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ABSTRACT

Congruence between plant and insect diversity is considered possibly useful in
conservation planning, as the better known plants could be surrogates for the
lesser known insects. There has been little quantification of congruence across space,
especially in biodiversity rich areas. We compare here species richness, and turnover
relationships between plants and flower-visiting insects across space (0.5-80 km)

in natural areas of a biodiversity hotspot, the Greater Cape Floristic Region,

South Africa. A total of 22,352 anthophile individuals in 198 species and 348 plant
species were sampled. A comparison between the plants and anthophiles suggest
significant concordance between the two assemblages. However, turnover was weaker in
plants than in anthophiles. Plant turnover decreased with greater geographical distance
between plot pairs. In contrast, insect turnover remained high with increasing
geographical distance between plot pairs. These findings suggest that while patterns
of plant diversity and distribution shape flower-visiting insect assemblages, they

are not reliable surrogates. The conservation significance of these results is that specialist
mutualisms are at greatest risk, and that set-asides on farms would help improve

the functional connectivity leading to the maintenance of the full range of mutualisms.
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diversity can predict herbivorous insect diversity (Novotny et al., 2006), the relationship
may not necessarily hold for non-herbivorous insects (Fontiirbel, Jordano ¢ Medel, 2015).
Furthermore, tests of taxonomic surrogacy often produce contradictory results

(Kremen, 1992; Prendergast, 1997; Duelli & Obrist, 1998; Van Jaarsveld et al., 1998;
Osborn et al., 1999; Dauber et al., 2003).

Assessing the value of congruency for identifying surrogates is challenging (Lovell et al.,
2007), as spatial scale (Favreau et al., 2006) and the history of focal groups such as
plants and insects (Ponel et al., 2003), play important roles. While there may be congruence
between focal groups at very large spatial scales (Lamoreux et al., 2006; McKnight et al.,
2007), this may not be the case at the smaller scale of conservation planning at the
local level (Ricketts, Daily ¢ Ehrlich, 2002; Stork ¢ Habel, 2014). Furthermore, for
surrogacy to be effective, the focal groups must respond to environmental variables in
a similar way and must be equally sensitive (Pharo, Beattie ¢ Binns, 1999), and for
conservation planning this includes responses to human impacts (Kirkman et al., 2012).
In addition, there is the obvious factor that insects overall are more mobile than plants
and can more respond quickly to environmental change, which has happened both in
the deep (Ponel et al., 2003) and recent past (Hickling et al., 2006).

Flower-visiting insects are highly mobile and show a wide range of specificity to the
plant species they visit, with interactions between plants and insects ranging along a
continuum from highly specialised to generalised (Pauw, 2013). The needs of anthophiles
are not only restricted to plants, and also include aspects such as resting, courtship and
mating, ovipositioning or nesting, and avoiding death (Vanbergen et al., 2013; Goulson
et al., 2015; Gill et al., 2016). This means that anthophiles are sensitive to a range of
factors that may not affect plants.

The Greater Cape Floristic Region (GCFR) biodiversity hotspot has one of the highest
levels of plant species richness and endemism in the world, with 69% of 9,000 recorded
plants endemic to the area (Goldblatt & Manning, 2002). There is still disagreement
on whether insect diversity matches the high levels of plant species richness in the GCFR.
Giliomee (2003), after conducting a study on herbivorous insects in the GCFR, suggested
that the GCFR is not proportionately rich in herbivorous insect species, the exception
being a guild of endophagous insects. Giliomee (2003) attributed this to the sclerophyllous
nature and chemical defences of the plants, considering them a poor source of food for
insects. On the other hand, Wright ¢» Samways (2000), in their study on endophagous
insects on Proteaceae in South Africa, found proportionately high species richness of
herbivorous insects in the GCFR. Similarly, Kemp ¢ Ellis (2017) found similar numbers of
herbivorous insects per Restionaceae plant species, but as the plant species is so high in the
region, the number of herbivorous insect species is inevitably high. Furthermore,
Proches & Cowling (2006), comparing the diversity patterns of plant-inhabiting insects in
the local fynbos vegetation to that of three neighbouring biomes, found that fynbos insects
are diverse, and follow the generally established plant-insect herbivore diversity
relationship, as suggested also by Hawkins ¢ Porter (2003).

Conservation planning and priorities are well established in the GCFR, with much
focus on spatial planning and goal-setting for conservation strategies (Cowling et al., 2003;
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Pressey, Cowling ¢» Rouget, 2003). The basis of this work rests largely on broad habitat
units (Cowling ¢ Heijnis, 2001), which are defined using climate, topography, geology
and vegetation, as well as some ecological processes. These methods are still limited to taxa
such as plants for which the necessary, detailed distribution data are available. Yet we
know comparatively little about the diversity and distribution of insects in any biodiversity
hotspot, including the GCFR, nor how well they would be protected within these spatial
planning frameworks.

It is essential for effective conservation planning to consider congruency across taxa,
as the choice of organisms has a strong influence over the representativeness of
protected area networks. Maximizing the representativeness of taxa is done by considering
their changes of beta diversity in the landscape (Socolar et al., 2016). The beta diversity
measure consists of two components, the nestedness and turnover of species communities
(Baselga, 2010). Turnover across a landscape occurs when species are replaced, creating
distinct assemblages by the addition of novel species. Taxa that exhibit high spatial turnover
require patches of high quality habitat to help conserve their communities (Baselga, 2010).

Here, we compare species turnover of plant assemblages and closely associated
assemblages of flower-visiting insects (anthophiles) in natural and semi-transformed
habitats in the GCFR, across space from 0.5 to 80 km. We pose two key questions:
(1) Are species richness and turnover of anthophiles comparable across space to that
of plants in the GCFR; and (2) is the community composition of anthophiles in a distance
group related to local plant community composition? This study therefore addresses
two issues that have been previously overlooked: the interrelationship between two
mutually dependent groups, and how this relationship is affected by geographic distance.
This knowledge is instrumental for informing conservation planning in the region
and elsewhere in terms of plants and pollinators.

METHODS
Study sites

Permissions for conducting the study were obtained from the relevant authority at:
Helderberg Municipal Nature Reserve and Hottentots Holland Provincial Nature
Reserve—permission from Cape Nature (Permit No. 372/2003); Cordoba Wine Estate,
Vergelegen Wine Estate, Diepklowe Private Nature Reserve, Elandsberg Private Nature
Reserve—permission from manager/owner.

This study was conducted in the lowlands of the GCFR, which includes threatened
habitats (Rouget, Richardson & Cowling, 2003). Six sites across part of the region, either
in formally protected areas, or on farms where land had been set aside for conservation
purposes, were selected (Fig. 1; Table 1). At each of these sites, between one and four
area plots were selected, all below 400 m a.s.l., and which represented the heterogeneity
of natural lowland habitats in the region. In total, 16 plots were used in analyses.

