "measles") and large necrotic cracked areas 

( 6 7 , 12 9 , 221 ) • 

In grapes the growing tips are affected first resulting in 

stunted new growth in spring. This is accompanied by chlorosis 

and twisting or cupping of leaves toward the underside, and 

shortening of apical internodes (63, 88, 129, 170). Flower 

clusters may be malformed and fail to set fruit (100 1 170), or 

accentuatedlmillerandage (100, 221). Late season growth of vines 

seldom develops deficiency symptoms (170). 

Regarding South African fruit, symptoms resembling some of 

those described above have oocasionally been observed but no 
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evidence of specific B deficiency symptoms, supported by leaf 

analysis data or response. to treatment, have yet been es­

tablished. 
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3.2 TOXICITY SYMPTOMS. 

According to Wallace (216), injury to plants may come about 

through direct injury to protoplasm, which is more prevalent 

with trace elements, or indirectly through excess of one element 

which may induce a deficiency of another and ultimately result 

in a deranged metabolism. 

Direct toxic effects have occasionally been observed in the 

Western Cape Province as the result of excess of saline salts, 

and Mn toxicity has also been encountered, Boron toxicity symptoms 

have not been recognized as yet but are described below in view 

of the relatively high concentrations sometimes found in the 

leaves. 

MANGANESE TOXICITY. 

Manganese toxicity in peach and prune oocurs near Tulbagh 

on acid manganiferous soil cansing direct toxic effects in the 

form of dark necrotic areas in the bark (Plate 30) and death of 

buds and die-back. This is usually aocompanied by strong pink 

colouration of the bark on young peach shoots. A certain amount 

of leaf chlorosis (Plate 29) resembling that due to a Vm de­

ficiency may be associated with bark symptoms. Induced Fe de­

ficiency effects have not been observed, 

BORON TOXICITY. 

Toxic effects of an excess · of B in apple fruit has been des­

cribed as browning of the flesh, increase of watercore, leaf 

mottling and root injury. 

In peach, apricot and plum, toxic effects result in necrotic 

areas in the leaf along the midrib and small cankers on the stem 

and back of the midrib and petiole, also die-back and defoliation 



Mn toxicity. 

Mn toxicity. 

PLATE 29 

Chlorosis of peach leaves, var. Kakamas 
(Tulbagh, 16/5/51) 

PLATE 30 

Necrosis of peach bark, var. Elberta (Tulbagh, 
16/5/51) 
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of tips of current season branches and malformed fruit (11, 128, 

230). In apricot in sand culture greatly enlarged nodes on 

terminal portions were a striking feature, associated with 

shortening of internodes. In peach, blossoming may be delayed 

and reduced (11, 80) and the fruit malformed and split (80). 

SALT EXCESS (BRAK). 

According to Lilleland (115), deciduous fruit trees have 

been found to be very sensitive to saline salts particularly Na 

Leaf scorch is the most pro-

minent leaf symptom appearing at the leaf tip and extending along 

the leaf margin. In apricot, marginal scorch results in cupping 

of the affected leaves. Scorch effects are associated with root 

injury so that young trees usually are not affected while the 

roots are shallow. 

Leaf scorch due to excess of either Na or Cl (brak) commonly 

oecurs in orchards in the Karoo .but several cases have also been 

encountered in the KoueBokkeveld and ether parts of the Western 

Cape Provinee. 
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3.3 LEAF ANALYSIS SURVEY IN THE WESTERN CAPE PROVINCE. 

A useful method of determining critical levels of nutrient 

content associated with symptom expression is by direct corre­

lation of leaf analysis data with the incidence of visual symp­

toms. As such it must be based on observations and records from 

a large number of orchards in different areas and on soils 

varying in nutrient supply. In this way .deficiency and toxicity 

levels applicable to the fruit growing region may be examined 

more closely and at the same time a cross-section is obtained of 

nutrient concentrations prevailing in the region concerned. 

During the course of investigational and advisory work since 

1950 the writer had the opportunity of visiting a large number of 

farms in the Western Cape Province. As a rule leaf samples were 

collected and records taken of visual symptoms and other parti­

culars. From the accumulated records it is now possible to assem­

ble data indicating the range of nutrient concentrations in mid­

shoot leaves (or basal leaves in the case of grapes) and the 

values associated with symptom expression. 

All the functional elements, except S and Mo, are considered 

as well as Na and Cl which are of significance in relation to 

toxic saline efiects. The analytical data for Zn, however, are 

not available as yet. In order to ensure a comparable basis for 

samples collected at different times during the season the 

original data have been adjusted to a common date namely January 

31 by the use of correction curves for seasonal trends as indi­

cated in Section 2~4 (page 146 ). Analytical data derived from 

samples contaminated with spray residues containing trace elements 

have been rejected, as well as early Fe data for samples inade­

quately washed at that time (Section 2.11, Part II: page 60 ). 

The fruit varieties considered comprise only commercial types 

belonging to the following species: apple (Prunus malus), pear 

Pyrus communis), peach (Prunus persica), apricot (Prunus amagdalis}, 

J 



,.....-----------------------~--

plum (Prunus salicina), prune (Prunus domestica) and grape 

(Vitis vinifera). 

RESULTS. 

The available data are presented in Tables 29 to 35 1 in the 

form of a frequency distribution of the analytical values (re­

presented as the midpoint of each class interval) as found for 

each nutrient element and each fruit species. The incidence of 

orchards showing symptoms is indicated by the numbers in brackets 

which refer strictly only to eases where typical symptoms clearly 

identifying the particular disorder were in evidence. 

The manner of presentation of the data provides direet 

evidence of critical levels as well as a reflection of the range 

of nutrient concentrations occurring in the Western Cape Province. 

The highest and lowest values associated with the occurrence 

of symptoms, where sufficient data are available, may be considered 

as a reasonable estimate of the threshold values for deficiency 

and toxicity symptoms, respectively. The data thus provide 

evidence of deficiency levels for Mg, Mn, Cu, Fe and toxicity 

levels for Mn, Na, Cl in the particular fruits concerned. Index 

values suggested on the basis of these levels are recorded later 

in Tables 40 to 46. 
The data also reflect the general status of macro- as well 

as micro-nutrients in orchards and vineyards in the Cape. 

Evidently many of the extreme values fall in the deficiency or 

toxicity categories or are indicative of lack of balance. As 

such they provide a useful guide as to which orchards and vine­

yards may be most profitably investigated with a view to im­

provement of the nutritional conditions. 
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TABLE 29. - APPLE. LEAF COMPOSITION IN RELATION TO NUMBER 

OF ORCHARDS NOT SHOWING SYMPTOMS AND 

THOSE SHOWING SYMPTOMS (IN BRACKETS). 

Content No. Content No. Content No. Content No. 

N p K Ca 
"% "% '% -r; 

1.2 1 .o8 3 :~ 1 :~ ~ 1.~ 0 .10 10 3 
1. 1 .12 10 .8 10 .8 12 
1.8 7 .1~ 25 1.0 1~ 1.0 42 
2.0 5 .1 ~R 1.2 1.2 17 
2.2 23 .18 1.t 20 1.t 13 
2.~ 32 .20 7 1. 19 1. b 
2. 23 .22 1 1.8 7 1.8 1 
2.8 12 .2~ 0 2.0 9 2.0 1 
3.0 2 .2 1 2.4 

K 
2.2 1 

.28 0 3.0 

.30 1 3.6 ~ 106 ~ TI5b 

~ 
Na C1 -r;- """fo 

.05 0 (1) .005 6 .02 7 

.10 0 {1) .01 25 .o6 11 

.15 1 (2) .02 32 .10 8 

.20 0 (4) .o~ 8 .15 11 

.25 11 ( 3 ) .o 10 .20 2 

.30 15 {3) .o 6 .25 0 ( 1) 

·R5 
21 ( 3 ) .o8 1 .,o 0 (1) 

