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Abstract 

Bi-directional communication exists between HPA-axis activation and interleukin-6 

(IL-6). However, the relative contribution of centrally versus peripherally secreted IL-

6 remains unclear, especially under psychological stress conditions. We 

hypothesised that the HPA response to mild psychological stress is dependent on IL-

6, both centrally and peripherally.  

120 male Wistar rats were divided into four groups, depending on whether they 

received an anti-IL-6 antibody (Ab) (2µg/ml/kg body weight) or a placebo (sterile 

saline) injection and whether or not they were subjected to 1 hour of restraint stress 

for 1, 2 or 3 days. Rats were euthanized 24 hours after stress exposure.  

Plasma corticosteroid (GC) levels remained significantly increased 24 hours after a 

single stress exposure (control placebo (CP) versus stress placebo (SP): p < 0.05).  

The undetectable plasma IL-6 levels evident across all groups may be explained by 

the short half-life of IL-6. Plasma IL-1β levels decreased when IL-6 was blocked in 

unstressed animals (CP versus CAb: p < 0.05), suggesting a role for IL-6 in the 

maintenance of IL-1β levels under tonic physiological conditions.   

At tissue level, pituitary gland mass increased significantly at time point 2, 

independently of stress when blocking IL-6 (CAb: p < 0.05). This suggests that when 

normal homeostasis is threatened, immediate adaption or at least compensation 

may occur. It was observed that GR, IL-1β, IL-1βR, IL-6, IL-6R and GABAARα1 

showed no response to stress alone in the pituitary. It is therefore more likely that 

resistance to adaptation exists centrally.  IL-1β and IL-1βR (p < 0.05) and 

GABAARα1 (p < 0.005) expression increased in the CAb group in the pituitary, again 

suggesting a role for IL-6 under control conditions. In terms of the adrenal, blocking 
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IL-6 resulted in decreased glandular mass at time point 1, independent of stress 

(CAb and SAb: p < 0.005). The up-regulation in GR expression seen in CAb and 

SAb (p < 0.05) may be the effect of a compensatory mechanism to increase IL-6 

dependent bioactivity of GCs. The fact that expression of IL-6, IL-6R, IL-1β and IL-

1βR consistently increased in the Ab groups, and mostly in the zona fasciculata and 

zona reticularis, suggests that lack of local direct negative cytokine feedback 

occurred in response to very low plasma IL-6 levels and that this contributes more 

than GCs in the down-regulation of inflammatory cytokine release.  

In conclusion, consistent effects of the Ab were apparent in the tissues investigated, 

even in control conditions, suggesting that IL-6 plays a role in the maintenance of 

basal homeostasis, including its regulation of the response to psychological stress. 

We found differential regulation in terms of cytokines and GCs when comparing 

peripheral versus central effects of stress and Ab, as well as the levels of cytokines 

in the blood compartment, compared to within tissues. 
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Opsomming 

Daar bestaan twee-rigting kommunikasie tussen HPA-as aktivering en interleukin-6 

(IL-6), allhoewel die relatiewe bydrae van sentraal versus perifeer afgeskeide IL-6 

nog onduidelik is, veral gedurende sielkundige strestoestande. Ons hipotese is dat 

die HPA reaksie tot sielkundige stres afhanklik van IL-6 is, beide sentraal en in die 

periferie. 

120 manlike Wistar rotte is in vier groepe verdeel, afhangende van of hulle ‘n anti-IL-

6 teenliggaampie (Ab) (2µg/ml/kg liggaamsgewig) of ‘n plasebo (steriele 

soutoplossing) inspuiting gekry het, en of hulle onderworpe was aan 1 uur van 

vaskeer-stres vir 1, 2 of 3 dae. Rotte is 24 uur na blootstelling aan stres aan 

genadedood onderwerp.  

Bloed kortikosteroïed (GC) vlakke het beduidend toegeneem binne 24 uur na ‘n 

eenmalige stres blootstelling (kontrole plasebo (CP) versus stres plasebo (SP): p < 

0.05).  Die onmeetbaar lae vlakke van IL-6 regoor al die groepe, kan verduidelik 

word na aanleiding van die kort half-leeftyd van IL-6. Bloed IL-1β vlakke het 

afgeneem in kontrole rotte wanneer IL-6 geblok is (CP versus CAb: p < 0.05). Dit kan 

beteken dat IL-6 noodsaaklik is vir die onderhoud van IL-1β vlakke gedurende 

basale toestande.  

Op weefselvlak het die hipofise massa toegeneem by tydpunt 2 toe IL-6 geblok is, 

onafhanklik van stres (CAb: p < 0.05). Dit dui aan dat wanneer normale homeostase 

bedreig word, daar onmiddelike aanpassing of kompensasie plaasvind. Dit is 

opvallend dat GR, IL-1β, IL-1βR, IL-6, IL-6R en GABAARα1 geen respons in terme 

van stres alleen in die hipofise getoon het nie. Na aanleiding daarvan is dit meer 

waarskynlik dat weerstand tot aanpassing sentraal bestaan. IL-1β and IL-1βR (p < 
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0.05) en GABAARα1 (p < 0.005) uitdrukking in die hipofise het toegeneem in die CAb 

groep, wat weereens ‘n rol vir IL-6 onder kontrole toestande uitwys. In terme van die 

bynier, het die blok van IL-6 ‘n afname in massa veroorsaak by tydpunt 1, wat weer 

onafhanklik van stres was (CAb en SAb: p < 0.005). Die opregulering in die CAb en 

SAb groepe (p < 0.05), kan wees as gevolg van ‘n kompensasie meganisme om IL-6 

afhanklike GC aktiwiteit te verhoog. Die feit dat die uitdrukking van IL-6, IL-6R, IL-1β 

and IL-1βR in die Ab groepe deurlopend verhoog was, en meeste in die zona 

fasciculata en zona reticularis, stel voor dat daar ‘n tekort aan plaaslike, direkte 

sitokien negatiewe terugvoering was, as gevolg van die merkwaardige lae bloed IL-6 

vlakke en dat dit meer bydra as GCs in die afregulering van inflammatoriese sitokien 

vrystelling.  

Ter opsomming, die konsekwente effekte van die Ab was beduidend in die betrokke 

weefsel, selfs onder kontrole toestande. Dit stel voor dat IL-6 ‘n rol speel in die 

onderhouding van basale homeostase, insluitende die regulering van die sielkundige 

stres respons. Ons het wisselende regulering in terme van sitokiene en GCs in die 

periferie versus sentraal gedurende stress en Ab toediening opgemerk, asook 

tussen sitokien vlakke in die bloed, in vergelyking met weefsel.  
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Introduction 

Research has revealed that cumulative levels of stress have a profound effect on 

health and longevity, to the extent that specific diseases, such as cancer, diabetes 

and heart disease, as well as psychiatric ill health, can be initiated or amplified by 

stress (Buam and Posluszny, 1999b, Pitman et al., 1990, Turnbull and Rivier, 1999). 

Over the years, several attempts have been made to identify key physiological 

markers and modulators of stress. However, the physiological output of stress 

depends on many factors such as the subjective experience of the stressor, the 

nature and duration of the stressor, the degree of controllability, and genetically 

based inter-individual differences (Petrides et al., 1997).  

Once we have achieved a reference framework with regard to specific major 

physiological role players in stress and their interactions have been delineated, steps 

can be taken to monitor for the balance of these interactions and contain stress-

induced responses, in order to circumvent the deleterious effects of stress on health. 

An added benefit of this more specific approach is that the subjective, possibly 

skewed results obtained from questionnaires employed in the investigation of 

psychological stress can be compensated for, in an attempt to gain a more accurate 

view on stress dynamics. 

Recently, it has been reported that indicators of stress perception such as “hassles 

and uplifts” (hassles in this regard specifically refer to the frequent strains and 

stresses of daily living) significantly and independently predict the circulating levels 

of pro-inflammatory markers such as interleukin-6 (IL-6) in a healthy population, 

independent of sociodemographic, biological and related psychological measures 

(Jain et al., 2007). Furthermore, in the same study, chronic negative appraisals were 
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associated with increased circulating inflammatory mediator levels and persistent 

positive appraisals with decreased concentration.  

With this thesis, we aimed to probe the mechanisms involved in the cross-talk 

between the neuroendocrine stress system and modulators of inflammation. In the 

first two chapters, we provide a review of the related literature. This is followed by a 

description of methods (Chapter 3) and results (Chapter 4). Our interpretation of the 

results and the conclusion drawn, as well as some directions for future research, are 

presented in the final chapter (Chapter 5).  
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Chapter 1: Background 

Psychological stress can be defined as a negative emotional experience 

accompanied by predictable changes that are directed either toward altering the 

stressful event or to accommodate its effects (Buam and Posluszny, 1999a). 

The evaluative process after input of a stressful stimulus involves processing of 

stimulus-specific information, coding of the stressor’s intensity and intermittency, 

processing the degree of controllability, real or perceived, and comparing the current 

situation to previous experiences (e.g. as being novel or not). However, some stress 

stimuli can lead to a stress response without drawing on this evaluative process per 

se (classified as physical/systemic- versus psychological/neurogenic/processive- 

stimuli) (Herman et al., 2003). For the purpose of clarification, we will refer to all 

stressors that do not require limbic processing, such as inflammation, ether 

administration, and hypoxia, as systemic stress and those that do (restraint, foot-

shock, inescapable shock, immobilization, exposure to predators, and exposure to a 

novel environment for example) as psychological stress in this thesis. The 

classifications for the nature of stress will be discussed in more detail later (see 

section 2.1). Below is a diagram indicating the main brain and adrenal areas and the 

pathways involved during the acute, psychological stress response (initiated by the 

stress stimulus). For more detail on the diagram, refer to the following sections in the 

background chapter.  
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Figure 1: The main brain and adrenal areas involved in the stress response (negative feedback 
pathways indicated with dashed arrows). Stress stimuli are relayed to the CNS via the HPA-axis and 
the LC system regulating the SAM system. Numbers correspond to brain areas: 1) hypothalamus; 2) 
hippocampus; 3) amygdala; 4) anterior pituitary; 5) posterior pituitary. The diagram was adapted from 
the various sources. Abbreviations: LC, Locus coeruleus/norepinephrine system; HPA, hypothalamo-
pituitary-adrenal axis; SAM, sympathetic adreno-medullary axis. 
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1.1 Relevant anatomical structures related to the stress paradigm 

Stress integration involving the hypothalamo-pituitary-adrenal (HPA) axis employs 1) 

pathways converging at the medial parvocellular paraventricular nucleus (PVN) of 

the hypothalamus, 2) the pituitary gland, and 3) the adrenal glands. 

Firstly, processing of anticipatory stressors takes place in limbic brain regions such 

as the amygdala, hippocampus, and prefrontal cortex which all innervate the PVN of 

the hypothalamus, the crucial locus for collection of stress stimuli (Lozovaya and 

Miller, 2003). The hypothalamus provides the interface between the perception of 

psychological stress and the regulation of downstream homeostatic processes 

(Lovallo and Thomas, 2000). The PVN also receives input from the periphery (as 

well as the cerebro-spinal fluid) via blood-borne factors such as glucocorticoids 

(GCs) crossing the blood-brain barrier (BBB). Blood-borne factors may also reach 

the PVN via the median eminence which is a BBB deficient region.  

Two main physiological brain barriers exist: the vascular blood brain barrier (BBB) 

and the blood-cerebrospinal fluid barrier (BCSF) which consists of a single layer of 

epithelial cells separating the choroid plexus blood from the cerebrospinal fluid (CSF) 

(Rapoport, 1976).  

The vascular BBB is made up of a continuous monolayer of non-fenestrated 

endothelial cells connected by tight junctions (Rabpoport, 1976) which are both 

inside and outside the central nervous system (CNS), with a luminal surface facing 

the blood stream and an abluminal surface facing the brain interstitial fluid (Banks et 

al., 2009). The luminal and abluminal membranes have different lipids, receptors, 

and transporters which cause the BBB to be polarized, enabling it to receive signals 

from one compartment and secrete mediators into the other. With the exception of 
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circulating immune cells that can cross the BBB, all other cell types are fixed in 

locations either inside or outside the CNS (Banks et al., 2009).  

Secondly, the HPA-axis is initiated via the parvocellular neurons of the PVN 

projecting towards the median eminence (ME) and releasing corticotropin releasing 

hormone (CRH) into the hypopheseal portal vessel (Lozovaya and Miller, 2003) 

which then reaches the pituitary gland. The pituitary gland consists of an anterior, 

glandular adenohypophysis with corticotrophs responsible for the secretion of 

adrenocorticotropin hormone (ACTH), and the posterior, neural neurohypophysis 

which is comprised of the axons of hypothalamic neurons (Childs, 1992). 

Thirdly, ACTH targets the adrenal glands where it stimulates the release of GCs from 

the adrenal cortex. The adrenal glands are comprised of a large cortex region and a 

smaller (about 10% of the adrenal) fairly homogeneous inner region called the 

medulla. The cortex can further be subdivided into three concentric zones. From the 

surface inwards, the first zone is the thin zona glomerulosa and it is responsible for 

the synthesis of mineralocorticoids such as aldosterone. The middle zone is the thick 

zona fasciculata which produces GCs but also overlaps in hormone production with 

the inner thin zona reticularis, producing sex steroids as well as GCs (Young and 

Heath, 2004).  

The adrenal medulla consists of mostly chromaffin cells that respond to surrounding 

adrenaline- (80%) and noradrenalin-producing cells, capillaries and venules. 

Chromaffin cells are derived from neural crest cells and are innervated by 

preganglionic sympathetic fibres (Young and Heath, 2004). 

The basic view of cell types and regions within the adrenal gland of many mammals 

(including humans) as stated here, has subsequently been modified by data from a 
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number of researchers. For example, Bornstein et al, 1998 has found immune cells 

in the adrenal cortex and chromaffin cells in all the zones of the adult adrenal gland. 

Also, adrenocortical cells (especially in the rat zona glomerulosa) are able to 

synthesize additional molecules such as cytokines and contain TNF-α-, IL-1β-, and 

IL-6-mRNA (Bornstein and Chrousos, 1998, Lozovaya and Miller, 2003). The 

regulation of TNF-α remains unclear in the adrenal gland (Turnbull and Rivier, 1995). 

In the human adrenal gland, IL-6 expression is predominantly in the zona 

glomerulosa and IL-6 receptor (IL-6R) in the zona reticularis and zona fasciculata in 

vitro , although IL-6 protein and receptor are also co-expressed throughout the gland 

(Path et al., 1997).  

