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Abstract 
 

The aim of the study is to ascertain whether geochemical exploration techniques can be 

used in the search for tanzanite deposits in the Merelani area, NE Tanzania.  Previous 

studies have successfully demonstrated a partial extraction method (in situ soil leaching) in 

identifying prospective ultramafic bodies at the Rockland ruby mine in the Mangare area, 

Kenya, thereby demonstrating the usefulness of geochemical methods in gemstone 

exploration.  In this study, a partial extraction as well as a whole-rock geochemical method 

was used to determine the applicability of these methods in prospecting for tanzanite 

mineralisation using different sampling media, such as soil, stream sediment and calcrete.  

It is possible that this geochemical approach may not be as effective as physical methods 

such as the separation and examination of heavy mineral suites.  However, its viability 

needs to be evaluated due to the potential efficiency and relative logistic ease of the 

method.  In essence the scientific method employed is to compare overburden (soils, 

stream sediments and calcrete) chemistry with known underlying geology, the latter having 

been established via diamond core drilling.  A positive correlation would allow the 

prediction of overburden covered tanzanite mineralisation. 

 

Soil samples were collected from a trench dug perpendicular to regional lithological strike 

over both barren and tanzanite-bearing horizons.  XRF trace element data for the soils 

was compared to the chemistry of the underlying lithologies.  ICP-AE data derived from 1 

molar HCL soil leachate (12 hour leach) and soil XRF data, from the same samples, was 

compared, using a mass balance index, to discern any hydromorphic dispersion of 

selected trace elements and to evaluate the leachate as a viable alternative to XRF 

analysis.  In general, a good correlation exists between the soil and rock trace element 

data profiles over the length of the section.  However, Ti- and Zr-normalised mass balance 

calculations show some down-hill drift, but this does not disrupt the overall pattern.  The 

ICP-AE acid leach data show that hydromorphic dispersion is low, that the trace elements 

of interest (V, Cr, Ni and Cu) are hosted within non-soluble phases. Consequently, the 

leach technique is not a viable alternative to XRF analysis of the soils. XRF analysis of the 

soils was shown to be potentially useful in identifying new areas of mineralisation as the 

soils overlying a graphitic calc-silicate schist, that always occurs adjacent to the tanzanite 

mineralisation in the Merelani area, was found to be easily identifiable based on 

anomalous concentrations of V.  
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An exploration concession was chosen for stream sediment sampling on the basis of the 

presence of large streams, of a few tsavorite mines indicating high prospectivity for 

tanzanite, and because of a variation in geology on the property.  Tanzanite and tsavorite 

are cogenetic in the known tanzanite deposits.  In this case the aim was to investigate the 

possible occurrence of tanzanite-like geochemical anomolies (i.e. the anomalous V 

observed in the soil chemistry investigation) could be detected in the vicinity of the 

tsavorite mines.  Tsavorite, the gem variety of grossular garnet, also contains high 

concentrations of V.  The samples were analysed by XRF whole-rock methods for trace 

element content.  The data shows a number of clear positive V anomalies in the study 

area.  The data also shows that each of the existing or abandoned mines in the area is 

marked by a positive V anomaly.  This section of the study also demonstrated a relatively 

low degree of stream sediment dispersion of the trace elements of interest – most likely a 

function of the semi-arid climate.  The fine fraction (<90µm), however was shown to be 

mobilised to a relatively larger degree than the coarse (180µm – 300µm) and medium 

(90µm - 180µm) fractions.  As is predictable from the leachate analysis, factor analysis of 

the data shows that the trace elements are dominated by heavy mineral geochemistry and 

that a study in heavy mineral exploration might provide a cheaper and more viable option 

to those explored in this study. 

 

Calcrete samples were taken from an abandoned, 10m deep mine shaft, which was sunk 

through the calcrete to reach the tanzanite deposit.  The shaft was sampled from the 

bottom, closest to the tanzanite mineralisation, to the surface to investigate the association 

between trace element geochemistry and proximity to the deposit.  There was no vertical 

association between the trace element geochemistry of the calcrete and proximity to the 

tanzanite deposit.  There was also no clear indication in the geochemistry of the calcrete of 

the existence of the tanzanite deposit beneath it. This further indicates the immobility of 

the elements of interest in this environment. 

 

This study has demonstrated that properly constrained soil and stream sediment 

geochemical studies may be of use in tanzanite exploration.  However, it must be stressed 

that this is only the case if the geochemical signature of the lithological package 

associated with the mineralisation is unique and well known.  
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Opsomming 
 
Die doel van hierdie studie is om te bepaal of geochemiese eksplorasie tegnieke vir die 

soek na tanzaniet afsettings in die Merelani area, noord-oos Tanzanië, gebruik kan word.  

Voorige studies het gewys dat ‘n gedeeltelike ekstraksie metode (in situ grond looging) 

gebruik kon word om prospektiewe ultramafiese liggame by the Rockland rubyn myn in die 

Mangare area, Kenia te identifiseer. Hierby is gedemonstreer dat geochemiese 

eksplorasie metodes suksesvol in edelsteen eksplorasie toegepas kan word.  In hierdie 

studie is ‘n gedeeltelike ekstrasksie en heel-rots geochemiese metodes gebruik om die 

toepaslikheid van hierdie metodes op tanzaniet eksplorasie te toets.  Verskillende 

geologiese materiale is gemonster, naamlik grond, stroom sedimente en kalkreet.  Dit is 

moontlik dat hierdie geochemiese benadering nie so effektief soos fisiese metodes soos 

swaar mineraal skeidings mag wees nie.  Dit is nogtans belangrik om die toepaslikheid 

van hierdie metodes op tanzanite eksplorasie te toests, as gevolg van die potensiële 

effektiwiteit en relatiewe logistiese gemak van die metodes.  Die essensie van die 

wetenskaplike metodiek wat in hierdie studie gebruik is, is om die geochemie van die 

grond, stroom sedimente en kalkreet te vergelyk met die geochemie van die 

onderliggende geologie wat deur middel van diamant boorwerk vasgestel is.  ‘n Positiewe 

korrelasie sou dan dui op ‘n bedekte tanzaniet afsetting. 

 

Grond monsters is van ‘n sloot geneem wat loodreg op die strekking van die tanzaniet 

gemineraliseerde en ongemineraliseerde horisonne gegrawe is.  XRF spoor element data 

van die gronde is vergelyk met die chemie van die onderliggende gesteentes.  IGP-AE 

data wat bekom is deur die monsters met 1 molaar HCl te loog (12 uur loging) is vergelyk 

met XRF data van dieselfde monsters deur middel van ‘n  massa balans indeks om te 

bepaal of daar enige hidromorfiese dispersie van sekere spoor elemente is en om die 

toepaslikheid van loging as ‘n alternatief tot die heel-rots metode te bepaal.  In die 

algemeen is daar ‘n goeie korrelasie tussen die grond en rots spoor element data profiele 

oor die lengte van die seksie.  Alhoewel, Ti- en Zr-genormaliseerde massa balans data 

profiele wys dat daar ‘n mate van afwaartse beweging van grond na die voet van die 

heuwel is, maar dat hierdie ‘n breuk in die algemene patroon vorm nie.  Die IGP-AE data 

dui daarop dat die hidromorfiese verspreiding van spoor elemente laag is en dat die spoor 

elemente wat van belang is (V, Cr, Ni en Cu) in nie-oplosbare fases gesetel is.  Gevolglik 

is die logings metode nie ‘n toepaslike alternatief tot die heel-rots XRF metode op gronde 

nie.  XRF analises op die gronde het gewys dat die XRF metode moontlik nuttig kan wees 
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om nuwe areas van tanzanite mineralisasie aan te dui, omdat die gronde wat ‘n grafietiese 

kalk-silikaat skis oorlê, wat altyd langs die tanzaniet draende horisonne voorkom, is op 

grond van anomale konsentrasies van V geïdentifiseer. 

 

‘n Eksplorasie konsessie is op die basis van die teenwoordigheid van groot strome, ‘n paar 

tsavoriet myne wat aanduidend is van hoë prospektiwiteit vir tanzaniet is en as gevolg van 

‘n variasie in geologie in die area vir stroom sediment monstering gekies.  Tanzaniet en 

tsavoriet is kogeneties in bekende tanzaniet afsettings.  In hierdie geval was die doel om 

te ondersoek of tanzanietagtige anomalieë (nl. die anomale konsentrasies van V wat in die 

ondersoek van die grond chemie opgemerk is) in die omgewing van die tsavoriet myne 

geïdentifiseer kan word. Tsavoriet, die edelsteen variëteit van grossulaar granaat, bevat 

hoë konsentrasies V.  Die monsters is deur middel van die XRF heel-rots metode vir spoor 

elemente geanaliseer.  Die data dui op ‘n paar monsters met hoë V konsentrasies in die 

ondersoek area.  Hierdie studie het ook gedui op ‘n lae stroom sediment verspreiding van 

die spoor elemente van belang, heel waarskynlik is dit ‘n funksie van die semi-ariede 

klimaat.  Die fyn fraksie (< 90µm) blyk tot ‘n groter mate as die growwer (90µm tot 180µm 

en 180µm - 300µm) fraksies gemobiliseer te word.  Soos voorspel kan word deur die 

loogings analise het faktor analise gewys dat die spoor elemente deur swaar mineraal 

geochemie gedomineer word en dat ‘n studie op swaar minerale moontlik ‘n goedkoper en 

meer toepaslike eksploraise metode is as die wat in hierdie studie ondersoek is. 

 

Kalkreet monsters is van ‘n ongebruikte, 10m diep myn skag wat deur die kalkreet gesink 

is om by die tanzaniet gemineraliseerde horison uit te kom geneem.  Monsters is van die 

bodem van die skag, naaste aan die tanzaniet mineralisasie, tot die oppervlak geneem om 

die assosiasie tussen die spoor element geochemie en afstand van die tanzaniet 

mineralisasie te ondersoek.  Geen vertikale assosiasie tussen spoor element geochemie 

en die nabyheid tot die tanzaniet afsetting kon vasgestel word nie.  Daar was geen 

duidelike aanduiding in die geochemie van die kalkreet op die onderliggende tanzanite 

afsetting nie.  Hierdie is ‘n verdere annduiding op die nie-mobiele toestand van spoor 

elemente in hierdie omgewing. 

 

Hierdie studie het suksesvol gedemonstreer dat goed gedefinieerde grond en stroom 

sediment geochemiese studies moontlik in geochemiese eksplorasie vir tanzaniet 

bruikbaar kan wees.  Dit is belangrik om in gedagte te hou dat dit slegs die geval is as die 
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geochemie van die litologiese paket wat met die mineralisasie geassosieer is uniek en 

goed bekend is. 
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 1

1. Introduction 
 

The current tanzanite mining company, Tanzanite One, has projected a life of mine of 

15 years.  Additional tanzanite reserves will have to be found if the period is to be 

extended beyond the current estimation.  This study was conducted to ascertain 

whether two common methods in geochemical exploration, whole-rock XRF and partial 

leach, can be applied in exploring for additional tanzanite deposits. 

 

The Merelani tanzanite deposit is located in the Lelatema mountains in the Merelani 

region, north-eastern Tanzania.  The Lelatema mountains are defined by the slopes of 

a large anticlinal structure rising above the relatively low-lying plains. This is the only 

significant topography in the immediate area.  The climate is semi-arid, with heavy rain 

falling from March to May.  The development of abundant calcrete as well as the 

positive weathering of the dolomite in the area attests to the aridity of the climate.  

Vegetation consists of mostly Acacia species intergrown almost impenetrably in the 

rainy season.  Natural rock outcrop is limited to the limbs of the Lelatema anticlinal 

structure and to isolated inselbergs occurring on the flat plane between the limbs. 

 

Tanzanite occurs in intensely boudinaged and folded units in a kyanite gneiss in a 

granulite facies metamorphic terrane.  The deposit is confined to an area of about 

7km2 in the Merelani area.  It has been mined on a small scale for about 30 years and 

on a large scale for the past 7 years.  The geology of the deposit has been the subject 

of intense study for the last few years (Davies and Chase, 1994; Malisa, 1987; Malisa 

and Muhongo, 1990; Malisa and Koljonen, 1989; Olivier, 2006; Scheepers and Kisters, 

2000) and is well known.  Mining of the deposit is a complex process due to the 

intricate structure by which the tanzanite mineralisation is guided.  The tanzanite 

mineralisation is located in low-pressure shadows within boudins and along fold 

hinges.  Inclined shafts are sunk along the apparent to true dip of the JW-zone, which 

is the tanzanite mineralised horizon, to intersect the generally NE plunging fold hinges.  

Individual ore shoots are mined via lateral drives along the plunge of the fold hinges.  

Winzes and raises are developed from the main lateral drives to investigate the 

pressure shadow boudin structures associated with the fold hinges, in which tanzanite 

is also mineralised.  The ore is transported to the decline shafts by means of either 

monorope or vacumation systems.  From the decline shafts ore is transported to the 

surface by means of a skip and track system. 
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The lithologic package in which the tanzanite deposit is hosted is covered by an 

overburden layer of variable thickness consisting of either calcrete and/or soil.  The 

possibility therefore exists that geochemical exploration methods employing these 

different overburden types can provide relatively cheap and logistically simple methods 

of finding additional tanzanite deposits. 

 

Levitski and Sims (1997) raised the possibility that gemstone deposits can be sought 

via geochemical exploration techniques, due to the fact that a gemstone is coloured by 

a specific chromophoric trace element.  They tested the method of diffusion extraction 

(MDI) at the Rockland ruby mine in south-east Kenya.  By using the method they were 

able to successfully pinpoint the positions of covered ultramafic bodies which are 

closely related to the ruby mineralisation in the area.  The principles used in the 

Rockland study were used to conceptualise a study to test the applicability of 

geochemical exploration techniques in tanzanite exploration. 

 

Tanzanite is a vanadiferous zoisite (Ca2Al2O.AlOH[Si2O7][SiO4]) which contains up to 

3300ppm vanadium (~0,5wt% V2O3).  However, due to the “pocket”-mode of tanzanite 

mineralisation and the subsequently low ore to wall-rock ratio, vanadium dilution is 

expected to occur during the process of soil formation when rock particles containing 

high V concentrations are mixed with particles containing low V concentrations.  This 

is in addition to the probable low trace element dispersion in the soils and stream 

sediments, because of the semi-arid climate.  The challenge may therefore lie in 

searching for low contrast geochemical anomalies.  Like the ruby deposits of the 

Rockland Ruby mine, tanzanite deposits are associated with a specific rock type.  

Thus another exploration method may be to identify geochemical patterns unique to 

specific rock-types, which either contain the tanzanite mineralisation or are closely 

associated with the mineralised host-rocks. 

 

The geochemistry of the lithological package in which the tanzanite deposit occurs is 

well constrained through analysis of bore-hole and rock-chip samples (Olivier, 2006).  

This study will focus on the trace element geochemistry of the overburden (soil, stream 

sediment and calcrete) and try to relate it to the chemistry of the underlying lithologic 

package, which hosts the tanzanite mineralisation.  Two potential methods exist which 

could identify potential anomalies associated with the tanzanite deposit:  whole-rock 
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and partial extraction methods.  The partial extraction method is tested due to its 

relative low cost as well as logistical ease with which a geochemical survey using 

partial extraction can be conducted.  In addition the partial extraction data will also 

show whether the trace elements in the overburden occur in soluble or insoluble 

phases.  The analysis of stream sediments may be useful in identifying anomalies 

related to tanzanite deposits not yet discovered, depending on the mode of trace 

element dispersion within the stream systems.  Tsavorite and tanzanite are cogenetic 

in the mined tanzanite deposits.  In addition no lithologic data exists outside the mining 

area.  Therefore the presence of operating and abandoned tsavorite mines in an 

exploration concession will be used as a guide of any potential anomalies and their 

meaning in terms of their proximity to the mines.  Abundant calcrete is found 

throughout the area.  If the data from analysis of the calcrete can be used to identify 

anomalies associated with tanzanite deposits, the cost of a geochemical exploration 

program will be significantly reduced as these samples, occurring on the surface, are 

easy to collect and relatively cheap to transport. 

 

The results of this study will heavily rest on XRF and partial extraction data.  The 

partial extraction data represents the logistically easier data to collect, as no pre-

milling and crushing of the samples is required and therefore also the cheapest.  The 

XRF data will potentially prove to be the more accurate in anomaly identification and 

establishing a link between the overburden and underlying rock types.  In addition to 

the geochemical methods explored in this study, heavy mineral separation and 

analysis may also prove to be a viable exploration method for additional tanzanite 

deposits.  This study aims to show that geochemical exploration methods can be used 

to identify the location of the tanzanite deposit. 
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2. Regional Geology 
 

The study area is located in the Neo-Proterozoic, north-south trending Mozambique 

tectono-metamorphic belt in north-eastern Tanzania (Fig.1).  Although the term 

“Mozambique Belt” is still frequently used, the term “East African Orogen” (EAO), 

proposed by Stern (1994) incorporating the Arabian-Nubian shield into the belt, is 

preferred.  The EAO will be dealt with in more detail as it is host to the various 

gemstone deposits discussed in this thesis. 

 

The geology of north-eastern Tanzania is subdivided into mainly two domains on the 

basis of their structural and chronostratigraphic characteristics, namely the Tanzanian 

Craton (ca. 2.0–3.1Ga) and the EAO (ca. 870-600Ma). The terranes are overlaid by 

Cenozoic cover (1.2Ma to present). 

 

2.1. The Tanzanian Craton 
 

The Archaean Tanzanian Craton forms the central nucleus of the eastern Tanzanian 

continental crust.  The craton has been dated by Chesley et al. (1999) at 2.5 - 2.9Ga by 

using Re-Os systematics from chromites obtained from mantle xenoliths in the East 

African Rift as well as from the craton itself.  They also show that the ancient refractory 

lithosphere extends at least ~140km beneath the East African Rift in northern Tanzania 

and that extensive rift-related thinning has not yet occurred as it has been shown to 

have developed in Kenya (Chesley et al., 1999).  Other ages for the craton also exist, 

such as the 2.7 - 3.1Ga ages obtained from granitoids and reported by Möller et al. 

(1998). 

 

The craton has been subdivided into two contrasting domains (Maboko, 2000).  The 

first is a central domain consisting of granite, granodiorite, felsic gneisses and 

migmatites associated with metamorphic supracrustal rocks.  The second domain is 

composed of the granite-greenstone association of basic to acid volcanics, turbidites, 

pelites and banded iron formations intruded by granites and overlain by conglomerates, 

argillaceous sediments and minor volcanics.  Both domains are intruded by post-

orogenic granites (age ~2.6Ga) and pegmatites (age 2.5Ga). This is used by Maboko 

and Nakamura (1995) to infer that the craton had cooled below 300°C by ~2.5Ga. 
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The Tanzanian craton is flanked in the west and south-west by high grade 

metamorphic rocks of the Paleo-Proterozoic Ubendian Belt (~2.0Ga) and in the east by 

the Usagaran rocks of similar age (Fig.1b) (Maboko, 2000).  It is inferred by Möller et 

al. (1995) that the age of 2.0Ga represents a subduction zone, which led to the 

formation of the Usagaran-Ubendian belts.  The east-west structural trends of these 

belts are truncated by the meridional trends of the EAO.  It is this orogenic belt in which 

the various gemstone deposits are located. 

 

2.2. The East African Orogen and its Tectonic Evolution 
 

The rocks representing the EAO in north-eastern Tanzania are mostly meta-igneous 

and meta-sedimentary rocks which have witnessed multiple stages of deformation and 

have been metamorphosed to granulite facies and subsequently retrogressed to 

amphibolite facies (Maboko, 2000).  The granulites in north-eastern Tanzania (Fig. 1b) 

display pressures and temperatures which indicate that they once formed part of the 

middle to lower crust.  Examples are the Usambara and Uluguru granulites, which both 

display temperatures and pressures of ~800°C and 9.5 - 11kbar and the meta-

anorthosites, which occur in the same area, for which pressures and temperatures of 

950 - 1100°C and 13 – 17kbar are recorded (Muhongo et al., 1999).  It is generally 

accepted that these rocks underwent isobaric, slow cooling with three accelerated 

periods of cooling during the early Cretaceous, late Cretaceous and late Eocene to 

early Oligocene due to the episodic reactivation of high angle normal faults, inherited 

from the Neo-Proterozoic Pan-African orogeny (Muhongo et al., 1999; Noble et al., 

1997;  Maboko and Nakamura, 1995).  In fact, the cooling rate was 2 - 3°C per million 

years, which is extremely slow and is been used to infer a collisional regime in Neo-

Proterozoic times, because such slow cooling implies thermal relaxation of continental 

crust thicker than average (Noble et al., 1997). 

 

The EAO is an impressive belt in terms of size, being approximately 6000km long as 

well as spanning a time of 350 million years in evolution (Fig.2) (Stern, 2002) rendering 

it comparable to modern orogenic belts, such as the Andean orogeny. 

 

It is thought that about 1.1Ga the supercontinent Rodinia had formed (Hoffman, 1989).  

