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SUMMARY 

The need for a cost-effective and environmentally friendly substitute for fossil fuels has 

resulted in significant attention to the production of bioethanol. Lignocellulose being the 

most abundant renewable resource on the planet consists of cellulose, hemicelluloses and 

lignin. It can be exploited as a source of fermentable sugars for the conversion to ethanol 

which may serve as the ultimate fossil fuel replacement. Hemicelluloses, contributing one 

third of lignocellulose, consists of xylan and mannan. Mannan consists of glucomannan, 

galactomannan and galactoglucomannan. A cocktail of enzymes are required for its complete 

hydrolysis, including β-mannanase, β-mannosidase, α-galactosidase, β-glucosidase and 

acetyl-mannan esterases. A need has arisen for the development of a recombinant 

microorganism capable of converting lignocelluloses to bioethanol through an economically 

feasible process. 

The yeast Saccharomyces cerevisiae naturally ferments hexose sugars into ethanol and has 

been used in various industrial applications due to its robustness in industrial processes, its 

well-developed expression systems, its frequent use as a model organism for heterologous 

gene expression and its current GRAS (Generally Regarded As Safe) status. This yeast is 

unable to naturally utilise complex lignocelluloses. Recombinant biotechnology can be 

implemented to overcome this limiting factor. Due to certain restraints by the yeast 

S. cerevisiae such as hyperglycosylation and poor secretion capacity, alternative hosts such as 

Aspergillus niger has also been considered for heterologous protein production.  

The Aspergillus aculeatus β-mannanase (man1) and Talaromyces emersonii α-galactosidase 

(Agal) genes were expressed in S. cerevisiae Y294. The cDNA of A. niger β-mannosidase 

(cAnmndA) and synthetic Cellvibrio mixtus β-mannosidase (CmMan5A) were expressed in 

A. niger. The sequence coding for the native secretion signal from CmMan5A was removed 

and replaced with the XYNSEC sequence (yielding XYNSEC-CmMan5A) and expressed in 

E. coli DH5α. The recombinant Man1, Agal, cAnmndA, CmMan5A and 

XYNSEC-CmMan5A displayed optimal pH of 5.47, 2.37, 3.4, 3.4 and 5.47, respectively, and 

optimal temperatures of 70°C for Man1, Agal, cAnmndA and CmMan5A and 50°C for 

XYNSEC-CmMan5A. Activity levels of Man1, Agal, cAnmndA, CmMan5A and 

XYNSEC-CmMan5A peaked at 36.08, 256.83, 11.61, 7.58 and 2.14 nkat/ml, respectively. 

Co-expression of Agal and man1 led to a decrease in enzyme secretion and therefore 

individual expression of these genes should be considered rather than co-expression. The 
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enzymatic activity of Man1, Agal and CmMan5A resulted in a significant decrease in the 

viscosity of galactomannan when used synergistically. This study confirmed successful 

production of galactomannan hydrolysing enzymes by the yeast S. cerevisiae and the fungus 

A. niger, as well as providing insight into the synergistic effect of these enzymes on the 

viscosity of galactomannan.  
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OPSOMMING 

Die behoefte vir 'n koste-effektiewe en omgewingsvriendelike plaasvervanger vir 

fossielbrandstowwe het tot 'n beduidende belangstelling in die produksie van bio-etanol gelei. 

Lignosellulose synde die volopste hernubare hulpbron op die planeet bestaan uit sellulose, 

hemiselluloses en lignien. Dit kan as 'n bron van fermenteerbare suikers vir die omskakeling 

na etanol benut word, wat kan dien vir uiteindelike fossielbrandstofvervanging. 

Hemiselluloses, wat bydra tot 'n derde van lignosellulose, bestaan uit xilaan en mannaan. 

Mannaan bestaan uit glukomannaan, galaktomannaan en galaktoglukomannaan. 'n Mengsel 

van ensieme word vir die volledige hidroliese van mannaan benodig, insluitende 

β-mannanase, β-mannosidase, α-galaktosidase, β-glukosidase en asetiel-mannaan esterases. 'n 

Behoefte bestaan vir die ontwikkeling van 'n rekombinante mikroörganisme wat in staat is tot 

die omskakeling van lignoselluloses na bio-etanol deur middel van 'n ekonomies 

lewensvatbare proses. 

Die gis Saccharomyces cerevisiae kan heksoe suikers na etanol omskakel en word gebruik in 

verskeie industriële toepassings as gevolg van sy robuustheid in industriële prosesse, goed 

ontwikkelde uitdrukking sisteme, gereelde gebruik as 'n model-organisme vir heteroloë 

uitdrukking van gene en huidige GRAS (Generally Regarded As Safe) status. Die gis is nie 

daartoe in staat om komplekse lignosellulose te benut nie. Rekombinante biotegnologie kan 

egter geïmplementeer word om hierdie beperkende faktor te oorkom. As gevolg van sekere 

beperkinge van die gis S. cerevisiae soos hiperglikosilering en lae sekresie kapasiteit, is 

alternatiewe gashere soos Aspergillus niger ook oorweeg vir heteroloë proteïenproduksie. 

Die Aspergillus aculeatus β-mannanase (man1) en Talaromyces emersonii α-galaktosidase 

(Agal) gene is in S. cerevisiae Y294 uitgedruk. Die cDNA van A. niger β-mannosidase 

(cAnmndA) en sintetiese Cellvibrio mixtus β-mannosidase (CmMan5A) is in A. niger 

uitgedruk. Die DNA volgorde wat kodeer vir die natuurlike sekresiesein van CmMan5A is 

verwyder en vervang met die XYNSEC volgorde (gegewe XYNSEC-CmMan5A) en uitgedruk 

in E. coli DH5α. Die rekombinante Man1, Agal, cAnmndA, CmMan5A en 

XYNSEC-CmMan5A vertoon optimale pH kondisies van 5.47, 2.37, 3.4, 3.4 en 5.47, 

onderskeidelik, en die optimale temperatuur van 70°C vir Man1, Agal, cAnmndA en 

CmMan5A en 50°C vir XYNSEC-CmMan5A. Aktiwiteitsvlakke van Man1, Agal, 

cAnmndA, CmMan5A en XYNSEC-CmMan5A het 'n maksimum bereik op 36.08, 256.83, 

11.61, 7.58 en 2.14 nkat/ml, onderskeidelik. Gesamentlike uitdrukking van Agal en man1 het 
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tot 'n afname in ensiemsekresie gelei en dus moet individuele uitdrukking van hierdie gene 

eerder as gesamentlike-uitdrukking oorweeg word. Die ensiematiese aktiwiteite van Man1, 

Agal en CmMan5A het tot 'n beduidende afname in die viskositeit van galaktomannaan gelei 

wanneer dit sinergisties gebruik word. Hierdie studie bevestig suksesvolle produksie van 

galaktomannaan hidrolitiese ensieme in die gis S. cerevisiae en die fungus A. niger, en 

verskaf insig in die sinergistiese effek van hierdie ensieme op die viskositeit van 

galaktomannaan. 
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GENERAL INTRODUCTION AND PROJECT AIMS 

1. GENERAL INTRODUCTION 

Plant cell walls consist of complex polymers such as cellulose, hemicellulose and lignin 

(McNeil et al. 1984, Moreira and Filho 2008, Scheller and Ulvskov 2010). Together they 

maintain structural integrity in the plant cell walls (Klemm et al. 2005). This association as 

well as the crystalline nature of cellulose, renders it inaccessible and recalcitrant to enzymatic 

hydrolysis (van Rensburg et al. 1998). Hemicelluloses are the second most abundant 

renewable carbon source on earth and consist of mainly mannan and xylan (Lynd et al. 2002, 

De O. Petkowicz et al. 2001). The different forms of mannan include glucomannan, 

galactomannan and galactoglucomannan (Moreira and Filho 2008). The search for alternative 

fuels to replace the depleting petroleum-based fuels has been an ongoing quest, were the most 

promising solution is the production of ethanol from lignocellulose biomass (van Dyk and 

Pletschke 2012). Due to its renewable nature and abundance, lignocellulosic biomass is an 

appropriate candidate for replacing petroleum-based fuels (Beukes and Pletschke 2011, 

Gao et al. 2011).  

Hydrolytic enzymes are naturally produced by most organisms and are involved mainly in 

breaking down complex substrates (such as carbohydrates, proteins, lipids and polyphenols) 

to simple units that can be assimilated easily. Microbial hydrolases are the most extensively 

studied and were introduced into commercial industries in the 1960s (Dalbøge 1997). The 

majority of commercialised microbial enzymes are produced from a small number of fungi 

(Aspergillus, Fusarium, Trichoderma, Humicola, Mucor and Rhizomucor) and bacterial 

(Bacillus, Pseudomonas) (Dalbøge and Lange 1998, van Zyl et al. 2010). These 

microorganisms secrete cocktails of hydrolytic enzymes that degrade the polymeric substrates 

through synergistic action. The hydrolysis of mannan requires enzymes β-mannanases 

(1,4-β-D-mannan mannohyrolases), β-mannosidases (1,4-β-D-mannopyranoside hydrolases), 

α-galactosidases (1,6-α-D-galactoside galactohydrolases), β-glucosidases (1,4-β-D-glucoside 

glucohydrolases) and galactomannan acetylesterases (Moreira and Filho 2008).  

Saccharomyces cerevisiae has a long fermentation history with the wine and brewing 

industries. It is also the most popular host for heterologous protein expression, due to its 

GRAS status and the ease with which it can be genetically manipulated (Gellissen and 

Hollenberg 1997, Müller et al. 1998). Unfortunately, S. cerevisiae is unable to utilise 

lignocellulose, limiting the range of substrates that can be used in industrial fermentations. 
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Construction of a polysaccharide-degrading S. cerevisiae strain with the ability to utilise 

renewable, natural substrates may provide an economically feasible way to produce 

commercially important commodities such as biofuels (Den Haan et al. 2007). 

Filamentous fungi are versatile organisms with the ability to grow on inexpensive readily 

available material such as agricultural residues (for example corn stalks and wheat straw), 

wood residues (such as un-harvested dead and diseased trees), specifically grown crops (such 

as sugar cane and sorghum) and waste streams (such as municipal solid waste, recycled paper 

and bagasse) (Aristidou and Penttilä 2000). The use of inexpensive media for cultivation 

together with the GRAS status, its long history in the food industry and the significant 

contribution to the production of antibiotics makes Aspergillus niger an ideal host for the 

production of viable enzymes. Yet, A. niger is unable to produce high levels of ethanol. 

Combining the good attributes of A. niger and S. cerevisiae will result in the construction of a 

polysaccharide degrading S. cerevisiae strain with the ability to utilise renewable, natural 

substrates. It may provide an economically feasible way to produce commercially important 

commodities such as biofuels (Den Haan et al. 2007). 

 

2. AIMS OF THIS STUDY 

The objective for this study was the expression and evaluation of β-mannanase, 

β-mannosidase and α-galactosidase enzymes that are required for the degradation of 

galactomannan, such as Locust bean gum (LBG). The use of multiple expression hosts is 

used due to the unsuccessful expression of β-mannosidases in S. cerevisiae (see appendix A). 

The specific aims of this study were as follows: 

- Subcloning and functional expression of the Aspergillus aculeatus man1 and synthetic 

Talaromyces emersonii α-galactosidase (Agal) in the yeast S. cerevisiae Y294;  

- Amplifying the cDNA copy of Aspergillus niger β-mannosidase (cAnmndA) 

- Functional expression of cAnmndA and a synthetic Cellvibrio mixtus β-mannosidase 

(CmMan5A) in A. niger; 

- Partial characterisation of the Man1, Agal and CmMan5A enzymes  
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- Determine the synergistic effect of Man1, Agal and CmMan5A on the viscosity of 

LBG. 
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1. INTRODUCTION 

The quest for alternative fuels began in 1975, with the sudden increase in oil prices and the 

realisation that the world’s oil supply is finite. All modern economies are powered by fossil 

fuels. This dependence is mostly attributed to their use in transportation, industrial processes, 

households and the generation of electricity (Lin and Tanaka 2006). The rate of fuel 

consumption is exceeding the rate of production causing fuel price increases imposed by the 

Middle Eastern countries controlling the oil market (Figure 1). The focus has shifted to 

finding economical ways to produce ethanol, preferably from abundantly available, 

biodegradable and renewable raw materials. Ethanol is an excellent transportation fuel and in 

some respects superior to gasoline (Lynd et al. 1991a, Lynd et al. 1991b). Unblended ethanol 

burns more cleanly, has a higher octane rating, can be burned with greater efficiency, is 

thought to produce smaller amounts of ozone precursors (thus decreasing urban air pollution) 

and is particularly beneficial with respect to low net carbon dioxide release into the 

atmosphere. Ethanol is considerably less toxic to humans than gasoline (or methanol). Due to 

its low volatility, low combustion products and its photochemical reactivity, combustion of 

ethanol results in low levels of smog-producing compounds (Wyman and Hinman 1990). 

Furthermore, bio-ethanol (via fermentation) offers a more favourable trade balance, enhanced 

energy security and represents a new commodity for the agricultural economy. 

 

Figure 1: The top ten global oil producers for 2007 (https://www.cia.gov/library/publications/the-

world-factbook/). 
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The amount of solar energy received at the earth’s surface is 2.5 x 1021 Btu/year, which far 

exceeds the present human usage of 2.0 x 1017 Btu/year (Demain et al. 2005). The amount of 

energy from the sun, which is used for photosynthesis, is 10 times that of world’s total human 

usage. Globally, terrestrial plants produce 1.3 x 1010 metric tons (dry weight basis) of plant 

material per year, which is equivalent to 7 x 109 metric tons of coal or about two-thirds of the 

world’s energy requirement. Cellulosic feedstocks from agriculture and other sources amount 

to about 180 million tons per year (Demain et al. 2005). Furthermore, vast amounts of 

cellulose are available as agricultural wastes (Table 1) making lignocellulose by far the most 

abundant renewable natural resource. The inexpensive and plentiful nature of cellulosic 

biomass created interest in its possible use as a renewable source of energy. 

 

Table 1: The composition of common agricultural residues and wastes (Kaur et al. 1998, 
McKendry 2002, Prasad et al. 2007) 
Agricultural residue Cellulose Hemicellulose Lignin 

Hardwood 40-50 25-40 18-35 

Softwood 45-50 25-35 25-35 

Corn cobs 45 35 15 

Grasses 25-40 35-50 10-30 

Wheat straw 33-40 20-25 15-20 

 

Hemicelluloses are structural polysaccharides found in plant cell walls in close association 

with cellulose and lignin (Figure 2), forming the lignocellulosic biomass (Saha 2003). 

Cellulose and hemicelluloses are macromolecules constructed from simple sugars, whereas 

lignin is an aromatic polymer synthesised from phenylpropanoid precursors. These polymers 

are intertwined through non-covalent forces and covalent cross-linkages, producing the 

intricately weaved cell wall of plants.  

The hemicelluloses are estimated to account for one third of all components available in 

plants and are the second most abundant heteropolymer present in nature (Table 2) 

(Chaikumpollert et al. 2004). The hemicellulose distribution varies in woods, but it can 

contribute to 25-30% of the dry weight (Pérez et al. 2002). The majority of the 

hemicelluloses are relatively small molecules containing 70 to 200 monosaccharide residues. 

The hardwood hemicelluloses are generally larger molecules with 150 to 200 residues 

(Moreira and Filho 2008).  
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Figure 2: Schematic representation of the intricately woven lignocellulose components of the cell wall 

(Boudet et al. 2003). 

 

Table 2: The major hemicellulose components in softwood and hardwood (Moreira and Filho 2008, Scheller and 
Ulvskov 2010, Timell 1965, Timell 1964) 

Wood Hemicellulose type Amount 
(%) Composition DP 

   Units Molar 
ratios 

 Linkage > 

Soft Galactoglucomannan 5-8 β-D-mannopyranose 3 1-4 100 
wood    β-D-glucopyranose 1 1-4   

     β-D-galactopyranose  1 1-6   
      Acetyl 1     
  Glucomannan 10-15 β-D-mannopyranose  4 1-4 100 
     β-D-glucopyranose  1 1-4   
     β-D-galactopyranose  0.1 1-6   
      Acetyl 1     
  Arabinoglucuronoxylan 7-10 β-D-xylopyranose  10 1-4 100 
     4-O-Me-α-D-glucopyranosyluronic acid  2 1-2   
      α-L-arabinofuranose  1.3 1-3   

Hard Glucuronoxylan 15-30 β-D-mannopyranose  10 1-4 200 
wood    4-O-Me-α-D-glucopyranosyluronic acid  1 1-2   

      Acetyl 7     
  Glucomannan 2-5 β-D-mannopyranose  1-2 1-4 200 
      β-D-glucopyranose 1 1-4   
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2. MANNAN STRUCTURE  

Hemicelluloses include a variety of polysaccharides with linear or branched polymers derived 

from sugars such as D-xylose, D-galactose, D-mannose, D-glucose and L-arabinose (Moreira 

and Filho 2008). Hemicelluloses are classified according to the main sugar unit. The 

main-chain sugars in hemicellulose structure are predominantly linked together by 

β-glycosidic bonds (Polizeli et al. 2005). Mannans are the major constituents of the 

hemicellulose fraction in softwoods and show wide spread distribution in plant tissues 

(De O. Petkowicz et al. 2001). In plants, they present a structural role (Brennan et al. 1996, 

Liepman et al. 2007) as well as displaying a storage function as non-starch carbohydrate 

reserves in endosperm walls and vacuoles of seeds and vegetative tissues 

(Moreira and Filho 2008).  

The different types of mannan can be divided into four subfamilies: linear mannan, 

glucomannan, galactomannan and galactoglucomannan (De O. Petkowicz et al. 2001). Each 

of these polysaccharides presents a β-1,4-linked backbone containing mannose or a 

combination of glucose and mannose residues (Liepman et al. 2007). In addition, the mannan 

backbone can be substituted with side chains of α-1,6-linked galactose residues.  

Linear mannans are homopolysaccharides composed of linear main chains of 1,4-linked 

β-D-mannopyranosyl residues and contain less than 5% of galactose. They are the major 

structural units in woods and in seeds of many plants (such as ivory nuts and green coffee 

beans) (Aspinall 1959), and typically present in the endosperms of Palmae (such as 

Phytelephas macrocarpa) (De O. Petkowicz et al. 2001). The mannans from ivory nuts can 

be separated into two components: A and B (Petkowicz et al. 2007). Mannan A is a dense 

polysaccharide extracted with alkali that possesses granular form and crystalline structure. 

Mannan B cannot be extracted directly and is built up of microfibrils similar to cellulose 

microfibrils and shows a less crystalline structure (Aspinall 1959). Mannan B is insoluble in 

aqueous NaOH and contains some water molecules in its lattice 

(De O. Petkowicz et al. 2001). Both polymers are insoluble in water, but differ in molecular 

size. Mannan A has a lower molecular weight, while mannan B presents a higher molecular 

weight polysaccharide.  

Plant galactomannans consist of water-soluble 1,4-linked β-D-mannopyranosyl residues with 

side chains of single 1,6-linked α-D-galactopyranosyl groups attached along the chain 

(Parvathy et al. 2005, Shobha et al. 2005). Differences in the distribution of D-galactosyl 

Stellenbosch University http://scholar.sun.ac.za



9 
 

units along the mannan structure are found in galactomannans from different origins 

(Bresolin et al. 1997). True galactomannans are those mannans containing more than 

5% (w/w) D-galactose residues (Aspinall 1959). Figure 3 show typical structures of Locust 

bean gum and tara gum with linear main chain of β-1,4-linked mannose units and an 

α-1,6-galactose side chain (Duffaud et al. 1997, Sittikijyothin et al. 2005). 

 

 

Figure 3: Structure of Locust bean gum and tara gum, displaying a linear backbone of 1,4-linked β-D-mannose 

units attached by a single α-D-galactose residue at the C-6 of the mannose with β-1,6-glycosidic bonds. In guar 

gum the linear backbone is substituted every two residues by an α-D-galactose residue at C-6 of a mannose with 

1,6-glycosidic bonds (Moreira and Filho 2008). 

 

Glucomannans contain chains of randomly arranged β-1,4-linked D-mannose and 

β-1,4-linked D-glucose residues in a 3:1 ratio (Moreira and Filho 2008, Northcote 1962). 

Hardwoods contain glucomannan with a mannose:glucose ratio of 1.5–2:1 

(Hongshu et al. 2002, Timell 1967). The mannose residues of glucomannnan provide the 

branching points in the polysaccharide by 1,6- and/or 1,3-linkages (Aspinall et al. 1962). 

