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Abstract 

The identification of low-cost and renewable resources is critical to meet environmental concerns 

associated with fossil-based materials. Waste pulp and paper fibres is a renewable, low-cost, cellulose-rich 

resource with potential for the production of cellulose nanoparticles. Cellulose nanoparticles are light 

materials that have desired properties such as biodegradability, non-toxicity, electrical conductivity and high 

tensile strength. Current production methods involve enzymatic, mechanical pressure and/or chemical 

treatments.  

This project developed and optimised a process of enzymatic hydrolysis of waste paper sludge for 

cellulose nanoparticle production. Based on content of inorganics, two types of paper sludge (PS) from 

South-African paper and pulp mills, namely printed recycle PS and virgin pulping PS were selected as 

feedstocks. Commercial enzymes were screened for lab scale enzymatic hydrolysis of PS to cellulose 

nanoparticles. A cellulase cocktail, Cellic® CTec2, and a monocomponent endoglucanase, FiberCare® R, 

were preferred commercial enzymes for nanoparticle formation and minimisation of by-product formation 

for both PS feedstocks. Multi-response statistical optimisation of enzymatic hydrolysis of both feedstocks 

were conducted, investigating solids loading, hydrolysis times and different ratios of the Cellic® CTec2 and 

FiberCare® R.  

Optimised enzymatic hydrolysis conditions based on the mean cellulose particle size and the glucose 

concentration models indicated that FiberCare® R dosage, Cellic® CTec2 dosage, hydrolysis time and 

solids loading of 75 ECU/gdPS, 10 FPU/gdPS, 9 hrs and 3% (w/w), respectively were optimum for virgin 

pulp PS. These optimised conditions resulted in mean cellulose particle size and glucose concentrations of 

232 nm and 5.44 g/L, respectively. Selected conditions for printed recycle PS required higher FiberCare® 

R and Cellic® CTec2 dosages of 100 ECU/gdPS and 20 FPU/gdPS, respectively, at longer hydrolysis times 

of 12 hrs and a higher solids loading of 6% (w/w). At these selected conditions a mean cellulose particle 

size and glucose concentrations of 226 nm and 6.38 g/L, respectively were achieved for printed recycle PS. 

Spherical cellulose nanoparticles (SCN) were produced by these mentioned conditions of both 

enzymatically-hydrolysed PS feedstocks.  

Microfiltration of hydrolysed supernatant through a 0.45 µm membrane increased the cellulose 

nanoparticle quality with decreased mean particle sizes and improved particle size distributions for both PS 

feedstock. Addition of a high-shear homogenization step subsequent to enzymatic hydrolysis marginally 

decreased the mean size of microsized particles, with no effect on samples with particles smaller than 1000 

nm. Dialysis of the hydrolysed suspensions with a membrane with cut-off molecular weight of 12400 Da 

improved the purity of produced cellulose nanoparticles. Washing and centrifugation of isolated cellulose 

nanoparticles from residual hydrolysed solids further increased purity and quality. After purification, final 

cellulose nanoparticle yields of 7.5% for virgin pulp PS and 6.9% for printed recycle PS were achieved.  
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By controlled stand-alone enzymatic hydrolysis conditions, a selected cellulose nanoparticle type, 

including cellulose nanocrystals (CNC) and SCN could be produced which is beneficial over the stand-alone 

acid hydrolysis process, producing only a mixture of CNC and CNF. Furthermore, a proposed mechanism 

for the formation of spherical cellulose nanoparticles from cellulase hydrolysis of higher cellulose 

crystallinity feedstock was formulated for specifically short-period hydrolysis with a higher endoglucanase 

to exoglucanase ratio.  
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Uittreksel 

Die identifisering van laekoste en hernieubare hulpbronne is van kritieke belang om te voldoen aan die 

groeiende omgewingsbekommernisse wat verband hou met fossielgebaseerde materiale. Afvalpulp en 

papiervesels is 'n hernubare, laekoste, sellulose-ryke hulpbron met potensiaal vir die vervaardiging van 

sellulose-nanopartikels. Sellulose nanopartikels is ligte materiale wat verlangde eienskappe soos biologiese 

afbreekbaarheid, nie-giftigheid, elektriese geleidingsvermoë en hoë treksterkte het. Huidige 

produksiemetodes behels ensimatiese, meganiese–druk en/of chemiese behandelings. 

Hierdie projek ontwikkel en optimaliseer 'n proses van ensimatiese hidrolise vir sellulose-nanopartikels 

wat vervaardig word uit papierafval. Gebaseer op die persentasie van anorganiese materiaal, was twee soorte 

papierslyk (PS) van Suid-Afrikaanse papier- en pulp meule, naamlik gedrukte hersirkuleerde PS en reinpulp 

PS gekies as roumateriaal. ‘n Siftingsproses op grond van die gebruik van kommersiële ensieme vir 

laboratoriumskaal-ensimatiese hidrolise van PS na sellulose-nanopartikels was uitgevoer. Sellulase ensiem, 

Cellic® CTec2, en monokomponent endoglukanase, FiberCare® R, was betergeskikte, beskikbare, 

kommersiële ensieme gebaseer op nanopartikels en minimale byprodukvorming vir beide PS-roumateriale. 

Multi-respons statistiese optimalisering van ensiematiese hidrolise op beide roumateriale was uitgevoer, 

waartydens soliedemateriaalladings, hidrolise tye en verskillende verhoudings van die Cellic® CTec2 en 

FiberCare® R ondersoek was. 

Geoptimaliseerde ensiematiese hidrolise-toestande gebaseer op modelle vir gemiddelde sellulose-

partikelgrootte en die glukosekonsentrasie het aangedui dat 'n monokomponent-endoglukanase dosis, 

sellulase ensiem dosis, hidrolise tyd en soliedemateriaalladings van 75 ECU/gdPS, 10 FPU/gdPS, 9 uur en 

3% (w/w) onderskeidelik optimum was vir reinpulp PS, wat tot gevolg gehad het ‘n onderskeidelike 

gemiddelde sellulose partikelgrootte en glukosekonsentrasie van 232 nm en 5.44 g/L. Die gekose toestande 

vir gedrukte hersirkuleerde PS benodig hoër dosisse vir monokomponent-endoglukanase en sellulase 

ensieme van 100 ECU/gdPS en 20 FPU/gdPS, onderskeidelik met langer hidrolise tye van 12 uur en 'n hoër 

soliedemateriaallading van 6% (w/w). By hierdie gekose toestande was 'n onderskeidelike gemiddelde 

partikelgrootte en glukosekonsentrasie van 226 nm en 6.38 g/L vir gedrukte hersirkuleerde PS behaal. 

Sferiese sellulose nanopartikels (SSN) was geproduseer deur bogenoemde toestande van beide ensiem-

gehidroliseerde PS-roumateriale. 

Mikrofiltrasie van gehidroliseerde supernatant deur 'n 0.45 μm membraan het die gehalte van sellulose 

nanopartikels verhoog met verminderde gemiddelde partikelgroottes en verbeterde 

partikelgrootteverdelings vir beide PS-roumateriale. Toevoeging van 'n hoë-skuif homogenisasie stap 

verminder die gemiddelde grootte van mikro-grootte partikels, maar het geen effek op die monsters met 

partikels kleiner as 1000 nm nie. Dialise van die hidroliseerde suspensies met 'n membraan met 'n afsny 

molekulêre gewig van 12400 Da, het die suiwerheid van geproduseerde sellulose-nanopartikels verbeter. 
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Was en sentrifugasie van geïsoleerde sellulose-nanopartikels uit residuele hidroliseerde vastestowwe het 

verder die suiwerheid en kwaliteit verhoog. Na suiwering was’n uiteindelike sellulose nanopartikels 

opbrengs van 7.5% vir reinpulp PS en 6.9% vir gedrukte hersirkuleerde PS behaal. 

Deur gekontroleerde alleenstaande ensimatiese hidrolise toestande, kan 'n geselekteerde sellulose 

nanopartikeltipe, insluitende sellulose nanokristalle (SNK) en SSN vervaardig word wat voordelig is oor 

die alleenstaande suurhidrolise-proses, wat slegs 'n mengsel van SNK en SNF produseer. Verder is 'n 

voorgestelde meganisme vir die vorming van sferiese sellulose-nanopartikels uit sellulase-hidrolise van hoër 

sellulose-kristallisiteits-materiale geformuleer vir spesifiek korttermyn-hidrolise met 'n hoër endoglukanase 

tot eksoglukanase-verhouding.  
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Chapter 1. Introduction 

1.1. Background 

Cellulose is the most abundant carbohydrate in nature and a renewable source of carbon for 

biorefinery applications (Siqueira, et al., 2010). It is one of the main components present in waste paper 

sludge (PS) generated by the primary clarifiers in the waste water treatment sections of pulp and paper 

mills. The South African pulp and paper industry generates at least 0.5 million tons (dry weight) of waste 

PS per annum (Dwiarti, et al., 2012), with this waste stream containing 45 to 80 % moisture, with 40 to 

80 % of the dry mass consisting of relatively fine fibres (Hsu & Hu, 2002).  

Due to the high moisture content, which increases the bulk of the waste material, the cost of disposal 

is extensive. South-African PS disposal costs range between R350 and R705 per metric ton (Kimberly-

Clark Springs, 2017; Robus, 2013). Furthermore, environmental regulations are becoming increasingly 

stringent (Mahmood & Elliott, 2006). Consequently, pulp and paper mills are determined to find green 

alternatives by conducting research on new applications of PS to minimise its disposal (Monte, et al., 

2009). Different mills produce waste pulp and paper sludge with distinct composition, and therefore the 

energy and chemical demand may vary for bioprocessing of the different PS types. Based on similarity 

of the feedstock utilized in the mills, these sludge types are categorised by Boshoff et al. (2016) and are 

termed printed recycle, corrugated recycle, non-recycle and virgin pulping.  

Recent techno-economic studies on South-African PS indicated economic viability of the biorefinery 

processes of enzymatic hydrolysis and fermentation production of bio-ethanol (Robus, et al., 2016). 

Enzymatic hydrolysis of low cost cellulosic residues like PS to cellulose nanoparticle substrates reduces 

the waste disposal costs and concurrently meets the growing demand for renewable material production, 

and could be integrated into bioprocess for PS conversion. Cellulose nanoparticles are renewable 

biopolymers with novel applications. These cellulose nanomaterials are biodegradable and provide a 

more environmentally friendly alternative to plastics and other non-degradable materials.  

Enzymatic bioprocessing methods are of interest as an alternative to the traditional stand-alone or 

combined chemical, biological and mechanical processing steps. This is due to the potential for reduced 

energy and chemical usage, as well as high selectivity of these biocatalysts (Moon, et al., 2011). 

Furthermore, chemical methods require corrosive, environmentally-unfriendly chemicals which also may 

cause undesired surface modifications leading to poor aqueous dispersion (Anderson, et al., 2014).  

In recent ethanol production studies, commercial cellulase blends have been used to enzymatically 

hydrolyse PS to glucose, without the need for chemical or mechanical pre-treatment (Robus, 2013; 

Boshoff, et al., 2016). With the aid of customised enzymes or blends of different enzymes into cocktails, 

the ethanol production process may be combined with cellulose nanoparticle production, where the non-
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nanocellulose residue from the cellulose nanoparticle process can be used in the ethanol production 

process. The potential further exists to recover the cellulose nanoparticle product by a single stage of 

centrifugation and filtration or precipitation (Kazimierczak, et al., 2016; Marino, et al., 2015; 

Satyamurthy & Vigneshwaran, 2013). The major disadvantages to commercialization of enzymatic 

hydrolysis processing are the high cost of enzymes (up to R3.28/L (Robus, et al., 2016)) and the slow 

hydrolysis rates (Walker & Wilson, 1991).  

Research efforts on the manipulation of cellulase systems have found that desired cellulase action 

for the production of cellulose nanoparticles can be achieved by developing application specific enzyme 

cocktails (Fattahi Meyabadi & Dadashian, 2012; Filson, et al., 2009). Cellulose from various sources 

have the same molecular structure, consisting of linear polymers of unhydroglucose units linked by β-

glycoside bonds, yet may have different crystalline structures. As the two major cellulase subgroups, 

endoglucanase and exoglucanase, target the hydrolysis of β-glucosidic and terminal glycosidic bonds, 

respectively, effective degradation of even highly crystalline sources can be achieved (Aliyu & Hepher, 

2000). Furthermore, as many of the commercial cellulases are devoid of a third cellulase subgroup, 

glucosidase, which hydrolyse cellobiose into glucose, they are suitable for the production of cellulose 

nanoparticles (Boshoff, 2015). With use of enzyme processes, there is potential to target specific types of 

nanostructured cellulose particles with qualities defined by their morphology; specifically the mean 

particle size, such as cellulose nanocrystals (CNC), spherical cellulose nanoparticles (SCN) and cellulose 

nanofibrils (CNF) (Moon, et al., 2011; Ioelovich, 2014). This is advantageous over conventional 

mechanical or chemical methods which are often limited to either a single nanostructure, or a mixture of 

nanostructures. 

The focus of the research is firstly to identify effective enzymes suitable for producing a majority of 

cellulose nanoparticles with minimal glucose production. Secondly, the focus is to identify optimal 

process conditions for controlled enzymatic hydrolysis of PS to cellulose nanoparticles. Most research 

conducted on PS conversion to nanomaterials had multiple processing steps, such as enzymatic hydrolysis 

with sonication (Song, et al., 2014; Filson, et al., 2009), mechanical pre-treatment in combination with 

enzymatic hydrolysis (Anderson, et al., 2014) or enzymatic hydrolysis as a pre-treatment to high-pressure 

homogenisation (Pääkkö, et al., 2007; Jonoobi, et al., 2012; Ankerfors, et al., 2009; Lindström, et al., 

2007). There is a lack of information on the production of cellulose nanoparticles from waste PS with 

firstly, a stand-alone enzymatic hydrolysis process and secondly, a short-period (< 24 hrs) enzymatic 

hydrolysis process.  

Ranges for the process parameters of the enzymatic hydrolysis process were identified from 

literature (Boshoff, et al., 2016; Robus, 2013; Song, et al., 2014) around which screening of commercial 

enzymes were conducted. Laboratory scale enzymatic hydrolysis experiments were designed statistically, 

to optimise enzyme dosage, hydrolysis time and solids loading for cellulose nanoparticle production. 
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Different post-hydrolysis downstream processes, including microfiltration, high-shear homogenization, 

dialysis and washing were investigated to assess whether the cellulose nanoparticles from enzymatic 

hydrolysis can be obtained with a comparable quality and purity to that of established cellulose 

nanoparticle processes such as acid hydrolysis. A possible mechanism for the preferred short-time 

cellulase hydrolysis was also investigated.   
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1.2. Thesis layout 

The following is an overview of the structure of this thesis. 

Chapter 1: Presents the introduction and the research aims of this study. 

Chapter 2: Discusses the background and literature findings around cellulose nanoparticle production. 

Chapter 3: Presents a full overview of the experimental, analytical and statistical procedures used in the 

study. 

Chapter 4: Discusses the optimisation, characterization and the extraction of cellulose nanoparticles. 

Chapter 5: Discusses the general conclusions and the future recommendations. 
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Chapter 2. Literature review 

2.1. Waste paper sludge 

2.1.1. Waste paper sludge as biomass feedstock 

Plant-based biomass can be categorised into five categories: energy crops, virgin wood, agricultural 

residues, food wastes, and also industrial wastes or co-products (Prasetyo & Park, 2013). The solid 

residue recovered from the primary clarifiers in waste-water treatment of pulp and paper milling, here 

referred to as paper sludge (PS), is one material categorised as industrial waste, and more specifically 

biomass feedstock due to its plant source and high cellulose content. Primary sludge rich in cellulose, is 

recovered from the primary clarification stage, carried out by sedimentation or flotation. Secondary 

sludge usually results from a biological treatment in which micro-organisms convert the waste to carbon 

dioxide and water. The resulting solids are removed through a second clarification step, remixed with the 

primary sludge, dewatered and disposed (Scott & Smith, 1995). The disposed PS contains rejected 

cellulose fibres which makes it possible for depolymerisation into regenerated biomaterials (Kádár, et al., 

2004), including nanomaterials. 

2.1.2. Composition of paper sludge 

PS from paper and pulp milling waste streams contains lignocellulosic biomass material, 

papermaking fillers (inorganic materials such as calcium carbonate (CaCO3), titanium oxide (TiO2), etc.), 

inert solids rejected during the chemical recovery process, and ash (Ochoa de Alda, 2008). Unprocessed 

lignocellulosic biomass typically contains approximately 35 – 50% cellulose, 20 – 35% hemicellulose, 

10 – 25% lignin (Crespo, et al., 2012), with the minor constituents including extractives and inorganic 

materials (Prasetyo & Park, 2013). Cellulose is a glucose polymer, linked by β-(1→4)-glycosidic bonds. 

Hemicellulose is a heteropolymer composed of both 5- and 6-carbon ring sugars. Lignin is an aromatic 

heteropolymer which contain multiple hydroxyl and methoxyl groups per building unit (Vassilev, et al., 

2013; Salehudin, et al., 2012). 

Due to different feedstock for pulping and different processes, as well as differences in the pulping 

or paper-making processes, mills produce varying amounts of primary sludge, with the sludge being 

distinctly different in composition (Fan & Lynd, 2007). A study by Ochoa de Alda (2008) indicated that 

sludge can be characterised in two main types, namely high-ash sludge (> 30% w/w dry weight) and low-

ash sludge (< 30% w/w dry weight). Figure 2.1 shows the chemical composition (g component/g sludge) 

of PS samples collected from South African paper and pulp mills as summarised by Boshoff et al. (2016). 

The study shows that the ash component in the PS can vary from 0.09 to 0.62 g/g substrate (Boshoff, et 

al., 2016). 
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Figure 2.1: Chemical composition (g component/g sludge) of PS samples collected from South African paper and pulp mills as 

redrawn from Boshoff et al. (2016) 

2.1.3. Effect of pulping processes on digestibility/pre-treatment of paper 

sludge  

Cellulose fibres from wood-based products are isolated for paper and pulp production via pulping 

and re-pulping processes. Lignin, the organic polymer that forms structural support of plant fibres, and 

hemicellulose, the fibril-linking homopolymers are partially removed with mechanical or chemical 

pulping. In mechanical pulping the wood is processed into fibre-form by grinding or refining with water 

addition (Vena, 2005). During chemical pulping the cellulose fibres are isolated by cooking the 

wood/wood products in chemical solutions at high temperatures, dissolving the lignin and carbohydrates 

(Bujanovic, et al., 2010). PS produced via chemical pulping achieves higher solubilisation of 

hemicellulose and lignin in comparison to PS produced from mechanical or thermomechanical pulping 

(Migneault, et al., 2011). 

When compared to mechanical pulping, the fibres of chemical pulping are more accessible to 

cellulose-hydrolysing enzymes during bioprocessing, due to decreased hindrance from the lignin as lignin 

dissolved in chemical pulping is washed out. This will result in increased digestibility for PS from 

chemical pulping processes in comparison to mechanical pulping operations (Zhu, et al., 2012). 

In South Africa (SA), Kimberly-Clark and Sappi are two of the major paper and pulp companies. 

The Kimberly-Clark mill in Springs, Gauteng utilises recycled low-grade paper waste to produce tissue 

products via the mechanical pulping process. The waste paper is pulped, cleaned, deinked, bleached and 

often blended with small portions of virgin pulp before use on the paper machines. Recycled paper is 
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known to have changes in the basic fibre characteristics, such as strength, surface free area, swelling and 

length, which have been known to cause inferior fibre properties in comparison to virgin fibres (Wistara 

& Young, 1999). Furthermore, due to the recycled raw material used, ash and contaminants accumulate 

and results in high-ash content in the waste streams (Macdonald, 2004). As the ash and contaminants act 

as inhibitor to cellulase enzymes, PS with high ash-content will require ash removal pre-treatment to 

hydrolysis processing (Boshoff, et al., 2016).  

The Sappi Ngodwana mill in Mpumalanga utilizes softwood to produce fully bleached pulp, and 

hardwood timber to produce unbleached pulp. Newsprint, linerboard, unbleached and bleached market 

pulp are the final chemical (Kraft) process products produced at the Ngodwana mill (Macdonald, 2004). 

PS from this pulping process has much lower inorganic content and therefore de-ashing pre-treatment of 

the low ash-content PS is not a concern (Robus, et al., 2016). 

2.1.4. Processes for PS utilization 

Landfilling, which is the most common PS disposal method in current practice (Monte, et al., 2009) 

is becoming increasingly difficult to implement due to greenhouse gas emissions, water-loss through high 

moisture materials, shrinking landfilling space, increasing regulatory pressure, stringent legislation and 

increased taxes (Mahmood & Elliott, 2006; Robus, et al., 2016). A number of non-conventional disposal 

alternatives for the management of PS are presented below. 

Anaerobic digestion: Organic matter in PS can be used through co-digestion for conversion (in 

an oxygen-free system) to biogas (carbon dioxide and methane) and organic fertilizers from sludge 

digestion. Due to high energy recovery and limited environmental impact, the process is often viewed as 

the most cost-effective PS utilization process (Monte, et al., 2009; Lin, et al., 2012). 

Bioethanol production: Through processes of hydrolysis and fermentation, PS can be used for 

bioethanol production (Boshoff, et al., 2016; Robus, et al., 2016). Increasing research has been conducted 

in ethanol production from PS in search of low cost second generation raw material and to avoid 

competition with human needs occurring when food crops are utilized (Prasetyo, et al., 2011). 

Cement and brick industry: For brick production, 5-15% PS addition as raw material improves 

both the product as well as the process. During brick production, the fibre content of PS increases the 

porosity of the matrix, which enables the manufacture of lighter bricks. At the same time the PS addition 

saves fuel in the oven which reduces the cooking time (Monte, et al., 2009). 

Composting and land application: Composting and soil amendments are of the lowest cost 

disposal routes, yet frequently only accounts for less than 5% of the total paper and pulp residues 

generated (Mahmood & Elliott, 2006). Composts are made from organic waste mixed with various 

amounts of paper wastes and recovered paper from industry (Migneault, et al., 2011). 
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Thermal processing: Various high-temperature, high-pressure processes such as pyrolysis 

(organic waste heated in an oxygen-free system), incineration or combustion and steam reforming have 

been extensively researched (Fytili & Zabaniotou, 2008; Mahmood & Elliott, 2006; Ridout, et al., 2016). 

These processes have an array of advantages, yet introduces problems such as inefficiency due to high 

moisture content in feedstock (Ridout, et al., 2016), air pollution and high costs (Monte, et al., 2009). 

Due to the variety and fluctuation of chemical composition of different types of PS, based on the 

pulping process and feedstock, a range of PS utilization processes, similar to the existing non-

conventional disposing processes, need to be availed. One such potential process is the production of 

cellulose nanoparticles (Moon, et al., 2011). These cellulose nanoparticle products have been estimated 

at a total of 33 million metric tons for potential applications on the global market including industries like 

paper, cosmetics, automotive, pharmaceutical, textile, etc. (Cowie, et al., 2014). 

2.2. Cellulose nanoparticles 

2.2.1. Cellulose 

Cellulose is widely considered as the most abundant organic compound derived from plants. Natural 

cellulose chains have a degree of polymerization (DP) in the range of 10 000 to 30 000, which translates 

to chain lengths of 5000 to 15 000 nm (Lavoine, et al., 2012; Ioelovich, 2008). 