• 0 tR .12 3 • 0 1 (1) 
·45 .17 1 .so 0 ( 2) 
.50 11 .19 0 ( 1) .6o 0 
.70 2 .27 0 (1) .90 0 (1) 
.90 1 .65 0 ( 1) 

t59 { 17) 92 l3} 40 (6) 

Mn Fe Cu B - - - -ppm ppm ppm ppm 

5 0 (4) 40 

~ 
2.0 1 ( 1) 15 1 

10 1 ( 7) 50 2.~ 1 ( 2) 20 2 
15 3 ( 2) bO 2. 3 (2) 25 6 
20 5 ( 3 ) ~g 11 3.2 7 ( 1) ~g 6 
25 10 21 f·6 3 ( 1) 23 

~g 9 (1) 90 14 .o ~R 50 21 
15 100 4 s.o bO 1~ g 110 2 b.O 13 ~g 8o 120 8 7.0 10 4 

100 2 1~0 8 8.0 5 90 2 
120 2 1 0 3 10.0 5 100 1 
150 1 220 1 12.0 2 115 1 

b75 ( 17). ~BS 'd7 { 7) I ,q'2 
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TABLE 30. - PEAR. LEAF COMPOSITION IN RELATION TO NUMBER OF 

ORCHARDS NOT SHOWING SYMPTOMS AND THOSE 

SHOWING SYMPTOMS (IN BRACKETS). 

Content No. Content No. Content No. Content No. 

N p K Ca 
'% '% '% % 

1.2 0 .08 5 .6 2 .6 2 
1.~ 1 .10 15 .8 11 .8 

i~ 1. 2 .12 17 1.0 13 1.0 
1.8 9 .1~ 11 1.2 15 1.2 
2.0 12 .1 7 1.t I 1.~ 18 
2.2 16 .18 2 1. 1. 2 
2.~ 15 .20 1 1.8 1 1.8 0 
2.o 3 .22 0 2.0 3 2.0 0 
2.8 2 .2t 1 2.2 0 2.2 1 
3.0 0 .2 0 2.t 2 

.28 0 2. 2 

.30 ·1 
bO bo bO bO 

~ Na C1 
""%"" To 

.o6 0 {1) .005 g .02 1 

.1~ 1 (1) .01 .o~ 6 

.1 0 (1) .015 ~ .o 4 

.2-2 2 .02 .o8 2 

.26 4 .025 9 .10 4 

.30 9 .03 4 .12 1 

:3~ 11 .oR5 .lt 0 

:~ 
11 .o 3 .1 1 

8 .045 2 
8 .05 3 

.56 2 .o6 c; 

.76 1 .07 2 
r:s7 { 3 J ~ I9 

Mn Fe Cu B - - -ppm ppm ppm ppm 

5 0 O.t.) 50 1 2 0 ( 1) 15 1 
10 1 ( i) 6o 

tt 3 1 20 3 
15 0 ~g t 2 25 7 
20 2 14 1 4g 11 
25 1 (1) 90. ~ ~ 1t 

6 
30 6 100 5.0 8 

~g 
6 120 4 9 8 6o 4 

10 1t0 2 10 5 ~g 7 

~ 1 0 3 11 3 2 
90 180 0 12 7 100 1 

120 2 200 1 14 2 1~0 2 
150 1 240 ~ 20 1 1 0 1 

42 (6) "51 l1 S3 
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TABLE 31. - PEACH. LEAF COMPOSITION IN RELATION TO NUMBER 
OF ORCHARDS NOT SHOWING SYMPTOMS AND 

THOSE SHOWING SYMPTOMS (IN BRACKETS). 

Content No. Content No. Content No. Content No. 

N p K Ca. 
'% '% '% '"'%" 

1.8 0 ( 1) .06 1 .6 R ( 1) .4 1 
2.0 3 ( 1) .o8 2 .8 .7 3 
2.2 5 {1) .10 10 1.0 1 1.0 11 
2.~ 1~ .12 31 1.~ 22 1.3· 3-7 
2. .1~ QI 1. 25 1.6 3b 
2.8 22 .1 2.2 30 1.9 28 
3.0 ~R 

.18 19 2.6 36 2.2 i~ 3.2 .20 7 3·0 11 2.~ 
3·~ 21 .22 2 3.2 11 2. 7 

18 .2t 1 3·~ 8 3.1 1 
R:o 3 .2 0 R:o 2 ,.4 2 
4.4 1 .30 ~ 

1 .2 1 
11)1 t3J 154 (1) 1'55' 

' 
Na C1 
~ 16 

.2 2 (1) .005 
5tt 

.01 2 

:4 10 (1) .01 .02 5 
25 .015 29 .o~ 9 

.). 29 .02 ~ .o 15 

.() 37 .025 .o8 7 

:~ 17 .o, 9 .10 

~ 12 .o 1 .15 
.9 8 .05 0 .20 

1.0 9 .o~ 1 .,0 4 
1.1 2 .o 2 • 0 1 
1.2 1 .17 2 .50 0 ( 1) 
1.4 1 .bO 1 

153 { 2 ~ 1i"9 59 ( 1 ~ 

Mn Fe Cu B - -ppm ppm ppm ppm 

10 2 ( 27) ~g 0 ( 2) 2.5 1 20 t 20 5 ( 9) 3 (3) 3.0 3 25 

~g 1~ (5) 8o 22 ( 3) 4 ·5 10 30 14 
2 (1) 100 25 (2) .o 6 46 11 
19 120 22 4.5 14 16 

100 10 1t0 10 5·0 23 so 11 
150 9 1 0 1 b.O 30 bO 19 
200 2 180 2 ~·0 13 ~g 15 
250 2 200 1 .o 4 12 
300 2 220 1 9.0 90 5 
450 1 240 1 12.0 7 100 2 

00 0 ( 1) 16.0 2 115 2 
93 J43_ tjtj ( 10 118 1117 
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TABLE 32. - APRICOT. LEAF COMPOSITION IN RELATION TO NUMBER 

OF ORCHARDS NOT SHOWING SYMPTOMS AND 

THOSE SHOWING SYMPTOMS (IN BRACKETS). 

Content No. Content No. Content No. Content No. 

N p K Ca 
% '% '% -r;-

1.0 1 .o~ 1 .8 0 (1) :~ 3 
1.3 1 .o 2 1.~ 1 1 
1.6 3 .o8 4 1. 2 .8 11 
1.9 10 .10 12 2.2 ~ 1.0 9 
2.2 14 .12 15 2.6 1.2 13 
2.~ 13 .1~ 1G 3·0 19 1.~ 12 
2. 7 .1 7 3·~ b 1. 6 
3.1 

R 
.21 7 

a:2 
10 1.8 t 3-4 .24 1. 6 2.1 

R·7 0 .27 1 4.6 5 2.5 3 
.o 1 .30 1 5·0 1 ,.5 0 

.33 ·--1 5·4 1 ·5 ~ Fj7 b8' bb ( 1 ~ 

~ 
Na C1 
"%"" "'%"" 

.20 0 (1) .005 7 .02 2 

.25 4 .01 13 .ot 6 

.30 
R 

.02 6 .o 3 
·R5 .o, ' 

.o8 2 
• 0 3 .o .10 4 ·45 11 .05 1 .15 
·50 7 .Ob 0 .20 3 
·55 3 .o~ 0 .25 1 
.Go 10 .o 0 .,o 2 
• ~0 14 .09 2 • 0 1 
• 0 tt .50 1 
.90 

~ 
.Go 0 (1) 

b'( {1) 30 cr~ 

Mn Fe Cu B - - -ppm ppm ppm ppm 

5 0 ( 8) Rg 0 ( 1) 2 1 15 1 
10 0 (4) 3 ~ ~ 20 1 
15 1 (4) 50 1 25 1 
20 3 ( 2) Go 3 ( 1) 

~ 6 30 4 
25 9 ~g 2 ( 1) 5 R6 ~ Rg 5 ( 2) 4 (1) ~ 

fr 
11 90 1 (1) 45 4 

70 6 100 2 9 50 
R 100 8 120 3 10 1 t6 150 0 1t0 2 11 1 0 

200 2 1 0 1 13 3 ~g 3 
250 1 180 1 15 1 2 

LJ_b { 20) 23 {';) 42 "'34 
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TABLE 33. - PLUM. LEAF COMPOSITION IN RELATION TO NUMBER 

OF ORCHARDS NOT SHOWING SYMPTOMS AND 

THOSE SHOWING SYMPTOMS (IN BRACKETS). 