Therefore, the adrenal medulla and cortex are not separate entities as the textbook 

view holds, but rather exhibit bidirectional communication and receive input from the 

nervous and immune system. For example, intra-adrenal immune cells and cells of 

the medulla are a source of extrahypothalamic CRH and extrapituitary ACTH. This 

implies that GC production can proceed without the presence of pituitary ACTH 

(Bornstein and Chrousos, 1998).  

Under conditions of chronic stress, one can discriminate from GCs released either as 

a result of central activation of the HPA-axis or directly from the adrenal cortex. 

Under these conditions, normal or below normal range ACTH levels do not 

correspond to the chronically elevated concentrations of GCs and the morphological 

changes in the adrenal gland, as there exist extrapituitary mechanisms of adrenal 

regulation (Bornstein and Chrousos, 1998) (section 2.2.2).  
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1.2 HPA-axis regulation 

1.2.1 Cytokine interaction 

Tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) stimulate the production 

of each other and that of IL-6 (Dinaerello, 1991) but IL-6 inhibits the production of 

both TNF-α and IL-1β (Nukina et al., 1998a, O’Connor et al., 2003, Schindler et al., 

1990). These pro-inflammatory cytokines can stimulate the HPA-axis independently 

or synergistically, either via extra-pituitary stimulation of ACTH most likely from 

lymphoid cells and the adrenal, or by acting directly on the appropriate brain regions 

(Eskay et al., 1990). IL-6 activates the HPA-axis by enhancing the release of CRH or 

other substances that require the presence of CRH (Naitoh et al., 1988). All three 

cytokines also have autocrine effects (Eskay et al., 1990). TNF-α share many 

biological activities with IL-1β (responding to many of the same immune challenges) 

and both cytokines stimulate IL-6 and ACTH secretion, although their extra-pituitary 

site may differ (Eskay et al., 1990, Sharp et al., 1989).  

Differential regulation of IL-1β, TNF-α and IL-6 by GC suppression can be 

demonstrated by using the lipopolysaccharide (LPS) model. When making use of 

this model in a study, LPS (a component of a bacterial cell wall) is administered in 

order to observe the effect this antigen exerts on the secretion of particular 

cytokines.  One such study in mice (Zuckerman et al., 1989) suggests that LPS 

challenge results in the acute activation of the HPA-axis via TNF-α, followed by its 

counterpart, IL-1β. However, in this study, IL-1β remained elevated for 24 hours 

post-LPS, whereas TNF-α had returned to control levels after 3 hours. This 

difference in disappearance rate was attributed to a biased corticosterone feedback 

system since the rate of corticosterone increase was similar to that of TNF-α, but 
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corticosterone remained elevated 24 hours post-LPS. However, differences in 

receptor dynamics were not assessed in this study, which could also have 

contributed to the differential degree of GC suppression observed.  

1.2.2 Endocrine feedback 

In addition to the differential sensitivities of cytokines to GC feedback, the HPA-axis 

may also be more or less sensitive to GC feedback, depending on the type and 

duration of the stressor. More specifically, GCs inhibit corticotroph function indirectly 

by inhibiting hypothalamic CRH and adenosine vasopressin (AVP) expression and 

release, as well as directly by inhibiting proopiomelanocortin (POMC) transcription 

for ACTH secretion by the pituitary corticotrophs (Aguilera, 1998). ACTH is a 

polypeptide tropic hormone which, under conditions of stress, is regulated by CRH, 

catecholamines, and AVP (Rivier and Vale, 1983).   

Stress-related stimuli are relayed to the CNS, which is comprised of two systems: 

the CRH system (acting synergistically with AVP to regulate the peripheral activities 

of the HPA-axis) and the locus coerauleus-norepinephrine (LC-NE)/sympathetic 

neuron system of the hypothalamus and brain stem (regulating the 

systemic/adrenomedullary sympathetic nervous system (SNS). Activation of one 

system leads to activation of the other via CRF neurons synapsing onto α1-

noradrenergic receptors (Elenkov and Chrousos, 1999). The serotonin and 

cholinergic systems of the brain stimulate CRF, AVP and noradrenergic neurons 

while the gamma-aminobutyric acid-benzodiazepine (GABA-BDZ) opioid peptide 

systems, GCs, as well as ACTH and CRH themselves inhibit these effectors of 

stress (O’Connor et al., 2000).  
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CRH, along with AVP, is primarily responsible for initiating the stress response by 

travelling down its site of production within neurons in the PVN of the hypothalamus, 

to the external layer of the median eminence. The PVN is comprised of two 

subdivisions: the magnocellular PVN (mPVN) which together with the supraoptic 

nucleus (SOP) produce AVP and release it from neurons in the posterior pituitary; 

and the parvocellulular PVN (pPVN) containing CRF neurons which release CRH 

into the hypophyseal portal circulation (Turnbull and Rivier, 1999). From here, it is 

released into portal blood where it gains access to one of its two plasma membrane 

receptors (CRH-R type 1) that reside on the corticotrophs in the pituitary (Turnbull 

and Rivier, 1999).  

Both CRH and AVP control ACTH production and release from corticotrophs but 

through separate receptors and signalling pathways. Also, during chronic stress, 

CRH expression scales down while AVP expression increases, allowing ACTH to be 

released when an organism is exposed to a novel stressor (Miller and O’Callaghan, 

2002). The differential roles played by AVP and CRH under different types of stress 

conditions may be attributed to a proportional release of these hormones, depending 

on their site of release from the PVN (Aguilera, 1998).  

It is then reasonable to suggest that AVP is a likely candidate for maintaining 

corticotroph responsiveness under chronic stress conditions, in effect bypassing the 

inhibitory effects of GCs by its increased expression in parvicellular neurons, by 

potentiating the effects of CRH, and by increased binding in the pituitary (Makino et 

al., 1995). In contrast, acute stress was reported to decrease pituitary CRH-R mRNA 

levels, only transiently after the initiation of stress, followed by an increase at 4 hours 

after initiation. In the case of immobilization, these increases in mRNA levels were 

also accompanied by increases in binding (Rabadan-Diehl et al., 1996).  
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Opposite to their central effects, CRH and AVP have pro-inflammatory actions at 

local inflammatory sites, with CRH neurons and receptors exhibited in the adrenal 

gland, thymus, spleen, lymphocytes and other leukocytes. Even though CRH is not 

detected peripherally during stress, CRH levels at inflammatory sites may display 

concentrations similar to those found in the hypophyseal portal system (O’Connor et 

al., 2000). 

In conclusion, the regulation of CRH and AVP in the PVN varies, depending on the 

duration of stress exposure, as well as the regulation of CRH-R expression, which is 

controlled by the synergistic actions of CRH, AVP, and GCs. Therefore these 

mediators participate in the responsiveness of the HPA-axis.  

1.3 Neuro-endocrine immune loop 

The orthodox observation on the HPA-axis involves the following: 

Firstly, a stressor is assessed by the prefrontal cortex, after which the amygdala is 

put on alert and activates the axis. The brain stem influences state of arousal 

whereas the integration of external stimuli and the appraisals thereof converges on 

the mpPVN, which secretes CRH into the hypopheseal portal vessel reaching the 

anterior pituitary. CRH binds to its receptors in the anterior pituitary which, in turn, 

secretes and releases ACTH into the circulation. ACTH then activates the synthesis 

and release of GCs from the adrenal cortex (Feldman et al., 1995).  

This view on the HPA-axis may be modified by incorporating the model of Swanson 

(2003). According to this model, there are three different systems that determine the 

output by the HPA-axis: Firstly, the sensory system (SS) relays stress related 

stimuli (internal or external) to the cerebral cortex where perception is created, after 
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which it travels to the limbic system. After awareness of an emotion has been 

created in this area, it feeds back to the cerebral cortex. Secondly, a cognitive 

system (CS) resides within the cerebral cortex which determines which voluntary 

responses will be engaged. Thirdly, descending pathways from the limbic system 

reach the behavioural state system (BST) which comprises the hypothalamus, 

limbic system and brain stem. The BST also allows for motor output to govern 

skeletal muscle movement and visceral responses such as the actions of smooth 

and cardiac muscles and endocrine and exocrine glands. Finally, these physiological 

or behavioural responses feed back to the SS which initiates the pathway once again 

by communicating with the CS and BST (Swanson, 2003) (see Fig 1). 

Apart from the behavioural and visceral responses mentioned above, immune 

modulators such as cytokines also relay information to the SS, constituting the 

neuroendocrine-immune loop. Evidence in support of this loop stems from 

knowledge that the immune and neuroendocrine system cells share common ligands 

and hormone and cytokine receptors (Turnbull and Rivier, 1999), immune cell 

functions can be modulated by hormones and neuropeptides (Buckingham et al., 

1996), immune cells can secrete ACTH (Turnbull and Rivier, 1999), and the immune 

system is innervated by noradrenergic sympathetic nerve fibres (Chikanza and 

Grossman, 1996). For example, according to early studies, activation of the ventral 

noradrenergic tract (responsible for noradrenergic innervation of the hypothalamus, 

carrying the axons of noradrenergic neurons with cell bodies in the brain stem) by 

cytokines released from an immune or inflammatory lesion and stimulating local 

sensory afferent fibres, results in neural projections sent from the nucleus tractus 

solitarius to the PVN (Gaykema et al., 1995, Laye et al., 1995). In addition, this tract 

is also activated by plasma IL-1β via stimulation of perivascular cells in the adrenal 
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medulla (Buckingham et al., 1996, John and Buckingham, 2003). We now turn our 

attention to the action of cytokines as part of the neuro-endocrine immune loop.  

Cytokines are polypeptides or glycopeptides and are produced by various cells in 

both the periphery and CNS. Their receptors are located on membranes of a variety 

of cells, including immune cells, glandular cells, neurons, astrocytes, microglia, 

cerebrovascular endothelia, neuroblastoma cells, and glioblastoma cells (Fink, 2000, 

Turnbull and Rivier, 1999). Cytokines comprise the interleukins (ILs) and TNF. 

Designations for the ILs used to depend on which cell type was identified to secrete 

it (e.g. monokines secreted from monocytes, lymphokines secreted from 

lymphocytes and cytokines secreted from non-lymphoid cells) (Eskay et al., 1990). 

Today the ILs are referred to as cytokines irrespective of their origin. Over the years, 

in vitro as well as in vivo studies have indicated many different roles for various 

cytokines at the level of the hypothalamus, pituitary and adrenal glands. 

When referring to the above mentioned stress-related systems model, inflammatory 

cytokines such as IL-1β, IL-6 and TNF-α can have a direct effect on the CNS via 

acting on the hippocampus for instance (controlling behaviour) or indirectly through 

actions at different levels of  the HPA-axis (Fink, 2000). Studies investigating the 

activation of the HPA-axis by cytokines administered either centrally of peripherally, 

found that activation is attributable to stimulation at or above the level of the 

hypothalamus (Turnbull and Rivier, 1999). Because cytokines are relatively large 

molecules (e.g. human IL-6 amounts to 21-28 kD and IL-1 to 15-25 kD), they require 

mechanisms to cross the BBB in order to exert their function. Some of these 

mechanisms do not necessarily involve crossing the BBB itself, but bypassing this 

obstruction via the following methods: 
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• Cytokines, IL-1β in particular , causes the release of prostaglandins (PGE2, 

PG12), catecholamines, serotonin, histamine, eicosanoids, and nitric oxide by 

binding to their receptors on endothelial cells outside the BBB, which then 

indirectly activates the HPA-axis via CRH secretion from the median 

eminence (Imura et al., 1991, Kronfol and Remick, 2000, Sternberg et al., 

1992, Turnbull and Rivier, 1999).  

• Cytokines can passively enter into leaky parts (e.g. sites where local 

inflammation is present) or parts devoid of the BBB (via fenestrated capillary 

endothelium without tight junctions ) called circumventricular organs, such as 

the organum vasculosum of the lamina terminalis,  PVN, area postrema, 

median eminence, posterior lobe of the pituitary, and the CeA of the amygdala 

(Anisman, 2008, Imura et al., 1991, John and Buckingham, 2003, Kronfol and 

Remick, 2000, Lozovaya and Miller, 2003, O’Connor et al., 2000, Turnbull and 

Rivier, 1999). 

• Transcellular, saturable  transport mechanisms (carrier-mediated transporters, 

receptor-mediated transcytosis, and efflux transporters) for IL-1α, IL-6, and 

TNF-α exist (Banks et al., 1995, Kronfol and Remick, 2000, Miller and 

O’Callaghan, 2005). 

• Signalling to the brain (and causing, for example, IL-1β production in the 

brain) may also be facilitated by cytokines binding to their receptors on 

peripheral paraganglia which synapse on afferents such as the abdominal 

vagus nerve (the 10th of the paired cranial nerves reaching into the abdominal 

cavity where it innervates the viscera) (Anisman, 2008, Fleshner et al., 1995, 

Haddad et al., 2002, Kronfol and Remick, 2000, Miller and O’Callaghan, 

2005). 
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• To relay cytokine-related messages within the brain via astrocytes, microglia 

and neurons in the brain synthesizing IL-1β, IL-6 and TNF-α (Anisman, 2008, 

John and Buckingham, 2003, Kronfol and Remick, 2000, Lozovaya and Miller, 

2003, Miller and O’Callaghan, 2005, O’Brien et al., 2004). 

• Up-regulating of adhesion molecules such as ACAM-1 and VCAM-1 increases 

adhesion of circulating T lymphocytes to the endothelial lining of the BBB 

(Anisman, 2008, O’Brien et al., 2004). Lymphocytes crossing the BBB can 

produce IL-1β, IL-6 and TNF-α (Lozovaya and Miller, 2003). 

• Cells that make up the BBB can also secrete cytokines (Banks et al., 2009). 

Gathered from the knowledge contained in chapter 1, it is clear that the response to 

stress is complex in terms of specific interactions between mediators of stress under, 

specific conditions, and in specific areas of the body. Much is still unknown and 

therefore future studies should be directed towards filling the gaps in our 

understanding of stress responses. The next chapter deals with what is known from 

the literature pertaining to our chosen model of stress. 
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Chapter 2: Literature review 

2.1 Classification of stressors 

The literature is vague in terms of categorising different types of stressors as is 

evident in the following section.  

Psychological stress exposure elicits many of the same responses than that 

occurring under conditions of infectious and inflammatory stimuli (adipsia, aphagia, 

fever, HPA-axis activation, reduced social interaction and changes of acute phase 

proteins). However, studies have shown that psychological stressors such as 

restraint, immobilization, or exposure to an open field elicit differential pathways than 

those activated in response to systemic stressors such as ether or intraperitoneal 

injection of LPS, with LPS activating the central subnuclei of the amygdala and 

restraint acting on the medial subnuclei (Day et al., 1999, Emmert and Herman, 

1999). Strenuous acute physical activity activates the sympathetic nervous system 

and is regarded as a model for inflammation-like processes (Shepard and Shek, 

1998). 

