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Synopsis 

 

South Africa is a relatively dry country with an annual average rainfall of 464mm 

compared to a world average of 860mm (WSA, 2009). Water shortages and droughts 

are fairly common to the western and high lying of regions South Africa. Due to its 

population growth and the rapid development, like the rest of the world, there has 

been an increased demand for water.  

 

Due to increasing costs of procuring water and its decreasing availability, the option 

of using seawater as a source for freshwater or directly in industrial processes has 

become competitive, especially in the arid parts of the world. The design of seawater 

intakes forms an integral part of providing a secure source of seawater. 

 

The objective of this thesis is to aid in the development of guidelines for the design of 

small scale seawater abstraction systems on rocky coastlines using the Horizontal 

Well Method. Recommendations for guidelines will be given. 
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Abalone seawater intake pump house can be seen as a rectangle in the top left 

portion of the image. Note the abalone production facilities can be seen in the 

bottom right (Adapted from Google Earth 2008) 

Figure 3.25: Schematic section of West Coast Abalones Seawater Intake 

Figure 3.26: Centrifugal pumps, at Intake for West Coast Abalone 

Figure 3.27: Slurry pumps, at Intake for West Coast Abalone 

Figure 3.28: Intake for West Coast Abalone 

Figure 3.29: Clock wise from top left, Western Province SA, The western peninsula. St 

Helena Abalone is situated south east of harbour. (Adapted from Google Earth 

2008) 

Figure 3.30: The intake pipelines for St Helena Abalone, 2No. ø300mm HDPE pipelines 

Figure 3.31: Schematic section of St Helena Abalone Seawater Intake 

Figure 3.32: The pumping infrastructure for St Helena Abalone 

Figure 3.33: Wastewater is discharged in the area where the intake pipelines cross the shore. 

Discharged water can be seen as white water, above and to the right of the collar 

on the HDPE Intake Pipeline 

Figure 4.1: Seawater Abstraction and disposal System: Option 1 (ZLH 2008a) 

Figure 4.2: Seawater Abstraction and disposal System: Option 2 (ZLH 2008a) 

Figure 4.3: Seawater Abstraction and disposal System: Option 3 (ZLH 2008a) 

Figure 4.4 Seawater Abstraction and Disposal System: Final Layout (ZLH 2008a) 

Figure 4.5: Proposed Seawater Intake System  

Figure 4.6: Cross-sectional of Breakwater (CEM, 2007). 

Figure 4.7: Material Grain Distribution for armour protection material of seawater Intake 

Figure 4.8: Physical Hydraulic Model for testing of Seawater Intake pipework 

Figure 4.9: Flow diagram depicting the loss of pressure head in the (HPM) 

Figure 4.10: Relationship between flow and the associated pressure loss for Test 1 (water 

only, no stone bedding) 

Figure 4.11: Relationship between flow and the associated loss of pressure head due to the 

intake pipe AND Stone bedding in the HPM 

Figure 4.12: Relationship between flow and the associated loss of pressure head due to the 

intake pipe, Stone AND Sand bedding in the HPM 

Figure 4.13: Loss of pressure head in the HPM (Water Only) 

Figure 4.14: A leak in the first half of WC2 of the HPM 

Figure 4.15: A dam constructed around the HPM 

Figure 5.1: View of inner section of half a ø250mm slotted PVC Pipe 

Figure 5.2: ø250mm slotted pipe in the Physical model 

Figure 5.3: Headloss, (Loss A) versus the flowrate for a fully flowing ø250mm Slotted pipe 

Figure 5.4: ø250mm slotted pipe with stone bedding and blanket 
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Figure 5.5: Headloss due to Slot Friction and Stone bedding including Slot friction 

Figure 5.6: Partial grading curve for combined Phillipi and Granular Filter sand 

Figure 5.7: Sand and stone material surrounding the intake pipe 

Figure 5.8: Headloss and rate of flow for a 3 hour test period 

Figure 5.9: Horizontal section through middle of Intake Pipeline 

Figure 5.10: 15mm flushing pipe. Note the holes/ports and black spacers that hold the pipe in 

the centre of the Intake pipeline 

Figure 5.11: Plan view of water column 1. Sand and 19mm stone mix after flushing with 

water. Note the Intake pipe runs along the upper edge 

Figure 5.12: A manifold used to create a mixture of water and air 

Figure 5.13: Air and water mixture flowing out the flushing pipe, Flow of air from holes seen 

as white plumes 

Figure 5.14: Plan view of water column 1. Sand and 19mm stone mix after Flushing with 

water and air. Note the Intake pipe runs along the upper edge 

Figure 5.15: Oblique view of water column 1. Sandbar on Bedding after Back flushing with air 

and water. Intake pipe runs along the left edge 

Figure 5.16: Headloss and Rate of Flow for a 6.5hour test period. After back flushing 

Figure 5.17: Typical Perforated PVC Pipe, similar to pipe used in Test 2 

Figure 5.18: Section and Elevation of ø250mm Perforated PVC Pipe 

Figure 5.19: Section and Elevation of Extra Perforated ø250mm Perforated PVC Pipe 

Figure 5.20: Headloss due to perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm perforated pipe 

Figure 5.21: Headloss due to extra perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm Perforated pipe 

Figure 5.22: Headloss due to Perforation Friction only and Stone bedding including 

perforation friction 

Figure 5.23: Sand ingress into Intake Pipeline before testing can commence 

Figure 5.24: Sand ingress into Intake Pipeline when testing commences 

Figure 5.25: The growth of sand mounds within the Intake Pipeline 

Figure 5.26: Development of front face of „dune‟ seen as angular stratified layers of sand 

Figure 5.27: Front face of the dune has reached WC1 and the Intake pipeline has started to 

scour clean 

Figure 5.28: Headloss due to Perforation Friction; Headloss due to Perforation friction and 

Stone bedding; and Headloss due to Perforation friction, Stone and Sand 

bedding. 

Figure 5.29: Internal View of half a ø250mm Metal Wire Pipe 

Figure 5.30: External View of half a ø250mm Metal Wire Pipe 

Figure 5.31: Headloss due to the Slots (Loss A) versus the flowrate for a fully flowing 

ø250mm Metal Wire pipe 

Figure 5.32: Headloss due to Slot Friction and Stone bedding including Slot friction 
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Figure 6.1: Perforation friction for all three intake pipe types 

Figure 6.2: Plot of Relationship between porosity and the flowrate divided by the associated 

headloss for the four test pipes 

Figure 6.3: Perforation friction for all three intake pipe 

Figure 6.4: Pressure loss and Flowrate vs. time relationship for the Slotted PVC Pipe with 

sand and  

Figure 6.5: Pressure Loss vs. Flowrate for Extra perforated PVC Pipe (WST + WSST) 

Figure 6.6: Slotted PVC Pipe-Method 1, 2 and 3: Headloss due to the stone bedding 

Figure 6.7: Extra Perforated PVC Pipe- Method 1, 2 and 3: Headloss due to the stone 

bedding 

Figure 6.8: Metal Wire Pipe- Method 1, 2 and 3: Headloss due to the stone bedding 

Figure 6.9: Perforated PVC Pipe-Method 1, 2 and 3: Headloss due to the stone bedding 

Figure 6.10: Comparison of Method 1 for all three pipe types 

Figure 6.11: Comparison of Method 2 for all three pipe types 

Figure 6.12: Comparison of Method 3 for all three pipe types 

Figure 7.1: Design Step Guide for a Seawater Intake 

Figure 7.2: Conceptual Seawater intake for Kidd‟s Beach 

Figure 7.2: Cross-sectional of Breakwater (CEM, 2007). 

Figure 7.3: Particle size distribution characteristics relevant to internal stability (CIRIA, CUR, 

CETMEF, 2007) 

Figure 7.4: Interface stability of granular materials (CIRIA, CUR, CETMEF, 2007) 

Figure 7.5:  Design chart for the interface stability of granular filters 

Figure 7.6: Material Grain Distribution for armour protection material of seawater Intake 

Figure 7.7: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF, 2007) 

Figure 7.8: Conceptual Seawater intake for Kidd‟s Beach 

Figure 7.9: Permeability for the Armour, Under Layers and Core Material versus grain or 

stone sieve size (CIRIA, CUR, CETMEF, 2007) 

Figure 7.10: Headloss vs. Flowrate for the Seawater Intake in Figure 8.5 

 

Figure A1: Hydraulic Model for testing intake pipework. 

Figure A2: V Notch weir inside the second water column. 

Figure A3: Tubing to measure height of water in a column. 

Figure A4: Outlet and Inspection window to Water Column 2 

Figure A5: Construction Drawing of Hydraulic Model 

Figure B1: V notch weir used for flow calculations 

Figure B2a: V Notch Weir 

Figure B2b: Flow augmenting structure adjacent to V notch weir on the right 

Figure B3: V notch weir and additional structure depicting flow pattern 

Figure B4: V notch weir with Measuring Needles 

Figure B5: V notch weir, additional structure and measuring needle orientation 
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Figure B6: Flow vs. Height for 90 V Notch Weir 

Figure B7: Flow vs. Height curves for Calibrated and Conventional outflow calculation  

Figure C1: Partial grading curve for Phillipi sand. 

Figure C2: Partial grading curve for Granular Filter sand. 

Figure C3: Partial grading curve for combined Phillipi and Granular Filter sand 

Figure D1: Slotted PVC Pipe Abstraction Model: Areas of interest 

Figure D2: Areas of Water Leakage 

Figure D3: Headloss due to the slots (Loss A) versus the flowrate for a fully flowing ø250mm 

slotted pipe 

Figure D4: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 

Figure D5: Plot of EGLs at the centre of the Intake Pipeline  

Figure D6: The EGL in the HPM for all nineteen tests 

Figure D7: Headloss due to the slots (Loss A) and Stone bedding versus the flowrate for a 

fully flowing ø250mm slotted pipe 

Figure D8: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 

Figure D9: Plot of EGLs at the centre of the Intake Pipeline for Water and Stone Bedding Test 

Figure D10: ø250mm Slotted pipe-Water and Stone Bedding Test: Pressure loss due to 

Stone Bedding Only 

Figure D11: ø250mm Slotted pipe -Water and Stone Bedding Test: Segmentation of Stone 

Bedding area 

Figure D12: Notional flow path of a stone bedding segment 

Figure D13: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 

Mindess, 2005) 

Figure D14: Graphical plot of Hydraulic conductivity Equation (Das, 2000) 

Figure D15: Results of Headloss due to Stone Bedding, within WC1 

Figure D16: Method 1 and Method 2: Headloss due to the stone bedding 

Figure D17: Plot of Pressure due to the slots, +sand + stone bedding and corresponding 

flowrate for a fully flowing ø250mm slotted pipe 

Figure D18: Headloss and rate of flow for a 3hour test period 

Figure D19: Plot of Pressure due to the slots, +sand + stone bedding and corresponding 

flowrate for a fully flowing ø250mm slotted pipe after flushing 

Figure D20: Headloss and rate of flow for a 6.5hour test period 

Figure D21: Headloss and rate of flow for test Before Back Flushing (BBF) and After Back 

Flushing (ABF) 

Figure E1: Perforated PVC Pipe Abstraction Model: Areas of interest 

Figure E2: Areas of Water Leakage 

Figure E3: Headloss due to perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm Perforated pipe 

Figure E4: Headloss due to extra perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm Extra Perforated pipe 
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Figure E5: Segmented HPM with notional EGL flow that enters W1 and exits fromWC2 

Figure E6: Plot of EGLs at the centre of the Intake Pipeline. Legend: Flowrates 

Figure E7: Headloss due to perforation (Loss A) and Stone bedding versus the flowrate for a 

fully flowing ø250mm Perforated pipe 

Figure E8: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 

Figure E9: Plot of EGLs at the centre of the Intake Pipeline for Water and Stone Bedding Test 

Figure E10: Method 1- ø250mm Perforated pipe, Water and Stone Bedding Test: Pressure 

loss due to Stone Bedding ONLY 

Figure E11: ø250mm Perforated pipe, Water and Stone Bedding Test: Segmentation of Stone 

Bedding area 

Figure E12: Notional flow path of a stone bedding segment 

Figure E13: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 

Mindess, 2005) 

Figure E14: Graphical plot of Hydraulic conductivity Equation (Das, 2000) 

Figure E15: Results of Headloss due to Stone Bedding, within WC1 

Figure E16: Method 1 and Method 2: Headloss due to the stone bedding 

Figure E17: Plot of Pressure loss due to the slots, +sand + stone bedding flowrate for Full 

ø250mm perforated pipe 

Figure E18: Plot of EGLs at the centre of the Intake Pipeline for Sand and Stone Bedding 

Test 

Figure E19: ø250mm Perforated pipe, Sand and Stone Bedding Test: Pressure loss due to 

sand and Stone Bedding ONLY 

Figure E20: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 

Mindess, 2005) 

Figure E21: Graphical plot of Hydraulic conductivity Equation (Das, 2000) 

Figure E22: Results of Headloss due to (sand and) Stone Bedding, within WC1 (Legend: 

Flowrates) 

Figure E23: Method 1 and Method 2: Headloss due to the stone bedding 

Figure F1: Metal Wire Pipe Abstraction Model: Areas of interest 

Figure F2: Areas of Water Leakage 

Figure F3: Headloss due to the slots (Loss A) versus the flowrate for a fully flowing ø250mm 

Metal Wire pipe 

Figure F4: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 

Figure F5: Plot of EGLs at the centre of the Intake Pipeline Legend: Flowrate 

Figure F6: Headloss due to the slots (Loss A) and Stone bedding versus the flowrate for a 

Full flowing ø250mm Metal Wire pipe 

Figure F7: Plot of EGLs at the centre of the Intake Pipeline for Water and Stone Bedding Test 

Figure F8: ø250mm Metal Wire Pipe, Water and Stone Bedding Test: Pressure loss due to 

Stone Bedding Only-Method 1 
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Figure F9: ø250mm Metal Wire pipe, Water and Stone Bedding Test: Segmentation of Stone 

Bedding area 

Figure F10: Notional flow path of a stone bedding segment 

Figure F11: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 

Mindess, 2005) 

Figure F12: Graphical plot of Hydraulic Conductivity Equation (Das, 2000) 

Figure F13: Results of Headloss due to Stone Bedding, within WC1 

Figure F14: Headloss due to Stone bedding ONLY versus the flowrate for a Full flowing 

ø250mm Metal Wire pipe-Method 2 

Figure F15: Method 1 and Method 2: Headloss due to the stone bedding  

Figure G1: Perforation friction for all three intake pipe types 

Figure G2: Perforation and Stone Bedding Friction for all three intake pipe types  

Figure G3: Pressure loss and Flowrate vs. time relationship for the Slotted PVC Pipe with 

sand and stone bedding 

Figure G4: Pressure Loss vs. Flowrate for Extra perforated PVC Pipe with sand and stone 

bedding 

Figure G5: Slotted PVC Pipe-Method 1 and Method 2: Headloss due to the stone bedding 

Figure G6: Perforated PVC Pipe-Method 1 and Method 2: Headloss due to the stone bedding 

Figure G7: Metal Wire Pipe Method 1 and Method 2: Headloss due to the stone bedding 

Figure G8: Perforated PVC Pipe Method 1 and Method 2: Headloss due to the sand and 

stone bedding 
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LIST OF SYMBOLS 

 

Cd : Coefficient of Discharge 

d : Depth (m) 

dm : Minimum depth (m) 

F : Froude Number (dimensionless) 

g : acceleration due to gravity (m/s2) 

 

LIST OF ABBREVIATIONS 

BBF : Before Back Flushing 

ABF : After Back Flushing 

CD : Chart Datum 

DEA : Department of Environmental Affairs 

DEAT : Department of Environmental Affairs and Tourism 

HDPE : High Density Poly Ethylene  

HPM : Hydraulic Physical Model 

HWM : Horizontal Well Method 

ID : Inner Diameter 

LAT : Lowest Astronomical Tide   

MCM : Marine and Coastal 

MSL : Mean Sea Level 

MWP : Metal Wire Pipe 

mPVC : modified Poly Vinyl Chloride 

OD : Outer Diameter 

PPP : Perforated PVC Pipe 

PVC : Poly Vinyl Chloride 

RO  : Reverse Osmosis 

SFA : Sea Fisheries Aquarium 

SPP : Slotted PVC Pipe 

SWL : Still Water Level 

SWAC : Sea Water Air Conditioning 

SWA : Sea World Aquarium 

TLB : Tractor-Loader-Backhoe 

UMW : Ushaka Marine World 

UMP : Ushaka Marine Park 

WC1 : Water Column 1 

WC2 : Water Column 2 
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Chapter 1 

1. INTRODUCTION 

 

1.1 Background 

 

 

South Africa (SA) is a relatively dry country with an average annual rainfall of only 

464mm, compared to a world average of 860mm (African Sky, 2005). Water 

shortages and droughts are fairly common to the western and high lying of regions 

South Africa.  

 

Due to increased development in SA, the demand for water has steadily increased; 

hence new sources of water are required. At present the vast majority of land based, 

human activity requires fresh water. Water for consumption is of significant 

importance. However the largest consumer of water is Industry.  

 

The quantity of water used, is dependent on the type of Industry concerned. 

Typically, large industries the likes of mining and power generation consume vast 

quantities of water. With the expansion of such facilities, which is the current situation 

in South Africa, there is increase in water demand.  

 

One option that would decrease the water demand is the recycling of water. 

However, based on the activity, the costs for recycling might be fairly large and prove 

to be unsustainable; hence a new cost effective water source is required 

 

In the past decade, the use of seawater has increased due to the decrease in fresh 

water resources. Many industries now use seawater where possible. Seawater is 

mainly used for: cooling purposes, drinking water, fish processing, mariculture, 

scientific and recreational facilities.  These are discussed further in Chapter 2.2 

 

Hence the use of seawater has provided growth for many sectors of industry. An 

investigation into seawater intake systems would assist in securing this limitless 

resource. 
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1.2 Present Situation  

 

At present in South Africa, there are many industries that use seawater as their 

medium. Activities the likes of fish processing, mariculture, scientific and recreational 

facilities operate in a saline environment. These facilities are usually found close to 

the shoreline hence the use of nearby seawater is favorable. With screening and 

filtration this source of seawater becomes complimentary.  

 

Another sector of industry is the power generation industry. This sector uses large 

volumes of seawater for cooling purposes. Hence power plants are purposely 

situated near the shoreline in order to make use of the nearby seawater. Situated on 

the west coast of South Africa, the Koeberg Power station uses seawater for cooling 

purposes. This power station has a direct surface intake and has an intake flowrate 

of 80m3/s (ESKOM, 2010a) 

 

Another significant use of seawater is the production of potable water from seawater. 

At present most potable water is delivered to its end users, via a municipality. The 

municipality usually treats water from a freshwater source and then delivers the water 

via a network of pipelines.  However with the increase in development, there has 

been an increased demand for potable water. Hence municipalities have to now 

deliver a larger quantity of water, over larger distances. This has a significant impact 

on the cost of the water. Hence new developments have to now consider more cost 

effective methods of providing potable water. 

 

One such method is the desalination of seawater to produce potable water. The most 

common technology used for desalination is Reverse Osmosis (RO). In arid 

countries, a large portion of potable water is produced from seawater. By 

comparison, the demand for potable water in South Africa via desalination is very 

small. However this technology has been used for small developments. Desalination 

for producing potable water has been used at Sedgefield, Western Cape, South 

Africa. Here beach wells are used to abstract seawater from the sandy shoreline. 

Water is abstracted at a rate of 156.25m3/hour. With a recovery of 40% , this 

produces potable water at a rate of 62.3m3/hour (Roussow, 2010) This system has 

proven to be effective in providing potable water to smaller developments and is now 

being considered by other developments/ residential communities. New plants were 

recently constructed at Mossel Bay, Knysna and Sedgefield while others at Port 
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Nolloth, Lamberts Bay and Saldanha are in the design phase. Hence it is into this 

branch of Coastal Engineering that investigations are required, in order to secure a 

reliable seawater intake system. 

 

1.3 Objective and Aims 

 

The objective of this thesis is to investigate the hydraulics of a proposed seawater 

abstraction system using the Horizontal Well Method (HWM) on rocky coastlines. 

The next objective is to provide recommendations for design guidelines for small 

scale seawater abstraction systems on rocky coastlines using the HWM. 

 

1.4 Report Presentation Structure 

  

Chapter 2: Literature Review. This chapter first documents information on 

different seawater intake systems and the manner in which seawater 

is collected. Thereafter this section investigates the hydraulic sphere 

of seawater intakes. 

 

Chapter 3: Review of existing seawater Intakes along South African coastline. 

This chapter looks at a few South African seawater intakes and details 

their unique conditions. 

 

Chapter 4 Case Study: Investigation of a horizontal well for abstracting seawater 

from the surf zone on rocky coastlines. This chapter examines how 

the horizontal well method can be used on a rocky coastline. The 

specific aims for a laboratory investigation are drawn. The parameters 

and procedures for the laboratory tests are agreed upon. 

 

Chapter 5: This chapter contains the results of the Case Study tests. These 

results include the testing of the three seawater intake pipes types 

which were tested in the Hydraulic Physical Model (HPM). 

 

Chapter 6: This chapter discusses the case study test results. 

 

Chapter 7 This chapter proposes a methodology on how to plan and design a 

small scale seawater abstraction system from the surfzone of a rocky 

coastline. It uses information gathered from the preceding chapters. 
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Chapter 2 

2. LITERATURE REVIEW 

 

2.1 Introduction 

 

The oceans have long been seen as untapped resources. The effective use of 

seawater intakes will increase the accessibility of this resource.  Chapter 2.2 lists the 

most common uses of seawater. Chapter 2.3 shows the various types of seawater 

intakes that are employed to abstract seawater. Chapter 2.4 is a hydraulic review that 

examines in finer detail, the areas that are of particular concern with small scale 

seawater abstraction in the coastal zone.  

 

2.2 Uses of Extracted Seawater: Overview  

 

Due to development and advances of technology, there are numerous ways in which 

seawater can now be utilised.  With supply being almost unlimited, this resource can 

be considered secure into the future. However, as history shows, man has severely 

affected multitudes of ecosystems with the uncontrolled use of a resource. Hence 

particular heed should be paid to the environmental impact of abstraction, usage and 

discharge of this seemingly unlimited resource. 

 

The following are the main usages of seawater. This is not an exclusive list and can 

be augmented to include specialised water demands. 

 

A. Cooling:  1. Cooling at power stations 

2. Air conditioning 

B. Desalination:   Potable water for human consumption 

C. Fish Processing:  Processing of fish for commercial consumption. 

D. Mariculture:   Farming of oceanic fauna and flora. 

E. Scientific Facilities:  Seawater used for facilities like aquariums 

F. Recreational Facilities: Seawater used for pools 

G. Environmental:  Seawater is used to augment natural systems. 

 

The uses for seawater listed above are discussed separately under the respective 

headings below with examples in South Africa and elsewhere. 
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2.2.1. Cooling 

 

2.2.1.1 Cooling at Power Stations 

 

The majority of electricity generated in the world, is done so via the burning of fossil 

fuel. Some electricity generating plants use gas turbines while a few use petroleum 

or nuclear energy (ESKOM, 2010a). However the large majority of electricity 

generating plants are coal based. Here coal is used to create pressurised steam 

which is used to turn turbines connected to electricity generators (ESKOM, 2010b). 

 

However as part of the process, large quantities of water are heated. This water is 

then cooled before being recovered or discharged into the environment (ESKOM, 

2010c).  The cooling of this water is usually done in the huge parabolic shaped 

cooling towers, synonymous with coal powered stations. Hence the usage of 

seawater for cooling purposes would eliminate these cooling towers. 

 

There are a number of variables that describe the quality of seawater. Some of the 

basic variables are water temperature, pH, turbidity, dissolved oxygen, salinity, 

hardness, and suspended sediment. (Hatzikos et al, 2007). These criteria need to be 

fully understood as they affect the filtration process and the associated costs. 

 

The amount of water required by electricity generating plants is large; hence the 

intake structures typical for such power stations are large as well. The type of intake 

for a power station is dependent on the coastline properties and many other factors 

(Desalination Issues Assessment Report, 2003). Table 2.1 below contains a few of 

these factors. 

 

Pictured in Figure 2.1 is Koeberg nuclear power station which is situated on the west 

coast of South Africa, 8km north of Cape Town. The plant uses a large amount of 

seawater for cooling hence it has a large intake/stilling basin which is flanked by two 

rubble mound breakwaters. It has a large intake rate of 80m3/s (ESKOM, 2010b). The 

water is pumped into the condenser where it aids in cooling down (ESKOM, 2010b). 

After water passed through the condenser, it discharge back into a water body. The 

discharged water is typically 5 to 15 degrees higher than the ambient seawater 

(Lattermann and Höpner, 2007). In the case of Koeberg, this is done via a canal just 

south of the southern breakwater, Figure 2.1. 
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Table 2.1: Aspects relevant for a seawater intake location selection 

Beneficial uses of surrounding waters and beach area 

Environmental sensitive areas 

Recreational areas 

Port demarcated areas (i.e. vessel navigation) 

Industrial use (i.e. proximity existing industrial ocean outfalls) 

Physical characteristics of the intake 

Intake type 

Required water depth 

Required flow 

Water quality 

Meteorological conditions 

Oceanographic conditions (i.e. seabed slope, bathymetry) 

Environmental processes 

Waves (i.e. construction constrains, intake structure stability, turbidity at intake works) 

Currents (i.e. construction constrains, intake structure stability) 

Sediment processes 

Environmental impacts 

Pollution 

Fouling 

Aesthetic considerations (i.e. could change character and appearance of beaches) 

Marine biology (i.e. Impact on shore and benthic marine organisms in the area of the intake, 

Entrainment issues (area rich in marine species)) 
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Figure 2.1: Koeberg nuclear power station (NPPW, 2008) 

 

Figure 2.2, below is of the South Bay Power Plant situated in Chula Vista, California. 

The power plant is situated adjacent to a relatively calm bay. Hence the seawater 

intake which is not in the surf zone, is not subjected any dynamic forces for example, 

wave action. This intake allows for vast quantities of sea water to be abstracted with 

minimal impact of undesirable contaminants. This power facility provides electricity 

for 700,000 households and has a seawater intake flowrate of up to 22m3/s (The San 

Diego Union-Tribune, 2006). 

 

 

Figure 2.2: South Bay Power Plant in Chula Vista, California (The San Diego Union-Tribune, 

2006) 
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2.2.1.2 Cooling for Air conditioning 

 

In the same manner that seawater is used for power plants, it can also be used for air 

conditioning. The common terminology for this process is termed Sea Water Air 

Conditioning (SWAC). However the incoming water has to be at a significantly lower 

temperature (Makai, 2008a). The figure below shows the temperature profile in the 

tropics for a typical deep ocean. 

 

 

Figure 2.3: Temperature profile for deep oceans in the tropics (Makai, 2008a) 

 

 

The flow diagram for the use of this cold seawater can be seen in Figure 2.4 below. 

Cold water is drawn from the sea and passes through a Heat Exchanger. The water 

is then warmed and enters the Chiller Unit (Makai, 2008b). Thereafter the heated 

water is gravitated/pumped back to the sea. 
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Figure 2.4: Typical flow diagram for seawater used in air conditioning (Makai, 2008b) 

 

This system has its draw backs.  The most adverse factor is the depth at which pipes 

have to go, in order to abstract sufficiently cold water. For coastlines with a fairly wide 

continental shelf, this would not be a viable option. Pipelines would have to be very 

long in order to reach the depths at which these cold waters are found. 

 

 

2.2.2 Desalination 

 

Desalination is the process by which potable water is extracted from seawater. With 

the decreased availability of fresh water, desalination is used to augment water 

needs. Large-scale desalination typically uses extremely large amounts of energy as 

well as specialized, expensive infrastructure, making it very costly compared to the 

use of fresh water (Mora Associates, 2007).  

 

 

Due to the growth of development and population, there been rapid growth in 

desalination technology and research into this field. This technology has grown to an 

advanced stage; hence package desalination plants are now available “off the shelf” 

(Aqualyng AS, 2009).This advance in technology now allows for mass amounts of 

water to be desalinated. Figure 2.5 shows the schematic flow of seawater in such a 
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system. This system has two pre-filter modules before the water enters the desalting 

process. 

 

 

Figure 2.5: General layout of a Reverse Osmosis Desalination system (Prankratz, 2008). 

 

Currently, the preferred method of desalination is Reverse Osmosis. Here salt water 

is forced through a membrane. The membrane allows H2O molecules through and 

the bigger salt crystals are flushed away as brine concentrate. Desalination systems 

do however have certain requirements. These requirements determine if the 

desalination process is financially viable. When considering desalination the 

assessment should consider all constituents that may impact plant operation and 

process performance. A thorough review of historical water quality data including 

seawater temperature, total dissolved solids (TDS), total suspended solids (TSS), 

and total organic carbon (TOC) is crucial (Prankratz, 2008). 

 

 

2.2.3 Fish Processing 

 

South Africa has two oceans that flank three sides of the country. The Benguela 

current, in the Atlantic Ocean, is fed from the Antarctic sea. This current is extremely 

high in nutrients. Hence the coastline it influences is rich with marine life. This in turn 

supports a large fishing industry. 

 

Most fish caught by fishing vessels are brought to shore for processing. As part of 

their operation, fish processing factories use seawater for the preparation and 

canning of fish products. Depending on their location, seawater is taken from the 

harbour or the neighbouring coastline. These processing plants are usually situated 
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close to the shore line in order to reduce the cost of transporting seawater to the 

processing plants. The economically viable option for sighting a fish processing plant 

would be to place it as close as possible to the mooring quays. Figure 2.6, Shows the 

fish processing plants situated near the quay wall at Elandsbaai, Northern Cape, 

South Africa. (Bosman, 2005) 

 

 
Figure 2.6: Fish processing plants close to harbour and quay wall. (Bosman, 2005) 

 

In Hout Bay, Western Cape, South Africa, Ikamva Lethu Fishing operates a fish 

processing plant that utilises seawater from the adjacent bay. Figure 2.7 is a 

schematic sketch of the Ikamva Lethu Fishing Jetty and seawater Intake 

configuration. Water is abstracted via this jetty that extends 18m in to the bay, Figure 

2.8. 

 

This jetty contains the pipework and the pumps used for pumping seawater to the 

fish proceeding plant. The pumps are situated at the end of the jetty with the intake 

pies extending a further 30m into the bay. This jetty is 40 years old and is in a state 

of disrepair (WSPACE, 2007). With regards to the flow of seawater within the factory, 

the current system is a flow through system with an in flowrate of 20l/s (ZLH, 2007). 
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Figure 2.7: Schematic sketch of Ikamva Lethu Fishing Jetty and Pumping Configuration 

 

 

 

Figure 2.8: Intake Jetty for Ikamva Lethu Fishing. (WSPACE, 2007) 

 

 

2.2.4 Mariculture 

 

Mariculture is in general, the farming of sea life for human consumption. Previously 

known as aquaculture, this branch of farming with seawater has subsequently 

become known as mariculture. Due to the depletion of natural fish stocks, mariculture 

can meet the increasing demand for seafood. 
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As the world developed into a global economy, other sea creatures from the coasts 

of South Africa have become desirable. Hence mariculture, which started with the 

farming of fish, has grown to include, Abalone, Mussels, Scallops, Clams, Oysters, 

Limpets Crayfish, Lobster and lately even Sea cucumbers. Figures 2.9 to 2.12 

(DEAT, 2001) 

 

Early mariculturists placed fish farms in sheltered bays and lagoons. Here wave 

action is at a minimum. The continuous flow of fresh seawater past the farm is a 

basic natural requirement.  

 

However farms in the ocean or at the shoreline were still subjected to extreme events 

like, storms and red tides. Additionally, the cost of equipment maintenance is 

extremely high. Hence farming moved to land based operations where the feed 

seawater could be monitored and controlled. There are numerous examples of 

mariculture in South Africa. Some of these are described in further detail in chapters, 

3.2, 3.6, 3.7 and 3.8. 

 

 

Figure 2.9:Abalone (DEAT, 2001) 

 

Figure 2.10:Brown Mussel (DEAT, 2001) 

 

Figure 2.11:Scallops (DEAT, 2001) 

 

Figure 2.12:Natal Rock Oyster (DEAT, 

2001) 
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2.2.5 Scientific Facilities 

 

Due to development, there are severe pressures on marine life. Hence much 

research is conducted to ensure that sea life is protected and is not severely 

impacted by man. This is done by several means. One alternative is the general 

informing of the public. This is done in the most convincing way by means of an 

Aquarium. Here the public can view sea life in their most natural habitat. The two 

major aquariums in South Africa being the Two Oceans Aquarium in Cape Town and 

the Sea World Aquarium, Figure 2.13, at Ushaka Marine World, in Durban. These 

two facilities will be discussed further in Chapters 3.4 and 3.5 respectively. 

 

Broad spectrum aquatic research is however conducted at specialised research 

aquariums. Here the scientific communities study the entire pelagic and benthic 

community in order to better understand and protect marine colonies.  While 

research is carried out in the above two aquariums, specialised research is carried 

out in small dedicated aquariums. Two such facilities of note are the Sea Fisheries 

Aquarium in Sea Point, Cape Town and the Natal Sharks Board in Mhlanga Durban. 

 

 

Figure 2.13: uShaka Marine World in Durban, South Africa
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2.2.6 Recreational Facilities 

 

Recreational facilities which use large quantities of seawater are usually situated 

close to the shoreline. Majority of swimming pools along the Durban coastline, Figure 

2.14, use seawater. Seawater is extracted by means of beach wells and circulated 

via submersible pumps (Wenlock, 2009). The resident time for water in the small 

circular public paddling pools is 2 hours, Figure 2.14. The larger rectangular, Rachel 

Finlayson pool has a sea water resident time of 4hours. Ushaka Marine World 

(UMW), Figure 2.15, also utilises seawater for its marine activities. The seawater 

intake for UMW is discussed chapter 3.5. 

 

 

Figure 2.14: Paddling pools and Rachael Finlayson pool (left) in Durban SA (Google 2008) 

 

 

Figure 2.15: uShaka Marine World in Durban, South Africa
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2.2.7 Environmental 

 

Seawater can be used to augment natural systems when extreme conditions are 

encountered. Seawater is used to enhance natural or man implemented systems and 

can even be used to create extreme events like flash floods. 

 

Figure 2.16 below is of the Zandvlei estuary near Muizenberg, Cape Town. Prior to 

development the estuary was frequently flushed by the rainfall runoff and diluted by 

the tidal action. However, at one time, the situation became extremely critical when 

the concentrate of pollutants in the estuary and the de Gama development became 

very high. Hence measures were taken to stabilise the amount of concentrates in the 

estuary. 

 

Seawater from False Bay was used to dilute the estuarine waters. A beach well was 

installed 100m east of the estuary mouth. This then fed into a pipeline which then 

delivered sea water to the estuary the de Gama development, hence causing a 

dilution of the water (Samson, 2010). 

 

 

Figure 2.16: De Gama Estuary and Beach well at Muizenberg. (Adapted from Google, 2008)
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2.3 Seawater Intake Systems 

 

There are numerous types of seawater intakes, with their designs being influenced 

by three major criteria, viz., 1.) the intended use of seawater, 2.) the coastal geology 

of the region and 3.) the coastal/wave climate of the area. Hence each seawater 

intake system is unique, due to the above three factors. 

 

2.3.1 Direct Intakes 

 

Direct seawater abstraction normally occurs at or near the seabed floor. Here a 

physical structure draws seawater directly into its connecting pipe work. These 

systems are typically designed to extract large volumes of seawater, hence the larger 

intake heads. The intakes for these systems are more often than not placed past the 

surf zone where sediment loads; erosion as well as wave forces, are reduced. 

 

Depending on the surf zone characteristics, the connecting pipe work lies above, 

partially or completely below the seabed. The connecting pipe work passes the 

breaking zone and terminates into a structure. These systems can either work via 

gravity or pumps. Figure 2.17 shows the inlet structure, and Figures 2.18 and 2.19 

show the pipe work during installation (submergence) for a power station in Majung, 

Malaysia respectively. The intake structures lie on the seabed and the „pipe work‟ 

comprises a concrete box culvert with 3 channels. This system is fairly large with a 

capacity of approximately 88.2m3/s (ZLH, 2008). 

 

 

Figure 2.17: Majung Power Station seawater intake structure (ZLH, 2008a) 
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Figure 2.18: Majung Power Station seawater connecting culverts on land (ZLH, 2008a) 

 

 

Figure 2.19: Majung Power Station seawater connecting culvert being floated and placed into 

position (ZLH, 2008a) 
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2.3.2 Sub-bottom Abstraction 

 

Sub-bottom abstraction is the removal of seawater, with the intake structure 

occurring below the seabed, also referred to as “Partially direct” intake of seawater. 

Hence this implies that the floor is porous being either a non-cohesive soil or porous 

rock. Gravity is the flow driving mechanism. Seawater flows into the intake structure 

and then into the connecting pipework. 

 

The seawater then flows into a collection well where it is usually transferred to land 

via pumps. The one added benefit of such systems is that they provide seawater that 

has had a degree of filtration due the natural medium that they have had to flow 

through. 

 

Figure 2.20 below, shows a section of a Sub-bottom seawater abstraction system. 

Seawater flows down, through the seabed, into the intake pipes. Water then flows via 

a pipe to a collection sump that is beyond the shore zone. Seawater is then pumped 

out the collection sump to its end use. (Reynolds & Maley, 2008) This abstraction 

system is usually augmented for a particular environment and is based on the 

availability of material and plant equipment. 

 

 

Figure 2.20: Typical sub-surface seawater abstraction (Reynolds & Maley, 2008) 
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2.3.3 Surf Zone Abstraction 

 

The surf zone is not a good location when abstracting seawater. This is due to the 

dynamically turbulent nature of the surf zone and the abundant quantity of 

suspended sediments and high wave forces. This portion of the seafloor also 

normally contains a higher quantity and diversity of sea life, hence the environmental 

impacts on seawater intakes at the shoreline, can be potentially negative. 

 

The coastlines are numerous in their geology and topography but are essentially 

either sandy or rocky. Sandy coastlines imply beaches of fine grain material and 

rocky coastlines implying rock strata, outcrops and headlands.  Hence there are 

various approaches to abstracting seawater in these two coastal types. 

 

2.3.3.1 Sandy Coastlines 

 

Sandy coastlines make up a significant portion of the South African coastline. 

Coupled with the South African climate, these areas have a high recreational value. 

Hence, seawater abstractions in these areas, apart from other factors, have had to 

consider the aesthetic design of such systems. 

 

The most common seawater abstraction systems used at sandy shores, for large 

discharges, are intake basins (e.g. Koeberg Ch.2.2.1.1). For smaller discharges, 

radial beach wells are used. Figure 2.21 shows radial beach wells on a sandy beach 

at Long Beach, California (Wang, 2009). Figure 2.22 is a typical section through the 

sump of a radial beach well (Wang, 2009). 

 

It can be seen that subsurface pipes are placed in suitable material, at a sufficiently 

subterranean depth. The water then flows under gravity, through the sand, into the 

pipes and into a collection sump. This water is then pumped out using submersible 

pumps. 
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Figure 2.21: Position of radial beach wells shown on Long Beach, California (Wang, 2009) 

 

 

Figure 2.22: Section through a horizontal/ radial well (Wang, 2009) 
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2.3.3.2 Rocky Coastlines 

 

A coastline is considered rocky when the vast majority of the shoreline is composed 

of rock. Due to the dynamic nature of shorelines, pockets of sand might be present.  

 

When abstracting seawater, rocky coastlines are not the preferred topography; as 

working in the surf zone within a hard material is fairly complicated. If the rock is 

found to be fairly pervious, then a subsurface abstraction system approach is 

preferred and drilling horizontal wells into the surf zone is the favourable method by 

which seawater can be collected.  

 

Another method is the excavation of a trench out from the shoreline into the surf 

zone. In Figure 2.23 an example of a concrete compartmentalized section is used to 

filter sea water into a collection sump.  

 

 

Figure 2.23: Seawater intake on a rocky shore. (Thiess, 2006) 
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2.4 Hydraulic Review 

 

 

2.4.1 Introduction 

 

This Chapter reviews a few hydraulic processes concerned with small scale seawater 

abstraction in the coastal/aquifer zone. Chapter 2.4.2.examines general methods for 

subsurface seawater abstracted from a sandy beach. Chapter 2.4.3 depicts the basic 

principles of ground water flow while Chapter 2.4.4 examines groundwater 

abstraction theory. Chapter 2.4.5 looks at the hydraulic conductivity of material as 

this is critical for the design of non surface, seawater intake systems. Chapter 2.4.6 

examines current seawater intake planning and design criteria for small scale 

abstraction. Chapter 2.4.7 will focus on filter design criteria 

 

 

2.4.2 Subsurface Seawater Abstraction from a Sandy Beach 

 

The following general methods of abstraction depict the different ways seawater is 

abstracted from a sandy beach. Each examined intake has its own particular method 

for abstraction and is as follows. 

 

 

2.4.2.1 Beach Wells 

 

Figure 2.24 shows the typical section and layout of a Beach well. A Beach well 

characteristically consists of casing pipes that line boreholes with screened sections 

usually at their lower parts. Due to economics, the diameters of well screens are 

usually 15 to 30cm. A turbine pump is lowered into the casing below the water table 

in the well. The pump motor, integrated with the pump can be submerged. The motor 

can also be installed at the top, driving the pump via a long shaft (Schwarz, 2000). 
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Figure 2.24: Layout and typical section of Beach wells (Schwarz, 2000) 

 

2.4.2.2 Horizontal Beach Galleries 

 

A horizontal beach gallery, Figure 2.25, is an alternative to Beach wells when the 

thickness of the water bearing formation is small or when its permeability is low. It is 

constructed by digging a ditch on the beach parallel to the coast. In the majority of 

cases, the ditch is filled with graded gravel in which a screened pipeline collector is 

installed. Beach sand is used to fill the ditch above the gravel layer. Water is pumped 

up from the gallery via well points and submersible pumps (Schwarz, 2000). 
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Figure 2.25: Layout and Section of a typical Horizontal Beach Gallery (Schwarz, 2000) 

 

 

2.4.2.3 Infiltration Galleries with Horizontal well-screens 

 

Infiltration galleries incorporate a horizontal gallery installed out of the surfzone. 

Horizontal well screens are then connected to the gallery, near the invert of the 

gallery. These well screens project into the sandy beach at a predetermined depth. 

The well screens are normally parallel to each other, although screens at the ends of 

the gallery, can be projected at an angle. A typical infiltration gallery with horizontal 

well screens is shown in Figure 2.26. 

 

The length, diameter and slot size of the well screens is determined by the 

parameters of the sand, and the required yield of the system. The screen diameter is 

also governed by the need to minimise head loss for flow through the screen pipe 

(Basson, 2005). 
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Figure 2.26: Infiltration galleries with horizontal well screens (Basson, 2005) 

 

2.4.2.4 Seabed Filtrations 

 

Figure 2.27 shows an example of Seabed Filtration. This intake system is mainly 

used when the hydraulic conductivity of the surrounding material is very low. The 

Seabed filtration system is constructed by dredging or trenching the seabed bottom 

parallel to the coastline. The gallery is placed at an appropriate depth below the 

seabed. Pipelines connect the gallery to the coast. The trench is filled with a graded 

gravel and sand pack (Schwarz, 2000). 

 

The system operates similarly to a slow sand filter. In order to regenerate capacity 

after clogging, the upper sand layer of 3 - 5 cm is removed and replaced periodically. 

The seabed filtration system can be used as a seawater intake but can also be used 

in riverbeds for abstraction of fresh water (Schwarz, 2000). 

 

Stellenbosch University  http://scholar.sun.ac.za



27 

University of Stellenbosch 

 

Figure 2.27: Seabed Filtration (Schwarz, 2000) 
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2.4.3 Basic Groundwater Flow Theory 

 

Water and most other liquids, can flow through all natural material. The velocity at 

which the water moves is inversely proportional to the size of the openings through 

which it moves Roberson, et al, 1998). Figure 2.28 below shows water flowing from 

one reservoir to another, through a conduit filled with a permeable material 

(Roberson et al, 1998). 

 

Figure 2.28 Flow through a conduit filled with permeable material (Roberson et al, 1998) 

 

It was found that for small velocities, the flow is laminar and the energy loss is 

linearly proportional to the velocity V: 

 

    
  

 
        (Eqn LR1) 

Where: 

 

 hL = Headloss due to friction 

 L = The length of the conduit  

 V = Velocity 

 k = The proportionality constant / Hydraulic conductivity constant 

 

k is a function of the size and shape of the voids between the particles making up the 

porous material as well as the viscosity of the liquid. Table 2.2 shows the porosity 

and range of hydraulic conductivity for various natural materials. 
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Substituting hL = h2-h1 into LR2 produces 

 

    
     

 
  

  

 
        (Eqn LR2) 

 

Where: 

 

 i = Hydraulic gradient 

 

This equation (LR2) is known as Darcy‟s law. Darcy concluded that the flow velocity 

through a porous material was directly proportional to the gradient of the piezometric 

head (hydraulic gradient). Note that Darcy‟s law is only valid for laminar flow.  

 

Table 2.2: Porosity and hydraulic conductivity: Natural Material (Roberson et al, 1998) 

Material Porosity Hydraulic conductivity 

  m/day 

Soil 0.55 10
-3

 to 5 

Clay 0.5 10
-7

 to 10
-4

 

Sand 0.25 0.06 to 120 

Gravel 0.2 100 to 7000 

Limestone 0.2 10
-4

 to 500 

Sandstone 0.11 10
-5

 to 0.5 

Basalt 0.11 10
-8

 to 1000 

Granite 0.001 10-
8
 to 5 

 

As can be seen in Table 2.2 above, there can be, a wide variation of hydraulic 

conductivity for a particular material. Basalt for example can vary in hydraulic 

conductivity from 10-8 to 1000m per day. The lower number is applicable to 

unfractured basalt in its natural state. The higher number is indicative of basalt that 

has under gone fracturing. Large hydraulic conductivity is typical of a highly fractured 

rock. (Roberson et al, 1998) 

 

Note that the flow regime investigated is laminar. Turbulent flow as well as empirical 

methods to determine hydraulic conductivity, is presented in Chapter 2.4.5.6 
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2.4.4 Groundwater Abstraction 

 

2.4.4.1 Well Hydraulics  

 

Wells are the most common method used to extract water from the earth. The well in 

Figure 2.29 is the most common layout of a borehole well. Figure 2.24 shows how 

these wells can be connected to a manifold. Wells are designed to be drilled to a 

depth where water can be found. The area that contains a saturated concentration of 

water is termed an aquifer. 

 

A casting is usually installed to line a borehole. For these wells, a short piece of 

casing would be grouted in the top of the well to protect against the unwanted inflow 

from layers of soil that contain undesirable elements. (Roberson et al, 1998) A grout 

seal at the surface prevents surface runoff from entering the borehole and reaching 

the source aquifer. The bottom of the well contains the well screen which allows 

water to enter the well. 

 

Figure 2.29: Most common section of a borehole well (Roberson et al, 1998) 
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A well screen is typically surrounded with a gravel pack. These packs are usually 

zones of large hydraulic conductivity which enhance flow into the well screen. This is 

true of normal boreholes, where the surrounding material is finer than the gravel 

pack. However this is not the case when wells are situated in sandy beaches. Here 

the gravel packs act more like filters to stop the intrusion of fine material as opposed 

to creating an area of higher hydraulic conductivity 

 

 

2.4.4.2 Unconfined steady flow Well hydraulics 

 

From equation LR2, the following equations show how axially symmetrical flow into a 

well can be analysed. Figure 2.30 below shows the manner in which it is done. 

 

 

Figure 2.30: Axially symmetrical flow into a well in an uncontrolled aquifer (Roberson et al, 

1998) 
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The velocity of the flow is steady and equal to V at a distance r from the centre of the 

well. The depth of the flow at that point is h. The original depth of groundwater is h0. 

The radius of the well is rw, and the steady state height of the water in the well is hw. 

It is assumed that the flow is steady. The aquifer is homogenous and underlain by an 

impervious layer, but unconfined on top. 

 

From equation LR2, if the area A of inflow is 2πrh then LR2 becomes 

 

        
  

  
      

  

  
    (Eqn LR3) 

 

Since dh/dr = dh/dL 

 

Hence if equation LR3 is integrated as  

 

  ∫ (
 

 
)       ∫  

  
  

  
  

      (Eqn LR4) 

to yield 

 

   
     

    
  

  (
  
   

)
       (Eqn LR5) 

 

Due to pumping, the drawdown of the water table is ho - h and the vertical distance at 

a point r distance from the well centreline. The development of equation LR5 has 

assumed that the velocity is steady and that water moves continually towards the 

well from some undefined surrounding source so that he water level remains at a 

constant level h at a distance r from the well. 

 

In reality, this seldom occurs as the flow of water from surrounding sources can vary 

over time. In general, equation LR8 gives reasonably accurate results if the 

maximum drawdown is not more than about one half the aquifers depth. As 

drawdown becomes too great, the assumptions of horizontal flow are violated and 

Equation LR5 is no longer applicable. 

 

Equation LR8 can also be used to calculate the hydraulic conductivity of an aquifer. 

To calculate this value, a pumping test is required. This is discussed further in 
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Chapter 2.4.4.3. The following Table 2.3 contains estimation of the order of 

magnitude of k values for some material. 

 

Table 2.3: Hydraulic conductivity of various materials (Schwartz, 2000) 

Material Hydraulic conductivity 

 m/day 

Clay 10
-5

 to 10
-7

 

Silt 10
-1

 

Fine Sand 10
-1

 to 10 

Course Sand 10
0
 to 2 x 10

2
 

Gravel 10
0
 to 10

3 
or more 

 

 

2.4.4.3 Pumping Tests  

 

The most significant aspect of quantitatively predicting the movement of groundwater 

or in determining the yield of a well is accurate knowledge of the aquifer 

characteristics. These characteristics include: the hydraulic conductivity k, the aquifer 

thickness B, and the storage coefficient S. 

 

In simple cases, drawdown and discharge data can used to estimate aquifer 

characteristics. The basic tool for collecting this data is the pumping test. This test 

consists of pumping directly from one well while water levels are recorded in one or 

more observation wells. These wells are drilled solely for observing the drawdown as 

pumping of the test well proceeds. Having at least three observation wells, each at 

different distances from the pumped well, is desirable (Schwarz, 2000).  

 

In general, it is desirable to space the wells at approximately at 1.5, 2, and 4 times 

the thickness of the aquifer away from the test well (Schwarz, 2000). Experience has 

shown that a concept called the radius of influence can often be invoked where the 

surface of the groundwater table at an appreciably large distance from the well, 

(usually 500* Well radius (rw) or approximately 300m) is assumed to be at a constant 

elevation (Roberson et al, 1998). 

 

Equation LR5 can be used to estimate the hydraulic conductivity of an aquifer with 

information obtained from a pumping test. A well, constructed as shown in Figure 
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2.30, and smaller observation wells, are drilled at a distance such as r1 and r2 from 

the well (Roberson et al, 1998). The water levels are observed and recorded before 

pumping at a known rate begins. Thereafter the approximately steady state values 

achieved after continuous pumping are recorded. These values are then substituted 

into Equation LR5 to obtain estimates of k. 

 

Note that due to the shape of the drawdown surface varying with time, values of k 

determined through using Equation LR5 must be considered approximations. If the 

groundwater levels go down slowly, the calculated hydraulic conductivity can be 

reasonable. However, if the groundwater levels continue to fall rapidly, the flow is 

obviously very unsteady, and errors in the value of hydraulic conductivity, as 

determined from the steady-state equations, can be significant (Roberson et al, 

1998).  

 

Several techniques have been developed for approximately evaluating local aquifer 

characteristics using so-called rate of use or slug tests. In the absence of observation 

wells, valuable information can be obtained from the pumped well observations. One 

of the techniques requires that a volume of water is quickly removed from the well, 

and the rate of rise of the water surface in the well is carefully observed after the 

water removal. The rate of rise can then be related to the local value of the hydraulic 

conductivity. These techniques are much cheaper and quicker to perform than 

pumping tests and are valuable for use in preliminary investigations (Schwarz, 2000).  
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2.4.5 Hydraulic Conductivity of Filter and Porous Material 

 

2.4.5.1 Introduction  

 

Basic ground water flow theory was covered in Chapter 2.4.3. This introduced the 

linear relationship between the flow velocity v, the permeability k and the hydraulic 

conductivity i. This can be seen in equation LR2  

 

When the size of the material starts to become larger, Darcy‟s Law for laminar flow 

starts to become invalid. Looking at Figure 2.31, when the hydraulic gradient is 

increased, the flow remains laminar in Zones I and II. With the line being fairly 

straight in this portion, the velocity is linearly proportional to the hydraulic gradient 

(Das, 2000). 

 

 

Figure 2.31: Variation of velocity v with hydraulic gradient i (Das, 2000) 

 

At a higher hydraulic gradient, the flow becomes turbulent (Zone III). Thereafter, 

when the hydraulic gradient is decreased, laminar flow is only once again attained in 

Zone I. Thereafter, it is deemed that laminar is found to occur in Zone I only.  
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2.4.5.2 Absolute Permeability 

 

The hydraulic conductivity k of soils are dependent on many factors. These are 

mainly: grain size distribution, pore-size distribution, void ration, fluid viscosity, 

roughness of material particles and degree of saturation. Hence for similar element 

the hydraulic conductivity k can vary. Therefore is understood that k would vary for 

different materials (Das, 2000).  

 

The viscosity of a fluid flowing through a porous material will affect the hydraulic 

conductivity k of a material. This hydraulic conductivity is dependent on the Absolute 

Permeability ƙ and defined by equation LR6 below. The relevance of this equation 

becomes evident in the following section 

 

    
  

 
                   (Eqn LR6) 

 

Where: 

k = Hydraulic Conductivity 

γw= Unit weight of water 

η = Viscosity of water 

ƙ = Absolute Permeability 

 

 

2.4.5.3 Hydraulic Conductivity: Empirical Relations  

 

In the past, several empirical methods have been derived for estimating the hydraulic 

conductivity. A few of these equations and associated methods are presented below 

(Das, 2000).  

 

Hazen 

 

Hazen proposed the following empirical relationship for the hydraulic conductivity of 

sand that was fairly uniform in nature. This equation was formulated based on 

Hazen‟s observations of loose, clean, filter sands.  The equation is as follows: 

 

        
 

                    (Eqn LR7) 
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Where: 

k      = Hydraulic Conductivity 

c      = Constant that varies from 1.0 to 1.5 

D10  = Effective size, in mm 

 

 

Kenny, Lau and Ofoegbu 

 

As was mentioned previously in Chapter 2.4.5.1, Darcy‟s formula is valid for laminar 

flows only. Hence equation LR2 would not be applicable. However it was found that 

under low hydraulic gradients, laminar flow conditions can be found in in very coarse 

sands and gravels. Kenny, Lau and Ofoegbu conducted laboratory tests on granular 

soils in which the particle sizes in various specimens ranged from 0.074 to 25.4mm. 

The uniformity coefficients, Cu varied between 2 and 12. These tests showed that for 

laminar conditions, 

 

                
 

                 (Eqn LR8) 

 

Where: 

ƙ = Absolute Permeability 

D5 = the effective size, in mm 

Equation LH8 is based on results shown in the following Figures 2.32 and 2.33  
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Figure 2.32: Results of Permeability Tests for Cu = 1-3 (Das, 2000) 

 

 
Figure 2.33: Results of Permeability Tests for Cu>3 (Das, 2000) 
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2.4.5.4 Hydraulic Conductivity: Turbulent Flow 

 

As mentioned in Chapter 2.4.5.2, the flow of water through most soils is laminar. 

However, as material size increases, for example rockfill, the flow though the larger 

voids is found to be turbulent. In Darcy‟s law the Flow velocity V and the Hydraulic 

gradient i share a linear relationship. When the flow becomes turbulent, this equation 

has to be replaced by a non linear relationship. This is summarised by Forchheimer‟s 

Equation LR9 below: (CIRIA, CUR, CETMEF, 2007) 

 

              | |                (Eqn LR9) 

 

where, 

i = Hydraulic gradient 

V= Flow velocity 

 

and AFor and BFor are coefficients that can be estimated from the median stone of Dn50 

and the volumetric porosity nv by using the following Equations: 

 

          
      

 

  
 

  

     
                 (Eqn LR10) 

 

          
    

  
 

  

     
                (Eqn LR11) 

 

 

Where  

 αFor  ≈ 1000 to 2000 

 βFor   ≈ 1.0 to 1.5 at least for fairly uniform material 

Dn50  = Diameter of the average particle making up the porous material 

 vw       = Kinematic viscosity of the fluid≈ 10-6 m2/s 

 nv       = Volumetric porosity 

 

In equation LR9, the first “AFor” term is dominant when the flow velocity between the 

voids is small enough to be laminar. The second “BFor” term becomes dominant when 

flow through that medium becomes turbulent. 
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It is often practical to simplify the Forchheimer‟s relationship by linearisation to form 

the equation LR12. Some general values for the resulting permeability, k can be 

found in Table 2.4. Figure 2.34 provides experimental results for several types of 

granular material. 

 

     
 

        √        
      | |

               (Eqn LR12) 

 

Table 2.4: Permeability of granular materials (CIRIA, CUR, CETMEF, 2007) 

Particle Type Diameter (D) Range Permeability, k 

 mm m/s 

Large stone 2500-800 1 (turbulent) 

„One-man stone‟ 300-100 0.3 (turbulent) 

Gravel 80-10 0.1 (turbulent) 

Very course sand 3-1 0.01 

Course sand 2-0.5 0.001 

Medium sand 0.5-0.25 0.001 

Sand with gravel 10-0.05 10
-4

 

Fine sand 0.25-0.05 10
-5

 

Silty sand 2-0.005 10
-6

 

Sandy clay 1-0.001 10
-7

 

 

Figure 2.34: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF,2007) 
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2.4.6 Hydraulic Design Guidelines: Sub Surface Seawater Abstraction 

 

 

2.4.6.1 Introduction 

 

There are numerous guidelines that aid in the design of seawater intakes. In order to 

meet the objectives of this thesis, only the quintessential guidelines with respect to 

hydraulic design of subsurface seawater abstraction will be reviewed. 

 

In order to provide a brief, concise review, it is best to distinguish the design 

guidelines from the planning guidelines (of a subsurface intake). Note that the 

planning guideline will be mentioned in brief, where appropriate, but will not be 

further investigated. This review will mainly cover a) the hydraulic design guidelines 

associated with the intake types documented in Chapter 2.4.2.and b) the proposed 

seawater intake in Chapter 4. 

 

Note that the hydraulic design of an intake is only part of the entire design/planning 

process. The hydraulic design of a seawater intake cannot be removed as a separate 

component from the total design process. The hydraulic design of a seawater intake 

is a list of guidelines that address an array of hydraulic situations.                                                                                                                                                                          

Figure 2.35 is a representation of most hydraulic factors that must be understood, 

when developing a sub-surface seawater intake. This review will concentrate on the, 

“Hydraulics within Seawater Intake” component. 

 

 

 

Figure 2.35: Factors  to consider when developing a sub surface seawater intake 
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2.4.6.2 General Hydraulic Design Criteria 

 

The following are general design criteria when designing a small scale seawater 

intake. Due to the settlement of material, the Infiltration rates from areas with minimal 

wave action will ordinarily decrease with time when compared with areas with 

constant wave action. It is advantageous when the wave activity is particularly 

vigorous. Hence the screens and filter pack material used for infiltration galleries may 

become partially plugged with sediment over time. Thus, it is good engineering 

practice to estimate the plugging potential and allow for excess entrance area to 

maintain the required flow. To maintain yield over time, the actual open area of the 

screens should be twice the required open area, i.e. the screen length should be 

doubled (Basson, 2005). 

 

The length, diameter and slot size of the well screens will be determined by the 

parameters of the sand, and the required yield of the system. The screen diameter is 

also governed by the need to minimise head loss for flow through the screen pipe. It 

is recommended that the well screens be connected to the manifold by a length of 

flexible pipe (helical). This will allow for some movement of the well screens without 

shearing the screens at the manifold (Basson, 2005). 

 

 

2.4.6.3 Backflushing 

 

It has generally been found that systems that are backwashed regularly as part of 

normal operation procedures fare better than systems that are not backwashed 

(Basson, 2005). 

 

Backflushing of the screens will remove any fines that have accumulated in the 

screens and will assist in breaking down and controlling the development and build 

up of scale and / or biofilm in the screens (Basson, 2005). Backflushing techniques 

include: 

 

 gravity backflushing,  

 piping and valve systems to pump from several screens while backflushing 

others, and  

 air backflushing (Basson, 2005). 
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It is recommended that where possible, the system be designed such that it can be 

backwashed. This can either be done by incorporating a return flow from storage 

tanks or by incorporating a circular return system, whereby water abstracted from 

one screen is pumped back into another screen to backwash it.  

 

Problems can arise if fines and biofilm etc. being washed out of the screen being 

backwashed is sucked into the screen that is being used to abstract the water for 

backflushing. This could lead to clogging of some of the screens (Basson, 2005). 

 

Based on the laboratory tests conducted by Basson (2005), the following 

backflushing recommendations are made: 

 
Backwashing should be done when the abstraction capacity decreases by 10% or 

when the negative pressure of the suction head of the hydraulic pump drops below a 

specified value. These are some of the measures used to protect the pump. 

• For a well screen longer or shorter than 3m, only the duration of this backwash 

procedure and the pressure of the air backwash must be altered, not the capacity of 

water backwash. Water backwash should be equal to twice the abstraction rate. 

 

2.4.6.4 General Design Criteria: Horizontal Screens in Seawater Intakes 

 

A major design principle for infiltration galleries involves the orientation of the Intake 

screen relative to the surface water or groundwater flow directions. For swash zone 

galleries, the screen is oriented perpendicular to the shoreline. For non swash zone 

galleries, the screen is placed perpendicular to the groundwater flow to minimize the 

head loss; that is, the screen is located parallel to the beach. Important design 

criteria of infiltration galleries include: (Basson, 2005). 

 

a) Entrance velocity through the screen slot openings should be 0.03 m/s or less. 

b) Axial velocity inside the screen should be 0.9 m/s or less, so that the head loss, h, 

will be 0.3 m or less(Basson, 2005).  

c) Screen slot size is based on the grain-size distribution of the surrounding material. 

I.e. The slot size should be smaller than D1 (Basson, 2005). 

d) Use 304 stainless steel for fresh water, and 316 stainless steel for salt water. 

Stellenbosch University  http://scholar.sun.ac.za



44 

University of Stellenbosch 

2.4.7 Filter Design  

 

2.4.7.1 Introduction 

 

Filter design is usually required when there is a need to introduce a transition 

between a layer of course material and a layer of finer particles. In coastal 

engineering this situation is most typically encounter in the multiple layers of a 

breakwater or revetment. The main objective of this type of design is to ensure that 

all material (layers) remain intact. This transition is usually achieved by means of a 

granular or geotextile filter (CIRIA, CUR, CETMEF, 2007). 

 

The local flow of pore water may pass on fine (subsoil) particles of granular materials 

through the pores of coarse granular materials or through those of geotextiles. This is 

termed filter instability and may lead to deterioration of the structure as well as 

change in the permeability. 

 

The three types of filter instability are noted as follows: 

1) Internal erosion: the finer particles are conveyed through the voids 

associated with the coarse particles within the same layer. This can only 

occur with wide-graded materials 

2) Interface instability with granular filters: if the particles of one base layer 

are conveyed through the pores between the particles of another (usually the 

overlying) filter layer 

3) Interface instability with geotextile filters: if the particles of the base layer are 

conveyed through the pores of a geotextile filter. 

 

Geometrically Tight Filters 

 

Geometrically tight (or closed) filter design can be characterised as design which 

implies that pore (grains) or opening (geotextiles) sizes be made small enough not to 

allow the fine grains to pass through. Such filters are moderately simple to design 

and only knowledge of the grain size distributions and the pore or opening size 

distributions of the filter is required. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



45 

University of Stellenbosch 

Geometrically Open Filters 

 

Geometrically open filter criteria is based on the principle that the hydraulic load must 

be too small to initiate erosion of the fine material. These criteria, however, require 

more detailed knowledge of the hydraulic loads on the filters, caused by the water 

movement along and inside the structure. 

 

Each filter has two functions. The first of these functions is Filter Stability which is the 

prevention of the transport of fine particles. The second functional requirement is 

Filter Permeability. This function ensures that a filter must allow for the transport of 

water through a material, mainly to prevent excess pore pressures. 

 

 

2.4.7.2 Internal Erosion of Granular Material 

 

 
Kenney and Lau (1985): formulated a good criterion for geometrically tight (or closed) 

filters. This can be found as equation LR13 below: 

 

 [
   
  

  ]
   

                     (Eqn LR13) 

 

 

 

Figure 2:37: Particle size distribution characteristics relevant to internal stability (CIRIA, CUR, 
CETMEF, 2007) 
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where F4D and FD are two (dependent) characteristics (cumulative mass percentage) 

of the grain size distribution curve can be seen in Figure 2.37. Moving along the 

curve, values of [F4D/FD -1] will vary and the minimum value of [F4D/FD -1] is found at 

the flattest part of the grain size distribution curve (CIRIA, CUR, CETMEF, 2007). 