It is thus proposed that the history of the EAO started with a Rift-Rift-Rift (RRR) triple 

junction around 870Ma ago with the subsequent opening of the Mozambique Ocean 

http://scholar.sun.ac.za/
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(Fig.3) (Stern, 1994 and 2002).  The presence of abundant ophiolites and a significant 

volume of juvenile crust, as well as other evidence, suggests that this ocean was large, 

perhaps as large as the modern Pacific (Fig. 3) (Stern, 1994).  The seafloor spreading 

was reversed sometime during the Neo-Proterozoic, until it completely closed around a 

pivot in what is now South Africa resulting in the collision between east and west 

Gondwanaland around 700Ma, but which could have occurred as early as 750Ma ago 

(Fig.3) (Stern, 1994). Collision occurred with the Tanzanian craton as the rigid indentor 

and with the western flank of Gondwana being the area of crustal thickening and plastic 

deformation (Bonavia and Chorowicz, 1992).  Escape tectonics was used to infer the 

direction of subduction as well as the duration of the collisional event.  Escape took 

place mainly to the north, beginning before 660Ma and ending after 610Ma, which 

implies that the convergence of east and west Gondwana continued for 120 to 170Ma 

after initial collision (Fig. 3) (Stern, 1994).  The tectonic escape lead to rift basins 

forming in north-east Africa and Arabia, which lead to continental separation and the 

formation of a passive margin on the north flank of Gondwanaland at the end of the 

Precambrian (Brookfield, 1993).  The East African orogenic scenario is comparable to 

the current collisional scenario between India and Asia (Stern, 1994) (Fig.4). 

 

The presence of granulites in the EAO indicates the areas of greatest thickening and 

subsequently where the inter-continental collision was most intense.  Granulites are 

found in southern Kenya, Tanzania, Malawi and Mozambique, marking these areas as 

the focus of the collision.  Granulites are absent north of Central Sudan and in southern 

Ethiopia (Stern, 1994).  There are differences of opinion among various researches 

about the exact age of peak metamorphism in the granulites.  The Usambara 

granulites, for example, have been dated with ages ranging from ~605Ma to ~640Ma 

(Maboko et al., 2002).  These discrepancies are interpreted by Maboko (2000) as the 

result of isotopic equilibration during cooling, thus rendering the calculated ages a 

minimum for peak metamorphism.  Peak metamorphism, however, is generally 

accepted by most researchers to have occurred around 625 - 650Ma (Muhongo et al., 

2001;  Maboko, 2000;  Malisa and Muhongo, 1990). 

 

After the EAO orogenic event, the basement rocks in eastern Tanzania underwent a 

protracted history of denudation, uplift as well as post-Carboniferous extensional 

tectonism.  The rocks of the EAO also underwent slow, isobaric cooling with three 

distinct rapid cooling events, which can be ascribed to the formation and reactivation of 

http://scholar.sun.ac.za/
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Fig.4 Comparison of continental collisions at the same scale (from Stern 1994). Both are oriented so
that the rigid indentor is moving towards the upper left corner: (A) East African Orogen,
ca 600Ma ago. Areas without ornamentation are juvenile or were remobilized during the
Neoproterozoic. (B) Modern India-Asia collision, shown as mirror-image so that the free face
and principal zone of tectonic escape are on the same side of the rigid
indentor as is the case for the EAO.
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high angle faults in response to intraplate stress (Noble et al., 1997).  The East African 

Rift Valley developed in a broad region of previously block faulted and mildly extended 

crust during Neogene time. 

 

2.3. Cenozoic Cover 
 

The Cenozoic cover constitutes the upper Cenozoic volcanism associated with the 

East African Rift and unconsolidated Quaternary sediments, which overlies the older 

eastern Tanzanian rocks (Dawson, 1992, 1997). 

 

The East African Rift is a linear structure following the meridional trend of the EAO 

(Fig.5) (Dawson, 1997).  Rifting in northern Tanzania started about 1.2Ma ago.  The 

Neogene volcanic rocks of the northern Tanzanian province comprise two ages of 

volcanic activity.  The first (pre-1.2Ma) age is defined by a major central group of 

volcanoes of the alkali-basalt-phonolite association, with basalt being the dominant 

lava type.  The second (post-1.2Ma) volcanic group comprises mainly nephelinite-

phonolite-carbonatite volcanoes.  Kibo peak on Mt Kilimanjaro (45km from the study 

area), which belongs to the latter group of volcanoes, is regarded as active (Dawson, 

1992). 

http://scholar.sun.ac.za/
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3. Local Geology 
 

The rocks of the Merelani area in Tanzania consist of a poly-metamorphosed 

metasedimentary sequence of upper amphibolite to granulite facies (Malisa et al., 

1990;  Davies et al., 1994).  The Merelani area itself, specifically the area surrounding 

the active tanzanite mines, is situated on the northwestern limb of a large antiformal 

structure in northeastern Tanzania defining the Lelatema Mountains and subsequently 

termed the “Lelatema Anticline” (Malisa, 1987).  The layers of the western limb of the 

anticline itself display moderate dips of 30° to 60° to the west and a general strike of 

040°, with the fold hinge dipping at ~16° to the north (Malisa, 1987;  Scheepers and 

Kisters, 2000). 

 

The rocks of the Merelani area have been subdivided into two stratigraphic horizons, 

the Upper and Lower horizons.  It is the lithologies of the Lower Horizon which host the 

tanzanite mineralisation and it is thus this horizon on which the current study is 

focused. 

 

The rocks in the Merelani area were subdivided into various lithological units by Malisa 

(1987), but the nomenclature was deemed insufficient and was revised by Olivier 

(2006).  His subdivisions are presented in Table 1 together with the old names as 

suggested by Malisa (1987).  The entire Lower Horizon stratigraphic package is 

sandwiched between two garnet gneiss units.  A dolomite unit occurs in the centre of 

the sedimentary package with two seemingly repetitive sub-packages occurring on 

either side of it (Fig.6, Fig.9).  It has been suggested that the Lower Horizon represents 

a folded succession wrapped around the central dolomite (Rutahundurwa, Afgem 

geologist, pers. comm.) 

 

A detailed description of the mode of mineralisation is beyond the scope of this study.  

A short description is, however, warranted for the sake of completion.  The tanzanite 

itself is situated within an altered zone in the Kyanite Gneiss LK2 and LK1 units of the 

Lower Horizon sedimentary package.  This altered zone is termed the Ali Jaluwatu 

Zone, or JWZ for short.  In essence it is a plagioclase-rich schistose unit.  This unit is 

host to intensely folded and boudinaged sub-units with the tanzanite mineralisation 

occurring in stress minimum zones within the boudinaged package.  This boudinaged 

layer is subdivided into four categories: 
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Table 1  Generalised stratigraphy and proposed new names for rocks in 
the Merelani area 

Mineralogical name (after Olivier, 2006) Previous Name (after Malisa, 1987) 

Dolomitic Marble Dolostone 

Garnet-sillimanite-biotite gneiss (GNG1) Garnet-silimanite gneiss 

Upper Horizon 

Kyanite-graphite gneiss (K4) Kyanite gneiss unit 4 (K4) 

Biotite-graphite gneiss (FL2) Flaggy graphite gneiss (FL2) 

Kyanite-graphite gneiss (K3) Kyanite gneiss unit 3 (K3) 

Biotite-graphite gneiss (FL1) Flaggy graphite gneiss (FL1) 

Kyanite-graphite gneiss (K2) Kyanite gneiss unit 2 (K2) 

(MAZ) Hydrothermally altered graphite gneiss 

(MAZ) 

Kyanite-graphite gneiss (K1) Kyanite gneiss unit 1 (K1) 

(QF) Quartzofeldspathic fels (QF) 

Lower Horizon 

Garnet-sillimanite-biotite gneiss (GNG2) Garnet-sillimanite gneiss 

Kyanite-graphite gneiss (LK4) Lower kyanite-graphite gneiss (LK4) 

Graphite-plagioclase gneiss (C-Zone) C-Zone 

Kyanite-graphite gneiss (LK3) Lower kyanite-graphite gneiss (LK3) 

Graphite-calc-silicate gneiss (GCS2) Intensely altered (LA2) 

Banded Calc-silicate fels (CF2) Metapsammite (MPS2) 

Dolomitic marble (DM2) Dolostone 

Banded Calc-silicate fels (CF1) Metapsammite (MPS1) 

Graphite-calc-silicate schist Intensely altered (LA1) 

Kyanite-graphite gneiss (LK2) Lower kyanite-graphite gneiss (LK2) 

Graphite-plagioclase gneiss (JWZ) JWZ 

Kyanite-graphite gneiss (LK1) Lower kyanite-graphite gneiss (LK1) 

Garnet-sillimanite-biotite gneiss (GNG3) Garnet-sillimanite gneiss 

Dolomitic marble (DM3) Dolostone 
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1. skarnoid reaction zones; 

2. boudins 

• pyroxene relics within boudins; 

• calc-silicate skarn boudins and; 

3. low-pressure pockets within skarn boudins 

 

A more detailed description of the boudinaged layer is presented later on in this 

chapter.  However, they all form part of the same altered layer, the JWZ.  The kyanite 

gneiss units LK4 and LK3 above the central dolomite also contains an altered zone, 

termed the C-Zone 

 

Fig.6 is a simplified version of the modified map of Rutahundurwa (1995).  The 

mineralogy and petrography of the different lithological units of the Lower Horizon, the 

tanzanite-hosting horizon, will be discussed briefly, mainly based on the geological 

mapping and research by Olivier (2006). 

 

3.1. Dolomitic Marble 
 

The Merelani lithologies are marked by dolomitic marble ridges, which flank the 

tanzanite deposit on the northeastern and southwestern sides.  The schists and 

gneisses are present in a northeast-southwest trending depression.  The dolomitic 

rocks are white in colour when pure and display shades of grey at places due to 

impurities of accessory minerals such as graphite, biotite and pyrite. 

 

The dolomitic marble consists mainly of dolomite (up to 80%) and calcite (15 - 25wt%).  

Other mineral constituents are quartz (~5wt%), plagioclase, titanite (sphene), chlorite, 

pyrite, pyrrhotite, kyanite and graphite. 

 

3.2. Garnet Sillimanite-Biotite Gneiss 
 

The garnet-sillimanite-biotite-gneiss forms the central unit between the Upper and 

Lower horizons.  It is a medium to coarse-grained rock which displays a spotted 

appearance due to large, purple almandine crystals.  The primary minerals are quartz, 

almandine, sillimanite, biotite, potash feldspar and plagioclase.  The accessory 
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minerals are pyrite, rutile, titanite, kyanite, graphite, muscovite, zircon, hematite, 

ilmenite and apatite, with pyrite and rutile being the most abundant. 

 

3.3. Kyanite-Graphite-Gneiss 
 

The kyanite-graphite gneiss has been subdivided into 5 units by Olivier (2006):  Unit 1, 

the footwall kyanite-graphite gneiss (LK1), unit 2, the hangingwall kyanite-graphite 

gneiss (LK2) and units LK3 and LK4 above the central dolomite and units LK5 and LK6 

in the Upper Horizon (Table 1). 

 

The boudinaged tanzanite-bearing graphite-plagioclase gneiss (JWZ) is sandwiched 

between LK1 and LK2 units of the kyanite-graphite gneiss.  Both the hangingwall and 

footwall units are locally associated with pegmatites and a characteristic hangingwall 

pegmatite layer is formed within unit LK2. 

 

Units LK3 and LK4 of the kyanite-graphite gneiss are sometimes separated by a 

graphite-plagioclase gneiss, termed the C-Zone.  Where the C-Zone is absent the units 

occur on top of each other and are then considered as one unit. 

 

Units LK5 and LK6 occur above the central garnet-sillimanite-biotite gneiss and thus 

occur within the Upper Horizon. 

 

The kyanite-graphite gneiss is medium grained and consists of quartz, feldspar, 

kyanite, graphite and variable amounts of sillimanite, mica and pyrite with pyrrhotite, 

sphalerite, zircon, apatite and rutile occurring as accessories.  Pyrite and pyrrhotite are 

the main sulphide mineral phases.  The feldspar occurs as separate aggregates 

forming feldspar-rich layers. 

 

3.4. Graphite-Plagioclase Gneiss 
 

The graphite-plagioclase gneiss occurs as three units:  the JWZ, C-Zone and D-Zone.  

The JWZ and C-Zone occur in the Lower Horizon, while the D-Zone occurs in the 

Kyanite Gneiss lithological unit in the Upper Horizon (between units LK5 and LK6).  

The C-Zone is sandwiched between the Kyanite Gneiss LK4 and LK3 units, while the 

JWZ occurs between units LK2 (hangingwall) and LK1 (footwall). 

 

http://scholar.sun.ac.za/
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The JWZ is the most important of the graphite-plagioclase units, because it is this layer 

which is host to the intensely boudinaged calc-silicate layers, which host the tanzanite 

mineralization. 

 

All three units consist of quartz, feldspar and graphite with mica, pyrite and titanite as 

the accessory mineral phases.  The layers, as previously mentioned, are similar to the 

kyanite-graphite gneiss, but with the following most important differences: 

 

1. Absence of aluminum silicates 

2. Higher plagioclase content 

3. Larger amount of alteration and oxidation (inferred from a lower rock 

competence and a greater concentration oxidised sulfides) 

4. Higher mica content 

5. Generally smaller grain size 

 

These horizons consist mostly of quartz and plagioclase, with small amounts of 

diopside, tremolite, chlorite, calcite, serpentine and clay minerals which are present in 

localised areas of calc-silicate units. 

 

3.5. Calc-Silicates 
 

The calc-silicate layers are intensely boudinaged and contained within the graphite-

plagioclase gneiss (JWZ) unit.  This horizon hosts the tanzanite mineralization and 

makes it the most unique layer in the world in terms of gemstone mineralization. 

 

Where calc-silicate layers have been observed within the C-Zone, they have been 

developed on a small scale and it is unknown to what extent they are present over a 

regional scale. 

 

The calc-silicate layers are divided into four lithological types: 

 

a) Skarnoid reaction zones 

b) Boudins 

• pyroxene relicts 

• calc-silicate skarn boudins 

http://scholar.sun.ac.za/



 12

c) Low-pressure pockets within skarn boudins 

 

a) Skarnoid reaction zones 

 

These layers are isoclinally folded and wrap around and connect the calc-silicate 

boudins (Fig.7 and Fig.8).  They are in contact with the neighboring gneisses and 

represent a metasomatic reaction zone between the calc-silicates and the gneisses. 

 

The layers are highly banded, foliated and medium grained.  They are of a greyish 

colour.  The foliation is defined by the preferred crystallographic orientation of graphite 

and elongated quartz and zoisite grains. 

 

The layers consist of quartz, a mixture of clay minerals from the smectite group, 

pyrophyllite, zoisite, graphite, pyrite, grossular and diopside with titanite and muscovite 

as accessories. 

 

b) Boudins 

 

• Pyroxene relics 

 

The boudins occur within the grey bands.  They are situated on the fold 

limbs and are a few centimetres up to about 1m in length.  They are dark 

green in colour and do not display any banding or foliation. 

 

Diopside is the main rock-forming mineral within the relict units, with 

grossular garnet, quartz, pyrite and graphite occurring in minor amounts. 

 

• Calc-silicate skarn boudins 

 

These altered boudins were formed by the hydrothermal alteration of the 

pyroxene relict precursor.   

 

The skarn boudins consist of diopside, quartz, graphite, pyrite, haematite, 

zoisite (occasionally tanzanite), grossular garnet (occasionally its gem 
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variant tsavorite) as well as secondary alteration minerals such as 

goethite, halloysite and illite. 

 

c) Pockets of low pressure 

 

The hydrothermal boudins contain pockets of coarse-grained quartz, grossular, zoisite 

(predominantly tanzanite), pyrite, calcite, graphite and diopside.  The pockets are 

situated in various types of low-pressure sites within and adjacent to the boudins, such 

as at boudin necks (Fig.8).  These pockets are the main source of gem-quality 

tanzanite and tsavorite.  Other minerals which also occur within these pockets are 

pyrite, occurring as large euhedral crystals up to about 15cm with smooth crystal faces, 

calcite, also as well-formed crystals and crystal aggregates, graphite, occurring as 

flakes and halloysite, which occurs as irregular clots and as fracture fillings in zoisite 

(and tanzanite). 

 

3.6. Graphite-Calc-Silicate Schist 
 

The graphite-calc-silicate schist has the following mineral constituents:  Quartz, 

graphite, grossular garnet, diopside, scapolite and plagioclase with pyrite, hematite, 

titanite, serpentine and various clay minerals being the accessory minerals, with titanite 

as the most abundant accessory. 

 

The schistocity is defined by sub-paralleled graphite flakes.  The rock has a greyish to 

silver colour due to the graphite and also displays a green spotted appearance, due to 

disseminated grossular crystals.  The rock contains millimetre scale zones which are 

richer in calc-silicate minerals.  These zones consist mainly of the mineral diopside, 

with variable amounts of quartz, graphite and feldspar. 

 

3.7. Banded Calc-Silicate Fels 
 

The banded calc-silicate fels has been divided into two units, CF1 and CF2, both 

surrounding the central dolomitic marble in the Lower Horizon.  Both units are medium- 

to coarse-grained and are light grey in colour.  The fels consists of millimetre scale 

banding of alternating silicate and calc-silicate layers.  The banding is also defined by 

sulphides, which are especially abundant in the transition zones between silicate and 

calc-silicate zones. 
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The silicate zone consists of microcline and quartz with minor amounts of plagioclase, 

muscovite, pyrrhotite, pyrite and accessory minerals, graphite, diopside and titanite. 

 

The calc-silicate zone consists of diopside, calcite and scapolite with lesser amounts of 

quartz, plagioclase and microcline with pyrrhotite, pyrite, muscovite, graphite and 

titanite as the accessory minerals. 

 

3.8. Superficial Deposits 
 

Quaternary unconsolidated sediments cover most of the Merelani tanzanite deposit.  

The south-western part of the deposit is mostly covered by thin calcareous soil, 

laterites and gravel, while the north-eastern part of the deposit is covered by a hard 

calcrete layer, increasing in thickness towards the north-east (Olivier, 2006). 

 

3.9. Structural Geology 
 

A detailed description of the structural geology is beyond the scope of this study and 

only a short summary is presented here.  The following is mostly based on a report on 

the geology of the Merelani Tanzanite deposit by Scheepers and Kisters (2000), as 

well as from Olivier (2006). 

 

The Merelani tanzanite mine is situated on the north-western limb of the shallow 

northerly plunging large-scale open Lelatema fold.  The gneisstocity shows dips of 

between 30° and 60° to the north-west, with a strike of 040°.  On outcrop scale, 

however, the gneissic foliation shows a much greater complexity. 

 

The calc-silicate layers within the JWZ have been boudinaged and isoclinally folded.  

Two types of boudins can be distinguished: 

 

a) Single-layer boudins (Pyroxene boudins), in which a layer has undergone 

boudinaging, which are flanked on either side by the kyanite-graphite 

gneiss.  The boudins mainly display lenticular geometries that gradually 

taper off towards their terminations. 

b) Mantled boudins (Hydrothermal boudins), which have been discussed 

previously (p10). 
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The tanzanite mineralization occurs in stress minimum zones such as quartz veins and 

pockets.  These pockets occur in specific structural sites within and adjacent to 

boudins.  Four main types of tanzanite-bearing structures can be distinguished: 

 

a) Type 1: Irregularly shaped to roundish pockets in central parts of 

boudins (Fig.7) 

b) Type 2: Wedge-shaped masses at the lateral terminations of boudins 

corresponding to strain-shadow positions of boudin necks (Fig.8 a-c) 

c) Type 3: Veins that transect boudins along shear fractures (Fig.8 a, c, d) 

d) Type 4: Tension fractures in the central parts or close to the lateral 

terminations of boudins (Fig.8d) 

 

3.10. Trench Geology and Pedology 
 

Fig.9 is a map of a trench that was excavated perpendicularly to strike over the JWZ 

(Fig.6) and adjacent lithologies.  The purpose thereof is to test whether geochemical 

anomalies and trends can be identified for the tanzanite deposit, of its host rocks or for 

rocks associated with the deposits by two different geochemical exploration methods.  

The strike of the trench is roughly NW-SE. 

 

The trench is 128.10m long and is divided into eight soil zones, distinguished mainly on 

the basis of colour.  The changes of soil colour around the tanzanite deposit could be 

locally significant in tanzanite exploration.  The Merelani soil in general can be 

described as something between an aridisol and a molilisol, based on the definitions 

given by Foth (1984).  An aridisol would be a typical desert soil covered by desert 

shrubs which later give way to grasses as the moisture increases.  Mollisols generally 

border desert regions and support grasses which produce abundant organic matter.  

They generally display a high soil fertility with fair to adequate rainfall.  Each soil zone 

overlays one or more of the Lower Horizon lithologies (Table 2; Fig.9).  These zones 

are labeled Zone 1 to Zone 8. 