Another discrepancy with regard to the effect of different classes of stressors, 

resides in the notion that while some types of stressors such as inescapable shock, 

footschock, immobilization, restraint, and open field exposure, enhance IL-1β, and 

IL-6 action, others such as brief handling, decreases these cytokine levels (Briski 

and Gillen, 2001, Goshen and Yirmiya, 2009).  

One group distinguished two types of stressors: those that they termed to be 

neurogenic in nature and of physical origin such as immobilization stress, 

inescapable shock, and formalin injection and those which are psychogenic 
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stressors of only psychological origin (Plata-Salama et al., 2000). Other studies 

regard immobilization and restraint stress to be psychogenic in origin, requiring 

higher order processing (Herman et al., 1998). In our opinion, whether restraint 

stress is classified as ‘psychogenic’, depends on the severity of the model.  

The ultimate end product of any type of stress insult is activation of the HPA-axis, but 

the way in which the axis is being activated differs for systemic and psychogenic 

stressors with regard to the brain areas required for stimulus processing. Systemic 

stressors activate the HPA-axis directly via brain stem relays, whereas psychogenic 

stimuli processing requires pathways to the limbic system for comparison to past 

stimuli (Herman and Cullinan, 1997).  

In addition, there are two main realms of HPA activation occupying distinct 

pathways, although multiple pathways may be involved, especially if both classes of 

responses are simultaneously implicated (Anisman, 2008).  This hypothesis was first 

introduced in 1951 in order to explain the notion that some stressors such as 

epinephrine, cold, and histamine still elicited a corticosterone response, even when 

the pituitary has been removed, and while others such as immobilization and sound 

relied on an intact pituitary to bring about a response.  

The first class termed systemic stress pathways entails a real homeostatic challenge 

that is recognised by changes in somatic (cardiovascular tone, respiratory stress, 

pain), visceral (pain) or circumventricular sensory pathways (blood-borne cytokine or 

chemokine factors). These reactions are brought about by reflex pathways with 

afferents directly to the PVN originating in the brainstem and which are not affected 

by lesions of the limbic system. In an experimental set-up involving animals, these 

stressors constitute a direct threat to survival and include ether stress or severe 
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hypoxia, or cases where the (systemic) immune system is compromised (Herman 

and Cullinan, 1997). 

The second class termed processive stress involve limbic stress pathways (reactions 

affected by lesions of the prefrontal cortex, hippocampus or amygdala) and higher-

order sensory processing of multiple sensory modalities.  These responses are 

produced either as a result of conditioned stimuli (a memory, environment) or when 

innate species-specific tendencies (recognition of predators, heights, and open 

spaces) are present (Herman et al., 2003). These conditions have been simulated in 

experimental animal models of restraint, fear conditioning or exposure to a novel 

environment (Herman and Cullinan, 1997). Of note, prior to additional synapses 

between limbic sites, different types of processive stressors may employ different 

pathways, as seen in restraint stress which shows differential patterns of central c-

fos mRNA induction than swim stress (this may be explained in terms of the amount 

of movement allowed with these stress regimes) (Herman and Cullinan, 1997).  

Taken together, psychological (processive) stress may also have systemic 

components. This suggests that the response to psychological stress depends on 

the specific set(s) of sensory pathways employed, from different areas in the brain 

and body.  

Other factors that need to be taken into consideration when assessing mediators of 

stress are based on observations on responses such as acceleration of heart rate, 

adrenal catecholamine secretion, and activation of the HPA-axis that vary in 

magnitude and/or duration, based on the nature, length of exposure, and/or intensity 

of psychogenic stress (Briski and Gillen, 2001, Kronfol and Remick, 2000). In 

addition, cytokine expression profiles differ with respect to the region of analysis in 
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the brain in immobilization, restraint, forced swim, and predator exposure models of 

stress (Briski and Gillen, 2001, O’Connor et al., 2003). Also, the degree of 

controllability of a stressor influences serotonin output from the prefrontal cortex. 

However, the component of controllability does not seem to modulate corticosteroid 

secretion. When a stressor is first encountered, it cannot be determined whether the 

stressor is controllable or not, or brief or prolonged. Only as the stressor continues, 

do differences in HPA-axis control emerge (Anisman, 2008). It is therefore important 

to consider the nature and duration of a stressor and the brain region employed 

when assessing the effects of stress or response to a particular stressor.  

Of interest, human studies have revealed subjects reacting differently to stressful 

stimuli, be it psychological or high intensity exercise and that there are high 

responders, exhibiting exaggerated HPA-axis responds in both stress categories 

(Cacioppo et al., 1995, Petrides et al., 1997, Sgoutas-Emch et al., 1994). 

Furthermore, high responders to psychological stress were shown to also be prone 

to high responders with exercise, indicating a non-specific tendency for greater 

stress reactivity (Singh et al., 1999). However, these differential responds to stress 

are not apparent when dealing with animal models of stress. These ‘absence of 

responder sensitivity’ levels may pose an advantage to the use of animals instead of 

human subjects in studies investigating the response to stress.  

Some broad conclusions can be drawn from the section above by drawing on 

knowledge pertaining to specific pathways activated under different conditions of 

stress: 

Systemic (physical) stressors activate firstly the HPA-axis via activation of 

noradrenergic cell bodies in the brain stem by IL-1β, which relays the stimulus to the 
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hypothalamus, ultimately up-regulating CRH secretion in the hypothalamus leading 

to GC secretion from the adrenal glands. The brain region acting as a sensory organ 

differs to the region employed under conditions of psychological stress (in which 

case the stimulus originates in the limbic system). Secondly, systemic stressors act 

directly on the adrenal gland to release GCs by the action of cytokines in circulation.  

In the case of psychological stress, the first reaction to stress involves the 

sympathetic-adrenomedullary (SAM) system or sympathetic nervous system (SNS) 

(these terms are used interchangeably) which is employed as an early fight-or-flight 

response to stress. The cerebral cortex is responsible for labelling of psychological 

stressors as harmful and this stimulus is relayed to the hypothalamus from where a 

signal is sent to the adrenal medulla to secrete catecholamines, ultimately leading to 

effects such as increased heart rate, sweating, constriction of peripheral blood 

vessels and activation of the immune system (Axelrod and Reisine, 1984, Taylor, 

2003).  

Secondly, the HPA-axis is activated as a more delayed response to stress with 

afferents from within the CNS originating in limbic sites (once the stimulus has been 

compared to past stimuli) and from the periphery via the blood supply to 

circumventricular organs. The latter way of stimulating the HPA-axis by means of 

blood-borne cytokines, may be considered to form part of a feedback mechanism, 

more so than initiation of the HPA-axis (Zhou et al., 1993).  

Thirdly, central catecholamines increase cytokine levels in the brain via increased 

CRH action. Lastly, the adrenal gland alone also plays a role in the stress response 

to psychological stress via catecholamines from the peripheral sympathetic nervous 
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system, activated by CRH and/or prostaglandins, which ultimately increases cytokine 

expression in the adrenal gland. 

2.2 Response to stress 

Many factors influence the ability or capacity of an individual to adapt to stress. 

Tolerance and cross-tolerance (habituation) of the HPA-axis occur after repeated 

non-immunogenic homotypic stress exposures (Fernandes et al., 2002, Garcia et al., 

2000, John and Buckingham, 2003, Melia et al., 1994), although the degree of 

habituation depends on the duration, frequency and number of applications, and the 

timing of the blood sample (Fernandes et al., 2002). Stress intensity also plays a 

role: the less intense the stimulus, the more prominent the habituation and with very 

intense stressors, there may be no habituation at all (Pitman et al., 1987).  

It has been found that under chronic restraint stress conditions, the duration and 

magnitude of ACTH and corticosterone responses are significantly blunted when an 

additional acute stimulus of the same type is applied (compared to the responses in 

a naive rat) (Fink, 2000, Hauger et al., 1990, Ma et al., 1998).  

Contrary to the above scenario of cross-tolerance, if an acute, novel stimulus is 

applied to a chronically restraint stressed rat, the duration and/or magnitudes of 

ACTH and corticosterone are promoted compared to that of the naive rat (Bhatnagar 

and Dallman, 1998, Fink, 2000). Also, cross-tolerance of the HPA-axis does not hold 

under conditions of repeated heterotypic stress and rats subjected to restraint stress 

before receiving an acute LPS injection, show exaggerated CRH mRNA expression 

in the PVN. (John and Buckingham, 2003). Therefore, repeated exposure to one 

stressor can lead to an exaggerated HPA response to an additional heterotypic 

stressor (cross-sensitization) (Hauger et al., 1990, Ma et al., 1998, Pitman et al., 
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1990). However, cross-sensitization does not occur in all types of stress situations 

(Chung et al., 2000, Martı´  et al., 1999).  

Consequently, when investigating stress responses, it is advised to either explore 

the effects of a single, isolated (acute) stressor, or to take the role of habituation and 

sensitisation (depending on the novelty of the stressor) into account when assessing 

repeated stress effects. 

2.2.1 The role of glucocorticoids  

GCs have been generally thought of as inhibitory modulators of immune activity, 

preventing the immune system from overshooting under conditions of inflammation 

for example (although more recent work has revealed a more extensive role for GCs, 

depending on type of immune activity and the particular cells involved). It is now 

evident that the immune system can also regulate corticosteroid function by way of 

immune cells secreting molecules that indirectly down-regulate their own activity via 

increasing GC secretion from the adrenal glands (Turnbull and Rivier, 1999). 

GCs exert their effects on the inflammatory cytokine system in various ways, 

including through suppression of gene expression, transcription, translation, post-

translational processing, protein secretion, and cell progenitor proliferation and 

differentiation (O’Connor et al., 2000). GCs inhibit pro-inflammatory cytokine 

production as well as the production of arachidonic-acid-derived pro-inflammatory 

substances such as leukotrienes and prostaglandins (O’Connor et al., 2000). TNF-α, 

IL-1β and IL-6 production is inhibited by GCs to varying degrees, with TNF-α 

suppressed most (at physiological levels), IL-1β suppressed less and IL-6 displaying 

almost no sensitivity to inhibition and is in effect resistant to GC action (DeRijk et al., 
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1997, Fink, 2000). This phenomenon may be explained by the differential actions of 

the type 1 and type 2 GC receptors (GRs).  

The mechanism of action for GC suppression entails the inhibition of pro-

inflammatory transcription factors such as nuclear factor-κβ (NF-κβ). Without any GC 

signals, NF-κβ is bound to IκBα and IκBβ which prevent NF-κβ from entering the 

nucleus. Once NF-κβ is activated by stressors such as viral infections, oxidants, 

cytokines, and antigens, IκB is released and NF-κβ enters the nucleus where it binds 

to the promoter areas of genes transcribing for more cytokines, enzymes and 

adhesion molecules, for example. GCs intervene with this process by binding to 

activated NF-κβ and by increasing the transcription of IκB (O’Connor et al., 2000).  

In conclusion, bidirectional communication exists between GCs and cytokines, with 

GCs inhibiting IL-1β, TNF-α and IL-6 production (albeit in varying degrees), while 

these cytokines in turn promote GC release from the adrenal. It is therefore 

necessary to consider both GC and cytokine responses to stress, as well as 

consequent interactions amongst different cytokines and between GCs and 

cytokines.  

2.2.2 Pro-inflammatory cytokines and stress 

Of all psychological stressors, the majority of reports have shown that immobilization 

and shock paradigms are the most likely to influence central IL-1β responses (as 

reviewed in Deak et al., (2004)). IL-1β expression increases in the hypothalamus 

after rats have been exposed to restraint and immobilization stress (Imura et al., 

1991, Kronfol and Remick, 2000). The consequent effects of this raise in IL-1β in 

different parts of the HPA-axis are evident in the following paragraphs.  
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IL-1β is produced both by activated monocytes and non-immune cells. Studies have 

located the site of action and the conditions under which IL-1β stimulate the HPA-

axis by way of administering recombinant IL-1β for an acute period. It has been 

speculated that the increase in CNS or hypothalamic activity is the result of 

activation of noradrenergic cell bodies in the brain stem by IL-1β which, in turn, 

upregulates CRH secretion and biosynthesis in the hypothalamus (Eskay et al., 

1990, Imura et al., 1991).  

IL-1β also contributes towards a rise in plasma ACTH, which is more pronounced 

after intracerebroventricular than intravenous injection of IL-1β, suggesting that the 

site of action for IL-1β is in the CNS (Imura et al., 1991). These findings have led 

researchers to believe that the site of HPA-axis regulation in the CNS for IL-1β is the 

hypothalamus, (reviewed in Weigent and Blalock (1995)). Furthermore, IL-1β is 

induced in the anterior pituitary via LPS administration and it is possible that IL-1β 

exhibits autocrine and paracrine regulation of the pituitary gland during infection 

(Koenig et al., 1990). 

IL-1β has been shown to stimulate another site within the HPA-axis, namely the 

adrenal cortex, to produce prostaglandins which eventually promote corticosterone 

release (Eskay et al., 1990). IL-1β itself has been located in the adrenal gland, 

specifically in adrenal chromaffin cells and the adrenal cortex (Bartfai et al., 1990, 

Scultzberg et al., 1995). We now move on to the examination of IL-6 as a role player 

in stress.  

IL-6, like IL-1β, is produced by both immune and non-immune cells. IL-6 producing 

cells in the neuroendocrine and endocrine tissues reside in the hypothalamus, the 

anterior pituitary and the adrenal cortex (Ohmichi et al., 1992, Path et al., 2000). 
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Proof of IL-6 being released from the adrenal cortex stems from studies done by 

Judd et al. (1990-1992) finding immunodetectable accumulation of IL-6 in the 

supernatants of rat zona glomerulosa cells after IL-1β and ACTH stimulation (Judd 

and Macleod, 1992, 1991, Judd et al., 1990).  

IL-6 expression rises in the midbrain after rats have been exposed to restraint or 

immobilization stress (Lozovaya and Miller, 2003). Furthermore, is evident that there 

is a rise in plasma IL-6 levels after non-inflammatory or non-infectious stress 

exposure such as exposure to a novel environment (Kronfol and Remick, 2000), 

electrical footshock (Zhou et al., 1993), physical restraint (Nukina et al., 1998a, 

Takaki et al., 1994, Zhou et al., 1993), exposure to open field (LeMay et al., 1990), or 

conditioned aversive stimuli (Imura et al., 1991, Kronfol and Remick, 2000). The 

increase in plasma IL-6 during conditions of psychological stress in rats occurs within 

15 minutes which is much more rapid than when either local (turpentine) or systemic 

(LPS) inflammations are present, most likely due to catecholamine action (Tataki et 

al., 1994, Turnbull and Rivier, 1999).  

