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ABSTRACT 

In this study, commercially pure titanium foam was produced using space holder 

powder metallurgy techniques. Titanium foam is attractive as a scaffolding 

material for bone replacement and implants in the body. The porous morphology 

of the foam promotes osteogenesis, while the mechanical behaviour of the foam is 

closer to that of bone, which has an elastic moduli range of 5 - 40 GPa. 

Titanium foam was manufactured from powder mixtures of commercially pure 

titanium (CPTi) powder mixed with 41.4 wt% ammonium bicarbonate (ABC) 

powder and 1.45 wt% polyethyl glycol (PEG) powder. In this study, two CPTi 

powders with different particle size distributions, < 75 μm (-200 mesh, designated 

TiAA) and < 200 μm (-100 mesh, designated TiG), were mixed with the space 

holder ABC powder, that had been sieved into specified particle size ranges. The 

size ranges of space holder material studied were: 0 - 710, 250 - 425, 425 - 560, 

and 560 - 710 μm. This allowed foams with different large or macropore 

distributions to be produced from the different mixtures.  

The mixtures were uniaxially compacted at 100 MPa into transverse rupture bars. 

The ABC and PEG was then removed by thermal debinding in air for 5 hours at 

100 °C and 1 hour at 330 °C each, consecutively. The debound samples are then 

sintered under high (10
-6

 mbar) vacuum on yttria-stabilised zirconia substrates, 

heating at 5 °C/min to 1200 °C, with a 2 hour hold at temperature.  

The microstructures of the different foams were evaluated by examining the 

polished samples using light optical microscopy. Three point bend tests were 

conducted on the sintered bars in order to determine the flexural strength and 

flexural modulus of the different foams. The produced foams had a relative 

density range between 37.5 - 62.5 % and average macro pore size range between 

300 - 500 µm. The foams were found to have an elastic modulus similar to that of 

bone, 2 - 7 GPa.  

Finally, the mechanical properties of the foams were compared to known open 

foam mechanical models and other research projects. It was found that: (i) 

changes in either metal or space holder powder influences the sintering behaviour 

of metal foams, (ii) sintered titanium foams with similar densities but different 

macro/micropore size distributions have different mechanical responses to stress 

and (iii) the Ashby-Gibson model, based on foam density alone, gives a rough 

estimate of mechanical properties for the titanium foams studied, but does not 

capture variations due to pore size distribution. 
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OPSOMMING 

In hierdie studie is kommersiële suiwer titaanskuim geproduseer met behulp van 

ruimtehouer poeier metallurgie tegnieke. Titaanskuim is aantreklik as 'n 

raamwerkmateriaal vir beenvervanging en -inplantings in die liggaam. Die 

poreuse morfologie van die skuim bevorder osteogenese, terwyl die meganiese 

gedrag van die skuim naby aan dié van been is, met ‘n elasticiteitsmodulus tussen 

5 - 40 GPa. 

Titaanskuim is vervaardig van ‘n poeier mengsel van kommersiële suiwer titaan 

(CPTi) poeier gemeng met 41,4 gew% ammonium bikarbonaat (ABC) poeier en 

1.45 gew% poli-etileenglikol (PEG) poeier. In hierdie studie is twee tipes CPTi 

poeiers met verskillende deeltjiegrootteverspreiding, < 75 μm (-200 stofdigtheid, 

TiAA genoem) en <200 μm (-100 stofdigtheid, TiG genoem), met die ruimtehouer 

ABC-poeier, wat in bepaalde deeltjiegroottereekse gesif is, gemeng. Die 

wisselende groottes van ruimtehouer wat bestudeer is, was: 0 - 710, 250 - 425, 

425 - 560, 560 - 710 μm. Dit het die vervaardiging van skuim met verskillende 

groot of macroporeuse vanaf  die verskillende mengsels toegelaat.  

Die mengsel is teen 100 MPa in een rigting gekompakteer. Die ABC en PEG is 

dan verwyder word deur termiese ontbinding in lug vir 5 uur by 100 °C en 1 uur 

by 330 °C elk, onderskeidelik. Die ontbinde monsters is dan onder hoë 

(10
-6

 mbar) leemte op yttrium-gestabiliseer zirconia-substraat, met verwarming 

teen 5 °C/min tot 1200 °C met 'n verdere 2 uur by 1200 °C, gesinterd.  

Die mikrostrukture van die verskillende skuim is geëvalueer deur gepoleerde 

monsters met behulp van ‘n ligmikroskopie te ondersoek . Driepunt draaitoetse is 

op die gesinterd stawe uitgevoer om die buigsterkte en buigmodulus van die 

verskillende skuime te bepaal. Die vervaardigde skuime se relatiewe digtheid het 

tussen 37,5 - 62,5 % gewissel en die gemiddelde makroporiegrootte tussen 

300 - 500 μm gewissel. Die skuim het 'n elastisiteitsmodulus soortgelyk aan dié 

van been getoon, 2 – 7 GPa.  

Ten slotte is die meganiese eienskappe van die skuim met bekende oop skuim 

meganiese modelle en ander navorsingsprojekte vergelyk. Daar is bevind dat: (i) 

veranderinge in óf metaal of ruimtehouer poeier beïnvloed die sinteringgedrag van 

metaalskuime, (ii) gesinterd titaniumskuim met soortgelyke digthede, maar 

verskillende makro / mikroporeuse verdelings, toon verskillende meganiese 

reaksies op stres en die Ashby-Gibson model, gebaseer op die skuimdigtheid 

alleen, (iii) wat 'n rowwe skatting van die meganiese eienskappe vir die 

bestudeerde titaniumskuime gee, maar nie die variasies ingrootteverspreiding van 

porieë ondervang nie. 
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1. INTRODUCTION 

In an ideal world it would be desired that an alternative material for artificial bone 

implants would have the following characteristics: the material should be 

biocompatible to ensure the safety of the human body, the material should be able 

to fulfil the required loading conditions throughout the expected implant period, 

and, ideally, should encourage bioactivity in such a manner that it aids in the 

bonding between the implant material and the surrounding bone 

(Wisutmethangoon, et al., 2008). 

Suggestions for the above mentioned ideal alternative materials could be 

commercially pure titanium (CPTi) and titanium alloys, such as the commonly 

used Ti-6Al-4V. Titanium is a silvery-white, lustrous metal which is 

biocompatible, has a relatively low density and is known for its high strength 

(Wisutmethangoon, et al., 2008). However, due to the mismatch between 

titanium’s and bone’s Young’s modulus (110 GPa and 10-40 GPa, respectively 

(Wen, et al., 2001), as well as the mismatch between titanium’s and bone’s 

longitudinal compressive strength (434 MPa and 170-193 MPa, respectively 

(Wisutmethangoon, et al., 2008), it is possible that stress shielding and local 

reabsorption of bone may occur if the implant is made from pure solid titanium 

(Imwinkelried, 2007 and Ryan et al., 2006). 

Therefore, it is required to alter the mechanical properties of a titanium implant, 

so that they closely match that of bone. The suggested approach is a continuation 

of the author’s final year project where powder metallurgical techniques were 

used to produce porous titanium structures (van Zyl, 2010). The author was 

successful in producing porous titanium structures which had similar 

characteristics to that of bone, therefore proving the viability of the suggested 

approach. 

Coincidently, when the porous titanium is produced, using the powder metallurgy 

space holder method, open-cell pores are formed. These pores act like anchoring 

sites for the native bone to infiltrate and integrate into the porous titanium 

structure. Additionally, the implant also allows osteoblast growth and 

vascularisation to occur (Wen, et al., 2001). 

This thesis is an in-depth study on the production parameters of a porous titanium 

structures and how the different parameters influence the final material 

microstructure and its mechanical properties. During the proposed study, porous 

structures were produced from CPTi powder mixed with a space holder powder 

material that decomposes during processing. The material and mechanical 

properties of these structures were evaluated, and the results were analysed in 

order to understand the process-property relationships particular to this system 
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2. MOTIVATION 

The need for artificial scaffolding becomes apparent when looking at bone loss 

due to tumours, infection or trauma. Although these cases are common, the 

treatment process is not trivial and sometimes not possible if the extent of bone 

loss becomes great. Using titanium foam as a material for permanent artificial 

bone scaffolding allows osteoblast growth and vascularisation within the implant 

(Wen, et al., 2001). If this method can be perfected, it will become possible to 

produce scaffolds which can be used to replace damaged bone, allowing the 

patient’s bone to regenerate and make a full recovery. 
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3. OBJECTIVES 

The main object of the proposed project is to determine the processing parameters 

that significantly influence the material properties of porous titanium produced by 

the powder metallurgy space holder method.   In order to do this, a literature study 

must be conducted to determine which process parameters have currently been 

identified as parameters that control the material properties of porous titanium. 

The methods used to determine the sensitivity of these parameters to the material 

properties must also be researched. Therefore, the following are the initial 

objectives for the project: 

 Isolate specific important process parameters and establish methodologies 

to determine sensitivity of the parameters on the material properties. 

 Conduct experiments according to the established methodologies in order 

to determine the most sensitive process parameters (sensitivity analysis). 

 Use the knowledge obtained from the sensitivity analysis to produce a 

porous titanium structure with customised microstructure and mechanical 

properties. 

 Establish further research directions for this project that will utilise the 

results, such as technology transfer for biomedical implant manufacturing. 

  

Stellenbosch University  http://scholar.sun.ac.za



 
4 

 

4. LITERATURE STUDY 

A literature study was conducted to establish the current medical procedures for 

treatment of extensive bone loss, the types of foams that are used for implants, the 

different production methods of titanium foam, and the current and desired 

characteristics of titanium foams.  

4.1. Bone structure and general mechanical properties 

Bone can be considered as an open cell composite material which is largely made 

up of protein-related materials and complex vascular systems. When taking a 

cross section of bone it is possible to see that bone has two distinct regions. The 

outer shell is considered to be comprised of dense compact or cortical bone, while 

the inner core is comprised of highly porous cellular, cancellous or trabecular 

bone, as can be seen in Figure 1. The Osteon of the bone are found within the 

cortical bone and are cylindrical by nature with a diameters ranging between 10 to 

500 µm. It should be noted that the Osteon contain blood vessels which run 

parallel to the bones axis and are connected to the surface through the perforation 

canals. 

 

Figure 1: The structure of bone 

(http://training.seer.cancer.gov/anatomy/skeletal/tissue.html) 

The highly porous core of the bone consists of an interconnected network of 

trabeculae which have diameters ranging between 50 to 300 µm. Due to this 

structure, the average porosity of cortical bone is 5 to 10 % while that of 

cancellous bone ranges between 75 to 90 % (Nouri, et al., 2010). This equates to a 

wet apparent density of 1.99 g/cm
3 

(Black & Hastings, 1998)
 
for cortical bone and 

a substantially varying density of 0.05 to 1.0 g/cm
3 

(Black & Hastings, 1998)
 
for 

cancellous bone. The porosity of cancellous bone is measured by the volume of 

non-bonelike tissue present within cancellous bone which is usually filled by bone 
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marrow. The main reason for the large  density variation in cancellous bone is 

because cancellous bone densifies from the center outwards. 

Bone contains about 99 % of the human body’s calcium reserve. This calcium is 

stored and converted into bone mineral which is mostly in the form of  

hydroxyapatite (Ca10(PO4) 6(OH)2). 

To ensure successful scaffolding implantation, it is important that the implant 

does not only match the biological requirements but also the mechanical 

properties. Bone can be considered as an anisotropic material with mechanical 

properties that vary with anatomical location and loading direction. This is 

illustrated by the large variation in the elastic modulus measured between the 

longitudinal and transverse directions (Nouri, et al., 2010). 

 The mechanical strength of cortical bone in the longitudinal direction is reported 

to be in the range of 79 to 151 MPa in tension and 131 to 224 MPa in compression 

(Thomson, et al., 1995), with the elastic modulus reported to be in the range of 17 

to 20 GPa. However, due to anisotropic nature of bone, the mechanical strength of 

cortical bone in the transverse direction is reported to be in the range of 51 to 

56 MPa in tension and 106 to 133 MPa in compression, with elastic moduli in the 

range of 6 to 13 GPa (Nouri, et al., 2010). Due to the architectural nature of 

cancellous bone, the reported mechanical properties vary largely. However, 

compression strength of 2 to 5 MPa and elastic moduli of 0.76 to 4 GPa are 

reported (Nouri, et al., 2010). 

4.2. Background on medical procedures for extensive bone loss 

The current procedure for the treatment of extensive bone loss is bone grafting. 

Bone grafting techniques are procedures followed in order to replace missing 

bone, via surgery, with bone of either the patient’s own body, an artificial, 

synthetic or natural substitute. Bone, unlike most tissues, has the ability to 

regenerate completely if provided with sufficient space. It is common that the 

native bone should grow into the grafted section, often replacing or integrating to 

form a region of new bone. In order for a bone grafting material to provide the 

desired biological function, it should have four fundamental characteristics: 

osteoconduction, osteoinduction, osteopromotion and osteogenesis (Klokkevold & 

Jovanovic, 2002). 

Osteoconduction is the ability of the bone graft material to serve as a scaffolding 

material for penetration of the native bone, so that new bone growth can continue 

and form a new integrated section of bone. This is the primary and most important 

characteristic of any grafting material (Klokkevold & Jovanovic, 2002). 

Oesteoinduction is the ability of the grafting material to promote the 

osteoprogenitor cells (cells generated within the periosteum and bone marrow) to 

differentiate into osteoblast cells, which are responsible for bone formation. This 

characteristic therefore helps to promote faster integration of the bone grafting 

material and is often achieved by the grafting material having bone 
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morphogenetics (BMPs) imbedded into the material (Klokkevold & Jovanovic, 

2002). 

Oesteopromotion is the ability of the grafting material to promote osteoinduction 

without the presence of osteoinductive properties. This is often achieved through 

addition of organic elements required for bone growth into the grafting material, 

such as enamel (Klokkevold & Jovanovic, 2002). 

Oesteogenesis is the ability that osteoblasts have to form in the grafting material. 

These osteoblasts help to contribute to bone growth. For this to occur it should be 

incorporated with osteoconduction and osteoinduction (Klokkevold & Jovanovic, 

2002). 

As these characteristics are dependent on the type of bone grafting material used, 

it becomes important to have predefined categories for all types of bone grafting 

material. The main categories are as follows: alloplast, xenograft, allograft and 

autograft (Klokkevold & Jovanovic, 2002). 

Alloplast is the category for a synthesised material which is made up of naturally 

occurring minerals which are essential for the formation and health of bones. 

These materials include hydroxyapatite, bioactive glass, calcium carbonate, as 

well as tricalcium phosphate. This category has the characteristics of allowing 

osteoconduction, with the ability of reabsorption
1
 (Klokkevold & Jovanovic, 

2002). 

Xenograft is the category for a natural grafting material which has its origin from 

other species, often bovine (cow) material (Klokkevold & Jovanovic, 2002). 