 

Foth (1984) gives the following definitions for A-, B- and C-Horizons: 
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Table.2  Table of lithologies represented by soil type 

Soil Type Represented Lithologies 

Type 1 
• Central Garnet-Biotite Gneiss (Dip: 

55°NW) 

Type 2 

• Kyanite-Graphite Gneiss (Dip: 50°NW to 

40°NW) 

• C-Zone (Dip: 40°NW) 

Type 3 
• Graphite-Calc-Silicate Fels (Dip: 40°NW)

• Calc-Silicate Schist (Dip: 40°NW) 

Type 4 • Calc-Silicate Schist (Dip: 40NW)° 

Type 5 • Dolomitic Marble (Dip: 50°NW) 

Type 6 
• Calc-Silicate Schist (Dip: 52°NW) 

• Graphite-Calc-Silicate Fels (Dip: 50°NW)

Type 7 
• Kyanite-Graphite Gneiss (Dip: 55°NW) 

• JWZ-Zone (Dip 50°NW to 40°NW) 

Type 8 • Garnet-Biotite Gneiss (Dip: 41°NW) 
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A: This horizon is the first to form.  It contains a high proportion of finely 

divided organic matter and is consequently dark in colour. 

B: Illuvial or residual concentration of silicate clays, sesquioxides, 

humus, etc., and/or development of structure if volume changes 

accompany changes in moisture content. 

C: This layer may be considered to be similar to the original appearance 

of the solum where there are obviously no geological nonconformities. 

 

Bridges (1997) corroborates these definitions with the following: 

 

A: A mineral horizon formed at or near the surface, characterised by the 

incorporation of humified organic matter intimately associated with 

mineral materials. 

B: A subsurface mineral horizon resulting from the change in situ of soil 

material or the washing in of material from overlying horizons. 

C: An unconsolidated or weakly consolidated mineral horizon which 

retains evidence of rock structure and lacks the properties diagnostic 

of the overlaying A or B horizons. 

 

Based on these definitions as well as comments by Hall (1998), the Merelani trench 

soils are divided into an A-Horizon and a C-Horizon.  Only one soil zone, Zone 8, 

displays a B-Horizon between its A- and C-Horizons.  It seems to consist of mostly 

transported material (Fig.10 and Fig.17), inferred from rounded grains which are 

slightly larger than those of the typical A-Horizons of the other soil zones in the trench.  

In general the soils in the trench are sand-rich.  They grade from bedrock to what can 

best be described as a dry saprolith, due to the fact that the original lithologic textures 

and banding are preserved, but the material is unconsolidated, in the lower C-Horizon 

to a mixture of soil grains and lithic fragments in the upper C-Horizon and finally to an 

A-Horizon containing only soil grains. 

 

Zone 1: This soil zone has a width in the trench of 52.9m (as measured from 

the top of the trench, i.e. as measured from the top of the hill towards 

the road at the bottom) (Fig.10).  The colour of Zone 1 ranges from 

darkish red to red.  A 9.5m wide “Transition Zone” (Zone 1 TZ), 

occurring adjacent to Zone 1, was distinguished on the basis of a 
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slightly browner tinge to the red colour and can be termed reddish 

brown (Fig.11).  The A-Horizon has a thickness of 10cm while that of 

the C-Horizon is 30cm. 

 

Zone  2: This is a greyish dark brown to light brown soil zone with red and 

orange patches and is 7.9m in width (measured along the strike of the 

trench from the end of Zone 1 and the beginning of Zone 3) (Fig.12).  

Here the A-Horizon reaches a thickness of 6cm, before tapering out 

towards the contact with Zone 3.  The C-Horizon has an average 

thickness of 1.8m. 

 

Zone 3: This soil zone is 6.4m in width and ranges in colour from a dark brown 

upper horizon (A-Horizon) to a dark, bluish grey lower horizon (C-

Horizon) (Fig.13).  The C-Horizon is mottled with patches of grey and 

dark purple.  The A-Horizon is 15cm thick and the C-Horizon 1.6m. 

 

Zone 4: The colour of this soil zone ranges from a dark brown A-Horizon to a 

lighter brown to light brown C-Horizon.  The soil zone is distinctly 

lighter in colour than Zone 3 and is 5m in width (Fig.14).  The A-

Horizon has a thickness of 25cm and the C-Horizon a thickness of 

1.45m. 

 

Zone 5: This 8.2m wide soil zone is slightly lighter in colour than Zone 4 with 

its A-Horizon still darker brown than the C-Horizon.  This zone is 

poorly developed over the dolomitic marble and the start of the 

formation of a calcrete layer can be discerned.  An A-Horizon is 

completely absent from this soil zone.  The C-Horizon has an average 

thickness of 1.2m. 

 

Zone 6: This soil zone is 2.7m in width and has much the same colour scheme 

as Zone 5, although the C-Horizon is distinctly different due to the 

difference in terms of colour and the original rock textures and 

banding which have been preserved.  The C-Horizon of this soil zone 

is light brown to light orange with a dark brown A-Horizon (Fig.15).  

The A-Horizon is 30cm and the C-Horizon 1.52m thick. 
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Fig.11 Type 1 Soil. Notice pen for scale (150mm).
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Fig.12 Soil Type 2.

A-Horizon
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Fig.13 Type 3 Soil.

A-Horizon

C-Horizon

Trench Floor

http://scholar.sun.ac.za/



Fig.14 Soil Type 4.
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Fig.15 Soil Type 6.
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Zone 7: The colour of the A-Horizon of this soil zone is almost identical to that 

of Zone 6.  The colour of the C-Horizon, however, is distinctly 

different, being dark bluish grey to brownish grey (Fig.16).  This soil 

zone is 19.9m in width.  The A-Horizon has a thickness of 25cm and 

the C-Horizon of 60cm.  Two additional samples of the C-Horizon 

were taken from the zone just above the JWZ zone.  The soil zone 

which the additional samples represents is termed Zone-JWZ. 

 

Zone 8: This soil zone starts with a dark brown A-Horizon, followed by a lighter 

brown B-Horizon and a light brown C-Horizon.  The zone is 15.6m in 

width and it can be seen from Fig.9 that it reaches quite a great depth 

(>3m) relative to the other soil zones.  The B-horizon consists of 

coarser material and it is thought, due to the slope downwards from 

the top of the road towards the south and from the top of the hill where 

the trench is situated towards the east, that this coarser material 

represents transported material rather than it being formed situ 

(Fig.17).  The A-Horizon has a thickness of 20cm, the B-Horizon of 

57cm and a C-Horizon of 2.43m. 

 

The Merelani soil in general, as observed in the trench, is an immature soil.  It is 

situated on a hill which has a slope dipping between ~5° towards the east at the foot of 

the hill and ~15° in the same direction at its steepest nearer the top.  The soil zones 

developed over the various Lower Horizon lithologies range in total thickness from 

30cm at the top of the hill to 3.2m at the foot. 
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Fig.16 Soil Type 7.
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Fig.17 Soil Type 8.
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4. Sampling and Analytical Techniques 
 

In order to identify whether such a unique geochemical signature exists and can be 

identified, various types of sample media (soil, stream sediments and calcrete) were 

collected and analysed.  The various sample media were subjected to different 

analytical techniques in order to identify whether a geochemical signature exists and 

with what specific exploration method, if any, it can be identified.  XRF whole-rock 

analysis was done to ascertain total chemical content of various soil and stream 

sediment size fractions and ICP-AE analyses were performed on the leachate of a 

partial extraction technique.  The samples were all analysed for their trace element 

content, as it are these elements which act as the chromophoric elements in 

gemstones. 
 

4.1 Soil Samples 
 

Soil samples were collected from a trench dug perpendicular to strike over the 

tanzanite mineralised as well as the barren lithologies of the Lower Horizon lithologic 

package (Chapter 2; Fig.9).  Two to three samples of each soil horizon were collected, 

depending on the width of the soil profile in the trench.  The purpose of the current 

study is to test whether geochemical exploration techniques can be used to indicate 

either tanzanite mineralisation or the lithologies in which the mineralisation occurs or 

any lithologies closely related to the tanzanite deposits.  A single trench was dug for 

this purpose.  Therefore the results of the study will have to be tested by the mining 

company in a comprehensive orientation study. 

 

The Merelani trench soil zones were studied with a specific focus on soil trace-element 

geochemistry in order to discern which soil horizon produces optimum results in terms 

of anomaly-background contrast.  Orientation studies are designed to glean such 

information from the geochemical data and apply it in an exploration program.  With the 

eye on such future studies, if such information already available, the cost of a 

comprehensive orientation study will be significantly reduced.  Elements concentrate in 

different soil environments to different degrees and it is therefore important to sample 

the correct soil horizon.  The focus should therefore be to find the maximum anomaly-

background contrast of a specific indicator element and not necessarily its maximum 

concentration.  It is also imperative that a constant soil horizon is sampled as opposed 
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to a constant sampling depth due to the undulating nature of soil horizon contacts.  

These aspects were kept in mind in the collection of the soil samples for this study. 

 

The Merelani soil surrounding the tanzanite deposit and which is represented in the 

trench was subdivided into eight soil zones, based mainly on the different C-horizons, 

which represent the underlying parent lithologies in the trench in terms of observed 

layering, lithological structure and colour quite well (Fig.11 – Fig.17).  The only soil 

zone to contain a B-horizon is Zone 8 (Fig.17). 

 

Samples were numbered according to the soil horizon and zone from which they were 

collected and the sequence in which they were collected.  An example is the first 

sample, 01-A-001, which indicates that the sample was collected from soil zone 1, from 

the A-Horizon and that it is the first sample which was collected.  The ca. 5kg samples 

were placed in plastic bags and stored in a dry freight container at the mine offices. 

 

The 63 samples were oven dried at 50°C and subsequently sieved into three fractions: 

coarse (300-180µm), medium (180-90µm) and fine (<90µm).  The coarse and medium 

fractions were milled in a tungsten mill for the XRF sample preparation.  Powder 

briquettes were made of all three fractions for XRF trace element analysis.  The XRF 

analyses were done on a Philips 1404 Wavelength Dispersive X-ray spectrometer at 

the University of Stellenbosch, South Africa.  The spectrometer is fitted with a Rh tube, 

six analyzing crystals, namely LIF200, LIF220, LIF420, PE, TLAP and PX1.  The 

detectors are a gas-flow proportional counter, a scintillation detector or a combination 

of the two.  The gas-flow proportional counter uses P10 gas, which is a mixture of 

argon (90%) and methane (10%).  The standards that were used for calibration 

purposes are shown in Table 3. 

 

A 5g sample was weighed for the fine and medium fractions and leached with 50ml 1M 

HCl overnight (12 hours) and the mixture filtered the next morning according to the 

method suggested by Fletcher et al. (1987).  The residue was discarded and the filtrate 

analysed by ICP-AE.  The specific purpose for employing this method was to determine 

the concentration of the readily extractable (i.e. leachable) metals (cxMe) in order to 

resolve the question whether the elements of interest are present in the soil in 

leacheable form, or whether they are concentrated in mineral grains.  The procedure 

replicates the mobilisation of trace elements by natural soil solutions in a much shorter 
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Table.3  Standards used in XRF analyses 
Sample Name Description 
AGV-1 Andesite from USGS 
BHVO-1 Basalt from USGS 
JG-1 Granodiorite from GSJ 
JB-1 Granodiorite from GSJ 
GSP-1 Granodiorite from USGS 
SY-2 Syenite from CCRMP 
SY-3 Syenite from CCRMP 
STM-1 Syenite from USGS 
NIM-G Granite from MINTEK 
NIM-S Syenite from MINTEK 
NIM-N Norite from MINTEK 
NIM-P Pyroxeneite from MINTEK 
NIM-D Dunite from MINTEK 
BCR Basalt from USGS 
GA Granite from CRPG 
GH Granite from CRPG 
DRN Diorite from ANRT 
BR Basalt from CRPG 
 
Abbreviations used: 
 
ANRT: Association Nationale de la Recherche Technique, Paris 
CCRMP: Canadian certified Reference Materials Project 
CRPG: Centre de Recherches Petrographiques et Geochimiques 
MINTEK: Council for Mineral Technology, South Africa 
GSJ:  Geological Survey of Japan 
NIM:  National Institute of Metallurgy, South Africa 
USGS: United States Geological Survey, Reston 
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timeframe.  The ICP-AE analyses were done on a Varian Liberty II radial ICP with a 

40MHz air cooled RF generator at the University of Stellenbosch.  The samples were 

injected via an inert V-groove nebulizer into an inert Sturman masters double pass 

cyclonic action spray chamber.  The torch is a standard single piece quartz torch.  The 

conditions of operation are as follows:  The nebulizer pressure was 185kPa, with the 

plasma power at 1.1kW.  The argon flow rate was 15.0l.min-1 for the plasma and 

1.5l.min-1 for the auxiliary.  The pump rate was 15rpm, the integration time 3s and 4 

replicates were done.  The detection limits for the analysed elements are shown in 

Table 4. 

 

Table 4  Detection limits of Elements analysed by ICP-AE 
Element Wavelength LOD (mg.l-1) 
V 311.071 0.03 
Cr 267.716 0.005 
Ni 231.604 0.03 
Cu 324.754 <0.006 
U 367.007 0.3 
Fe 259.940 <0.002 
Mn 260.569 <0.002 
Mg 279.553 <0.002 

 

4.2 Stream Sediments 
 

Stream sediments were collected from an exploration concession.  The concession 

was chosen on the basis of the presence of a few gemstone mines in the area, the 

presence of large streams and a variation in geology.  No lithologic data exists for any 

lithologies outside the mining properties.  Therefore the proximity of anomalous stream 

sediment samples to existing operating and abandoned tsavorite mines were used to 

evaluate the presence anomalous stream sediment samples.  Tsavorite and tanzanite 

are paragenetic in the tanzanite deposits.  The assumption is that the tsavorite deposit 

geology will be very similar to that of the tanzanite deposits (containing at least 

metasomatically altered layers which may be boudinaged and folded).  This 

assumption is thought to be valid on the basis of the tsavorite deposits being found in 

the same regional structure, the Lelatema anticlinal structure and will be substantiated 

if the anomalies are similar to anomalies found in the soil samples collected from the 

trench. 
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One 2kg sample was taken every ca. 200m as suggested by Rose (Rose et al., 1979) 

with the distance measurements made via GPS (Fig.18).  First and second order 

streams were sampled.  The 46 samples were placed into plastic bags and stored at 

base camp till the stream sediment sampling program was completed.  The samples 

were dried at 50°C and sieved into three fractions:  coarse (600-180µm), medium 

(180-90µm) and fine (<90µm).  The medium and fine fractions were analysed via XRF 

for their trace element content (Fig.19).  The coarse fraction was to be submitted for 

heavy mineral separation, but due to severe time constraints this was never 

completed. 

 

4.3 Calcrete Samples 
 

According to Anand et al. (1997) calcretes can concentrate elements during their 

formation.  This application is often used in gold exploration (Anand et al; 1997).  In 

order to determine whether the Merelani calcretes concentrate elements, four samples 

were collected from the natural wall of an old mine shaft, which was sunk by local 

miners.  This shaft is situated directly above the tanzanite-mineralised JW-zone.  The 

benefit of being able to use the calcretes in an exploration program lies in the fact that 

the Merelani calcretes are widespread and could be easily and therefore cheaply 

sampled. 

 

The calcrete samples were analysed via XRF for their trace element content. 

 

4.4 Precision 
 

Samples were randomly selected from the soil and stream sediment samples and 

duplicated.  Each of these duplicates was analysed 5 times and the precision 

calculated according to the formula (Fletcher et al., 1987): 

 

Pc(%) = 200.Sc/c 

 

where Pc is the analytical precision for concentration c as the percent relative variation 

at the 95% (two standard deviations) confidence level and Sc an estimate of the 

standard deviation at concentration c. 
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Fig.18 Satellite image of Stream Sediment Sampling Sites (coordinates in UTM/UPS and the Cape Datum was used).
This image is an enlargement of Block A in Fig.1

Scale = 1:31 000
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Fig.19 Flow chart of sample preparation and analytical methods employed

Flow Chart of Sample Collection
and Preparation

Sampling Site Selected
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Stream Sediments
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and placed in plastic bags
(n=46)

4 Samples taken over vertical
profile and placed in plastic
bags (n=4)

B and C-Horizons sampled
and samples placed in plastic
bags (n=63)

Samples oven dried at 50°C

Samples sieved in 3 size-
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ì

ì ì
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fractions: 300-180 m; 180-
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The results are given in Table 5. 

 

Any precision below 15% is deemed acceptable (Fletcher et al., 1987)  Although many 

of the trace elements show individual values above 15%, most of the data falls within 

the 15% acceptable limit.  The exceptions are Ga, La, Pb, Th and U, which all show 

constant precision values above 15%.  The reason for this is that these elements occur 

in concentrations close or below the XRF detection limits.  On this basis these 

elements were not used in this study in the evaluation of techniques for geochemical 

exploration of tanzanite.  They are shown in this thesis on the various diagrams, but 

this is only to observe trends in heavier elements.  They were not considered in the 

final conclusions drawn from the overburden data. 

 

Table 6 shows the XRF detection limits.  Any data within 2ppm of any of the detection 

limits was not used in this study.  Very few of the data points of the elements of interest 

are below the detection limits. 
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Table 6a  XRF major element detection limits 
Major element Detection limit (Oxide wt%) 
Al2O3 0.20 
CaO 0.01 
Cr2O3 0.01 
Fe2O3 0.06 
K2O 0.05 
MgO 0.04 
MnO 0.01 
Na2O 0.03 
P2O5 0.01 
SiO2 0.50 
TiO2 0.02 

 

Table 6b  XRF trace element detection limits 
Trace element Detection limit (ppm) 
V 8 
Cr 8 
Co 1 
Ni 9 
Cu 1 
Zn 8 
Ga 3 
Rb 5 
Sr 4 
Y 5 
Zr 4 
Nb 5 
Ba 20 
La 5 
Ce 5 
Nd 5 
Pb 7 
Th 11 
U 6 
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5. Analysis of Soil XRF and ICP and Published XRF Data 
 

5.1. Introduction 
 

In this chapter, the data from the XRF and ICP trace element analyses of soil samples 

taken from the trench over Lower Horizon Merelani lithologies are evaluated and 

discussed.  The soil samples are evaluated relative to the XRF analyses of samples of 

the lithological units from the Lower Horizon taken by Olivier (2006).  The Lower 

Horizon lithological data from Olivier is derived from borehole core samples.  The 

borehole positions are shown in Fig.6. 

 

The chapter consists of two main sections: 

1. geochemical soil characterisation and graphical data description and; 

2. the study of correlation coefficients to discern probable mineralogic hosts 

for the various trace elements. 

 

The first section of this chapter starts off with a lithologic characterisation.  The 

lithologies were normalised to the Bulk Continental Crust (BCC) values of Taylor and 

McLennan (1995).  The Merelani lithologies are comprised of various gneisses and 

schists and are interpreted as being of crustal origin (Maboko, 1995; Maboko 2000, 

Maboko and Nakamura, 1995; Maboko and Nakamura 2002).  However, no genetic 

interpretations are made from the BCC normalised data, which serves only as a mutual 

reference between the Merelani lithologies and their derived soils. 

 

5.2. Additional Samples 
 
In order to establish whether an external reference frame exists relative to which the 

trench geochemical data can be compared, additional surface soil samples were 

collected from A-horizon of the soil adjacent to the Merelani trench.  Significant soil 

disturbance occurs in the area due to the presence of abandoned small scale mines.  

For this reason not all the soil zones could be sampled (Fig.20). 

 

Data from the coarse, medium and fine fractions of each additional sample 

representing the different soil zones were compared to the data from the trench.  The 
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additional samples were collected 15 – 20m from the trench.  The horizontal extent of 

each soil zone was determined by extrapolation of the width of the soil in the trench 

20m to each side.  Each additional sample could then be correlated with the correct soil 

zone in the trench.  The additional samples were analysed by XRF and were compared 

to trench XRF data. 

 

Statistical data limits were calculated by using the average and standard error values of 

each element for the various soil size fractions.  The upper and lower limit are 

represented by the sum and difference of the average value for each element from 

each soil size fraction and the standard error respectively.  Twice the standard 

deviation was used in calculating the standard error, thereby providing a 95% 

probability that a data point will fall within the statistical limits.  The results are 

contained within Table 7. 

 

Table 7 shows that data from Zone 1, Zone 1 TZ and Zone 2 for the fine and medium 

fraction correlate well with only a few data points occurring outside the data ranges for 

the fine and medium fractions.  Zones 3 and 4 consistently show values which occur 

outside the data ranges.  The coarse fraction data contains many data points which 

occur outside the data ranges.  Only the data from Zone 8 shows good correlation 

between the additional sample and the trench samples.  The coarser the fraction, the 

more data points in total occur outside the data ranges.  This is taken as a first 

indication that at least the A-horizons of the different soil zones in the area surrounding 

the trench are disturbed and only show a slight correlation with relatively undisturbed 

soil from the trench.  It is also indicative that if any geochemical anomalies are 

identified, they would have to occur within the C-horizon, as it is most probably the 

least disturbed horizon. 