The involvement of peripheral catecholamines in elevating plasma IL-6 in 

immobilization stress seems to be independent of HPA-axis activation (Takaki et al., 

1994).  Indeed, the role of the adrenal gland during psychological stress proves it to 

be most likely the biggest source of peripheral IL-6 (Zhou et al., 1993). In restraint 

models of stress, the liver (and not the intestinal microflora as previously thought) is 

also considered to be one of the largest sources of plasma IL-6 (Nukina et al., 2001).  

However, in another study, elevated plasma IL-6 levels during immobilization stress 

have been found to be a result of  both 1) CRH in the brain enhancing the activity of  

central catecholaminergic neurons and 2) activation of the peripheral sympathetic 



 

26 
 

nervous system (Ando et al., 1998) by catecholamines released from the adrenal 

medulla and sympathetic nerve terminals, signalling increased plasma IL-6 levels 

(Tataki et al., 1994). Taken together, these findings indicate that psychological stress 

induces IL-6 release via the sympathetic nervous system and the HPA-axis (pituitary 

and adrenal gland), but not directly from immune cells as suggested in a previous 

study (Zhou et al., 1993).  

IL-6 plays a role with regard to activating the HPA-axis directly (Mastorakos et al., 

1993). More specifically, IL-6 acts on the pituitary and adrenal gland, promoting CRH 

and AVP release, followed by ACTH and corticosterone secretion. Interestingly, the 

IL-6 produced in the adrenal gland is not sensitive to GC inhibition and can be 

released by IL-1β from this zone (Judd et al., 1990). Intravenous injection of IL-6 

causes a rise in rat plasma ACTH but to a lesser extend than the ACTH peak post 

IL-1β injection (Imura et al., 1991). However, the response to IL-6 administration 

does not display a physiological indication of IL-6 regulation.  

It is important to note that a discrepancy exists between humans and rats as far as 

the site of IL-6 mRNA expression (within specific cell types) in the adrenal gland are 

concerned. In humans, by combining immunohistochemistry with in situ 

hybridization, a study yielded the observation that most of the IL-6 mRNA signals 

were in cortical steroid producing cells in the inner cortical zones, islets in the 

medulla and macrophages, but no chromaffin cells (González-Hernández et al., 

1994).  In rats on the other hand, most IL-6 mRNA signals were located in the 

medulla and only minor signals in the cortex (Gadient et al., 1995). However, both 

these studies are relatively outdated, performed with older technology and reagents. 

Therefore, to probe the role of IL-6 in the stress response, all zones of the adrenal 

gland should ideally be assessed.  
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Under chronic stress conditions, IL-6 seems to cease acting on the pituitary gland, 

but continues to have an effect on the adrenals directly (zone non-specifically) to 

secrete GCs, possibly by autocrine mechanisms (John and Buckingham, 2003, 

Spath-Schwalbe et al., 1994). With chronic stress, IL-1β may induce corticosteroid 

biosynthesis, independently of ACTH, and IL-6 stimulated corticosterone release 

from adrenocortical cells alone (John and Buckingham, 2003, Turnbull and Rivier, 

1995). Under acute stress situations however, it has been postulated that IL-6 

regulates the acute activation of the HPA-axis by exerting its effects on the 

hypothalamus and/or pituitary (John and Buckingham, 2003). The mechanisms 

underlying these discrepancies in HPA-axis regulation under acute versus chronic 

stress conditions, are apparent in the following paragraphs.  

Acute stress activates the sympathetic nervous system and HPA-axis, additionally to 

parts of the immune system such as the increase of B-cells, natural killer cells and 

plasma IL-1β and IL-6 levels (Abraham, 1991, Maier and Watkins, 1998). Studies 

have found that hypothalamic IL-1β (Minami et al., 1991) and mRNA (Shintani et al., 

1995) increase within 30 minutes after initiating immobilization stress and was still 

elevated at 120 minutes, or 60 minutes after the end of stress exposure. There are 

also elevations in plasma IL-6 levels within 15 minutes after the onset of acute stress 

but this rise is only modest and even though blood IL-6 elevations occur rapidly, it 

still lags behind that of ACTH, suggesting that IL-6 does not directly contribute to 

HPA function during acute stress (Zhou et al., 1993).  

These observations seem to be contradictory since it is known that IL-1β leads to IL-

6 release. However, different cytokines may function at different absolute 

concentrations. Furthermore, the timing of sample collection might have influenced 

the results in the latter study. In light of our interpretation, it is incorrect to dismiss IL-
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6 as a role player as presented by Zhou et al, (1993). Rather, the exact role of IL-6 

should be more comprehensively investigated, keeping these possible confounders 

in mind.  

Chronic psychological stress within an animal model ranges anything from 7 

(Aguilera et al., 1996, Banks et al., 1995) days to 2 months (Hu et al., 2000), with 

habituation taking place within three days in rats (Wilson, 2005). The traditional view 

held on the relations among chronic stress, depression and immunity is slowly 

starting to shift toward the notion that chronic stress and depression may actually 

enhance certain immune responses such as inflammation via an increase in IL-6 

production (Robles et al., 2005), although this is not a desired clinical outcome, given 

the extent that specific diseases, such as cancer, diabetes and heart disease, as 

well as psychiatric ill health, can be initiated or amplified by stress. The latter view 

suggests that a role exists for IL-6 in the stress response and that communication 

between IL-6 and GC control occurs.  

Within the acute stress realm, GCs keep inflammatory responses in check by 

reducing the synthesis of proinflammatory cytokines. This defence mechanism is 

being overridden under conditions of depression and chronic stress whereby GC 

signals are disrupted. This leads to an overproduction of proinflammatory cytokines 

which in turn impairs corticosterone signalling by acting on GRs in the brain (Robles 

et al., 2005). Under these circumstances of chronic stress, GR expression and GC 

binding capacity has been shown to decrease, which may imply a mechanism to 

reduce prolonged GC action (Al-Mohaisen et al., 2000, Alexandrova and Farkas, 

1992, Nishimura et al., 2004). 
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In summary, IL-1β and IL-6 are produced and exert their effects at all three levels of 

the HPA-axis during psychological stress. However, differential regulation of these 

cytokines occurs under conditions of acute versus chronic stress. The dissociation 

seems to be at the level of the adrenal where chronic stress is implicated, unlike 

acute stress acting via all three levels of the HPA-axis. Also, GC feedback via GRs 

seems to be differently regulated during acute versus chronic stress.  

2.3 Communication between GCs and cytokines 

A number of disease states and pathologies are the result of degradation of the HPA 

negative feedback loop. Under ordinary conditions, negative feedback takes place by 

GCs binding with either GR or mineralocorticoid receptors (MR), primarily in the 

hippocampus. However, studies have indicated that loss of negative feedback 

control occurs under intensive acute stress or chronic stress conditions, with 

significant downregulation of both MR and GR mRNA levels in the hippocampus 

(Jacobson and Sapolsky, 1991). GC negative feedback control is also impaired by 

IL-1β and possibly IL-6 which affect MR affinity for GCs and promote stress hormone 

secretion (Lozovaya and Miller, 2003). 

It has been proposed that a feedback loop exists between cytokines produced in the 

periphery by immune cells and the CNS (Licinio and Frost, 2000). For instance, 

intracerebroventricular administration of IL-1β has been shown to release IL-6 from 

the brain directly into the blood, without any CRH or peripheral sympathetic stimulus 

(Reichlin, 1993, Reyes and Coe, 1998b). 

The effect that these cytokines have on the HPA-axis is exacerbated when both IL-

1β and IL-6 or IL-1β and TNF-α are synergistically present. Of the three cytokines, it 

seems that IL-1β is solely implicated in the monoaminergic effects of a stressor, with 
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IL-6 and TNF-α affecting central monoamine activity to a lesser extent (Anisman, 

2008). A bidirectional interaction exists between IL-1β and the HPA-axis, as IL-1β 

activates the HPA-axis and GCs suppress the production of IL-1β by decreasing IL-

1β mRNA levels, by blocking post-transcriptional IL-1β synthesis via cAMP and by 

decreased release of IL-1β into the blood circulation (Lee et al., 1988, Nguyen et al., 

2000). IL-1β also serves as an early cytokine in the cytokine cascade to increase 

downstream IL-6 and TNF-α production and feeds back on its original cellular 

sources (Kronfol and Remick, 2000, Shaftel et al., 2008). It has been suggested that 

IL-1β-induced circulating IL-6 mediates HPA-axis responses to locally increased IL-

1β levels (Shalaby et al., 1989, Tosato and Jones, 1990).  These cascades exhibit 

feedback loops, both positive and negative, and at different levels of the pathway. 

However, a complete, defined map of cytokine pathways and their receptors in the 

brain has not been elucidated. 

Although not directly applicable, as far as the interaction between IL-6 and GCs are 

concerned, many studies have shown LPS-induced IL-6 plasma levels to be inhibited 

via the action of corticosteroids (Coelho et al., 1995, Munck and Naray-Fejes-Toth, 

1994, Schobitz et al., 1993). However, few studies have revealed whether elevated 

plasma GC actually influence cytokine levels within the CNS. GCs have failed to 

inhibit central release of IL-1β-induced IL-6 into CSF following psychological stress 

(social isolation) in monkeys (Reyes and Coe, 1998b). The IL-6 in CSF was shown 

to be brain derived and not a result of passive diffusion from the blood into CSF 

(Reyes and Coe, 1998a).  

The scenario where GCs inhibit IL-6 peripherally but not centrally may be explained 

by the different cell types releasing IL-6 into the CSF (astroglia, microglia, and 

neurons producing IL-6) versus the peripheral circulation (Kupffer cells of the liver 
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producing IL-6 most readily) (Joseph et al., 1993, Liao et al., 1995, Ringheim et al., 

1995) although the adrenal gland has also been pointed out as one of the most 

important sources of IL-6 (Zhou et al., 1996). In other words, plasma GCs have more 

extensive access to cell sources of IL-6 located in the periphery, than in the brain (in 

order to exert its inhibitory effect). Taken together, it can be assumed that the 

increased release of IL-6 during stress is not under the inhibitory control of GC, 

probably because GCs are mainly released from the adrenal gland (Waage et al., 

1990), with limited access to central regulation of IL-6. The reverse (GC regulation 

by IL-6) has also been explored.  

Previous work by our group investigated the role of IL-6 in the maintenance of IL-1β 

and corticosterone levels, and found that blocking IL-6 in effect dampened the 

secretion of corticosterone after repeated restraint stress (Smith et al., 2006).  This 

observation is supported by the notion that in conditions of prolonged stress and 

inhibition of CRH and ACTH by negative feedback of circulating GCs, IL-6 is 

responsible for maintaining elevated GC levels by acting on the adrenal gland to 

release GC (Path et al., 2000). A second mechanism for sustaining GC levels is by 

means of IL-6 enhancing GC action by limiting downregulation of GR concentrations 

(Smith et al., 2006).  

In conclusion, it has been confirmed that IL-1β promotes IL-6 release, which in turn 

stimulates GC action. However, the release of these cytokines is inhibited indirectly 

via GC-induced negative feedback of the HPA-axis, and directly by GC inhibition of 

cells secreting these cytokines in the periphery, although diminished feedback 

occurs during chronic stress conditions.  
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2.4 Importance of receptors 

To investigate the role of IL-1β, IL-6, GCs and GABA without measuring co-

expressed levels of their respective receptors proves to be futile, as elevated protein 

levels do not always correspond with increased action of the particular protein. 

Therefore accurate conclusions cannot be drawn when receptor quantification is 

excluded. Measuring GR level of expression is of specific importance as GR 

occupation is required for GC negative feedback and subsequent control of the HPA-

axis. Local negative feedback of the abovementioned mediators at the level of cells 

and tissues also employs receptor dynamics.  

2.4.1 GABA receptors 

GABA is an amino acid which is the major inhibitory neurotransmitter of the CNS, 

acting via opening of Chlorine channels which causes hyperpolarisation of GABA’s 

postsynaptic target, leading to a reduced likelihood of firing an action potential 

(Sherwood, 2004).  

Psychogenic stressors have been shown to regulate GABAergic neurons of the 

basal forebrain and hypothalamus (Herman et al., 2004). GABA acts indirectly on the 

pituitary gland via the hypothalamus (Schimchowitsch et al., 1991, Vincent et al., 

1982), and directly by being produced within the gland itself in an autocrine fashion, 

as investigated in rats and rhesus monkeys (Duvilanski et al., 2000, Mayerhofer et 

al., 2001). As nearly half of all synapses in the mpPVN and the majority of local 

inputs to this structure are indentified as GABAergic,  GABA seems to be the main 

neurotransmitter involved in the regulation of CRH neurons (which express GABAA 

receptors) in the hypothalamus (reviewed in De Souza and Franci (2008)).  
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GABA has been shown to participate in the pathophysiology of affective disorders, in 

the development of certain types of behaviour and in neuronal regulation in the brain 

(reviewed in Otero Losada (1988)). However, the effect of stress on GABA regulation 

seems to be site specific, for example, GABA levels have been found to decrease 

with acute immobilization stress of one hour in the corpus striatum and to decrease 

in the frontal cerebral cortex after repeated immobilization stress of 30 minutes per 

day for 14 days (Otero Losada, 1988). Also, footshock has been shown to decrease 

GABA receptor binding in the CNS (Biggio et al., 1981). Conversely, acute restraint 

stress has been found to increase GABA efflux region-specifically in the basolateral 

amygdala (Resnikov et al., 2008). Acute swim stress has increased the density of 

high and low affinity binding sites for GABA in the mouse brain, but not with repeated 

stress exposures (Skerritt et al., 1981). Also, another study demonstrated GABA to 

increase under conditions of cold and immobilization stress in the striatum and 

hypothalamus (Yoneda et al., 1983). The effect of immobilization stress on GABA or 

GABA-R is thus equally unclear.  

Three classes of GABA receptors exist, namely, GABAA (with subunits α1−6, β1−3, γ 

1−3, δ, ε, π and θ) and GABAC (with subunits ρ1−3) ligand-gated chloride ion gated 

channels, and G protein-coupled GABAB receptors (Zemkova et al., 2008). All three 

classes of receptors are expressed in the pituitary gland (Anderson and Mitchell, 

1986, Boue-Grabot et al., 2000), with GABAA (responsible for most of the actions of 

GABA in the brain) and GABAB receptors specifically expressed in the anterior 

pituitary (Mayerhofer et al., 2001). A recent study showed that of all the GABAA 

subunits, α1 and β1 subunit proteins are present in the secretory anterior pituitary 

cells and that GABAA receptors function mostly to depolarise the cell wall, causing 

the activation of voltage-gated Ca2+ ion influx (Zemkova et al., 2008).  
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Experimental animal models have demonstrated that GABA inhibits the CRH 

neurons via the GABAA receptor in the PVN of the hypothalamus under tonic 

conditions (Cole and Sawchenko, 2002, Herman et al., 2003, Kovacs et al., 2004, 

Mikkelsen et al., 2008). GABAA receptor itself was down-regulated after one 3-hour 

exposure to immobilization stress (Zhang et al., 1990). Stress has also been shown 

to decrease the function of the GABAA receptor complex (Biggio et al., 1990). 