 

Figure 2.2: Cellulose chain composed of glucose subunits (redrawn from Robus, 2013) 

Cellulose is a linear homopolysaccharide which is viewed to be amphiphilic (Medronho, et al., 

2015). These polysaccharides are biosynthesized of repeated dimers of cellobiose constituting of two β-

1.4-linked β-D-glucopyranose subunits (Figure 2.2) (Hendriks & Zeeman, 2009). Each glucose molecule 

bears three hydroxyl groups which has the ability to form strong intermolecular hydrogen bonds (Figure 

2.3).  

The multi-scaled microfibrillated structure of cellulose is broken down into solid microcrystalline 

structures with varying proportions of crystalline regions (higher order crystallinity), amorphous regions 

(lower order crystallinity) and paracrystalline regions (intermediate state between crystalline and 

amorphous cellulose regions) (Poletto, et al., 2013; International Standards Organization, 2017). These 

crystalline regions have high wettability and swells in aqueous solutions (Lindman, et al., 2017). 

Crystallinity indices of cellulose in various biomass and organic feedstock are measured through X-ray 

diffraction, nuclear magnetic resonance, acid hydrolysis and infrared spectroscopy (Hall, et al., 2010). 
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The results from the various analysis methods are seldom comparable. Kostylev & Wilson, (2012) 

reported over 30% variability for the same substrate analysed through different methods. The variation is 

mainly due to the specific arbitrary definition of cellulose crystallinity of each analysis (U.S. Congress, 

1989). Nevertheless, crystallinity index is still a widely used and useful parameter for comparing cellulose 

of different feedstock to each other (Kostylev & Wilson, 2012). 

 

Figure 2.3: SEM image of biomass fibre with hierarchical structure of intermolecular hydrogen linkages of cellulose (indicated 

by orange dotted lines) partly redrawn from (Chirayil, et al., 2014) 

It is evident from abovementioned that the chemical and physical properties of cellulose as well as 

the reactivity is greatly influenced by the arrangement of the molecules with respect to each other as well 

as the fibre axis. Thermal, chemical and enzymatic reactants penetrate the amorphous regions with 

greatest ease, followed by the lower ordered regions and only consecutively, the surfaces of the swollen 

crystalline regions are penetrated (Ciolacu, et al., 2010). These characteristics can be exploited to produce 

various nanostructured cellulose particles, largely referred to as cellulose nanoparticles or nanocellulose 

(Moon, et al., 2011; Ioelovich, 2008). 

2.2.2. Types and properties of cellulose nanoparticles 

2.2.2.1. Types of cellulose nanoparticles 

Cellulose nanoparticles comprise the different types of nanostructured cellulose particles such as 

SCN, CNC and CNF. These are currently of great industrial interest due to unique properties such as low 
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density, abrasivity and strength, biocompatibility, biodegradability as well as its ability towards structural 

and chemical modification (Moon, et al., 2011; Ioelovich, 2014). 

From literature, it is apparent that until recently, cellulose nanoparticle terminology has not been 

standardized, resulting in a lack of generally accepted definition of the unique properties of individual 

products for the full range of possible types of cellulose nanoparticles (Pääkkö, et al., 2007; Brinchi, et 

al., 2013). Various critical reviews on cellulose particle classification have been done (Dufresne, 2013; 

Moon, et al., 2011; Klemm, et al., 2011; Siqueira, et al., 2010). As of August 2017, the International 

Standards Organisation (ISO) have provided preliminary standards on the most common types of 

cellulose nanostructures (International Standards Organization, 2017). Table 2.1 summarises some of 

these micro- and nano-sized cellulose structures with the defined physical properties that will be used as 

standard for specific product quality in terms of dimensions throughout this study.  

Table 2.1: Terminology and defined dimensions of different micro- and nano-sized cellulose structures (International Standards 

Organization, 2017) 

Cellulose Structure Abbreviation Diameter 

(nm) 

Length (nm) Aspect Ratio 

(L/d) 

PS Fibres  > 10 000 > 100 000 > 10 

Microcrystalline Cellulose MCC > 1000 > 1000 ∼ 1 

Spherical Cellulose Nanoparticles SCN 40 - 600 N/A N/A 

Cellulose Nanofibrils CNF 3 – 100 100 – 100 000 10 – 2500 

Cellulose Nanocrystals/Nanowhiskers CNC/CNW 3 – 50 100 – 4000 5 – 50 

 

On a macro scale, cellulose nanoparticles are solid or gel-like substances. On a micro level, it is a 

material consisting of nano-sized cellulose particles with at least one dimension between roughly 1.0 and 

100 nm (Mörseburg & Chinga-Carrasco, 2009; Cowie, et al., 2014; Song, et al., 2014). Figure 2.4 

illustrates microscopy images of different cellulose nanoparticles.  
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Figure 2.4: a) Wood Fibre, b) Microcrystalline Cellulose, c) Microfibrillated Cellulose, d) Cellulose Nanofibres, e) Cellulose 

Nanocrystals f) Cellulose Nanocrystal g) Microfibrillated Cellulose from algae h) Microfibrillated Cellulose from bacteria. 

Images reproduced from Moon et al. 2011 with permission from the Royal Society of Chemistry.  

2.2.2.2. Cellulose nanoparticle quality and purity 

CNF, also known as microfibrillated cellulose (MFC), has a web-like shape with widths and lengths 

in nano and micro-scale, respectively (Mtibe, et al., 2015; International Standards Organization, 2017). 

The quality for CNF is defined by ISO standards (2017) and will be used throughout this work as 

‘cellulose nanofiber composed of at least one elementary fibril, containing crystalline, paracrystalline 

and amorphous regions, with aspect ratio usually greater than 10, which may contain longitudinal splits, 

entanglement between particles, or network-like structures’. CNF is manufactured through various types 

of mechanical treatments with/without chemical pre-treatments and can be employed in industries such 

as paper processing, pharmaceutical and cosmetic industries, composites and adhesives (Shatkin, et al., 

2014; Nguyen, et al., 2013).  

CNC, also termed cellulose nanowhiskers (CNW) are rod-like in shape with both their diameters 

and lengths in nano-scale (Mtibe & Muniyasamy, 2016). CNC from tunicate are larger (length < 4 µm) 

than CNC from plants/trees (length < 500 nm) (Moon, et al., 2016). According to ISO standards (2017), 

the quality of CNC is defined and will be used throughout this work as ‘nanocrystal predominantly 

composed of cellulose with at least one elementary fibril, containing predominantly crystalline of 

paracrystalline regions, with aspect ratio of usually less than 50 but greater than 5, not exhibiting 

longitudinal splits, inter-particle entanglement, or network-like structures’. CNC exhibit exceptional 

product characteristics, such as high aspect ratio, low density and high specific strength. It can be used in 

packaging films, sensors, textiles, and personal care products (Anderson, et al., 2014). Nanocrystals are 

generally produced from acid hydrolysis in combination with mechanical or sonication treatment (Moon, 

et al., 2011). 
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A relatively new subcategory of CNC is SCN. SCN have been obtained by enzymatic -, microbial - 

or acid hydrolysis, usually accompanied with mechanical treatment (Ioelovich, 2014). SCN from alkaline 

pre-treatment and acid hydrolysis have been reported to having diameters of 60 – 570 nm (Ioelovich, 

2014; Ioelovich, 2013; Li, et al., 2001; Zhang, et al., 2007), and from microbial hydrolysis with similar 

diameters of 40 – 490 nm (Satyamurthy & Vigneshwaran, 2013). From enzymatic and vibrational 

treatment with a variety of pre-treatments including NaOH pre-treatment or sonication, diameters of 6 – 

250 nm were found, as in Figure 2.5 (Chen, et al., 2012). SCN is defined by the same quality as that of 

CNC, except for the fact that SCN has only one dimension as it is a spherically shaped, and will therefore 

be compared to the quality of sources such as Satyamurthy & Vigneshwaran, (2013) and Chen, et al., 

(2012). As the rod-like shape of CNC can injure cells and tissue of human and animal organisms, it is 

therefore less suitable for medicine and cosmetics (Ioelovich, 2013). SCN can address this limitation due 

to their spherical shape and therefore, applications include immobilization of biological active substances 

and drugs, and thickening of cosmetic and pharmaceutical products (Zhang, et al., 2007). 

 

Figure 2.5: TEM images of SCN prepared by enzymatic hydrolysis and vibrational treatment with A) NaOH pre-treatment and 

B) ultrasonic pre-treatment, reproduced with permission from Chen et al. (2012) 

Many combinations of pre-treatment, treatment and post-treatments exists for the production of 

cellulose nanoparticles for the same feedstock (Desmaisons, et al., 2017). Consequently, a wide range of 

grade qualities is possible and available; product application being a determining factor. Mostly, literature 

comparison of the production of cellulose nanoparticles in a specific type only relies on a single criterion 

comparison such as nanoparticle dimensions (Oksman, et al., 2014; Rosa, et al., 2010), disregarding the 

higher-scale part and other properties of the sample (Besbes, et al., 2011). A few studies have also focused 

on nanoparticle suspension comparisons by multi-criteria approaches (Moser, et al., 2015; Qing, et al., 

2013). However, proposed methods to date result in a qualitative classification, and even if multi-criteria 

tests are performed, no manufacturing method exists and the suspensions are ultimately compared test by 

test (Desmaisons, et al., 2017).   

Furthermore, ISO-standards specify that cellulose nanoparticles such as CNF from plant-based 

materials contains predominantly cellulose, but usually also contain small amounts of hemicellulose, 

A B 
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lignin and can have functional groups on the cellulose surface as a result of the manufacturing process 

(International Standards Organization, 2017). Small amounts of hemicellulose in the purified cellulose 

nanofibres had been found to play a positive role in facilitating of nanofibrillation as well as aiding in 

preventing the cellulose particle agglomeration (Chen, et al., 2011). In the light of no established single 

quality or purity index (Desmaisons, et al., 2017), it is accepted that samples with the higher amount of 

cellulose material, in a narrow nanometre size range (Li & Ragauskas, 2011), will have higher cellulose 

nanoparticle quality (Garcia, et al., 2016). 

2.2.3. Cellulose nanoparticle isolation from lignocellulosic materials 

Several cellulose sources have been used to obtain cellulose nanostructures with variant 

morphologies and crystallinities. Pre-treatment is required to delaminate the fibre cell walls, break apart 

the lignin structure (Figure 2.6) and make the crystalline structure of cellulose accessible to acids and 

enzymes to efficiently hydrolyse the cellulose (Kumar, et al., 2009). 

 

Figure 2.6: Structural representation of a natural fibre cell, redrawn from Kalia et al. (2011) 

 

2.2.3.1. Pre-treatments of feedstock for enzymatic hydrolysis for cellulose 

nanoparticle production 

Due to the interest in maximizing the effectiveness of enzymatic hydrolysis, various pre-treatments 

have been investigated. Such pre-treatments aim to increase the enzymatic digestibility of the cellulose 

in the pre-treated feedstock and reduce the cost of the hydrolysis treatment. One pre-treatment process to 

enzymatic hydrolysis is steam explosion (Deepa, et al., 2015). During steam explosion pre-treatment, 

saturated steam accesses the inner structures of fibres and with instantaneous release of pressure 
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(explosion of steam), lignin and hemicellulose bonds are cleaved (Pielhop, et al., 2016), increasing the 

cellulose accessibility.  Another common pre-treatment is alkali treatment, where NaOH or ammonia pre-

treatments swells the fibres, in the process removing portions of the lignin and hemicellulose and 

simultaneously decreasing the crystallinity of the cellulose (Chen, et al., 2012). Figure 2.7 illustrates the 

effect of pre-treatment of lignocellulosic material. 

 

Figure 2.7: Effect of pre-treatment of lignocellulosic material, redrawn from Kumar et al. (2009) 

PS from paper and pulp mills have been subjected to extensive mechanical and chemical processing 

that removes lignin and hemicellulose (Prasetyo, et al., 2011). The PS is moderately defibrillated, has a 

smaller fibre size and therefore has enhanced amenability for enzymatic hydrolysis (Peng & Chen, 2011). 

It is therefore possible that PS can be processed into nano-sizes without pre-treatment (Jonoobi, et al., 

2012; Wang, et al., 2010).  

2.2.3.2. Cellulose nanoparticle production 

Table 2.2 summarises processes for the production of the different types of cellulose nanoparticles, 

indicating the starting material as well as the yields achieved. The studies on cellulose nanoparticles in 

Table 2.2 were classified according to ISO standards, save for two significant studies who did not specify 

a type; instead just referred to the product as nanoparticles, as well as available research on SCN. Yield 

estimations are seldom reported, as the yield from plant based raw materials can be very low, which 

negatively affect production economics (Anderson, et al., 2014; Moon, et al., 2011). In general, higher 

yields were reported with a combination of processes, especially including acid hydrolysis and/or 

sonication.  
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Table 2.2: Different production processes of types of cellulose nanoparticles reported with specific particle terminology used in 

literature, including cellulose source and cellulose nanoparticle yield.  

Name/Acronym 
Feedstock 

(particle size) 
Process Yield Reference 

NFC (also referred 

to as MFC) 

 

Softwood pulp 

(1 mm) 

Acid hydrolysis & 

mechanical milling 

Enzymatic hydrolysis & 

mechanical milling 

N/A 
(Henriksson, et al., 

2007) 

Sulphite pulp 
Mechanical refining & 

enzymatic hydrolysis  
N/A 

(Ankerfors, et al., 

2009) 

Bleached 

sulphite pulp 

High-pressure 

homogenization, enzymatic 

hydrolysis & 

microfluidization 

N/A 
(Pääkkö, et al., 

2007) 

Bamboo fibres 

(20 - 50 µm) 

Acid hydrolysis, dialysis & 

sonication 
N/A 

(Nguyen, et al., 

2013) 

Citrus waste 
Enzymatic hydrolysis, 

dialysis & sonication 
N/A 

(Marino, et al., 

2015) 

Bamboo pulp 
Sonication & high-shear 

homogenization 
N/A (Zhao, et al., 2014) 

Banana, jute & 

pineapple leaf 

Two steam explosion steps 

& acid hydrolysis 

N/A 

 

(Abraham, et al., 

2011) 

Wood powder of 

Japanese cedar 

High-speed blender & 

grinder 
N/A 

(Uetani & Yano, 

2011) 

Nanoparticles 

Waste cotton 

fibres (< 2 mm) 

Enzymatic hydrolysis & 

sonication 

< 20% 

(w/w) 

(Fattahi Meyabadi 

& Dadashian, 

2012) 

Cotton 

Enzymatic hydrolysis 

(repeated cycles) & 

mechanical treatment 

N/A 

(Paralikar & 

Bhatawdekar, 

1984) 

CNC 

(also sometimes 

referred to as 

CNW) 

Cotton Whatman 

filter paper 

Acid hydrolysis & 

sonication 
1% (w/w) 

(Paralikar, et al., 

2008) 

Pure cotton 

Acid hydrolysis, sonication 

& TEMPO-mediated 

carboxilation 

< 1% (w/w) 
(Mangalam, et al., 

2009) 

Bacterial 

cellulose 
Acid hydrolysis N/A 

(Grunert & Winter, 

2002) 

Cotton wool 
Acid hydrolysis, dialysis & 

sonication 
N/A 

(Morandi, et al., 

2009) 

MCC (10 – 15 

µm) 

Acid hydrolysis & 

sonication 
30% (w/w) 

(Bondeson, et al., 

2006) 

Recycled pulp 

and MCC 
Sonication & acid hydrolysis 

MCC – 5 -

10% (w/w) 

Recycled 

pulp – 2% 

(w/w) 

(Filson & Dawson-

Andoh, 2009) 

Recycled pulp 

(ca. 100 - 200 

µm) 

1. Enzymatic hydrolysis & 

sonication 

2. Microwaved enzymatic 

hydrolysis & sonication 

1. 29% 

(w/w) 

2. 38.2% 

(w/w) 

 

(Filson, et al., 

2009) 

Maize stalk 

residues 

Acid hydrolysis, dialysis & 

sonication 
N/A 

(Mtibe, et al., 

2015) 

Maize stalk 

residues 

Mechanical blending & 

mechanical grinding 
N/A 

(Mtibe, et al., 

2015) 

Ramie 
Acid hydrolysis, dialysis & 

high-shear homogenization 
N/A 

(Habibi, et al., 

2008) 

MCC 
Acid hydrolysis, dialysis & 

sonication 
N/A 

(Petersson, et al., 

2007) 

Stellenbosch University  https://scholar.sun.ac.za



 

16 

 

MCC 
Acid hydrolysis & 

sonication 
N/A (Rojas, et al., 2009) 

Grass Fibre 
Acid hydrolysis & 

sonication 
N/A 

(Pandey, et al., 

2009) 

MCC DMAc:LiCl & sonication 17% (w/w) 
(Oksman, et al., 

2006) 

MCC (45 – 53 

µm) 
Microbial hydrolysis 22% (w/w) 

(Satyamurthy, et 

al., 2011) 

Cotton linter 
Acid hydrolysis, sonication 

& dialysis 
N/A 

(Braun, et al., 

2008) 

SCN 

MCC 

High-concentration H2SO4 

hydrolysis & high-pressure 

homogenization 

30-40% (Ioelovich, 2012) 

MCC from 

cotton fibers (45 

– 53 µm) 

Microbial hydrolysis 12.3% 

(Satyamurthy & 

Vigneshwaran, 

2013) 

Buckeye 

cellulose (100% 

pure; 237 – 465 

µm) 

Acid hydrolysis & 

ultrasonication 
62-74% 

(Zhang, et al., 

2007) 

Natural cotton 

fibre 

Acid hydrolysis & 

ultrasonication 
N/A (Li, et al., 2001) 

 

The most common cellulose nanoparticle production methods are discussed as follows:  

Mechanical treatments: The first reported MFC was developed by Herrick et al. (1983) and 

Turbak et al. (1983) via grinding of diluted pulp suspensions in a high pressure mill. Today, various types 

of mechanical processes have been applied single-step or in combination, including ultrafine grinding or 

refining (Mtibe, et al., 2015; Nechyporchuk, 2015), microfluidization (Zhu, et al., 2011; Zimmerman, 

2007), ultrasonication (Tonoli, et al., 2012; Chen, et al., 2011), high-pressure homogenization (Börjesson 

& Westman, 2015; Milford, et al., 2001), high-shear homogenization (Zhao, et al., 2014; Kazimierczak, 

et al., 2016) and cryo-crushing in liquid nitrogen (Alemdar & Sain, 2008; Wang & Sain, 2007). Due to 

different intensities and shearing mechanisms, the morphologies of the cellulose nanoparticles vary 

significantly.  

Microfluidization and other high-pressure homogenizers are very effective in removing external 

layers of the plant cell wall, due to shear forces, causing the fibres to experience axial tensile failure. 

These processes provide considerably higher shear than other mechanical operations (Qing, et al., 2013). 

During high-shear homogenization, cellulose nanoparticles are isolated with high-speed rotation, leading 

to shearing forces individualizing fibres (Zhao, et al., 2014; Kazimierczak, et al., 2016).  

Mechanical processes are advantageous due to the variety of different possible treatments that can 

produce well-fibrillated cellulose nanoparticles (Bilodeau & Paradis, 2013). However, mechanical 

processes create very high demand for energy. In various cases, temperature control is required with 

mechanical treatments, which increases the environmental impact (Lavoine, et al., 2012).  
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Chemical treatment: A controlled chemical method such as strong acid hydrolysis or oxidant 

(ammonium persulfate) treatment allows dissolution of amorphous regions of cellulose as well as the 

longitudinal cutting of microfibrils (Leung, et al., 2011; Dufresne, 2013). Sulphuric acid (H2SO4) 

(typically 64% (w/w)) is mostly used as it produces negatively surface charged sulphate esters, leading 

to increased colloidal stabilities, but hydrochloric, phosphoric, maleic acid and combinations thereof have 

also been used (Rebouillat & Pla, 2013; Wang, et al., 2007). During acid hydrolysis of cellulosic materials 

specifically pre-swelled with NaOH or dimethyl sulfoxide (DMSO), the dissolution of cellulose with 

simultaneous acid hydrolysis occurs, and after dilution of the solution, flocs of low-molecular weight 

amorphous cellulose precipitate. Thereafter, these flocs are comminuted using ultrasound or high-power 

mechanical equipment until spherical nanoparticles are obtained (Ioelovich, 2014; Li, et al., 2001). 

Through this dissolution mechanism and combined treatments, much higher cellulose nanoparticle yields 

were achieved (up to 62 - 74%; Table 2.2) in comparison to yields reported with any other treatments. 

Acid hydrolysis is a well-known process for the production of cellulose nanoparticles with increased 

crystallinities, stability and yields (Bondeson, et al., 2006). However, the use of strong acids produces 

undesired by-products (furfural and 2-hydroxymethylfurfural (HMF)), complicates washing and 

increases the need for purification; rendering its environmental impact more complex (Leung, et al., 

2011). Therefore, the industrial use of acid hydrolysis for producing cellulose nanoparticles on a large 

scale may be disadvantageous (Rebouillat & Pla, 2013). 

Enzymatic Hydrolysis: Cellulase, the secreted enzymes that specifically target cellulose, is an 

enzyme complex involving synergistic action of three types of cellulase: endo-glucanase (EC 3.2.1.4), 

exo-glucanase (EC 3.2.1.91) and β-glucosidase (EC 3.2.1.21). Many detailed synergistic cellulase 

mechanisms have been proposed in literature, likely due to multiple cooperative interactions of cellulase 

(Kostylev & Wilson, 2012). Generally, three simultaneous and repeated processes can describe one 

prevalent hydrolysis mechanism, where cellulases act in vitro on insoluble cellulosic substrates, as also 

illustrated in Figure 2.8 (Balat, et al., 2008; Börjesson & Westman, 2015; Fattahi Meyabadi, et al., 2014):  

i) Enzymes are adsorbed onto cellulose surface to form enzyme-substrate complexes.  

ii) Soluble intermediates are released from the surface of the cellulose molecules. Endoglucanase acts 

on the amorphous and paracrystalline sites of the cellulose, and randomly hydrolyse accessible 

intramolecular β(1→4)-glucosidic linkages in the cellulose fibres, swelling the fibrils and generating 

oligosaccharides of several lengths with new chain ends (primary hydrolysis). Breaking of 

interfibrillated (intermolecular) hydrogen bonds result in the formation of fibrils with micrometre 

sized lengths (non-crystalline regions still remain intact) and nanometre sized widths.  

iii) Exoglucanase hydrolyses the reducing ends, non-reducing ends and soluble intermediates to release 

low molecular weight intermediates (Kostylev & Wilson, 2012) and finally, secondary hydrolysis of 

cellodextrins and cellobiose by β-glucosidase to form glucose takes place (Liu, et al., 2009). 
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Figure 2.8: Enzymatic hydrolysis with specific action of endoglucanase, exoglucanase and beta-glucosidase, also indicating 

cellobiose and glucose acting as inhibitors of enzyme activity, redrawn from Gottumukkala & Görgens, 2016  

2.2.3.3. Enzyme cocktails for cellulose nanoparticle production 

It can be argued for cellulose nanoparticle production, that a cellulase cocktail containing only 

endoglucanases would be ideal for enzymatic hydrolysis. This would prevent the cellulose loss in form 

of soluble oligomers and glucose that can pose as inhibitors (so-called feedback inhibition) and affect the 

product purity. However, it has been found that in the absence of exoglucanases, the effectiveness of 

cellulose hydrolysis was limited by the lack of synergy (Liu, et al., 2009). Moreover, the use of 

monocomponent endoglucanase has mainly been used to facilitate the production of MFC (or 

nanofibrillated cellulose) through mechanical treatments (Ankerfors, 2015; Ankerfors, et al., 2009; 

Henriksson, et al., 2007).  