Content No. Content No. Content No. Content No. 

N p K Ca 
% % % To 

.. 

1.2 1 .o6 1 1.2 1 • 6 1 
1.t 0 .o8 e 1.4 0 .8 1 
1. 0 .10 6 - 2.0 2 1.0 1 
1.8 0 .12 10 2.2 

~ 
1.2 2 

2.0 1 .1~ 6 2.~ 1.~ 5 
2.2 4 .1 2 2. 1. 3 
2,% 7 .18 2 2.8 1 1.8 5 
2. 11 .20 1 3.0 6 2.0 2 
2.8 4 3.2 2 2.2 3 
3.0 1 3·t 2 2.4 3 

3· 0 2.7 2 

23 
3.8 1 3.0 ~ 2B' 29 

~ Na C1 
70 To 1t 
.15 1 .oo8 1 .01 1 
.20 1 .010 8 .03 2 
.25 2 .015 8 .os 1 

-~5 2 .020 1 .07 1 
·45 6 .oE_ 3 .09 1 
.so 4 .o 0 .10 3 
·5·5 7 .os 0 .20 0 
.bo 2 .ol:> 3 ·Ro 0 
.65 3 .o~ 1 • 0 1 
.so 1 .o 0 

.10 0 

29 
.15 x 

2b 10 

Mn Fe Cu B - - - -ppm ppm ppm ppm 

10 0 (4) 6o 1 2.0 1 25 2 
15 0 ( 1) ~g 1 2.5 1 30 0 
20 0 {1) 3 3e0 3 

R6 
3 

25 1 90 2 R·5 1 g 
~g 

2 100 3 .o t 50 
3 110 3 s.o bO 2 
3 120 1 6.0 7 ~g 1 

80 1 1~0 3 ~-0 1 1 
100 2 1 0 1 .o 0 90 2 
130 1 200 2 12.0 2 100 0 
:c8o 1 230 2 140 1 
630 0 (1) 2b0 2 ... 

I4 ('7J 24 26 25 
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TABLE 34. - PRUNE. LEAF COMPOSITION IN RELATION TO NUMBER 

OF ORCHARDS NOT SHOWING SYMPTOMS AND 

THOSE SHOWING SYMPTOMS (I~ BRACKETS}. 

Content No. Content No. Content No. Content No. 

N p K Ca 
% % % ~ 

1.2 1 .o6 1 .2 0 {2) :~ 1 
1.~ 3 .o8 1 :t 0 (4) 

R 1. 2 .10 4 0 (1) .8 
1.8 6 .12 7 .8 0 1.0 13 
2.0 2 .1~ 7 1.0 1 (1) 1.2 11 
2.2 11 .1 12 1.3 ~ 1.~ t 2.t 1' 

• 19 6 1.6 1 • 
2. .22 4 1.9 5.- 1.8 1 
2.8 4 .2~ 1 2.2 () 2.2 2 

.2 1 2.6 11 2.~ 1 
• 31 2 3.0 3 2 • 1 

-- 3.4 1 
46 JiP: ~(1 ( (:)) 1?T 

' 
Na C1 
""7fo ~ 

.20 0 (1) .005 1 .02 tt .25 4 ( 2) .010 5 .ot 

.30 2 (1) ,015 10 .o 3 
·R5 

fr 
.020 7 .o8 2 

• 0 .025 5 .10 5 
·45 .oe_ 3 ,12 1 .so 10 .o 0 .1~ 4 
.6 8 .os 2 .1 0 

:~ 2 • ot; 2 ,18 2 
2 .o~ 2 .20 1 

1.0 1 .o 0 .22 1 
1.2 1 .09 ~ 43 {4) 21 

Mn Fe Cu B - -ppm ppm ppm ppm 

15 1 40 1 2.0 0 20 3 
20 5 50 2 2.5 1 25 2 
25 2 60 9 3.0 2 30 2 
30 2 (1) ~g 7 R·5 2 R6 6 

R6 3 5 .o 3 5 
g 90 2 g 5 5.0 7 

so 100 1 12 bO 
tt bO ~ 110 2 ~ 6 ~g 8o 130 3 3 2 

150 4 170 1 9 0 90 1 
250 1 220 1 10 1 100 1 
350 1 

43 {1l 34 35 3'7 
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TABLE 35. - GRAPE. LEAF COMPOSITION IN RELATION TO NUMBER 

OF VINEYARDS NOT SHOWING SYMPTOMS AND 

THOSE SHOWING SYMPTOMS ( IN BRACKETS ) 

Content No. Content No. Content No. Content No. 

N p K Ca 
'% %' %' ""%'" 

1.0 0 .o~ 1 :~ 5 .2 1 
1,2 1 .o 1 17 ,8 l 
1.~ 14 (1) .o8 ~ .8 16 1,0 3 
1. 19 (4) .10 1.0 18 1.2 2 
1.8 13 .12 11· 1.2 11 1.~ 5 
2~0 18 .11+ 16 i:~ 8 1. 12 
2.~ 8 .17 1~ 3 2,0 ~~ 2. 4 .20 1.8 3 2.~ 
3.2 1 • 25 4 2.0 2 2 • 4 3.6 1 •40 3 2.2 0 3.2 

• 0 l 2.~ 0 ,.6 1 
.45 1 2. Eft .o 1 

79 ~ 7) E'2 B[ 

¥a Na C1 
T ""%" 

-· 

.o6 0 ( 1) .o1 
1K 

.02 g .10 1 (6) .02 .ot 
.1~ 1 ( 3 ) .o~ 1~ .o 1 
.1 3 (3) .o .o8 

1g ~22 15 .os 

~ 
.10 

.Go 21 ( 1) ,Ob .20 4 • 0 1~ .o~ ·Ro .s-o .o tt 0 0 0 
,bO 5 ,10 •to 2 
·~0 1 .12 5 • 0 2 
• 0 0 .16 1 
.90 1 .20 7ft 70 (14.) 1jB' 

Mn Fe Cu B - - - -ppm ppm ppm ppm 

5 0 ( 3 ) 5-0 1 
R 

4 15 1 
10 0 ( 6 ) bO 1 5 20 3 
15 1 (1) ~g 8 ~ § 25 0 
20 1 (1) 6 ag 6 
25 1 90 9 8 5 14 
30 3 100 9 10 0 50 19 
70 17 120 5 12 1 bO ~ 150 15 1~0 2 ~t 5 ~g 250 b 1 0 1 1 6 

450 tt 200 1 18 0 90 2 
750 220 2 20 1 120 4 
950 1 240 1 150 1 

53 t 11) 4b 39 b3 

J 
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~. NUTRITIONAL LEVELS ASSOCIATED WITH OPTIMUM GROWTH AND 

YIELD. 

The use of high performance trees in providing leaf analysis 

data for the purpose of establishing nutrient standards evidently 

demands a definition of the characteristics which must be con-

sidered when selecting such trees. High yield is a necessary 

requirement but the capacity of the tree to maintain high pro­

duction over a number of years is equally important. The ability 

to produce heavy crops regularly can only be achieved if growth 

is sufficiently vigorous to sustain high productivity. Further-

more, quality of fruit and keeping ~uality must also be taken 

into account. In some cases fruit quality may be the primary 

consideration, depending on specific requirements as demanded by 

the canning trade or export market. 

The criterion used in selecting trees for the purpose in view, 

therefore, may best be described by the term "economic production", 

comprising high yield, satisfactory vigour and good quality fruit. 