Allograft is the category used for bone grafting material received from other 

human patients. The bones are harvested from the cadavers of patients have 

donated their bones to bone banks. This form of grafting material can have both 

osteoconduction and osteoinduction characteristics (Klokkevold & Jovanovic, 

2002). 

Autograft is the category used for bone grafting material grown or harvested from 

the patient’s body. This is often achieved through a procedure of aiding bone 

outgrowths, and then harvesting them for implantation or by harvesting non-

essential bones. This form of bone grafting material satisfies all bone grafting 

material characteristics (Klokkevold & Jovanovic, 2002). 

It is proposed to use metallic foam as a bone grafting material as it can serve as a 

bone scaffolding material which allows osteoblast growth as well as 

vascularisation to occur within the implant (Wen, et al., 2001). Therefore, the 

metallic foam can be classified as an osteoconduction grafting material. It is a 

variant of the alloplast, as the foam is created from inorganic materials and 

implanted within the bone. Unlike xenograft, allograft and autograft, the 

                                                           
 

1
 Allows the body to absorb all contents of the grafting material 
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suggested metallic foam can be manufactured to the desired shape and size, and as 

many times as needed as it is independent of available material resources or 

donors.  

4.3. Metallic foams 

As mentioned section 1, the use of titanium for implant material is ideal as it is 

biocompatible, corrosive resistant and has a high strength-to-weight ratio. The use 

of solid titanium for implants results in uneven loading of the surrounding bone 

and as a result can cause stress shielding and local reabsorption of bone 

(Imwinkelried, 2007 and Ryan et al., 2006). This typically leads to a reduction in 

the implant lifetime expectancy and, as a result, an alternative solution to using 

solid titanium implants has been investigated. One suggested alternative to 

address this uneven loading is to reduce the stiffness of the implant to match that 

of bone. This is typically done by increasing the porosity, effectively decreasing 

the mechanical properties of the implant to be closer to those of bone. The 

production of titanium foam has been widely researched and this will be the focus 

of this project.   

Metallic foams can be characterised into two categories: open-cell and closed-cell 

foams. The main difference between open-cell and closed-cell foams is that in 

closed-cell foams each pore is individually covered with a membrane, whereas 

with open-cell foams the pores are connected, allowing human tissue to grow into 

the pores and anchor itself (Ryan, et al., 2006). Although both types of titanium 

foams are usable in biomedical applications, this report focuses on open-cell 

titanium foams due to their characteristic of allowing bone tissue to infiltrate the 

pores, giving the scaffolding the desired osteoconduction characteristic. 

4.4. Biocompatibility and oxidation characteristics of titanium 

Titanium is used for biomedical applications due to it being an attractive material 

because of its strength, lightness and high resistance to corrosion. Titanium’s 

biocompatibility is based on a thin layer, approximately 5-29 nm, of TiO2 formed 

surrounding the surface of the bulk material  (Bram, et al., 2006). TiO2 forms 

naturally around the surface of the sample as it is exposed to the ambient 

environment. However, when considering titanium powder, it is important to 

prevent oxidation or contamination from occurring on the particle surface (via 

oxidation or other particle contaminates) as this hinders particle bonding during 

the sintering process. The solution to prevent contamination throughout the 

sample is to sinter the titanium powder under high vacuum. Following sintering, 

oxidation of the exposed titanium surface will occur naturally, protecting the 

titanium from reacting with the body. 

An additional problem associated with oxidation is that it is an exothermic 

reaction. This means that when titanium oxidises, energy is released in the form of 

heat. When the energy released is sufficient, the surface of the titanium particles 

may ignite. This ignition may result in an adiabatic flame with temperatures of 
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approximately to 3400K (Shafirovich, et al., 2008). Therefore, the need for a 

vacuum furnace is not only to prevent contamination but also to ensure safety. 

4.5. Production methods of open-cell titanium foams 

There are various methods of producing open-cell titanium foams. The three most 

prominent methods are: furnace sintered metal powders (Ryan, et al., 2006), solid-

state expansion (Spoerke, et al., 2008) and the powder metallurgy (PM) space 

holder method (Ryan, et al., 2006). 

The furnace sintered metal powders method is the simplest fabrication technique. 

The powder is not compacted before sintering and the only densification which 

the powder experiences are that which occurs during the sintering of the metal 

powder. This method is generally used when producing low strength filters and 

the control of the pore size and distribution is minimal. 

The solid-state expansion method involves hot-isostatically pressing powders in 

the presence of a noble gas. Once pressed the resulting high-pressure gas bubbles 

are allowed to expand by elevating the surrounding temperature in ambient 

pressure. The control of the pore size and distribution is slightly higher than that 

of furnace sintered metals powder method, but still limited to the formation of the 

gas bubbles and the expansion thereof. 

The PM space holder process produces metallic foams by mixing a metal powder 

with an inorganic space holder powder. The mixture is then compacted into the 

desired shape, thereafter the space holder is thermally removed through 

decomposition. The desired external shape is maintained while the desired open-

cell pores are created where the space holders used to sit. 

The pores created are dependent on, and change with respect to, the morphology 

of the space holder and metal powder as well as the compaction pressure used. 

This process is highly versatile: capable of producing metallic foams with up to 

80 vol% porosity (Ryan, et al., 2006), allows relative control over the desired 

morphology of the skeletal structure to optimise for osseointegration (Wen, et al., 

2001) and is able to make bone replacement material for almost all types of bones. 

Therefore, the project will focus on PM space holder methods. 

4.6. Selected PM space holder methods 

When investigating PM space holder methods, it becomes important to determine 

what desired characteristics are expected from both the space holder and titanium 

powder.  

The main role of space holder powders is to prevent titanium powder from 

occupying a certain volume, thus creating porosity in the resultant foam. It is 

critical that when the space holder is removed, that the volume remains vacated 

and that the space holder material does not contaminate the titanium. An 

important aspect relating to contamination is the temperature at which the space 

holder is removed. As oxidation should be kept to a minimum (to ensure sufficient 
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particle bonding during sintering) the decomposition temperature of the space 

holder should be low enough to ensure minimal oxidation to take place within the 

material. The following are possible space holders which have been used 

successfully by other researchers: ammonium bicarbonate (NH4:HCO3) (Ryan, et 

al., 2006), urea ((NH2)2CO) (Wenjuan, et al., 2008), titanium hydride (TiO2) 

(Wisutmethangoon, et al., 2008) and a mixture of 93 vol% of naphthalene, 6 vol% 

of EVA (Poly(ethylene-co-vinyl acetate)) and 1 vol% stearic acid (Chino & 

Dunand, 2009)..  

4.6.1. Size of space holder particle  

It is good practise to select a space holder particle size larger than the base 

material (Nouri, 2008). Typically, the space holder particle size is selected to be in 

the range of 100-500 μm, which has been shown to produce macropores in the 

range of 300-400 μm (Arifvianto & Zouh, 2014) and is ideal for osseointegration.  

A relationship between interconnectivity and space holder particle size has been 

determined using tomographic analysis of the macropores (pores formed by the 

void left behind from decomposed space holder material); it was found that the 

interconnectivity increases when the space holder particles size increases. This is 

due to the greater packing coordination number of the larger space holder particles 

as compared to smaller particles after compaction (Tuncer, et al., 2011).  

It was also shown by tomographic analysis that macropore sphericity increases 

when space holder particle size increases. Lastly, relative porosity increases in 

scaffolds with larger space holder particle sizes, as the surface area of scaffold 

decreases when the space holder particle size increases. Typically, this means that 

the pore wall thickness increases with the increase in space holder particle size for 

the same relative density foams, resulting in better mechanical properties of the 

foam (Tuncer, et al., 2011). However, it has conversely been shown that the 

flexural strength decreases as the space holder particle size increases (Amingo, et 

al., 2011). All that can be concluded from these studies is that there are multiple 

variables that are influenced by the space holder particle size, and that these in 

turn influence the mechanical behaviour of the foam. 

4.6.2. Size distribution of space holder particle 

It is important for the space holder particle size distribution to be controlled. In 

most cases, it was found that it is better to have a narrow space holder size 

distribution. It was found that an unsieved, non-uniform space holder particle size 

distribution typically results in scaffolds with deteriorated mechanical properties 

(Arifvianto & Zouh, 2014). 
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4.6.3. Selected space holder material 

Ammonium bicarbonate (NH4HCO3), a white powder which is a common space 

holder used for most PM foam production (Imwinkelried, 2007), decomposes into 

gas at relatively low temperatures with minimal contamination of titanium powder 

(Nouri, et al., 2010). It also offers sufficient green strength to the compacted metal 

powder-space holder powder mixture to make the compacted or green sample 

rigid enough to be handled without breaking. Ammonium bicarbonate is also 

easily sieved so that the particle size distribution range remains narrow. This 

results in a good level of control over the initial parameters of the ammonium 

bicarbonate powder. 

For all of the above reasons, ammonium bicarbonate was selected for the 

production of the porous titanium in this study 

4.7. Selected lubricant material 

As most space holders are non-adhesive powders, the addition of a binder and 

lubricant is deemed necessary to provide sufficient green strength for handling the 

die compacted powder mixture samples. The lubricant should behave similarly to 

that of the space holder material, in that it should not contaminate the titanium and 

but should also be able to decompose at relatively low temperatures (lower than 

the sintering temperature for titanium). The lubricant is required to prevent 

delamination (cracking and separation of the compacted powder during the 

ejection from the die) from occurring due to friction with the die wall.   

Polyethylene glycol (PEG) was chosen for this purpose. PEG is supplied in 

various polymer chain lengths. The selection of PEG 1000 was based on its 

polymer size and molecular weight. The number following PEG indicates the 

molecular weight of the PEG in g/mol. As PEG 1000 is a waxy compound with a 

relatively short polymer chains, it is easily deformed and therefore should flow 

easily around the powder particles, allowing it to bind and lubricate. 

4.8. Sintering theory 

Sintering is classified as the bonding of closely packed powder which is heated to 

temperatures in excess of approximately half of the absolute melting temperature 

(German, 1985). In addition to particle bonding, sintering can also have the 

following effects: 

 Chemical reactions 

 Dimensional changes 

 Internal stress relief 

 Phase changes 

 Alloying

When considering pressure-less sintering, which occurs without the need of an 

external pressure, the main sintering processes are solid-state and liquid phase 

processes. Liquid phase sintering is generally required when a powder is difficult 
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to sinter and liquid needs to be introduced into the sample to aid the sintering 

process. 

Solid-state sintering occurs at the contact points between powder particles by 

atomic diffusion in the solid state. It relates to a low mass transport rate (the rate 

at which mass flows between powder particles during sintering). Liquid-phase 

sintering has a higher mass transport rate due to this higher diffusion rates of 

atoms in the liquid state. It is additionally aided by the high pressure which is 

generated due to the capillary pull which is exerted on the particles when the 

liquid permeates throughout the material (German, 1996).  

As this study focuses on the investigation of a single phase powder mixture and 

titanium is generally easy to sinter, only solid-state sintering will be reviewed.  

4.8.1. Solid-state sintering 

Figure 2 illustrates the different stages of solid-state sintering.  

 

Figure 2: Solid-state sintering stages (German, 1996) 

As demonstrated in Figure 2, at the beginning of solid state sintering there are the 

point contacts between powder particles. During the initial stage, the point 

contacts begin to fuse as a result of surface diffusion in a process that is typically 

called “necking”; this necking process results in the pore structure becoming 

smooth and interconnected. As the process continues into the intermediate stage, 

grain boundary and volume diffusion dominate and cause significant mass 

transport between particles. As a result, the pores tend to become cylindrical and 

elongated, and the average pore size reduces significantly. The final stage of 

sintering occurs when the pores have pinched off into lenticular or spherical pores 

and there is less than 8 % porosity remaining (German, 1996). 

4.9. Models for the mechanical properties of metal foams 

Currently, all proposed models, which are used to characterize the mechanical 

properties of metal foams, can be categorized into one of three categories: 
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 Cross-sectional area models,  

 Stress concentration models, or 

 Effective flaw size models. 

For the cross-sectional area model, the critical parameter is that of the actual load 

bearing area or that of the minimum solid cross sectional area. For the stress 

concentration model, the shape of the pores is used to estimate the resulting stress 

concentrations. Lastly, the effective flaw size model is based on the assumption 

that flaws exist in the vicinity of the pore before final failure (Hattiangadi & 

Bandyopadhyay, 2000). 

4.9.1. Cross-sectional area model 

The most commonly used model is that suggested by Gibson and Ashby (a 

variation on the cross-sectional area model); they model the open cells as a cubic 

array, as shown in Figure 3, where the cell edges have a square cross-sectional 

thickness of t and a cell length of L.  

 

Figure 3: Gibson and Ashby cubic model for open-cell foams (Gibson & 

Ashby, 1988) 

When considering the mechanical properties for this model, it is important to 

consider a typical stress-strain curve for a cellular solid, shown in Figure 4. The 

stress relationship has 3 defined stages: the plastic deformation stage, the plateau 

stress stage and the densification stage.  

The elastic deformation stage occurs when the load applied to a cellular solid is 

sufficiently low to cause recoverable deformation. 

 The plateau stress stage occurs once the force is sufficient to surpass the elastic 

deformation stage and plastic or permanent deformation begins. The plateau stress 

stage is characterised by the cells buckling and crushing as cell edges collapse 

under pressure. Once the plateau stage is reached, a relatively minimal increase in 

stress will result in a relatively large increase in strain. This buckling and crushing 

of the cells gives the curves the typical plateau characteristics and results in 

permanent deformation with relatively large energy absorption. 
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Figure 4: A typical stress-strain curve for a cellular solid or foam (Gibson & 

Ashby, 1988) 

Once the buckling and crushing of the cells reaches a point where the force 

required to cause further deformation increases dramatically, the material enters 

the densification stage. This stage typically occurs as a result of large portions of 

the void volume within pores being collapsed and therefore the material 

rearranges itself and densifies.  

The cubic array in Figure 3 is an idealisation of a unit cell structure, which 

consists of solid struts which have a low thickness to length ratio (t<< L). 

Considering this cell structure, cellular solids can be characterized by their 

relative density, which is related to the cell dimensions as follows: 

 

  
 (

 

 
)
 
     (1) 

Where: 

  =  density of open-cell foam (
  

  
), 

   =  density of material solid (
  

  ), 

  =  thickness of cell edge (m), 

  = cell size (m). 

This model is based on the theoretical micro-mechanical assumptions made, while 

the parameter values are identified by mean of experimental data. This mean the 

Ashby-Gibson captures any morphology or alternate influence via the parameters 

values which are identified from experimental data. 

4.9.2. Elastic deformation 

Figure 6 shows the deformed cubic cell that results from loading the original 

cubic array, shown in Figure 3, with an applied load, F. The loaded force, F, is as 

Stellenbosch University  http://scholar.sun.ac.za



 
12 

 

a result of the remote compressive stress, σ, within the specimen as a whole. This 

force, which is applied to the cell edges, will cause the cell edges to bend, which 

results in a perceived low modulus of elasticity for cellular solids. The deflection 

of the cell strut due to bending is described by, δ, as indicated in Figure 5. 