Insect sampling
Sampling took place over a three-month period (September-November 2005) to coincide
with the time of peak flowering at each of the 16 plots. Vegetation and flowering status
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Figure 1 Study area map, experimental design and study sites. Map of study sites within the Greater
Cape Floristic Region (A). Black circles = Cordoba (CO1-2), squares = Elandskloofberge (EL1-4), tri-
angles = Helderberg Municipal Nature Reserve (HE1-3), star = Klipfontein (KL1), crosses = Groen-
landberg Conservancy (GB1-3), diamonds = Vergelegen (VG1-2). Experimental design at each plot (B).
For each plot, three arrays of randomly arranged coloured pan traps (blue, red, orange, violet, white, and
yellow) were placed in a configuration as shown. Elandskloofberge site (EL3) with natural vegetation and
located within reserve (C). Elandskloofberge remnant site surrounded by canola (as seen in background)
and wheat fields (D). Photography by Sven Vrdoljak. Full-size K&l DOT: 10.7717/peerj.6139/fig-1

were measured a day before transect sampling (see the next section on Vegetation transects
for further details).

Insects were surveyed using coloured pan traps (Vrdoljak ¢ Samways, 2012).
Anthophiles in the GCFR (Picker ¢ Midgley, 1996) and elsewhere (Campbell ¢ Hanula,
2007; Saunders ¢ Luck, 2013) show differential colour preferences to pan traps, so a
range of colours were used: red, orange, yellow, blue, violet, and white. Polypropylene tubs
(RL350; Marco Plastics, Alberton, South Africa), 115 mm diameter by 50 mm deep (350 ml
volume), were painted with gloss enamel paint (Dulux SA, Alberton, South Africa).

For each site, three arrays of six coloured pan traps were used, arranged in a cross-shaped
configuration of three 50 m lines at each of the 16 plots, with the six colours arranged
randomly at 10 m intervals on each line (Fig. 1).
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Table 1 Descriptions and locations of study sites and plots used to assess complementarity of anthophile and plant species assemblages in the
lowlands of the Greater Cape Floristic Region.

Site/plot Description Location Status

Elandskloofberge—Elandsberg Private Nature Reserve (EL), 4,000 ha in extent, remnants on neighbouring Bartholomeusklip farm. All sites within
three km radius.

EL1 Remnant adjacent to reserve. Surrounded by wheatfields 33.4482°S, 19.0272°E  Remnant
EL2 Old field on border of reserve 33.4438°S, 19.0291°E Transformed
EL3 Natural vegetation within reserve. BIOTA observatory site 33.448°S, 19.0474°E  Reserve

EL4 Remnant surrounded by canola and wheatfields. Some disturbance by feral pigs 33.4536°S, 19.0162°E Remnant

Helderberg Region—Helderberg Municipal Nature Reserve (HE), 396 ha in extent, and remnants on nearby wine estates Cordoba (CO) and Vergelegen
(VG). All sites within a nine km radius.

HE1 Firebreak on margin of reserve, adjacent to golf estate 34.059°S, 18.8772°E  Disturbed
HE2 Natural vegetation in within reserve 34.0618°S, 18.8749°E Reserve

HE3 Natural vegetation on former plantation area 34.0573°S, 18.8676°E Reserve

Co1 Former vineyard, replanted with natural vegetation 34.0334°S, 18.8488°E Transformed
CO2 Fragment between current vineyards, moribund, with invasive grasses 34.0313°S, 18.856°E  Remnant
VG1 60 ha patch of largely intact renosterveld, adjacent to vineyards. 34.0948°S, 18.8974°E Remnant
VG2 Area cleared of IAPs adjacent to vineyard. Recovering vegetation with invasive Echium plantagenium. 34.0886°S, 18.8935°E Transformed
VG3 Old firebreak, 40 m wide with natural vegetation between dense stands of Acacia mearnsii. 34.0763°S, 18.923°E  Disturbed

Groenlandberg Conservancy—reserve site in section of the Hottentots Holland Provincial Nature Reserve at Klipfontein (KL), 42,000 ha in extent, and
remnants on Diepklowe Private Nature Reserve and olive farm (GB). All sites within a 10 km radius.

KL1 Large block of relatively undisturbed natural vegetation situated near Theewaterskloof dam 34.0546°S, 19.169°E  Reserve

GB1 Relatively intact remnant adjacent to fallow wheat field. 34.1017°S, 19.2496°E Remnant

GB2 Firebreak in area of moribund, Elytropappus rhinocerotis 34.1035°S, 19.2462°E  Disturbed

GB3 Disturbed, but recovering area of natural vegetation on ridge above farm. 34.1099°S, 19.2448°E Transformed
Note:

Table modified after Vrdoljak & Samways (2014).

Pans were elevated and set at the level of flowers in the surrounding vegetation, and half
filled with water, with a little detergent added to reduce surface tension. Elevating pan
traps to the level of the canopy where insects are actively foraging significantly increases
catches (Tuell & Isaacs, 2009). Trapping was only on sunny days, from 08h00 to 17h00.
Trapped insects were removed from the water and preserved in 80% ethanol for later
identification. Initial identifications were to morphospecies (Oliver ¢» Beattie, 1996),
with scientific identification to species where possible using the entomology collection in
the Iziko South African Museum, Cape Town. Here, we refer to both morphospecies
and species as ‘species’. Appendix S2 lists all insect species identified in this study.

Vegetation transects

At each of the 16 plots, vegetation was surveyed the day before the first day of pan
trapping. Vegetation composition, height and cover were measured over three, 50 m
transects per plot. These vegetation transects were along the same line transects as the
three pan trap lines at each plot. All plants that covered the transect line were measured
(height in centimetre, length of transect in metre), identified to species level, and their
flowering status recorded (not flowering, flowering, in bud, in seed). Open patches of
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ground were recorded and classified according to whether they were bare ground, rock, leaf
litter or woody debris.

Statistical analyses

Species richness estimates

For insects, total abundance of each species per plot was calculated from the pooled data
of six arrays per plot (three arrays x two sample days per plot). For plants, data from
all three transects were pooled for each plot. This was done so as to calculate the total
intercept distance covered by each plant species and ground cover category (i.e. the
effective abundance in terms of area covered by each species or category) at each plot.
Species richness was estimated using the EstimateS Version 8.0 software package (Colwell,
2009; Colwell et al., 2012), using the pan trap data (three arrays x two sample days

per plot). Many different species richness estimators are available, each with their own
combinations of precision and bias that affect their accuracy (Walther ¢» Moore, 2005).
Given that certain anthophiles were highly abundant in pan trap samples, an
incidence-based estimator, the Incidence Coverage Estimator (ICE; Chao et al., 2000),
was calculated for each plot, using 1,000 randomisations, with replacement. The same
procedure for calculating the ICE was followed for the pooled (three transects)
vegetation data for each plot.