 
5.3. Merelani Lithology and Trench Soil Characterisation and Data Description 

 

The XRF results of the soil samples from the trench as well as the Merelani Lower 

Horizon lithogeochemical data were normalised to Bulk Continental Crust (BCC) values 

(Taylor and McLennan, 1995), rendering them comparable.  This method was used on 

a study of the lower Amazon river by Vital and Stattegger (2000).  The results were 

subsequently plotted as spider diagrams (Fig.21 and Fig.23).  To avoid clutter on the 

graphs, the average values were plotted together with the sum and difference of the 
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Table 7a Comparison of the fine fraction trace element concentration between additional samples collected 
adjacent to the trench and trech samples 

  V Cr Ni Cu Zn Ga Rb Sr Y Zr Nb Ba La Ce Nd Pb Th U 
Average 477 901 91 43 208 26 90 267 46 928 41 700 60 126 57 3 11 3 
Std Error 29 22 23 55 38 0 2 25 1 151 2 65 6 26 11 0 2 0 Zone 1 
01-A-050 469 894 85 11 217 24 100 257 48 744 40 714 64 130 63 3 12 6 
Average 595 833 213 69 355 25 83 282 51 787 40 740 59 119 58 3 11 6 
Std Error 109 44 128 16 163 2 4 22 8 121 6 40 10 25 15 0 2 3 Zone 1 TZ 
01-A-052 519 962 107 75 206 26 86 265 41 1016 44 740 58 129 61 3 13 7 
Average 740 802 197 86 327 25 72 299 49 646 41 886 66 128 62 3 9 5 
Std Error 397 50 116 68 122 1 16 19 10 89 1 334 13 23 11 0 7 5 Zone 2 
02-A-054 828 882 173 73 264 29 72 328 55 783 44 1076 71 144 76 3 14 6 
Average 1660 706 639 6 1160 14 40 416 58 427 27 1113 39 83 54 2 10 9 
Std Error 20 61 22 0 300 3 2 68 16 93 3 77 1 7 2 0 1 2 Zone 3 
03-B-056 858 868 164 29 253 28 71 332 58 807 45 1124 77 170 73 3 14 8 
Average 1039 708 372 51 587 22 63 349 60 560 41 1124 63 117 63 5 12 8 
Std Error 153 67 108 48 152 6 4 38 8 127 6 11 12 24 11 3 5 4 Zone 4 
04-B-058 764 934 254 60 339 26 77 296 61 1129 47 876 76 179 93 3 18 9 
Average 737 742 223 40 368 25 65 290 49 670 47 1002 63 122 57 2 14 8 
Std Error 153 46 67 38 113 1 5 14 6 61 6 46 5 10 7 0 0 2 Zone 8 
08-A-060 642 776 191 33 317 24 67 266 45 606 48 970 64 124 60 9 13 5 

 
Table 7b Comparison of the medium fraction trace element concentration between additional samples collected 
adjacent to the trench and trech samples 

  V Cr Ni Cu Zn Ga Rb Sr Y Zr Nb Ba La Ce Nd Pb Th U 
Average 299 201 61 60 133 30 75 221 37 343 40 526 147 300 125 11 41 10 
Std Error 19 12 2 7 16 1 9 12 4 99 2 60 20 51 25 2 10 7 Zone 1 
01-A-050 283 209 64 60 132 29 79 217 32 250 39 501 97 202 82 8 31 9 
Average 405 200 141 63 259 29 76 241 39 362 39 672 107 227 86 12 29 12 
Std Error 119 10 95 8 147 6 10 24 8 77 2 164 27 47 20 4 7 3 Zone 1 TZ 
01-A-052 329 288 54 62 133 35 71 219 32 354 39 602 135 288 112 12 30 11 
Average 538 192 130 57 235 28 71 261 40 272 39 942 94 221 78 11 29 11 
Std Error 387 1 89 9 138 6 1 54 14 71 5 650 32 61 13 2 0 2 Zone 2 
02-A-054 540 192 101 58 157 27 65 277 39 315 38 1212 82 233 80 10 25 11 
Average 1248 190 428 52 930 17 46 346 46 222 26 1138 62 155 56 12 26 15 
Std Error 83 23 27 2 227 1 6 48 9 70 3 135 2 12 9 4 1 4 Zone 3 
03-A-056 552 202 94 59 162 30 64 275 40 289 37 1274 112 231 79 11 25 9 
Average 644 168 201 53 349 23 68 266 44 195 36 1154 74 178 57 15 24 12 
Std Error 168 11 74 6 130 1 8 39 9 22 6 167 26 48 25 7 8 2 Zone 4 
04-A-058 435 202 125 58 191 28 60 224 42 254 42 814 146 302 123 4 42 12 
Average 387 163 105 55 192 23 61 216 33 249 38 1059 67 172 58 11 24 9 
Std Error 13 18 2 2 6 5 5 9 3 64 2 37 13 1 2 4 5 4 Zone 8 
08-A-060 465 184 136 62 241 24 70 247 35 321 46 1112 88 196 58 5 21 9 

 
Table 7c Comparison of the coarse fraction trace element concentration between additional samples collected 
adjacent to the trench and trech samples 

  V Cr Ni Cu Zn Ga Rb Sr Y Zr Nb Ba La Ce Nd Pb Th U 
Average 268 242 24 10 146 35 59 200 43 285 29 2 135 291 117 14 52 5 
Std Error 6 10 2 1 22 4 7 10 3 21 1 3 23 35 20 1 8 5 Zone 1 
01-A-050 273 190 44 19 335 26 94 240 31 174 16 234 32 116 37 5 47 1 
Average 348 224 48 10 255 33 59 222 46 285 26 61 98 206 80 18 48 5 
Std Error 91 9 25 6 115 5 5 28 7 29 1 115 21 28 10 8 4 2 Zone 1 TZ 
01-A-052 294 267 71 7 228 32 108 160 40 262 23 87 106 226 98 20 44 5 
Average 476 214 50 8 263 30 57 241 46 276 26 264 80 197 74 12 45 1 
Std Error 329 26 31 0 135 7 2 47 10 29 4 536 26 32 5 1 2 1 Zone 2 
02-A-054 302 257 25 15 145 37 59 195 44 306 29 221 103 307 124 15 52 8 
Average 1054 165 147 2 939 17 38 320 50 193 14 446 48 136 62 13 27 8 
Std Error 44 11 2 1 294 9 5 32 8 71 4 156 21 34 8 6 5 1 Zone 3 
03-A-056 426 229 59 12 260 30 51 215 52 323 31 518 126 319 128 19 55 3 
Average 496 165 65 3 340 23 58 228 48 197 23 464 49 120 51 15 33 5 
Std Error 125 17 21 3 106 5 6 40 6 5 4 185 7 12 4 3 4 4 Zone 4 
04-A-058 470 220 71 6 308 31 53 219 50 290 27 622 124 240 95 5 47 5 
Average 412 173 45 5 210 22 46 202 39 204 23 727 59 84 41 16 33 6 
Std Error 211 18 19 2 40 5 6 48 1 6 5 257 17 21 6 4 10 6 Zone 8 
08-A-060 309 192 35 5 186 25 47 175 38 205 27 635 54 116 54 21 36 7 
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average and standard error, thus defining a data range for each element.  The average 

and standard error values were calculated separately for each individual soil zone as 

well as for each soil horizon.  Twice the standard deviation was used in the calculation 

of the standard error, thus implying a 95% probability that a given value will fall within 

the calculated data ranges. 

 

The trace element pattern defined by the spider diagrams will be used as a 

geochemical signature for the lithological units. 

 

5.3.1. Lithology Characterisation 

 

The results of the BCC normalised Merelani lithological units are presented in Fig.21.  

Most of the lithological units contain statistically significant elevated concentrations of 

Zn, Ba, Pb, Th and U relative to BCC.  The only exception is the Central Dolomite, 

which only has an elevated relative concentration of Th and U.  The latter relative 

concentration is by far the most pronounced in all the Merelani Lower Horizon 

lithologies.  Most of the lithologies contain elevated relative concentrations of V and Ni.  

Exceptions are the garnet gneiss and banded calc-silicate fels units as well as the 

Central Dolomite. 

 

In addition, except for corresponding lithological units such as the Kyanite Gneiss LK3 

and LK4 units and the C-Zone sandwiched between them, each lithology has its own 

unique pattern.  Also the patterns for corresponding lithological units on either side of 

the Central Dolomite, such as the Banded Calc-Silicate Fels 1 and 2 units, are 

practically identical.  Folding in the Merelani Lower Horizon lithologies is well 

documented from the tanzanite mining and evidence was found that suggests that 

folding exists on a local scale in the rocks underlying the trench (Fig.22).  The  trace 

element patterns of the Merelani lithological units (Fig.21) also show that duplication of 

the stratigraphic succession around the Central Dolomite is a distinct possibility. 

 

5.3.2. Soil Characterisation 
 

The XRF trace element data for each individual soil zone and soil horizon and 

normalised to BCC is presented in Fig.23. 
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Spider Diagram of the Fine Fraction of the

A- and C-Horizon of Zone JWZ Soil

Normalised to Bulk Continental Crust
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Spider Diagram of the Medium Fraction of the

A- and C-Horizon of Zone 7 (JWZ) Soil

Normalised to Bulk Continental Crust
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Spider Diagram of the Coarse Fraction of the

A- and C-Horizon of Zone 7 (JWZ) Soil

Normalised to Bulk Continental Crust
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All the soil zones as well as the different soil horizons and soil size fractions display 

elevated concentrations of V, Zn, REE, Zr, Th and U relative to BCC.  There is no 

difference in the patterns of the A-Horizons compared to those of C-Horizons for any 

of the three size fractions.  Small differences between the trace element patterns 

become apparent when the different size fractions from the same soil zones are 

compared with each other.  Where all the trace element patterns show a relatively 

lower BCC normalised Cr value compared to BCC normalised V value, the coarse 

fraction of soil Zone 1, the medium fraction of soil Zone 1, 1 TZ and 2 show the 

reverse.  Other comparative differences are the significant negative BCC normalised 

Ba anomaly of the coarse fraction of soil Zone 1 and the negative Cu anomaly of the 

Coarse fraction of soil Zone 3 relative to the other soil zones and soil size fractions.  

Another comparative difference is the anomalous BCC normalised values of the 

heavier elements in the fine fraction of soil Zone 7, with the exception of Pb, relative to 

the other soil zones and size fractions. 

 

The patterns of Zone 1 and Zone 1 TZ soils are almost identical for all three size 

fractions.  They are both situated on the Garnet Gneiss 1 unit.  The same scenario 

exists for Zone 7 and Zone JWZ soils, with the exception of the much higher relative 

heavy element values of the coarse fraction of soil Zone 7 compare to the values for 

the same elements of soil Zone JWZ. 

http://scholar.sun.ac.za/
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5.3.3. Comparison between lithologies and soils 

 

Geochemical profiles over the Merelani lithologies and the soils that overly them, as 

represented in the trench, were constructed by plotting both the soil trace element 

XRF data for all three size fractions and for both soil horizons as well as the lithology 

trace element XRF data on the same graph (Fig.24).  The lithology and soil data were 

plotted on two corresponding y-axes, due to the difference in trace element 

concentration for some of the lithologies compared to the soils which overly them. 

 

All the trace element profiles of the soil zones in the trench correlate with those of the 

litholologies, which lie beneath them.  However, some trace element profiles, such as 

those of V and Cr, correlate to a larger degree than some of the others, such as Y and 

Ce.  Only the profiles in which the soil profiles most closely represent those of the 

lithology profiles are shown in Fig.24.  The rest can be found in the addendum 

(addendum CD).  In general, the closest correlations between the profiles of the soils 

and lithologies exist in the profiles of the fine and medium fractions of the C-horizons 

of the soils.  The A-horizon profiles generally correlate well with the lithological profiles 

from the Garnet Gneiss Unit 1 to the Central Dolomite, but then they “deviate” and the 

profile is smoothed compared to the lithological profiles.  The profiles of V, Ni and Zn 

are similar to each other as well as the profiles of Cr and Ga and Ba and Sr, which 

may suggest a correlation between these elements.  The trace elements which show 

the closest correlation between the soil and lithology trace element profiles are C-

Horizon profiles of the fine and medium fractions of V, Cr, Ni, Zn, Ga, Rb, Ba.  Of 

these elements V shows the closest correlation between the soil and lithology profile 

patterns.  The heavier elements, such as Pb and U show a correlation between soil 

and lithology profiles, however, the statistical error is so large, due to the low 

concentrations of these elements, that it is difficult to say whether the correlations 

actually exist. 

 

One reason for the weaker correlation with regard to the A-horizon profiles is that the 

A-horizon is more susceptible to soil creep and soil disturbance than the C-horizon, 

which is situated deeper in the soil profile.  The implications for exploration are thus 

that the C-horizon provides a more accurate comparison between soil and lithology 

and should therefore be the soil horizon to be sampled in an exploration survey. 
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Lithology and Coarse Fraction Soil Profiles
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Lithology and Coarse Fraction Soil Profiles for

Cr - C Horizon

0.00

100.00

200.00

300.00

400.00

500.00

600.00

R
o

c
k

C
r

C
o

n
c
e
n

tr
a
ti

o
n

(p
p

m
)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

S
o

il
C

r
C

o
n

c
e
n

tr
a
ti

o
n

(p
p

m
)

Rock Average+Se
Rock Average
Rock Average-Se
Soil Average+Se
Soil Average
Soil Average-Se

Lithology and Coarse Fraction Soil Profiles for

Cr - A Horizon

0.00

100.00

200.00

300.00

400.00

500.00

600.00

R
o

c
k

C
r

C
o

n
c
e
n

tr
a
ti

o
n

(p
p

m
)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

S
o

il
C

r
C

o
n

c
e
n

tr
a
ti

o
n

(p
p

m
)

Rock Average+Se

Rock Average

Rock Average-Se

Soil Average+Se

Soil Average

Soil Average-Se

http://scholar.sun.ac.za/



L
it

h
o

lo
g

y
a

n
d

F
in

e
F

ra
c

ti
o

n
S

o
il

P
ro

fi
le

s
fo

r
N

i
-

A
-H

o
ri

z
o

n

0
.0

0

1
0
0
.0

0

2
0
0
.0

0

3
0
0
.0

0

4
0
0
.0

0

5
0
0
.0

0

6
0
0
.0

0

7
0
0
.0

0

RockNiConcentration(ppm)

0
.0

0

1
0
0
.0

0

2
0
0
.0

0

3
0
0
.0

0

4
0
0
.0

0

5
0
0
.0

0

6
0
0
.0

0

7
0
0
.0

0

SoilNiConcentration(ppm)

R
o

c
k

A
v
e

ra
g

e
+

S
e

R
o

c
k

A
v
e

ra
g

e

R
o

c
k

A
v
e

ra
g

e
-S

e

S
o

il
A

v
e

ra
g

e
+

S
e

S
o

il
A

v
e

ra
g

e

S
o

il
A

v
e

ra
g

e
-S

e

L
it

h
o

lo
g

y
a

n
d

F
in

e
F

ra
c

ti
o

n
S

o
il

P
ro

fi
le

s
fo

r
N

i
-

C
-H

o
ri

z
o

n

0
.0

0

1
0
0
.0

0

2
0
0
.0

0

3
0
0
.0

0

4
0
0
.0

0

5
0
0
.0

0

6
0
0
.0

0

7
0
0
.0

0

RockNiConcentration(ppm)

0
.0

0

2
0
0
.0

0

4
0
0
.0

0

6
0
0
.0

0

8
0
0
.0

0

1
0
0
0
.0

0

1
2
0
0
.0

0

SoilNiConcentration(ppm)

R
o

c
k

A
v
e

ra
g

e
+

S
e

R
o

c
k

A
v
e

ra
g

e

R
o

c
k

A
v
e

ra
g

e
-S

e

S
o

il
A

v
e

ra
g

e
+

S
e

S
o

il
A

v
e

ra
g

e

S
o

il
A

v
e

ra
g

e
-S

e

L
it

h
o

lo
g

y
a

n
d

M
e

d
iu

m
F

ra
c

ti
o

n
S

o
il

P
ro

fi
le

s
fo

r

N
i

-
A

-H
o

ri
z
o

n

0
.0

0

1
0

0
.0

0

2
0

0
.0

0

3
0

0
.0

0

4
0

0
.0

0

5
0

0
.0

0

6
0

0
.0

0

7
0

0
.0

0

RockNiConcentration(ppm)

05
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

SoilNiConcentration(ppm)

R
o

c
k

A
v
e

ra
g

e
+

S
e

R
o

c
k

A
v
e

ra
g

e

R
o

c
k

A
v
e

ra
g

e
-S

e

S
o

il
A

v
e

ra
g

e
+

S
e

S
o

il
A

v
e

ra
g

e

S
o

il
A

v
e

ra
g

e
-S

e

L
it

h
o

lo
g

y
a

n
d

M
e

d
iu

m
F

ra
c

ti
o

n
S

o
il

P
ro

fi
le

s
fo

r

N
i

-
C

-H
o

ri
z
o

n

0
.0

0

1
0

0
.0

0

2
0

0
.0

0

3
0

0
.0

0

4
0

0
.0

0

5
0

0
.0

0

6
0

0
.0

0

7
0

0
.0

0

RockNiConcentration(ppm)

01
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

SoilNiConcentration(ppm)

R
o

c
k

A
v
e

ra
g

e
+

S
e

R
o

c
k

A
v
e

ra
g

e

R
o

c
k

A
v
e

ra
g

e
-S

e

S
o

il
A

v
e

ra
g

e
+

S
e

S
o

il
A

v
e

ra
g

e

S
o

il
A

v
e

ra
g

e
-S

e

F
ig

.2
4

..
.c

o
n
ti
n
u
e
dG
N
G

1 G
N
G

1

LK
4

LK
3

C
-Z

on
e

B
C
F2

G
C
S
2

B
C
F1

G
C
S
1

G
N
G

3

JW
Z

LK
2

LK
1

G
N
G

1 G
N
G

1

LK
4

LK
3

C
-Z

on
e

B
C
F2

G
C
S
2

B
C
F1

G
C
S
1

G
N
G

3

JW
Z

LK
2

LK
1

Z
o
n
e

1

Z
o
n
e

1
T

ra
n
s
it
io

n
Z

o
n
e

Z
o
n
e

2

Z
o
n
e

3

Z
o
n
e

4

Z
o
n
e

6

Z
o
n
e

7

Z
o
n
e

8

S
o

il
L

e
g

e
n

d

L
it
h
o
lo

g
ic

a
lA

lt
e
re

d
Z

o
n
e
s

L
it

h
o

lo
g

y
L

e
g

e
n

d

Z
o
n
e

1

Z
o
n
e

1
T

ra
n
s
it
io

n
Z

o
n
e

Z
o
n
e

2

Z
o
n
e

3

Z
o
n
e

4

Z
o
n
e

6

Z
o
n
e

7

Z
o
n
e

8

S
o

il
L

e
g

e
n

d

L
it
h
o
lo

g
ic

a
lA

lt
e
re

d
Z

o
n
e
s

L
it

h
o

lo
g

y
L

e
g

e
n

d

G
N
G

1 G
N
G

1
LK

4
LK

3

C
-Z

on
e

B
C
F
2

G
C
S
2

B
C
F
1

G
C
S
1

C
D

G
N
G

3

JW
Z

LK
2

LK
1

G
N

G
1 G

N
G

1
LK

4
LK

3

C
-Z

on
e

B
C

F
2

G
C

S
2

B
C

F
1

G
C

S
1

C
D

G
N

G
3

JW
Z

LK
2

LK
1

Z
o
n
e

1

Z
o

n
e

1
T

ra
n

s
it
io

n
Z

o
n

e

Z
o
n
e

2

Z
o

n
e

3

Z
o
n
e

4

Z
o

n
e

5

Z
o
n
e

6

Z
o

n
e

7

Z
o

n
e

8

S
o

il
L

e
g

e
n

d

L
it
h

o
lo

g
ic

a
lA

lt
e

re
d

Z
o

n
e

s

L
it

h
o

lo
g

y
L

e
g

e
n

d

Z
o
n
e

1

Z
o

n
e

1
T

ra
n

s
it
io

n
Z

o
n

e

Z
o
n
e

2

Z
o

n
e

3

Z
o
n
e

4

Z
o

n
e

5

Z
o
n
e

6

Z
o

n
e

7

Z
o

n
e

8

S
o

il
L

e
g

e
n

d

L
it
h

o
lo

g
ic

a
lA

lt
e

re
d

Z
o

n
e

s

L
it

h
o

lo
g

y
L

e
g

e
n

d

http://scholar.sun.ac.za/



Lithology and Coarse Fraction Soil Profiles

for Ni - A-Horizon
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Lithology and Coarse Fraction Soil Profiles

for Zn - A-Horizon
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Lithology and Coarse Fraction Soil Profiles

for Ga - A-Horizon
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Lithology and Coarse Fraction Soil Profiles

for Rb - C-Horizon
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Lithology and Coarse Fraction Soil Profiles

for Ba - A-Horizon
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When the trace element profiles of the Merelani Lower Horizon lithologies are 

considered, it can be seen that most of the trace elements show relatively high 

concentrations in either the Graphitic Calc-Silicate schist or in the Kyanite Gneiss 

units.  Exceptions are Zr, Ga and Rb, which show relatively high values in the Garnet 

Gneiss units.  The Garnet Gneiss units also contain, along with the Kyanite Gneiss 

Units, high values of Cr relative to the other trace element concentrations. 