 

Figure 5: Graphical representation of a loaded Ashby-Gibson open-cell 

foams model (Gibson & Ashby, 1988) 

Under these loading conditions, beam deflection theory is applied as the loading 

case is similar to that of a simply-supported beam with a mid-point load along its 

length of L. Thus, the mid-point deflection is given by: 

  
   

   
     (2) 

Where: 

   =  applied force (N), 

   =  length of cell (m), 

  =  elastic modulus of solid material (Pa), 

   =  the second moment of area (m
4
), 

  =  the deflection of the cell edge(m). 

As the forces being applied are a result of the compressive stress within the 

material, the force is described by F   σ L
2
. The second moment of the area of the 

cell edge is based on the cross-sectional area of the cell edge and is therefore 

described as I = t
4
/12. The compressive strain experienced in the foam as a whole 

is ε   2 δ/L.  

The elastic modulus of the open-cell foam, E, relates the stress to the strain,  

  
 

 
     (3) 
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Combining these relationships with equations (1) and (2), shows that the elastic 

modulus of the open-cell foam is related to the elastic modulus of the solid 

material by the square of the relative density, 

 

  
   (

 

  
)
 
    (4) 

Where: 

   =  elastic modulus of open-cell foam (Pa), 

   = elastic modulus of the solid material (Pa), 

  =  density of open-cell foam (
  

  ), 

   =  density of material solid (
  

  ), 

The constant, C, is dependent on the geometry of the mechanical model used, but 

it generally assumed to be relatively close to unity. 

4.9.3. Failure mechanisms  

When modelling a cellular structure which is subjected to a collapse force, a force 

which drives the material beyond the elastic deformation stage, there are three 

main forms of failure which result in permanent deformation (Gibson & Ashby, 

1988): 

 bending, 

 buckling, and 

 fracture. 

All three of these forms of failure result in the cell edges collapsing and in turn 

gives the typical open-cell stress strain curve its characteristically plateau stress 

shape. 

Typically, it is expected that bending-dominant behaviour will occur in foams 

made from ductile materials. Buckling-dominant behaviour will occur in 

elastomeric foams and fracture-dominant behaviours will occur in brittle foams.  

As this study focuses on titanium, which is a ductile material, only the bending-

dominate behaviour failure will be determined. Elastomeric foams are typically 

made from polymers and brittle foams from ceramics (Gibson & Ashby, 1997). 

4.9.4. Permanent deformation: bending-dominant yielding 

Under bending-dominant failure, it is assumed that the collapse force applied to 

the cellular structure creates a plastic hinge at the cell corners. At the hinge points, 

a fully plastic moment occurs and, as a result, permanent deformation occurs. 

Figure 6 highlights these plastic moment hinges and shows where they typically 

occur.  
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Figure 6: Graphical representation of a loaded Ashby-Gibson open-cell 

foams model and the points where the momentum causes plastic deformation 

(Gibson & Ashby, 1988) 

The expected plastic moment which occurs due to the remote stress applied to the 

sample is related to the yield strength of the solid material as follows, 

   
     

 

 
    (5) 

Where: 

    = plastic moment (Nm), 

     = yield strength of solid material (Pa), 

  = thickness of cell edge (m). 

When considering that the moment is related to the remote stress by M   FL   σL
2
 

(Gibson & Ashby, 1997), it is possible to combine these relationships and to relate 

the plateau stress to the yield stress of the solid materials through the relative 

density: 

   

    
   (

 

  
)

 

 
    (6) 

Where: 

     =  plateau stress (Pa), 

     = yield strength of solid material (Pa), 

  =  density of open-cell foam (
  

  ), 

   =  density of material solid (
  

  ). 

Typically, the constant in equation (6) is approximately 0.3 for metal foams 

(Gibson & Ashby, 1988). 
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4.10. Published studies for titanium foams 

Table 1 is a summary of work conducted by other researchers. Although this is 

not an exhaustive summary, it gives a good indication of the general trends and 

production parameters used. All of these studies focused on the production of 

titanium foams using commercially pure titanium powder as the scaffold material 

and ammonium bicarbonate as a space holder material.  

Table 1: A summary of published studies for titanium foams  

 Sources 

Characteristics 

(Thomson, et 

al., 1995) 

(Wen, et al., 

2001) 

(Amingo, et al., 

2011) 

Titanium powder Commercially 

pure titanium 

grade 4 

Commercially 

pure titanium 

grade 4 

Commercially 

pure titanium 

grade 3 

Titanium powder particle 

size (µm) 
<45 <45 <45 

Compaction Pressure 

(MPa) 
Not specified 100 100, 200 

Decomposition  

Temperature (ºC) 
95 200 80 

Decomposition duration 

(hours) 
12 5 21 

Sintering Temperature 

(ºC) 
1300 1200 1300 

Sintering duration 

(hours) 
3 2 2 

Space holder  particle 

range (µm) 
425-710 200-600 

250-500, 

500-1000 

Yield Strength (MPa) 60-70 35 90-500 

Elastic modulus (GPa) 7-14 5.3 21-100 

Macropore size (µm)  100-500 200-500 Not specified 

Porosity range (%) 50-80 78 25-62.5 

From this brief comparison, as well other studies not reported here, it seems that 

the production parameters of titanium foams are not standardized. The diversity of 

production parameters in published literature has also been noted in a review on 

porous titanium (Arifvianto & Zouh, 2014).   

Stellenbosch University  http://scholar.sun.ac.za



 
16 

 

5. METHODOLOGY AND EXPERIMENTAL OVERVIEW 

In this section an overview of the typical production cycle and the experimental 

methodology is given. An explanation of the procedures for each typical 

experiments conducted at each process step follows. 

5.1. Production cycle 

5.1.1. Production selection 

For this study, titanium foams are produced using the PM space-holder process. 

The typical process is shown in Figure 7, with each process step labelled. A short 

description of each process step is given in subsequent sections. These steps are 

independent of the metal powder and space holder powders used. However, for 

this study, titanium powder was used with ammonium bicarbonate powder as the 

space holder material. 

 

Figure 7: Production steps for porous titanium using the PM space holder 

method. 

5.1.2. Sieving 

The goal of this study is to determine the effect of the space holder particle size on 

the structure and properties of the titanium foam. It is also crucial, as mentioned in 

section 4.6.2, that the space holder particle size distribution be as narrow as 

possible. For both these reasons, the space holder material, ammonium 

bicarbonate powder, was sieved into batches of specific particle size ranges. This 

allows the macropore size, post sintering, to be controlled so that foams with 

specific pore size distributions can be manufactured. Macropores are the larger 

pores that initiate from the voids left by the decomposed space holder material 

after debinding and sintering. Micropores are the natural inclusion formed due to 

void formed between the packing of titanium powder, which is common in 

powder metallurgy especially in low compaction pressures it is more common.  

During sintering, as the metal powder particles bond together, the gaps between 

the powder particles shrink and leave micropores in the sintered material. The 

relationship between space holder particle size and the size of the macropores is 

also influenced by the micropores present in the sintered material. Micropores 
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sometimes connect the voids left by the previous space holder material, resulting 

in macropores that are larger than the specified space holder particle sizes. These 

factors are considered when determining the relationship between the space holder 

particle size range and the macroporosity of the foam. 

Sieving is a mechanical method of sorting powders by vibrating the powder 

through various sized sieves. The standard method for sieving the powder into 

batches with known particle size ranges (ASTM Standard C136, 2006). It is the 

method that was used to produce the space holder material batches for this study.  

From literature it is suggested that the desired space holder particle size, based on 

similarity to the structure of bone, is in the range of 425-710 µm (Imwinkelried, 

2007). It is important that a large spectrum of particle size batches is sieved to 

allow investigation of the effect that the space holder particle size has on the final 

mechanical strength. 

5.1.3. Mixing 

For mixing, it is important that an even distribution between the different 

constituents (metal powder, space holder and lubricant) is obtained. The metal 

powder determines the resultant sintered network of the foam. The space holder 

powder is responsible for the creation of the macropores and the lubricant helps to 

reduce die wall friction during compaction. If the mixture is not homogeneous 

(evenly distributed), the space holder powder could coagulate and cause uneven 

pore distribution and possibly the creation of larger pores, introducing weak 

points into the foam.  

A mixing study is conducted to determine the mixing time at various mixing 

speeds required to produce a homogeneous powder mixture. The homogeneity is 

evaluated by measuring the apparent density, at various stages during mixing. 

Apparent density is the density of the loose powder mixture, as it fills a specified 

volume. It is measured without tapping or settling the powder, under the force of 

gravity alone.  

Due to the large difference in densities of each powder constituent, any non-

homogeneity in the powder mixture will result in a significant difference in its 

apparent density. Therefore, once the apparent density of the mixture stabilises, it 

is considered to be homogeneous. 

5.1.4. Compaction 

Uniaxial die compaction is used to form the powder mixture into a desired green 

shape. Typically, a tooling set consists of an upper punch, lower punch and die. 

The compaction step can be broken into 3 stages: filling, pressing and ejection, as 

shown in Figure 8 (van Zyl, 2010).  

A compressibility study is conducted to determine the relationship between 

compaction pressure and green (compacted) density. This information can then be 

used to determine the mass of powder mixture required to produce a sample with 

a specific volume (length, width and height) at a given compaction pressure.  
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Figure 8: Illustration of compaction procedure 

During the filling stage, the lower press is lowered, the die cavity is filled with 

powder, and the die is shaken and tapped until the powder is relatively level 

(Figure 8, 1.1 and 1.2). This is done to ensure that during the compaction stage the 

powder flows evenly throughout the sample and no density gradients occur. As 

density gradients will result in non-uniform shrinkage during the sintering 

process. 

During the compaction phase the upper and lower punches are moved together 

inside the die, thus pressing the powder into the desired shape. The density of the 

compact increases significantly during this step. 

During the ejection phase the die is moved down, thus ejecting the green compact 

from the die.  After ejection, all burrs are removed from the green compact’s edge 

using fine sand paper. 
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5.1.5. Space holder removal 

Both the space holder and the lubricant must be removed from the compact before 

sintering. This is achieved through thermal decomposition. It is important that 

both the lubricant and the space holder are chosen so that thermal decomposition 

occurs at temperatures below the critical oxidation temperature of the metal 

powder. These temperatures are often relatively low compared to the required 

temperatures for sintering.  

As the space holder material makes up a large volumetric fraction of the samples, 

it must be removed slowly, so as to prevent the surrounding compacted titanium 

powder from distorting, cracking or blistering. TGA (thermogravimetric analysis) 

is conducted on both the space holders and the lubricant to determine the optimal 

temperature of decomposition. The actual decomposition temperature set on the 

furnace is chosen approximately 10 % below the optimal decomposition 

temperature so as to ensure that there is no pressure build-up due to degassing of 

the space holder material during decomposition. Pressure build-up can cause 

cracking and blistering of the sample. 

To ensure that all space holder and lubricant were successfully removes, the mass 

of the sample were compared before and post debinding. Once the space holder is 

removed the weight of the sample should match that of the expect weight of 

titanium added to each sample.  

Additionally TGA is conducted on the titanium powder to determine the critical 

oxidation temperature. The critical oxidation temperature is the temperature at 

which the rate of oxidation starts increase significantly. 

5.1.6. Sintering 

After space holder removal, the titanium parts are sintered in a vacuum furnace. 

During sintering, the titanium particles bond with each other and densification of 

the skeleton structure occurs. During this densification phase, the macropores 

shrink in average diameter while still remaining large enough to fulfil the 

requirements as stipulated in section 5.1.2. 

Titanium must be sintered in a vacuum furnace because it is very reactive with air 

(nitrogen and oxygen) above 500 ºC. Therefore it is critical that special care is 

taken during the sintering process. Typically, a vacuum less than 10
-6

 mbar is 

needed to ensure clean sintering of titanium. During the sintering process, the 

samples are placed inside yttria-stablised zirconia crucibles and inserted into the 

furnace. Yttria-stablised zirconia is a very stable oxide and so does not react with 

the titanium during sintering. 

5.2. Experimental overview 

Figure 9 describes both the production steps as well as the experiments which 

were conducted to evaluate the material properties at each step. It takes the form 

of a production flow chart and is used to guide the experiments for this research. 
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Dashed lines indicate the path following an incorrect outcome or failure, where 

the solid lines the path following a successful outcome or progress. The 

highlighted blocks are the production processes and the clear blocks indicate 

evaluation experiments. The proceeding sections will follow this flow diagram 

sequentially according to the production procedure (highlighted blocks). 

 

Figure 9: Flow diagram of project overview 

5.2.1. Production selection 

Two commercially pure titanium powders with different particle size distributions 

were selected for this study. The as-supplied powder analysis data is shown in 

Table 2. Both titanium powders were created using the HDH process (hydride-

dehydride), a process where the titanium powder is made brittle via hydrogen and 

then is crushed. 

Table 2: Titanium powder characteristics as supplied by supplier 

Characteristics TiAA TiG 

Purity   99.4 %   99 % 

Particle size   75 µm   150 µm 

Production method HDH HDH 

Morphology Angular Angular 
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As mentioned in the section 4.6, the space holder material selected is ammonium 

bicarbonate (British pharmacopoeia BP E503, purity   98 %). As ammonium 

bicarbonate is a non-adhesive powder, the addition of a binder and lubricant was 

necessary. Both the ammonium bicarbonate and binder/lubricant were chosen to 

decompose at relatively low temperatures and to not contaminate the samples as 

they are removed. The binder/ lubricant was PEG 100 for reasons explained in 

section 4.7. 

SEM (Scanning Electron Microscope) imaging 

The morphology of the powders were observed using SEM imaging. Knowledge 

of morphology is important as it determines and affects the processing parameters 

and material properties of the final product.  

SEM uses a high energy electron bean to scan a sample’s surface in a raster 

pattern. Unlike a conventional light microscope, SEM is capable of producing 

images on multiple planes. In essence, SEM is capable of generating images 

which giving the illusion of depth and curvature. This is ideal when studying 

loose powders as well as the pore structure of the foams as they are better 

visualised in three dimensions.  

The SEM analysis was conducted at Stellenbosch University’s Central Analytical 

Facility (CAF) at the Department of Geology, using a ZEISS EVO MA15VP 

SEM. Both the ammonium bicarbonate and titanium powder was imaged and 

analysed at various magnifications and areas. SEM analysis was not conducted on 

the PEG, as PEG is a waxy compound with minimal structural integrity. During 

the compaction process, all PEG will deform and flow between the other powder 

particles acting as a lubricant and having minimal effect of the porous structure of 

the sample. 

Particle size analysis by Laser Diffraction 

Laser diffraction was used to determine the particle sizes of the different titanium 

powder used for this research. The particle size distribution of the titanium 

powder is important as it determines and affects the process parameters and 

characteristics of the final product. 

Laser diffraction analysis is conducted by passing powder particles though a laser 

beam and measuring the diffraction patterns cause by each particle. The analysis 

is based on the theory of Fraunhofer diffraction, which states that the particle size 

is directly proportional to the intensity and angle of the light which is scattered by 

the particle. 