They account for half of the hemicellulose fractions of coniferous woods (Aspinall 1959) and 

occur together with galactoglucomannans. Mannans are present in small amounts in the 

hemicellulose components of hardwood and represent 3–5% of the total cell wall material 

(Northcote 1962). Some D-galactose residues may be attached to the main mannose chain 

through α-1,6-linked terminal units with a mannose:glucose:galactose ratio of 3:1:0.1 

(Moreira and Filho 2008). In this case, it consists of residues of mannose:glucose:galactose in 

the ratio of 3:1:0.1. These residues act as flexible groups that can provide non-covalent 
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connecting bridges with water and other matrix polysaccharides (Northcote 1962). 

Glucomannans of seed plants, coniferous woods and to a lesser extent from some hardwoods 

are found to be in close association with cellulose and xylans as cell wall components 

(Aspinall 1959). The conformation of glucomannan chains is similar to those of cellulose.  

Galactoglucomannans are polysaccharides containing D-galactose residues attached to both 

D-glucosyl and D-mannosyl units as α-1,6-linked terminal branches (Aspinall et al. 1962). 

They are the predominant hemicelluloses present in softwoods (Timell 1965). The 

mannose:glucose:galactose residues are reported to be in the molar ratio of 3:1:1 (Moreira 

and Filho 2008, Timell 1967). The galactoglucomannan solubility in water is due to its 

D-galactose side-chains that prevent the macromolecules from aligning themselves with 

strong hydrogen bonds (Timell 1965).  

 

3. XYLAN 

Xylan is the second most abundant polysaccharide in nature and the main hemicellulose 

found in plant cell walls, constituting 30 – 35% of the total dry weight (Joseleau et al. 1992). 

Xylan exists in the interface between lignin and cellulose adding to the stability of plant 

structure. Consistent with their structural chemistry and side-group substitutions, the xylans 

seem to be interspersed, intertwined and covalently linked at various points with the 

overlying sheath of lignin. Xylan produces a coat around underlying strands of cellulose 

(Biely 1985) via hydrogen bonding (Joseleau et al. 1992). The xylan layer with its covalent 

linkage to lignin and its non-covalent interaction with cellulose may be important in 

maintaining the integrity of the cellulose in situ and in helping to protect the fibres against 

degradation by cellulases (Uffen 1997). 

Xylan is the major hemicellulose in hardwood, but is less abundant in softwood (Figure 4). 

The structure of xylans can differ depending on their origin, but will always contain a 

β-1,4-linked D-xylose backbone (Ebringerová and Heinze 2000). Although most xylans are 

branched structures, some linear forms have been identified (Eda et al. 1976). The xylan from 

hardwood is 0-acetyl-4-0-methylglucuronoxylan consists of at least 70 β-xylopyranose 

residues containing acetyl, arabinosyl and glucuronosyl substituents (Beg et al. 2001). Every 

tenth xylose residue carries a 4-0-methylglucuronic acid attached to the C-2 position of 

xylose. Hardwood xylans are highly acetylated which contributes to the partial solubility of 
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xylan in water. Acetylation is more frequent at the C-3 than at the C-2 position 

(Beg et al. 2001). These acetyl groups are readily removed when xylan is subjected to alkali 

extraction (Antranikian 1997). Xylans from softwood are composed of 

arabino-4-0-methylglucuroxylans. They have a higher 4-0-methylglucuronic acid content 

than hardwood xylans. Softwood xylans are not acetylated but contain an 

α-L-arabinofuranose units linked by α-1,3-glycosidic bonds at the C-3 position of the xylose 

(Beg et al. 2001). The ratio of β-D-xylopyranose:4-0-methyl-α-D-glucuronic 

acid:L-arabinofuranose is 100:20:13 (Beg et al. 2001).  

 

 

 

 

 

 

 

Figure 4: Schematic displaying the difference between (A) hardwood and (B) softwood. The cell structure of 

softwoods is much simpler than that of hardwoods (Arno 1993).  

 

Homoxylans consist exclusively of xylosyl residues. This type of xylan is not widespread in 

nature and has been isolated from esparto grass (Chanda et al. 1950), tobacco stalks 

(Eda et al. 1976) and guar seed husk (Montgomery et al. 1956). Xylans with β-1,3-linked 

backbone have been reported in marine algae (Dekker and Richards 1976).  

 

4. LIGNIN 

Lignin is a complex polyphenolic compound present in softwood at a concentration of 

20 - 30% and in hardwood at 18 – 25% (Scheller and Ulvskov 2010). It is responsible for cell 

wall rigidity and durability occurring mostly in the secondary cell wall of plants 

(Mosier et al. 2005). They also provide the vascular system with the hydrophobicity needed 
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for transport of water and solutes. Lignins represent a major obstacle in chemical pulping, 

forage digestibility and processing of plant biomass to biofuels. Lignins are generally 

problematic, therefore these industries would benefit from processing biomass containing 

either less lignin or a lignin that is easier to degrade (Vanholme et al. 2008). 

Three major groups of lignin can be distinguished. Coniferyl alcohol is the main precursor in 

softwoods in which case dehydrogenation produces guaiacyl lignin. In hardwoods, 

dehydrogenation of p-sinapyl alcohol and p-coumaryl alcohol forms guaiacyl-syringyl lignin. 

Grasses contain guaiacyl-syringyl-p-hydroxyphenyl-lignin (Eriksson and Rzedowski 1969, 

Grabber 2005). Unlike cellulose or hemicelluloses, lignin is not readily biologically degraded 

due to the absence of hydrolysable bonds. It consists of random stable carbon-carbon and 

ether linkages between monomeric units (Mosier et al. 2005, Pérez et al. 2002). A reduction 

in the concentration, hydrophobicity and cross-linking of lignin enhances enzymatic 

hydrolysis of the structural polysaccharides in cell walls (Grabber 2005). 

 

5. GLYCOSYL HYDROLASES 

Microbial hydrolytic enzymes had been identified that can cleave almost all chemical bonds 

found in plant structures. These enzymes are often modular, and in addition to catalytic 

domains, they have modules for carbohydrate binding (CBM) and cellulose surface 

modification and disruption (Bayer et al. 1998, Saloheimo et al. 2002, Ximenes et al. 2005). 

Two types of enzyme are involved in the breaking down of hemicellulose. The exohydrolases 

act on the terminal glycosidic linkages and release terminal monosaccharide or disaccharide 

units from the non-reducing or reducing end, while endohydrolases cleave internal glycosidic 

bonds at random or at specific positions (Moreira and Filho 2008). The two major cleavage 

preferences correlate to active site architecture (Dominguez et al. 1995, Sabini et al. 2000a, 

Sabini et al. 2000b). Endo-acting enzymes such as endoglucanases and β-mannanases often 

have cleft shaped active sites whereas exo-acting enzymes (β-galactosidases and 

β-mannosidases) often have pocket-shaped active sites (Aleshin et al. 1994, Juers et al. 1999). 

Interestingly, enzymes with exo-activity may display endo-activity and enzymes with 

endo-activity can similarly display exo-activity, hence the architecture of an active site may 

not necessarily give an indication of the cleavage preferences (Stahlberg et al. 1993, Tomme 

et al. 1996). 
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Glycoside hydrolase enzymes are mainly involved in the degradation of plant 

polysaccharides (Davies and Henrissat 1995). They are grouped into enzyme families 

according to amino acid sequence similarities and hydrophobic cluster analysis (Henrissat 

and Bairoch 1993, Lemesle-Varloot et al. 1990). A continuously updated list of the GH 

families is available on the Carbohydrate-Active Enzyme database (CAZY) 

(http://www.cazy.org). Families compiled over time have shown a direct relation between 

classification and their tertiary structure (Henrissat 1991). Glycosyl hydrolases can further be 

grouped into clans based on the tertiary structure at the active site ( Henrissat et al. 1995, 

Juers et al. 1999). 

The glycosidic hydrolases employ either an inversion or retention of the anomeric 

configuration (Desmet and Soetaert 2011). The retention mechanism follows a double 

displacement mechanism involving the attack of a nucleophile at the anomeric centre with 

general acid-catalysed displacement of the leaving group, leaving a covalent 

glycosyl-enzyme acylal intermediate (Kulkarni et al. 1999). Water attacks the anomeric 

center of the intermediate in a general base-catalysed process to yield the product and release 

the enzyme in its original state (Figure 5A). Depending on the enzymatic conditions, the 

water attack can be replaced by either reactive donor molecules or high concentrations of 

oligosaccharide donor molecules (Faijes and Planas 2007), resulting in a transglycosylation 

reaction (Harjunpää et al. 1999, Kurakake and Komaki 2001, McCleary and Matheson 1983, 

Schröder et al. 2004). In certain circumstances molecules that are not natural substrates of 

β-mannanases can be produced via transglycosylation (Davies and Henrissat 1995, 

Gübitz et al. 1996a, Gübitza et al. 2000). Inverting glycosidases follow a single displacement 

mechanism, catalysing a direct nucleophilic attack of water on the anomeric carbon. One 

carboxylic residue (the catalytic base) assists the water molecule by accepting a proton, while 

the other residue (the catalytic acid) activates the leaving group by donating a proton 

(Figure 5B).  

 

6. MANNAN DEGRADING ENZYMES 

Hemicellulose degradation requires the concerted action of various hydrolytic enzymes due 

to its complex structure. The interwoven associations between hemicelluloses and cellulose 

fibrils also contribute to the complexity of the substrate. In plants, the mannan-degrading 
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enzymes play a key role in the growth, maturation and ripening of plants 

(Moreira and Filho 2008).  

 

Figure 5: Reaction mechanism of glucosidases. (A) Retaining glucosidases follow a double displacement 

mechanism, while (B) inverting glucosidases follow a single displacement mechanism. (C) Represents the 

transition state (Desmet and Soetaert 2011, Withers 2001). 

 

Microbial degradation begins with endo-β-1,4-mannanases (1,4-β-D-mannan 

mannohydrolases, EC 3.2.1.78) that cleave the β-1,4-mannopyranosyl linkages in the mannan 

backbone (Figure 6) resulting in oligosaccharides of different lengths (Stoll et al. 2000). The 

α-galactosidases (1,6-α-D-galactoside galactohydrolases, EC 3.2.1.22) remove the galactose 

units from the mannan backbone (McCutchen et al. 1996). The hydrolysis of the 

oligomannans is performed by the enzyme β-mannosidase (1,4-β-D-mannopyranoside 

hydrolases, EC 3.2.1.25), releasing single mannose units (Moreira and Filho 2008). 

Additional enzymes, namely β-glucosidases (1,4-β-D-glucoside glucohydrolases, 

EC 3.2.1.21) and acetyl mannan esterases (EC 3.1.1.6), catalyse the removal of glucose and 

acetic acid, respectively (Moreira and Filho 2008). The removal of side-chain substituents, 

attached at various points on the mannan structure, creates more sites for subsequent 

enzymatic hydrolysis (Moreira and Filho 2008). 
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Figure 6: Galactoglucomannan displaying α-1,6-linked galactose sidechains, where the O-2 and O-3 of the 

mannose units can be substituted with acetate groups, as well as the various enzymes required for degradation 

(Shallom and Shoham 2003). 

 

7. ENDO β-1,4-MANNANASE 

Numerous β-mannanases have been isolated and characterised from bacteria 

(Akino et al. 1989, Braithwaite et al. 1995), fungi (Ademark et al. 2001, Ademark et al. 1999, 

Ademark et al. 1998, Christgau et al. 1994, Setati et al. 2001), plants 

(Derek Bewley et al. 1997, Marraccini et al. 2001) and animals (Xu et al. 2002a, 

Xu et al. 2002b, Yamaura et al. 1996). In plants, β-mannanases are involved in seed 

germination as well as fruit ripening (Nonogaki et al. 2000, Nonogaki and Morohashi 1999). 

Fungal β-mannanases (from Aspergillus tamarii (Civas et al. 1984), Trichoderma reesei 

(Stålbrand et al. 1993) and Aspergillus niger (Ademark et al. 1998)) are produced 

extracellularly, but can be cell wall bound (Dhawan and Kaur 2007). The β-mannanases 

cleaves the back bone chain of glucomannan, galactomannan and glucogalactomannan 

resulting in new chain ends (Stoll et al. 2000). The degradation is affected by the extent and 

pattern of substitution of the mannan backbone as well as the ratio of glucose to mannose 

(Moreira and Filho 2008, De Vries and Visser 2001). In glucomannan, the pattern of 

distribution of O-acetyl groups may also affect the susceptibility of hydrolysis. The presence 

of galactose residues on the mannan backbone significantly hinders the activity of 

β-mannanases (McCleary and Matheson 1983), but this effect is small if the galactose 

residues in the vicinity of the cleavage point are all present on the same side of the main 

chain (McCleary 1979). The predominant products of β-mannanases are mannobiose and 

Galacto-glucomannan

Cellobiose

Mannobiose
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mannotriose, confirming their true endohydrolytic property (Ademark et al. 1998, 

Civas et al. 1984, De Vries and Visser 2001, Reese and Shibata 1965). 

Mannanases from A. tamarii (Civas et al. 1984), T. reesei (Stålbrand et al. 1993) and A. niger 

(Ademark et al. 1998) all produce mainly mannobiose, mannotriose and higher 

oligosaccharides. A chain length of four sugar residues is requires for the binding of 

β-mannanases to ensure hydrolysis (McCleary and Matheson 1983, Sabini et al. 2000a, 

Sabini et al. 2000b). The substrate binding surface can be split into different subsites, where 

the subsites are numbered from –n to +n (Figure 7), where n is an integer and are bound from 

non-reducing to reducing ends of the mannan substrate respectively (Davies et al. 1997). 

Cleavage of the glycosidic bond occurs between the subsites +1 and -1 (McCleary and 

Matheson 1983). The majority of β-mannanases hydrolyse manno-oligosaccharides up to a 

DP of 4 (Biely and Kremnický 1998, McCleary 1988). Although the β-mannanase activity on 

mannotriose has been observed, the rate of hydrolysis is significantly lower, indicating a 

preference for at least 4 subsites (Akino et al. 1989, Harjunpää et al. 1995). Generally 

β-mannanases rarely cleave mannobiose (Benech et al. 2007), yet a β-mannanase from 

A. aculeatus released mannose in addition to mannotriose and mannobiose when hydrolysing 

ivory nut mannan (Setati et al. 2001). 

 

Figure 7: Schematic representation of the enzyme-substrate interaction and subsite binding of β-mannanase 

enzyme and substrate (β-1,4-mannan chain) (McCleary and Matheson 1983).  

 

Genetic regulation of the β-mannanase gene expression is poorly understood compared to 

that of cellulases and xylanases. Nevertheless, β-mannanases are well represented in the 

fungal kingdom, where their regulation simulates that of other known hemicellulases 

(van Zyl et al. 2010). Some organisms are able to produce more than one enzyme of similar 
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function, often indicating different specificity. Various strains of the basidiomycete 

Sclerotium rolfsii have been shown to secrete several different β-mannanases at levels 

exceeding that of xylanases and endoglucanases (Grosswindhager et al. 1999, 

Haltrich et al. 1994). Cellulose acts as best inducer for β-mannanases in S. rolfsii, whereas 

mannans and manno-oligosaccharides are less efficient. This fungus produces a 42 kDa, 

58 kDa and a 61 kDa β-mannanase (Gübitz et al. 1996a, Gübitz et al. 1996b, 

Sachslehner et al. 2000), where the first hydrolyses smaller fragments from mannan and was 

shown to be active against mannotetraose and mannotriose. The 58 kDa β-mannanase 

displayed activity on mannotetraose, mannotriose and mannobiose, whereas the 61 kDa 

β-mannanase displayed random breakdown of mannan, with a decrease in viscosity of 

mannan solutions (Gübitz et al. 1996b, Sachslehner et al. 2000). The induction of 

β-mannanases, β-xylanases and β-endoglucanases loosely correlate which may suggest a 

common induction system (Sachslehner et al. 1998). Indication of a second gene regulation 

mechanism appears when continued levels of β-mannanases are observed following glucose 

depletion as the sole carbon source (van Zyl et al. 2010).  

The β-mannanases are also commonly found as part of the hemicellulase repertoire of 

hydrolases produced by ascomycetes fungi. The transcriptional activiater, XylR, is 

responsible for global hemicellulase induction (Arisan-Atac et al. 1993, 

Margolles-Clark et al. 1997). Yet, cellulose induces β-mannanase production in 

Trichoderma spp. (Arisan-Atac et al. 1993, Margolles-Clark et al. 1997). It shows weak 

proliferation when grown on mannan as a sole carbon source, indicating the presence of a 

different induction system. The β-mannanase production in Aspergillus spp. shows induction 

by growth on mannan-rich substrates (such as Palm kernel meal or defatted coconut kernel 

meal), but is presumably not regulated by XylR (Lin and Chen 2004, Stricker et al. 2008). 

The optimal pH of β-mannanases varies between neutral and acidic with temperature optima 

ranging from 40 to 70°C (Table 3). The β-mannanases from thermophiles have shown 

functionality at much higher temperatures (Gibbs et al. 1999, Parker et al. 2001, 

Politz et al. 2000, Sunna et al. 2000). Molecular weights vary from 30 kDa to 130 kDa 

(Cann et al. 1999, Stoll et al. 1999, Sunna et al. 2000). Most β-mannanases have an 

isoelectric point between 4 and 8, but some enzymes have varying isoelectric points and 

molecular weights (Akino et al. 1989, Marraccini et al. 2001, Stålbrand et al. 1993). Such 

enzymes could be isoforms from the same gene as a result of differences in post-translational 
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modifications (Akino et al. 1989, Stålbrand et al. 1995) or can be produced from completely 

different genes (Millward-Sadler et al. 1996, Millward-Sadler et al. 1994). 

Based on amino acid sequence similarity, β-mannanases are classified as glycoside hydrolase 

(GH) family 5 and 26 (Henrissat 1991, Henrissat and Bairoch 1993). GH family 5 represent 

the mannan-degrading enzymes from bacteria (Caldocellum saccharolyticum, Cladibacillus, 

Vibrio species), fungi (A. aculaetus, T. reesei, Agaricus bisporus) and eukaryotic 

(Lycopersicon esculentum and Mytilus edulis) origin (Dhawan and Kaur 2007, 

Larsson et al. 2006, Ximenes et al. 2005). GH family 26 mannanases are mostly from 

bacterial origin (Bacillus spp., Cellvibrio japonicus, Pseudomonas fluorescens, 

Rhodothermus marinus), but also contain mannanases of the anaerobic fungus 

(Piromyces spp.) (Dhawan and Kaur 2007). The β-mannanases from the same genus such as 

Cladocellulosiruptor and Bacillus have been placed in both families 5 and 26 

(Akino et al. 1989, Gibbs et al. 1992, Gibbs et al. 1996, Mendoza et al. 1994, 

Mendoza et al. 1995) indicating that the enzymes from the same organism can have different 

evolutionary origins.  

The three dimensional structures and X-ray crystallography for β-mannanases from T. reesei 

and Thermobufida fusca have been determined (Figure 8). The active site can be visualised as 

a cleft and has eight conserved amino acids for T. fusca (Gilbert 2010, Hilge et al. 1998). The 

crystal structure of these β-mannanases displays an open cleft shaped active site with strictly 

conserved catalytic glutamate residues present on β-strands 4 and 7 (Bourgault et al. 2005, 

Gilbert et al. 2008, Larsson et al. 2006, Le Nours et al. 2005).  

 

 

 

 

 

Figure 8: The secondary structure of the (A) T. reesei β-mannanase reveals a three-stranded and a two-stranded 

β-sheet (blue) that lie in close proximity to the C-terminus (Sabini et al. 2000a). The (B) T. fusca β-mannanase 

displaying β-strands (blue and red) and helices (green spirals). (C) Surface electrostatic potential distribution, 

with positive (blue) and negative (red) potentials. The catalytic site is visualised as a cleft containing 8 

conserved amino acids (Hilge et al. 1998). 
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8. β-1,4-MANNOSIDASE 

Complete hydrolysis of β-mannans requires β-mannosidases (β–D-mannoside 

mannohydrolase EC 3.2.1.25) that hydrolyse manno-oligosaccharides to mannose (Moreira 

and Filho 2008). The β-mannosidases have been isolated and characterised from fungi 

(Ademark et al. 2001, Ademark et al. 1999, Ademark et al. 1998, Bauer et al. 1996, 

Setati et al. 2001), bacteria (Bauer et al. 1996, Duffaud et al. 1997, Stoll et al. 2000), 

archaebacteria (Béki et al. 2003), plants (McCleary et al. 1982, Mo and Bewley 2002) and 

animals (Charrier and Rouland 2001). Molecular weights of β-mannosidases range between 

50 – 130 kDa and can consist of several subunits (Parker et al. 2001, Bauer et al. 1996). The 

optimum temperature can range between 40°C-70°C and pH optima from 4 - 5.5 (Table 3). 