 

Pilarczyk (1998) formulated a similar acceptability criterion for the assessment of the 

internal stability of geometrically tight filters. This criterion is given here as Equation 

LR14. The value of [D60/D10 ] is known as the grading width coefficient of uniformity, 

Cu ,of the filter material 

 

 
   

   
                     (Eqn LR14) 

 

2.4.7.3 Interface Stability of a Granular Filter (CIRIA, CUR, CETMEF, 2007) 

 

The filter stability at the interface of two different granular materials is called interface 

stability. As is described in Figure 2.38C, the layer with the finer of the two materials 

is termed the Base layer while the coarser layer is termed, Filter. (CIRIA, CUR, 

CETMEF, 2007)  

 

Figure 2.38: Interface stability of granular materials (CIRIA, CUR, CETMEF, 2007) 

 

Geometrically Tight Filters (CIRIA, CUR, CETMEF, 2007) 

 

The geometrically tight (or closed) criterion is best described in the following 

Equation LR15. This equation can be applied if both materials are rather uniformly 

graded, i.e. Equation LR15 is found to hold true. 
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                    (Eqn LR15) 

Where the indices "b" and '‟f’' are used for the base and filter materials respectively 

and numbers refer to the particle size distribution curve. When the "filter" is a cover 

layer the base ("b") is a secondary armour or filter layer. 

 

Geometrically Open Filters 

 

The use of geometrical tight criteria can be summarised in Figure 2.38, below. Note 

that icr refers to in and nb is the porosity of the base material (CIRIA, CUR, CETMEF, 

2007). 

 

Figure 2.38:  Design chart for the interface stability of granular filters (CIRIA, CUR, CETMEF, 

2007) 

 

2.4.7.4 Permeability Requirements of a Granular Filter 

 

Water conveyance or drainage is the other major function of a filter. This particular 

investigation focussed on filters in rock structures. The general permeability 

requirement for such filters is that the flow resistance is small enough to prevent pore 

pressures contributing to instability of the structure.  

 

The permeability requirement can be simplified to the expression given by Equation 

LR16. Figure 2.38 refers.  
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                         (Eqn LR16) 

 

This filter criteria corresponds to the requirement that the permeability of the filter 

layer, kf, is much larger than that of the base, kb . In cases of laminar flow, which is 

for example the case with sand as the base material, see Figure 2.37, the following 

Equation LR17 applies. 

 

 
  

  
                          (Eqn LR17) 

 

The permeability criterion given above as Equation LR16 and illustrated in Figure 

2.38 is especially secure for all kinds of filters. These include their use in the design 

of filters for drainage pipes, drinking water wells etc. 

 

This criterion is generally readily achieved with appropriate selection of uniformly 

graded material for the filter layer(s). Where wide graded material is to be used as a 

filter, then this criterion can be relaxed. This corresponds to the requirement of kf>kb. 

 

 

2.4.7.5 Interface Stability of a Geotextile Filter 

 

The criterion for interface stability of a geotextile filter is predominantly formulated 

according to the geometrically tight principle. A common criterion can be found in 

Equation LR18 below: 

 

                               (Eqn LR18) 

 

Where: 

O90,w = Filtration opening size of the geotextile filter : ENISO12956:1999 

DI = Indicative diameter of the soil particles to be filtered, corresponding 

to the soil skeleton size to be stabilised 

Dmin = is the minimum value of the geotextile opening size corresponding to 

the largest fine particles being transported in suspension. Giroud et al 

(1998) estimated this minimum value to be: Dmin≈ 50,μm 
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DI is defined by Equation LR19 below and is sourced from the standard NF G38061: 

1993  

 

                           (Eqn LR19) 

 

For a geotextile filter used in coastal or bank protection under a granular layer, this 

standard provides for a uniform distribution curve of the underlying subsoil. The 

following values for the coefficient C: C =0.4 if the soil is in a loose state and C = 0.6 

if the soil is in a dense state. The coefficient of uniformity Cu is defined by  

Cu= D60b / DIOb with Cu< 5. 

 

 

2.4.7.6 Requirements on Permeability of a Geotextile Filter 

 

General permeability requirements for a geotextile filter are the same as those for a 

granular filter layer. Certain limits pertaining to the ratio of kf / kb, with kf being the 

permeability of the Filter layer and kb , the permeability of the Base layer determine 

the stability of a layer. 

 

The permeability criteria for such layers and hence ratio values, are as follows: 

 

 kf ≥ 100 kb for coastal protection structures (Giroud, 1996) 

 kf ≥ 50 kb for silty soils (BAW, 1993) 

 kf ≥ 10 kb for hardly silty soils (BAW, 1993) 

 kf ≥ 20 kb (Lafleur et al, 1993). 

 

The values of the factors proposed by Giroud and BAW for silty soils are much higher 

than the factors "16 to 25". This is due to a considerable reduction of the filter 

permeability, kf, during the lifetime of the structure owing to blocking and/or clogging, 

especially with silty soils. Another reduction of the filter permeability might be 

accounted to the flow resistance of the combination of geotextile and soil that may 

differ from the sum of the flow resistances of both materials separately. It is important 

to take the long-term reduced value of the filter permeability into account and 

determine its value via an internationally agreed methodology. 
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Chapter 3 

3. REVIEW OF SELECTED SEAWATER INTAKES 

ALONG THE SOUTH AFRICAN COASTLINE 

___________________________________________________________________ 

 

 

3.1 Introduction 

 

In order to investigate the practical implementation of intakes along the South African 

shoreline, it was decided to review some of South Africa‟s seawater intakes in more 

detail. Adjacent seawater end-users might have the very same water requirements, 

but their methodology for seawater abstraction might be highly varied. This approach 

to investigating seawater intakes would then bring to light any indigenously designed 

systems, their particular problems and the associated solutions. 

 

 

3.2 Hermanus: Mariculture 

 

3.2.1 Introduction 

 

The coastal town of Hermanus is situated in the Western Cape (Figure 3.1) and it 

best known for its whale sightings. One of the main industries apart from tourism is 

fishing and mariculture. Abagold which farms abalone is the company operating one 

of the larger mariculture farms/companies in the country. 

 

Hence their seawater intake was investigated. The various components of the 

seawater system are the seawater intake, filtration, the flow of seawater for operation 

of a hatchery, rearing of abalone, and finally the treatment and disposal of 

wastewater. At Abagold, the seawater intake flowrate is approximately 3000m3per 

hour (De Wit, 2008) 
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Figure 3.1: Clock wise from top left, Western Province SA, Hermanus with a breakwater 

protruding north east from the new harbour, Abagold seawater intake, situated south west of 

the breakwater. Note the 2 pump houses can be clearly seen as white rectangles at the end 

of the intake. (Adapted from Google Earth, 2008) 

 

 

3.2.2 Description 

 

Water requirements vary as per the life cycle of the abalone. All abstracted seawater 

is first screened via a 1mm screen (De Wit, 2008). The seawater is then further 

screened and distributed as required. One requirement of the sea water intake is to 

deliver water that is suitable to be used on 1mm screens, i.e. particles in the 

incoming water should be small enough that the 1mm screens do not clog (De Wit, 

2008). 

 

Abagolds‟ seawater intake is situated at the end of a natural gully. The gully has 

however been augmented over time, in order to secure a more reliable source. 

Figure 3.2 below shows a schematic section of the intake. 
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Figure 3.2: Schematic section of Abagold seawater intake 

 

Waves enter the intake via Walker Bay. Here the shallow seabed allows for only 

small broken waves to enter the intake. Water passes under a placed (blasted) rock, 

under a concrete screen-wall, through a rotating screen and into the intake basin. 

 

 

Figure 3.3: Looking seawards, the back end of the rotating screen can be seen in the fore 

ground and the concrete screen wall in the rear 

Stellenbosch University  http://scholar.sun.ac.za



53 

University of Stellenbosch 

One of the early modifications in the history of Abagold‟s seawater intake gully, was 

the construction of a concrete screen, Figure 3.3. This was for two purposes. The 

first was to channel the water through a rotating screen. The second purpose was to 

help remove the air entrained in the water. This method proved to be moderately 

helpful (De Wit, 2008). 

 

The intake at the sea end was enlarged to increase the gully width. Here a rock was 

strategically blasted into place at the entrance. The purpose of this was to force the 

flow of seawater down and under the rock. Hence the rock would dampen the wave 

action and reduce the amount of white water entering the intake. As can be seen in 

Figure 3.4, this has not worked very well. 

 

 

Figure 3.4: Strategically blasted rock placed at the entrance of the intake gulley  

 

Due to the amount of air still contained in the water, it was decided to construct 

another, concrete wall at this widened entrance, hence reinforcing bars were epoxied 

into the drilled holes, Figure 3.4. The wall would then allow for an extension of the 

intake and for the use of additional screens. 
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After the widening of the entrance channel, the intake basin was then enlarged as 

additional intake pipes were commissioned. As can be seen in Figure 3.5, the initial 

two intakes can be seen in the lower center. Thereafter new twin intakes, slightly 

higher up, were added. Thereafter the remaining pipes were added for usage by an 

adjacent sea farm. It is also evident that air is still entrained the water. 

 

Although the channel has been widened, the amount of water entering the basin is 

still equal to the amount being extracted. The flow of water into the Intake basin is 

determined by the contraction of the channel at the rotating screen. Due to the flow 

cross section being restricted at the concrete screen wall and the rock in the 

entrance channel, the flow velocity in the gulley is quite high at these locations. 

Hence this does not allow for air to be removed before entering the Intake basin. This 

problem is most acute at low tide when the negative head, that is required to be 

overcome by the pumps, is at its highest. The entrainment of air in the water serves 

to further worsen conditions, as the entrained air aids cavitation at the pumps‟ 

impellors. 

 

 

Figure 3.5: Abagold‟s Seawater Intake Basin  

In conclusion, this seawater intake demonstrates that air entrainment can have a 

significant influence in such a seawater intake system.
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3.3 Sea Fisheries Aquarium: Research 

 

3.3.1 Introduction 

 

The Sea Fisheries Aquarium (SFA) is a research facility which falls under Marine and 

Coastal Management (MCM) which is component of the Department of 

Environmental Affairs (DEA). The aquarium is situated in Sea Point; Cape Town The 

core function of this aquarium is the research of sea life along the South African 

Coast. This information is used in managing our coastal resources and the 

interaction between the marine, land and human activity. 

 

The various components with respect to seawater usage, varies from seawater 

abstraction, filtering, the operation of a hatchery, the rearing of marine life, and finally 

the disposal of wastewater. 

 

 
Figure 3.6: Clockwise from top left, Cape Peninsula, Cape Town with a breakwater protruding 

north east from the harbour, Sea Fisheries Aquarium can be seen as the long red roofed 

structure at Seapoint, southwest from the breakwater (Adapted from Google Earth, 2008 
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3.2.2 Description 

 

The majority of coastline along the Cape Town Atlantic seaboard is rocky. This 

nutrient rich coastline is fed by the cold Benguela current. These are the conditions 

that exist at the seawater intake for SFA. The inlet for the intake is situated on a 

rocky shore with kelp beds in close proximity.  

 

The intake to the facility is implemented via two ±ø1m diameter pipes (Busby, 2008). 

These pipes are connected to intake manifolds which are pipes with holes cut into 

them. The holes start at a larger diameter towards the seaward end and reduce as 

they move landwards (Busby, 2008). This is done in an attempt to equal the amounts 

of water fed into the pipe. The holes are cut out the bottom of the pipe, so as to 

reduce air entrainment. 

 

The pipe manifolds are situated in fairly shallow water. There is approximately 

400mm cover during low tide and the intake is visible during very low spring tides 

(Busby, 2008). The manifolds are situated on a concrete plinth and have a metal 

cage to act as a screen against ingress of marine life. The mesh openings are 50mm 

squares which keeps the majority of pelagic life out. The water quality is highly 

seasonal, with the nutrient loading being far higher in summer than in winter (Busby, 

2008). 

 

Twice a year during the spring low tides, the intake manifolds are usually replaced as 

part of routine maintenance. The old screens set is removed and refurbished and 

another set put is in its place. The most significant impact is the accretion of marine 

growth along the intake manifold. Upon closer examination of the screening cage 

which surrounds the intake manifold. The cage is found to be teeming with marine 

growth. Crayfish can be seen to hang perched to the underside of the manifold. This 

appears to be a good breeding area as the passing water provides ample nutrients to 

the resident sea life (Busby, 2008). 

 

In conclusion, this seawater intake draws into significance the impact that pelagic 

marine growth can have on an intake system. In areas of high marine growth this 

factor cannot be ignored as it can reduce the capacity of the intake to a fraction of its 

initial design values as seen in the case of SFA. 
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3.4 Two Oceans Aquarium : Research/Public Education 

 

3.4.1 Introduction 

 

The Two Oceans Aquarium (TOA) which is situated at Cape Town‟s V&A Waterfront, 

is a public unit which seeks to inform and educate the general public about marine 

life. Although research is conducted on a smaller scale, it contributes largely to 

marine conservation and awareness (Templar, 2008). 

 

The various components which utilise seawater include abstraction, filtration, 

circulation, treatment and disposal of wastewater. The water requirements at TOA 

differ dramatically, Hence the pretreatment of water is a necessity, as opposed to 

mere filtration. Harbour contaminants further justify the need for pretreatment. 

 

 

Figure 3.7: Clockwise from top left, Cape Peninsula, Cape Town harbour, V&A Waterfront 

showing the Two Oceans Aquarium (Adapted from Google Earth, 2008) 
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3.4.2 Description 

 

The seawater abstraction point for the TOA is situated within Cape Town‟s harbour. 

Although the intake is not contained within a surf zone and not subjected to wave 

influence, it is still susceptible to chemical and biological attack. 

 

Water is abstracted using submersible well pumps as the water is considered to be 

free of sand particles, Figure 3.9. A perforated High Density Poly Ethylene (HDPE) 

screen is used as a precaution (Templar, 2008).  

 

Figure 3.8: The intake for the Two Oceans Aquarium. The intake is situated opposite the 

canal from the Nelson Mandela Museum. 
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When the aquarium was first commissioned, a slotted Poly Vinyl Chloride (PVC) 

screen was used, Figure 3.9, however this screen proved infective due to marine 

growth and a second specially manufactured screen was used. This screen was 

constructed of stacked PVC pipe which used Nylon mesh to filter any large particles, 

Figure 3.10. This nylon mesh has a larger diagonal which measure 30mm across. 

 

 

Figure 3.9: The first intake pipe for the Two Oceans Aquarium, a ø250mm slotted PVC screen 

 

 

Figure 3.10: The second intake for the Two Oceans Aquarium, a ø250mm specially 

manufactured PVC pipe utilising Nylon mesh 

 

After an initial period, the capacity of the pumps had reduced significantly. The intake 

pipes were then inspected. Upon the inspection and retrieval of the screens it was 

found that entire colonies of sea cucumbers had taken up residence inside the 

screens. This occurred for both PVC pipe screens (Templar, 2008). 
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When such screens are designed, the velocities through the screens are kept at a 

minimum in order to minimize the loss of pressure. The sea cucumbers entered the 

screen whilst smaller than 1mm and had grown to significant sizes. The low velocities 

provided opportune locations for sea cumbers as they could anchor easily and make 

use of the passing water which is high in nutrients (Templar, 2008). 

 

The growth of marine life within intake pipework cannot be completely prevented but 

managed. By using antifouling paints and mechanical pigging of the line, marine 

growth can be kept to a minimum  Barnacles are the most predominant form of 

marine life and as such can be seen colonising the TOA intake pipework, Figure 

3.11. 

 

 

Figure 3.11: TOA - ø75mm intake pipeline and colony of Barnacles. 

 

As part of regular maintenance, the pipe lines are cleared via a rotor router. This 

device uses pressure to rotate and drive a metal head forward within a pipeline. This 

router then removes all marine life by coring it out.  This system has proved to work 

effectively for the Two Oceans Aquarium with coring of the intake pipeline required 

every four months. The intake screens for the seawater Intake, function adequately 

and are only replace one a year (Templar, 2008). 
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3.5 Sea World Aquarium: Research/Public Education  

 

3.5.1 Introduction 

 

Ushaka Marine World (UMW) is located at the Point, Durban, KwaZulu Natal. The 

center facilitates the Sea World aquarium (SWA), dolphinarium, and recreational 

areas. The various SWA operations with respect to seawater usage includes 

seawater abstraction, filtration, circulation, care control and rearing of marine life, 

operation of hatcheries, operations within a dolphinarium and finally the treatment 

and disposal of wastewater. 

 

The SWA intake is unique as it is a sub-bottom abstraction system. Some of the 

problems encountered by the intake system over its initial two year period of 

operation are documented later in this chapter (CBI, 2007). 

 

The intake for UMW is a well point system situated in Vetches Bay beneath the jetty, 

Figure 3.12. The well point system, Figure 3.13 is split into two halves, a North and 

South suction leg. The well point system consists of sixty individual submersible 

pumps which are fixed to the purpose built jetty piles. Only the pumps are attached to 

the jetty piles, the connecting pipework is embedded in the sand. 

 

Figure 3.12: Construction of Jetty at Ushaka Marine World with the extra amount of purposed 

built jetty piles being constructed at the head of the Jetty. 
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The well points are in-between 0.5m to 3m apart and extend to a depth of 6m below 

the seabed. The lower 3m of the wells, contain the submersible pumps which draw in 

the seawater. Hence the layer of soil through which the seawater needs to pass is 

always more than 3m. 

 

Figure 3.13: Layout of Well points with North 

and South Suction Legs 

  Figure 3.14: Well Point Downpipe 

 

The well points are connected to the Suction legs via a bellows system of flexible 

hoses and steel clamps. However sixteen wells now use a flanged system of 

connection.  

 

The system runs on a flow rate of 0.65Ml/hour. There are two Gormann Rupp pumps 

which provide the suction head. The system can be spilt with only one of the suction 

arms working during times of low demand. 

 

The problems experienced at SWA can be split into two categories: Hydraulic and 

Biological. The hydraulic part encompasses the problems experienced by the pumps, 

pipeline and screens while the major part of Biological problems are due to the 

processes involved with benthic marine life. 
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3.5.2 Hydraulic Problems 

 

3.5.2.1 Pumps and Cavitation 

 

The pumps work on maintaining a suction pressure of 40kPa. With the rise and fall of 

the sea level, the pumps were changed over to a variable speed system in order to 

maintain this pressure. This system was installed and thereafter it was found that 

pumps would cavitate during periods of low tide. The increased rate of cavitation led 

to impellers having to be replaced every three to six months.  

 

3.5.2.2 Connection system 

 

The well points are connected via a system of flexible hoses and steel clamps. 

However this has not proven effective and has led to air entrainment. Hence sixteen 

wells now use a flanged system of connection.  

 

3.5.2.3 Air entrainment and super saturation  

 

It was found that a large barrage of bubbles was being sucked up from the well 

points and introducing air into the system. These bubbles then cause the pumps to 

cavitate or force air into the saturation. This in turn causes the super saturation of 

nitrogen. If leaking, joints, clamps and joint movements are eliminated this would 

reduce the amount of air taken in.  

 

It was found that high negative pressures suck the gases out of solution. This occurs, 

when two wells are in close proximity with each other and have areas of overlapping 

pressure. These localized areas cause the formation of bubbles in the well point 

pipework. This is supported by the following events. Prior to rebedding of the well 

points, the negative pressure needed to deliver 0.65Ml/hr. during the high tide period 

was 70kPa. However, after rebedding this dropped to 40kPa for a similar high tide 

period (CBI, 2007). 
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3.5.3 Biological Problems 

 

3.5.3.1 Iron Build-up 

 

Over a two year period, there have been two incidents of high Iron Oxide precipitate 

coming through the seawater intake. This is due to high dissolved iron 

concentrations, in the incoming water, passing through an anoxic zone in the sand 

bed. Here the iron is reduced and made soluble. Thereafter the seawater passes 

through an area of higher oxygen, relative to the sand bed, and this causes the iron 

hydroxide to precipitate out. The main serious outcome of this is that iron promotes 

the growth of algae. Any uncontrollable algal growth can be detrimental to the water 

quality of sensitive systems like those of aquariums (CBI, 2007). 

 

3.5.3.2 Ammonia  

 

In October 2005 there was apprehension over the levels of ammonia entering the 

intake as higher than normal levels of ammonia had been measured in the surf. 

Tests conducted on the incoming seawater revealed that the level of ammonia was 

on average 36% more than that found in the surf (CBI, 2007). 

 

The most likely explanation for this is attributed to the biological process within the 

sand bed. Here water is sucked into the intake past the seabed. Through bacterial 

decomposition of particulate matter, the nutrients are converted to ammonia. The 

main process being that the bacteria feed upon the nutrients and excrete 

predominantly ammonia (CBI, 2007). 

 

3.5.3.3 Low Oxygen 

 

Water entering the well points has an oxygen concentration of 40 to 60%. This is low 

in comparison to the surround surf which had an oxygen concentration of 95%. When 

rebedding occurs i.e., the sand is lifted using air and water pumped into the sand 

strata and the sand density is decreased, this problem is alleviated to a degree, as is 

noted by Oxygen levels then climbing to 70-75%. Low oxygen concentration is part of 

a larger biological problem which is discussed in detail, in the next point (CBI, 2007). 
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3.5.3.4 Anaerobic activity in Sand 

 

During rebedding, anoxic staining was found on the bottom of most well points. This 

indicated that water did not flow equally into the well point. Instead, most of the water 

entered via the upper half. This action implies that water containing oxygen did not 

pass through the lower layer. Hence the growth of aerobic bacteria was stunted in 

this region. The little flow that permeated through the anoxic zone is oxygen free as 

all the oxygen would have been used up by bacteria in the upper zone (CBI, 2007). 

 

Therefore it is possible for ammoniated water to reach the anoxic zone and be 

converted further. Through denitrification, the anoxic zone produces Nitrogen (N2), 

Nitric Oxide (NO), or Nitrous Oxide (N2O), Figure 3.15. Oxygen is known to suppress 

the enzymes that are responsible for denitrification. Therefore as the concentration of 

oxygen is lowered, the production of nitrogen gases intensifies (CBI, 2007). 

 

 

Figure 3.15: Well points showing Aerobic and Anoxic Zones 

 

When designing a sub-bottom abstraction system, it is clear that, physical, chemical 

and biological processes have to be considered. In the UMW case it shows that 

Biological and Chemical have a large impact on the design of sub-bottom seawater 

abstraction. 
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3.6 Paternoster : Mariculture 

 

3.6.1 Introduction 

 

Paternoster Oyster Co. (Pty) Ltd is situated 2km north of the residential holiday area 

of Paternoster. It is a commercial unit that farms Oysters. The operation lies in a 

naturally low lying area. It is approximately 150m from the Atlantic Ocean. The farm 

consists of 8 fairly large ponds that are approximately 7 hectares (ha) in total (Smith, 

2008). 

 

Regarding the seawater usage, water is used on a „once through‟ basis. Some of the 

water flows first through the nursery and on to the other pond. The majority flows 

directly into the ponds and out back to sea. A substantial portion of the flow is lost to 

seepage and evaporation. One clear difference between this type of mariculture and 

others is that the oysters are filter feeders. The feeder food for this operation is algae 

as opposed to seaweed or kelp which was the feeder food for abalone farming. 

 

 

Figure 3.16: Paternoster Oyster mariculture farm with the shoreline to the west and the Oyster 

ponds clearly visible (Adapted from Google Earth, 2008) 

Seawater Intake 
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3.6.2 Description 

 

3.6.2.1 Current system 

 

Seawater for the farm is abstracted from a sandy beach west of the operations, 

Figure 3.16. The current system abstracts water from the surf zone using a pumping 

system and subsoil perforated intake pipes. This water is abstracted at a depth of -

5m MSL. The sand is course grained with the beach profile being dynamic.  

 

The abstracted seawater has been described as being very clear with no turbidity or 

undesirables (Smith, 2008). Hence there is no pre-treatment of the water, even for 

nursery purposes. The current system uses ø110mm subsoil intake pipes to abstract 

the water from the adjoining soil. This is then feed into the ø 200mm, collector lines 

via an ø50mm HDPE connecter pipe. See Figures 3.17and 3.18 below 

 

 

Figure 3.17: Paternoster Oyster: Sectional Elevation - 2No. Beach Well Subsoil intake units 
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Figure 3.18: Paternoster Oyster: Layout of Beach Well abstraction infrastructure 

 

3.6.2.2 New System 

 

The current system provides 200m3/hour however due to evaporation, this amount is 

below the amount of 350m3/hour, required to farm the entire 7ha of ponds. Hence the 

owner has configured a new supplementary system using the same concept. The 

new wells are made from a perforated drain. These components are derived from a 

commercial French intake outlet Figure 3.20. The -perforated pipe is housed in a 

geo-fabric in order to filter the incoming seawater, Figure 3.19 (Smith, 2008). 

 

 

3.19: New Beach Well. Stitched geofabric covering the perforated intake pipe  
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3.20: New Beach Well. Inside of the specially constructed perforated intake pipe 

 

The owner has had very good results from this system. With the connecting pipe 

work being upgraded from a 50mm to a 110mm pipe, the flow estimated from one of 

the units is 20l/s (72m3/hour). Installation of 5 beach wells would augment the supply 

to the 350m3 needed per hour. This is the flow rate required to operate all 7ha of the 

operation (Smith, 2008). 

 

3.6.2.3 Installation method of the New System 

 

The beach wells are ø900mm. There are no conventional commercial methods 

available in order to install the wells; thus the owner has devised his own system 

(Smith, 2008). This method is simple. As shown in Figure 3.21 a round metal sleeve 

that can accommodate the perforated intake pipe, is required. This should be large 

enough to generously accommodate the beach well and “drilling” equipment (Smith, 

2008). 
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The „drilling‟ equipment which is a set of pipes / jets, Figure 3.22, is placed within the 

metal sleeve. These pipes deliver water and air. By method of airlifting and 

suspension, the material at the bottom of the metal sleeve is displaced and flows out 

over the metal sleeve. This allows the sleeve to be driven into the sand with minimum 

force. Figure 3.23 shows a metal sleeve that has already been driven in to the soil 

(Smith, 2008). 

 

 

Figure 3.21: The method by which air and sand displaces sand allows the metal sleeve to 

settle 
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Figure 3.22: The set of pipes/jets used to displace sand 
 

 
Figure 3.23: The metal sleeve with a bell end that has already been driven in to the sand 

 

After the well is installed, the metal sleeve is removed with a Tractor-Loader-Backhoe 

(TLB). The connecting pipe is then buried during low tide periods (Smith, 2008). 
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3.7 Britannia Bay : Mariculture 

 

3.7.1 Introduction 

 

Britannia Bay is situated on the West Coast in the Western Cape SA. A large majority 

of the area is residential, with West Coast Abalone (WCA) being the only type of 

mariculture in the immediate vicinity. West Coast Abalone‟s main concern is the 

farming of Abalone on a commercial scale.  Seawater is abstracted at a rate of 

2500m3 per hour. Various operations are conducted on seawater viz, seawater 

abstraction, filtering, operation of a hatchery, rearing of abalone, and treatment and 

disposal of wastewater (Whyte, 2008).  

 

 

 

Figure 3.24: Clock wise from top left, Western Province SA, Britannia Bay, West coast 

Abalone seawater intake pump house can be seen as a rectangle in the top left portion of the 

image. Note the abalone production facilities can be seen in the bottom right (Adapted from 

Google Earth, 2008) 

 

Seawater Intake 
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3.7.2 Description 

 

 

As the abalone goes through entire life cycle at WCA, the water has to be treated 

specifically as per the phase of the abalones life cycle. At WCA, bulk water is 

abstracted and screens are used as per the water requirement.  

 

The seawater intake for WCA is situated on a rocky coastline. The intake pipes are 

situated in a modified natural gulley, Figure 3.25. Water enters the gulley via a side 

entrance. Here, the initial filtering is done via a course grated screen 50mm square 

holes. Thereafter the water passes through a grated metal screens which contain the 

Intake Pipelines. The mesh holes are diamond in shape with the smaller diagonal 

being 20mm in opening length (Whyte, 2008). 

 

 

Figure 3.25: Schematic section of West Coast Abalones Seawater Intake 

 

 

The intake pipes which are ø500mm comprised a single HDPE pipe and two 

modified Poly Vinyl Chlorine (mPVC) pipelines. There are two pumps situated within 

the pump house. Each pump is dedicated to a particular line type. A smaller 

centrifugal pump abstracts seawater via the HDPE line, while a large Slurry pump 

services the two mPVC pipelines (Whyte, 2008). 
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3.7.2.1 Pumping Operation 

 

At present, each pump supplies approximately 90l/s (324m3/hour). The difference 

between the pumps, at 2m MSL, and the free water surface of the ocean, induces a 

negative pressure of between 0.1 to 0.3 bars. These conditions are barely acceptable 

as negative suction heads add complications (Whyte, 2008). 

 

One of the first requirements of such a system is that the incoming pipelines are 

primed before pumping can occur. For pumping to occur the pipe has to be filled with 

water and a negative pressure has to be induced into the pipeline, thus creating a 

suction of the seawater. Priming of a pipe is a long complicated operation that is 

resource and time consuming. Hence any break in operation sees priming occur 

each time before the system can run again. This is highly undesirable. 

 

Another problem due to negative suction head is cavitation.  On low suctions head 

cavitation does not occur, however when the negative pressures become too large, 

air is pulled of saturation and the implosion of these air bubbles cause miniature 

explosions that destroy the adjoining material. The entrainment of air in the water at 

lower pressures will increase the likelihood for cavitation as well. 

 

This problem has existed at WCA for the past few years. Previously all units were 

smaller centrifugal pumps, Figure 3.26. These pumps were high revving pumps 

which exacerbated the cavitation problem.  Due to the pumps casings being 

constructed of cast iron and the impeller being constructed of steel, the pumps did 

not last very long. A change of impellers was required every few months (Whyte, 

2008). 

 

This problem was solved with the installation of a slurry pump Figure 3.27. This pump 

is larger and has a stainless steel impeller. The pump is lower revving, which aids in 

keeping cavitation events to a minimum (Whyte, 2008).  

 

3.7.2.2 Intake Arrangement 

 

Three major problems were experienced at the Intake, Figure 3.27. These were: 

 Too little water entering the stilling basin. 

 Too much white water entering the stilling basin 

 Too much seaweed entering/obscuring the stilling basin 
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Figure 3.26: Centrifugal pumps, at Intake for West Coast Abalone 

 

 

Figure 3.27: Slurry pumps, at Intake for West Coast Abalone 
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The side entrance into the stilling basin is only 1m across with the depth varying in 

between 0.5m to 2m, excluding wave action (Whyte, 2008). This creates an area of 

±2m2 for water to flow through into the stilling basin. However when the physical 

grate, which covers the opening is considered, the area for water to flow into the 

stilling basin is fairly small. Hence the water level in the stilling basis drops and this in 

turn creates additional strain on the pumps (Whyte, 2008). 

 

As this intake sits in the surf zone, white water is expected. However due to wave 

action and the surrounding rock, additional white water enters the stilling basin. This 

white water then enters the intake pipelines and aids in the cavitation of pumps 

(Whyte, 2008). 

 

Due to the nutrient rich waters off the west coast, flora is prominent along the 

coastline. In particular, seaweed and sea grass can be found in abundance. However 

this causes varies problems when attempting to abstract water from the sea. In this 

particular case, seaweed tends to block up the entrance of the stilling basin and 

reduces the flow of seawater into the basin (Whyte, 2008). Seaweed that enters the 

stilling basin is found wrapped around the intake and due to the constant suction 

force, is never dislodged (Whyte, 2008). Hence maintenance intervals, for the intake, 

have been reduced to once a week (Whyte, 2008). 

 

 

Figure 3.28: Intake for West Coast Abalone
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3.8 St Helena Bay: Mariculture 

 

 

3.8.1 Introduction 

 

St Helena Bay is situated on the small east coast of a peninsula that is on the west 

coast of South Africa, Figure 3.29. One of the main industries is commercial fishing 

with commercial fishing company: I&J utilising varies facilities along the coast.  

 

St Helena Abalone is the only abalone farm in the St Helena the area. This company 

has been in existent for approximately 10 years and is unique as it is one of the few, 

in the country, that work on a recirculation system (Denis, 2008).  

 

 

Figure 3.29: Clock wise from top left, Western Province SA, The western peninsula. St 

Helena Abalone is situated south east of harbour (Adapted from Google Earth, 2008) 
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3.8.2 Description 

 

Water is abstracted from the adjoining bay via two ø300mm HDPE pipelines, Figure 

3.30.  These pipes are semi buoyant and lie just below the surface. Their positions 

are controlled by two drums. The first drum is located at the beginning of the 

pipelines and the other is at the half way point. These drums are partially filled with 

water and anchored to concrete blocks. The drums ensure that the pipeline stays off 

the seafloor and just below the water surface, Figure 3.31 (Denis, 2008). 

 

Due to its geographic location, storms do not affect the pipeline as the wave climate 

is very docile all year round (Denis, 2008). 

 

 

Figure 3.30: The intake pipelines for St Helena Abalone, 2No. ø300mm HDPE pipelines 
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Figure 3.31: Schematic section of St Helena Abalone Seawater Intake (Denis, 2008). 

 

3.8.2.1 Pumping Operation 

 

Each ø300mm HDPE intake pipeline has a single centrifugal pump. A third and fourth 

pump were installed as backup pumps. All pumps deliver 45l/s (162m3/hour) into a 

common manifold which is then pumped into the reticulation system, Figure 3.32. 

There is a small difference in between the level of the pumps, at 0.7m MSL and the 

free water surface of the ocean. Hence this induces a very small negative pressure in 

the intake pipelines which is acceptable for operation of this intake system. 

 

 

Figure 3.32: The pumping infrastructure for St Helena Abalone
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3.8.2.2 Problems Experienced 

 

The first problem is due to the nutrient rich waters and the abundance of flora. In 

particular, seaweed and sea grass can be found in profusion. These two types of 

flora can cause various problems. In particular, the seaweed tends to block up the 

intake pipe openings (100mm square) and reduce the flow through of water. Due to 

the constant suction force, the seaweed is never dislodged. 

 

The second problem is the short circuiting of the system or recirculation which is the 

ingress of discharged waste water into the intake pipelines. This is attributed to the 

following two circumstances: 

 

1) Due to the inherent position of St Helena Bay, the surf zone is fairly inactive. 

I.e. the waves and tidal action are small.  In addition, any currents in the area 

can be considered negligible. Hence mixing in the sea area adjacent to St 

Helena Abalone is very poor. 

2) The discharge of waste water is done with minimal effort. Wastewater is 

discharged via gravity onto rocks that lie above the high water mark, Figure 

3.33. Discharged water can be seen as white water, above and to the right of 

the collar on the HDPE Intake Pipeline. There is no mixing and the denser 

wastewater enters the sea at low velocities. This wastewater then fills the 

surrounding area until the end of the plume reaches the head of the intake 

pipeline and re-enters the system. 

 

Figure 3.33: Wastewater is discharged on the shore 

 

Discharged waste water 
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3.9 Summary of Problems Experienced 

 

As can be seen for the seven seawater intake cases visited, there are numerous 

configurations to a seawater intake. Unfortunately none of these was a horizontal 

well a rocky shoreline.  The seawater intake at Sea Fisheries Aquarium, Two Oceans 

Aquarium and Sea World Aquarium have formal designs which were undertaken by 

Professional Engineers. The remaining four cases do not employ any professional 

assistance. All design and construction is undertaken by the owner/operator. 

 

It should be noted that the seawater intakes that did not have a formal design, did not 

fare better or worse than seawater intakes designed by professionals. A particular 

trend noticed with not formally designed seawater intakes, is that the operator is 

usually the owner, the designer and the contractor, hence his practical experience 

helps him converge on solutions timorously. 

 

The seawater intakes are reviewed as per type of intake.  

 

The first type to be discussed is the offshore direct seawater intake where water is 

gathered from an unrestricted water column. This occurs for the seawater intake at St 

Helena Abalone, St Helena Bay. 

 

The St Helena Abalone seawater intake draws water from a water column that is 

offshore. Hence it is always guaranteed unlimited feed water. The seawater intake is 

not robust. However, the wave climate at St Helena is very docile and hence allows 

for such an intake to be used. The downside of this situation is that without wave 

action and the induced turbulence, there is no mixing in the surf zone, hence waste 

water that is deposited on the shore, sometimes re-enters the system. Therefore 

when designing a intake system, potentially harmful discharges (brine or waste 

water) in the vicinity of the proposed seawater intake, should be well documented. 

 

The second type of seawater intake is the onshore direct seawater intake where 

seawater is gathered from a water column in the surf zone. This occurs for the four 

seawater intakes at Abagold, Hermanus, Sea Fisheries Aquarium, Seapoint, Two 

Oceans Aquarium (TOA), Cape Town Harbor and West Coast Abalone, Britannia 

Bay. 
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With the exception of TOA, these intakes occur in the relatively open surf zone while 

the intake for TOA is in a harbor. The most common factor in the latter three intakes 

is the impact of marine life. Hence when designing the hydraulics of a seawater 

intake, accommodation should be made for the growth of marine life. This is akin to 

designing a pipeline and compensating for deterioration of the inner surface of the 

pipe over a large time period. 

 

With marine growth being inevitable in seawater intakes, two methods can be 

employed to reduce marine growth. The first is the use of antifouling paints. These 

paints discourage marine growth on a surface; however they might also be 

detrimental to the seawater end user. This method is not recommended if the end 

user is part of a marine environment.  

 

If the seawater end user is part of a marine environment, then the mechanical 

method of clearing the seawater intake is recommended. Here, the intake pipe(s)can 

be cleared via pigging or rotor routing. This method ensures that there is no change 

in the chemical composition of the abstracted water. When designing a seawater 

intake, allowance should be made for this maintenance action  

 

At Abagold the seawater can be considered direct as it abstracts water from a water 

column. However this water column is in an intake basin that is at the end of a gully, 

hence there are a few extra factors that affect the intake. The main problem at 

Abagolds seawater intake is air entrainment and the low quantity of feed water. This 

cause‟s additional strain to the pumps as there is additional negative pressure head 

to pump against. With air being present in the feed water, this causes cavitation to 

the pump impellors. Hence it should be noted that when designing a seawater intake, 

the quantity of available water must be guaranteed and that the design should 

eliminate air from entering the pumping system. 

 

The third type of seawater intake is the sub-bottom seawater intake. This occurs at 

Sea World Aquarium, UMW, Durban and Paternoster Oyster, Paternoster.  

 

At Paternoster Oyster the entrepreneurial skills of the owner/operator should be 

noted. The beach wells are unique to the owner as he designed them himself. His 

method of installation of the beach wells is commendable as they stem from his 

practical experience and not any formal education.  
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The second sub-bottom intake is situated at UMW. Here water is abstracted for use 

at Sea World Aquarium. Here the design of a seawater intake is considered to be in 

one of three categories, they are: Hydraulic/Physical, Biological and Biochemical. 

Each category is discussed briefly 

 

 

Hydraulic  

 

When designing a pumping system the rise and fall of the sea level must be 

considered and hence a variable speed pump system should be used. Similar to the 

case at Abagold, air entrainment should be considered. At SWA, It was found that a 

large barrage of bubbles was being sucked up from the well points and the air 

caused cavitation of the pumps. 

 

 

Physical 

 

When the filter material through which the seawater flows become too compact, the 

negative suction pressure become so large that gases are drawn out of solution. The 

occurrence of these gases is undesirable. 

 

 

Biological and Biochemical 

 

There are numerous assumptions made when designing a sub-bottom intake. It is 

often assumed that the sand would act as a filter agent and that the physical quality 

of the water would be better. This might occur, however the myriad of biological and 

chemical reactions within the filter material must be considered. Chapter 3.5.3 covers 

a few scenarios that occurred at SWA seawater intake. Hence these should also be 

considered when designing a sub-bottom seawater intake. The use of a marine 

biologist to analyse the biological and biochemical reactions that occur in the sand 

matrix surrounding a beach well is recommended. 
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Chapter 4 

4. CASE STUDY: INVESTIGATION OF INTAKE PIPES 

FOR A HORIZONTAL WELL FOR ABSTRACTING 

SEAWATER FROM THE SURFZONE ON ROCKY 

COASTLINES 
___________________________________________________________________ 

 

4.1 Introduction 

 

The feasibility of constructing a desalination facility at Kidd‟s Beach, near East 

London, Eastern Cape was undertaken by ZLH Consulting Engineers (ZLH, 2008). 

This entailed the design of all associated pipework, abstraction and disposal 

systems. The design parameters of water demand and relative locality were 

predetermined. The flowrate of required potable water is 40l/s (144m3/hour); hence 

due the desalination plant providing a 50% return, an abstraction rate of 80l/s 

(288m3/hour) is required. Three main options were proposed.  These were located 

near the Kidd‟s Beach main bathing area and can be seen in Figures 4.1 to 4.3 

 

 

Figure 4.1: Seawater Abstraction and disposal System: Option 1 (ZLH, 2008) 
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Figure 4.2: Seawater Abstraction and disposal System: Option 2 (ZLH, 2008) 

 

 

Figure 4.3: Seawater Abstraction and disposal System: Option 3 (ZLH, 2008) 

 

Due to growing environmental and tourism pressure, these options were rejected. 

The final design had to consider 1) environmental impacts & 2) the concern of Kidd‟s 

Beach residents who found the intakes to be visually unacceptable (ZLH, 2008) 
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4.2 Conceptual Design & Layout of Seawater Intake on a 

Rocky Coastline 

 

4.2.1 Background 

 

The new location for the seawater abstraction/disposal area was approximately 1km 

south west of the main bathing beach. The area is far enough from the residential 

areas but close to the new potential desalination site. The coastline in this area is 

composed only of rocky shoreline that is populated with numerous parallel gulleys. 

Seawater is to be abstracted and disposed from this area, with minimal visual and 

environmental impact to the shoreline (ZLH, 2008). 

 

The desalination facility will be situated behind the natural vegetation. Seawater will 

be pumped from the abstraction point to the desalination plant. The concentrated 

brine will be pumped from the plant via the disposal infrastructure, back into the surf 

zone. A newly constructed wooden foot path will to be used to alleviate visual impact. 

As shown in Figure 4.4, Turquoise indicates the Intake system, Yellow the Disposal 

system and Green the Wooden Footpath (ZLH, 2008). 

 

 

Figure 4.4: Seawater Abstraction and Disposal System: Final Layout (ZLH, 2008) 
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Due to the wave climate, and to negate recirculation, the disposal point is situated 

north east of the abstraction point. The presence of sand in the rocky shoreline is 

confirmed by the plumes of sand in the surf zone, Figure 4.4 above. The final design 

incorporates a few aspects from the initial options. One design criteria was to blend 

the seawater intake into the natural environment. Another suggestion was for the 

intake and disposal infrastructure to make use of the existing gulley‟s.  

 

 

4.2.2 Proposed Seawater Intake 

 

To draw water from sandy beaches, a well point system, as noted in Chapter 2.3.3.1, 

can be used. Intake pipes with small perforation can be used to collect seawater. 

Under gravity; this water flows through the sand bed and intake pipes into a 

collection well (ZLH, 2008). 

 

 

Figure 4.5: Proposed Seawater Intake System 

 

The basis of this seawater intake was to use the same type of horizontal well to 

collect seawater and gravity feed this into a sump The above design long section, 

Figure 4.5, was proposed. (ZLH, 2008). Referring to Figure 4.5 above, the intake 

structure would be designed / constructed as follows. An existing gulley would be 

excavated to ensure that the intake would lie parallel to the existing rock strata. A 

screen pipe would be bedded in 19mm stone bedding. Above this is a core and 

under layer. Thereafter the seawater intake would terminate with a rock armour layer. 
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4.2.3 Cross Section Design of Seawater Intake 

 

With respect to structural stability, the armour layer would be the most vital 

component. Due to economics, rock armour is almost always used, at the steepest 

slope possible. The use of low sloped armour units is not common. Hence analysis of 

the armour rock at a low gradient is not required as it can be assumed that tradition 

analysis of a steep slope revetment would be more than adequate. Figure 4.6 below 

shows two sections of a breakwater. 

 

 
Figure 4.6: Cross-sectional of Breakwater (CEM, 2007). 

 

The upper section of Figure 4.6 shows a complex idealized cross section. The lower 

part of Figure 4.6 depicts a recommended cross section. The idealized cross section 

provides more complete use of the range of materials typically available from a 

quarry, but it is more difficult to construct. The recommended cross section takes into 

account some of the practical problems involved in constructing submerged portions 

of the structure (CEM, 2007). Hence the second, recommended section will be used. 
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4.2.4 Structural Design of Seawater Intake 

 

To calculate the armour size, Van Gents‟ method is used (CIRIA, CUR, CETMEF, 

2006). Equation CS1 below. shows Van Gents method when calculating rubble 

mound armour size for shallow foreshore conditions. 

 

 

 
  

     
     √    (  

         

    
)

 

 
(
  

√ 
)
   

   (Eqn CS1) 

 

 

For a depth limited wave in 2 meters of water, an armour slope of 1 over 1.5. This 

resulted in an armour rock size of M50 = 1.45 tons at the toe of the revetment. 

Utilising Figure 4.6, the design values for the cross section are found in Table 

4.1below. It is assumed that the rock material has a density of 2500kg/m3. The 

relevance of this information below, will be utilized further on. 

 

Table 4.1: Details of material sizing for armour protection of seawater Intake 

Layer 
 

Armour Underlayer Core Core Bedding 

Size Notation 
 

W W/10 W/200  W/4000 W/150000 

Weight kg 1450 145 7.25 0.36 0.010 

Rock Density kg/m
3
 2500 2500 2500 2500 2500 

Dn50
3
 m

3
 0.58 0.058 0.0029 0.00015 3.87E-06 

Dn50 m 0.834 0.387 0.143 0.053 0.0157 

Rock Size 
Gradation (%) 

from 125% 130% 150% 170% 170% 

to 75% 70% 50% 30% 30% 

Upper Weight Limit kg 1813 189 10.9 0.6 0.016 

Lower Weight Limit kg 1088 102 3.6 0.11 0.003 

Dn100 m 0.898 0.422 0.163 0.063 0.019 

Dn0 m 0.758 0.344 0.113 0.035 0.011 

 

 

4.2.5 Filter Design of Seawater Intake 

 

After the structural strength has been confirmed, the next important step is to 

undertake a filter design. The basic principle of this design, is to ensure that no 

material is lost. The finer details of this can be found in Chapter 2.4.7.For the 

purposes of this thesis the following conditions are assumed: 
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 There is no internal erosion of granular material 

 Only 1) Interface Stability of a Closed Granular Filter will be checked 

2) Permeability Requirements of a Granular Filter will be checked 

 A layer will only comprise of material that lies between the two, predetermined 

outer limits of that layer 

 Dn size of a particular layer will be linearly interpolated from these two limits  

 

Table 4.2, which is sourced from Table 4.1, shows the information required to 

perform the filter test. The blue figures are interpolated from Figure 4.7 which is a 

graphical plot of the data in Table 4.1. 

 

Table 4.2: Material sizes for armour protection of seawater Intake[meters] 

Layer Armour Underlayer Core upper Core Lower Core Mixture Bedding 

Dn50 0.834 0.387 0.143 0.053 0.100 0.0157 

Dn100 0.898 0.422 0.163 0.063 0.163 0.019 

Dn0 0.758 0.344 0.113 0.035 0.035 0.011 

Dn85 0.879 0.413 0.157 0.062 0.146 0.018 

Dn15 0.781 0.357 0.122 0.041 0.055 0.012 
 

 

 

Figure 4.7: Material Grain Distribution for armour protection material of seawater Intake 
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4.2.5.1 Interface Stability of a Closed Granular Filter 

 

The check with regards to Interface Stability of a Granular Filter is done with 

Equation LR17 below 

 

 
    

    
                    (Eqn LR17) 

 The indices "b" and '‟f’' are used for the base and filter materials respectively and 

numbers refer to the particle size distribution curve. The filter "f" layer is at the top 

and the base "b" is the lower layer. 

 

Filter Check between Armour and Underlayer 

 

From Table 4.2, D15f = 0.781m and D85b =0.413. Applying Equation LR17,  

 

    

    
 
     

     
        

 

Hence the interface between the Armour layer and Underlayer is stable.  

 

Filter Check between Underlayer and Core 

 

From Table 4.2, D15f = 0.357m and D85b =0.146. Applying Equation LR17,  

 

    

    
 
     

     
        

 

Hence the interface between the Underlayer and Core is stable.  

 

Filter Check between Core and Bedding 

 

From Table 4.2, D15f = 0.055m and D85b =0.018. Applying Equation LR17,  

 

    

    
 

     

      
        

 

Hence the interface between the Core and Bedding layer is stable.  
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4.2.5.2 Permeability Requirements of a Granular Filter 

 

The general permeability requirement for such filters is that the flow resistance is 

small enough to prevent pore pressures contributing to instability of the structure. 

This criterion is automatically met if the material in a layer is stabile. 

 

This filter criteria corresponds to the requirement that the permeability of the filter 

layer, kf, is much larger than that of the base, kb . In cases of laminar flow, the 

following Equation LR19 applies. 

 

 
  

  
                          (Eqn LR40) 

 

The indices "b" and '‟f’' are used for the base and filter materials respectively and 

numbers refer to the particle size distribution curve. The filter "f" layer is at the top 

and the base "b" is the lower layer. The permeability criterion given above as 

Equation LR19 and illustrated in Figure 2.39 below, is especially secure for all kinds 

of filters. Table 4.3 below shows the manner in which Figure 2.39 is used to 

determine the permeability of each layer 

 

Table 4.3: Calculation of Permeability for armour protection of seawater Intake 

Layer 
 

Armour Underlayer Core Mixture Bedding 

Dn50 m 0.834 0.387 0.100 0.0157 

Log (D50) m -0.08 -0.41 -1.00 -1.80 

Log k (from fig. 2.39) m/s -0.28 -0.44 -0.74 -1.16 

k m/s 0.525 0.363 0.182 0.069 

 

 

Permeability Check between Armour and Underlayer 

 

From Table 4.2, D50f = 0.834m and D50b =0.387. From Figure 2.39, kf =0.525 and  

kb =.363. Applying Equation LR19, 

  

  

  
 
     

     
      

This is less that the ratio stated by equation LR 19, However the permeability of the 

filter layer is twice that of the base layer and hence the permeability is acceptable. 
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Permeability Check between Underlayer and Core Layer 

 

From Table 4.2, D50f = 0.387m and D50b =0.1. From Figure 2.39, kf =0.363 and kb 

=0.182. Applying Equation LR19,  

 

  

  
 
     

     
      

 

This is less that the ratio stated by equation LR 19, However the permeability of the 

filter layer is twice that of the base layer and hence the permeability is acceptable. 

 

 

Permeability Check between Core Layer and Bedding Layer 

 

From Table 4.2, D50f = 0.1m and D50b =0.0157. From Figure 2.39, kf =0.182 and kb 

=0.069. Applying Equation LR19, 

  

  

  
 
     

     
      

 

This is less that the ratio stated by equation LR 19, However the permeability of the 

filter layer is more than twice that of the base layer and hence the permeability is 

acceptable. 
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4.3 Specific Aims of Investigation 

 

4.3.1 Overall Objectives 

 

The main objectives of this thesis are found in Chapter 1.3. They are summarized as 

follows: 

1. Survey selected seawater abstraction facilities in South Africa.  

2. Investigate the hydraulics of a proposed seawater abstraction system using 

the Horizontal Well Method (HWM)on rocky coastlines. 

3. Provide recommendations for design guidelines for small scale seawater 

abstraction systems on rocky coastlines using the HWM. 

The first objective was addressed in Chapter 3. Proposed solution and guidelines to 

the investigated abstraction facilities are made in the Chapter 3.9. 

 

The third objective is addressed in the final Chapter 7. It is a culmination of the 

seawater abstraction facilities survey and the findings of the Hydraulic Physical 

Model (HPM) tests 

 

4.3.2 Flow regime and Filter Objectives 

 

In Chapters 2.4.6 and 2.4.7, the literature review concentrated on the, “Hydraulics 

within Seawater Intake” component. Thereafter, identification of areas that require 

more in depth investigation is required. 

 

The hydraulics of the intake pipes is the bottle neck as the area of perforation 

dictates the flow and the associated losses through the opening. Hence better 

understanding of the screen pipe is required. The relationship of flow versus 

headloss will help determine the screen pipe invert level and thus, the entire 

seawater intake. 

 

The first part of the study, investigates the relationship between flow and headloss in 

a seawater intake pipe.  The second part of the study, investigates the effect of 

filter/bedding material around the Intake pipeline. The effect of this material on flow, 

and headloss in the seawater pipe intake is to be better understood. The project at 

Kidd‟s beach did not past the scoping stage. However the information on seawater 

intakes on rocky shores will prove valuable in the future.              .
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4.4 Hydraulic Physical Model 

 

4.4.1 Model Design Objectives 

 

As, mentioned in chapters 4.2 & 4.3, there are various components that require 

attention when designing a seawater intake. By drawing up a conceptual design, the 

number of components to be designed is better managed. Certain components of the 

intake would have established design guidelines, whilst some are still in the 

experimental stage. With supporting literature, the list of design items to be 

investigated in this thesis has been reduced to two viz.: 

 

 The relationship between flows, pressure driving flow and headloss in the 

seawater, pipe intake. 

 The effect of material surrounding the intake pipeline, on flow, pressure 

driving the flow and headloss in the seawater pipe intake. 

 

With these design objectives established, a summary of the design and construction 

of the Hydraulic Physical Model (HPM) follows. Appendix A contains more detailed 

information on the layout and dimensions of the HPM. 

 

The requirements of the model had to satisfy the following conditions. 

 

The model: 

 should allow for easy calculation of head loss. 

 should ensure that variable flow is attainable. 

 should allow for material to surround the intake pipe 

 

The model should also: 

 ensure that all flows can be measured. 

 ensure that all losses are accounted for. 

 ensure that any material (sand) conveyed by water is measurable. 

 maximise visual viewing of flow. 

 

Figures 4.8 and 4.9 below show the Hydraulic Physical Model setup as used for 

testing. 
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Figure 4.8: Physical Hydraulic Model for testing of Seawater Intake pipework 

 

 

4.4.2 Intake Pipes 

 

Three intake pipes of 250mm diameter were tested. 250mm diameter pipes, being 

not commonly used in practice, were used as they were the only size available for all 

three pipe types. These pipe types where chosen as they are the only perforated 

pipe types available in South Africa. The three pipes tested were as follows: 

 

 A Slotted PVC Pipe 

 A Perforated PVC Pipe 

 A Metal Wire (Johnson Screen) Pipe 

 

The first pipe tested was a slotted PVC pipe with 1mm slots. These slots take up half 

the area of the pipe wall in the form of five slots. The second pipe tested was a PVC 

pipe into which 8mm diameter holes were drilled. The third pipe was a circularly 

wound, metal wire pipe. These pipes will be described in greater detail in the 

subsequent sub chapters. 
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4.4.3 Types of Test 

 

Considering the conceptual design in chapter 4.2, flow is restricted by the perforation 

of the pipe, and the material surrounding the intake pipe. The core and armour 

material were deemed large enough not to impede the flow of water. Hence the 

following tests were conducted as they were designed to illicit only the specific 

information required. They were as follows: 

 

Test 1: Hydraulic test with water only 

Test 2: Hydraulic test with Intake Pipe in 19mm Stone Bedding 

Test 3: Hydraulic test with Intake Pipe in 19mm Stone and sand bedding. 

 

The following chapters will describe the above tests in greater detail 

 

 

4.4.4 Basic Methodology of Tests 

 

Method 

 

Referring to Figure 4.8 and 4.9, water enters the larger Water Column 1 (WC1). 

Under gravity, the water moves through the slots/perforation into the intake pipe. 

Thereafter water travels through the intake pipe into the first half of Water Column 2 

(WC2a). The water flows upwards until it encounters the V notch weir. The water 

then flows over the weir into the second half of WC2, noted as WC2b. Due to the V 

notch being calibrated; the flowrate through the model is easily calculated. Two tubes 

that connect to the bottom of WC1 and WC2 are placed on either side of a measuring 

scale in order to accurately measure their respective water level and thus the head 

difference between both water columns 

 

 

4.4.4.1 Test 1: Hydraulic test with water only 

 

Figure 4.9 below is a simple flow diagram depicting the loss of pressure head as 

water flows through the Hydraulic Physical Model (HPM). The 19mm stone bedding 

is shown for reference purposes and is not used in the first test. Figure 4.10 shows 

the relationship between headloss due the pipe openings and the rate of flow. 
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For steady state flows, the difference of Water Level in Column 1 (WC1) and Column 

2 (WC2) is the total loss of pressure head (∆PTOTAL) through the model. The total loss 

is the sum of pressure loss due to: 

 

A) Openings in the intake pipe 

B) Skin friction in the portion of intake pipe where there is water ingression and 

transportation 

C)  Skin friction in the portion of intake pipe where there is water transportation 

only 

D) Exit loss as water exits the intake pipe and enters WC2a 

E) Skin friction as water flows up WC2a 

 

Chapter 4.4.6 and Figure 4.13 describe the minor losses in greater detail 

 
Figure 4.9: Flow diagram depicting the loss of pressure head in the (HPM) 

 

The losses associated with the openings in a pipe (Loss A), is easily calculated as 

∆PTOTAL minus (B+C+D+E). Hence for various flows, the relationship between the loss 

in pressure due to the intake pipe openings and flow can be established. 
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Figure 4.10: Relationship between flow and the associated pressure loss for Test 1 (water 

only, no stone bedding) 

 

4.4.4.2 Test 2: Hydraulic test with Pipe in 19mm Stone Bedding 

 

The second test is conducted in a similar manner as the first test. For steady state 

flows, the difference of Water Level in Column 1 (WC1) and Column 2 (WC2) is the 

total loss of pressure head (∆PTOTAL) through the model. The total loss is the sum of 

pressure loss due to: 

 

A) The stone bedding surrounding the intake pipe. 

B) Openings in the intake pipe 

C) Skin friction in the portion of intake pipe where there is water ingression and 

transportation 

D)  Skin friction in the portion of intake pipe where there is water transportation 

only 

E) Exit loss as water exits the intake pipe and enters WC2a 

F) Skin friction as water flows up WC2a 

 

Figure 4.11 shows the typical relationship between flow and the associated pressure 

loss plotted with the results of Test 1 (water only). Note that the higher line is the sum 

of the pressure loss due to the intake pipe and the stone bedding. Hence the space 

between both lines is the actual physical headloss due to stone bedding alone. 
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Figure 4.11: Relationship between flow and the associated loss of pressure head due to the 

intake pipe AND Stone bedding in the HPM 

 

4.4.4.3 Test 3: Hydraulic test with Pipe in 19mm Stone and Sand 

 

The third test is conducted in a similar manner as the first two. For steady state flows, 

the difference of Water Level in Column 1 (WC1) and Column 2 (WC2) is the total 

loss of pressure head (∆PTOTAL) through the model. The total loss is the sum of 

pressure loss due to: 

 

A) The stone and sand bedding surrounding the intake pipe. 

B) Openings in the intake pipe 

C) Skin friction in the portion of intake pipe where there is water ingression and 

transportation 

D)  Skin friction in the portion of intake pipe where there is water transportation 

only 

E) Exit loss as water exits the intake pipe and enters WC2a 

F) Skin friction as water flows up WC2a 

 

Figure 4.12 shows the typical relationship between flow and the associated pressure 

loss. Note that the middle line (Test 2) is the sum of the pressure loss due to the 

intake pipe and the stone bedding (no sand) and the lower line is the result of Test 1 

(water only). The green line is the sum of the pressure loss due to the intake pipe, 

stone bedding and sand mixture Hence the space between the highest and lowest 

lines is the pressure loss due to the stone AND sand bedding. 
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Figure 4.12: Relationship between flow and the associated loss of pressure head due to the 

intake pipe, Stone AND Sand bedding in the HPM 

 

 

4.4.5 Three Methods used for Estimating Headloss by Bedding 

 

Three methods where investigated when calculating the headloss due to the stone 

bedding surrounding the intake pipes. The three methods are compared in order to 

establish which would be most appropriate for the application of Seawater Intakes on 

a rocky coastline. Detailed calculations with reference to the, Slotted, Perforated and 

Metal Wire pipe can be found in Appendices D, E and F respectively 

 

Method 1: Simple method for determining stone bedding loss 

 

In this simplistic method, the results of the “Water Test only: is plotted. Curve line 1 is 

fitted to the results and an equation characterising the line and hence the pipe, 

headloss characteristics is formulated.  

 

Thereafter, the results of the “Stone and water test” is plotted. Curve line 2 is fitted to 

the results and an equation characterising the line and hence the pipe and 

surrounding bedding, headloss characteristics is formulated. 
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The loss due to the stone bedding only, Curve line 3, is determined by subtracting 

Curve line 2 from Curve Line 1. This data is then plotted to show graphically the 

relationship between the headloss caused by the bedding. 

 

Method 2: Method for determining stone bedding loss : Hydraulic conductivity: 

Kenny, Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of stone bedding. The following equation LR16 and 

Figures, 2.32 and 2.33 by Kenny, Lau and Ofoegbu are used to estimate stone 

bedding headloss. 

 

                
 

                 (Eqn LR16) 

 

Method 3: Method for determining stone bedding loss : Hydraulic conductivity: 

Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, 

stems from work carried out by Forchheimer. Figure 2.35, chapter 2.4.5.4 was used 

to estimate the permeability of the stone bedding and hence the headloss. 

 

 
Figure 2.35: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF, 2007) 

Stellenbosch University  http://scholar.sun.ac.za



103 

University of Stellenbosch 

4.4.6 Minor losses in the Model 

 

There are two types of losses that occur in the PHM. The first type is minor pressure 

losses due to the resistance to flow. The second loss is physical loss of water due to 

model leakage. 

 

Figure 4.13: Loss of pressure head in the HPM (Water Only) 

 

 

4.4.6.1 Minor Pressure Losses 

 

Figure 4.13 shows the local for the major loss A and the minor losses B, C, D, and E. 

As mentioned in the previous sub chapter, subsequent minor losses are calculated 

as follows, Loss A is the friction due to the intake pipes perforation and is not 

considered a minor loss. 
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Loss B: Skin friction in the portion of intake pipe where there is water ingression and 

transportation. The skin friction in this is calculated using Manning‟s Method. A pipe 

of ø250mm is used as the conduit size. However, the skin friction in this area is 

halved as theoretically the flow is at its maximum as it exits WC1 and zero at the start 

of the line (Right hand side of Figure 4.10) 

 

Loss C: Skin friction in the portion of intake pipe where there is water transportation 

only. The skin friction in this chapter is calculated using Manning‟s Method. A pipe of 

ø250mm is used as the conduit size.  

 

Loss D: Exit loss as water enters WC2a. For the flow exiting the intake pipe, and then 

turning 90 degrees, a coefficient of Ke = 1.0 is used as in the calculation of the 

pressure loss which is equal to Ke*V
2/2g 

 

Loss E: Skin friction as water flows up WC2a. The skin friction in this chapter is 

calculated using the Manning‟s Method. A rectangular section of 600mm by 250mm 

is used as the conduit size.  

 

All of these losses are be quantitatively estimated in the detailed calculations 

contained in Appendices D, E and F. 

 

4.4.6.2 Loss of water due to leakage 

 

All HPM‟s have the potential to leak, Figure 4.14. Hence the ability to quantify the 

leakage is crucial as this would affect the measurement of flow through the model. 

The method used in this HPM, was to measure the flow rate of the leakage for each 

increment of flow through the model.  

 

This was done by constructing a dam around the HPM, Figure 4.15. The leaked flow 

was then guided to a water canal and collected in a measuring vessel over a 

specified time period. Hence for a steady flow conditions, the leakage flow rate was 

easily established and the actual flow rate in the model calculated. Ultimately the 

leakage flow rate was found to be insignificant in comparison to the flow rate in the 

HPM. 
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Figure 4.14: A leak in the first half of WC2 of the HPM 

 

Figure 4.15: A dam constructed around the HPM 
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Chapter 5 

5. CASE STUDY: TEST PROCEDURES AND RESULTS 

FOR DETAIL INVESTIGATION OF INTAKE PIPES IN 

HYDRAULIC PHYSICAL MODEL 
___________________________________________________________________ 

 

5.1 Slotted PVC Pipe Abstraction Model 

 

5.1.1 Synopsis 

 

The following is a chronological summary of the tests conducted on the Slotted PVC 

Pipe, Figure 5.1. The first test was conducted utilising water only. Figure 5.2 

describes the HPM. The test pipe has been cut in half and placed against a Perspex 

sheet. For the second test, 19mm stone bedding was placed around the pipeline. 

The third test involved sand being used to fill the voids of the 19mm stone bedding 

 

 

Figure 5.1: View of inner section of half a ø250mm slotted PVC Pipe 
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The first two tests proceeded well. In the third test, the sand and stone mixture 

constricted the flow to a fraction of those in the former two tests. At this point, a 

system of back flushing was introduced in order to dislodge the sand and restore the 

initial flow rates. This system proved to be moderately successful. Subsequent 

chapters discuss the tests and results in finer detail. 