The laser diffraction analysis was conducted at the Department of Chemical 

Engineering at Stellenbosch University,using a Micromeritics Saturn Digisizer 

5200 V1.0 S/N 216. 
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Thermogravimetic analysis (TGA) 

Due to the selection of polyethylene glycol (PEG) as a compaction lubricant and 

ammonium bicarbonate as space holder, it becomes crucial to know the polymers’ 

thermal degradation characteristics compared to the titanium powders oxidation 

characteristics. To determine the different materials’ thermal characteristics, 

thermogravimetric analysis (TGA) was conducted for both PEG and the 

ammonium bicarbonate. It is fundamentally important that both decomposition 

temperatures of the ammonium bicarbonate and the PEG 1000 are lower than the 

onset oxidation temperature of the titanium powder. If the decomposition 

temperatures are not lower, it would mean that the titanium powder would oxidise 

during the space holder and binder/lubricant removal stage. Although this 

problem can be overcome by removing the binder in vacuum, this requires the 

vacuum furnace and pumps to be specially designed in order to prevent 

contamination and fouling of the furnace and pumps due to outgassing of the 

polymers as they decompose. 

During TGA analysis, a material sample receives energy via the addition of 

heat (increase of temperature), and the mass and temperature of this sample is 

monitored during the process. In the case of a polymeric material, sufficient 

thermogravimetric analysis energy is supplied to break its internal bonds 

(depolymerisation). Once the bonds are broken and depolymerisation occurs, the 

polymer experiences a phase change from a solid to a gaseous form which results 

in mass loss. The mass and temperature of the material under analysis is 

monitored relative to that of a calibration sample (usually a sapphire crystal). 

Through manipulation of this data, it becomes possible to acquire a graphical 

representation of a polymer’s behaviour with respect to temperature (thermal 

degradation characteristics). Similarly, the oxidation characteristics of the 

titanium powder can be plotted due to the increase in mass of the titanium powder 

during the onset of oxidation.  

The TGA analysis for polymers was conducted through Stellenbosch University’s 

Central Analytical Facility (CAF) at the Department of Inorganic Chemistry. The 

analysis of both ammonium bicarbonate and PEG were conducted on a TA 

Instruments Q500 thermogravimetic analyser. Each specimen was analysed twice, 

once in normal atmosphere (air) and the other in an inert atmosphere (argon), 

heating from room temperature to 500 ºC. The TGA analysis of the titanium 

powder was conducted by the Department of Chemical Engineering at 

Stellenbosch University, using a Mettler Toledo TGA 1 thermogravimetic 

analyser. The titanium was tested in both air and oxygen atmospheres, heating 

from room temperature to 500 ºC. 

From the results of the TGA analysis it was possible to determine the optimal 

degradation temperature by taking the derivative of the percentage mass loss with 

respect to temperature. The temperature at which the derivative peaks is taken as 

the optimal degradation temperature. Using this information the required 

temperatures and durations needed to remove all space holder and lubrication 

materials were determined. 
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Energy Dispersive Spectroscopy analysis 

Along with imaging, the ZEISS SEM is capable of conducting an Energy 

Dispersive Spectroscopy (EDS) analysis. EDS is an analytical technique used for 

elemental analysis. EDS determines the different elements present via the 

interaction between electromagnetic radiation and matter. This is based on the 

fundamental principle that all mater has a unique atomic structure and therefore 

reacts differently in the presence of electromagnetic radiation. 

EDS analysis was conducted on all titanium powders as to verify the chemical 

composition of the powders and ensure it matched the specifications of the 

suppliers. It also gives us a point of reference with respect to the amount of 

contaminants which are introduced during the production process. 

5.2.2. Sieving 

The space holder powder, ammonium bicarbonate, was sieved into batches using 

six sieves (Endecott 200 mm woven wire mesh test sieves, mesh sizes of 108, 

180, 150, 250, 425, 560 μm) stacked in a shaker (Endecott Minor M200) . The 

mass of the powder was weighed with a high precision scale (model: FX-120i 

manufactured by A&D Company LTD) with a resolution of 0.01g. 

The sieves were stacked from the largest mesh size (710 µm) to the smallest mesh 

size (108 µm). All ammonium bicarbonate powder was placed into the top, largest 

mesh sieve and the sieve stack was secured to the shaker. The shaker aided in 

allowing the ammonium bicarbonate powder passing through the sieves by 

mechanically vibrating the sieves, this in turn also helped break up  coagulated 

powder which improved the sieving process. 

Table 3: Space holder particle size distributions 

 Particle size distributions (µm) 

Space holder 

(max. particle size) 

< 

108 

108 -

150 

150 - 

180 

180 - 

250 

250 - 

425 

425 -

560 

560 - 

710 

Each individual space holder particle size batch was stored in individual airtight 

container until used for mixing.  

5.2.3. Mixing 

As explained in section 5.1.3, the mixing process consists three phases:  

i. calculating and weighing out the quantities of each mixture constituent, 

ii. mixing the constituents together thoroughly, and 

iii. evaluating the mixture homogeneity by measuring apparent density.  

Details of each phase follow. 
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Determining mixture constituent ratios 

As it is desired to design titanium foams with characterises similar to that of bone, 

it is fundamentally important to determine what parameters are most critical. A 

well-known model for predicting strength of foams was generated by Gibson & 

Ashby (1997). The model relates the strength of foams to their relative density, 

the ratio of the foam’s density to that of the solid material’s density. However, as 

the Ashby and Gibson model was designed for foams with low porosities (high 

relative density), its accuracy decreases as the porosity increases (or as the relative 

density decreases).  The mechanical behaviour of bone in reaction to an applied 

compressive stress results in compression of the bone as the applied load increases 

up to a threshold or plateau strength level. Once the plateau strength is reached, 

the foam starts to collapse in on itself. As a result, there is a period during which 

the strain increases without an associated increase in applied force. This period 

correlates to the threshold or plateau strength of the foam. This phenomenon 

occurs in natural bone; Wen et al. (2001) was able to produce titanium foams that 

exhibited similar mechanical behaviour. These foams had reported plateau 

strengths of 35 MPa (Wen, et al., 2001). This plateau strength in combination with 

the Ashby and Gibson model was used to estimate the required foam density 

needed to produce specimen similar to that of bone.  

The Gibson and Ashby model for plateau strength is: 

   

   
   

 

  
 
 

   (7) 

where 

σpl = desired plateau strength, MPa,  

σys  = yielding stress of solid metal, MPa,   

ρs = density of solid metal, g/cm
3
, 

ρ = density of metal foam, g/cm
3
,and 

C = model constant. 

Rearranging equation (7) to solve for the required foam density, and using a value 

for pure solid titanium of 692 MPa for the yield stress, C = 0.3 and  4.51 g/cm
3
 

(Wen, et al., 2001) for the density, indicates that to obtain a plateau strength of 

35 MPa, the titanium foam must have a density of 1.376 g/cm
3
 . This is used as 

the design parameter for the final sintered density of the titanium foam, and 

correlates to a relative density of 30.3 %. 

All mixtures studied were therefore designed to correlate to a final relative density 

of 1.376 g/cm
3
 (30.3 % relative density), with only the particle size distribution of 

the ABC space holder being varied. In other words, the mass fraction of each 

constituent is the same for each mixture. 

In order to estimate the mass fractions of each constituent, the void fraction of the 

specimen and also the expected shrinkage during sintering must be determined. 

Based on previous research, a titanium foam with 30 % void fraction (60 % 
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relative density) experiences 10 % isotropic shrinkage over thermal debinding and 

sintering (van Zyl, 2010). 

The procedure for obtaining the mass fraction of each constituent is explained in 

Appendix A. The mass for each constituent is scaled, according to the mixture 

constituent ratio, in order to produce a specific batch size (mass). The batch size is 

chosen to be sufficient in order to produce all samples needed for the analysis. 

Mixing of constituents 

Prior to mixing, each constituent of the mixture (metal powder, space holder and 

lubricant) was weighed out using a precision scale (model: FX-120i manufactured 

by A&D Company LTD) with a resolution of 0.01 g.  The different constituents 

are then placed into a closed cylindrical container (typically occupying less than 

25 vol% of the container)  and mixed at 60 rpm for 8 - 12 min using a 3D turbula-

like powder mixer, Figure 10, which was designed (Marais, 2007) and optimised 

(Ellis, 2008) by two final year students of Stellenbosch University. 

 

Figure 10: Mixing apparatus which will be to mix the different constituents. 

Apparent density analysis 

The apparent density of the mixture is measured according to standard (ASTM 

Standard B417, 2000) using a precision scale (model: FX-120i manufactured by 

A&D Company LTD) with a resolution of 0.01 g. Three powder mixture samples 

were collected and analysed after every 2 min of mixing. Emphasis is placed on 

ensuring that all three samples are taken from different areas within the container, 

i.e. first sample is taken off the top layer, second from the middle section and final 

measurement from the powder lying on the bottom of the container. The powder 

mixture is deemed to be homogeneous if the apparent density does not vary with 

more than 1 % between samples. 

5.2.4. Compaction 

The powder mixture was compacted into rectangular transverse rupture bars 

(TRB) using a CARVER manual 12 ton hydraulic press. The tooling set was 
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designed according to the ASTM standards (ASTM Standard 925, 2003) (ASTM 

Standard B528, 2005). 

All specimens were compacted at a constant 100 MPa. This pressure correlates to 

the pressure applied to the projected area of the TRB and was controlled by the 

relative hydraulic ram pressure. The ram pressure is read from an analogue 

pressure gauge, and correlated to the related compaction pressure applied to the 

powder compact from a conversion table. Through visual inspection of the gauge, 

the related compaction pressure could be controlled to an accuracy of ± 5 MPa.  

Each TRB specimen was compacted using 5 g of mixture, weighed out on a FX-

120i manufactured by A&D Company LTD with a resolution of 0.01 g. After 

compaction, the mass and dimensions of the samples were recorded. The green 

density of the TRBs was calculated as the mass divided by the calculated 

compacted volume. This process was repeated for each powder mixture of 

different space holder particle size range. 

Dimensional analysis 

The aim of a dimensional analysis is to determine the shrinkage of the samples 

during thermal debinding and sintering, relative to the green state. The dimensions 

are measured using a digital Vernier micrometer (range 0-150 mm, resolution 

0.01 mm) at each stage, from green to brown to sintered state. The shrinkage is 

calculated similarly to engineering strain as: 

            
                          

               
        (8) 

Density analysis 

The density of the green, brown (defined in section 5.2.5) and sintered samples 

were determined by the Archimedes principle according to ASTM standards 

(ASTM Standards B328, 2003) measures on a precision scale (model: FX-120i 

manufactured by A&D Company LTD) with a resolution of 0.01 g.  

The relative density of the sample is calculated as the ratio of the foam density to 

the density of 100% dense titanium, 4.51 g/cm
3
 (Wen, et al., 2001). The porosity 

was calculated from the relative density, 
 

  
, as 

           (  
 

  
)         (9) 

where 

ρ = density of specimen, g/cm
3
, 

ρs = density if solid titanium, g/cm
3
. 

Note that the porosity is only a valid parameter in the brown and sintered samples. 

In the green samples, the density of the specimen includes the density of the space 

holder and lubricant materials, as well as that of the titanium powder. In the green 

state, the calculation of porosity would not give an accurate representation of the 

actual porosity, or void fraction of the material. 
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Determining void fraction 

In all die compacted powder metallurgy parts, small voids exist between the 

metallic powder particles. The voids are dependent on the powder morphology, 

particle packing and compaction pressure. These voids make the sample less 

dense, increasing the compacted samples volume. This effect needs to be taken 

into account during the design phase and be defined as a variable, void fraction. 

The void fraction is required to convert volume percentage base mixing ratio to 

mass percentage based mixing ratio for the powder mixture.  

To determine the void fraction, the theoretical volume is compared with that of 

the actual volume obtained of the samples. The theoretical volume is the volume 

which a compacted sample would have if it was assumed to be fully dense (100 % 

dense with 0 % void fraction). The theoretical volume is thus a function of the 

theoretical density, which is calculated from the mass fractions of each component 

in the powder mixture. 

                   
              

                    
    (10) 

The actual volume was determined by Archimedes principles and the differences 

in the volumes between the theoretical and the actual volumes would be used to 

determine the void fraction: 

              
                                

             
                       (11) 

SEM analysis 

The TRB samples were observed using SEM, as explained in section 5.2.1, in 

order to determine the pore shape and distribution within the compacted sample. 

As the SEM image generated gives the illusion of depth, the shapes of the pores as 

well as their diameters are easily observed.  

5.2.5. Debinding 

During the debinding process, the space holder and binder, ammonium 

bicarbonate and PEG, respectively, are thermally decomposed and thus removed 

from the green sample. The green samples were debound by heating them in a 

retort furnace (Gallenkamp muffle furnace size 2) in air, according to the thermal 

debinding cycle designed from the TGA results (discussed in section 5.2.1).  

The TGA results indicate the required debinding temperature for thermal 

decomposition of the space holder and binder materials. The time at temperature 

required to ensure that all space holders and binding materials within the samples 

would be fully decomposed was chosen to be similar to other studies, as 

approximately 5 to 12 hours (Wen et al., 2001 and Imwinkelried, 2007).  

To verify that full debinding was complete, the mass of the brown samples 

measured. Once all the space holder and binder material is removed from the 

green sample, its mass should be equivalent to that of the mass of titanium powder 
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present in the sample. This comparison was used to determine the efficiency of 

the debinding step. 

SEM, Density and Dimensional analysis 

All analyses were conducted as explained in section 5.2.1. 

EDS analysis 

Similarly, EDS analysis, as described in section 5.2.1, was conducted on the 

debound and sintered samples. Three areas of importance were investigated the 

area nearest to the surface of the sample, the area surrounding the edges of the 

major pores (pores produce by the removal of ammonium bicarbonate) and 

finally, the core of the metallic material, between the major pores. The sample 

surface and major pore surfaces was analysed to determine if contamination had 

occurred during the debinding or sintering processes, due to reaction with the 

space holder or binder materials, or with the debinding or sintering atmospheres. 

The metallic core of the sample was analysed to determine whether surface 

contamination penetrated deep into the material. 

5.2.6. Sintering 

Sintering was conducted in a horizontal tube furnace (make: Elite, model: TSH 15-

50-180) under vacuum. Before sintering, a low vacuum of 10
-2

 mbar is pulled 

using a rotary vane pump (make: Adixen, model: Pascal 2012 SD). The furnace 

chamber, the tube, is then flushed with ultra-high purity (UHP) argon (supplier: 

AFROX). This is done to assist in the removal of all oxygen from the furnace 

before the final high vacuum of 10
-6

 mbar is pulled using a turbo pump (make: 

Varian model: Turbo-V 81-M). The heating cycle begins after at least 10
-5

 mbar 

vacuum is reached in order to ensure that no low temperature reaction with any 

residual oxygen or nitrogen in the furnace atmosphere occurs. Once the sintering 

cycle is complete, the furnace goes into a cooling cycle where the induction 

element is switched off and the furnace is allowed to cool while still under high 

vacuum. Only when the furnace temperature drops below 500 ºC is argon slowly 

flushed back into the furnace into the furnace to assist in the cooling cycle. The 

argon flushing also assists in cooling of the turbo pump and rotary pump. 