Bacterial β-mannosidases generally have neutral pI and acidic isoelectric points. Depending 

on the native host organism, β-mannosidases can display different functions. Bacteria and 

fungi normally produce β-mannosidases that degrade mannan from plants. Certain 

β-mannosidases from plants release the storage polysaccharides in seed endosperm during 

germination (McCleary and Matheson 1983, Mo and Bewley 2002). Higher eukaryotes, such 

as mammals, produce β-mannosidases that hydrolyse terminal non-reducing 

mannopyranoside linkages of glycoproteins (Chen et al. 1995).  

The β-mannosidases can display activity on glucosides and mannosides (Bauer et al. 1996). 

They are capable of cleaving manno-oligosaccharides with a DP of up to 4 

(Ademark et al. 1999, Han et al. 2010). Native β-mannosidase from A. niger can cleave 

oligosaccharides with a DP of up to 6. Like mannanases, the rate of hydrolysis shown is 

dependent on the degree and pattern of the side-chain substitutions (Ademark et al. 1999). 

Eukaryotic (human, bovine, caprine) β-mannosidases removes the N-linked oligosaccharides 

of glycoproteins (Chen et al. 1995, Alkhayat et al. 1998). The lack of a functional 

β-mannosidase in humans leads to deleterious storage of Man-β-1,4-GlcNAc, known as 

β-mannosidosis, a congenital disorder associated with a range of neurological involvement, 

including various degrees of mental retardation, hearing loss and speech impairment, 

hypotonia, epilepsy and peripheral neuropathy (Alkhayat et al. 1998). 

The chromogenic substrate p-nitophenyl β-D-mannopyranoside (pNPM) is commonly used to 

determine β-mannosidase activity. Only a few β-mannosidases have been shown to release 

mannose from the non-reducing end of mannan-based polymers (Araujo and Ward 1990, 

Hirata et al. 1998, Kulminskaya et al. 1999). A. niger, T. reesei and A. awamori produce 
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extracellular β-mannosidases (Stoll et al. 2000), whereas Aureobasidium pullulans and 

C. fimi produces intracellular β-mannosidases that require a membrane-embedded 

mannobiose permease to transports the dissacharide into the cells (Kremnický and 

Biely 1997, Stoll et al. 1999,). Yet, A. pullulans and C. fimi also produce extracellular 

mannosidases when β-1,4-mannobiose is present in the medium (Dias et al. 2004).  

Like mannanases, β-mannosidases also have the ability to transglycosylate certain mannose 

containing substrates (Béki et al. 2003, Gomes et al. 2007, Kurakake and Komaki 2001). A 

new β-mannosidase from Streptomyces spp. S27, expressed in E. coli BL21, displayed low 

transglycosylation activity. Small amounts of methylmannobiose were synthesised when 

incubated with p-nitrophenyl-β-D-mannopyranoside as glycosyl donor and 

methyl-β-D-mannopyranoside as acceptor (Shi et al. 2011). The A. awamori β-mannosidase 

was shown to transfer mannose residues to alcohols and fructose when using mannobiose 

prepared from Konjak as substrate. Fructose displayed high acceptor specificity implying the 

possible production of novel heteromanno-oligosaccharides (Kurakake and Komaki 2001). 

Transglycosylation by T. reesei β-mannosidase resulted in the synthesis of novel di- and 

tri-pNP-mannosides (Eneyskaya et al. 2009).  

Most β-mannosidases are classified as GH family 2, with the exception of the enzyme 

produced by Pyrococcus furiosus which was placed in GH family 1 (Bauer et al. 1996, 

Henrissat 1991, Henrissat and Davies 1997). Families 1 and 2 (http://www.cazy.org) form 

part of the GH-A clan (Henrissat 1991, Henrissat and Davies 1997). GH family 2 also 

includes β-glucuronidase and β-galactosidase enzymes. Some enzymes have functional 

differences and do not correspond to the family consensus pattern, but they are none-the-less 

still confirmed as GH family 2 members. Glu-519 was shown as the conserved catalytic 

nucleophile in a β-mannosidase 2A from C. fimi (Stoll et al. 2000) and corresponds to the 

same residue that was identified within a β-galactosidase (E. coli β-galactosidase) and 

β-glucuronidase (Gebler et al. 1992, Wong et al. 1998) as catalytic nucleophiles. Even though 

mannosidases form a sub-family, they still adopt the three-dimensional structures of GH 

family 2.  
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Table 3: Characteristics of β-mannanases and β-mannosidases 

Origin Host GH 
Family 

Temp °C 
opt pH opt pI MW kDa Km Vmax Reference 

Mannanases                   
Agaricus bisporus CEL4 S. cerevisiae 5             (Tang et al. 2001) 
Agaricus bisporus CEL4 P. pastoris 5             (Tang et al. 2001) 
Armillariella tabescens P. pastoris 5 60           (Wang et al. 2009) 
Aspergilus aculeatus A. niger 5 75           (van Zyl et al. 2009) 
Aspergilus aculeatus S. cerevisiae 5 50 3 - 6   50 0.3a,b 82c (Setati et al. 2001) 
Aspergilus aculeatus Y. lipolytica 5             (Roth et al. 2009) 
Aspergilus aculeatus A. oryzae 5 60 - 70 5 4.5 45     (Christgau et al. 1994) 
Aspergillus fumigates A. sojae 5 60 5         (Duruksu et al. 2009) 
Aspergillus fumigates P. pastoris 5 45 5         (Duruksu et al. 2009) 
Aspergillus niger P. pastoris 5 80 4         (Do et al. 2009) 
Aspergillus niger   5 50 4 3.7 40     (Ademark et al. 1998) 
Aspergillus sulphurous P. pastoris 5 40 6   48 0.93a,b 344.83d (Chen et al. 2007) 
Aspergillus terreus P. pastoris 5 55           (Huang et al. 2007) 
Trichoderma reesei P. pastoris 5 70           (Wei et al. 2005) 
Trichoderma reesei S. cerevisiae 5 70 3 - 4  3.6 - 6.5 51 - 53     (Stålbrand et al. 1995, Stålbrand et al. 1993) 
Sclerotium rolfsii   5 74 2.9 3.5 61 2.05b,h   (Gübitz et al. 1996b) 
Bacertiodes ovatus   26 37 6.5 4.8 - 6.9 61/190     (Gherardini and Salyers 1987) 
Bacillus circulans K-1 E. coli 5 65 6.9 5.4 - 6.2 62     (Yoshida et al. 1998, Yosida et al. 1997) 
Bacillus sp. Strain AM-001 E. coli 26 60 9 5.9 58     (Akino et al. 1989) 
Bacillus subtilis NM-39   26 55 5 4.8 38     (Mendoza et al. 1994, Mendoza et al. 1995) 
Thermotoga neopolitana 5068     92 6.9 5.1 65 0.23a,b 3.8c (Duffaud et al. 1997) 
Streptomyces lividans   5 58 6.8 3.5 36 0.77a,b 207c (Arcand et al. 1993) 
Mannosidases                   
Streptomyces sp. S27 E. coli 2 50 7   96 0.23f   (Shi et al. 2011) 
Aspergillus awamori     60-70 5         (Kurakake and Komaki 2001) 
Trichosporon cutaneum JCM 2947     40 7   114 0.25f 91.7d (Oda and Tonomura 1996) 
Thermotoga neapolitana   2 87 8 6 100 3.1f 36.9d (Duffaud et al. 1997) 
Aspergillus niger   2 70 2.5 - 5 5 135 0.3f 500g (Ademark et al. 1999) 
Aspergillus aculeatus A. oryzae 2       130     (Kanamasa et al. 2001) 
Sclerotium rolfsii     55 2.5 4.5 57.5     (Gübitz et al. 1996a) 
Thermotoga neapolitana   2 87 7.7 5.6 95     (Parker et al. 2001) 
Trichoderma reesei       3.5 4.8 105 0.12f   (Kulminskaya et al. 1999) 
Cellulomonas fimi ATCC 484   2 55 7   103     (Stoll et al. 1999) 
Pyrococcus furiosus   1 105 7.4 6.9 59     (Bauer et al. 1996) 
Thermobifida fusca TM51 S. lividans 2 53 7.17 4.87 94 0.18f 5.96i (Béki et al. 2003) 
Thermoascus aurantiacus     76 3 4.8 99 1.1e,f 61g (Gomes et al. 2007) 
a Km value for Locust bean gum d U/mg g nkat/mg 
b mg/mL e Km value for p-nitrophenyl-β-D-mannopyranosidase h Km value for mannan 
c IU/mL f mM i µmol/min/mg 
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9. β-GLUCOSIDASE 

The exo-acting glycosyl hydrolase enzyme, β-glucosidase (β-D-glucoside glucohydrolase, 

EC 3.2.1.21), catalyses the release of terminal, non-reducing β-D-glucose residues in various 

β-D-glucosides including glucomannan and galactoglucomannan (Bauer et al. 1996, 

Lin et al. 1999). Most purified β-glucosidases are competitively inhibited by glucose and 

cellobiose (Bauer et al. 1996, Gomes et al. 2000, Lin et al. 1999) and are unable to degrade 

long β-1,4-linked glucose chains (Bauer et al. 1996, Lin et al. 1999). The β-glucosidases are 

grouped into GH families 1 and 3 (Henrissat and Bairoch 1993). The β-glucosidases have 

diverse properties and cellular locations. Most GH 3 β-glucosidases have similar retaining 

mechanisms and broad substrate specificity (Decker et al. 2001, Saloheimo et al. 2002).  

 

10. α-GALACTOSIDASE 

The α-galactosidases (α-D-galactoside galactohydrolase, EC 3.2.1.22) liberates the 

α-1,6-linked non-reducing galactose residues from the main mannan chain 

(Ademark et al. 2001, McCutchen et al. 1996). Two types of distinct substrate specificities 

have been identified. Some enzymes cleave α-1,6-linked galactose units linked to the inner 

mannose residues of galactoglucomannan whereas the other group shows preference for 

substrates where the galactose is linked to the non-reducing end of a substrate such as 

melibiose and raffinose (Halstead et al. 2000, Kaneko et al. 1991, Luonteri et al. 1998). The 

α-galactosidases have been placed in GH families 4, 27, 36 and 57 (Henrissat 1991). 

Bacterial α-galactosidases are mostly grouped in GH families 4 and 36, while eukaryotic 

enzymes are grouped into GH family 27. In general GH families 4 and 27 α-galactosidases 

can release galactose from polymeric substrates, whereas GH family 36 enzymes lack this 

ability (Ademark et al. 2001, Luonteri et al. 1998). Some fungal α-galactosidases are 

produced as a mixture of isoenzymes and can have different enzyme-substrate specificities. 

The α-linked D-galactose residues are released from hemicelluloses (such as xylan and 

galactomannan), by α-galactosidases belonging to GH family 27 and GH family 36. These 

α-galactosidases act via a double-displacement mechanism and are considered to have a 

common evolutionary origin (Rigden 2002). Various enzymes belonging to the GH family 27 

also show α-N-acetylgalactosaminidase activity implying that not all GH family 27 

α-galactosidases are involved in hemicellulose degradation (Kulik et al. 2010). The GH 36 
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α-galactosidases are often larger in size and are more active against mono-, di- and 

oligosaccharides, such as melibiose and raffinose (Ademark et al. 2001). 

Similä et al. (2010) cloned and characterised the first gene encoding an extracellular 

α-D-galactosidase from the thermophilic fungus T. emersonii. The enzyme displayed a 24 

amino acid secretion signal peptide. The translated protein had highest identity with other 

fungal α-galactosidases belonging to GH family 27. The enzyme displayed optimal activity at 

pH 4.5 and 70°C. The enzyme was however competitively inhibited by galactose.  

 

11. ACETYL-MANNAN ESTERASES 

Acetyl esterases liberate acetic acid from acetylated mannan substrates (Ratto et al. 1993). 

Esterases isolated from fungal sources displayed varying substrate specificities. The esterases 

from A. niger and T. reesei preferably liberate acetic acid from polymeric acetyl 

galactoglucomannan (Tenkanen et al. 1993, Tenkanen et al. 1995). An A. oryzae esterase has 

broad substrate specificity and can liberate phenolic side groups from xylan 

(Tenkanen et al. 1993, Tenkanen et al. 1995). Acetyl esterases in combination with 

β-mannanases can dramatically increase the hydrolysis of mannan polysaccharides 

(Tenkanen et al. 1995), however the gene encoding this specific enzyme has not yet been 

identified nor characterised in other fungi. Tenkanen et al. (1995) reported that the hydrolysis 

yield of the esterase of A. oryzae on O-acetyl-galactoglucomannan increased to 87% when 

the esterase was used in combination wth the β-mannanase from T. reesei. 

 

12. ENZYME SYNERGY 

Synergy is the cooperation between two hydrolytic enzymes in such a way that their actual 

combined hydrolysis exceeds the theoretical sum of their individual hydrolysis. 

Homosynergy is the interaction between two main-chain enzymes (for example, β-mannanase 

and β-mannosidase) or two side-chain enzymes (for example, α-galactosidase and acetyl 

mannan esterase). Heterosynergy is the synergistic interaction between side-chain and main-

chain enzymes (for example, β-mannanase and α-galactosidase). Numerous examples of 

synergistic activity have been reported for combinations of β-mannosidase, β-mannanase, β-

glucosidase or α-galactosidase. When using Locust bean gum as substrate more reducing 
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sugars were liberated by the synergistic action of β-mannosidase and β-mannanase from 

Streptomyces spp. S27 (Shi et al. 2011). Mannans, glucomannans and galactomannans were 

shown to completely hydrolyse when exposed to β-mannosidases isolated from Sclerotium 

rolfsii, liberating monosaccharides from the mannans. The activity of the enzyme was 

enhanced by the addition of β-mannanases. Synergistically, both enzymes randomly cleaved 

fragments larger than mannobiose from the mannans (Gübitz et al. 1996a). The addition of 

purified α-galactosidase to β-mannosidase isolated from A. niger showed that the action of 

these enzymes significantly enhanced degradation of galactomanno-oligosaccharides into 

galactose and mannose (Ademark et al. 2001).  

 

13. INDUSTRIAL APPLICATIONS OF MANNAN AND MANNANASES 

Mannan, also known as gum, has various applications and is used in numerous industries. 

Gum extraction is inexpensive, non-toxic and has GRAS (Generally Regarded As Safe) 

status (Moreira and Filho 2008). They are produced in large amounts and used in the 

manufacturing of food, paper, textile, pharmaceutical, cosmetics and mining (Moreira and 

Filho 2008). Gums are extracted from seeds and include Locust bean gum. Gums are mostly 

extracted from plants of the Luguminoseae family like Caesalpinia spinosa (carob seeds), 

Ceratonia siliqua (Tara seeds) as well as other plants like Cyamopsis tetragonoloba 

(Guar seeds) and Cassia grandis (Duffaud et al. 1997, Joshi and Kapoor 2003, 

Shobha et al. 2005). These gums have film-forming abilities and excellent heat shock 

protection that can be applied in frozen foods. They act as stabilisers in low-fat and non-fat 

dairy products and have many fat-replacement applications acting as a fat-imitator 

(Fernández et al. 2007, Hsu and Chung 1999, Ishurd et al. 2006). Other mannans, like linear 

mannan from Aloe vera, have immuno-pharmacological and therapeutic properties 

(Aspinall 1959).  

Given the natural abundance of mannan, many microorganisms produce enzyme systems to 

hydrolyse mannan completely into simple sugars that can be used as energy and carbon 

sources for various animals (Jiang et al. 2006). The increasing availability of genome 

sequences, bioinformatic tools and expression cloning (Xu et al. 2002b) has facilitated the 

acquisition of coding sequences for novel and previously characterised enzymes, hence the 

increasing number of publications and patent applications describing heterologous 

enzyme-producing strains. Additionally, protein engineering approaches are creating 
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enzymes with improved functionality under extreme pH and temperature conditions 

increasing the industrial applications (van Zyl et al. 2010). 

The majority of industrially used enzymes are hydrolytic, including proteases and glycoside 

hydrolases (Kirk et al. 2002). The global market for industrial enzymes was estimate at 

$2 billion in 2004 with an annual growth rate predicted at 4 to 5% (Turner et al. 2007). 

Interest in mannan-degrading enzyme systems has increased in the past decade, because of 

their biotechnological applications. Some applications will be discussed briefly, but other 

applications include the extraction of vegetable oils from leguminous seeds, improvement in 

the consistency of beer, biopulping of wood, etc. (Heck et al. 2005, Singh et al. 2003).  

 

13.1. BIOFUELS 

Production of second generation bioethanol (from lignocellulosic substrates) has received 

much attention in the past two decades. Residues from various industries and origins can 

serve as sources for bioethanol production. Interestingly, many commercial cellulase 

cocktails contain low levels of mannanases (Berlin et al. 2007). The application of 

mannanases for catalysing the hydrolysis of β-1,4-mannans could be as important as the 

application of xylanases. The hydrolysis of all polysaccharides is of interest and evidence of 

synergy between mannan-degrading enzymes and cellulases was demonstrated by a 5-fold 

increase in glucose yields (Jørgensen et al. 2010). Palm kernel press cake was recently 

reported to contain 50% hexose sugars in the form of glucan and galactomannan 

(van Zyl et al. 2010). It was possible, without thermochemical pre-treatment, to obtain 88% 

of the theoretical mannose yields. An optimised cocktail of cellulases, β-mannanases and 

β-mannosidases proved efficient in hydrolysing Palm kernel press cake polysaccharides, and 

when combined with a simultaneous saccharification and fermentation strategy, realised 

ethanol yields of 200 g ethanol/kg Palm kernel press cake. Enhanced oil cake residues 

obtained after fermentation contain less fibre and are protein enriched—17% to 28% in the 

case of Palm kernel press cake. Palm kernel press cake could be used for the production of 

mannose and MOS (manno-oligosaccharides) as the mannan component has been shown to 

be easily digested by enzymes. The remainder can serve as a feedstock for bioethanol 

production and lastly the protein enriched residues could be added to animal feeds making 

Palm kernel an ideal versatile substrate. 
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For plant biomass to become a viable feedstock for meeting the future demand for liquid 

fuels, efficient and cost effective processes must exist to breakdown cellulosic materials into 

their primary components. The development of a feasible biological delignification process 

should be possible if lignin-degrading microorganisms (Phanerochaete chrysosporum and 

Phlebia radiata), their ecophysiological requirements, and optimal bioreactor design are 

effectively coordinated. New fermentation technology for converting xylose to ethanol also 

needs to be developed to make the overall conversion process more cost-effective. The 

fermentation of glucose, the main constituent of the cellulose hydrolysate, to ethanol can be 

carried out efficiently. On the other hand, although bioconversion of xylose (the main pentose 

sugar obtained on hydrolysis of hemicellulose) to ethanol presents a biochemical challenge, 

especially if it is present along side glucose, it needs to be achieved to make the 

biomass-to-ethanol process economical. A consolidated bio-processing of biomass into 

ethanol would provide the most cost-effective route to renewable fuels. Although a diverse 

range of bacteria and fungi possess the enzymatic machinery capable of hydrolysing plant-

derived polymers, none discovered so far meet the requirements for an industrial strength 

biocatalyst for the direct conversion of biomass to combustible fuels (Elkins et al. 2010). 

Synthetic biology combined with a better fundamental understanding of enzymatic cellulose 

hydrolysis at the molecular level is enabling the rational engineering of microorganisms for 

utilising cellulosic materials with simultaneous conversion to fuel (Elkins et al. 2010). As no 

naturally occurring organism can satisfy all necessary specifications (high yield, high 

productivity, wide-substrate range, ethanol tolerance, tolerance to inhibitors present in 

hydrolysates and biomass disposal cost). Therefore, the utilisation of modern genetic 

engineering techniques are aimed at developing/constructing organisms that are endowed 

with most of the desirable properties for such bioprocesses.  

It is anticipated that the largest gains in cost competitiveness in terms of producing fuels from 

biomass could be realised through the consolidation of several production steps into a 

streamlined process where hydrolytic enzymes are simultaneously produced in situ by a 

solventogenic, fermentative microbe (Galbe and Zacchi 2002, Lynd et al. 2008). 