In deciding what yield may be considered as good, the writer was 

guided by yield records for each fruit based on the 1955 orchard 

survey in the fruit growing areas (66). Yields of double the 

average for the Cape Fruit Industry was used as the minimum re­

quirement for the high production category, only trees bearing 

consistently above this level being considered. The level of 

production in pounds (lbs.) per tree on this basis was as follows:­

apple and pear, 200 lbs.; canning peaches, 150, and dessert, 100; 

apricot and prm1e, 100; plum, 60; and grapes 1~ boxes (15 lbs.) per 

vine (on sloping trellis with average spacing). As a further 

guide the age of the trees was also taken into account. It is 

generally considered that apple and pear trees are capable of 

maximum production from the age of 15 to 35 years; peach, apricot, 

plum and prune from 9 to 16, and grapes from 5 to 25 years. 
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Vigour was judged by observation in the orchard and con­

sidered adequate if sufficient new growth was in evidence. As 

to fruit quality, the decixion had to be confined as to whether 

the fruit was sound and of good appearance and size, since it was 

impossible to apply further tests for keeping quality and canning 

requirements. 

With these criteria in mind the writer made a systematic sur­

vey in the main fruit producing areas of as many orchards as pos­

sible during January and February, 1958, selecting those which 

conformed to the required standard of vigorous growth, high yield 

and good quality fruit. With regard to grapes, the investigation 

was confined to the Hex River Valley which is the largest pro-

ducing area for table grapes. Trees showing symptoms of nutri-

tional disorders, insect or disease infestation were avoided, as 

well as localities associated with abnormal growing conditions, 

such as shallow soil, brak and poor drainage, so as to ensure 

that leaf composition would not be influenced by factors other 

than nutritional. 

Only the most important commercial varieties were considered, 

selecting those best adapted to conditions in each district, 

irrespective of soil type, as follows:-

Apple Ohenimuri, Golden Delicious, Starking, White 

Winter Pearmain, Rome Beauty and Granny Smith. 

Pear 

Peach 

Apricot 

Plum 

Prune 

Grape 

Bon Chretien and Packham's Triumph. 

Kakamas, Goosen, Elberta, Peregrine, Boland and 

Early Dawn. 

Royal on both peach and Marianna stock. 

Santa Rosa, Gaviota and Kelsey, mostly on 

Marianna stock. 

D1Agen on peach and Marianna. 

Barlinka and Waltham Cross. 
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A total of 138 orchards and 17 vineyards were selected for 

this study. The distribution of the sampling sites according 

to fruit species and district is indicated in Table 36. 

TABLE 36. - NUMBER OF SAMPLING SITES ACCORDING TO FRUIT SPE­

CIES AND DISTRICT. 

District Apple Pear Peach Apricot Plum Prune Grape 

Elgin 27 5 3 

Somerset West 3 2 

Stellenbosch 3 1 4 
Banhoek 1 2 

Villier sdorp 4 1 

Fransch Hoek 6 4 
Groot Drakenstein 6 5 1 

Paarl 3 

Wellington 3 

Koue Bokkeveld 7 3 2 1 

Ceres 1 4 3 1 1 

Tulbagh 3 3 

Wolseley 1 1 1 1 

Worcester 3 2 

Robertson 4 
Montagu 4 
Barrydale 1 1 3 3 

Hex River Valley 17 

Total 40 27 44 7 12 8 17 

In carrying out the survey it was found that a few of the 

best orchards showed mild symptoms of Mn and Fe deficiencies. 
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Since these orchards were capable of high performance over a 

number of years the presence of mild symptoms could not be in­

terpreted as meaning that the macro-nutrients were out of 

balance and accordingly were not rejected for the purpose of 

determining index values for macro elements. 

Leaf samples were collected from a compact group of trees 

in each orchard in accordance with the procedure described in 

Chapter 2. All relevant factors were recorded including age, 

growth, yield, soil type, fertilizer and cultural treatments, 

nutrient sprays applied and date of sampling. 

4.1 RESULTS OF THE SURVEY, 

The analytical results are presented in Tables 37 and 38, 

indicating the lowest and highest values found according to the 

survey which as suggested in Chapter 1, are considered to re­

present the lower and upper limits of the postulated optimum 

range. The validity of this deduction is dependent on data being 

available from a sufficient number of sampling sites covering 

a wide range of nutrient supply. In the case of apricot, plum 

and prune, the number was inadequate and accordingly the values 

obtained for these fruits cannot be regarded as altogether re-

presentative. The Mn and Cu values for grapes are also not 

representative owing to the reduced number available after re­

jecting data from samples which had been sprayed with these 

elements. 

Comparison of data for the various fruits indicate consider­

able differences in the respective· leaf nutrient levels (parti­

cularly marked in the case of K and Ca) which may be assumed to 

reflect the particular requirements of each fruit species for 

economic production. The mean values differ according to fruit 

species but may also be influenced by the soil fertility potential 

applying to the particular fruit. They are of significance in 
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TABLE 37. - LEAF COMPOSITION ASSOCIATED WITH GOOD PER­

FORMANCE ORCHARDS. 

Leaf Composition ( %} 
Nutrient 

Fruit 
No. of 

element orchards 
Low High Mean % s.E. 

N Apple 40 2.21 3.02 2.52 7 
Pear 27 2.01 2.83 2.37 9 
Peach 44 2.01 3.71 2.99 15 
Apricot 7 1.68 2.66 2.20 -
Plum 12 2.30 2.98 2.61 -
Prune 8 2.~1 2.84 2.51 -
Grape 17 1. 9 2.34 1.91 14 

p Apple 40 .125 .212 .157 13 
Pear 27 .101 .1~2 .131 15 
Peach 44 .120 .1 8 .151 10 
Apricot 7 .104 .202 .1R5 -
Plum 12 .11 .210 .1 0 -
Prune 8 .15~ .403 .194 -
Grape 17 .12 • 00 .21 44 

K Apple 40 .51 2.07 1.32 

~' Pear 27 • 70 1.86 1.12 
Peach 44 .74 3.23 2.12 24 
Apricot 7 2.33 3-50 2.85 -
Plum 12 2.23 3.03 2.63 -
Prune 8 1.21 2.63 1.90 -
Grape 17 .56 1.60 .96 31 

Ca Apple 40 -~2 1.56 1.11 iR Pear 27 • 9 1.52 1.21 
Peach 44 l.lb 3.50 2.06 27 
Apricot 7 1.13 1.71 1.32 -
Plum 12 1.30 2.62 1.9.~ -
Prune 8 1.13 2.18 l.b -
Grape 17 1.62 2.36 2.06 11 

Mg Apple 40 .21 ·57 .36 24 
Pear 27 .2t ·53 .]6 20 
Peach 44 

:R6 
1.08 .bg 34 

Apricot 7 .69 ·5 -
Plum 12 .43 ·59 ·50 -
Prune 8 .42 .bl .51 .... 
Grape I 17 .17 • 62 .31 36 
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TABLE 38. - LEAF COMPOSITION ASSOCIATED WITH GOOD PER­

FORMANCE ORCHARDS. 

Leaf Composition (ppm) 
Nutrient Fruit No. of 
element orchards 

Low High Mean % s.E. 

Mn Apple 24 11 126 
fr§ 

72 
Pear 

~~ 
22 

1§4 
38 

Peach 18 4~ 55 
Apricot 28 

1~4 -Plum 6 32 75 -
Prune 7 19 72 51 .;.. 