The above sintering procedure was designed to safe guard the equipment from 

being damage as well as preventing contamination from occurring within the 

samples. It was crucial that the correct furnace operation procedures are followed 

as the equipment is fragile and will be damaged if the turbo pump is switch on 

before an initial low vacuum of 5x10
-2 

torr is achieved. Likewise the equipment 

will be damaged if the vacuum system is exposed to pressures exceeding 

atmospheric pressure, if the heating cycles required temperature increase is too 

great or if the dwell temperature is too high.  

Samples were sintered in yttria-doped zirconia crucibles which can withstand 

temperatures of up to 1500 ˚C and is commonly used when sintering titanium.  

Stellenbosch University  http://scholar.sun.ac.za



 
29 

 

Three-point bending test 

A three-point bending test, rather than compression or tensile test, was conducted 

on all samples for multiple reasons: the typical loading conditions of implants are 

better simulated by three point bending tests which simulate a combined 

tension/compression stress state, the samples’ geometry is not suitable for 

accurate tensile or compression testing, the foams would be crushed at the 

clamping locations for tensile testing, and finally, three-point bending tests are 

frequently used for mechanical testing of sintered material. 

The three-point bending test was conducted according to (ASTM Standard B528, 

2005) standards using a mechanical testing machine (load frame: MTS Criterion 

43, force transducer: 30 kN serial 220409 Kraftaufnehemer force transducer). A 

transverse rupture strength fixture, as shown in Figure 11, was used to support the 

bar between two, raised 3 mm rods, 25 mm apart, while a load was applied 

midway between the supports by a similar rod. The MTS criterion is regularly 

calibrated and has a load and position accuracy of ±0.5%. The data is captured 

using the supplied machine software which caters for the mechanical response and 

behaviours of the load frame and adjust captured data accordingly. 

 

Figure 11: Figure of three point bending setup 

The displacement and force was measured via the load frame’s internal 

displacement and force transducers and captured on a linked computer (Dell). The 

displacement rate of the lower platen during testing was 1 mm/min with a data 

capture rate of 5 data points per second. 

The flexural stress of the samples is determined using the following equation 

(ASTM Standard B528, 2005): 
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 (12) 

where 

σ = maximum stress within specimen, MPa, 

P = force exerted onto sample, N, 

L = distance between the fixtures lower two prongs, mm, 

t = thickness of sample, mm, 

w = width of sample, mm. 

The transverse rupture strength of the material is taken as the maximum value of 

flexural stress, as calculated from equation (12). Young’s modulus is determined 

by rearranging the deflection equation for a simply supported beam with a 

midlength load (Ashby, et al., 2000). To ensure that the equation is only used 

within the linear elastic region, only the initial linear stress-strain curve data was 

used to compute Young’s modulus. The average was determined by taking a 

rolling average and was reported. The initial linear area was determined by linear 

regression over the initial selection and chosen over the area with minimal 

deviation. 

  
   

        
 (13) 

where 

P = force exerted onto sample, N, 

L = distance between the fixtures lower two prongs, mm, 

  = deflection of midpoint, mm, 

t = thickness of sample, mm, 

w = width of sample, mm. 

Light Microscopy 

Light microscopy was used to analyse the microstructures of the sintered samples 

using an inverted metallurgical microscope (make: Olympus, model: GX51). The 

specimens were mounted in an epoxy resin under vacuum to ensure the epoxy fills 

up all cavities. This was done to ensure the structural integrity of the pores 

remained during the grinding and polishing stage. The grinding and polishing was 

done in accordance to documentation prepared by Struers (Taylor & Weidmann, 

2008). 

Micrographs of the samples were captured digitally (Olympus Streamline) and 

processed using ImageJ, an open source imaging programme, in order to 

determine the pore characteristics, such as average pore size and pore size 

distribution. Both of these characteristics were determined through 2D analysis of 

the pore characteristics, more commonly referred to as quantitative image analysis 

(Wen, et al., 2001). This type of analysis is common practise in microstructural 

analysis and typically requires large number of data points to give a relatively 

good estimate of the pore size distribution in the material. The quantitative image 

analysis technique used in this study is described in Appendix C. It is assumed 
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that the accuracy of this 2D measurement technique suffices for this research; it 

yields enough information to allow satisfactory interpretation of the 

microstructures and the influences of the processing parameters on the 

microstructures, and is relatively computationally inexpensive. 

6. RESULTS 

This section entails aspects relevant to the conduction and outcome of all steps 

within the experimental procedure. Results are shown sequentially according to 

Figure 9, within section 5.2. 

6.1. Production selection 

6.1.1. SEM imaging of titanium powder and ammonium bicarbonate 

The SEM analysis was conducted to determine the powder size and shape 

characteristics of both the titanium powders and ammonium bicarbonate powders. 

The SEM images are shown in Figure 12 to Figure 16.  

Figure 12 and Figure 13 show the AA powder at high and low magnifications, 

respectively. The TiAA powder is observed to be angular and have an average 

particle size of 30 – 40 µm.  

 

Figure 12: SEM of TiAA powder at high magnification 
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Figure 13: SEM of TiAA powder at low magnification 

Figure 14 and Figure 15 show the TiG powders at high and low magnifications, 

respectively. The G is observed to be angular and have an average particle size of 

60-80 µm. 

 

Figure 14: SEM of TiG powder at high magnification 
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Figure 15: SEM of TiG powder at low magnification 

Figure 16 shows the ammonium bicarbonate powder at low magnifications. The 

powders were observed to be prismatic with particles size in the range of 

100-500 µm. 

 

Figure 16: SEM of ammonium bicarbonate at low magnification 

From these figures it is apparent that the ammonium bicarbonate particle size is 

approximately 6-7 times larger than that of the titanium powder. This size 

difference allowed the titanium powder to completely surround the ammonium 

bicarbonate particles and for the titanium powder particles to mechanically bond 

together during compaction so as to give the green samples enough strength for 

handling.  This is required in order to form mechanically rigid foams.  This 

interconnected network of titanium powder particles is crucial for sintering, where 

sufficient titanium powder particles will be in contact with each other, allowing 
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interparticle sinter bond necks to form. Eventually, after the titanium powder 

particles have fully sintered together, the continuous skeletal structure of the 

titanium foam is all that will remain. 

6.1.2. Particle size analysis 

Particle size distribution was measured using laser diffraction as explained in 

section 5.2.1. The particles were suspended in isopropanol and sonicated for 60 

sec before the analysis. A flow rate of 12 L/min and a refractive index of 1.376 

was used for the analysis. Figure 18 and Figure 17 show the particle size 

distribution as measured for the TiG and TiAA powders, respectively. It is 

reported by volume frequency versus diameter. 

 

Figure 17: Particle size distribution of TiAA powder 

 

Figure 18: Particle size distribution of TiG powder 

Table 4 summarises the particle size distribution, reporting the mean, median and 

D50 particle sizes ± 3 standard deviations (3SD). The D50 particle size indicates 

the particle size for which 50 vol% of the particles are smaller. 

Table 4: Particle size analysis results from laser diffraction 

Powder Mean (μm) ± 

3SD(μm)   

Median (μm) ± 

3SD(μm) 

D50 Particle Size 

(μm) 

TiAA 32.3 ± 0.2 31.8 ± 0.2 31.8 

TiG 77.6 ± 0.3 77.6 ± 0.2 71.8 
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6.1.3. TGA of ammonium bicarbonate and PEG 

TGA analysis was conducted to determine the thermal degradation characteristics 

of both PEG and ammonium bicarbonate. The analysis was conducted in both an 

inert atmosphere (argon) and normal atmosphere (air). The results of this analysis 

are depicted in Figure 19 to Figure 22. The optimum temperature for degradation 

was determined by taking the derivative of mass percentage with respect to 

temperature. 

Figure 19 and Figure 20 depict the thermal degradation of PEG in air and argon, 

respectively. The temperature at which the peak rate of thermal degradation is 

observed is approximately 300-330 ˚C in air and 400-420 ˚C in argon. This 

100 ˚C difference is largely due to the presence of oxygen in air.  

 

Figure 19: Thermal degradation of PEG in air 

 

Figure 20: Thermal degradation of PEG in argon 
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Figure 21 and Figure 22 depict the thermal degradation of ammonium bicarbonate 

in air and argon, respectively. The temperature at which the peak rate of thermal 

degradation occurs is approximately 100-140 ˚C for both atmospheres. This is due 

to ammonium bicarbonate being an unstable compound, which decomposes  into 

ammonia, water and carbon dioxide when in the presence of air (Bram, et al., 

2006). As all elements are bonded fairly weakly within the compound, only small 

amount of heat is required for decomposition to occur, typically decomposition 

occurs at temperatures in excess of 41.9 ºC in the presence of air (Bram, et al., 

2006).  

 

Figure 21: Thermal degradation of ammonium bicarbonate in air 

 

Figure 22: Thermal degradation of ammonium bicarbonate in argon 
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The oxidisation behaviour of both titanium powders was evaluated by TGA. The 

analysis was conducted under normal atmosphere (air). The results of this analysis 

are depicted in Figure 23.  

 

Figure 23: Oxidisation behaviour of titanium powders in air 

From Figure 23, it is important to note the difference in behaviour between the 

TiAA and the TiG powder. This difference is largely due to the different 

morphology and particle size of the powders. As is reported in section 6.1.1 and 

6.1.2, the TiAA powder has a smaller particle size and therefore a higher surface 

area to volume ratio than that of the TiG. This larger surface area allows the 

powder to oxidise and therefore pick up mass more rapidly. 

From Figure 23 it is evident that the critical oxidation temperature, the 

temperature at which the rate of oxidation starts to rapidly increase, for TiAA is 

just above 300 ºC and for TiG it is just above 400 ºC, determined by linear 

regression. 

6.1.4. EDS analysis 

Energy dispersive spectroscopy (EDS) analysis was conducted on both the TiG 

and TiAA powder, during the SEM analysis. No oxygen or nitrogen was detected 

on the as-received powder. This result supports the as-supplied specifications for 

the titanium powders: commercial pure, grade 3 (ASTM Standard F1580, 2001). 

Table 5: Results of EDS analysis conducted on sintered samples 

 
Weight% N Weight% O Weight% Ti 

TiG 0 0 100 

TiAA 0 0 100 
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It should, however, be noted that EDS is not a highly accurate chemical analysis 

technique. EDS accuracy is typically 2 % relative error. This is largely due to the 

factors of uncertainties in the composition of the standards and errors in the 

various corrections which need to be applied to the raw data (B.K, 1991). 

6.2. Sieving 

The sieving procedure is outlined in section 5.2.2. Post sieving the majority of 

powder was found to fall between the 250-425 µm particle ranges, with small 

amounts of powder passing through the 108 µm sieves. All ranges where taken 

and stored separately in airtight containers. 

6.3. Mixing 

6.3.1. Mass of mixture constituents 

The mixture constituent ratio was determined as explained in and Appendix A. 

100 g of powder mixture was sufficient to produce all the required samples for 

each mixture. Table 6 gives the mixture constituent ratio, in both mass and 

volume percentage (assuming a 30 vol% as explained in section 5.2.3), along with 

the constituent mass required for a 100 g of mixture. 

Table 6: Mixture constituent ratio and masses 

 
Mass per batch (g) 

fraction of mixture 

(wt%) (vol%) 

Titanium 57.15 57.15 22.20 

Ammonium bicarbonate 41.40 41.40 45.80 

Polyethylene glycol 1.45 1.45 2.00 

Void fraction - - 30.00 

Total 100 100 100.00 

6.3.2. Mixing of constituencies 

For the mixing of the constituents, each constituent was weighed and added to the 

batch, as explain in Section 5.2.3. Note: to investigate the effects of varying the 

space holder particle size distribution had on the final material, the different 

sieved ABC particle size batches where mixed in the same ratio by weight for 

each mixture batch. Table 7, shows the different titanium powder and space 

holder particle sizes used to create each batch. 

Table 7: Particle size designations 

Space Holder particle 

size (µm) 

Name of mixture using  

TiAA as the base metal 

Name of mixture using  

TiG as the base metal 

0 – 710 AA 0 - 710 - 

250- 425 AA 250 - 425 G 250 - 425 

425 - 560 AA 425 - 560 G 425 - 560 

560 – 725 - G 560 - 710 
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6.3.3. Apparent density analysis 

The apparent density analysis was conducted in accordance to section 5.2.3. It 

was found that after mixing for 10 min, at 60 rpm, in 3D turbula-like powder 

mixer the powder mixture was homogenous. Table 8 shows the apparent density 

analysis conducted on mixtures AA 0 – 750 and G 250-425. 

Table 8: Results of the apparent density analysis conducted on the mixtures 

  AA 0 – 750 µm G 250-425 µm 

Apparent 

density 

measurements 

Apparent 

density 

(g/cm
3
) 

Variance from 

Average (%) 

Apparent 

density 

(g/cm
3
) 

Variance 

from 

Average (%) 

1 1.18 0.02 1.18 0.08 

2 1.18 0.05 1.18 0.02 

3 1.18 0.07 1.18 0.10 

Average 1.18 0.05 1.18 0.07 

 

From Table 8 it is visible that the mixtures were homogeneously mixed. This is 

largely due to the variance in apparent density between samples being relatively 

small, typically below 0.5 % variance.  

6.4. Compaction 

As mentioned in section 5.2.4, all specimens where uniaxially compressed at 

100 MPa using 5 g per sample for each of the different of mixtures, see Table 7. 

6.4.1. Compaction of samples 

It was initially planned to produce 10 samples for each mixture: 3 samples would 

be used to determine the green strength, 1 sample to determine the brown 

strength, 3 sintered samples to determine the sintered strength, microscopy and 

SEM, and the remaining 3 sintered samples would serve as backups for 

unforeseen circumstances. For every 10 samples produced for in a set, 7 samples 

were debound and of these, only 6 samples were sintered. 

After testing the strength of the green and brown samples of the first few sets, it 

became evident that these values were very low and difficult to measure 

accurately. The green and brown strengths typically ranged between 

1.5 - 4.5 MPa. Accordingly, samples for these tests were omitted from further 

sets. 

Therefore, it was decided that for the subsequent sets only 8 samples were 

required per set. Of the 8 samples, 7 samples were debound and 6 sintered. These 

samples where then used to conduct light microscopy, density and SEM analysis 

for green, brown and sintered states. The three-point bending test was only 

conducted for sintered samples for these sets. 
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Figure 24: Green sample from mixture AA 0-710 

Figure 24 shows a photo of a green sample produced. As seen in Figure 24, there 

are no visible pores. This is due to the ammonium bicarbonate and PEG still 

filling the pores.  