Consolidated bioprocess (CBP) requires a highly engineered microbial workhorse that has 

been developed for several different process-specific characteristics (Figure 9). These 

desirable traits include enzyme production and stability, balanced growth on hexoses and 

pentoses, tolerance to pretreatment inhibitors, maximal product yield and production rates, 

solvent tolerance, and the ability to persevere through process fluctuations. 
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(Elkins et al. 2010). This means that all types of sugars in cellulose and hemicellulose must 

be converted to ethanol, and that microorganisms must be obtained that efficiently perform 

this conversion under industrial condition (Chandrakant and Bisaria 1998, Gong et al. 1999, 

Lee 1997).  

 

 

Figure 9: A conceptual whole cell biocatalyst for producing liquid transportation fuels. The optimal organism 

would express a synergistic mixture of highly active exo- and endoglucanases, glucosidases and xylanases 

(Elkins et al. 2010).  

 

Process concepts for the conversion of lignocellulosic feedstocks to ethanol generally include 

a pre-treatment or fractionation step in which the chopped raw material is exposed to acidic 

or alkaline pH, at high temperature, so that the hemicellulose fraction is partially hydrolysed 

to monomeric and oligomeric sugars, rendering the cellulose fraction susceptible for 

hydrolysis (Figure 10), then follows either acidic or enzymatic hydrolysis of the cellulose 

fraction. The hemicellulose and cellulose hydrolysates are fermented to ethanol, and the 

ethanol is recovered by distillation (Figure 10). Furthermore, the lignin fraction can be used 

throughout the process to generate the necessary heat by burning, and the waste streams are 

evaporated and burned or fermented to methane to recover energy to be used in the process 

and commercialised as an added-value co-product (Hahn-Hägerdal et al. 2007, 

Wingren et al. 2003).  
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Figure 10: A schematic illustration of the process design for lignocellulosic bioethanol production. (1) unloading 

(2) milling (3) mashing (4) cooking (5) hydrolysis (6) cooling (7) fermentation (8) distillation (9) dehydration 

(10) storage (11) stillage treatment (Hahn Hägerdal et al. 2007, http://www.biofuels-

platform.ch/en/infos/bioethanol.php) 

 

13.2. COFFEE 

Mannan is the main polysaccharide present in Arabica and Robusta coffee beans with 

galactomannan constituting 20 – 30% of its dry weight (Sachslehner et al. 2000). Mannan is 

the main polysaccharide component of the coffee bean extracts and is responsible for their 

high viscosity, which negatively affects the technological processing of instant coffee. 

Different mannanase preparations are used for the hydrolysis of coffee mannan, thus reducing 

significantly the viscosity of coffee extracts (Dhawan and Kaur 2007, 

Sachslehner et al. 2000). Hydrolysis of galactomannans present in a liquid coffee extract 

inhibits gel formation during freeze drying of the instant coffee. Polysaccharides, obtained by 

alcohol precipitation, form nearly half of the coffee extract dry weight. Coffee mannan is 

isolated from green defatted beans by delignification, acid wash and subsequent alkali 

extraction resulting in a yield of 12.8%. Additionally coffee extract polysaccharides are 
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separated by alcohol precipitation and are found to form nearly half of the coffee extract dry 

weight. These isolated mannans as well as the mannans in the coffee extract are efficiently 

hydrolysed by the mannanase, which resulted in significant viscosity reductions 

(Sachslehner et al. 2000). Concurrently, the reducing sugar content increased continuously 

due to the release of various manno-oligosaccharides including mannotetraose, mannotriose 

and mannobiose. Immobilised or soluble, crude mannanase preparations can be successfully 

employed for the degradation of coffee mannan (Nunes and Coimbra 1998, 

Nunes et al. 2006). However, fungal β-mannanases are best suited to this application as spent 

coffee ground has a slightly acidic pH of 5 (van Zyl et al. 2010). 

 

13.3. ANIMAL FEED 

The β-mannans are polysaccharides commonly found in feed ingredients such as soybean 

meal, Palm kernel meal, copra meal, guar gum meal and sesame meal (Dhawan and 

Kaur 2007). Soybean meal and full fat soy is used almost universally as protein sources in 

poultry, ruminant (Chandrasekharaiah et al. 2001, Moss and Givens 1994), pig 

(Pettey et al. 2002) and rabbit diets (Dhawan and Kaur 2007). Meals have some common 

properties which include high fibre content, low palatability, lack of several essential amino 

acids and high viscosity coupled with several non-nutritional properties such as mannan, 

galactomannan, xylan and arabinoxylan. Their utilisation in the intestine is limited. The 

β-mannans have been found to be highly deleterious to animal performance, severely 

compromising weight gain and feed conversion as well as glucose and water absorption. 

Incorporation of β-mannanases into these diets results in decreased intestinal viscosity, thus 

improving both the weight gain of chicks and their feed conversion efficiency.  

More recently, the beneficial effect of β-mannanase addition to diets containing soybean meal 

has been documented in broilers (Daskiran et al. 2004, Jackson et al. 2004, Lee et al. 2003), 

layers (Wu et al. 2005), turkeys (Odetallah et al. 2002) and swine (Pettey et al. 2002). Using 

endo-mannanase alone may only produce a small proportion of mannose and thus only a 

small amount of mannan is likely to be absorbed in the intestine of broilers (Dhawan and 

Kaur 2007). Most commercial mannanases on the market almost exclusively contain endo 

β-mannanases, therefore manno-oligosaccharides, mannotriose and mannobiose as well as a 

small amount of mannose are generated when this type of enzyme is included in the diet. 

Since only mannose can be absorbed in the intestine, the mannobiose and 
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manno-oligosaccharides are unable to supply energy directly to the host. Yet the production 

of manno-oligosaccharides can improve a chicken’s health (van Laere et al. 1999) by 

increasing the population of specific bacteria (such as Bifidiobacteria). These types of 

carbohydrates are a source of feed for bacteria in the caeca and thus suppressing the 

pathogenic organisms. Manno-oligosaccharides are used to flush out the pathogenic bacteria 

which attach to the manno-oligosaccharides (Dhawan and Kaur 2007).  

 

13.4. NON-NUTRITIONAL FEED 

Dietary fibres act as prebiotics, displaying beneficial effects on intestinal microflora and 

improve human health. Konjac flour glucomannan has been shown to increase faecal 

probiotics (Fan et al. 2009a, Fan et al. 2009b) with, more specifically, partially hydrolysed 

glucomannans showing greater potency than their unhydrolysed counterparts 

(Al-Ghazzewi et al. 2007, Chen et al. 2007). Konjac flour is produced from the corms of 

Amorphophallus konjac. It is commonly used as a gelling and thickening agent in foods and 

beverages, but has a relatively low commercial standing. With the aim of increasing the value 

of konjac flour, an industrially relevant means of producing manno-oligosaccharides (MOS) 

from konjac flour has been investigated (Al-Ghazzewi et al. 2007). With MOS providing 

comparable prebiotic effects (in a model system) to oligofructose (van Zyl et al. 2010), the 

application of MOS as functional food additives represents a potentially commercial 

important application for β-mannanases. Furthermore, clinical studies have highlighted the 

positive effects of MOS derived from different plant sources on human health. Consumption 

of 3 g MOS per day derived from extracts of coffee spent grounds (galactomannans), have 

been shown to decrease fat utilisation and increase fat excretion without negatively effecting 

fat metabolism (Yeh et al. 2010).  

Guar gum is a water-soluble polysaccharide derived from the endosperm of guar seeds of 

C. tetragonoloba trees and consists primarily of galactomannans. Owing to its high viscosity, 

partially hydrolysed guar gum (PHGG) is used in beverages and has been shown to provide 

relief from irritable bowel syndrome (IBS) symptoms (Zhang et al. 2009). Although not 

significantly better than wheat bran in relieving IBS symptoms, PHGG is preferred by 

patients and a lower dosage is required to achieve relief. These factors may facilitate the more 

successful application of PHGG as a dietary fibre supplement. The addition of a commercial 

preparation of PHGG to World Health Organisation oral rehydration solution was shown to 
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reduce the duration and stool output in children suffering from acute non-cholera diarrhoea, 

thus facilitating their recovery (Kumao et al. 2006).  

 

13.5. DETERGENTS 

Alkaline mannanases have found application in laundry segments as stain removal boosters 

(Dhawan and Kaur 2007). Stains containing mannan are difficult to remove since mannans 

have high tendency to adsorb to cellulose fibres. Mannanases cleave the β-1,4-linkage 

between mannose units in guar and break down the gum polymer into smaller carbohydrate 

fragments. These smaller, more water soluble polysaccharide fragments remain free from the 

fabric and are siphoned out of the wash. The gluing effect of the mannan leads to trapping of 

particulate soils released during the wash cycle. In other words, not only does mannan stains 

reappear, but mannan can also be transferred to otherwise clean fabrics during washing and 

result in greying of the fabric (Chauhan et al. 2012). Treatment with cleaning or detergent 

compositions comprising mannanases can improve whiteness as well as prevent binding of 

certain soils to the cellulosic material. Accordingly, mannanases are used in cleaning 

compositions, including laundry, personal cleansing and oral/dental compositions. The 

cleaning composition would comprise a mannanase and an enzyme selected from cellulases, 

proteases, lipases, amylases, pectin degrading enzymes and xyloglucanases to provide 

superior cleaning performance (Moreira and Filho 2008). 

 

13.6. PHARMACEUTICAL APPLICATIONS 

D-mannose derived from beech and birch wood hydrolysates is sold commercially as an 

excipient (van Zyl et al. 2010). Mannose is used extensively by the pharmaceutical industry 

(Fu et al. 2006) due to its high solubility which contributes to the structure-forming and fast 

dissolving properties of tablets. The role of mannose as a remedy for urinary tract infection 

has also been suggested (van Zyl et al. 2010). Mannose is currently obtained from 

chromatographic separation of sulphite spent liquors (Alam et al. 2000). Substrates rich in 

mannan such as Palm kernel and copra meals represent low cost alternative sources of 

mannose. The addition of cellulase to β-mannanase/β-mannosidase preparations did not 

increase mannose yields implying that glucans or cellulose did not prevent access of the 

mannan-degrading enzymes to the substrate (van Zyl et al. 2010). The addition of an 
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α-galactosidase to the β-mannanase/β-mannosidase cocktail did not significantly improve 

mannose yields implying low levels of galactose side chains. Proteins present in the substrate 

did not appear to restrict access of the enzymes to the polysaccharides as addition of a 

protease preparation did not increase mannose yields (Jørgensen et al. 2010). Increasing 

β-mannosidase activity relative to endo-β-mannanase did increase mannose yields, especially 

when high solid loadings were used. These results indicate that β-mannosidases and 

endo-β-mannanases are sufficient to degrade the substrate to obtain high levels of mannose. 

 

13.7. BIOBLEACHING  

The extraction of lignin from wood fibres is an essential step in bleaching of pulps. Pulp 

pre-treatment under alkaline conditions hydrolyses hemicelluloses covalently bound to lignin 

and thus facilitates subsequent lignin removal. The major drawback of alkaline treatment is 

that it creates an environmental pollution problem due to release of chlorinated compounds. 

As an alternative, use of mannanases along with other enzymes like xylanases, can equally 

facilitate lignin removal in pulp bleaching and give results comparable to alkaline pre-

treatment (Dhawan and Kaur 2007). Softwoods (from which the majority of pulps are 

derived) contain as much as 15–20% hemicellulose in the form of galactomannan. The 

β-mannanase and the accessory enzymes are able to cleave the mannan component in the 

pulp selectively without affecting the cellulose (Moreira and Filho 2008). Mannanases would 

therefore make excellent candidates for use in enzymatic bleaching of softwood pulps 

(Benech et al. 2007, Gübitz et al. 1997). Pulping is carried out at high temperature and pH 

conditions and requires mannanases which are active at these conditions (He et al. 2008, 

Pan et al. 2011). Mannanases are also used in chlorine-free bleaching (chemical pulps, 

semi-chemical pulps, mechanical pulps or kraft pulps) to increase the pulp brightness, thus 

decreasing or eliminating the need for hydrogen peroxide in the bleaching process 

(Tenkanen et al. 1997). 

 

14. HETEROLOGOUS EXPRESSION IN YEAST 

Yeasts offer the ease of microbial growth and gene manipulation found in bacteria along with 

the eukaryotic environment and ability to perform many eukaryote-specific post-translational 

modifications, such as proteolytic processing, folding, disulfide bridge formation and 
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glycosylation (Eckart and Bussineau 1996). Bacteria lack these capabilities and often produce 

eukaryotic proteins that are misfolded, insoluble or inactive (Cereghino and Cregg 1999). 

Recent advances include the use of yeasts to manufacture large quantities of foreign proteins 

(for research and therapeutics), the synthesis of life saving drugs for the pharmaceutical 

(Cereghino and Cregg 1999) industry as well as the use of yeasts to determine the functional 

and regulatory dynamics of recombinant proteins. 

The yeast S. cerevisiae is one of the main hosts considered for bioethanol production and 

application in CBP, mainly due to its long and successful history with ethanol production for 

the beer and wine industries (Lynd et al. 2002). The yeast, however, does not natively 

produce enzymes such as cellulases and hemicellulases. Yet, the successful production of 

these enzymes has been obtained through DNA manipulation techniques, using an array of 

vector systems and expression cassettes (La Grange et al. 2001, van Rooyen et al. 2005). 

Foreign gene expression in yeasts consists of four steps: (1) cloning of a foreign 

protein-coding DNA sequence within an expression cassette containing a yeast promoter and 

transcriptional terminator sequence; (2) transformation and stable maintenance of this gene 

cassette in the host; (3) synthesis of the foreign protein under specified culture conditions; 

and (4) purification of the heterologous protein and comparison with its native counterpart 

(Cereghino and Cregg 1999). 

Highly expressed genes tend to use a narrow set of codons corresponding to the most 

abundant species of tRNA (Bulmer 1987, Gouy and Gautier 1982, Ikemura 1985). Codons in 

a gene may be bottlenecks especially in the case of foreign gene expression in a host where 

the use of codons in highly expressed genes does not resemble the use of codons in the 

species from which the foreign gene originated (Lithwick and Margalit 2003). Different 

patterns of codon usage found in the genomes of different species are widely recognised as a 

possible cause of low protein yields during heterologous protein expression (Holm 1986, 

Kane 1995, Varenne and Lazdunski 1986). Minimising the risk of tRNA depletion during 

translation is of practical importance for expression experiments, especially when the 

expressed gene has many codons that are rarely used in the host. To overcome this problem, 

the non-optimal codons in the introduced gene can be substituted for codons that correspond 

to the more abundant tRNA species, and yields can thereby be increased considerably 

(Wu et al. 2006). This process is commonly referred to as codon optimisation and is a general 

approach to improving heterologous expression where genes are moved from their native 

genomes into alternatives that exhibit different patterns of codon usage.  
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Many studies have manipulated codon usage of a coding sequence in an attempt to increase 

translational efficiency (Gustafsson et al. 2004). Some have successfully improved protein 

expression (Deng 1997, Feng et al. 2000, Frelin et al. 2004, Kotula and Curtis 1991, Sinclair 

and Choy 2002) but others have failed (Alexeyev and Winkler 1999, Wu et al. 2004). The 

usage of rare codons may have negative consequences for the expression other than just the 

amount of protein obtained. The quality of the expressed protein is dependent on the codons, 

as rare codons are associated with an increased chance of misincorporation 

(Calderone et al. 1996, Forman et al. 1998, McNulty et al. 2003, Seetharam et al. 1988). 

In S. cerevisiae the preferred codons in highly expressed genes, have a GC content 

comparable to the mean GC content for the whole genome (Sharp et al. 1993). This implies 

that a GC content does not necessarily play a large role in whether the gene is highly 

expressed or not. Also, the correlation between predicted and actual expression data is 

unclear when relying solely on characteristics of coding DNA sequences 

(Friberg et al. 2004). 

 

15. ALTERNATIVE HOSTS  

The yeast, S. cerevisiae has many limitations regarding the expression of recombinant 

proteins including poor expression capacity, hyperglycosylation, protease activity and low 

product yield (Cregg et al. 2000). A limited number of yeast species (inclusing Hansenula, 

Pichia, Candida and Torulopsis) are able to grow on methanol as a sole energy and carbon 

source (Lee and Komagata 1980). Pichia pastoris has been utilised to produce ~300 foreign 

proteins since 1984 (Cereghino and Cregg 2000, Cregg et al. 2000, Faber et al. 1995, 

Lin Cereghino et al. 2001, Macauley-Patrick et al. 2005, Weidner et al. 2010). Several factors 

contribute to this systems popularity. The use of a strong alcohol oxidase I (AOX1) promoter, 

the ability to stably integrate expression plasmids at specific sites in the P. pastoris genome 

in single or multicopy and the ability to culture strains at high density in fermenters 

(Cereghino and Cregg 1999). The AOX1 promoter is strongly repressed by glucose and most 

other carbon sources, but is induced in cells shifted to methanol as a sole carbon source 

(Tschopp et al. 1987). Cultures are shifted from glucose to a methanol medium to induce 

rapid high-level expression once the desired optical density is reached (Clare et al. 1998). 

Unfortunately, methanol is a potential fire hazard and can cause blindness upon consumption. 
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It might therefore not be approved for use in the production of food additives. The 

glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter provides a constitutively high 

level of expression on glucose, glycerol and methanol media (Waterham et al. 1997). Using 

the GAP promoter does not allow for repression of the recombinant protein, limiting its use to 

foreign genes where the products are a burden to the cell. A good compromise is the 

promoter derived from the P. pastoris FLD1 gene, can be induced either by methanol or 

methylamine (a nontoxic nitrogen source) in glucose containing media. Expression levels 

from the methylamine-induced FLD1 promoter are comparable to those obtained with the 

AOX1 promoter in methanol (Shen et al. 1998).  

Improvements in other yeast systems (Table 4) such as the identification of new, strong 

promoters for foreign protein expression in Y. lipolytica and K. lactis have been explored 

(Müller et al. 1998, Saliola et al. 1999). Several new yeast expression systems have been 

reported, including Pichia methanolica, which shares attributes of P. pastoris and 

H. polymorpha, including the ability to be readily grown to high cell densities and the 

availability of expression vectors that contain the tightly regulated alcohol oxidase promoter 

to control expression of foreign genes (Raymond et al. 1998). 

The attraction of filamentous fungi as production hosts is based on their natural ability to 

secrete large amounts of proteins (mainly hydrolytic enzymes) into the growth medium 

(Nevalainen et al. 2005, Verdoes et al. 1995). In traditional fermentation technology, 

filamentous fungi are dominant producers of a range of primary metabolites including 

organic acids such as citric, gluconic, fumaric, kojic, itaconic acid and fatty acids 

(Ward 2012). Eukaryotic posttranslational protein processing machinery is an added bonus 

for heterologous proteins requiring elaborate posttranslational modification (such as protein 

glycosylation, proteolytic cleavage or formation of multiple disulfide bonds).  

Filamentous fungi have gone through intricate strain improvement programmes for industrial 

exploitation (Verdoes et al. 1995). Obtaining high protein secreting mutants has been done 

through traditional random mutagenesis, for which the characteristics have further been 

modified by genetic engineering (Nevalainen et al. 2005). Achieving high expression of 

heterologous genes requires a strong promoter to drive robust transcription. In both the model 

filamentous fungi and industrially important fungi, a variety of either constitutive or 

inducible promoters, involved in diverse physiological processes in the host cell and some 

originating from E. coli, have been evaluated for application (Meyer et al. 2011, 
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Su et al. 2012). In an overall comparison with other available expression systems for 

heterologous proteins, applied in liquid culture, filamentous fungi perform well and provide a 

potentially high yielding and relatively inexpensive option. Filamentous fungi that dominate 

the markets as production hosts are the asexually reproducing A. niger, A. oryzae and 

T. reesei with A. niger being able to produce up to 30 g/l of glucoamylase and T. reesei 

reportedly producing up to 100 g/l of extracellular protein (Demain and Vaishnav 2009). 