Species diversity

The Shannon diversity index was calculated for both plant and insect data in PRIMER
Version 6 (Primer-E Ltd, 2002; Clarke ¢ Warwick, 2001). A covariance analysis was
conducted to test the significance of the relationship between insect and plant diversity.

Pan and plot assemblage similarity

Plots were classified using the CLUSTER routine in PRIMER Version 6 (Primer-E Ltd,
2002; Clarke & Warwick, 2001). Cluster analysis was based on Bray—Curtis similarities
of the square-root transformed vegetation and pan trap data for each plot, which grouped
them according to similarity of their plant and anthophile assemblages, respectively.
Plots were classed using a similarity profile (SIMPROF) analysis on the null hypothesis
that a specific sub-cluster could be recreated by permuting the entry sites. Significant
branches (SIMPROF, p < 0.05) were then used to class plots together. The results of

the analyses are presented in Appendix S3.

Species turnover

Seriation is used to test for species turnover along a spatial gradient (Brower ¢ Kyle, 1988;
Clarke, Warwick ¢ Brown, 1993), and thus is an effective tool for detecting trends in
taxon turnover that may be present (Clarke ¢» Warwick, 2001). The index of seriation is
given by Rho (g), ranging from —1 to +1, and provides a p-value at the 5% significance
level. Values closer to —1 or to +1 indicate low community similarity, while values close
to 0 indicate high community similarity. The RELATE function in PRIMER V6 was
used to analyse the non-random spatial serial correlation of each set of assemblage data
(plants and insects) between all the elements of Sorensen similarity matrices. The Sorensen
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Table 2 Vegetation structure and composition variables calculated from 50 m line transect data for 16 plots in the lowlands of the Greater
Cape Floristic Region.

Variable Description

Plant cover Total length (m) per transect covered by vegetation (excludes open ground, with litter, woody debris and sparse seedling cover).

Vegetation height Mean height (cm) of vegetation per transect.

Flower cover Total length (m) per transect covered by plants in flower at time of survey.

Open ground Total length (m) per transect not covered by plant canopy (includes open ground with litter, woody debris and sparse seedling
cover)

Plant composition Index of similarity between all plots based on plant species composition using first axis scores from a detrended correspondence
analysis

Plant richness Estimated plant species richness per plot from Incidence Coverage Estimator, ICE (Chao et al., 2000)

Flower richness ~ Estimated species richness of flowering plants per plot from Incidence Coverage Estimator, ICE (Chao et al., 2000)

Annuals Total length (m) per transect covered by annual species per plot. Plant species classified according to POSA
(South African National Biodiversity Institute, 2009)
Perennials Total length (m) per transect covered by perennial species per plot. Species classified according to information in POSA.

similarity matrices were calculated from Bray-Curtis similarity matrices calculated from
presence—absence transformed species abundance data. The RELATE function was

then used to calculate the Spearman rank correlation coefficient between the plant and
insect assemblage datasets. The Spearman’s rank coefficient can range from 0 to 1,
where 1 is a perfect match between sample relationships.

To test for spatial relationships and species turnover, Sorensen pairwise dissimilarity
of insect and plant species was calculated in the package betapart (version 1.5.0; Baselga ¢
Orme, 2012) using R (version 3.4.3). Non-linear regressions were then fitted to the
plant or insect datasets. To obtain r- and p-values, data were linearized using log10.

Effect of plant species composition on insect composition

In order to test whether plant species composition has a significant effect on anthophile
species composition, we used an redundancy analysis (RDA) approach developed by
Kemp, Linder ¢ Ellis (2017) in R (version 3.4.3), using the package vegan (version 2.4-6;
Oksanen et al., 2018). Forward selection in RDA was used to assess the influence of
Hellinger-transformed plant species abundance on insect composition. Only the plant
species selected by the forward selection were retained. RDA was then performed on
Hellinger-transformed insect species abundances, with eight plant species as constraining
variables and geographical distance as the conditioning variable. Geographical distance
was converted to a rectangular principal coordinate of neighbour matrix for this analysis.
To test the significance of variables, a permutational ANOVA test was done on the RDA.

Vegetation structure and composition

To compare the effects of vegetation structure and composition of the plant assemblage

on flower-visiting insect assemblages at each plot, a number of variables were compiled

from the vegetation data (Table 2). Plant species composition at each plot was summarised
using detrended correspondence analysis (DCA) in CANOCO Version 4.53 (Ter Braak ¢
Smilauer, 2004) as the detrended segment lengths reported by CANOCO
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(maximum segment length > 4) indicated that the data were unimodally distributed
(Leps & Smilauer, 2003). Scores from the first DCA axis, which accounted for 11.5% of
total variation in the dataset were used as a measure of similarity between sites
(Total inertia = 5.251, cumulative% variance described by 4 axes = 24.7).

The effects of vegetation structure and composition were tested in CANOCO using
a canonical RDA of anthophile assemblage data. Unlike the plant data, the segment
lengths of an initial DCA indicated a linear distribution, more suited to an RDA (Leps ¢
Smilauer, 2003). The ordination was initially constrained by the nine vegetation variables.
Stepwise selection was then used to select a subset of the four best fitting variables for
the final model, based on partial Monte-Carlo permutation tests to assess the usefulness
of each potential variable (Leps & Smilauer, 2003). Variance partitioning (Borcard,
Legendre & Drapeau, 1992) was used to calculate the relative contributions of the final
four variables following procedures in CANOCO described by Leps ¢ Smilauer (2003).

RESULTS

A total of 22,352 anthophile individuals were sampled, falling into 198 species. For plants,
a total of 348 species were recorded.

Species richness estimates

Observed and estimated plant species richness varied widely between plots (Table 3).
Analysis of variance analysis did not detect any difference in estimated plant species
richness between plots (F-value = 1.729, p = 0.22). The lowest observed flowering plant
species richness in a plot (23 spp.), was recorded at EL2 and the highest (82 spp.) at VGI1.
Overall, mean (+1 SE) number of observed species in a plot was 42.25 (+4.25). Estimated
species richness (ICE) in a plot ranged from 25 spp. (EL2) to 93 spp. (VG1), with a
mean ICE of 61.13 (£5.37) in a plot.

There was similar variation in recorded and estimated species richness of flower-visiting
insects ranging from a minimum of 19 observed species at VG1 and a maximum of 60
observed species at HE2. A mean (£1 SE) of 36.94 (£2.67) species was observed across
all plots. Estimated richness (ICE) was highest at CO1 with 71 species, and lowest at VG1
with 36 species (Table 3). Mean ICE across all plots was 38.28 (+2.30). Analysis of
variance analysis did not detect any difference in estimated insect species richness
between plots (F-value = 1.182, p = 0.38).

Species diversity
There was no significant relationship between insect and plant diversity (¢-value = —1.10,
p =0.28).