 

 

Figure 5.2: ø250mm slotted pipe in the Physical model 

 

 

5.1.2 Test 1: Water Only Test 

 

The first test proceeded without incident. Figure 5.3 below describes graphically the 

headloss due to the slots (Loss A) versus the flowrate for a fully flowing ø250mm 

slotted pipe. 
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Figure 5.3: Headloss, (Loss A) versus the flowrate for a fully flowing ø250mm Slotted pipe 

 

The equation below describes the relationship between headloss due to slot friction 

and flowrate 

 

∆P= 0.05178Q2 + 0.32059Q             (Eqn1) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate in litres/second 

 

 

5.1.3 Test 2: Water and Stone Test 

 

The second experiment saw the use of 19mm stone as bedding and blanketing 

material. The intake pipe was entirely contained within 19mm Stone benching 

medium, Figure 5.4. This experiment process was uncomplicated and similar to the 

previous experiment. Figure 5.5 describes the headloss due to the slots (Loss A) and 

the loss due to stone and slot friction, versus the flowrate for a fully flowing ø250mm 

slotted pipe. 
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Figure 5.4: ø250mm slotted pipe with stone bedding and blanket 

 

 

Figure 5.5: Headloss due to Slot Friction and Stone bedding including Slot friction 

 

Stone Bedding 
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The equation below describes the relationship between headloss due to Stone 

Bedding and slot friction versus flowrate 

 

∆P = 0.13092Q2 + 0.87249Q            (Eqn 2) 

 

The equation below describes the relationship between headloss due to slot friction 

only versus flowrate 

 

∆P= 0.05178Q2 + 0.32059Q            (Eqn 1) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate in liters/second 

 

Hence using Method 1, the loss due to the Stone bedding alone (Equation 3), would 

be Equation 1 minus Equation 2 

 

∆P= 0.07914Q2 + 0.5519Q            (Eqn 3) 

 

 

5.1.4 Test 3: Water, Stone and Sand Test  

 

5.1.4.1 Introduction 

 

Although the seawater intake is to be installed in a rocky coastline, due to the highly 

dynamic nature of coastlines, the presence of sand can be expected. Hence the 

ingress of sand into the seawater intake should be considered. 

 

For design purposes, a conservative approach was taken. In the HPM, the stone 

bedding surrounding the slotted pipeline was considered to be saturated with sand. 

The sand is a mixture of a fine grained „beach‟ sanded called Philippi and a „single 

sized‟ granular filter sand which is normally used as filter material. The grading in 

Figure 5.6 below, shows the grading of the sand.  More details concerning the sand 

can be found in Appendix C 
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Figure 5.6: Partial grading curve for combined Phillipi and Granular Filter sand 

 

5.1.4.2 Testing 

 

The test commenced with the sand and stone mixture insitu. However considering  

1) the slot widths for the intake pipe to be 1mm and  

2) the grading curve of the sand content, Figure 5.6, 

 

clogging of the seawater intake pipe was inevitable. 

 

Figure 5.7 below shows the sand and stone material surround the intake pipe. It can 

be seen that the fine material from below, has seeped into the pipe. This material is 

still in suspension due to the flow in the pipe being very slow. Increasing the driving 

head had no effect on the rate of flow through the HPM which remained below 0.5l/s. 

Figure 5.8 shows the headloss and flowrate the over a 3 hour test period. 
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Figure 5.7: Sand and stone material surrounding the intake pipe 

 

 

Figure 5.8: Headloss and rate of flow for a 3 hour test period 

 

Due to the severely restricted flow, it was impossible to decipher a flow versus 

headloss relationship. Hence the design of such a Seawater Intake pipeline was 

considered a failure, as the flow rate was a fraction of the 80l/s design flowrate. 
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In order to make the Seawater Intake operational an augmentation or entire redesign 

of the intake had to be undertaken. It was decided that an augmentation of the 

design would be undertaken and hence a back flushing system was proposed. The 

aim of the back flushing system is to dislodge sand from the voids in between the 

stone bedding and pipe perforations. 

 

 

5.1.5 Backflushing 

 

5.1.5.1 Introduction 

 

The process of backflushing is fairly common and is used to dislodge material that 

has become lodged in another medium. Water is the most common element used to 

conduct back flushing, although gases are sometimes used. The main attributes in 

the various types of back flushing are namely the velocity and the flowrate of the 

material used. Depending on their requirement, high velocity flows are usually used 

to physically dislodge material while high flow rates are indicative of the volume of 

material that has to be displaced. 

 

5.1.5.2 Design of Flushing System 

 

It was initially decided that the high velocity option would be used as this would 

remove all sand particle lodged in the slots of the intake pipeline. The design concept 

was to insert a 15mm pipe down the entire length of the intake pipeline. Small 

diameter holes were drilled down the length of the pipe in order to create high 

velocity flows. The flushing pipe would be centralised with the aid of spacers. Pumps 

then delivered water at a pressure of 7 bar. 

 

In order to have positive radial flushing flow, it was important to seal the open end of 

the intake pipe during the flushing operation. Figures 5.9 and 5.10 describe the 

flushing apparatus layout. 
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Figure 5.9: Horizontal section through middle of Intake Pipeline 

 

 

 

Figure 5.10: 15mm flushing pipe. Note the holes/ports and black spacers that hold the pipe in 

the center of the Intake pipeline 
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5.1.5.3 Augmentation of Flushing System 

 

The initial flushing system, did not function satisfactorily as it did not provide the 

required results. Figure 5.11 below shows the plan view of Water Column 1 after the 

first backflushing event. At 7 bar of pressure, the flushing flow flowed vertical through 

certain pathways and only managed to dislodge a very small portion of the sand from 

the sand and stone mixture. 

 

 

Figure 5.11: Plan view of water column 1. Sand and 19mm stone mix after flushing with 

water. Note the Intake pipe runs along the upper edge 

 

As can be seen in Figure 5.11 above, the use of high velocity water is not effective in 

removing the sand from the stone bedding. Hence a method was required that would 

physically displace the sand. Increasing the flow was not an option as the increased 

volume of water rose to the surface via the already established pathways. Hence it 

was decided that air be used to aid with the removal of sand from the bedding.  

 

The first hurdle was to ensure that the delivery of the air and water components of 

the flow, were equal. Due to the pressure difference between the delivered air and 

water, a manifold was used to create a mixture of water and air, Figure 5.12. With the 

pressure of water being preset at 7 bars, the pressure and flow of the air had to be 

adjusted. 
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Figure 5.12: A manifold used to create a mixture of water and air 

 

The mixture of air and water was feed into the flushing line. Figure 5.13, the addition 

of air helped dislodge sand from the bedding. This can be identified in Figure 5.13 as 

the dark portions of the bedding where sand has been removed 

 

Figure 5.13: Air and water mixture flowing out the flushing pipe, Flow of air from holes seen 

as white plumes 
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The combined use of air and water proved advantageous. The flushing flow 

eventually removed all the sand immediately above the Intake pipeline, Figure 5.14, 

This sand was then deposited as a sand bank which was formed parallel to the 

Intake pipeline. The oblique view in Figure 5.15 is of WC1 taken in the easterly 

direction. This shows the sand bed to be 30mm at its highest point. 

 

Figure 5.14: Plan view of water column 1. Sand and 19mm stone mix after  

Flushing with water and air. Note the Intake pipe runs along the upper edge 

 

 

Figure 5.15: Oblique view of water column 1. Sandbar on Bedding after  

Back flushing with air and water. Intake pipe runs along the left edge

Stellenbosch University  http://scholar.sun.ac.za



118 

University of Stellenbosch 

5.1.6 Test 4: Water, Stone and Sand Test after Back Flushing 

 

After examining the results of Test 3 (Before Back Flushing), a steady flow of 

approximately 0.23l/s was attained for a driving head of 0.175m. This was far less 

than the required flow. This low flow was due to the presence of sand in the bedding 

which effectively reduces the number of pathways allow water to flow through. 

 

After back flushing with water alone proved ineffective, air was added to the back 

flushing water and it evident from Figures 5.14 and 5.15 that sand was physically 

removed from areas above the intake pipeline. Thereafter Test 4 was conducted. In 

relation to Test 1 and Test 2, this test was time based. Figure 5.16 below shows the 

results of the test. 

 

 

Figure 5.16: Headloss and Rate of Flow for a 6.5hour test period. After back flushing 

 

The results of Test 4 show that after an hour, a steady flow of approximately 0.19l/s 

(0.38l/s for a full pipe) was attained. After an hour, the driving head was 

approximately 0.36m. However this decreases until the driving head is 0.28m after 

6.5hours. This is far less than the flow rate before the back flushing (0.23l/s). A 

possible explanation for this lower flow rate is as follows. During the back flushing, 

sand was removed from the area directly above the pipe. This sand settles on the 

adjacent area, effectively sealing a portion of the surface.  Seen in Figure 5.14, 70% 

of the surface is covered with sand. Hence the numbers of flow paths have been 

significantly reduced, thus lowering flow through the model. Hence it can be 

concluded that since back flushing was not successful, this pipe type would not be 

successful if a sand-rock mixture was encountered. 
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5.2 Perforated PVC Pipe Abstraction Model 

 

5.2.1 Synopsis 

 

The following is a chronological summary of the tests conducted on the Perforated 

PVC Pipe. Figure 5.17 shows a typical perforated PVC pipe. All holes are ø8mm. 

Figure 5.18 shows the pipe used in the first test. This test was conducted utilising 

water only. This test showed that the flow was comparatively low. It was 

approximately half the flow rate of the Slotted PVC pipe.  

 

For Test 2, more holes were then drilled into the pipe in order to increase the flow 

rate, Figure 5.19. For the third test, 19mm stone bedding was placed around the 

pipeline. The fourth test saw sand being used to fill the voids between the stone 

bedding 

 

 

Figure 5.17: Typical Perforated PVC Pipe, similar to pipe used in Test 2 

 

Stellenbosch University  http://scholar.sun.ac.za



120 

University of Stellenbosch 

 

Figure 5.18: Section and Elevation of ø250mm Perforated PVC Pipe 

 

 

Figure 5.19: Section and Elevation of Extra Perforated ø250mm Perforated PVC Pipe 

 

The first three tests proceeded well. In the fourth test, sand flowed out of the sand 

and stone mixture and filled the pipeline. Only due to scouring flow was the pipe not 

blocked. The system of back flushing was not required as the flow between WC1 and 

WC2 was capable of removing all the sand. The movement of this sand was akin to 

the migration of Dunes. The front face of the dune progresses forward due to 

continuous new material being supplied by the flow of water, Figure 5.25 
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5.2.2 Test 1: Water Only Test 

 

The first test aims to measure the relationship between flowrate and the headloss 

due to perforation. Figure 5.20 below describes the headloss due to the holes (Loss 

A) versus the flowrate for a fully flowing ø250mm perforated pipe. 

 

 

Figure 5.20: Headloss due to perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm perforated pipe 

 

The equation below describes the relationship between headloss due to slot friction 

and flowrate 

 

∆P= 5.464Q2 + 0.722Q            (Eqn 4) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate in liters/second 
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5.2.3 Test 2: Water Only Test with Extra Perforation 

 

The flowrate in the previous test, when compared to test 1 of the Slotted PVC pipe, 

was low. Hence it was decided to increase the number of holes in the pipeline. 

Initially the perforated pipeline has three holes per 75mm. Referring to Figure 5.19, 

four additional holes per 75mm was added. This increased the infiltration area by 

133%. Figure 5.21 below describes graphically the headloss due to the holes (Loss 

A) versus the flowrate for a fully flowing ø250mm Extra Perforated pipe. 

 

 

Figure 5.21: Headloss due to extra perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm Perforated pipe 

 

The equation below describes the relationship between headloss due to perforation 

friction and flowrate 

 

∆P= 0.891Q2 + 1.286Q             (Eqn 6) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate in liters/second 
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5.2.4 Test 3: Water and Stone Test 

 

 

The remaining two tests make use of the extra perforated pipe. In Test 3, 19mm 

stone is used as bedding and blanketing material. Figure 5.22 below describes 

graphically the headloss due to the slots (Loss A) and the loss due to 19mm stone 

and slot friction, versus the flowrate for a fully flowing ø250mm extra perforated pipe. 

 
 

 
Figure 5.22: Headloss due to Perforation Friction only and Stone bedding including 

perforation friction 

 

The equation below describes the relationship between headloss due to Stone 

Bedding and perforation friction versus flowrate 

 

∆P = 2.066 Q2 + 0.019 Q             (Eqn 7) 

 

The equation below describes the relationship between headloss due perforation 

friction only versus flowrate 
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∆P= 0.891Q2 + 1.286Q             (Eqn 6) 

 

With  

∆P = Headloss in mm 

Q = Flowrate in liters/second 

 

Hence using Method 1, the pressure loss due to the Stone bedding alone Equation 8, 

would be Equation 6 minus Equation 7 

 

∆P=1.175Q2– 1.267Q              (Eqn 8) 

 

 

5.2.5 Test 4: Water, Stone and Sand Test 

 

5.2.5.1 Introduction 

 

Once again the ingress of sand into the seawater intake was considered. The stone 

bedding surrounding the perforated pipeline was considered to be saturated with 

sand. The grading of the sand can be found in Appendix C 

 

5.2.5.2 Testing 

 

Pretesting 

 

The test commenced with the sand and stone mixture being insitu. Due to the 

perforations on the Intake pipe being ø8mm, any sand near a hole was transported 

into the Intake pipeline while the HPM was being primed. This can be seen in Figure 

5.23 below. 
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Figure 5.23: Sand ingress into Intake Pipeline before testing can commence 

 

Note that the displacement of sand was due to the flow of water and not only gravity. 

This is evident by the voids in the bedding below the Intake Pipe. 

 

Testing 

 

The test commences with the initial flow into the intake pipeline, occurring closest to 

WC2. This is evident by the suspended material in Figure 4.36. This is foreseeable 

as the maximum ingress velocity occurs at a point closest to WC2.  With the initial 

driving pressure head not being changed, the mounds of sand within the Intake Pipe 

began to grow, Figure 5.24 and 5.25. 
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Figure 5.24: Sand ingress into Intake Pipeline when testing commences 

 

 

Figure 5.25: The growth of sand mounds within the Intake Pipeline 

 

The growth of the sand mounds increase until the minimum area required for flow is 

reached. With the constriction of area, there is an increase in flow velocity in this 

area. When the flow area becomes too small, the flow starts to scour sand in the 

region of the constriction. Thereafter the sand falls out of suspension as the flow area 

increases. This scour and deposition of sand aids the development of the front face 

of the “sand dune” 
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The front face of the dune can be seen more clearly in Figure 5.26. The development 

of this surface in important as it indicates when equilibrium or stability of the sand 

mounds has been achieved. If the front face of the sand mound does not develop, it 

implies that for a certain flow rate, there is no net ingress of sand into the Intake 

Pipeline; hence the driving pressure head can be easily measured. 

 

 

Figure 5.26: Development of front face of „dune‟ seen as angular stratified layers of sand 

 

The driving pressure was incrementally increased 6 times whenever the ingress of 

sand into the pipeline became insignificant.  On the fifth test, the ingress of sand was 

at a negligible level and the pipe had begun to scour clean, Figure 5.27. In total 

seven tests were conducted and Figure 5.28 depicts the relationship between flow 

and 1.) the Headloss due to Perforation Friction; 2.) Headloss due to Perforation 

friction and Stone bedding and 3) Headloss due to Perforation friction, Stone and 

Sand bedding 
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Figure 5.27: Front face of the dune has reached WC1 and the Intake pipeline has started to 

scour clean 

 

 

Figure 5.28: Headloss due to Perforation Friction; Headloss due to Perforation friction and 

Stone bedding; and Headloss due to Perforation friction, Stone and Sand bedding. 
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This extra perforated pipe with a porosity of 1.27% has the lowest flow rate per 

headloss in comparison to the Slotted and Metal Wire Pipe. However, this pipe has 

not blocked up with the addition of sand to the stone bedding. If this pipe is to be 

used as an intake pipe, the seawater intake design has to allow for sand to be 

transported from the stone bedding, through the intake pipe and deposited in the 

collection manhole. Hence a minimum scour flow velocity of 0.7m/s should be 

maintained to ensure that sand is not deposited on the pipe floor, but transported into 

the collection chamber. 

 

 

5.3 Metal Wire Pipe Abstraction Model 

 

5.3.1 Synopsis 

 

Only two tests were conducted on the Metal Wire Pipe, Figure 5.29 and 5.30. The 

first test was conducted utilising water only. Thereafter 19mm stone bedding was 

placed around the pipeline for the second test. The test for sand and stone bedding 

was not considered based on the unsatisfactory results of the test on the Slotted 

PVC pipe. 

 

 
Figure 5.29: Internal View of half a ø250mm Metal Wire Pipe 
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Figure 5.30: External View of half a ø250mm Metal Wire Pipe 

 

5.3.2 Test 1: Water Only Test 

 

The water only test proceeded satisfactorily. Figure 5.31 below describes graphically 

the headloss due to the grooves (Loss A) versus the flowrate for a fully flowing 

ø250mm Metal Wire Pipe. 

 

Figure 5.31: Headloss due to the Slots (Loss A) versus the flowrate for a fully flowing 

ø250mm Metal Wire pipe 
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The equation below describes the relationship between headloss due to slot friction 

and flowrate 

 

∆P= 0.494Q2 + 1.443Q            (Eqn10) 

With  

∆P = Headloss due to perforation friction in mm 

Q = Flowrate for full pipeline in litres/second 

 

 

5.3.3 Test 2: Water and Stone Test 

 

The second experiment saw the intake pipe contained entirely within a 19mm Stone 

benching medium. This experiment process was straight forward and similar to the 

previous experiment. Figure 5.32 below describes graphically, the headloss due to 

the slots (Loss A) and 19mm stone. It also describes the headloss due to perforation 

friction only, versus the flowrate for a fully flowing ø250mm metal wire pipe. 

 

Figure 5.32: Headloss due to Slot Friction and Stone bedding including Slot friction 
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The equation below describes the relationship between headloss due to Stone 

Bedding and slot friction versus flowrate 

 

∆P= 0.2077Q 2+9.3323Q           (Eqn 11) 

 

The equation below describes the relationship between headloss due slot friction 

only versus flowrate 

 

∆P=0.494Q2 + 1.443Q           (Eqn 10) 

 

Using Method 1, the loss due to the Stone bedding alone, Eqn12, would be Eqn11 

minus Eqn10 

 

∆P= -0.2863Q2 + 7.8893Q           (Eqn 12) 

 

With  

∆P = Headloss due friction in mm 

Q = Flowrate in liters/second 

 

The tests on the Metal Wire Wipe proceeded without incident. Test 1: At a particular 

headloss value, this pipe type had flow values higher than that of the extra perforated 

pipe but values lower that of the slotted PVC pipe. The headloss values for this pipe 

was in between the Extra perforated and the Slotted PVC pipes. 
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Chapter 6 

6. DISCUSSION OF CASE STUDY TEST RESULTS 

___________________________________________________________________ 

 

6.1 Introduction 

 

The following is a summary and discussion on the experiments conducted on the 

three intakes pipes used in a horizontal well configuration. The first sub chapter 

reviews the water only test for all three pipes; the second sub chapter reviews the 

tests when 19mm Stone bedding was used. The third chapter reviews the tests when 

sand was added to the stone bedding.   

 

Note that the term, “Half Flow” refers to the actual flow rates recorded for the tests. 

As this flow rate is due to only half a pipe being used, the flowrate for a whole can be 

obtained by doubling the test flowrate. This is termed “Full Flow”. The headloss due 

to friction would remain the same as the friction effects would be mirrored by the 

“other half‟” of the test pipe. Hence the most applicable practical points are used to 

substantiate the design recommendations. 

 

 

6.2 Water Only Tests 

 

6.2.1 Test Results 

 

Slotted PVC Pipe 

This slotted pipe is a locally produced conduit that is manufactured in the 

Johannesburg, South Africa (SA) region. Hence its immediate availability is 

advantageous. This pipe wall has a porosity of 23.7%, which is the highest for all 

three pipes tested.  

 

Perforated PVC Pipe 

This pipe is commonly used as an agricultural drain. It is locally produced and is 

manufactured in all major cities in SA. The pipewall with extra perforation has a 

porosity of 1.27%, the lowest of all three. 
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Metal Wire Pipe 

This pipe is specialised product that is manufactured by Johnson screens in the 

United States. Hence its availability cannot always be guaranteed. This pipe has a 

porosity of 19.3% and can be considered highly pervious. 

The following Table 6.1 contains the results of the Water Only Test (WOT) carried 

out on the four test pipe conduits.  

Table 6.1 : Results of Water Only Test carried on the four test pipe 

Intake 
Pipe 

Types 
Slotted PVC Pipe 

Perforated PVC 
Pipe 

Perforated PVC 
Pipe with Extra 

Perforation 
 Metal Wire Pipe  

Test 
No. 

Loss 
A 

Q Half 
Pipe 

Loss 
A 

Q Half 
Pipe 

Loss 
A 

Q Half 
Pipe 

Loss 
A 

Q Half 
Pipe 

  mm l/s mm l/s mm l/s mm l/s 

1 0 0.8 0 0.1 3 0.2 1 0.2 

2 1 1.4 7 0.1 6 0.5 2 0.5 

3 3 2.1 13 0.4 14 0.9 4 0.9 

4 5 2.6 48 1.1 40 1.8 6 1.5 

5 7 3.3 113 1.7 89 2.9 13 2.0 

6 9 3.7 282 2.6 161 4.3 14 2.6 

7 10 4.3 431 3.4 215 4.9 31 3.1 

8 13 5.2 581 3.8 281 5.6 41 4.0 

9 16 6.4 
  

473 7.2 49 4.8 

10 19 7.3 
    

85 6.2 

11 25 8.3 
    

100 7.1 

12 30 8.9 
    

134 8.0 

13 38 9.8 
    

149 9.1 

14 48 10.8 
    

198 10.2 

15 61 11.4 
    

251 10.9 

16 74 12.6 
    

307 12.1 

17 93 14.3 
    

352 14.2 

18 133 15.9 
    

445 15.3 

19 172 18.3             

 

The results of Table 6.1 are plotted in Figure 6.1 below. This shows the comparative 

flowrates the pressure lost through friction, or in other terms, the head required to 

drive the flow. The worst performing pipe is the Perforated PVC Pipe (PPP). This 

pipe with a porosity of 0.57%, recorded a maximum flow rate of 3.8l/s with 

approximately 0.58m pressure head required to drive this flow into the pipe. This 

flowrate was considered to be very low and hence a perforated pipe with extra holes 

was produced in order to increase the flowrate.  
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This was termed the Perforated PVC Pipe with Extra Perforation (PPPEP). This pipe 

produced more than twice the flow rate as the PPP and required approximately 

100mm less driving pressure than the PPP. 

 

 
Figure 6.1: Perforation friction for all three intake pipe types 

 

With a porosity of 19.73% the next pipe, according to Figure 6.1, is the Metal Wire 

Pipe (MWP). This pipe, for a similar driving pressure of 445mm as compared to the 

PPPEP (473mm) produced more than twice the flowrate as that of the PPPEP 

(7.2l/s) at 15.3l/s.  

 

Chronologically, the first pipe tested, the Slotted PVC pipe, had the largest 

perforation area and produced the largest flow for the least amount of the pressure 

loss. For a driving head of approximately 0.17m, this pipe produced a flowrate of 

18.3l/s. Hence on first time observation, the slotted pipe produces the best results. 

 

6.2.2 Porosity versus Flowrate Test  

 

One of the first general speculation made is that the larger the holes in the pipe, the 

greater the flow. However, when designing an hydraulic structure, the flowrate is only 
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one of the more important design criteria. Another important factor is the losses in the 

system. The losses play an essential role in the overall design process. The following 

Table 6.2 documents the relationship between porosity versus the flowrate divided by 

the associated headloss for all four intake pipes. Figure 6.2 is a graphical plot of 

Table 6.2 

Table 6.2: Relationship between porosity versus the flowrate divided by the associated 
headloss for the four test pipes 

Description Unit 
Slotted PVC 

Pipe 
Perforated 
PVC Pipe 

Perforated 
PVC Pipe with 

Extra 
Perforation 

Metal Wire 
Pipe 

Flow l/s/m 18.3 3.8 7.2 15.3 

Headloss mm 172 581 473 445 

Headloss m 0.172 0.581 0.473 0.445 

Flow/Headloss l/s/m 106.34 6.54 15.22 34.40 

Porosity % 23.7 0.57 1.27 19.73 

 

 
Figure 6.2: Plot of Relationship between porosity and the flowrate divided by the associated 

headloss for the four test pipes 

 

As can be seen in Figure 6.2, there is no clearly defined relationship between the 

Flow and headloss and porosity, A general observation is that, the higher the 

porosity, the larger the flows.  
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However, the configuration of the perforation / porosity does play a vital role. 

Comparing the Metal Wire Pipe (MWP) to the Slotted PVC Pipe (SPP), it is found 

that there is a 4% difference of porosity, however when comparing the Flow/headloss 

for each pipe, it is found that the maximum flow experience by the SPP is 

approximately three times that of the MWP. This is mainly attributed to the 

configuration of the perforation. The slots in the MWP are much smaller. Hence the 

resultant velocities (Table F7) are larger. The largest velocity Vmax of 2.954m/s is 

experienced by the MWP, while the SPP (Table D7) has a lower Vmax velocity of 

1.838m/s. Hence since the headloss is proportional to the velocity squared, the 

losses in the MWP are much higher than the loss for the SPP for similar flowrates. 

 

 

6.3 Tests with Stone Bedding 

 

The following Table 6.3 contains the results of the Water and Stone bedding Test 

(WST) carried out on the three test pipe conduits. The Perforate Pipe was eliminated 

from further testing as the flowrates where deemed too low and would not yield any 

better results than the Perforated PVC Pipe with Extra Perforation (PPPEP) 

Table 6.3 : Results of Water and Stone bedding Test carried on the 3 test pipes 

Intake 
Pipe 

Types 
Slotted PVC Pipe 

Perforated PVC 
Pipe with Extra 

Perforation 
Metal Wire Pipe  

Test 
No. 

Loss A 
+ Stone 

BF 
Q Half 
Pipe 

Loss A 
+ Stone 

BF 
Q Half 
Pipe 

Loss A + 
Stone 

BF 
Q Half 
Pipe 

mm l/s mm l/s mm l/s 

1 0.5 0.33 3 0.219 2 0.35 

2 0.99 0.53 6.48 0.478 4 0.49 

3 1.98 0.84 13.94 0.939 9 1.11 

4 2.95 1.31 39.75 1.822 6 1.58 

5 5.82 2.34 89.36 2.923 62 2.60 

6 11.21 2.98 160.63 4.253 67 3.74 

7 17.95 4.11 215.17 4.919 123 5.27 

8 34.64 6.45 280.59 5.638 201 6.98 

9 48.04 7.75 473.05 7.196 219 8.49 

10 70.14 9.37     299 10.92 

11 83.45 10.43     361 13.09 

12 105.64 11.55     449 14.16 

13 129.52 12.96         

14 155.38 14.24         

15 171.74 14.92         
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The results of Table 6.3 are plotted in Figure 6.3 below. This shows the relative 

flowrates and the pressure lost through friction. This can also be termed the driving 

head, as it is the pressure head required to drive the flow. The worst performing pipe 

is the Perforated PVC Pipe with Extra Perforation (PPPEP). This pipe recorded a 

maximum flow rate of 7.19/s with approximately 0.47m pressure head required to 

drive this flow into the pipe.  

 

 
Figure 6.3: Perforation friction for all three intake pipe 

 

The next, better performing pipe is the Metal Wire Pipe (MWP). For a driving 

pressure of 450mm, this intake pipe produced approximately twice the flowrate as 

that of the PPPEP at 14.16/s.  

 

Chronologically, the first pipe tested, the Slotted PVC pipe, had the largest 

perforation area and produced the largest flow for the least amount of the pressure 

loss. For a driving head of approximately 0.17m, this pipe produced a flowrate of 

14.92/s. Hence, in general terms and as can be seen in Figure 6.3 above, the Slotted 

PVC pipe, once again, produced the largest flow for the least friction/head loss.  
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6.4 Test with Sand + Stone Bedding 

 

6.4.1 Slotted PVC Pipe 

 

At this point, the normal methods of testing for pressure losses, used so far, ceased.  

This occurred when the rate of flow in the testing of the Slotted PVC pipe (with sand 

and stone bedding) became a fraction of the values recorded in previous tests. For 

the design criteria, these flow values were too low. Hence a flushing system was 

designed to physically move the sand particles away from the intake pipe surface, 

using high velocity flows. Refer to Chapter 5.1.5.2. Table 6.4 below shows the results 

of the tests conducted. 

Table 6.4: Pressure loss and Flowrate vs. time relationship for the Slotted PVC Pipe with 
sand and stone bedding 

    
Before Back 
Flushing     

After Back 
Flushing   

Test 
No. Time  

BBF Loss A+ sand 
+ stone bedding 

BBF Q 
Full Pipe Time  

ABF Loss A+ 

sand + stone 
bedding 

ABF Q 
Full Pipe 

  min mm ml/s min mm ml/s 

1 0 40 82 0 0 133 

2 45 312 291 7 234 107 

3 60 335 300 12 255 153 

4 70 350 306 16 285 189 

5 83 362 302 20 311 204 

6 107 374 348 24 324.5 229 

7 118 293 313 28 339 227 

8 143 220 183 32 350 246 

9 149 257 212 36 356 269 

10 160.5 266 234 40 360 267 

11 171.5 268 233 44 362.5 275 

12 178.2 268 233 48 363 286 

13 185 268 233 52 366 287 

        56 366 289 

        60 365.5 293 

        66 363.5 259 

        72 362.5 260 

        78 359.5 263 

        101 349.5 203 

        150 329.5 192 

        170 320.5 205 

        192 315.5 203 

        230 307.5 195 

        280 297.5 192 

        326 291.5 193 

        377 281.5 192 
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The first flushing system was of little success and an augmented flushing system was 

designed (Chapter 5.1.5.3). This system used air in the attempt to create additional 

buoyancy. It was hoped that this additional buoyancy, coupled with high flows, would 

dislodge the sand and hence allow for high flow rates into the intake pipe.  

Figure 6.4: Pressure loss and Flowrate vs. time relationship for the Slotted PVC Pipe with 

sand and stone bedding 

Figure 6.4 above below shows the flowrate vs. time relationship in attempt to 

understand the flowrate over time.  Figure 6.4 shows the test results values for the 

Before Back Flushing (BBF) and the After Back Flushing (ABF) test. The maximum 

flow encountered was 0.175l/s and 0.15l/s respectively. 

 

As can be seen, there is no marked difference between the headloss and flow rate 

for before and after Back Flushing. If the BBF test where to be run for 6.5hours, the 

results would be similar; hence back flushing has not proved successful for the 

design criteria of these experiments. 

 

When considering low flows encountered, Chapter 2.4.5.6 can be referenced. It 

notes that in general, the transition for water from laminar to turbulent occurred at 

approximately Re = 1000. Values lower than 1000 indicated laminar flow and values 
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greater than 1000 indicated turbulent flow (CIRIA, CUR, CETMEF, 2007). Hence using 

Equation 13 

 

     
   

 
 

   

 
                (Eqn 13) 

Where 

 U  = Flow velocity (either Cross sectional averaged or depth averaged) (m/s) 

 Dp = Diameter of the pipe (m) 

 v   = Kinematic viscosity of the fluid 

R   = Area of flow/Perimeter of flow = 1 segment of pipe Table D 

 

The identification of the type of flow to be encountered is calculated.  

 

Note that since a full analysis was not done for this pipe, the initial reading from the 

water and stone bedding test will be used for comparison. This test had a a value of 

0.33 l/s which is double that of the maximum flow value in this test (0.15l/s) 

 

Re can be calculated using the flowing values 

Vs1  = 0.099 m/s (Table D13) 

 R   = (414087.5mm2/1207mm) = 0.343m  

 v   = 1.14*10-3 m2/s 

Q   = 150ml/s or 0.15l/s 

 

Hence Re = 119 < 1000 Hence the flow is decidedly laminar. 

 

6.4.2 Extra Perforated PVC Pipe 

 

The tests on the perforated pipe do not follow a time sequence as the flow was not 

similarly small as those in the previous test. This is primarily due to the seepage of 

sand out of the sand and stone bedding matrix via the ø8mm perforation on the 

intake pipe. Referring to Figure C3 in Appendix C, the value of D5 for sand would be 

is approximately 0.2mm. From Figure E26, this translated to a k of 0.02cm/s or 

0.2mm/s. 

 

Considering the Table 6.5 below a k value of 0.02 cm/sec is not reflective of the 

actual flow rates recorded. The best explanation for this can be attributed to the 

removal of sand from the bedding matrix, Figure 5.23. With the removal of the sand, 
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the bedding matrix would revert close to its original contents of only 19mm Stone. 

Hence a D50 of 10mm was used. Hence utilising Eqn E5 and E6 a hydraulic 

conductivity k of 0.688m/s was obtained.  This was the same k used for PPPEP 

tested with Stone bedding only. Table 6.5 below compares the test results for the 

Extra perforated PVC Pipe with sand + stone bedding and Extra perforated PVC Pipe 

with stone bedding only 

 

Table 6.5: Pressure Loss vs. Flowrates for: Extra perforated PVC Pipe with sand + stone 
bedding and Extra perforated PVC Pipe with stone bedding only (WST + WSST) 

Test 
No. 

Loss A+ SAND 
+ stone bedding 

Q Half Pipe 
Loss A + Stone 

Bedding 
Q Half Pipe 

  mm l/s mm l/s 

1 24.97 0.167 3 0.219 

2 101.61 0.576 6.48 0.478 

3 201.51 1.128 13.94 0.939 

4 294.59 1.436 39.75 1.822 

5 348.51 1.728 89.36 2.923 

6 435.82 2.646 160.63 4.253 

7 516.4 3.15 215.17 4.919 

8 
  

280.59 5.638 

9 
  

473.05 7.196 

 
 

 
Figure 6.5: Pressure Loss vs. Flowrate for Extra perforated PVC Pipe (WST + WSST) 
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From Figure 6.5, is it clear that the same hydraulic conductivity k cannot be used for 

both tests. I.e. visual confirmation that all sand was removed from the sand, stone 

matrix is not conclusive. Hence the k value used for a sand stone matrix should 

obviously lay between that of a minimum value and that of the sand stone matrix. 

The minimum value k will be higher than that of the sand and can be estimated using 

the information from Chapter : 2.4.7.3 Interface Stability of a Granular Filter. 

 

 

6.5 Estimating losses due to Stone Bedding 

 

As stated in Chapter 4.4.5, the three methods used to estimate the pressure losses 

due to stone bedding alone are not similar and are summarised below.  

 

Method 1: Simple method for determining stone bedding loss 

 

In this simplistic method, the results of the “Water Test only: is plotted. Curve line 1 is 

fitted to the results and an equation characterising the line and hence the pipe, 

headloss characteristics is formulated.  

 

Thereafter, the results of the “Stone and water test” is plotted. Curve line 2 is fitted to 

the results and an equation characterising the line and hence the pipe and 

surrounding bedding, headloss characteristics is formulated. 

 

The loss due to the stone bedding only, Curve line 3, is determined by subtracting 

Curve line 2 from Curve Line 1. This data is then plotted to show graphically, the 

relationship between the headloss caused by the 19mm Stone bedding. 

 

Method 2: Method for determining stone bedding loss: Hydraulic conductivity: 

Kenny, Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of stone bedding. The equation LR10 and Figures, 

2.32 and 2.33 by Kenny, Lau and Ofoegbu are used to estimate stone bedding 

headloss. 
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Method 3: Method for determining stone bedding loss : Hydraulic conductivity: 

Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, 

stems from work carried out by Forchheimer. The Figure 2.34 was used to estimate 

the permeability of the stone bedding and hence the headloss. 

 

Detailed calculations with reference to the, Slotted, Perforated and Metal Wire pipe 

can be found in Appendices D, E and F respectively. The following are comparisons 

of the three methods used to calculate the Stone bedding friction for each pipe type 

tested. 

 

Slotted PVC Pipe 

 

 

Figure 6.6: Slotted PVC Pipe-Method 1, 2 and 3 : Headloss due to the stone bedding 
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Extra Perforated PVC Pipe 

 
Figure 6.7: Extra Perforated PVC Pipe- Method 1, 2 and 3 : Headloss due to the stone 
bedding 
 

 

Metal Wire Pipe 

 
Figure 6.8: Metal Wire Pipe- Method 1, 2 and 3 : Headloss due to the stone bedding 
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With the exception of Method three in the Extra Perforated PVC test ( which is 

attributed to experimental error), the general pattern indicates that Method 3 

approximates the headloss due to stone bedding alone,  at three times the value of 

Method one. Method 2 on the other hand, seems to provide half the Headloss values 

of Method 1. 

 

The following argument is proposed: First consider the flow through the Stone 

bedding. It is obvious that there is headloss due to the flow, however, these losses 

occurs as loss in pressure. Hence the flow does not influence the losses due to the 

intake pipe. However, as bedding material is placed against the intake, this has a two 

fold effect on the loss due to the intake pipe.  

 

The first occurs as there is a reduction in perforation area, hence in order to maintain 

the flow, there is an increase in the flow velocity. This increased velocity implies a 

greater headloss for a similar flowrate as in the “Water Only tests” 

 

The second occurrence is substantiated by Chapter 6.2.2, With stone bedding up 

against the intake pipe there is a decrease in perforation area and therefore an 

increase in the overall perimeter of the little drainage paths. The reduction of this 

drainage paths, serve to further increase the velocity and hence the friction that 

cause a loss in pressure head. 

 

Therefore it is proposed that there is an increase in the pressure loss due to the 

Intake pipe, which shows that Method 2, appears to prevail in most conditions. 

 

Hence is appears that Method 3 seems to overestimate the losses due to stone 

bedding grossly. Although there has been substantial research conducted on Intake 

pipes and bedding material on an individual basis, a very limited amount of research 

has been done on spitting the losses due to stone bedding and the losses due to an 

Intake pipe line. Hence it is into this region that further research should occur 
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6.6 Estimating losses due to Sand and Stone Bedding 

 

This test was only undertaken on the Extra Perforated Pipe. This estimation of 

estimation methods, was not carried out on the other two pipes, as the flow rates 

through them were far below the required design flows.  In this section, the use of 

Method 3 produced results that were far less than that of Method 1. This is mainly 

attributed to Method 3 being most appropriate for turbulent flow conditions and not 

appropriate for the lower flow conditions experienced here. 

 

 

Figure 6.9: Perforated PVC Pipe-Method 1, 2 and 3: Headloss due to the stone bedding 

 

 

6.7 Comparison of Three methods used to estimate Stone 

Bedding losses  

 

Method 1 

 
This is a comparison of “Method 1”, which was conducted on all three pipe types. As 

can be seen in Figure 6.10, there seems to be a varying, generally weak correlation 

between the results of Method 1 used on all three intake pipes. The outcome for the 

exponential tendency of the extra perforated pipe is attributed to experiment error. 

Method 1 is not approved and should not be used when trying to determine the 

losses due to stone bedding surrounding intake pipelines. 
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Figure 6.10: Comparison of Method 1 for all three pipe types 

 

 

Method 2 

 

 

Figure 6.11: Comparison of Method 2 for all three pipe types 
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Figure 6.11 shows a generally good correlation between the results of Method 2 The 

Slotted PVC and Metal Wire Pipe show a correlation of approximately unity. The 

slightly higher values of the extra perforated pipe are attributed to experiment error. 

However, the generally characteristics are quiet close. Hence Method 2 has proven 

to produce consistent results regardless of the Intake pipe used.  

 

 

Method 3 

 

 
Figure 6.12: Comparison of Method 3 for all three pipe types 
 

Upon examining Figure 6.12, there is good correlation between the results of Method 

3. The Slotted PVC and Metal Wire Pipe once again, show a correlation of 

approximately 100%. The fractionally higher values of the extra perforated pipe 

(although lower than those of Method 2) are attributed to experiment error. 

Nevertheless, the general characteristics are quiet close. Hence Method 3 has 

proven to produce consistent results regardless of the Intake pipe used. 
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6.8 Concluding Summary and Recommendations 

 

6.7.1 Summary  

 

A larger amount of valuable information was obtained from the experimental work 

and surveys.  From the experimental component, much technical and material 

specific information, to be used in seawater Intakes, was gained. Numerous technical 

conclusions can be found in the preceding subsections 6.1 to 6.6. Some of this 

information and derivations are best presented in the next Chapter 7. 

 

The survey of selected existing seawater intakes provided very valuable information 

that was very practical in nature.  The problems encountered by the seawater intakes 

and their solutions, regardless of no engineering input, is invaluable information. 

Chapter 3.9 summaries this adequately. 

 

6.7.2 Recommendations  

 

The following recommendations pertain to the experimental component of this thesis. 

There are volumes of research that investigate the characteristics of pipes. The 

experimental work conducted, has produced fruitful results. Hence further 

investigation into intake pipes only, is not sanctioned. 

 

A large amount of work has been done on bedding material. These vary from fine 

clays to cobble and even boulders. Most of these tests are conducted as per Figure 

2.28. Further investigation into bedding material, is not sanctioned. However, more 

research is required to determine the headloss when the flow is not singular but is 

repetitively reversed, as is the case when wave run up and run down occurs.. 

 

A further recommendation is that research be conducted into pressure losses due to 

the intake pipe and the stone bedding, when both are used simultaneously. There is 

a large repository of work regarding the individual components. However further 

research can be done in portioning the associated friction losses. 

 

It is recommended that the action of waves on stone bedding (including sand) and 

pervious pipes be investigated. This will provide valuable information on the 

displacement of ingressed sand and hence seawater intake and abstraction rates. 
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Chapter 7 

7. DESIGN RECOMMENDATIONS FOR SMALL SCALE 

SEAWATER INTAKES ON A ROCKY COASTLINE 

USING THE HORIZONTAL WELL SYSTEM  
___________________________________________________________________ 

 

 

7.1 Introduction 

 

The following are design step recommendations for a small scale seawater intake on 

a rocky coastline.  Figure 7.1 shows these steps in a chronological order. Note 

however that these steps need not be followed rigidly. These design steps ultimately 

consider that the Intake will be a Horizontal/radial well system on a rocky shoreline. 

This step guide assumes that through the design process, the horizontal well method 

has proved to be a worthy alternative. Hence each step is referenced to useful 

information obtained from the preceding chapters. This information is derived from 

the Literature Review, Experimental results and the Survey of selected Seawater 

Intakes. 

 

 

7.2 Design Steps 

 

Step 1: End Usage Requirements 

 

Part of the initial steps is to establishment the exact the water requirements. At this 

point in the design process, the end water requirement and hence the abstraction 

rate (m3/h etc.), should be known. Amongst other parameters, the quality of the water 

required should also be established. The general guideline is that seawater which is 

to interact with marine life should be of the best quality. 
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Figure 7.1: Design Step Guide for a Seawater Intake 

1. End Use Requirements 

2. Physical and Site Specific Conditions 

3. Adjacent Land Use Requirements 

4. Lateral Location of Seawater Intake 

5. Seawater Intake per Coast Type 

6. Design of a Seawater Intake for Rocky Coastlines 

7. Structural Design of Seawater Intake protection 

 7.1 Cross Section Design of Revetment 

 7.2 Structural Design of Revetment Layers 

 7.3 Filter Design of Revetment Layers 

8. Hydraulic Design of Seawater Intake & Protection 

8.1 General Hydraulic Design 

8.2 Empirical Relations for Estimating Hydraulic Conductivity 

8.3 Hydraulic Conductivity: Turbulent Flow 

8.4 Hydraulic Design of Horizontal Intake Pipe & Stone bedding Combination 

9. Environment Impacts on a Seawater Intake 
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Step 2: Site Specific and Physical Conditions 

 

After the end user requirements have been established. The site selection process 

commences. A minimum of three sites should be considered as this allows for 

flexibility with regard to other constraints. 

 

It is assumed that the seawater intake has already been allocated within a rocky 

coastline. Information regarding the following physical features, is of vital importance. 

They should include: 

 

1. the topology of the incurred coastline, i.e. stratified rocky beaches, or cobble 

beachs or highly dynamic perched beaches.  

2. The current, wind and wave climate 

3. The  quantified movement of sediment via littoral drift or aeolian transport 

4. The characteristics of the sand including the grain size distribution. 

 

Step 3: Adjacent Landuse 

 

The quantity of seawater in the region of the proposed seawater intake is affected by 

land based activities. I.e. Recreational, commercial and industrial activities can pose 

a potential threat to the water quality. 

 

Another impact can be adjacent sea conditions. The first “natural” impact is from river 

mouths located close to the propose seawater intake. Rivers bring down sediment 

and an assortment of chemicals based on the land use of the catchment. During 

times of flooding, the impact of an adjacent river would be higher than normal. 

 

An impact of water based activities ranges from large ports, down to minor, small 

craft harbours. For example, the Port of Durban, South Africa, has recently widened 

the harbour entrance and is proposing a small craft harbour adjacent to the new 

harbour entrance. These water based activities will have an impact on the closely 

located Ushaka Marine World, seawater intakes. Due to the activities, there will be an 

increase of turbidity and the suspension of other material due to dredging. A 

seawater intake should be designed to accommodate such situations. 
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Step 4: Lateral location of Seawater Intake 

 

The lateral location of the Seawater Intake refers to its position relative to the 

surf/swash zone. Offshore positions are not considered. Seawater Intakes placed in 

these environments are subject to conditions not covered (for design purposes) in 

this text  

 

A seawater intake can be placed in the surf/swash zone or the back shore. If the 

intake is in the back shore, the effect of wave action is minimal. This in turn reduces 

the energy required to protect the seawater intake. If the geology of the area is high 

permeable, a seawater intake situated a distance from the swash zone, would be an 

attractive option. 

 

 

Step 5: Seawater Intake per Coast Type 

 

There are basically two types of coastlines, these are Sandy Coastlines and Rocky 

Coastlines. The topography, geology and shoreline parameters might differ, however, 

all shoreline can be categorised into the above two broad descriptions. 

 

Sandy Coastlines 

 

For sandy coastlines, Chapter 2.3.3.1, sub-bottom, horizontal beach wells, are the 

most common types used. These wells provide clear seawater due to the filtration 

action of the surrounding sand. Horizontal wells are protected against wave action as 

they are beneath the sand. The external loading on these pipes would vary with the 

tide, but not immensely as it would be situated within a sand matrix, hence the intake 

pipe itself would not require large structural strength. When designing such systems, 

Chapter 2.4.6.2 defines the general design parameters that should be used. 

 

 

Rocky Coastlines 

 

In a rocky coastline, any seawater intake designs will deal with inflexible hard ground 

conditions. These will invariably increase the complexity and cost of a seawater 
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intake. In a rocky shore, there are three main types of intakes that can be 

considered. These are mainly: 

 

 Direct 

 Partially Direct 

 Sub-bottom 

 

In a rocky shoreline, it is inherently hard to construct an Direct intake line that will 

traverse the surfzone. Hence this option is not discussed further as the financial 

implication does not make it pliable to a small scale seawater intake application. 

 

 

Step 6: Design of a Seawater Intake for Rocky Coastlines 

 

When designing a seawater intake on a Rocky Coastline, there are two main 

locations where a seawater intake can be cited. The first is the surfzone and the 

second would be further inland. 

 

Lateral Location 

 

It is very favourable if a seawater intake is placed away from the surfzone. This is 

due to the cost savings made as the intake is not subjected to wave forces.. The 

abstraction of water via well points and associated information is contained in 

Chapter 2.2.4. If the geology of the coastline does not allow for abstraction via inland 

well points, then abstraction from the surfzone will have to be considered.  

 

Partially Direct and Sub-bottom 

 

Aa Partially Direct abstraction method is best suited for a coastline that has natural 

deep gulley‟s. This allows for water to travel closer inland with no significant wave 

attack at the end of the gulley. If the rocky shoreline is at a flatter grade then a Sub-

bottom Horizontal well system can be used. Due to the horizontal well being below 

the water level, wave attack would occur in the vicinity of the seawater intake. Hence 

protection against wave action will be required.  

 

Stellenbosch University  http://scholar.sun.ac.za



156 

University of Stellenbosch 

The most common form of protection is a rubble mound revetment. This type of 

structure is normally used for protection purposes only. However as the objective is 

the design of a seawater intake, a Structural as well as Hydraulic design of the 

revetment/Seawater Intake should be undertaken. These two components will be 

discussed further  

 

Step 7: Structural Design of Seawater Intake 

 

If the seawater intake is a radial beach well on a sandy beach or a partially direct 

seawater intake, then not much protection against wave attack is required.  If the 

seawater intake is on rock then a rock revetment, the most common form of 

protection, is recommended. The “Structural” design of a Seawater Intake with a rock 

revetment, can be found in Chapter 4.2.3 and 4.2.4.   

 

Step 8. Hydraulic Design of Seawater Intake & Protection 

 

After the cross section of revetment has been designing, the hydraulics of the 

seawater intake has to be analysed. The outer armour layer, underlayer and core 

layer material might be considered to be large enough not to affect the flow of 

seawater into the intake pipe. However, this should be estimated to obtain a 

conservative design.  

 

The brief first sub chapter stated a few general hydraulic design principles. The 

second sub chapter looks at the various methods where the headloss through the 

revetment can be estimated. The third Chapter looks at headloss occurring through 

that stone bedding and horizontal screen. This sub chapter uses the data obtained 

from the tests carried out in this thesis. 

 

Step 8.1 General Hydraulic Design 

 

Numerous guidelines can be applied when designing a seawater intake. However the 

most important ones look at the bottleneck in the system and attempts to quantify 

these. One of the most important factors in the design process is to determination of 

the flow regime of the seawater through the protection and Intake pipe. The type of 

flow in the Intake will be either laminar or turbulent. For Laminar low, Darcys law is 

used.  Laminar flow is limited to conditions for which the Reynolds number does not 

exceed approximately 60 to 700. Refer to example in chapter 6.4.1. 
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Step 8.2 Empirical Relations for Estimating Hydraulic Conductivity 

 

In the past, several empirical methods have been derived for estimating the hydraulic 

conductivity. Refer to Chapter 2.4.5.3 for the different estimation methods 

 

Step 8.3 Hydraulic Conductivity: Turbulent Flow 

 

The flow of water through most soils is laminar. However, as material size increases 

for example rockfill, the flow though the larger voids is found to be turbulent. In 

Darcy‟s law the Flow velocity v and the Hydraulic gradient i share a linear 

relationship. When the flow becomes turbulent, this equation has to be replaced by a 

non linear relationship. This is summarised by Forchheimer‟s work which can be 

found in chapter 2.4.5.4. 

 

 
Step 8.4 Hydraulic Design of Horizontal Intake Pipe and Stone bedding 

Combination 

 

This chapter uses the Intake pipe and stone bedding characteristics obtained from 

results of the experimental work carried out in this thesis. The following Table 7.1 is a 

table of equations that can be used to calculate the amount of pressure loss for 

certain flowrate into a 1meter length of seawater intake pipe.  It is based on the 

pressure loss - flow relationship for all three intake pipes derived from Chapter 6 

 

Table 7.16 pressure loss - flow relationship for intake pipes 

Intake Pipe Water Only test Test with Stone bedding 

Slotted PVC Pipe ∆P= 0.0518Q
2
 + 0.3206Q ∆P = 0.1309Q

2
 + 0.8725Q 

Extra Perforated Pipe ∆P= 0.891 Q
2
 + 1.286 Q ∆P = 2.066 Q

2
 + 0.019 Q 

Metal Wire Pipe ∆P= 0.494 Q
2
 + 1.443 Q ∆P = 0.2077Q

 2
 + 9.332Q 

∆P = Headloss due friction in mm, Q = Flowrate in liters/second 
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Step 9: Environment Impacts on a Seawater Intake 

 

The construction of a seawater intake will have an effect on the environment. An 

optimum design will seek to minimise the impact of the intake on the environment 

and vice versa. However in the construction stage, impact on the adjacent 

environment will occur.  

 

In the surf zone, the growth of marine life impacts the operation of any equipment. 

“Fouling” will impact negatively on the flow area and effective roughness of the 

seawater intake pipe. Hence for long term performance, this impact must be 

considered at design stage. 

 

There are two common design approaches to manage marine growth. The first is the 

chemical approach and sees the use of antifouling material that hinders the 

attachment of marine life to a specific surface. The second method is a mechanical 

cleaning method that physically removes marine growth. This method has a lower 

impact as no harmful chemicals are used or released into the environment. Hence, 

this method of maintenance is recommended as it has the least impact on the 

surrounding environment. 
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Appendix A 

 

Design of Model 

 

A.1 Introduction 

 

The main objective of this model is to investigate the relationship between flows, the 

pressure driving the flow and headloss in the seawater, pipe intake. The second part 

of the investigation would determine the effect of different material surrounding the 

intake pipeline, on flow, pressure driving the flow and headloss in the seawater pipe 

intake. 

 

The model would have to be robust and equally easy to dismantle and assemble in a 

short period of time. Hence it was decided to used ply board and angle irons, as the 

main structural elements. Since these materials were easily available, construction 

followed design immediately. 

 

A.2 Design  

 

The requirements of the model had to satisfy the following conditions. 

 

The model should allow for easy calculation of head loss. 

Variable flow should be attainable. 

The model should allow for material to surround the intake pipe 

It should also: 

Ensure that all flow is measured. 

Ensure that all losses are accounted for. 

Ensure that any material (sand) conveyed by water is measurable. 

Maximise visual viewing of flow. 

 

Method 

 

The first idea established, was that water should flow from one compartment to 

another via the intake pipe, thus the head difference between the two water columns 

would be the head loss in the pipe. 

Stellenbosch University  http://scholar.sun.ac.za



164 

University of Stellenbosch 

The second one was that both columns should be sufficiently high enough to 

accommodate any material that would be placed above and below the intake pipe 

line. The one fixed measurement would be the bedding of the pipe. This was usually 

stated by pipe manufacturers as a minimum of 300mm above the pipe and 100mm 

below. 150mm was allowed in this case as a smooth rock insitu profile could not be 

guaranteed. 

 

The next concern was any other material that would lie over this bedding. A depth of 

1.2m was allowed for this. Thereafter an additional amount of 300mm was allowed 

for freeboard. The pipe sponsored was in 250mm in diameter hence the minimum 

height of the water columns would be the sum of the following: 

 

Freeboard:  300mm 

Fill Material  1200mm] 

Blanket over pipe: 300mm 

Diameter of Pipe: 250mm 

Bedding:  150mm 

Total height:  2200mm. 

 

The next criterion would be the measuring of flow. Hence it was decided that a V 

Notch weir would to be introduced to the second column. An important note being the 

V notch would determine the lowest water level. 

 

Ply boards come in the following dimension, 2440mm by 1220mm by 20mm, 

depending on the thickness you require. In order to maximize the usage of the wood, 

it was decide that the water column heights would be 2440mm. The length of the 

main water compartment would be 1220mm and the width at 610mm. 

 

Hence the dimensions of the structure were as follows. The main water column is: 

1220mm long * 610mm wide * 2400mm tall (Figure A1). The second compartment is 

610mm square, also with a height of 2400mm. However this second part has a 

partitioning center board, with a 90˚ V notch weir sitting above the board (Figure A2). 

 

It was then decided to use a half pipe and a sheet of Perspex as the conduit between 

two columns of water. The actual flow through the pipe could then be easily 

observed. This would be greatly beneficial to understand the flow of e.g. sand in 

through the model. 
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IMAGES OF MODEL 

 

Figure A1: Hydraulic Model for testing intake pipework 

 

 

Figure A2: V Notch weir inside the second water column 
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Figure A3: Tubing to measure height of water in a column 

 

 

Figure A4: Outlet and Inspection window to Water Column 2 
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Figure A5: Construction Drawing of Hydraulic Model 
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Appendix B 

 

Calibration of V Notch Weir 

 

 

B.1 Introduction 

 

In order to measure the flow, a 90˚ V notch weir was installed in the second water 

column. Using the appropriate outflow theory, the flow can be estimated by the 

following Equation B1.  

 

 

2

5

2
tan2

15

8
hgCq d 


       EqnB1 

Where 

q = flow rate (m3/s) 

h = head on the weir (m) 

θ = v-notch angle in degrees 

g = 9.81 (m/s2) - gravity  

Cd= discharge constant for the weir  

 

These parameters can be seen in the following Figure B1 
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Figure B1: V notch weir used for flow calculations 

 

Referring to Figure B1, when measuring the depth of flow over the V notch, the 

measuring point should be 5 times the approximated height, upstream of the weir. 

However when looking at the model, it is found that the inner wall of the second 

compartment is only 28cm away from the V notch weir. Considering that the maximum 

height of over the V is 20cm, the length of freeboard required at during peak flow 

would be 100cm. This is in excess of the 28cm restriction; hence the weir has to be 

calibrated for the particular model. 

 

The V notch weir was calibrated in a 600mm flume.  Figure B2 shows this installed 

with the appropriate timber and fastenings. 
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 Figure B2a: V Notch Weir Figure B2b: Flow augmenting 

structure adjacent to V notch weir on 

the right 

 

Due to the actual V notch weir being situated within a confined environment and with 

the model flow being vertical rather than horizontal, a flow augmenting structure was 

built adjacently upstream of the weir to mimic the constrained environment and the 

upward direction of flow within the actual model. Figure B2 and Figure B1b give an 

indication of the structure and implied effects. 

 

 

 

 

Figure B3: V notch weir and additional structure depicting flow pattern
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B.2 Calibration of V Notch Weir 

 

The method used for the calibration of the V notch was a simple one that involved 

measuring the height of water and then collecting a measurable volume of water in a 

certain period of time t. From this information a Height vs. Flow relationship was 

established. For the various heights used, at least 5 samples were taken in order to 

provide an adequate estimation of the flow. 

 

As explained above, the best way to calibrate the V notch weir is to measure the 

volume collected over a specific time period. With the measuring vessel calibrated, the 

next step would be to measure the height of flow at the V notch and also a point 28cm 

upstream of the V. Here two measuring needles were used as can be seen in Figure 

B3 and Figure B3. 

 

 

 Figure B4: V notch weir with Measuring Needles 
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Figure B5: V notch weir, additional structure and measuring needle orientation 

 

The water depth is measured at the V notch and at a point 28cm upstream of the V 

notch by Needles H1 and H2respectively. This is done so that the Velocity Head can 

be checked against the actual difference between H1 and H2. The measuring vessel, 

by means of an overhead crane, was used to collect water for a period of time. Hence 

the flow was easily calculated. This was done for a minimum of 5 times and the 

average value noted as the flow for that certain height. 

 

The average flow was calculated from 6 various heights. These are presented in Table 

B1 below and plotted in Figure B6 

 

Table B1:Flow vs. Height for V Notch Weir 

Height  Flow q 

mm l/s 

156 12.84 

128 8.28 

110 5.71 

98 4.31 

96 4.12 

80 2.61 

59 1.15 
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Figure B6:Flow vs. Height for 90 V Notch Weir 

 

Hence the Equation B3 best describes the relationship between height and volume of 

the measuring vessel. 

 

hhq 019906.0000656.0 2       Eqn. B2 

Where 

q= Flow (l/s) 

h = depth of water above V Notch (mm) 

 

B 3 Comparison of conventional and calibrated overflow equations 

 

A comparison was made using the convention overflow equation B1 below and the 

calibrated equation B2 above. 
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       Eqn. B3 

Where 

y = 0.000656x2 - 0.019906x 
R² = 0.999879 
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Cd= 0.57 

 

A comparison of these results can be seen in Table B2 and Figure B7 

 

Table B2: Flow vs. Height for 90  V Notch Weir 

Height  Flow q Flow Equation B1 

mm l/s l/s 

156 12.84 12.94 

128 8.28 7.89 

110 5.71 5.40 

98 4.31 4.05 

96 4.12 3.84 

80 2.61 2.44 

59 1.15 1.14 

 

In Table B2, the second column indicates the average values for flow from calibration 

tests, while the third column indicates the flow calculated from equation B1. Here the 

recommended value for Cd is 06 to 0.57 is recommended (RCC 1990). A Cd value of 

0.57 is used 

 

Figure B7: Flow vs. Height curves for Calibrated and Conventional outflow calculation 

 

The plot of this comparison is found on Figure B7. The correlation for both the 

equations is found to be 0.9991. This shows that the flow can be predicted quite 

accurately using the conventional formulae with a Cd value of 0.57.  

y = 0.000656x2 - 0.019906x 
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Appendix C 

 

Soil Grading 

 

C.1 Introduction  

 

A combination of two equally weighted soils was used in the testing of the model. This 

was done so that a larger average grain size achieved. Hence this would compensate 

for the larger grain sizes found on the east coast of South Africa. The first being a fine 

grained „beach‟ sanded called Phillipi that is found around the Cape. The second was 

a „single sized‟ granular sand which is normally used as filter material.  The majority of 

the fine Phillipi grain size was in between the region of 0.15mm and 0.6mm. This can 

be seen in the partial grading curve in Figure C1 
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Figure C1: Partial grading curve for Phillipi sand 

 

Grading Curve for Granular Filter Sand
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Figure C2: Partial grading curve for Granular Filter sand 
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The granular filter sand in contrast had a huge gap grading. Approximately 85% of its 

particles were in between the region of 0.6mm and 1.18mm. This can be seen in the 

partial grading curve in Figure C2 

 

The combined equal masses of both sands yields the following sand grading as 

calculated in Table C1 and depicted graphically as a grading curve in Figure C3. 

 

Table C1: Soils grading for combined Phillipi and Granular Filter sand 

Percentage 
Passing 

Mass 
Retained (g) 

Percentage 
Retained 

Percentage 
Passing 

100.00% 0.0 0.0% 100.00% 

99.80% 2.7 0.1% 99.86% 

99.74% 1.9 0.1% 99.75% 

99.66% 81.2 4.4% 95.38% 

95.00% 857.4 46.2% 49.22% 

71.34% 246.5 13.3% 35.95% 

28.79% 398.4 21.4% 14.51% 

2.35% 247.5 13.3% 1.18% 

0.05% 21.5 1.2% 0.02% 

0.00% 0.4 0.0% 0.00% 

Total  1857.7   
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Figure C3: Partial grading curve for combined Phillipi and Granular Filter sand 
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Appendix D 

 

Slotted PVC Pipe Abstraction Model 
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D.1 Introduction 

 

This appendix describes in detail the calculations behind Chapter5.1: Slotted PVC 

Pipe Abstraction Model. Via the use of figures and tables the most relevant 

calculations are explained. Neither armour, core nor intermediatelayer materialwere 

used for the tests. Figure D1 below describes the model and the areas of interest 

which are used when undertaking calculations. 

 

D. 2 Pressure Losses 

 

Chapter 4.4.6 describes the losses A to E. Note that the datum of the model is the top 

of the model base. 

 

 
Figure D1: Slotted PVC Pipe Abstraction Model: Areas of interest 

 

 

The following is a reiteration of the losses A to E. as described in Chapter4.4.6.1 
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Loss A: This reduction in pressure occurs as water travels from the outside of the pipe, 

in. Losses B to E can be easily estimated using conventional calculation methods. 

Loss A accounts for a significantly large portion of the total pressure loss.  

 

Loss B: Skin friction in the portion of intake pipe where there is water ingression and 

transportation. The skin friction in this chapter is calculated using Manning‟s Method. A 

pipe of 250mm is used as the conduit size. However, the skin friction in this area is 

halved as theoretically the flow is at its maximum as it exits WC1 and zero at the start 

of the pipeline (Right hand side of Figure D1) 

 

Loss C: Skin friction in the portion of intake pipe where there is water transportation 

only. The skin friction in this chapter is calculated using Manning‟s Method. A pipe of 

250mm is used as the conduit size.  

 

Loss D: Exit loss as water enters Column 2 (WC2). For the flow exiting the Intake pipe 

and then turning 90 degrees, the loss is equal to Ke*V2/2g where Ke = 1 

 

Loss E: Skin friction as water flows up WC2. The skin friction in this chapter is 

calculated using Manning‟s Method. A rectangular section of 600mm by 250mm is 

used as the conduit size.  

 

 

D. 3 Water Losses due to Leakage 

 

The ability to quantify leakage is crucial especially if the leakage rate becomes a large 

fraction of the overall flow. Hence the flow rate of the leakage for each increment of the 

flow through the model was noted.  

 

The entire leakage rate was calculated by constructing a dam around the HPM, and 

determining the amount of water that left the dam, over a period of time, for a particular 

increment a test. There were three placesfrom where water could have leaked. These 

were: WC1, WC2a and WC2b. Figure D2 below describes the emanation of the leak 

location via a visual inspection, 40% of all leakage was deemed to be out of WC1, 

40% out of WC2a and 20% out of WC2b. 
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Figure D2: Areas of Water Leakage 
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D.4: Water Test Only 

 

The following explains the manner in which the „Water Only Test‟ (WOT) was 

conducted and uses tables and equations to illustrate the analysis process. Table D1 

details the physical aspects of the model including the Intake pipeline.  