Table 4: Comparison of the features of yeast expression systems (Cereghino and Cregg 1999) 
Species name Promoter Regulation Reference 
Methanol utilising 

   Candida boidinii AOD1 Methanol induced (Sakai et al. 1994) 
Hansenula polymorpha MOX Methanol induced (Gellissen and Hollenberg 1997) 
Pichia methanolica AUG1 Methanol induced (Raymond et al. 1998) 
Pichia pastoris AOX1 Methanol induced (Cregg et al. 2000) 
  GAP Strong constitutive (Waterham et al. 1997) 
  FLD1 Methanol/methylamine induced (Shen et al. 1998) 
  PEX8 Moderate methanol induced (Johnson et al. 1999) 
  YPT1 Moderate constitutive (Sears et al. 1998) 
Lactose utilising     
Kluyveromyces lactis LAC4 Lactose induced (van den Berg et al. 1990) 
  PGK1 Strong constitutive (Rocha et al. 1996) 
  ADH4 Ethanol induced (Saliola et al. 1999) 
Starch utilising     
Schwanniomyces occidentalis AMY1 Maltose/starch induced (Piontek et al. 1998) 
  GAM1 Maltose/starch induced (Piontek et al. 1998) 
Xylose utilising     
Pichia stipitis XYL1 Xylose induced (Piontek et al. 1998) 
Alkane and fatty acid utilising  
Yarrowia lipolytica XPR2 Peptone induced (Ogrydziak and Scharf 1982) 
  TEF Strong constitutive (Müller et al. 1998) 
  RPS7 Strong constitutive (Müller et al. 1998) 
(ADH4) alcohol dehydrogenase, (AMY1) α-amylase, (AOX, AUG1, AOD1, MOX) alcohol oxidase in species 
shown, (FLD1) formaldehyde dehydrogenase, (GAP) glyceraldehyde-3-phosphate dehydrogenase, (GAM1) 
glucoamylase, (LAC4) β-galactosidase, (PEX8) peroxin 8, (PGK1) phosphoglycerate kinase from S. cerevisiae, 
(RPS7) ribosomal protein S7, (TEF) translation elongation factor-1a, (XPR2) extracellular protease, (YPT1) 
GTPase involved in secretion 

 

16. METABOLISM OF HEMICELLULOSE AND DERIVED MONOMERS 

Certain microorganisms are able to degrade cellulose and hemicellulose to oligosaccharides 

and monosaccharides. However, that is not a characteristic of the most promising ethanol 

producers (Gírio et al. 2010). In natural environments, hydrolysis of hemicellulose is 

performed by a variety of enzymes that work synergistically and, in some cases, organised in 

complexes. Microorganisms can be divided in three groups according to their strategies to 

hydrolyse hemicelluloses (Shallom and Shoham 2003). Complete hydrolysis to 
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monosaccharides and disaccharides, by the synergistic action of extracellular hemicellulases, 

is adopted by several fungi, like Fusarium, Trichoderma and Aspergillus species. Bacteria 

like Bacilli, perform partial extracellular hydrolysis to oligosaccharides combined with 

hydrolysis by cell-associated or intracellular hemicellulases. This mechanism has advantages 

regarding sugar competition against non-hemicellulolytic microorganisms. Hydrolysis can 

also be accomplished by cellulosomes, extracellular cell-associated multienzyme complexes, 

harbouring cellulases and hemicellulases. This structure is considered a versatile extracellular 

organelle whose functions can be tailored by incorporating different dockerin-containing 

subunits, as described for Clostridium thermocellum (Demain et al. 2005). 

Monosaccharides, disaccharides and oligosaccharides need to be transported across the cell 

membrane following hemicellulose hydrolysis. Transport systems for a specified sugar 

depend on the microorganism and the surrounding conditions, including growth substrate, 

sugar concentration, oxygen availability, temperature and pH. It has often been found that 

more than one transporter for the same sugar may operate simultaneously. Two classes of 

mediated transport systems are common for microbial sugar uptake (Figure 11): 

(1) facilitated diffusion, which uses a concentration gradient and does not require metabolic 

energy; and (2) active transport, which requires energy for membrane potential as ATP or as 

phosphoenolpyruvate (PEP) (Gírio et al. 2010). 

 

 

 

 

 

Figure 11: General view of the organisation and the mode of action of sugar transporters. In the carbohydrate 

phosphotransferase system (PTS), phosphoenolpyruvate donate a phosphoryl group to enzyme I of the PTS. 

Histidine-containing phosphocarrier protein delivers the phosphoryl group to the sugar-specific permease (EIIA) 

complex. Sugars accept the phosphoryl group from the EIIB. Phosphor-EP indicates phosphoenolpyruvate 

(Jojima et al. 2010). 
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The hemicellulose derived hexoses enter the upper part of glycolysis (E. coli and 

S. cerevisiae) through transport-dependant or independant phosphorylation followed by 

isomerisation (in the case of D-mannose) and the Leloir pathway for D-galactose. The 

catabolism of hemicellulose-derived pentoses (L-arabinose and D-xylose) is closely related, 

sharing common intermediates (Figure 12). Both D-xylose and L-arabinose are metabolised 

through the Pentose Phosphate Pathway (PPP). These pentoses can be converted into 

D-xylulose-5-phosphate, the PPP intermediate, through different pathways.  

 

 

 

 

 

 

 

Figure 12: Fermentative pathways of hemicellulose-derived monosaccharides in E. coli, Z. mobilis, S. cerevisiae 
and P. stipitis. Natural traits are represented for each microorganism. E. coli, S. cerevisiae and P. stipitis use 
glycolysis and PPP to convert monosaccharides into pyruvate (D-fructose-6P and glyceraldeyde-3P are common 
intermediates between glycolysis and PPP). Z. mobilis utilise the Entner–Doudoroff (ED) pathway to convert 
glucose into pyruvate. In Z. mobilis, S. cerevisiae and P. stipitis, pyruvate is converted to ethanol via 
PDC/ADH, while in E. coli, acetyl-CoA is an intermediate. In E. coli, S. cerevisiae and P. stipitis, D-galactose is 
metabolised through the Leloir pathway and, as D-mannose, is converted into a glycolysis intermediate. E. coli 
and P. stipitis utilise pentoses (D-xylose and L-arabinose) through different pathways: through isomerases in the 
bacteria and reductases/dehydrogenases in the yeast. Abbrev: (PGI) glucose-6P isomerase (G6PDH) glucose-6P 
dehydrogenase (6-PGDH) 6-phosphogluconate dehydrogenase (RPE) D-ribulose-5P-3-epimerase (RKI) 
D-ribose-5P ketolisomerase (TKL) transketolase (TAL) transaldolase (PMI) mannose-6P isomerase (LDH) 
lactate dehydrogenase (PFL) pyruvate formate lyase (PDH) pyruvate dehydrogenase (acetyl-transferring) 
(ACDH) acetaldehyde dehydrogenase (acetylating) (PDC) pyruvate decarboxylase (ADH) alcohol 
dehydrogenase (XR) D-xylose reductase (XDH) xylitol dehydrogenase (XI) xylose isomerise (XK) xylulokinase 
(AI) L-arabinose isomerise (RK) L-ribulokinase (L-RPE) L-ribulose-5P-4-epimerase (AR) L-arabinose reductase 
(LAD) L-arabitol-4-dehydrogenase (LXR) L-xylulose reductase (Gírio et al. 2010). 
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In bacteria, the isomerisation step is followed by a phosphorylation reaction (and additional 

epimerisation, in the case of L-arabinose catabolism). Fungi employs redox reactions and use 

NAD(P)(H) as cofactors. Most bacteria utilise the xylose isomerase pathway in D-xylose 

catabolism. The presence of D-xylose isomerase has been reported in some yeasts 

(Gírio et al. 2010, Vongsuvanlert and Tani 1988) and filamentous fungi (Banerjee et al. 1994, 

Harhangi et al. 2003, Madhavan et al. 2009). Efficient ethanol producers like S. cerevisiae 

and Z. mobilis utilise different routes to convert sugars to pyruvate (EMP Pathway and 

ED Pathway, respectively). These microorganisms convert pyruvate into ethanol through 

pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). E. coli produces ethanol 

through mix-acid metabolism involving the production of acetyl-CoA as intermediate of 

ethanol production.  

 

17. THIS STUDY 

Fungi form an important role in the ecosystem (Adrio and Demain 2003, Polizeli et al. 2005). 

They decompose polysaccharides and recycle inorganic and organic material. For many 

decomposers the plant cell wall polysaccharides are their primary carbon energy source 

(Adrio and Demain 2003, Polizeli et al. 2005). Fungi have different enzymatic affinities for 

the three different cell wall components (cellulose, hemicellulose and lignin). White rot fungi 

primarily degrade the lignin component of wood (the cellulose and hemicellulose 

components to a lesser extent) giving the wood a bleached appearance. A brown rot fungus 

selectively removes hemicelluloses and cellulose, leaving mostly modified lignin 

(Irbe et al. 2001).  

The genus Aspergillus is a group of filamentous fungi comprising pathogenic fungi 

(A. fumigatus, A. flavus and A. parasiticus) as well as industrially important black aspergilli 

(A. oryzae, A. niger and A. tubingensis). Several of these species (and their products) have 

obtained a GRAS (Generally Regarded As Safe) status and is receiving increased interest as 

hosts for heterologous protein production (van Zyl et al. 2010). The wide range of enzymes 

produced by Aspergillus for the degradation of plant cell wall polysaccharides is of particular 

importance to the food and feed industries. The one major limitation to fungi is that they are 

unable to produce high levels of ethanol. 
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The yeast S. cerevisiae has long been associated with the food and beverage industry 

(Ostergaard et al. 2000). This yeast is attractive as a tool for expression of recombinant 

proteins due to the variety of vector systems and promoters available, as well as the ease of 

product purification (Cereghino and Cregg 1999). It is currently under investigation for the 

possible role as host for bioethanol production through genetic engineering and expression of 

(primarily) fungal genes. The ideal yeast strain will have to be able to degrade cellulose, 

xylan and mannan effectively in order to obtain complete conversion of biomass to ethanol. 

Much progress has been made on the degradation of cellulose and xylan by S. cerevisiae, 

while mannan degradation has received less attention. This study focuses on the enzymes 

(Man1, Agal, CmMan5A) required for complete hydrolysis of galactomannan (Locust bean 

gum) and the influence of synergistic activity on the viscosity of Locust bean gum. The 

purpose of this study is to pave the way towards providing a cost effective means to decrease 

the quantity of agricultural and municipal lignocellulolytic waste while producing sustainable 

second generation biofuels. 
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EXPRESSION AND EVALUATION OF ENZYMES REQUIRED FOR THE 

DEGRADATION OF GALACTOMANNAN 

 

AR Malherbe • SH Rose • M Bloom • WH van Zyl* 
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3.1. ABSTRACT 

The Aspergillus aculeatus endo-β-mannanse (man1) and Talaromyces emersonii 

α-galactosidase (Agal) genes were expressed in S. cerevisiae Y294. The A. niger 

β-mannosidase (cAnmndA) and synthetic Cellvibrio mixtus β-mannosidase (CmMan5A) were 

expressed in A. niger. The Man1, Agal, cAnmndA and CmMan5A enzymes displayed 

optimal pH of 5.47, 2.37, 3.4 and 3.4, respectively, and optimal temperatures of 70°C. 

Activity levels for Man1 and Agal peaked at 36.08 and 256.83 nkat/ml, respectively. Activity 

against pNPM for cAnmndA and CmMan5A were obtained at 11.61 and 7.58 nkat/ml, 

respectively. The protein species of deglycosylated Man1 and Agal revealed sizes of 40 and 

60 kDa, respectively. The enzymatic behaviour of Man1, Agal and CmMan5A resulted in a 

significant decrease in the viscosity of galactomannan (Locust bean gum) when used 

synergistically, confirming the hydrolytic properties thereof. Co-expression of the man1 and 

Agal genes in S. cerevisiae Y294[Agal-man1] displayed a significant decrease in enzyme 

secretion compared to individual expression of the respective genes. 
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3.2. INTRODUCTION 

 

The increase in oil prices and negative impact of fossil fuels has led to a search for alternative 

forms of fuel. Bioethanol is used as a gasoline replacement in numerous parts of the world 

(Sun and Cheng 2002). Consolidated bioprocessing, a single step process of converting 

lignocellulolytic material to ethanol by one microorganism would enable a cost-effective and 

commercially viable method for the production of bioethanol (Lynd et al. 2002). 

Saccharomyces cerevisiae has proven to be the most efficient microorganism for ethanol 

production from sugars such as glucose and mannose. This yeast has been used extensively in 

the production of heterologous proteins and has a long history with the fermentation of wine 

and brewing industries, due to its ease of genetic manipulations and GRAS status (Generally 

Regarded As Safe) (Gellissen and Hollenberg 1997, Müller et al. 1998).  

Depending on the source, plant biomass consists of 40-45% cellulose, 25-50% hemicellulose 

and 10-40% lignin, (Moreira and Filho 2008). Mannan, together with xylan, constitutes the 

major hemicellulose components contributing to as much as one third of the lignocelluloses 

portion. Mannan consists of glucomannan, galactomannan and galactoglucomannan, 

complete hydrolysis of which involves the concerted effort of several enzymes, namely 

β-mannanases (1,4-β-D-mannan mannohydrolases, EC 3.2.1.78), β-mannosidases 

(1,4-β-D-mannopyranoside hydrolases, EC 3.2.1.25), α-galactosidases (1,6-α-galactoside 

galactohydrolases, EC 3.2.1.22), β-glucosidases (1,4-β-D-glucoside glucohydrolases, 

EC 3.2.1.21) and acetyl-mannan esterases (Moreira and Filho 2008). Degradation begins with 

the endo-β-1,4-mannanases cleaving the β-1,4-mannopyranosyl linkages in the mannan 

backbone, resulting in oligosaccharides of varying length (Stoll et al. 2000). Hydrolysis of the 

oligomannans is performed by the β-mannosidases, releasing single mannose units (Moreira 

and Filho 2008). The α-gaactosidases remove the galactose units from the mannan backbone 

(McCutchen et al. 1996), while β-glucosidases and acetyl-mannan esterases catalyse the 

removal of glucose and acetic acid, respectively (Moreira and Filho 2008).  

Mannan degrading enzymes are naturally produced by numerous organisms and are involved 

in the breakdown of complex structures to simple units. The filamentous fungi, 

Aspergillus niger produce an array of mannan degrading enzymes and have been extensively 

studied (Dalbøge 1997). The Aspergilli are versatile organisms with the ability to grow on 
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inexpensive material, such as agricultural waste (Aristidou and Penttilä 2000). Together with 

its GRAS status and long standing history in the food industry, A. niger makes for an ideal 

host for the production of heterologous proteins.  

With the inability for S. cerevisiae to grow on complex sugars present in lignocellulose and 

A. niger’s inability to produce high levels of ethanol, combining the positive attributes of 

these two microorganisms resulted in the construction of a polysaccharide degrading 

S. cerevisiae strain with the capabilities of utilising renewable, natural substrates. The 

β-mannanase (man1) from A. aculeatus and α-galactosidase (Agal) of T. emersonii were 

functionally expressed in S. cerevisiae Y294. The β-mannosidase (cAnmndA and CmMan5A) 

from A. niger and C. mixtus, respectively, were functionally expressed in A. niger D15. The 

enzymes were partially characterised and evaluated on Locust bean gum. 

 

3.3. MATERIALS AND METHODS  

 

3.3.1. MEDIA AND CULTIVATION 

 

All chemicals used were of analytical grade. Escherichia coli DH5α was used as host strain 

for the recombinant DNA manipulations and plasmid propagation. All bacterial cultivations 

took place at 37°C in Terrific Broth (12 g/l tryptone, 24 g/l yeast extract, 4 ml/l glycerol, 

0.1 M phosphate buffer) containing 100 µg/ml ampicillin (Sambrook et al. 2001). All 

S. cerevisiae strains were aerobically cultivated on a rotary shaker (200 rpm) at 30˚C in 

125 ml Erlenmeyer flasks containing 25 ml synthetic complete medium (1.7 g/l yeast 

nitrogen base without amino acids (Difco laboratories), 20 g/l glucose and supplemented with 

appropriate amino acids). The S. cerevisiae Y294 transformants were selected and maintained 

on agar plates of the same composition, whereas the parental strain was maintained on YPD. 

Aspergillus niger parental strain was maintained on spore plates (1 g/l yeast extract, 

2 g/l casamino acids, 10 g/l glucose, 0.4 g/l magnesium sulphate heptahydrate, 2 g/l peptone, 

0.01 M uridine, 6 g/l NaNO3 and trace elements) (Punt and Van den Hondel 1992). For 

heterologous protein expression, the A. niger fungal strains were cultivated in double strength 

minimal media (2x MM, 100 g/l glucose) lacking uridine (Rose and Van Zyl 2002).  
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3.3.2. STRAINS AND PLASMIDS 

 

The relevant genotypes of yeast, fungal and bacterial strains as well as relevant plasmids used 

in this study are listed in Table 1.  

 

Table 1: Strains and plasmids used in this study 
Yeast strains:   
S. cS. cerevisiae Y294 α leu2-3,112 ura3-52 his3 trp1-289 ATCC 201160 
S. cS. cerevisiae Y294[BBH1] URA3 ENO1P-ENO1T Njokweni et al. (2012) 
S. cS. cerevisiae Y294[BBH4] URA3 ENO1P-XYNSEC-ENO1T This study 
S. cS. cerevisiae Y294[Agal-man1] URA3 ENO1P-Agal-ENO1T;  

ENO1P-man1-ENO1T 
This study 

S. cS. cerevisiae Y294[man1] URA3 ENO1P-man1-ENO1T This study 
S. cS. cerevisiae Y294[Agal] URA3 ENO1P-Agal-ENO1T This study 
   
Fungal strains:   
A. niger 10864 Wild type ATCC 10864 
A. niger D15 pyrG prtT phmA (non-acidifying) Wiebe et al. (2001) 
A. niger D15[GTP2] pyrG+ gpdP-glaAT  
A. niger D15[CmMan5A] pyrG+ gpdP-CmMan5A-glaAT This study 
A. niger D15[cAnmndA] pyrG+ gpdP-cAnmndA-glaAT This study 
   
Bacterial strains:   
E. coli DH5α fhuA2Δ(argF-lacZ)U169 phoAV44Φ80 

Δ(lacZ) M15gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

Sambrook and Russel (2001) 

E. coli DH5α[Bluescript] bla This study 
E. coli DH5α[XYNSEC-CmMan5A] bla XYNSEC-CmMan5A This study 
   
Plasmids:   
pBBH1 bla URA3 ENO1P-ENO1T Njokweni et al. (2012) 
pBBH4 bla URA3 ENO1P-XYNSEC-ENO1T Njokweni et al. (2012) 
pBBH1-man1 bla URA3 ENO1P-man1-ENO1T This laboratory 
pBBH1-man1-Agal bla URA3 ENO1P-Agal-ENO1T;  

ENO1P-man1-ENO1T 
This study 

pBBH1-Agal bla URA3 ENO1P-Agal-ENO1T This study 
pBBH4-XYNSEC-CmMan5A bla URA3  

ENO1P-XYNSEC-CmMan5A-ENO1T 
This study 

pGTP2 bla gpdP-glaAT; pyrGP-pyrG-pyrGT This laboratory 
pGTP2-gAnmndA bla gpdP-gAnmndA-glaAT; 

pyrGP-pyrG-pyrGT 
This laboratory 

pGTP2-cAnmndA bla gpdP-cAnmndA-glaAT; 
pyrGP-pyrG-pyrGT 

This study 

pGTP2-CmMan5A bla gpdP-CmMan5A-glaAT; 
pyrGP-pyrG-pyrGT 

This study 

pBluescript II SK (+) bla Stratagene 
pBluescript-man1 bla man1 Setati et al. (2001) 
pBluescript-XYNSEC-CmMan5A bla XYNSEC-CmMan5A This study 
pMA-RQ-CmMan5A bla CmMan5A GeneArt 
pRDH213-Agal URA3 ENO1P-Agal-ENO1T This laboratory 
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3.3.3. DNA MANIPULATIONS AND AMPLIFICATION BY PCR 

 

Standard protocols were followed for all DNA manipulations (Sambrook et al. 2001). All 

enzymes used for restriction digestions and ligations were purchased from Roche (South 

Africa) and used as recommended by the supplier. The A. niger 10864 strains were grown in 

minimal media for 72 hours, mycelia harvested and frozen in liquid nitrogen prior to total 

DNA and RNA isolation according to La Grange et al. (1996). The sample was treated with 

DNase (Roche) to remove the DNA. Total cDNA was created using the RevertAidTM H 

Minus First Strand cDNA Synthesis Kit with the OligoT primer (Fermentas). The cAnmndA 

(2.8 kb) was amplified using a GeneAmp® PCR system 9700 (Applied Biosystems), 

TaKaRaTM Ex TaqTM Polymerase (TaKaRa Bio Inc.) and oligo-primers AnmndA-R and 

AnmndA-L (Table 2). Resulting PCR product was eluted from agarose gel (1%) using 

Zymoclean™ Gel DNA Recovery Kit (Zymo Research).  