6.4.2. Dimensional analysis 

As explained in section 5.2.4, the sample’s dimensions at each process step were 

recorded.  As expected, straight after compaction the average dimensional size of 

the samples remained fairly constant. It was found that the average samples 

dimensions were 31.90 mm in length, 12.74 mm in width, and 6.39 mm in 

thickness for TiAA and 6.46 mm in thickness for TiG  with each having standard 

deviation of ± 0.02 mm. This thickness difference was expected as the TiAA 

powder has a smaller particle size than that of the TiG and this correlates to less 

TiAA powder compacted better than its counterpart. 

6.4.3. Density analysis 

The density analysis of the green compacts was determined from the compact 

dimensions and the mass. The average calculated density of the samples was 1.90 

± 0.08 g/cm
3
 for TiG and 1.86 ± 0.09 g/cm

3
 for TiAA, independent of the size of 

ammonium bicarbonate space holder powder used. 

6.4.4. SEM analysis 

An SEM analysis was conducted on an AA 0 - 710 green specimen. The analysis 

was conducted to determine how the titanium particles pack around the 

ammonium bicarbonate particles. As seen in Figure 25, most of the ammonium 

bicarbonate had already decomposed prior to the actual analysis being done. This 

was due to the time elapsed between the mount, polishing and SEM imaging 

being done; note the no vacuum was pulled for this mounting so that the internal 

structure becomes visible. 

It is evident that the ammonium bicarbonate produces large elliptical shaped pores 

after decomposing. It is also visible that the titanium powder is able to flow and 

pack sufficiently around the ammonium bicarbonate particles in order to create a 

connected metal skeleton structure. This provides the mechanical strength of the 

specimen. 
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Figure 25 : SEM image of green sample from mixture AA 0-710 

6.5. Debinding 

Debinding was conducted in accordance to section 5.2.5, with the debinding 

temperature cycle based on the TGA results given in section 6.1.3 and 6.1.4. 

Figure 26 shows the debinding temperature profile used to ensure all ammonium 

bicarbonate and PEG were removed without allowing the titanium powder to 

oxidise too much.  

 

Figure 26: Debinding temperature profile 

The initial heat up rate from standard atmospheric conditions was set at 3 ˚C/min. 

This rate was assumed to be low enough so that the vaporization rate of the 

ammonium bicarbonate would be slow enough not to result in internal pressure 

build-up. Any internal build-up of pressure could damage the samples, as the 

samples are very brittle and lightly compacted.  
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 The first set-point temperature was 100 ˚C, where the samples were held for 

6 hours. This temperature was chosen as the optimum temperature for 

decomposition of ammonium bicarbonate is between 100-140 ˚C. As PEG 

decomposes at temperatures of 300-330  ˚C, the second temperature set-point was 

set to 330 ˚C, where the samples were held for 1 hour. Thereafter the samples 

were allowed to furnace cool until a temperature of 50 ˚C. This cooling process 

took an addition 6 hours.  

To determine whether all PEG and ABC were removed successfully, the brown 

samples’ mass was compared to the expected mass of the titanium powder in each 

green sample. For all the specimens weighed, the mass of the brown sample 

corresponded to that of the expected mass of titanium powder in each green 

sample, within ±0.01 g. This confirmed that the debinding process was successful, 

and that all PEG and ABC were removed from the samples. It should be noted 

that the expected mass of titanium powder in each green sample is based on the 

assumption that each mixture was homogeneous and that, therefore, each green 

sample contained the exact same mass of titanium powder.  

The entire debinding cycle took place in air. TGA of the titanium powders, TiAA 

and TiG, showed < 0.2 % and < 0.1 % increase in mass, respectively, during 

constant heating in air by 330 ºC. This indicates that there is potential for 

oxidation of the titanium powders during debinding at 330 ºC, and even more so 

when holding at this temperature for an hour. However, 0.2 % increase in mass 

due to oxidation of the titanium powder in one 5 g sample corresponds to 0.006 g. 

Therefore, it was assumed that oxidation of the green sample during debinding 

was negligible and could be omitted from consideration in weighing the samples 

before and after debinding. 

 

Figure 27: Brown sample from mixture AA 0-710 

Figure 27 shows a photo of a brown sample. As seen in Figure 27, there are 

visible pores connected to the sample surface. This is due to the ammonium 

bicarbonate and PEG that has burnt off and left large pores in the sample. It is 

interesting to note the slight gold colour change which takes place during the 

debinding stage. This is due to the small amount of oxidation which occurs during 

the debinding of the PEG.  

Stellenbosch University  http://scholar.sun.ac.za



 
43 

 

6.5.1. SEM  

Figure 28 is a SEM micrograph of a brown AA 0-710 sample. From the 

micrograph it is visible that very little to no sintering occurred during debinding. 

This is to be expected as the debinding temperature was chosen to be far below 

the sintering temperature. Compared to the SEM image, Figure 25, of the green 

sample, the surface of the space holder macropores is not as smooth. This is 

assumed to be due to all the ammonium bicarbonate being successfully removed 

from the pores. 

 

Figure 28: SEM image of a brown sample from AA 0-710 mixture 

6.6. Sintering 

The samples were sintered in accordance to section 5.2.6. All the specimens were 

sintered under high vacuum at 1200 ˚C for 2 hours, with heating and cooling rates 

of 5 ˚C per minute on an Yttria-doped zirconia substrate, crucibles show in Figure 

29.  

 

Figure 29: Yttria-doped zirconia crucible  
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Figure 30: Sintered sample from AA 0-710 mixture 

Figure 30 shows a sintered sample. The colour of the sample is silvery-grey, 

similar to that which is to be expected of pure titanium. This indicates that the 

vacuum, and possibly the alumina tube, helped to reduce surface oxidation that 

occurred during debinding. Note that the brown samples showed a golden tint 

after debinding, which is an indication of titanium oxide.  

6.6.1. EDS 

An EDS analysis was conducted on the sintered specimens according to section 

5.2.5. Multiple measurements were taken at region around large pores, at the core 

of the samples and near the external surface. The measurements around the pores 

edges were taking as close to the pore edge as possible, the core measurement 

were taken in regions as far away from either macro- or micropores as possible. 

The surface measurements were taken as close to the external surface of the 

sample.  

Table 9: Results of EDS analysis conducted on sintered sample 

 
Weight% N Weight% O Weight% Ti 

Pore 0 8 85 

Core 0 2 91 

Surface 0 3 95 

 

Table 9 shows the EDS results from a sintered AA 0-710 sample. It shows that the 

highest level of oxidation occurred at the edge of the large pores and at the 

surface. This indicates that oxygen diffuses into the core of the sintered titanium.  

 

As mentioned in the section 6.1.4, it should be noted that EDS is not a highly 

accurate, quantitative chemical analysis technique; typically 2 % relative error is 

expected in results. This is largely due to the factors of uncertainties in the 

composition of the standards and errors in the various corrections which need to 

be applied to the raw data (B.K, 1991). Therefore the reported oxygen wt% values 

should rather only be viewed qualitatively, in comparison to each other. As such, 

the analysis indicates that oxidation occurred at the pore edges and that the 

oxygen slowly diffuses into the solid titanium scaffolding material. However, 

there is evidence of a concentration gradient moving from the pore edge to core of 

the skeleton material. 
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6.6.2. Microscopy 

Microstructural analysis of the sintered samples was conducted on all specimens 

in accordance to section 5.2.6. Figure 31, shows a SEM image of a sintered AA 

0-710 sample. The pores were filled by vacuum impregnation with a fluorescent 

epoxy resin for light microscopy. This was done to ensure that the pores do not 

close during the preparation process. 

 

Figure 31: SEM image of a sectioned sintered sample from AA 0-710 mixture 

The pores, as shown in Figure 31, are elliptical and have similar characteristics to 

that of the initial pores shown in Figure 25.  

The micrographs in Figure 32, on page 46, show the sintered foam 

microstructures of the samples produced from the two different titanium powders, 

AA microstructures shown on the left and G on the right. The relevant 

information (mixture designation, porosity and average pore size) for each sample 

is given below each micrograph. The average pore size was determined as 

explained in Appendix C. 

The AA mixture microstructures show a denser titanium metal network than that 

of the G mixture microstructures. There are fewer micropores, and they are more 

spherical as opposed to the irregularly shaped, sharp edges pores of the G 

mixtures. Additionally, the macropore foam structure, formed from each different 

initial space holder particle size range, develops differently for each titanium 

powder, AA and G. Both of these points are discussed in details, within section 7. 

6.6.3. Dimensional analysis 

The average dimensions of the samples for each of the mixtures, measured 

according to section 5.2.4, are shown in Table 10, on page 47. Table 10 shows the 

mean and the standard deviation of each dimension.  
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Figure 32: Micrographs of the sintered titanium foams, as labelled 

 

 

Powder mixture AA 250-425  

49 % porosity 

average pore size 302 μm 

 

Powder mixture G 425-560 

57 % porosity 

average pore size 499 μm 

 

Powder mixture AA 425-560  

49 % porosity 

average pore size 385 μm 

 

Powder mixture G 560 - 710 

54 % porosity 

average pore size 450 μm 

 

Powder mixture AA 0 - 710  

61 % porosity 

average pore size 285 μm 

 

Powder mixture G 250 - 425 

56 % porosity 

average pore size 507 μm 
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Table 10: Final sintered dimensions of samples, mean with standard 

deviation,  

Initial space holder 

particle size Length Width Thickness 

AA 0-710  27.77 ± 0.11 µm 11.09 ± 0.08 µm 5.79 ± 0.04 µm 

AA 250-425 27.09 ± 0.17 µm 10.80 ± 0.08 µm 5.41 ± 0.10 µm 

AA 450-560  27.11 ± 0.10 µm 10.83 ± 0.04 µm 5.63 ± 0.04 µm 

G 250-450  28.52 ± 0.14 µm 11.78 ± 0.12 µm 5.98 ± 0.08 µm 

G 450-560 30.30 ± 0.28 µm 12.17 ± 0.18 µm 6.19 ± 0.11 µm 

G 560-710 29.39 ± 0.30 µm 11.87 ± 0.04 µm 6.15 ± 0.13 µm 

6.6.4. Mechanical behaviour 

The transverse rupture strength and Young’s modulus were determined using 

equations (12) and (13), with the experimental data captured in the 3-point bend 

test, as described in section 5.2.6. The plots of flexural stress against midpoint 

displacement are shown in Appendix B, Figure 42. Table 11 summarises the 

experimentally determined mechanical properties of the different sintered foams. 

Table 11: Mechanical properties of the different titanium foams 

Mixture 

designation 

Relative 

density (%) 

Elastic 

modulus 

(GPa) 

Transverse 

rupture strength 

(MPa) 

AA 0 - 710 

62.5 8.4 147.2 

40.0 3.6 69.7 

37.5 2.8 56.1 

AA 250 - 425 

51.7 5.8 108.8 

50.3 5.3 111.1 

50.0 4.4 125.3 

AA 425 - 560 

51.5 5.6 101.9 

50.2 4.4 116.9 

50.1 4.7 103.8 

G 250 - 425 

44.0 4.2 64.9 

43.8 3.8 68.5 

43.8 2.9 68.1 

43.7 2.7 70.6 

G 425 - 560 

44.5 1.8 26.2 

42.8 3.0 50.8 

42.2 2.1 27.0 

G 560 - 710 

47.4 2.5 50.8 

46.5 2.9 65.2 

45.1 2.2 42.0 

Stellenbosch University  http://scholar.sun.ac.za



 
48 

 

7. DISCUSSION 

7.1. Powder analysis 

The powder particle shape for both titanium powders, as observed in the SEM 

micrographs in Figure 12 to Figure 16, is angular. An angular particle shape is 

expected for titanium powders produced by the HDH process and occurs as a 

result of the crushing and milling process of the hydrogenated titanium sponge.  

The particle size distribution measured by laser diffraction correlated with the size 

of the particles observed in the SEM micrographs. The TiAA powder is 

approximately half the size of the TiG powder, with mean particle sizes reported 

as 31.8 µm and 71.8 µm, respectively. Both powders show particle size 

distributions that are skewed to larger particle size. The TiAA and TiG powders 

were supplied as -200 (<150 μm) and -100 (<75 μm) mesh, respectively. These 

measurements correlate with the particle size distribution graphs shown in Figure 

17 and Figure 18 where the maximum particle size measured was 80 and 150 μm, 

respectively. The differences between the powders’ particle size distributions 

resulted in different behaviours throughout the manufacturing process, as will be 

discussed in the relevant sections to follow.  

7.2. TGA analysis  

The thermal decomposition characteristics of the PEG, ABC and titanium 

powders in air were determined from the TGA results. This information is 

relevant only to the debinding process, which was conducted in air. As sintering 

took place under high vacuum, the thermal decomposition behaviour of the 

powders in air was not relevant during sintering. 

The TGA results, Figure 19 and Figure 21, indicate that peak thermal 

decomposition temperatures for PEG and ABC in air are in the range of 300-

330ºC and 100-140 ºC, respectively. 

The TGA of the titanium powders was conducted in order to determine whether 

oxidation of the titanium powders would occur if debinding was conducted in air. 

Both titanium powders showed significant increase in mass from temperatures 

above 330 ºC and 400 ºC for TiAA and TiG, respectively, which correlated to that 

mentioned in literature (Duncand, 2004). This indicates that oxidation of the 

titanium powders occurs from these temperatures. The difference in oxidation 

temperatures for the two powders is attributed due to the TiAA powder having a 

smaller particle size than of TiG. With a smaller particle size, TiAA has a higher 

surface area to volume ratio and thus shows significant oxidation at a lower 

temperature than the larger TiG powder. 

These results indicate that, in order to fully debind the samples in air, it would be 

necessary to heat them up to at least 330 °C, the temperature at which PEG 

decomposes in air. As this temperature is similar to the oxidation temperature of 

TiAA, this was a point of concern. However, it was decided to conduct the 
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debinding experiment in air as planned, and to monitor the level of oxidation in 

the titanium network after sintering using EDS.  

The debinding thermal cycle was designed from the TGA analysis results and is 

shown in, Figure 26. The debinding thermal cycle was designed to minimise 

exposure to oxidation temperatures, while still ensuring that all polymers are fully 

decomposed during debinding. It would be preferable, and is recommended for 

future studies, to debind the samples in vacuum or in flowing argon to reduce the 

oxidation which occurs during debinding. However, facilities for this were not 

available at the time of this study. Debinding in the vacuum furnace would 

contaminate the furnace and vacuum system, so this was not investigated. 

7.3. Compaction of samples  

As explained in section 6.4.1, with the powder mixtures were uniaxially 

compacted at compaction pressure of 100 MPa. The compaction pressure was 

chosen to produce samples with high porosities (Wen, et al., 2001) but that still 

had well-sintered titanium skeletal structures after sintering.  

The samples were compacted sufficiently to be handled without breaking and to 

avoid delamination on ejection from the die (delamination is cause during eject of 

samples due to friction with the die wall). However, the degree of compaction was 

only sufficient to meet these requirements and the green strength of the samples 

was too low to be accurately measured.   