Optimum ratios of the individual enzymes activities in cellulase preparations are dependent on the 

desired products as well as the properties of the substrate (Kostylev & Wilson, 2012). PS has lower 

cellulose crystallinity than that of untreated or natural substrates (Kumar, et al., 2008; Kostylev & Wilson, 

2012). For PS hydrolysis, a cellulase cocktail therefore requires a high endoglucanase-to-exoglucanase 

(endo-to-exo) ratio. This is for removal of the larger quantities of easy-to-react amorphous regions of 

cellulose fibres to as high an extent as possible, in order to take advantage of the recalcitrant crystalline 

domains in cellulose fibres to produce non-entangled cellulose nanoparticles.  

Endoglucanases termed classical endoglucanases, have a cleft configuration allowing it to randomly 

cleave amorphous or paracrystalline cellulose, which releases polymer chains of various lengths (Cohen, 

et al., 2005). Some endoglucanases have the ability to processively cleave internally of the cellulose 

chains (continually interact with a single chain), releasing soluble oligomers (Kostylev & Wilson, 2012). 

These cellulase are called processive endoglucanases and are produced amongst others by 

Thermomonospora fusca (T. fusca) and Saccharophagus degradans (S. degradans) (Watson, et al., 2009).  
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The degrading capability of the exoglucanase is dependent on the concentration of available chain 

ends (Josefsson, et al., 2008). The two main exoglucanases, Cel7A (CHBI) and Cel6A (CBHII), 

hydrolyze cellulose chains with a tunnel configuration from the reducing and the non-reducing ends, 

respectively (Silveira, et al., 2012; Teeri, et al., 1995). Progressive hydrolysis of exoglucanases will 

expose crystalline or amorphous chains underneath, for further hydrolysis at a smaller fibril diameter 

(Josefsson, et al., 2008). It is also known that exoglucanases produced by T.reesei and T. fusca make up 

approximately 70 - 80% of the total cellulase produced (Herpoël-Gimbert, et al., 2008) and it has been 

claimed that exoglucanases carry out the most of the digestion work (Kostylev & Wilson, 2012). 

Therefore, to partially hydrolyse cellulose for short insoluble chain formation and prevent degradation to 

soluble oligomers, as well as simultaneously incorporating the synergistic effect, the necessity for a high 

(classical) endoglucanase to exoglucanase ratio is once again emphasized. Furthermore, as complete 

digestion to glucose is undesired, the ideal cellulase cocktail would not contain β-glucosidase. 

Additionally, it is generally preferred to have improved hydrolysis efficiencies, i.e. faster hydrolysis 

rates and higher enzyme activities. The hydrolysis efficiency of cellulase depends on the adsorption 

capacity of the cellulases to the substrate. Cellulase enzymes containing catalytic core domains (CD) and 

cellulose-binding domains (CBD), enhance this absorption capacity to substrates. All Trichoderma reesei 

(T. reesei) cellulases, except Cel12A, consist of both a CBM as well as a CD (Karlsson, et al., 2002).  

This concludes to a preferred cellulase cocktail for PS hydrolysis to non-entangled cellulose 

nanoparticles having the characteristics of: 

1. Classical endoglucanase activity 

2. Absence of β-glucosidase activity 

3. A high endoglucanase to exoglucanase activity ratio 

4. Enzymes containing catalytic core domains and cellulose-binding domains 

Commercial cellulase cocktails, mainly optimised for the production of ethanol, have been used to 

study the production of cellulose nanoparticles (Song, et al., 2014). Additional to the endoglucanase, 

exoglucanase and low activity of β-glucosidase in these cocktails, these commercial cellulase cocktails 

often contain some levels of hemicellulases (Novozymes Bioenergy, 2012; Kádár, et al., 2004).  

Commercial application of enzyme hydrolysis of cellulose materials has been discouraged by the 

high cost of enzymes, decreased reaction rates and very low yields (Kang, et al., 2011). Nevertheless, the 

utility cost of enzymatic hydrolysis is much lower compared to acid hydrolysis because it is carried out 

at milder reaction conditions, requires decreased energy inputs, has less side reactions and minimal 

reactor resistance to corrosion (Marques, et al., 2008). Notably, Novozymes (Denmark) has been able to 

achieve significant reductions in enzyme costs over the years, from $5.1 per litre in 1999 to $0.2 per litre 

in 2005 (Destexhe, 2007), and furthermore, the 50 % reduction announced in 2009 (Duran, et al., 2011). 
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In comparison with acid hydrolysis, enzymatic hydrolysis does not show favourable results in terms 

of product yield and dispersions (Fattahi Meyabadi & Dadashian, 2012). Furthermore, CNC produced 

with enzymes have unmodified hydroxyl surface groups similar to CNC produced by hydrochloric acid 

hydrolysis, leading to unstable suspensions (Mtibe & Muniyasamy, 2016; Anderson, et al., 2014). Other 

shortcomings include viscosity limitations for high-solids processes, as is desired for economic reasons 

in industrial scale productions, which result in insufficient uniform mixing and incomplete mass transfer 

of the enzymes (Ioelovic & Morag, 2012). Yet, the process of enzymatic hydrolysis can be viewed as 

environmentally friendly as it reduces water consumption as well as toxic, corrosive waste by eliminating 

the use of hazardous chemicals (Anderson, et al., 2014). 

2.2.4. Influence of enzymatic hydrolysis process parameters on cellulose 

nanoparticle quality and yield 

This subdivision describes the operating parameters that influence the production and quality of 

cellulose nanoparticles with specifically enzymatic hydrolysis as production process. 

2.2.4.1. Temperature, pH and agitation 

Cellulases are active in the pH range of 4.5 to 7 though the optimum for most cellulases in enzymatic 

hydrolysis is 4.8 (Walker & Wilson, 1991; Kazimierczak, et al., 2016). Optimum conditions for the 

cellulase cocktail, Cellic® CTec2, is at an agitation speed of 150 rpm, a pH range of pH 4 – pH 6 and a 

temperature range of 45 to 55°C (Novozymes Bioenergy, 2012). The monocomponent endoglucanase, 

FibreCare® R (previously called Novozym 476), has stable activity in a pH range of 5 to 9 (Novozymes, 

2016) and has been used at temperatures up to 50°C (Desmaisons, et al., 2017). Therefore, the ideal pH 

range for enzymatic hydrolysis with these enzymes is 4.5 to 6, and the ideal temperature for enzymatic 

hydrolysis would be 45 to 50 °C. The addition of sodium citrate or acetate buffers provide the required 

pH-controlled environments during enzymatic hydrolysis experiments (Lakshmidevi & Muthukumar, 

2010).  

2.2.4.2. Enzyme Dosage 

Boshoff et al. (2016) used Optiflow RC 2.0 (activity of 130 FPU/mL) with optimum enzyme dosages 

of 11 FPU/g sludge for corrugated recycle PS and 25 FPU/g sludge for virgin pulp PS during bioethanol 

production. Song et al. (2014) conducted enzymatic hydrolysis with Cellic® CTec2 at even higher 

dosages of 30 FPU/g dry pulp (activity of 148 FPU/mL) in combination with sonication to successfully 

co-produce CNF with bioethanol. These results indicated that different feedstock types have different 

optimum enzyme dosages and therefore wide enough dosage ranges should be investigated. As enzymes 

are one of the costliest running expenses in any biomass conversion process (Kang, et al., 2011), it is 

critical to minimize the amount of enzyme used, but still achieve acceptable cellulose nanoparticle yields.  
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For dosing of monocomponent endoglucanases such as Novozym 476 (Novozym A/S) a preferred 

enzyme dosages of 0.6 to 100 ECU/g fibres was specified in a patent using enzymatic hydrolysis pre-

treatment to mechanical treatment for the production of cellulose nanoparticles from lignocellulosic 

biomass (Ankerfors, et al., 2007). 

2.2.4.3. Residence time and solids loading 

It is desired that enzymatic hydrolysis is conducted at increased biomass solid loading and increased 

hydrolysis rates for techno-economic purposes (Boshoff, et al., 2016). In this way, it is possible to achieve 

high concentrations of products which can bring substantial economic savings. However, the viscosity of 

the system increases substantially at increased solids loading, which results in insufficient mixing and 

restricted action of the enzymes creating hot spots (Ioelovic & Morag, 2012). Only very low solids 

loadings (0.5 – 1.5% w/w) have been reported for the enzymatic production of cellulose nanoparticles 

(Fattahi Meyabadi & Dadashian, 2012; Anderson, et al., 2014). Therefore it is required to test cellulose 

nanoparticles production at higher solids loadings (3 – 9% w/w). 

Due to enzyme deactivation and industrial economic considerations, it is recommended that shorter 

hydrolysis periods (time of 24 hrs) are used (Song, et al., 2014). Furthermore, the use of commercial 

cellulase cocktails for longer hydrolysis periods (24 hrs or more), will hydrolyze large portions of 

cellulose into soluble monomers (glucose and oligomers), and only low amount of submicron cellulosic 

polymers remain (Ioelovich, 2014). During a study of enzymatic hydrolysis of cellulosic suspensions 

with commercial cellulase cocktails (Novozyme enzymes), at 5 to 10% (w/w) solids loadings, glucose 

concentrations increased exponentially within the first 24 hrs (Roberts, et al., 2011). Even for use of a 

monocomponent endoglucanase in enzymatic hydrolysis to produce cellulose nanoparticles, shorter time 

than 48 hr hydrolysis is recommended (Fattahi Meyabadi & Dadashian, 2012).  

Short hydrolysis processes (1 to 5 hrs) with low enzyme dosages will limit the glucose formation 

and simultaneously loosen and weaken the structure of cellulose fibres, but will also limit the release of 

fibrils and nanoparticles. Therefore, for nano-fibrillation of the weakened cellulose fibres, subsequent 

mechanical treatment is required (Kazimierczak, et al., 2016; Ankerfors, 2015). For studies on cellulose 

nanoparticle production by enzymatic hydrolysis (with monocomponent endoglucanase) in combination 

with mechanical treatment, short incubation periods of 0.5 – 8 hrs were used (Pääkkö, et al., 2007; 

Henriksson, et al., 2007). In order to stop the hydrolysis reaction, enzymes are denatured immediately 

after hydrolysis with use of a waterbath at 80°C for 15 – 30 min, or in an autoclave at 121°C for 20 min 

(Kazimierczak, et al., 2016; Ankerfors, et al., 2009). 

2.2.4.4. Substrate and cellulase inhibitors 

In a study of cellulose conversion to sugars, it was reported that xylan and lignin strongly inhibit 

cellulase (Kumar & Wyman, 2014; Visser, et al., 2015), while glucose and oligomers cause feedback 
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inhibition (Roberts, et al., 2011). Ash content in PS cause further obstruction to enzymatic action 

(Boshoff, et al., 2016). Therefore, even though PS fibres have already been disengaged from the plant 

wall matrix, it is desired that non-cellulosic plant materials and ash content is as low as possible for 

enzymatic hydrolysis. Many agricultural by-products have been used as feedstock to isolate cellulose 

nanoparticles, such as wheat straw, soy hulls and rice hulls (Yu, et al., 2009). Industrial bio-residue such 

as pulp sludge (Jonoobi, et al., 2012) and recycled pulp (Filson, et al., 2009) has also been used as 

feedstock, indicating the potential of substrates with ash components to still be practical feedstocks for 

cellulose nanoparticle production. 

2.2.4.5. Substrate crystallinity  

The degree of crystallinity of cellulose is one of the main predictors of the rate of enzymatic 

hydrolysis (Hall, et al., 2010). An amorphous sample is hydrolysed faster in comparison to a crystalline 

sample (Park, et al., 2010). Furthermore, it has been found that highly crystalline materials reduce the 

degree of synergism between subgroups of cellulase enzymes (Kostylev & Wilson, 2012). As waste 

materials such as PS has been extensively processed, the cellulose crystallinity indices tend to be lower 

than that of natural lignocellulosic materials (Kumar, et al., 2008; Jonoobi, et al., 2015) or more pure 

cellulose sources, such as cotton and filter paper (Kostylev & Wilson, 2012). For cellulose nanoparticle 

production, a balance should be obtained between a high crystallinity which would require higher enzyme 

dosages and longer hydrolysis times, and a low crystallinity which would result in higher yields of the 

undesired by-products such as glucose and soluble oligomers.  

2.2.4.6. Sterilization 

Sterilization is required to prevent undesired bacterial contamination during enzymatic hydrolysis. 

A reasonable assumption with use of commercial cellulase cocktails can be that it has no microbial load. 

To prevent bacterial growth, Pääkkö et al. (2007) added 0.4 µL/mL of microbicide, 5-chloro-2-methyl-

4-isothiazolin-3-one, to the PS slurry during enzymatic hydrolysis. Autoclaving of dry PS or buffering 

solutions at 121°C for 15 min in order to kill any contaminants is an alternative to antibiotics addition 

(Boshoff, 2016a). 

2.2.4.7. Purification processes 

After hydrolysis, a mixture of hydrolysed celluloses of varying sizes, biomass residue and impurities 

including enzymatic material and sugars are present in the buffered solution. To isolate the cellulose 

nanoparticles from this mixture, different purification processes include washing with reverse osmosis 

(RO)/distilled water and centrifugation, and dialysis.  

Washing and centrifugation in multiple cycles separates the cellulose nanoparticles from the residual 

solids based on the particle interactions with the supernatant solution. Dilution with water, allows for a 
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neutral pH, favouring cellulosic material-water interactions, which causes the turbid suspension of 

cellulose nanoparticles. Turbidity is an indication of the presence and high-concentration release of the 

cellulose nanoparticles (Filson, et al., 2009). A patent on the preparation of cellulose nanofibrils claims 

that after the alkaline treatment, delignification, enzymatic hydrolysis and homogenization of stalks of 

annual plants, Büchner funnel filtration and centrifugation at 4000 rpm for 20 min is sufficient to generate 

the nanoparticle-containing supernatant (Kazimierczak, et al., 2016).  

During a study on the enzymatically-mediated sonication of recycled pulp, enzyme-hydrolysed 

suspensions were centrifuged at 12,000 rpm for 10 min using a superspeed centrifuge. The supernatant 

was decanted and the cellulose particles from the residual solids obtained by washing repeatedly with 

deionized water to remove enzyme from the solute until the supernatant turned turbid (Filson & Dawson-

Andoh, 2009). From the above studies it is evident that cellulosic nanomaterials can be present in the 

supernatant, but also in the residual solids, and hence washing of both fractions should be considered.  

Dialysis works on the principles of diffusion of solutes in a liquid across a semi-permeable 

membrane, against RO water for 4 to 7 days, or until neutrality is reached (Beck-Candanedo, et al., 2005). 

Marino et al. (2015) performed enzymatic hydrolysis on citrus waste for the production of nanocellulose 

where no denaturing, washing or centrifugation steps were included. Instead, the hydrolysates were 

filtered before dilution of the bio-residue to around 1% (w/v), and the dilute filtrate was dialyzed against 

water in a cellulose membrane, and subsequently sonicated. Dialysis membranes with molecular weight 

cut-off of 8 000-14 000 Dalton are recommended for cellulose nanoparticle purification processes, in 

order to limit product loss (Wang, et al., 2007). In comparison to dialysis which requires expensive 

membranes, washing could provide a less costly and much faster cellulose nanoparticle isolating process 

(Wondraczek, et al., 2013). However, a disadvantage of washing could be product loss, especially at low 

cellulose nanoparticle concentrations. 

The supernatant can be separated from the residual solids with filtration through filter paper in order 

to isolate nano-sized cellulose particles. Furthermore, ultrafiltration membrane (0.1 µm pore size) to 0.45 

µm filter paper membranes have been used in cellulose nanoparticle production studies (Zhu, et al., 2011; 

Satyamurthy & Vigneshwaran, 2013). 

2.2.4.8. Drying processes 

One of the largest manufacturing challenges is to obtain dry cellulose nanoparticles while 

maintaining their nano-scale dimensions, preventing fibre agglomeration. Once dried, it is difficult to re-

disperse and preserve many of the properties unique to cellulose nanoparticles. After being dried, 

cellulose nanoparticles irreversibly assemble into a plastic-like substance. Therefore, a low intensity (low 

heat) drying process is desired, to prevent particle agglomeration and allow for redispersion (Fairman, 

2014).  
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Figure 2.9: Scanning Electron Microscopy images of CNF dried a) oven drying (scale bar 5 µm) b) freeze-drying (scale bar 2 

µm) c) supercritical drying (scale bar 2 µm) and d) spray drying (scale bar 5 µm), (images with permission from Peng et al. 

(2011)) 

A study by Peng et al. (2011) examined oven drying, supercritical drying, freeze drying 

(lyophilisation), and spray-drying of CNF, with images portrayed in Figure 2.9. Oven drying is conducted 

by exposing treated suspensions in a conventional oven with circulating air. To avoid thermal degradation 

of the fibres, temperature should not exceed 45 °C. A more subtle drying technique is freeze drying that 

removes water or organic solvents by sublimation after freezing (Salajková, 2013). Spray drying is 

achieved through multi-fluid atomization as it is mixed with hot air. The suspension film gets disrupted 

and tiny droplets reduce in size from diameters with several to tens of micrometres (Thybo & Hovgaard, 

2008). These droplets then evaporate and subsequent cyclone separation is used to produce a dried powder 

product from moist air (Peng, et al., 2012). Of the four techniques, spray drying and freeze drying were 

recommended for their ability to best preserve the cellulose nanoparticle properties. 

2.3. Advantages and disadvantages of PS as feedstock to enzymatic 

hydrolysis for cellulose nanoparticle production 

2.3.1.1. Advantages 

Limited pre-treatment requirement before enzymatic hydrolysis: Several different pre-

treatments have been used for pre-treatment of biomass feedstocks such as woodpulp and other plant 

material for the production of cellulose nanoparticles. Such pre-treatments include alkali treatments 

(Marsden & Gray, 1986), delignification (Kumar, et al., 2009), microbial and enzymatic pre-treatments 

and more (Lai, 2010; Blanchette, 1991; Kumar, et al., 2009).  

PS from paper and pulp mills has been subjected to extensive mechanical and chemical processing 

that removes lignin and hemicellulose (Prasetyo, et al., 2011; Peng & Chen, 2011). Furthermore, the 

sludge is moderately defibrillated, has a smaller fibre size and therefore has enhanced amenability for 
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enzymatic hydrolysis and can be processed into nano-sizes without pre-treatment, which makes it an ideal 

feedstock for cellulose nanoparticle production and provides economic benefits to the process (Jonoobi, 

et al., 2012; Wang, et al., 2010). However, the treatment during papermaking essentially aims to make 

paper and not to pre-treat cellulosic materials for biological conversion processes (Prasetyo, et al., 2011). 

Therefore selective pre-treatment should be carefully considered, especially PS from certain mechanical 

pulping processes which may contain high lignin content.  

High feedstock availability: South Africa’s paper industry discards around 0.5 million tpa of PS 

(Dwiarti, et al., 2012). Estimates from the World Wide Fund for Nature predict total paper consumption 

in South Africa to be approximately 500 million tpa by 2020, indicating that waste generation will 

increase (Africa Green Media, 2013). This annual stream of waste PS is traditionally land-filled, but is 

rich in cellulose and hence qualifies as second-generation feedstock for energy and material production.  

Industrial waste reduction: By utilizing PS as a feedstock will decrease industrial waste that 

paper and pulp companies dispose by landfill. This will reduce transport, disposal and other costs related 

to exceeding of strict waste disposal regulations. Landfill space uptake will be decreased with additional 

benefits of reduction in water pollution and greenhouse gas (Crespo, et al., 2012).  

2.3.1.2. Disadvantages 

High water holding capacity: The water holding capacity (WHC) is a water to substrate ratio 

(Chen, 2014). High WHC is considered a problem because more water is retained than the mass of dry 

substrate, which causes limited free water during the process to result in increased viscosities that leads 

to improper agitation (Fan & Lynd, 2007). The problem continues as it affects disposal. Fisher 

International reported on world-wide paper and pulp mills dispose of sludge by landfilling (22%), 

landspreading (24%), and agricultural applications (23%) while the rest are incinerated or sent to other 

mills. High moisture content sludge results in significant loss of water, which drives legislations further 

to prohibit landfilling (FisherSolve, 2017). 

High inorganic contents: High ash fractions has a limiting effect on the cellulose loading capacity 

as it lowers the cellulose portion of the feedstock and can also influence compositional analysis (Kang, 

et al., 2011). During enzymatic hydrolysis, the enzymes irreversibly bind to the ash, as ash-enzyme 

interaction has a higher affinity than cellulose-enzyme interaction (Chen, 2014), resulting in poor yields 

(Boshoff, 2015). Therefore washing pre-treatment of high-ash content PS for ash removal is a key focus 

for enzymatic hydrolysis.  

2.4. Paper and pulp industry in South Africa 

Since 1970, the annual growth rate of the South African paper and pulp manufacturing industry has 

outdone the international average, which has a significant contribution to the nation’s economy (FP&M 
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SETA, 2014). The paper and pulp sector effectively includes the renewable resource sector (plantation 

forestry), the primary processing sector (pulp milling) as well as the secondary beneficiation sector (paper 

and pulp products). Paper Manufacturers Association of South Africa (PAMSA) is an industry 

representative organisation for the major paper and pulp companies operating in South Africa. These 

include Sappi, Mondi, Kimberly-Clark, Nampak and Mpact (PAMSA, 2012). 

In order for the pulp and paper industry to keep up profits it needs to continually invest in material, 

chemicals and energy saving initiatives. Market penetration of cellulose nanoparticle production in 

regions such as South Africa is low as compared to North America and Europe due to lack of product 

awareness and technological matters. The global cellulose nanoparticle market had an estimated value of 

US$54.9 million in 2014 and is projected to reach US$700 million in 2023 (Transparency Market 

Research Analysis, 2015). It can therefore be beneficial for the paper and pulp industry to investigate the 

possibility of firstly, utilizing the large waste streams for cellulose nanoparticle production, secondly, 

utilization of these cellulose nanoparticles for improved paper and paper products (Besbes, et al., 2011) 

and simultaneously create job opportunities and minimise the amount of waste generated. 

2.5. Research gaps in literature 

Although research has been conducted on the production of cellulose nanoparticles from various 

feedstocks, little research has been conducted with PS as feedstock (Abraham, et al., 2011; Brinchi, et al., 

2013; Filson, et al., 2009). Furthermore, the potential for PS as feedstock for enzymatic hydrolysis, which 

requires no pre-treatment has been studied for ethanol production (Boshoff, et al., 2016; Robus, et al., 

2016), but not for cellulose nanoparticle production.  