Species turnover

The RELATE analysis between the plants and anthophiles was significant (p = 0.444,
p < 0.003), suggesting significant concordance between the assemblages. However,
turnover was weaker in plants (p = 0.601, p < 0.001) than in anthophiles (p = 0.883,
p < 0.001).
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Table 3 Non-parametric species-richness estimates using an abundance based species richness
estimator, the Incidence Coverage Estimator (ICE) for (a) flowering plants and (b) flower-visiting
insects from 16 plots in the lowlands Greater Cape Floristic Region.

(a) Flowering plants

N’ Obs. ICE (£S.D.)
CO1 3 29 36.31 (£12.94)
CO2 3 20 32.53 (+12.52)
ELI 3 57 87.15 (£29.23)
EL2 3 23 25.11 (+4.87)
EL3 3 34 73.19 (¥27.31)
EL4 3 39 75.53 (+18.98)
HEI 3 56 72.69 (£17.28)
HE2 3 43 63.82 (+18.37)
HE3 3 42 52.18 (+8.64)
KLI 3 54 89.67 (+39.63)
GB1 3 45 53.9 (+14.85)
GB2 3 62 78.05 (+33.52)
GB3 3 18 38.3 (+15.17)
VGl 3 82 92.64 (+18.56)
VG2 3 40 62.63 (+22.37)
VG3 3 32 4434 (+13.03)
(b) Anthophiles

N* Obs. ICE (+S.D.)
COo1 3 57 70.52 (+15.52)
CO2 3 31 55.55 (+17.11)
ELI 3 41 51.08 (+13.22)
EL2 3 38 47.54 (+10.58)
EL3 3 35 45.04 (+8.23)
EL4 3 35 37.84 (+7.75)
HEI 3 40 56.66 (+13.12)
HE2 3 60 64.5 (£13.24)
HE3 3 46 63.17 (+23.15)
KLI 3 33 45.3 (+13.28)
GB1 3 27 47.11 (+20.56)
GB2 3 26 39.41 (£15.93)
GB3 3 31 39.48 (+12.81)
VGl 3 19 36 (+16.03)
VG2 3 40 62.63 (+22.37)
VG3 3 32 4434 (+13.03)

Notes:

Obs = observed number of species.
" Number of vegetation transects used to generate species richness estimates.
¥ Number of pan trap-arrays used to generate species richness estimates.
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Figure 2 Species turnover of plants (A) and insects (B) as represented by Sorensen pair wise
dissimilarity between plot pairs at four spatial scales in the lowlands of the Greater Cape Floristic
Region. Each point represents a pair of sites (120 possible combinations). Dashed line indicates best
fit of a power curve for all points, while solid lines are best fit for each subgroup of pairs in three distance
classes: 0-10, 20-40, 60-80 km. Number of pairs per distance sub-group are: Blue: N = 40; Yellow: N = 32;

and Grey: N = 48. All regression lines are shown (ns = not significant, **p < 0.001, ***p < 0.000).

Full-size k&l DOI: 10.7717/peer;j.6139/fig-2

Power regressions showed that for the entire set of 120 pairwise comparisons, there

was a significant positive relationship in turnover for both plant (R* = 0.443, p < 0.001,
Fig. 2A), and anthophile diversity (R* = 0.709, p < 0.001, Fig. 2B) with increasing plot
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distance. The plot pairs were spatially separated, but given the relatively small distances
(<80 km) from a biogeographical point of view, there were great differences between
how the different plot pairs shared plant species (Fig. 2A) and anthophiles (Fig. 2B)

at the various distances, with pairwise comparisons separating out into three distinct
distance classes, <10 km apart, 20-40 km apart and 65-80 km apart (Figs. 2A and 2B).
Furthermore, there were significant positive relationships in turnover within the different
distance classes except for the 65-80 km group for plants (Fig. 2A) and 20-40 km
group for anthophiles (Fig. 2B), which were not significant. Overall, these results point
to great turnover of species even at relatively small geographical distances.

Effect of plant species composition on insect species composition
Plant species composition did not have a significant effect on anthophile species
composition (F-value = 2.92, p = 0.136). The results of RDA revealed that eight plant
species explained 60% of the variation in anthophile species composition, geographical
distance explained 39% and 1% remained unexplained.

Effect of vegetation structure on insect community composition

Of the nine variables tested, stepwise selection showed that plant species

composition, flower cover, plant species richness and average vegetation height were

the four most influential variables, collectively explaining 51% of the total variation in
the anthophile assemblage data (Fig. 3). Variance partitioning suggested that flower
cover was the most important variable, accounting for 22.1% of variation followed by
plant composition (10%), mean vegetation height (6.9%) and plant species richness (3.4%).
A further 8.7% of the variation could not be attributed to any particular one of these
variables.

DISCUSSION

Species turnover

Dissimilarity between distance plot pairs increased similarly for both insects and plants,
with increasing plot pair distance in the subgroups. This is consistent with other
findings on other insect functional groups in the GCER (Proches ¢» Cowling, 2006; Wright
& Samways, 1998; Proches et al., 2009). There was also high turnover of insect species
across the landscape, and to a lesser extent the flora. Even nearby sites showed a high
degree of distinctness, with no site sharing more than 29% of plant species and 35% of
anthophile species, suggesting high spatial heterogeneity for both groups.

Species turnover was apparent across increasing distance with distinct differences
observable from the local (<10 km) to the regional (>60 km) distances. Species turnover,
even at a local distance, was high, and was higher in insects than plants. Interestingly,
in plants, turnover decreased with greater distance between plot pairs, from local to
regional. In contrast, with insects there was high turnover at both the local and
regional distances, with a tendency to increase across distance groups. This pattern is
most likely a result due to the distances between the distance groups. Firstly, the distance
ranges between groups A (Cordoba; Vergelegen, Helderberg, South Africa) and
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Figure 3 Biplot from the RDA of anthophile assemblages at 16 sites in the lowlands of the Greater
Cape Floristic Region. Sizes of the circles indicate relative species richness for each site. Arrows indicate
the best subset of four vegetation structure variables chosen by forward selection during ordination. For
each variable, the relative contribution to the total variation of 51.1% explained by the canonical axes is
given in parentheses. Sum of all canonical eigenvalues = 0.511, Monte Carlo permutation test for all axes,
F =2.868, p = 0.006. Full-size £l DOI: 10.7717/peer;j.6139/fig-3

C (Elandskloofberge, 66-73 km) and groups B (Klipfontein and Groenlandberg
Cconservancy) and C (68-77 km) overlap. Secondly, the study sites were intentionally
placed in sites with near-natural, transformed, remnant or disturbed vegetation. Thus in all
distance groups all vegetation statuses are represented.