 

An important trend in the trace element profiles of the Merelani lithologies is that the 

profiles are mirrored on either side of the Central Dolomite.  From the tanzanite mining 

complex folding is known to exist the Lower Horizon Lithologies.  The geochemical 

duplication is therefore indicative of possible structural duplication around the Central 

Dolomite. 

 

Fig.24 shows that the resolution, i.e. the contrast between high and low concentrations 

for a specific element, of the trace elements plotted as the soil trace element profiles is 

much less than that of the Merelani lithologies’ trace element resolution. 

 

It should be noted that the Graphitic Calc-Silicate schist units have the highest V 

concentrations and that these units are in close proximity to the Lower Horizon Kyanite 

Gneiss units 1 and 2, which host the tanzanite mineralisation. 

 

To shed further light on the trace element profiles, the anomalous values for each 

trace element in each of the soils and the Merelani lithologies were calculated.  The 

anomalous values are defined by all values above the 97.5th percentile for a specific 

trace element while the background values are all values below the median value as 

suggested by Rose et al. (1979). 

 

Only the summary results are shown in the text; the detailed tabulated results can be 

found in the addendum compact disc.  The tables for the Merelani lithologies will be 

described first, followed by a comparative description of the soils.  The elements which 

show anomalous values for each lithological unit are presented in Table 8. 
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Table 8  Trace elements showing anomalous values in the Merelani Lithologic 
units 

Merelani Lithological Unit Element in Anomalous Concentration 

GNG1 Ga, Th 

LK4/C-Zone/LK3 V, Ni1, Cu, Ga, Zr, Nb, Ce, Pb, U, Ba 

GCS2 V, Cr, Ni, Zn, Y, Nd, U 

BCF2 Rb, Th 

CD Ba 

BCF1 Rb, Sr, Nb, Th 

GCS1 U 

LK2/JWZ/LK1 V, Cr, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, La, Ce, 
Nd, Ba 

GNG3 Ga, Nb, Ce 
1.  Bold implies element anomalies which occur in the JWZ and/or C-Zone 

 

The only element which displays anomalous values in only one specific lithology is Rb 

in both BCF units.  The following observations are made when the table of the spread 

of anomalous values and values between background and anomalous are studied: 

 

• V, Ni, Zn and U show anomalous and high values in the GCS and 

Kyanite Gneiss units with background values in both Garnet Gneiss, 

both BCF and the Central Dolomite units; 

• Cr has background values in the Central Dolomite and has mostly 

background values in both BCF units, with isolated high values; 

• The high and anomalous values of Zr are situated exclusively in the 

Garnet and Kyanite Gneiss units with background values in both GCS 

and both BCF units as well as in the Central Dolomite Unit.   

 

Zone 1 and Zone 1 TZ soil zones are regarded as one soil zone, as they both cover 

the Garnet Gneiss 2 unit.  When the spread of anomalous, high and background 

values of the soils are compared (addendum compact disc) it becomes apparent that 

almost none of the elements are exclusively anomalous in any one soil zone, horizon 

or size fraction.  Rb is the only exception.  However, when the tables of anomalous 
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values for the soils and lithologies are viewed in conjunction, the following 

observations are made: 

 

• Cr, Ga and Rb have the majority of their anomalous and high values 

in Zone 1, Zone 1 TZ and Zone 8 soils, which are representative of 

the Garnet Gneiss units; 

• V, Ni, Zn, Sr and Ba have the majority of their anomalous and high 

values in Zone 2, Zone 3 and Zone 4 soils (representing the Kyanite 

Gneiss, GCS and BCF units above the Central Dolomite) and in 

Zone 6 and Zone 7 soils (representing the GCS, BCF and Kyanite 

Gneiss units below the Central Dolomite). 

 

5.3.4. Ti and Zr normalisation as a test of trace element mobility 
 

Two immobile elements are used to quantify element mobility during weathering 

(Nesbitt, 1979).  These are Zr and Ti.  It is, however, Zr which is most frequently used 

in mass balance calculations (Colin et al., 1993).  Ti is, however, also used 

(Scheepers and Rozendaal, 1993).  The potential problem however, is that in both 

cases the Ti and/or Zr is assumed to be the immobile element and all mass balance 

calculations are based on this assumption.  Therefore Ti and Zr were used to test 

whether they are discernibly mobile relative to each other, thus indicating whether any 

soil movement has taken place, as neither of these elements are mobile in a system 

dominated by chemical weathering  The mass balance calculations were performed 

using the equation of Nesbitt (1979): 

 





















−





















= 1100

p

p

s

s

Change %

i
x
i
x

 

 

The percentage increase or decrease of an element x in the sample s compared to its 

concentration in the parent rock p can be calculated relative to an assumed immobile 

element i (Ti or Zr). 
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The results are presented diagrammatically as spider diagrams in Fig.26 and Fig.27.  

The results of Zr- and Ti percentage change relative to each other is important for 

inferring soil particle mobility.  A summary of the values of Zr- and Ti-percentage 

change for each of the soil horizons and size fractions of the different soil zones is 

presented in Table 9 and Fig.25. 

 

From Table 9 and Fig.25 it becomes apparent that Zr and Ti are mobile relative to 

each other.  One would expect that in the event of hydromorphic trace element 

depletion or enrichment a percentage change of various mobile elements relative to Ti 

and Zr would result, but certainly not any percentage change of Ti relative to Zr.  Even 

though Ti and Zr are mobile relative to each other, the correlations between the 

percentage change of Zr relative to Ti for the different size fractions and soil horizons 

is remarkable (Table 8).  This would imply that the elements, although mobile, are 

mobile together.  With both elements being inert in chemical weathering systems, the 

only deduction that can be made is that the elements are mobilised physically.  Fig.26 

and Fig.27 also shows a correlation between the Zr- and Ti-normalised patterns when 

the percentage change values are plotted on a type of spider diagram.  The only 

general trend that can be observed in Fig.26 and Fig.27 is the generally larger 

percentage change of the heavier elements.  Exceptions however are the Ti and Zr-

normalised spider plots of Zone 4 and Zone 5, which both show high percentage 

changes for V and Ni.  Fig.25 shows that no clear trend can be discerned in the Zr- 

and Ti-percentage change profiles over the trench.  This would imply limited mobility, 

despite the seemingly large percentage change values. 
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Zone 7 (JWZ) Soil Ti-Normalised Percentage
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Table 8.  Correlation coefficient of the 
percentage change of Zr and Ti 
(calculated from Table 7) 

 
fine 
fraction 

medium 
fraction 

coarse 
fraction 

A-Horizon -0.97 -0.94 -0.93 
C-Horizon -0.90 -0.85 -0.92 

 

Table 9  Percentage change of Ti and Zr of the Merelani soils relative to the 
Merelani lithologies 

Fine Fraction Medium Fraction Coarse Fraction 
Ti 

Normalised 
Zr 

Normalised
Ti 

Normalised
Zr 

Normalised
Ti 

Normalised 
Zr 

Normalised

 
Zr  

% Change 
Ti 

% Change 
Zr 

% Change 
Ti  

% Change 
Zr  

% Change 
Ti  

% Change 

A-Horizon 

Zone 1 63 -38 3 1 -22 30 

Zone 1 
TZ 55 -35 29 -18 -5 7 

Zone 2 -16 16 -36 49 -49 90 

Zone 3 -28 35 -13 11 -22 23 

Zone 4 33 -24 -50 98 -40 69 

Zone 6 -24 30 -32 44 -54 140 

Zone 7 -41 61 -49 86 -61 140 

Zone 8 28 -32 -8 -5 -39 43 

C-Horizon 

Zone 1 1 0 -26 37 -29 42 

Zone 1 
TZ 6 -2 3 -1 -13 17 

Zone 2 -30 39 -36 51 -41 64 

Zone 3 -50 114 -23 30 -13 11 

Zone 4 -47 87 -6 5 -5 8 

Zone 5 -44 35 -41 28 -46 39 

Zone 6 -50 95 -16 16 51 -34 

Zone 7 -24 28 -19 16 -31 36 

Zone 7 
(JWZ) -42 69 -42 71 -38 60 

Zone 8 1 -14 -23 17 -27 20 
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In addition to the possible use of partial extraction methods in the exploration for 

additional tanzanite deposits, it is also a useful tool in testing the above hypothesis of 

Merelani trace element mobility.  Thus the following section will deal with the 

quantification of the mobility of selected trace elements, which could prove useful in an 

exploration venture for additional tanzanite deposits. 

 

5.3.5. Total (XRF) and Partial (ICP) trace element extraction and analysis 

 

Four trace elements were chosen for the ICP analyses for several reasons:  V was 

chosen due to the fact that it is the chromophoric element in tanzanite (Olivier, 2006) 

and because it has been shown to have a good correlation between the Merelani soils 

and lithologies and might prove useful in an exploration program and because of its 

mobility in oxygenating environments.  Cr, Ni and Cu were chosen for their 

chromophoric properties in a plethora of coloured gemstones (Fritsch et al., 1987 and 

1988) and budget constraint allowed for only the four elements to be analysed.  The 

coarse fraction was not chosen for analysis because of the fact that the elements 

chosen for the ICP-AE analysis show a better correlation between the Merelani soils 

and lithologies in the fine and medium fractions. 

 

The leachate of the medium and fine fractions of the Merelani trench soil samples was 

analysed by ICP-AE.  The ICP analyses are expressed relative to the XRF analyses 

as a percentage and presented in Table 10 and Table 11.  The following equation was 

used to calculate the values presented in the afore-mentioned tables: 

 











= XRF

Average

ICP
Average100Leached Metal Percentage
x
x

 

 

Table 10 and 11 show that there is generally and order of magnitude or two difference 

between the concentration of extractable metal in the A- and C-Horizons.  However, 

values are still less that 2ppm for Cr, Ni and V, which is low relative to the 

concentration of these elements in the soil.  The percentage extractable Cu in the fine 

fraction of Zone 3 A-Horizon and Zone 5 as well as the C-Horizon of the medium 

fraction of Zone 3 are high relative to the percentage extractable metal available for 

the other three elements and reaches a value of 73ppm in the A-Horizon of Zone 3.  In 
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addition to the high analytical precision values for Cu, the average Cu concentration in 

the Merelani trench soils is low and ranges from 32 - 74ppm.  Thus caution is called 

for in interpreting the amount of Cu potentially leacheable from the soils. 

 

The ICP-AE analyses therefore show that the trace elements investigated, with 

perhaps the exception of Cu, is not significantly mobilised by soil solutions and must 

therefore be mobile by physical means such as soil creep down-slope and/or flash 

floods. 

 

5.3.6. Chemical evaluation of various size fractions 
 

In geochemical exploration it is important to know how the elements of interest are 

distributed throughout the sampled medium and where they occur for the purposes of 

planning and implementing a geochemical exploration programme.  Thus the trace 

element data of the fine, medium and coarse fractions from the Merelani soils were 

geochemically evaluated in terms of trace element distribution. 

 

V, Ni, Cr, Zn and Th were chosen for the study.  The first four elements were chosen 

due to their positive geochemical correlation between the Merelani lithologies and 

soils.  Th was chosen as a reference frame because of its known association with 

heavy minerals (Dill, 1998; Wederpohl, 1978) and thus coarse fraction in soils and 

stream sediments.  Ni, is concentrated in the fine fraction.  This, as well as the 

association of Th with the coarse fraction in the Merelani soils, is demonstrated in 

Fig.28b.  Ni and Th display an antipathetic relationship with a linear correlation 

coefficient of -0.586, which is significant (see section 4.3 for a more detailed 

discussion on correlation coefficients).  Ni displays maximum concentrations in the fine 

fraction and Th maximum concentrations  in the coarse fraction. 

 

V shows a slight vertical trend towards higher concentrations in the fine fraction 

(Fig.28a).  The highest Cr values are found in the fine fraction, with no significant 

separation of the spread of values between the medium and coarse fractions.  Zn 

shows the same trend and to the same degree as V. 

 

V, Ni, Cr and Zn all display trends towards enrichment in the fine fraction.  The only 

difference is the degree of enrichment of individual elements, as can be seen from the 
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plots of V, Zn and Cr against Ni.  Cr shows a strong trend of enrichment in the fine 

fraction relative to the medium and coarse fractions relative to Ni (Fig.28e).  V and Zn 

both show more gradual trends of enrichment towards the fine fraction relative to Ni 

(Fig.30f-g). 

 

As an aid to the above scatterplots in the study of trace element distribution, the 

average and standard errors of the chosen elements were calculated and are 

presented in Table 12.   

 
Table 12  The average and Standard Error of the 

Selected Trace Elements for the 
Coarse, Medium and Fine Fractions of 
the Merelani Soils (n=50) 

Element Fraction Average Standard Error 

Coarse 440.27 51.61 
Medium 541.60 62.39 V 

Fine 779.50 82.12 
Coarse 60.86 7.85 
Medium 177.54 24.82 Ni 

Fine 287.93 40.52 
Coarse 318.85 45.33 
Medium 311.23 45.73 Zn 

Fine 438.54 56.60 
Coarse 192.04 11.83 
Medium 183.65 10.08 Cr 

Fine 739.01 47.99 
Coarse 465.46 98.67 
Medium 990.28 99.02 Ba 

Fine 910.61 60.80 
Coarse 39.52 2.70 
Medium 26.48 1.78 Th 

Fine 10.73 0.77 
 

 

Twice the standard deviation (σ) was used in the calculation of the standard error 

implying a 95% certainty that a data point will be located in a certain data range 

(Fletcher et al., 1987), defined by the sum of and difference between the average ( x ) 

and the standard error.  The calculation is expressed by the following equation: 

 









±=

n
2Range Data σx  
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The data is presented schematically in Fig.29.  From Fig.29 it becomes clear that no 

data overlap exists (except for a few samples which fall outside the 95% confidence 

limits) between the various size fractions for the individual trace elements.  The 

differentiation of Ni values from lower values in the coarse fraction to higher values in 

the fine fraction is much more pronounced than that of V and Zn as was shown in the 

scatterplots (Fig.28a and Fig.28d).  The highest values of Cr are in the fine fraction, 

but no clear distinction can be made between the coarse and medium fractions when 

viewing the spread of  Cr concentration values (Fig.29).  Thus Table 12 is a 

compliment to Fig.28. 

 

5.4. Correlation 
 

The linear correlation coefficient (r), is a dimensionless statistical parameter to quantify 

the extent to which the values of a specific variable vary relative to the values of a 

second variable and is defined by the following equation: 

 

yx

xy

SS
Cov

r
.

=  

 

with Covχy the covariance of variable χ and y defined by: 

 

( )( )∑
=

−−=
n

1-n
Cov

1

1
i

iixy yyxx  

 

with n the number of data points, χi the ith value of variable χ, x  the average for all 

values of variable χ, yi the ith value of variable y, y  the average for all values of 

variable y and Sχ and Sy the standard deviations of variables χ and y respectively.  

The upper an lower limits of the coefficient vary between the values of –1 and 1.  1 

Indicates a perfect sympathetic (positive) correlation, or simultaneous variability, while 

–1 indicates a perfect antipathetic (negative) correlation.  0 Indicates the total absence 

of any correlation between the values of two respective variables.  A few examples 

from the Merelani lithologic data set were chosen as examples of the relation of 

numerical integer values of r and their data distribution patterns in a scatterplot and 

presented in Fig.30. 
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There is one difficulty regarding r, inherent in its name, which must be taken into 

account.  The linear correlation coefficient is a measure of linear trends and does not 

show any polynomial trends of data variability (Fig.31a (i - ii) and Fig.31b (i - ii)).  The 

numerical value of the coefficient should therefore always be interpreted in conjunction 

with the relevant scatterplots. 

 

5.4.1. Merelani Lithology Trace Element Correlations 

 

Correlation matrices of the major and trace elements of the Merelani lithologies and 

soils were constructed (addendum compact disc).  A value of  r ≥ 0.500 was taken as 

a significant correlation.  These matrices were constructed in order to identify certain 

element groups within the major and trace element data sets, which show mutual 

variation trends.  The aim was to discern possible mineralogic hosts for the various 

trace elements.  The study was performed in three main phases.  In the first phase 

correlations between the trace and major elements for the Merelani lithologies were 

calculated.  Various groups with mutually correlating trace elements and major 

element oxides were identified.  These groups are referred to as “mutually correlating” 

groups.  In the second phase, the correlation coefficients for the trace elements from 

the Merelani trench soils were calculated.  Once again, trace elements displaying 

mutual correlations were identified and grouped.  In the third phase the groups from 

the Merelani lithologies and soils were compared with each other and with published 

data on mineral chemistry.  This was done to discern possible mineralogic hosts for 

the trace elements of the soils, based on the groups of mutual correlation in which 

specific elements occur.  The results of this study are easily verified by LA-ICP-MS. 

 

The Kyanite Gneiss (LK4) unit is taken as an example of the process. 

 

Four groups of mutually correlating trace elements were identified from the correlation 

matrix for the Kyanite Gneiss LK4 unit (Table 13) compared to the six groups of 

mutually correlating trace elements and major element oxides, as show in Table 14.  It 

can be seen from both these tables that there are subtle differences between the 

groups of mutually correlating trace elements and of the groups of trace elements and 

major element oxides.  However, when the groups mutually correlating elements in 

Table 14 is studied, it becomes apparent that the groups of Table 13 are grouped 
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Fig.31 Schematic diagram of potentials problems when using r (after Fletcher, 1987)
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Table 13  Groups of mutually correlating trace elements in the 

Kyanite Gneiss (LK4) 
Group1 Elements 
1 V, Ba, Sr 
2 Ga, Rb, Sr, Ce, Y, La, Nd, Th 
3 Th, Y, Ce, U, Zn, Cr, Nb 
4 Zr, Cu, Pb, Nb 

 
Table 14  Groups of mutually correlating trace elements and major 

element oxides in the Kyanite Gneiss (LK4) 
Group Elements 
1 TiO2, Zr, Nb, Ce, Th, MgO 
2 CaO, P2O5, Ga, Rb, La, Ce, Nd, Sr, Zr, U, Na2O, MgO 
3 K2O, Al2O3, V, Ba, Ga, Rb, Sr, Y, Ce, Ni, Cu, U, Cr, Zn, Na2O, MnO 
4 Fe2O3T, La, Nd, Ni, Zr, Zn, Ga, MnO 
5 Zr, Cu, Nb, Nd, Pb, Ni, LOI 
6 Zn, Y, La, Nd, MnO, K2O 

 
 
                                            
1 a “Group” is defined by values of r defining mutual correlations between the elements of a specific group as 
represented in the above tables. 
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together to form the larger groups in Table 14.  This is a result of adding the major 

element oxides to the correlation matrix of the trace elements and recalculating the 

correlations. 

 

The groups of mutually correlating trace elements and major element oxides identified 

for the Merelani Lower Horizon lithologies are shown in Table 14.  The groups of 

mutually correlating major element oxides and trace elements were ascribed to a 

mineral phase(s) depending on the dominant major element component for a specific 

mineral phase (Table 15b) based on published data on mineral chemistry (Deer et al., 

1966, Klein and Hurlbut, 1993. Wederpohl, 1978). 

 

In order to identify general groups of mutually correlating trace elements in the 

Merelani lithologies, all the lithological units were placed in a single spreadsheet and a 

correlation matrix constructed (Table 16).  The resultant matrix is therefore an average 

of all the Merelani lithologies potentially rendering it comparable to a matrix of the 

entire soil data set as certain soils cover more than one lithological unit. 

 

Five groups were identified for both the major and trace elements (Table 15).  The only 

element in the Merelani lithologies with which SiO2 shows a significant correlation is 

Zr.  This is an indication that Zr is predominantly incorporated into silicate minerals and 

the mineral zircon is inferred, as this mineral does occur in many of the Merelani 

lithologies (see Chapter 2, section 2).  This is also substantiated by the correlation 

between Zr and Y in many of the Merelani lithologies as these two elements commonly 

group together (Wederpohl, 1978).  The second group is interpreted as being 

contained in the heavy minerals, including garnet due to the TiO2-Al2O3 correlation.  