7.4. EDS analysis  

EDS analysis conducted on the pure titanium powders indicated that no oxides or 

nitrides were present on the titanium powders. This result was expected, as both 

powders were supplied as commercial pure with a grade of 3 according to ASTM 

standard F1580-01. This means that the powder should be pure with no more than 

0.18 % oxygen present. 

Post sintering, the yttria-stablised crucibles displayed discolouration in the areas 

surrounding the sample placement. It is most likely that the crucibles acted as 

getters during sintering, preferentially reacting with contaminants during 

sintering. 

The oxidation results, after debinding in air and sintering in vacuum, are reported 

in Table 9. It is evident that oxidation did occur during processing. While EDS 

does not offer accurate quantitative analysis of oxygen levels, it is clear that there 

is a much higher concentration of oxides at the macropore surface (~8 % oxygen) 

than in the interior or core of the sintering titanium network (~3 % oxygen). This 

range is above that which is recorded by other researchers, typically between 0.25 

– 1 % (Arifvianto & Zouh, 2014), which will result in samples which are more 

brittle. 

Contaminates can generally be introduced during sintering due to three reasons: 

(i) residual space holder material is still present in the sample during sintered, (ii) 
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the furnace itself is contaminated from deposits from previous sintering and (iii) 

not all atmospheric air is pulled from the furnace during sintering (Arifvianto & 

Zouh, 2014). However, all of these general causes are unlikely as: (i) the samples 

were weighed after the debinding process to ensure all space holder material is 

removed, (ii) the furnace which was used for sintered has only been used for 

titanium and (iii) the furnace was flushed with argon and a high vacuum (greater 

than 10
-5 

mbar) was pulled to ensure minimal atmospheric contamination. 

As the higher levels of oxygen were found at the surface of the macropores, it is 

inferred that oxidation occurs primarily during the debinding process. The process 

of oxidation in the samples is assumed to occur due to the decomposition of the 

space holder material and then subsequent heating of the sample in order to 

decompose the binder. As the ABC decomposes, it releases oxygen; if this oxygen 

is not removed from the debinding atmosphere, it reacts with the titanium as the 

temperature is increased during debinding. It is necessary to increase the 

temperature beyond the decomposition temperature of the ABC space holder 

material to the temperature at which PEG, the binder, decomposes. As this 

temperature is relatively close to the peak oxidation temperature of the titanium 

powders, 330 °C, oxidation of the titanium occurs. 

When looking at the different regions within a sample, the regions with the 

highest levels of oxidation occur at the upper surfaces of the samples and the 

surfaces of the macropores. The increase in oxidation with respect to the upper 

surfaces can be explained as the upper surface is most exposed to the surrounding 

air during debinding.  

The presence of oxygen is due to the release of the oxygen during the 

decomposition of the ABC and water vapour during the decomposition of PEG. 

However, it is suggested that the reaction of the oxygen with the titanium only 

occurs at higher temperatures, as the PEG is decomposed and during sintering. 

7.5. Image analysis  

The image analysis discussion includes the SEM and light microscopy results of 

the green, brown and sintered samples. 

When comparing the SEM micrographs of the three different stages; green, brown 

and sintered (Figure 25, Figure 28 and Figure 31, respectively) it is clearly visible 

that there are minimal differences between the green and brown sample’s 

microstructure, whereas significant changes, bonding and densification, occurs 

during sintering. In micrographs of both the green and brown samples, the 

individual metal powder particles are still visible; this is largely due to the 

debinding temperature being far below that of sinter temperature so no bonding 

between particles has occurred yet. However, when looking at the sintered sample 

micrographs, the original powder particles are not discernible from the sintered 

material, indicating that the particles have fused, that sintering of the skeletal 

foam structure has progressed significantly.  
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From the micrographs shown in Figure 32, it is clear that the initial individual 

pore shape correlates with that of the individual space holder particle shape and 

size for each mixture. However, after debinding, the macropores left from the 

decomposition of the ABC space holder often interconnect with each other to 

form pores which are larger than the initial space holder particle sizes.   

 

Figure 33: Pore distribution through produced samples at low magnification 

Figure 33 shows a typical cross section of AA 0-710 μm sample at low 

magnification. The combination of both micro- and macropores that result in an 

open foam structure is clearly visible. The open, interconnected pores result in an 

open pore network which is favourable for osseointegration. 

7.6. Pore size distribution 

The pore size distribution was calculated by analysing the light microscopy 

images. ImageJ, a well know open source image analysis software, was used to 

determine the pore size distribution according to the techniques described in 

Appendix C. 

7.6.1. Macropore size distribution 

Table 12 gives a summary of the results found for pores which are greater than 

108 µm in diameter. The particle sizes were binned according the initial ISO 

sieving sizes standard mentioned in section 5.2.2.  These bins were selected to 

illustrate how the pore size distribution changes throughout the production cycle. 

The data in Table 12 represent the results gathered from 3 different samples per 

space holder particle range mixture, with 3 micrographs from different regions for 

each sample analysed.  The pore size distribution is based on the percentage of 

pores found within the different bins based on the initial space holder particle size 

of the specific mixture. 

Stellenbosch University  http://scholar.sun.ac.za



 
52 

 

Table 12: Macropore size distribution for each mixture  

Mixture designation 

% of 

pores 

<150 

µm 

% of 

pores 

150-

180 

µm 

% of 

pores 

180 -

250 

µm 

% of 

pores 

250 -  

425 

µm 

%of 

pores 

425-

560 

µm 

%of 

pores 

560 - 

710 

µm 

%of 

pores 

>710 

µm 

AA 0-710  15.38 23.08 15.38 30.77 0.00 7.69 7.69 

AA 250-425  24.83 18.62 24.83 13.79 6.21 2.76 8.97 

AA 425-560 18.18 9.09 15.15 34.85 7.58 3.03 12.12 

G 250-425 26.47 8.82 14.71 20.59 2.94 5.88 20.59 

G 425-560 10.87 10.87 21.74 15.22 13.04 4.35 23.91 

G 560-710 7.46 16.42 14.93 31.34 8.96 5.97 14.93 

Figure 34 is a visual representation of the data presented in Table 12. A bimodal 

pore is clearly apparent in the sintered foams, as is shown in Figure 34. The first 

mode is typically at a pore size similar to the particle size of the initial space 

holder, however, the second mode is observed at a pore size much larger than the 

initial space holder particle size. 

 

Figure 34: Macropore size distribution based on initial space holder particle 

size  

The first macropore mode is attributed to isolated, individual macropores that 

have not made contact with other pores. These macropores are typical slightly 

smaller than the initial space holder particle size. This is attributed shrinkage 

during sintering, discussed more fully in section 7.7.  
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The second macropore mode is attributed to the interconnectivity of the individual 

macropores. These resultant interconnected pores form macropores which are 

typically much larger than the initial space holder particle size. 

7.6.2. Micropore size distribution 

Table 13 is similar to Table 12, except it summarises the results for pores that are 

less than 108 µm in diameter, the micropores. 

Table 13: Micropore size distribution for each mixture studied 

Mixture 

designation 

% of pores 

<10 µm 

% of pores 

<25 µm 

% of pores 

<50 µm 

% of pores 

<180 µm 

AA 0 - 710 44.75 45.03 6.35 3.87 

AA 250 - 425 51.53 37.64 8.70 2.13 

AA 425 - 560 67.65 19.00 6.33 7.01 

G 250 - 425 46.83 39.31 10.63 3.22 

G 425 - 560 42.34 40.04 13.23 4.39 

G 560 - 710 42.18 40.86 13.22 3.75 

Figure 35 is a visual representation of the data presented in Table 13. From Figure 

35, it is apparent that the majority of the micropores are smaller than 25 μm. 

Except for AA 425-560, the initial space holder particle size seems to have 

minimal effect on the microspore size distribution. The finer powder, AA, results 

in more smaller pores than the coarser powder, G.  

 

Figure 35: Micropore size distribution for each mixture studied 
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7.7. Dimensional analysis  

There is typically a volumetric shrinkage of the material during sintering as the 

material densifies. The dimensions of the samples were monitored throughout all 

stages of the production process, in order to track the dimensional changes 

associated with each process step. Using equation (8) from section 5.2.4 the 

average dimensional changes were determined and are presented in Table 14.  

Table 14: Percentage dimensional changes throughout the production 

process 

Mixture designation 

% Shrinkage in 

Average shrinkage (%) Length (%) Width (%) Thickness (%) 

AA 250 - 450 15.08 15.23 15.34 15.21 

AA 450 - 560 15.02 14.99 11.89 13.97 

AA 0 - 710 12.95 12.95 9.39 11.76 

G 250 - 450 10.60 7.54 6.42 8.18 

G 450 - 560 µm 5.02 4.47 3.13 4.21 

G 560 - 710 µm 7.87 6.83 3.76 6.15 

The results presented in Table 11 indicate that as the particle size of the space 

holder powder increases, the sample shrinks less. Mentioned in section 7.6, as the 

particle size of the space holder powder increases, the first mode macropores, 

related to the space holder particle size used, also increases. Typically, the larger 

the pores are, the more energy is required to shrink them by sintering (German, 

1996). During sintering, all samples were sintered at the same temperature for the 

same amount of time. As such, all the samples received the same thermal energy 

for sintering. Therefore, the difference in sintering shrinkage must be related to 

the green microstructure of the samples. It has been shown that large pores shrink 

at a slower rate than small pores (Pan, et al., 2009). As such, once the skeletal 

titanium network has sintered to near full density, any further densification of the 

material, and related shrinkage, happens very slowly. This explains the results 

shown in Table 11. Samples with smaller initial pores ultimately shrink, and 

densify, more than samples with larger initial pores.  

The results presented in Table 11 also indicated that shrinkage is not isotropic in 

the samples during sintering. The shrinkage measured over the length and width 

of the samples are typically larger than that measured over the thickness. This is a 

typical sintering response of a uniaxially compacted powder where shrinkage is 

greater in the direction aligned with the compaction direction. This is due to the 

increased contact area between particles perpendicular to the compaction direction 

which results in a lower linear pore density, and thus a lowered potential for 

densification, in the transverse direction.  
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7.8. Mechanical properties 

In general, the mechanical behaviour of the titanium foams, as summarised in 

Table 11 and Figure 42 in Appendix B, indicates that an increase in porosity 

results in a decrease of both transverse rupture strength and elastic modulus. This 

is in agreement with the Ashby-Gibson model as presented in section 4.5. 

The proportionality constant for elastic modulus, as defined by equation (4), was 

found to be 0.189 for the AA mixtures and 0.136 for the G mixtures. The constant 

was determined through an iterative process by finding the minimum mean square 

error between the experimental data, Table 11, and Young’s modulus as predicted 

by the Ashby-Gibson relationship given in equation (4). The mean square error 

curve is shown in Figure 36 for both the AA mixtures and G mixtures, 

respectively. The mean square error was calculated by determining the average of 

the square of the difference between the actual results and the predicted 

theoretical results and trying to minimise the error.  

 

Figure 36: Mean square error curve fitting for AA (left) and G (right), for 

the and Ashby-Gibson elastic modulus relationship 

Similarly, the model constant for the transverse rupture strength, as defined by 

equation (7), was found to be 0.0694 for the AA mixtures and 0.393 for the G 

mixtures. The variation of the mean square error with the model constant is shown 

in Figure 37 for the AA and G mixtures, respectively. 

 
Figure 37: Mean square error curve fitting for AA (left) and G (right), for 

the Ashby-Gibson rupture strength relationship 
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Using these model constants, the Ashby-Gibson models for predicting Young’s 

modulus and transverse rupture strength, equation (4) and (7) in section 4.5.2, are 

displayed in Figure 38  and 39, respectively, for both powders. The experimental 

data is shown for comparison as discrete data points in the figures. 

 

Figure 38: Elastic moduli vs density of sintered samples 

 

Figure 39: Transverse rupture strength vs porosity 
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For both the Young’s modulus and transverse rupture strength, the Ashby-Gibson 

models predict the values reasonably well. As can be seen from the mean square 

error plots, Figure 36 and Figure 37, a clear minimum error is found for each 

parameter and powder. The average error of the prediction is below 10 % for the 

elastic moduli and below 8 % for the transverse rupture strength for the AA 

mixtures. However, for the G mixtures, the average errors were 22 % for elastic 

moduli and 32 % for the transverse rupture strength. It should be noted that the 

AA powder mixtures spanned a range of densities from 35 to 65 %, while the G 

powder mixtures were clustered over a narrower range, from 40 to 50 %.  

To investigate the effect which the initial space holder particle size has on the 

porosity structure and hence the mechanical strength, the average strength and 

elastic modulus of samples with similar porosities but different initial space 

holder particle size ranges were compared. By doing this it essentially removes 

the effects of porosity on the samples and it makes it possible to isolate the effects 

of initial space holder particle size. The results of doing this are shown in Table 

15. 

Table 15: Average properties for different mixtures 

Mixture 

designation 

Macropore 

size (µm) 

Relative 

density (%) 

Elastic modulus 

(GPa) 

Rupture 

strength 

(MPa) 

AA 250-450 302.80 50.67 5.16 115.06 

AA 425-560 385.22 50.63 4.65 107.56 

G 250-450 507.75  43.83 3.43 60.57 

G 425-560 498.67  43.17 2.29 34.66 

As is shown in Table 15, the mechanical properties are affected not only by the 

level of porosity or density of the sample, but also by the initial space holder 

particle size range, which in turn influences the average macropore size. As the 

initial space holder particle sizes increase, the elastic moduli and rupture strength 

decreases.  

When considering the difference in mechanical properties between the mixtures, it 

is found that the AA mixtures typically display a greater elastic modulus and 

rupture strength than that the G mixtures. As explained in section 7.1, the TiAA 

powder has a typical particle size which is half that of TiG powder. It is well-

known that smaller particles have a higher sintering potential due to their 

increased surface area. As such, the smaller AA powder samples result in a denser 

metallic skeletal network, with smaller, more spherical pores after sintering. This 

results in a stronger, yet less stiff material. Note that strength and elastic modulus 

for typical sintered materials are directly related to the (micro)porosity (German, 

1996). 

When considering the mechanical properties of mixtures G 250–450 and 

G 425-560 from Table 15, they are found to differ, irrespective of the fact that 

their average macropore size and relative densities are the same. When studying 
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their micropore distribution, as in shown in Figure 35, it is found to be similar. 

However, their macropore size distribution differs, see Figure 34. For mixture 

G 425-560, 41.3 % of the pores are larger than 425 µm while only 29.4 % of pores 

are larger than 425 µm for G 250–450. These results indicate that a higher 

percentage of larger pores yields a foam with a lower structural integrity and thus 

weaker mechanical properties, which, as explained in section 4.6.3, contradicts 

work done by Tuncer et al. but follows similar findings to that of Amingo et al. 

7.9. Correlating data  

In order to review the results of this study in context, the current results were 

compared to similar studies documented in literature. The two main mechanical 

properties, rupture strength and elastic modulus, were evaluated along with 

titanium powder and space holder powder particle size and final foam density. 