Caterino (2007) found high levels of spatial variation in beetles across three
ecoregions in the California Floristic Province, and concluded that this may be a
general characteristic of insect assemblages in Mediterranean-type ecosystems. In
Caterino’s (2007) study, plant assemblages and their associated anthophiles, both the
local and regional distances had congruent patterns of turnover between sites, but
incongruent patterns of species richness. In that study too, there was high spatial variation
of anthophiles, and there were no clear patterns in species richness. However, in contrast
to Caterino’s (2007) study, our results showed that while the overall pattern of turnover
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was similar in plants and anthophiles, the patterns within distance classes varied, with the
patterns between plants and insects diverging with greater plot-pair distance classes.

Congruence between plant and insect assemblages

We found a strong (44%) positive relationship between plant and anthophile turnover,
as has been found in Europe (Ebeling et al., 2008; Papanikolaou et al., 2017), suggesting
that such a relationship is geographically widespread. However, in terms of concordance,
this means that the areas with similar plant assemblages do not necessarily share
similar insect assemblages. This decoupling between the two groups means that plant
diversity alone is not a reliable surrogate for insect diversity, at least at the various distance
scales examined here. Indeed, plant-insect relationships are highly variable across
biomes, scales and insect guilds, suggesting that in each case, different factors may

drive insect diversity (Proches et al., 2009).

Factors affecting diversity of flower-visiting insects

Given the diverse range of taxa encompassed by the entire assemblage of anthophiles,
it is difficult to generalise about which factors are most important. The four most
influential variables here are likely to represent some of the resource needs of this
assemblage, but do not account for all of the observed variation. The fact that flower
cover (a measure of the relative abundance of resources for anthophiles) was far more
important than plant richness and diversity suggests that resource availability is an
important determinant of flower-visitor diversity and abundance, particularly at the
local scale (Hegland ¢» Boeke, 2006).

The species rich, temperate flora of southern Africa has a remarkable prevalence of
highly specialised pollination systems (Johnson ¢ Steiner, 2003; Pauw & Stanway, 2015),
so it may seem strange that plant species composition is not a reliable estimator of
anthophile species composition. However, functional relationships between plants and
anthophiles are characterised by a high degree of asymmetry (Trojelsgaard ¢» Olesen,
2013). Anthophiles visiting a specialised plant can be taxonomically diverse, although
even specialised pollinators may visit a range of non-specialised plants, they often look for
similar amino-acid based resources in plants which confer physiological advantages
upon them (Nepi, 2014). The degree of ecological specialisation observed at any one
time can be affected by various spatial and temporal factors (Petanidou ¢ Potts, 2006;
Fonturbel et al., 2015), meaning that plant and pollinator species composition may not
necessarily be tightly coupled. Although resources for anthophiles are affected by the
richness and composition of the local flora, the abundance and quality of suitable
resources is not always directly related to plant species richness alone.

CONCLUSIONS

To summarize, we compared species richness and turnover relationships between
flowering plants and flower-visiting insects across geographic distance (0.5-80 km)

in a biodiversity hotspot, the GCFR, South Africa. While we found there to be significant
concordance between plants and anthophile assemblages (p = 0.444, p < 0.003), turnover

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 13/20


http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

was weaker in plants (p = 0.601, p < 0.001) than in anthophiles (p = 0.883, p < 0.001),
and decreased with greater geographical distance between plot pairs. In contrast,

insect turnover remained high with increasing geographical distance between plot pairs.
Furthermore, flowering plant species composition did not have a significant effect on
anthophile species composition (F-value = 2.92, p = 0.136). The discordance between
the results here and those of other studies such as Proches et al. (2009), as well as the
inconsistencies noted by those authors, indicate that the factors affecting distributions
differ between various taxonomic groups and can confound attempts to draw general
conclusions about the relationships between plant and insect species-richness. These
findings suggest that while patterns of plant diversity and distribution shape flower-visiting
insect assemblages, they are not reliable surrogates.

These results have considerable conservation significance. Firstly, insects must be
more densely sampled than flowering-plants to ascertain their full spatial diversity.
Secondly, conserving plants in the various parts of this species-rich biodiversity
hotspot does not guarantee that all the pollinating insects will also be conserved, with the
insects, in effect, being more fragmented than the plants. On the other hand, to conserve
all the insects in the area, more land must be set aside for them, while on the other,
certain specialist plants may not have their pollinators present. Overall, specialist
plant-insect mutualisms are more vulnerable than generalist ones. Conservation activities
that improve functional connectivity across the overall landscape will help maintain
these plant-insect mutualisms. This may include establishing conservancies where
set-aside land is an intrinsic part of the agricultural landscape. Intercropping using a range
of vegetation is extensively employed but a move to vegetate towards indigenous
fynbos could be instigated to a greater extent. These approaches are feasible at least in
vineyards (the dominant agricultural type in this area) under the Biodiversity and
Wine Initiative (http://wine.co.za) with which many vineyards have partnered.

ACKNOWLEDGEMENTS

We thank C. Eardley, S. van Noort and H. Geertsema for taxonomic advice. We would
also like to thank the two anonymous reviewers who have taken the time to read and
give critical input on the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

John P. Simaika and Michael J. Samways were supported by the National Research
Foundation of South Africa (NRF). Sven M. Vrdoljak was supported by the German
Federal Ministry of Education and Research through the BIOTA Africa Project, the NRF,
and Stellenbosch University. This final version of this paper was written up while John P.
Simaika received funding for research from the European Union’s Seventh Framework
Programme (grant agreement no 606838), with additional support from IHE Delft. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 14/20


http://wine.co.za
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

Grant Disclosures

The following grant information was disclosed by the authors:

National Research Foundation of South Africa (NRF).

German Federal Ministry of Education and Research through the BIOTA Africa Project,
the NRF, and Stellenbosch University.

European Union’s Seventh Framework Programme: 606838.

IHE Delft.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e John P. Simaika analysed the data, contributed reagents/materials/analysis tools,
prepared figures and/or tables, authored or reviewed drafts of the paper, approved the
final draft.

e Michael Samways conceived and designed the experiments, contributed reagents/
materials/analysis tools, authored or reviewed drafts of the paper, approved the final
draft.

e Sven M. Vrdoljak performed the experiments, analysed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e. approving
body and any reference numbers):

Permissions for conducting the study were obtained from the relevant authority at:
Helderberg Municipal Nature Reserve and Hottentots Holland Provincial Nature
Reserve—permission from Cape Nature (No. 372/2003).

Data Availability
The following information was supplied regarding data availability:

Simaika, John (2018): Plant and insect data. figshare. Fileset. https://doi.org/10.6084/
m9.figshare.6236759.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6139#supplemental-information.

REFERENCES

Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity.
Global Ecology and Biogeography 19(1):134-143 DOI 10.1111/j.1466-8238.2009.00490.x.