The third group is inferred as representing the carbonates, due to the mutual 

correlation of CaO, MgO and LOI.  The fourth group is seen to represent the feldspars 

and micas, based on published data (Icenhower and London, 1996).  It must be noted 

that the Rb-K2O correlation is remarkable (Fig.32) with r = 0.906.  This excellent 

correlation exists despite the fact that the correlation matrix represents the entire 

group of Merelani lithologies.  This strongly suggests that both Rb and K2O are located 

in a very limited amount of mineral phases.  The last group is a group containing P2O5 

and the Rare Earth Elements (REE). 
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Table.15  Table of various groups extracted via intercorrelatory trace 

element and trace element-major element oxide relationships 
Major or Trace Element Element Correlated with 

SiO2 Zr 
TiO2 Ga, Zr, Nb, Al2O31, Fe2O3T 
Al2O3 Ga, Zr, Nb, TiO2, Fe2O3T, LOI 
Fe2O3T Ga, TiO2, Al2O3 
MgO CaO, LOI 
K2O Rb 
CaO MgO, LOI 
P2O5 Y, Ce 

Major Element Correlations 

LOI MgO, LOI 
V Ni, Cu, Zn, U 
Ni V, Zn, U 
Cu V, Ba 
Zn V, Ni, U 
Ga TiO2, Al2O3, Fe2O3T 
Rb K2O 
Y La, Ce, Nd, P2O5 
Zr Nb, La, Ce, Nd, SiO2, TiO2, Al2O3 
Nb Zr, TiO2, Al2O3 
Ba Cu 
Ce Y, Zr, La, Nd, P2O5 

Trace Element Correlations 

U V, Ni, Zn 
 
 

Major Element Groups: 
 

1. SiO2, Zr 
2. TiO2, Al2O3, Fe2O3T, Ga, Zr 
3. MgO, CaO, LOI 
4. K2O, Rb 
5. P2O5, Rare Earth Elements 

 
Trace Element Groups: 
 

1. V, Ni, Zn, U, Cu, Ba2 
2. Y, La, Ce, Nd, P2O5, Zr 
3. Zr, Nb, La, Ce, Nd, SiO2, TiO2, Al2O3

3 
4. Rb, K2O 
5. Ga, TiO2, Fe2O3T, Al2O3

4 
 
 

 
 

 

                                            
1 Italics implies 0.8<r<0.9 and bold implies r>0.9 
2 This group is not significantly associated with any major element oxides and could be associated with graphite, as graphite is a major mineral phase in many of the 

Merelani lithologies 
3 It could be that Zr is associated with the mineral zircon as well as with another phase, such as rutile and the clay minerals.  Nb displays the same behaviour 

4 Ga seems to be associated with the heavy mineral phase, although the Al2O3 could represent the garets as well as the clay minerals or feldspar – the garnets or 
feldspars are preferred as the clay minerals only form a major phase in the altered zones 

Table.15b Table of various groups extracted via intercorrelatory trace 
element and trace element-major element oxide relationships 

Group Elements Associated mineral(s) 
1 V, Ni, Zn, U, Cu, Ba, Cr, Sr, Th Graphite 
2 Fe2O3T, MnO, Na2O, H2O- Fe-Minerals 
3 Zr, Nb, SiO2, TiO2, Al2O3, Ga Heavy Minerals (especially, Zircon, Rutile, 

Ilmenite, Kyanite, Garnet) 
4 Rb, Pb, K2O Feldspars and Micas 
5 CaO, MgO, LOI Carbonates 
6 REE, P2O5 Apatite, Allanite 
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It is well known by igneous petrologists and geochemists that apatite, which is present 

in the Merelani rocks, is an important sink for REE (Fleet and Pan, 1997, Rakovan and 

Reeder, 1996, Watson and Green, 1981).  There are, however, two problems with the 

excellent correlations in the Merelani lithology data set.  The first is fairly simple and 

relates to the amount of apatite in the rocks.  Only three of the six zones of Merelani 

lithologies contain apatite and then only as an accessory.  Fleet and Pan (1997) and 

Watson and Green (1981) published data on the ability of apatite to absorb REE from 

water-bearing phosphate fluoride melts and on the partition coefficients of REE 

between apatite and a liquid ( ap/liquid
REED ) at temperatures of 700°C to 800°C and 

pressures of 0.10GPa to 0.15GPa.  The partition coefficients in both these publications 

are in relatively good agreement and the data from Fleet and Pan (1997) will be used.  

Their partition coefficients are presented in Table 17. 

 

Table 17  Published Distribution coefficients between REE in apatite and the 
fluid 

Rare Earth Element Distribution Coefficient (D) 

La 5 

Ce 7 

Nd 8 

 

The average values for La, Ce and Nd for the Merelani rocks are presented in 

Table 18. 

 

Table 18  Average concentration of REE in Merelani Lithologies in ppm 

Rare Earth Element Average Concentration 

La 23.32 

Ce 38.50 

Nd 25.50 

 

Ce is taken as an example.  For a total of 38.50ppm Ce with a ap/liquid
CeD  of 7, a total of 

33.69ppm Ce will theoretically partition into apatite with 4.81ppm remaining in the fluid.  

These values relate to a situation where apatite is the only primary REE absorbing 

mineral.  Thus 12.5% of the Ce will either remain in the melt or be transported by 

supercritical (or hydrothermal) fluids and precipitate elsewhere such as in other 
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minerals.  One thing that must be kept in mind is the linear correlation coefficient 

between Ce (r=0.560) and P2O5 and the even lower correlation coefficient between 

P2O5 and the other REE.  So even though the rCe-P2O5 is significant, it may be that the 

correlation is due to other factors, such as possible mutual correlation with graphite, 

and not apatite.  So, although an apatite Ce content of 33.69ppm is quite possible, it 

might be more likely that the REE were firstly absorbed onto organic carbon 

(Dissanayake et al., 1988) and then mobilised by progressive metamorphism and 

incorporated into apatite and various other minerals, hence the only significant 

correlation with each other and P2O5, which probably means that they (REE and P2O5) 

moved together.  Additional evidence for the aforementioned lies in the significant 

positive correlation between Ce and V in altered rocks.  V is also thought to have been 

extracted from seawater by organic matter and mobilised during diagenesis and 

progressive metamorphism to be incorporated into silicate minerals (Breit and Wanty, 

1991).  It is not being implied that the apatite does not contain any REE, only that they 

are most probably primarily concentrated elsewhere and that the REE-P2O5 

relationship can be explained by other factors. 

 

The second problem with the REE-P2O5 correlation is that the values of r are classic 

examples of the influence of an outlier on the correlation coefficient (Fig.33).  When 

Fig.35 is studied, it can be seen that an outlying sample plots to the right of all the 

rest.  When this sample is removed, it can be seen that the correlation is reduced from 

0.920 to 0.164 (Fig.35b).  The significant correlation has been reduced from a status 

of significance to one of insignificance.  The value of r is 82.17% less than when 

plotted with the outlier.  This serves as additional evidence that it is not apatite that is 

the most significant drive in the Merelani REE chemistry.  The sample was removed, 

because of its large effect on especially the REE-P2O5 correlations, rendering them 

unrepresentative.  The sample must, however, not be excluded from the database 

and must be examined in more detail to discern the reason for the anomalous values. 

 

Breit and Wanty (1991) highlights the significance of the V/Ni ratio, which is indicative 

of both the oxidation-state of the accumulation zone as well as the amount of S 

present.  They state that: 

 

V accumulates relative to nickel (high V/Ni) in strongly reducing, 

H2S-rich environments. 

http://scholar.sun.ac.za/



Ce vs P2O5

y = 46.286x + 28.118

R
2

= 0.847

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

P2O5

C
e

Ce vs P2O5

y = 28.46x + 30.99

R
2

= 0.0268

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

P2O5

C
e

Outlier

Fig.33a Ce vs P O plotted with outlier2 5
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According to them, the larger the anoxia levels, the larger the V/Ni mole ratios in 

carbonaceous rocks (maximum ~5).  Larger levels of anoxia also favour larger 

concentrations of both metals.  They go on to state that V/Ni ratios are largest in S-

rich petroleum.  This, according to them, is because of the reduction of V by H2S and 

the immobilisation of Ni by NiS complexes.  Deviations from the V/Ni values measured 

in bitumen is attributed by them to the incorporation of V in silicate minerals and Ni in 

sulphides. 

 

In the Merelani lithologies observed H2S within the calcite in cavities ( inferred from 

the yellow colour and characteristic H2S smell), as well as the presence of large pyrite 

crystals in the same cavities, is evidence of anoxic conditions.  Analyses of various 

minerals are proof that V is indeed incorporated into silicate structures (Table 19).  For 

example, one sample of tsavorite contains about 34 000ppm (~3,4%) of V!  The V/Ni 

ratio ranges from 0.8 to 11.05 with an average of 3.35 for the total data set and an 

average of 3.18 for the altered zones, which is slightly lower and reflects the 

incorporation of V into silicate minerals, such as zoisite. 

 

Dissanyake et al. (1988) studied trace elements from a vein graphite deposit in a high-

grade metamorphic terrain, dominated by granulite facies rocks.  The rocks are 

reported to be of Precambrian age, which makes an excellent chronological 

correlation with the neo-Proterozoic, high-grade metamorphic rocks of the Merelani 

area and its high graphite content (Davies et al., 1994). 

 

They make the following important statement: 

 

Other elements such as V, Cr, Co, Ni, Cu and Zn though found in 

lesser concentrations (than Fe) at the parts per million (ppm) 

range show noteworthy accumulation in graphite. 

 

In addition they report a La-content of 4-10ppm and a Y-content of 0.5-2ppm, 

although this is in the order of ~10ppm less than the Merelani lithologies. 
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Dissanyake et. al (1988) also report a significant correlation between Y and P 

(r = 0.907) and La and P (r = 0.976) in graphite.  They infer a genetic relationship to 

explain the high correlation. 

 

Thus it is reasonable to assume that the REE-P2O5 correlation in the Merelani Lower 

Horizon lithologies is not primarily due to apatite but to graphite.  A possible 

explanation that the correlation is not as strong as that of Dissanyake et al’s. (1988), 

is most probably because the REE are predominantly partitioned into graphite, while 

the P2O5 is distributed between apatite and graphite.  This  possibility could certainly 

be important in certain specific lithologies, as reflected by the smaller correlation in 

these lithologies.  The negative correlation between the REE and phosphate in a few 

lithological units points to a antipathetic correlation.  This implies that the REE may be 

absent where phosphate is present and visa versa, although to a small degree as the 

negative correlations are weak, i.e. less than -0.500. 

 

The final groups for the Merelani lithologies identified from the mutual correlations of 

trace and major elements and their inferred mineralogic hosts are shown in Table 20. 
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Table 20  Final groups of mutually correlating trace and major elements and 
their associated mineral phases 

Group Elements Associated mineral(s) 

1 V, Ni, Zn, U, Cu, Ba, Cr, 
Sr, Th Graphite 

2 Fe2O3T, MnO, Na2O, H2O- Fe-Rich Minerals (Pyrite, Pyrrhotite, Garnet, 
Biotite, Ilmenite) 

3 Zr, Nb, SiO2, TiO2, Al2O3, 
Ga 

Heavy Minerals (especially, Zircon, Rutile, 
Ilmenite, Kyanite, Garnet) 

4 Rb, Pb, K2O Feldspars and Micas 

5 CaO, MgO, LOI Carbonates 

6 REE, P2O5 Apatite, Allanite, Graphite 

 

5.4.2. Merelani Soil Trace Element Correlations 

 

The next phase was to calculate correlation coefficients for the A- and C-Horizons and 

the different size fractions of the Merelani trench soils.  Groups of mutually correlating 

trace elements were identified and the average correlation coefficient of the different 

size fractions are presented in the tables.  These groups were compared to the results 

obtained from the study of the mutual major and trace element correlations of the 

Merelani lithologies. 

 

Table 21a shows the various trace elements and the elements with which they are 

correlated with in the A-Horizons.  From the correlations two main groups were 

identified from mutual correlations (Table 21b).  It must be said that a few elements, 

such as Cu, did not show any significant correlations and they were then placed in the 

group with which they shared the highest number of mutual correlations with the 

highest values of r. 

 

Based on comparison with the study of the groups of mutually correlating trace 

elements and major element oxides and the minerals which these groups represent, 

the groups of mutually correlating trace elements of the soils were divided into the 

following groups:  Group 1 of is taken to represent graphite, the clay minerals and the 

micas, while Group 2 is taken to represent the heavy minerals, based on the above 

study on the mutual correlations between the major and trace elements of the 
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Table 21a  Table of the A-Horizon trace element and the elements with 
which they are correlated 

Element Correlated with r 
Ni 0.901 
Zn 0.872 
Sr 0.868 
Y 0.647 

V 

U 0.581 
Ga 0.661 
Rb 0.707 Cr 
Zr 0.844 
V 0.901 
Zn 0.967 
Sr 0.883 
Y 0.590 

Ni 

Ba 0.661 
Cu Nb 0.3961 

V 0.872 
Ni 0.867 
Sr 0.817 Zn 

Ba 0.568 
Cr 0.661 
Rb 0.686 
Zr 0.710 
Nb 0.568 

Ga 

REE2  
Cr 0.707 
Ga 0.686 Rb 
Zr 0.754 
V 0.868 
Ni 0.883 
Zn 0.817 
Y 0.640 

Sr 

Ba 0.791 
V 0.647 
Ni 0.590 
Sr 0.640 
Ba 0.718 

Y 

U 0.650 
Cr 0.844 
Ga 0.710 
Rb 0.754 Zr 

REE  
Ga 0.568 Nb REE  
V 0.798 
Ni 0.661 
Zn 0.568 
Sr 0.791 
Y 0.718 

Ba 

U 0.567 
Ga 0.682 
Zr 0.653 
Nb 0.802 
Th 0.664 

Ce 

REE  
Pb Y 0.3583 
Th REE  

V 0.581 
Y 0.650 U 
Ba 0.567 

 
Table 21b  Groups containing mutually correlating trace elements, 

extracted from the above relationships together with the 
minerals with which they are most probably associated 

Group Elements Proposed Minerals 
1 V, Ni, Zn, Sr, Y, U, Ba Graphite, Clays, Micas 
2 Zr, Cr, Ga, Rb, REE, Pb Heavy Minerals 

 
 
                                            
1 Best correlation (i.e. highest r value) 
2 Correlations with all the REE were evaluated, therefore no single value 
3 Best correlation 
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Merelani lithologies in conjunction with published data on mineral chemistry (Klein and 

Hurlbut, 1993; Wederpohl, 1978. 

 

A similar table was constructed for the C-Horizon (Table 22a).  The table shows the 

four main groups which were identified (Table 22b).  However, some elements in 

some groups showed significant correlations with other elements in other groups.  

These mutual correlations were examined and two main groups were identified (Table 

22c). 

 

Both groups in the A- and C-Horizons are virtually identical.  The only difference is Pb.  

There is a very low concentration of Pb present in both soil horizons (average A-

Horizon = 2.8ppm; average C-Horizon = 3.23ppm). 

 

When the groups of mutually correlating trace elements from the soils are compared 

to the groups of mutually correlating trace elements and major element oxides of the 

lithologies, one thing is immediately apparent:  The number of groups differ.  This 

could either be due to the fact that the soil particles are slightly mobile or that some of 

the major elements in the soils are mobile, thereby causing a slightly different trace 

element variation pattern.  However, some of the groups of mutual element 

correlations of the Merelani lithologies can be identified as grouped together in the 

groups of mutual correlations identified for the Merelani trench soil zones.  Group 1 of 

the Merelani rocks have been divided into Groups 1, 2 and 4 in the C-Horizon 

samples of the soil, with the addition of Th to group 1 of the Merelani lithologies. 

 

5.5. Discussion and Conclusions 
 

The following conclusions can be reached from the foregoing paragraphs: 

 

• The study of the percentage change of the concentration of trace 

elements in the Merelani soils relative to their lithological 

counterparts have shown that the trace elements are mobile; 

• The study of ICP relative to the XRF analyses of the trace element 

concentration in the Merelani trench soils has shown that the trace 

elements are not mobilised by hydromorphic means; 
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Table 22a  Table of the C-Horizon trace element and the elements with 
which they are correlated 

Element Correlated with r 
Ni 0.543 
Y 0.548 V 
U 0.802 
Ga 0.672 
Rb 0.577 Cr 
Zr 0.668 
V 0.543 
Zn 0.703 
Y 0.673 
Ba 0.637 

Ni 

U 0.510 
Cu Sr 0.530 

Ni 0.703 Zn Ba 0.819 
Cr 0.672 
Rb 0.723 
Zr 0.672 Ga 

Nb 0.541 
Cr 0.577 Rb Ga 0.732 
Cu 0.530 
V 0.548 
Ni 0.673 
Ce 0.523 

Sr 
Y 

U 0.536 
Cr 0.668 
Ga 0.672 
Nb 0.804 
REE  

Zr 

Th 0.708 
Ga 0.541 
Zr 0.804 
REE  Nb 

Th 0.643 
Ni 0.637 Ba Zn 0.819 
Y 0.523 
Zr 0.840 
Nb 0.821 
REE  

Ce 

Th 0.847 
Zr 0.708 
Nb 0.643 Th 
REE  
V 0.802 
Ni 0.510 U 
Y 0.536 

 
Table 22b  Groups extracted from above relationships 
Group Elements 
1 V, Ni, Y, U 
2 Ba, Ni, Zn, Pb 
3 Cr, Ga, Rb, Zr, Nb, REE 
4 Sr, Cu 

 
Table 22c  Groups of mutually correlating trace elements, extracted from 

the above relationships together with the minerals with which 
they are most probably associated 

Group Elements Proposed Minerals 
1 V, Ni, Y, U, Ba, Ni, Zn, Pb, 

Sr, Cu 
Graphite, Clay minerals, 
Micas 

2 Cr, Ga, Rb, Zr, Nb, REE Heavy Minerals 
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• Thus the trace elements are mobilised by physical means, such 

as soil creep on a sloping hill side or by flash floods in the rainy 

season.  However, soil particle mobility is hindered, most probably 

by dense vegetation in the rainy season and the resultant trace 

element movement is low, as shown by the good correlation 

between profiles of individual trace elements of the soil and the 

lithologies; 

• The trace element profiles of V, Ni, Cr and Zn in the Merelani 

soils, plotted over the trench, show the closest correlation to the 

profiles of these elements in the lithologies.  Of the element 

profiles of the aforementioned elements, the profile of the fine and 

medium fractions of the C-Horizon of V showed the closest 

correlation between soils and lithologies over the trench..  This 

could be as a result of the fact that the medium fraction is a “best 

of both worlds scenario”, in other words, both the finer (e.g. 

graphite) and coarser (e.g. garnet) mineral particles are located in 

this fraction; 

• The correlation coefficients show that the trace elements occur 

and move together in definite groups, which are attributed to the 

movement of individual mineral phases (Table 17). 

• V, Ni, Cr, and to a lesser extent Zn, is concentrated in the fine 

fraction, as shown by the scatter plots of these elements against 

Th which is concentrated in the coarse fraction.  The most 

probable, most important mineralogic host for V, Ni, Cr and Zn is 

graphite with the silicate minerals such as zoiste and garnet being 

of secondary importance in terms of element concentration.  This 

is an indication that the panning of graphite and the subsequent 

geochemical analyses may be a viable exploration tool in the 

exploration for additional tanzanite deposits and may prove more 

effective than the whole-rock XRF and partial leach methods 

employed in this study. 

 

Soil samples can therefore potentially be utilised in the search for tanzanite, using a 

whole-rock XRF method.  The ICP-AE partial extraction method has proved to be 
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ineffective in exploring for additional tanzanite deposits, due to the low concentration 

of trace elements which can be extracted by this method. 

 

It is not the tanzanite lithologies that are indicated by, for example, high V values, but 

rather the lithologies containing high contents of the chromophoric element, V that are 

illuminated.  In addition to tanzanite, V has been shown to be most probably primarily 

concentrated in graphite.  Thus it is these lithologies, such as the Graphitic Calc-

Silicate schist units, which will be indicated when using V as a pathfinder.  These units 

fortunately occur in close proximity to the JW-Zone, which is host to the tanzanite 

mineralisation and sandwiched between the Kyanite Gneiss units LK1 and LK2 

(Olivier, 2006).  Therefore, if a GCS-type unit is found, a altered zone might be in 

close proximity.  Of all the trace elements, V shows the best results with the closest 

resemblance between lithologic and soil profile plots and it is this element which 

should therefore be utilised in the search for additional tanzanite-bearing lithologies, 

when using whole-rock XRF methods of analysis.  Ni, Cr and Zn can be used in 

conjunction with the V values to lend additional potential credence to the identified V-

anomalies.  The highest values of Cr occur in the Garnet and Kyanite Gneiss units.  

The fine and medium fractions of the C-Horizon samples showed the best anomaly-

background contrasts for V.  Thus a fraction of smaller than 180µm of the C-Horizon 

should be sampled if soil sampling is to used in an exploration programme. 
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6. Stream Sediments 
 

6.1. Introduction 
 

The trace elements contained within the stream sediments find themselves in a 

completely different geochemical environment relative to the same elements within the 

soil samples.  Thus different data evaluation methods were used in the evaluation of 

the stream sediment data.  These different geochemical environments are influenced 

by different geochemical parameters.  One important parametrical difference is the 

velocity of fluid movement.  In soils, fluids only start to flow laterally when precipitation, 

above freezing, exceeds the soil’s speed of infiltration and/or capacity for fluid 

absorption.  For the most part, elements are mobilised by soil solution and/or soil 

creep on hillsides.  This implies that the soil fluids have a greater potential for chemical 

equilibration with the surrounding soil particles.  When, however, soil is transported by 

surface runoff with the subsequent development of erosion channels, i.e. streams and 

rivers, the soil particles and their contained trace elements are mobilised physically.  