7.9.1. Production parameters 

A selection of studies with similar production parameters to this were chosen from 

literature for comparison. Table 16, summarises the production parameters from 

each of these studies, along with the references for each. In Table 16 the following 

abbreviations are used; compaction pressure (CPres), sintering temperature 

(STemp), sintering time (STime), commercial pure titanium of grade 3 (CPTi 3) 

and commercial pure titanium of grade 3 (CPTi 3) (ASTM Standard F1580, 

2001). 

Table 16: Production parameter comparison 

Sample 

code 

Sources Titanium powder Space holder Production 

parameters 

S1 

(Imwink

elried, 

2007) 

CPTi 3, < 45 µm, 

hydride–dehydride 

NH4)HCO3 ,  

425-710 µm 

CPres : 100 MPa 

STemp = 1300 ºC 

STime = 3 hours 

S2 

(Amingo

, et al., 

2011) 

CPTi 4, d50 = 25-40 

µm, hydride–

dehydride 

(NH4)HCO3 

,  250-500 

µm 

CPres: 100 MPa 

STemp = 1300 ºC 

STime = 2 hours 

S2 

(Amingo

, et al., 

2011) 

CPTi 4, d50 = 25-40 

µm, hydride–

dehydride 

(NH4)HCO3 

,  500-100 

µm 

CPres: 100 MPa 

STemp = 1300 ºC 

STime = 2 hours 

AA 
Current 

research 

CPTi 3, < 45 µm, 

hydride–dehydride 

(NH4)HCO3 

,  0-710 µm 

CPres: 100 MPa 

STemp = 1200 ºC 

STime = 2 hours 

G 
Current 

research 

CPTi 3, < 75 µm, 

hydride–dehydride 

(NH4)HCO3 

,  250-710 

µm 

CPres: 100 MPa 

STemp = 1200 ºC 

STime = 2 hours 

All samples shown in Table 16 were produced using the same compaction 

pressure, space holder material and relatively similar titanium powder particle 
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sizes as this study. The sintering temperatures varied with 100 ºC and sintering 

times varied with 1 hour. In addition to all the similarities, the initial space holder 

particle sizes are also reported. 

7.9.2. Mechanical strength comparison 

Using the sample codes provided in Table 16, each sample is given a name similar 

to the naming scheme used through this document, i.e. the numbers following the 

sample identity refer to the space holder particle size range used for the particular 

mixture. The mechanical strengths reported for the mixtures evaluated in this 

study are similar to those reported in literature. The rupture strength follows the 

general Ashby-Gibson trend. 

 

 

Figure 40: Comparison of transverse rupture strength results 

From Figure 40, it is visible that although the general Ashby-Gibson relationship, 

equation (7), is followed, the strengths for the mixtures from this study are 

typically lower yield than those reported in similar studies from literature. As 

most of the published data is from samples that were typically sintered at higher 

temperatures and for longer durations, resulting in higher final density, this is not 

an anomalous result. When comparing samples of same sintering conditions and 

space holder particle size, the general trend of the strength decreasing as the space 

holder particle sizes increases holds true.   

7.9.3. Elastic modulus comparison 

Figure 43 shows the comparison of the reported elastic modulus from literature 

against the mixtures evaluated in this study. Unlike the similarities in the rapture 
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strengths, Figure 41 shows a relatively large difference between the elastic moduli 

of the samples from this study compared to those from literature. 

 

Figure 41: Comparison of elastic moduli results 

Typically, the elastic moduli of the foams from this study are lower than those 

from literature. There are two possible reasons for this; it could be due to the 

contamination of the samples which resulted in making the samples more brittle, 

thus lowering the elastic modulus (section 7.2), or possibly the differences in the 

experimental procedures for measuring elastic modulus. 

 All the studies used three point bending tests to measure the mechanical 

properties. The elastic modulus is determined from the measured force and 

midpoint displacement, as described in equation (13) (section 4.5.2).  To 

determine the sensitivity of the midpoint deflection measurement on the elastic 

modulus, the relationship between the midpoint displacement and strain is re-

examined. From Hooke’s Law (     ) and equation (13), the relationship 

between strain and the midpoint displacement is given by 

  
   

 
     (14) 

Where: 

  = the deflection at midpoint (m). 

ε = strain, 

   = thickness of sample (m), 

   = free length between supports (m), 

As the elastic modulus is determined by averaging the value as calculated using 

equation (13) over a range of force-displacement, or equally stress-strain values in 
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the linear elastic region, the sensitivity of the displacement measurement as it 

relates to a specific strain value is examined. Using equation (14) and taking into 

account the different setups used to determine the elastic modulus in each study, 

the calculated difference in deflection required to obtain 1 % strain for each study 

is shown in Table 17. The results show that the deflection required to produce 1% 

strain in the samples from this study is half that of the S1 study, while twice that 

of the S2 study. 

Table 17: Calculated midpoint deflection for 1 % strain for the powder 

mixtures G and AA, as compared to studies S1 and S2. 

Sample 

code 
Strain 

Free length 

between 

supports  (mm) 

Sample 

thickness 

(mm) 

midpoint 

deflection 

(mm) 

Ram 

descending 

rate  

(mm/min) 

G 1 % 25.4 5.6 0.19 1 

AA 1 % 25.4 5.6 0.19 1 

S1 1 % 30 4 0.38 1 

S2 1 % 16 5.23 0.08 30 

As mentioned in section 5.2.19, the resolution of the ram’s displacement for this 

study is 0.04 mm, representing a potential 21 % error in the displacement 

measurement at 1 % strain. Assuming similar resolution for the measurements 

used for S1 and S2, and noting that the ram descending rate is much higher for S2, 

the differences between the reported elastic modulus of S2 and those from this 

study could be within the experimental error measurement of both studies.  

7.10. Improving production processes  

In hindsight there are a couple of things which could be done differently to 

improve the production process of the samples. The follow are ways of improving 

the process: 

 Debind the samples in a vacuum or inert atmostphere (in argon), this will 

reduce the amount of contamination which occurs during the process. 

 Remove the requirement for PEG from the mixture. The PEG was added to 

the mixture to act as a binding and lubricant. As the compaction pressure is 

relatively low, there is no need for PEG. Removing PEG from the mixture will 

result in reducing the required debinding temperature, which will reduce the 

amount of contamination which occurs during the process, as PEG debinds at 

temperatures close to the critical oxidation temperature of titanium. 

 Compact larger specimens and machine the dimension of the specimen to the 

exact requirements. 

 Investigate the feasibility of conducting the debinding of the ammonium 

bicarbonate in the vacuum furnace 
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7.11. Areas for further studies 

During this study certain problems and interesting phenomena were discovered, 

however due to time constraints an in depth study each case was not possible or 

fell out of the scope of this project. The follow are key areas which could require 

some future research: 

 Determine and take into account the compliance of the three-point-bending 

test ridge. This is required to adjust the measured displacement and with the 

expected deformation of the test ridge under loading. 

 A comparison of a 3D tomography and 2D quantitative image analysis, how 

they relate to each other and accuracy. 

 Conduct porosimetry on the specimens to get a better understanding of the 

interconnectivity of the open pores. 

  A comparison of wall thickness to space holder particle size, certain work is 

contradicting. 

 Investigate the effects on increasing the sintering temperature or duration on 

the macropore and micropore size distributions.  
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8. CONCLUSION 

Open-pore titanium foams were created using the space holder production 

process. By altering the titanium powder and the space holder particle size 

distributions, the porosity of the final foam were controlled and, coherently, also 

the mechanical properties. The recorded mechanical properties were altered 

sufficiently to reduce the typical mechanical strength and elastic moduli to match 

that which is expected for bone.  

The measured powder characteristics, particle size distribution and chemical 

composition, match that of the characteristics supplied by the suppliers of both 

titanium powders. It was found that different powder characteristics have a large 

influence on the mechanical properties. The smaller particle size powder, TiAA, 

was found to sinter more densely than its larger particle size counterpart, TiG.  

The use of PEG as a lubricant was found to have a negative effect on the final 

sintered samples. This is due to the decomposition temperature of PEG being too 

close to the critical onset temperature of oxidation for both titanium powders. It is 

concluded that due to the low compaction pressure of the samples, the need for a 

lubricant is unnecessary and should be removed for further studies. 

The open, interconnected pores network created during the manufacturing process 

were found to be favourable for osseointegration.  

From the pore size distribution, it was found that the pores distribution resulted in 

pores with a bimodal distribution. The first mode was creating by isolated, 

individual macropores which did not interconnect with other macropores and as a 

result was slightly smaller than the initial space holder particle size, due to 

sintering. The second mode was created by the interconnectivity of two or more 

macropores, which results in pores typically much larger than the initial space 

holder particle size range. 

The mechanical properties of the produced samples were found to match the 

typical curve of the Ashby-Gibson relationship for both elastic moduli and 

strength. It was however found, that the elastic modulus and strength of the 

samples were lower than that recorded by other researchers. This is found to be a 

combination of contaminates found in the samples, resulting in more brittle 

samples, and possibly experimental error, due to experimental setup differences. 
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APPENDIX A. VOID FRACTION CALCULATION 

In this appendix, the procedure is explained for calculating the required amount of 

each powder constituencies required within a mixture. Before it is possible to 

calculate estimated amount, an experiment with estimated ideal parameters was 

conducted in order to obtain relative estimation of the global void fraction and 

shrinkage. 

Initial experiment 

For the initial experiment, the mass of CPTi, PEG and ABC were each estimated 

to give a final material of approximately 60 % dense, 40 % porosity. The 

compaction pressure and the sintering duration were kept constant at 100 MPa and 

1200 ºC, respectively. The follow steps were taken within the initial experiment to 

determine the shrinkage percentage and the void fraction: 

 

 The volume of the green compact, Vg, was calculated: 

                                                                          (15) 

Where: 

Vg = the volume of the green sample in cm
3
, 

length = the length of the green sample in cm, 

width = the width of the green sample in cm, 

thickness = the length of the green sample cm. 

 The void (total porosity) volume is determined as: 

 

       (                   ) (16) 

 

Where: 

 

VgABC = the volume which ABC occupies of the green sample in cm
3
, 

VgPEG = the volume which PEG occupies of the green sample in cm
3
, 

VgTi = the volume which titanium occupies of the green sample in cm
3
, 

Vvoid = the void volume which occupies the green sample in cm
3
. 

The volume of each powder was calculated by taking the mass of each 

constituent and multiplying it by the solid density of the constituents 

 The green density, ρg, is calculated as: 
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                                                                                            (17) 

Where: 

   = the green density of the sample in 
 

   , 

  = the mass of the green sample in g, 

 The void percentage is calculated: 

 

       
     

  
                                                                        (18) 

 Post sintering, the percentage of sintering shrinkage in each dimension is 

calculated by comparing the green and sintered dimensions (length, width and 

thickness): 

 

            
                                  

               
               (19) 

An average of all the dimensions is taken as the percentage of sintering 

shrinkage.  

Establish procedure 

 The volume of the green compact, Vg, for the new set of experiments is 

calculated using equation (15): 

 The estimated volume of the sintered sample is calculated assuming the 

percentage of sintering shrinkage is isotropic: 

                                                                              (20) 

Where: 

   = the volume of the sintered sample in cm
3
. 

 The mass of titanium powder required is calculated by multiplying the 

volume of the sintered sample with that of the desired sintered density (1.376 

g/cm
3
, refer to section 5.2.3) of the sintered sample: 

                                                                                         (21) 

 

Where: 

msTi = the mass of titanium powder in g, 

ρdesired = the desired density of the sintered specimen in g/cm
3
. 
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 The actual volume per sample which the titanium powder occupies is 

calculated by multiplying the mass of titanium powder needed per sample by 

the actually density of pure titanium, ρTi. 

 

                                                                                          (22) 

 

Where: 

VgTi = the volume which titanium occupies of the green sample in cm
3
, 

ρTi = the density of pure titanium powder g/cm
3
. 

 The volume percentage of PEG added is predefined (typically in the region of 

2 vol%) and accordingly the volume which the PEG occupies is calculated: 

                                                                        (23) 

 

Where: 

 

VgPEG = the volume which PEG occupies of the green sample in cm
3
, 

 Similarly to equation (18), the void volume, Vvoid, can be calculated by using 

the established void percentage in the initial experiments. Here the void 

volume is estimated by assuming it is the same value as in the initial 

experiment. 

 

 The mass of PEG is calculated by multiplying the volume of the PEG in the 

sample with the density of PEG: 

 

                 (24) 

 

Where: 

 

mgPEG = the mass of PEG powder required in the green state in g, 

ρPEG = the density of pure PEG powder g/cm
3
. 

 The volume which ammonium bicarbonate will occupy is calculated as the 

remaining volume of the sample: 

 

      (                   ) (25) 

 

Where: 

 

VgABC = the volume which Ammonium bicarbonate occupies of the 

green sample in cm
3
, 
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Vvoid = the void volume which occupies the green sample in cm
3
. 

 

 Finally, the mass of ammonium bicarbonate can be calculated by multiplying 

the volume of ammonium bicarbonate with the density of ammonium 

bicarbonate. 

 

                 (26) 

 

Where: 

 

mgABC = the mass of Ammonium Bicarbonate powder required in the green 

state in g, 

ρPEG = the density of pure Ammonium Bicarbonate powder g/cm
3
. 
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APPENDIX B. FLEXURE STRENGTH 

 

Figure 42: Flexure Stress vs Displacement
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APPENDIX C. PORE SIZE DISTRIBUTION ANALYSIS 

The pore size distribution was determined by using light micrographs of sample 

which were mounted in epoxy resin. A luminescent powder was mixed into the 

epoxy so that when the epoxy is exposed to a light source, the luminescent 

powder will absorb the light. This attribute is used to make the pores display black 

on micrographs taken using a reflective microscopes, which makes it easier to 

isolate the different pore structures. 

The unedited micrographs, refer to Figure 43 for example, are important into 

ImageJ, image analysis software, where the colour threshold are changed to either 

select the large pores, refer to Figure 44, or to select the small pores, refer to 

Figure 45. 

 

Figure 43: Unedited micrograph 

Typically the colour difference between the large pores and small pores are 

significant enough so that you need to measure them independently. If both large 

and small pores are measured simultaneously, error is introduced into the 

measurement. This error is cause by the pixel surround the macropores becoming 

also highlighted and increasing the macro pore size. Besides the increase in 

individual pores size it is typically found that the interconnectivity falsely 

increases as the small section of base metal between pores also become selected. 

 

Figure 44: Colour threshold changed to select pores larger than 3000 µm
2 
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Figure 45: Colour threshold changed to select pores smaller than 3000 µm
2
 

After both large and small pores are selected it is required to set the scale of the 

image. This is done by drawing a line over the scale bar and entering the known 

length. Once this is completed a particle analysis done on both samples. For the 

large pores, only pores with a greater area than 3000 µm
2
 are selected and for the 

small pores, only pore with a smaller area than 3000 µm
2
.  

The results of the particle analysis are imported into a spreadsheet where after the 

hydraulic diameter is determined of each pore basics on the area measure from the 

particle size analysis. 
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