 

Table D1: The physical aspects of the HPM and Intake Pipeline (WOT) 

Description Value Unit 

Physical aspects of the HPM:WC2a 
  

Angle of V Notch Weir 90 Degrees 

Height of V Notch Weir 2015 mm 

Length 0.28 m 

Breath 0.45 m 

Area A 0.126 m
2
 

Wet Perimeter P 1.46 m 

Hydraulic Radius R 0.0863 m 

Friction Factor f 0.02 
 

Loss CoefficientKe 1 
 

Slotted Pipeline Perforation Configuration 
  

D Pipe Length 1055 mm 

Pipe OD 250 mm 

Pipe ID 230 mm 

Half Pipe Area 0.0208 m
2
 

Wet Perimeter 0.5911 m 

Hydraulic Radius Pipe HR 0.1405 m 

No of Slots per 20cm Length 50 
 

Area of each Slot 392.5 mm
2
 

Length of Pipe 1055 mm 

No. of Segments 5 
 

Segment Length 211 mm 

Perforation Area of Segment 19625 mm
2
 

Total Perforation Area 98125 mm
2
 

Total pipe Wetted Surface Area 414087.5 mm
2
 

Percentage perforation 23.70% 
 

Friction Factor f 0.015 
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Where: 

 

Cd  = Coefficient of Discharge as established in Appendix B 

D Pipe Length = Length of Intake pipeline in the HPM 

Pipe OD  = Outside Diameter of Intake Pipeline 

Pipe ID  = Inside Diameter of Pipeline 

Half Pipe Area = The area of flow when only half a pipe is used 

Wet Perimeter = Perimeter of the intake pipeline that has been in contact with the flow 

Hydraulic RadiusHR = the Hydraulic Radius of the Intake Pipeline or WC2a 

 

The aim of this experiment is to establish the relationship between the flow and the 

loss of pressure head as it passes into the Intake pipeline. Using the above 

information, 19 incremental testwith increasing driving heads, where conducted. Table 

D2 shows the initial results. The difference between WC1 and WC2 denotes the total 

headloss. The flow rate was determined from the following Equation B1 

 

2

5

2
tan2
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8
hgCQ d 


      Eqn B1 

Where 

Q = Flow (l/s) 

Cd= 0.57 

H  = depth of water above V Notch (mm) 
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Table D2: Total Headloss and initial flow rate for Water Only test 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 2064.5 2064 49.5 49 0.5 0.72 

2 2079 2078 64 63 1 1.34 

3 2092 2089 77 74 3 2.01 

4 2101 2096 86 81 5 2.51 

5 2112 2105 97 90 7 3.27 

6 2118.5 2109.5 103.5 94.5 9 3.70 

7 2125.5 2115 110.5 100 10.5 4.26 

8 2137 2123 122 108 14 5.16 

9 2150 2132.5 135 117.5 17.5 6.37 

10 2160 2139 145 124 21 7.29 

11 2173 2145.5 158 130.5 27.5 8.28 

12 2182 2149 167 134 33 8.85 

13 2195.5 2154.5 180.5 139.5 41 9.79 

14 2212 2160 197 145 52 10.78 

15 2228 2163 213 148 65 11.35 

16 2248 2169 233 154 79 12.53 

17 2277 2177 262 162 100 14.22 

18 2325 2184 310 169 141 15.81 

19 2377 2194 362 179 183 18.25 

 

After the total headloss and initial flow rate relationship has been established, Water 

leakage has to be considered. As per chapter D3, theses losses are incorporated in 

Table D3 with 40% of all leakage deemed to be out of WC1, 40% out of WC2a and 

20% out of WC2b.  
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D.4.1 Water Leakage losses 

 

In Table D3, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table D3: Total headloss and flow rate incorporating losses (WOT) 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Total 
Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.72 302 1643.2 80.42 0.049 0.019577 0.019577 0.009789 0.75 

2 1.34 314 1685.4 84.00 0.050 0.019935 0.019935 0.009967 1.38 

3 2.01 293 1565.8 77.76 0.050 0.019865 0.019865 0.009933 2.05 

4 2.51 161 1037.2 40.60 0.039 0.015659 0.015659 0.007830 2.55 

5 3.27 163 1049.2 41.14 0.039 0.015685 0.015685 0.007842 3.30 

6 3.70 211 1337.8 54.27 0.041 0.016226 0.016226 0.008113 3.73 

7 4.26 160 1000.9 40.34 0.040 0.016120 0.016120 0.008060 4.29 

8 5.16 168 1076.7 42.49 0.039 0.015784 0.015784 0.007892 5.19 

9 6.37 168 1086.1 42.49 0.039 0.015648 0.015648 0.007824 6.40 

10 7.29 160 1067.4 40.34 0.038 0.015116 0.015116 0.007558 7.32 

11 8.28 132 1056.6 32.91 0.031 0.012458 0.012458 0.006229 8.31 

12 8.85 130 1096.2 32.38 0.030 0.011816 0.011816 0.005908 8.87 

13 9.79 117 1045 28.99 0.028 0.011098 0.011098 0.005549 9.81 

14 10.78 63 631.6 15.27 0.024 0.009671 0.009671 0.004836 10.80 

15 11.35 77 763.3 18.77 0.025 0.009838 0.009838 0.004919 11.37 

16 12.53 67 465.6 16.27 0.035 0.013976 0.013976 0.006988 12.56 

17 14.22 145 672 36.34 0.054 0.021629 0.021629 0.010815 14.27 

18 15.81 162 757 40.87 0.054 0.021597 0.021597 0.010799 15.85 

19 18.25 125 639.2 31.08 0.049 0.019446 0.019446 0.009723 18.29 
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D.4.2 Water Pressure losses 

 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure as water enters the 

Intake pipeline, can be established. Chapter D2 states the Pressure Losses A to E with 

the relevant equations. Table D4 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table D4: Disaggregation of pressure losses (WOT) 

Test No. 
Total 
∆hf Total Q Loss B+C Loss D Loss E Loss A 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 0.5 0.75 0.000010 0.000061 0.0000071 0.48 0.00% 

2 1 1.38 0.000034 0.000213 0.0000248 0.94 94.11% 

3 3 2.05 0.000076 0.000476 0.0000555 2.87 95.61% 

4 5 2.55 0.000120 0.000747 0.0000873 4.79 95.86% 

5 7 3.30 0.000203 0.001266 0.0001478 6.65 94.99% 

6 9 3.73 0.000259 0.001616 0.0001886 8.55 95.03% 

7 10.5 4.29 0.000343 0.002144 0.0002503 9.91 94.35% 

8 14 5.19 0.000504 0.003150 0.0003677 13.13 93.77% 

9 17.5 6.40 0.000769 0.004801 0.0005605 16.17 92.40% 

10 21 7.32 0.001006 0.006284 0.0007337 19.26 91.71% 

11 27.5 8.31 0.001299 0.008114 0.0009472 25.25 91.83% 

12 33 8.87 0.001483 0.009261 0.0010812 30.44 92.23% 

13 41 9.81 0.001813 0.011325 0.0013221 37.86 92.35% 

14 52 10.80 0.002200 0.013740 0.0016041 48.20 92.68% 

15 65 11.37 0.002438 0.015222 0.0017770 60.79 93.52% 

16 79 12.56 0.002973 0.018568 0.0021676 73.86 93.49% 

17 100 14.27 0.003830 0.023918 0.0027923 93.38 93.38% 

18 141 15.85 0.004732 0.029552 0.0034500 132.82 94.20% 

19 183 18.29 0.006308 0.039393 0.0045988 172.09 94.04% 
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D.4.3 Perforation losses and Flowrate Relationship 

 

 

Table D5 below shows the Intake pipeline perforation friction (Loss A) and the flowrate 

for half a pipe and for a full pipeline. Figure D3 show the relationship between the 

Perforation friction and the flowrate in a 250mm Slotted PVC Pipeline. 

 

 

Table D5: Perforation friction (Loss A) flowrate Half and Full pipeline (WOT) 

Test No. Loss A Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 0.48 0.75 1.51 

2 0.94 1.38 2.76 

3 2.87 2.05 4.09 

4 4.79 2.55 5.09 

5 6.65 3.30 6.61 

6 8.55 3.73 7.46 

7 9.91 4.29 8.58 

8 13.13 5.19 10.39 

9 16.17 6.40 12.81 

10 19.26 7.32 14.64 

11 25.25 8.31 16.62 

12 30.44 8.87 17.75 

13 37.86 9.81 19.62 

14 48.20 10.80 21.60 

15 60.79 11.37 22.73 

16 73.86 12.56 25.12 

17 93.38 14.27 28.53 

18 132.82 15.85 31.71 

19 172.09 18.29 36.59 
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Figure D3: Headloss due to the slots (Loss A) versus the flowrate for a fully flowing ø250mm 

slotted pipe 

 

The equation below describes the relationship between headloss due to slot friction 

and flowrate 

 

∆P= 0.0518Q2 + 0.3206Q               (Eqn 1) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate for one full pipeline in liters/second 
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D.4.4 Segmental Analysis of HPM 

 

Analysing the Slotted/Perforation friction and flow relationship was relatively simple. 

However in order to understand the flow regime better, it was required that the flow at 

different points in the HPM be calculated. It was decided that a model would be better 

understood if it was segmented. Hence the model was portioned into five segments. 

 

As described by Table D4, the Perforation Loss A accounts for the nearly all of the 

pressure loss. Hence for a point on the Intake pipeline just inside WC1, the velocity of 

the flow into the pipeline is at its maximum. The velocity at this point is termed Vmax. 

The opposite holds true for a point at the start of the Intake pipeline. At this point, Vmin, 

the velocity of the inflow is zero.  Hence via linear interpolation, the velocity at any 

point in between both ends can be calculated. Figure D4 below describes the manner 

in which the HPM is segmented. 

 

 
Figure D4: Segmented HPM with notional EGL flow that enters WC1 and exits fromWC2 

 

Methodology 

 

In order to calculate the flow at various points within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2, V3, V4 and VMINoccur at the border of 

each segment, hence for each segment, the Average Velocity, VS1, VS2, VS3, VS4 and 

VS5 for each segment is easily calculated.  
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VMAX is derived from Bernoulli principles where: 

 

hgV  2         EqnD1 

 

With  

 

V = Velocity in m/s 

 

h  = is the driving pressure  

 

G = gravitational constant (9.81m/s2) 

 

 

Note that the driving pressure h  is Loss A. The flow from each segment is then 

calculated by multiplying the velocity with the perforation area and a discharge 

coefficient, Cd. Table D6 shows the distribution of inflowing velocity over the length of 

the Intake Pipeline.  

 

Equation D2 was used to calculate the flow from each segment. Table D7contains the 

flowrate for each segment and the sum of flow from all segments of the pipeline.  

 

hgACqQ dT  2       Eqn D2 

With  

 

q = Flowrate through for each segment in m3/s 

 

Q = Sum of Flowrate form each segment in m3/s 

 

A= The Area through which flow is allowed in m2  

 

Cd = Coefficient of Discharge 
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Table D6: Velocity of water flowing into the pipe, over the length of the SPP Intake (WOT) 

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  Loss A Vmax Vs 1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

0 mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 0.48 0.097 0.088 0.078 0.068 0.058 0.049 0.039 0.029 0.019 0.010 0.0 

2 0.94 0.136 0.122 0.109 0.095 0.082 0.068 0.054 0.041 0.027 0.014 0.0 

3 2.87 0.237 0.214 0.190 0.166 0.142 0.119 0.095 0.071 0.047 0.024 0.0 

4 4.79 0.307 0.276 0.245 0.215 0.184 0.153 0.123 0.092 0.061 0.031 0.0 

5 6.65 0.361 0.325 0.289 0.253 0.217 0.181 0.144 0.108 0.072 0.036 0.0 

6 8.55 0.410 0.369 0.328 0.287 0.246 0.205 0.164 0.123 0.082 0.041 0.0 

7 9.91 0.441 0.397 0.353 0.309 0.265 0.220 0.176 0.132 0.088 0.044 0.0 

8 13.13 0.508 0.457 0.406 0.355 0.305 0.254 0.203 0.152 0.102 0.051 0.0 

9 16.17 0.563 0.507 0.451 0.394 0.338 0.282 0.225 0.169 0.113 0.056 0.0 

10 19.26 0.615 0.553 0.492 0.430 0.369 0.307 0.246 0.184 0.123 0.061 0.0 

11 25.25 0.704 0.634 0.563 0.493 0.422 0.352 0.282 0.211 0.141 0.070 0.0 

12 30.44 0.773 0.695 0.618 0.541 0.464 0.386 0.309 0.232 0.155 0.077 0.0 

13 37.86 0.862 0.776 0.690 0.603 0.517 0.431 0.345 0.259 0.172 0.086 0.0 

14 48.20 0.972 0.875 0.778 0.681 0.583 0.486 0.389 0.292 0.194 0.097 0.0 

15 60.79 1.092 0.983 0.874 0.764 0.655 0.546 0.437 0.328 0.218 0.109 0.0 

16 73.86 1.204 1.083 0.963 0.843 0.722 0.602 0.482 0.361 0.241 0.120 0.0 

17 93.38 1.354 1.218 1.083 0.947 0.812 0.677 0.541 0.406 0.271 0.135 0.0 

18 132.82 1.614 1.453 1.291 1.130 0.969 0.807 0.646 0.484 0.323 0.161 0.0 

19 172.09 1.838 1.654 1.470 1.286 1.103 0.919 0.735 0.551 0.368 0.184 0.0 

 

 

Of particular concern is the Energy Grade Line (EGL) at the centre of the Intake 

Pipeline. Figure D5 depicts the EGL for the various tests.  The EGL shows the amount 

of energy that has been lost from water merely entering the Intake Pipeline. For this 

case the loss of pressure is due to perforation friction only. Hence if the Still Water 

Level (SWL) is known at a particular position along the Intake pipeline, the new EGL 

would be the still water level in WC1 minus the perforation friction/ Loss A 

 

Stellenbosch University  http://scholar.sun.ac.za



191 

University of Stellenbosch 

 
Table D7: Calculated Flowrate from all segments of the Pipeline (WOT) 

Test  Loss A Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 
Q 

Total 
Q 

Total 
2Q 

Total 

0 mm 
 

m
3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 0.48 0.158 0.0003 0.0002 0.0002 0.0001 0.0000 0.0008 0.76 1.51 

2 0.94 0.207 0.0005 0.0004 0.0003 0.0002 0.0001 0.0014 1.38 2.76 

3 2.87 0.176 0.0007 0.0006 0.0004 0.0002 0.0001 0.0020 2.05 4.09 

4 4.79 0.169 0.0009 0.0007 0.0005 0.0003 0.0001 0.0025 2.55 5.09 

5 6.65 0.186 0.0012 0.0009 0.0007 0.0004 0.0001 0.0033 3.30 6.61 

6 8.55 0.186 0.0013 0.0010 0.0007 0.0004 0.0001 0.0037 3.73 7.46 

7 9.91 0.198 0.0015 0.0012 0.0009 0.0005 0.0002 0.0043 4.29 8.58 

8 13.13 0.209 0.0019 0.0015 0.0010 0.0006 0.0002 0.0052 5.19 10.39 

9 16.17 0.232 0.0023 0.0018 0.0013 0.0008 0.0003 0.0064 6.40 12.81 

10 19.26 0.243 0.0026 0.0020 0.0015 0.0009 0.0003 0.0073 7.32 14.64 

11 25.25 0.241 0.0030 0.0023 0.0017 0.0010 0.0003 0.0083 8.31 16.62 

12 30.44 0.234 0.0032 0.0025 0.0018 0.0011 0.0004 0.0089 8.87 17.75 

13 37.86 0.232 0.0035 0.0027 0.0020 0.0012 0.0004 0.0098 9.81 19.62 

14 48.20 0.226 0.0039 0.0030 0.0022 0.0013 0.0004 0.0108 10.80 21.60 

15 60.79 0.212 0.0041 0.0032 0.0023 0.0014 0.0005 0.0114 11.37 22.73 

16 73.86 0.213 0.0045 0.0035 0.0025 0.0015 0.0005 0.0126 12.56 25.12 

17 93.38 0.215 0.0051 0.0040 0.0029 0.0017 0.0006 0.0143 14.27 28.53 

18 132.82 0.200 0.0057 0.0044 0.0032 0.0019 0.0006 0.0159 15.85 31.71 

19 172.09 0.203 0.0066 0.0051 0.0037 0.0022 0.0007 0.0183 18.29 36.59 

 

Figure D5 below is a plot of EGLs at the centre of the Intake Pipeline. For the 19 tests 

conducted, the increase in pressure losses occurs closer to the exit point of WC1. 
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Figure D5: Plot of EGLs at the centre of the Intake Pipeline (WOT) 

 

Combining Figures D4 and D5 produces Figure D6 which shows graphically the EGL 

as per the Intake pipeline section. With the main Flow versus headloss relationship 

being the most important, calculation of the EGL might appear of no use, however 

calculation of EGL at various points in the flow will prove fruitful in future chapters. 

 

Figure D6: The EGL in the HPM for all nineteen tests  (WOT) 
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D.5: Water and Stone Test  

 

The following elucidates the manner in which the „Water and Stone Test‟ (WST)was 

conducted and uses tables and equations to illustrate the analysis process. Table D8 

details the physical aspects of the model including the Intake pipeline.  

 

Table D8: The physical aspects of the HPM and Intake Pipeline (WST) 

Description Value Unit 

Physical aspects of the HPM:WC2a 
  

Angle of V Notch Weir 90 Degrees 

Height of V Notch Weir 2015 mm 

Length 0.28 m 

Breath 0.45 m 

Area A 0.126 m
2
 

Wet Perimeter P 1.46 m 

Hydraulic Radius R 0.0863 m 

Friction Factor f 0.02 
 

Loss Coefficient Ke 1 
 

Slotted Pipeline Perforation Configuration 
  

D Pipe Length 1055 mm 

Pipe OD 250 mm 

Pipe ID 230 mm 

Half Pipe Area 0.0208 m
2
 

Wet Perimeter 0.5911 m 

Hydraulic Radius Pipe HR 0.1405 m 

No of Slots per 20cm Length 50 
 

Area of each Slot 392.5 mm
2
 

Length of Pipe 1055 mm 

No. of Segments 5 
 

Segment Length 211 mm 

Perforation Area of Segment 19625 mm
2
 

Total Perforation Area 98125 mm
2
 

Total pipe Wetted Surface Area 414087.5 mm
2
 

Percentage perforation 23.70% 
 

Friction Factor f 0.015 
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Where: 

 

Cd  = Coefficient of Discharge as established in Appendix B 

D Pipe Length = Length of Intake pipeline in the HPM 

Pipe OD  = Outside Diameter of Intake Pipeline 

Pipe ID  = Inside Diameter of Pipeline 

Half Pipe Area = The area of flow when only half a pipe is used 

Wet Perimeter = Perimeter of the intake pipeline that has been in contact with the flow 

Hydraulic Radius HR = The Hydraulic Radius of the Intake Pipeline or WC2a 

 

The aim of this experiment is to: 

1) confirm the relationship between the flow and the loss of pressure head as it 

passes in to the Intake pipeline and to  

2) establish the relationship between the flow and the loss of pressure head as it 

passes through the 19mm Stone bedding. 

 

Using the above information, 15 incremental tests, with increasing driving heads, 

where conducted. Table D9 shows the initial results. The difference between WC1 and 

WC2 denotes the total headloss. The flow rate was determined from the following 

EquationB1 

 

2

5

2
tan2

15

8
hgCQ d 


      Eqn B1 

Where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table D9: Total Headloss and initial flow rate for Water and Stone test (WST) 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 2050.5 2050 35.5 35 0.5 0.31 

2 2059 2058 44 43 1 0.52 

3 2069 2067 54 52 2 0.83 

4 2080 2077 65 62 3 1.29 

5 2099.5 2093.5 84.5 78.5 6 2.32 

6 2113 2101.5 98 86.5 11.5 2.96 

7 2132 2113.5 117 98.5 18.5 4.10 

8 2169 2133 154 118 36 6.44 

9 2192 2142 177 127 50 7.74 

10 2225 2152 210 137 73 9.35 

11 2245 2158 230 143 87 10.41 

12 2274 2164 259 149 110 11.54 

13 2306 2171 291 156 135 12.94 

14 2339 2177 324 162 162 14.22 

15 2359 2180 344 165 179 14.89 

 

After the total headloss and initial flow rate relationship has been established, Water 

leakage has to be considered. As per chapter D3 theses losses are incorporated in 

Table D10 with 40% of all leakage deemed to be out of WC1, 40% out of WC2a and 

20% out of WC2b.  
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D.5.1 Water Leakage losses 

 

In Table D10, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table D10: Total headloss and flow rate incorporating losses for Water and Stone Test (WST) 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Half 
PipeQ 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.31 106 1013.6 26.15 0.026 0.01032 0.010320 0.00516 0.33 

2 0.52 62 1055.7 15.02 0.014 0.00569 0.005692 0.00285 0.53 

3 0.83 44 758.5 10.58 0.014 0.00558 0.005580 0.00279 0.84 

4 1.29 77 654.6 18.77 0.029 0.01147 0.011471 0.00574 1.31 

5 2.32 46 725.5 11.07 0.015 0.00610 0.006105 0.00305 2.34 

6 2.96 20 316.8 4.76 0.015 0.00601 0.006013 0.00301 2.98 

7 4.10 36 560.7 8.63 0.015 0.00616 0.006156 0.00308 4.11 

8 6.44 47 858.5 11.32 0.013 0.00527 0.005273 0.00264 6.45 

9 7.74 46 657.4 11.07 0.017 0.00674 0.006737 0.00337 7.75 

10 9.35 45 635.7 10.83 0.017 0.00681 0.006813 0.00341 9.37 

11 10.41 30 418 7.17 0.017 0.00686 0.006864 0.00343 10.43 

12 11.54 41 664.5 9.85 0.015 0.00593 0.005928 0.00296 11.55 

13 12.94 55 648.4 13.29 0.020 0.00820 0.008197 0.00410 12.96 

14 14.22 40 399.4 9.60 0.024 0.00962 0.009618 0.00481 14.24 

15 14.89 78 615.9 19.02 0.031 0.01236 0.012355 0.00618 14.92 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



197 

University of Stellenbosch 

D.5.2 Water Pressure losses 

 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure as water enters the 

Intake pipeline, can be established. Chapter D2 states the Pressure Losses A to E with 

the relevant equations. Table D11 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table D11: Disaggregation of pressure losses for Water and Stone test (WST) 

Test No. 
Total 
∆hf 

Total 
Half 

PipeQ Loss B+C Loss D Loss E 

Loss A 
+Stone 
bedding 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 0.5 0.33 0.000002 0.000011 0.0000013 0.50 0.00% 

2 1 0.53 0.000005 0.000032 0.0000037 0.99 99.13% 

3 2 0.84 0.000013 0.000082 0.0000095 1.98 98.87% 

4 3 1.31 0.000031 0.000196 0.0000229 2.95 98.19% 

5 6 2.34 0.000102 0.000639 0.0000746 5.82 97.05% 

6 11.5 2.98 0.000166 0.001038 0.0001212 11.21 97.50% 

7 18.5 4.11 0.000318 0.001988 0.0002320 17.95 97.03% 

8 36 6.45 0.000785 0.004904 0.0005725 34.64 96.23% 

9 50 7.75 0.001134 0.007082 0.0008268 48.04 96.08% 

10 73 9.37 0.001657 0.010346 0.0012078 70.14 96.08% 

11 87 10.43 0.002053 0.012818 0.0014965 83.45 95.92% 

12 110 11.55 0.002521 0.015743 0.0018379 105.64 96.04% 

13 135 12.96 0.003172 0.019805 0.0023121 129.52 95.94% 

14 162 14.24 0.003830 0.023918 0.0027923 155.38 95.91% 

15 179 14.92 0.004198 0.026217 0.0030606 171.74 95.94% 
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D.5.3 Relationship between flowrate, Perforation and Stone Bedding 

friction 

 

 

Table D12 shows the Intake pipeline perforation friction (Loss A) + stone bedding loss. 

It also includes the flowrate for half a pipe and for a full pipeline. Figure D7 shows the 

relationship between the Perforation and stone bedding friction and the flowrate in 

theø250mm Slotted PVC Pipeline. 

 

 

Table D12:Perforation (Loss A), and Stone Bedding friction, Half flowrate and Full pipeline 
flowrate (WST) 

Test No. Loss A +Stone bedding Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 0.50 0.33 0.66 

2 0.99 0.53 1.06 

3 1.98 0.84 1.68 

4 2.95 1.31 2.62 

5 5.82 2.34 4.67 

6 11.21 2.98 5.95 

7 17.95 4.11 8.23 

8 34.64 6.45 12.90 

9 48.04 7.75 15.51 

10 70.14 9.37 18.74 

11 83.45 10.43 20.85 

12 105.64 11.55 23.10 

13 129.52 12.96 25.92 

14 155.38 14.24 28.49 

15 171.74 14.92 29.83 
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Figure D7: Headloss due to the slots (Loss A) and Stone bedding versus the flowrate for a 

fullyflowing ø250mm slotted pipe 

 

The equation below describes the relationship between headloss due to slot friction 

and stone bedding and flowrate 

 

∆P= 0.1309Q2 + 0.8725Q               (Eqn 2) 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate for one full pipeline in litres/second 
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D.5.4 Segmental Analysis of HPM 

 

Analysing the Slotted/Perforation friction + Stone Bedding and flow relationship 

initially, is as per chapter D.4.4. The flow was calculated at the same points in the 

HPM.Themodelwasbetter understood when it was portioned into five segments. 

 

As described by Table D11, the Perforation Loss A + Stone Bedding accounts for the 

nearly all of the pressure loss. Hence for a point on the Intake pipeline just inside 

WC1, the velocity of the flow into the pipeline is at its maximum. The velocity at this 

point is termed Vmax.  The opposite holds true for a point at the start of the Intake 

pipeline. At this point, Vmin, the velocity of the inflow is zero.  Hence via linear 

interpolation, the velocity at any point in between both ends can be calculated. Figure 

D8 below describes the manner in which the HPM is segmented. 

 

 
Figure D8: Segmented HPM with notional EGL flow that enters WC1 and exits fromWC2 

 

Stellenbosch University  http://scholar.sun.ac.za



201 

University of Stellenbosch 

D.5.4.1 Methodology 

 

In order to calculate the flow at various points within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2, V3, V4 and VMIN occur at the border of 

each segment, hence for each segment, the Average Velocity, VS1, VS2, VS3, VS4 and 

VS5 for each segment is easily calculated.  

 

VMAXis derived from Bernoulli principles where: 

 

hgV  2         Eqn D1 

 

With  

 

V = Velocity in m/s 

 

h  = is the driving pressure  

 

g = gravitational constant (9.81m/s2) 

 

Note that the driving pressure h  is Perforation Loss A+ Stone bedding. The flow from 

each segment is then calculated by multiplying the velocity with the perforation area 

and a discharge coefficient, Cd. Table D13 shows the distribution of inflowing velocity 

over the length of the Intake Pipeline.  

 

Equation D2 was used to calculate the flow from each segment. Table D14 contains 

the flowrate for each segment and the sum of flow from all segments of the pipeline. 

 

hgACqQ dT  2       Eqn D2 

With  

q = Flowrate through for each segment in m3/s 

 

Q = Sum of Flowrate form each segment in m3/s 

 

A= The Area through which flow is allowed in m2  

 

Cd = Coefficient of Discharge
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Table D13: Inflowing velocity of water flowing into the pipe, over the length of the Intake 
Pipeline (WST) 

  
Pos. 0 Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 

Pos. 
10 

Test  

Loss A 
+ Stone 
Bedding Vmax Vs 1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

0 mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 0.50 0.099 0.089 0.079 0.069 0.059 0.049 0.039 0.030 0.020 0.010 0.0 

2 0.99 0.139 0.126 0.112 0.098 0.084 0.070 0.056 0.042 0.028 0.014 0.0 

3 1.98 0.197 0.177 0.158 0.138 0.118 0.098 0.079 0.059 0.039 0.020 0.0 

4 2.95 0.240 0.216 0.192 0.168 0.144 0.120 0.096 0.072 0.048 0.024 0.0 

5 5.82 0.338 0.304 0.270 0.237 0.203 0.169 0.135 0.101 0.068 0.034 0.0 

6 11.21 0.469 0.422 0.375 0.328 0.281 0.235 0.188 0.141 0.094 0.047 0.0 

7 17.95 0.593 0.534 0.475 0.415 0.356 0.297 0.237 0.178 0.119 0.059 0.0 

8 34.64 0.824 0.742 0.660 0.577 0.495 0.412 0.330 0.247 0.165 0.082 0.0 

9 48.04 0.971 0.874 0.777 0.680 0.583 0.485 0.388 0.291 0.194 0.097 0.0 

10 70.14 1.173 1.056 0.938 0.821 0.704 0.587 0.469 0.352 0.235 0.117 0.0 

11 83.45 1.280 1.152 1.024 0.896 0.768 0.640 0.512 0.384 0.256 0.128 0.0 

12 105.64 1.440 1.296 1.152 1.008 0.864 0.720 0.576 0.432 0.288 0.144 0.0 

13 129.52 1.594 1.435 1.275 1.116 0.956 0.797 0.638 0.478 0.319 0.159 0.0 

14 155.38 1.746 1.571 1.397 1.222 1.048 0.873 0.698 0.524 0.349 0.175 0.0 

15 171.74 1.836 1.652 1.469 1.285 1.101 0.918 0.734 0.551 0.367 0.184 0.0 

 
Table D14: Calculated Flowrate from all segments of the Pipeline (WST) 

1 2 3 4 5 6 7 8 9 10 11 

Test  

Loss A 
+ Stone 
Bedding Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Q Total 

Q 
Total 

2Q 
Total 

0 mm 
 

m
3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 0.50 0.085 0.00012 0.00009 0.00007 0.00004 0.00001 0.00033 0.33 0.66 

2 0.99 0.096 0.00019 0.00015 0.00011 0.00006 0.00002 0.00053 0.53 1.06 

3 1.98 0.109 0.00030 0.00024 0.00017 0.00010 0.00003 0.00084 0.84 1.68 

4 2.95 0.139 0.00047 0.00037 0.00026 0.00016 0.00005 0.00131 1.31 2.62 

5 5.82 0.176 0.00084 0.00065 0.00047 0.00028 0.00009 0.00234 2.34 4.67 

6 11.21 0.162 0.00107 0.00083 0.00059 0.00036 0.00012 0.00297 2.98 5.95 

7 17.95 0.177 0.00148 0.00115 0.00082 0.00049 0.00016 0.00411 4.11 8.23 

8 34.64 0.199 0.00232 0.00181 0.00129 0.00077 0.00026 0.00645 6.45 12.90 

9 48.04 0.203 0.00279 0.00217 0.00155 0.00093 0.00031 0.00775 7.75 15.51 

10 70.14 0.203 0.00337 0.00262 0.00187 0.00112 0.00037 0.00937 9.37 18.74 

11 83.45 0.208 0.00375 0.00292 0.00209 0.00125 0.00042 0.01043 10.43 20.85 

12 105.64 0.204 0.00416 0.00323 0.00231 0.00139 0.00046 0.01155 11.55 23.10 

13 129.52 0.207 0.00467 0.00363 0.00259 0.00156 0.00052 0.01296 12.96 25.92 

14 155.38 0.208 0.00513 0.00399 0.00285 0.00171 0.00057 0.01424 14.24 28.49 

15 171.74 0.207 0.00537 0.00418 0.00298 0.00179 0.00060 0.01492 14.92 29.83 
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Of particular concern is the Energy Grade Line (EGL) at the centre of the Intake 

Pipeline. The EGL,Figure D9, shows the amount of energy that has been lost from the 

stone bedding friction and from water entering the Intake Pipeline.For the 15 tests 

conducted, pressure losses increase closer to the exit point of WC1 as can be seen in 

Figure D9. 

 

 

Figure D9: Plot of EGLs at the centre of the Intake Pipeline for Water and Stone Test 

 

The calculation of the EGL at various points within the Intake pipeline is crucial as it 

aids in determining the loss due to the stone bedding. This can be seen in the flowing 

section 
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D.5.4.2 Pressure loss due to Stone Bedding 

 

Calculating the loss of pressure due to stone bedding is critical as it inadvertently 

determines the design of the seawater Intake. Note that the stone bedding for all tests 

were standardised with the Intake pipe being 150mm above the bedrock, 300mm 

below the cover level of the stone bedding and 485mm from an adjacent intake 

pipeline. Two methods where employed when seeking to determine the pressure loss 

due the stone bedding.  

 

D.5.4.2.1 Method 1: Simple method for determining headloss due to stone 

bedding 

 

In this simplistic method, the equation for the “Water Test only: is removed from the 

equation for “Stone and water test” This is simplified as Eqn 3 equals Eqn1 minus 

Eqn2 where: 

 

∆P = 0.1309Q2 + 0.8725Q       (Eqn2) 

 

Minus 

 

∆P= 0.0518Q2 + 0.3206Q       (Eqn1) 

 

Equals 

 

∆P= 0.0791Q2 + 0.5519Q       (Eqn3) 

 

Table D15shows the headloss for corresponding flow values while Figure D10 plots 

these graphically. 
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Table D15: ø250mm Slotted pipe test: Method 1 :Pressure loss due to Stone Bedding Only 

Test No. Q Half Pipe Q Full Pipe Stone Bedding Friction 

 l/s l/s mm 

1 0.33 0.66 0.4 

2 0.53 1.06 0.7 

3 0.84 1.68 1.2 

4 1.31 2.62 2.0 

5 2.34 4.68 4.3 

6 2.98 5.96 6.1 

7 4.11 8.22 9.9 

8 6.45 12.9 20.3 

9 7.75 15.5 27.6 

10 9.37 18.74 38.1 

11 10.43 20.86 45.9 

12 11.55 23.1 55.0 

13 12.96 25.92 67.5 

14 14.24 28.48 79.9 

15 14.92 29.84 86.9 

 

 

 
Figure D10: ø250mm Slotted pipe-Water and Stone Bedding Test: Pressure loss due to Stone 
Bedding Only 
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D.5.4.2.2 Method 2: Method for determining stone bedding loss : Hydraulic 

conductivity: Kenny, Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of the stone bedding based on work by Kenny, Lau 

and Ofoegbu. From Table D13, the velocity for each segment of the Intake pipeline 

was determined. However, stone bedding cannot be split into equal segments as well. 

This is only correct for stone bedding adjacent to the intake pipeline. It does not apply 

to the flat horizontal surface of the stone bedding. 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table D16 below looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate.  

 

Figure D11, these proportions were then applied to length of the stone bed. This 

splitting of the stone bedding surface ensured that all flows entering the stone bed 

were proportional to the flow entering the intake pipeline for all segments.  

 

Table D16:ø250mm Slotted Pipe, Method 2:Water and Stone Bedding Test: Flow through 
segments(WST) 

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00012 0.00009 0.00007 0.00004 0.00001 36% 28% 20% 12% 4% 

2 0.00019 0.00015 0.00011 0.00006 0.00002 36% 28% 20% 12% 4% 

3 0.00030 0.00024 0.00017 0.00010 0.00003 36% 28% 20% 12% 4% 

4 0.00047 0.00037 0.00026 0.00016 0.00005 36% 28% 20% 12% 4% 

5 0.00084 0.00065 0.00047 0.00028 0.00009 36% 28% 20% 12% 4% 

6 0.00107 0.00083 0.00059 0.00036 0.00012 36% 28% 20% 12% 4% 

7 0.00148 0.00115 0.00082 0.00049 0.00016 36% 28% 20% 12% 4% 

8 0.00232 0.00181 0.00129 0.00077 0.00026 36% 28% 20% 12% 4% 

9 0.00279 0.00217 0.00155 0.00093 0.00031 36% 28% 20% 12% 4% 

10 0.00337 0.00262 0.00187 0.00112 0.00037 36% 28% 20% 12% 4% 

11 0.00375 0.00292 0.00209 0.00125 0.00042 36% 28% 20% 12% 4% 

12 0.00416 0.00323 0.00231 0.00139 0.00046 36% 28% 20% 12% 4% 

13 0.00467 0.00363 0.00259 0.00156 0.00052 36% 28% 20% 12% 4% 

14 0.00513 0.00399 0.00285 0.00171 0.00057 36% 28% 20% 12% 4% 

15 0.00537 0.00418 0.00298 0.00179 0.00060 36% 28% 20% 12% 4% 
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Figure D11: ø250mm Slotted pipe-Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

Figure D12 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure D11 and D12. As in Figure D12, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 

calculated it is based on the intake pipe dimensions. Areas A2 and A3are a third of the 

distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4are noted as Lengths len1, len2 and len3 respectively. 
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Figure D12: Notional flow path of a stone bedding segment 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as follows: 

 

 

EqnD4 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

The first three variables are easily to calculate however determining the hydraulic 

conductivity k, requires further investigation. 

 

The hydraulic conductivity is calculated using the following equation 

 

 

          EqnD5 

 

k

VL
mhf


)(

K
k w
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Where: 

k = Hydraulic conductivity 

γW = Unit Weight of Water  

η = Dynamic Viscosity of water  

K = Absolute Hydraulic conductivity 

 

 

The unit weight of water γW, and the dynamic viscosity of water η are fairly simple to 

calculate. However the Absolute Hydraulic conductivityK has to be calculated. It is 

calculated using the following equation: 

 

 

          EqnD6 

 

Where: 

 

K = Absolute Hydraulic conductivity 

Cu = Coefficient of Uniformity. Varies between 0.05 to 1 

D5 = Dimension of aggregate that has a cumulative percentage passing of 5% 

 

Figure D13 below is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D5 = 10mm was obtained. Hence for a Cu of 0.8, EquationD6 

yields a K of 80mm2.  As confirmation, Figure D14 is a graphical plot of EquationD6. 

Using a D5 of 10mm, a k value of approximately 0.7m/s is found. Utilising EqnD5 and 

the following values: 

 

γW = 9800 N/m3 

η = 0.00014 Ns/m 

 

2

5DCK u
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Figure D13: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 
Mindess, 2005) 
 

 

Figure D14: Graphical plot of Hydraulic conductivity Equation (Das 2000) 
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Table D17: Summary:Calculating the Hydraulic conductivity (WST) 

Description Value Unit 

Cu (0.05 to 1) 0.80 
 

D5 10.0 mm 

Water Column Width 0.61 m 

Absolute Conductivity K 80 mm
2
 

Unit Weight of Water γW 9800 N/m
3
 

Dynamic Viscosity of water η 1.14E-03 Ns/m
2
 

Hydraulic Conductivity k 0.688 m/s 
 

Using the values from Table D10 and D13, headloss for segment1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table D18 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table D19 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The following tables describe the headloss calculated for Segments 1, 2, 3, 4 and 5. 

 

Table D18: Segment 1: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.196 0.170 0.145 0.00012 0.208 0.183 0.158 

2 0.3618 0.221 0.196 0.170 0.145 0.00019 0.208 0.183 0.158 

3 0.3618 0.221 0.196 0.170 0.145 0.00030 0.208 0.183 0.158 

4 0.3618 0.221 0.196 0.170 0.145 0.00047 0.208 0.183 0.158 

5 0.3618 0.221 0.196 0.170 0.145 0.00084 0.208 0.183 0.158 

6 0.3618 0.221 0.196 0.170 0.145 0.00107 0.208 0.183 0.158 

7 0.3618 0.221 0.196 0.170 0.145 0.00148 0.208 0.183 0.158 

8 0.3618 0.221 0.196 0.170 0.145 0.00232 0.208 0.183 0.158 

9 0.3618 0.221 0.196 0.170 0.145 0.00279 0.208 0.183 0.158 

10 0.3618 0.221 0.196 0.170 0.145 0.00337 0.208 0.183 0.158 

11 0.3618 0.221 0.196 0.170 0.145 0.00375 0.208 0.183 0.158 

12 0.3618 0.221 0.196 0.170 0.145 0.00416 0.208 0.183 0.158 

13 0.3618 0.221 0.196 0.170 0.145 0.00467 0.208 0.183 0.158 

14 0.3618 0.221 0.196 0.170 0.145 0.00513 0.208 0.183 0.158 

15 0.3618 0.221 0.196 0.170 0.145 0.00537 0.208 0.183 0.158 
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Table D19: Segment 1: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1 Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0006 0.0006 0.0008 0.0002 0.0002 0.0002 0.0006 0.60 

2 0.0009 0.0010 0.0012 0.0003 0.0003 0.0004 0.0010 0.96 

3 0.0015 0.0017 0.0019 0.0004 0.0005 0.0006 0.0015 1.54 

4 0.0023 0.0026 0.0030 0.0007 0.0008 0.0009 0.0024 2.40 

5 0.0040 0.0046 0.0053 0.0012 0.0014 0.0016 0.0043 4.27 

6 0.0051 0.0059 0.0068 0.0016 0.0018 0.0021 0.0054 5.43 

7 0.0071 0.0081 0.0094 0.0022 0.0025 0.0029 0.0075 7.51 

8 0.0112 0.0127 0.0147 0.0034 0.0039 0.0045 0.0118 11.78 

9 0.0134 0.0153 0.0177 0.0041 0.0047 0.0054 0.0142 14.16 

10 0.0162 0.0184 0.0214 0.0049 0.0056 0.0065 0.0171 17.11 

11 0.0180 0.0205 0.0238 0.0055 0.0063 0.0073 0.0190 19.04 

12 0.0200 0.0227 0.0264 0.0061 0.0069 0.0080 0.0211 21.09 

13 0.0224 0.0255 0.0296 0.0068 0.0078 0.0090 0.0237 23.66 

14 0.0246 0.0280 0.0325 0.0075 0.0086 0.0099 0.0260 26.01 

15 0.0258 0.0294 0.0340 0.0079 0.0090 0.0104 0.0272 27.24 

 

Table D20: Segment 2: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.163 0.154 0.145 0.00009 0.167 0.158 0.150 

2 0.2814 0.172 0.163 0.154 0.145 0.00015 0.167 0.158 0.150 

3 0.2814 0.172 0.163 0.154 0.145 0.00024 0.167 0.158 0.150 

4 0.2814 0.172 0.163 0.154 0.145 0.00037 0.167 0.158 0.150 

5 0.2814 0.172 0.163 0.154 0.145 0.00065 0.167 0.158 0.150 

6 0.2814 0.172 0.163 0.154 0.145 0.00083 0.167 0.158 0.150 

7 0.2814 0.172 0.163 0.154 0.145 0.00115 0.167 0.158 0.150 

8 0.2814 0.172 0.163 0.154 0.145 0.00181 0.167 0.158 0.150 

9 0.2814 0.172 0.163 0.154 0.145 0.00217 0.167 0.158 0.150 

10 0.2814 0.172 0.163 0.154 0.145 0.00262 0.167 0.158 0.150 

11 0.2814 0.172 0.163 0.154 0.145 0.00292 0.167 0.158 0.150 

12 0.2814 0.172 0.163 0.154 0.145 0.00323 0.167 0.158 0.150 

13 0.2814 0.172 0.163 0.154 0.145 0.00363 0.167 0.158 0.150 

14 0.2814 0.172 0.163 0.154 0.145 0.00399 0.167 0.158 0.150 

15 0.2814 0.172 0.163 0.154 0.145 0.00418 0.167 0.158 0.150 
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Table D21: Segment 2: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1 Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0006 0.0006 0.0006 0.0002 0.0002 0.0002 0.0005 0.53 

2 0.0009 0.0009 0.0010 0.0003 0.0003 0.0003 0.0009 0.86 

3 0.0014 0.0015 0.0016 0.0004 0.0005 0.0005 0.0014 1.37 

4 0.0022 0.0023 0.0025 0.0007 0.0007 0.0007 0.0021 2.13 

5 0.0039 0.0041 0.0044 0.0012 0.0013 0.0013 0.0038 3.79 

6 0.0050 0.0053 0.0056 0.0015 0.0016 0.0017 0.0048 4.83 

7 0.0069 0.0073 0.0077 0.0021 0.0022 0.0024 0.0067 6.67 

8 0.0108 0.0114 0.0121 0.0033 0.0035 0.0037 0.0105 10.47 

9 0.0130 0.0137 0.0145 0.0040 0.0042 0.0044 0.0126 12.58 

10 0.0157 0.0166 0.0175 0.0048 0.0051 0.0054 0.0152 15.20 

11 0.0175 0.0184 0.0195 0.0053 0.0056 0.0060 0.0169 16.92 

12 0.0193 0.0204 0.0216 0.0059 0.0062 0.0066 0.0187 18.74 

13 0.0217 0.0229 0.0243 0.0066 0.0070 0.0074 0.0210 21.03 

14 0.0238 0.0252 0.0267 0.0073 0.0077 0.0081 0.0231 23.11 

15 0.0250 0.0264 0.0279 0.0076 0.0081 0.0085 0.0242 24.20 

 

Table D22: Segment 3: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.130 0.138 0.145 0.00007 0.126 0.134 0.141 

2 0.201 0.123 0.130 0.138 0.145 0.00011 0.126 0.134 0.141 

3 0.201 0.123 0.130 0.138 0.145 0.00017 0.126 0.134 0.141 

4 0.201 0.123 0.130 0.138 0.145 0.00026 0.126 0.134 0.141 

5 0.201 0.123 0.130 0.138 0.145 0.00047 0.126 0.134 0.141 

6 0.201 0.123 0.130 0.138 0.145 0.00059 0.126 0.134 0.141 

7 0.201 0.123 0.130 0.138 0.145 0.00082 0.126 0.134 0.141 

8 0.201 0.123 0.130 0.138 0.145 0.00129 0.126 0.134 0.141 

9 0.201 0.123 0.130 0.138 0.145 0.00155 0.126 0.134 0.141 

10 0.201 0.123 0.130 0.138 0.145 0.00187 0.126 0.134 0.141 

11 0.201 0.123 0.130 0.138 0.145 0.00209 0.126 0.134 0.141 

12 0.201 0.123 0.130 0.138 0.145 0.00231 0.126 0.134 0.141 

13 0.201 0.123 0.130 0.138 0.145 0.00259 0.126 0.134 0.141 

14 0.201 0.123 0.130 0.138 0.145 0.00285 0.126 0.134 0.141 

15 0.201 0.123 0.130 0.138 0.145 0.00298 0.126 0.134 0.141 
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Table D23: Segment 3: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1 Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0005 0.0005 0.0005 0.0002 0.0002 0.0001 0.0005 0.45 

2 0.0008 0.0008 0.0007 0.0003 0.0002 0.0002 0.0007 0.72 

3 0.0013 0.0013 0.0012 0.0004 0.0004 0.0004 0.0012 1.15 

4 0.0021 0.0020 0.0019 0.0006 0.0006 0.0006 0.0018 1.80 

5 0.0037 0.0035 0.0033 0.0011 0.0011 0.0010 0.0032 3.20 

6 0.0047 0.0044 0.0042 0.0014 0.0014 0.0013 0.0041 4.08 

7 0.0065 0.0061 0.0058 0.0020 0.0019 0.0018 0.0056 5.64 

8 0.0102 0.0096 0.0091 0.0031 0.0029 0.0028 0.0088 8.85 

9 0.0123 0.0116 0.0110 0.0037 0.0035 0.0033 0.0106 10.63 

10 0.0148 0.0140 0.0132 0.0045 0.0043 0.0040 0.0128 12.85 

11 0.0165 0.0156 0.0147 0.0050 0.0048 0.0045 0.0143 14.30 

12 0.0183 0.0173 0.0163 0.0056 0.0053 0.0050 0.0158 15.84 

13 0.0205 0.0194 0.0183 0.0063 0.0059 0.0056 0.0178 17.77 

14 0.0225 0.0213 0.0201 0.0069 0.0065 0.0062 0.0195 19.53 

15 0.0236 0.0223 0.0211 0.0072 0.0068 0.0064 0.0205 20.45 

 

Table D24: Segment 4: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.1206 0.074 0.097 0.121 0.145 0.00004 0.085 0.109 0.133 

2 0.1206 0.074 0.097 0.121 0.145 0.00006 0.085 0.109 0.133 

3 0.1206 0.074 0.097 0.121 0.145 0.00010 0.085 0.109 0.133 

4 0.1206 0.074 0.097 0.121 0.145 0.00016 0.085 0.109 0.133 

5 0.1206 0.074 0.097 0.121 0.145 0.00028 0.085 0.109 0.133 

6 0.1206 0.074 0.097 0.121 0.145 0.00036 0.085 0.109 0.133 

7 0.1206 0.074 0.097 0.121 0.145 0.00049 0.085 0.109 0.133 

8 0.1206 0.074 0.097 0.121 0.145 0.00077 0.085 0.109 0.133 

9 0.1206 0.074 0.097 0.121 0.145 0.00093 0.085 0.109 0.133 

10 0.1206 0.074 0.097 0.121 0.145 0.00112 0.085 0.109 0.133 

11 0.1206 0.074 0.097 0.121 0.145 0.00125 0.085 0.109 0.133 

12 0.1206 0.074 0.097 0.121 0.145 0.00139 0.085 0.109 0.133 

13 0.1206 0.074 0.097 0.121 0.145 0.00156 0.085 0.109 0.133 

14 0.1206 0.074 0.097 0.121 0.145 0.00171 0.085 0.109 0.133 

15 0.1206 0.074 0.097 0.121 0.145 0.00179 0.085 0.109 0.133 
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Table D25: Segment 4: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1 Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0005 0.0004 0.0003 0.0001 0.0001 0.0001 0.0003 0.34 

2 0.0007 0.0006 0.0005 0.0002 0.0002 0.0001 0.0005 0.55 

3 0.0012 0.0009 0.0008 0.0004 0.0003 0.0002 0.0009 0.87 

4 0.0018 0.0014 0.0012 0.0006 0.0004 0.0004 0.0014 1.36 

5 0.0033 0.0026 0.0021 0.0010 0.0008 0.0006 0.0024 2.43 

6 0.0042 0.0033 0.0027 0.0013 0.0010 0.0008 0.0031 3.09 

7 0.0058 0.0045 0.0037 0.0018 0.0014 0.0011 0.0043 4.27 

8 0.0091 0.0071 0.0058 0.0028 0.0022 0.0018 0.0067 6.70 

9 0.0109 0.0085 0.0070 0.0033 0.0026 0.0021 0.0081 8.05 

10 0.0132 0.0103 0.0084 0.0040 0.0031 0.0026 0.0097 9.73 

11 0.0146 0.0114 0.0094 0.0045 0.0035 0.0029 0.0108 10.83 

12 0.0162 0.0127 0.0104 0.0050 0.0039 0.0032 0.0120 12.00 

13 0.0182 0.0142 0.0117 0.0056 0.0043 0.0036 0.0135 13.46 

14 0.0200 0.0156 0.0128 0.0061 0.0048 0.0039 0.0148 14.79 

15 0.0209 0.0164 0.0134 0.0064 0.0050 0.0041 0.0155 15.49 

 

Table D26: Segment 5: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.065 0.105 0.145 0.00001 0.045 0.085 0.125 

2 0.0402 0.025 0.065 0.105 0.145 0.00002 0.045 0.085 0.125 

3 0.0402 0.025 0.065 0.105 0.145 0.00003 0.045 0.085 0.125 

4 0.0402 0.025 0.065 0.105 0.145 0.00005 0.045 0.085 0.125 

5 0.0402 0.025 0.065 0.105 0.145 0.00009 0.045 0.085 0.125 

6 0.0402 0.025 0.065 0.105 0.145 0.00012 0.045 0.085 0.125 

7 0.0402 0.025 0.065 0.105 0.145 0.00016 0.045 0.085 0.125 

8 0.0402 0.025 0.065 0.105 0.145 0.00026 0.045 0.085 0.125 

9 0.0402 0.025 0.065 0.105 0.145 0.00031 0.045 0.085 0.125 

10 0.0402 0.025 0.065 0.105 0.145 0.00037 0.045 0.085 0.125 

11 0.0402 0.025 0.065 0.105 0.145 0.00042 0.045 0.085 0.125 

12 0.0402 0.025 0.065 0.105 0.145 0.00046 0.045 0.085 0.125 

13 0.0402 0.025 0.065 0.105 0.145 0.00052 0.045 0.085 0.125 

14 0.0402 0.025 0.065 0.105 0.145 0.00057 0.045 0.085 0.125 

15 0.0402 0.025 0.065 0.105 0.145 0.00060 0.045 0.085 0.125 
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Table D27: Segment 5: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1 Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.17 

2 0.0005 0.0002 0.0002 0.0001 0.0001 0.0001 0.0003 0.27 

3 0.0008 0.0004 0.0003 0.0002 0.0001 0.0001 0.0004 0.43 

4 0.0012 0.0006 0.0004 0.0004 0.0002 0.0001 0.0007 0.68 

5 0.0021 0.0011 0.0007 0.0006 0.0003 0.0002 0.0012 1.20 

6 0.0027 0.0014 0.0010 0.0008 0.0004 0.0003 0.0015 1.53 

7 0.0037 0.0019 0.0013 0.0011 0.0006 0.0004 0.0021 2.12 

8 0.0058 0.0030 0.0021 0.0018 0.0009 0.0006 0.0033 3.33 

9 0.0070 0.0037 0.0025 0.0021 0.0011 0.0008 0.0040 4.00 

10 0.0084 0.0044 0.0030 0.0026 0.0013 0.0009 0.0048 4.83 

11 0.0093 0.0049 0.0033 0.0029 0.0015 0.0010 0.0054 5.37 

12 0.0104 0.0054 0.0037 0.0032 0.0017 0.0011 0.0060 5.95 

13 0.0116 0.0061 0.0041 0.0035 0.0019 0.0013 0.0067 6.68 

14 0.0128 0.0067 0.0046 0.0039 0.0021 0.0014 0.0073 7.34 

15 0.0134 0.0070 0.0048 0.0041 0.0021 0.0015 0.0077 7.69 

 

Table D28 below, summaries the results of Tables 18 to 27.Figure D15 plots these 

graphically. A trendline is added to the results in order to predict the headloss, due to 

stone bedding, at the most downstream point of WC1. It is at this point that the largest 

magnitude of headloss occurs. Table D29 summaries these results. 

 

Table D28: Summary of Method 2 Headloss Tests. Results from Tables 18 to 27 (WST) 

Test 
No. Total Q Total 2Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s l/s mm mm mm mm mm 

1 0.33 0.66 0.60 0.53 0.45 0.34 0.17 

2 0.53 1.06 0.96 0.86 0.72 0.55 0.27 

3 0.84 1.68 1.54 1.37 1.15 0.87 0.43 

4 1.31 2.62 2.40 2.13 1.80 1.36 0.68 

5 2.34 4.67 4.27 3.79 3.20 2.43 1.20 

6 2.98 5.95 5.43 4.83 4.08 3.09 1.53 

7 4.11 8.23 7.51 6.67 5.64 4.27 2.12 

8 6.45 12.90 11.78 10.47 8.85 6.70 3.33 

9 7.75 15.51 14.16 12.58 10.63 8.05 4.00 

10 9.37 18.74 17.11 15.20 12.85 9.73 4.83 

11 10.43 20.85 19.04 16.92 14.30 10.83 5.37 

12 11.55 23.10 21.09 18.74 15.84 12.00 5.95 

13 12.96 25.92 23.66 21.03 17.77 13.46 6.68 

14 14.24 28.49 26.01 23.11 19.53 14.79 7.34 

15 14.92 29.83 27.24 24.20 20.45 15.49 7.69 
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Figure D15: Method 2: Results ofHeadloss estimation due to Stone Bedding, within WC1 

 

Table D29:Method 2:Summary of maximum headloss versus flow rates (WST) 

Test No. Total Q Total 2Q 
Maximum Headloss due 

to Stone Bedding 

 
l/s l/s mm 

1 0.33 0.66 0.64 

2 0.53 1.06 1.03 

3 0.84 1.68 1.64 

4 1.31 2.62 2.55 

5 2.34 4.67 4.54 

6 2.98 5.95 5.78 

7 4.11 8.23 8.00 

8 6.45 12.90 12.54 

9 7.75 15.51 15.07 

10 9.37 18.74 18.21 

11 10.43 20.85 20.27 

12 11.55 23.10 22.46 

13 12.96 25.92 25.20 

14 14.24 28.49 27.69 

15 14.92 29.83 29.00 
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D.5.4.2.3 Method 3: Method for determining stone bedding loss : Hydraulic 

conductivity: Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, looks 

at the hydraulic conductivity of the stone bedding. This is based on work carried out by 

Forchheimer. From Table D31, the velocity for each segment of the Intake pipeline 

was determined. However, stone bedding cannot be split into equal segments as well. 

This is only correct for stone bedding adjacent to the intake pipeline. It does not apply 

to the flat horizontal surface of the stone bedding. 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table D30 below looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate.  

 

Figure D16, these proportions were then applied to length of the stone bed. This 

splitting of the stone bedding surface ensured that all flows entering the stone bed 

were proportional to the flow entering the intake pipeline for all segments.  

 

Table D30:ø250mm Slotted Pipe, Water and Stone Bedding Test: Flow through segments 
(WST) 

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00012 0.00009 0.00007 0.00004 0.00001 36% 28% 20% 12% 4% 

2 0.00019 0.00015 0.00011 0.00006 0.00002 36% 28% 20% 12% 4% 

3 0.00030 0.00024 0.00017 0.00010 0.00003 36% 28% 20% 12% 4% 

4 0.00047 0.00037 0.00026 0.00016 0.00005 36% 28% 20% 12% 4% 

5 0.00084 0.00065 0.00047 0.00028 0.00009 36% 28% 20% 12% 4% 

6 0.00107 0.00083 0.00059 0.00036 0.00012 36% 28% 20% 12% 4% 

7 0.00148 0.00115 0.00082 0.00049 0.00016 36% 28% 20% 12% 4% 

8 0.00232 0.00181 0.00129 0.00077 0.00026 36% 28% 20% 12% 4% 

9 0.00279 0.00217 0.00155 0.00093 0.00031 36% 28% 20% 12% 4% 

10 0.00337 0.00262 0.00187 0.00112 0.00037 36% 28% 20% 12% 4% 

11 0.00375 0.00292 0.00209 0.00125 0.00042 36% 28% 20% 12% 4% 

12 0.00416 0.00323 0.00231 0.00139 0.00046 36% 28% 20% 12% 4% 

13 0.00467 0.00363 0.00259 0.00156 0.00052 36% 28% 20% 12% 4% 

14 0.00513 0.00399 0.00285 0.00171 0.00057 36% 28% 20% 12% 4% 

15 0.00537 0.00418 0.00298 0.00179 0.00060 36% 28% 20% 12% 4% 
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Figure D16: ø250mm Slotted pipe-Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

 
Figure D17: Notional flow path of a stone bedding segment 
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Figure D17 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure D16 and D17. As in Figure D17, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 

calculated it is based on the intake pipe dimensions. Areas A2 and A3are a third of the 

distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4are noted as Lengths len1, len2 and len3 respectively. 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as per Equation 4 below: 

 

 

EqnD4 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

 

The first two variables are easily to calculate however the hydraulic conductivity is 

calculated fromFigure D19. 

 

Figure D18 below is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D50 = 15.7mm was obtained. Table 31 summaries the 

parameters when obtaining the hydraulic conductivity k value.  

 

 

k

VL
mhf


)(
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Figure D18: Grading curve for nominally single-sized 19mm Stone (Alexander & Mindess, 
2005) 
 

 

Figure D19: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF,2007) 
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Table D31: Calculation of Permeability for19mm Bedding of seawater Intake (WST) 

Description Unit Bedding 

Dn50 m 0.0157 

Log (D50) m -1.80 

Log k (from fig. 2.39) m/s -1.16 

k m/s 0.069 

 

 

Using the values from Table D31 and D31, headloss for Segment1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table D32 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table D33 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The following tables describe the headloss calculated for Segments 1, 2, 3, 4 and 5. 