Grape 9 51 274 115 -
Fe Apple 4o 54 222 108 35 

Pear 27 59 242 103 39 
Peach 44 

* 
2 1 117 33 

Apricot 7 125. 79 ... 
Plum 12 26b 1~~ -
Prune 8 61 136 -
Grape 17 53 167 99 25 

Cu Apple 40 3·3 8. c ~:R 2 
Pear 27 5·3 12.C 25 
Peach 44 3.1 6.2 5.2 20 
Apricot 7 2.2 5·1 t·9 -
Plum 12 R·6 b.O .7 -Prune ~ 4:~ 7.~ 

14:4 
-Grape 27.C -

B Apple 40 36 115 56 Rg Pear 27 29 180 ~1 
Peach 44 29 120 61 32 
Apricot 7 

4i 
70 50 -

Plum 12 142 b5 -Prune 8 
§* 

76 61 -
Grape 17 95 56 32 

Na Apple 40 70 t8o 190 
t2 Pear 27 50 So 310 

Peach 44 70 210 110 28 
Apricot 7 ~g 120 100 -Plum 12 300 140 -
Prune 8 1~0 680 290 -Grape 17 So 1210 390 82 
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that they may be considered to approximate the ideal composition 

(Chapter 1, page 140) both as to concentration and nutrient 

balance in the areas concerned. 

As may be expected from samples drawn from such a wide range 

of growing conditions, the data for each nutrient show consider­

able variability as indicated by the percentage Standard Error 

{not calculated for apricot, plum and prune). The magnitude 

of this variability in concentration tends to be greater with 

some of the trace elements particularly Mn and Na owing to 

luxury consumption. 

4.2 SUPPORTING EVIDENCE FROM A GRAPE FERTILIZER TRIAL. 

Data from fertilizer experiments are fundamental in pro­

viding the ultimate basis on which index values should be es­

tablished. The only fertilizer trial available which may supply 

such evidence is one concerning table grapes conducted at Bien 

Donne, the experimental farm of the Western Province Fruit 

Research Station. The yield and leaf composition data for 1951, 

when the experiment had been in operation for twelve years, may 

be considered. The analytical values for N, P, K, Ca and Mg 

in composite samples of basal leaves of the two varieties, 

Barlinka and Waltham Cross, are presented in Table 39. These 

values represent the leaf composition at harvest after adjust­

ment for seasonal effect. 

The data in Table 39 are presented in order of mean yield 

per vine calculated from data (unpublished) supplied by 

Mr. P.E. le R. van Niekerk. It is evident from Table 39 and 

other data on quality of fruit (146) that only the Barlinka 

plots treated with N3P2K2 and N3K2 fertilizer mixtures (No. 1 

and 2) exceeded the minimum standard of yield and quality (1! 

boxes per vine) as adopted for selecting good performance 

vineyards (described above). The leaf composition of these 

J 
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TABLE 39. - LEAF COMPOSITION AND YIELD DATA FROM FERTILIZER 

PLOTS AND OTHER VINEYARDS. 

Yield N p K Ca 
~ No. Variety and source (boxes % % % % per vine) 

Barlinka Fert. ExEt• 

1 Treatment N3-P2K2 2.1 2.44 .1,5 1.K6 2.24 .14( 
2 II N3 K2 2.0 2.R7 .1 7 1. 7 2.17 .1 9 

' " N3P2 1.6 2. R .147 .72 2.R8 .24~ 
II Nl K2 1.5 2.2 .146 1.50 2. 6 .142 

g " NlP2K2 1.5 2.22 vlRo 1.'74 2.~1 .118 
II N3 1.5 2.44 .1 3 .67 2. 9 .250 

~ " Nl 1.3 2.2 .143 .64 2.91 .227 
II NlP2 1.2 2.34 .152 .73 2.51 .255 

Signift. Diff. at .05 ·5 

Waltham Fert. ExEt• 

9 Treatment N3P2K2 .6 1.64 .110 1.26 2.40 .09,~ 
10 It N3 K2 .4 1.60 .112 1.19 2.09. .069 
11 II Nl K2 ·3 1.47 .105 1.3~ 1.96 .069 
12 II NlP2K2 ·3 1.~ .110 l.R 2.30 .o6o 

iR " NlP2 ,2 1.~ .113 • 7 2.04 .141 
" N3P2 .2 1. 0 .120 .49 3.11 .1~7 

15· 11 Nl .2 1.67 ,111 ·45 2.24 .1 7 
16 " N3 .2 1.76 ,112 .45 2.27 .181 

Signift. Diff. at ,05 ,2 

i~ Waltham, Hex Valley 1.0 1.60 .130 • 7.2 2.28 .22 
II II 1.0 1.82 .132 .6o 2.76 .21 

19 " II 1.0 1.4~ .134 1.24 .~6 ·33 
20 II , Paarl 1.0 1.4 .113 1.04 2. 6 .19 
21 " , Stellenbosch 4.0 1.48 .122 1.01 l. 1 .21 
22 II II 4.0 1.50 .llt 1.04 1.65 .24 
23 Barlinka, Hex Valley ·5 2.14 .17 1.20 1.97 .51 

vines must therefore be considered optimal, and that from the 

other treatments sub-optimal. Under the conditions of the exper-

iment it is evident that high performance was possible only 

through a high level of supply of N and K fertilizers so that 

the low K values for No. 6, 7 and 8 indicate an outright de-

ficiency of K. The poorer quality and yield of No.3 may likewise 

be ascribed to K inadequacy. The critical sufficiency level for 

leaf K accordingly must lie above 0,73%. In view of this 

_j 
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evidenoe, the lower limit at 0.56% K found in the survey 

(Table 37) is evidently too low and may provisionally be raised 

to o .So%. 

The relatively poor performance of No.4 and 5 is due either 

to inadequate N supply (which is not clearly reflected by the 

leaf values), to Mg deficiency or to poor nutrient balance. 

Both No.4 and 5 showed marked symptoms of Mg deficiency as re­

corded by the writer in a previous publication (14a), but so did 

the good performance No.2. Thus although the low Mg values 

indicate the need for supplementing the supply of Mg, the low 

status in itself did not prevent high performance. The K and Ca 

values of No.4 and 5 could be interpreted as suggesting that they 

may be out of balance in that both values are rather high. This 

deduction is supported by the respective upper limits found for 

good performance vineyards (Table 37). A diagnosis based on the 

leaf values for No.4 and 5 would indicate the need for improving 

the Mg status; this can be adjusted most effectively by supplying 

Mg, and also N which is known to increase absorption and thus 

indirectly also satisfy the need for N application as indicated 

by the yield data. 

The Waltham Cross plots irrespective of fertilizer treatment 

failed to reach the stipulated standard of performance, suggest­

ing that some factor other than nutrient supply was effective in 

reducing the yielding capacity of this variety as compared with 

the far superior performance of Barlinka under the same conditions. 

The poor yields of Waltham Cross are adequately reflected by the 

acutely subnormal K and Mg values as well as the relatively low 

range of N values. 

4.3 CONSIDERATION OF A FEW MISCELLANEOUS VINEYARDS. 

At the time of the survey in the Hex Valley, the writer hap-

pened to investigate a number of vineyards which were either less 

productive or situated in other districts. The composition of 
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leaf samples from these vineyards (No.1? to 23 at foot of Table 

39) provides the opportunity of checking the nutritional levels 

found above. 

The moderate performance of No,l? and 18 would be attributable 

to inadequate K supply as indicated by the low K values (lower 

than the suggested limit of 0.8o%). The low yield of No.l9 

would probably be due to low Ca supply in view of the subnormal 

Ca value. No.20 appears to have a normal range in concentration 

of all the nutrients except Mn (not shown in Table 39) which was 

found to be 11 p .p.m. ,the vines showing marked deficiency symptoms. 

The high yields of No.21 and 22 (even though favoured by wider 

spacing and high trellising) should be associated with analytical 

values in the optimum range as is actually the case. No.23, 

however, although its leaf data, including the micro-nutrient 

status, fall !n the optimum range, produced a very low yield. 

In this case some other factor is evidently responsible neces­

sitating a re-examination of non-nutritional factors such as 

soil environment and root development. 

CONCLUSION. 