Literature shows that enzymatic hydrolysis for nanocellulose production is frequently used only as 

a pre-treatment to mechanical treatment (Pääkkö, et al., 2007; Jonoobi, et al., 2012; Ankerfors, et al., 

2009; Lindström, et al., 2007; Kazimierczak, et al., 2016; Henriksson, et al., 2007), or as a combination 

process with sonication (Song, et al., 2014; Filson, et al., 2009; Fattahi Meyabadi & Dadashian, 2012), 

or mechanical treatment in combination with enzymatic hydrolysis (Anderson, et al., 2014). Furthermore, 

the use of commercial cellulase cocktails in different ratios to a monocomponent endoglucanase for 

cellulose nanoparticle production has not been investigated before. Additionally, short-period enzymatic 

hydrolysis for the production of cellulose nanoparticles have been recommended by various literature 

sources (Fattahi Meyabadi & Dadashian, 2012; Fattahi Meyabadi, et al., 2014). This was because partial 

hydrolysis should result in the production of cellulose nanoparticle-sized particles. Yet, this short-period 

enzymatic hydrolysis has not been explored up to date. Therefore, investigation of enzymatic hydrolysis 

processes as a sole treatment need to be conducted. These processes must be able to produce cellulose 

nanoparticles at reasonable enzyme dosages, hydrolysis times and solids loading, while still resulting in 

acceptable cellulose nanoparticle median sizes and yields. Factors affecting these hydrolysis processes, 

and their influence on cellulose nanoparticle PSD and yields, also require further investigation. The 
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particles produced were comprehensively characterised for proper classification (International Standards 

Organization, 2017). The commercial cellulose nanoparticle production method of acid hydrolysis were 

also investigated from the same PS feedstock, as a control process. 

2.6. Aims and Objectives 

PS from several South African paper and pulp mills has previously been characterised for the 

production of ethanol through enzymatic hydrolysis processes (Boshoff, 2015; Robus, 2013). The 

experimental aim of this project is the development and optimisation of a process for cellulose 

nanoparticles production from waste PS with enzymatic hydrolysis as the integral part. 

The objectives followed to achieve this aim: 

i. Investigation of increase in digestibility of organic content of PS feedstock as preparation for 

enzymatic hydrolysis 

ii. Screening of significant process conditions including hydrolysis time, solids loading and enzyme 

dosages, and selection of preferred commercial cellulase cocktails and/or monocomponent 

endoglucanase for controlled hydrolysis of PS to cellulose nanoparticles 

iii. Statistical design of experiments to develop models for controlled enzymatic hydrolysis of PS to 

minimise the mean particle size of the cellulose nanoparticles and minimise glucose formation in 

the products, with input parameters defined from the screening process  

iv. Comparison of enzymatic hydrolysis with the conventional acid hydrolysis process, to investigate 

the characteristics of cellulose nanoparticles produced from PS feedstocks. 

v. Assessment of the effect of microfiltration and high-shear homogenisation as post-enzymatic 

hydrolysis treatment processes on quality aspects, including the particle size distribution and 

morphology of the cellulose nanoparticles 

vi. Assessment of enzymatically hydrolysed cellulose nanoparticle product washing and - dialysis 

as recovery processes on purity and yield of cellulose nanoparticles 
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Chapter 3. Materials and Methods 

3.1. Experimental approach 

The experimental approach, as presented in Figure 3.1, depicts the structure of research approach 

that was followed for this study. The selection of two PS feedstock (printed recycle PS versus virgin pulp 

PS) was done based on previous studies by Boshoff et al. (2016). Printed recycle PS has the least amount 

of fibres due to the high ash component, a PS was selected from this category to demonstrate whether 

cellulose nanoparticles can be produced, providing assurance that recycled sludge types will work for 

cellulose nanoparticle production. Therefore, a printed recycled PS, representing the PS from Kimberly 

Clark Springs was selected as the high-ash content feedstock. For comparison, a virgin pulp PS, 

containing higher fibre content, a representative of PS from Sappi Ngodwana was selected as the low-ash 

content feedstock. The printed recycle PS was de-ashed to test for increased organic content and the virgin 

pulp PS was steam exploded to assess fibre digestibility.  

Screening of enzymes for cellulose nanoparticle production was conducted to analyse and compare 

commercial cellulases, ViscamylTM Flo and Cellic® CTec2, as well as monocomponent endoglucanases 

from a commercial enzyme, FiberCare® R, for highest cellulase activity. Enzyme screening for PS 

hydrolysis was conducted at lower and higher solid loadings (3 and 9% w/w) and different intervals for 

short-time hydrolysis (0 to 32 hrs). From the two commercial cellulase cocktails, Cellic® CTec2 was 

selected. The Cellic® CTec2 selection was due to the formation of smaller mean particle sizes of cellulose 

nanoparticles and minimal by-product (glucose) formation when compared to ViscamylTM Flo. 

FiberCare® R provided particle sizes in the same range as Cellic® CTec2, yet with lower by-product 

formation.  

Statistical optimisation on enzymatic hydrolysis of both PS feedstock with different ratios of the 

Cellic® CTec2 and FiberCare® R was conducted according to a Central Composite Design (CCD) 

prepared using a Statistica software program. The design was based on smaller mean cellulose particle 

size (< 500 nm) and lower glucose concentrations (as responses. Validation of the design was done by 

conducting hydrolysis runs at the predicted optimum conditions for cellulose nanoparticle production.  

A set of enzymatic hydrolysis conditions for both PS feedstock were designated for characterisation 

of post-hydrolysis processes of microfiltration versus high-shear homogenization. This set of conditions 

was based on 1) enzyme dosage ratios and 2) glucose concentration ranges; and included the optimised 

conditions for virgin pulp PS and selected conditions for printed recycle PS. For the same set of 

conditions, post-hydrolysis downstream recovery experiments, including dialysis and washing were 

conducted with the focus on cellulose nanoparticle quality, purity and yield. Based on experimental 

findings, a proposed short-period enzymatic hydrolysis mechanism was discussed, specifically for higher 
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endoglucanase to exoglucanase ratios. Lastly, validation of mass balances were constructed for each 

feedstock. 

 

Figure 3.1: Research approach for production of cellulose nanoparticles from waste PS with enzymatic hydrolysis as integral 

part 
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3.2. Materials 

3.2.1. Paper sludge feedstock  

Two PS samples were collected from South African paper and pulp mills, namely a high-ash content 

PS (± 60% w/w ash content) categorised as printing recycle PS from Kimberly-Clark South Africa (Pty) 

Ltd (Springs, Gauteng) versus a low-ash content PS (± 10% w/w ash content) categorised as virgin pulp 

PS from Sappi South Africa Ltd (Ngodwana, Mpumalanga). The PS samples used for enzymatic 

hydrolysis were air dried in a greenhouse with consecutive convection oven drying at 40 °C until constant 

weight. Dried samples were quarter-coned according to the standards procedures of National Renewable 

Energy Laboratory (NREL), milled to particle sizes of less than 6 mm and stored in closed plastic storage 

bags at room temperature (Hames, et al., 2008). 

3.2.2. Enzyme cocktails 

Cellic® CTec 2 (Novozymes, Denmark), ViscamylTM Flo (DuPont Industrial Biosciences, USA) and 

monocomponent endoglucanase, FiberCare® R (a generous gift from Novozymes, Denmark), supported 

for cellulose nanoparticle production (Zhu, et al., 2011), were used for the screening experiments. Cellic® 

CTec2 is an industrial cellulosic enzyme derived from Trichoderma reesei consisting of a blend of 

aggressive cellulases (two main exoglucanases, five different endoglucanases and β-glucosidase) and 

approximately 10% (w/w) hemicellulases (Novozymes Bioenergy, 2012). ViscamylTM Flo is a viscosity 

reducing maltogenic cellulase enzyme blend, which contains some hemicellulases (Enzyme Solutions 

Pty. Ltd., 2016; Ko, et al., 2015). FiberCare® R is produced from the micro-organism Humicola insolens, 

and unlike many other monocomponent endoglucanases, contains a cellulose-binding domain (CBD), 

which therefore has greater absorption capacity to substrates (Ibarra, et al., 2010). The cellulose and 

endoglucanase activities were determined using microplate-based filter paper (FPU) method and 

carboxymethyl-cellulose (CMC) method, respectively, as developed by Ghose, (1987). 

3.2.3. Control samples for cellulose nanoparticles  

Commercial CNF and CNC samples produced via mechanical treatment and acid hydrolysis, 

respectively, obtained from the Process Development Centre (Maine University, US) were used as control 

samples. CNC particles had declared lengths of 150 – 200 nm and diameters of 5- 20 nm, whereas CNF 

particles had declared lengths up to several hundred µm and diameters of 50 nm (University of Maine, 

2016). 

3.3. Methods 

Printed recycled PS was washed (for de-ashing purposes) and virgin pulp PS was steam exploded as 

pre-treatment processes to enzymatic hydrolysis. Both PS feedstock were subjected to enzymatic 

hydrolysis followed by centrifugation and vacuum-filtration. After vacuum-filtration, the sample was 
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split into two parts; 1) the filtrate, referred to as supernatant, and 2) the filtered cake (referred to as the 

residual solids). The supernatant was subject to different downstream processes including centrifugation-

washing, dialysis, micro-filtration and homogenization in order to investigate the effect of each process 

on the quality of the cellulose nanoparticle product. The residual solids part was subject to centrifugation-

washing. Figure 3.2 shows the flow diagram of cellulose nanoparticle production with enzymatic 

hydrolysis as the integral part, including the considered downstream quality-improvement processes. 

 

Figure 3.2: Process flow diagram of cellulose nanoparticle production with enzymatic hydrolysis of paper sludge (PS) as integral 

part with downstream processes considered to test for quality, purity and yield 

3.3.1. Pre-treatment of paper sludge from different milling operations 

3.3.1.1. Ash removal of high-ash paper sludge  

Ash removal from the high ash-content PS is required to make it a feasible feedstock for bioprocess 

conversion. This pre-treatment is referred to as PS de-ashing or PS filter-washing. 

A de-ashing protocol from Tappi (1995) described an aqueous PS slurry made up (20 g/L) and 

disintegrated for 37500 revolutions, thereafter washed over a 200 µm filter screen until the supernatant 

was clear. Disintegration is required to mix the dried PS into a slurry, and dissolving the inorganic 

materials (ash) for separation over a filter sieve. This protocol was adapted for optimal small-scale PS 

de-ashing. Ash content was determined by furnace combustion at 575 ± 25°C (Sluiter, et al., 2005a). 

Larger quantities of printed recycle PS at a consistency of 20 g/L were disintegrated with a British 

Pulp Evaluation Apparatus, Mavis Engineering, London (located at Wood Science Department of 

Stellenbosch University) for 3750 revolutions and filter-washed with distilled water over a 190 µm sieve 

until the clay-like slurry appears to have a wet tissue nature, and the supernatant became clear. Washed 

sludge was dried overnight at 40°C in a convection oven. 
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3.3.1.2. Steam explosion of low-ash paper sludge 

A mass of 500 g of the virgin pulp PS (with longer fibres and higher water holding capacity than 

printed recycle PS) was soaked overnight in distilled water, spin-dried in a spin-dryer (AEG, Germany) 

and loaded into a steam explosion unit (Steam Gun STG 19-40, Austria) with a 19 L vessel reactor. The 

PS types were steam treated with conditions as set out in Table 3.1. A built-in automated panel display 

(IAP, Germany) was used to control the steam treatment. After treatment, the whole slurry from the pre-

treatment was pressed manually using an air-press/hydraulic jack to obtain a separate pressed solid 

product. The slurry was spin-dried, weighed and dried at 40°C for three days for use in enzymatic 

hydrolysis. The solids were characterised using the NREL standard laboratory analytical procedures for 

biomass analysis (Sluiter, et al., 2011).  

Table 3.1: Experimental conditions for steam explosion of low-ash paper sludge  

Run T t Soaked 

  °C min   

1 200 10 Yes 

2 200 5 No 

3 200 10 No 

4 210 5 No 

5 210 10 No 

 

Steam exploded PS was subjected to enzymatic hydrolysis with use of Cellic® CTec2 (dosed at 

25 FPU/gdPS) for a hydrolysis time of 24 hrs in an incubator at 150 rpm and 50 °C. An antibiotic, 

Ampicillin (Sigma-Aldrich, South-Africa), was further added at the concentration of 100 mg/L to prevent 

any bacterial growth throughout hydrolysis. 

3.3.2. Cellulose nanoparticles production by enzymatic hydrolysis of paper 

sludge 

3.3.2.1. Enzyme activity assays 

Filter paper strips (Whatman No. 1) were used as substrate for determination of the cellulase 

activities according to the filter paper assay (FPA) method of Ghose (1987). 1 mL of 0.05 M Na-Citrate 

solution (pH 4.8) were added to a 25 mL test tube. 0.5 mL of enzyme was diluted with citrate buffer. Six 

dilutions were made of each enzyme investigated. A water bath was heated to 50°C and the filter paper 

strips of 0.5 g were added to each test tube. All the tubes were incubated for 60 minutes at 50°C. A volume 

of 3 mL DNS were added to each test tube and boiled for 5 min. The reaction mixture was diluted with 

water in ratio of 1:4. The colour developed was measured against a spectro zero sample at a wavelength 

of 540 nm. 

Endoglucanase activity was measured by the CMC assay as developed by Ghose (1987). A volume 

of 0.5 mL enzyme, diluted in 0.05 M Na-Citrate solution at a pH of 4.8 was added to a test tube (25 ml). 
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A water bath was heated to 50°C. A volume of 0.5 mL 2% CMC solution was added to each test tube and 

well mixed. All the test tubes were incubated at 50°C for 30 min. A volume of 0.3 mL DNS was added, 

well mixed and transferred to rack on table. The test-tubes were boiled for 5 min. The reaction mixture 

was diluted with deionised water in ratio of 1:4. The colour developed was measured against a spectro 

zero sample at a wavelength of 540 nm. 

For both assays, the reagent blank was used to calibrate the spectrometer to zero absorbance. The 

spectro zero sample was prepared by the same stepwise procedure as above but without enzyme and 

substrate addition. Also, the substrate blank was prepared by the same procedure but without substrate 

addition, and the enzyme blank was prepared without enzyme addition. The glucose standards were 

prepared in the same way as the reagent blank but with glucose at different concentrations. The activities 

for cellulase and endoglucanase were calculated and expressed as FPU/mL and ECU/mL respectively, 

according to Ghose (1987) standard methods. To calculate the activity in FPU and ECU, the construction 

of a linear glucose standard curve was plotted against A540. 

3.3.2.2. Enzymatic hydrolysis of paper sludge 

Stock solution of sodium citrate buffer was made-up to a concentration of 1 M with 60 g NaOH 

(Radchem Laboratory Suppliers), 210 g citric acid monohydrate (Merck, South Africa) and RO water to 

a pH of 4.3. The working concentration of the buffer was made by diluting with RO water to a 

concentration of 0.05 M and pH 4.8. Enzymatic hydrolysis was carried out for different hydrolysis times 

(> 32 hrs) in 250 mL (100 mL reaction volume) Erlenmeyer flasks at 50°C and 150 rpm (MRC Orbital 

shaker TS600, United Scientific, South Africa). Before addition of enzymes to the Erlenmeyer flasks, the 

flasks with dry solids, and the citrate buffer were autoclaved at 121°C for 15 min as sterilization step. An 

antibiotic, Ampicillin, was further added to each flask (100 mg/L) to prevent any bacterial growth 

throughout hydrolysis. The pH of the slurry was in the range of pH 4.8 – pH 6 and was not adjusted. 

After hydrolysis, the enzymes were denatured by placing the Erlenmeyer reactor flasks in a water 

bath at 80°C for 30 min. The hydrolysed sample was decanted into 50 mL Greiner tubes for centrifugation 

(Lasec Hermle, electric benchtop centrifuge, max 8000 rpm) at 4000 rpm for 30 min and the supernatant 

containing cellulose nanoparticles was vacuum filtered with a Büchner funnel through a 1.6 µm glass-

membrane filter (47 mm cellulose acetate (CA) membranes; Lasec, South Africa).  

3.3.3. Cellulose nanoparticles isolation by acid hydrolysis of paper sludge as 

control process 

A PS suspension (5% w/w, in deionised water) in a 200 mL glass beaker (working volume of 60 mL) 

was left to stand overnight. Acid hydrolysis was conducted by dripping 60 mL H2SO4 into the PS-

suspension with a pipette over a period of 60 min (at a rate of 1 mL/min), to achieve a total working 

volume of 120 mL at 2.5% (w/w) consistency. During the acid-addition period (exothermic reaction), the 
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glass reactor was cooled in an ice-bath where the melting ice was continually drained and replaced with 

more ice. The glass reactor was removed from the ice-bath and placed in a water bath on a heating plate. 

This acid-PS suspension was temperature controlled in the water bath on a heating plate at 50 °C for 90 

min. An overhead stirrer at 900 - 1000 rpm mixed the slurry continuously throughout the total hydrolysis 

(150 min). 

After air-cooling to room temperature, the acid-PS suspension was washed. With each washing step, 

a 50 mL centrifuge tube was filled with acid-PS suspension and deionized water in a ratio of 1:5, and 

vortexed. The tubes were centrifuged (Labotec, Universal 320R electric benchtop centrifuge, max 8000 

rpm) at 5000 rpm for 5 min, and the clear suspension was discarded. Deionised water was added in the 

same ratio, vortexed and centrifuged again. The procedure was repeated a third time until the supernatant 

became turbid, indicating cellulose nanoparticles dispersion in the supernatant. The turbid supernatant 

was sampled. The washing steps were repeated another 3 times, or until the supernatant became clear and 

the pH reached pH 7, indicating that all cellulose nanoparticles were removed from the sample. The 

cellulose nanoparticles suspension was thereafter dialysed in distilled water with 12.4 kDa dialysis tubing 

in a jar with magnetic stirring at 100 rpm (at room temperature). The distilled water was changed every 

3 hrs for 5 days. The pH was adjusted to pH 6.5 – pH 7 with 0.001 M NaOH addition, and the suspension 

was dialysed for another 2 days to remove the remaining salts. The dialysed sample was freeze-dried. 

3.3.4. Downstream purity-improvement processes 

3.3.4.1. Microfiltration 

To improve the particle size distribution, exclusion of the large particles by microfiltration was 

considered. The glass-membrane filtered supernatant (which removed the large particles) was further 

vacuum filtered through a 0.45 µm filter membrane (47 mm CA membranes; Lasec, South Africa) to 

isolate a suspension with cellulose nanoparticles smaller than 500 nm in length. 

3.3.4.2. Homogenization of selected enzyme hydrolysed samples 

For investigation of improvement of particle size distribution, post-hydrolysis mechanical treatment 

was conducted. Centrifuged and glass-membrane filtered supernatant samples were homogenized with a 

high-speed homogenizer (handheld PRO250, Pro-Scientific, USA). These samples in 15 mL tubes 

(working volume of 8 mL) were cooled in an ice-bath and homogenised at 14 000 rpm. To minimise 

aerosol and foam-formation, the homogenisation was conducted in three 10 min cycles (to a total of 30 

min), with latent periods of 2 – 3 min between cycles. 

3.3.4.3. Dialysis 

For purification of the hydrolysed, centrifuged and glass-membrane filtered suspensions, dialysis 

was conducted. For selected samples, 15 mL supernatant was dialysed against RO water with dialysis 
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tubing (molecular weight cut-off of 12.4 kDa, 43 mm flat diameter) for 4 - 5 days until the pH reached 

neutrality. The tubing was double-folded and sealed with plastic clips at each end to ensure no leakage of 

sample. The samples were placed on a magnetic stirring plate at 100 rpm throughout the dialysis period. 

The RO water was changed every three hrs on the first day and every 12 hrs thereafter for the remaining 

days. Dialysed suspensions were freeze-dried for analysis. 

3.3.4.4. Washing of hydrolysate and residual solids samples 

The supernatant as well as the residual solids of selected samples were separately subjected to 

washing in order to purify and isolate the cellulose nanoparticles produced. For the supernatant, 25 mL 

RO water was added to ±15 mL supernatant sample and centrifuged for 15-20 min at 8000 rpm per cycle. 

The aim was to capture the cellulose nanoparticles and discard of the top layer of liquid. This was repeated 

twice, to collect the cellulose nanoparticle-containing bottom layer (± 10 - 15 mL) of the liquid. 

For the residual solids, the aim was to suspend the entrapped cellulose nanoparticles to the 

supernatant by centrifugation and collect all the supernatant. 25 mL RO water was added to the residual 

solids and vortexed for 1 - 2 min. Three centrifugation cycles were conducted for 15 min at 4500 rpm per 

cycle, after which the supernatant was sampled individually after each run. Washed suspensions were 

freeze-dried for subsequent analysis. 

3.4. Analytical methods 

Cellulose nanoparticles can possess different dimensions and morphologies, even in the same 

nanoparticle category, i.e. CNC or CNF. They are composed of various structural components: nanofibres 

(nanoscale), fibrillated fibres (micrometre scale), and fibres (millimetre scale) resulting from incomplete 

hydrolysis during enzymatic hydrolysis (Bondeson, et al., 2006). In order to characterize and compare 

the cellulose nanoparticle product to standard or commercially produced products, the morphology, 

shape, purity, crystallinity, polydispersity and the agglomeration were considered. 

SEM give direct multi-dimensional information about nanofibril morphology and structural 

properties (Desmaisons, et al., 2017). The downfall of these techniques is that they focus only on 

nanoscale regions and consequently miss information. On the other hand, DLS has the advantage of 

accounting for the mean size of all the particles in the sample, yet the disadvantage is that it does not 

account for particle agglomeration. Microscopy in combination with the DLS results would be able to 

provide advanced insight to the morphology of the cellulose nanoparticles. An exact size to the decimal 

point is not realistic for nanoparticle size description; instead, ranges are of more importance.  
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3.4.1. Compositional analysis 

Triplicate PS samples of each feedstock were randomly selected from each quarter-coned batch for 

chemical composition analysis using NREL methods (Sluiter, et al., 2011). Moisture content of the PS 

samples were determined gravimetrically by oven drying at 103 ± 2°C. The ash content analysis of each 

PS was conducted by furnace combustion at 575 ± 25°C for four hrs (Sluiter, et al., 2005a). Chemical 

composition of the PS (structural carbohydrates, acid-soluble lignin, acid-insoluble lignin and extractives) 

was determined using the summative mass closure procedures for pre-treated slurries provided by NREL 

(Sluiter, et al., 2008; Sluiter & Sluiter, 2011). Sugar content of the PS was determined by high 

performance liquid chromatography (HPLC) fitted with an Aminex HPx-87 column and AutoSampler 

(Thermo Scientific Products, Bio-Rad, South Africa). The column was operated at a temperature of 65°C 

with 5 mM H2SO4 as the mobile phase (at 0.6 mL/min). The acid-soluble lignin composition in the PS 

was determined by spectrophotometry at 205 - 320 nm (Sluiter, et al., 2011).  

3.4.2. Water holding capacity 

The WHC was determined with an adapted method from Boshoff (2015) for both the PS feedstock 

milled to less than 6 mm sizes. The milled PS samples were oven dried to constant weight at 103 ± 2°C. 