 

Table D32: Segment 1: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.196 0.170 0.145 0.00012 0.208 0.183 0.158 

2 0.3618 0.221 0.196 0.170 0.145 0.00019 0.208 0.183 0.158 

3 0.3618 0.221 0.196 0.170 0.145 0.00030 0.208 0.183 0.158 

4 0.3618 0.221 0.196 0.170 0.145 0.00047 0.208 0.183 0.158 

5 0.3618 0.221 0.196 0.170 0.145 0.00084 0.208 0.183 0.158 

6 0.3618 0.221 0.196 0.170 0.145 0.00107 0.208 0.183 0.158 

7 0.3618 0.221 0.196 0.170 0.145 0.00148 0.208 0.183 0.158 

8 0.3618 0.221 0.196 0.170 0.145 0.00232 0.208 0.183 0.158 

9 0.3618 0.221 0.196 0.170 0.145 0.00279 0.208 0.183 0.158 

10 0.3618 0.221 0.196 0.170 0.145 0.00337 0.208 0.183 0.158 

11 0.3618 0.221 0.196 0.170 0.145 0.00375 0.208 0.183 0.158 

12 0.3618 0.221 0.196 0.170 0.145 0.00416 0.208 0.183 0.158 

13 0.3618 0.221 0.196 0.170 0.145 0.00467 0.208 0.183 0.158 

14 0.3618 0.221 0.196 0.170 0.145 0.00513 0.208 0.183 0.158 

15 0.3618 0.221 0.196 0.170 0.145 0.00537 0.208 0.183 0.158 
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Table D33: Segment 1: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1 Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0006 0.0006 0.0008 0.0017 0.0020 0.0023 0.0060 6.00 

2 0.0009 0.0010 0.0012 0.0028 0.0032 0.0037 0.0096 9.61 

3 0.0015 0.0017 0.0019 0.0044 0.0050 0.0058 0.0153 15.32 

4 0.0023 0.0026 0.0030 0.0069 0.0079 0.0091 0.0239 23.88 

5 0.0040 0.0046 0.0053 0.0123 0.0140 0.0162 0.0425 42.53 

6 0.0051 0.0059 0.0068 0.0157 0.0178 0.0207 0.0541 54.14 

7 0.0071 0.0081 0.0094 0.0217 0.0246 0.0286 0.0749 74.86 

8 0.0112 0.0127 0.0147 0.0340 0.0386 0.0448 0.1174 117.41 

9 0.0134 0.0153 0.0177 0.0408 0.0464 0.0539 0.1411 141.10 

10 0.0162 0.0184 0.0214 0.0493 0.0561 0.0651 0.1705 170.50 

11 0.0180 0.0205 0.0238 0.0549 0.0624 0.0724 0.1898 189.75 

12 0.0200 0.0227 0.0264 0.0608 0.0692 0.0802 0.2102 210.23 

13 0.0224 0.0255 0.0296 0.0682 0.0776 0.0900 0.2359 235.85 

14 0.0246 0.0280 0.0325 0.0750 0.0853 0.0989 0.2592 259.22 

15 0.0258 0.0294 0.0340 0.0785 0.0893 0.1036 0.2715 271.47 

 

Table D34: Segment 2: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.163 0.154 0.145 0.00009 0.167 0.158 0.150 

2 0.2814 0.172 0.163 0.154 0.145 0.00015 0.167 0.158 0.150 

3 0.2814 0.172 0.163 0.154 0.145 0.00024 0.167 0.158 0.150 

4 0.2814 0.172 0.163 0.154 0.145 0.00037 0.167 0.158 0.150 

5 0.2814 0.172 0.163 0.154 0.145 0.00065 0.167 0.158 0.150 

6 0.2814 0.172 0.163 0.154 0.145 0.00083 0.167 0.158 0.150 

7 0.2814 0.172 0.163 0.154 0.145 0.00115 0.167 0.158 0.150 

8 0.2814 0.172 0.163 0.154 0.145 0.00181 0.167 0.158 0.150 

9 0.2814 0.172 0.163 0.154 0.145 0.00217 0.167 0.158 0.150 

10 0.2814 0.172 0.163 0.154 0.145 0.00262 0.167 0.158 0.150 

11 0.2814 0.172 0.163 0.154 0.145 0.00292 0.167 0.158 0.150 

12 0.2814 0.172 0.163 0.154 0.145 0.00323 0.167 0.158 0.150 

13 0.2814 0.172 0.163 0.154 0.145 0.00363 0.167 0.158 0.150 
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14 0.2814 0.172 0.163 0.154 0.145 0.00399 0.167 0.158 0.150 

15 0.2814 0.172 0.163 0.154 0.145 0.00418 0.167 0.158 0.150 

Table D35: Segment 2: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C 

Hl21 Hl22 Hl23 
Hl2 Total Hl2 Total 

 m/s m/s m/s m m m m mm 

1 0.0006 0.0006 0.0006 0.0017 0.0018 0.0019 0.0053 5.33 

2 0.0009 0.0009 0.0010 0.0027 0.0028 0.0030 0.0085 8.54 

3 0.0014 0.0015 0.0016 0.0043 0.0045 0.0048 0.0136 13.62 

4 0.0022 0.0023 0.0025 0.0067 0.0071 0.0075 0.0212 21.22 

5 0.0039 0.0041 0.0044 0.0119 0.0126 0.0133 0.0378 37.79 

6 0.0050 0.0053 0.0056 0.0152 0.0160 0.0169 0.0481 48.11 

7 0.0069 0.0073 0.0077 0.0210 0.0221 0.0234 0.0665 66.52 

8 0.0108 0.0114 0.0121 0.0329 0.0347 0.0368 0.1043 104.33 

9 0.0130 0.0137 0.0145 0.0395 0.0417 0.0442 0.1254 125.38 

10 0.0157 0.0166 0.0175 0.0477 0.0504 0.0534 0.1515 151.50 

11 0.0175 0.0184 0.0195 0.0531 0.0561 0.0594 0.1686 168.61 

12 0.0193 0.0204 0.0216 0.0589 0.0621 0.0658 0.1868 186.81 

13 0.0217 0.0229 0.0243 0.0660 0.0697 0.0738 0.2096 209.58 

14 0.0238 0.0252 0.0267 0.0726 0.0766 0.0811 0.2303 230.34 

15 0.0250 0.0264 0.0279 0.0760 0.0802 0.0850 0.2412 241.23 

 

Table D36: Segment 3: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.130 0.138 0.145 0.00007 0.126 0.134 0.141 

2 0.201 0.123 0.130 0.138 0.145 0.00011 0.126 0.134 0.141 

3 0.201 0.123 0.130 0.138 0.145 0.00017 0.126 0.134 0.141 

4 0.201 0.123 0.130 0.138 0.145 0.00026 0.126 0.134 0.141 

5 0.201 0.123 0.130 0.138 0.145 0.00047 0.126 0.134 0.141 

6 0.201 0.123 0.130 0.138 0.145 0.00059 0.126 0.134 0.141 

7 0.201 0.123 0.130 0.138 0.145 0.00082 0.126 0.134 0.141 

8 0.201 0.123 0.130 0.138 0.145 0.00129 0.126 0.134 0.141 

9 0.201 0.123 0.130 0.138 0.145 0.00155 0.126 0.134 0.141 

10 0.201 0.123 0.130 0.138 0.145 0.00187 0.126 0.134 0.141 

11 0.201 0.123 0.130 0.138 0.145 0.00209 0.126 0.134 0.141 

12 0.201 0.123 0.130 0.138 0.145 0.00231 0.126 0.134 0.141 

13 0.201 0.123 0.130 0.138 0.145 0.00259 0.126 0.134 0.141 
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14 0.201 0.123 0.130 0.138 0.145 0.00285 0.126 0.134 0.141 

15 0.201 0.123 0.130 0.138 0.145 0.00298 0.126 0.134 0.141 

 

Table D37: Segment 3: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C 

Hl31 Hl32 Hl33 
Hl3 

Total 
Hl3 

Total 

 m/s m/s m/s m m m m mm 

1 0.0005 0.0005 0.0005 0.0016 0.0015 0.0014 0.0045 4.50 

2 0.0008 0.0008 0.0007 0.0025 0.0024 0.0023 0.0072 7.22 

3 0.0013 0.0013 0.0012 0.0041 0.0038 0.0036 0.0115 11.51 

4 0.0021 0.0020 0.0019 0.0063 0.0060 0.0056 0.0179 17.93 

5 0.0037 0.0035 0.0033 0.0113 0.0106 0.0101 0.0319 31.94 

6 0.0047 0.0044 0.0042 0.0143 0.0135 0.0128 0.0407 40.66 

7 0.0065 0.0061 0.0058 0.0198 0.0187 0.0177 0.0562 56.22 

8 0.0102 0.0096 0.0091 0.0311 0.0293 0.0278 0.0882 88.17 

9 0.0123 0.0116 0.0110 0.0373 0.0352 0.0334 0.1060 105.97 

10 0.0148 0.0140 0.0132 0.0451 0.0426 0.0403 0.1280 128.04 

11 0.0165 0.0156 0.0147 0.0502 0.0474 0.0449 0.1425 142.50 

12 0.0183 0.0173 0.0163 0.0556 0.0525 0.0497 0.1579 157.88 

13 0.0205 0.0194 0.0183 0.0624 0.0589 0.0558 0.1771 177.12 

14 0.0225 0.0213 0.0201 0.0686 0.0648 0.0613 0.1947 194.67 

15 0.0236 0.0223 0.0211 0.0718 0.0678 0.0642 0.2039 203.87 

 

Table D38: Segment 4: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.1206 0.074 0.097 0.121 0.145 0.00004 0.085 0.109 0.133 

2 0.1206 0.074 0.097 0.121 0.145 0.00006 0.085 0.109 0.133 

3 0.1206 0.074 0.097 0.121 0.145 0.00010 0.085 0.109 0.133 

4 0.1206 0.074 0.097 0.121 0.145 0.00016 0.085 0.109 0.133 

5 0.1206 0.074 0.097 0.121 0.145 0.00028 0.085 0.109 0.133 

6 0.1206 0.074 0.097 0.121 0.145 0.00036 0.085 0.109 0.133 

7 0.1206 0.074 0.097 0.121 0.145 0.00049 0.085 0.109 0.133 

8 0.1206 0.074 0.097 0.121 0.145 0.00077 0.085 0.109 0.133 

9 0.1206 0.074 0.097 0.121 0.145 0.00093 0.085 0.109 0.133 

10 0.1206 0.074 0.097 0.121 0.145 0.00112 0.085 0.109 0.133 

11 0.1206 0.074 0.097 0.121 0.145 0.00125 0.085 0.109 0.133 

12 0.1206 0.074 0.097 0.121 0.145 0.00139 0.085 0.109 0.133 
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13 0.1206 0.074 0.097 0.121 0.145 0.00156 0.085 0.109 0.133 

14 0.1206 0.074 0.097 0.121 0.145 0.00171 0.085 0.109 0.133 

15 0.1206 0.074 0.097 0.121 0.145 0.00179 0.085 0.109 0.133 

 

Table D39: Segment 4: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C 

Hl41 Hl42 Hl43 
Hl4 

Total 
Hl4 

Total 

 m/s m/s m/s m m m m mm 

1 0.0005 0.0004 0.0003 0.0014 0.0011 0.0009 0.0034 3.41 

2 0.0007 0.0006 0.0005 0.0023 0.0018 0.0014 0.0055 5.47 

3 0.0012 0.0009 0.0008 0.0036 0.0028 0.0023 0.0087 8.72 

4 0.0018 0.0014 0.0012 0.0056 0.0044 0.0036 0.0136 13.58 

5 0.0033 0.0026 0.0021 0.0100 0.0078 0.0064 0.0242 24.19 

6 0.0042 0.0033 0.0027 0.0127 0.0099 0.0082 0.0308 30.80 

7 0.0058 0.0045 0.0037 0.0176 0.0137 0.0113 0.0426 42.58 

8 0.0091 0.0071 0.0058 0.0276 0.0215 0.0177 0.0668 66.79 

9 0.0109 0.0085 0.0070 0.0331 0.0259 0.0213 0.0803 80.26 

10 0.0132 0.0103 0.0084 0.0400 0.0313 0.0257 0.0970 96.98 

11 0.0146 0.0114 0.0094 0.0445 0.0348 0.0286 0.1079 107.94 

12 0.0162 0.0127 0.0104 0.0493 0.0386 0.0317 0.1196 119.58 

13 0.0182 0.0142 0.0117 0.0554 0.0433 0.0355 0.1342 134.16 

14 0.0200 0.0156 0.0128 0.0608 0.0476 0.0390 0.1475 147.45 

15 0.0209 0.0164 0.0134 0.0637 0.0498 0.0409 0.1544 154.42 

 

Table D40: Segment 5: Averaging of Areas (WST) 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.065 0.105 0.145 0.00001 0.045 0.085 0.125 

2 0.0402 0.025 0.065 0.105 0.145 0.00002 0.045 0.085 0.125 

3 0.0402 0.025 0.065 0.105 0.145 0.00003 0.045 0.085 0.125 

4 0.0402 0.025 0.065 0.105 0.145 0.00005 0.045 0.085 0.125 

5 0.0402 0.025 0.065 0.105 0.145 0.00009 0.045 0.085 0.125 

6 0.0402 0.025 0.065 0.105 0.145 0.00012 0.045 0.085 0.125 

7 0.0402 0.025 0.065 0.105 0.145 0.00016 0.045 0.085 0.125 

8 0.0402 0.025 0.065 0.105 0.145 0.00026 0.045 0.085 0.125 

9 0.0402 0.025 0.065 0.105 0.145 0.00031 0.045 0.085 0.125 

10 0.0402 0.025 0.065 0.105 0.145 0.00037 0.045 0.085 0.125 

11 0.0402 0.025 0.065 0.105 0.145 0.00042 0.045 0.085 0.125 
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12 0.0402 0.025 0.065 0.105 0.145 0.00046 0.045 0.085 0.125 

13 0.0402 0.025 0.065 0.105 0.145 0.00052 0.045 0.085 0.125 

14 0.0402 0.025 0.065 0.105 0.145 0.00057 0.045 0.085 0.125 

15 0.0402 0.025 0.065 0.105 0.145 0.00060 0.045 0.085 0.125 

 

Table D41: Segment 5: Velocity and cumulative headloss (WST) 

Test 
No. Vel 1A Vel 1B Vel 1C 

Hl51 Hl52 Hl53 Hl5 
Total 

Hl5 
Total 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0002 0.0001 0.0009 0.0005 0.0003 0.0017 1.69 

2 0.0005 0.0002 0.0002 0.0014 0.0008 0.0005 0.0027 2.71 

3 0.0008 0.0004 0.0003 0.0023 0.0012 0.0008 0.0043 4.33 

4 0.0012 0.0006 0.0004 0.0036 0.0019 0.0013 0.0067 6.74 

5 0.0021 0.0011 0.0007 0.0064 0.0034 0.0023 0.0120 12.01 

6 0.0027 0.0014 0.0010 0.0081 0.0043 0.0029 0.0153 15.28 

7 0.0037 0.0019 0.0013 0.0112 0.0059 0.0040 0.0211 21.13 

8 0.0058 0.0030 0.0021 0.0176 0.0093 0.0063 0.0331 33.14 

9 0.0070 0.0037 0.0025 0.0212 0.0111 0.0075 0.0398 39.83 

10 0.0084 0.0044 0.0030 0.0256 0.0134 0.0091 0.0481 48.13 

11 0.0093 0.0049 0.0033 0.0285 0.0150 0.0101 0.0536 53.56 

12 0.0104 0.0054 0.0037 0.0315 0.0166 0.0112 0.0593 59.34 

13 0.0116 0.0061 0.0041 0.0354 0.0186 0.0126 0.0666 66.57 

14 0.0128 0.0067 0.0046 0.0389 0.0204 0.0139 0.0732 73.17 

15 0.0134 0.0070 0.0048 0.0407 0.0214 0.0145 0.0766 76.63 

 

Table D42 below, summaries the results of Tables 32 to 41.Figure D20plots these 

graphically. A trendline is added to the results in order to predict the headloss, due to 

stone bedding, at the most downstream point of WC1. The largest headloss occurs at 

this point. Table D43 summaries these extrapolatedresults. 

 

Table D42: Summary of Method 3 Headloss Tests. Results from Tables 32 to 41 (WST) 

Test 
No. Total Q Total 2Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s l/s mm mm mm mm mm 

1 0.33 0.66 6.00 5.33 4.50 3.41 1.69 

2 0.53 1.06 9.61 8.54 7.22 5.47 2.71 

3 0.84 1.68 15.32 13.62 11.51 8.72 4.33 

4 1.31 2.62 23.88 21.22 17.93 13.58 6.74 

5 2.34 4.67 42.53 37.79 31.94 24.19 12.01 

6 2.98 5.95 54.14 48.11 40.66 30.80 15.28 

7 4.11 8.23 74.86 66.52 56.22 42.58 21.13 

8 6.45 12.90 117.41 104.33 88.17 66.79 33.14 

9 7.75 15.51 141.10 125.38 105.97 80.26 39.83 

Stellenbosch University  http://scholar.sun.ac.za



228 

University of Stellenbosch 

10 9.37 18.74 170.50 151.50 128.04 96.98 48.13 

11 10.43 20.85 189.75 168.61 142.50 107.94 53.56 

12 11.55 23.10 210.23 186.81 157.88 119.58 59.34 

13 12.96 25.92 235.85 209.58 177.12 134.16 66.57 

14 14.24 28.49 259.22 230.34 194.67 147.45 73.17 

15 14.92 29.83 271.47 241.23 203.87 154.42 76.63 

Figure D20: Results of Method 3:Headloss estimation due to Stone Bedding, within WC1 

 

Table D43: Method 3:Summary of maximum headloss versus flow rates (WST) 

Test No. Total Q Total 2Q 
Maximum Headloss due 

to Stone Bedding 

 
l/s l/s mm 

1 0.33 0.66 6.02 

2 0.53 1.06 9.85 

3 0.84 1.68 15.75 

4 1.31 2.62 23.95 

5 2.34 4.67 43.25 

6 2.98 5.95 55 

7 4.11 8.23 76 

8 6.45 12.90 119.5 

9 7.75 15.51 143.5 

10 9.37 18.74 173.2 

11 10.43 20.85 192.7 

12 11.55 23.10 214 
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13 12.96 25.92 239.7 

14 14.24 28.49 263.8 

15 14.92 29.83 276 

 

 

 

D.5.4.3 Comparison of Results for Method 1, 2 and 3 

 

The following Figure D21 shows the results for Method 1, 2 and 3 for the calculation of 

Headloss due to the stone bedding, Results for Method1, 2 and 3 are derived from 

Table D12, D29 and D43. Note that for flows less than 8l/s, the results of Method 1 

and 2 are in the same ballpark. The values for Method 3 appear to overestimate the 

pressure loss due to the stone bedding. 

 

 

 

Figure D16: Method 1, 2 and 3: Headloss due to the stone bedding 
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D.6: Water, Sand and Stone Bedding Test before Flushing 

 

The following Water, Sand and Stone test(WSST) is aimed at finding the headloss due 

the Sand and stone bedding that surrounds the intake pipe. For design and academic 

purposes, a conservative approach was taken. In the HPM, the stone bedding 

surrounding the slotted pipeline was considered to be saturated with sand. The sand is 

a mixture of a fine grained „beach‟ sanded called Philippi and a „single sized‟ granular 

filter sand which is normally used as filter material. Details concerning the sand added 

to the stone bedding can be found in Appendix C 

 

The following explains the manner in which the Sand and Stone Bedding Test was 

conducted and uses tables and equations to illustrate the analysis process. Table D1 

details the physical aspects of the model including the Intake pipeline and can found in 

Chapter D1.  

 

The aim of this experiment is to establish the relationship between the flow and the 

loss of pressure head as it passes in to the Intake pipeline  Using the above 

information, 13 tests, where conducted. Table D30 shows the initial results. The 

difference between WC1 and WC2 denotes the total headloss. The flow rate was 

determined from the following EquationB1 

 

2

5

2
tan2

15

8
hgCQ d 


      Eqn B1 

Where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table D44: Total Headloss and initial flow rate for Sand and Stone Bedding (WSST) 

Test No. 
Time 
min WC1 WC2 

Upstream 
Head 

Downstream 
Head 

Total 
∆hf 

Initial Q 
Half Pipe 

 

 mm mm mm mm mm l/s 

1 0 2070 2030 55 15 40 0.0371 

2 45 2352 2040 337 25 312 0.1331 

3 60 2375 2040 360 25 335 0.1331 

4 70 2390 2040 375 25 350 0.1331 

5 83 2402 2040 387 25 362 0.1331 

6 107 2414 2040 399 25 374 0.1331 

7 118 2333 2040 318 25 293 0.1331 

8 143 2255 2035 240 20 220 0.0762 

9 149 2293 2036 278 21 257 0.0861 

10 160.5 2303 2037 288 22 266 0.0967 

11 171.5 2305 2037 290 22 268 0.0967 

12 178.2 2305 2037 290 22 268 0.0967 

13 185 2305 2037 290 22 268 0.0967 
 

Next, Water leakage has to be considered. As per chapter D3 theses losses are 

incorporated in Table D45. 40% of all leakage is estimated to emanate from WC1, 

40% from WC2a and 20% from WC2b.  

 

D.6.1 Water Leakage losses 

 

Table D31: Total headloss and flow rate incorporating losses (WSST) 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Total 
Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.0371 67 344.0 16.27 0.005 0.00189 0.00189 0.00095 0.0409 

2 0.1331 67 1055.7 16.27 0.015 0.00616 0.00616 0.00308 0.1454 

3 0.1331 67 758.5 16.27 0.021 0.00858 0.00858 0.00429 0.1502 

4 0.1331 67 654.6 16.27 0.025 0.00994 0.00994 0.00497 0.1529 

5 0.1331 67 725.5 16.27 0.022 0.00897 0.00897 0.00448 0.1510 

6 0.1331 67 316.8 16.27 0.051 0.02054 0.02054 0.01027 0.1741 

7 0.1331 67 560.7 16.27 0.029 0.01161 0.01161 0.00580 0.1563 

8 0.0762 67 858.5 16.27 0.019 0.00758 0.00758 0.00379 0.0913 

9 0.0861 67 657.4 16.27 0.025 0.00990 0.00990 0.00495 0.1059 

10 0.0967 67 635.7 16.27 0.026 0.01024 0.01024 0.00512 0.1171 

11 0.0967 67 658 16.27 0.025 0.00989 0.00989 0.00494 0.1164 

12 0.0967 67 664.5 16.27 0.024 0.00979 0.00979 0.00490 0.1163 

13 0.0967 67 648.4 16.27 0.025 0.01004 0.01004 0.00502 0.1167 
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In Table D45, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

D.6.2 Pressure losses 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A and the loss for sand and stone bedding 

can be established. Chapter D2 states the Pressure Losses A to E with the relevant 

equations. Table D46 calculates the Losses B to E and hence the remaining total 

headloss will be Loss A plus sand and stone bedding. 

 

Table D46: Disaggregation of pressure losses (WSST) 

Test No. Total ∆hf Total Q Loss B+C Loss D Loss E 

Loss A + 
sand + stone 

bedding 

%A of 
Total 
∆hf 

 
mm l/s m m m mm  

1 40 0.75 2.735E-08 8.139E-08 1.900E-08 40.0 0.00% 

2 312 1.38 3.458E-07 1.047E-06 2.444E-07 312.0  100% 

3 335 2.05 3.691E-07 1.047E-06 2.444E-07 335.0  100  

4 350 2.55 3.826E-07 1.047E-06 2.444E-07 350.0  100  

5 362 3.30 3.730E-07 1.047E-06 2.444E-07 362.0  100  

6 374 3.73 4.960E-07 1.047E-06 2.444E-07 374.0  100  

7 293 4.29 3.995E-07 1.047E-06 2.444E-07 293.0 100% 

8 220 5.19 1.364E-07 3.430E-07 8.008E-08 220.0  100  

9 257 6.40 1.833E-07 4.377E-07 1.022E-07 257.0  100  

10 266 7.32 2.244E-07 5.524E-07 1.290E-07 266.0  100  

11 268 8.31 2.218E-07 5.524E-07 1.290E-07 268.0  100  

12 268 8.87 2.210E-07 5.524E-07 1.290E-07 268.0  100  

13 268 9.81 2.229E-07 5.524E-07 1.290E-07 268.0  100  
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D.6.3 Perforation losses and Flowrate Relationship 

 

Table D47 shows relationship between LossA+sand + stone bedding and the flowrate 

for half a pipe and for a full pipeline. Figure D17 show the plot of various flows rate and 

their corresponding pressure loss. Note that due to the scatter of the data, a strongly 

defined relationship between the Pressure loss and flowrate could not be established. 

 

Table D33: Loss A + sand + stone bedding with correspondingflowrates (WSST) 

Test No. 

Loss A+sand + 
stone bedding Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 40.0 l/s ml/s 

2 312.0 0.082 81.78 

3 335.0 0.291 290.79 

4 350.0 0.300 300.45 

5 362.0 0.306 305.90 

6 374.0 0.302 302.01 

7 293.0 0.348 348.30 

8 220.0 0.313 312.56 

9 257.0 0.183 182.66 

10 266.0 0.212 211.70 

11 268.0 0.234 234.28 

12 268.0 0.233 232.89 

13 268.0 0.233 232.50 

 

 
Figure D22: Plot of Pressure due to the slots, +sand + stone beddingand corresponding 
flowrate for a fully flowing ø250mm slotted pipe 
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The test commenced with the sand and stone mixture insitu. However prior to the test 

starting, the seawater intake experienced accelerated clogging.  Increasing the driving 

head had no effect on the rate of flow through the HPM. Figure D23 shows the 

headloss and rate of flow for the 3hour test. 

 

 

Figure D23: Headloss and rate of flow for a 3hour test period 

 

Due to the severely restricted flow, and the design of such a Seawater Intake pipeline 

was considered a failure as the tested flow rate was not relatively close to the design 

flow of 48l/s. Due to this restricted flow, backflushing was considered next. 
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D.7: Water Sand and Stone Bedding Test after Backflushing 

 

The followingWater Sand and Stone test after Backflushing(WSST-ABF) is similar to 

the previous one. This test is conducted after the back flushing. The first aim is to find 

the headloss due to the Sand and stone bedding that surrounds the intake pipe. The 

second aim is to compare the results with the previous test in order to understand the 

effect of the back flushing 

 

The following explains the manner in which the Sand and Stone Bedding Test was 

conducted and uses tables and equations to illustrate the analysis process. Table D1 

which can be found in previous chapters details the physical aspects of the model 

including the Intake pipeline.  

 

26 tests, where conducted. Table D48 shows the initial results. The difference between 

WC1 and WC2 denotes the total headloss. The flow rate was determined from the 

following EquationB1 

 

2

5

2
tan2

15

8
hgCQ d 


      Eqn B1 

Where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table D48: Total Headloss and initial flow rate for Sand and Stone Bedding (WSST-ABF) 

Test No. 
Time 
min WC1 WC2 

Upstream 
Head 

Downstream 
Head 

Total 
∆hf 

Initial Q 
Half Pipe 

 

 mm mm mm mm mm l/s 

1 0 2015 2015 0 0 0 0.0000 

2 7 2261 2027 246 12 234 0.0212 

3 12 2284 2029 269 14 255 0.0312 

4 16 2315 2030 300 15 285 0.0371 

5 20 2342 2031 327 16 311 0.0436 

6 24 2357 2032.5 342 17.5 324.5 0.0546 

7 28 2372 2033 357 18 339 0.0585 

8 32 2384 2034 369 19 350 0.0670 

9 36 2391 2035 376 20 356 0.0762 

10 40 2395 2035 380 20 360 0.0762 

11 44 2398 2035.5 383 20.5 362.5 0.0810 

12 48 2399 2036 384 21 363 0.0861 

13 52 2402 2036 387 21 366 0.0861 

14 56 2402 2036 387 21 366 0.0861 

15 60 2402 2036.5 387 21.5 365.5 0.0913 

16 66 2400 2036.5 385 21.5 363.5 0.0913 

17 72 2399 2036.5 384 21.5 362.5 0.0913 

18 78 2396 2036.5 381 21.5 359.5 0.0913 

19 101 2386 2036.5 371 21.5 349.5 0.0913 

20 150 2366 2036.5 351 21.5 329.5 0.0913 

21 170 2357 2036.5 342 21.5 320.5 0.0913 

22 192 2352 2036.5 337 21.5 315.5 0.0913 

23 230 2344 2036.5 329 21.5 307.5 0.0913 

24 280 2334 2036.5 319 21.5 297.5 0.0913 

25 326 2328 2036.5 313 21.5 291.5 0.0913 

26 377 2318 2036.5 303 21.5 281.5 0.0913 

 

Next, Water leakage has to be considered. As per chapter D3 theses losses are 

incorporated in Table D49. 40% of all leakage is estimated to emanate from WC1, 

40% from WC 2a and 20% from WC2b. 
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D.7.1 Water Leakage losses 

 

In Table D32, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table D49: Total headloss and flow rate incorporating losses (WSST-ABF) 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b Total Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.0000 68.2 200 16.57 0.083 0.03313 0.03313 0.01657 0.0663 

2 0.0212 69.5 420 16.89 0.040 0.01609 0.01609 0.00804 0.0534 

3 0.0312 70 300 17.02 0.057 0.02269 0.02269 0.01134 0.0766 

4 0.0371 71 240 17.27 0.072 0.02878 0.02878 0.01439 0.0947 

5 0.0436 72 240 17.52 0.073 0.02920 0.02920 0.01460 0.1020 

6 0.0546 74 240 18.02 0.075 0.03003 0.03003 0.01502 0.1146 

7 0.0585 68 240 16.52 0.069 0.02753 0.02753 0.01376 0.1136 

8 0.0670 69 240 16.77 0.070 0.02795 0.02795 0.01397 0.1229 

9 0.0762 72 240 17.52 0.073 0.02920 0.02920 0.01460 0.1346 

10 0.0762 71 240 17.27 0.072 0.02878 0.02878 0.01439 0.1337 

11 0.0810 70 240 17.02 0.071 0.02836 0.02836 0.01418 0.1377 

12 0.0861 70 240 17.02 0.071 0.02836 0.02836 0.01418 0.1428 

13 0.0861 71 240 17.27 0.072 0.02878 0.02878 0.01439 0.1436 

14 0.0861 72 240 17.52 0.073 0.02920 0.02920 0.01460 0.1444 

15 0.0913 68 240 16.52 0.069 0.02753 0.02753 0.01376 0.1463 

16 0.0913 71 360 17.27 0.048 0.01919 0.01919 0.00959 0.1296 

17 0.0913 72 360 17.52 0.049 0.01946 0.01946 0.00973 0.1302 

18 0.0913 74 360 18.02 0.050 0.02002 0.02002 0.01001 0.1313 

19 0.0913 74 1380 18.02 0.013 0.00522 0.00522 0.00261 0.1017 

20 0.0913 68 2940 16.52 0.006 0.00225 0.00225 0.00112 0.0958 

21 0.0913 69 1200 16.77 0.014 0.00559 0.00559 0.00279 0.1024 

22 0.0913 70 1320 17.02 0.013 0.00516 0.00516 0.00258 0.1016 

23 0.0913 71 2280 17.27 0.008 0.00303 0.00303 0.00151 0.0973 

24 0.0913 72 3000 17.52 0.006 0.00234 0.00234 0.00117 0.0959 

25 0.0913 74 2760 18.02 0.007 0.00261 0.00261 0.00131 0.0965 

26 0.0913 75 3060 18.27 0.006 0.00239 0.00239 0.00119 0.0960 
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D.7.2 Pressure losses 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A and the loss for sand and stone bedding 

can be established. Chapter D2 states the Pressure Losses A to E with the relevant 

equations. Table D50 calculates the Losses B to E and hence the remaining total 

headloss will be Loss A plus sand and stone bedding. 

 

Table D50: Disaggregation of pressure losses (WSST-ABF) 

Test No. Total ∆hf Total Q Loss B+C Loss D Loss E 

Loss A+sand 
+ stone 
bedding 

%A of 
Total 
∆hf 

 
mm l/s m m m mm  

1 0 0.1325 7.183E-08 0.000E+0 0.000E+0 0.00 0.00% 

2 234 0.1068 4.667E-08 2.667E-08 6.227E-09 234.00  100  

3 255 0.1532 9.599E-08 5.765E-08 1.346E-08 255.00  100  

4 285 0.1893 1.466E-07 8.139E-08 1.900E-08 285.00  100  

5 311 0.2040 1.702E-07 1.124E-07 2.624E-08 311.00  100  

6 324.5 0.2292 2.149E-07 1.759E-07 4.107E-08 324.50  100  

7 339 0.2272 2.110E-07 2.025E-07 4.729E-08 339.00 100% 

8 350 0.2458 2.470E-07 2.654E-07 6.197E-08 350.00  100  

9 356 0.2691 2.962E-07 3.430E-07 8.008E-08 356.00  100  

10 360 0.2675 2.925E-07 3.430E-07 8.008E-08 360.00  100  

11 362.5 0.2755 3.103E-07 3.881E-07 9.061E-08 362.50  100  

12 363 0.2856 3.334E-07 4.377E-07 1.022E-07 363.00  100  

13 366 0.2872 3.373E-07 4.377E-07 1.022E-07 366.00  100  

14 366 0.2889 3.413E-07 4.377E-07 1.022E-07 366.00  100  

15 365.5 0.2927 3.502E-07 4.924E-07 1.150E-07 365.50  100  

16 363.5 0.2593 2.749E-07 4.924E-07 1.150E-07 363.50  100  

17 362.5 0.2604 2.773E-07 4.924E-07 1.150E-07 362.50  100  

18 359.5 0.2626 2.820E-07 4.924E-07 1.150E-07 359.50  100  

19 349.5 0.2034 1.692E-07 4.924E-07 1.150E-07 349.50 100% 

20 329.5 0.1915 1.500E-07 4.924E-07 1.150E-07 329.50  100  

21 320.5 0.2049 1.717E-07 4.924E-07 1.150E-07 320.50  100  

22 315.5 0.2032 1.688E-07 4.924E-07 1.150E-07 315.50  100  

23 307.5 0.1947 1.549E-07 4.924E-07 1.150E-07 307.50  100  

24 297.5 0.1919 1.505E-07 4.924E-07 1.150E-07 297.50  100  

25 291.5 0.1930 1.523E-07 4.924E-07 1.150E-07 291.50  100  

26 281.5 0.1921 1.509E-07 4.924E-07 1.150E-07 281.50  100  
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D.7.3 Perforation losses and Flowrate Relationship 

 

Table D51 shows relationship between LossA+sand + stone bedding and the flowrate 

for half a pipe and for a full pipeline. Figure D24 shows the plot of various flows rate 

and their corresponding pressure loss. Note that due to the scatter of the data, a 

strongly defined relationship between the Pressure loss and flowrate could not be 

established. 

 

Table D51: Loss A+ sand + stone bedding with correspondingflowrates (WSST-ABF) 

Test No. 

Loss A+sand + stone 
bedding Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 0.00 0.066 0.1325 

2 234.00 0.053 0.1068 

3 255.00 0.077 0.1532 

4 285.00 0.095 0.1893 

5 311.00 0.102 0.2040 

6 324.50 0.115 0.2292 

7 339.00 0.114 0.2272 

8 350.00 0.123 0.2458 

9 356.00 0.135 0.2691 

10 360.00 0.134 0.2675 

11 362.50 0.138 0.2755 

12 363.00 0.143 0.2856 

13 366.00 0.144 0.2872 

14 366.00 0.144 0.2889 

15 365.50 0.146 0.2927 

16 363.50 0.130 0.2593 

17 362.50 0.130 0.2604 

18 359.50 0.131 0.2626 

19 349.50 0.102 0.2034 

20 329.50 0.096 0.1915 

21 320.50 0.102 0.2049 

22 315.50 0.102 0.2032 

23 307.50 0.097 0.1947 

24 297.50 0.096 0.1919 

25 291.50 0.096 0.1930 

26 281.50 0.096 0.1921 
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Figure D19: Plot of Pressure due to the slots, +sand + stone bedding and corresponding 
flowrate for a fully flowing ø250mm slotted pipe after flushing 

 

 

The test commenced with the sand and stone mixture insitu and the back flushing 

completed at the onset, the seawater intake experienced clogging.  Increasing the 

driving head had no effect on the rate of flow through the HPM. Figure D25 shows the 

loss on head (left axis) and rate of flow (right axis) over a 6.5 hour test period. 

 

 

Figure D25: Headloss and rate of flow for a 6.5hour test period (WSST-ABF) 
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Due the severely restricted flow, and the design and subsequent backflushing of such 

a Seawater Intake pipeline was considered a failure as well. This was due to the flow 

rate of 48l/s not being achieved. Figure D22 below plots the time series for the test 

before the back flushing and after the back flushing. 

 

At approximately 180min the pressure loss before back flushing, was lower than that 

after back flushing. The flowrate after flushing was lower than that before flushing. 

However considering that former test had a shorter duration of 3 hours it does not 

imply that these conditions would prevail after 6.5 hours.   

 

The pressure loss and flow rate for the former test seem to have plateaued, hence in 

in approximately 7 hours the pressure loss for the former test would be similar to that 

of the latter test. 

 

 

 

Figure D26: Headloss and rate of flow for test Before Back Flushing (BBF) and After Back 
Flushing (ABF) 
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E.1 Introduction 

 

This appendix describes in detail the calculations behind Chapter 5.2 and 6: 

Perforated PVC Pipe Abstraction Model. Via the use of figures and tables is explains 

the most relevant calculations. Note that for all tests, no core material was used. 

Figure E1 below describes the model and the areas of interest which are used when 

undertaking calculations. 

 

Table E1: Perforated PVC Pipe: Variables and Values  

Perforated PVC Pipe- Perforation 

Configuration Value Unit Value Unit 

No of Holes per 20cm Length 9 
   

Area of each Hole 50.24 mm
2
 5.024E-05 m

2
 

Length of Pipe 1055 mm 1.055 m 

No. of Segments 5 
   

Segment Length 201 mm 0.201 m 

Perforation Area of Segment 452.16 mm
2
 0.000452 m

2
 

Total Perforation Area 2260.8 mm
2
 0.002261 m

2
 

Total pipe Wetted Surface Area 394462.5 mm2 0.394463 m2 

Percentage perforation 0.57% 
    

Table E2: Extra Perforated PVC Pipe: Variables and Values  

Extra Perforated PVC Pipe- 

Perforation Configuration Value Unit Value Unit 

No of Hole/Slots per 20cm Length 20 
   

Area of each Hole 50.24 mm
2
 5.024E-05 m

2
 

Length of Pipe 1005 mm 1.005 m 

No. of Segments 5 
   

Segment Length 201 mm 0.201 m 

Perforation Area of Segment 1004.8 mm
2
 0.0010048 m

2
 

Total Perforation Area 5024 mm
2
 0.005024 m

2
 

Total pipe Wetted Surface Area 394462.5 mm2 0.3944625 m
2
 

Percentage perforation 1.27% 
    

 

Stellenbosch University  http://scholar.sun.ac.za



245 

University of Stellenbosch 

E. 2 Pressure Losses 

 

Chapter 4.4.6.1 describes the losses A to E. Note the datum of the model is the top of 

the model base. 

 

 
Figure E1: Perforated PVC Pipe Abstraction Model: Areas of interest 

 

The following is a reiteration of the losses A to E. as described in Chapter 4.4.6.1  

 

Loss A: This reduction in pressure occurs as water travels from the outside of the pipe, 

in. Losses B to E can easily be estimated using conventional calculation methods. 

Loss A accounts for a significantly large portion of the total pressure losses.  

 

Loss B: Skin friction in the portion of intake pipe where there is water ingression and 

transportation. The skin friction in this chapter is calculated using Manning‟s Method. A 

pipe of 250mm is used as the conduit size. However, the skin friction in this area is 

halved as theoretically the flow is at its maximum as it exits WC1 and zero at the start 

of the pipeline (Right hand side of Figure E1) 
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Loss C: Skin friction in the portion of intake pipe where there is water transportation 

only. The skin friction in this chapter is calculated using Manning‟s Method. A pipe of 

250mm is used as the conduit size.  

 

Loss D: Exit loss as water enters Column 2 (WC2). For the flow exiting the Intake pipe 

and then turning 90 degrees, the loss equal to Ke*V2/2g where Ke = 1 

 

Loss E: Skin friction as water flows up WC2. The skin friction in this chapter is 

calculated using Manning‟s Method. A rectangular section of 600mm by 250mm is 

used as the conduit size.  

 

 

E. 3 Water Losses due to Leakage 

 

The ability to quantify leakage is crucial especially if the leakage rate becomes a large 

fraction of the overall flow. Hence the flow rate of the leakage for each increment of 

the flow through the model was noted.  

 

The entire leakage rate was calculated by constructing a dam around the HPM, and 

determining the amount of water that left the dam, over a period of time, for a particular 

increment a test. There were three places that water could have leaked out. These are 

WC1, WC2a and WC2b. Figure E2 below describes where the leaks emanate from. 

Via visual inspection 40% of all leakage was deemed to be out of WC1, 40% out of 

WC2a and 20% out of WC2b. 

 

 
Figure E2: Areas of Water Leakage 
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E.4 Water Test Only 

 

The following explains the manner in which the first „Water Only Test‟ was conducted 

and uses tables and equations to illustrate the analysis process. Table E3 details the 

physical aspects of the Hydraulic Physical Model (HPM) including the Intake pipeline.  

 

Table E3: The physical aspects of the HPM and Initial Intake Pipeline 

Description Value Unit 

Physical aspects of the HPM:WC2a 
  

Angle of V Notch Weir 90 Degrees 

Height of V Notch Weir 1708.5 mm 

Length 0.28 m 

Breath 0.45 m 

Area A 0.126 m
2
 

Wet Perimeter P 1.46 m 

Hydraulic Radius R 0.0863 m 

Friction Factor f 0.02 
 

Loss Coefficient Ke 1 
 

Perforated  Pipeline Perforation 

Configuration 

  
D Pipe Length 1050 mm 

Pipe OD 250 mm 

Pipe ID 230 mm 

Half Pipe Area 0.0208 m
2
 

Wet Perimeter 0.5911 m 

Hydraulic Radius Pipe HR 0.1405 m 

No of Holes per 20cm Length 9 
 

Area of each Hole 50.24 mm
2
 

Length of Pipe 1050 mm 

No. of Segments 5 
 

Segment Length 210 mm 

Perforation Area of Segment 452.16 mm
2
 

Total Perforation Area 2260.8 mm
2
 

Total pipe Wetted Surface Area 394462.5 mm
2
 

Percentage perforation 0.57% 
 

Friction Factor f 0.015 
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Where: 

 

Cd  = Coefficient of Discharge as established in Appendix B 

D Pipe Length = Length of Intake pipeline in the HPM 

Pipe OD  = Outside Diameter of Intake Pipeline 

Pipe ID  = Inside Diameter of Pipeline 

Half Pipe Area = The area of flow when only half a pipe is used 

Wet Perimeter = Perimeter of the intake pipeline that has been in contact with the flow 

Hydraulic Radius HR = The Hydraulic Radius of the Intake Pipeline or WC2a 

 

The aim of this experiment is to establish the relationship between the flow and the 

loss of pressure head as it passes in to the Intake pipeline  Using the above 

information, 8 incremental tests, with increasing driving heads, where conducted. 

Table E4 shows the initial results. The difference between WC1 and WC2 denotes the 

total headloss. The flow rate was determined from the following Equation: B1 

 

2

5

2
tan2

15

8
hgCQ d 


      Eqn B1 

where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table E4: Total Headloss and initial flow rate for Initial Water Only test 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 1739 1733 30.5 24.5 6 0.13 

2 1740 1733 31.5 24.5 7 0.13 

3 1760 1747 51.5 38.5 13 0.39 

4 1814 1766 105.5 57.5 48 1.07 

5 1890 1777 181.5 68.5 113 1.65 

6 2074 1791 365.5 82.5 283 2.63 

7 2232 1800 523.5 91.5 432 3.41 

8 2387 1804 678.5 95.5 583 3.80 

 

After the total headloss and initial flow rate relationship has been established, Water 

leakage has to be considered. As per ChapterE3 theses losses are incorporated in 

Table E5 with 80% of all leakage deemed to be out of WC1, 10% out of WC 2a and 

10% out of WC2b. This new ratio was due to WC2 being sealed in several places 

 

E.4.1 Water Leakage losses 

 

In Table E5, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table E5: Total headloss and flow rate incorporating losses 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Total 
Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.13 170 771 43.03 0.056 0.044645 0.005581 0.005581 0.177 

2 0.13 112 524 27.70 0.053 0.042286 0.005286 0.005286 0.174 

3 0.39 72 334 17.52 0.052 0.041958 0.005245 0.005245 0.439 

4 1.07 106 529 26.15 0.049 0.039547 0.004943 0.004943 1.112 

5 1.65 96 470 23.59 0.050 0.040148 0.005019 0.005019 1.699 

6 2.63 87 404 21.30 0.053 0.042173 0.005272 0.005272 2.680 

7 3.41 90 390 22.06 0.057 0.045249 0.005656 0.005656 3.461 

8 3.80 88 406 21.55 0.053 0.042465 0.005308 0.005308 3.843 
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E.4.2 Water Pressure losses 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure as water enters the 

Intake pipeline, can be established. ChapterE2 states the Pressure Losses A to E with 

the relevant equations. Table E6 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table E6: Disaggregation of pressure losses 

Test No. 
Total 
∆hf Total Q Loss B+C Loss D Loss E Loss A 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 6 0.177 0.000001 0.000001 0.0000007 0.00 0.00% 

2 7 0.174 0.000000 0.000001 0.0000007 7.00 94.11% 

3 13 0.439 0.000003 0.000009 0.0000065 12.98 95.61% 

4 48 1.112 0.000020 0.000067 0.0000487 47.86 95.86% 

5 113 1.699 0.000047 0.000162 0.0001168 112.67 94.99% 

6 283 2.680 0.000117 0.000410 0.0002959 282.18 95.03% 

7 432 3.461 0.000196 0.000687 0.0004966 430.62 94.35% 

8 583 3.843 0.000242 0.000851 0.0006150 581.29 93.77% 

 

 

E.4.3 Perforation losses and Flowrate Relationship 

 

Table E7 shows the Intake pipeline perforation friction (Loss A) and the flowrate for 

half a pipe and for a full pipeline. Figure E3 show the relationship between the 

Perforation friction and the flowrate in a 250mm Perforated PVC Pipeline. 

 

Table E7: Perforation friction (Loss A) flowrate Half and Full pipeline 

Test No. Loss A Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 0.00 0.13 0.353 

2 7.00 0.13 0.348 

3 12.98 0.39 0.878 

4 47.86 1.07 2.224 

5 112.67 1.65 3.398 

6 282.18 2.63 5.360 

7 430.62 3.41 6.922 

8 581.29 3.80 7.686 
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Figure E3: Headloss due to perforation (Loss A) versus the flowrate for a fully flowing ø250mm 

Perforated pipe 

 

 

The equation below describes the relationship between headloss due to perforation 

friction and flowrate 

 

∆P= 5.456Q2 + 0.722Q       (Eqn 4) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate for one full ø250mm pipeline in liters/second 
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E.5: Water Test with Extra Perforation 

 

The following explains the manner in which the Water Test with Extra Perforation was 

conducted and uses tables and equations to illustrate the analysis process. Table E8 

details the physical aspects of the Hydraulic Physical Model (HPM) including the 

Intake pipeline.  

 

Table E8: The physical aspects of the HPM and Initial Intake Pipeline 

Description Value Unit 

Physical aspects of the HPM:WC2a 
  

Angle of V Notch Weir 90 Degrees 

Height of V Notch Weir 1708.5 mm 

Length 0.28 m 

Breath 0.45 m 

Area A 0.126 m
2
 

Wet Perimeter P 1.46 m 

Hydraulic Radius R 0.0863 m 

Friction Factor f 0.02 
 

Loss Coefficient Ke Varies 
 

Perforated  Pipeline Perforation 

Configuration 

  
D Pipe Length 1050 mm 

Pipe OD 250 mm 

Pipe ID 230 mm 

Half Pipe Area 0.0208 m
2
 

Wet Perimeter 0.5911 m 

Hydraulic Radius Pipe HR 0.1405 m 

No of Holes per 20cm Length 20 
 

Area of each Hole 50.24 mm
2
 

Length of Pipe 1050 mm 

No. of Segments 5 
 

Segment Length 210 mm 

Perforation Area of Segment 452.16 mm
2
 

Total Perforation Area 5024 mm
2
 

Total pipe Wetted Surface Area 394462.5 mm
2
 

Percentage perforation 1.27% 
 

Friction Factor f 0.015 
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Where: 

 

Cd  = Coefficient of Discharge as established in Appendix B 

D Pipe Length = Length of Intake pipeline in the HPM 

Pipe OD  = Outside Diameter of Intake Pipeline 

Pipe ID  = Inside Diameter of Pipeline 

Half Pipe Area = The area of flow when only half a pipe is used 

Wet Perimeter = Perimeter of the intake pipeline that has been in contact with the flow 

Hydraulic Radius HR = The Hydraulic Radius of the Intake Pipeline or WC2a 

 

The aim of this experiment is to establish the relationship between the flow and the 

loss of pressure head as it passes in to the Intake pipeline  Using the above 

information, 9 incremental tests, with increasing driving heads, where conducted. 

Table E9 shows the initial results. The difference between WC1 and WC2 denotes the 

total headloss. The flow rate was determined from the following Equation: B1 

 

2

5

2
tan2

15

8
hgCQ d 


      Eqn B1 

where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table E9: Total Headloss and initial flow rate for Initial Water Only test 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 1739 1736 30.5 27.5 3 0.17 

2 1755 1748.5 46.5 40 6.5 0.43 

3 1776 1762 67.5 53.5 14 0.89 

4 1819 1779 110.5 70.5 40 1.78 

5 1884 1794 175.5 85.5 90 2.88 

6 1970 1808 261.5 99.5 162 4.21 

7 2031 1814 322.5 105.5 217 4.87 

8 2103 1820 394.5 111.5 283 5.59 

9 2310 1831.5 1831.5 123 478.5 7.14 

 

After the total headloss and initial flow rate relationship has been established, Water 

leakage has to be considered. As per chapter E3 theses losses are incorporated in 

Table E10 with 80% of all leakage deemed to be out of WC1, 10% out of WC 2a and 

10% out of WC2b. This new ratio was due to WC2 being sealed in several places 

 

E.5.1 Water Leakage losses 

 

In Table E10, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table E10: Total headloss and flow rate incorporating losses 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Total 
Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.17 170 771 43.03 0.056 0.044645 0.005581 0.005581 0.219 

2 0.43 112 524 27.70 0.053 0.042286 0.005286 0.005286 0.478 

3 0.89 72 334 17.52 0.052 0.041958 0.005245 0.005245 0.939 

4 1.78 106 529 26.15 0.049 0.039547 0.004943 0.004943 1.822 

5 2.88 96 470 23.59 0.050 0.040148 0.005019 0.005019 2.923 

6 4.21 87 404 21.30 0.053 0.042173 0.005272 0.005272 4.253 

7 4.87 90 390 22.06 0.057 0.045249 0.005656 0.005656 4.919 

8 5.59 88 406 21.55 0.053 0.042465 0.005308 0.005308 5.638 

9 7.14 90 390 22.06 0.057 0.045249 0.005656 0.005656 7.196 
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E.5.2 Water Pressure losses 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure as water enters the 

Intake pipeline, can be established. Chapter E2 states the Pressure Losses A to E with 

the relevant equations. Table E11 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table E11: Disaggregation of pressure losses 

Test No. 
Total 
∆hf Total Q Loss B+C Loss D Loss E Loss A 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 3 0.219 0.000002 0.000003 0.0000012 3.00 99.91% 

2 6.5 0.478 0.000008 0.000022 0.0000079 6.48 99.76% 

3 14 0.939 0.000030 0.000094 0.0000339 13.94 99.54% 

4 40 1.822 0.000113 0.000373 0.0001348 39.75 99.38% 

5 90 2.923 0.000290 0.000979 0.0003538 89.36 99.28% 

6 162 4.253 0.000615 0.002091 0.0007551 160.63 99.15% 

7 217 4.919 0.000822 0.002802 0.0010119 215.17 99.15% 

8 283 5.638 0.001080 0.003694 0.0013343 280.59 99.15% 

9 478.5 7.196 0.001760 0.006035 0.0036908 473.05 98.86% 
 

 

E.5.3 Perforation losses and Flowrate Relationship 

 

Table E12 shows the Intake pipeline, extra perforation friction (Loss A) and the 

flowrate for half a pipe and for a full pipeline. Figure E4 shows the relationship 

between the Perforation friction and the flowrate in a ø250mm Extra-Perforated PVC 

Pipeline. 

 

Table E12: Extra Perforation friction (Loss A) flowrate for Half and Full pipeline 

Test No. Loss A Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 3.00 0.219 0.44 

2 6.48 0.478 0.96 

3 13.94 0.939 1.88 

4 39.75 1.822 3.64 

5 89.36 2.923 5.85 

6 160.63 4.253 8.51 

7 215.17 4.919 9.84 

8 280.59 5.638 11.28 

9 473.05 7.196 14.39 
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Figure E4: Headloss due to extra perforation (Loss A) versus the flowrate for a fully flowing 

ø250mm Extra Perforated pipe.  

 

The equation below describes the relationship between headloss due to perforation 

friction and flowrate 

 

∆P= 0.891Q2 + 1.286Q       (Eqn5) 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate for one full ø250mm pipeline in liters/second 

 

 

 

 

 

y = 0.891x2 + 1.286x 
R² = 0.998 
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E.5.4 Segmental Analysis of HPM 

 

Analysing the Perforation friction and flow relationship was relatively simple. However 

in order to understand the flow regime better, it was required that the flow at different 

points in the HPM be calculated. It was decided that a model would be better 

understood if it was segmented. Hence the model was portioned into five segments. 

 

As described by Table E11, the Perforation Loss A accounts for the nearly all of the 

pressure loss. Hence for a point on the Intake pipeline just inside WC1, the velocity of 

the flow into the pipeline is at its maximum. The velocity at this point is termed Vmax.  

The opposite holds true for a point at the start of the Intake pipeline. At this point, Vmin, 

the velocity of the inflow is zero.  Hence via linear interpolation, the velocity at any 

point in between both ends, can be calculated Figure E5 below describes the manner 

in which the HPM is segmented. 

 

 
Figure E5: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 

 

Methodology 

 

In order to calculate the flow at various points within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2 , V3, V4 and VMIN occur at the border of 

each segment, hence for each segment, the Average Velocities, VS1, VS2, VS3, VS4 

and VS5 are easily calculated.  
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VMAX is derived from Bernoulli principles where: 

 

hgV  2               (EqnE1) 

 

With  

 

V = Velocity in m/s 

 

h  = = is the driving pressure  

 

g = gravitational constant (9.81m/s2) 

 

 

Note that the driving pressure h  is Loss A. The flow from each segment is then 

calculated by multiplying the velocity with the perforation area and a discharge 

coefficient, Cd. Table E8 shows the distribution of inflowing velocity over the length of 

the Intake Pipeline.  

 

Equation E2 was used to calculate the flow from each segment. Table E13 contains 

the flowrate for each segment and the sum of flow from all segments of the pipeline. 

Note: Position 0 is the most downstream point in WC1 

 

hgACqQ dT  2             (EqnE2) 

With  

 

q = Flowrate through for each segment in m3/s 
 
Q = Sum of Flowrate form each segment in m3/s 
 
A= The Area through which flow is allowed in m2  
 
Cd = Coefficient of Discharge 
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Table E13: Inflowing velocity of water flowing into the pipe, over the length of the Intake 
Pipeline 

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  Loss A Vmax Vs 1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

 
mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 3.0 0.087 0.078 0.070 0.061 0.052 0.044 0.035 0.026 0.017 0.009 0.0 

2 6.5 0.190 0.171 0.152 0.133 0.114 0.095 0.076 0.057 0.038 0.019 0.0 

3 13.9 0.373 0.336 0.299 0.261 0.224 0.187 0.149 0.112 0.075 0.037 0.0 

4 39.8 0.725 0.653 0.580 0.508 0.435 0.363 0.290 0.218 0.145 0.073 0.0 

5 89.4 1.164 1.047 0.931 0.815 0.698 0.582 0.465 0.349 0.233 0.116 0.0 

6 160.6 1.693 1.524 1.354 1.185 1.016 0.847 0.677 0.508 0.339 0.169 0.0 

7 215.2 1.958 1.762 1.567 1.371 1.175 0.979 0.783 0.587 0.392 0.196 0.0 

8 280.6 2.244 2.020 1.796 1.571 1.347 1.122 0.898 0.673 0.449 0.224 0.0 

9 473.0 2.865 2.578 2.292 2.005 1.719 1.432 1.146 0.859 0.573 0.286 0.0 

 

 

Table E14: Calculated Flowrate from all segments of the Pipeline 

Test  
Loss 

A Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 
Q 

Total 
Q 

Total 
2Q 

Total 

0 mm 
 

m
3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 3.0 0.360 0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 0.219 0.438 

2 6.5 0.533 0.0002 0.0001 0.0001 0.0001 0.0000 0.0005 0.478 0.956 

3 13.9 0.714 0.0003 0.0003 0.0002 0.0001 0.0000 0.0009 0.938 1.876 

4 39.8 0.821 0.0007 0.0005 0.0004 0.0002 0.0001 0.0018 1.822 3.644 

5 89.4 0.879 0.0011 0.0008 0.0006 0.0004 0.0001 0.0029 2.923 5.846 

6 160.6 0.954 0.0015 0.0012 0.0009 0.0005 0.0002 0.0043 4.253 8.506 

7 215.2 0.953 0.0018 0.0014 0.0010 0.0006 0.0002 0.0049 4.919 9.838 

8 280.6 0.957 0.0020 0.0016 0.0011 0.0007 0.0002 0.0056 5.638 11.276 

9 473.0 0.940 0.0026 0.0020 0.0014 0.0009 0.0003 0.0072 7.196 14.392 

 

For this case the loss of pressure is due to perforation friction only. Hence if the EGL is 

required at a particular position along the Intake pipeline, the new EGL would be the 

still water level in WC1 minus the perforation friction/ Loss A 

 

Table E 15 below calculates the headloss along the intake pipeline using the following 

equation: 
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g

V
Kehf

2
*

2

               (Eqn E3) 

 

With  

 

Ke = Loss Coefficient  

 

V = Velocity in m/s 

 

Hf= Pressure loss 

 

g = gravitational constant (9.81m/s2) 

 

Table E15: Pressure losses over length of Intake Pipeline  

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  Loss A 
hf 

max hf hf hf hf hf hf hf hf hf hf 

 
mm mm mm mm mm mm mm mm mm mm mm mm 

1 3.0 3.0 2.4 1.9 1.5 1.1 0.8 0.5 0.3 0.1 0.009 0.0 

2 6.5 6.5 5.2 4.1 3.2 2.3 1.6 1.0 0.6 0.3 0.019 0.1 

3 13.9 13.9 11.3 8.9 6.8 5.0 3.5 2.2 1.3 0.6 0.037 0.1 

4 39.8 39.8 32.2 25.4 19.5 14.3 9.9 6.4 3.6 1.6 0.073 0.4 

5 89.4 89.4 72.4 57.2 43.8 32.2 22.3 14.3 8.0 3.6 0.116 0.9 

6 160.6 160.6 130.1 102.8 78.7 57.8 40.2 25.7 14.5 6.4 0.169 1.6 

7 215.2 215.2 174.3 137.7 105.4 77.5 53.8 34.4 19.4 8.6 0.196 2.2 

8 280.6 280.6 227.3 179.6 137.5 101.0 70.1 44.9 25.3 11.2 0.224 2.8 

9 473.0 473.0 383.2 302.8 231.8 170.3 118.3 75.7 42.6 18.9 0.286 4.7 

 

 

Figure E6 below shows Energy Grade Line (EGL) at the centre of the Intake Pipeline. 

The EGL shows the amount of energy that has been lost from water entering the 

Intake Pipeline. For the 9 tests conducted, the increase in pressure losses closer to 

the exit point of WC1 can be clearly seen. 
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Figure E6: Plot of EGLs at the centre of the Intake Pipeline. Legend: Flowrates 

 

The Flow versus Pressure loss relationship is the most important. Calculation of the 

EGL at various points‟ aid in the visualisation of the losses incurred. 
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E.6 Water and Stone Test 

 

The following elucidates the manner in which the „Water and Stone Test‟ was 

conducted and uses tables and equations to illustrate the analysis process. Table E3, 

from the previous Chapter E4 details the physical aspects of the model including the 

Intake pipeline.  

 

The aim of this experiment is to: 

1)  confirm the relationship between the flow and the loss of pressure head as it 

passes in to the Intake pipeline and to  

2) establish the relationship between the flow and the loss of pressure head as it 

passes through the 19mm Stone bedding. 

 

Using the above information, 18 incremental tests, with increasing driving heads, 

where conducted. Table E11 shows the initial results. The difference between WC1 

and WC2 denotes the total headloss. The flow rate was determined from the following 

Equation: B1 

 

2

5

2
tan2

15

8
hgCQ d 


            (Eqn B1) 

where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table E16: Total Headloss and initial flow rate for Water and Stone test 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 1728 1725 19.5 16.5 3 0.05 

2 1730 1726.75 21.5 18.25 3.25 0.06 

3 1734 1730 25.5 21.5 4 0.09 

4 1745 1739 36.5 30.5 6 0.22 

5 1755 1747 46.5 38.5 8 0.39 

6 1774 1759 65.5 50.5 15 0.77 

7 1787 1765 78.5 56.5 22 1.02 

8 1802 1770 93.5 61.5 32 1.26 

9 1824 1776 115.5 67.5 48 1.59 

10 1851 1782 142.5 73.5 69 1.97 

11 1897 1790 188.5 81.5 107 2.55 

12 1956 1796 247.5 87.5 160 3.05 

13 2058 1805 349.5 96.5 253 3.90 

14 2114 1809 405.5 100.5 305 4.31 

15 2170 1813 461.5 104.5 357 4.75 

16 2234 1816 525.5 107.5 418 5.10 

17 2299 1818 590.5 109.5 481 5.34 

18 2381 1821 1831.5 112.5 560 5.72 

 

After the total headloss and initial flow rate relationship has been established, Water 

leakage has to be considered. As per chapterE3 theses losses are incorporated in 

Table E17 with 80% of all leakage deemed to be out of WC1, 100% out of WC2a and 

10% out of WC2b.  
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E.6.1 Water Leakage losses 

 

In Table E17, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table E17: Total headloss and flow rate incorporating losses for Water and Stone Test 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Half 
Pipe Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.05 170 771 43.03 0.056 0.04465 0.00558 0.00558 0.097 

2 0.06 112 524 27.70 0.053 0.04229 0.00529 0.00529 0.108 

3 0.09 72 334 17.52 0.052 0.04196 0.00524 0.00524 0.138 

4 0.22 106 529 26.15 0.049 0.03955 0.00494 0.00494 0.263 

5 0.39 96 470 23.59 0.050 0.04015 0.00502 0.00502 0.437 

6 0.77 87 404 21.30 0.053 0.04217 0.00527 0.00527 0.819 

7 1.02 90 390 22.06 0.057 0.04525 0.00566 0.00566 1.073 

8 1.26 88 406 21.55 0.053 0.04247 0.00531 0.00531 1.311 

9 1.59 90 390 22.06 0.057 0.04525 0.00566 0.00566 1.645 

10 1.97 170 771 43.03 0.056 0.04465 0.00558 0.00558 2.022 

11 2.55 112 524 27.70 0.053 0.04229 0.00529 0.00529 2.601 

12 3.05 72 334 17.52 0.052 0.04196 0.00524 0.00524 3.097 

13 3.90 106 529 26.15 0.049 0.03955 0.00494 0.00494 3.940 

14 4.31 96 470 23.59 0.050 0.04015 0.00502 0.00502 4.357 

15 4.75 87 404 21.30 0.053 0.04217 0.00527 0.00527 4.801 

16 5.10 90 390 22.06 0.057 0.04525 0.00566 0.00566 5.153 

17 5.34 88 406 21.55 0.053 0.04247 0.00531 0.00531 5.390 

18 5.72 90 390 22.06 0.057 0.04525 0.00566 0.00566 5.767 
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E.6.2 Water Pressure losses 

 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure due to water and 

stone bedding, can be established. ChapterE2 states the Pressure Losses A to E with 

the relevant equations. Table E18 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table E18: Disaggregation of pressure losses for Water and Stone test 

Test No. 
Total 
∆hf 

Total 
Half 

Pipe Q Loss B+C Loss D Loss E 

Loss A 
+Stone 
bedding 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 3 0.097 0.000000 0.000000 0.0000000 3.00 99.99% 

2 3.25 0.108 0.000000 0.000000 0.0000000 3.25 99.99% 

3 4 0.138 0.000001 0.000001 0.0000001 4.00 99.98% 

4 6 0.263 0.000002 0.000006 0.0000005 6.00 99.95% 

5 8 0.437 0.000006 0.000018 0.0000016 7.99 99.90% 

6 15 0.819 0.000023 0.000070 0.0000064 14.97 99.81% 

7 22 1.073 0.000039 0.000123 0.0000111 21.95 99.77% 

8 32 1.311 0.000058 0.000189 0.0000170 31.92 99.76% 

9 48 1.645 0.000092 0.000300 0.0001837 47.72 99.43% 

10 69 2.022 0.000139 0.000460 0.0000415 68.82 99.74% 

11 107 2.601 0.000230 0.000771 0.0000696 106.70 99.72% 

12 160 3.097 0.000326 0.001100 0.0000993 159.57 99.73% 

13 253 3.940 0.000527 0.001794 0.0001620 252.31 99.73% 

14 305 4.357 0.000645 0.002198 0.0001984 304.16 99.72% 

15 357 4.801 0.000783 0.002671 0.0002412 355.98 99.71% 

16 418 5.153 0.000902 0.003078 0.0002779 416.82 99.72% 

17 481 5.390 0.000987 0.003375 0.0003047 479.71 99.73% 

18 560 5.767 0.001130 0.003863 0.0023624 556.51 99.38% 
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E.6.3 Relationship between flowrate, Perforation and Stone Bedding 

friction 

 

 

Table E19 shows the Intake pipeline perforation friction (Loss A) + stone bedding loss. 

It also includes the flowrate for half a pipe and for a full pipeline. Figure E7 shows the 

relationship between the Perforation and stone bedding friction and the flowrate in a 

250mm Perforated PVC Pipeline. 

 

 

Table E19: Perforation (Loss A), and Stone Bedding friction, flowrate for Half and Full pipeline 

Test No. Loss A +Stone bedding Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 3.00 0.097 0.19 

2 3.25 0.108 0.22 

3 4.00 0.138 0.28 

4 6.00 0.263 0.53 

5 7.99 0.437 0.87 

6 14.97 0.819 1.64 

7 21.95 1.073 2.15 

8 31.92 1.311 2.62 

9 47.72 1.645 3.29 

10 68.82 2.022 4.04 

11 106.70 2.601 5.20 

12 159.57 3.097 6.19 

13 252.31 3.940 7.88 

14 304.16 4.357 8.71 

15 355.98 4.801 9.60 

16 416.82 5.153 10.31 

17 479.71 5.390 10.78 

18 556.51 5.767 11.53 
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Figure E7: Headloss due to perforation (Loss A) and Stone bedding versus the flowrate for a 

fully flowing ø250mm Perforated pipe  

 

The equation below describes the relationship between headloss due to slot friction 

and stone bedding and flowrate 

 

 

∆P = 2.066 Q2 + 0.019 Q       (Eqn6) 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate for one full pipeline in litres/second 
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E.6.4 Segmental Analysis of HPM 

 

Analysing the Perforation friction + Stone Bedding and flow relationship initially, is as 

per ChapterE5.4. The model is better understood when portioned into five segments. 

The flow was calculated at the same points in the HPM  

 

As described by Table E18, the Perforation Loss A + Stone Bedding accounts for the 

vast majority of the pressure loss. Hence for a point on the Intake pipeline just inside 

WC1 (Pos 0), the velocity of the flow into the pipeline is at its maximum. The velocity at 

this point is termed Vmax.  The opposite holds true for a point at the start of the Intake 

pipeline. At this point, Vmin, the velocity of the inflow is zero. Hence via linear 

interpolation, the velocity at any point in between both ends, can be calculated Figure 

E8below describes the manner in which the HPM is segmented. 

 

 
Figure E8: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 
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E.6.4.1 Methodology 

 

In order to calculate the flow at various points within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2 , V3, V4 and VMIN occur at the border of 

each segment, Hence for each segment, the Average Velocity, VS1, VS2, VS3, VS4 and 

VS5 for each segment is easily calculated.  

 

VMAX is derived from Bernoulli principles where: 

 

hgV  2         EqnE1 

 

With  

 

V = Velocity in m/s 

 

h  = = is the driving pressure  

 

g = gravitational constant (9.81m/s2) 

 

Note that the driving pressure h  is Perforation Loss A+ Stone bedding. The flow from 

each segment is then calculated by multiplying the velocity with the perforation area 

and a discharge coefficient, Cd. Table E20 shows the distribution of inflowing velocity 

over the length of the Intake Pipeline.  

 

Equation E2 was used to calculate the flow from each segment. Table E21 contains 

the flowrate for each segment and the sum of flow from all segments of the pipeline. 

 

hgACqQ dT  2             (EqnE2) 

With  

 

q = Flowrate through for each segment in m3/s 

 

Q = Sum of Flowrate form each segment in m3/s 

 

A= The Area through which flow is allowed in m2  

 

Cd = Coefficient of Discharge

Stellenbosch University  http://scholar.sun.ac.za



270 

University of Stellenbosch 

Table E20: Inflowing velocity of water flowing into the pipe, over the length of the Intake 

Pipeline 

  
Pos. 0 Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 

Pos. 
10 

Test 

Loss 
A + 

Stone 
Bed. 