Baselga A, Orme CDL. 2012. betapart: an R package for the study of beta diversity. Methods in
Ecology and Evolution 3(5):808-812 DOI 10.1111/j.2041-210x.2012.00224.x.

Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological
variation. Ecology 73(3):1045-1055 DOI 10.2307/1940179.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 15/20


https://doi.org/10.6084/m9.figshare.6236759.v1
https://doi.org/10.6084/m9.figshare.6236759.v1
http://dx.doi.org/10.7717/peerj.6139#supplemental-information
http://dx.doi.org/10.7717/peerj.6139#supplemental-information
http://dx.doi.org/10.1111/j.1466-8238.2009.00490.x
http://dx.doi.org/10.1111/j.2041-210x.2012.00224.x
http://dx.doi.org/10.2307/1940179
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

Brower JC, Kyle KM. 1988. Seriation of an original data matrix as applied to palaeoecology.
Lethaia 21:79-93.

Campbell JW, Hanula JL. 2007. Efficiency of Malaise traps and colored pan traps for
collecting flower-visiting insects from three forested ecosystems. Journal of Insect Conservation
11(4):399-408 DOI 10.1007/s10841-006-9055-4.

Caterino MS. 2007. Species richness and complementarity of beetle faunas in a mediterranean-type
biodiversity hotspot. Biodiversity and Conservation 16(14):3993-4007
DOI 10.1007/s10531-007-9202-6.

Chao A, Hwang WH, Chen YC, Kuo CY. 2000. Estimating the number of shared species in
two communities. Statistica Sinica 10:227-246.

Clarke KR, Warwick RM. 2001. Change in marine communities: an approach to statistical
analysis and interpretation. Second Edition. Plymouth: PRIMER-E Ltd.

Clarke KR, Warwick RM, Brown BE. 1993. An index showing breakdown of seriation, related
to disturbance, in a coral-reef assemblage. Marine Ecology Progress Series 102:153-160
DOI 10.3354/meps102153.

Colwell RK. 2009. EstimateS: statistical estimation of species richness and shared species
from samples. Version 8.0. Storrs: University of Connecticut. Available at
http://viceroy.colorado.edu/estimates/.

Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chadzon RL, Longino JT. 2012. Models
and estimators linking individual-based and sample-based rarefaction, extrapolation and
comparison of assemblages. Journal of Plant Ecology 5(1):3-21 DOI 10.1093/jpe/rtr044.

Cowling RM, Heijnis CE. 2001. The identification of broad habitat units as biodiversity entities
for systematic conservation planning in the Cape Floristic Region. South African Journal of
Botany 67(1):15-38 DOI 10.1016/50254-6299(15)31087-5.

Cowling RM, Pressey RL, Rouget M, Lombard AT. 2003. A conservation plan for a
global biodiversity hotspot—the Cape Floristic Region, South Africa. Biological Conservation
112(1-2):191-216 DOI 10.1016/s0006-3207(02)00425-1.

Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V. 2003. Landscape structure
as an indicator of biodiversity: matrix effects on species richness. Agriculture Ecosystems &
Environment 98(1-3):321-329 DOI 10.1016/s0167-8809(03)00092-6.

Duelli P, Obrist MK. 1998. In search of the best correlates for local organismal biodiversity in
cultivated areas. Biodiversity and Conservation 7:297-309.

Ebeling A, Klein AM, Schumacher J, Weisser WW, Tscharntke T. 2008. How does plant richness
affect pollinator richness and temporal stability of flower visits? Oikos 117(12):1808-1815
DOI 10.1111/j.1600-0706.2008.16819.x.

Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA. 2006. Recommendations
for assessing the effectiveness of surrogate species approaches. Biodiversity and Conservation
15(12):3949-3969 DOI 10.1007/s10531-005-2631-1.

Fonturbel FE, Candia AB, Malebran J, Salazar DA, Gonzalez-Browne C, Medel R. 2015.
Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal.
Global Change Biology 21(11):3951-3960 DOI 10.1111/gcb.13025.

Fonturbel FE, Jordano P, Medel R. 2015. Scale-dependent responses of pollination and seed
dispersal mutualisms in a habitat transformation scenario. Journal of Ecology 103(5):1334-1343
DOI 10.1111/1365-2745.12443.

Giliomee JH. 2003. Insect diversity in the Cape Floristic Region. African Journal of Ecology
41(3):237-244 DOI 10.1046/j.1365-2028.2003.00442 x.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 16/20


http://dx.doi.org/10.1007/s10841-006-9055-4
http://dx.doi.org/10.1007/s10531-007-9202-6
http://dx.doi.org/10.3354/meps102153
http://viceroy.colorado.edu/estimates/
http://dx.doi.org/10.1093/jpe/rtr044
http://dx.doi.org/10.1016/s0254-6299(15)31087-5
http://dx.doi.org/10.1016/s0006-3207(02)00425-1
http://dx.doi.org/10.1016/s0167-8809(03)00092-6
http://dx.doi.org/10.1111/j.1600-0706.2008.16819.x
http://dx.doi.org/10.1007/s10531-005-2631-1
http://dx.doi.org/10.1111/gcb.13025
http://dx.doi.org/10.1111/1365-2745.12443
http://dx.doi.org/10.1046/j.1365-2028.2003.00442.x
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

Gill RJ, Baldock KC, Brown M], Cresswell JE, Dicks LV, Fountain MT, Garratt MP, Gough LA,
Heard MS, Holland JM, Ollerton J. 2016. Protecting an ecosystem service: approaches to
understanding and mitigating threats to wild insect pollinators. Advances in Ecological Research
54:135-205.

Goldblatt P, Manning JC. 2002. Plant diversity of the cape region of Southern Africa. Annals of
the Missouri Botanical Garden 89:289-302 DOI 10.2307/3298566.

Goulson D, Nicholls E, Botias C, Rotheray EL. 2015. Bee declines driven by combined stress
from parasites, pesticides, and lack of flowers. Science 347(6229):1255957
DOI 10.1126/science.1255957.

Grantham HS, Pressey RL, Wells JA, Beattie AJ. 2010. Effectiveness of biodiversity surrogates
for conservation planning: different measures of effectiveness generate a kaleidoscope of
variation. PLOS ONE 5(7):e11430 DOI 10.1371/journal.pone.0011430.

Hawkins BA, Porter EE. 2003. Does herbivore diversity depend on plant diversity? The case of
Californian butterflies. American Naturalist 161(1):40-49 DOI 10.1086/345479.

Hegland SJ, Boeke L. 2006. Relationships between the density and diversity of floral resources
and flower visitor activity in a temperate grassland community. Ecological Entomology
31(5):532-538 DOI 10.1111/j.1365-2311.2006.00812.x.

Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of a wide range
of taxonomic groups are expanding polewards. Global Change Biology 12:450-455
DOI 10.1111/j.1365-2486.2006.01116.x.