Table 2: Primer sequences used in this study 

Primer name Sequence (Restriction sites underlined) 
Tm 
(°C) 

RE 
site 

AnMndA-R 5'-TAGGCGCGCCTGCGAATGCTATTGATAAT-3' 63 AscI 
AnMndA-L 5'-GCTTAATTAACCCTTCTAGCTGTACGC-3' 57 PacI 
MndAint-R 5'-GCTGCCAATACAAGGA-3' 49 

 mndAint-L 5'-GTCTATGTCCTGAACACG-3' 49 
 CmMan5A2-R 5'-TGGCGCGCCCTCGAG-3' 62 XhoI 

CmMan5AXYNSEC2-L 5'-TTCGCGAGTTGCTGAATCTAATTCTGCTG-3' 60 NruI 
 

3.3.4. PLASMID CONSTRUCTION 

 

A brief overview of the construction of some of the vectors is shown in Figs. 1 and 2. 

Construction of pBBH1-Agal-man1 involved digestion of pRDH213-Agal with PacI and 

AscI restriction enzymes. The Agal (1.3 kb fragment) was subsequently ligated into pBBH1 

(digested with PacI and AscI) resulting in pBBH1-Agal. This construct was digested with 

BamHI and BglII and the 2.8 kb ENO1P-Agal-ENO1T cassette ligated into pBBH1-man1 

(following linearisation with BamHI) to yield the final pBBH1-Agal-man1 construct.  

Following cDNA synthesis, the cAnmndA was ligated into pTZ57R (Fermentas) using the 

InsTAclone PCR cloning kit (Fermentas). Sequence verification was confirmed with the 
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1

Ba m H I  ( 3 )

P a c I  ( 6 7 9 )

Ba m H I  ( 6 8 3 )

As c I  ( 6 9 0 )

Bg l I I  ( 1 4 5 1 )

ENO1P

ENO1T

URA3

bla

ori

2µ

pBBH1

6317bp

1

 

1

Bg l I I  ( 7 6 1 )

Ba m H I  ( 5 6 3 0 )

As c I  ( 8 7 8 8 )
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P a c I  ( 7 4 1 8 )

ENO1P
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2µ

pRDH312-Agal
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1
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1
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1
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ENO1T

ENO1P
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BamHI
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BglII

EcoRI

XhoI

BamHI

BamHI

PacI

PacI

PacI

AscI

AscI

AscI

BglII

BglII

BglII

BamHI

BamHI

BamHI
EcoRI

XhoI

BglII

EcoRI

dideoxy chain termination method, with an ABI PRISMTM 3100 Genetic Analyser. The gene 

was subsequently retrieved by digestion with restriction enzymes, PacI and AscI, and ligated 

into the corresponding sites on pGTP2, yielding pGTP2-cAnmndA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Overview of pBBH1-Agal-man1 plasmid construction (note vector inserts are not to scale, images 

represent graphical indication and are not necessarily comparably scalable).  

The synthetically designed Cellvibrio mixtus β-mannosidase (CmMan5A) was obtained from 

GeneArt® containing only codons favoured by S. cerevisiae. Construction of 

pGTP2-CmMan5A involved excising the synthetic gene from pMA-RQ-CmMan5A (PacI 
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1
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1
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1
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glaAT
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pGTP2-cAnmndA

10724bp

AscI

BamHI

AscI

AscI

AscI

AscI

PacI

PacI

PacI

PacI
PacI

and AscI) and cloning into pGTP2 at the PacI and AscI sites. For construction of 

pBluescript-XYNSEC-CmMan5A, the CmMan5A gene was amplified from the 

pMA-RQ-CmMan5A and cloned into pBBH4 at the NruI and XhoI sites (thereby 

incorporating the XYNSEC secretion signal) generating pBBH4-XYNSEC-CmMan5A. 

Subsequent digestion of this vector with EcoRI and XhoI yielded a 1.4 kb fragment, which 

was cloned into pBluescript at the corresponding sites resulting in the vector 

pBluescript-XYNSEC-CmMan5A. The XYNSEC DNA sequence codes for the secretion 

signal of xyn2 of Trichoderma reesei.  

 

 

 

 

 

 

 

 

 

 

Fig. 2: Overview of mannosidase vector construction (note vector inserts are not to scale, images represent 

graphical indication and are not necessarily comparably scalable).  

 

3.3.5. STRAIN DEVELOPMENT 

 

Electrocompetent S. cerevisiae Y294 cells were prepared as described by Cho et al. (1999). 

The electrocompetent cells containing 1 µg of vector DNA were transferred to chilled 0.2 cm 

electroporation cuvette and pulsed at 1.4 kV, 200 Ω, 25 µF. The cells were resuspended in 

1 ml YPDS and incubated at 30°C for 1 hour, after which the culture was plated onto SC-URA 
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agar plates for selection. The A. niger D15 strain was transformed by means of spheroplasts 

using Lysing enzymes (Sigma) in accordance to Punt and van den Hondel (1992).  

 

3.3.6. GROWTH DETERMINATION CONDITIONS 

 

Yeast and bacterial pre-cultures were grown overnight to late stationary phase and used to 

inoculate fresh pre-warmed medium to an optical density (OD600) of 0.1. Samples were taken 

at regular intervals and optical density measured using an X-MARK™ microtitre plate reader 

(Biorad, Hercules, CA, USA) to determine growth rate. All stains were cultured in triplicates. 

Bacterial cultures were supplemented with 100 µg/ml ampicillin every 24 hours in order to 

maintain plasmid stability.  

 

3.3.7. PLATE ENZYME ASSAYS 

 

The presence of extracellular β-mannanase activity was confirmed by using OBR-mannan 

prepared according to (Biely et al. 1985). OBR-mannan plates were prepared containing 

SC-URA and 0.5% (w/v) OBR-mannan. The recombinant S. cerevisiae strains were transferred 

(spotted) to the OBR-mannan plates, where the secretion of β-mannanase was visualised by a 

clear halo or zone around the colony after incubation at 30°C for 24 hours.  

 

 

3.3.8. LIQUID ACTIVITY ASSAYS 

 

The β-mannanase and α-galactosidase activity was measured using the substrate Locust bean 

gum (LBG) and p-nitrophenyl-α-D-galactopyranoside (pNPGal), respectively. The cells were 

centrifuged at 13000 rpm for 2 minutes and the resulting supernatant used to determine the 

extracellular β-mannanase and α-galactosidase activities. Secreted β-mannanase activity was 
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determined using a modified dinitrosalicylic acid (DNS) reducing sugar assay 

(Bailey et al. 1992) with 0.5% (w/v) LBG as substrate. Recombinant strains were cultivated 

in their respective media. Samples were taken at regular intervals. Three 8 µl supernatant 

samples of each culture were pipetted into a 96-well PCR plate well containing 72 µl 0.5% 

LBG (w/v) substrate in 0.05 M citrate buffer (pH 5.0). The supernatant-substrate mixture was 

incubated at 50°C for 10 minutes in a 96-well thermocycler (GeneAmp® PCR system 9700 

(Applied Biosystems)). Following the incubation step, 120 µl of DNS 

(10 g/l 2-hydroxy-3,5-dinitrobenzoate, 200 g/l potassium sodium-tartrate, 10 g/l sodium 

hydroxide, 2 g/l phenol, 0.5 g/l sodium sulfite) solution was added to each incubated sample. 

The samples were heated to 99.9°C for 5 minutes and then cooled to 4°C for 1 minute. The 

liquids were transferred with a multichannel micropipette into 96-well round-bottomed 

microtitre plates. The colorimetric changes were measured at OD540 with an X-MARK™ 

microtitre plate reader (Biorad, Hercules, CA, USA). Standard curves were prepared using 

mannose (Sigma, Stockholm, Sweden) at concentrations of 2.0-10 mg/ml. From the standard 

curves the enzyme activities of each culture supernatant could be calculated. Supernatants 

were diluted appropriately to ensure absorbance values fell within the range of the mannose 

standard curve. Background sugar levels in the supernatant samples were also detected and 

subtracted from the activity values. 

Secreted α-galactosidase activity was determined by incubation of supernatant with 4 mM 

pNPGal in 0.05 M citrate phosphate buffer, pH 5 for 30 minutes. All enzymatic assays were 

performed in triplicates.  

The extracellular β-mannosidase and α-galactosidase activities were determined using 

4 mM p-nitrophenyl β-D-mannopyranoside (pNPM) and pNPGal, respectively, in 50 mM 

citrate buffer pH 3.4. Assays were performed as follows: 50 µl supernatant was added to 50 

µl pNPM and incubated for 30 minutes at 50°C. Reactions were terminated by the addition of 

200 µl of 1 M sodium carbonate. Colour release was measured at OD400 on a microtitre plate 

reader (as above) and converted to nkat/ml using p-nitrophenol as standard. When necessary, 

appropriate dilutions of the enzymes were made. All assays were performed in triplicate. 

Values were expressed in nkat/ml, where 1 kat equals 1 mol of mannose released per second. 

Supernatant, intracellular fractions (cell lysis performed using a TissueLyser LT (QIAGEN)) 

and whole cell fractions of E. coli strains were incubated with pNPM in 50 mM citrate buffer 
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pH 5 at 50°C for 30 minutes. Assays were performed and measured as above. All assays were 

performed in triplicates.  

 

3.3.9. DETERMINATION OF PH AND TEMPERATURE OPTIMA 

 

Secreted β-mannanase and α-galactosidase from S. cerevisiae Y294[man1] 

S. cerevisiae Y294[Agal] and S. cerevisiae Y294[Agal-man1] and β-mannosidase from 

A. niger D15[cAnmndA] and A. niger D15[CmMan5A] were harvested and lyophilised prior 

to characterisation. The whole cell fractions of E. coli DH5α[XYNSEC-CmMan5A] were 

used for pH and temperature enzyme characterisation determinations. The pH and 

temperature optimum was determined using the recommended substrate for the respective 

enzymes. The LBG, pNPGal and pNPM substrates were buffered at pH 2.37, 3.4, 4.48, 5.47, 

6.6 and 7.2 (with the addition of pH 1.72 for pNPGal), respectively, using 50 mM citrate 

phosphate buffer. The temperature optimum was determined using 0.5% LBG (w/v) in 

50 mM citrate phosphate buffer (pH 5.47) for β-mannanase activity, 4 mM pNPGal 

(pH 1.72) for α-galactosidase activity and 4 mM pNPM (pH 5.47) for β-mannosidase activity 

from E. coli DH5α[XYNSEC-CmMan5A] and pH 3.4 for A. niger D15[cAnmndA] and 

A. niger D15[CmMan5A] strains. Activity was measured at 30, 40, 50, 60, 70 and 80°C, 

respectively.  

 

3.3.10. PURIFICATION OF THE β-MANNOSIDASE  

 

Supernatant of A. niger strains cultivated for 72 hours were collected and filtered through a 

0.22 µm Whatman® paper. Solid ammonium sulphate was added to the filtrate with slow 

stirring overnight at 4°C to obtain 20, 40, 60 and 80% saturation, respectively. The 

precipitates were collected at each interval by centrifugation at 12 000 rpm at 4°C for 1 hour. 

The pellet was dissolved in 1 ml of sodium citrate buffer (pH 5) and subsequently dialysed 

overnight using an 8 kDa Spectra/Por® molecular porous membrane tubing (Spectrum 
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Medical Industries, Inc). The fractions were lyophilised and stored at -20°C for further 

analysis.  

 

3.3.11. PROTEIN DEGLYCOSYLATION 

 

The supernatant of S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal], 

S. cerevisiae Y294[Agal-man1], A. niger D15[cAnmndA] and A. niger D15[CmMan5A] 

were collected after 48 hours and 72 hours, respectively. The supernatants were filtered 

through a 0.22 µm Whatman® filter paper and subsequently lyophilised prior to analysis.  

The lyophilised protein from S. cerevisiae Y294[man1] S. cerevisiae Y294[Agal] and 

S. cerevisiae Y294[Agal-man1] was prepared at a concentration of 5 mg/100 µl deionised 

water and subjected to acetone precipitation (ratio of 1:2) overnight at -20°C. The protein 

pellet was harvested by centrifugation at 13000 rpm for 20 minutes at 4°C. The supernatant 

was removed and the pellet dissolved in 100 µl deionised water. The enzyme was subject to 

N-deglycosylation reactions using the PNGase H kit (New England Biolabs) according to the 

supplier’s specifications.  

 

3.3.12. SDS-PAGE ANALYSIS 

 

Protein samples were subjected to denaturation at 100°C for 2 minutes in denaturing loading 

buffer (200 mM Tris–HCl pH 6.8, 8% (w/v) SDS, 0.4% bromophenol blue, 40% (v/v) 

glycerol and 400 mM DTT). A total of 5 mg/ml denatured protein were separated by 8% 

SDS-PAGE (Laemmli 1970). Silver staining was used to visualise the protein species 

according to O’Connell and Stults (1997). A protein ladder, Page RulerTM (Fermentas Inc), 

was used as a size marker.  
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3.3.13. LOCUST BEAN GUM RHEOLOGY 

 

A 0.5 % (w/v) Locust bean gum solution was prepared in 50 mM citrate buffer pH 5 and used 

as substrate for viscosity analysis. Lyophilised Man1, CmMan5A and Agal enzymes were 

used in combination and individually for viscosity analysis. Viscosity measurements were 

performed on a Physica MCR 501 (Anton Paar, Germany) using a double gap configuration 

and heated at 50°C with a Peltier system (C-PTD200). Flow curves were analysed using the 

Rheoplus software and measurements taken at intervals of 10 sec (60 points) for 10 minutes 

per sample at a shear rate of 61.9/s. Initial viscosity was determined without enzyme, after 

which respective enzymes were added to a final concentration of 0.2 nkat/ml LBG for Man1 

and 2 nkat/ml LBG for Agal and CmMan5A. All samples were analysed in triplicates.  

 

3.4. RESULTS 

 

3.4.1. STRAIN SELECTION AND CONFIRMATION  

 

Saccharomyces cerevisiae Y294 and Aspergillus niger D15 were used as hosts for the 

heterologous production of the: Aspergillus aculeatus β-mannanase (man1) and Talaromyces 

emersonii α-galactosidase (Agal); and Aspergillus niger β-mannosidase (AnmndA) and 

Cellvibrio mixtus β-mannosidase (CmMan5A) enzymes, respectively. Different expression 

hosts were used due to the unsuccessful expression of the β-mannosidase in S. cerevisiae. 

The man1 and Agal genes were cloned onto multi-copy, episomal vectors under 

transcriptional control of the constitutive S. cerevisiae enolase I gene (ENOI) promoter and 

terminator. Successful transformation was achieved in S. cerevisiae Y294 with the plasmids 

pBBH1-man1, pBBH1-Agal, pBBH1-Agal-man1 and pBBH1, respectively.  

The cDNA copy of the A. niger β-mannosidase (cAnmndA) gene was obtained using primers 

based on the GenBank sequence (Accession number XM_001394595) of the AnmndA gene 

from A. niger (Ademark et al. 2001). The ~3 kb fragment encodes a 930 amino acid peptide, 

with a theoretical pI of 4.84 and molecular mass of 104 kDa. The gene was ligated into 
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pTZS7R. The DNA sequence revealed a 96.86% homology with the sequence of the A. niger 

(Ademark et al. 2001) (Fig. 1). The 1403 bp synthetic C. mixtus CmMan5A gene codes for a 

protein with 100% homology with the Man5A (Accession number AY526725) reported by 

Dias et al. (2004), with a theoretical pI of 4.73 and a molecular mass of 51 kDa. The 

cAnmndA and CmMan5A genes (containing their native secretion signals) were cloned into 

pGTP2, an integrative vector that theoretically yields multi-copies within the genome. The 

transcription is controlled by the A. niger glyceraldehyde-3-phosphate dehydrogenase (gpdP) 

gene promoter and A. awamori glucoamylase (glaAT) gene terminator. The truncated 

C. mixtus CmMan5A gene (no secretion signal sequence) was also ligated onto pBBH4 

(containing the XYNSEC secretion signal). XYNSEC-CmMan5A was obtained and ligated 

into pBluescript to yield pBluescript-XYNSEC-CmMan5A. Successful transformation of 

A. niger D15 occurred using plasmids pGTP2-cAnmndA and pGTP2-CmMan5A, 

respectively and E. coli with plasmid pBluescript-XYNSEC-CmMan5A. The 

S. cerevisiae Y294[BBH1], A. niger D15[GTP2] and E. coli DH5α[Bluescript] were used as 

negative control strains.  

1     MRHSIGLAAALLAPTLPVALGQYIRDLSTEKWTLSSRALNRTVPAQFPSQVHLDLLRAGV 
      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
1     MRHSIGLAAALLAPTLPVALGQYIRDLSTEKWTLSSRALNRTVPAQFPSQVHLDLLRAGV 
 
61    IDDPYHGLNDFNLRWIAAANWTYTSQPIKGLLDNYDSTWLVFDGLDTFATISFCGQQIAS 
      |   |||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
61    IGE.YHGLNDFNLRWIAAANWTYTSQPIKGLLDNYDSTWLVFDGLDTFATISFCGQQIAS 
 
121   TDNQFRQYAFDVSTALGSCKGDPVLSINFGSAPNIVDAIAQDSNSQKWPDDVQLTYEYPN 
      |||||||||| ||||||||||||||||||||||||||||||||| ||||||||||||||| 
120   TDNQFRQYAFGVSTALGSCKGDPVLSINFGSAPNIVDAIAQDSNTQKWPDDVQLTYEYPN 
 
181   RWFMRKEQSDFGWDWGPAFAPAGPWKPAYIVQLDKKESVYVLNTDLDIYRKGQINYLPPD 
      ||||||||||||||||||||||||||||||||||||||||||||||||||| ||||| || 
180   RWFMRKEQSDFGWDWGPAFAPAGPWKPAYIVQLDKKESVYVLNTDLDIYRKSQINYLSPD 
 
241   QSQPWVVNASIDILGPLPTKPTMSIEVRDTHSGTILTSRTLNNVSVAGNAITGVTVLDGL 
      |||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||| 
240   QSQPWVVNASIDILGPLPAKPTMSIEVRDTHSGTILTSRTLNNVSVAGNAITGVTVLDGL 
 
301   TPKLWWPQGLGDQNLYNVSITVQSRGNQTVASVNKRTGFRTIFLNQRNITEAQRAQGIAP 
      ||||||||||||||||||||||| ||||||||||||||||||||||||||| |||||||| 
300   TPKLWWPQGLGDQNLYNVSITVQRRGNQTVASVNKRTGFRTIFLNQRNITEVQRAQGIAP 
 
361   GANWHFEVNGHEFYAKGSNLIPPDSFWTRVTEEKMSRLFDAVVVGNQNMLRVWSSGAYLH 
      ||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||| 
360   GANWHFEVNGHEFYAKGSNLIPPDSFWTRVTEERMSRLFDAVVVGNQNMLRVWSSGAYLH 
 
421   DYIYDLADEKGILLWSEFEFSDALYPSDDAFLENVAAEIVYNVRRVNHHPSLALWAGGNE 
      |||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| 
420   DYIYDLADEKDILLWSEFEFSDALYPSDDAFLENVAAEIVYNVRRVNHHPSLALWAGGNE 
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481   IESLMLPRVKDAAPSSYSYYVGEYEKMYISLFLPLVYENTRSISYSPSSTTEGYLYIDLS 
      ||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||| 
480   IESLMLPRVKDAAPSSYSYYVDEYEKMYISLFLPLVYENTRSISYSPSSTTEGYLYIDLS 
 
541   APVPMAERYDNTTSGSYYGDTDHYDYDTSVAFDYGSYPVGRFANEFGFHSMPSLQTWQQA 
      |||||||||| |||||||||||||||||||| |||||||||||||||||||||||||||| 
540   APVPMAERYDSTTSGSYYGDTDHYDYDTSVASDYGSYPVGRFANEFGFHSMPSLQTWQQA 
 
601   VDTEDLYFNSSVVMLRNHHDPAGGLMTDNYANSATGMGEMTMGVVSYYPIPSKSDHISNF 
      |||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 
600   VDTEDLYFNSSVVMLRNHHDPAGGLMTDNYANSATGMGEMTMGVISYYPIPSKSDHISNF 
 
661   SAWCHATQLFQADMYKSQIQFYRRGSGMPERQLGSLYWQLEDIWQAPSWAGIEYGGRWKV 
      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
660   SAWCHATQLFQADMYKSQIQFYRRGSGMPERQLGSLYWQLEDIWQAPSWAGIEYGGRWKV 
 
721   LHHVMRDIYQPVIVSPFWNYTTGSLDVYVTSDLWSPAAGTVDLTWLDLSGRPIAGNAGTP 
      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
720   LHHVMRDIYQPVIVSPFWNYTTGSLDVYVTSDLWSPAAGTVDLTWLDLSGRPIAGNAGTP 
 
781   KSVPFTVGGLNSTRIYGTNVSSLGLPDTKDAVLILSLSAHGRLPNSDRTTNLTHENYATL 
      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
780   KSVPFTVGGLNSTRIYGTNVSSLGLPDTKDAVLILSLSAHGRLPNSDRTTNLTHENYATL 
 
 
841   SWPKDLKIVDPGLKIGHSSKKTTVTVEATSGVSLYTWLDYPEGVVGYFEENAFVLAPGEK 
      |||||||||||||| | | | ||||||||||||||||||||||||||||||||||||||| 
840   SWPKDLKIVDPGLKLGYSPKRTTVTVEATSGVSLYTWLDYPEGVVGYFEENAFVLAPGEK 
 
901   KEISFTVLEDTTDGAWVRNITVQSLWDQKVRG 
      ||| |||| ||||||||||||||||||||||| 
900   KEIGFTVLDDTTDGAWVRNITVQSLWDQKVRG 
 

Fig. 1: Amino acid sequence alignment of the cAnmndA (upper line) and mAnmndA gene (lower line) revealed 

a 97.74% homology. A three base pair deletion (TCC) at position 197 was present in the cDNA sequence.  