Some elements may go into solution due to changing physio-chemical conditions of 

river water.  It follows that soils are associated mainly with chemical erosion, excluding 

arid climatic conditions, and rivers predominantly with physical erosion, depending on 

the climate and landscape topography (Foth, 1984). 

 

Three streams were sampled (Fig.18, Chapter 3).  The data analysis was done on the 

data for individual streams and then combined and analysed as a whole. 

 

Elements are mobilised in rivers by three main mechanisms (Rose et al, 1979): 

1. In mineral grains or rock particles on the river floor. 

2. In suspension as fine mineral grains, adsorbed to clay and Fe and Mn 

oxy-hydroxides or on suspended organic matter. 

3. In solution, either as complexes or as dissolved ions. 

 

In the Merelani area, heavy rains fall in the months from March to May, causing flash 

floods.  Due to the large amount of water available the heavy rains are accompanied 

by abundant vegetation growth, which subsequently choke the smaller rivers and 

streams in the area.  The stream sediments, therefore, only have a small window of 

time in which to be significantly mobilised. 
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This chapter consists of three main parts.  The first is the geochemical characterisation 

of the stream sediment data, followed by statistical data evaluation, and the 

conclusions drawn from it. 

 

6.2. Stream Sediment Characterisation 
 

Parameters exist which can indicate whether stream sediments are derived from upper 

or lower continental crust (Vital and Stattegger, 2000).  For this reason the trace 

element concentrations for both fractions were normalised to the Upper Continental 

Crust (UCC) and Lower Continental Crust (LCC) values of Taylor and McLennan 

(1995).  The values were plotted as spider diagrams (Fig.34).  This normalisation is a 

first approach to defining a geochemical signature for the Merelani stream sediment 

geochemical data as well as rendering the data comparable to that of similar studies, 

such as that of Vital and Stattegger (2000).  No conclusions on genesis are derived for 

either the stream sediments or their parent lithologies from the above-mentioned 

normalisation plots. 

 

The elements Sc, V, Cr, Ni, Cu, Zn and Ga seem to be relatively close to the values 

for the lower continental crust, while the values for the same elements are much 

higher relative to the upper continental crust (Fig.34).  Rb shows high values relative to 

the Rb values for the lower continental crust while, relative to the UCC, the Merelani 

displays relatively lower Rb values.  The heavier elements (Y to U), on the other hand, 

are enriched with an order of magnitude relative to the UCC.  This enrichment is even 

more pronounced relative to the LCC values.  This is an indication that the heavier 

trace elements in the Merelani stream sediments are enriched relative to the 

concentrations of the average continental crust. 

 

V and Ni were both plotted against Th for the same reasons outlined for the Merelani 

soils (Fig.35a-b), namely that Th is associated with the coarser fraction.  A slight 

vertical trend component towards enrichment of V in the medium fraction can be 

discerned, although it is weak.  Slightly more significant, however, is the horizontal 

trend component indicating an enrichment in Th in the medium fraction, strengthening 

the view that Th is indeed associated with the coarser fractions in both the Merelani 

soils and stream sediments. 
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Fig.34 Merelani XRF fine and medium fraction stream sediment data normalised to the upper continental (UCC) and lower continental crust (LCC)
values of Taylor and McLennan (1995)
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A much more obvious vertical trend component is visible in Fig.35b, indicating a strong 

tendency of Ni to be enriched in the finer fraction.  The horizontal trend component is 

also present indicating, once again, the enrichment in Th in the medium fraction. 

 

The La/Th plot in Fig.35c is a guide to provenance (Vital and Stattegger, 2000).  The 

trend towards enrichment of both elements in the medium fraction is fairly 

conspicuous.  A high La/Th ratio (3.6 ± 0.4) is an indication that sediments are related 

to Archaean sedimentary rocks (Vital and Stattegger, 2000).  The average La-Th ratio 

for the medium fraction is 4.47 and 3.78 for the fine fraction.  The most important 

observation, however, is that the values for the medium fraction are higher than the 

values for the fine fraction.  The 95th percentile for the medium fraction is 7.30 and 

5.08 for the fine fraction.  The 65th percentile is 4.67 for the medium and 3.93 for the 

fine fraction.  These values indicate that the values of the medium fraction constantly 

fall in a higher bracket than those of the fine fraction, indicating that both La and Th 

are enriched in the medium relative to the fine fractions. 

 

The Th/U versus Th plot (Fig.35d) can be used to track weathering trends (Vital and 

Stattegger, 2000).  During weathering there is a tendency for the elevation of Th-U 

ratios above upper continental crust values of 3.5 to 4.0.  The values for the medium 

and fine fractions have average values of 3.36 and 3.58 respectively, well within the 

range for UCC values.  When the scatterplot is examined, a slight trend towards Th 

enrichment relative to U can be seen in the fine fraction.  This may be indicative of a 

larger influence of weathering conditions on the fine compared to the medium 

fractions.  The trend towards Th enrichment in the medium fraction is once again 

recognisable.  Overall the effects of weathering, and hence sediment mobilisation, 

seems to be at a minimum. 

 

The Th/Sc versus Zr/Sc plot of Fig.35e is used to evaluate the influence of heavy 

mineral concentrations during sedimentary sorting (Vital and Stattegger, 2000).  The 

Th/Sc ratio is sensitive to the provenance bulk composition, while Zr/Sc is a good 

indicator of Zr enrichment.  There is a slight trend towards Zr enrichment in the fine 

fraction and a slightly larger trend towards Th enrichment in the medium fraction.  

There is an amount of overlap of medium and fine fraction data points, indicating a 

slight amount of mixing of stream sediments. 
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The Cr-Th ratio has been shown to be a provenance indicator largely due to its 

correlation with the Sc-Th ratio (Vital and Stattegger, 2000).  When the scatterplot 

(Fig.35f) was studied, no apparent trend towards either enrichment or depletion 

towards the medium and/or fine fractions could be discerned.  This implies that the 

sediments are most probably proximal to their source. 

 

The values of the upper and lower continental crust were plotted on each of the 

scatterplots.  It can be seen that although the LCC values plot close to the Merelani 

stream sediment data in some plots (e.g. Fig.35-b), they plot far away in other plots 

(e.g. Fig.35c-e).  In fact the LCC values plot so far from the Merelani stream sediment 

data in Fig.35c that it had to be removed, due to it causing the data to clump in the 

bottom left-hand corner of the graph.  The same can be said for the following ternary 

plots. 

 

The ternary plot Th-Co-Zr/10 (Fig.36a) shows that, although the scaling factor was 

used to place the values in the centre of the graph, the stream sediment data still plots 

near to the Zr pole.  A strong trend exists towards Th enrichment in the medium 

fraction, or Zr enrichment towards the fine fraction or a bit of both.  Fig.36e has shown 

that a slight trend of Zr enrichment in the fine fraction does exist.  Thus substantiating 

the latter view of both an enrichment in Th in the medium fraction and Zr in the fine 

fraction.  No trend exists towards or away from the Co pole. 

 

A significant trend towards Th enrichment in the medium fraction can be seen on 

Fig.36b.  A slight trend exists towards enrichment of Hf in the fine fraction.  This makes 

sense when taking into account that the linear correlation coefficient between Zr and 

Hf for the entire stream sediment data set is 0.718, indicating that Zr and Hf are 

significantly correlated.  They are commonly correlated in nature (Wederpohl, 1978; 

Deer et al., 1966) and it is most likely that they are located within the same mineral, 

most likely zircon. 
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6.3. Factor Analyses 
 

A detailed factor analysis was performed on the Merelani stream sediment data.  The 

functionality of a factor analysis lies in the reduction of the amount of variables to a 

number of more manageable groups.  If, as a purely hypothetical example, one has a 

data set of, say, five chemical variables: La, Ce, Nd, Ta, and Nb it would be 

theoretically possible that two factors would emerge from a factor analysis.  Factor 1 

would most probably be the REEs La, Ce and Nd and Factor 2 would be Ta and Nb, 

unless these elements were for some or other reason varying together, resulting in 

only one factor emerging.  For the sake of the argument, say two factors emerged.  It 

would then be necessary to assign names to them.  Factor 1 could possibly be a REE-

bearing mineral such as allanite or monazite, depending on the geochemical or 

petrological environment, and Factor 2 could be the minerals tantalite and/or 

columbite.  The five variables would then be reduced to two and can be studied in two-

dimensional space. 

 

The factor analysis was done by utilisation of the computer software program 

Statistica®.  It is true that a factor analysis contains an inherent amount of subjectivity 

due to the fact that the data is “rotated”.  The law which is used to rotate the data is 

chosen by the observer.  The data for n factors are plotted around a central point in n-

dimensional space (Fig.37).  The factors are calculated based on the angle between 

the vectors formed by connecting the central point of origin to the data point.  The data 

for the different data points for each variable are simply the factor loadings, calculated 

as a function of the covariance in a data set between different variables and the angle 

between the data vectors.  Each data point, which, in this case, are the chemical 

elements, will have a value for each of the factors called the factor loading. 

 

The factor analyses were done for the fine and medium fractions of the Merelani 

stream sediment data. 

 

Three factors were extracted for both the fine and medium fractions explaining 77.82% 

and 74.99% of the variability in the data respectively.  The data was rotated using the 

Verimax Raw rotation law and the factors were extracted using the Maximum 

Likelihood extraction method. 
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The following factors were extracted for the fine fraction (Table 23): 

 

Table 23  The various Factors and the elements 
constituting them (cut-off loading:  
0.7000) 
n = 46 

Factor Elements Constituting the Factor 

1 Co, Cu, Y, Zr, Nb, La, Ce, Nd, Th, U 

2 Ni, Zn 

3 Cr, Ba 

 

Factor 1 accounts for more than half (54.66%) of the variability in the data set and is 

by far the most important factor.  Factor 2 and Factor 3 account for 13.03% and 

10.12% of the data variability respectively.  The cut-off loadings for each factor was 

chosen by the computer at 0.7000.  It can be seen, however, that when the cut-off is 

reduced to 0.5000 the following factors are extracted (Table 24): 

 

Table 24  The various Factors of the Fine Fraction 
and the elements constituting them (cut-
off loading:  0.5000) 
n = 46 

Factor Elements Constituting the Factor 

1 Cr, Co, Cu, Y, Zr, Nb, La, Ce, Nd, Th, U 

2 V, Ni, Zn 

3 V, Cr, Co, Cu, Ga, Nb, Ba 

 

When the correlation matrix (Table 25) is examined, it can be seen that the factors in 

Table 23 and 24 can be extracted by using  mutual correlations.  It is also apparent 

that only Rb, Sr and Pb do not mutually correlate with the other trace elements. 

 

Seeing that these elements, especially Rb and Sr, partition into major mineral phases, 

such as the feldspars and micas (Icenhower and London, 1996), as shown for the 

Merelani soils, the above seems to imply that it is not the major mineral phases that 

dominate the stream sediment trace element chemistry, but rather the heavy mineral 
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phase.  This can be seen by the fact that the REEs and Zr, which are associated with 

heavy minerals such as monazite and zircon, occur in the first factor, which accounts 

for more than half the variability in the data set. 

 

When the histograms of the various trace elements are examined, most display a 

positively skewed data distribution profile.  The exceptions are V, Ga, Rb, Ba and Pb.  

Of these elements Ga, Rb and Pb display data distributions which are close to normal, 

as can be seen from their skewness (Table 26). 

 

Table. 26  Skewness and Kurtosis for the Merelani XRF 
Stream Sediment Data of the Medium and 
Fine Fractions 

Medium Fraction Fine Fraction  
n 

Skewness Kurtosis Skewness Kurtosis 
V 46 2.533 7.794 0.579 -0.046 
Cr 46 1.556 2.073 1.316 1.913 
Co 46 2.253 6.755 1.461 2.292 
Ni 46 1.291 1.539 1.481 4.730 
Cu 46 5.795 36.564 1.298 1.604 
Zn 46 2.003 6.437 1.966 6.399 
Ga 46 0.014 -0.729 0.161 -0.259 
Rb 46 -0.094 0.621 -0.746 0.028 
Sr 46 1.519 6.440 2.787 10.175 
Y 46 1.843 2.646 2.601 10.993 
Zr 46 2.355 6.069 1.972 5.874 
Nb 46 2.809 10.326 1.381 1.711 
Ba 46 -1.640 7.475 0.582 0.536 
La 46 3.249 10.958 3.286 12.517 
Ce 46 3.170 10.452 3.074 11.503 
Nd 46 3.169 10.800 3.373 14.495 
Pb 46 0.538 -0.419 0.431 0.499 
Th 46 3.213 11.089 3.093 12.363 
U 46 2.847 9.363 2.461 9.321 

 

The skewness is a statistical parameter which acts as a measure of the deviation of a 

data distribution from symmetry.  If the skewness is clearly different from 0 the 

implication is that the data is distributed asymmetrically.  Skewness is defined as: 

 

( )
( )( ) 3

3

21 σ−−

−
= ∑

nn
xxin

Skewness  
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with n the number of data points, σ the standard deviation, χi the ith data point for, in 

this case, a specific chemical element and x  the average for the same element. 

 

Kurtosis, on the other hand, is a measure of the “peakedness” of a data distribution.  

Where the kurtosis is clearly different from 0, the data is either flatter or more peaked 

than the normal, or Gaussian, data distribution.  Kurtosis is defined as: 

 

( ) ( ) ( ) ( ) ( )
( )( )( ) 4

224

σ3-n2-n1-n
1-n31-nn

Kurtosis ∑ ∑∑ −−−−
=

xxxxxx iii  

 

The only significant changes of skewness and kurtosis from the fine to the medium 

fraction are for the elements V and Ba (Table 26).  When the total data set is 

considered, the skewness of V increases from 0,579 in the fine fraction to 2,533, i.e. 

positively skewed, in the medium fraction.  The situation for Ba is exactly the reverse, 

with a value for skewness of 0,510 in the fine fraction to –1,262, i.e. negatively 

skewed, in the medium fraction.  This implies that the data distribution increases to 

more data points with lower V concentrations from the fine to the medium fraction, i.e. 

material containing higher values of V is being removed.  This is strong evidence for 

the graphite containing much of the V, since it is the soft graphite flakes that will be the 

first to be carried away by the flowing river water.  The data distribution for Ba shows 

that the Ba data points are distributed over higher values in the medium relative to the 

fine fraction, i.e. material containing Ba is being concentrated in the streams.  This is 

evidence that the feldspars which, as was shown for the soil data, is the most probable 

host to the Ba, are being concentrated in the streams and that the Ba is most 

predominantly associated with the feldspars and not the micas.  This makes sense in 

terms of Merelani’s semi-arid climate in which the feldspars, which is resistant to 

physical weathering, would not be easily broken down and would therefore be 

associated with the heavier mineral fraction in the stream sediments.  In addition, 

micas are light and will be swept away with the other light minerals, such as graphite.  

Thus if Ba was concentrated in the micas, the data distribution would mimic that of V. 

 

When the data from the other streams are compared to the results from the overall 

data set they compare well.  The only major difference is the data from Stream 3, with 

n = 6.  Another important observation is that the change in Ba data distribution is more 
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pronounced than that of the V data distribution.  This could either be an indication that 

the processes concentrating Ba in the stream sediments are more influential than 

those depleting V, or that the V is distributed more evenly between minerals with large 

and small specific densities (with grossular garnets as an example of the former and 

graphite as an example of the latter) than Ba, which could be concentrated in feldspar 

to a much larger extent than in, for example, mica. 

 

Factor 1 of the fine fraction is taken to represent the bulk of the heavy mineral phase, 

due to it containing the REEs and Zr, most often associated with the heavy minerals 

such as zircon and/or apatite.  Factor 2 is taken to represent the iron-rich minerals 

such as pyrite and pyrrhotite, which also seem to contain a sphalerite component.  

Factor 3 is taken to represent the major minerals such as feldspars and garnet.  It can 

be seen from Table 27, however, that the factor loading for V in Factor 2 is 0,548, 

implying that other minerals such as V-rich zoisite and potentially graphite might also 

have a slight influence on this factor.  It is noteworthy that Ni and Zn not only form an 

individual factor, but also that the correlation coefficient between these two elements is 

0,969!  This implies that these two elements are definitely mobilised together, either in 

the same mineral or as adsorbed onto clay particles or graphite, or both.  The latter is 

attested to by the drop in Ni:Zn correlation coefficient to 0,820 in the medium fraction.  

It is still a significant correlation. 

 

The scenario seems slightly different when examining the medium fraction (Table 28).  

Here the factors are as follows: 

 

Table 28  The various Factors of the Medium 
Fraction and the elements constituting 
them (cut-off loading:  0.7000) 

Factor Elements Constituting the Factor 

1 La, Ce, Nd, Th, U 

2 V, Cr, Co, Nb 

3 Y, Zr 

 

Factor 1 accounts for 50.02% of the variability in the data set and Factor 2 and 

Factor 3 account for 18.81% and 6.17% of the variability in the data set respectively. 
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When 0.5000 is taken as the cut-off loading the factors are as follows: 

 

Table 29  The various Factors of the Medium 
Fraction and the elements constituting 
them (cut-off loading:  0.5000) 

Factor Elements Constituting the Factor 

1 Ni, Y, La, Ce, Nd, Th, U 

2 V, Cr, Co, Zn, Nb 

3 Ni, Cu, Y, Zr 

 

Rb, Sr, Ba and Pb stand alone, as with the fine fraction, which is substantiated by the 

examination of the correlation coefficients (Table 30).  Factor 1 of the medium fraction 

is taken to represent the bulk of the heavy mineral phase, with the REE-bearing 

minerals having the major influence, which is the same for the fine fraction.  Factor 2 is 

taken to be represented by predominantly the garnets and Factor 3 as the mineral 

zircon having the predominant influence. 

 

The above scenario compares well with that for the fine fraction.  All that has most 

probably occurred is that the influence of fine minerals in the medium fraction, such as 

the clay minerals and graphite, has been diminished and that of the heavy minerals 

has been increased.  It can be seen that in both fractions, the first factor consists of 

elements which are commonly associated with heavy minerals. 

 

Those elements, for the fine and medium fractions, that could not be grouped into a 

specific factor are most probably associated with major mineral phases such as mica 

or feldspar (e.g. Ba in the medium fraction).  Ba has a negative loading count on all 

three factors, implying strongly that it does not seem to occur in the heavy mineral 

phase but rather in another phase, such as the micas or perhaps feldspars. 

 

Five elements were chosen for the fine and medium fractions and their profiles were 

plotted for each stream sampled (Fig.38 and Fig.39).  The choice of these elements 

was done on the basis of their respective differences and similarities in geochemical 

behaviour.  V and  Ni were chosen because of their similar profiles in the Merelani 

lithologies as well as their mobility in oxygenating conditions (Breit and Wanty, 1991).  

Cr was chosen because of its immobility and its abundance in the grossular garnets.  
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Th and Zr were chosen because of their occurrence in the coarser fraction of the soils 

and stream sediments.  The point where the y- and x-axes cross is the position 

furthest up-stream. 

 

The most important observation when studying the profiles for all three streams is that 

for both size fractions no recognisable trend exists.  There is neither a gradual 

increase or decrease in any of the profiles plotted. 

 

What is interesting, however are the peaks, especially of V, which occur in the profiles.  

These peaks become extremely noteworthy when their spatial distribution is 

considered.  When only the V peaks of the fine fraction are studied, the following 

samples are identified which have high (> 1000ppm) V values: SS-004, SS-020, SS-

032, SS-034, SS-039 and SS-040.  An old mine-working, where gem mining was once 

performed, is situated in close proximity to samples SS-032 and SS-034, which makes 

these samples very significant (Fig.40).  If the general strike of 40° for the Merelani 

lithologies is taken into consideration the V peak over sample SS-020 also becomes 

significant in that it lies, more or less, on a line linking the high values of Stream 2.  In 

terms of geologic mapping using geochemistry, the low values are also significant, but 

it would be much harder to discern their meaning as to which lithologic unit they may 

represent, if any at all. 

 

The same V profile for the medium fraction (Fig.40) seems slightly different.  Samples 

SS-032, SS-034 and SS-035 still display their V peaks.  The peak over sample SS-004 

is not present.  What is exciting about the peaks over samples SS-012 and SS-014 is 

that a tsavorite (green, gem-quality, V-rich grossular garnet) mine, which is still 

operational, is situated near SS-012.  When the 40° strike (Malisa, 1987) is taken into 

consideration the mine lies on a line more or less connecting it to SS-014.  Though a 

peak does not occur over sample SS-020 one does occur over sample SS-024, which 

is just slightly off-set from SS-020.  Samples SS-027 and SS-028 also show peaks and 

could possibly be due to a curvature of the lithologies, causing the peaks in SS-032, 

SS-034 and SS-035.  The factor scores of both fractions were taken and plotted as 

scatterplots.  This was done to see if any outliers and trends could be discerned. 