The use of the nutritional levels suggested by the survey 

and grape fertilizer trial thus permit a reasonably complete 

interpretation of the analytical results in the majority of the 

cases described. Evidence that response will follow fertilizer 

applications predicted on the basis of such diagnosis is pro­

vided by the data given in connection with the grape fertilizer 

experiment. 
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5. NUTRITIONAL LEVELS, AS DETERMINED, COMPARED WITH CRITICAL 

VALUES REPORTED IN THE LITERATURE. 

Critical levels of nutrient content may be expected to 

correspond fairly well in different countries, partioularly 

those associated with symptom. expression and with upper and 

lower limits of the optimum range; theoretically they should hold 

irrespective of soil type and climatic conditions. Mean 11 opti­

mum values" may differ more substantially depending on the fertili­

ty potential prevailing in the particular fruit producing region. 

A comparison of the values for each fruit species as deter­

mined in Chapters 3 and 4 of Part III with critical levels re­

ported from other countries is presented in Tables 40 to 46. 
All available sources from the literature have been employed 

which permit comparison on a common basis. The values given 

all ~efer to midshoot leaf samples (or basal leaves in the case 

of grapes), collected at or near the end of January (or end of 

July in the northern hemisphere) and are based on the results of 

fertilizer experiments, sand culture work and orchard surveys. 

The analytical categories tabulated in the tables refer, 

firstly, to nutrient levels associated with the onset of symptom 

expression, indicating the levels below or above which symptoms 

of deficiency or toxicity will occur more often than not. The 

"critical sufficiency level11 denotes the concentration below 

which an increase in supply of the nutrient concerned is likely 

to be accompanied by a yield increase. The only reference to 

upper and lower limits of the "optimum range" was derived from 

data. recorded in conjunction with "mean optimum values" by two 

investigators (106, 220). 

According to the a.va.ilable sources of informatj_on direct 

comparison with local da.ta is practically limited to the de-

ficiency-symptoms category as found for Mg, Vm a.nd Cu. Although 
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there is good agreement in certain cases, the threshold levels 

as reported for Mg and Mn deficiency symptoms in apple for 

instance, are generally lower and that for Cu higher than the 

levels suggested by the local data. 

The B data suggest the interesting possibility that the B 

status of local orchards may be reasonably adequate with a ten­

dency towards high levels approaching toxicity in some cases, as 

compared with overseas standards. 

The respective values shown in Tables 40 to 46 correspond 

in a general way but it is evident that many of the reported 

index values differ considerably from one source to another. 

This would serve to support the general conviction that the use 

of index values at present should be restricted to the particular 

region where they have baen worked out until such time as stan­

dardization of the technique of leaf analysis has reached the 

stage of perfection and uniformity necessary to permit a critical 

evaluation of index values determined in different countries. 
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TABLE 40. - APPLE. NUTRIENT LEVELS FROM DATA IN TABLES (T) 29, 

37, 38, COMPARED WITH INDEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Threshold Critical Optimum Level Critical 
Ele- for Sufficiency Upper or 
ment Deficiency Level Tox"ic Level Symptoms Low High 

N - - 2.2l(T37) 3.02(T3~) -
'to 1.90(174) 1.~0(220) 1.6,(106) 2.84(10 ) 2.00(32) 

1. 5(32,85) 1.2 (220) 2.69(220) 

p - - .125(T31) .212(T37) -% .17(137) .10(220,232) .09(106 .75(106) 
.11(220) .~9(220) 

K - - .5.1(T37) 2.o7(T3I' -
'to • 7--.8 ( 7) 32, .68(201) ·75(85) .60(106) 2.82(10 ) 

206,213 , 
1.0(28, 10.t 1.0(9,220),1.5(7) .61(220) 2. 50( 220) 
85,137,156) 

Ca - - .?2(T37) 1.56 ( T3~-) -% .70(213) 1.0(220) .6R(lo6) 2.l>7(10 ) 4.0(232) 
• 7 ( 220) 2.42(220) 

Mg ·35(T29) - .21(T37) ·57(T37) -% .15-.2(9,29, .14(201) .28(106) ·75(106) 1.5(232) 
32,70,231, 
232), 
.21-.23(30, .20(85,220) .10(220) ·50(220) 
147 .t 190 '213 ), 
• 7(174). 

Mn 30(T29) - 11(T38) 126(T38) -
ppm 5(85),16 38(106) 200(106) 

\227 )-
25(76),30 23(220) 280(220) 
(34) 

Fe - - ~4(T38) 222(T38) -ppm 0(106) 630(106) 
6(220) 

•.. 

Cu R.6(T29) - 3.3(T38) 8.o(T38) -
ppm .0(85)174) 4.0(85) 3.0(106) 100(106) 

5.0(26 13.0(220) 

B - - 36(T38) 115(T38) -
ppm 1~45),18 25(220) 10(106) 150(106) 143(214) 

( ),23(67) 
25 85),26 14(220) 46(220) 200(44) 
(174) 

Zn - - - - -
ppm 10(25),1~ 

(2oo ,54 5W 
14(220) 102(220) 

Na - - .007(T~) .o48(T~) .2(T29) 
% .5(115,232) 

~1 - - - - .2((T25) 
I .5 232 

J 
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TABLE 41. - PEAR. NUTRIENT LEVELS FROM DATA IN TABLES (T) 39, 

37, 38, COMPAREF WITH INDEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Threshold Critical Optimum Level Critical 
Ele-

for Sufficiency Upper or 
Deficiency 

ment Symptoms 
Level Low High Toxic Level 

N - - 2.0l(T37) 2.83(T37) -
fo 2.13(106) 2.75(106) 

p - - .l0l(T37) .172(T37) -
% .10(232) .ll(lOb) .16(10b) 

K - - .~O(T37) 1.86(T37) -
% .43(85).50 • 0(106) 2.16(106) 

(232) 

Ca - - .89(T37) 1.52(T37) -
% 

' 
1.18(106) 3.0(10b) 4.0(232) 

Mg .20(T30) - .24(T37) ·a3(T37) -
% .05(174) .20 .32(106) • 2(106) 1.5(232) 

(232) 

Mn 25(T30) - 22(T38) 93(T38) -
ppm 25(7b) 

f 
68(106) 220(106) 

Fe - - 5~(T38) 2'2(T38) -
ppm I 2 ( 106) 2 0(106) 

Cu 2.2(T30) 5.3(T38) 12. 0( T38) - -ppm 5(26)El.7(85) 
I 

4(85} 5(106) 100(:l.Ob) 

B 29(T38) 180( T38) - - -
ppm 1(228)5(108) I 10(106) 43(10b) 

I 
Zn - - - - -
ppm 10(20,25)71 

(111) 

Na - - .005(T38) .o68(T38) -
% I .5(115,232) 

C1 - - - - -
% ! .5(232) 
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TABLE 42. - PEACH. NUTRIENT LEVELS FROM DATA IN TABLES (T) 31, 

37, 38, COMPARED WITH INNEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Threshold Critical Optimum Level Critical 
Ele- for Sufficiency - Upper or 
ment Deficiency Level Low High Toxic' Leve Symptoms 

N 2.2(T31) - 2.01(T37) R·7l(T37) -
% 3.43(106) .60(106) 

\ 

p - - .120(T37) .188(T3.7) -
% .111(208) .1{ 232) .11 ( 85) .092(106) .72(10b) 

K .65(T31) - ·7t(T37) 3.23(T37) -
% .3-1.0(4l5' 1.0(114) .? (106) 2.35(106) 

32,62,20 , 
232) 

1.5(85,232) .60(114) 3.4(114) 1.95(85) 

Ca. - - 1.16(T37) 3.50(T37) -
% 1.06(106) 2.71(106) 4.0(232) 

Mg .30(T31) - .,6(T37) 1.08( T31·) -
% • 19 ( 124) • 2 0 • 1(106) 1.45(106) 1.5(232) 

(232) 

Mn 40(T31) - 18(T38) 134(T38) 400(T31) 
ppm 11-19(76,85, 17(106) 270(106) 

227) 
30(34) 