30 mL of RO water and 3 g of PS was added to 50 mL Greiner tubes and the slurries stood overnight at 

room temperature. The slurry sample tubes were centrifuged at 4000 rpm for 15 min and the excess water 

carefully decanted, without external force applied. The pellet was weighed before and after drying at 103 

± 2°C until constant weight, and cooled in a desiccator for 30 min. The WHC was determined with 

Equation 1. 

Equation 1:   𝑊𝐻𝐶 [
𝑚𝑙 𝑑𝐻2𝑂

𝑔 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
] =

𝑤𝑒𝑡 𝑃𝑆 (𝑔)−𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑃𝑆 (𝑔)

𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑃𝑆 (𝑔)
    

3.4.3. Particle size measurement and polydispersity index analysis 

The particle size distribution and the polydispersity index (PdI) of the cellulose nanoparticles 

particles in dilute suspension (<0.01% (w/w), diluted with Millipore water) were analysed using a 

Zetasizer® Nano-ZS90 size analyser (Malvern Instruments). The instrument employs a design which 

allows for multi-angle particle size analysis by dynamic light scattering (DLS) (Malvern Instruments Ltd, 

2004), accurately measuring mean particle sizes between 0.3 nm and 5 µm. Please note that the mean 

particle size indicates a single-value average size over the particle size distribution, and NOT an absolute 

value which often refers to the maximum size. Triplicate measurements were carried out each after 120 

seconds of temperature equilibration time and using He–Ne laser at a wavelength of 633 nm and at a 

scattering angle of 90° at a temperature of 25°C. The intensity-weighted mean hydrodynamic diameter 

was calculated from intensity autocorrelation data peaks with a programmed cumulant method using 

software provided with the instrument, where intensity peaks representing the majority of the particles 

were used to determine mean particle length. A control sample of CNC was analysed in triplicates, 
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resulting in a mean particle size of 168 ± 7 nm, which is in the range of the declared 150 – 200 nm, 

indicating that the dimension of length is reported through DLS. 

The PdI is a dimensionless measure of the broadness of size distribution computed from the cumulant 

analysis. This PdI value range from 0 to 1.0. A PdI value < 0.08 indicates a closely monodispersed sample, 

while a larger PdI value of > 0.7 designates a very broad distribution of particle sizes (International 

Standards Organization, 2008). 

3.4.4. Scanning electron microscopy (SEM)  

SEM available at the Central Analytical Facilities (Chamber of Mines Building, Stellenbosch 

University) was used to examine and capture images of untreated, enzyme hydrolysed, acid hydrolysed 

and control CNC/CNF samples. The Zeiss MERLIN Field Emission Gun with a tungsten crystal was used 

to capture images under ultrahigh vacuum conditions at an accelerating voltage of 5 kV or higher for a 

focused nano-field of up to 1 nm. Specimens for SEM were prepared by four preparation protocols, for 

optimisation of the microscopy. The first protocol consisted of drying (overnight in a desiccator) drops 

of the dilute aqueous suspensions of freeze-dried particles on aluminium mounts. For the second protocol, 

sample without any resuspension was mounted on aluminium stubs. For the third and fourth protocol, 

suspended freeze-dried particles were mounted with/without double-sided carbon tape covered with a 

drying agent, bis(trimethylsilyl)amine (HMDS) and dried overnight. All SEM specimens were sputter-

coated with gold particles to provide adequate conductivity.  

Particle diameters and length were measured using Image J (National Institute of Health) and 

SEM_Img_Studio (National Instruments LVRunTime Engine, version 7.1) imaging software. The 

software comprises of digital image processing tools and includes adequate tools that facilitate 

quantitative size measurements. An average of 100 measurements were performed for 3 - 5 images per 

sample, with a representative processed image in Appendix B. 

3.4.5. Scanning Transmission Electron Microscopy (STEM) 

The Zeiss MERLIN Scanning Transmission Electron Detector Field Emission Gun (STEM-FEG) at 

Central Analytical Facilities (Chamber of Mines Building of Stellenbosch University) was used for 

imaging of hydrolysed and freeze-dried samples. A drop of diluted suspension was dried on a carbon-

coated copper grid in a desiccator. To enhance the imaging contrast, the grid was placed in a 2% (w/w) 

uranyl acetate solution for 3 min. Samples on the grid were dried in a fumehood over night at room 

temperature before examination. 
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3.4.6. X-ray diffraction (XRD) 

The non-constructive analysis of X-ray diffraction were used for cellulose crystallinity 

measurements. X-ray diffraction patterns of the PS were obtained using a Bruker D2 Phaser X-ray 

diffractometer with Cu tube (λ = 1.5418 Å) and 30 kV (10 mA) X-ray radiation. The diffractive intensities 

were recorded from 5° to 40° 2θ angles. Various methods of estimating relative cellulose crystallinity 

exists, of which the Segal peak height method is the most popular (Park, et al., 2010). The crystalline 

index of cellulose, CIr, was determined by use of the Segal empirical peak height method from Equation 

2 (Nam, et al., 2016): 

 

Equation 2    𝐶𝐼𝑟(%) =
𝐼200−𝐼𝑎𝑚

𝐼200
𝑥 100 

I200 is the peak intensity corresponding to crystalline cellulose, and Iam
 is the peak intensity of the 

amorphous fraction, at 2θ of around 22 – 27° and 18°, respectively.  

3.4.7. High-performance liquid chromatography  

Monomeric sugar (glucose, arabinose, xylose and cellobiose) concentrations were analysed through 

HPLC instrumentation fitted with an Aminex HPx-87 column, a cation-H Micro Guard Cartridge and RI-

101 detector (Thermo Scientific, Bio-Rad, South Africa). The column was operated at a constant 

temperature of 65°C and 5 mM H2SO4 as a mobile phase with a flowrate of 0.6 mL/min. 

3.4.8. Energy dispersive X-ray spectroscopy 

Elemental identification and semi-quantification was conducted at Central Analytical Facilities 

(Chamber of Mines Building, Stellenbosch University) with Energy dispersive X-ray spectroscopy 

(SEM-EDX) (Zeiss MERLIN) for selected washed and freeze-dried samples. Freeze-dried samples were 

dispersed in Millipore water (< 0.1% w/w) and a droplet was allowed to dry on a polished aluminium 

(Al) stub in a desiccator overnight. Samples were gold (Au) coated for increased conductivity. Chemical 

mapping and selected target point analysis were conducted for duplicate samples under ultrahigh vacuum 

conditions and an accelerating voltage of 20 kV at an electron beam width distance of 9.5 mm, with Au 

and Al identification removed from analysis. With SEM-EDX, hydrogen (H) could not be analysed. 

3.4.9. Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of the cellulose nanoparticles produced, the standard samples and the control samples 

were measured using the attenuated total reflectance (ATR) mode on a Thermo Nicolet Nexus 670 

spectrometer (with Smart Golden Gate Accessory). A total of 32 cumulative scans were recorded, with a 

resolution of 4 cm-1, in the frequency range of 4000 - 600 cm-1. For each condition, duplicate 

measurements were made. 
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3.5. Experimental design 

3.5.1. Screening 

Screening of the enzymatic hydrolysis of PS feedstock with the three different commercial enzymes 

(Cellic® CTec2, ViscamylTM Flo and FiberCare® R), was conducted at a high (9% w/w) and a low (3% 

w/w) level of solids loading to test the cellulose nanoparticles production at low and high solids loadings. 

Thereafter, screening of the three enzymes was conducted with different hydrolysis time periods (up to 

32 hrs) where 1.5 mL volume samples were taken at regular time intervals.  

3.5.2. Enzymatic Hydrolysis Optimisation 

Statistica, (TIBCO Software Inc., version 13.2), was used to design a CCD with four variables each 

at three levels. The experimental data from the CCD design was used to set up models and optimise the 

process factors affecting (1) the mean particle size (nm) and (2) glucose concentration (g/L) of the 

hydrolysed PS feedstock. The four variables are: (1) solids loading, (2) hydrolysis time, (3) ratio of 

monocomponent endoglucanase enzyme concentration to mass of PS and (4) ratio of commercial 

cellulase cocktail to mass of PS were explored. To reduce the number of treatments in the CCD design, 

a fractional factorial experimental design with six repeat runs of the centre points was used. A total of 

thirty runs for both feedstock was generated by this experimental design. 

3.6. Calculations 

3.6.1. Yield: Gravimetric analysis of scale-up experiments with freeze-drying 

The theoretical yield of cellulose for ideal hydrolysis without complete hydrolysis to glucose and 

other oligomer by-products, is calculated by Equation 3, taking into account the unhydro correction 

factor. 

Equation 3  𝑌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 (%) = 𝑔𝑙𝑢𝑐𝑎𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗
162

𝑔 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

𝑚𝑜𝑙

180
𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒

𝑚𝑜𝑙

 × 100 

A set of enzymatically hydrolysed samples with scaled-up working volume of 250 mL were collected 

and purified with the downstream processes specified in Section 3.3.4. Approximately an eighth of the 

hydrolysed sample was freeze-dried, weighed and calculated to the full volume of the sample. It was 

assumed that the eighth of the sample was representative of the entire sample and that a homogeneous 

distribution of particles existed. This up-scaled method was to accommodate the gravimetric calculation 

of the very low yields (𝑌1) of cellulose nanoparticles that were found for enzymatic hydrolysis of PS 

feedstocks, as presented in Equation 4. 

Equation 4:  𝑌1 (%) =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑛𝑎𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 (𝑔)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑆 𝑠𝑜𝑙𝑖𝑑𝑠 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝑔)
 × 100 
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For purification of hydrolysed and glass-membrane filtered supernatant (filtrate), 20 - 25 mL of the 

supernatant was diluted with RO water to a total volume of 40 mL. The diluted supernatant sample was 

centrifuged for 15-20 min at 8000 rpm with the aim to settle the cellulose nanoparticles and drain the 

impurities. The top layer was drained, and the process was repeated twice. 

3.6.2. Statistical analysis 

All statistical calculations of replicated measurements (means and standard deviations) were 

conducted in the software program, Excel (Microsoft Office, 2016).  

Response Surface Methodology (RSM) is a statistical function of Statistica comprising of a 

collection of statistical and mathematical procedures that can be used to model the response of a system 

affected by numerous variables to predict the interaction between the four independent variables, 

commercial cellulase cocktail dosage, monocomponent endoglucanase dosage, solids loading and 

hydrolysis time, and the response variables; mean particle size and glucose concentration.  

By use of desirability surface and contour plots developed with the experimental data on Statistica 

software, the effects of the independent variables on the overall multi-response desirability were 

interpreted. The desirability function entails assigning a desirability value to each dependant variable with 

0 being very undesirable to 1 being very desirable. Statistical significance was reported with p < 0.05 (for 

a 95% level) and was determined with analysis of variance (ANOVA) using Statistica software. The 

percentage error of the model predictions in comparison to the experimentally determined values were 

calculated from Equation 5. 

Equation 5:   𝐸𝑟𝑟𝑜𝑟 (%) =  
(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)−(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 × 100  
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Chapter 4. Results and Discussion 

4.1. Paper sludge characterisation and preparation for enzymatic 

hydrolysis 

4.1.1. Paper sludge chemical composition  

The chemical composition of the two selected PS feedstock are compared in Table 4.1 as determined 

by NREL analytical methods (Hames, et al., 2008). The virgin pulp PS has a high average glucose fraction 

of 0.61 g/g substrate, together with a low ash fraction of 0.08 g/g substrate, resulting in the higher 

theoretical cellulose nanoparticles yield of 55.6% (w/w from initial glucan content as determined with 

Equation 3). In comparison, the printed recycle PS has a low theoretical cellulose nanoparticles yield of 

15.5% (w/w), due to an ash fraction of 0.625 g/g substrate. The high ash content was due to recycled 

waste paper utilized as feedstock at the mill (U.S. Congress, 1989). This showed that a de-ashing pre-

treatment step was required for the printed recycle PS which was not essential for the virgin pulp PS. The 

ash and glucan fractions for printed recycle and virgin pulp PS correlated very well with the fractions 

obtained by Boshoff et al. (2016). In the study, compositional analysis reported 0.53 – 0.62 g ash/g 

substrate and 0.11 - 0.18 g glucan/g substrate for printed recycle PS from Kimberly-Clark, while virgin 

pulp PS from Sappi Ngodwana contained 0.08 – 0.10 g ash/g substrate and 0.43 - 0.50 g glucan/g substrate 

(Boshoff, et al., 2016). 

Table 4.1: Chemical composition of PS feedstock (on dry basis) selected for cellulose nanoparticle production. Averages were 

determined from single measurements of triplicate samples. All standard deviations for the compositions of were determined as 

< 0.64% (w/w). 

Sludge Ash Extractives Lignin Glucan Xylan ∑Components 

 % (w/w) % (w/w) % (w/w) % (w/w) % (w/w) % (w/w) 

Printed recycle 62.46 4.61 8.97 17.09 4.23 97.36 

Virgin pulp 8.26 7.09 15.33 61.20 14.06 105.7 

 

4.1.2. Effect of filter-washing on removal of ash from paper sludge 

The aim of PS filter-washing was to reduce the ash content in the printed recycled PS (Table 4.1). 

This was firstly, to increase the cellulose content per solids loading of feedstock for hydrolysis. Secondly, 

seeing as ash has been found to have an inhibitor effect on cellulase activities (Kang, et al., 2011), the 

filter-washing was to increase fibre susceptibility to enzymes for hydrolysis to produce cellulose 

nanoparticles.  

Washing with a 190 µm sieve mesh filter (the closest available to 200 µm sieve mesh filter) resulted 

in 55.6% (w/w) ash reduction to achieve an averaged ash fraction of 0.277 g/g substrate (Table 4.2). 

Similar results were found by Robus (2013) where washing of high ash-content PS decreased the ash 

fraction with 56.3 – 65.5% (w/w). The decrease in ash content resulted in more than two-fold increase in 
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the glucan fraction on a mass basis (Table 4.2), from which could be concluded that filter-washing 

removed sufficient amounts of ash for the washed PS to be classified as the low-ash sludge type (< 30% 

w/w dry basis) (Ochoa de Alda, 2008).  The xylan content followed the same trend with an approximately 

two-fold increase, however the lignin and extractives content did not increase by two-fold. It is possible 

that the lignin and extractives, which had been subjected to pre-treatment during pulping at the mills, had 

partially been washed away in the CaCO3-water (with increased pH). The theoretical yield of 

nanocellulose (as determined by Equation 3) was 37.6% (w/w) which was more than twice the yield 

obtained from unwashed printed recycle PS (17%, Section 4.1.1). This should result in higher cellulose 

nanoparticle yields during enzymatic hydrolysis. 

Table 4.2: Chemical composition of untreated versus washed printed recycled PS with optimised washing conditions. Averages 

were determined from single measurements of triplicate samples. All standard deviations for the compositions were determined 

as < 0.48% (w/w). 

Printed Recycle Sludge Ash Extractives Lignin Glucan Xylan 

 % (w/w) % (w/w) % (w/w) % (w/w) % (w/w) 

Untreated Sludge 62.46 4.61 8.97 17.09 4.23 

Washed Sludge 27.71 5.18 9.05 41.37 7.06 

 

4.1.3. Water holding capacity of paper sludge feedstock 

WHC is of importance because water adds to the bulk of the material, increasing landfilling disposal 

costs and water losses to the environment. For bioprocesses, it gives indication to slurry viscosities, which 

might lead to improper agitation and mass transfer during hydrolysis (Fan & Lynd, 2007).  

Figure 4.1 indicates the WHC of printed recycled PS being low (5.08 L/kg PS) compared to that of 

virgin pulp PS (7.53 L/kg PS). This correlates well with the WHC of 4.5 L/kg PS for printed recycle PS 

reported by Williams (2017) and the WHC of virgin pulp PS of 8.61 L/kg PS by Boshoff et al. (2016).  

 

Figure 4.1: Water holding capacity of washed printed recycled PS and virgin pulp PS feedstock. Error bars indicate the standard 

deviation of single measurements of triplicate samples. 
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The morphology of the two PS fibre types could explain the smaller WHC values for PS from printed 

recycle operations when compared to virgin pulping operations. In chemical pulping, particularly with 

Kraft pulping as in the case of the virgin pulp PS, the lignin and hemicelluloses are dissolved, with intact 

cellulose chains remaining (Migneault, et al., 2011). Through mechanical pulping, fibres are torn and 

become brittle during the defibrillation phases of refining, resulting in shorter fibres in comparison to that 

found in PS from chemical pulping (U.S. Congress, 1989). This was confirmed by particle sizing of both 

feedstock through SEM imaging (Figure 4.2). Printed recycle PS fibres had lengths of 100 – 300 µm, 

while that of the virgin pulp PS was in the range of 500 – 1000 µm, as estimated with Image J imaging 

software (Figure 4.2). Printed recycled PS, which have undergone multiple processing cycles through 

various processes such as mechanical or/and chemical pulping, will retain less water than that of the 

longer fibres from virgin pulping operations (Miyamoto, et al., 2009).  

 

Figure 4.2: SEM images of untreated PS fibres from A) Kimberly-Clark Springs Mill (printed recycle PS) with shorter fibres 

and B) Sappi Ngodwana Mill (virgin pulp PS) having comparatively longer fibres. The size averages of 100 measurements were 

determined for 3 - 5 images per sample. 

 

4.1.4. Effect of steam explosion of low-ash content paper sludge on fibre 

accessibility 

Virgin pulp PS with longer fibres and high WHC was tested for pre-treatment with steam explosion 

to improve the accessibility of the material to cellulase. Steam explosion may increase the surface area 

of PS and enhance the hydrolysis efficiency and digestibility, by increasing the accessibility of cellulose 

to enzymes (Pielhop, et al., 2016).  

Table 4.3 indicates the chemical composition of untreated and steam exploded PS. The moisture 

content of the pre-soaked PS was determined to be 73.1%, while the moisture content of the dry PS was 

15.4% (Table 3.1) as determined by NREL methods (Hames, et al., 2008). Approximately 45 - 53% of 

the xylan was removed with the steam explosion pre-treatment. However, for all the steam exploded 

conditions, the glucan component was decreased with 26 - 32%, which was undesirable for the subsequent 

isolation of cellulose nanoparticles from the cellulosic component. This could be due to cellulose 

100 µm 5 kV 250 pA 100 µm 5 kV 250 pA 
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solubilisation at the high temperatures, which may be associated with conversion of glucan to by-products 

(Hendriks & Zeeman, 2009; Cara, et al., 2008). 

Table 4.3: Chemical composition of untreated versus steam exploded virgin pulp PS. Averages were determined from single 

measurements of triplicate samples. All standard deviations of the compositions were determined as < 0.31% (w/w). 

T t Soaked Ash Extractives Lignin Glucan Xylan 

°C min  % (w/w) % (w/w) % (w/w) % (w/w) % (w/w) 

Untreated 8.26 7.09 15.33 61.20 14.06 

200 10 Yes 8.56 9.41 20.09 45.16 7.68 

200 5 No 9.18 10.35 20.77 42.43 7.37 

200 10 No 8.64 11.72 21.50 44.94 7.54 

210 5 No 8.89 9.85 20.90 43.30 7.20 

210 10 No 9.22 12.14 21.82 41.52 6.64 

 

Enzymatic hydrolysis of the steam pre-treated PS versus untreated PS was conducted with Cellic® 

CTec2 as active enzyme (15 FPU/gdPS). The glucose concentrations of the enzymatic hydrolysis of the 

steam exploded PS (Figure 4.3) are only higher for the pre-soaked PS in comparison with the untreated 

PS, indicating that only the pre-soaked steam-exploded PS had increased digestibility. All the unsoaked 

PS runs resulted in lower concentrations of glucose in comparison with the untreated PS, indicating that 

no significant increase in digestibility occurred due to steam explosion. Steam explosion could at best 

provide a 6.1% increase in digestibility, due to the fibres that were already extensively disrupted by the 

pulping processes as well as due to the loss of cellulose into glucose hydrolysis products, and therefore 

was deemed as an ineffective treatment to increase the PS accessibility for hydrolysis. No differences 

were observed in the cellulose particle size produced by enzymatic hydrolysis of steam-exploded and 

untreated PS (data not shown). 

 

Figure 4.3: Glucose concentrations obtained by enzymatic hydrolysis of steam exploded PS under variant time and temperature 

conditions. Enzymatic hydrolysis conducted at 50 °C and 150 rpm with a Cellic® CTec2 cellulase dosage of 15 FPU/gdPS. Error 

bars indicate the standard deviation of single measurements of triplicate samples.  
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4.2. Screening for enzymatic hydrolysis process conditions for cellulose 

nanoparticle production 

Boshoff et al. (2016) and Robus (2013) showed that commercial cellulases could be used for 

hydrolysis of glucans and hemicelluloses in South African PS, for bio-ethanol production. Screening 

experiments were conducted to investigate whether similar commercial cellulases could be used through 

incomplete/partial hydrolysis of the same types of PS, and thus to stop the hydrolysis process earlier, at 

a point of cellulose nanoparticles production. Cellulose nanoparticle production at very low solids 

loadings (0.5 – 1.5% (w/w)), as reported previously (Filson, et al., 2009; Fattahi Meyabadi & Dadashian, 

2012), is undesired from an industrial point of view. Enzymatic hydrolysis of PS was therefore completed 

at higher solids loadings (3 – 9% (w/w)) with dynamic light scattering (DLS), used to determine the mean 

particle size. Glucose production was assessed by HPLC analysis, as well as the effect of shorter 

hydrolysis time (t < 32 hrs) on cellulose nanoparticle production. Finally, three enzymes were screened 

(at 25 FPU/gdPS for the two cellulase cocktails and 100 ECU/gdPS for the monocomponent 

endoglucanase as selected from literature, Section 2.2.4.2) for their effect on mean particle size, which, 

together with glucose release, should be minimized. Furthermore, XRD and FTIR analyses were used to 

determine crystallinity of the cellulose in the PS. 

For hydrolysis with Cellic® CTec2, the mean particle sizes of the nanocellulose ranged between 250 

and 350 nm at lower (3% w/w) and higher (9% w/w) solids loadings for both PS feedstocks (Table 4.4). 

The mean particle sizes were marginally larger for the ViscamylTM Flo, falling in the range of 350 to 450 

nm for both feedstocks within 24 to 32 hrs of hydrolysis and for both solids loadings (Table 4.4). For 

hydrolysis of both feedstocks with FiberCare® R, HPLC analysis conveyed zero glucose yields (Table 

4.5) and low cellobiose concentrations of ≤ 0.4 g/L (data not shown), for up to 32 h hydrolysis at both 

solids loadings. This was expected as oligomer-hydrolysing exoglucanase or glucose-releasing β-

glucosidase activities were ot present in the selected enzymes. Therefore, hydrolysis with FiberCare® R 

produced minimal by-product formation, while mean particle sizes of 200 – 400 nm were produced after 

32 hrs (Table 4.4), falling in the same size range as that achieved with Cellic® CTec2.  

With regards to the effect of hydrolysis time on mean particle size (Table 4.4), contrdictory trends 

are apparent with both feedstock, which could partly be due to particle agglomeration, as has also been 

found by other cellulose nanoparticle researchers (dos Santos, et al., 2013). However, within a hydrolysis 

time of 32 h, the mean particle size of all the samples decreased to < 500 nm for all three enzymes used, 

for both feedstock (Table 4.4). This indicated that cellulose particles with nano-sized lengths in the 

accepted ISO standards range for CNC could be achieved through short-period hydrolysis with the tested 

commercial cellulase cocktails.  
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Table 4.4: Effect of PS solids loading on mean particle size during enzymatic hydrolysis to produce cellulose nanoparticles, at a 

constant cellulase cocktail dosage of 25 FPU/gdPS, or FiberCare® R dosage of 100 ECU/gdPS. Averages were determined from 

multiple measurements of multiple samples (n = 2 to 4). The standard deviation for all the mean size values were < 80 nm.  