Vmax Vs 1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

0 mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 3.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 

2 3.25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 

3 4.00 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.00 

4 6.00 0.006 0.005 0.003 0.002 0.001 0.000 0.005 0.004 0.003 0.002 0.001 

5 7.99 0.018 0.015 0.011 0.007 0.004 0.000 0.016 0.013 0.009 0.005 0.002 

6 14.97 0.070 0.056 0.042 0.028 0.014 0.000 0.063 0.049 0.035 0.021 0.007 

7 21.95 0.123 0.099 0.074 0.049 0.025 0.000 0.111 0.086 0.062 0.037 0.012 

8 31.92 0.189 0.151 0.113 0.075 0.038 0.000 0.170 0.132 0.094 0.057 0.019 

9 47.72 0.300 0.240 0.180 0.120 0.060 0.000 0.270 0.210 0.150 0.090 0.030 

10 68.82 0.460 0.368 0.276 0.184 0.092 0.000 0.414 0.322 0.230 0.138 0.046 

11 106.7 0.771 0.617 0.462 0.308 0.154 0.000 0.694 0.540 0.385 0.231 0.077 

12 159.5 1.100 0.880 0.660 0.440 0.220 0.000 0.990 0.770 0.550 0.330 0.110 

13 252.3 1.794 1.435 1.076 0.718 0.359 0.000 1.614 1.256 0.897 0.538 0.179 

14 304.1 2.198 1.758 1.319 0.879 0.440 0.000 1.978 1.538 1.099 0.659 0.220 

15 355.9 2.671 2.137 1.603 1.069 0.534 0.000 2.404 1.870 1.336 0.801 0.267 

16 416.8 3.078 2.462 1.847 1.231 0.616 0.000 2.770 2.154 1.539 0.923 0.308 

17 479.7 3.375 2.700 2.025 1.350 0.675 0.000 3.037 2.362 1.687 1.012 0.337 

18 556.5 3.863 3.090 2.318 1.545 0.773 0.000 3.477 2.704 1.931 1.159 0.386 
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Table E21: Calculated Flowrate from all segments of the Pipeline 

1 2 3 4 5 6 7 8 9 10 11 

Test  

Loss A 
+ Stone 
Bedding Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Q Total 

Q 
Total 

2Q 
Total 

0 mm 
 

m
3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 3.00 0.159 0.00003 0.00003 0.00002 0.00001 0.00000 0.00010 0.10 0.19 

2 3.25 0.170 0.00004 0.00003 0.00002 0.00001 0.00000 0.00011 0.11 0.22 

3 4.00 0.196 0.00005 0.00004 0.00003 0.00002 0.00001 0.00014 0.14 0.28 

4 6.00 0.305 0.00009 0.00007 0.00005 0.00003 0.00001 0.00026 0.26 0.53 

5 7.99 0.440 0.00016 0.00012 0.00009 0.00005 0.00002 0.00044 0.44 0.87 

6 14.97 0.602 0.00029 0.00023 0.00016 0.00010 0.00003 0.00082 0.82 1.64 

7 21.95 0.651 0.00039 0.00030 0.00021 0.00013 0.00004 0.00107 1.07 2.15 

8 31.92 0.659 0.00047 0.00037 0.00026 0.00016 0.00005 0.00131 1.31 2.62 

9 47.72 0.677 0.00059 0.00046 0.00033 0.00020 0.00007 0.00165 1.64 3.29 

10 68.82 0.693 0.00073 0.00057 0.00040 0.00024 0.00008 0.00202 2.02 4.04 

11 106.70 0.716 0.00094 0.00073 0.00052 0.00031 0.00010 0.00260 2.60 5.20 

12 159.57 0.697 0.00111 0.00087 0.00062 0.00037 0.00012 0.00310 3.10 6.19 

13 252.31 0.705 0.00142 0.00110 0.00079 0.00047 0.00016 0.00394 3.94 7.88 

14 304.16 0.710 0.00157 0.00122 0.00087 0.00052 0.00017 0.00436 4.36 8.71 

15 355.98 0.723 0.00173 0.00134 0.00096 0.00058 0.00019 0.00480 4.80 9.60 

16 416.82 0.717 0.00186 0.00144 0.00103 0.00062 0.00021 0.00515 5.15 10.31 

17 479.71 0.699 0.00194 0.00151 0.00108 0.00065 0.00022 0.00539 5.39 10.78 

18 556.51 0.695 0.00208 0.00161 0.00115 0.00069 0.00023 0.00577 5.77 11.53 

 

With incoming velocities calculated, the next step is the estimation of the pressure loss 

due to the above velocities. Equation E3 calculates the headloss along the intake 

pipeline using the following equation: 

 

g

V
Kehf

2
*

2

               (Eqn E3) 

 

With  

 

Ke = Loss Coefficient  

V = Velocity in m/s 

Hf= Pressure los 

g = gravitational constant (9.81m/s2) 
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Table E 22 below calculates the headloss along the intake pipeline using the above 

equation: 

 

Table E22: Pressure losses over length of Intake Pipeline  

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  
Loss 

A 
hf 

max hf hf hf hf hf hf hf hf hf hf 

 
mm mm mm mm mm mm mm mm mm mm mm mm 

1 3.0 3.0 2.4 1.9 1.5 1.1 0.8 0.5 0.3 0.1 0.009 0.0 

2 6.5 6.5 5.2 4.1 3.2 2.3 1.6 1.0 0.6 0.3 0.019 0.1 

3 13.9 13.9 11.3 8.9 6.8 5.0 3.5 2.2 1.3 0.6 0.037 0.1 

4 39.8 39.8 32.2 25.4 19.5 14.3 9.9 6.4 3.6 1.6 0.073 0.4 

5 89.4 89.4 72.4 57.2 43.8 32.2 22.3 14.3 8.0 3.6 0.116 0.9 

6 160.6 160.6 130.1 102.8 78.7 57.8 40.2 25.7 14.5 6.4 0.169 1.6 

7 215.2 215.2 174.3 137.7 105.4 77.5 53.8 34.4 19.4 8.6 0.196 2.2 

8 280.6 280.6 227.3 179.6 137.5 101.0 70.1 44.9 25.3 11.2 0.224 2.8 

9 473.0 473.0 383.2 302.8 231.8 170.3 118.3 75.7 42.6 18.9 0.286 4.7 

 

Figure E9 below is a plot of EGLs at the centre of the Intake Pipeline. The EGL shows 

the amount of energy that has been lost from stone bedding friction and from water 

entering the Intake Pipeline.For the 18 tests conducted, the increase in pressure 

losses closer to the exit point of WC1, is clearly visible. The calculation of the EGL at 

various points within the Intake pipeline is crucial as it aids in determining the loss due 

to the stone bedding alone. This can be seen in the flowing chapter 

 

Figure E9: Plot of EGLs at the centre of the Intake Pipeline for Water and Stone Bedding Test 
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E.6.4.2 Pressure loss due to Stone Bedding 

 

Calculating the loss of pressure due to stone bedding is critical as it inadvertently 

influences the design of the seawater Intake. Note that the stone bedding for all tests 

were standardised with the Intake pipe being 150mm above the bedrock, 300mm 

below the cover level of the stone bedding and 485mm from an adjacent intake 

pipeline.  Three methods where employed when seeking to determine the pressure 

loss due the stone bedding.  

 

E.6.4.2.1 Method 1: Simple method for determining stone bedding loss 

 

In this simplistic method, the equation for the “Water Test with Extra Perforation”: is 

removed from the equation for “Stone and water test” This is simplified as Eqn7 equals 

Eqn6 minus Eqn5 where: 

 

∆P = 2.066 Q2 + 0.019 Q       (Eqn6) 

 

minus 

 

∆P= 0.891Q2 + 1.286Q           (Eqn5) 

 

Hence the loss due to the Stone bedding alone would be  

 

∆P= 1.175Q2– 1.267Q       (Eqn7) 

 

Table E23 below calculates the amount of headloss for notional flow values while 

Figure E10 plots these graphically. 
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Table E23: ø250mm Slotted pipe test: Method 1 :Pressure loss due to Stone Bedding Only 

Test No Q Half Pipe Q Full Pipe 
Stone Bedding 

Friction 

 l/s l/s mm 

1 0.10 0.19 0.002 

2 0.11 0.22 0.009 

3 0.14 0.28 0.02 

4 0.26 0.53 0.8 

5 0.44 0.87 0.96 

6 0.82 1.64 1.08 

7 1.07 2.15 2.69 

8 1.31 2.62 4.76 

9 1.64 3.29 8.56 

10 2.02 4.04 14.11 

11 2.60 5.20 25.23 

12 3.10 6.19 37.27 

13 3.94 7.88 63.03 

14 4.36 8.71 78.25 

15 4.80 9.60 96.26 

16 5.15 10.31 111.85 

17 5.39 10.78 123.02 

18 5.77 11.53 141.84 

 
 

 
Figure E10: Method 1- ø250mm Perforated pipe, Water and Stone Bedding Test: Pressure loss 
due to Stone Bedding ONLY 
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E.6.4.2.2 Method 2: Method for determining stone bedding loss : Hydraulic 

conductivity: Kenny, Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of the stone bedding. From Table E20, the velocity 

for each segment of the Intake pipeline was determined. However the stone bedding 

cannot be split into equal segments as well. This is only correct for stone bedding 

adjacent to the intake pipeline. It does not apply to the flat horizontal surface of the 

stone bedding. 

 

 

Table E24:ø250mm Perforated pipe, Water and Stone Bedding Test: Flow through segments  

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00003 0.00003 0.00002 0.00001 0.00000 36% 28% 20% 12% 4% 

2 0.00004 0.00003 0.00002 0.00001 0.00000 36% 28% 20% 12% 4% 

3 0.00005 0.00004 0.00003 0.00002 0.00001 36% 28% 20% 12% 4% 

4 0.00009 0.00007 0.00005 0.00003 0.00001 36% 28% 20% 12% 4% 

5 0.00016 0.00012 0.00009 0.00005 0.00002 36% 28% 20% 12% 4% 

6 0.00029 0.00023 0.00016 0.00010 0.00003 36% 28% 20% 12% 4% 

7 0.00039 0.00030 0.00021 0.00013 0.00004 36% 28% 20% 12% 4% 

8 0.00047 0.00037 0.00026 0.00016 0.00005 36% 28% 20% 12% 4% 

9 0.00059 0.00046 0.00033 0.00020 0.00007 36% 28% 20% 12% 4% 

10 0.00073 0.00057 0.00040 0.00024 0.00008 36% 28% 20% 12% 4% 

11 0.00094 0.00073 0.00052 0.00031 0.00010 36% 28% 20% 12% 4% 

12 0.00111 0.00087 0.00062 0.00037 0.00012 36% 28% 20% 12% 4% 

13 0.00142 0.00110 0.00079 0.00047 0.00016 36% 28% 20% 12% 4% 

14 0.00157 0.00122 0.00087 0.00052 0.00017 36% 28% 20% 12% 4% 

15 0.00173 0.00134 0.00096 0.00058 0.00019 36% 28% 20% 12% 4% 

16 0.00186 0.00144 0.00103 0.00062 0.00021 36% 28% 20% 12% 4% 

17 0.00194 0.00151 0.00108 0.00065 0.00022 36% 28% 20% 12% 4% 

18 0.00208 0.00161 0.00115 0.00069 0.00023 36% 28% 20% 12% 4% 
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Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table E24above looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate.  

 

Figure E11 provides a graphical description of how proportions were then applied to 

length of the stone bed. This splitting of the stone bedding surface ensured that all 

flows entering the stone bed were proportional to the flow entering the intake pipeline 

for all segments.  

 

 
Figure E11: ø250mm Perforated pipe, Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

 

Figure E12 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure E12 and E13. As in Figure E11, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 

calculated it is based on the intake pipe dimensions. Areas A2 and A3 are a third of the 
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distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4 are noted as Lengths len1, len2 and len3 respectively. 

 

 
Figure E12: Notional flow path of a stone bedding segment 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as follows: 

 

 

      (Eqn E4) 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

The first three variables are easily to calculate however determining the hydraulic 

conductivity k, requires further investigation. 

 

The hydraulic conductivity is calculated using the following equation 

 

k

VL
mhf


)(
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                (EqnE5) 

 

Where: 

k = Hydraulic conductivity 

γW = Unit Weight of Water  

η  = Dynamic Viscosity of water  

K = Absolute Hydraulic conductivity 

 

 

The unit weight of water γW,, and the dynamic viscosity of water η are fairly simple to 

calculate. However the Absolute Hydraulic conductivity K has to be calculated. It is 

calculated using the following equation: 

 

 

                (Eqn E6) 

 

Where: 

 

K = Absolute Hydraulic conductivity 

Cu = Coefficient of Uniformity. Varies between 0.05 to 1 

D5 = Dimension of aggregate that has a cumulative percentage passing of 5% 

 

Figure E13 below is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D5 = 10mm was obtained. Hence for a Cu of 0.8, Eqn E6 

yields a K of 80mm2.  Utilising Eqn E6 and the following values: 

 

γW = 9800 N/m3 

η = 0.00014 Ns/m 

 

A hydraulic conductivity k of 0.688m/s was obtained. Table E20 summaries these 

results. As confirmation, Figure E15 is a graphical plot of Equation E6. Using a D5 of 

10mm, a k value of approximately 0.7m/s is found. 

 

 

 

 

K
k w






2

5DCK u
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Figure E13: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 
Mindess, 2005) 

 

 

Figure E14: Graphical plot of Hydraulic conductivity Equation (Das 2000) 
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Table E25: Summary: Calculating the Hydraulic conductivity 

Description Value Unit 

Cu (0.05 to 1) 0.80 
 

D5 10.0 mm 

Water Column Width 0.61 m 

Absolute Conductivity K 80 mm
2
 

Unit Weight of Water γW 9800 N/m
3
 

Dynamic Viscosity of water η 1.14E-03 Ns/m
2
 

Hydraulic Conductivity k 0.688 m/s 

 

Using the values from Table E24 and E25, headloss for segment1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table E26 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table E27 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The following tables describe the headloss calculated for Segments, 2, 3, 4 and 5. 
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Table E26: Segment 1: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 

Ave 
A11 

Ave 
A12 

Ave 
A13 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.196 0.170 0.145 3.E-05 0.208 0.183 0.158 

2 0.3618 0.221 0.196 0.170 0.145 4.E-05 0.208 0.183 0.158 

3 0.3618 0.221 0.196 0.170 0.145 5.E-05 0.208 0.183 0.158 

4 0.3618 0.221 0.196 0.170 0.145 9.E-05 0.208 0.183 0.158 

5 0.3618 0.221 0.196 0.170 0.145 2.E-04 0.208 0.183 0.158 

6 0.3618 0.221 0.196 0.170 0.145 3.E-04 0.208 0.183 0.158 

7 0.3618 0.221 0.196 0.170 0.145 4.E-04 0.208 0.183 0.158 

8 0.3618 0.221 0.196 0.170 0.145 5.E-04 0.208 0.183 0.158 

9 0.3618 0.221 0.196 0.170 0.145 6.E-04 0.208 0.183 0.158 

10 0.3618 0.221 0.196 0.170 0.145 7.E-04 0.208 0.183 0.158 

11 0.3618 0.221 0.196 0.170 0.145 9.E-04 0.208 0.183 0.158 

12 0.3618 0.221 0.196 0.170 0.145 1.E-03 0.208 0.183 0.158 

13 0.3618 0.221 0.196 0.170 0.145 1.E-03 0.208 0.183 0.158 

14 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

15 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

16 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

17 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

18 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 
 

Table E27: Segment 1: Velocity and cumulative headloss  

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 2.E-04 2.E-04 2.E-04 0.0001 0.0001 0.0001 0.0002 0.18 

2 2.E-04 2.E-04 2.E-04 0.0001 0.0001 0.0001 0.0002 0.20 

3 2.E-04 3.E-04 3.E-04 0.0001 0.0001 0.0001 0.0003 0.25 

4 5.E-04 5.E-04 6.E-04 0.0001 0.0002 0.0002 0.0005 0.48 

5 8.E-04 9.E-04 1.E-03 0.0002 0.0003 0.0003 0.0008 0.80 

6 1.E-03 2.E-03 2.E-03 0.0004 0.0005 0.0006 0.0015 1.50 

7 2.E-03 2.E-03 2.E-03 0.0006 0.0006 0.0007 0.0020 1.96 

8 2.E-03 3.E-03 3.E-03 0.0007 0.0008 0.0009 0.0024 2.39 

9 3.E-03 3.E-03 4.E-03 0.0009 0.0010 0.0011 0.0030 3.00 

10 3.E-03 4.E-03 5.E-03 0.0011 0.0012 0.0014 0.0037 3.69 

11 4.E-03 5.E-03 6.E-03 0.0014 0.0016 0.0018 0.0047 4.75 

12 5.E-03 6.E-03 7.E-03 0.0016 0.0019 0.0022 0.0057 5.66 

13 7.E-03 8.E-03 9.E-03 0.0021 0.0024 0.0027 0.0072 7.19 

14 8.E-03 9.E-03 1.E-02 0.0023 0.0026 0.0030 0.0080 7.96 

15 8.E-03 9.E-03 1.E-02 0.0025 0.0029 0.0033 0.0088 8.77 

16 9.E-03 1.E-02 1.E-02 0.0027 0.0031 0.0036 0.0094 9.41 

17 9.E-03 1.E-02 1.E-02 0.0028 0.0032 0.0038 0.0098 9.84 

18 1.E-02 1.E-02 1.E-02 0.0030 0.0035 0.0040 0.0105 10.53 
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Table E28: Segment 2: Averaging of Areas 

Test 
No. Len2 A21 A22 A23 A24 Qs 2 

Ave 
A21 

Ave 
A22 

Ave 
A23 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.163 0.154 0.145 3.E-05 0.167 0.158 0.150 

2 0.2814 0.172 0.163 0.154 0.145 3.E-05 0.167 0.158 0.150 

3 0.2814 0.172 0.163 0.154 0.145 4.E-05 0.167 0.158 0.150 

4 0.2814 0.172 0.163 0.154 0.145 7.E-05 0.167 0.158 0.150 

5 0.2814 0.172 0.163 0.154 0.145 1.E-04 0.167 0.158 0.150 

6 0.2814 0.172 0.163 0.154 0.145 2.E-04 0.167 0.158 0.150 

7 0.2814 0.172 0.163 0.154 0.145 3.E-04 0.167 0.158 0.150 

8 0.2814 0.172 0.163 0.154 0.145 4.E-04 0.167 0.158 0.150 

9 0.2814 0.172 0.163 0.154 0.145 5.E-04 0.167 0.158 0.150 

10 0.2814 0.172 0.163 0.154 0.145 6.E-04 0.167 0.158 0.150 

11 0.2814 0.172 0.163 0.154 0.145 7.E-04 0.167 0.158 0.150 

12 0.2814 0.172 0.163 0.154 0.145 9.E-04 0.167 0.158 0.150 

13 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

14 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

15 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

16 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

17 0.2814 0.172 0.163 0.154 0.145 2.E-03 0.167 0.158 0.150 

18 0.2814 0.172 0.163 0.154 0.145 2.E-03 0.167 0.158 0.150 
 

Table E29: Segment 2: Velocity and cumulative headloss  

Test 
No. Vel2A Vel2B Vel2C Hl21 Hl22 Hl23 

Hl2 
Total 

Hl2 
Total 

 m/s m/s m/s m m m m mm 

1 2.E-04 2.E-04 2.E-04 0.0000 0.0001 0.0001 0.0002 0.16 

2 2.E-04 2.E-04 2.E-04 0.0001 0.0001 0.0001 0.0002 0.18 

3 2.E-04 2.E-04 3.E-04 0.0001 0.0001 0.0001 0.0002 0.22 

4 4.E-04 5.E-04 5.E-04 0.0001 0.0001 0.0002 0.0004 0.43 

5 7.E-04 8.E-04 8.E-04 0.0002 0.0002 0.0003 0.0007 0.71 

6 1.E-03 1.E-03 2.E-03 0.0004 0.0004 0.0005 0.0013 1.33 

7 2.E-03 2.E-03 2.E-03 0.0005 0.0006 0.0006 0.0017 1.74 

8 2.E-03 2.E-03 2.E-03 0.0007 0.0007 0.0007 0.0021 2.13 

9 3.E-03 3.E-03 3.E-03 0.0008 0.0009 0.0009 0.0027 2.67 

10 3.E-03 4.E-03 4.E-03 0.0010 0.0011 0.0012 0.0033 3.28 

11 4.E-03 5.E-03 5.E-03 0.0013 0.0014 0.0015 0.0042 4.22 

12 5.E-03 5.E-03 6.E-03 0.0016 0.0017 0.0018 0.0050 5.03 

13 7.E-03 7.E-03 7.E-03 0.0020 0.0021 0.0023 0.0064 6.39 

14 7.E-03 8.E-03 8.E-03 0.0022 0.0024 0.0025 0.0071 7.07 

15 8.E-03 8.E-03 9.E-03 0.0025 0.0026 0.0027 0.0078 7.79 

16 9.E-03 9.E-03 1.E-02 0.0026 0.0028 0.0029 0.0084 8.36 

17 9.E-03 1.E-02 1.E-02 0.0028 0.0029 0.0031 0.0087 8.75 

18 1.E-02 1.E-02 1.E-02 0.0029 0.0031 0.0033 0.0094 9.36 
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Table E30: Segment 3: Averaging of Areas 

Test 
No. Len3 A31 A32 A33 A34 Qs 3 

Ave 
A31 

Ave 
A32 

Ave 
A33 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.130 0.138 0.145 2.E-05 0.126 0.134 0.141 

2 0.201 0.123 0.130 0.138 0.145 2.E-05 0.126 0.134 0.141 

3 0.201 0.123 0.130 0.138 0.145 3.E-05 0.126 0.134 0.141 

4 0.201 0.123 0.130 0.138 0.145 5.E-05 0.126 0.134 0.141 

5 0.201 0.123 0.130 0.138 0.145 9.E-05 0.126 0.134 0.141 

6 0.201 0.123 0.130 0.138 0.145 2.E-04 0.126 0.134 0.141 

7 0.201 0.123 0.130 0.138 0.145 2.E-04 0.126 0.134 0.141 

8 0.201 0.123 0.130 0.138 0.145 3.E-04 0.126 0.134 0.141 

9 0.201 0.123 0.130 0.138 0.145 3.E-04 0.126 0.134 0.141 

10 0.201 0.123 0.130 0.138 0.145 4.E-04 0.126 0.134 0.141 

11 0.201 0.123 0.130 0.138 0.145 5.E-04 0.126 0.134 0.141 

12 0.201 0.123 0.130 0.138 0.145 6.E-04 0.126 0.134 0.141 

13 0.201 0.123 0.130 0.138 0.145 8.E-04 0.126 0.134 0.141 

14 0.201 0.123 0.130 0.138 0.145 9.E-04 0.126 0.134 0.141 

15 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 

16 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 

17 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 

18 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 
 

Table E31: Segment 3: Velocity and cumulative headloss  

Test 
No. Vel3A Vel3B Vel3C Hl31 Hl32 Hl33 

Hl3Tota
l 

Hl3Tota
l 

 m/s m/s m/s m m m m mm 

1 2.E-04 1.E-04 1.E-04 0.0000 0.0000 0.0000 0.0001 0.13 

2 2.E-04 2.E-04 2.E-04 0.0001 0.0000 0.0000 0.0001 0.15 

3 2.E-04 2.E-04 2.E-04 0.0001 0.0001 0.0001 0.0002 0.19 

4 4.E-04 4.E-04 4.E-04 0.0001 0.0001 0.0001 0.0004 0.36 

5 7.E-04 7.E-04 6.E-04 0.0002 0.0002 0.0002 0.0006 0.60 

6 1.E-03 1.E-03 1.E-03 0.0004 0.0004 0.0004 0.0011 1.12 

7 2.E-03 2.E-03 2.E-03 0.0005 0.0005 0.0005 0.0015 1.47 

8 2.E-03 2.E-03 2.E-03 0.0006 0.0006 0.0006 0.0018 1.80 

9 3.E-03 2.E-03 2.E-03 0.0008 0.0008 0.0007 0.0023 2.26 

10 3.E-03 3.E-03 3.E-03 0.0010 0.0009 0.0009 0.0028 2.77 

11 4.E-03 4.E-03 4.E-03 0.0013 0.0012 0.0011 0.0036 3.57 

12 5.E-03 5.E-03 4.E-03 0.0015 0.0014 0.0013 0.0042 4.25 

13 6.E-03 6.E-03 6.E-03 0.0019 0.0018 0.0017 0.0054 5.40 

14 7.E-03 7.E-03 6.E-03 0.0021 0.0020 0.0019 0.0060 5.97 

15 8.E-03 7.E-03 7.E-03 0.0023 0.0022 0.0021 0.0066 6.58 

16 8.E-03 8.E-03 7.E-03 0.0025 0.0024 0.0022 0.0071 7.07 

17 9.E-03 8.E-03 8.E-03 0.0026 0.0025 0.0023 0.0074 7.39 

18 9.E-03 9.E-03 8.E-03 0.0028 0.0026 0.0025 0.0079 7.91 
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Table E32: Segment 4: Averaging of Areas 

Test 
No. Len4 A41 A42 A43 A44 Qs 4 

Ave 
A41 

Ave 
A42 

Ave 
A43 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.1206 0.074 0.097 0.121 0.145 1.E-05 0.085 0.109 0.133 

2 0.1206 0.074 0.097 0.121 0.145 1.E-05 0.085 0.109 0.133 

3 0.1206 0.074 0.097 0.121 0.145 2.E-05 0.085 0.109 0.133 

4 0.1206 0.074 0.097 0.121 0.145 3.E-05 0.085 0.109 0.133 

5 0.1206 0.074 0.097 0.121 0.145 5.E-05 0.085 0.109 0.133 

6 0.1206 0.074 0.097 0.121 0.145 1.E-04 0.085 0.109 0.133 

7 0.1206 0.074 0.097 0.121 0.145 1.E-04 0.085 0.109 0.133 

8 0.1206 0.074 0.097 0.121 0.145 2.E-04 0.085 0.109 0.133 

9 0.1206 0.074 0.097 0.121 0.145 2.E-04 0.085 0.109 0.133 

10 0.1206 0.074 0.097 0.121 0.145 2.E-04 0.085 0.109 0.133 

11 0.1206 0.074 0.097 0.121 0.145 3.E-04 0.085 0.109 0.133 

12 0.1206 0.074 0.097 0.121 0.145 4.E-04 0.085 0.109 0.133 

13 0.1206 0.074 0.097 0.121 0.145 5.E-04 0.085 0.109 0.133 

14 0.1206 0.074 0.097 0.121 0.145 5.E-04 0.085 0.109 0.133 

15 0.1206 0.074 0.097 0.121 0.145 6.E-04 0.085 0.109 0.133 

16 0.1206 0.074 0.097 0.121 0.145 6.E-04 0.085 0.109 0.133 

17 0.1206 0.074 0.097 0.121 0.145 6.E-04 0.085 0.109 0.133 

18 0.1206 0.074 0.097 0.121 0.145 7.E-04 0.085 0.109 0.133 
 

Table E33: Segment 4: Velocity and cumulative headloss  

Test 
No. Vel4A Vel4B Vel4C Hl41 Hl42 Hl43 

Hl4 
Total 

Hl4 
Total 

 m/s m/s m/s m m m m mm 

1 1.E-04 1.E-04 9.E-05 0.0000 0.0000 0.0000 0.0001 0.10 

2 2.E-04 1.E-04 1.E-04 0.0000 0.0000 0.0000 0.0001 0.11 

3 2.E-04 2.E-04 1.E-04 0.0001 0.0000 0.0000 0.0001 0.14 

4 4.E-04 3.E-04 2.E-04 0.0001 0.0001 0.0001 0.0003 0.27 

5 6.E-04 5.E-04 4.E-04 0.0002 0.0001 0.0001 0.0005 0.45 

6 1.E-03 9.E-04 7.E-04 0.0004 0.0003 0.0002 0.0009 0.85 

7 2.E-03 1.E-03 1.E-03 0.0005 0.0004 0.0003 0.0011 1.11 

8 2.E-03 1.E-03 1.E-03 0.0006 0.0004 0.0004 0.0014 1.36 

9 2.E-03 2.E-03 1.E-03 0.0007 0.0006 0.0005 0.0017 1.71 

10 3.E-03 2.E-03 2.E-03 0.0009 0.0007 0.0006 0.0021 2.10 

11 4.E-03 3.E-03 2.E-03 0.0011 0.0009 0.0007 0.0027 2.70 

12 4.E-03 3.E-03 3.E-03 0.0013 0.0010 0.0009 0.0032 3.22 

13 6.E-03 4.E-03 4.E-03 0.0017 0.0013 0.0011 0.0041 4.09 

14 6.E-03 5.E-03 4.E-03 0.0019 0.0015 0.0012 0.0045 4.53 

15 7.E-03 5.E-03 4.E-03 0.0021 0.0016 0.0013 0.0050 4.99 

16 7.E-03 6.E-03 5.E-03 0.0022 0.0017 0.0014 0.0054 5.35 

17 8.E-03 6.E-03 5.E-03 0.0023 0.0018 0.0015 0.0056 5.60 

18 8.E-03 6.E-03 5.E-03 0.0025 0.0019 0.0016 0.0060 5.99 
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Table E34: Segment 5: Averaging of Areas 

Test 
No. Len5 A51 A52 A53 A54 Qs 5 

Ave 
A51 

Ave 
A52 

Ave 
A53 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.065 0.105 0.145 4.E-06 0.045 0.085 0.125 

2 0.0402 0.025 0.065 0.105 0.145 4.E-06 0.045 0.085 0.125 

3 0.0402 0.025 0.065 0.105 0.145 6.E-06 0.045 0.085 0.125 

4 0.0402 0.025 0.065 0.105 0.145 1.E-05 0.045 0.085 0.125 

5 0.0402 0.025 0.065 0.105 0.145 2.E-05 0.045 0.085 0.125 

6 0.0402 0.025 0.065 0.105 0.145 3.E-05 0.045 0.085 0.125 

7 0.0402 0.025 0.065 0.105 0.145 4.E-05 0.045 0.085 0.125 

8 0.0402 0.025 0.065 0.105 0.145 5.E-05 0.045 0.085 0.125 

9 0.0402 0.025 0.065 0.105 0.145 7.E-05 0.045 0.085 0.125 

10 0.0402 0.025 0.065 0.105 0.145 8.E-05 0.045 0.085 0.125 

11 0.0402 0.025 0.065 0.105 0.145 1.E-04 0.045 0.085 0.125 

12 0.0402 0.025 0.065 0.105 0.145 1.E-04 0.045 0.085 0.125 

13 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

14 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

15 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

16 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

17 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

18 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 
 

Table E35: Segment 5: Velocity and cumulative headloss  

Test 
No. Vel5A Vel5B Vel5C Hl51 Hl52 Hl53 

Hl5Tota
l 

Hl5Tota
l 

 m/s m/s m/s m m m m mm 

1 9.E-05 5.E-05 3.E-05 0.0000 0.0000 0.0000 0.0000 0.05 

2 1.E-04 5.E-05 3.E-05 0.0000 0.0000 0.0000 0.0001 0.06 

3 1.E-04 7.E-05 4.E-05 0.0000 0.0000 0.0000 0.0001 0.07 

4 2.E-04 1.E-04 8.E-05 0.0001 0.0000 0.0000 0.0001 0.14 

5 4.E-04 2.E-04 1.E-04 0.0001 0.0001 0.0000 0.0002 0.23 

6 7.E-04 4.E-04 3.E-04 0.0002 0.0001 0.0001 0.0004 0.42 

7 1.E-03 5.E-04 3.E-04 0.0003 0.0002 0.0001 0.0006 0.55 

8 1.E-03 6.E-04 4.E-04 0.0004 0.0002 0.0001 0.0007 0.68 

9 1.E-03 8.E-04 5.E-04 0.0005 0.0002 0.0002 0.0008 0.85 

10 2.E-03 1.E-03 6.E-04 0.0006 0.0003 0.0002 0.0010 1.04 

11 2.E-03 1.E-03 8.E-04 0.0007 0.0004 0.0003 0.0013 1.34 

12 3.E-03 1.E-03 1.E-03 0.0008 0.0004 0.0003 0.0016 1.60 

13 4.E-03 2.E-03 1.E-03 0.0011 0.0006 0.0004 0.0020 2.03 

14 4.E-03 2.E-03 1.E-03 0.0012 0.0006 0.0004 0.0022 2.25 

15 4.E-03 2.E-03 2.E-03 0.0013 0.0007 0.0005 0.0025 2.47 

16 5.E-03 2.E-03 2.E-03 0.0014 0.0007 0.0005 0.0027 2.66 

17 5.E-03 3.E-03 2.E-03 0.0015 0.0008 0.0005 0.0028 2.78 

18 5.E-03 3.E-03 2.E-03 0.0016 0.0008 0.0006 0.0030 2.97 
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Table E36:Summary of Method 2 Headloss Tests. Results from Tables26 to 35 (WST) 

Test No. Total Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s mm mm mm mm mm 

1 0.10 0.18 0.16 0.13 0.10 0.05 

2 0.11 0.20 0.18 0.15 0.11 0.06 

3 0.14 0.25 0.22 0.19 0.14 0.07 

4 0.26 0.48 0.43 0.36 0.27 0.14 

5 0.44 0.80 0.71 0.60 0.45 0.23 

6 0.82 1.50 1.33 1.12 0.85 0.42 

7 1.07 1.96 1.74 1.47 1.11 0.55 

8 1.31 2.39 2.13 1.80 1.36 0.68 

9 1.64 3.00 2.67 2.26 1.71 0.85 

10 2.02 3.69 3.28 2.77 2.10 1.04 

11 2.60 4.75 4.22 3.57 2.70 1.34 

12 3.10 5.66 5.03 4.25 3.22 1.60 

13 3.94 7.19 6.39 5.40 4.09 2.03 

14 4.36 7.96 7.07 5.97 4.53 2.25 

15 4.80 8.77 7.79 6.58 4.99 2.47 

16 5.15 9.41 8.36 7.07 5.35 2.66 

17 5.39 9.84 8.75 7.39 5.60 2.78 

18 5.77 10.53 9.36 7.91 5.99 2.97 
 

Figure E15 plots Table E36 graphically. A trendline is added to the results in order to 

predict the headloss, due to stone bedding, at the most downstream point of WC1. It is 

at this point that the largest magnitude of headloss occurs. Table E37 summaries 

these results. 

 
Figure E15: Results of Headloss due to Stone Bedding, within WC1 
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Table E37: Method 2: Summary of maximum headloss versus flow rates 

Test No. Total Q Total 2Q 
Maximum Headloss due 

to Stone Bedding 

 
l/s l/s mm 

1 0.10 0.19 0.18 

2 0.11 0.22 0.21 

3 0.14 0.28 0.27 

4 0.26 0.53 0.51 

5 0.44 0.87 0.85 

6 0.82 1.64 1.59 

7 1.07 2.15 2.08 

8 1.31 2.62 2.55 

9 1.65 3.29 3.19 

10 2.02 4.04 3.93 

11 2.60 5.20 5.05 

12 3.10 6.19 6.01 

13 3.94 7.88 7.65 

14 4.36 8.71 8.46 

15 4.80 9.60 9.32 

16 5.15 10.31 10.01 

17 5.39 10.78 10.47 

18 5.77 11.53 11.20 

 

 

 

E.5.4.2.3 Method 3: Method for determining stone bedding loss : Hydraulic 

conductivity: Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, looks 

at the hydraulic conductivity of the stone bedding. This is based on work carried out by 

Forchheimer. From Table E38, the velocity for each segment of the Intake pipeline 

was determined. However, stone bedding cannot be split into equal segments as well. 

This is only correct for stone bedding adjacent to the intake pipeline. It does not apply 

to the flat horizontal surface of the stone bedding. 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table E38 below looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate. 
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In Figure E16, these proportions were applied to the length of the stone bed. This 

splitting of the stone bedding surface ensured that all flows entering the stone bed 

were proportional to the flow entering the intake pipeline for all segments. 

 

Table E38:ø250mm Perforated pipe, Water and Stone Bedding Test: Flow through segments  

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00003 0.00003 0.00002 0.00001 0.00000 36% 28% 20% 12% 4% 

2 0.00004 0.00003 0.00002 0.00001 0.00000 36% 28% 20% 12% 4% 

3 0.00005 0.00004 0.00003 0.00002 0.00001 36% 28% 20% 12% 4% 

4 0.00009 0.00007 0.00005 0.00003 0.00001 36% 28% 20% 12% 4% 

5 0.00016 0.00012 0.00009 0.00005 0.00002 36% 28% 20% 12% 4% 

6 0.00029 0.00023 0.00016 0.00010 0.00003 36% 28% 20% 12% 4% 

7 0.00039 0.00030 0.00021 0.00013 0.00004 36% 28% 20% 12% 4% 

8 0.00047 0.00037 0.00026 0.00016 0.00005 36% 28% 20% 12% 4% 

9 0.00059 0.00046 0.00033 0.00020 0.00007 36% 28% 20% 12% 4% 

10 0.00073 0.00057 0.00040 0.00024 0.00008 36% 28% 20% 12% 4% 

11 0.00094 0.00073 0.00052 0.00031 0.00010 36% 28% 20% 12% 4% 

12 0.00111 0.00087 0.00062 0.00037 0.00012 36% 28% 20% 12% 4% 

13 0.00142 0.00110 0.00079 0.00047 0.00016 36% 28% 20% 12% 4% 

14 0.00157 0.00122 0.00087 0.00052 0.00017 36% 28% 20% 12% 4% 

15 0.00173 0.00134 0.00096 0.00058 0.00019 36% 28% 20% 12% 4% 

16 0.00186 0.00144 0.00103 0.00062 0.00021 36% 28% 20% 12% 4% 

17 0.00194 0.00151 0.00108 0.00065 0.00022 36% 28% 20% 12% 4% 

18 0.00208 0.00161 0.00115 0.00069 0.00023 36% 28% 20% 12% 4% 
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Figure E16: ø250mm Slotted pipe-Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

 
Figure E17: Notional flow path of a stone bedding segment 
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Figure E17 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure E16 and E17. As in Figure E17, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 

calculated it is based on the intake pipe dimensions. Areas A2 and A3are a third of the 

distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4are noted as Lengths len1, len2 and len3 respectively. 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as per Equation 4 below: 

 

        Eqn E4 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

 

Figure E18 below is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D50 = 15.7mm was obtained. The hydraulic conductivity is 

calculated from Figure E19. Table E31 summaries the parameters when obtaining the 

hydraulic conductivity k value. 

 
Figure E18: Grading curve for nominally single-sized 19mm Stone (Alexander & Mindess, 
2005) 
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Figure E19: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF,2007) 

 

Table E39: Calculation of Permeability for19mm Bedding of seawater Intake (WST) 

Description Unit Bedding 

Dn50 m 0.0157 

Log (D50) m -1.80 

Log k (from fig. 2.39) m/s -1.16 

k m/s 0.069 

 

Using the values from Table E38 and E39, headloss for Segment 1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table E40 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table E41 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The following tables describe the headloss calculated for Segments 1, 2, 3, 4 and 5. 
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Table E40: Segment 1: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 

Ave 
A11 

Ave 
A12 

Ave 
A13 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.196 0.170 0.145 3.E-05 0.208 0.183 0.158 

2 0.3618 0.221 0.196 0.170 0.145 4.E-05 0.208 0.183 0.158 

3 0.3618 0.221 0.196 0.170 0.145 5.E-05 0.208 0.183 0.158 

4 0.3618 0.221 0.196 0.170 0.145 9.E-05 0.208 0.183 0.158 

5 0.3618 0.221 0.196 0.170 0.145 2.E-04 0.208 0.183 0.158 

6 0.3618 0.221 0.196 0.170 0.145 3.E-04 0.208 0.183 0.158 

7 0.3618 0.221 0.196 0.170 0.145 4.E-04 0.208 0.183 0.158 

8 0.3618 0.221 0.196 0.170 0.145 5.E-04 0.208 0.183 0.158 

9 0.3618 0.221 0.196 0.170 0.145 6.E-04 0.208 0.183 0.158 

10 0.3618 0.221 0.196 0.170 0.145 7.E-04 0.208 0.183 0.158 

11 0.3618 0.221 0.196 0.170 0.145 9.E-04 0.208 0.183 0.158 

12 0.3618 0.221 0.196 0.170 0.145 1.E-03 0.208 0.183 0.158 

13 0.3618 0.221 0.196 0.170 0.145 1.E-03 0.208 0.183 0.158 

14 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

15 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

16 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

17 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 

18 0.3618 0.221 0.196 0.170 0.145 2.E-03 0.208 0.183 0.158 
 

Table E41: Segment 1: Velocity and cumulative headloss  

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 2.E-04 2.E-04 2.E-04 0.0005 0.0006 0.0007 0.0018 1.77 

2 2.E-04 2.E-04 2.E-04 0.0006 0.0006 0.0008 0.0020 1.97 

3 2.E-04 3.E-04 3.E-04 0.0007 0.0008 0.0010 0.0025 2.51 

4 5.E-04 5.E-04 6.E-04 0.0014 0.0016 0.0018 0.0048 4.79 

5 8.E-04 9.E-04 1.E-03 0.0023 0.0026 0.0030 0.0080 7.96 

6 1.E-03 2.E-03 2.E-03 0.0043 0.0049 0.0057 0.0149 14.91 

7 2.E-03 2.E-03 2.E-03 0.0056 0.0064 0.0075 0.0195 19.53 

8 2.E-03 3.E-03 3.E-03 0.0069 0.0079 0.0091 0.0239 23.86 

9 3.E-03 3.E-03 4.E-03 0.0087 0.0099 0.0114 0.0299 29.94 

10 3.E-03 4.E-03 5.E-03 0.0106 0.0121 0.0140 0.0368 36.80 

11 4.E-03 5.E-03 6.E-03 0.0137 0.0156 0.0181 0.0473 47.34 

12 5.E-03 6.E-03 7.E-03 0.0163 0.0185 0.0215 0.0564 56.37 

13 7.E-03 8.E-03 9.E-03 0.0207 0.0236 0.0274 0.0717 71.71 

14 8.E-03 9.E-03 1.E-02 0.0229 0.0261 0.0303 0.0793 79.30 

15 8.E-03 9.E-03 1.E-02 0.0253 0.0288 0.0333 0.0874 87.38 

16 9.E-03 1.E-02 1.E-02 0.0271 0.0309 0.0358 0.0938 93.78 

17 9.E-03 1.E-02 1.E-02 0.0284 0.0323 0.0374 0.0981 98.10 

18 1.E-02 1.E-02 1.E-02 0.0304 0.0345 0.0401 0.1050 104.96 
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Table E42: Segment 2: Averaging of Areas 

Test 
No. Len2 A21 A22 A23 A24 Qs 2 

Ave 
A21 

Ave 
A22 

Ave 
A23 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.163 0.154 0.145 3.E-05 0.167 0.158 0.150 

2 0.2814 0.172 0.163 0.154 0.145 3.E-05 0.167 0.158 0.150 

3 0.2814 0.172 0.163 0.154 0.145 4.E-05 0.167 0.158 0.150 

4 0.2814 0.172 0.163 0.154 0.145 7.E-05 0.167 0.158 0.150 

5 0.2814 0.172 0.163 0.154 0.145 1.E-04 0.167 0.158 0.150 

6 0.2814 0.172 0.163 0.154 0.145 2.E-04 0.167 0.158 0.150 

7 0.2814 0.172 0.163 0.154 0.145 3.E-04 0.167 0.158 0.150 

8 0.2814 0.172 0.163 0.154 0.145 4.E-04 0.167 0.158 0.150 

9 0.2814 0.172 0.163 0.154 0.145 5.E-04 0.167 0.158 0.150 

10 0.2814 0.172 0.163 0.154 0.145 6.E-04 0.167 0.158 0.150 

11 0.2814 0.172 0.163 0.154 0.145 7.E-04 0.167 0.158 0.150 

12 0.2814 0.172 0.163 0.154 0.145 9.E-04 0.167 0.158 0.150 

13 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

14 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

15 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

16 0.2814 0.172 0.163 0.154 0.145 1.E-03 0.167 0.158 0.150 

17 0.2814 0.172 0.163 0.154 0.145 2.E-03 0.167 0.158 0.150 

18 0.2814 0.172 0.163 0.154 0.145 2.E-03 0.167 0.158 0.150 
 

Table E43: Segment 2: Velocity and cumulative headloss  

Test 
No. Vel2A Vel2B Vel2C Hl21 Hl22 Hl23 Hl2 Total Hl2 Total 

 m/s m/s m/s m m m m mm 

1 2.E-04 2.E-04 2.E-04 0.0005 0.0005 0.0006 0.0016 1.57 

2 2.E-04 2.E-04 2.E-04 0.0006 0.0006 0.0006 0.0017 1.75 

3 2.E-04 2.E-04 3.E-04 0.0007 0.0007 0.0008 0.0022 2.23 

4 4.E-04 5.E-04 5.E-04 0.0013 0.0014 0.0015 0.0043 4.26 

5 7.E-04 8.E-04 8.E-04 0.0022 0.0024 0.0025 0.0071 7.08 

6 1.E-03 1.E-03 2.E-03 0.0042 0.0044 0.0047 0.0132 13.25 

7 2.E-03 2.E-03 2.E-03 0.0055 0.0058 0.0061 0.0174 17.35 

8 2.E-03 2.E-03 2.E-03 0.0067 0.0071 0.0075 0.0212 21.20 

9 3.E-03 3.E-03 3.E-03 0.0084 0.0088 0.0094 0.0266 26.60 

10 3.E-03 4.E-03 4.E-03 0.0103 0.0109 0.0115 0.0327 32.70 

11 4.E-03 5.E-03 5.E-03 0.0133 0.0140 0.0148 0.0421 42.06 

12 5.E-03 5.E-03 6.E-03 0.0158 0.0167 0.0176 0.0501 50.09 

13 7.E-03 7.E-03 7.E-03 0.0201 0.0212 0.0224 0.0637 63.72 

14 7.E-03 8.E-03 8.E-03 0.0222 0.0234 0.0248 0.0705 70.46 

15 8.E-03 8.E-03 9.E-03 0.0245 0.0258 0.0274 0.0776 77.64 

16 9.E-03 9.E-03 1.E-02 0.0263 0.0277 0.0294 0.0833 83.34 

17 9.E-03 1.E-02 1.E-02 0.0275 0.0290 0.0307 0.0872 87.17 

18 1.E-02 1.E-02 1.E-02 0.0294 0.0310 0.0329 0.0933 93.27 
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Table E44: Segment 3: Averaging of Areas 

Test 
No. Len3 A31 A32 A33 A34 Qs 3 

Ave 
A31 

Ave 
A32 

Ave 
A33 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.130 0.138 0.145 2.E-05 0.126 0.134 0.141 

2 0.201 0.123 0.130 0.138 0.145 2.E-05 0.126 0.134 0.141 

3 0.201 0.123 0.130 0.138 0.145 3.E-05 0.126 0.134 0.141 

4 0.201 0.123 0.130 0.138 0.145 5.E-05 0.126 0.134 0.141 

5 0.201 0.123 0.130 0.138 0.145 9.E-05 0.126 0.134 0.141 

6 0.201 0.123 0.130 0.138 0.145 2.E-04 0.126 0.134 0.141 

7 0.201 0.123 0.130 0.138 0.145 2.E-04 0.126 0.134 0.141 

8 0.201 0.123 0.130 0.138 0.145 3.E-04 0.126 0.134 0.141 

9 0.201 0.123 0.130 0.138 0.145 3.E-04 0.126 0.134 0.141 

10 0.201 0.123 0.130 0.138 0.145 4.E-04 0.126 0.134 0.141 

11 0.201 0.123 0.130 0.138 0.145 5.E-04 0.126 0.134 0.141 

12 0.201 0.123 0.130 0.138 0.145 6.E-04 0.126 0.134 0.141 

13 0.201 0.123 0.130 0.138 0.145 8.E-04 0.126 0.134 0.141 

14 0.201 0.123 0.130 0.138 0.145 9.E-04 0.126 0.134 0.141 

15 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 

16 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 

17 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 

18 0.201 0.123 0.130 0.138 0.145 1.E-03 0.126 0.134 0.141 
 

Table E45: Segment 3: Velocity and cumulative headloss  

Test 
No. Vel3A Vel3B Vel3C Hl31 Hl32 Hl33 Hl3Total Hl3Total 

 m/s m/s m/s m m m m mm 

1 2.E-04 1.E-04 1.E-04 0.0005 0.0004 0.0004 0.0013 1.33 

2 2.E-04 2.E-04 2.E-04 0.0005 0.0005 0.0005 0.0015 1.48 

3 2.E-04 2.E-04 2.E-04 0.0007 0.0006 0.0006 0.0019 1.89 

4 4.E-04 4.E-04 4.E-04 0.0013 0.0012 0.0011 0.0036 3.60 

5 7.E-04 7.E-04 6.E-04 0.0021 0.0020 0.0019 0.0060 5.98 

6 1.E-03 1.E-03 1.E-03 0.0039 0.0037 0.0035 0.0112 11.19 

7 2.E-03 2.E-03 2.E-03 0.0052 0.0049 0.0046 0.0147 14.67 

8 2.E-03 2.E-03 2.E-03 0.0063 0.0060 0.0056 0.0179 17.92 

9 3.E-03 2.E-03 2.E-03 0.0079 0.0075 0.0071 0.0225 22.48 

10 3.E-03 3.E-03 3.E-03 0.0097 0.0092 0.0087 0.0276 27.64 

11 4.E-03 4.E-03 4.E-03 0.0125 0.0118 0.0112 0.0356 35.55 

12 5.E-03 5.E-03 4.E-03 0.0149 0.0141 0.0133 0.0423 42.33 

13 6.E-03 6.E-03 6.E-03 0.0190 0.0179 0.0170 0.0539 53.85 

14 7.E-03 7.E-03 6.E-03 0.0210 0.0198 0.0188 0.0596 59.55 

15 8.E-03 7.E-03 7.E-03 0.0231 0.0218 0.0207 0.0656 65.62 

16 8.E-03 8.E-03 7.E-03 0.0248 0.0234 0.0222 0.0704 70.43 

17 9.E-03 8.E-03 8.E-03 0.0260 0.0245 0.0232 0.0737 73.67 

18 9.E-03 9.E-03 8.E-03 0.0278 0.0262 0.0248 0.0788 78.82 
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Table E46: Segment 4: Averaging of Areas 

Test 
No. Len4 A41 A42 A43 A44 Qs 4 

Ave 
A41 

Ave 
A42 

Ave 
A43 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.1206 0.074 0.097 0.121 0.145 1.E-05 0.085 0.109 0.133 

2 0.1206 0.074 0.097 0.121 0.145 1.E-05 0.085 0.109 0.133 

3 0.1206 0.074 0.097 0.121 0.145 2.E-05 0.085 0.109 0.133 

4 0.1206 0.074 0.097 0.121 0.145 3.E-05 0.085 0.109 0.133 

5 0.1206 0.074 0.097 0.121 0.145 5.E-05 0.085 0.109 0.133 

6 0.1206 0.074 0.097 0.121 0.145 1.E-04 0.085 0.109 0.133 

7 0.1206 0.074 0.097 0.121 0.145 1.E-04 0.085 0.109 0.133 

8 0.1206 0.074 0.097 0.121 0.145 2.E-04 0.085 0.109 0.133 

9 0.1206 0.074 0.097 0.121 0.145 2.E-04 0.085 0.109 0.133 

10 0.1206 0.074 0.097 0.121 0.145 2.E-04 0.085 0.109 0.133 

11 0.1206 0.074 0.097 0.121 0.145 3.E-04 0.085 0.109 0.133 

12 0.1206 0.074 0.097 0.121 0.145 4.E-04 0.085 0.109 0.133 

13 0.1206 0.074 0.097 0.121 0.145 5.E-04 0.085 0.109 0.133 

14 0.1206 0.074 0.097 0.121 0.145 5.E-04 0.085 0.109 0.133 

15 0.1206 0.074 0.097 0.121 0.145 6.E-04 0.085 0.109 0.133 

16 0.1206 0.074 0.097 0.121 0.145 6.E-04 0.085 0.109 0.133 

17 0.1206 0.074 0.097 0.121 0.145 6.E-04 0.085 0.109 0.133 

18 0.1206 0.074 0.097 0.121 0.145 7.E-04 0.085 0.109 0.133 
 

Table E47: Segment 4: Velocity and cumulative headloss  

Test 
No. Vel4A Vel4B Vel4C Hl41 Hl42 Hl43 

Hl4 
Total 

Hl4 
Total 

 m/s m/s m/s m m m m mm 

1 1.E-04 1.E-04 9.E-05 0.0004 0.0003 0.0003 0.0010 1.00 

2 2.E-04 1.E-04 1.E-04 0.0005 0.0004 0.0003 0.0011 1.12 

3 2.E-04 2.E-04 1.E-04 0.0006 0.0005 0.0004 0.0014 1.43 

4 4.E-04 3.E-04 2.E-04 0.0011 0.0009 0.0007 0.0027 2.72 

5 6.E-04 5.E-04 4.E-04 0.0019 0.0015 0.0012 0.0045 4.53 

6 1.E-03 9.E-04 7.E-04 0.0035 0.0027 0.0022 0.0085 8.48 

7 2.E-03 1.E-03 1.E-03 0.0046 0.0036 0.0029 0.0111 11.11 

8 2.E-03 1.E-03 1.E-03 0.0056 0.0044 0.0036 0.0136 13.57 

9 2.E-03 2.E-03 1.E-03 0.0070 0.0055 0.0045 0.0170 17.03 

10 3.E-03 2.E-03 2.E-03 0.0086 0.0068 0.0055 0.0209 20.93 

11 4.E-03 3.E-03 2.E-03 0.0111 0.0087 0.0071 0.0269 26.93 

12 4.E-03 3.E-03 3.E-03 0.0132 0.0103 0.0085 0.0321 32.06 

13 6.E-03 4.E-03 4.E-03 0.0168 0.0132 0.0108 0.0408 40.79 

14 6.E-03 5.E-03 4.E-03 0.0186 0.0146 0.0119 0.0451 45.11 

15 7.E-03 5.E-03 4.E-03 0.0205 0.0160 0.0132 0.0497 49.70 

16 7.E-03 6.E-03 5.E-03 0.0220 0.0172 0.0141 0.0533 53.35 

17 8.E-03 6.E-03 5.E-03 0.0230 0.0180 0.0148 0.0558 55.80 

18 8.E-03 6.E-03 5.E-03 0.0246 0.0193 0.0158 0.0597 59.70 
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Table E48: Segment 5: Averaging of Areas 

Test 
No. Len5 A51 A52 A53 A54 Qs 5 

Ave 
A51 

Ave 
A52 

Ave 
A53 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.065 0.105 0.145 4.E-06 0.045 0.085 0.125 

2 0.0402 0.025 0.065 0.105 0.145 4.E-06 0.045 0.085 0.125 

3 0.0402 0.025 0.065 0.105 0.145 6.E-06 0.045 0.085 0.125 

4 0.0402 0.025 0.065 0.105 0.145 1.E-05 0.045 0.085 0.125 

5 0.0402 0.025 0.065 0.105 0.145 2.E-05 0.045 0.085 0.125 

6 0.0402 0.025 0.065 0.105 0.145 3.E-05 0.045 0.085 0.125 

7 0.0402 0.025 0.065 0.105 0.145 4.E-05 0.045 0.085 0.125 

8 0.0402 0.025 0.065 0.105 0.145 5.E-05 0.045 0.085 0.125 

9 0.0402 0.025 0.065 0.105 0.145 7.E-05 0.045 0.085 0.125 

10 0.0402 0.025 0.065 0.105 0.145 8.E-05 0.045 0.085 0.125 

11 0.0402 0.025 0.065 0.105 0.145 1.E-04 0.045 0.085 0.125 

12 0.0402 0.025 0.065 0.105 0.145 1.E-04 0.045 0.085 0.125 

13 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

14 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

15 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

16 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

17 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 

18 0.0402 0.025 0.065 0.105 0.145 2.E-04 0.045 0.085 0.125 
 

Table E49: Segment 5: Velocity and cumulative headloss  

Test 
No. Vel5A Vel5B Vel5C Hl51 Hl52 Hl53 Hl5Total Hl5Total 

 m/s m/s m/s m m m m mm 

1 9.E-05 5.E-05 3.E-05 0.0003 0.0001 0.0001 0.0005 0.50 

2 1.E-04 5.E-05 3.E-05 0.0003 0.0002 0.0001 0.0006 0.55 

3 1.E-04 7.E-05 4.E-05 0.0004 0.0002 0.0001 0.0007 0.71 

4 2.E-04 1.E-04 8.E-05 0.0007 0.0004 0.0003 0.0014 1.35 

5 4.E-04 2.E-04 1.E-04 0.0012 0.0006 0.0004 0.0022 2.25 

6 7.E-04 4.E-04 3.E-04 0.0022 0.0012 0.0008 0.0042 4.21 

7 1.E-03 5.E-04 3.E-04 0.0029 0.0015 0.0010 0.0055 5.51 

8 1.E-03 6.E-04 4.E-04 0.0036 0.0019 0.0013 0.0067 6.73 

9 1.E-03 8.E-04 5.E-04 0.0045 0.0024 0.0016 0.0085 8.45 

10 2.E-03 1.E-03 6.E-04 0.0055 0.0029 0.0020 0.0104 10.39 

11 2.E-03 1.E-03 8.E-04 0.0071 0.0037 0.0025 0.0134 13.36 

12 3.E-03 1.E-03 1.E-03 0.0085 0.0044 0.0030 0.0159 15.91 

13 4.E-03 2.E-03 1.E-03 0.0108 0.0057 0.0038 0.0202 20.24 

14 4.E-03 2.E-03 1.E-03 0.0119 0.0063 0.0042 0.0224 22.38 

15 4.E-03 2.E-03 2.E-03 0.0131 0.0069 0.0047 0.0247 24.66 

16 5.E-03 2.E-03 2.E-03 0.0141 0.0074 0.0050 0.0265 26.47 

17 5.E-03 3.E-03 2.E-03 0.0147 0.0077 0.0052 0.0277 27.69 

18 5.E-03 3.E-03 2.E-03 0.0157 0.0083 0.0056 0.0296 29.63 
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Table 50: Summary of Method 3 Headloss Tests. Results from Tables 40 to 49 (WST) 

Test No. Total Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s mm mm mm mm mm 

1 0.10 1.77 1.57 1.33 1.00 0.50 

2 0.11 1.97 1.75 1.48 1.12 0.55 

3 0.14 2.51 2.23 1.89 1.43 0.71 

4 0.26 4.79 4.26 3.60 2.72 1.35 

5 0.44 7.96 7.08 5.98 4.53 2.25 

6 0.82 14.91 13.25 11.19 8.48 4.21 

7 1.07 19.53 17.35 14.67 11.11 5.51 

8 1.31 23.86 21.20 17.92 13.57 6.73 

9 1.64 29.94 26.60 22.48 17.03 8.45 

10 2.02 36.80 32.70 27.64 20.93 10.39 

11 2.60 47.34 42.06 35.55 26.93 13.36 

12 3.10 56.37 50.09 42.33 32.06 15.91 

13 3.94 71.71 63.72 53.85 40.79 20.24 

14 4.36 79.30 70.46 59.55 45.11 22.38 

15 4.80 87.38 77.64 65.62 49.70 24.66 

16 5.15 93.78 83.34 70.43 53.35 26.47 

17 5.39 98.10 87.17 73.67 55.80 27.69 

18 5.77 104.96 93.27 78.82 59.70 29.63 

 

Figure E20 plots Table E50 graphically. A trendline is added to the results in order to 

predict the headloss, due to stone bedding. This occursat the most downstream point 

of WC1. It is at this point that the largest magnitude of headloss occurs. Table E51 

summaries these results. 

 

Table E51: Summary of Method 3: maximum headloss versus flow rates (WST) 

Test No. Total Q Total 2Q 
Maximum Headloss 

due to Stone Bedding 

 
l/s l/s mm 

1 0.10 0.19 1.795 

2 0.11 0.22 1.999 

3 0.14 0.28 2.554 

4 0.26 0.53 4.87 

5 0.44 0.87 8.098 

6 0.82 1.64 15.16 

7 1.07 2.15 19.86 

8 1.31 2.62 24.26 

9 1.65 3.29 30.45 

10 2.02 4.04 37.42 

11 2.60 5.20 48.14 

12 3.10 6.19 57.32 

13 3.94 7.88 72.93 

14 4.36 8.71 80.65 

15 4.80 9.60 88.87 

16 5.15 10.31 95.38 

17 5.39 10.78 99.77 

18 5.77 11.53 106.75 
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Figure E15: Method 3:Results of Headloss due to Stone Bedding, within WC1 
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E.6.4.3 Comparison of Results for Method 1, 2 and 3 
 

 

The following Figure E21 shows the results for Method 1, 2 and 3 for the calculation of 

Headloss due to the stone bedding, Results for Method1, 2 and 3 are derived from 

TablesE23, E37 and E51. 

 

 

Figure E21: Method 1, 2 and 3: Headloss due to the stone bedding
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E.7:Water, Sand and Stone Bedding Test 

 

The following test is similar to the previous one and the addition of sand aims to create 

a worst case scenario where all voids are assumed to be filled to 100% with sand. 

Details for the sand can be found in Appendix C. The main aim is quantify the 

headloss due to the sand and stone bedding matrix that surround the intake pipe 

 

The following explains the manner in which the Sand and Stone Bedding Test was 

conducted and uses tables and equations to illustrate the analysis process. Table E1 

which can be found in previous chapters details the physical aspects of the model 

including the Intake pipeline.  

 

Table E52 shows the initial results of the 7 tests that where conducted. The difference 

between WC1 and WC2 denotes the total headloss. The flow rate was determined 

from the following Equation: B1 

 

2

5

2
tan2

15

8
hgCQ d 


      Eqn B1 

where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table E52: Total Headloss and initial flow rate for Sand and Stone Bedding 

Test No. WC1 WC2 
Upstream 

Head 
Downstream 

Head 
Total 
∆hf 

Q Half 
Pipe 

Q Half 
Pipe 

 
mm mm mm mm mm l/s m3/s 

1 1760 1735 51.5 26.5 25 0.15 0.000154 

2 1855 1753 146.5 44.5 102 0.56 0.000563 

3 1970 1767 261.5 58.5 203 1.11 0.001115 

4 2070 1773 361.5 64.5 297 1.42 0.001423 

5 2130 1778 421.5 69.5 352 1.71 0.001715 

6 2235 1791 526.5 82.5 444 2.63 0.002632 

7 2325 1797 616.5 88.5 528 3.14 0.003137 

 

Water leakage is considered next. As per ChapterE3 theses losses are incorporated in 

Table E53. 80% of all leakage is estimated to emanate from WC1, 10% from WC 2a 

and 10% from WC2b. 

 

E.7.1 Water Leakage losses 

 

In Table E53, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculate the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 
Table E53: Total headloss and flow rate incorporating losses 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b Total Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.15 277 4911 73.07 0.015 0.011903 0.001488 0.001488 0.167 

2 0.56 272 4902 71.62 0.015 0.011688 0.001461 0.001461 0.576 

3 1.11 267 4857 70.17 0.014 0.011557 0.001445 0.001445 1.128 

4 1.42 280 4907 73.95 0.015 0.012056 0.001507 0.001507 1.436 

5 1.71 275 4934 72.49 0.015 0.011754 0.001469 0.001469 1.728 

6 2.63 288 5187 76.29 0.015 0.011767 0.001471 0.001471 2.646 

7 3.14 273 5002 71.91 0.014 0.011501 0.001438 0.001438 3.150 
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E.7.2 Pressure losses 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A and the loss for sand and stone bedding, 

can be established. ChapterE2 states the Pressure Losses A to E with the relevant 

equations. Table E54 calculates the Losses B to E and hence the remaining total 

headloss will be Loss A plus the losses due to sand and stone bedding. 

 

Table E54: Disaggregation of pressure losses 

Test No. Total ∆hf Total Q Loss B+C Loss D Loss E 

Loss A + 
sand + stone 

bedding 

%A of 
Total 
∆hf 

 
mm l/s m m m mm  

1 25 0.17 3.0.E-05 2.80E-06 2.27E-06 24.97 99.87% 

2 102 0.58 3.6.E-04 3.74E-05 2.68E-05 101.61 99.62% 

3 203 1.13 1.4.E-03 1.47E-04 1.03E-04 201.51 99.27% 

4 297 1.44 2.2.E-03 2.39E-04 1.67E-04 294.59 99.19% 

5 352 1.73 3.2.E-03 3.48E-04 2.42E-04 348.51 99.01% 

6 444 2.65 7.6.E-03 8.19E-04 5.67E-04 435.82 98.16% 

7 528 3.15 1.1.E-02 1.16E-03 8.04E-04 516.40 97.80% 

 

 

E.7.3 Perforation losses and Flowrate Relationship 

 

Table E55 shows relationship between Loss A + sand + stone bedding and the 

flowrate for half a pipe and for a full pipeline. Figure E22 plots the various flows rate 

and their corresponding pressure loss. There is a small scatter of data, Hence a 

strongly defined relationship between the Pressure loss and flowrate could be 

established. 

 

Table E55: Loss A+ sand + stone bedding with corresponding flowrates 

Test No. 

Loss A + sand + 
stone bedding Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 24.97 0.167 0.33 

2 101.61 0.576 1.15 

3 201.51 1.128 2.26 

4 294.59 1.436 2.87 

5 348.51 1.728 3.46 

6 435.82 2.646 5.29 

7 516.40 3.150 6.30 

Stellenbosch University  http://scholar.sun.ac.za



303 

University of Stellenbosch 

 

 
Figure E22: Plot of Pressure loss due to the slots, +sand + stone bedding flowrate for Full 

flowing ø250mm perforated pipe 

 

The equation below describes the relationship between headloss due to perforation 

friction, sand and stone bedding and flowrate 

 

∆P= 4.214Q2 + 108.9Q       Eqn8 

 

With  

∆P = Headloss due to slot friction in mm 

Q = Flowrate for one full ø250mm pipeline in liters/second 

 

 

y = 4.214x2 + 108.9x 
R² = 0.988 
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E.7.4 Segmental Analysis of HPM 

 

Analysing the Perforation friction + Stone Bedding and flow relationship initially, is as 

per chapter E5.4. The model is portioned into five segments. The flow was calculated 

at the same points in the HPM  

 

As described by Table E54, the Perforation Loss A + Stone Bedding accounts for the 

vast majority of the pressure loss. Hence for a point on the Intake pipeline just inside 

WC1 (Pos 0), the velocity of the flow into the pipeline is at its maximum. The velocity at 

this point is termed Vmax.  The opposite holds true for a point at the start of the Intake 

pipeline. At this point, Vmin, the velocity of the inflow is zero. Hence via linear 

interpolation, the velocity at any point in between both ends, can be calculated Figure 

E8 in chapter E6.4 above, describes the manner in which the HPM is segmented. 

 

 

E.7.4.1 Methodology 

 

In order to calculate the flow at various points within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2 , V3, V4 and VMIN occur at the border of 

each segment, Hence for each segment, the Average Velocity, VS1, VS2, VS3, VS4 and 

VS5 for each segment is easily calculated.  