Johnson SD, Steiner KE. 2003. Specialized pollination systems in southern Africa. South African
Journal of Science 99(7-8):345-348.

Joppa LN, O’Connor B, Visconti P, Smith C, Geldmann J, Hofmann M, Watson JEM,
Butchart SHM, Virah-Sawmy M, Halpern BS, Ahmed SE, Balmford A, Sutherland WJ,
Harfoot M, Hilton-Taylor C, Foden W, Minin ED, Pagad S, Genovesi P, Hutton J,
Burgess ND. 2016. Filling in biodiversity threat gaps. Science 352(6284):416-418
DOI 10.1126/science.aaf3565.

Kemp JE, Ellis AG. 2017. Significant local-scale plant-insect species richness relationship
independent of abiotic effects in the temperate Cape Floristic Region biodiversity hotspot.
PLOS ONE 12(1):e0168033 DOI 10.1371/journal.pone.0168033.

Kemp JE, Linder HP, Ellis AG. 2017. Beta diversity of hebivorous insects is coupled to high species
and phylogenetic turnover of plant communities across short spatial scales in the Cape Floristic
Region. Journal of Biogeography 44(8):1813-1823 DOI 10.1111/jbi.13030.

Kirkman LK, Smith LL, Quintana-Ascencio PF, Kaeser M]J, Golladay SW, Farmer AL. 2012.
Is species richness congruent among taxa? Surrogacy, complementarity, and environmental
correlates among three disparate taxa in geographically isolated wetlands. Ecological Indicators
18:131-139 DOI 10.1016/j.ecolind.2011.10.015.

Kremen C. 1992. Assessing the indicator properties of species assemblages for natural areas
monitoring. Ecological Applications 2(2):203-217 DOI 10.2307/1941776.

Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW,

Shugart HH. 2006. Global tests of biodiversity concordance and the importance of endemism.
Nature 440(7081):212-214 DOI 10.1038/nature04291.

Leps J, Smilauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge:
Cambridge University Press.

Lovell S, Hamer M, Slotow R, Herbert D. 2007. Assessment of congruency across

invertebrate taxa and taxonomic levels to identify potential surrogates. Biological Conservation
139(1-2):113-125 DOI 10.1016/j.biocon.2007.06.008.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 17/20


http://dx.doi.org/10.2307/3298566
http://dx.doi.org/10.1126/science.1255957
http://dx.doi.org/10.1371/journal.pone.0011430
http://dx.doi.org/10.1086/345479
http://dx.doi.org/10.1111/j.1365-2311.2006.00812.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01116.x
http://dx.doi.org/10.1126/science.aaf3565
http://dx.doi.org/10.1371/journal.pone.0168033
http://dx.doi.org/10.1111/jbi.13030
http://dx.doi.org/10.1016/j.ecolind.2011.10.015
http://dx.doi.org/10.2307/1941776
http://dx.doi.org/10.1038/nature04291
http://dx.doi.org/10.1016/j.biocon.2007.06.008
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

McKnight MW, White PS, McDonald RI, Lamoreux JF, Sechrest W, Ridgeley RS, Stuart SN.
2007. Putting beta diversity on the map: broad-scale congruence and coincidence in the
extremes. PLOS Biology 5(10):e272 DOI 10.1371/journal.pbio.0050272.

Nepi M. 2014. Beyond nectar sweetness: the hidden ecological role of non-protein amino acids
in nectar. Journal of Ecology 102(1):108-115 DOI 10.1111/1365-2745.12170.

Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD. 2006. Why are there
so many species of herbivorous insects in tropical rainforests? Science 313(5790):1115-1118
DOI 10.1126/science.1129237.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Wagner H. 2018.
Vegan: community ecology package. Version 2.4-6. Available at
https://cran.r-project.org/web/packages/vegan/index.html.

Oliver I, Beattie AJ. 1996. Invertebrate morphospecies as surrogates for species: a case study.
Conservation Biology 10(1):99-109 DOI 10.1046/j.1523-1739.1996.10010099.x.

Osborn F, Goitia W, Cabrera M, Jaffé K. 1999. Ants, plants and butterflies as diversity
indicators: comparisons between strata at six forest sites in Venezuela. Studies on Neotropical
Fauna and Environment 34(3):59-64 DOI 10.1076/snfe.34.3.59.8900.

Papanikolaou AD, Kiihn I, Frenzel M, Kuhlmann M, Poschlod P, Potts SG, Roberts SPM,
Schweiger O. 2017. Wild bee and floral diversity co-vary in response to the direct and
indirect impacts of land use. Ecosphere 8(11):€02008 DOI 10.1002/ecs2.2008.

Pauw A. 2013. Can pollination niches facilitate plant coexistence? Trends in Ecology Evolution
28(1):30-37 DOI 10.1016/j.tree.2012.07.019.

Pauw A, Stanway R. 2015. Unrivalled specialization in a pollination network from South Africa
reveals that specialization increases with latitude only in the Southern Hemisphere. Journal of
Biogeography 42(4):652-661 DOI 10.1111/jbi.12453.

Petanidou T, Potts SG. 2006. Mutual use of resources in Mediterranean plant-pollinator
communities: how specialized are pollination webs? In: Waser NM, Ollerton J, eds.
Plant-Pollinator Interactions: from Specialization to Generalization. Chicago: University of
Chicago Press, 220-244.

Pharo EJ, Beattie AJ, Binns D. 1999. Vascular plant diversity as a surrogate for bryophyte and lichen
diversity. Conservation Biology 13(2):282-292 DOI 10.1046/j.1523-1739.1999.013002282.x.

Picker MD, Midgley JJ. 1996. Pollination by monkey beetles (Coleoptera: Scarabaeidae: Hopliini):
flower and colour preferences. African Entomology 4(1):7-14.

Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM,
Sexton JO. 2014. The biodiversity of species and their rates of extinction, distribution, and
protection. Science 344(6187):1246752 DOI 10.1126/science.1246752.

Ponel P, Orgeas J, Samways MJ, Andrieu-Ponel V, De Beaulieu JL, Reille M, Roche P, Tatoni T.
2003. 110000 years of Quaternary beetle diversity change. Biodiversity and Conservation
12(10):2077-2089.

Prendergast JR. 1997. Species richness covariance in higher taxa: empirical tests of
the biodiversity indicator concept. Ecography 20(2):210-216
DOI 10.1111/j.1600-0587.1997.tb00363 x.

Pressey RL, Cowling RM, Rouget M. 2003. Formulating conservation targets for biodiversity
pattern and process in the Cape Floristic Region, South Africa. Biological Conservation
112(1-2):99-127 DOI 10.1016/s0006-3207(02)00424-x.