 

3.4.2. PLATE ASSAY 

 

Recombinant yeast strains S. cerevisiae Y294[man1], [Agal], [Agal-man1] and [BBH1] were 

cultured overnight in SC-URA broth and transferred (spotted) to OBR-mannan plates and 

screened for secretion of β-mannanase activity. Hydrolysis was detected by the appearance of 

a clear zone around the colonies (Fig. 2). Zones were apparent for recombinant strains 

S. cerevisiae Y294[man1] and S. cerevisiae Y294[Agal-man1]. No zones were visible for the 

control strain and S. cerevisiae Y294[Agal] exhibiting no endo-mannanase activity.  
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Fig. 2: Recombinant S. cerevisiae Y294[man1] and S. cerevisiae Y294[Agal-man1] strains displaying 

extracellular β-mannanase activity  on SC-URA agar plates containing 0.5% (w/v) OBR-mannan after 24 hours of 

incubation at 30°C.  

 

3.4.3. LIQUID ASSAY 

 

S. cerevisiae Y294 strains were grown for 48 hours in SC-URA media with supernatant 

samples taken at regular intervals (Fig. 3B) and enzyme activities determined against Locust 

bean gum and pNPGal. Strains S. cerevisiae Y294[man1] and S. cerevisiae Y294[Agal] 

secreted active Man1 and Agal into the medium, respectively, while S. cerevisiae 

Y294[Agal-man1] co-expressed and secreted active Man1 and Agal into the medium. The 

highest level of activity for Man1 was 36.08 nkat/ml after 48 hours, which is 1.2 times more 

than that of the co-expressing S. cerevisiae Y294[Agal-man1] strain (28.30 nkat/ml), while 

Agal gave maximum activity of 253.83 nkat/ml after 48 hours, 1.3 times that of the 

co-expressing S. cerevisiae Y294[Agal-man1] (185.118 nkat/ml).  

The production of heterologous cAnmndA, CmMan5A and 

XYNSEC-CmMan5A by A. niger D15[cAnmndA], A. niger D15[CmMan5A] and 

E. coli DH5α[XYNSEC-CmMan5A], respectively, were monitored over time. The fungal 

strains were cultivated over a period of 180 hours in 2xMM. Highest levels of activity on 

pNPM was observed for cAnmndA at 11.61 nkat/ml after 156 hours (Fig. 4A), 1.5 times 
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greater than that of CmMan5A (7.58 nkat/ml after 168 hours). The E. coli DH5α strains were 

cultivated for 144 hours in TB media. Whole cell, extracellular and intracellular fractions 

were tested for activity against pNPM. Maximum activity was obtained with whole cells at 

2.14 nkat/ml and 1.67 nkat/ml for intracellular fractions after 144 hours (Fig. 4B).  

 

3.4.4. DETERMINING PH AND TEMPERATURE OPTIMA 

 

The pH and temperature optima was determined for Man1, Agal, cAnmndA and CmMan5A 

using lyophilized protein (5 mg/ 100 ml), whereas the intact whole cell cultures of bacterial 

strain E. coli DH5α[XYNSEC-CmMan5A] was used for the XYNSEC-CmMan5A. The 

recombinant Man1, Agal, cAnmndA, CmMan5A and XYNSEC-CmMan5A activity peaked 

at pH 5.47, 2.37, 3.4, 3.4 and 5.47, respectively (Figs. 3C and 4C, respectively). The strain 

S. cerevisiae Y294[Agal-man1] strain displayed similar pH optima for each of the respective 

enzymes, Agal and Man1, showing no significant influence on each others’ activity when 

co-expressed. Strains S. cerevisiae Y294[Agal], S. cerevisiae Y294[man1], 

A. niger D15[cAnmndA] and A. niger D15[CmMan5A] displayed optimal activity at 70°C 

(Figs. 3D and 4D, respectively). XYNSEC-CmMan5A displayed optimal activity at 

50°C (Fig. 4D).  

 

3.4.5. GROWTH DETERMINATION CURVE 

 

The recombinant strains S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal-man1], 

S. cerevisiae Y294[Agal] were cultured in SC-URA medium and recombinant strain 

E. coli DH5α[XYNSEC-CmMan5A] in TB medium supplemented with 100 mg/ml 

ampicillin every 24 hours. Samples were taken regularly and biomass production was 

measured at OD600 (Figs. 3A and 4B, respectively). Strains S. cerevisiae Y294[BBH1] and 

E. coli DH5α[pBluescript] were used as negative control strains. The activities displayed in 

Figs. 3B and 4A and B had been normalised against the respective negative control strains 

(values obtained for the negative control strains had been deduced), hence no data is 
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displayed for the control strains. From the growth curves it is evident that the addition of 

foreign genes had no significant effect or metabolic burden on the biomass production of the 

strains. 

 

 

 

 

Fig. 3: The recombinant strains -▲- S. cerevisiae Y294[BBH1] -▲- S. cerevisiae Y294[man1], -♦- S. cerevisiae 

Y294[Agal] and -■-S. cerevisiae Y294[Agal-man1] were cultured in SC-URA media and simultaneously 

monitored for: (A) biomass production  in optical density (OD600), and (B) enzyme activity on 0.5% (w/v) LBG 

for Man1 activity (solid lines) and 4 mM pNPGal for Agal activity (dashed lines). Values have been normalised 

against the values obtained for S. cerevisiae Y294[BBH1]. The optimal pH (C) and temperature (D) of 

lyophilised protein from -▲- S. cerevisiae Y294[man1] and -♦- S. cerevisiae Y294[Agal] incubated for 30 mins 

at 50°C on 0.5% (w/v) LBG and 4 mM pNPGal, respectively. Error bars indicate the standard deviation from 

the mean value. 
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Fig. 4: The Recombinant strains -♦- A. niger D15[cAnmndA] and -■-A. niger D15[CmMan5A] were cultured 

on 2xMM for 180 hours and monitored for enzyme activity (A). Bacterial strain 

▲ E. coli DH5α[XYNSEC-CmMan5A] and -▲- E. coli DH5α[Bluescript] was cultured in TB media 

supplemented with 100 µg/ml ampicillin for 144 hours and monitored for (B) biomass production in optical 

density (OD600) (dashed lines) and enzyme activity (solid lines), where -▲- whole cell and -x-intracellular 

fractions were investigated for XYNSEC-CmMan5A activity. The optimal pH (C) and temperature (D) of 

lyophilized protein from -♦- A. niger D15[cAnmndA], -■-A. niger D15[CmMan5A] and intact bacterial strain 

-▲-E. coli DH5α[XYNSEC-CmMan5A] incubated for 30 mins at 50°C on 4 mM pNPM. Error bars indicate the 

standard deviation from the mean value. 
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3.4.6. SDS-PAGE ANALYSIS 

 

Analysis with 8% SDS-PAGE revealed a protein species for strains 

S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal-man1] and S. cerevisiae Y294[Agal]. 

Fig. 5A shows the deglycosylated and glycosylated protein species of lyophilised 

(5 mg/100 µl) supernatant for strains S. cerevisiae Y294[Agal], 

S. cerevisiae Y294[Agal-man1] and S. cerevisiae Y294[man1], respectively. The 

deglycosylated Agal and Man1 were shown to be 60 kDa (lane 1 and 2) and 40 kDa (lane 2 

and 3), respectively. The band size of Man1 correspond to the size previously reported by 

Setati et al. (2001), whereas Agal yielded a band slightly smaller than the native Agal 

produced by T. emersonii (Similä et al. 2010). These species do not occur in the control strain 

S. cerevisiae Y294[BBH1] (lane 4). Glycosylation is prevalent in protein species Agal 

(Fig. 5B lane 1) and Man1 (Fig. 5B lane 3) yielding slightly bigger diffuse bands than that of 

the deglycosylated protein counterparts.  

 

 

 

Fig. 5: Deglycosylated (A) and glycosylated (B) supernatants from S. cerevisiae Y294[Agal] (lanes 1), 

S. cerevisiae Y294[Agal-man1] (lanes 2), S. cerevisiae Y294[man1] (lanes 3) and S. cerevisiae Y294[BBH1] 

(lanes 4) were separated by SDS-PAGE. Molecular weight marker (Page RulerTM) was used with sizes depicted 

on the left hand side. 

 

Ammonium sulphate purified (5 mg/100 µl) cAnmndA and CmMan5A from 

A. niger D15[cAnmndA] and A. niger D15[CmMan5A], respectively, was seperated by 10% 

SDS PAGE (Fig. 6A and B). The CmMan5A protein present in the 40% ammonium sulphate 
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precipitate was present as a single prominent species (Fig. 6A lane 2) displaying an apparent 

molecular weight of ~58 kDa. The theoretical size of the unglycosylated CmMan5A is 

51 kDa as determined by DNAMAN (version 4.1, from Lynnon BioSoft). The cAnmndA 

protein present in the 60% ammonium sulfate precipitate yielded a distinct band of ~120 kDa 

(Fig. 6B lane 2). This species is larger than its theoretical size, as well as being larger than 

previously reported for native secretion of AnmndA from A. niger (Ademark et al. 2001). 

Lanes 1 in Fig. 6A and B indicate negative control A. niger D15[GTP2].  

 

 

 

 

 

 

 

Fig. 6: Separation of the 40% (A) and 60% (B) ammonium sulphate purified protein (5 mg/100 µl) fractions by 

10% SDS-PAGE. The cAnmndA from strain A. niger D15[cAnmndA], yielded a band size of ~120 kDa (Gel B 

lane 2), while the CmMan5A from strain A. niger D15[CmMan5A], yielded a band size of ~58 kDa protein 

species (Gel A lane 2). The negative control A. niger D15[GTP2] is found in lane 1. Molecular weight marker 

(Page RulerTM) was used with sizes depicted on the left hand side. 

 

3.4.7. SYNERGISTIC ACTIVITY ON LBG 

 

Locust bean gum (0.5%) was incubated with lyophilized Man1, Agal and CmMan5A 

obtained from recombinant strains S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal] and 

A. niger D15[CmMan5A], respectively. The change in viscosity of the galactomannan was 

monitored continuously over a period of 10 min at 50°C. A gradual decrease in viscosity is 

observed for substrate incubated without enzyme indicating the influence of temperature and 

sheering by the apparatus itself (Fig. 7A). These values were taken into account and the effect 

of the enzyme treatments normalised accordingly. The most effective synergy of enzymes 
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was obtained from the combination of Man1, Agal and CmMan5A (Fig. 7B). Little change in 

viscosity occurred with incubation of the mannan with Agal. CmMan5A had a significant 

influence on the viscosity of the substrate, although not to the extent of Man1. These results 

indicate that there is a mutual rapid decrease in the average molecular weight of Locust bean 

gum, which is followed by a plateau. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: (A) Temperature and shearing effect on LBG. (B) Analysis of the hydrolytic effect of Man1, Agal and 

CmMan5A from recombinant strains S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal] and 

A. niger D15[CmMan5A] on 0.5% (w/v) LBG. Enzymes are used individually and in synergy. The greatest 

influence on viscosity is given by the combination of all enzymes, whereas Agal had the least effect. -♦- Man1, 

-■-Man1 and Agal, -▲- Man1 and CmMan5A, -x- Man1, Agal and CmMan5A, + Agal, -x- Agal and 

CmMan5A, -■- CmMan5A. Values had been normalised to take into account the effect of the temperature on 

the viscosity. Error bars indicate the standard deviation from the mean value. 
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3.5. DISCUSSION 

S. cerevisiae strains were engineered to secrete the β-mannanase (man1) of A. aculeatus and 

α-galactosidase (Agal) of T. emersonii. The A. niger strains were engineered to secrete a 

cDNA copy of β-mannosidase (cAnmndA) from A. niger and a synthetic β-mannosidase 

(CmMan5A) from C. mixtus. These enzymes were used synergistically to determine the effect 

on galactomannan viscosity.  

The man1 gene from A. aculeatus has previously been cloned and expressed in S. cerevisiae 

using the PGK1 promoter and terminator expression cassette (Setati et al. 2001). The Agal 

gene from T. emersonii has previously been cloned and expressed in Pichia pastoris 

(Similä et al. 2010). In this study the man1 and Agal genes were successfully cloned (both 

individually and simultaneously) and expressed in S. cerevisiae, using the pBBH1 expression 

vector. This vector allows for consecutive cloning of a number of gene cassettes by making 

use of the compatibility of the BamHI and BglII restriction sites flanking the expression 

cassette. The BamHI-BglII gene cassette can be sub-cloned into either the BamHI or BglII 

sites (provided all internal BamHI and BglII sites have been eliminated). The AnmndA from 

A. niger has been extensively characterised (Ademark et al. 2001, Ademark et al. 1999, 

Bouquelet et al. 1978, Do et al. 2009, Elbein et al. 1977). The CmMan5A from C. mixtus has 

previously been characterized and expressed in E. coli (Centeno et al. 2006, Dias et al. 2004). 

This is the first report where CmMan5A from C. mixtus has been successfully expressed in 

A. niger. In this study S. cerevisiae expressing man1 and Agal, and A. niger expressing 

cAnmndA and CmMan5A, and E. coli expressing XYNSEC-CmMan5A was evaluated on the 

basis of enzyme secretion capacity and characterization in terms of optimal pH and 

temperature, as well as protein characterisation in terms of size and glycosylation, as well as 

the effect of these enzymes on the viscosity of galactomannan.  

The pH and temperature optimum for the heterologous Man1 and Agal expressed by 

S. cerevisiae Y294[man1] and S. cerevisiae Y294[Agal] were determined (Fig. 3A and B). 

The Man1 and Agal displayed optimum temperature of 70°C and 80°C, respectively, and pH 

optimum of 5.47 and 2.37, respectively. The results obtained for Man1 vary slightly from that 

obtained by Setati et al. (2001) who reported a temperature and pH optima of 50°C and 3, 

respectively. Similar differences were reported by van Zyl et al. (2009) and 

Christgau et al. (1994), who expressed the A. aculeatus β-mannanase in A. niger and 

A. oryzae, respectively. Similiä et al. (2010) reported an optimal pH and temperature for Agal 
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of 4.5 and 70°C, respectively. Such a variation may be due to host and media differences, 

where Similiä et al. (2010) expressed the Agal in the methylotrophic yeast Pichia pastoris. A 

similar change in these characteristics has been observed previously with the expression of 

the Cel7A of T. reesei in S. cerevisiae, where it was found that the glycosylation pattern 

varied when cultivation took place under different conditions (du Plessis et al. 2010, 

Stals et al. 2004). N-glycosylation of the Cel7A occurred at all three glycosylation sites when 

isolated from minimal medium, whereas cultivation in rich medium resulted less sites 

containing high-mannose chains (Stals et al. 2004). S. cerevisiae generally elongates the 

mannose chain in heterologous proteins by adding more mannose residues (Cregg et al. 2000, 

Romanos et al. 1992). Based on this it was speculated that the expression of Man1 in 

S. cerevisiae Y294 cultivated in YPD medium (Setati et al. 2001), the medium could have 

impacted the glycosylation patterns of the Man1, resulting in a change in the activity and 

characterization of the enzyme.  

The extracellular β-mannanase and α-galactosidase activity produced by the yeast 

transformants, as well as optical growth (OD600) was monitored over a period of 48 hours. 

The transformants were cultivated in SC-URA media (Fig. 3C and D). No significant difference 

in optical density was detected between the control strain S. cerevisiae Y294[BBH1] and the 

transfromants S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal] and S. cerevisiae 

Y294[Agal-man1], indicating that the foreign genes presented no adverse effects on the 

recombinant strains growth. Relatively high cell densities were obtained and are comparable 

to those achieved by Setati et al. (2001). A maximum activity on LBG of 36.08 nkat/ml was 

achieved for Man1 after 48 hours, whereas a maximum for the Man1 co-expressed with Agal 

yielded 28.30 nkat/ml. The maximum activity of Man1 was 1.2 times greater than the co-

expressed Man1, and the maximum activity of Agal was 1.3 times greater than the co-

expressed Agal. Due to the vector size being larger with the addition of an extra gene, it can 

lead to a lower copy number and consequently less protein production. Although the cell 

densities observed in this study are comparable to those achieved previously, low levels of 

activity of the Man1 protein compared to those previously reported (Setati et al. 2001) can be, 

as stated previously, ascribed to the different culture media used. The maximum Agal activity 

achieved in this study was significantly greater (2.2 times) than that achieved by expression 

in P. pastoris (Similä et al. 2010). This may also be due to the difference in culture media and 

vector size, as well as being expressed in a different host.  
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The protein species produced by S. cerevisiae Y294[man1], S. cerevisiae Y294[Agal] and 

S. cerevisiae Y294[Agal-man1] displayed molecular masses slightly larger than those 

obtained following deglycosylation (Fig. 5A and B). The deglycosylated proteins for the Agal 

and Man1 yielded a 60 kDa and a 40 kDa species, respectively. The band size of Man1 

corresponds to the size previously reported by Setati et al. (2001), whereas Agal yielded a 

band slightly smaller than the native Agal produced by T. emersonii (Similä et al. 2010). 

Based on the size difference between the secreted and deglycosylated proteins, it is clear that 

the yeast S. cerevisiae Y294 hyperglycosylates these heterologous proteins.  

The cultivation conditions of Aspergillus in submerged cultures significantly determines the 

mycelium morphology and affects the production of extracellular proteins (Galbraith and 

Smith 1969, Wosten et al. 1991). The A. niger D15 strain has previously been shown to be an 

excellent host for the production of heterologous proteins (Rose and Van Zyl 2002). The 

construction of an expression system has previously been described by Rose and 

van Zyl (2002) where successful expression of the xyn2 and egI genes of T. reesei under the 

transcriptional control of the glyceraldehyde-6-phosphate dehydrogenase (gpdA) promoter 

from A. niger and the glaA terminator of A. awamori was reported. The strong glycolytic 

promoter was chosen to enable heterologous expression of the β-mannosidase from A. niger 

(Ademark et al. 2001) and the synthetic β-mannosidase of C. mixtus (Dias et al. 2004) in 

A. niger D15. The genes were cloned with their native secretion signals intact allowing 

successful secretion of the heterologous enzymes.  

Obtaining the cAnmndA from the host A. niger requires induction by the addition of mannan 

to the growth medium. Cultivation on mannan in liquid culture is difficult due to the gelling 

characteristics of LBG at concentrations of 0.5%. Therefore the genomic copy of AnmndA 

was cloned and over-expressed in A. niger using the constitutive gpd promoter. This 

A. niger D15[gAnmndA] strain can be cultivated on glucose and was used to obtain the 

cAnmndA which was cloned for expression in S. cerevisiae. No activity was detected with the 

expression of cAnmndA or CmMan5A in S. cerevisiae (Table 1, Appendix).  