 

VMAX  is derived from Bernoulli principles where: 

 

hgV  2         Eqn E1 

 

With  

 

V = Velocity in m/s 

 

h  = = is the driving pressure  

 

g = gravitational constant (9.81m/s2) 

 

Note that the driving pressure h  is Perforation Loss A+ Stone bedding. The flow from 

each segment is then calculated by multiplying the velocity with the perforation area 
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and a discharge coefficient, Cd. Table E56 shows the distribution of inflowing velocity 

over the length of the Intake Pipeline.  

 

Equation E2 was used to calculate the flow from each segment. Table E57 contains 

the flowrate for each segment and the sum of flow from all segments of the pipeline. 

 

hgACqQ dT  2       Eqn E2 

 

With  

 

q = Flowrate through for each segment in m3/s 

 

Q = Sum of Flowrate form each segment in m3/s 

 

A= The Area through which flow is allowed in m2  

 

Cd = Coefficient of Discharge 

 

 

 

Table E56: Inflowing velocity of water flowing into the pipe, over the length of the Intake 
Pipeline 

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  

Loss A 
, sand 
+Stone  Vmax Vs 1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

 
mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 25.0 0.700 0.630 0.560 0.490 0.420 0.350 0.280 0.210 0.140 0.070 0.000 

2 101.6 1.412 1.271 1.130 0.988 0.847 0.706 0.565 0.424 0.282 0.141 0.000 

3 201.5 1.988 1.790 1.591 1.392 1.193 0.994 0.795 0.597 0.398 0.199 0.000 

4 294.6 2.404 2.164 1.923 1.683 1.442 1.202 0.962 0.721 0.481 0.240 0.000 

5 348.5 2.615 2.353 2.092 1.830 1.569 1.307 1.046 0.784 0.523 0.261 0.000 

6 435.8 2.924 2.632 2.339 2.047 1.755 1.462 1.170 0.877 0.585 0.292 0.000 

7 516.4 3.183 2.865 2.546 2.228 1.910 1.592 1.273 0.955 0.637 0.318 0.000 
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Table E57: Calculated Flowrate from all segments of the Pipeline 

1 2 3 4 5 6 7 8 9 10 11 

Test  

Loss A 
+ Stone 
Bedding Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Q Total 

Q 
Total 

2Q 
Total 

0 mm 
 

m
3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 25.0 0.09 0.00006 0.00005 0.00003 0.00002 0.00001 0.00017 0.17 0.33 

2 101.6 0.16 0.00021 0.00016 0.00012 0.00007 0.00002 0.00058 0.58 1.15 

3 201.5 0.23 0.00041 0.00032 0.00023 0.00014 0.00005 0.00113 1.13 2.26 

4 294.6 0.24 0.00052 0.00040 0.00029 0.00017 0.00006 0.00144 1.44 2.87 

5 348.5 0.26 0.00062 0.00048 0.00035 0.00021 0.00007 0.00173 1.73 3.46 

6 435.8 0.36 0.00095 0.00074 0.00053 0.00032 0.00011 0.00265 2.65 5.29 

7 516.4 0.39 0.00113 0.00088 0.00063 0.00038 0.00013 0.00315 3.15 6.30 

 

With incoming velocities calculated, the next step is the estimation of the pressure loss 

due to the above velocities. Equation E3 calculates the headloss along the intake 

pipeline using the following equation: 

 

 

g

V
Kehf

2
*

2

                 Eqn E3 

 

With  

 

Ke = Loss Coefficient 

V  = Velocity in m/s 

hf =  Pressure loss 

g = gravitational constant (9.81m/s2) 

 

 

Table E58 below calculates the headloss along the intake pipeline using the above 

equation: 
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Table E58: Pressure losses over length of Intake Pipeline  

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  
Total 

Losses 
hf 

max hf hf hf hf hf hf hf hf hf hf 

 

mm mm mm mm mm mm mm mm mm mm mm mm 

1 24.97 24.9 20 16 12 9 6 4 2 1 0 0 

2 101.61 101 82 65 50 37 25 16 9 4 1 0 

3 201.51 201 163 129 99 73 50 32 18 8 2 0 

4 294.59 294 239 189 144 106 74 47 27 12 3 0 

5 348.51 348 282 223 171 125 87 56 31 14 3 0 

6 435.82 435 353 279 214 157 109 70 39 17 4 0 

7 516.40 516 418 330 253 186 129 83 46 21 5 0 

 

Figure E23 below is a plot of EGLs at the centre of the Intake Pipeline. The EGL 

shows the amount of energy that has been lost from the sand and stone bedding 

friction and from water entering the Intake. 

 

 

 

Figure E23: Plot of EGLs at the centre of the Intake Pipeline for Sand and Stone Bedding Test 
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For the 7 tests conducted, the increase in pressure losses closer to the exit point of 

WC1, is clearly visible. The calculation of the EGL at various points within the Intake 

pipeline is crucial as it aids in determining the loss due to the sand and stone bedding. 

This can be seen in the flowing chapter 

 

 

E.7.4.2 Pressure loss due to Sand and Stone Bedding 

 

Calculating the loss of pressure due to sand and stone bedding is critical as it 

influences the design of the seawater intake. Note that the stone bedding for all tests 

were standardised with the Intake pipe being 150mm above the bedrock, 300mm 

below the cover level of the stone bedding and 485mm from an adjacent intake 

pipeline.  Three methods where employed when seeking to determine the pressure 

loss due the stone bedding. They are termed, Method 1, 2 and 3 are explained in 

further below. 

 

 

E.7.4.2.1 Method 1: Simple method for determining sand and stone 

bedding loss 

 

In this simplistic method, the equation for the “Water Test with Extra Perforation”: is 

removed from the equation for “Sand and Stone Test” This is simplified as Eqn 9 

equals Eqn 8 minus Eqn 5 where: 

 

∆P= 4.214Q2 + 108.9Q       (Eqn8) 

 

minus 

 

∆P= -0.891Q2 + 1.286Q       (Eqn5) 

 

equals 

 

∆P= 5.105Q2 + 107.614Q       (Eqn9) 

 

Table E59 below calculates the amount of headloss for notional flow values while 

Figure E24 plots these graphically. 
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Table E59: Method 1: ø250mm perforated pipe test: Pressure loss due to Stone Bedding only 

Test No Q Half Pipe Q Full Pipe 
Sand and Stone Bedding 

Friction 

 l/s l/s mm 

1 0.167 0.335 18 

2 0.576 1.151 64 

3 1.128 2.255 128 

4 1.436 2.873 165 

5 1.728 3.456 201 

6 2.646 5.291 320 

7 3.150 6.301 390 

 

 

 
Figure E24: ø250mm Perforated pipe, Sand and Stone Bedding Test: Pressure loss due to 

sand and Stone Bedding ONLY 
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E.7.4.2.2 Method 2: Method for determining stone bedding loss : 

Hydraulic conductivity: Kenny, Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of the sand stone bedding. From Table E56, the 

velocity for each segment of the Intake pipeline was determined. However the stone 

bedding cannot be split into equal segments as well. This is only correct for stone 

bedding adjacent to the intake pipeline. It does not apply to the flat horizontal surface 

of the stone bedding. 

 

Table E60:ø250mm Perforated pipe, Sand and Stone Bedding Test: Flow through segments  

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00006 0.00005 0.00003 0.00002 0.00001 36% 28% 20% 12% 4% 

2 0.00021 0.00016 0.00012 0.00007 0.00002 36% 28% 20% 12% 4% 

3 0.00040 0.00031 0.00022 0.00013 0.00004 36% 28% 20% 12% 4% 

4 0.00052 0.00040 0.00029 0.00017 0.00006 36% 28% 20% 12% 4% 

5 0.00062 0.00048 0.00034 0.00021 0.00007 36% 28% 20% 12% 4% 

6 0.00095 0.00074 0.00053 0.00032 0.00011 36% 28% 20% 12% 4% 

7 0.00112 0.00087 0.00062 0.00037 0.00012 36% 28% 20% 12% 4% 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table E60above looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate.  

 

Figure E16 provides a graphical description of how proportions were then applied to 

length of the stone bed. This splitting of the stone bedding surface ensured that all 

flows entering the stone bed were proportional to the flow entering the intake pipeline 

for all segments. 

 

Figure E17 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure E16 and E17. As in Figure E16, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 
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calculated it is based on the intake pipe dimensions. Areas A2 and A3 are a third of the 

distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4 are noted as Lengths len1, len2 and len3 respectively. 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as follows: 

 

 

 

Eqn E4 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

The first three variables are easily to calculate however determining the hydraulic 

conductivity k, requires further investigation. 

 

The hydraulic conductivity is calculated using the following equation 

 

 

          Eqn E5 

 

Where: 

k = Hydraulic conductivity 

γW = Unit Weight of Water  

η  = Dynamic Viscosity of water  

K = Absolute Hydraulic conductivity 

 

The unit weight of water γW ,, and the dynamic viscosity of water η are fairly simple to 

calculate. However the Absolute Hydraulic conductivity K has to be calculated. It is 

calculated using the following equation: 

 

          Eqn E6 

 

Where: 

k

VL
mhf


)(

K
k w






2

5DCK u
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K = Absolute Hydraulic conductivity 

Cu = Coefficient of Uniformity. Varies between 0.05 to 1 

D5 = Dimension of aggregate that has a cumulative percentage passing of 5% 

 

Figure E25 below is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D5 = 10mm was obtained. This was adequate for the 

previous Chapter E7.3. With the inclusion of sand, this would decrease D5 significantly. 

 

Figure E25: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 
Mindess, 2005) 

 

Referring to Figure C3 in Appendix C, the value of D5 is approximately 0.2mm. From 

Figure E26 below, this translated to a k of 0.02cm/s or 0.2mm/s. Considering the tests 

within the HPM, a k value of 0.02 cm/sec is not reflective of the actual flow rates 

recorded. 
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Figure E26: Graphical plot of Hydraulic conductivity Equation (Das 2000) 

 

 

The best explanation for this can be attributed to the removal of sand from the bedding 

matrix, Figure 42. With the removal of the sand, the bedding matrix would revert close 

to its original contents of only 19mm Stone. Hence a D5of 10mm will be used again. 

 

Hence for a Cu of 0.8, Eqn E6 yields a K of 80mm2.  Utilising Eqn E5 and the following 

values: 

 

γW = 9800 N/m3 

η = 0.00014 Ns/m 

 

A hydraulic conductivity k of 0.688m/s was obtained. Table E61 summaries these 

results. Using a D5 of 10mm, a k value of approximately 0.7m/s is found. 
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Table E61: Summary: Calculating the Hydraulic conductivity 

Description Value Unit 

Cu (0.05 to 1) 0.80 
 

D5 10.0 mm 

Water Column Width 0.61 m 

Absolute Conductivity K 80 mm
2
 

Unit Weight of Water γW 9800 N/m
3
 

Dynamic Viscosity of water η 1.14E-03 Ns/m
2
 

Hydraulic Conductivity k 0.688 m/s 

 

Using the values from Table E60 and E61, headloss for segment 1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table E62 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table E63 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The following tables describe the headloss calculated for Segments, 2, 3, 4 and 5. 
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Table E62: Segment 1: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 

Ave 
A11 

Ave 
A12 

Ave 
A13 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.196 0.170 0.145 0.00006 0.208 0.183 0.158 

2 0.3618 0.221 0.196 0.170 0.145 0.00021 0.208 0.183 0.158 

3 0.3618 0.221 0.196 0.170 0.145 0.00040 0.208 0.183 0.158 

4 0.3618 0.221 0.196 0.170 0.145 0.00052 0.208 0.183 0.158 

5 0.3618 0.221 0.196 0.170 0.145 0.00062 0.208 0.183 0.158 

6 0.3618 0.221 0.196 0.170 0.145 0.00095 0.208 0.183 0.158 

7 0.3618 0.221 0.196 0.170 0.145 0.00112 0.208 0.183 0.158 
 

Table E63: Segment 1: Velocity and cumulative headloss  

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 

Hl1Tota
l 

Hl1Tota
l 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0003 0.0004 0.0001 0.0001 0.0001 0.0003 0.30 

2 0.0010 0.0011 0.0013 0.0003 0.0003 0.0004 0.0011 1.05 

3 0.0019 0.0022 0.0026 0.0006 0.0007 0.0008 0.0021 2.05 

4 0.0025 0.0028 0.0033 0.0008 0.0009 0.0010 0.0026 2.61 

5 0.0030 0.0034 0.0039 0.0009 0.0010 0.0012 0.0031 3.14 

6 0.0045 0.0052 0.0060 0.0014 0.0016 0.0018 0.0048 4.80 

7 0.0054 0.0061 0.0071 0.0016 0.0019 0.0022 0.0057 5.70 

 
Table E64: Segment 2: Averaging of Areas 

Test 
No. Len2 A21 A22 A23 A24 Qs 2 

Ave 
A21 

Ave 
A22 

Ave 
A23 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.163 0.154 0.145 0.00005 0.167 0.158 0.150 

2 0.2814 0.172 0.163 0.154 0.145 0.00016 0.167 0.158 0.150 

3 0.2814 0.172 0.163 0.154 0.145 0.00031 0.167 0.158 0.150 

4 0.2814 0.172 0.163 0.154 0.145 0.00040 0.167 0.158 0.150 

5 0.2814 0.172 0.163 0.154 0.145 0.00048 0.167 0.158 0.150 

6 0.2814 0.172 0.163 0.154 0.145 0.00074 0.167 0.158 0.150 

7 0.2814 0.172 0.163 0.154 0.145 0.00087 0.167 0.158 0.150 
 

Table E65: Segment 2: Velocity and cumulative headloss  

Test 
No. Vel 2A Vel 2B Vel 2C Hl21 Hl22 Hl23 

Hl2 
Total 

Hl2 
Total 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003 0.27 

2 0.0010 0.0010 0.0011 0.0003 0.0003 0.0003 0.0009 0.93 

3 0.0019 0.0020 0.0021 0.0006 0.0006 0.0006 0.0018 1.82 

4 0.0024 0.0025 0.0027 0.0007 0.0008 0.0008 0.0023 2.32 

5 0.0029 0.0030 0.0032 0.0009 0.0009 0.0010 0.0028 2.79 

6 0.0044 0.0046 0.0049 0.0013 0.0014 0.0015 0.0043 4.26 

7 0.0052 0.0055 0.0058 0.0016 0.0017 0.0018 0.0051 5.07 
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Table E66: Segment 3: Averaging of Areas 

Test 
No. Len3 A31 A32 A33 A34 Qs 3 

Ave 
A31 

Ave 
A32 

Ave 
A33 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.130 0.138 0.145 0.00003 0.126 0.134 0.141 

2 0.201 0.123 0.130 0.138 0.145 0.00012 0.126 0.134 0.141 

3 0.201 0.123 0.130 0.138 0.145 0.00022 0.126 0.134 0.141 

4 0.201 0.123 0.130 0.138 0.145 0.00029 0.126 0.134 0.141 

5 0.201 0.123 0.130 0.138 0.145 0.00034 0.126 0.134 0.141 

6 0.201 0.123 0.130 0.138 0.145 0.00053 0.126 0.134 0.141 

7 0.201 0.123 0.130 0.138 0.145 0.00062 0.126 0.134 0.141 
 

Table E67: Segment 3: Velocity and cumulative headloss  

Test 
No. Vel 3A Vel 3B Vel 3C Hl31 Hl32 Hl33 

Hl3Tota
l 

Hl3Tota
l 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0.23 

2 0.0009 0.0009 0.0008 0.0003 0.0003 0.0002 0.0008 0.79 

3 0.0018 0.0017 0.0016 0.0005 0.0005 0.0005 0.0015 1.54 

4 0.0023 0.0021 0.0020 0.0007 0.0007 0.0006 0.0020 1.96 

5 0.0027 0.0026 0.0024 0.0008 0.0008 0.0007 0.0024 2.36 

6 0.0042 0.0039 0.0037 0.0013 0.0012 0.0011 0.0036 3.60 

7 0.0049 0.0047 0.0044 0.0015 0.0014 0.0013 0.0043 4.28 
 

Table E68: Segment 4: Averaging of Areas 

Test 
No. Len4 A41 A42 A43 A44 Qs 4 

Ave 
A41 

Ave 
A42 

Ave 
A43 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.1206 0.074 0.097 0.121 0.145 0.00002 0.085 0.109 0.133 

2 0.1206 0.074 0.097 0.121 0.145 0.00007 0.085 0.109 0.133 

3 0.1206 0.074 0.097 0.121 0.145 0.00013 0.085 0.109 0.133 

4 0.1206 0.074 0.097 0.121 0.145 0.00017 0.085 0.109 0.133 

5 0.1206 0.074 0.097 0.121 0.145 0.00021 0.085 0.109 0.133 

6 0.1206 0.074 0.097 0.121 0.145 0.00032 0.085 0.109 0.133 

7 0.1206 0.074 0.097 0.121 0.145 0.00037 0.085 0.109 0.133 
 

Table E69: Segment 4: Velocity and cumulative headloss  

Test 
No. Vel 4A Vel 4B Vel 4C Hl41 Hl42 Hl43 

Hl4 
Total 

Hl4 
Total 

 m/s m/s m/s m m m m mm 

1 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000 0.0002 0.17 

2 0.0008 0.0006 0.0005 0.0002 0.0002 0.0002 0.0006 0.60 

3 0.0016 0.0012 0.0010 0.0005 0.0004 0.0003 0.0012 1.17 

4 0.0020 0.0016 0.0013 0.0006 0.0005 0.0004 0.0015 1.49 

5 0.0024 0.0019 0.0016 0.0007 0.0006 0.0005 0.0018 1.79 

6 0.0037 0.0029 0.0024 0.0011 0.0009 0.0007 0.0027 2.73 

7 0.0044 0.0034 0.0028 0.0013 0.0010 0.0009 0.0032 3.24 
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Table E70: Segment 5: Averaging of Areas 

Test 
No. Len5 A51 A52 A53 A54 Qs 5 

Ave 
A51 

Ave 
A52 

Ave 
A53 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.065 0.105 0.145 0.00001 0.045 0.085 0.125 

2 0.0402 0.025 0.065 0.105 0.145 0.00002 0.045 0.085 0.125 

3 0.0402 0.025 0.065 0.105 0.145 0.00004 0.045 0.085 0.125 

4 0.0402 0.025 0.065 0.105 0.145 0.00006 0.045 0.085 0.125 

5 0.0402 0.025 0.065 0.105 0.145 0.00007 0.045 0.085 0.125 

6 0.0402 0.025 0.065 0.105 0.145 0.00011 0.045 0.085 0.125 

7 0.0402 0.025 0.065 0.105 0.145 0.00012 0.045 0.085 0.125 

 

 

Table E71: Segment 5: Velocity and cumulative headloss  

Test 
No. Vel 5A Vel 5B Vel 5C Hl51 Hl52 Hl53 

Hl5Tota
l 

Hl5Tota
l 

 m/s m/s m/s m m m m mm 

1 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.09 

2 0.0005 0.0003 0.0002 0.0002 0.0001 0.0001 0.0003 0.30 

3 0.0010 0.0005 0.0004 0.0003 0.0002 0.0001 0.0006 0.58 

4 0.0013 0.0007 0.0005 0.0004 0.0002 0.0001 0.0007 0.74 

5 0.0015 0.0008 0.0006 0.0005 0.0002 0.0002 0.0009 0.89 

6 0.0024 0.0012 0.0008 0.0007 0.0004 0.0003 0.0014 1.35 

7 0.0028 0.0015 0.0010 0.0009 0.0004 0.0003 0.0016 1.61 

 

 

Table E72: Summary of results for Tables 62 to 71 

Test No. Total Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s mm mm mm mm mm 

1 0.17 0.30 0.27 0.23 0.17 0.09 

2 0.58 1.05 0.93 0.79 0.60 0.30 

3 1.13 2.05 1.82 1.54 1.17 0.58 

4 1.44 2.61 2.32 1.96 1.49 0.74 

5 1.73 3.14 2.79 2.36 1.79 0.89 

6 2.65 4.80 4.26 3.60 2.73 1.35 

7 3.15 5.70 5.07 4.28 3.24 1.61 

8 0.17 0.30 0.27 0.23 0.17 0.09 

 

Figure E72 plots Table E27 graphically. A trendline is added to the results in order to 

predict the headloss, due to stone bedding, at the most downstream point of WC1. It is 

at this point that the largest magnitude of headloss occurs. Table E73 summaries 

these results. 
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Figure E27: Method 2 :Results of Headloss due to (sand and) Stone Bedding, within WC1 

(Legend: Flowrates) 

 

 

Table E73: Method 2 : Summary of maximum headloss versus flow rates(WSST) 

Test No. Total Q Total 2Q 
Maximum Headloss due 

to Stone Bedding 

 
l/s l/s mm 

1 0.17 0.33 0.31 

2 0.58 1.15 1.069 

3 1.13 2.26 2.095 

4 1.44 2.87 2.668 

5 1.73 3.46 3.21 

6 2.65 5.29 4.918 

7 3.15 6.30 5.858 

 

The results of the above table will be represented with the results of Method 1 and 3 in 

section E.7.4.3 
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E.7.4.2.2 Method 3: Method for determining stone bedding loss : 

Hydraulic conductivity: Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, also 

looks at the hydraulic conductivity of the stone bedding. This is based on work carried 

out by Forchheimer. From Table E56, the velocity for each segment of the Intake 

pipeline was determined. However, stone bedding cannot be split into equal segments 

as well. This is only correct for stone bedding adjacent to the intake pipeline. It does 

not apply to the flat horizontal surface of the stone bedding. 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table E74 below looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate. 

 

In Figure E28, these proportions were then applied to length of the stone bed. This 

splitting of the stone bedding surface ensured that all flows entering the stone bed 

were proportional to the flow entering the intake pipeline for all segments. 

 

Table E74:ø250mm Perforated pipe, Water and Stone Bedding Test: Flow through segments  

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00006 0.00005 0.00003 0.00002 0.00001 36% 28% 20% 12% 4% 

2 0.00021 0.00016 0.00012 0.00007 0.00002 36% 28% 20% 12% 4% 

3 0.00040 0.00031 0.00022 0.00013 0.00004 36% 28% 20% 12% 4% 

4 0.00052 0.00040 0.00029 0.00017 0.00006 36% 28% 20% 12% 4% 

5 0.00062 0.00048 0.00034 0.00021 0.00007 36% 28% 20% 12% 4% 

6 0.00095 0.00074 0.00053 0.00032 0.00011 36% 28% 20% 12% 4% 

7 0.00112 0.00087 0.00062 0.00037 0.00012 36% 28% 20% 12% 4% 
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Figure E28: ø250mm Slotted pipe-Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

 
Figure E29: Notional flow path of a stone bedding segment 
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Figure E28 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure E28 and E29. As in Figure E28, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 

calculated it is based on the intake pipe dimensions. Areas A2 and A3are a third of the 

distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4are noted as Lengths len1, len2 and len3 respectively. 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as per Equation 4 below: 

 

        Eqn E4 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

 

The first two variables are easily to calculate however the hydraulic conductivity is 

calculated from Figure E31. 

 

Referring to Figure C3 in Appendix C, the value of D50of the SAND is approximately 

0.2mm. Hence as per the previous section, the k value is of 0.02 cm/sec is not 

reflective of the actual flow rates recorded. 

 

This is due to the removal of sand from the bedding matrix, Figure 42, during the test. 

With the removal of the sand, the bedding matrix would revert close to its original 

contents of only 19mm Stone. Hence a D50 of 15.7mm will be used again. 

 

Table E75 summaries the parameters when obtaining the hydraulic conductivity k 

value. 

k

VL
mhf


)(
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Figure E30: Grading curve for nominally single-sized 19mm Stone (Alexander & Mindess, 
2005) 
 
 

 

Figure E31: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF,2007) 
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Table D75: Calculation of Permeability for 19mm Bedding of seawater Intake (WST) 

Description Unit Bedding 

Dn50 m 0.0157 

Log (D50) m -1.80 

Log k  m/s -1.16 

k m/s 0.069 

 

 
Using the values from Table E74 and E75, headloss for Segment 1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform. 

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table E76 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table E77 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The following tables describe the headloss calculated for Segments 1, 2, 3, 4 and 5. 

 

Table E76: Segment 1: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 

Ave 
A11 

Ave 
A12 

Ave 
A13 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.196 0.170 0.145 0.00006 0.208 0.183 0.158 

2 0.3618 0.221 0.196 0.170 0.145 0.00021 0.208 0.183 0.158 

3 0.3618 0.221 0.196 0.170 0.145 0.00040 0.208 0.183 0.158 

4 0.3618 0.221 0.196 0.170 0.145 0.00052 0.208 0.183 0.158 

5 0.3618 0.221 0.196 0.170 0.145 0.00062 0.208 0.183 0.158 

6 0.3618 0.221 0.196 0.170 0.145 0.00095 0.208 0.183 0.158 

7 0.3618 0.221 0.196 0.170 0.145 0.00112 0.208 0.183 0.158 

 
 
Table E77: Segment 1: Velocity and cumulative headloss  

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0003 0.0004 0.00088 0.00100 0.00116 0.00304 3.04 

2 0.0010 0.0011 0.0013 0.00303 0.00345 0.00400 0.01049 10.49 

3 0.0019 0.0022 0.0026 0.00594 0.00676 0.00784 0.02054 20.54 

4 0.0025 0.0028 0.0033 0.00756 0.00860 0.00998 0.02615 26.15 

5 0.0030 0.0034 0.0039 0.00910 0.01035 0.01201 0.03147 31.47 

6 0.0045 0.0052 0.0060 0.01394 0.01586 0.01840 0.04820 48.20 

7 0.0054 0.0061 0.0071 0.01661 0.01889 0.02191 0.05741 57.41 
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Table E78: Segment 2: Averaging of Areas 

Test 
No. Len2 A21 A22 A23 A24 Qs 2 

Ave 
A21 

Ave 
A22 

Ave 
A23 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.163 0.154 0.145 0.00005 0.167 0.158 0.150 

2 0.2814 0.172 0.163 0.154 0.145 0.00016 0.167 0.158 0.150 

3 0.2814 0.172 0.163 0.154 0.145 0.00031 0.167 0.158 0.150 

4 0.2814 0.172 0.163 0.154 0.145 0.00040 0.167 0.158 0.150 

5 0.2814 0.172 0.163 0.154 0.145 0.00048 0.167 0.158 0.150 

6 0.2814 0.172 0.163 0.154 0.145 0.00074 0.167 0.158 0.150 

7 0.2814 0.172 0.163 0.154 0.145 0.00087 0.167 0.158 0.150 

 

Table E79: Segment 2: Velocity and cumulative headloss  

Test 
No. Vel 2A Vel 2B Vel 2C Hl21 Hl22 Hl23 Hl2 Total Hl2 Total 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0003 0.0003 0.00085 0.00090 0.00095 0.00270 2.70 

2 0.0010 0.0010 0.0011 0.00294 0.00310 0.00328 0.00932 9.32 

3 0.0019 0.0020 0.0021 0.00575 0.00607 0.00643 0.01825 18.25 

4 0.0024 0.0025 0.0027 0.00732 0.00773 0.00818 0.02323 23.23 

5 0.0029 0.0030 0.0032 0.00881 0.00930 0.00985 0.02796 27.96 

6 0.0044 0.0046 0.0049 0.01349 0.01425 0.01509 0.04283 42.83 

7 0.0052 0.0055 0.0058 0.01607 0.01697 0.01797 0.05102 51.02 

 
Table E80: Segment 3: Averaging of Areas 

Test 
No. Len3 A31 A32 A33 A34 Qs 3 

Ave 
A31 

Ave 
A32 

Ave 
A33 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.130 0.138 0.145 0.00003 0.126 0.134 0.141 

2 0.201 0.123 0.130 0.138 0.145 0.00012 0.126 0.134 0.141 

3 0.201 0.123 0.130 0.138 0.145 0.00022 0.126 0.134 0.141 

4 0.201 0.123 0.130 0.138 0.145 0.00029 0.126 0.134 0.141 

5 0.201 0.123 0.130 0.138 0.145 0.00034 0.126 0.134 0.141 

6 0.201 0.123 0.130 0.138 0.145 0.00053 0.126 0.134 0.141 

7 0.201 0.123 0.130 0.138 0.145 0.00062 0.126 0.134 0.141 

 
Table E81: Segment 3: Velocity and cumulative headloss  

Test 
No. Vel 3A Vel 3B Vel 3C Hl31 Hl32 Hl33 Hl3Total Hl3Total 

 m/s m/s m/s m m m m mm 

1 0.0003 0.0002 0.0002 0.00080 0.00076 0.00072 0.00228 2.28 

2 0.0009 0.0009 0.0008 0.00278 0.00262 0.00248 0.00787 7.87 

3 0.0018 0.0017 0.0016 0.00544 0.00513 0.00486 0.01542 15.42 

4 0.0023 0.0021 0.0020 0.00692 0.00653 0.00618 0.01964 19.64 

5 0.0027 0.0026 0.0024 0.00833 0.00786 0.00744 0.02363 23.63 

6 0.0042 0.0039 0.0037 0.01276 0.01204 0.01140 0.03620 36.20 

7 0.0049 0.0047 0.0044 0.01520 0.01434 0.01358 0.04312 43.12 
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Table E82: Segment 4: Averaging of Areas 

Test 
No. Len4 A41 A42 A43 A44 Qs 4 

Ave 
A41 

Ave 
A42 

Ave 
A43 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.1206 0.074 0.097 0.121 0.145 0.00002 0.085 0.109 0.133 

2 0.1206 0.074 0.097 0.121 0.145 0.00007 0.085 0.109 0.133 

3 0.1206 0.074 0.097 0.121 0.145 0.00013 0.085 0.109 0.133 

4 0.1206 0.074 0.097 0.121 0.145 0.00017 0.085 0.109 0.133 

5 0.1206 0.074 0.097 0.121 0.145 0.00021 0.085 0.109 0.133 

6 0.1206 0.074 0.097 0.121 0.145 0.00032 0.085 0.109 0.133 

7 0.1206 0.074 0.097 0.121 0.145 0.00037 0.085 0.109 0.133 

 
Table E83: Segment 4: Velocity and cumulative headloss  

Test 
No. Vel 4A Vel 4B Vel 4C Hl41 Hl42 Hl43 Hl4Total Hl4Total 

 m/s m/s m/s m m m m mm 

1 0.0002 0.0002 0.0002 0.00071 0.00056 0.00046 0.00173 1.73 

2 0.0008 0.0006 0.0005 0.00246 0.00192 0.00158 0.00596 5.96 

3 0.0016 0.0012 0.0010 0.00482 0.00377 0.00309 0.01168 11.68 

4 0.0020 0.0016 0.0013 0.00614 0.00480 0.00394 0.01487 14.87 

5 0.0024 0.0019 0.0016 0.00739 0.00577 0.00474 0.01790 17.90 

6 0.0037 0.0029 0.0024 0.01131 0.00884 0.00726 0.02742 27.42 

7 0.0044 0.0034 0.0028 0.01348 0.01053 0.00865 0.03266 32.66 

 
Table E84: Segment 5: Averaging of Areas 

Test 
No. Len5 A51 A52 A53 A54 Qs 5 

Ave 
A51 

Ave 
A52 

Ave 
A53 

 
m m

2
 m

2
 m

2
 m

2
 m3/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.065 0.105 0.145 0.00001 0.045 0.085 0.125 

2 0.0402 0.025 0.065 0.105 0.145 0.00002 0.045 0.085 0.125 

3 0.0402 0.025 0.065 0.105 0.145 0.00004 0.045 0.085 0.125 

4 0.0402 0.025 0.065 0.105 0.145 0.00006 0.045 0.085 0.125 

5 0.0402 0.025 0.065 0.105 0.145 0.00007 0.045 0.085 0.125 

6 0.0402 0.025 0.065 0.105 0.145 0.00011 0.045 0.085 0.125 

7 0.0402 0.025 0.065 0.105 0.145 0.00012 0.045 0.085 0.125 

 

Table E85: Segment 5: Velocity and cumulative headloss  

Test 
No. Vel 5A Vel 5B Vel 5C Hl51 Hl52 Hl53 Hl5Total Hl5Total 

 m/s m/s m/s m m m m mm 

1 0.0001 0.0001 0.0001 0.00046 0.00024 0.00016 0.00086 0.86 

2 0.0005 0.0003 0.0002 0.00157 0.00083 0.00056 0.00296 2.96 

3 0.0010 0.0005 0.0004 0.00308 0.00162 0.00110 0.00580 5.80 

4 0.0013 0.0007 0.0005 0.00392 0.00206 0.00140 0.00738 7.38 

5 0.0015 0.0008 0.0006 0.00472 0.00248 0.00168 0.00888 8.88 

6 0.0024 0.0012 0.0008 0.00723 0.00380 0.00258 0.01361 13.61 

7 0.0028 0.0015 0.0010 0.00861 0.00453 0.00307 0.01621 16.21 
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Table E86: Method 3: Summary of results for Tables 48 to 57 

Test No. Total Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s mm mm mm mm mm 

1 0.33 3.04 2.70 2.28 1.73 0.86 

2 1.15 10.49 9.32 7.87 5.96 2.96 

3 2.26 20.54 18.25 15.42 11.68 5.80 

4 2.87 26.15 23.23 19.64 14.87 7.38 

5 3.46 31.47 27.96 23.63 17.90 8.88 

6 5.29 48.20 42.83 36.20 27.42 13.61 

7 6.30 57.41 51.02 43.12 32.66 16.21 

 

Figure E32 plots Table E86 these graphically. A trendline is added to the results in 

order to predict the headloss, due to stone bedding, at the most downstream point of 

WC1. It is at this point that the largest magnitude of headloss occurs. Table E87 

summaries these results. 

 
Figure E32: Results of Headloss due to (sand and) Stone Bedding, within WC1 (Legend: 

Flowrates) 
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Table E87: Summary of maximum headloss versus flow rates 

Test No. Total Q Total 2Q 
Maximum Headloss 

due to Stone Bedding 

 
l/s l/s mm 

1 0.17 0.33 3.091 

2 0.58 1.15 10.66 

3 1.13 2.26 20.88 

4 1.44 2.87 26.59 

5 1.73 3.46 32 

6 2.65 5.29 49.02 

7 3.15 6.30 58.39 

 

The results of the above table will be represented along with the results of Method 1 

and 2 in the following section E.7.4.3. 

 

 

E.7.4.3 Comparison of Results for Method 1, 2 and 3 

 

The following Figure E33 shows the results for Method 1, 2 and 3 for the calculation of 

Headloss due to the stone bedding, Results for Method1, 2 and 3 are derived from 

Tables E59, E73 and E87.  

 

 

Figure E33: Method 1, 2 and 3 : Headloss due to the sand and stone bedding 
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Appendix F 

 

Metal Wire Pipe Abstraction Model 
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F.1 Introduction 

 

This appendix describes in detail the calculations behind Chapter 5.3: Metal Wire Pipe 

Abstraction Model. Via the use of figures and tables it explains the most relevant 

calculations. Note that for all tests, no core material was used. Figure F1 below 

describes the model and the areas of interest. Table F1 below list parameters of the 

Metal Wire pipe (MWP). 

 

Table F1: Metal Wire Pipe: Variables and Values  

Metal Wire Pipeline Perforation 
Configuration Value Unit Value Unit 

No of Hole/Slots per 20cm Length 38.18 
   

Area of each Slot 423.9 mm
2
 0.0004239 m

2
 

Length of Pipe 1005 mm 1.005 m 

No. of Segments 5 
   

Segment Length 201 mm 0.201 m 

Perforation Area of Segment 16185 mm
2
 0.0161856 m

2
 

Total Perforation Area 80927 mm
2
 0.0809278 m

2
 

Total pipe Wetted Surface Area 410241 
 

0.410241 m
2
 

Percentage perforation 19.73% 
   

Coefficient of Discharge Cd  
    

Coefficient Loss Ke 1 
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F. 2 Pressure Losses 

 

Chapter 4.4.6.1 describes the losses A to E. Note the datum of the model is the top of 

the model base. 

 

 
Figure F1: Metal Wire Pipe Abstraction Model: Areas of interest 

 

The following is a reiteration of the losses A to E. as described in Chapter 4.4.6.1  

 

Loss A: This reduction in pressure occurs as water travels from the outside of the pipe, 

in. Losses B to E is easily estimated using conventional calculation methods. Loss A 

accounts for a significantly large portion of the total pressure loss.  

 

Loss B: Skin friction in the portion of intake pipe where there is water ingression and 

transportation. The skin friction in this chapter is calculated using Manning‟s Method. A 

pipe of 250mm is used as the conduit size. However, the skin friction in this area is 

halved as theoretically the flow is at its maximum as it exits WC1 and zero at the start 

of the pipeline (Right hand side of Figure F1) 
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Loss C: Skin friction in the portion of intake pipe where there is water transportation 

only. The skin friction in this chapter is calculated using Manning‟s Method. A pipe of 

250mm is used as the conduit size. 

 

Loss D: Exit loss as water enters Column 2 (WC2). For the flow exiting the Intake pipe 

and then turning 90 degrees,  the loss equal to Ke*V2/2g where Ke = 1 

 

Loss E: Skin friction as water flows up WC2. The skin friction in this chapter is 

calculated using Manning‟s Method. A rectangular section of 600mm by 250mm is 

used as the conduit size. 

 

 

F. 3 Water Losses due to Leakage 

 

The ability to quantify leakage is crucial especially if the leakage rate becomes a large 

fraction of the overall flow. Hence the flow rate of the leakage for each increment of 

the flow through the model was noted.  

 

The entire leakage rate was calculated by constructing a dam around the HPM, and 

determining the amount of water that left the dam, over a period of time, for a particular 

increment a test. There were three places that water could have leaked out. These 

were : WC1, WC2a and WC2b. Figure F2 describes these. Via visual inspection 80% 

of all leakage was deemed to be out of WC1, 10% out of WC2a and 10% out of WC2b. 

 

 
Figure F2: Areas of Water Leakage 
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F.4:  Water Only Test  

 

The following explains the manner in which the „Water Only Test‟  (WOT) was 

conducted. It uses tables and equations to illustrate the analysis process. Table F2 

details the physical aspects of the model including the Intake pipeline. 

 

Table F2: The physical aspects of the HPM and Intake Pipeline 

Description Value Unit 

Physical aspects of the HPM:WC2a 
  

Angle of V Notch Weir 90 Degrees 

Height of V Notch Weir 1708.5 mm 

Length 0.28 m 

Breath 0.45 m 

Area A 0.126 m
2
 

Wet Perimeter P 1.46 m 

Hydraulic Radius R 0.0863 m 

Friction Factor f 0.02 
 

Loss Coefficient Ke 1 
 

Metal Wire Pipeline Perforation 
Configuration 

  
D Pipe Length 1005 mm 

Pipe OD 270 mm 

Pipe ID 260 mm 

Half Pipe Area 0.026533 m
2
 

Wet Perimeter 0.6682 m 

Hydraulic Radius Pipe HR 0.1588 m 

No of Slots per 20cm Length 38.15 
 

Area of each Slot 423.9 mm
2
 

Length of Pipe 1005 mm 

No. of Segments 5 
 

Segment Length 201 mm 

Perforation Area of Segment 16186 mm
2
 

Total Perforation Area 80928 mm
2
 

Total pipe Wetted Surface Area 410241 mm
2
 

Percentage perforation 19.73 % 

Friction Factor f 0.015 
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Where : 

 

Cd  = Coefficient of Discharge as established in Appendix B 

D Pipe Length = Length of Intake pipeline in the HPM 

Pipe OD  = Outside Diameter of Intake Pipeline 

Pipe ID  = Inside Diameter of Pipeline 

Half Pipe Area = The area of flow  when only half a pipe is used 

Wet Perimeter = Perimeter of the intake pipeline that has been in contact with the flow 

Hydraulic Radius HR = The Hydraulic Radius of the Intake Pipeline or WC2a 

 

The aim of this experiment is to establish the relationship between the flow and the 

loss of pressure head as it passes in to the Intake pipeline  Using the above 

information, 18 incremental tests, with increasing driving heads, where conducted. 

Table F3 shows the initial results. The difference between WC1 and WC2 denotes the 

total headloss. The flow rate was determined from the following Equation:B1 

 

 
2

5

2
tan2

15

8
hgCQ d 


              Eqn B1 

where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table F3: Total Headloss and initial flow rate for Water Only test 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 1738 1737 29.5 28.5 1 0.18 

2 1753 1751 44.5 42.5 2 0.50 

3 1766 1761.5 57.5 53 4.5 0.87 

4 1780 1774 71.5 65.5 6 1.48 

5 1795 1782 86.5 73.5 13 1.97 

6 1804 1790 95.5 81.5 14 2.55 

7 1827 1796 118.5 87.5 31 3.05 

8 1848 1806 139.5 97.5 42 4.00 

9 1863 1813 154.5 104.5 50 4.75 

10 1910 1824 201.5 115.5 86 6.10 

11 1933 1831 224.5 122.5 102 7.07 

12 1973 1837 264.5 128.5 136 7.97 

13 1996 1844 287.5 135.5 152 9.10 

14 2052 1850 343.5 141.5 202 10.14 

15 2109 1854 400.5 145.5 255 10.87 

16 2172 1860 463.5 151.5 312 12.03 

17 2229 1870 520.5 161.5 359 14.11 

18 2328 1875 619.5 166.5 453 15.23 

 

After the total headloss and initial flow rate relationship has been established, Water 

leakage has to be considered. As per Chapter F3, theses losses are incorporated in 

Table F4 with 80% of all leakage deemed to be out of WC1, 10% out of WC2a and 

10% out of WC2b.  
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F.4.1 Water Leakage losses 

 

In Table F4, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculates the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a  

 

Table F4: Total headloss and flow rate incorporating losses 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Total 
Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.18 170 771 43.03 0.056 0.044645 0.005581 0.005581 0.23 

2 0.50 112 524 27.70 0.053 0.042286 0.005286 0.005286 0.55 

3 0.87 72 334 17.52 0.052 0.041958 0.005245 0.005245 0.92 

4 1.48 106 529 26.15 0.049 0.039547 0.004943 0.004943 1.52 

5 1.97 96 470 23.59 0.050 0.040148 0.005019 0.005019 2.02 

6 2.55 87 404 21.30 0.053 0.042173 0.005272 0.005272 2.60 

7 3.05 90 390 22.06 0.057 0.045249 0.005656 0.005656 3.10 

8 4.00 88 406 21.55 0.053 0.042465 0.005308 0.005308 4.04 

9 4.75 90 390 22.06 0.057 0.045249 0.005656 0.005656 4.80 

10 6.10 170 771 43.03 0.056 0.044645 0.005581 0.005581 6.16 

11 7.07 112 524 27.70 0.053 0.042286 0.005286 0.005286 7.12 

12 7.97 72 334 17.52 0.052 0.041958 0.005245 0.005245 8.02 

13 9.10 106 529 26.15 0.049 0.039547 0.004943 0.004943 9.15 

14 10.14 96 470 23.59 0.050 0.040148 0.005019 0.005019 10.19 

15 10.87 87 404 21.30 0.053 0.042173 0.005272 0.005272 10.92 

16 12.03 90 390 22.06 0.057 0.045249 0.005656 0.005656 12.08 

17 14.11 88 406 21.55 0.053 0.042465 0.005308 0.005308 14.16 

18 15.23 90 390 22.06 0.057 0.045249 0.005656 0.005656 15.28 
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F.4.2 Water Pressure losses 

 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure as water enters the 

Intake pipeline, can be established. Chapter F2 states the Pressure Losses A to E with 

the relevant equations. Table F5 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table F5: Disaggregation of pressure losses 

Test No. 
Total 
∆hf Total Q Loss B+C Loss D Loss E Loss A 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 1 0.23 0.000001 0.000002 0.0000009 1.00 99.86% 

2 2 0.55 0.000003 0.000018 0.0000066 1.99 99.53% 

3 4.5 0.92 0.000008 0.000055 0.0000198 4.47 99.39% 

4 6 1.52 0.000021 0.000158 0.0000572 5.92 98.69% 

5 13 2.02 0.000038 0.000282 0.0001017 12.86 98.93% 

6 14 2.60 0.000063 0.000472 0.0001705 13.77 98.34% 

7 31 3.10 0.000089 0.000673 0.0002432 30.67 98.93% 

8 42 4.04 0.000151 0.001157 0.0004178 41.43 98.65% 

9 50 4.80 0.000214 0.001636 0.0005908 49.20 98.39% 

10 86 6.16 0.000350 0.002698 0.0009745 84.67 98.46% 

11 102 7.12 0.000469 0.003621 0.0013079 100.22 98.26% 

12 136 8.02 0.000595 0.004599 0.0016612 133.74 98.34% 

13 152 9.15 0.000774 0.005996 0.0021657 149.06 98.07% 

14 202 10.19 0.000960 0.007447 0.0026895 198.35 98.19% 

15 255 10.92 0.001103 0.008560 0.0030918 250.80 98.35% 

16 312 12.08 0.001350 0.010477 0.0037840 306.87 98.35% 

17 359 14.16 0.001855 0.014422 0.0052090 351.94 98.03% 

18 453 15.28 0.002161 0.016798 0.0060669 444.77 98.18% 
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F.4.3 Perforation losses and Flowrate Relationship 

 

 

Table F6 shows the Intake pipeline perforation friction (Loss A) and the flowrate for 

half a pipe and for a full pipeline. Figure F3 shows the relationship between the 

Perforation friction and the flowrate in a 250mm Metal Wire Pipeline. 

 

 

Table F6: Perforation friction (Loss A) flowrate for Half and Full pipeline(MWP-WOT) 

Test No. Loss A Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 1.00 0.235 0.470 

2 1.99 0.549 1.098 

3 4.47 0.918 1.836 

4 5.92 1.523 3.046 

5 12.86 2.017 4.035 

6 13.77 2.601 5.202 

7 30.67 3.101 6.201 

8 41.43 4.045 8.090 

9 49.20 4.804 9.609 

10 84.67 6.155 12.310 

11 100.22 7.120 14.240 

12 133.74 8.018 16.035 

13 149.06 9.145 18.290 

14 198.35 10.187 20.374 

15 250.80 10.921 21.842 

16 306.87 12.081 24.161 

17 351.94 14.162 28.324 

18 444.77 15.283 30.566 
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Figure F3: Headloss due to the slots (Loss A) versus the flowrate for a fully flowing ø250mm 

Metal Wire pipe 

 

 

The equation below describes the relationship between headloss due to slot friction 

and flowrate 

 

 

∆P= 0.494Q2 + 1.443Q               Eqn 10 

 

With  

∆P = Headloss due to perforation friction in mm 

Q  = Flowrate for full pipeline in litres/second 

y = 0.494x2 + 1.443x 
R² = 0.992 
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F.4.4 Segmental Analysis of HPM 

 

Analysing the Metal Wire/Perforation friction and flow relationship was relatively 

simple. However in order to understand the flow regime better, it was required that the 

flow at different points in the HPM be calculated. It was decided that a model would be 

better understood if it was segmented. Hence the model was portioned into five 

segments. 

 

As described by Table F5, the Perforation Loss A accounts for the nearly all of the 

pressure loss. Hence for a point on the  Intake pipeline just inside WC1, the velocity of 

the flow into the pipeline is at its maximum. The velocity at this point is termed Vmax.  

The opposite holds true for a point at the start of the Intake pipeline. At this point, Vmin, 

the velocity of the inflow is zero.  Hence via linear interpolation, the velocity at any 

point in between both ends, can be calculated Figure F4 below describes the manner 

in which the HPM is segmented. 

 

 
Figure F4: Segmented HPM with notional EGL flow that enters WC1 and exits from WC2 
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Methodology 

 

In order to calculate the flow at various point within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2 , V3, V4 and VMIN occur at the border of 

each segment, Hence for each segment, the Average Velocity, VS1, VS2, VS3, VS4 and 

VS5 for each segment is easily calculated.  

 

VMAX  is derived from Bernoulli principles where : 

 

hgV  2                Eqn F1 

 

With  

 

V  = Velocity in m/s 

 

h  = = is the driving pressure  

 

g = gravitational constant (9.81m/s2) 

 

Note that the driving pressure h  is Loss A. The flow from each segment is then 

calculated by multiplying the velocity with the perforation area and a discharge 

coefficient, Cd. Table F7 shows the distribution of inflowing velocity over the length of 

the Intake Pipeline.  

 

Equation F2 was used to calculate the flow from each segment. Table F8 contains the 

flowrate for each segment and the sum of flow from all segments of the pipeline.  

 

hgACqQ dT  2              Eqn F2 

With  

 

q = Flowrate through for each segment in m3/s 

 

Q = Sum of Flowrate form each segment in m3/s 

 

A= The Area through which flow is allowed in m2  

 

Cd = Coefficient of Discharge
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Table F7: Inflowing velocity of water flowing into the pipe, over the length of the Intake Pipeline  

  

Pos. 
0 

Pos. 
1 

Pos. 
2 

Pos. 
3 

Pos. 
4 

Pos. 
5 

Pos. 
6 

Pos. 
7 

Pos. 
8 

Pos. 
9 

Pos. 
10 

Test  Loss A Vmax Vs1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

0 mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 1.00 0.140 0.126 0.112 0.098 0.084 0.070 0.056 0.042 0.028 0.014 0.000 

2 1.99 0.198 0.178 0.158 0.138 0.119 0.099 0.079 0.059 0.040 0.020 0.000 

3 4.47 0.296 0.267 0.237 0.207 0.178 0.148 0.118 0.089 0.059 0.030 0.000 

4 5.92 0.341 0.307 0.273 0.239 0.205 0.170 0.136 0.102 0.068 0.034 0.000 

5 12.86 0.502 0.452 0.402 0.352 0.301 0.251 0.201 0.151 0.100 0.050 0.000 

6 13.77 0.520 0.468 0.416 0.364 0.312 0.260 0.208 0.156 0.104 0.052 0.000 

7 30.67 0.776 0.698 0.621 0.543 0.465 0.388 0.310 0.233 0.155 0.078 0.000 

8 41.43 0.902 0.811 0.721 0.631 0.541 0.451 0.361 0.270 0.180 0.090 0.000 

9 49.20 0.982 0.884 0.786 0.688 0.589 0.491 0.393 0.295 0.196 0.098 0.000 

10 84.67 1.289 1.160 1.031 0.902 0.773 0.644 0.516 0.387 0.258 0.129 0.000 

11 100.22 1.402 1.262 1.122 0.982 0.841 0.701 0.561 0.421 0.280 0.140 0.000 

12 133.74 1.620 1.458 1.296 1.134 0.972 0.810 0.648 0.486 0.324 0.162 0.000 

13 149.06 1.710 1.539 1.368 1.197 1.026 0.855 0.684 0.513 0.342 0.171 0.000 

14 198.35 1.973 1.775 1.578 1.381 1.184 0.986 0.789 0.592 0.395 0.197 0.000 

15 250.80 2.218 1.996 1.775 1.553 1.331 1.109 0.887 0.665 0.444 0.222 0.000 

16 306.87 2.454 2.208 1.963 1.718 1.472 1.227 0.981 0.736 0.491 0.245 0.000 

17 351.94 2.628 2.365 2.102 1.839 1.577 1.314 1.051 0.788 0.526 0.263 0.000 

18 444.77 2.954 2.659 2.363 2.068 1.772 1.477 1.182 0.886 0.591 0.295 0.000 

 

 

Of particular concern is the Energy Grade Line (EGL) at the centre of the Intake 

Pipeline. The EGL shows the amount of energy that has been lost from water merely 

entering the Intake Pipeline.  

 

For this case the loss of pressure is due to perforation friction only. Hence to calculate 

the EGL a particular position along the Intake pipeline, would be the still water level in 

WC1 minus the perforation friction/ Loss A. Table F8 below describes this calculation. 
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Table F8: Calculated Flowrate from all segments of the Pipeline 

Test  Loss A Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 
Q 

Total 
Q 

Total 
2Q 

Total 

 
mm 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 1.00 0.207 0.002 0.002 0.001 0.001 0.000 0.0002 0.23 0.47 

2 1.99 0.343 0.005 0.004 0.003 0.002 0.001 0.0005 0.55 1.10 

3 4.47 0.383 0.008 0.006 0.005 0.003 0.001 0.0009 0.92 1.84 

4 5.92 0.552 0.014 0.011 0.008 0.005 0.002 0.0015 1.52 3.05 

5 12.86 0.496 0.018 0.014 0.010 0.006 0.002 0.0020 2.02 4.03 

6 13.77 0.618 0.023 0.018 0.013 0.008 0.003 0.0026 2.60 5.20 

7 30.67 0.494 0.028 0.022 0.016 0.009 0.003 0.0031 3.10 6.20 

8 41.43 0.554 0.036 0.028 0.020 0.012 0.004 0.0040 4.04 8.09 

9 49.20 0.604 0.043 0.034 0.024 0.014 0.005 0.0048 4.80 9.61 

10 84.67 0.590 0.055 0.043 0.031 0.018 0.006 0.0062 6.16 12.31 

11 100.22 0.627 0.064 0.050 0.036 0.021 0.007 0.0071 7.12 14.24 

12 133.74 0.612 0.072 0.056 0.040 0.024 0.008 0.0080 8.02 16.04 

13 149.06 0.661 0.082 0.064 0.046 0.027 0.009 0.0091 9.15 18.29 

14 198.35 0.638 0.092 0.071 0.051 0.031 0.010 0.0102 10.19 20.37 

15 250.80 0.608 0.098 0.076 0.055 0.033 0.011 0.0109 10.92 21.84 

16 306.87 0.608 0.109 0.085 0.060 0.036 0.012 0.0121 12.08 24.16 

17 351.94 0.666 0.127 0.099 0.071 0.042 0.014 0.0142 14.16 28.32 

18 444.77 0.639 0.138 0.107 0.076 0.046 0.015 0.0153 15.28 30.57 

 

 

Figure F5 below is a plot of EGLs at the centre of the Intake Pipeline. For the 18 tests 

conducted, the increase in pressure losses closer to the exit point of WC1, can be 

clearly seen. 
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Figure F5: Plot of EGLs at the centre of the Intake Pipeline Legend : Flowrate 

 

 

With the main Flow versus headloss relationship being the most important, calculation 

of the EGL might appear of no use, however calculation of EGL at various points in the 

flow will prove fruitful in future chapters. 
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F.5:  Water and Stone Test  

 

The following explains the manner in which the „Water and Stone Test‟ was conducted 

and uses tables and equations to illustrate the analysis process. Table F1 details the 

physical aspects of the model. This includes the Intake pipeline and can be found in 

Chapter F.4 above 

 

The aim of this experiment is to: 

 

1)  confirm the relationship between the flow and the loss of pressure head as it 

passes in to the Intake pipeline and to  

2) establish the relationship between the flow and the loss of pressure head as it 

passes through the 19mm Stone bedding. 

 

Using the above information, 18 incremental tests, with increasing driving heads, 

where conducted. Table F9 shows the initial results. The difference between WC1 and 

WC2 denotes the total headloss. The flow rate was determined from the following 

Equation:B1 

 

2

5

2
tan2

15

8
hgCQ d 


              Eqn B1 

where 

Q= Flow (l/s) 

Cd= 0.57  

h = depth of water above V Notch (mm) 
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Table F9: Total Headloss and initial flow rate for Water and Stone test 

Test 
No. WC1 WC2 

Upstream 
Head 

Downstream 
Head Total ∆hf 

Initial Q 
Half Pipe 

 
mm mm mm mm mm l/s 

1 1745 1743 36.5 34.5 2 0.30 

2 1753 1749 44.5 40.5 4 0.44 

3 1775 1766 66.5 57.5 9 1.07 

4 1781 1775 72.5 66.5 6 1.54 

5 1852 1790 143.5 81.5 62 2.55 

6 1870 1803 161.5 94.5 67 3.70 

7 1940 1817 231.5 108.5 123 5.22 

8 2031 1830 322.5 121.5 201 6.93 

9 2060 1840 351.5 131.5 220 8.44 

10 2154 1854 445.5 145.5 300 10.87 

11 2227 1865 518.5 156.5 362 13.05 

12 2321 1870 612.5 161.5 451 14.11 

 
After the total headloss and initial flow rate relationship has been established, Water 

leakage is considered. As per chapter F3 theses losses are incorporated in Table F10 

with 80% of all leakage deemed to be from WC1, 10% out of WC2a and 10% out of 

WC2b.  

 

F.5.1 Water Leakage losses 

 

In Table F10, the total leakage rate is calculated in Column 6. Columns 7, 8 and 9 

calculates the loss for WC1, WC2a and WC2b, respectively. The Total flow rate Q is 

calculated as the Initial flow rate plus the leakage from WC1 and WC2a. 

 

Table F10: Total headloss and flow rate incorporating losses for Water and Stone Test 

1 2 3 4 5 6 7 8 9 10 

Test 
No. 

Q Half 
Pipe 

Bucket 
Ht Time Volume Total 

Loss due 
to WC1 

Loss due 
to WC2a 

Loss due 
to WC2b 

Half 
Pipe Q 

 
l/s mm s l l/s l/s l/s l/s l/s 

1 0.30 170 771 43.03 0.056 0.044645 0.00558 0.00558 0.35 

2 0.44 112 524 27.70 0.053 0.042286 0.00529 0.00529 0.49 

3 1.07 72 334 17.52 0.052 0.041958 0.00524 0.00524 1.11 

4 1.54 106 529 26.15 0.049 0.039547 0.00494 0.00494 1.58 

5 2.55 96 470 23.59 0.050 0.040148 0.00502 0.00502 2.60 

6 3.70 87 404 21.30 0.053 0.042173 0.00527 0.00527 3.74 

7 5.22 90 390 22.06 0.057 0.045249 0.00566 0.00566 5.27 

8 6.93 88 406 21.55 0.053 0.042465 0.00531 0.00531 6.98 

9 8.44 90 390 22.06 0.057 0.045249 0.00566 0.00566 8.49 

10 10.87 170 771 43.03 0.056 0.044645 0.00558 0.00558 10.92 

11 13.05 112 524 27.70 0.053 0.042286 0.00529 0.00529 13.09 

12 14.11 72 334 17.52 0.052 0.041958 0.00524 0.00524 14.16 
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F.5.2 Water Pressure losses 

 

After the correct total flow has been established, the next step is the disaggregation of 

pressure losses. This is done so that Loss A, the loss of pressure as water enters the 

Intake pipeline, can be established. Chapter F2 states the Pressure Losses A to E with 

the relevant equations. Table F11 calculates the Losses B to E and hence the 

remaining total headloss will be Loss A. 

 

Table F11: Disaggregation of pressure losses for Water and Stone test 

Test No. 
Total 
∆hf 

Total 
Half 

Pipe Q Loss B+C Loss D Loss E 

Loss A 
+Stone 
bedding 

%A of 
Total ∆hf 

 
mm l/s m m m mm  

1 2.0 0.35 0.000001 0.000006 0.0000001 2.00 99.95% 

2 4.0 0.49 0.000002 0.000014 0.0000003 4.00 99.95% 

3 9.0 1.11 0.000009 0.000083 0.0000018 8.99 99.88% 

4 6.0 1.58 0.000018 0.000171 0.0000036 5.98 99.65% 

5 62.0 2.60 0.000047 0.000472 0.0000101 61.94 99.91% 

6 67.0 3.74 0.000098 0.000989 0.0000211 66.88 99.82% 

7 123.0 5.27 0.000195 0.001974 0.0000421 122.76 99.81% 

8 201.0 6.98 0.000342 0.003476 0.0000742 200.58 99.79% 

9 220.0 8.49 0.000507 0.005162 0.0001102 219.38 99.72% 

10 300.0 10.92 0.000838 0.008560 0.0001828 298.98 99.66% 

11 362.0 13.09 0.001204 0.012324 0.0002631 360.53 99.59% 

12 451.0 14.16 0.001408 0.014422 0.0003079 449.28 99.62% 

 

 

F.5.3 Relationship between flowrate, Perforation and Stone Bedding 

friction 

 

 

Table F12 shows the Intake pipeline perforation friction (Loss A)+ stone bedding loss. 

It also includes the flowrate for half a pipe and for a full pipeline. Figure F5 shows the 

relationship between the Perforation + stone bedding friction and the flowrate in a 

ø250mm Metal Wire Pipe. 
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Table F12: Perforation (Loss A), and Stone Bedding friction, flowrate for Half and Full pipeline 

Test No. Loss A +Stone bedding Q Half Pipe Q Full Pipe 

 
mm l/s l/s 

1 2.00 0.35 0.70 

2 4.00 0.49 0.98 

3 8.99 1.11 2.23 

4 5.98 1.58 3.16 

5 61.94 2.60 5.20 

6 66.88 3.74 7.49 

7 122.76 5.27 10.54 

8 200.58 6.98 13.95 

9 219.38 8.49 16.99 

10 298.98 10.92 21.85 

11 360.53 13.09 26.19 

12 449.28 14.16 28.32 

 

 

Figure F6: Headloss due to the slots (Loss A) and Stone bedding versus the flowrate for a Full 

flowing ø250mm Metal Wire pipe 

 

Equation 11 below describes the relationship between headloss due to slot friction and 

stone bedding and flowrate: 

 

∆P= 0.369Q 2+9.3323Q               Eqn 11 

With  

∆P = Headloss due to slot friction in mm 

Q   = Flowrate for one full pipeline in litres/second
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F.5.4 Segmental Analysis of HPM 

 

Analysing the Metal Wire/Perforation pipe friction + Stone Bedding and initial flow 

relationship, is as per Chapter F4.4. The flow was calculated at the same points in the 

HPM. The model was once again was portioned into five segments. 

 

As described by Table F11, the Perforation Loss A + Stone Bedding accounts for the 

nearly all of the pressure loss. Hence for a point on the Intake pipeline just inside 

WC1, the velocity of the flow into the pipeline is at its maximum. The velocity at this 

point is termed Vmax.  The opposite holds true for a point at the start of the Intake 

pipeline. At this point, Vmin, the velocity of the inflow is zero.  Hence via linear 

interpolation, the velocity at any point in between both ends, can be calculated.  Figure 

F4, in Chapter F4.4 describes the manner in which the HPM is segmented. 

 

 

F.5.4.1 Methodology 

 

In order to calculate the flow at various points within the model, the HPM was divided 

into five segments. The velocities VMAX, V1, V2 , V3, V4 and VMIN occur at the border of 

each segment, Hence for each segment, the Average Velocity, VS1, VS2, VS3, VS4 and 

VS5 for is easily calculated.  

 

VMAX  is derived from Bernoulli principles where : 

 

hgV  2                Eqn F1 

 

With  

 

V  = Velocity in m/s 

h  = = is the driving pressure  

g = gravitational constant (9.81m/s2) 

 

Note that the driving pressure h  is Perforation Loss A+ Stone bedding. The flow from 

each segment is then calculated by multiplying the velocity with the perforation area 

and a discharge coefficient, Cd. Table F13 shows the distribution of inflowing velocity 

over the length of the Intake Pipeline.  
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Equation F2 was used to calculate the flow from each segment. Table F14 contains 

the flowrate for each segment and the sum of flow from all segments of the pipeline. 

hgACqQ dT  2              Eqn F2 

With  

q = Flowrate through for each segment in m3/s 

Q = Sum of Flowrate form each segment in m3/s 

A= The Area through which flow is allowed in m2  

Cd = Coefficient of Discharge 
 
Table F13: Inflowing velocity - water flowing into the pipe, over the length of the Intake Pipeline 

  
Pos. 0 Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 

Pos. 
10 

Test 
Loss A 
+ Stone 
Bedding 

Vmax Vs 1 V1 Vs 2 V2 Vs 3 V3 Vs 4 V4 Vs 5 Vmin 

0 mm m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s 

1 2.00 0.198 0.178 0.158 0.139 0.119 0.099 0.079 0.059 0.040 0.020 0.000 

2 4.00 0.280 0.252 0.224 0.196 0.168 0.140 0.112 0.084 0.056 0.028 0.000 

3 8.99 0.420 0.378 0.336 0.294 0.252 0.210 0.168 0.126 0.084 0.042 0.000 

4 5.98 0.342 0.308 0.274 0.240 0.205 0.171 0.137 0.103 0.068 0.034 0.000 

5 61.94 1.102 0.992 0.882 0.772 0.661 0.551 0.441 0.331 0.220 0.110 0.000 

6 66.88 1.146 1.031 0.916 0.802 0.687 0.573 0.458 0.344 0.229 0.115 0.000 

7 122.76 1.552 1.397 1.242 1.086 0.931 0.776 0.621 0.466 0.310 0.155 0.000 

8 200.58 1.984 1.785 1.587 1.389 1.190 0.992 0.794 0.595 0.397 0.198 0.000 

9 219.38 2.075 1.867 1.660 1.452 1.245 1.037 0.830 0.622 0.415 0.207 0.000 

10 298.98 2.422 2.180 1.938 1.695 1.453 1.211 0.969 0.727 0.484 0.242 0.000 

11 360.53 2.660 2.394 2.128 1.862 1.596 1.330 1.064 0.798 0.532 0.266 0.000 

12 449.28 2.969 2.672 2.375 2.078 1.781 1.484 1.188 0.891 0.594 0.297 0.000 

 
Table F14: Calculated Flowrate from all segments of the Pipeline 

1 2 3 4 5 6 7 8 9 10 11 

Test  

Loss A 
+ Stone 
Bedding Cb Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Q Total 

Q 
Total 

2Q 
Total 

0 mm 
 

m
3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s l/s l/s 

1 2.00 0.043 0.00013 0.00010 0.00007 0.00004 0.00001 0.0003 0.35 0.70 

2 4.00 0.043 0.00018 0.00014 0.00010 0.00006 0.00002 0.0005 0.49 0.98 

3 8.99 0.066 0.00040 0.00031 0.00022 0.00013 0.00004 0.0011 1.11 2.23 

4 5.98 0.114 0.00057 0.00044 0.00032 0.00019 0.00006 0.0016 1.58 3.16 

5 61.94 0.058 0.00094 0.00073 0.00052 0.00031 0.00010 0.0026 2.60 5.20 

6 66.88 0.081 0.00135 0.00105 0.00075 0.00045 0.00015 0.0037 3.74 7.49 

7 122.76 0.084 0.00190 0.00148 0.00105 0.00063 0.00021 0.0053 5.27 10.54 

8 200.58 0.087 0.00251 0.00195 0.00140 0.00084 0.00028 0.0070 6.98 13.95 

9 219.38 0.101 0.00306 0.00238 0.00170 0.00102 0.00034 0.0085 8.49 16.99 

10 298.98 0.111 0.00393 0.00306 0.00218 0.00131 0.00044 0.0109 10.92 21.85 

11 360.53 0.122 0.00471 0.00367 0.00262 0.00157 0.00052 0.0131 13.09 26.19 

12 449.28 0.118 0.00510 0.00397 0.00283 0.00170 0.00057 0.0142 14.16 28.32 
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Of particular concern is the Energy Grade Line (EGL) at the centre of the Intake 

Pipeline. The EGL shows the amount of energy that has been lost from the stone 

bedding friction and from water entering the Intake Pipeline 

 

Figure F13 below is a plot of EGLs at the centre of the Intake Pipeline. For the 18 tests 

conducted, the increase in pressure losses closer to the exit point of WC1, can be 

clearly seen. 