Fe 100(T31) - 39(T38 24l(T38) -
ppm 31(106) 540(106) 

Cu - - R.1(T38) 6.9(T38) -
ppm (106) 30(10b) 

B - - 29(T38) 120(T38) -ppm 10-20(128, 12(106) 150(106) 8o-9o(ao, 
174,230) 128,174) 

168(230) 

Zn - - - - -ppm ~·5-18(18, 
5,125) 

Na - - .007(T38) .021(T38 -
% 1.0(174) 

C1 - - - - .5(T31) 
% 
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TABLE 43• - APRICOT. NUTRIENT LEVELS FROM DATA IN TABLES (T) 32, 

37, 38, COMPARED WITH INDEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Ele., 
rnent 

N 
% 
p 
% 
K 
% 
Ca. 
% 

Threshold 
for 

Deficiency 
Symptoms 

.82(T32) 
1.0(232) 

Mg .22(T32) 
% .20(232) 

Mn 30(T32) 
ppm 10(19) 

Fe 90(T32) 
ppm 

Cu 
ppm 

B -
ppm 7(85)27(230) 

50(42) 

Zn -
ppm 30(85) 

Na. 
% 
Cl 
% 

Critical 
Sufficiency 

Level 

-
2.0(232) 

Optimum Level 

~------~------~ 
Low High 

1.68(T37) 2.66(T37) 

.109(T37) .202(T37) 

2.33(T37) 3.50(T37) 

Critical 
Upper or 

Toxic LeveJ 

1.13(T37) 1.7l(T37) -
4.0(232) 

.46(T37) .69(T37) 

28(T38) 79(T)8) 

2.2(T38) 5.7(T38) 

32(T38) 70(T38) -
82(85) 
.9.4(230) 

• 007 ( T38) • 012 ( T38) -
1.0(174) 

.6(T32) 
0.5(232) 
1.0(40) 
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TABLE 44. - PLUM. NUTRIENT LEVELS FROM DATA IN TABLES (T) 33, 

37, 38, COMPARED WITH INDEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Threshold Critical 
Optimum Level Critical Ele- for Sufficiency Upper or ment Deficiency Level Low High Toxic Level 

Symptoms 

N - - 2.30(T37) 2.98(T37) -
% 1,18(174) 

p - - ,114(T37) .210( T37) -% ,10(232) 

K ... .. 2,23(T37) 3.03(T37) -
% .68(206).75 1,5(85) 

(32) 
tl.82(85) 

Ca. - .. 1,30(T37) 2.62(T37) .. 
% 4.0(232) 

Mg .. - .43(T37) ·59(T37) -% .14( 174) .20 1.5(232) 
(232) 

Mn ~o(T3R> • 32(T38) 134(T38) 630(T33) 
'J'pm 15(21 ) 

Fe - .. 64(T38) 266(T38) .. 
ppm 

Cu - .. ),6(T38) 6.o(T38) -ppm 2.9(3) 4(85) 

B - ... 4l(T38) 142(T38) -ppm 176(85) 

Zn - ... - - -
ppm 

Na - - .oo8(T38) .030(T38) -
% .5(11~,232) 

.7(40 
• 

Cl - - - - -
% .5.(232) 

.6(4.0) 

J 
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TABLE 45. - PRUNE. NUTRIENT LEVELS FROM DATA IN TABLES (T) 34, 

37, 38, COMPARED WITH INDEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Ele-
Threshold Critical Optimum Level Critical 

ment for Sufficiency Upper or Deficiency Level Toxic Leve Symptoms Low High 

N - - 2.3l(T37) 2.84(T37) -
% 
p - - .157(T37) .303(T37) -
% .10(232) 

K ~.O(T34) - 1.2l(T37) 2.63(T37) -
% IJ_.o(232)2.o 1.0(114) 

( 28) 1.5(232) 

Ca - - l.l3(T37) 2.18(T,7) -
% 4.0(232) 

Mg .30(T34) - .42 ( T37·) .6l(T37) -
% .20(232) 1.5(232) 

Mn 30( T-34) - 19(T38) 72(T38) -
ppm 25(76) 

Fe - - 6l(T38) 136(T38) -
ppm 

Cu - - 4.4(T38) 7.3(T38) -
ppm 

B - - 39(T38) 76(T38) -
ppm 10(230)25(93) 6o(2Ro) 

90-2 0(92) 

Zn - - - - -ppm 

Na - - .Ol3(T38) .o68(T38) -
% ·5{115, 

232) 
• 7 ( 40) 

Cl - - - - -% ·5(232) 
.6(40) 

--
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TABLE 46. - GRAPE. NUTRIENT LEVELS FROM DATA IN TABLES (T) 35, 

37, ~8, COMPARED WITH INDEX VALUES REPORTED 

IN THE LITERATURE (REFERENCE NUMBERS IN 

BRACKETS). 

Ele-
Threshold Critical Optimum Level Critical 

for Sufficiency Upper or rnent Deficiency Level Toxic Leve 
Symptoms Low High 

. -
N 1.6(T35) - 1.49(T37) 2.34(T37) -
% 1.5(85) 

p - - .l28(T37) .400(T37) -
fa .19(85) 

K - - .80(T39) 1.6o(T37) -
% .50·(232) ·55 1.0(85,232) 

(206) 
• 59 ( 85) .68 
(31) 

Ca. - - 1.62(T37) 2.36(T37) -
fa 
Mg .30(T35) - .17(T37) .62(T37) -
fa .18(173).22 

(172) 

Mn 20(T35) - 5l(T38) 274(T38) >1000(T35 
ppm 

Fe - - 53(T38) 167(T38) -
ppm 

Cu - - L~. 6( T38) 27(T38) -ppm 5·)+(85,111) 4<85) 

B - - 36(T38) 95(T38) -ppm 2g(171)86 900(85) 
( 5 ) 1000( 111) 

Zn - - - - -ppm 

Na. - - .oo8(T38) .121(T38 -
fa 
Cl - - - - -% .5(40) 

1.0?(85) 
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6. TENTATIVE INDEX VALUES FOR WESTERN CAPE PROVINCE. 

The nutrient levels indicated by the data presented in 

Chapters 3 and 4 of Part III are suggested as tentative standards 

of leaf composition for the Western Cape Province. They are 

summarized in Table 47 as upper and lower limits of the'bptimum 

range" (from data in Chapter 4) with the lower limits adjusted 

according to the level associated with the onset of visual defi·. 

eiency symptoms (from Chapter 3). 

Minor adjustments within the limits of the optimum range 

may be considered valid and are applied in a few cases where 

such a step may lead to an improved estimate of the index values. 

For instance in some cases the lower limit values (Tables 37, 

38) are shown to be too low in relation to the threshold level 

for symptom expression (Section 3.3}, such that K, Mg and Mn in 

apple have been raised from 0,51, 0,21, 11 to 0.8, 0,3, 25 re­

spectively. 

Except for rounding off the upper limit values for Mn, Fe 

and Cu, adjustment to levels beyond the limits of the optimum 

range have not been considered since the interrelationship be­

tween nutrients would then cease to be optimal (which is a con­

dition of the concept relating to the optimum range). 

It will be noted that the upper limits for Na, Mn; Fe, Cu 

and B (Cl and Zn data not yet available) are based on the data 

from high performance orchards and not on the level at which 

toxicity symptoms may become evident. Trees with leaf concen­

trations in the intermediate range may of course be found capable 

of high performance as in the ease of B. In contrast to most 

of the other elements, the Fe data do not provide clear evidence 

of distinct threshold levels. 

Sodium and Cl are of interest chiefly in relation to their 

potential toxicity effects. In the case of apple, toxicity 
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became evident at lower concentrations (from 0.2%) than re­

ported values would appear to indicate. 