An investigation regarding the regulation of GABA and IL-6 in relation to each other 

has found that intracerebroventricular injection of GABAA and GABAB receptor 

agonists inhibited restraint (1 hour) stress-induced increases in plasma IL-6 levels, 

whereas injection of an antagonist increased basal and restraint stress-induced 

plasma IL-6 concentrations (Song et al., 1998). Also, tonic levels of both IL-6 and 

TNF-α were found to be inhibited by GABA involving the GABAA receptor (Song et 

al., 1998) and possibly via the suppression of p38 activity (Spangelo et al., 2004).  

Support for bi-directional communication between GABA and IL-6 exists: IL-6 has 

been shown to stimulate GABA release from both the hypothalamus and posterior 

pituitary gland after depolarisation of the tissue, possibly via prostaglandins, but not 

under basal conditions (De Laurentiis et al., 2000). With regard to the effect of GABA 

on corticosterone secretion, a recent investigation showed that the blocking of GABA 

receptors increases corticosterone secretion in response to ether-induced stress (De 

Souza and Franci, 2008). However, the investigations of the complex interactions 

between these parameters are preliminary and much is still unknown.  
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2.4.2 Corticosterone receptors in periphery and brain.  

There are two classes of GRs, namely the Type 1, high affinity MR that mediate 

circadian GC rhythms and generally act to stimulate a response and Type 2, low 

affinity GR which mediate GC levels during stress and are inhibitory in some 

systems and excitatory in others (O’Connor et al., 2000). An illustration of the 

opposing actions of GR can be obtained from a classification system based on two 

classes of GC performance that has been devised by Sapolsky and his group 

(Sapolsky et al., 2000). These are firstly modulating actions which can be further 

subdivided into 1) permissive GC actions, set in place under basal conditions, 

priming the host defence mechanisms to possible stressful insults, via basal levels of 

GR;  2) suppressive GC actions, depicted by a rise in GR levels an hour or more 

after the onset of stress, preventing stress-induced cytokine actions from 

overshooting and 3) stimulating GC actions which mirror suppressive GC actions 

in terms of the timing of GR expression but unlike suppressive actions,  stimulating 

actions enhance the activity of catecholamines and resulting cytokine induction, in 

effect mediating the SNS response to stress. The second class of GC actions are 

called preparative actions which modulate adaptation to stress, possibly via 

modifying gene expression.  

For the purpose of this thesis, we will limit ourselves to the discussion of GRs only. 

GRs are expressed in most tissues although the density thereof may vary under 

different physiological conditions (Okret et al., 1991) and the liver is thought of as the 

major metabolic target tissue for GCs (Al-Mohaisen et al., 2000). Cytoplasmic GR 

contain three functional domains: the first is a carboxyterminal-ligand binding domain 

which binds GC, leading to the dissociation of the second domain, a heat shock 

protein (Lozovaya and Miller, 2003). The absence of this protein allows the GR to 
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translocate to the nucleus where a third domain, its midregion, binds to GC response 

elements on target genes, resulting in activation via the amino terminal sequence 

(O’Connor et al., 2000).  

Binding of GC to GR in the anterior pituitary gland, hypothalamus, basolateral 

amygdala, prefrontal cortex and the hippocampus results in inhibition of the secretion 

of ACTH and down stream regulators of the HPA-axis (Buckingham et al., 1996, 

Furay et al., 2008, Turnbull and Rivier, 1999). GC feedback occurs firstly at the 

pituitary, with rapid (within minutes) transcription-independent regulation of 

expression of POMC, ACTH, and CRH receptors (Hinz and Hirschelmann, 2000, 

Makino et al., 1995). Feedback also occurs at the hypothalamus, resulting in 

regulation in the expression of CRH and AVP in the CRH neurons of the 

hypothalamus as well as GABAergic inhibitory synaptic inputs to these CRH neurons 

(Cullinan and Wolfe, 2000, Verkuyl et al., 2004, Verkuyl et al., 2005), although a 

differential regulation of GABA inputs under conditions of acute versus chronic GC 

elevation has been proposed (Verkuyl et al., 2005).  

Verkuyl and his group suggested that during acute stress, the activity of CRH-

producing cells in the PVN via GC is under the control of firstly limbic projections 

relayed via GABAergic interneurons, secondly by GC binding to GR in the 

hypothalamus, resulting in decreased GABAergic control of PVN neurons, and 

thirdly, by humeral feedback on CRH-producing cells. These modalities are most 

likely in balance during physiological conditions (and possibly acute stress). 

However, under the influence of unpredictable chronic, psychological stress, it was 

found that the normal relative contribution to HPA-axis activity of each of these 

mechanisms was disrupted, which led to less GABAergic inhibition of PVN neurons, 

resulting in less HPA-axis negative feedback (Verkuyl et al., 2005).  
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A role for negative GC feedback to the HPA-axis via GR in the forebrain (the 

hippocampus in particular) is widely accepted (Jacobson and Sapolsky, 1991), but 

these inhibitory effects are stressor modality dependent (Furay et al., 2008). A recent 

study found that the forebrain (prefrontal cortex, hippocampus, and basolateral 

amygdala) GR were responsible for GC feedback in mice under conditions of both 

mild (elevated plus maze) and robust (30 minute restraint stress) psychogenic 

stressors but not in the case of a systemic stressor (hypoxia) (Furay et al., 2008). 

The changes in HPA-axis regulation seen with chronic stress (15 days) were 

mediated by mechanisms independent of forebrain GR (Furay et al., 2008). 

In addition to different sites of inhibition in the brain, three phases of inhibition exist: 

1) rapid feedback which takes place within less than 15 minutes of GC release and 

may occupy some other means of action than binding to intracellular steroid 

receptors with subsequent gene modification 2) Early delayed feedback which 

develops within one to two hours following a stressful insult and continues for up to 

24 hours, resulting in the suppression of protein second messengers which are 

responsible for ACTH release 3) Late-delayed feedback which occurs within 12-24 

hours and is characterised by gene suppression of POMC, CRH, and AVP and 

(Buckingham et al., 1992).  

A take home message therefore is that inhibition of parts of the stress response via 

GR takes place in different tissues and consults different mechanisms depending on 

the nature and duration of the stress.  
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2.4.3 IL-1β receptors 

The IL-1β receptor belongs to the immunoglobulin supergene family (Turnbull and 

Rivier, 1995).  Both subunits of IL-1β act through the same cell surface receptors, 

namely IL-1RI (locating to almost all cells including glial cells and neurons 

throughout the rat brain, concentrated in the pituitary gland, dentate gyrus, 

hippocampus, and the hypothalamus) and IL-1RII (on the surface of immune cells) 

which lacks an intracellular domain and seems to lack significant physiological 

function (Anisman, 2008, Lozovaya and Miller, 2003, Shaftel et al., 2008, Weigent 

and Blalock, 1995). It has been shown that CRH stimulates the expression of IL-1RI 

in the pituitary gland of mice under conditions of stress and inflammation (Laye et al., 

1994).  

IL-1β soluble receptor acts as an antagonist, preventing IL-1β from binding with its 

membrane bound receptors (Turnbull and Rivier, 1999). Binding of IL-1β and not its 

endogenous antagonist IL-1ra, leads to the initiation of  mitogen-activated protein 

(MAP) kinase pathways and a signal transduction pathway involving the 

phosphorylation and degradation of the endogenous IF –κβ, ultimately resulting in 

translocation of NF-κβ to specific target genes in the nucleus (Shaftel et al., 2008).  

2.4.4 IL-6 Receptors  

 IL-6Rα is part of the hematopoietic growth factor receptor family (Turnbull and 

Rivier, 1999). As is the case with IL-6 (mentioned earlier), IL-6R mRNA synthesis is 

more pronounced in the rat adrenal medulla compared with the cortex as opposed to 

humans where IL-6R is predominantly expressed in the zona reticularis and the inner 

zona fasciculata and to a lesser extent in the zona glomerulosa and in chromaffin 

cells of the medulla (Path et al., 2000). 
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The mechanism of action of the IL-6 receptor involves a signal transduction 

(JAK/STAT) pathway to activate the ras/MAPK cascade. It employs the combination 

of IL-6, the ligand-binding IL-6 receptor α-chain (IL-6Rα) and the signal transducing 

β-chain (gp130). These three components oligomerize to form a complex of at least 

two of each component which then results in the signalling processes conducted by 

gp130 (Anisman, 2008, Lozovaya and Miller, 2003, Path et al., 2000).  

Normally the binding of a cytokine to its soluble receptor inhibits its activity by 

preventing the cytokine from binding to its membrane receptor (soluble IL-1β 

receptor is no exception). However, this is not the case with IL-6 as binding to its 

soluble receptor enhances its activity (Kronfol and Remick, 2000, Turnbull and 

Rivier, 1999).  
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2.5 Summary 

Distinctions between psychological and systemic stressors can be made based on 

differences in the sensory organ in the brain initiating the stress response, on 

whether immune cells are involved and whether processing in limbic areas are 

required. The stress model employed in this thesis is psychogenic in nature and 

therefore has the following characteristics: 

Upon the onset of stress, the stress stimulus is firstly relayed to the cerebral cortex 

after which it is passed on to the hypothalamus from where a signal is sent to the 

adrenal medulla to secrete catecholamines. These pathways constitute the SAM-

axis and activation of this route also leads to increased cytokine expression in the 

adrenal gland.  

Simultaneously, the stress stimulus is processed in the limbic system after which it is 

relayed to the PVN via GABAergic neurons. The PVN also receives input in the form 

of feedback from the periphery via circulating GCs and cytokines reaching the brain. 

IL-1β and its receptor as well as IL-1β-induced IL-6 and IL-6R expression are up-

regulated in this region by means of catecholamine-induced CRH. Bidirectional 

communication between GABA and IL-6 also influences the regulation of the PVN. 

IL-1β stimulates CRH to be released from the PVN in order to release ACTH form 

the anterior pituitary where GABA, IL-1β and IL-6 expression is enhanced. Negative 

feedback to this structure via GC keeps these responses in check. Finally, ACTH 

reaching the adrenal cortex causes the release of GCs which act to inhibit local pro-

inflammatory cytokine production as well as the HPA-axis via negative feedback at 

the hypothalamus and pituitary. Expression of IL-1β and IL-6 and their respective 

receptors also increase in the adrenal, with IL-1β-induced IL-6 maintaining GC 
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levels. However, the interactions of these parameters are complex, and 

investigations into lasting effects are complicated by their wide variety of potential 

sources and differences in the time courses over which they exert their effects. 

Therefore, it is not always possible to extrapolate lasting responses to stress from 

studies investigating acute time points only.  

Furthermore the above, somewhat simplified view on psychological stress-related 

pathways is still preliminary in that not much is known about cross-talk between 

mediators of stress and interactions between the central and peripheral systems. 

This leaves room for investigation of specific psychological stress models in terms of 

basal versus stress conditions and peripheral versus central sensitivity to adaptation 

of the mentioned role players in the stress response.  
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2.6 Hypothesis and aims 

We hypothesised that the HPA response to psychological stress is dependent on IL-

6, and that although we do not expect to find detectable levels of IL-6 at time points 

24 hours after stress, we will find IL-6 dependent effects at these time points, both 

centrally and peripherally.  

Specific aims included: 

a) To induce repeated mild psychological stress (restraint) 

b) To determine lasting effects of stress on the HPA-response, specifically in 

terms of the pituitary and adrenal response, while blocking IL-6 using a daily 

anti-IL-6 antibody (injected intraperitoneally) 

c) To assess various modulators of stress at time points 24 hours after the end 

of exposure to stress   

d) To investigate possible adaptation to repeated stress over time in glands of 

the HPA axis 
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Chapter 3: Materials and methods 

3.1 Study design 

3.1.1 Experimental animals 

In total, 120 male Wistar rats were selected for by weight (70g to 120g) before 

purchase from the University of Cape Town.  Upon arrival the rats were caged five 

per cage (this ensured a variety of rat sizes in each cage). They were housed in a 

colony room at 21 °C, with the room ventilated at 10 changes/hour and animals were 

exposed to a 12 hour day-night cycle (lights on at 6:30 am), via artificial illumination. 

They received standard rat chow (supplied by the Medical Research Council animal 

unit in Parow) and water ad libitum.  

Ethical approval was granted by the Animal Ethics Committee of Subcommittee B of 

Stellenbosch University.  Rats were acclimatised, and handled and weighed on a 

daily basis during the morning for the entire housing period (in order to get familiar 

with the researcher), until they reached a weight of 350 to 400g. Three weeks before 

the onset of an experimental protocol, rats were handled by means of holding them 

in the position in which they would be injected. This measure was taken to ensure 

that animals became accustomed to the experimenters and experimental injection 

procedure, in order to control for any confounding factors. All interventions were 

performed during a 08:00 to 10:00 time slot to ensure comparable corticosterone 

levels from day to day and across all groups.  
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3.1.2 Experimental groups 

Rats were divided into four groups:  

• No Stress Placebo group (CP):  receiving no stress and a saline injection 

(n=30) 

• Stress plus Ab group (SAb): receiving an Anti-IL-6 antibody (Ab) injection and 

subjected to the stress paradigm (n=30) 

• No Stress plus Ab group (CAb): receiving the Ab injection but not subjected to 

the stress intervention (n=30) 

• Stress Placebo group (SP): receiving a saline injection as well as exposure to 

stress (n=30) 

Each of these four groups was further subdivided into three subcategories, being a 

one-, two-, or three-day stress or control intervention, ultimately resulting in ten rats 

per subgroup. For the purpose of discussing these different repetitions of stress, I 

will refer to them as time point 1, 2, and 3. 

3.2 Intervention protocols 

Injections involved either 0.9% saline (placebo) or 100 µg lyophilized goat-derived 

anti-IL-6 Ab (first dissolved in 1ml of sterile PBS according to manufacturer’s 

instructions, after which it was diluted in sterile saline to yield a final concentration of 

2µg/ml). The Ab solution was stored at 4 ⁰C for the duration of the study. Injections 

were administered ip. at a dosage of 1ml/kg bodyweight.   