Analysis of the cDNA copy of the AnmndA gene showed that the gene consisted of an ORF 

of 2793 bp that encodes a protein of 930 amino acids with a theoretical molecular mass of 

104 kDa. The sequenced gene showed a 96.86% identity with the sequence of the A. niger as 

reported by Ademark et al (2001). Also noted from the alignment is the presence of three 

introns (237-354; 434-487; and 720-775), whereas only two introns were detected by 
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Ademark et al. (2001). A three base pair deletion was present in the cDNA sequence (TCC) 

at position 197. Since activity was evident on p-nitrophenyl β-D-mannopyranoside (pNPM) it 

can be assumed that these regions are not crucial for its function. However, greater activity 

has been reported for native β-mannosidase expressed by A. niger (Ademark et al. 1999) and 

it therefore cannot be assumed that the absence of three base pairs does not affect protein 

structure.  

The activity of the cAnmndA and CmMan5A proteins expressed by A. niger D15[cAnmndA] 

and A. niger D15[CmMan5A] and XYNSEC-CmMan5A expressed by 

E. coli DH5α[XYNSEC-CmMan5A] were monitored over time (Fig. 4C and D, respectively). 

Maximum activity was observed for cAnmndA at 11.61 nkat/ml after 156 hours, 1.5 times 

greater than that observed for CmMan5A, which reached a maximum activity of 7.58 nkat/ml 

after 156 hours. These values are significantly lower than those obtained previously 

(Ademark et al. 2001, Ademark et al. 1999). This may be due to a combination of the high 

copy numbers (up to 25) of the over-expressed vectors achieved by Ademark et al. (2001) 

and the absence of three base pairs in the cDNA copy of AnmndA, which may have led to 

sub-optimal protein folding or functionality. Maximum activity of XYNSEC-CmMan5A was 

observed at 2.14 nkat/ml from whole cell fractions, whereas intracellular fractions displayed 

maximum activity of 1.67 nkat/ml. This difference in activity between whole cell fractions 

and intracellular fractions implies that the enzyme is mostly cell-wall bound, indicating that 

the XYNSEC secretion signal was ineffective in secreting the protein extracellularly or that 

the protein was too large to pass through the cell wall. 

The pH and temperature optimum for the heterologous cAnmndA, CmMan5A and 

XYNSEC-CmMan5A expressed by A. niger D15[cAnmndA], A. niger D15[CmMan5A] and 

E. coli DH5α[XYNSEC-CmMan5A] were determined (Fig. 4A and B). The cAnmndA and 

CmMan5A both displayed optimum activity at temperature 70°C and pH 3.4, respectively, 

whereas the XYNSEC-CmMan5A displayed optimal activity at 50°C and pH 5.47, a 

significantly lower temperature than CmMan5A expressed by A. niger D15[CmMan5A]. The 

result obtained for cAnmndA fall within the range reported by Ademark et al. (1999) which is 

expected when expressing the AnmndA in its native host. Although no previous data is 

available for optimum temperature for CmMan5A, the optimum pH for CmMan5A obtained 

in this study falls well below the optimal pH 7.0 reported by Dias et al. (2004). This change 

in characteristic may be a result of the codon optimized state of the CmMan5A, and the fact 
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that the gene was expressed in A. niger, which generally exhibits optimum activity at a lower 

pH (Table 1, van Zyl et al. 2010).  

The AnmndA protein produced by A. niger displayed a molecular mass of 264 kDa on a 

non-reducing SDS-PAGE and 135 kDa under reducing conditions, suggesting that the mndA 

is a dimer composed of two 135 kDa subunits (Ademark et al. 1999), whereas over-

expression of the AnmndA gene in A. niger displayed a protein species of 112 kDa following 

deglycosylation (Ademark et al. 2001). The protein cAnmndA present in the 60% ammonium 

sulphate precipitate yielded a distinct species of 120 kDa (Fig. 6A and B), which falls within 

the range reported previously (Ademark et al. 2001, Ademark et al. 1999). The C. mixtus 

CmMan5A protein produced by E. coli displayed a protein species with molecular mass of 

51 kDa (Centeno et al. 2006). In this study, ammonium sulphate purified cAnmndA and 

CmMan5A from A. niger D15[cAnmndA] and A. niger D15[CmMan5A] were separated by 

10% SDS-PAGE (Fig. 6A and B). The CmMan5A species was present in the 40% 

ammonium sulphate precipitate and displayed an apparent molecular mass of 55 kDa, similar 

to that reported by Centeno et al. (2006).  

Synergistic profiles on galactomannan have previously been reported for β-mannanases and 

β-mannosidases (Gübitz et al. 1996, Kurakake and Komaki 2001), as well as β-mannanases, 

β-mannosidases and α-galactosidases (Duffaud et al. 1997). When grown on guar-gum based 

media, the β-mannanase expressed by Thermotoga neopolitana 5068 was found mostly in the 

supernatant, whereas β-mannosidase and α-galactosidase were localised within the cell, 

suggesting that secretion of the β-mannanase into the culture media initially hydrolyses 

galactomannan into smaller polysaccharides, which are subsequently transported into the cell 

and further hydrolysed by β-mannosidase and α-galactosidase (Duffaud et al. 1997). On the 

other hand, Sclerotium rolfsii produces two β-mannosidases which liberate monomers 

directly from galactomannan. Enhanced hydrolysis was shown by the addition of the 

β-mannanases, where the enzyme randomly cleaved fragments larger than mannobiose from 

mannan (Gübitz et al. 1996). Halstead et al. (2000) showed that the sequential addition of an 

α-galactosidase and β-mannanase (from Pseudomonas fluorescens subsp. cellulosa) 

significantly increased the hydrolysis of galactomannan, indicating that the catalytic 

efficiency of β-mannanase on galactomannan is enhanced by pre-incubation with 

α-galactosidase. In this study the use of recombinant proteins Man1 and Agal expressed by 

S. cerevisiae Y294[man1] and S. cerevisiae Y294[Agal] strains, respectively, and CmMan5A 

expressed by A. niger D15[CmMan5A] were assessed for their ability to synergistically 
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degrade galactomannan (Locust bean gum). A gradual decrease was observed for substrate 

incubated without enzyme, indicating an influence of temperature and shearing by the 

apparatus itself (Fig. 7A). The greatest synergistic effect of the enzymes was observed when 

the substrate was incubated with all three enzymes (Man1, Agal and CmMan5A) (Fig. 7B). 

The least effect on viscosity was observed with incubation of galactomannan with Agal, due 

to the enzymes inability to hydrolyse the mannan backbone. Interestingly the enzyme 

CmMan5A had a significantly greater effect on the viscosity than expected. This change in 

viscosity can only be due to the enzymes ability to release mannose from the non-reducing 

end resulting in a decrease in molecular weight, since no endo-mannanase activity was 

detected (Dias et al. 2004). The combination of Man1 and Agal resulted in increased 

degradation by Man1, attributed to the removal of galactose side-chains by Agal, resulting in 

more accessible cleavage sites. 

In this study β-mannanase and α-galactosidase were expressed in S. cerevisiae, and the 

β-mannosidase in A. niger and E. coli, respectively. The characteristics of the enzymes were 

similar to that previously reported (Ademark et al. 2001, Ademark et al. 1999, 

Setati et al. 2001). High levels of α-galactosidase activity were observed, indicating the host 

S. cerevisiae may be a better suited host for the heterologous expression of α-galactosidase 

than P. pastoris. This is the first report of the Agal of T. emersonii being expressed in 

S. cerevisiae. The cAnmndA and CmMan5A could not be functionally expressed in 

S. cerevisiae (Table 1, Appendix). Therefore, A. niger was used as expression system. To our 

knowledge, this is also the first report of the expression of the CmMan5A in A. niger. This 

study concluded that the synergistic effect of β-mannanase, β-mannosidase and 

α-galactosidase had a significant effect on the viscosity of galactomannan when compared to 

individual incubation of the enzymes with the substrate. In terms of consolidated 

bioprocessing the ideal scenario would be to express these enzymes in a single host, such as 

S. cerevisiae, to obtain the complete hydrolysis of mannan.  
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GENERAL DISCUSSION AND CONCLUSIONS 

4.1. DISCUSSION 

Green house gasses and the depleting fossil fuels have led to the need to develop alternative 

energy sources. The complete hydrolysis and conversion of lignocellulosic material to 

biofuels could provide the solution to cost effective and sustainable energy with low levels of 

green house emissions (Aristidou and Penttilä 2000, Lynd et al. 2002). Due to the complex 

structure of lignocellulose, several enzymes are required for its complete degradation 

(Ademark et al. 1998, McCutchen et al. 1996, Stoll et al. 2000). Research is currently focused 

on the development of a recombinant microorganism capable of utilising lignocelluloses 

while converting the released sugars to ethanol (or other commodities) in a single step 

(Consolidated Bioprocessing) (Gírio et al. 2010).  

The yeast S. cerevisiae is currently the preferred host considered for consolidated 

bioprocessing (CBP) due to its ability to produce high levels of ethanol (Lin and 

Tanaka 2006). Other advantages of this yeast include its ability to grow on both simple 

hexose sugars and disaccharide sugars, has GRAS (Generally Regarded As Safe) status, has 

the ability to perform posttranslational modifications of heterologous proteins and relatively 

good tolerance to lignocelluloses-derived inhibitors and osmotic pressure (Gírio et al. 2010). 

However, the major inconvenience with using S. cerevisiae with regard to lignocellulosic 

fermentation is its lack of native cellulases and hemicellulases.  

Filamentous fungi generally have a greater secretion capacity than yeast and can be easily 

cultivated on inexpensive media. The diverse natural environments and the competition with 

other organisms present in these habitats probably underlie the extraordinary metabolic 

diversity of many of the filamentous fungi (Verdoes et al. 1995). A. niger is a commonly used 

host for foreign gene expression due to its GRAS status and high secretion capacity. The 

large range of enzymes produced by Aspergillus for the degradation of plant cell wall 

polysaccharides is of particular importance to the food and feed industries. However, a major 

disadvantage of fungi is their inability to produce or tolerate high levels of ethanol.  

Combining the advantageous and positive characteristics of S. cerevisiae and A. niger 

resulted in construction of galactomannan-hydrolysing enzyme strains. Ideally these strains 

would be cultivated on lignocelluloses while producing commercially important commodities 

such as biofuels.  
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In this study the following milestones had been reached: 

 The A. aculeatus man1 and T. emersonii Agal genes were successfully expressed in 

S. cerevisiae Y294 (laboratory strain) under transcriptional control of the ENO1 

promoter and terminator sequences. The ENO1 promoter resulted in constitutive 

expression of man1 and Agal. 

 The cDNA generated A. niger cAnmndA and synthetically generated C. mixtus 

CmMan5A genes were successfully expressed in A. niger D15 (laboratory strain) 

under the transcriptional control of the gpd promoter and glaA terminator sequences. 

The gpd promoter resulted in constitutive expression of the cAnmndA and CmMan5A.  

 The native secretion signal of the CmMan5A gene was removed and replaced with the 

XYNSEC DNA sequence coding for the secretion signal of xyn2 of T. reesei. 

XYNSEC-CmMan5A was successfully expressed in E. coli DH5α. 

 Investigation of the cAnmndA gene sequence compared to the sequence obtained from 

GenBank (Accession number XM_001394595) revealed a three base pair deletion. 

However, activity was detected on p-nitrophenyl β-D-mannopyranoside, indicating a 

functional  protein. The three base pair deletion may only be present in some strains. 

 Recombinant Man1 showed activity on Locust bean gum. Hydrolysis zones were 

observed on plates containing 0.5% Locust bean gum indicating extracellular 

endo-mannanase activity. 

 The S. cerevisiae strain expressing the Agal produced higher levels of activity than 

what had been reported with expression in Pichia pastoris (Similä et al. 2010). Host, 

media and vector type differences may attribute to the lower activities reported 

previously. The Agal used in this study had been codon optimized for expression in 

S. cerevisiae, which might also have benefited expression. 

 Co-expression of man1 and Agal in S. cerevisiae Y294[Agal-man1] showed lower 

levels of activities on the respective substrates when compared to 

S. cerevisiae Y294[man1] and S. cerevisiae Y294[Agal]. Saturation of the secretion 

capacity of the yeast might lead to less protein being produced. This is also the first 

report of the co-expression of a β-mannanase and an α-galactosidase in S. cerevisiae. 

 Growth of S. cerevisiae and E. coli strains showed no significant difference to those 

of the control strain, respectively, indicating no adverse effects on cell growth (in 

terms of cell density) created by the addition of foreign genes. 
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 Hyperglycosylation of Man1 and Agal by S. cerevisiae was confirmed when treatment 

with PNGase H resulted in smaller protein species present on an SDS-PAGE. This 

result suggests further evidence that S. cerevisiae hyperglycosylates heterologous 

proteins. 

 pH and temperature preferences for Man1, Agal, cAnmndA, CmMan5A and 

XYNSEC-CmMan5A indicated similarities as well as significant differences to 

previously reported data, possibly due to differences in hosts, cultivation media as 

well as the impact of glycosylation. 

 Both cAnmndA and CmMan5A displayed activity against p-nitrophenyl 

β-D-mannopyranoside, however relatively low levels of activity were observed for 

cAnmndA and CmMan5A compared to those previously reported. Such low activity 

may be due to differences in vectors, cultivation conditions and relative copy 

numbers, or, in the case of cAnmndA, the absence of the three base pairs in the cDNA 

copy which may have led to incorrect protein folding. 

 This is the first report of the expression of CmMan5A (native and synthetic) in 

A. niger. 

 The synergistic action of the three proteins (Man1, Agal and cAnmndA) essential for 

the complete hydrolysis of galactomannan displayed significant effects on the 

viscosity of Locust bean gum when used in combination, indicating hydrolysis of the 

Locust bean gum.  

 

4.2. UNSUCCESSFUL GENE EXPRESSION IN SACCHAROMYCES CEREVISIAE 

Expression of the CmMan5A, XYNSEC-CmMan5A and the cAnmndA genes in S. cerevisiae 

was unsuccessful. No extracellular activity could be detected on pNPM indicating that these 

enzymes are not active on the chemical substrate or might be trapped inside the cell. In order 

to elucidate the problem, several additional vector constructs and S. cerevisiae strains had 

been constructed (Table 1 of Appendix). Difference scenarios might explain why no visible 

activity was observed: 

Scenario 1: The enzymes should be active on LBG, because it is a native substrate. Therefore 

co-expression of the man1 (which produces mannobiose and mannotriose as end-product) 

with cAnmndA should result in growth on LBG. No growth was detected for 
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S. cerevisiae Y294[cAnmndA-man1], indicating either no active AnmndA or no secretion of 

AnmndA (thus intracellular AnmndA).  

Scenario 2: The lactose permease (lac12) of Kluyveromyces lactis had been proven to be a 

disaccharide transporter (Njokweni et al. 2012) and should therefore also be able to transport 

mannobiose. The lac12 was therefore co-expressed with the CmMan5A and the cAnmndA. If 

the CmMan5A or the cAnmndA was active (but intracellular), then 

S. cerevisiae Y294[YIplac128-Agal-man1-lac12-CmMan5A/cAnmndA] should be able to 

grow on mannan. No visible growth was detected on LBG, indicating that the AnmndA and 

the CmMan5A were either inactive or not being produced. 

Scenario 3: The enzymes (cAnmndA and CmMan5A) might not be compatible with the host 

(S. cerevisiae). The genomic copy of the β-mannosidase (AtmndA) gene of Aspergillus 

tubingensis was cloned and expressed in A. niger and S. cerevisiae, but no activity could be 

detected. No introns could be detected when aligned with the AnmndA DNA sequence. 

These findings lead us to conclude that S. cerevisiae may not be an ideal host for the 

expression of β-mannosidases. Evidence has suggested that the smaller the protein species the 

more efficient S. cerevisiae is at producing it (La Grange et al. 2000). The open reading 

frame of cAnmndA is 2.8 kb, double the average size of the S. cerevisiae open reading frame 

(Hauser et al. 1999). Additionally, this enzyme is produced as a dimer when expressed in its 

native host (Ademark et al. 1999). Expression of foreign genes in S. cerevisiae can result in 

incorrect folding of proteins, hindering competent assemblage of the dimer. Monomers are 

hyperglycosylated individually which may also affect dimer assembly. This may be the 

reasons why S. cerevisiae was unsuccessful in secreting a functional β-mannosidase. 

 

4.3. FUTURE WORK SUGGESTED 

This study paved the way towards the construction of a mannan degrading S. cerevisiae 

strain. The following recommendations are made based on the conclusions deduced from this 

study: 

 Clone and express other β-mannosidases in S. cerevisiae in an attempt to find one that 

is functional and does not have a negative impact on the host. 

 Over-express the man1, Agal and β-mannosidase in S. cerevisiae. 
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 Analyse the products of viscosity study to determine the rate limiting steps in mannan 

degradation. 

 Optimise the ratio of the enzymes required for optimal degradation (HPLC) using 

different promoters and vectors. 

 Determine if growth on mannan as sole carbon source is possible. 

 Perform anaerobic fermentation to determine ethanol yield. 

In conclusion, the man1 and Agal genes were successfully expressed in S. cerevisiae Y294 

whereas the CmMan5A and cAnmndA genes were successfully expressed in A. niger D15. All 

enzymes were partially characterised and levels of activity determined over time. Their 

effects on Locust bean gum had been demonstrated.  
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Table 1: List of plasmids and strains constructed that led to the conclusion that S. cerevisiae cannot be used as host to produce β-mannosidase. 

Strains and Plasmids Relevant Genotype Comment and Reference 
S. cerevisiae strains:   
Y294[CmMan5A] URA3 ENO1P-CmMan5A-ENO1T native secretion signal used 
Y294[XYNSEC-CmMan5A] URA3 ENO1P-XYNSEC-CmMan5A-ENO1T native secretion signal replaced by XYNSEC 
Y294[cAnmndA] URA3 ENO1P-cAnmndA-ENO1T cDNA copy with native secretion signal – PCR 

confirmed gene presence – no activity detected 
Y294[AtmndA] URA3 ENO1P-AtmndA-ENO1T No introns detected in genomic copy 
Y294[cAnmndA-man1] URA3 ENO1P-cAnmndA-ENO1T; ENO1P-man1-ENO1T expected growth if AnmndA is functional 

might be trapped intracellularly 
Y294[YIplac128-man1-lac12] LEU2 ENO1P-man1-ENO1T; ENO1P-lac12-ENO1T no growth on LBG, as expected; lac12 can transport 

disaccharides 
Y294[YIplac128-Agal-man1-lac12] LEU2 ENO1P-Agal-ENO1T; ENO1P-man1-ENO1T; 

ENO1P-lac12-ENO1T 
no growth on LBG, as expected 

Y294[YIplac128-Agal-man1-lac12-CmMan5A] LEU2 ENO1P-Agal-ENO1T; ENO1P-man1-ENO1T; 
ENO1P-lac12-ENO1T 
URA3 ENO1P-CmMan5A-ENO1T 

no growth on LBG, no active CmMan5A, might be 
trapped intracellular 

Y294[YIplac128-Agal-man1-lac12-cAnmndA] LEU2 ENO1P-Agal-ENO1T; ENO1P-man1-ENO1T; 
ENO1P-lac12-ENO1T  
URA3 ENO1P-cAnmndA-ENO1T 

no growth on LBG, no active cAnmndA intracellular 

   
A. niger strains:   
A. niger D15[AtmndA] pyrG+ gpdP-AtmndA-glaAT  
   
Plasmids:   
pBBH1-CmMan5A bla URA3 ENO1P-CmMan5A-ENO1T native secretion signal used 
pBBH4-CmMan5A bla URA3 ENO1P-XYNSEC-CmMan5A-ENO1T native secretion signal replaced by XYNSEC  
pBBH1-cAnmndA bla URA3 ENO1P-cAnmndA-ENO1T cDNA copy of AnmndA 
pBBH1-AtmndA bla URA3 ENO1P-AtmndA-ENO1T genomic copy of AtmndA, yet no introns detected 
pBBH1-AnmndA-man1 bla URA3 ENO1P-AnmndA-ENO1T;  

ENO1P-man1-ENO1T 
required for the final construct 

YIplac128-lac12 bla LEU2 ENO1P-lac12-ENO1T disaccharide transporter (Njokweni et al. 2012) 
YIplac128-Agal-man1-lac12 bla LEU2 ENO1P-Agal-ENO1T; ENO1P-man1-ENO1T; 

ENO1P-lac12-ENO1T 
final construct; to be co-transformed with either 
pBBH1-CmMan5A or pBBH1-cAnmndA 
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