 

When studying the fine fraction plots of the factors plotted against each other it can be 

seen that definite outliers and groups could be identified (Fig.41).  It seems as if 
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Fig.40 Satellite image containing the sampling sites. The samples representing high V values for the fine and medium fractions are indicated
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samples of more or less similar properties are grouped together.  This is most 

conspicuous on the Factor 1 versus Factor 3 and Factor 2 versus Factor 3 graphs for 

the fine fraction.  On the Factor 1 versus Factor 3 graph, which would essentially 

represent a plot of the heavy minerals and heavy major mineral phases, SS-035, SS-

034 and SS-004 plot in a group.  Most of the samples of Stream 3 also plot in a 

separate group.  This is even more clearly seen on the Factor 2 versus Factor 3 plot 

where all the Stream 3 samples, with the exception of sample SS-042, are located.  

This is the same sample which displays a V peak on the V-profile, rendering this 

sample worthy of further scrutiny.  The samples that plot as outliers are given in 

Table 31 below: 

 

Table 31  Outlying samples on the Factor Scores plot of the fine fraction 
Merelani stream sediment samples 

Factors of which Scores were 
plotted 

Outlying Samples 

F1/F2 
SS-020, SS-040, SS-039, SS-035, SS-034 

F1/F3 
SS-020, SS-035, SS-034, SS-004 

F2/F3 SS-020, SS-040, SS-039, SS-032, SS-034, SS-

004 

 

All the outlying samples correspond to the V peaks in the profile plots which, in turn, 

correspond to samples which occur near and on strike from currently exploited gem 

deposits. 

 

When the factors of the medium fraction are examined the scenario seems, at first 

glance, slightly different.  The fact that the medium fraction factors most probably 

represent a larger heavy mineral component, relative to the fine fraction, has already 

been discussed.  This fact is evident simply by examining the elements which 

constitute the factors.  The outlying samples of the factor ratio plots are given in 

Table 32 below. 
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Table 32  Outlying samples on the Factor Scores plot of the medium 
fraction Merelani stream sediment samples 

Factors of which 
Scores were plotted 

Outlying Samples 

F1/F2 SS-027, SS-035, SS-028, SS-024, SS-034, SS-

012, SS-014, SS-040 

F1/F3 SS-035, SS-027, SS-028, SS-021, SS-024, 

SS-040, SS-034, SS-023, SS-026 

F2/F3 SS-035, SS-034, SS-014, SS-012, SS-024, 

SS-021, SS-027, SS-040 

 

As was previously mentioned, the samples with seemingly similar properties tend to 

cluster together.  This is what makes the outlying samples so interesting because 

these samples will possess properties that are different, i.e. anomalous, to the rest.  It 

is, once again, important to note that the outlying samples of the factor plots for the 

medium fraction correspond exactly with the V peaks for the same fraction. 

 

Graphs were plotted for the fine and medium fractions of the individual factors (Fig.41 

and Fig.42) as well as for the ratios (Fig.43 and Fig.44).  It can be seen, by examining 

these graphs, that it is always the same samples over which the peaks occur.  There 

are a few exceptions, but the sample that is different is always adjacent to samples 

which display peaks in other graphs.  In other words, the peaks are always spatially 

distributed in the same general area.  It is fairly obvious that no one graph contains all 

the peaks and that, to get a better view of what is happening in the data, it is 

necessary to study all these graphs together. 

 

The samples which are most important and deserve further scrutiny with respect to 

correlation with geology and specifically with specific lithological units are as follows:  

SS-004, SS-012, SS-014, SS-020, SS-024, SS-027, SS-028, SS-034, SS-035, SS-039 

and SS-040. 

 

Of the above-mentioned samples SS-014, SS-020, SS-024, SS-034, SS-039 and SS-

040 are deemed to be the most important, based on outlying character on the factor 

plots, on spatial distribution with regard to old and current mine workings as well as on 
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their continued anomalous behaviour in all the plots for both fractions for the plotted 

elements, such as V as well as for the factors. 

 

The samples containing V peaks as well as the samples represented by peaks on the 

factor plots and those that plot as outliers on the factor ratio plots are presented on the 

satellite image as a means of graphically presenting the spatial distribution of these 

anomalous samples (Fig.45 - Fig.48). 

 

A detailed structural description of the area of study is beyond the scope of this thesis, 

as the primary focus is on the geochemistry.  It is however necessary to make brief 

comments on the proposed structure, firstly, because minimal detailed regional 

structural work has been performed and, secondly, because the spatial orientation of 

the different lithological units will have a profound effect on the stream sediment 

composition because of the fact that the sediments are not extensively mobilised over 

great distances. 

 

It has already been reported that boudinaging does occur within the relatively small 

scale of the tanzanite mine and that these boudins have very important implications for 

the tanzanite mineralization.  When the satellite greyscale image with the stream 

sediment sampling points superimposed upon it is examined (Fig.49), two triangular 

shaped structures are seen in the centre slightly off-set towards the top right-hand 

corner.  Other than that, it would also seem that there is a larger structure present, as 

delineated.  When the image is zoomed out to display the major part of the western 

limb of the Lelatema anticline, the two smaller triangular structures can still clearly be 

seen.  It would also appear that there is a larger block-like structure to the south-west 

of these two triangular structures.  Furthermore, it can also be seen that there are a 

number of smaller oblate structures orientated with their long axes parallel to these 

two seemingly larger structures.  Something else that is important is that the layers 

that form the Merelani lithologies, upper and lower horizons, seem to form “rolling” 

structures, i.e. they form structures which are convex towards the bottom of the image.  

It is therefore proposed, that the possibility exists that the small scale structures also 

occur on a larger scale and that the smaller structures in the mine just mimic the larger 

scale structures within the Lelatema anticline. 
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Factor 1 of Fine Fraction
Factor 2 of Fine Fraction
Factor 3 of Fine Fraction

Masai Village

Old Mine Workings
Tsavorite Mine

Garnet Gneiss Outcrop

Dolomite Outcrop

Fig.45 Samples with high factor scores are indicated for all three factors for the fine fraction
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Masai Village

Old Mine Workings
Tsavorite Mine

Garnet Gneiss Outcrop

Dolomite Outcrop

Factor 1 peaks of the Medium Fraction

Factor 2 peaks of the Medium Fraction
Factor 3 peaks of the Medium Fraction

Fig.46 Samples with high factor scores are indicated for all three factors for the medium fraction
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Masai Village

Old Mine Workings
Tsavorite Mine

Garnet Gneiss Outcrop

Dolomite Outcrop

F1/F2 Outliers of the Fine Fraction

F1/F3 Outliers of the Fine Fraction
F2/F3 Outliers of the Fine Fraction

Fig.47 Factor ratio plot outliers indicated for all three factors plots of the fine fraction
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Masai Village

Old Mine Workings
Tsavorite Mine

Garnet Gneiss Outcrop

Dolomite Outcrop

F1/F2 Outliers of the Medium Fraction
F1/F3 Outliers of the Medium Fraction

F2/F3 Outliers of the Medium Fraction

Fig.48 Factor ratio plot outliers indicated for all three factors plots of the medium fraction
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The reason why this is so important can be seen on the satellite images marked by the 

anomalous V values identified in the plots of the various factors (Fig.42).  The 

interpretation of these “anomalous” samples for the various factors is directly 

proportional to the spatial distribution of the lithological units and it is therefore vitally 

important that a profound attempt is made to map and understand the large-scale 

structures within the Lelatema anticline. 

 

The image of the plot of the outliers for the factor ratios of the medium fraction will be 

used as an illustration (Fig.50) as to why detailed structural knowledge of the area is 

so important.  Two possibilities are proposed to explain the anomalous sample 

distribution, all three of which are heavily dependent on the structure of the underlying 

lithological units.  The first possibility is a straight line, sub-parallel to strike, following 

the general outcropping rocks on the image, connecting the anomalous samples.  A 

second possibility is that the anomalous samples represent different parts of the same 

folded JWZ-, or graphitic calc-silicate type zones, occurring in a larger structure such 

as a boudinaged stratigraphic package, as demarcated on the image.  The third 

possibility is much like the second: the large scale structure is just seen as a large 

boudinaged package with either linear or folded packages within the larger boudin.  

That the “anomalous” factor samples represent a lithological unit, albeit altered or a 

GCS type unit, is fairly certain and if indeed the altered zones in the rest of the 

Merelani structure occur in such a close proximity as in the JWZ-GCS1 case in the 

Merelani Lower Horizon it wouldn’t matter which of these two units are being 

delineated.  The general strike is known and the general dip is known, which implies 

that one or two strategically placed drill holes should illuminate the location of the 

altered zones.  As mentioned before, detailed geological mapping preceding any 

drilling will further elucidate the structure of the Merelani area and will substantially 

raise the level of certainty of what exactly it is that we are dealing with in terms of 

structure and type of lithology. 
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Masai Village

Old Mine Workings
Tsavorite Mine

Garnet Gneiss Outcrop

Dolomite Outcrop

?

?

F1/F2 Outliers of the Medium Fraction
F1/F3 Outliers of the Medium Fraction

F2/F3 Outliers of the Medium Fraction

Possibility 1

Possibility 2

Fig.50 Different possibilities for the structural interpretation of observed features. Possibility 1 is where the solid lines are a stratigraphic package (between
the dashed lines) similar to the Merelani Lower Horizon in which the samples represent altered zones. If this is the case, then it would explain the
river channels, because the altered rock is less competent than the surrounding lithologies. Possibility 2 is a stratigraphic package occurring in a
mega-boudin.
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6.4. Discussion and Conclusions 
 

The following conclusions are derived from the foregoing chapter: 

 

• The UCC values constantly plot in the vicinity of the Merelani stream 

sediment data, which could indicate that the Merelani sediments are 

possibly derived from upper continental crustal rocks.  This can easily be 

verified by a study on the protoliths of the various Merelani metamorphic 

rocks. 

• Ni-Th and V-Th scatterplots confirm that V and Ni are concentrated in the 

fine fraction and that Ni is concentrated to a larger degree than V.  This 

indicates that V is distributed between minerals which are concentrated in 

the fine fraction, such as graphite, and minerals which concentrate in 

coarser fractions, such as grossular garnet and zoisite.  This is 

substantiated by the study of the change in skewness of the V data 

distribution from the fine to the medium fraction.  The same skewness 

study performed on the distribution of Ba data suggests that the Ba is 

predominantly concentrated in the feldspars; 

• Factor analysis and the scatterplots indicate that the heavy minerals 

dominate the trace element chemistry; 

• Lack of trends in the trace element profile plots over the three stream 

sampled suggests that the mineral particles in which the trace elements 

find themselves are not appreciably mobilised and that the stream 

sediment trace element geochemistry is a good indication of proximal 

geology which could immensely aid geological mapping; 

• High V values, factor loading and factor ratio plots indicate samples which 

lie close to presently and historically mined gemstone deposits and these 

plots can therefore be employed as a tool in the search for hidden 

gemstone deposits. 
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7. Conceptual Geochemical Model 
 

7.1. Introduction 
 

Hoffman and Thomson (1987) describe a landscape as: 

 

a dynamic system involving the relationship between vegetation, soils, 

underlying rocks, the atmosphere, surface and ground waters, 

geomorphology and geology. 

 

Fletcher et al. (1987) list six fundamental concepts in landscape geochemistry.  The 

relationship between these concepts and the definition of a landscape, as given in the 

above paragraph, is presented graphically in Fig.51.  A landscape starts off with a 

specific geology and therefore lithologic composition under a specific prevailing 

atmosphere.  These parameters will lead to the formation of a specific set of soils and 

geomorphology and hydrology, which in turn will have an influence on the type of 

vegetation and organisms which will thrive.  The vegetation and organisms will in turn 

have an influence on the hydrologic cycle as well as soil formation.  All these 

parameters will define each of the six fundamental concepts in landscape geochemistry 

(Fig.51). 

 

7.2. Conceptual Geochemical Model for Soils 
 

The Merelani area in north-eastern Tanzania has a semi-arid climate although heavy 

rains fall during the months of March to May.  The landscape is hilly and is densely 

vegetated by Acacia trees and various shrubs.  The rocks in the area are mostly garnet 

and kyanite gneisses, graphite-rich schists and dolomitic marbles.  The dolomitic 

marbles weather positively and form prominent ridges.  Vegetation growth and density 

reaches a maximum in the rainy season.  Ti- and Zr-normalised trace element values 

show that the soils on the slopes of the Merelani hills are mobile.  The good correlation 

between the profiles of specific trace element concentrations plotted over the Lower 

Horizon stratigraphy and the profiles for the same elements plotted in the soils covering 

the lower horizon stratigraphic units indicate that the soil particles are mobilised on a 

small scale of a few tens of centimetres to a few metres.  Analysis of acid leachate 

from the Merelani soils shows that the trace elements are not primarily mobilised by 
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hydromorphic means.  The trace element concentration in the acid leachate, although 

very small, increases with distance down slope, as shown on the profile plots of the 

ICP-analysed values (Fig.38, Fig.39).  This implies that soil solution movement is 

dictated by the landscape topography. 

 

There is a sharp drop in element concentration in Zone 8 soil.  The landscape over 

which the trench was dug has two primary slope directions:  One toward the east, the 

hill slope, and one toward the south (Fig.52). 

 

 

The slope of the hill is significantly larger than the slope towards the south.  Therefore it 

is expected that the largest component of soil fluid migration would be in the direction 

of the road and then down the secondary slope towards the south.  The same 

components are proposed for soil particle movement due to gravity sliding.  The 

movement of trace elements in the Merelani soils by hydromorphic means was shown 

to be very low.  Thus the movement of soil particles can be equated to the movement 

of the trace elements, as in placers.  The abundance of vegetation, however, is most 

Fig.52  The two slopes (shown in red) most important for the mobility of the Merelani soils in the vicinity of the 
trench.  The trench is obscured by the shrubs in the foreground, but the slope of the hill is similar to the 
slope of the ridges in the background.  The road leading down to B-Shaft is representative of the second 
slope and the direction of sediment and fluid movement.  Block-B, which is mined by local miners, can be 
seen in the background.  The view is to the south. 

Road leading 

to B-Shaft 
B-Shaft 

Block-B 
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probably the main force in restricting soil particle movement, resulting in short 

dispersion trails in the order of a few tens of centimetres to a few metres. 

 

A graphic representation of the model is shown in Fig.53. 

 
7.3. Conceptual Geochemical Model for Stream Sediments 

 

The scenario for trace element mobility in the Merelani streams is very similar to that of 

the trace elements in the soils.  The binary and ternary scatterplots, as well as the lack 

of visible trends in trace element profiles along stream length, shows that the stream 

sediments are not significantly mobilised for particle sizes of >90µm.  This implies that 

the stream sediments are therefore proximal to their source lithologies.  The skewness 

and kurtosis of V and Ba data distribution show that it is only the fine fraction that is 

mobilised to any significant degree.  A statistical factor analysis has indicated that the 

majority of the trace elements are represented by three factors for both size fractions.  

The first and largest factor accounts for more than half the variability of the data in both 

fractions and can be ascribed to a fraction containing the heavy minerals.  The 

aforementioned is based on the elements which constitute the fraction (e.g. Zr, Y and 

the rare earth elements) and a literature study on element distribution (Deer et al., 

1966; Wederpohl, 1978; Klein and Hurlbut, 1993).  This indicates that the heavy 

mineral fraction is the most important “carrier” of the trace elements in the Merelani 

area.  Thus the movements of the heavy minerals will control the movement of the 

trace elements.  Some anomalous values of factor scores and factor score ratios for 

specific samples plot close to currently and historically mined coloured gemstone 

deposits, indicating proximity to the source. 

 

Most of the streams have shallow slopes and are choked by vegetation.  These two 

facts are seen as the major forces inhibiting stream sediment and therefore trace 

element mobility.  Thus geochemical dispersion occurs physically due to the flash 

floods from March to May relative to the abundant vegetation which chokes the 

streams and subsequently inhibits particle mobility. 

 

The above is summarised in Fig.54. 

http://scholar.sun.ac.za/



Topcamp

Dolomite Ridge

B-Shaft

JWZ

Gravel Road to B-Shaft

Gravel Road to B-Shaft

GN

TN

G
enera

l S
trik

e

14.90°

40°

Lower Horizon Stratigraphic Package

Positively Weathered Dolomite Horizon

1

1

2

2

Trench

Short dispersion trail due to slope

Negligent dispersion expected on flat lying areas

Fig.53 Graphic representation of the geochemical model for the Merelani soils as described in the text

http://scholar.sun.ac.za/



Old Mineworkings

Non-Perennial
River

Garnet Gneiss Outcrop Dispersion Trail

Dispersion Trail

GN

TN

G
enera

l S
tri

ke

14.90°

40°

Fig.54 Graphic representation of the geochemical model for the stream sediments as described in the text

http://scholar.sun.ac.za/



 68

7.4. Discussion Final Conclusions and Recommendations 
 

The study has shown that soil and stream sediment sampling followed by whole-rock 

XRF analysis is a viable method of exploring for tanzanite. 

 

The study has also shown that the trace elements are only mobilised to a small degree 

in both the soils and stream sediments and that trace elements are located in soluble 

phases.  Therefore partial extraction methods have proven to be inadequate in 

tanzanite exploration.  The best results were obtained by whole-rock XRF methods.  In 

the soils the fine and medium fractions of the C-horizon showed the closest correlation 

between soil and bedrock.  In the stream sediments it was also the fine and medium 

fractions which provided the largest V anomaly-background contrasts.  Samples 

containing V anomalies occurred close to the existing and abandoned tsavorite mines 

in the area selected.  Thus the study has shown that V is indeed the vital element to 

geochemical exploration for additional tanzanite deposits. 

 

The study on the soil samples has revealed that the Graphitic Calc-Silicate Schist 1 

and 2 units are indicated by V-anomalies.  The GCS 1 unit occurs adjacent to the 

Kyanite Gneiss 1 and 2 units, which host the tanzanite mineralisation located in the JW 

zone.  Thus whole-rock geochemical exploration on soil samples has provided an 

indirect method in exploring for tanzanite. 

 

The study on the stream sediment samples has shown that by grouping the trace 

elements into factors using factor analysis and by subsequently using calculated factor 

ratios and factor scores in conjunction with anomalous V-values, samples could be 

identified, which occur close to abandoned and operating tsavorite mines in the 

selected area.  Thus a potentially viable method for exploring for as yet unknown 

tanzanite and tsavorite deposits is provided by the whole-rock geochemical analyses of 

stream sediments. 

 

Although the study of both soil samples and stream sediments via a whole-rock XRF 

method has proven useful, other methods may prove more effective.  This would 

include a heavy-mineral exploration technique on both the soils and stream sediments 

as well as a technique involving the panning of graphite.  Further studies on both these 

techniques is therefore warranted and could provide a geochemical exploration 
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technique, which could prove most effective in searching for additional tanzanite 

deposits.  To further refine and constrain any geochemical exploration method, further 

research is also required to quantify the length of trace element dispersion trails in the 

soil and stream sediments.  This will ensure more accurate estimates on the location of 

the graphitic calc-silicate units as well as the position of planned exploration drilling 

points.  In addition, further research into the soil and stream sediment formation since 

the last eruption of Neogene lavas (~1,2Ma) is required to better understand trace 

element dispersion patterns surrounding the tanzanite deposit. 

 

The conclusions reached in this study are thus: 

• Whole-rock XRF geochemical techniques are best suited for tanzanite 

exploration; 

• Partial leach ICP methods have proven that the trace elements are 

not mobilised hydromorphically.  In addition it has also proven that 

partial leach methods will prove to be ineffective in exploring for 

tanzanite; 

• V is the key in the geochemical exploration for tanzanite in both the 

soils and stream sediments; 

• In terms of the soils it was the GCS units which displayed the largest 

V-anomalies; 

• In conjunction with the V-anomalies in the stream sediments, the 

factor scores and factor ratios have shown that abandoned and 

existing gemstone mines can be detected and that the anomalous 

samples not associated with any known gemstone mining activities 

should be investigated further; 

• This study has also shown that although whole-rock geochemical 

exploration techniques have proven successful in identifying tanzanite 

an other gemstone deposits, exploration methods involving heavy 

minerals and perhaps graphic may prove to be more effective in 

exploring for tanzanite deposits. 

 

Recommendations for further research are: 

• A study of the mineral geochemistry and parameters governing the 

dispersion of heavy minerals in the soil and stream sediments as a 

possible alternative exploration tool for tanzanite; 
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• A study of the geochemistry and parameters governing the dispersion 

of graphite in the soil and stream sediments as a possible alternative 

exploration tool for tanzanite; 

• A detailed study of the parameters governing the formation of soils, 

calcrete and stream sediments in the Merelani area since the last 

eruption of neogene lavas (~1,2Ma) to the present with the aim of 

better understanding geochemical dispersion patterns; 

• A study to quantify the exact trace element dispersion distance in soil 

solutions as well as of the soil and stream sediment particles. 
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