During the stress experiment, rats were exposed to a mild psychological stressor 

imposed by restraint for an hour per day, in translucent Perspex boxes (dimensions 

7 cm x 8 cm x 15 cm, designed by local manufacturer), 30 minutes after having 
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received a saline or Ab injection. This stress model is a recognised one, and has 

been used successfully by our group in the past (Smith, 2004, Smith et al., 2007). 

During the period of restraint the rats could only turn around with great difficulty, but 

respiration was not impaired. The stress intervention took place in a room separate 

from the procedure room so as to avoid rats being exposed to blood odours. For 

each day of restraint, all rats destined for the stress regime were restraint at one time 

(i.e. not in batches), and at the same time every day, throughout the protocol. All 

restraint boxes were cleaned after usage and in a manner similar to the cleaning of 

housing cages. Rats were euthanized 24 hours after the intervention had been 

terminated.  

3.3 Sacrifice, sample collection and preparation 

All rats were transported from their room to the weighing area, where they received   

a 0.9 ml pentobarbitone sodium (euthanase) injection. No more than five rats were 

sacrificed per day. Any unusual reactions by the rats were noted down immediately 

before and during euthanization to serve as possible explanatory indices when 

results were being analysed. Lack of consciousness was confirmed when no 

response was elicited in the rat after the foot had been pinched softly. Whole blood 

was collected from the right ventricle of the heart via puncture with a 20 gauge, 1.5 

inch needle into a 5ml syringe and immediately transferred to heparinized vacuum 

tubes (Vacutainer, Beckton Dickinson). Blood was kept on ice (no longer than 2h) 

before being centrifuged for 15 min at 3000 g at 4°C after which the plasma was 

aliquotted into 1.5 ml eppendorffs  and stored at -80°C for later batch analysis. The 

pituitary gland and both adrenal glands were collected, trimmed of any visible 

connective tissue where required, and placed in 10% formal-saline filled containers 

for one hour after which samples were transported to the laboratory to be weighed (a 
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sufficiently sensitive balance was not available in the animal house). Samples were 

then stored for three days at room temperature to allow adequate fixation, before 

being processed for histology.  

3.4 Sample analysis 

3.4.1 Multiplex assay 

Commercially available Bio-Plex Cytokine Assay kits (171-305008, 171-000201, 

171-203001, 171-203060, 171-K11070, Bio-Rad Laboratories, Inc.) were used for 

the determination of plasma IL-1β, IL-6 and TNF-α in accordance with 

manufacturer’s instructions. We included the assessment of plasma TNF-α levels in 

order to control for possible presence of acute inflammation, as it has been shown 

that TNF-α is not induced by our model of stress (Nukina et al., 1998b, O’Connor et 

al., 2003, Smith et al., 2007).  

3.4.2 Corticosterone Enzymeimmunoassay 

Plasma corticosterone levels were assessed using a commercially available 

enzyme-linked immunosorbent assay (ELISA/EIA) kit with internal controls 

(catalogue AC-14F1, Immunodiagnostic Systems Ltd). 

3.4.3 Histology 

Tissues were placed in embedding cassettes, processed and impregnated with 

paraffin wax (Histosec, Merck) using an automated tissue processor (TISSUE TEK 

II, model 4640B, Lab-Tek division, Miles Laboratories Inc., Naperville, IL). A rotary 

microtome (Reichert Jung, Heidelberg, Austria) was used to cut 5 µm cross-sections 

of all samples, irrespective of whether a hematoxylin and eosin (H & E) or 

immunohistochemical protocol was employed. The pituitary gland sections were 
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stained with H & E using standard protocols (in order to determine the location of the 

anterior pituitary). We decided to focus on the anterior (excluding the posterior) 

pituitary in our analysis as CRH-induced ACTH is released from this structure. 

Haematoxylin stains the basophilic structures (usually containing nucleic acids) blue-

purple whereas the alcohol-based eosin stains the eosinophilic structures (intra-or 

extracellular proteins) bright pink. In particular, corticotrophs, a type of basophil 

which secretes ACTH, can be distinguished based on the affinity of the cells for the 

dye (H&E - see Appendix B for a detailed description).  

3.4.4 Immunohistochemistry 

Because stress exposure elevates cytokine protein independently of mRNA 

expression (caused by changes in protein expression due to differential regulation of 

translation, posttranslational processing or protein degradation) (Deak et al., 2004, 

O’Connor et al., 2003), analysis of cytokine protein levels instead of mRNA seemed 

more plausible in our investigation. We therefore included the investigation of 

relevant protein expression in the anterior pituitary and adrenal in the present study.  

We verified that the anti-IL-6 Ab did indeed reach the pituitary gland and the adrenal 

glands as staining for the Ab itself yielded the fluorescence expression as depicted in 

Fig 2. Of interest, the availability of Ab differed between glands as well as between 

the different zones in the adrenal gland.  
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Figure 2: Anti-IL-6 Ab expression (red fluorescence) in (A) the adrenal where the medulla 
is enclosed by dashed lines and the reticularis the region surrounding it and (B) in the 
pituitary gland (images were taken at 40x magnification). 

 

The antibodies used are summarised in Table 1. 0.1 M phosphate-buffered saline 

(PBS:1 ℓ of 1 M phosphate buffer, 90 g NaCl, 9 ℓ ddH2O; pH 7.4) was used for all 

dilutions. 

 

Table 1: Antibodies used to identify IL-6, IL-6R, IL-1β, IL-1βR, IL-1R, and GR in the 

pituitary and adrenal and GABAARα1 expression in the pituitary gland. 

Antibodies [Stock] 
(µg/ml) Dilution Catalogue # and 

supplier
Primary antibodies:
Goat polyclonal IL-6 (M-19) 200 µg/ml 1/200 sc-1205, Santa Cruz
Rabbit polyclonal IL6R-α (H-300) 200 µg/ml 1/100 sc-13947, Santa Cruz
Rabbit polyclonal IL-1β (H-153) 200 µg/ml 1/50 sc-7884, Santa Cruz
Rabit polyclonal IL-1R (H-150) 200 µg/ml 1/50 sc-25775, Santa Cruz
Rabbit polyclonal GR (H-300) 200 µg/ml 1/50 sc-8992, Santa Cruz
Goat polyclonal GABAARα1 (D-18) 200 µg/ml 1/200 sc-31404, Santa Cruz
Conjugated secondary antibodies:
Donkey anti-rabbit (FITC) (D-1808) 200µg/0.5ml 1/200 sc-2090, Santa Cruz
Donkey anti-goat (Texas Red) (G-1708) 200µg/0.5ml 1/200 sc-2783, Santa Cruz
  

A B

10µm 10µm
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Each slide was coated with Poly-L-Lysine (Sigma-Aldrich) and contained three 

sections per sample. Both adrenal- and pituitary gland samples were stained for the 

following markers: IL-6, IL-6R, IL-1, IL-1R, and GR, with GABAARα1 additionally 

stained for only in the pituitary. We stained for the GABA receptor as the 

neurotransmitter itself has a fast phase half-life of 30 min to an hour and a slower 

phase exceeding one hour (Collins, 1972). Of these markers, only IL-1 and IL-1R 

were co-stained. Before the staining protocol was followed, slides were taken though 

a series of rehydration steps (see Appendix C). A brief outline of the staining 

procedure is as follows: 

Slides were dried using a paper towel after which they were encircled with a wax 

pen. PBS was dropped onto the sections immediately after being dried (sections 

were kept under humidified conditions during the whole procedure). Sections were 

then incubated for 30 minutes in 5% donkey serum at room temperature in order to 

block non-specific binding sites. The serum was shaken off and primary Ab added in 

the pre-determined optimum concentrations after which it was left for four hours at 

room temperature or overnight at 4°C. Slides were washed three times with PBS 

before the secondary Ab (1/200) was added (donkey anti-rabbit in the case of IL-6, 

IL-6R, IL-1, and GR, and donkey anti-goat in the case of GABA and IL-1R). After an 

hour, Hoechst (1/200) was added for 15 minutes in order to stain for nuclei.  In the 

case where markers were co-stained, two additional steps were included before 

adding Hoechst: 1) slides were washed and the second primary Ab was added for 

four hours at room temperature and 2) the secondary Ab was added for one hour 

after washing with PBS. Cover slips were mounted onto the slides by using 

fluorescent mounting medium (Dako, Diagnostech). See Appendix D for an 

elaboration on the protocol.  
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3.4.5 Image analysis 

A negative control stain (PBS control) was performed with both secondary anti-

bodies separately, as well as co-stained, in order to verify true positive staining. As 

absolute values were not taken into account in the quantification of the fluorescent 

images and merely differences between groups and zones within groups were of 

interest, image analysis was not corrected for in terms of the negative control. 

Furthermore, by not subtracting the negative control values from the positive results 

obtained, conservativeness of analysis was preserved. A high degree of confidence 

in positive staining was displayed in that all the data obtained were higher than the 

respective negative controls for the glands and zones.  

Photos were taken: three fields of view per zone or pituitary gland (in the case of the 

adrenal gland; zones being the glomerulosa, fasciculata, reticularis, and medulla), 

per section (three sections per slide) of each of four slides per adrenal gland and five 

slides per pituitary gland for every marker across all four groups (1 time point only).   

Photos were taken at 40x magnification using a microscope (Nikon ECLIPSE E400; 

400x objective used), equipped with a colour digital camera (Nikon DXM1200) and a 

computer programme (Simple PCI version 4.0, Compix Inc., Imaging Systems, 

USA). Areas to be analysed were randomly selected from the central portion of each 

zone. With the adrenal gland slides, the appropriate zones were cropped to ensure 

exclusion of bordering zones from the photo. All photos were taken using identical 

filters, exposure times, and sensitivity. Each batch (taken over a period of at least a 

week) included samples from both the pituitary and adrenal and across all zones 

(see also Fig. 9). All photos were analyzed using the software package Image J 

version 1.41O (Rasband, 1997-2009).  The Mean Gray Value (the sum of the gray 
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values of all the pixels in the selection divided by the number of pixels) for the 

images was automatically calculated and each pixel automatically converted to 

grayscale, using the following formula: gray = (red + green + blue) / 3. The 

fluorescence unit obtained refers to the relative area of the image that fluoresces, not 

to fluorescent intensity.  

This measurement is fully automated and the software was obtained from the 

National Institute of Health (NIH), allowing one to assume that it is of sufficient 

quality. However, as is the case with all fluorescent analysis, this technique proves to 

exhibit a subjective component in that the researcher has to adjust image brightness 

and in this way decides subjectively as to what background versus positive staining 

is. Nevertheless, this is common practice today, and in the current study, all analysis 

were performed by one researcher (the candidate) only, thereby avoiding variation in 

the data due to researcher-specific differences in means of analysis.   

3.5 Statistical analysis 

The computer software Statistica version 7 (StatSoft Software) was used for all 

statistical analysis. Determination of effects of time, Ab treatment, stress, and 

adrenal gland zone specifications were analyzed using factorial analysis of variance 

(ANOVA) with Bonferonni and Fisher (LSD) post hoc tests. A p-value smaller than 

0.05 was considered significant and results pertaining to masses were reported as 

means ± standard deviation (SD) and in relation to all other data as means ± 

standard error of the mean (SEM). 
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Chapter 4: Results 

The results section is presented in three sections. Firstly, we present basic 

descriptive data to illustrate the efficacy of our model as a model for mild, 

psychological stress, as well as its sensitivity to probe the role of inflammatory 

mediators. Secondly, the effect of both stress and blocking of IL-6 on circulating 

cytokine levels over time is presented. Thirdly, we present data obtained at a time 

point 24 hours after a single exposure to stress, to illustrate lasting effects of the 

stress response in various tissues. 

4.1 Stress model 

We assessed both pituitary and adrenal mass as effector tissues of stress perception 

and HPA-axis activation respectively, with the assumption that a higher mass will 

indicate greater stress-related activity of the particular gland.  Fig. 3 illustrates no 

significant effect of stress alone on pituitary mass. In controls, blocking IL-6 resulted 

in transient increase in pituitary mass after 2 stress exposures only. However, when 

blocking IL-6 in the presence of stress, this up-regulation, although again of transient 

nature, occurred after only 1 exposure to stress. 

Similar to the result for pituitary mass, stress alone also seemed to have no effect on 

adrenal mass (Fig. 4).  Blocking IL-6 resulted in a decrease in average adrenal 

mass, in a manner independent of stress. This was an effect that was only significant 

after one stress exposure, probably due to the fact that in CP rats, adrenal mass was 

significantly lower at time point 2, when compared to the same group at time points 1 

and 3. 
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Figure 3: Pituitary mass. Results are expressed as means ± SD and were analysed using 
factorial analysis of variance (ANOVA) with Fisher (LSD) post hoc tests (* p < 0.05; ** p < 
0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress Placebo; SAb, 
Stress Ab. n = 10 rats per time point per group. 
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Figure 4: Adrenal mass. Results are expressed as means ± SD and were analysed using 
factorial analysis of variance (ANOVA) with Fisher (LSD) post hoc tests (* p < 0.05; ** p < 
0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress Placebo; SAb, 
Stress Ab. n = 10 rats per time point per group. 
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Plasma corticosterone concentrations are presented in Fig. 5. When considering the 

data obtained after one placebo injection and stress exposure only, stress resulted in 

a significant increase in circulating corticosterone levels (CP: 47.9±13.2; SP: 

132.7±43.4). This response was attenuated in the absence of IL-6 (SAb: 58.3±16.3). 

In unstressed animals, blocking IL-6 had no effect on this parameter.  Due to high 

intra-group variation, no statistically supported conclusions could be drawn with 

respect to possible adaptations over time, although the effect of stress alone (SP) 

seemed to diminish over time. 
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Figure 5: Plasma corticosterone concentrations. Results are expressed as means ± SEM 
and were analysed using factorial analysis of variance (ANOVA) with Fisher (LSD) post hoc 
tests (* p < 0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, 
Stress Placebo; SAb, Stress Ab. n = 10 rats per time point per group. 

 

4.2 Effect of blocking IL-6 on circulating cytokine profile 

Although we know that the IL-6 response (evident in the blood) to stress is transient 

and rather short-lived, and we therefore did not expect to see elevated levels at the 

time point of sacrifice, we included the IL-6 analysis only since an anti-IL-6 Ab was 
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used. As expected, blood IL-6 levels were almost non-detectable at all time points, 

with no apparent effect of stress, IL-6 Ab or time (Fig. 6). Due to technical difficulties, 

no data is available for time point 3. 

IL-1β concentrations are represented in Fig. 7.  At time point 1, blocking IL-6 

decreased IL-1β levels, but only in the absence of stress.  This effect was not 

evident at subsequent time points. Stress alone did not have any significant effect on 

IL-1β concentrations. 