Feedstock 
Cellulase 

Type 

Solid 

loading % 

(w/w) 

Mean size 

at 0 h 

Mean size 

at 8 h 

Mean size 

at 24 h 

Mean size 

at 32 h 

nm nm nm nm 

Printed 

recycle PS 

Cellic® 

CTec2 

3 693 181 322 275 

9 325 346 260 286 

ViscamylTM 

Flo 

3 619 655 410 454 

9 921 187 424 373 

FiberCare® R 
3 451 297 460 307 

9 1157 635 477 388 

Virgin pulp 

PS 

Cellic® 

CTec2 

3 1346 211 270 263 

9 1099 282 264 266 

ViscamylTM 

Flo 

3 603 357 384 414 

9 704 605 361 418 

FiberCare® R 
3 1086 292 359 253 

9 678 340 352 240 

 

The glucose yields as a factor of PS solids loading is shown in Table 4.5, with the yield determined 

as a fraction (%) of the amount of glucan fed. It must be noted that for 0 hour timepoints, the values do 

not present that of pure 0 hrs due to short delays before sampling, hence sugar release was detected due 

to instant action of enzymes on solids. At 9% (w/w) solids loading of printed recycle PS, a higher glucose 

yield of 21.6% was achieved with Cellic® CTec after 32 hrs in comparison to 6.25% at 3% (w/w) solids 

loading (Table 4.5). With or ViscamylTM Flo a higher glucose yield of 28.4% was achieved at 9% (w/w) 

than 26.3% at 3% (w/w) solids loadings at 32 hrs (Table 4.5). Therefore for printed recycle PS, the glucose 

yields increased with increase in solids loading up to 9% (w/w). This was contrary to the expected 

decrease in glucose yields at higher solids loadings, as is typically observed due to associated mass 

transfer limitations and their impact on enzymatic hydrolysis (Boshoff, et al., 2016). 

For the virgin pulp PS, a dissimilar trend with solids loading was noticed. At 3% (w/w) solids loading 

of the virgin pulp PS hydrolysed with Cellic® CTec2, the glucose yield reached 41.6% after 32 hrs (Table 

4.4). For a higher 9% (w/w) solids loading of the virgin pulp PS dosed with Cellic® CTec2, a much lower 

glucose yield of 29.9% for the same time period. For virgin pulp PS hydrolysed with ViscamylTM Flo, the 

same trends were observed, with a glucose yield of 42.6% after 32 hrs at 3% (w/w) and a lower 36.4% at 

9% (w/w) solids loading. The decrease in glucose yields from enzymatic hydrolysis at higher solids 

loadings was in agreement with the mass transfer limitations associated with higher solids loadings, which 

could be exasperated by the increased viscosity of virgin pulp PS, compared to printed recycled PS 

(Boshoff, et al., 2016).  
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Hydrolysis with either of the commercial cellulase blends, the resulting glucose yields (Yglucose/glucan) 

were higher from virgin pulp PS (30 – 43%) than from printed recycle PS (6 – 28%), within 32 hrs (Table 

4.5). Therefore, the cellulose of the virgin pulp PS was found to be more readily digestible than that of 

the printed recycle PS, by either Cellic® CTec2 or ViscamylTM Flo, similar to what was reported 

previously (Boshoff, et al., 2016).  

Table 4.5: Effect of PS solids loading on glucose concentrations during enzymatic hydrolysis to produce cellulose nanoparticles, 

at a constant cellulase cocktail dosage of 25 FPU/gdPS, or monocomponent endoglucanase dosage of 100 ECU/gdPS. Averages 

were determined from single measurements of triplicate samples. The standard deviation for all the yield (glucose/glucan) values 

were < 0.12 g/L. 

Feedstock 
Cellulase 

Type 

Solid 

loading % 

(w/w) 

Yglucose/glucan 

at 0 h 

Yglucose/glucan 

at 8 h 

Yglucose/glucan 

at 24 h 

Yglucose/glucan at 

32 h 

% (w/w) % (w/w) % (w/w) % (w/w) 

Printed 

recycle 

PS 

Cellic® 

CTec2 

3 1.09 2.96 5.57 6.25 

9 0.03 7.11 13.6 21.6 

ViscamylTM 

Flo 

3 0.15 4.25 20.9 26.3 

9 0.29 11.9 18.4 28.4 

FiberCare® 

R 

3 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 

Virgin 

pulp PS 

Cellic® 

CTec2 

3 0.00 39.6 41.3 41.6 

9 3.49 27.6 32.5 29.9 

ViscamylTM 

Flo 

3 4.44 38.6 41.8 42.6 

9 0.31 25.5 33.5 36.4 

FiberCare® 

R 

3 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 

 

The cellulose crystallinity was investigated through XRD (Figure 4.4). A lower cellulose 

crystallinity of 35.1% was found for the virgin pulp PS in comparison to the 49.4% of the printed recycle 

PS. FTIR analysis of the two PS feedstock supported the XRD crystallinity findings, as the infrared 

spectra indicated that the band at 1424 - 1423 cm-1, designated as the cellulose crystalline absorption band 

(Poletto, et al., 2013), had a higher band intensity for the printed recycle PS (Figure 4.5A) in comparison 

to the virgin pulp PS (Figure 4.5B). This indicated a higher degree of crystallinity in the cellulose of the 

printed recycle PS, compared to virgin pulp PS, which agreed with the lower digestibility observed in the 

enzymatic hydrolysis.  

The virgin pulp PS from the chemical (Kraft) pulping process will have undergone alkaline 

treatments which swell and partially de-crystallize the cellulose (Wang, 2011; Fernandez & Young, 

1996), thereby rendering it more amendable to enzymatic hydrolysis. Recycled PS, consisting mostly of 

fibres obtained through mechanical pulping will have been exposed to less severe chemical modifications 

of the cellulose structure (Marsden & Gray, 1986), resulting in the observed lower digestibility.   
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Figure 4.4: Crystallinity indices of untreated PS types (milled to particle sizes of less than 6 mm), calculated with XRD, Segal 

Peak Height method. Error bars indicate the standard deviation of duplicate measurements of duplicate samples. 

 

 

Figure 4.5: FTIR Spectra of A) untreated printed recycle PS and B) untreated virgin pulp PS. Duplicate samples were measured 

with at least two measurements each.  

For virgin pulp PS, more than a quarter of the cellulose raw material was digested to glucose with 

either of the cellulase enzyme cocktails within 8 hrs, at lower and higher solids loadings (Table 4.5). In 

order to limit the glucose formation as well as producing a mean particle size range under 500 nm, the 

hydrolysis time was limited to 24 hrs. 

Higher glucose yields were achieved with ViscamylTM Flo in comparison to Cellic® CTec2, at both 

low and high solids loadings (Table 4.5). Cellic® CTec2 was selected as the better-suited enzyme cocktail 

as between the two cocktails, it produced smaller mean particle sizes (Table 4.4) and less by-product 

formation (Table 4.5). Endoglucanase is well-known for its ability to hydrolyse the amorphous sections 

in cellulose fibres, by attacking the β-1,4-glycosydic bonds (Ul Haq & Akram, 2017). To obtain a high 

endoglucanase to exoglucanase ratio, the Cellic® CTec2 (further on referred to as CTec2) was 

supplemented with the FiberCare® R (further on referred to as FiberCare) to form an endoglucanase-

enriched cellulase cocktail. This endoglucanase-enriched cellulase cocktail would target the easy-to-react 
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amorphous regions of cellulose chains and attack the recalcitrant crystalline regions to produce cellulose 

nanoparticles, and secondly to investigate minimization of by-product (glucose) formation. 

4.3. Optimisation of cellulose nanoparticles production from paper 

sludge 

An optimisation of the controlled hydrolysis of PS was conducted through Response Surface 

Methodology (RSM) to limit the mean particle sizes of the produced cellulose nanoparticles in the range 

of 1 – 500 nm, while also minimising glucose formation. Statistical design of experiments through use of 

a CCD was used to complete experimental runs and develop statistical models using the resulting data. 

The CCD was set up with four variable factors; FiberCare dosage (X1, 0 – 100 ECU/gdPS), CTec2 dosage 

(X2, 0 – 40 FPU/gdPS), solids loading (X3, 3 – 9% w/w) and hydrolysis time (X4, 6 – 24 hrs) with their 

ranges based on the screening results (Section 4.2) and literature findings (Section 2.2.4), with range 

values specified in Table 4.6. The endoglucanase-enriched cellulase cocktail (CTec2 supplemented with 

FiberCare), identified from the screening section (Section 4.2) was used for the optimisation. The validity 

of these models were determined by analysis of variance and validation experiments. 

It must be noted that the design included star values (extreme values) with one increment lower than the 

low level (xi = -2) (incorporating a control sample for each variable factor) and one increment higher than 

the high value (xi = 2), as also shown in Table 4.7 and Table 4.8. 

Table 4.6: Factors with levels for CCD design. 

Factor Unit 

Star 

Value 

xi = -2 

Low 

level 

xi = -1 

Midrange 

level 

xi = 0 

High 

level 

xi = 1 

Star 

Value 

xi = 2 

X1, FiberCare dosage ECU/gdPS 0 25 50 75 100 

X2, CTec2 dosage FPU/gdPS 0 10 20 30 40 

X3, Solids loading % w/w 0 3 6 9 12 

X4, Hydrolysis Time hrs 0 6 12 18 24 

 

The responses (mean particle size, Y1, and glucose concentration, Y2) from the different runs after 

enzymatic hydrolysis, centrifugation and glass-membrane filtration are provided in Table 4.7 and Table 

4.8) for the printed recycle PS and the virgin pulp PS, respectively. From these responses, statistical 

models, represented by polynomial equations (Equation 6 in Appendix D), could be plotted in the form 

of a three-dimensional response surface (Figure 4.7) to show the relationship between selected response 

and independent variables. Desirability plots were programmed and plotted from the response data in 

Table 4.7 and Table 4.8 on Statistica software with the smallest mean particle size and the lowest glucose 

concentration to be the most desirable (desirability ≤ 1). 
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Table 4.7: Experimental setup with analytical results of printed recycle PS according to CCD, indicating response variables of 

mean particle size and glucose concentrations. Particle size means were determined from single measurements of triplicate 

samples. Glucose concentration averages were determined from single measurements of triplicate samples. 

 X1 X2 X3 X4 Y1 Y2 
Not included 

in models 

Sample 

no. 

FiberCare 

Dosage 

CTec2 
Dosage 

Solids 

Loading 

Hydrolysis 

Time 

Mean 

Particle 

Size 

Glucose 

Concen-

tration 

Glucose 

Yield 

 ECU/gdPS FPU/gdPS % (w/w) h nm g/L % 

1 25 10 9 6 203 10.08 24.60 

2 50 40 6 12 198 12.13 44.43 

3 25 30 9 18 268 7.09 17.32 

4 50 20 6 12 157 2.54 25.82 

5 25 10 3 6 202 0.00 0.00 

6 25 10 3 18 238 2.21 16.19 

7 50 20 6 12 590 7.20 26.37 

8 0 20 6 12 263 3.04 11.15 

9 50 20 0 12 427 0.00 0.00 

10 50 20 6 0 318 6.36 23.30 

11 75 30 3 6 672 4.47 32.76 

12 50 20 12 12 1211 10.22 18.71 

13 25 30 3 18 220 3.89 28.48 

14 25 30 9 6 683 3.75 9.15 

15 25 30 3 6 116 4.28 31.38 

16 75 10 9 18 308 7.09 17.32 

17 50 20 6 24 422 7.56 27.70 

18 75 10 3 18 425 3.34 24.49 

19 50 20 6 12 312 7.94 29.09 

20 100 20 6 12 441 3.16 11.58 

21 50 20 6 12 137 4.73 17.32 

22 75 30 9 6 145 4.29 10.48 

23 75 30 3 18 310 2.89 21.15 

24 50 20 6 12 242 7.084 25.81 

25 50 20 6 12 398 9.98 36.54 

26 75 30 9 18 1029 14.08 34.39 

27 25 10 9 18 549 7.25 17.69 

28 75 10 9 6 518 3.09 7.54 

29 75 10 3 6 139 3.71 27.17 

30 50 0 6 12 412 0.00 0.00 
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Table 4.8: Experimental setup with analytical results of virgin pulp PS according to CCD, indicating response variables of mean 

particle size and glucose concentrations. Particle size means were determined from single measurements of triplicate samples. 

Glucose concentration averages were determined from single measurements of triplicate samples. 

 X1 X2 X3 X4 Y1 Y2 
Not included 

in models 

Sample 

no. 

FiberCare 

Dosage 

CTec2 
Dosage 

Solids 

Loading 

Hydrolysis 

Time 

Mean 

Particle 

Size 

Glucose 

Concen-

tration 

Glucose 

Yield 

 ECU/gdPS FPU/gdPS % (w/w) h nm g/L % 

31 25 10 9 6 209 15.37 25.37 

32 50 40 6 12 296 22.79 56.41 

33 25 30 9 18 256 30.51 50.35 

34 50 20 6 12 293 18.01 44.59 

35 25 10 3 6 369 5.34 26.42 

36 25 10 3 18 137 8.70 43.07 

37 50 20 6 12 315 19.18 47.50 

38 0 20 6 12 305 11.71 28.99 

39 50 20 0 12 467 0.00 0.00 

40 50 20 6 0 234 13.44 33.26 

41 75 30 3 6 244 8.49 42.04 

42 50 20 12 12 239 24.59 30.44 

43 25 30 3 18 329 10.71 53.01 

44 25 30 9 6 255 23.64 39.01 

45 25 30 3 6 208 7.99 39.58 

46 75 10 9 18 203 35.48 58.56 

47 50 20 6 24 258 21.29 52.70 

48 75 10 3 18 368 8.67 42.95 

49 50 20 6 12 255 18.85 46.66 

50 100 20 6 12 283 18.72 46.34 

51 50 20 6 12 338 18.05 44.69 

52 75 30 9 6 266 24.31 40.12 

53 75 30 3 18 333 11.93 59.09 

54 50 20 6 12 263 18.34 45.40 

55 50 20 6 12 264 18.77 46.47 

56 75 30 9 18 237 27.43 45.27 

57 25 10 9 18 250 24.87 41.05 

58 75 10 9 6 212 16.76 27.67 

59 75 10 3 6 186 6.09 30.17 

60 50 0 6 12 202 0.00 0.00 
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Table 4.9: Particle size distribution of enzymatically hydrolysed samples. The standard deviation for all the PdI values were 

< 0.11. Averages were determined from multiple measurements of triplicate samples  

Printed Recycle Virgin Pulp 

Sample 

ID 

Mean Size PdI Sample 

ID 

Mean Size PdI 

d.nm   d.nm   

1 204 0.56 31 210 0.51 

2 125 0.90 32 297 0.31 

3 268 0.85 33 256 0.52 

4 158 0.37 34 293 0.29 

5 202 0.57 35 369 0.58 

6 239 0.30 36 138 0.59 

7 591 0.77 37 315 0.33 

8 264 0.79 38 305 0.30 

9 427 0.67 39 467 0.70 

10 318 0.41 40 234 0.60 

11 672 0.60 41 245 0.27 

12 1211 0.87 42 239 0.51 

13 221 1.00 43 329 0.37 

14 683 0.70 44 256 0.31 

15 116 0.50 45 209 0.54 

16 309 1.00 46 203 0.51 

17 422 0.79 47 259 0.25 

18 426 0.62 48 368 0.34 

19 313 0.16 49 255 0.40 

20 442 0.85 50 283 0.29 

21 138 0.59 51 339 0.30 

22 146 0.20 52 266 0.41 

23 310 0.47 53 333 0.38 

24 243 0.26 54 263 0.42 

25 398 0.69 55 265 0.28 

26 1029 0.50 56 238 0.33 

27 550 0.39 57 250 0.26 

28 518 0.56 58 212 0.51 

29 139 0.74 59 186 0.43 

30 413 0.13 60 202 0.65 

 

Smaller mean particle sizes (< 400 nm from Table 4.8) were achieved across the complete tested range 

of CTec2 dosages and FiberCare dosages for the virgin pulp PS, compared to the printed recycle PS (120 

– 1200 nm, Table 4.7). The higher digestibility of the virgin pulp PS (Table 4.5) correlated to the lower 

particle sizes (Table 4.7) in comparison to printed recycle PS, as observed during the screening 

experiments (Figure 4.4, Section 4.2).  

Higher glucose yields of up to 58.6% (Table 4.8) were achieved for the hydrolysis of virgin pulp PS, than 

for printed recycle PS (34.4%; Table 4.7). The glucan fraction of virgin pulp PS was not two times higher 
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(61.20% for virgin pulp PS in Table 4.3 versus 41.37% for washed printed recycle PS in Table 4.2), once 

again indicating the effect of enzyme-accessible fibre structure due to the extent of chemical pulping 

processes as ‘pre-treatment’. This trend in glucose release further showed a higher extent of hydrolysis 

of the virgin pulp PS in comparison to that of the printed recycle PS. 

The particle size distribution demonstrated by the polydispersity (PdI) of the enzymatic hydrolysed 

samples (Table 4.9) indicated irregular PdI values with no correlation to the mean particle size, either 

from printed recycle PS or from virgin pulp PS. The reason may be a result of particles with a wide range 

of sizes present in the PS samples, and secondly due to the random action of the different cellulase 

enzymes which fragmented and defibrillated (Arantes, et al., 2014) the fibres and exposed fibrils. This 

indicated that post-hydrolysis treatment processes were required to increase the quality in terms of particle 

size distribution. 

The model for glucose concentration prediction of virgin pulp PS had a R2 value of 0.895, which 

indicated high suitability of the model to describe and predict the data. Furthermore, validity of the 

glucose concentrations model for virgin pulp PS was confirmed through ANOVA (no lack of fit from F-

value and P-value of 3.43 and 0.093, respectively from Table 7.5 in Appendix D). An increase in CTec2 

dosage linearly increased the glucose concentrations (Figure 4.7A), due to the synergism between 

endoglucanase, exoglucanase and β-glucosidase present in CTec2 (Janardhnan, 2012). Similarly, an 

increase in FiberCare dosage increased the glucose concentrations, which was not expected, as no 

exoglucanases are present in FiberCare. This could be explained by a synergistic effect between the 

CTec2 and FiberCare, which enhances the performance of cellulases in the blend other than just the 

endoglucanses in the CTec2 (Nechyporchuk, 2015). However, simultaneous increase in CTec2 dosage 

and FiberCare dosage increased the glucose concentrations up to a threshold at 25 FPU/gdPS and 60 

ECU/gdPS. This indicated that an increased endo-to-exo ratio allowed for less glucose monomers 

production (secondary hydrolysis; Figure 4.7) and therefore suggesting higher activity of primary 

hydrolysis to release cellulose nanoparticles. This was supported by another study which found that the 

optimum endo-to-exo ratio for total hydrolysis of cellulose to glucose should be low (Kostylev & Wilson, 

2012).  

Simultaneous increase in solids loading and hydrolysis time led to a linear increase in glucose 

concentration (Figure 4.7B). At instances where the enzyme dosages and hydrolysis time were constant, 

lower glucose yields were found at higher solids loadings (≥ 6%), indicating that high solids loadings 

negatively affected the enzymatic hydrolysis (Table 4.8), as previously seen due to mass transfer 

limitations (Screening Section 4.2). Another contributing factor could be cellulase inhibition by the 

cellobiose and glucose by-products (Philippidis, et al., 1993), due to accumulation of these products at 

higher concentrations as a result of higher solids loadings (Table 4.8). In order to reduce the undesired 
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cellulose mass loss to monomers (glucose yield less than 40%) from virgin pulp PS, the hydrolysis time 

and the CTec2 dosage were to be limited to 6 hrs and 10 FPU/gdPS. 

A poor fit between the mean particle size model of the virgin pulp PS and the data was indicated by a low 

R2-value of 0.481 (Figure 4.7D). Efforts in specifying categories based on size ranges (according to 

cellulose nanoparticle types from ISO standards) for the mean particle size model instead of specifying 

the mean size values resulted in increased poorness of fit of the data (data not shown). Previous studies 

on the acid hydrolysis production of cellulose nanoparticles reported lack of fit of models for the 

prediction of the mean particle size, even after removal of outlier samples (Bondeson, et al., 2006). This 

indicated that wide variations in particle sizes for cellulose nanoparticles were typical, resulting in 

inherent difficulties with fitting statistical models to such data. Nevertheless, the current mean particle 

size model was deemed statistically meaningful through ANOVA with an insignificant lack of fit (lack 

of fit F-value of 2.71 and P-value of 0.14 from Table 7.4 in Appendix D). Additionally, as the overall 

mean particle size range was found to be < 400 nm (Table 4.8), the model was still used for optimisation. 

The strong synergistic nature of the endoglucanases and exoglucanases present in CTec2 (Chen, 2014), 

enhanced by the endoglucanase in the FiberCare, released majority of particles with dimensions in nano-

ranges. Therefore, the model provides a useful approximation of the mean particle size while minimising 

the glucose concentration. This, in effect, increase the probability of higher cellulose nanoparticle yields 

as the by-product formation were minimised, which is the best result that could be achieved with the 

typically large variations in cellulose nanoparticle size samples (Bondeson, et al., 2006).  

 

Figure 4.6: Pareto charts of standardized effects for virgin pulp PS feedstock with glucose concentration (left) and mean particle 

size (right) as variable. The keys L and Q denotes the main effects and the quadratic effects, respectively. The keys SL denotes 

solids loading (% w/w), t denotes hydrolysis time (hours), Dcocktail denotes CTec2 (FPU/gdPS) and Dendo denotes FiberCare 

(ECU/gdPS) for representation purposes. The 1Lby2L, 2Lby3L, etc. denotes the interaction effects of the model. 

 

It was clear from the surface plots (Figure 4.7C and Figure 4.7D) and the regression coefficients 

from Equation 7 and Table 7.2 in Appendix D that none of the factors (X1, X2, X3 or X4) independently 

influenced the mean particle size, but they interacted with each other, causing both positive and negative 

interaction influences. As indicated from the Pareto charts (Figure 4.6) of standardised effects for virgin 

pulp PS it is evident that the solids loading was the most significant contributor (p < 0.05) to the mean 
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particle size, however for the glucose concentration model, the solid loading, CTec2 dosage and 

hydrolysis time were the strongest contributors to the mean particle size. From the graph in Figure 4.7C 

and with a P-value of 0.952 (Table 7.2 in Appendix D), it was apparent that the FiberCare dosage had no 

significant effect on the mean particle size. In order to capture the true benefit of the FiberCare addition, 

which was speculated to have a more significant effect on the particle diameter in comparison to the 

measured length, the morphological shape of the cellulose nanoparticles were to be investigated (Section 

4.4.2.1).  
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Figure 4.7: Surface plots of the virgin pulp PS predicting the A) mean particle size with CTec2 dosage (FPU/gdPS) and FiberCare 

dosage (ECU/gdPS) as independent variables, B) mean particle size with hydrolysis time (h) and solids loading (% w/w) as 

independent variables, C) glucose concentrations with CTec2 dosage (FPU/gdPS) and FiberCare dosage (ECU/gdPS) as 

independent variables, D) glucose concentration with hydrolysis time (h) and solids loading (% w/w) as independent variables, 

E) desirability with CTec2 dosage (FPU/gdPS) and FiberCare dosage (ECU/gdPS) as independent variables, and F) desirability 

with mean particle size with hydrolysis time (h) and solids loading (% w/w) as independent variables 

A B 

C D 

E 
F 
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The desirability plots of enzymatic hydrolysis with virgin pulp PS are presented in Figure 4.7E and 

Figure 4.7F, which combined the two dependent variables, mean particle size and glucose concentration. 