 

 

Figure F7: Plot of EGLs at the centre of the Intake Pipeline for Water and Stone Bedding Test 

 

The calculation of the EGL at various points within the Intake pipeline is crucial as it 

aids in determining the loss due to the stone bedding. This can be seen in the flowing 

chapter. 
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F.5.4.2 Pressure loss due to Stone Bedding 

 

Calculating the loss of pressure due to stone bedding is critical as it inadvertently 

determines the design of the seawater Intake. Note that the stone bedding for all tests 

were standardised with the Intake pipe being 150mm above the bedrock, 300mm 

below the cover level of the stone bedding and 2*485mm clearance from an adjacent 

intake pipeline. Three methods where employed when seeking to determine the 

pressure loss due the stone bedding. 

 

F.5.4.2.1 Method 1: Simple method for determining stone bedding loss 

 

In this simplistic method, the equation for the “Water Test only: is removed from the 

equation for “Water and Stone test” This is simplified as Eqn 12 equals Eqn 11 minus 

Eqn 10 where: 

 

∆P= .369Q 2+9.3323Q                Eqn11 

 

minus 

∆P=0.494Q2 + 1.443Q                Eqn10 

 

equals 

 

∆P= -0.131Q2+7.8893Q                Eqn12 

 

Table F11 shows the headloss for corresponding flow values while Figure F14 plots 

these graphically. 
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Table F15: Method1:ø250mm Metal Wire Pipe Test: Stone bedding friction only 

Test No. Q Half Pipe Q Full Pipe Stone Bedding Friction 

 l/s l/s mm 

1 0.35 0.70 5.42 

2 0.49 0.98 7.63 

3 1.11 2.23 16.93 

4 1.58 3.16 23.61 

5 2.60 5.20 37.45 

6 3.74 7.49 51.71 

7 5.27 10.54 68.60 

8 6.98 13.95 84.54 

9 8.49 16.99 96.18 

10 10.92 21.85 109.77 

11 13.09 26.19 116.69 

12 14.16 28.32 118.28 

 

 

 
Figure F8:ø250mm Metal Wire Pipe,(WST): Pressure loss due to Stone Bedding Only-Method1 
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F.5.4.2.2 Method 2: Kenny, Lau and Ofoegbu Method for determining 

headloss due to stone bedding 

 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of the stone bedding. From Table F14, the velocity 

for each segment of the Intake pipeline was determined. However stone bedding 

cannot be split into equal segments as well. This is only correct for stone bedding 

adjacent to the intake pipeline. It does not apply to the flat, horizontal surface of the 

stone bedding. 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table F16 below looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate.  

 

As seen in Figure F9, these proportions were then applied to length of the stone bed. 

This splitting of the stone bedding surface ensured that all flows entering the stone bed 

were proportional to the flow entering the intake pipeline for all segments. 

 

Table F16:ø250mm Metal Wire Pipe, Water and Stone Bedding Test: Flow through segments  

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00013 0.00010 0.00007 0.00004 0.00001 36% 28% 20% 12% 4% 

2 0.00018 0.00014 0.00010 0.00006 0.00002 36% 28% 20% 12% 4% 

3 0.00040 0.00031 0.00022 0.00013 0.00004 36% 28% 20% 12% 4% 

4 0.00057 0.00044 0.00032 0.00019 0.00006 36% 28% 20% 12% 4% 

5 0.00094 0.00073 0.00052 0.00031 0.00010 36% 28% 20% 12% 4% 

6 0.00135 0.00105 0.00075 0.00045 0.00015 36% 28% 20% 12% 4% 

7 0.00190 0.00148 0.00105 0.00063 0.00021 36% 28% 20% 12% 4% 

8 0.00251 0.00195 0.00140 0.00084 0.00028 36% 28% 20% 12% 4% 

9 0.00306 0.00238 0.00170 0.00102 0.00034 36% 28% 20% 12% 4% 

10 0.00393 0.00306 0.00218 0.00131 0.00044 36% 28% 20% 12% 4% 

11 0.00471 0.00367 0.00262 0.00157 0.00052 36% 28% 20% 12% 4% 

12 0.00510 0.00397 0.00283 0.00170 0.00057 36% 28% 20% 12% 4% 
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Figure F9: ø250mm Metal Wire pipe, Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

Figure F9 shows the simplified version of a single notional segment. Note line f1, f2 and 

f3 as lines of reference in Figure F9 and F10. As in Figure F10, length (l1) is multiplied 

by the standard width (With), to create the area A1. Area A4 was easily calculated it is 

based on the intake pipe dimensions. Areas A2 and A3 are a third of the distance from 

each end and hence are calculated proportionately. The distances from Area A1 to A2 

to A3 to A4 are noted as Lengths len1, len2 and len3 respectively. 
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Figure F10: Notional flow path of a stone bedding segment 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as follows: 

 

  

           Eqn 4 

 

Where: 

Hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

The first three variables are easily to calculate however determining the hydraulic 

conductivity k, requires further investigation. 

 

The hydraulic conductivity is calculated using the following equation 

 

 

                     Eqn 5 

 

k

VL
mhf


)(

K
k w






Stellenbosch University  http://scholar.sun.ac.za



356 

University of Stellenbosch 

Where: 

k = Hydraulic conductivity 

γW = Unit Weight of Water  

η  = Dynamic Viscosity of water  

K = Absolute Hydraulic conductivity 

 

 

The unit weight of water γW ,, and the dynamic viscosity of water η are fairly simple to 

calculate. However the Absolute Hydraulic conductivity K has to be calculated. It is 

calculated using the following equation: 

 

 

                     Eqn 6 

 

Where: 

 

K = Absolute Hydraulic conductivity 

Cu = Coefficient of Uniformity. Varies between 0.05 to 1 

D5 = Dimension of aggregate that has a cumulative percentage passing of 5% 

 

Figure F11 below is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D5 = 10mm was obtained. Hence for a Cu of 0.8, Eqn E6 

yields a K of 80mm2.  As confirmation, Figure E16 is a graphical plot of Equation10. 

Utilising eqn 5 and the following values: 

 

D5  = 10mm 

γW = 9800 N/m3  

η = 0.00014 Ns/m 

 

a k value of approximately 0.7m/s is found. 

2

5DCK u
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Figure F11: Typical grading curve for nominally single-sized 19mm Stone (Alexander & 
Mindess, 2005) 
 

 

Figure F12: Graphical plot of Hydraulic Conductivity Equation (Das 2000) 
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Table F17: Summary : Calculating the Hydraulic conductivity 

Description Value Unit 

Cu (0.05 to 1) 0.80 
 

D5 10.0 mm 

Water Column Width 0.61 m 

Absolute Conductivity K 80 mm
2
 

Unit Weight of Water γW 9800 N/m
3
 

Dynamic Viscosity of water η 1.14E-03 Ns/m
2
 

Hydraulic Conductivity k 0.688 m/s 
 

Using the values from Table F16 and F17,  headloss for segment 1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows, is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table F18 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table F19 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The subsequent tables describe the headloss calculated for Segments, 2, 3, 4 and 5. 

 

Table F18: Segment 1: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.202 0.183 0.164 0.0001 0.192 0.174 0.082 

2 0.3618 0.221 0.202 0.183 0.164 0.0002 0.192 0.174 0.082 

3 0.3618 0.221 0.202 0.183 0.164 0.0004 0.192 0.174 0.082 

4 0.3618 0.221 0.202 0.183 0.164 0.0006 0.192 0.174 0.082 

5 0.3618 0.221 0.202 0.183 0.164 0.0009 0.192 0.174 0.082 

6 0.3618 0.221 0.202 0.183 0.164 0.0013 0.192 0.174 0.082 

7 0.3618 0.221 0.202 0.183 0.164 0.0019 0.192 0.174 0.082 

8 0.3618 0.221 0.202 0.183 0.164 0.0025 0.192 0.174 0.082 

9 0.3618 0.221 0.202 0.183 0.164 0.0031 0.192 0.174 0.082 

10 0.3618 0.221 0.202 0.183 0.164 0.0039 0.192 0.174 0.082 

11 0.3618 0.221 0.202 0.183 0.164 0.0047 0.192 0.174 0.083 

12 0.3618 0.221 0.202 0.183 0.164 0.0051 0.192 0.174 0.083 
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Table F19: Segment 1: Velocity and cumulative headloss  

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0007 0.0007 0.0015 0.0003 0.0003 0.0006 0.0012 1.16 

2 0.0009 0.0010 0.0022 0.0004 0.0004 0.0009 0.0016 1.64 

3 0.0021 0.0023 0.0049 0.0008 0.0009 0.0020 0.0037 3.71 

4 0.0030 0.0033 0.0069 0.0012 0.0013 0.0028 0.0053 5.26 

5 0.0049 0.0054 0.0113 0.0019 0.0022 0.0045 0.0086 8.64 

6 0.0070 0.0078 0.0163 0.0028 0.0031 0.0065 0.0124 12.43 

7 0.0099 0.0109 0.0229 0.0039 0.0044 0.0091 0.0175 17.47 

8 0.0131 0.0145 0.0301 0.0052 0.0058 0.0121 0.0231 23.07 

9 0.0159 0.0176 0.0366 0.0064 0.0070 0.0146 0.0280 28.04 

10 0.0204 0.0227 0.0468 0.0082 0.0091 0.0187 0.0360 35.97 

11 0.0245 0.0272 0.0558 0.0098 0.0109 0.0223 0.0430 43.01 

12 0.0265 0.0294 0.0603 0.0106 0.0118 0.0241 0.0465 46.46 

 

 

Table F20: Segment 2: Averaging of Areas 

Test 
No. Len2 A21 A22 A23 A24 Qs 2 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.169 0.167 0.164 0.0001 0.168 0.165 0.082 

2 0.2814 0.172 0.169 0.167 0.164 0.0001 0.168 0.165 0.082 

3 0.2814 0.172 0.169 0.167 0.164 0.0003 0.168 0.165 0.082 

4 0.2814 0.172 0.169 0.167 0.164 0.0004 0.168 0.165 0.082 

5 0.2814 0.172 0.169 0.167 0.164 0.0007 0.168 0.165 0.082 

6 0.2814 0.172 0.169 0.167 0.164 0.0010 0.168 0.165 0.083 

7 0.2814 0.172 0.169 0.167 0.164 0.0015 0.168 0.165 0.083 

8 0.2814 0.172 0.169 0.167 0.164 0.0020 0.168 0.165 0.083 

9 0.2814 0.172 0.169 0.167 0.164 0.0024 0.168 0.165 0.083 

10 0.2814 0.172 0.169 0.167 0.164 0.0031 0.168 0.165 0.084 

11 0.2814 0.172 0.169 0.167 0.164 0.0037 0.168 0.165 0.084 

12 0.2814 0.172 0.169 0.167 0.164 0.0040 0.168 0.165 0.084 
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Table F21: Segment 2: Velocity and cumulative headloss  

Test 
No. Vel 2A Vel 2B Vel 2C Hl21 Hl22 Hl23 Hl2Total Hl2 Total 

 m/s m/s m/s m m m m mm 

1 0.0006 0.0006 0.0012 0.0002 0.0002 0.0005 0.0009 0.94 

2 0.0008 0.0008 0.0017 0.0003 0.0003 0.0007 0.0013 1.33 

3 0.0019 0.0019 0.0038 0.0007 0.0008 0.0015 0.0030 3.02 

4 0.0026 0.0027 0.0054 0.0011 0.0011 0.0022 0.0043 4.28 

5 0.0043 0.0044 0.0088 0.0017 0.0018 0.0035 0.0070 7.03 

6 0.0062 0.0063 0.0127 0.0025 0.0025 0.0051 0.0101 10.11 

7 0.0088 0.0089 0.0178 0.0035 0.0036 0.0071 0.0142 14.22 

8 0.0116 0.0118 0.0235 0.0047 0.0047 0.0094 0.0188 18.79 

9 0.0142 0.0144 0.0286 0.0057 0.0058 0.0114 0.0229 22.85 

10 0.0182 0.0185 0.0366 0.0073 0.0074 0.0146 0.0293 29.33 

11 0.0218 0.0222 0.0437 0.0087 0.0089 0.0175 0.0351 35.09 

12 0.0236 0.0240 0.0472 0.0094 0.0096 0.0189 0.0379 37.91 

 

Table F22: Segment 3: Averaging of Areas 

Test 
No. Len3 A31 A32 A33 A34 Qs 3 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.136 0.150 0.164 0.0001 0.143 0.157 0.082 

2 0.201 0.123 0.136 0.150 0.164 0.0001 0.143 0.157 0.082 

3 0.201 0.123 0.136 0.150 0.164 0.0002 0.143 0.157 0.082 

4 0.201 0.123 0.136 0.150 0.164 0.0003 0.143 0.157 0.082 

5 0.201 0.123 0.136 0.150 0.164 0.0005 0.143 0.157 0.082 

6 0.201 0.123 0.136 0.150 0.164 0.0007 0.143 0.157 0.082 

7 0.201 0.123 0.136 0.150 0.164 0.0011 0.143 0.157 0.083 

8 0.201 0.123 0.136 0.150 0.164 0.0014 0.143 0.157 0.083 

9 0.201 0.123 0.136 0.150 0.164 0.0017 0.143 0.157 0.083 

10 0.201 0.123 0.136 0.150 0.164 0.0022 0.143 0.157 0.083 

11 0.201 0.123 0.136 0.150 0.164 0.0026 0.143 0.157 0.083 

12 0.201 0.123 0.136 0.150 0.164 0.0028 0.143 0.157 0.083 
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Table F23: Segment 3: Velocity and cumulative headloss  

Test 
No. Vel 3A Vel 3B Vel 3C Hl31 Hl32 Hl33 Hl3Total Hl3Total 

 m/s m/s m/s m m m m mm 

1 0.0005 0.0004 0.0008 0.0002 0.0002 0.0003 0.0007 0.71 

2 0.0007 0.0006 0.0012 0.0003 0.0003 0.0005 0.0010 1.00 

3 0.0016 0.0014 0.0027 0.0006 0.0006 0.0011 0.0023 2.27 

4 0.0022 0.0020 0.0038 0.0009 0.0008 0.0015 0.0032 3.22 

5 0.0036 0.0033 0.0063 0.0015 0.0013 0.0025 0.0053 5.30 

6 0.0052 0.0048 0.0091 0.0021 0.0019 0.0036 0.0076 7.63 

7 0.0074 0.0067 0.0128 0.0029 0.0027 0.0051 0.0107 10.73 

8 0.0097 0.0089 0.0169 0.0039 0.0036 0.0067 0.0142 14.19 

9 0.0119 0.0108 0.0205 0.0047 0.0043 0.0082 0.0173 17.26 

10 0.0152 0.0139 0.0263 0.0061 0.0056 0.0105 0.0222 22.17 

11 0.0183 0.0167 0.0314 0.0073 0.0067 0.0126 0.0265 26.54 

12 0.0198 0.0180 0.0339 0.0079 0.0072 0.0136 0.0287 28.68 

 

 

Table F24: Segment 4: Averaging of Areas 

Test 
No. Len4 A41 A42 A43 A44 Qs 4 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.121 0.074 0.104 0.134 0.164 0.0000 0.119 0.149 0.082 

2 0.121 0.074 0.104 0.134 0.164 0.0001 0.119 0.149 0.082 

3 0.121 0.074 0.104 0.134 0.164 0.0001 0.119 0.149 0.082 

4 0.121 0.074 0.104 0.134 0.164 0.0002 0.119 0.149 0.082 

5 0.121 0.074 0.104 0.134 0.164 0.0003 0.119 0.149 0.082 

6 0.121 0.074 0.104 0.134 0.164 0.0004 0.119 0.149 0.082 

7 0.121 0.074 0.104 0.134 0.164 0.0006 0.119 0.149 0.082 

8 0.121 0.074 0.104 0.134 0.164 0.0008 0.119 0.149 0.082 

9 0.121 0.074 0.104 0.134 0.164 0.0010 0.119 0.149 0.082 

10 0.121 0.074 0.104 0.134 0.164 0.0013 0.119 0.149 0.082 

11 0.121 0.074 0.104 0.134 0.164 0.0016 0.119 0.149 0.082 

12 0.121 0.074 0.104 0.134 0.164 0.0017 0.119 0.149 0.082 
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Table F25: Segment 4: Velocity and cumulative headloss  

Test 
No. Vel 4A Vel 4B Vel 4C Hl41 Hl42 Hl43 Hl4Total Hl4Total 

 m/s m/s m/s m m m m mm 

1 0.0004 0.0003 0.0005 0.0001 0.0001 0.0002 0.0005 0.46 

2 0.0005 0.0004 0.0007 0.0002 0.0002 0.0003 0.0006 0.65 

3 0.0011 0.0009 0.0016 0.0005 0.0004 0.0007 0.0015 1.46 

4 0.0016 0.0013 0.0023 0.0006 0.0005 0.0009 0.0021 2.07 

5 0.0026 0.0021 0.0038 0.0010 0.0008 0.0015 0.0034 3.40 

6 0.0038 0.0030 0.0055 0.0015 0.0012 0.0022 0.0049 4.90 

7 0.0053 0.0042 0.0077 0.0021 0.0017 0.0031 0.0069 6.90 

8 0.0070 0.0056 0.0102 0.0028 0.0022 0.0041 0.0091 9.13 

9 0.0086 0.0068 0.0123 0.0034 0.0027 0.0049 0.0111 11.11 

10 0.0110 0.0088 0.0159 0.0044 0.0035 0.0063 0.0143 14.27 

11 0.0132 0.0105 0.0190 0.0053 0.0042 0.0076 0.0171 17.09 

12 0.0143 0.0114 0.0205 0.0057 0.0046 0.0082 0.0185 18.48 

 

Table F26: Segment 5: Averaging of Areas 

Test 
No. Len5 A51 A52 A53 A54 Qs 5 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.071 0.118 0.164 0.0000 0.094 0.141 0.082 

2 0.0402 0.025 0.071 0.118 0.164 0.0000 0.094 0.141 0.082 

3 0.0402 0.025 0.071 0.118 0.164 0.0000 0.094 0.141 0.082 

4 0.0402 0.025 0.071 0.118 0.164 0.0001 0.094 0.141 0.082 

5 0.0402 0.025 0.071 0.118 0.164 0.0001 0.094 0.141 0.082 

6 0.0402 0.025 0.071 0.118 0.164 0.0001 0.094 0.141 0.082 

7 0.0402 0.025 0.071 0.118 0.164 0.0002 0.094 0.141 0.082 

8 0.0402 0.025 0.071 0.118 0.164 0.0003 0.094 0.141 0.082 

9 0.0402 0.025 0.071 0.118 0.164 0.0003 0.094 0.141 0.082 

10 0.0402 0.025 0.071 0.118 0.164 0.0004 0.094 0.141 0.082 

11 0.0402 0.025 0.071 0.118 0.164 0.0005 0.094 0.141 0.082 

12 0.0402 0.025 0.071 0.118 0.164 0.0006 0.094 0.141 0.082 
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Table F27: Segment 5: Velocity and cumulative headloss  

Test 
No. Vel 5A Vel 5B Vel 5C Hl51 Hl52 Hl53 Hl5Total Hl5Total 

 m/s m/s m/s m m m m mm 

1 0.0001 0.0001 0.0002 0.0001 0.0000 0.0001 0.0002 0.17 

2 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.24 

3 0.0005 0.0003 0.0005 0.0002 0.0001 0.0002 0.0005 0.53 

4 0.0007 0.0004 0.0008 0.0003 0.0002 0.0003 0.0008 0.76 

5 0.0011 0.0007 0.0013 0.0004 0.0003 0.0005 0.0012 1.24 

6 0.0016 0.0011 0.0018 0.0006 0.0004 0.0007 0.0018 1.79 

7 0.0022 0.0015 0.0026 0.0009 0.0006 0.0010 0.0025 2.52 

8 0.0030 0.0020 0.0034 0.0012 0.0008 0.0014 0.0033 3.33 

9 0.0036 0.0024 0.0041 0.0014 0.0010 0.0017 0.0041 4.06 

10 0.0046 0.0031 0.0053 0.0019 0.0012 0.0021 0.0052 5.22 

11 0.0056 0.0037 0.0064 0.0022 0.0015 0.0025 0.0063 6.25 

12 0.0060 0.0040 0.0069 0.0024 0.0016 0.0028 0.0068 6.76 
 

Table F28 below summaries the results of Tables F18 to F27. Figure F13 plots these 

graphically. A trendline is added to the results in order to predict the headloss, due to 

stone bedding, at the most downstream point of WC1. It is at this point that the largest 

magnitude of headloss occurs. Table F29 summaries these results. 

 

Table F28: Summary of 15 Headloss Tests. Results from Tables F18 to F27 

Test 
No. Total Q Total 2Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s l/s mm mm mm mm mm 

1 0.35 0.70 1.16 0.94 0.71 0.46 0.17 

2 0.49 0.98 1.64 1.33 1.00 0.65 0.24 

3 1.11 2.23 3.71 3.02 2.27 1.46 0.53 

4 1.58 3.16 5.26 4.28 3.22 2.07 0.76 

5 2.60 5.20 8.64 7.03 5.30 3.40 1.24 

6 3.74 7.49 12.43 10.11 7.63 4.90 1.79 

7 5.27 10.54 17.47 14.22 10.73 6.90 2.52 

8 6.98 13.95 23.07 18.79 14.19 9.13 3.33 

9 8.49 16.99 28.04 22.85 17.26 11.11 4.06 

10 10.92 21.85 35.97 29.33 22.17 14.27 5.22 

11 13.09 26.19 43.01 35.09 26.54 17.09 6.25 

12 14.16 28.32 46.46 37.91 28.68 18.48 6.76 
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Figure F13: Method2:Results of Headloss due to Stone Bedding, within WC1 

 
Table F29: Method 2:Summary of maximum headloss versus flow rates(WST) 

Test No. Total Q Total 2Q 
Maximum Headloss 

due to Stone Bedding 

 
l/s l/s mm 

1 0.35 0.70 1.25 

2 0.49 0.98 1.77 

3 1.11 2.23 4.01 

4 1.58 3.16 5.69 

5 2.60 5.20 9.34 

6 3.74 7.49 13.44 

7 5.27 10.54 18.88 

8 6.98 13.95 24.93 

9 8.49 16.99 30.30 

10 10.92 21.85 38.84 

11 13.09 26.19 46.43 

12 14.16 28.32 50.14 
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Bedding for Various flow values 

0.35

1.11

1.58

2.60

3.74

5.27

6.98

8.49

0.35

0.49

1.11

1.58

2.60

3.74

5.27

8.49

10.92

13.09

14.16

Stellenbosch University  http://scholar.sun.ac.za



365 

University of Stellenbosch 

F.5.4.2.3 Method 3: Forchheimer Method for determining headloss due to 

stone bedding 

 

The third method used to determine the loss of pressure due to Stone bedding, looks 

at the hydraulic conductivity of the stone bedding. This is based on work carried out by 

Forchheimer. From Table F14, the velocity for each segment of the Intake pipeline was 

determined. However, stone bedding cannot be split into equal segments as well. This 

is only correct for stone bedding adjacent to the intake pipeline. It does not apply to the 

flat horizontal surface of the stone bedding. 

 

Flow into the intake pipe line is proportional to the velocity. The maximum velocity 

occurs at one end of the intake pipeline and the minimum velocity occurs at the start of 

the intake pipeline. Table F30 below looks at the ratio of the (flowrate) as a proportion 

of the entire flowrate. 

 

Figure F15, these proportions were then applied to length of the stone bed. This 

splitting of the stone bedding surface ensured that all flows entering the stone bed 

were proportional to the flow entering the intake pipeline for all segments. 

 

Table F30:ø250mm Metal Wire pipe, Water and Stone Bedding Test: Flow through segments  

Test 
No. 

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5 

 
Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 Qs 1 Qs 2 Qs 3 Qs 4 Qs 5 

 
m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s m

3
/s 

1 0.00013 0.00010 0.00007 0.00004 0.00001 36% 28% 20% 12% 4% 

2 0.00018 0.00014 0.00010 0.00006 0.00002 36% 28% 20% 12% 4% 

3 0.00040 0.00031 0.00022 0.00013 0.00004 36% 28% 20% 12% 4% 

4 0.00057 0.00044 0.00032 0.00019 0.00006 36% 28% 20% 12% 4% 

5 0.00094 0.00073 0.00052 0.00031 0.00010 36% 28% 20% 12% 4% 

6 0.00135 0.00105 0.00075 0.00045 0.00015 36% 28% 20% 12% 4% 

7 0.00190 0.00148 0.00105 0.00063 0.00021 36% 28% 20% 12% 4% 

8 0.00251 0.00195 0.00140 0.00084 0.00028 36% 28% 20% 12% 4% 

9 0.00306 0.00238 0.00170 0.00102 0.00034 36% 28% 20% 12% 4% 

10 0.00393 0.00306 0.00218 0.00131 0.00044 36% 28% 20% 12% 4% 

11 0.00471 0.00367 0.00262 0.00157 0.00052 36% 28% 20% 12% 4% 

12 0.00510 0.00397 0.00283 0.00170 0.00057 36% 28% 20% 12% 4% 
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Figure F15: ø250mm Slotted pipe-Water and Stone Bedding Test: Segmentation of Stone 
Bedding area 

 

 
Figure F16: Notional flow path of a stone bedding segment 
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Figure F16 shows the simplified version of a single notional segment. Note line f1, f2 

and f3 as lines of reference in Figure F15 and F167. As in Figure F16, length (l1) is 

multiplied by the standard width (With), to create the area A1. Area A4 was easily 

calculated it is based on the intake pipe dimensions. Areas A2 and A3are a third of the 

distance from each end and hence are calculated proportionately. The distances from 

Area A1 to A2 to A3 to A4are noted as Lengths len1, len2 and len3 respectively. 

 

In order to calculate the pressure loss due to the stone bedding, the hydraulic 

conductivity is required. The pressure loss is defined as per Equation F4 below: 

 

        Eqn F4 

 

Where: 

hf = pressure loss due to friction within stone bedding 

L = Length of water path (m) 

V = Flow velocity 

k = Hydraulic conductivity 

 

The first two variables are easily to calculate however the hydraulic conductivity is 

calculated from Figure F18. 

 

 
Figure F17: Grading curve for nominally single-sized 19mm Stone (Alexander & Mindess, 
2005) 

k

VL
mhf


)(
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Figure F17 above is a typical grading curve for nominally single-sized 19mm. From the 

grading curve, a value of D50 = 15.7mm was obtained. Table F31 summaries the 

parameters when obtaining the hydraulic conductivity k value. 

 

 

Figure F18: Permeability versus grain or stone sieve size (CIRIA, CUR, CETMEF,2007) 

 

 

Table F31: Calculation of Permeability for19mm Bedding of seawater Intake (WST) 

Description Unit Bedding 

Dn50 m 0.0157 

Log (D50) m -1.80 

Log k (from fig. 2.39) m/s -1.16 

k m/s 0.069 

 

Using the values from Table F30 and F31, headloss for Segment 1 was calculated in 

the following manner. With the flow through each segment know, it is possible to 

determine the headloss if the areas through which water flows is uniform.  

 

However, this is not the case. Hence each segment has been split into three equal 

portions. Table F32 below, describes the manner in which Segment 1 is split into three 

sub segments. Thereafter, Table F33 determines the average velocity for each sub 

segment, the associated headloss and finally the cumulative headloss for Segment 1. 

The subsequent tables describe the headloss calculated for Segments 1, 2, 3, 4 and 5. 
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Table F32: Segment 1: Averaging of Areas 

Test 
No. Len1 A11 A12 A13 A14 Qs 1 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.3618 0.221 0.202 0.183 0.164 0.0001 0.192 0.174 0.082 

2 0.3618 0.221 0.202 0.183 0.164 0.0002 0.192 0.174 0.082 

3 0.3618 0.221 0.202 0.183 0.164 0.0004 0.192 0.174 0.082 

4 0.3618 0.221 0.202 0.183 0.164 0.0006 0.192 0.174 0.082 

5 0.3618 0.221 0.202 0.183 0.164 0.0009 0.192 0.174 0.083 

6 0.3618 0.221 0.202 0.183 0.164 0.0013 0.192 0.174 0.083 

7 0.3618 0.221 0.202 0.183 0.164 0.0019 0.192 0.174 0.083 

8 0.3618 0.221 0.202 0.183 0.164 0.0025 0.192 0.174 0.083 

9 0.3618 0.221 0.202 0.183 0.164 0.0031 0.192 0.174 0.084 

10 0.3618 0.221 0.202 0.183 0.164 0.0039 0.192 0.174 0.084 

11 0.3618 0.221 0.202 0.183 0.164 0.0047 0.192 0.174 0.084 

12 0.3618 0.221 0.202 0.183 0.164 0.0051 0.192 0.174 0.085 
 

Table F33: Segment 1: Velocity and cumulative headloss  

Test 
No. Vel 1A Vel 1B Vel 1C Hl11 Hl12 Hl13 Hl1Total Hl1Total 

 m/s m/s m/s m m m m mm 

1 0.0007 0.0007 0.0015 0.00189 0.00209 0.00442 0.00840 8.40 

2 0.0009 0.0010 0.0022 0.00267 0.00296 0.00625 0.01188 11.88 

3 0.0021 0.0023 0.0049 0.00605 0.00670 0.01414 0.02689 26.89 

4 0.0030 0.0033 0.0069 0.00857 0.00950 0.02003 0.03810 38.10 

5 0.0049 0.0054 0.0113 0.01409 0.01563 0.03286 0.06258 62.58 

6 0.0070 0.0078 0.0163 0.02031 0.02252 0.04723 0.09005 90.05 

7 0.0099 0.0109 0.0229 0.02860 0.03171 0.06629 0.12659 126.59 

8 0.0131 0.0145 0.0301 0.03784 0.04195 0.08739 0.16718 167.18 

9 0.0159 0.0176 0.0366 0.04607 0.05108 0.10606 0.20321 203.21 

10 0.0204 0.0227 0.0468 0.05925 0.06569 0.13568 0.26062 260.62 

11 0.0245 0.0272 0.0558 0.07102 0.07874 0.16188 0.31165 311.65 

12 0.0265 0.0294 0.0603 0.07680 0.08516 0.17468 0.33664 336.64 
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Table F34: Segment 2: Averaging of Areas 

Test 
No. Len2 A21 A22 A23 A24 Qs 2 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.2814 0.172 0.169 0.167 0.164 0.0001 0.168 0.165 0.082 

2 0.2814 0.172 0.169 0.167 0.164 0.0001 0.168 0.165 0.082 

3 0.2814 0.172 0.169 0.167 0.164 0.0003 0.168 0.165 0.082 

4 0.2814 0.172 0.169 0.167 0.164 0.0004 0.168 0.165 0.082 

5 0.2814 0.172 0.169 0.167 0.164 0.0007 0.168 0.165 0.082 

6 0.2814 0.172 0.169 0.167 0.164 0.0010 0.168 0.165 0.083 

7 0.2814 0.172 0.169 0.167 0.164 0.0015 0.168 0.165 0.083 

8 0.2814 0.172 0.169 0.167 0.164 0.0020 0.168 0.165 0.083 

9 0.2814 0.172 0.169 0.167 0.164 0.0024 0.168 0.165 0.083 

10 0.2814 0.172 0.169 0.167 0.164 0.0031 0.168 0.165 0.084 

11 0.2814 0.172 0.169 0.167 0.164 0.0037 0.168 0.165 0.084 

12 0.2814 0.172 0.169 0.167 0.164 0.0040 0.168 0.165 0.084 

 

 

 

Table F35: Segment 2: Velocity and cumulative headloss  

Test 
No. Vel 2A Vel 2B Vel 2C Hl21 Hl22 Hl23 Hl2Total Hl2 Total 

 m/s m/s m/s m m m m mm 

1 0.0006 0.0006 0.0012 0.00168 0.00171 0.00344 0.00683 6.83 

2 0.0008 0.0008 0.0017 0.00238 0.00242 0.00486 0.00966 9.66 

3 0.0019 0.0019 0.0038 0.00539 0.00547 0.01101 0.02187 21.87 

4 0.0026 0.0027 0.0054 0.00764 0.00776 0.01559 0.03098 30.98 

5 0.0043 0.0044 0.0088 0.01256 0.01275 0.02559 0.05091 50.91 

6 0.0062 0.0063 0.0127 0.01810 0.01838 0.03680 0.07328 73.28 

7 0.0088 0.0089 0.0178 0.02549 0.02588 0.05169 0.10306 103.06 

8 0.0116 0.0118 0.0235 0.03373 0.03424 0.06820 0.13617 136.17 

9 0.0142 0.0144 0.0286 0.04107 0.04169 0.08283 0.16559 165.59 

10 0.0182 0.0185 0.0366 0.05281 0.05362 0.10608 0.21251 212.51 

11 0.0218 0.0222 0.0437 0.06331 0.06427 0.12670 0.25427 254.27 

12 0.0236 0.0240 0.0472 0.06846 0.06951 0.13677 0.27474 274.74 
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Table F36: Segment 3: Averaging of Areas 

Test 
No. Len3 A31 A32 A33 A34 Qs 3 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.201 0.123 0.136 0.150 0.164 0.0001 0.143 0.157 0.082 

2 0.201 0.123 0.136 0.150 0.164 0.0001 0.143 0.157 0.082 

3 0.201 0.123 0.136 0.150 0.164 0.0002 0.143 0.157 0.082 

4 0.201 0.123 0.136 0.150 0.164 0.0003 0.143 0.157 0.082 

5 0.201 0.123 0.136 0.150 0.164 0.0005 0.143 0.157 0.082 

6 0.201 0.123 0.136 0.150 0.164 0.0007 0.143 0.157 0.082 

7 0.201 0.123 0.136 0.150 0.164 0.0011 0.143 0.157 0.083 

8 0.201 0.123 0.136 0.150 0.164 0.0014 0.143 0.157 0.083 

9 0.201 0.123 0.136 0.150 0.164 0.0017 0.143 0.157 0.083 

10 0.201 0.123 0.136 0.150 0.164 0.0022 0.143 0.157 0.083 

11 0.201 0.123 0.136 0.150 0.164 0.0026 0.143 0.157 0.083 

12 0.201 0.123 0.136 0.150 0.164 0.0028 0.143 0.157 0.083 

 

 

 

 

Table F31: Segment 3: Velocity and cumulative headloss  

Test 
No. Vel 3A Vel 3B Vel 3C Hl31 Hl32 Hl33 Hl3Total Hl3Total 

 m/s m/s m/s m m m m mm 

1 0.0005 0.0004 0.0008 0.00141 0.00128 0.00246 0.00515 5.15 

2 0.0007 0.0006 0.0012 0.00199 0.00181 0.00347 0.00728 7.28 

3 0.0016 0.0014 0.0027 0.00451 0.00411 0.00787 0.01648 16.48 

4 0.0022 0.0020 0.0038 0.00639 0.00583 0.01114 0.02336 23.36 

5 0.0036 0.0033 0.0063 0.01051 0.00958 0.01830 0.03839 38.39 

6 0.0052 0.0048 0.0091 0.01514 0.01381 0.02633 0.05528 55.28 

7 0.0074 0.0067 0.0128 0.02132 0.01944 0.03701 0.07778 77.78 

8 0.0097 0.0089 0.0169 0.02821 0.02573 0.04888 0.10282 102.82 

9 0.0119 0.0108 0.0205 0.03435 0.03133 0.05940 0.12508 125.08 

10 0.0152 0.0139 0.0263 0.04418 0.04029 0.07617 0.16063 160.63 

11 0.0183 0.0167 0.0314 0.05295 0.04829 0.09107 0.19231 192.31 

12 0.0198 0.0180 0.0339 0.05727 0.05223 0.09836 0.20785 207.85 
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Table F38: Segment 4: Averaging of Areas 

Test 
No. Len4 A41 A42 A43 A44 Qs 4 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.121 0.074 0.104 0.134 0.164 0.0000 0.119 0.149 0.082 

2 0.121 0.074 0.104 0.134 0.164 0.0001 0.119 0.149 0.082 

3 0.121 0.074 0.104 0.134 0.164 0.0001 0.119 0.149 0.082 

4 0.121 0.074 0.104 0.134 0.164 0.0002 0.119 0.149 0.082 

5 0.121 0.074 0.104 0.134 0.164 0.0003 0.119 0.149 0.082 

6 0.121 0.074 0.104 0.134 0.164 0.0004 0.119 0.149 0.082 

7 0.121 0.074 0.104 0.134 0.164 0.0006 0.119 0.149 0.082 

8 0.121 0.074 0.104 0.134 0.164 0.0008 0.119 0.149 0.082 

9 0.121 0.074 0.104 0.134 0.164 0.0010 0.119 0.149 0.083 

10 0.121 0.074 0.104 0.134 0.164 0.0013 0.119 0.149 0.083 

11 0.121 0.074 0.104 0.134 0.164 0.0016 0.119 0.149 0.083 

12 0.121 0.074 0.104 0.134 0.164 0.0017 0.119 0.149 0.083 
 

 

Table F39: Segment 4: Velocity and cumulative headloss  

Test 
No. Vel 4A Vel 4B Vel 4C Hl41 Hl42 Hl43 Hl4Total Hl4Total 

 m/s m/s m/s m m m m mm 

1 0.0004 0.0003 0.0005 0.00102 0.00081 0.00147 0.00331 3.31 

2 0.0005 0.0004 0.0007 0.00144 0.00115 0.00209 0.00467 4.67 

3 0.0011 0.0009 0.0016 0.00326 0.00260 0.00472 0.01059 10.59 

4 0.0016 0.0013 0.0023 0.00463 0.00369 0.00669 0.01500 15.00 

5 0.0026 0.0021 0.0038 0.00761 0.00607 0.01100 0.02467 24.67 

6 0.0038 0.0030 0.0055 0.01096 0.00874 0.01583 0.03553 35.53 

7 0.0053 0.0042 0.0077 0.01543 0.01231 0.02227 0.05000 50.00 

8 0.0070 0.0056 0.0102 0.02042 0.01628 0.02943 0.06613 66.13 

9 0.0086 0.0068 0.0123 0.02486 0.01983 0.03579 0.08048 80.48 

10 0.0110 0.0088 0.0159 0.03198 0.02550 0.04594 0.10342 103.42 

11 0.0132 0.0105 0.0190 0.03833 0.03056 0.05498 0.12388 123.88 

12 0.0143 0.0114 0.0205 0.04145 0.03305 0.05942 0.13392 133.92 
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Table F40: Segment 5: Averaging of Areas 

Test 
No. Len5 A51 A52 A53 A54 Qs 5 Ave A1 Ave A2 Ave A3 

 
m m

2
 m

2
 m

2
 m

2
 m

3
/s m

2
 m

2
 m

2
 

1 0.0402 0.025 0.071 0.118 0.164 0.0000 0.094 0.141 0.082 

2 0.0402 0.025 0.071 0.118 0.164 0.0000 0.094 0.141 0.082 

3 0.0402 0.025 0.071 0.118 0.164 0.0000 0.094 0.141 0.082 

4 0.0402 0.025 0.071 0.118 0.164 0.0001 0.094 0.141 0.082 

5 0.0402 0.025 0.071 0.118 0.164 0.0001 0.094 0.141 0.082 

6 0.0402 0.025 0.071 0.118 0.164 0.0001 0.094 0.141 0.082 

7 0.0402 0.025 0.071 0.118 0.164 0.0002 0.094 0.141 0.082 

8 0.0402 0.025 0.071 0.118 0.164 0.0003 0.094 0.141 0.082 

9 0.0402 0.025 0.071 0.118 0.164 0.0003 0.094 0.141 0.082 

10 0.0402 0.025 0.071 0.118 0.164 0.0004 0.094 0.141 0.082 

11 0.0402 0.025 0.071 0.118 0.164 0.0005 0.094 0.141 0.082 

12 0.0402 0.025 0.071 0.118 0.164 0.0006 0.094 0.141 0.082 

 

 

 

Table F41: Segment 5: Velocity and cumulative headloss  

Test 
No. Vel 5A Vel 5B Vel 5C Hl51 Hl52 Hl53 Hl5Total Hl5Total 

 m/s m/s m/s m m m m mm 

1 0.0001 0.0001 0.0002 0.00043 0.00029 0.00049 0.00121 1.21 

2 0.0002 0.0001 0.0002 0.00060 0.00041 0.00070 0.00171 1.71 

3 0.0005 0.0003 0.0005 0.00137 0.00092 0.00157 0.00386 3.86 

4 0.0007 0.0004 0.0008 0.00194 0.00130 0.00223 0.00548 5.48 

5 0.0011 0.0007 0.0013 0.00319 0.00214 0.00367 0.00900 9.00 

6 0.0016 0.0011 0.0018 0.00460 0.00308 0.00529 0.01297 12.97 

7 0.0022 0.0015 0.0026 0.00648 0.00434 0.00744 0.01826 18.26 

8 0.0030 0.0020 0.0034 0.00858 0.00574 0.00984 0.02416 24.16 

9 0.0036 0.0024 0.0041 0.01044 0.00699 0.01198 0.02941 29.41 

10 0.0046 0.0031 0.0053 0.01343 0.00899 0.01540 0.03782 37.82 

11 0.0056 0.0037 0.0064 0.01610 0.01078 0.01844 0.04532 45.32 

12 0.0060 0.0040 0.0069 0.01741 0.01166 0.01994 0.04901 49.01 
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Table F42: Summary of Method 3 Headloss Tests. Results from Tables 32 to 41 (WST) 

Test 
No. Total Q Total 2Q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

 
l/s l/s mm mm mm mm mm 

1 0.35 0.70 8.40 6.83 5.15 3.31 1.21 

2 0.49 0.98 11.88 9.66 7.28 4.67 1.71 

3 1.11 2.23 26.89 21.87 16.48 10.59 3.86 

4 1.58 3.16 38.10 30.98 23.36 15.00 5.48 

5 2.60 5.20 62.58 50.91 38.39 24.67 9.00 

6 3.74 7.49 90.05 73.28 55.28 35.53 12.97 

7 5.27 10.54 126.59 103.06 77.78 50.00 18.26 

8 6.98 13.95 167.18 136.17 102.82 66.13 24.16 

9 8.49 16.99 203.21 165.59 125.08 80.48 29.41 

10 10.92 21.85 260.62 212.51 160.63 103.42 37.82 

11 13.09 26.19 311.65 254.27 192.31 123.88 45.32 

12 14.16 28.32 336.64 274.74 207.85 133.92 49.01 

 

Figure F19 plots these graphically. A trendline is added to the results in order to 

predict the headloss, due to stone bedding. This occurs at the most downstream point 

of WC1. It is at this point that the largest magnitude of headloss occurs. Table F43 

summaries these results. 

 

Table F43: Method 3: Summary of maximum headloss versus flow rates (WST) 

Test No. Total Q Total 2Q 
Maximum Headloss 

due to Stone Bedding 

 
l/s l/s mm 

1 0.35 0.70 9.09 

2 0.49 0.98 12.85 

3 1.11 2.23 29.09 

4 1.58 3.16 41.20 

5 2.60 5.20 67.67 

6 3.74 7.49 97.35 

7 5.27 10.54 126.82 

8 6.98 13.95 180.65 

9 8.49 16.99 219.53 

10 10.92 21.85 281.43 

11 13.09 26.19 336.42 

12 14.16 28.32 363.34 
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Figure F19: Method 3:Results of Headloss due to Stone Bedding, within WC1 
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F.5.4.3 Comparison of Results for Method 1, 2 and 3 

 

The following Figure F20 shows the results for Method 1, 2 and 3 for the calculation of 

Headloss due to the stone bedding only, Results for Method1 is derived from Table 

F15, Method 2 from Table F29 and Method 3 from Table F43.  

 

Table F30:Summary of maximum headloss versus flow rates for Methods 1, 2 and 3 

Test No. Total Q Total 2Q 
Method 1: 

Stone Bedding 
Headloss 

Method 2: 
Stone Bedding 

Headloss 

Method 3: 
Stone Bedding 

Headloss 

 
l/s l/s mm mm mm 

1 0.35 0.70 5.43 1.25 9.09 

2 0.49 0.98 7.64 1.77 12.85 

3 1.11 2.23 16.94 4.01 29.09 

4 1.58 3.16 23.62 5.69 41.20 

5 2.60 5.20 37.46 9.34 67.67 

6 3.74 7.49 51.73 13.44 97.35 

7 5.27 10.54 68.63 18.88 126.82 

8 6.98 13.95 84.58 24.93 180.65 

9 8.49 16.99 96.22 30.30 219.53 

10 10.92 21.85 109.83 38.84 281.43 

11 13.09 26.19 116.76 46.43 336.42 

12 14.16 28.32 118.36 50.14 363.34 

 

 
Figure F20: Method 1, 2 and 3: Headloss due to the stone bedding only
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Summary of Results 

 

The following is a summary of the results and is presented as per type of test. The 

following chapter summaries the methods used in estimating the Stone Bedding 

Friction only. 

 

G.1 Water Only Tests 

 

The following is a summary of the water only test that was performed on all three 

pipes. The flows shown are as per the experiments. These flow numbers can be 

double as a whole pipe would be used in practical applications. Table G1 contains the 

values for the test for all three pipes. Figure G1 Perforation friction for all three intake 

pipe types 

 

 

Table G1: Summary of results for all the Water only tests 

Intake 
Pipe 

Types 
Slotted PVC Pipe 

Perforated PVC 
Pipe 

Perforated PVC Pipe 
with Extra Perforation 

Metal Wire Pipe  

Test No. Loss A 
Q Full 
Pipe Loss A 

Q Full 
Pipe Loss A 

Q Full 
Pipe Loss A 

Q Full 
Pipe 

  mm l/s mm l/s mm l/s mm l/s 

0 0 0.0 0 0.0 0 0.0 0 0.0 

1 0 1.5 0 0.3 3 0.4 1 0.5 

2 1 2.8 7 0.3 6 1.0 2 1.1 

3 3 4.1 13 0.8 14 1.9 4 1.8 

4 5 5.1 48 2.1 40 3.6 6 3.0 

5 7 6.6 113 3.3 89 5.8 13 4.0 

6 9 7.5 282 5.3 161 8.5 14 5.2 

7 10 8.6 431 6.8 215 9.8 31 6.2 

8 13 10.4 581 7.6 281 11.3 41 8.1 

9 16 12.8     473 14.4 49 9.6 

10 19 14.6         85 12.3 

11 25 16.6         100 14.2 

12 30 17.7         134 16.0 

13 38 19.6         149 18.3 

14 48 21.6         198 20.4 

15 61 22.7         251 21.8 

16 74 25.1         307 24.2 

17 93 28.5         352 28.3 

18 133 31.7         445 30.6 

19 172 36.6             
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Figure G1: Perforation friction for all three intake pipe types 

 

 

G.2 Stone Bedding Tests 

 

 

The following is a summary of the stone test that was performed on all three pipes. 

The flows shown are as per the experiments. These flow numbers can be double as a 

whole pipe would be used in practical applications. Table G2 contains the test values 

for all three pipes. Figure G2 shows the Perforation friction + Stone Bedding friction for 

all three intake pipe3. 
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Table G2: Summary of results for the Stone Bedding tests 

Intake 
Pipe 

Types 
Slotted PVC Pipe 

Perforated PVC 
Pipe with Extra 

Perforation 
Metal Wire Pipe 

Test 
No. 

Loss A + 
Stone 

BF 
Q Full 
Pipe 

Loss A 
+ Stone 

BF 
Q Full 
Pipe 

Loss A 
+ Stone 

BF 
Q Full 
Pipe 

mm l/s mm l/s mm l/s 

1 0.5 0.66 3 0.44 2 0.70 

2 0.99 1.06 6.5 0.96 4 0.98 

3 1.98 1.68 13.9 1.88 9 2.23 

4 2.95 2.62 39.8 3.64 6 3.16 

5 5.82 4.68 89.4 5.85 62 5.20 

6 11.2 5.96 160.6 8.51 67 7.49 

7 18.0 8.22 215.2 9.84 123 10.54 

8 34.6 12.9 280.6 11.28 201 13.95 

9 48.0 15.5 473.1 14.39 219 16.99 

10 70.1 18.7     299 21.85 

11 83.5 20.9     361 26.19 

12 105.6 23.1     449 28.32 

13 129.5 25.9       

14 155.4 28.5       

15 171.7 29.8       

 

 

Figure G2: Perforation and Stone Bedding Friction for all three intake pipe types
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G.3 Sand + Stone Bedding Test 

 

G.3.1 Slotted PVC Pipe 

 

The following is a summary of the sand and stone tests that was performed on the 

Slotted PVC Pipe pipes. The flows shown are as per the experiments. These flow 

numbers can be double as a whole pipe would be used in practical applications. Table 

G3 contains the test results values for the Before Back Flushing (BBF) and the After 

Back Flushing (ABF) test Figure G3 plots the results of Table G3 

 

Table G3: Summary of results for the Slotted PVC Pipe :Sand + Stone Bedding tests 

    
Before Back 
Flushing     

After Back 
Flushing   

Test 
No. Time  

BBF Loss 

A+sand + stone 
bedding 

BBF Q Full 
Pipe Time  

ABF Loss A+sand 
+ stone bedding 

ABF Q Full 
Pipe 

  min mm ml/s min mm l/s 

1 0 40 82 0 0 133 

2 45 312 291 7 234 107 

3 60 335 300 12 255 153 

4 70 350 306 16 285 189 

5 83 362 302 20 311 204 

6 107 374 348 24 324.5 229 

7 118 293 313 28 339 227 

8 143 220 183 32 350 246 

9 149 257 212 36 356 269 

10 160.5 266 234 40 360 267 

11 171.5 268 233 44 362.5 275 

12 178.2 268 233 48 363 286 

13 185 268 233 52 366 287 

        56 366 289 

        60 365.5 293 

        66 363.5 259 

        72 362.5 260 

        78 359.5 263 

        101 349.5 203 

        150 329.5 192 

        170 320.5 205 

        192 315.5 203 

        230 307.5 195 

        280 297.5 192 

        326 291.5 193 

        377 281.5 192 
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Figure G3: Pressure loss and Flowrate vs. time relationship for the Slotted PVC Pipe with sand 

and stone bedding 

 

G.3.2 Perforated PVC Pipe 

 

The following is a summary of the sand and stone tests that was performed on the 

Extra Perforated PVC Pipe pipes. The flows shown are as per the experiments. These 

flow numbers can be double as a whole pipe would be used in practical applications. 

Table G4 contains the test results values for Perforation friction + Sand and Stone 

Bedding friction. Figure G4 plots the results of Table G4 

 

Table G4: Summary of results for the Extra Perforated PVC Pipe:Sand + Stone bedding tests 

Test No. 
Loss A+sand + 
stone bedding 

Q Half 
Pipe 

  mm l/s 

1 25.00 0.33 

2 101.99 1.15 

3 202.94 2.26 

4 296.91 2.87 

5 351.87 3.46 

6 443.69 5.29 

7 527.56 6.30 
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Figure G4: Pressure Loss vs. Flowrate for Extra perforated PVC Pipe with sand and stone 

bedding 

 

G.4 Estimating losses due to Stone Bedding 

 

Three methods were used to estimate the pressure losses due to stone bedding only. 

They were as follows: 

 

Method 1: Simple method for determining stone bedding loss 

 

In this simplistic method, the results of the “Water Test only: is plotted. Curve line 1 is 

fitted to the results and an equation characterising the line and hence the pipe, 

headloss characteristics is formulated.  

 

Thereafter, the results of the “Stone and water test” is plotted. Curve line 2 is fitted to 

the results and an equation characterising the line and hence the pipe and surrounding 

bedding, headloss characteristics is formulated. 

 

The loss due to the stone bedding only, Curve line 3, is determined by subtracting 

Curve line 2 from Curve Line 1. This data is then plotted to show graphically the 

relationship between the headloss caused by the stone bedding. 
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Method 2: Method for determining stone bedding loss : Hydraulic conductivity: 

Kenny, Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of stone bedding. Equation by Kenny, Lau and 

Ofoegbuare used to estimate stone bedding headloss. 

 

Method 3: Method for determining stone bedding loss : Hydraulic conductivity: 

Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, stems 

from work carried out by Forchheimer. This method use Figure 2.35 to estimate the 

permeability of the stone bedding and hence the headloss. 

 

The following Table and Figures show the results of Method 1, 2and 3 that were used 

to calculate the stone bedding friction for all three intake pipes. The full flow is used in 

this sub chapter. 

 

 

G.4.1 Slotted PVC Pipe 

 

Table G5: Slotted PVC Pipe :Method 1, 2 and 3:Headloss due to Stone bedding 

Test No. Total Q Total 2Q 
Method 1 Stone 

bedding 
Headloss 

Method 2 Stone 
bedding 

Headloss 

Method 3 Stone 
bedding 

Headloss 

 
l/s l/s mm mm mm 

1 0.33 0.66 0.4 0.64 6.02 

2 0.53 1.06 0.7 1.03 9.85 

3 0.84 1.68 1.2 1.64 15.75 

4 1.31 2.62 2.0 2.55 23.95 

5 2.34 4.67 4.3 4.54 43.25 

6 2.98 5.95 6.1 5.78 55.00 

7 4.11 8.23 9.9 8.00 76.00 

8 6.45 12.90 20.3 12.54 119.5 

9 7.75 15.51 27.6 15.07 143.5 

10 9.37 18.74 38.1 18.21 173.2 

11 10.43 20.85 45.9 20.27 192.7 

12 11.55 23.10 55.0 22.46 214.0 

13 12.96 25.92 67.5 25.20 239.7 

14 14.24 28.49 79.9 27.69 263.8 

15 14.92 29.83 86.9 29.01 276.0 
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Figure G5: Slotted PVC Pipe-Method 1,2 and 3: Headloss due to the stone bedding 

 

 

G.4.2 Perforated PVC Pipe 

 

Table G6: Perforated PVC Pipe :Method 1, 2 and 3:Headloss due to Stone bedding 

Test No. Total Q Total 2Q 
Method 1 Stone 

bedding Headloss 
Method 2 Stone 

bedding Headloss 
Method 3 Stone 

bedding Headloss 

 
l/s l/s mm mm mm 

1 0.10 0.19 0.002 0.18 1.795 

2 0.11 0.22 0.009 0.21 1.999 

3 0.14 0.28 0.02 0.27 2.554 

4 0.26 0.53 0.8 0.51 4.87 

5 0.44 0.87 0.96 0.85 8.098 

6 0.82 1.64 1.08 1.59 15.16 

7 1.07 2.15 2.69 2.08 19.86 

8 1.31 2.62 4.76 2.55 24.26 

9 1.64 3.29 8.56 3.19 30.45 

10 2.02 4.04 14.11 3.93 37.42 

11 2.60 5.20 25.23 5.05 48.14 

12 3.10 6.19 37.27 6.01 57.32 

13 3.94 7.88 63.03 7.65 72.93 

14 4.36 8.71 78.25 8.46 80.65 

15 4.80 9.60 96.26 9.32 88.87 

16 5.15 10.31 111.85 10.01 95.38 

17 5.39 10.78 123.02 10.47 99.77 

18 5.77 11.53 141.84 11.2 106.75 
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Figure G6: Perforated PVC Pipe-Method 1, 2 and 3: Headloss due to the stone bedding 

 

 

G.4.3 Metal Wire Pipe 

 

Table G7: Metal Wire Pipe :Method 1, 2 and 3:Headloss due to Stone bedding 

Test No. Total Q Total 2Q 
Method 1 Stone 

bedding 
Headloss 

Method 2 Stone 
bedding 

Headloss 

Method 3 Stone 
bedding 

Headloss 

 
l/s l/s mm mm mm 

1 0.35 0.70 5.43 1.25 9.09 

2 0.49 0.98 7.64 1.77 12.85 

3 1.11 2.23 16.94 4.01 29.09 

4 1.58 3.16 23.62 5.69 41.20 

5 2.60 5.20 37.46 9.34 67.67 

6 3.74 7.49 51.73 13.44 97.35 

7 5.27 10.54 68.63 18.88 126.82 

8 6.98 13.95 84.58 24.93 180.65 

9 8.49 16.99 96.22 30.30 219.53 

10 10.92 21.85 109.83 38.84 281.43 

11 13.09 26.19 116.76 46.43 336.42 

12 14.16 28.32 118.36 50.14 363.34 
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Figure G7: Metal Wire Pipe, Method 1, 2 and 3: Headloss due to the stone bedding 
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G.4.4 Results Summary of Method 1 

 

This is a summary of “Method 1”, which was conducted on all three pipe types. Table 

G8 contains the data for Figure G8 which is a graphical comparison of the results  

 

Table G8: Comparison of Method 1 for all three pipe types. 

Slotted PVC Pipe 
Perforated PVC Pipe with 

Extra Perforation 
Metal Wire Pipe  

Method 1 Stone 
Bedding loss 

Q Full 
Pipe 

Method 1 Stone 
Bedding loss 

Q Full 
Pipe 

Method 1 Stone 
Bedding loss 

Q Full 
Pipe 

mm l/s mm l/s mm l/s 

0.40 0.66 0.00 0.19 5.43 0.70 

0.67 1.06 0.01 0.22 7.64 0.98 

1.15 1.68 0.02 0.28 16.94 2.23 

1.99 2.62 0.80 0.53 23.62 3.16 

4.31 4.67 0.96 0.87 37.46 5.20 

6.09 5.95 1.08 1.64 51.73 7.49 

9.89 8.23 2.69 2.15 68.63 10.54 

20.30 12.90 4.76 2.62 84.58 13.95 

27.59 15.51 8.56 3.29 96.22 16.99 

38.12 18.74 14.11 4.04 109.83 21.85 

45.92 20.85 25.23 5.20 116.76 26.19 

54.99 23.10 37.27 6.19 118.36 28.32 

67.47 25.92 63.03 7.88 
 

  

79.94 28.49 78.25 8.71 
 

  

86.90 29.83 96.26 9.60 
 

  

    111.85 10.31 
 

  

    123.02 10.78 
 

  

    141.84 11.53     

 

 
Figure G8: Comparison of Method 1 for all three pipe types 
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G.4.5 Results Summary of Method 2 

 

This is a summary of Method 2, which was conducted on all three pipe types. Table 

G9 contains the data for Figure G9 which is a graphical comparison of the results  

 

Table G9: Comparison of Method 2 for all three pipe types. 
Intake 
Pipe 

Types 
Slotted PVC Pipe 

Perforated PVC Pipe with 
Extra Perforation 

Metal Wire Pipe  

Test No. 
Method 2 Stone 

Bedding loss 
Q Full 
Pipe 

Method 2 Stone 
Bedding loss 

Q Full 
Pipe 

Method 2 Stone 
Bedding loss 

Q Full 
Pipe 

mm l/s mm l/s mm l/s 

1 0.64 0.66 0.18 0.19 1.25 0.70 

2 1.03 1.06 0.21 0.22 1.77 0.98 

3 1.64 1.68 0.27 0.28 4.01 2.23 

4 2.55 2.62 0.51 0.53 5.69 3.16 

5 4.54 4.67 0.85 0.87 9.34 5.20 

6 5.78 5.95 1.59 1.64 13.44 7.49 

7 8.00 8.23 2.08 2.15 18.88 10.54 

8 12.54 12.90 2.55 2.62 24.93 13.95 

9 15.07 15.51 3.19 3.29 30.30 16.99 

10 18.21 18.74 3.93 4.04 38.84 21.85 

11 20.27 20.85 5.05 5.20 46.43 26.19 

12 22.46 23.10 6.01 6.19 50.14 28.32 

13 25.20 25.92 7.65 7.88 
 

  

14 27.69 28.49 8.46 8.71 
 

  

15 29.01 29.83 9.32 9.60 
 

  

  
 

  10.01 10.31 
 

  

  
 

  10.47 10.78 
 

  

      11.2 11.53     

 

 
Figure G9: Comparison of Method 2 for all three pipe types 
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G.4.6 Results Summary of Method 3 

 

This is a summary of Method 3, which was conducted on all three pipe types. Table 

G10 contains the data for Figure G10 which is a graphical comparison of the results  

 

Table G10: Comparison of Method 3 for all three pipe types. 
Intake 
Pipe 

Types 
Slotted PVC Pipe 

Perforated PVC Pipe with 
Extra Perforation 

Metal Wire Pipe  

Test No. 
Method 2 Stone 

Bedding loss 
Q Full 
Pipe 

Method 2 Stone 
Bedding loss 

Q Full 
Pipe 

Method 2 Stone 
Bedding loss 

Q Full 
Pipe 

mm l/s mm l/s mm l/s 

1 6.02 0.66 1.795 0.19 9.09 0.70 

2 9.85 1.06 1.999 0.22 12.85 0.98 

3 15.75 1.68 2.554 0.28 29.09 2.23 

4 23.95 2.62 4.87 0.53 41.20 3.16 

5 43.25 4.67 8.098 0.87 67.67 5.20 

6 55.00 5.95 15.16 1.64 97.35 7.49 

7 76.00 8.23 19.86 2.15 126.82 10.54 

8 119.50 12.90 24.26 2.62 180.65 13.95 

9 143.50 15.51 30.45 3.29 219.53 16.99 

10 173.20 18.74 37.42 4.04 281.43 21.85 

11 192.70 20.85 48.14 5.20 336.42 26.19 

12 214.00 23.10 57.32 6.19 363.34 28.32 

13 239.70 25.92 72.93 7.88     

14 263.80 28.49 80.65 8.71     

15 276.00 29.83 88.87 9.60     

    
 

95.38 10.31     

    
 

99.77 10.78     

      106.75 11.53     

 

 
Figure G10: Comparison of Method 3 for all three pipe types 
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G5 Estimating Pressure losses due to Sand and Stone Bedding 

 

This test was only undertaken on the Perforated Pipe. These tests could have been 

carried out on the other two pipes, however since the flow rates through them was far 

below the required design flows. If the aim was to test the horizontal well for sandy 

beaches, then these tests would prove essential. 

 

Method 1: Simple method for determining stone bedding loss 

 

This simplistic method, is basically the result of the “Stone and water test” minus the 

“Water Only test”  

 

Method 2: Method for determining stone bedding loss : Hydraulic conductivity: Kenny, 

Lau and Ofoegbu 

 

The second method used to determine the loss of pressure due to Stone bedding, 

looks at the hydraulic conductivity of stone bedding. Equation by Kenny, Lau and 

Ofoegbuare used to estimate stone bedding headloss. 

 

Method 3: Method for determining stone bedding loss : Hydraulic conductivity: 

Forchheimer 

 

The third method used to determine the loss of pressure due to Stone bedding, stems 

from work carried out by Forchheimer. This method use Figure 2.35 to estimate the 

permeability of the stone bedding and hence the headloss. 

 

The following Table and Figures show the results of Method 1, 2 and 3 that were used 

to calculate the stone bedding friction for all three intake pipes. The full flow is used in 

this sub chapter. 
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G5.1 Perforated PVC Pipe 

 

Table G11: Method 1, 2 and 3:Headloss due to Sand and Stone bedding 

Test 
No. Total Q Total 2Q 

Method 1 
Stone bedding 

Headloss 

Method 2 
Stone bedding 

Headloss 

Method 3 
Stone bedding 

Headloss 

 
l/s l/s mm mm mm 

1 0.17 0.33 18 0.31 3.09 

2 0.58 1.15 64 1.069 10.66 

3 1.13 2.26 128 2.094 20.88 

4 1.44 2.87 165 2.667 26.59 

5 1.73 3.46 201 3.208 32.00 

6 2.65 5.29 320 4.914 49.02 

7 3.15 6.30 390 5.85 58.39 

 

 

 

Figure G11: Perforated PVC Pipe Method 1, 2 and 3: Headloss due to the sand and stone 

bedding 
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