With regard to TNF-α (Fig. 8), neither stress, nor blocking of IL-6, had any significant 

effect. However, there was a similar stepwise decline in TNF-α concentration over 

time in all groups (ANOVA main effect of time: P < 0.001). 
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Figure 6: Plasma IL-6 concentrations. Results are expressed as means ± SEM and were analysed 
using factorial analysis of variance (ANOVA) with Fisher (LSD) post hoc tests. Abbreviations: CP, 
Control Placebo; CAb, Control Ab; SP, Stress Placebo; SAb, Stress Ab. n = 10 rats per time point per 
group. 
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Figure 7: Plasma IL-1β concentrations. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Fisher (LSD) post hoc tests (* p 
< 0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab. n = 10 rats per time point per group. 
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Figure 8: Plasma TNF-α concentrations. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Fisher (LSD) post hoc tests (* p 
< 0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab. n = 10 rats per time point per group. 
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4.3 Lasting effects of stress at tissue level 

Due to the presence of a possible confounder (refer to discussion section p65), 

assessment of lasting effects of stress at the tissue levels, in the pituitary and 

adrenal glands, were limited to time point 1 . All parameters assessed using 

fluorescent microscopy produced similar diffuse fluorescent staining. A 

representative collection of images of these results (limited to IL-1β in this case) is 

presented in Fig 9 on the following two pages.  
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Figure 9: Representative images of fluorescent staining of adrenal and pituitary glands for 
nuclei (blue), IL-1β (green) and IL-1βR (red). Row A and B: adrenal zona glomerulosa 
(enclosed in white bracket) where row B = negative control; Row C and D: adrenal 
fasciculata where Row D = negative control; Row E (region inside bracket) and F: adrenal 
reticularis where row F = negative control; Row G and H (region inside boundary): adrenal 
medulla where Row H = negative control and Row I and J: pituitary where row J = negative 
control. Images were taken at 40x magnification.  

 

Perception of stress alone did not seem to affect expression of GABAARα1 in the 

anterior pituitary at the time point assessed (Fig. 10). Blocking IL-6 significantly 

increased GABAARα1 expression in the absence of stress, but not in the presence of 

stress. A weak interaction effect of the Ab with stress was evident (Fig. 10 insert).  
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Figure 10: Pituitary GABAARα1 expression. Results are expressed as means ± SEM and 
were analysed using factorial analysis of variance (ANOVA) with Bonferonni post hoc tests 
(* p < 0.05; ** p < 0.005). Factorial ANOVA indicated a tendency for an interaction effect of 
stress and Ab treatment (insert). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, 
Stress Placebo; SAb, Stress Ab n = 5 rats per group. 

Pertaining to the pituitary gland, the only other significant increases from baseline 

were in the CAb groups for IL-1β and its receptor (Fig. 14 and 15). Results obtained 

for adrenal expression of GR (Fig. 11), as well as for IL-6, IL-6R, IL-1β and IL-1βR 

(Figs. 12-15), illustrated a consistent picture.  For all parameters, statistical analysis 

indicated that expression levels were of the same order in the different zones of the 

adrenal gland (CP). Stress alone consistently up-regulated expression of all 

parameters assessed. This up-regulation was of similar magnitude in all zones of the 

adrenal – although up-regulation in the medulla seemed less pronounced. With 

regard to the effect of IL-6, blocking IL-6 in the absence of stress also up-regulated 

expression of all parameters (CP vs. CAb) (Fig.12). However, here the magnitude of 

up-regulation differed substantially between the different adrenal zones, with highest 

up-regulation in the zona fasciculata and the zona reticularis. When blocking IL-6 in 

the presence of stress, the combined up-regulatory effect of stress and IL-6 Ab was 

not additive, but the zone specific differences seen when blocking IL-6 in CAb, were 

still evident. 

0

10

20

30

40

50

60

70

80

90

100

CP CAb SP SAb

G
A

B
A

AR
α1

 F
lu

or
es

ce
nc

e 
un

it 
/ a

re
a

**

0

10

20

30

40

50

60

70

80

90

No Ab Ab

G
A

BA
A

Rα
1 

Fl
uo

re
sc

en
ce

 u
ni

t 
/ a

re
a

No stress
Stress

Interaction effect
p = 0.078



 

61 
 

0

50

100

150

200

250

300

CP CAb SP SAb

G
R

 F
lu

or
es

ce
nc

e 
un

it 
/ a

re
a

Glom
Fas
Ret
Med
Pituitary*

*

*

*

**

**

**

**

**

**

**

**

 

Figure 11: Tissue GR expression. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Bonferonni post hoc tests (* p < 
0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab; Glom, Glomerulosa; Fas, Fasciculata; Ret, Reticularis; Med, 
Medulla. n = 4 rats per adrenal zone per group and n = 5 rats per pituitary per group. 
Colour codes: Red, effect of stress and Ab; Grey, effect of stress; Blue, effect of Ab; Green, 
differences between zones. 
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Figure 12: Tissue IL-6 expression. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Bonferonni post hoc tests (* p < 
0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab. Glom, Glomerulosa; Fas, Fasciculata; Ret, Reticularis; Med, 
Medulla. n = 4 rats per adrenal zone per group and n = 5 rats per pituitary per group. 
Colour codes: Red, effect of stress and Ab; Grey, effect of stress; Blue, effect of Ab; Green, 
differences between zones. 
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Figure 13: Tissue IL-6R expression. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Bonferonni post hoc tests (* p < 
0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab; Glom, Glomerulosa; Fas, Fasciculata; Ret, Reticularis; Med, 
Medulla. n = 4 rats per adrenal zone per group and n = 5 rats per pituitary per group. 
Colour codes: Red, effect of stress and Ab; Grey, effect of stress; Blue, effect of Ab; Green, 
differences between zones. 
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Figure 14: Tissue IL-1β expression. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Bonferonni post hoc tests (* p < 
0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab; Glom, Glomerulosa; Fas, Fasciculata; Ret, Reticularis; Med, 
Medulla. n = 4 rats per adrenal zone per group and n = 5 rats per pituitary per group. 
Colour codes: Red, effect of stress and Ab; Grey, effect of stress; Blue, effect of Ab; Green, 
differences between zones. 
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Figure 15: Tissue IL-1βR expression. Results are expressed as means ± SEM and were 
analysed using factorial analysis of variance (ANOVA) with Bonferonni post hoc tests (* p < 
0.05; ** p < 0.005). Abbreviations: CP, Control Placebo; CAb, Control Ab; SP, Stress 
Placebo; SAb, Stress Ab; Glom, Glomerulosa; Fas, Fasciculata; Ret, Reticularis; Med, 
Medulla. n = 4 rats per adrenal zone per group and n = 5 rats per pituitary per group. 
Colour codes: Red, effect of stress and Ab; Grey, effect of stress; Blue, effect of Ab; Green, 
differences between zones.  
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Chapter 5: Discussion 

 

We verified that that our model of restraint stress did indeed induce stress, as 

plasma corticosteroid levels remained significantly increased 24 hours after a single 

stress exposure. This result is consistent with other reports in the literature such as 

the increased corticosterone levels observed for 48-96 hours after a single exposure 

to inescapable shock (IS) (O'Conner et al., 2003), as well as previous work by our 

group, using stress models of lesser severity (Smith et al., 2007, Wilson, 2005).  

Also similar to previous findings by our group (Smith et al., 2007), this corticosterone 

response was blunted when blocking IL-6. Given the well-known fact that 

corticosterone is released as an anti-inflammatory reaction to pro-inflammatory 

stimuli, this blunted response is probably due to the net effect of lower IL-6 levels in 

circulation.  However, since IL-6 was responsible for maintaining GC levels, our data 

also suggest that IL-6 is a vital stimulator of GC release from the adrenal gland via 

catecholamines or prostaglandins along with the signal provided via the classical 

activation of the HPA-axis (Path et al., 2000, Takaki et al., 1994).   

Although the lasting corticosterone response to the first stress exposure was 

relatively clear, the response over time in terms of corticosterone and the role of IL-6, 

is more difficult to interpret, since no consistent pattern emerged. Of interest is the 

fact that mean corticosterone concentrations were relatively high in the control 

groups, when compared to previous studies by our group (20 ng/ml in Smith et al., 

2007 versus 47.9 ng/ml in the present study). One possibility is that the animals 

mounted an additional local acute inflammatory response as a result of minor 

needle-induced tissue damage caused by the injection of placebo or Ab itself.  This 
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idea is supported by the fact that TNF-α levels were significantly elevated across all 

experimental groups, when compared to earlier results by our group using both 

acute and chronic models of restraint, showing non-detectable TNF-α levels  (Smith, 

2004). This indicates that TNF-α levels are not affected by restraint as used in this 

particular model. This suggestion can be further strengthened by the literature that 

has found TNF-α to be more tightly associated with systemic stress than 

psychological challenge (Nukina et al., 1998b, O'Conner et al., 2003). Furthermore, 

TNF-α levels in the current study showed a stepwise decrease over time in all 

groups, suggesting an acute inflammatory response to the injection, to which the 

animals habituated over time. Given this confounder, the decrease in levels as 

investigated over time may not be a true reflection of adaptation. Therefore, although 

all results over time are presented in the result section, we will focus on the 

discussion of lasting effects measured at the time point 24 hours after the first 

exposure to stress. 

In terms of other circulating cytokine concentrations, we report a) very low IL-6 levels 

across all groups, with no significant effect of prior stress or IL-6 Ab administration, 

and b) decreased IL-1β levels when IL-6 was blocked in unstressed animals. The 

very low levels of plasma IL-6 may be explained by the short half-life of IL-6 (3 

minutes), which is common amongst other cytokines (Castell et al., 1988, Vilcek, 

2003) and the fact that we only measured IL-6 levels 24 hours after it had been 

released. Plasma IL-6 may very well have been transiently increased directly after 

the stress intervention and cleared by the time of sacrifice.  From the literature, it is 

known that IL-6 is acutely released in response to restraint stress (Takaki et al., 

1994, Zhou et al., 1993), although there is still controversy with regard to the relative 

contribution of central IL-6 production versus catecholamine-stimulated IL-6 



 

66 
 

production in elevating the circulating IL-6 levels observed (Ando et al., 1998, Nukina 

et al., 1998a, Takaki et al., 1994).  Therefore, when investigating lasting effects of an 

acute stressor, as in the current study, simultaneous assessment of IL-6 and IL-6 

receptor expression at tissue level, both centrally and peripherally may provide more 

information (see later).   

The fact that plasma IL-1β concentrations mirrored that of TNF-α in the sense that 

levels were significantly lower in day two and three than day one may demonstrate 

positive feedback of TNF-α on IL-1β secretion, as seen in classical models of 

inflammation (Ebisui et al., 1994). However, although TNF-α may have had a 

confounding effect on the IL-1β levels, we observed significant differences between 

groups with regard to the latter cytokine at the first time point. We therefore assume 

that these differences observed were the effect of the particular interventions 

implemented in the study. The fact that plasma IL-1β concentrations were decreased 

after blocking IL-6 in unstressed animals (CAb), suggest that IL-6 has a role in the 

maintenance of IL-1β levels under basal physiological conditions, as was also 

illustrated by an earlier study by our group (Smith et al., 2007).  Although it has been 

established that IL-6 negatively regulates IL-1β levels in a stressed condition (Nukina 

et al., 2001, Schindler et al., 1990), our group is the first to present data suggesting 

the reverse in absence of stress. This IL-6-induced IL-1β scenario was no longer 

evident in a stressed condition, possibly due to a relatively diminished anti-

inflammatory capacity, resulting from the lower corticosterone response seen in SAb, 

in combination with a transient increase in IL-1β levels known to occur in response to 

stress (Goshen and Yirmiya, 2009, Imura et al., 1991). As with IL-6, circulating levels 

of IL-1β at a time point 24 hours after the stress exposure may not provide a 

complete picture of events.  Therefore, we will now move on to consider lasting 
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effects of the stress intervention as assessed at target tissue level at a time point 24 

hours after a single exposure to restraint. 

It has been suggested that plasma concentration of cytokines may not be reliable 

indicators of cytokine access to the HPA-axis, as it remains unknown whether these 

concentrations are sufficient to stimulate the HPA-axis under conditions of stress 

(Turnbull and Rivier, 1995). It therefore seems more plausible to rather measure 

levels of cytokines within the appropriate tissues.  

At tissue level, we assessed the pituitary gland which can be regarded as the stress-

related effector region in the brain, integrating all stress afferents innervating the 

PVN.  We also considered the adrenal gland as a representative peripheral target 

tissue, as well as the source of GCs and cytokines.  Prior to processing, masses of 

the various glands were determined, with the assumption that an increased mass 

may give a rough indication of increased activity of the particular gland, due to 

hyperplasia or hypertrophy of activated effector cells (Marti and Armario, 1998, 

Stokes, 1995).  

Pituitary mass did not change in response to stress alone. However, given the fact 

that this measurement followed a single stress exposure, where an unhindered 

stress response was possible, i.e. ending with normal negative feedback provided by 

GCs, one would not expect a lasting change in cell activation. However, when 

blocking IL-6, a longer lasting response was indeed noticed, with pituitary gland 

mass increasing (albeit only significant at time point 2), independently of stress. This 

suggests that when normal homeostasis is threatened, or acutely altered by 

exogenous factors, immediate adaption or at least compensation may occur.  
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GR levels in the anterior pituitary did not change in response to stress or blocking IL-

6. Although GR levels are known to increase in response to acute stress (Al-

Mohaisen et al., 2000, Sun et al., 2002), it is possible that our stress intervention, 

which was of relatively mild intensity and also intermittent, was not potent to the 

extend of promoting adaptation at this central level. The fact that GR also did not 

respond to blocking of IL-6, even in the presence of stress, may suggest that the 

stressor was so mild that IL-6 levels were never elevated high enough to facilitate or 

generate a strong pro-inflammatory stimulus for GC release, and thus no adaptation 

in pituitary GR levels was required after only one exposure. A second possible 

explanation for this result is that the anti-IL-6 Ab that we administered, was unable to 

reach the anterior pituitary. However, as the posterior pituitary gland is a 

circumventricular organ, the Ab did not have to cross the BBB to gain access to the 

cells (Anisman, 2008), so that it is highly unlikely that the Ab did not reach the tissue. 

Also, we have demonstrated the presence of the Ab at tissue level in both the 

pituitary and adrenals. It is therefore more likely that resistance to adaptation exists 

centrally, especially in response to a stressor of relatively short duration.  The same 

argument would explain the observation that IL-1β, IL-1βR, IL-6, IL-6R and 

GABAARα1 showed no response to stress alone.  