Due to the inverse parabolic shape of the desirability plot in Figure 4.7E, difficulty with optimisation 

within the enzyme dosages were experienced. In order to identify the model-predicted optimum ranges, 

the surface plots were studied individually, in combination with relating contour plots and the numerical 

solution of the polynomial equations (Equation 7 and Equation 8 in Appendix D). Optimised hydrolysis 

conditions based on the mean particle size and the glucose concentration models indicated that a high 

FiberCare dosage (75 ECU/gdPS), a low CTec2 dosage (10 FPU/gdPS), an intermediate hydrolysis time 

(9 hrs) and a low solids loading (3% w/w), were required for virgin pulp PS. Under these conditions the 

models predicted the mean particle size and the glucose concentrations to be 288 nm and 5.78 g/L, 

respectively (Table 4.10). Validation experiments conducted under the optimal conditions indicated that 

the models used are suitable for predicting the output variables, as the predicted values (�̂�𝑖) of mean 

particle size and glucose concentration differed no more than 19% and 6%, respectively (Table 4.10) with 

the experimentally measured response variables (𝑌𝑖).  

Table 4.10: Optimised treatment conditions proposed by statistical analysis on Statistica in comparison to experimental values 

of validation experiments. Standard deviations of the mean particle size (determined from single measurements of triplicate 

samples) for both feedstock are < 33 nm. Standard deviations of glucose concentrations (determined from single measurements 

of triplicate samples) for both feedstock are < 0.07 g/L. 

Feedstock 

FiberCare 

dosage 

CTec2 

Dosage 

Solids 

Loading 

Hydrolysis 

Time 𝒀𝒔𝒊𝒛𝒆 �̂�𝒔𝒊𝒛𝒆 𝒀𝒈𝒍𝒖𝒄𝒐𝒔𝒆 �̂�𝒈𝒍𝒖𝒄𝒐𝒔𝒆 

 ECU/gdPS FPU/gdPS % (w/w) h nm nm g/L g/L 

Virgin Pulp 80 10 3 9 232 288 5.44 5.78 

 

No desirability profiling was applied to the statistical models for the printed recycle PS, due to 

inaccurate fit of the mean particle size (R2-value of 0.510) and glucose concentration models (R2-value 

of 0.680). The Pareto charts of standardised effects for printed recycle PS (Figure 4.8) indicated the 

majority of the factors and factor-interactions to have little to insignificant contributions to the glucose 

concentration and mean particle size. Statistically, there was a lack of fit of the mean particle size model 

(lack of fit F-value and P-value of 5.34 and 0.039, respectively; Table 7.4 in Appendix D) as well as a 

lack of fit for the glucose concentration model (lack of fit F-value and P-value of 99.75 and 0.00004, 

respectively; Table 7.5 in Appendix D). The nature of recycled fibres, relating to polysaccharide 

hardening and possible changes in the microstructure of the recycled fibres (leading to variable surface 

free area and in turn, an influenced nature of water interactions into and on the fibre) (Wistara & Young, 

1999) could be a reason for inconsistent, decreased cellulase activity on the recycled fibres. This resulted 

in large standard deviations in the particle sizes and therefore, created statistically insignificant models. 

Efforts in removing insignificant factors and/or interactions resulted in even higher percentage errors 

between the predicted values and the experimental values (Table 7.6 in Appendix D). 
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Figure 4.8: Pareto charts of standardized effects for printed recycle PS feedstock with glucose concentration (left) and mean 

particle size (right) as variable. The keys L and Q denotes the main effects and the quadratic effects, respectively. SL denotes 

solids loading (% w/w), t denotes hydrolysis time (hours), Dcocktail denotes CTec2 (FPU/gdPS) and Dendo denotes FiberCare 

(ECU/gdPS) for representation purposes. The 1Lby2L, 2Lby3L, etc. denotes the interaction effects of the model. 

Therefore, it was not possible to use CCD for optimisation of the production of cellulose 

nanoparticles with printed recycle PS as feedstock. Instead, from careful inspection of the collected data 

in Table 4.7, a preferential datapoint identification was conducted for the printed recycle PS by 

minimizing the mean particle size to < 500 nm and simultaneously minimizing the glucose yield. With 

this approach, three sets of conditions were identified, as highlighted in bold in Table 4.7, from which 

one run was selected for validation experimentation (Table 4.11). With the validation experiment it was 

evident that a higher glucose concentration was produced (𝑌𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑣𝑎𝑙 = 6.38 g/L) than found in the CCD-

optimization testing (𝑌𝑔𝑙𝑢𝑐𝑜𝑠𝑒  = 3.16 g/L). However, the particles produced were within the mean size 

range of < 500 nm (𝑌𝑠𝑖𝑧𝑒,𝑣𝑎𝑙 = 226 nm).  

Table 4.11: Selected treatment conditions proposed by statistical analysis on Statistica in comparison to experimental values of 

validation experiments. Standard deviations of the mean particle size (determined from single measurements of triplicate 

samples) for both feedstock are < 33 nm. Standard deviations of glucose concentrations (determined from single measurements 

of triplicate samples) for both feedstock are < 0.07 g/L. 

Feedstock 

FiberCare 

dosage 

CTec2 

Dosage 

Solids 

Loading 

Hydrolysis 

Time 𝒀𝒔𝒊𝒛𝒆 𝒀𝒔𝒊𝒛𝒆,𝒗𝒂𝒍 𝒀𝒈𝒍𝒖𝒄𝒐𝒔𝒆 𝒀𝒈𝒍𝒖𝒄𝒐𝒔𝒆,𝒗𝒂𝒍 

 ECU/gdPS FPU/gdPS % (w/w) h nm nm g/L g/L 

Printed 

Recycle PS 
100 20 6 12 441 226 3.16 6.38 

 

For printed recycle PS, a high FiberCare dosage (100 ECU/gdPS), intermediate CTec2 dosage (20 

FPU/gdPS), intermediate hydrolysis time (12 hrs) and intermediate solids loading (6% w/w), were 

selected from the aforementioned approach. The shorter hydrolysis time required for the virgin pulp PS 

was in agreement with the screening results (Section 4.2) due to higher digestibility in comparison to the 

printed recycle PS. As a result, the printed recycle PS required higher cellulase dosages than that of virgin 

pulp PS. Low solids loadings (0.5 – 1.5% w/w) are typically preferred for production of cellulose 

nanoparticles, to increase the enzyme efficiency by reducing mass transfer limitations (Filson, et al., 2009; 

Fattahi Meyabadi & Dadashian, 2012; Anderson, et al., 2014), which explains the low optimal solids 

loading of the virgin pulp PS.  
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From the optimisation experiments conducted with printed recycle PS, it was clear that for solids 

loadings higher in the tested range of 9 – 12% (w/w) the mean particle size had a tendency to be > 500 

nm (Table 4.7), possibly due to mass transfer limitations that negatively affected enzymatic hydrolysis 

(Fattahi Meyabadi & Dadashian, 2012). Therefore, for the desired mean particle size is to be smaller than 

500 nm, the solids loading for printed recycle PS was limited to 6% w/w and below. CTec2 dosages ≥ 30 

FPU/gdPS resulted in the highest glucose yields obtained within the tested ranges (31.38 - 44.43% from 

Table 4.7). As this would negatively impact the cellulose nanoparticle yield, the CTec2 dosage was 

limited to 20 FPU/gdPS. 

Based on the abovementioned findings, it was suggested that cellulose nanoparticle production by 

enzymatic hydrolysis of printed recycle PS could be achieved in a wide operating regime of CTec2 (10 – 

20 FPU/gdPS) and FiberCare (50 – 100 ECU/gdPS) dosages resulting in mean particle sizes < 500 nm, 

apparently due to greater heterogeneity in the printed recycle PS and the cellulose nanoparticles derived 

from it. It would be recommended that further investigation be undertaken in smaller integrals, especially 

with extensively de-ashed printed recycle PS, on the ranges specified in Table 4.12. 

Table 4.12: Enzymatic hydrolysis operating ranges for factors of CTec2 dosage, FiberCare dosage, hydrolysis time and solids 

loadings for the production of cellulose nanoparticles 

Input Parameter Units Min Max 

CTec2 dosage FPU/gdPS 10 20 

FiberCare dosage ECU/gdPS 50 100 

Hydrolysis Time hrs 9 24 

Solids Loading % w/w 3 6 

 

4.4. Characterisation of cellulose nanoparticles produced by enzymatic 

hydrolysis of PS 

For the production of cellulose nanoparticles, the properties of morphology, shape, crystallinity, 

polydispersity and the agglomeration are to be considered. SEM imaging was conducted for direct multi-

dimensional information about the nanoparticle morphology and structural properties, and FTIR 

spectroscopy analysis was conducted as it provides a method of gaining direct analytical information on 

chemical changes that occur during different processing steps (Mandal & Chakrabarty, 2011). It is also a 

good semi-quantitative indicator of the degree of crystallinity, and purity of samples (Mandal & 

Chakrabarty, 2011). 

Since the 1940s, acid hydrolysis remains the major process for producing CNC (Zhu, et al., 2011), 

and was therefore used as a benchmark for the cellulose nanoparticles produced by enzymatic hydrolysis 

of PS. The characteristics of cellulose nanoparticles from acid hydrolysis of PS were determined, to which 

the cellulose nanoparticles produced by enzymatic hydrolysis, could be compared. Selected PS samples 

were enzymatically hydrolysed, denatured, centrifuged at 4500 rpm for 30 min and successively glass-
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filtered with a vacuum-filter (refer to Figure 3.2 for a process flow diagram). It was investigated whether 

the majority particles were found in the glass-filtered supernatant or captured in the hydrolysed residual 

solids (that formed part of the cake that could not be filtered through the glass-membrane mesh pores). 

At the risk of disposing the majority of the cellulose nanoparticles present in the supernatant, especially 

with the low yield expected with enzymatic hydrolysis, no washing of the sample was originally 

conducted. The supernatant was freeze-dried for analysis. 

4.4.1. Effect of acid hydrolysis of paper sludge as control process for cellulose 

nanoparticle production 

Two different morphologies, and therefore two types of cellulose nanoparticles were produced 

through acid hydrolysis of PS. SEM images of acid hydrolysed sample from printed recycle PS, indicated 

long entangled CNF (Figure 4.9A) as well as non-entangled, agglomerated CNC particles (Figure 4.9B) 

in the same sample. Similarly, for acid hydrolysis of virgin pulp PS, CNF particles (Figure 4.10A) and 

CNC particles (Figure 4.10B) were present in the same sample. Although most studies indicate that only 

a singular morphology is produced, some previous acid hydrolysis studies have reported on similar results 

of multiple cellulose nanoparticle morphologies within the same sample (Lu & Hsieh, 2010; Desmaisons, 

et al., 2017).  

The mean diameter ranges of the CNF obtained by acid hydrolysis from the both PS samples were 20 - 

50 nm, and the mean lengths of CNFs stretching over a few micrometres (Table 4.13). The mean length 

and mean diameter of the CNC from printed recycle PS were 169 ± 59 nm and 20 ± 6 nm, respectively, 

while shorter CNC particles with mean lengths and mean diameters in the ranges of 126 ± 63 nm and 26 

± 7 nm, respectively, were found for virgin pulp PS with lower crystallinity (35.5% from Figure 4.4). For 

dimensions of CNC produced through H2SO4 acid hydrolysis, typical sizes reported in literature for 

diameter and length were 3 – 20 nm and 100 – 600 nm, respectively (Rebouillat & Pla, 2013) as well as 

larger diameters between 3 – 35 nm and lengths of 0.05 – 4 μm (Nechyporchuk, 2015; Nguyen, et al., 

2013). The agglomerated particles could be attributed to the strong hydrogen bonds between the 

individual cellulose particles (Deepa, et al., 2015). 
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Figure 4.9: SEM images of cellulose nanoparticles obtained from printed recycle paper sludge acid hydrolysed and freeze-dried 

A) without resuspension at lower magnification B) without resuspension at higher magnification C) re-suspended at 0.1% (w/w) 

and air-dried overnight at lower magnification D) re-suspended at 0.1% (w/w) and air-dried overnight at higher magnification 

 

Figure 4.10: SEM images of cellulose nanoparticles obtained from virgin pulp paper sludge acid hydrolysed and freeze-dried A) 

without resuspension at lower magnification B) without resuspension at higher magnification C) re-suspended at 0.1% (w/w) 

and air-dried overnight at lower magnification D) re-suspended at 0.1% (w/w) and air-dried overnight at higher magnification   

Measurement of the particle sizes of the produced cellulose nanoparticles with DLS provided mean 

particle sizes of 626 ± 148 nm with a PdI of 0.62 for the printed recycle PS, and 432 ± 104 nm with a PdI 

of 0.72 for the virgin pulp PS (Table 4.13). The high PdI values confirmed the broad particle size 

distributions present in both feedstocks, and the DLS size ranges provides a relative midway mean particle 

length (432 nm for virgin pulp PS and 626 nm for printed recycle PS) from the two sets of dimensions 

retrieved from the imaging analysis. Furthermore, the aspect ratios of the cellulose nanoparticle sample 

as a whole were estimated as 16 – 20 for virgin pulp PS and 12 – 31 for printed recycle PS (Table 4.13), 

both samples falling within the ISO specifications of CNF (International Standards Organization, 2017). 

  

200 nm 5 kV 250 pA 

A B 

200 nm 5 kV 250 pA 

200 nm 5 kV 250 pA 200 nm 5 kV 250 pA 

B A 
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Table 4.13: Characteristics of cellulose nanoparticle samples acid hydrolysed from virgin pulp and printed recycle PS. An 

average of 100 size measurements were performed for 3 - 5 images per sample. The average of single measurements of triplicate 

yield samples were determined. The average of duplicate measurements of multiple crystallinity and polydispersity samples were 

determined (n = 2 – 3).   

Feedstock 
Virgin pulp PS Printed recycle PS 

Characteristic Unit 

CNF length nm > 1000  > 1000  

CNF diameter nm 20 - 50 20 - 50 

CNC length nm 126 ± 63 169 ± 59 

CNC diameter nm 26 ± 7 20 ± 6 

Sample mean length (DLS) nm 432 ± 104 626 ± 148 

Sample aspect ratio - 16 - 20 12 - 31 

Polydispersity - 0.72 ± 0.17 0.62 ± 0.10 

Crystallinity % 64.8 ± 0.81 67.2 ± 1.47 

Yield % 21.1 ± 2.01 12.3 ± 0.92 

 

XRD analysis revealed that the crystallinity of the cellulose nanoparticles from virgin pulp PS was 64.8% 

while that from printed recycle PS was a slightly higher value of 67.2% (Table 4.13). After acid 

hydrolysis, the crystallinity increased from the raw PS materials (49.4% and 35.5% for printed recycle 

PS and virgin pulp PS, respectively from Figure 4.4), apparently due to the acid attacking the amorphous 

regions of the cellulose chains (Paralikar & Bhatawdekar, 1984).  

 

Figure 4.11: FTIR absorption spectra of cellulose nanoparticles A) produced from acid hydrolysis of printed recycle PS, B) 

commercial CNC control (produced via acid hydrolysis) and C) produced from acid hydrolysis of virgin pulp PS. Duplicate 

samples were measured with at least duplicate measurements each. 

The acid hydrolysed samples (Figure 4.11) from both printed recycle PS (spectrum A) and virgin 

pulp PS (spectrum C) had dominating peaks in the fingerprint region for cellulosic bonds, correlating 

extremely well with the bands of the commercially-produced CNC (acid-hydrolysed) control sample 

(spectrum B). The absorption band at 1430 cm-1 indicated the degrees of crystallinity of the samples, 

which are at the same intensity of that of the commercial CNC control sample. It was clear that the acid 

hydrolysed samples from waste PS compared very well with the commercial CNC control sample, and 
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the bands retained their positions after acid hydrolysis, with insignificant amount of impurities; 

hemicellulose and lignin. 

After acid hydrolysis, gravimetric analysis indicated that estimated cellulose nanoparticle yields of 21.1% 

for virgin pulp PS and 12.3% for printed recycle PS (Table 4.13). These yields were improved from 

previously reported yields of acid-hydrolysed (and sonicated) CNC from recycled pulp (5 – 10%) (Filson 

& Dawson-Andoh, 2009) and in the same range as yields of CNC produced through other processes 

highlighted earlier in this study (Table 2.2).  

It was therefore concluded that cellulose nanoparticles with sufficient purity could successfully be 

produced from acid (H2SO4) hydrolysis of virgin pulp and printed recycle PS, with suitable morphology, 

dimensions and crystallinity according to the ISO standards for CNF (Section 2.2.2). 

4.4.2. Effect of individual enzymes and their combination on characteristics of 

cellulose nanoparticles 

As it was established that acid hydrolysis of virgin pulp as well as printed recycle PS produced CNF, 

both with satisfactory properties according to ISO specifications, the properties (morphology, dimensions 

and crystallinity) of cellulose nanoparticles produced by enzymatic hydrolysis, were evaluated and 

compared. 

4.4.2.1. Morphological properties of cellulose nanoparticles produced  

Enzymatic hydrolysis of virgin pulp PS at optimised conditions produced cellulose nanoparticles 

with a spherical shape (Figure 4.12A) and an estimated mean diameter of 137 ± 50 nm (Table 4.14). The 

non-entangled spherical morphology may have occurred due to the synergistic activity of endoglucanase 

and exoglucanase present in CTec2, at multiple regions along the cellulose chains, leading to the release 

of shorter chain fragments (Fattahi Meyabadi, et al., 2014). The endoglucanase and exoglucanase bind to 

the chain fragments and further hydrolysed at multiple regions along the chain. After repeated hydrolysis 

along the cellulose chain, the hydrolysed fragments had very low aspect ratio, resembling a spherical 

morphology (Miyamoto, et al., 2009). It was clear that the cellulose particles were not fully separated and 

may have been covered with high levels of impurity materials consisting of the residual enzyme, ash, 

citrate buffer and hemicellulose.   
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Figure 4.12: SEM images of cellulose nanoparticles obtained from enzyme hydrolysis of A) virgin pulp PS, at 3% (w/w) solids 

loading for 9 hrs of hydrolysis, with FiberCare dosage of 80 ECU/gdPS and CTec2 dosage of 10 FPU/gdPS; B) virgin pulp PS, 

at CTec2 dosage of 20 FPU/gdPS at 6% (w/w) solids loading for a hydrolysis time of 12 hrs C) virgin pulp PS, STEM image of 

virgin pulp PS at a 9% (w/w) solid loading with FiberCare dosage of 100 ECU/gdPS (image processed by convolution with the 

software Image J for optimised size determination, as presented in Appendix A) D) printed recycle PS, at 6% (w/w) solids loading 

for 12 hrs of hydrolysis, with FiberCare dosage of 100 ECU/gdPS and CTec2 dosage of 20 FPU/gdPS. Sample was treated with 

drying agent (HMDS) and air-dried overnight. E) printed recycle PS, at CTec2 dosage of 20 FPU/gdPS at 6% (w/w) solids 

loading for a hydrolysis time of 12 hrs F) printed recycle PS at a 9% (w/w) solid loading with FiberCare dosage of 100 ECU/gdPS 

(The white objects was the nature of the carbon lacey microgrid on which the samples were prepared) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

It must be noted that the mean diameters (being the only dimension) of the spherical particles did 

not fall under 100 nm, which would technically not be classified as nanoparticles. However, SCN is very 

new to the market, with neither ISO nor British standards updated on the required spherical dimensions 

(International Standards Organization, 2017; British Standards Institution, 2017). Previous articles 

accepted diameters of up to 570 nm as cellulose nanoparticles (Ioelovich, 2012; Li, et al., 2001; Ioelovich, 

2013; Zhang, et al., 2007), and therefore the produced SCN particles in this study should be considered 

as nanoparticles.  

200 nm 5 kV 250 pA 

A 

200 nm 3 kV 250 pA 

B 

200 nm 5 kV 250 pA 

D 

200 nm 3 kV 250 pA 

E 

200 nm 20 kV 250 pA 

C 

200 nm 20 kV 250 pA 
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In comparison to virgin pulp PS, smaller SCN particles with diameters of 30 ± 6 nm (Table 4.14) 

were obtained from the selected conditions (Table 4.11) for printed recycle PS (Figure 4.12D). This 

sample was treated with HMDS, which provided particles with visual clarity due to less water and 

adsorbed impurities. This smaller particle size may have been caused by a combination of shorter fibres 

in the printed recycle PS feedstock, together with more extensive hydrolysis. The mean diameter was 

very similar to the SCN (referred to as globular nanocrystalline cellulose in the article) obtained with 

NaOH-pre-treated enzymatic hydrolysis of cotton fibres, which had a size range of 20 – 25 nm (Chen, et 

al., 2012). However, the mean diameter size as determined by DLS was 226 ± 33 nm for printed recycle 

PS and 232 ± 30 nm for virgin pulp PS (Table 4.14), which was larger than the sizes estimated through 

SEM imaging.  

The cellulose nanoparticles produced from CTec2-only hydrolysis (without FiberCare dosage; 20 

FPU/gdPS at 6% (w/w) solids loading for a hydrolysis time of 12 hrs) of virgin pulp PS, had a spherical 

structure with diameters in the range of 80 ± 40 nm (Figure 4.12B). DLS analysis reported mean particle 

sizes of 305 ± 36 nm for virgin pulp PS (Table 4.14), which was higher than the sizes reported by Image 

J software, once again indicating particle agglomeration. 

For hydrolysis of printed recycle PS under the same CTec2-only conditions (without FiberCare 

dosage; 20 FPU/gdPS at 6% (w/w) solids loading for a hydrolysis time of 12 hrs), agglomerated particles 

with an entangled CNF structure (Figure 4.12E) were found. The diameters were determined with Image 

J software analysis as 125 ± 75 nm (Table 4.14). From DLS sizing, the mean particle size was a larger 

value of 245 ± 23 nm (Table 4.14). The particle lengths were approximated to a few micrometres while 

the majority diameters were > 100 nm, classifying it as cellulose microparticles. It is possible that with a 

decreased endo-to-exo ratio (20 FPU/gdPS CTec2 without endoglucanase enrichment), cellulose 

microparticles were produced from printed recycle PS. This suggested a beneficial effect of the higher 

endo-to-exo ratio (due to the FiberCare addition from the selected conditions for printed recycle PS) to 

printed recycle PS with crystalline to paracrystalline cellulose (Figure 4.4).  