Primer-E Ltd. 2002. PRIMER 5. Version 5.2.9. Plymouth: Primer-E. Available at https://www.
primer-e.com/.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 18/20


http://dx.doi.org/10.1371/journal.pbio.0050272
http://dx.doi.org/10.1111/1365-2745.12170
http://dx.doi.org/10.1126/science.1129237
https://cran.r-project.org/web/packages/vegan/index.html
http://dx.doi.org/10.1046/j.1523-1739.1996.10010099.x
http://dx.doi.org/10.1076/snfe.34.3.59.8900
http://dx.doi.org/10.1002/ecs2.2008
http://dx.doi.org/10.1016/j.tree.2012.07.019
http://dx.doi.org/10.1111/jbi.12453
http://dx.doi.org/10.1046/j.1523-1739.1999.013002282.x
http://dx.doi.org/10.1126/science.1246752
http://dx.doi.org/10.1111/j.1600-0587.1997.tb00363.x
http://dx.doi.org/10.1016/s0006-3207(02)00424-x
https://www.primer-e.com/
https://www.primer-e.com/
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

Proches S, Cowling RM. 2006. Insect diversity in Cape fynbos and neighbouring South African
vegetation. Global Ecology and Biogeography 15(5):445-451
DOI 10.1111/j.1466-822x.2006.00239.x.

Proches S, Forest F, Veldtman R, Chown SL, Cowling RM, Johnson SD, Richardson DM,
Savolainen V. 2009. Dissecting the plant-insect diversity relationship in the Cape. Molecular
Phylogenetics and Evolution 51:94-99.

Ricketts TH, Daily GC, Ehrlich PR. 2002. Does butterfly diversity predict moth diversity?
Testing a popular indicator taxon at local scales. Biological Conservation 103(3):361-370
DOI 10.1016/s0006-3207(01)00147-1.

Rodrigues ASL, Brooks TM. 2007. Shortcuts for biodiversity conservation planning: the
effectiveness of surrogates. Annual Review of Ecology Evolution and Systematics 38(1):713-737
DOI 10.1146/annurev.ecolsys.38.091206.095737.

Rouget M, Richardson DM, Cowling RM. 2003. The current configuration of protected areas
in the Cape Floristic Region, South Africa—reservation bias and representation of biodiversity
patterns and processes. Biological Conservation 112(1-2):129-145
DOI 10.1016/s0006-3207(02)00396-8.

Saunders ME, Luck GW. 2013. Pan trap catches of pollinator insects vary with habitat.
Australian Journal of Entomology 52(2):106-113 DOI 10.1111/aen.12008.

Socolar ]JB, Gilroy JJ, Kunin WE, Edwards DP. 2016. How should beta-diversity inform
biodiversity conservation? Trends in Ecology and Evolution 31(1):67-80
DOI 10.1016/j.tree.2015.11.005.

South African National Biodiversity Institute. 2009. Plants of southern Africa (POSA): an
online checklist. Version 2.5. Available at http://posa.sanbi.org (accessed June 2009).

Stork NE, Habel JC. 2014. Can biodiversity hotspots protect more than tropical forest plants
and vertebrates. Journal of Biogeography 41(3):421-428 DOI 10.1111/jbi.12223.

Ter Braak CJF, Smilauer P. 2004. CANOCO. Version 4.53. Biometris—Plant Wagenigen:
Research International. Available at http://www.canoco5.com/.

Trojelsgaard K, Olesen JM. 2013. Macroecology of pollination networks. Global Ecology
and Biogeography 22(2):149-162 DOI 10.1111/j.1466-8238.2012.00777 x.

Tuell JK, Isaacs R. 2009. Elevated pan traps to monitor bees in flowering crop canopies.
Entomologia Experimentalis et Applicata 131(1):93-98 DOI 10.1111/j.1570-7458.2009.00826.x.

Van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Kruger M,
Endrody-Younga S, Mansell MW, Scholtz CH. 1998. Biodiversity assessment and
conservation strategies. Science 279(5359):2106-2108 DOI 10.1126/science.279.5359.2106.

Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, Brown MJ, Brown M, Bryden J,
Budge GE, Bull JC, Carvell C, Challinor AJ. 2013. Threats to an ecosystem service:
pressures on pollinators. Frontiers in Ecology and the Environment 11(5):251-259
DOI 10.1890/120126.

Vrdoljak SM, Samways MJ. 2012. Optimising coloured pan traps to survey flower visiting insects.
Journal of Insect Conservation 16(3):345-354 DOI 10.1007/s10841-011-9420-9.

Vrdoljak SM, Samways M]J. 2014. Agricultural mosaics maintain significant flower and visiting
insect biodiversity in a global hotspot. Biodiversity and Conservation 23(1):133-148
DOI 10.1007/s10531-013-0588-z.

Walther BA, Moore JL. 2005. The concepts of bias, precision and accuracy, and their use in

testing the performance of species richness estimators, with a literature review of estimator
performance. Ecography 28(6):815-829 DOI 10.1111/j.2005.0906-7590.04112.x.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 19/20


http://dx.doi.org/10.1111/j.1466-822x.2006.00239.x
http://dx.doi.org/10.1016/s0006-3207(01)00147-1
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095737
http://dx.doi.org/10.1016/s0006-3207(02)00396-8
http://dx.doi.org/10.1111/aen.12008
http://dx.doi.org/10.1016/j.tree.2015.11.005
http://posa.sanbi.org
http://dx.doi.org/10.1111/jbi.12223
http://www.canoco5.com/
http://dx.doi.org/10.1111/j.1466-8238.2012.00777.x
http://dx.doi.org/10.1111/j.1570-7458.2009.00826.x
http://dx.doi.org/10.1126/science.279.5359.2106
http://dx.doi.org/10.1890/120126
http://dx.doi.org/10.1007/s10841-011-9420-9
http://dx.doi.org/10.1007/s10531-013-0588-z
http://dx.doi.org/10.1111/j.2005.0906-7590.04112.x
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

Peer/

Wiens JA, Hayward GD, Holthausen RS, Wisdom M]J. 2008. Using surrogate species and
groups for conservation planning and management. BioScience 58(3):241-252
DOI 10.1641/b580310.

Wright MG, Samways MJ. 1998. Insect species richness tracking plant species richness in a
diverse flora: gall-insects in the Cape Floristic Region, South Africa. Oecologia 115(3):427-433
DOI 10.1007/s004420050537.

Wright MG, Samways M]J. 2000. Biogeography and species richness of endophagous

insects associated with Proteaceae in South Africa. African Journal of Ecology 38(1):16-22
DOI 10.1046/j.1365-2028.2000.00210.x.

Simaika et al. (2018), PeerdJ, DOI 10.7717/peerj.6139 20/20


http://dx.doi.org/10.1641/b580310
http://dx.doi.org/10.1007/s004420050537
http://dx.doi.org/10.1046/j.1365-2028.2000.00210.x
http://dx.doi.org/10.7717/peerj.6139
https://peerj.com/

	Species turnover in plants does not predict turnover in flower-visiting insects
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