Both IL-1β and IL-1βR expression increased in the CAb group in the pituitary (as 

was the case with GABAARα1), again suggesting a role for IL-6 under control 

conditions, which is attenuated in the presence of stress.  We know from the 

literature that central regulation is often different to that in the periphery (Bornstein 

and Chrousos, 1998, Licinio and Wong, 1999, Rivier and Rivest, 1991, Wotjak et al., 

1998). Therefore, it is possible that, unlike in the periphery where absence of IL-6 

resulted in a decrease in basal IL-1β levels, local IL-1β secretion in the pituitary may 
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be increased when blocking IL-6, as suggested by our current data (CP vs. CAb, 

Fig.14). This could be the local effect on diminished IL-1β (and IL-6) negative 

feedback on cells producing IL-1β in the pituitary, since less IL-1β reached the 

pituitary via the circulation. This would also explain the up-regulation of local IL-1β 

receptors.  The fact that this response was not evident any more in a stressed 

condition, suggest that the slightly increased corticosterone levels (SAb) from 

baseline were enough to override this effect, possibly due to the inhibitory effect of 

GCs on IL-1β. 

IL-6 has been reported to stimulate GABA release from the posterior pituitary in rats 

in vivo via stimulation of prostaglandins under stressed conditions, but not in 

absence of stress (De Laurentiis et al., 2000). This seems to suggest that IL-6 does 

not influence basal GABA homeostasis.   However, our data illustrated an up-

regulation of GABAARα1 after blocking IL-6 in the absence of a stressor.  Given the 

earlier report that IL-6 stimulates rather than suppresses GABA release (albeit in a 

model of stress), it is unlikely that IL-6 would down-regulate GABAARα1. In our 

opinion, our result reflects an indirect effect of blocking IL-6 on GABA regulation via 

the increase in IL-1β and its receptor.  Indeed, IL-1β has been shown to enhance the 

effects of GABA in terms of chloride uptake in vitro as well as GABAA receptor 

function, possibly via the IL-1β receptor (as IL-1β receptor antagonist decreased the 

effect of IL-1β) (Miller et al., 1991). Also, these effects were reported to occur in 

favour of IL-6- (and TNF-α-) induced effects on GABA regulation, which would 

support our interpretation. Taken together, it is clear that more extensive 

investigations considering the role of GABA and its receptors under conditions of 

psychological stress are required, especially if one considers the lack of literature on 
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this topic up to date. Cross-talk between GABAAR and IL-6 also further remains to be 

elucidated.  

Considering the results obtained in analysis of the adrenal tissue, our results indicate 

quite different responses peripherally when compared centrally. In terms of adrenal 

gland mass, blocking IL-6 resulted in decreased glandular mass at time point 1, 

independent of stress. Our initial interpretation was that the decreased pro-

inflammatory signal by IL-6 for GC release in CAb and SAb led to decreased anti-

inflammatory activity (GC production) of the adrenal gland. However, when 

considering the immunohistochemistry data, which indicate roles of both stress and 

IL-6, it is clear that the answer is not quite as basic.  

We  gathered from the literature that GR is down-regulated in response to chronic 

stress (Checkly, 1996) but up-regulated after acute stress. Our result with increased 

GR in all zones of the adrenal in SP, is in keeping with this literature. Furthermore, 

our results indicate an effect of Ab on GR independent of stress, with GR increasing 

when IL-6 is blocked.  In vitro studies have indicated that IL-6 stimulates GC release 

from the adrenal glands via different mechanisms (Path et al., 2000). Therefore it is 

possible that the up-regulation in GR levels seen in CAb and SAb is the effect of a 

compensatory mechanism to increase bioactivity of GCs in conditions where its 

normal stimulation by IL-6 is compromised. This interpretation is further supported by 

the fact that this up-regulation is most prominent in the zones responsible for GC 

production (zona fasciculate and zona reticularis). However, when considering our 

cytokine data, a different and novel conclusion can be drawn. 

When cytokine protein and receptor expression in the adrenal is considered, no 

major effect of stress was evident. The effect of blocking IL-6 was similar to GR data 
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for cytokines assessed. The fact that expression of IL-6, IL-6R, IL-1β and IL-1βR 

consistently increased in the Ab groups, suggests that lack of local negative cytokine 

feedback occurred in response to very low plasma IL-6 levels, resulting in increased 

cytokine and receptor expression. This local IL-6 feedback was previously illustrated 

in relation to white blood cells in an in vitro model  (Smith et al., 2007). However, the 

current study is the first to demonstrate that this feedback loop is also evident at the 

level of tissues, and the first to demonstrate this using an in vivo model. 

Furthermore, the fact that the zone-specific increases in cytokine and receptor 

expression were evident in both CAb and SAb groups, and the fact that their 

expression was not up-regulated during stress alone, suggest that the effect of (at 

least IL-6) local direct feedback plays a more important role than GCs in the down-

regulation of inflammatory cytokine release. This finding has vast implications for our 

understanding of GC regulation of cytokine-dependent processes.  

All receptor levels measured mirrored their protein levels in the tissue in the adrenal 

gland. The zones that were of interest because of the high amount of fluorescence, 

particularly the fasciculata, were the areas that have been shown to produce 

corticosterone (Young and Heath, 2004). This notion supports the premise of IL-6 

and corticosterone to form a feedback loop as far as their site of production is 

concerned.  

In humans, both IL-6 and IL-6R have revealed to be co-expressed at similar sites in 

the adrenal gland (Path et al., 2000) which we have confirmed in our study on rats. 

The up-regulation of IL-6R in the fasciculata and reticularis when no Ab but stress is 

present, in addition to the increase in IL-6R expression in these zones in the Ab 

groups may indicate the requirement for sensitivity to IL-6 action under conditions of 

stress and lack of IL-6.   
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Below is an adapted version of the diagram in chapter 1, putting our findings in 

context with the literature. The relevant tissues where IL-6 exerts its effects are 

indicated on the diagram by means of green lightning bolts.    

 
 

Figure 16: The main brain and adrenal areas involved in the stress response (negative feedback 
pathways indicated with dashed arrows). Stress stimuli are relayed to the CNS via the HPA-axis and 
the LC system regulating the SAM system. Numbers correspond to brain areas: 1) hypothalamus; 2) 
hippocampus; 3) amygdala; 4) anterior pituitary; 5) posterior pituitary. The diagram was adapted from 
the various sources. Abbreviations: LC, Locus coeruleus/norepinephrine system; HPA, hypothalamo-
pituitary-adrenal axis; SAM, sympathetic adreno-medullary axis. Green lightning bolts indicate the 
tissues where IL-6 exerts its effects.  
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Limitations to the study 

As mentioned earlier, the local inflammatory response to injection of either placebo 

or Ab was found to be a confounder, as reflected by the TNF-α results. This effect 

can be avoided by habituating the immune system to injection with daily placebo 

injections of all rats about one week before the onset of the intervention.  

Alternatively, it may be more ideal to administer the Ab via peristaltic pumps 

implanted subcutaneously, as used in other studies related to cytokine function. 

Despite this, we believe that blocking IL-6 acutely is more physiologically 

representative than the use of an IL-6 knock-out model to investigate IL-6’s role in 

the stress response, due to compensatory alterations in cytokine profiles in knock-

outs.  

Furthermore, the fact that we did not assess lasting effects at time points 2 and 3 is a 

limiting factor and needs to be tended to in future studies in order to obtain a 

complete picture of the responses during repeated stress.   

Finally, with regard to tissue analysis, fluorescence decay or variation over time was 

not corrected for. Ideally, each staining batch should contain a control slide with 

which a relative correction factor for each day can be calculated from.  
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Conclusion and directions for future studies 

We accepted our hypothesis on the grounds that the HPA response to mild 

psychological stress did indeed depend on IL-6 and that IL-6 dependent effects were 

evident 24 hours post intervention, both centrally and peripherally.  

Our model of psychological stress has been confirmed to be mild as no lasting 

adaptation to stress were evident at tissue level. This model then proves to be useful 

in the investigation of scenarios in the general human population in which the degree 

of psychological stress is generally mild. In this way our model of stress can be 

extrapolated to further studies of chronic stress conditions, in order to identify the 

role of cytokines during chronic, mild stress and the co-existing pathologies such as 

depression in humans.  

Consistent effects of the Ab were apparent in the tissues investigated, even in 

control conditions, suggesting that IL-6 plays a role in the maintenance of basal 

homeostasis, including its regulation of psychological stress. The premise that our 

model of stress was mild, made it possible to deduce the regulation of cytokines 

during stress without too much interference (effects being masked by GC action).  

The contribution of cytokines under basal and stress conditions is important to bear 

in mind as far as the investigation on psychological stress in humans is concerned, 

especially since the majority of related studies focus on the regulation of GCs under 

conditions of stress and to a lesser extend (or none at all) to the role of IL-6 in 

homeostasis. In practice, stress-related pathologies are normally treated with the aim 

of limiting cytokine action, which, according to the results of the present study, might 

interfere with normal cytokine homeostasis. Future studies should therefore 
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elaborate on what is considered as an ‘optimum’ IL-6 level of expression and 

release, in order to maintain a balanced cytokine and GC profile.  

We found differential regulation in terms of cytokines and GCs when comparing 

peripheral versus central effects of stress and Ab, as well as the levels of cytokines 

in the blood compartment, compared to within tissues. Future studies should 

therefore present results in terms of this discrepancy, in order to give a true reflection 

of the regulation of these mediators.  

Lastly, due to financial and time constraints, it was not possible to incorporate an 

additional behavioural component in the study. However, the outcomes of future 

studies focusing on behaviour in response to stress (as a psychological measure of 

stress) can contribute to the integrative approach taken by the current study.  
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Appendix A: Automatic tissue processing 
 

Reagents 

1. Alcohol (70 %, 90 %, 95 %, 100 %) 

2. Xylene – Sigma-Aldrich 

3. Paraffin wax – Merck, Histosec melting point 56 °C 

 

Method 

Processing time: 

A)  Dehydration 

1)   70 % alcohol    – 1.5 hr 

 2)   70 % alcohol    – 1.5 hr 

 3)   90 % alcohol    – 1.5 hr 

 4)   95 % alcohol    – 1.5 hr 

 5)   95 % alcohol    – 1.5 hr 

 6)   100 % alcohol  – 1.5 hr 

 7)   100 % alcohol  – 1.5 hr 

 8)   100 % alcohol   – 2.0 hr 

B)  Clearing 

 9)    Xylene     – 1.5 hr 

 10)  Xylene     – 2.0 hr 

C)  Impregnation 

 11)  Paraffin wax   – 2.0 hr 

 12)  Paraffin wax   – 2.0 hr 

Thus Total processing time = 20 hr 

 

 



 

93 
 

Appendix B: H&E staining protocol 

 

Reagents 

1. 10 % Acid alcohol 

• 10 ml 1 % HCl dissolved in 1 ℓ 70 % alcohol 

2. Alcohol (70 %, 95 %, 100 %) 

3. Eosin 

Stock solution: 

10 g Eosin dissolved in 1 ℓ distilled water 

Working solution: 

10 ml Eosin stock solution dissolved in 90 ml distilled water. 

Prepare fresh daily. 

For staining:   

Add 2 – 3 drops glacial acetic acid per 100 ml before use. 

4. Haematoxylin 

• 5 g Harris haematoxylin  

• 100 g Ammonium Alum 

• 50 ml 100 % alcohol 

• 1 ℓ distilled water 

• 2.5 g Mercuric oxide 

To prepare:  Dissolve haematoxylin in alcohol. 

Add Ammonium Alum to distilled water and heat to boiling point. 

Immediately add mercuric Oxide and shake until solution has purple-black colour. 

Cool rapidly in fridge. 
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For staining:   

Filter before use. 

Add 4 ml glacial acetic acid per 100 ml of haematoxylin. 

5. Scott’s tap water 

• 3.5 g NaHCO3 

• 20 g MgSO4 

• 10 ml 37 % Formalin 

• 1 ℓ tap water 

To prepare:   

Dissolve NaHCO3 in tap water first. 

Add MgSO4 and formalin. 

 

6. Xylene Method 
 

1. Xylene (10 min) 

2. 100 % alcohol (10 dips) 

3. 100 % alcohol (10 dips) 

4. 95 % alcohol (10 dips) 

5. 95 % alcohol (10 dips) 

6. 70 % alcohol (10 dips) 

7. Rinse in distilled water 

8. Haematoxylin (3 min) 

9. Rinse in distilled water 

10. Rinse in acid alcohol 

11. Rinse in distilled water 

12. Blue in Scott’s tap water 

13. Rinse distilled water 

14. 2 min in Eosin 

15. Rinse in distilled water 

16. 70 % alcohol (10 dips) 

17. 95 % alcohol (10 dips) 



 

95 
 

18. 95 % alcohol (10 dips)   

19. 100 % alcohol (10 dips) 

20. 100 % alcohol (10 dips) 

21. Xylene (10 dips) 

22. Xylene (10 dips) 

23. Mount with coverslip 
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Appendix C: Conventional deparaffinization and dehydration sequence of 
paraffin embedded tissue prior to immunohistochemistry. 

 

Reagents 

1. Alcohol (50 %, 80 %, 95 %, 100 %) 

2. Xylene – Sigma-Aldrich  

 

Method 

1. Incubate sections in Xylene: 2 changes, 5 min each 

2. 100 % absolute alcohol:  2 changes, 3 min each 

3. 95 % alcohol:  2 changes, 3 min each 

4. 80 % alcohol:  3 min 

5. 50 % alcohol:  3 min 

6. Rinse in distilled water:  2 changes, 3 min each 
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Appendix D:  Immunohistochemistry staining procedure (2 markers) 

 

Reagents 

1. PBS, pH 7.4, 1 ℓ of 1 M phosphate buffer, 90 g NaCl, 9 ℓ dH2O  

2. Donkey serum – Jackson Immunoresearch Inc. 

3. For antibodies used, see Table 1 

 

Method 

1. Wash slides in PBS. 

2. Dry, encircle samples with a wax pen. 

3. Block for 30 min in 5% serum at room temperature (RT). (Note: use the same 

serum in which the secondary Ab is raised) 

4. Shake off serum and incubate sections for 4 hr at RT with the 1st primary Ab.  

(Note:  Do not wash after serum blocking step) 

5. Wash slides with PBS and add the secondary Ab (1 in 200) to the sections.  

Incubate for 1 h at RT. (Note: from this step forward, all steps should be 

performed in the dark) 

6. Wash slides with PBS and add the 2nd primary Ab overnight at 4°C. 

7. Add the secondary Ab (1/200) for 1 hour after washing the sections thoroughly 

with PBS. 

8. Wash sections and add Hoechst (1/200) for 15 min. 

9. Wash slides well and mount with DAKO fluorescent mounting medium. 

1. (Note:  if only use 1 Ab, apply steps 1-5 and then 8 and 9) 

 

 