Some of the lower-limit B values have been adjusted accord­

ing to the reported values in view of the absence of definite 

deficiency symptoms in South Africa. Values borrowed from the 

literature (in brackets) apply to Zn (local data not available 

in time), B deficiency and toxic levels of the saline elements 

Na and Cl. 
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TABLE 47. - T._E]'J"TA::CIVE INDEX VAL!JES FOR MIDSHOOT LEAVES (BASAL lN T!P CASE OF GRAPES! ON 31 JANUARY, 

INDICA::CING THE L;tMITSYOF THE ,OPTIMUM RANGE AND TOXICIT'X. LEVELS (VALUES DERIVED FRO~ TH;F; 

LITERATURE IN BRACKETS) 

Nutrient Apple Pear Peach Level Ap!'icot Plum Prune Grape 

' . 
N Low 2,0 2.0 2.2 1.8 
1o High 3.0 2.8 3.8 2.8 

:z.2 2.2 1.6 
3.0 2.8 2.4 

p Low ,12 .10 .12 .11 
1o High .22 .18 ,20 .20 

.11 .14 .12 
I .20 .30 .40 
I ' 

' 

K Low .8 .7 .8 2.0 
% High 2,2 2.0 3.2 3.6 

2.0 1.2 .8 
3·2 2.8 1.6 

Ca Low .7 .8 1,2 1.1 
1o High 1,6 1.6 3.5 1,8 

1.2 1.1 1.6 
2.6 2.2 2.4 

M~ L~w .3!) .25 ·35 .25 
High .60 .60 1.10 .70 

.30 .30 .20 
,60 .60 .6o 

Mn Low 2) 25 30 30 
ppm High 140 100 140 100 

Toxic .. - 400 -
25 30 20 

140 100 300 
6oo - ;>'1000 

Fe Low 60 6o 60 60 
ppm High 240 240 240 140 

6IJ 60 60 
240 140 180 

Cu Low 3.5 3.5 3.0 2.5 
ppm High 20 20 20 20 

3.0 3.0 3.0 
20 20 30 

B Low (25) (25) (20) (25) 
ppm High 120 180 120 70 

Toxic (140) - ( 80) (80) 

(25) (25) 
80 

(25) 
1~0 100 

(1 0) (60) (900) 

Zn Low (15) (10) (18) (30) - - -
ppm High (100) - - - - - .. 

Na High .05 .07 ,02 ,02 
% Toxic .20 (. 5) (1.0) (1.0) 

.03 • 07 .12 . 
( • 5) ( • 5) -

C1 High .15 .12 ,10 .20 
% Toxic .30 (.50) ( • 50) .60 

• 10 .14 .25 . 
( • 50) ( • 50) ( • 50) 
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7. CONCLUSION. 

In a final analysis of the arguments and data presented, 

it may be claimed that a reasonable basis has been employed for 

setting up reference standards of leaf composition and that 

these provisional index values may be expected to serve as a 

useful guide in diagnosis of nutritional problems. 

Proof of the validity of the index values obtained must 

be sought in applying the ultimate test provided by fertilizer 

experiments or otherwise simply by trial and error. Some 

evidence that adjustment of the nutrient supply forecast on the 

basis of deviations from these index values will result in a 

yield response is provided by the data in Table 39 (page 180) 

in c~nnection with the grape fertilizer experiment. A diagnos­

tic leaf analysis advisory service would need to operate on the 

basis of repeated samplings, diagnoses and adjustments in suc­

cessive years, and such a scheme would provide evidence of its 

efficiency in due course. The value of a diagnostic decision 

will depend largely on the accuracy with which the analytical 

results are interpreted in terms of the deviations from the 

optimum range and the characteristic effects which may result 

from interactions between nutrient elements. 

Some idea of the nutrient status of orchards and vineyards 

in the Western Cape Province may be gathered by considering how 

many of those visited do or do not conform to the optimum com­

position as laid down for high performance. The proportion 

falling either below or above the limits of the optimum range 

is indicated on a percentage basis in Table 48. It is clear 

that in terms of the proposed index values, every kind of fruit 

is subject in varying degrees to some form of malnutrition 

whether deficiency, luxury consumption or lack of balance. 

Where 20% or more of the orchards are affected (those under­

lined in Table 48) the situation becomes a serious matter such 

J 
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TABLE ~8. - PERCENTAGE OF ORCHARDS AND VINEYARDS IN WES­

TERN CAPE PROVINCE WHICH FALL BELOW THE LOWER 

LIMIT OF THE PROPOSED OPTIMUM RANGE (THOSE 

BEYOND THE UPPER LIMIT IN BRACKETS). 

Apple Pear Peach Apricot Plum Prune Grape 

N 10 (0) 2Q ( 0) 5 (3) 14 (19) 14 (0) kl (0) ,g ( 12) 

p 17 (2) 20 ( 7) - 18 ( 5 ) g§. (13) g_2_ (0) i2 (2) .ll (1) 

K 8 (11 3 (8) 4 (10) 6 ( 35) 7 (14) 20 ( 9) 36 (8) - - -
Ca 12 ( 6) 8 ( 3) 13 ( 1) 2..2. (12) 14 (10) bl5. {6) 21 ( 2-Q_) -. 
Mg .2.9. (3) 12 {2) 9 ( 2) 4 (22) 14 (17) 17 ( 21) 21 (6) -
Mn 2.§. {1) 19 ( 6) 22. (10) 2 (11) g2_ (9) 20 (13) 19 (14) -
Fe 12 ( 0) 6 (0) 5 ( 0) gj_ (7) 0 ( 8) 20 ( 6) 2 (9) -
Cu 20 ( 0) 4 ( 0) 2 (0) 2 ( 0) 16 ( 0) 6 (0) 5 (0) -
B 6 ( 0) 13 ( 0) 2 ( 0) 6 ( 9) 4 ( 0) 11 ( 8) 6 (8) 

that most fruits would appear to require urgent attention as 

to the status of several nutrients, particularly in the case ef 

prunes, apricot and grapes. 

It is interesting to note that P still figures largely as 

a deficiency in spite of extensive use of heavy P fertilizer 

dressings. Apricot is seriously deficient in Ca, at the same 

time showing relatively high K and Mg levels; two conditions 

which are evidently interrelated. Manganese deficiency is 

evidently a major problem and so also is Zn deficiency judging 

from the widespread incidence of deficiency symptoms. By over· 

seas standards the B status would appear to be reasonably ade­

quate in most orchards but evidently requires attention in some 

cases. 

Many of these deviations from the optimum represent true 

nutritional disorders eapable of correction on the lines sug-

gested by the foliar diagnosis. A few may not show the expected 
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response indicated since although subnormal nutrient levels in 

the leaf indicates inability to obtain enough of the nutrient, 

they do not indicate the presence of other factors which may 

be acting in a way to prevent the plant from utilizing a pos­

sibly available supply of the nutrient concerned. This serves 

to emphasize the need, as already stated, for employing dif­

ferent methods when approaching an orchard problem and by 

elimination of other factors seek to determine whether it is 

purely nutritional. 

In conclusion it may be pointed out that the index values 

presented are not by an~ means final, and that further refine-
• ments in the technique and adjustments to the provisional 

standards are contemplated. Furthermore, it is realized that 

the approach used in endeavouring to establish index values, 

that is, on the basis of good performance and symptom expres­

sion, can serve only as a preliminary step in characterizing 

growth response in terms of leaf analysis. The need for more 

intensive studies of the relationship between internal nutrient 

concentration and growth response to fertilizer additions is 

obvious. Such data can be obtained through extensive fac-

torial experiments and may lead to a fan mo11~ c·omple·te inter­

pretation of leaf analysis duta than i& pc~~:ble at pres~nt. 

In any case the immediate. advantage ~hich can be derived 

from diagnostic leaf analysis is that a direct decision is pas-

sible in most cases regarding 

(a) identification of doubtful symptoms, 

(b) impending deficiencies when symptoms are absent, 

(c) lack of nutrient balance and toxic concen-

trations, 

(d) evidence as to where fertilizer trials may be 

most advantageously carried out, and 

(e) adjustment of the fertilizer programme. 

j 
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