STEM imaging indicated that hydrolysis with FiberCare-only (without CTec2 dosage) resulted in non-

entangled CNC from virgin pulp PS, with dimensions of 86 ± 32 nm in length and 9 ± 2 nm in diameter 

(Figure 4.12C). For the case of FiberCare-only hydrolysis of printed recycle PS, non-entangled rod-like 

CNC were produced, with lengths of 102 ± 38 nm and diameters of 5 ± 2 nm (Figure 4.12F). Due to no 

presence of exoglucanase, mainly the amorphous regions of the cellulose chains were hydrolysed, 

resulting in the well-defined, rod-like cellulose crystals (Börjesson & Westman, 2015). These CNC 

particles exhibited similar dimensions to CNC produced by acid hydrolysis of both PS, falling in the 

range of 10 - 30 nm in diameter and 60 - 220 nm in length (Table 4.13). Furthermore, the sizes for both 

dimensions correlated very well with reported CNC obtained through acid hydrolysis of other wood pulps 

with diameter and length dimensions of 2 – 20 nm and 100 – 600 nm, respectively (Kangas, 2014). 
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Mean particle sizes determined through DLS were approximately two times the size determined by 

imaging software (260 ± 43 nm for printed recycle PS and 352 ± 81 nm for virgin pulp PS, Table 4.14). 

This could be due to agglomeration of the cellulose nanoparticles and/or the presence of larger particle 

sizes present in the samples, as also reported in other studies (Nechyporchuk, 2015; Fattahi Meyabadi, et 

al., 2014). Therefore, the screening experiments concluded that with the FiberCare, particles having the 

qualities of CNC particles as classified by ISO standards (Table 2.1), could be obtained by a stand-alone 

enzymatic hydrolysis process. 

Table 4.14: Morphological shape and mean particle sizes (determined with DLS and SEM imaging) of different enzymatic 

hydrolysis conditions with different ratios of CTec2 to FiberCare dosages. Mean sizes were determined from single 

measurements of triplicate samples. The size averages of 100 measurements were determined for 3 - 5 SEM images per sample. 

The average of single measurements of triplicate polydispersity samples were determined.  

Feedstock 

Solids 

Loading 

Hydrolysis 

Time 

FiberCare 

Dosage 

CTec2 

Dosage Shape 

DLS 

Length 

SEM 

Diameter 
PdI 

% w/w hrs ECU/gdPS FPU/gdPS nm nm  

Printed 

Recycle 

PS 

6 12 100 20 spherical 226 ± 33 30 ± 6.0 0.51 ± 0.02 

6 12 0 20 rod-like 263 ± 97 125 ± 75 0.53 ± 0.07 

9 24 100 0 crystals 260 ± 43 5 ± 2.0 0.47 ± 0.05 

Virgin 

Pulp PS 

3 9 80 10 spherical 232 ± 30 137 ± 50 0.62 ± 0.04 

6 12 0 20 spherical 305 ± 36 80 ± 40 0.70 ± 0.02 

9 24 100 0 crystals 352 ± 81 9 ± 2.0 0.48 ± 0.11 

 

For hydrolysis with either of the individual commercial enzymes (CTec2 or FiberCare), PdI values in the 

range of 0.47 – 0.53 and 0.48 – 0.70 were found for printed recycle PS and virgin pulp PS, respectively 

(Table 4.14). These high PdI values indicated that larger particle sizes and possibly multiple morphologies 

were present in the samples (Table 4.14), which agreed with the relatively higher mean particle size found 

by the DLS analysis in comparison to the particle sizes found via SEM imaging (Table 4.14). However, 

the PdI values of the samples from enzymatic hydrolysis of PS were lower than that of the PdI values 

recorded for the acid hydrolysis of virgin pulp PS (0.72 ± 0.17) and for the printed recycle PS (0.62 ± 

0.10) (Table 4.13). 

Through limiting the hydrolysis time and selecting cellulase-specific cocktails, specific types of 

cellulose nanoparticles could be obtained which is advantageous over the acid hydrolysis process. 

Enzymatic hydrolysis produced either SCN (Figure 4.12A and D) or CNC (Figure 4.12C and F) as single-

morphology products, depending on the ratio of enzyme dosages used, while acid hydrolysis of PS 

resulted in a mixture of CNC and CNF particles for both feedstock (Figure 4.9 and Figure 4.10). With 

use of a commercial cellulase blend such as CTec2 (20 FPU/gdPS), SCN could be produced from virgin 

pulp PS, yet for printed recycle PS, a higher endoglucanase dosage (20 FPU/100 ECU) was required to 

produce SCN. At a high endo-to-exo ratios for virgin pulp (10 FPU/80 ECU) and a moderate endo-to-

exo ratio (20 FPU/100 ECU) for printed recycle PS, SCN was produced. For hydrolysis with a 

monocomponent endoglucanase (FiberCare), CNC were produced from both PS feedstocks. 
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Agglomeration of the particles occurred through-out all the enzymatically hydrolysed samples for 

both feedstock (Figure 4.12). The agglomeration may have been due to destabilized particles, especially 

at low concentrations due to the strong hydrogen bonds and attractive (van der Waals) interactions, as 

have been reported in literature (Evans & Wennerstrom, 1999). The cleavage of internal glycosidic bonds 

by endoglucanase, without chemical alterations of the surface hydroxyl groups may possibly lead to poor 

aqueous dispersion (Anderson, et al., 2014). Acid hydrolysed nanoparticles often have better dispersion 

properties due to negatively charged particle surfaces, leading to increased colloidal stabilities (Rebouillat 

& Pla, 2013). For enzymatic hydrolysis, the instability indicated the requirement of a post-hydrolysis 

treatment as is often found in literature, such as sonication or homogenisation (Jonoobi, et al., 2015).  

Upon drying, the rod-like cellulose particles tend to self-assemble into packed agglomerates (Peng 

& Chen, 2011). This may occur because of the increase in strong interfibrillar attraction due to hydrogen 

bonding between the surface hydroxyl groups of cellulose during freeze drying. Similar findings were 

reported by Anderson, et al., 2014 in a study on enzymatic hydrolysis of wood feedstock for MFC and 

CNF production. This underlines the necessity of post-hydrolysis purification processes, such as washing 

or dialysis before isolation of cellulose nanoparticles.  

4.4.2.2. Structural properties of cellulose nanoparticles produced 

Figure 4.13 shows the FTIR spectra of untreated printed recycle PS, enzymatically hydrolysed 

printed recycle PS and a CNF control sample. All the samples showed analogous spectra with 

characteristic peaks of cellulose at 3327, 1424, 1105, 1051 and 1030 cm-1 (Table 7.1 in Appendix B 

indicates the bonds associated with peak wavelengths). Infrared spectra of untreated and hydrolysed 

virgin pulp PS indicated peaks in the same regions (Figure 4.14). Accordingly, the band at 3800 – 3000 

cm-1 corresponds to intra- and intermolecular hydrogen bonds of cellulose (Schwanninger, et al., 2004). 

Any possible change in the number and strength of hydrogen bonds brings about a change in intensity 

and width of the related bond. A shift and change in width of the related peak seen in Figure 4.13b and 

Figure 4.14b suggested that the enzymes therefore weakened and split the intramolecular hydrogen bonds 

in the cellulose from both feedstock, contributing to the destabilizing and agglomeration of the particles. 

This was not the case in the CNF control sample (Figure 4.13c and Figure 4.14c), where the inter- and 

intra-molecular hydrogen bonds remained intact after mechanical treatment.  

Peaks at the regions of 1574 and 1391 cm-1 respectively, were present in both feedstock 

corresponding to bonds of carboxyl groups (Sritham & Gunaserekaran, 2017; Lakshmanan, 1956). This 

confirmed the presence of sodium citrate buffer used in the enzymatic hydrolysis reactions. Lower 

intensities at 1693 and 1275 - 1246 cm-1 demonstrated the relatively minor amounts of hemicellulose and 

lignin present in the sample. Therefore, the FTIR spectra of the enzyme hydrolysed samples from virgin 

pulp PS as well as the printed recycle PS correlated well with the spectrum of the CNF control sample, 

yet indicated hemicellulose, lignin and citrate buffer impurities. 
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Figure 4.13: Infrared spectra of A) filter-washed printed recycle PS B) enzymatically hydrolysed printed recycle PS and C) CNF 

control sample. Duplicate samples were measured with at least duplicate measurements each. 

 

Figure 4.14: Infrared spectra of A) untreated virgin pulp PS B) enzymatically hydrolysed virgin pulp PS and C) CNF control 

sample. Duplicate samples were measured with at least two measurements each. 

4.5. Various downstream processes for quality-improvement of 

cellulose nanoparticles produced 

In comparison to acid hydrolysis, an increased amount of impurities was present in cellulose 

nanoparticles derived from enzymatic hydrolysis of PS (enzymatic hydrolysis in Figure 4.12 versus acid 

hydrolysis in Figure 4.9 and Figure 4.10). These impurities may include soluble sugars, salts from the 

pH-controlling buffer, and non-cellulosic organic material (ash, hemicellulose and lignin). In order to 

improve the quality of the cellulose nanoparticle product, the particle size distribution (PSD presented by 

the PdI) and purity were considered. Two processes were considered to increase the quality by reduction 

of the PdI to achieve a more uniform particle size, namely vacuum microfiltration and high-shear 

homogenisation. In order to improve the purity, the hydrolysed and glass-filtered supernatant was 

A 

B 

C 

A 

B 

C 

Stellenbosch University  https://scholar.sun.ac.za



 

69 

 

dialysed, while washing of the residual solids was also investigated in order to extract the entrapped 

cellulose nanoparticles. Finally, the cellulose nanoparticle yield was determined gravimetrically. 

As no CCD-optimised set of conditions could be achieved for the printed recycle PS, an additional 

range of conditions were selected for investigation of the effect of downstream processing on the purity 

and the yield of cellulose nanoparticles. These selected conditions indicated with sample numbers in 

Table 4.15, originate from the hydrolysis conditions according to the CCD design given (and highlighted) 

in Table 4.7. Conditions in the same ranges from virgin pulp PS were selected for comparison. These 

conditions were selected according to a mean particle size upper limit of 500 nm according to CNC quality 

requirements, with further selection based on type of enzyme and the produced glucose concentrations 

from the CCD runs (Section 4.3), as presented in Table 4.15. CCD-optimised conditions for virgin pulp 

PS (OVP) and selected conditions for printed recycle PS (SPR) was used as set out in Table 4.10 and 

Table 4.11, respectively. 

Table 4.15: Selection criteria of further investigation of cellulose nanoparticle recovery based on the 

enzyme used and glucose concentration for each PS feedstock. Selected sample numbers indicate the 

hydrolysis conditions according to the CCD detailed in Table 4.7 and Table 4.8. 

Enzyme 
Glucose 

Level 

Printed 

Recycle PS 
Virgin Pulp PS 

Selected 

Printed 

Recycle 

Sample No. 

Selected 

Virgin pulp 

Sample No. 
g/L g/L 

FiberCare Low < 3 < 6 30 60 

CTec2 Medium 3 - 7 6 - 14 8 38 

Combined Cocktail High > 7 > 14 19 50 

 

4.5.1. Microfiltration of supernatant for quality-improved cellulose nanoparticle 

production 

Cellulose nanoparticles produced by any process is a complex mixture of nanoscale particles, 

microscale fibrils and residual fibres in the millimetre scale, hence a size fractionation process was 

considered with membrane filtration. It was evident that the mean particle sizes of all samples were 

decreased to ≤ 200 nm after the 0.45 µm membrane microfiltration (Table 4.16). Accordingly, the PdI 

confirmed narrower distributions after microfiltration, ranging from 0.15 to 0.49 for both feedstock (Table 

4.16). The microfiltration resulted in a product that was reasonably uniform in size, independent of the 

enzyme-type used, and therefore has the potential to produce a high-quality cellulose nanoparticles.  

Enzymatic hydrolysis with endoglucanase-enriched cellulase in combination with microfiltration 

(with a 0.45 µm membrane) provided nanocellulose product with relatively, the highest quality based on 

mean particle size and polydispersity.  After microfiltration, relatively high PdI values (Table 4.16) were 

confirmed for samples hydrolysed with FiberCare (0.48 for printed recycle PS and 0.49 for virgin pulp 

PS). In comparison, the PdI values were much lower for the samples hydrolysed with endoglucanase-
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enriched cellulase cocktails (0.15 – 0.19 for printed recycle PS and 0.25 – 0.35 for virgin pulp PS) or with 

CTec2 (0.13 for printed recycle PS and 0.25 for virgin pulp PS). This indicated that for PS hydrolysed 

with FiberCare, a wide particle size distribution consisted for a maximum size limit of 450 nm, 

demonstrating the enhanced effect of endoglucanase-enriched cellulase cocktails and its accompanying 

synergistic effects on the uniformity of the cellulose nanoparticles.  

Table 4.16: Mean particle size and PdI of enzymatically hydrolysed samples for both feedstock after glass-membrane - and 0.45 

µm-membrane filtration. Samples ID from experimental design conditions sets in Table 4.7 and Table 4.8. Mean sizes were 

determined from single measurements of triplicate samples. The average of single measurements of triplicate polydispersity 

samples were determined.   

Feedstock 
Sample 

ID 

 
Glass-membrane filtration 

 0.45 µm-membrane 

filtration 

Enzyme Mean 

Particle Size 
PdI 

 Mean 

Particle Size 
PdI 

 nm   nm  

Printed 

Recycle PS 

- SPR 226 ± 33 0.51 ± 0.02  135 ± 7 0.15 ± 0.09 

8 Combined 264 ± 97 0.79 ± 0.10  125 ± 39 0.13 ± 0.05 

19 CTec2 313 ± 8 0.16 ± 0.08  135 ± 10 0.19 ± 0.02 

30 FiberCare  413 ± 7 1.00 ± 0.00  198 ± 40 0.48 ± 0.17 

Virgin Pulp 

PS 

- OVP 232 ± 30 0.62 ± 0.04  163 ± 15 0.35 ± 0.03 

38 Combined 305 ± 35 0.30 ± 0.04  204 ± 43 0.27 ± 0.01 

50 CTec2 283 ± 18 0.29 ± 0.02  147 ± 9.6 0.25 ± 0.03 

60 FiberCare 202 ± 25 0.65 ± 0.15  158 ± 15 0.49 ± 0.06 

 

Overall from Table 4.16, as observed from the narrower PdI values and smaller mean particle sizes 

for the printed recycle PS samples confirmed that cellulose nanoparticles with better polydispersity 

properties were achievable through microfiltration of printed recycle PS in comparison to virgin pulp PS. 

Microfiltration showed great potential at a lab scale, however, a 0.45 µm membrane may not be feasible 

at an industrial scale, and therefore high-shear homogenization was considered as an alternative process. 

 

4.5.2. Post-hydrolysis mechanical treatment of supernatant for quality-improved 

cellulose nanoparticle production 

After high-shear homogenization of the selected enzymatically hydrolysed samples (Table 4.17), a 

lack of substantial trends was observed with regards to the mean particle size and PdI values. It was 

possible that some level of shearing occurred leading to larger particles to be shortened, yet at the same 

time agglomeration of the more monodisperse samples occurred, as also found by other researchers 

(Pääkkö, et al., 2007; Henriksson, et al., 2007).  
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Table 4.17: Mean particle size and PdI before and after post-hydrolysis homogenisation for 3 x 10 min cycle at 14 000 rpm. 

Mean sizes were determined from single measurements of triplicate samples. The average of single measurements of triplicate 

polydispersity samples were determined. 

Feedstock 
Sample 

ID 

Before homogenization After homogenization 

Mean Particle 

Size 
PdI 

Mean Particle 

Size 
PdI 

d.nm  d.nm  

Printed 

Recycle PS 

SPR 226 ± 33 0.51 ± 0.02 217 ± 35 0.31 ± 0.04 

8 264 ± 97 0.79 ± 0.10 193 ± 10 0.53 ± 0.03 

19 313 ± 8 0.16 ± 0.08 584 ± 144 0.79 ± 0.19 

30 413 ± 7 1.00 ± 0.00 439 ± 18 0.30 ± 0.04 

Virgin pulp 

PS 

OVP 232 ± 30 0.62 ± 0.04 331 ± 24 0.33  ± 0.03 

38 305 ± 35 0.30 ± 0.04 292 ± 32 0.37 ± 0.07 

50 283 ± 18 0.29 ± 0.02 401 ± 37 0.52 ± 0.15 

60 202 ± 25 0.65 ± 0.15 366 ± 1 0.54 ± 0.15 

 

In order to investigate the effect of homogenization on larger mean particle sizes, printed recycled 

PS samples with micrometre mean particle sizes were homogenised under the same conditions (Table 

4.10). For the selected samples, the mean particle size and PdI values after homogenization decreased 

marginally. Therefore, high-shear homogenisation of particles with lower than 1000 nm in mean particle 

size did not significantly improve the quality of the cellulose nanoparticle product in terms of reducing 

PdI value and mean particle size. It was therefore suggested that the high-shear homogenisation could be 

more beneficial as a step before the glass-membrane filtration with accordingly diluted hydrolysed 

slurries. 

Table 4.18: Mean particle size and PdI before and after post-hydrolysis homogenisation for 3 x 10 min cycle at 14 000 rpm. 

Sample numbers indicate the hydrolysis conditions according to the CCD detailed in Table 4.7. Mean sizes were determined 

from single measurements of triplicate samples. The average of single measurements of triplicate polydispersity samples were 

determined. 

Sample 

no. 

Before homogenization After homogenization 

Mean Particle Size PdI Mean Particle Size PdI 

d.nm  d.nm  

26 1029 ± 74 0.496 ± 0.120 954 ± 59 0.443 ± 0.086 

12 1211 ± 38 0.872  ± 0.051  802  ± 118 0.786 ± 0.141 

 

4.5.3. Dialysis of enzyme hydrolysed supernatant for purity-improved cellulose 

nanoparticles 

Hydrolysed supernatant containing cellulose nanoparticles were dialysed to remove low molecular 

weight salts and sugars. After dialysis, the mean particle size for all the samples increased (Table 4.19). 

This was possibly due to agglomeration caused by the interdiffusion of water with the sample solution 

where the increase in sample purity causes cellulose nanoparticles to have more frequent encounters that 

cause their aggregation (Wondraczek, et al., 2013). It must be noted that monomer sugar concentrations 

(glucose, cellobiose, xylose and arabinose) as analysed for by HPLC analysis for all dialysed samples 
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were < 0.01 g/L (data not shown). This was good indication that dialysis increased the purity of the 

samples, yet allowed strong hydrogen bonds of cellulose nanoparticles to cause particle agglomeration.  

Table 4.19: Mean particle size and PdI values after dialysis of enzymatically hydrolysed and glass-membrane filtered samples. 

Mean sizes were determined from single measurements of triplicate samples. The average of single measurements of triplicate 

polydispersity samples were determined.  

Feedstock Sample no. 

Before Dialysis After Dialysis 

Mean 

Particle Size PdI 

Mean 

Particle Size PdI 

nm nm 

Printed 

Recycled PS 

ORP 226 ± 33 0.51 ± 0.02 305 ± 27 0.46 ± 0.12 

8 264 ± 97 0.79 ± 0.10 644 ± 142 0.66 ± 0.17  

19 313 ± 8 0.16 ± 0.08 336 ± 92 0.54 ± 0.07 

30 413 ± 7 1.00 ± 0.00 417 ± 90 0.39 ± 0.05 

Virgin Pulp 

PS 

OVP 232 ± 30 0.62 ± 0.04 343 ± 141 0.29 ± 0.19 

38 305 ± 35 0.30 ± 0.04 427 ± 59 0.32 ± 0.03 

50 283 ± 18 0.29 ± 0.02 681 ± 36 0.48 ± 0.12 

60 202 ± 25 0.65 ± 0.15 332 ± 43 0.92 ± 0.05 

 

Figure 4.15 indicates the FTIR spectra of selected dialysed samples dosed with A) CTec2 only, B) 

an endoglucanase-enriched cellulase cocktail and C) FiberCare only, for printed recycle PS. In the same 

alphabetical sequence, the FTIR spectra of selected dialysed samples from virgin pulp PS was presented 

by Figure 4.15D, E and F. For all the samples, peaks at 1229, 1073 and 1038 cm-1 confirmed the presence 

of cellulose. It was clear from the peaks at 1636 and 1260 cm-1 that non-cellulosic particles are still present 

after dialysis, including hemicellulose, lignin and sodium citrate. Yet, by the relative intensities of the 

peaks, it could be noticed that a much lower degree of impurities was present in the cellulose nanoparticles 

from virgin pulp PS in comparison to that of the printed recycle PS. Therefore, dialysis of enzymatically 

hydrolysed supernatant increased the purity of the cellulose nanoparticles, by removal of the monomer 

sugars. However, dialysis of the hydrolysed supernatant was not sufficient to remove the citrate buffer 

from the cellulose nanoparticle product. 

Stellenbosch University  https://scholar.sun.ac.za



 

73 

 

 

Figure 4.15: FTIR spectra of enzymatically hydrolysed and dialysed A) printed recycle PS with CTec2, B) printed recycle PS 

with endoglucanase-enriched cellulase cocktail, and C) printed recycle PS with FiberCare only D) virgin pulp PS with CTec2, 

E) virgin pulp PS with endoglucanase-enriched cellulase cocktail, and F) virgin pulp PS with FiberCare only. Duplicate samples 

were measured with at least two measurements each. 

4.5.4. Washing of enzymatically hydrolysed solids for purity-improved cellulose 

nanoparticles 

Centrifugation washing of enzymatically hydrolysed solid samples were conducted in order to investigate 

the purity improvement as well as for crystallinity determination through XRD analysis. More than 98% 

of monomeric sugars (glucose, cellobiose and xylose) were removed from the enzymatically hydrolysed 

solids samples after three washing steps (Table 4.20). DLS analysis indicated that the mean particle size 

remained in the same size range (Table 4.20). Three washes in comparison with the required 5 to 7 washes 

(of the same water volume) after acid hydrolysis indicated how enzymatic hydrolysis could be 

advantageous over acid hydrolysis by decreased water requirements with a factor of 2 to 4, during 

cellulose nanoparticle production. 

From Table 4.20 it was evident that the PdI values decrease with increase in washing step, for both PS 

feedstock, while the mean particle size stayed in the same particle size range (200 – 500 nm). This 

indicated that the particle size distribution changed from a broad one to a narrower distribution, increasing 

the particle quality. Figure 4.16 shows the FTIR spectra of an enzymatically hydrolysed sample from 

selected conditions for printed recycle PS after A) one wash step, B) two wash steps and C) three wash 

steps. It was evident from the decreasing intensity of cellulose-fingerprint peaks at 1106 – 1041 cm-1 that 

with increase in washing step, the cellulose content was decreased.  
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Table 4.20: Sugar concentrations, mean particle size and PdI of unwashed enzymatically hydrolysed sample (wash step 0) versus 

washed samples per step. The standard deviation of all the sugar concentrations were determined to be < 0.13 g/L. 0 g/L arabinose 

concentrations were found for all the samples. The standard deviation of the mean particle size (were determined from single 

measurements of triplicate samples) for all the samples were < 65 nm and for the PdI (single measurements of triplicate samples) 

was < 0.1.  

Feedstock Sample 
Washing 

Step 

Sugar Concentration (g/L) 
Mean 

Particle 

Size (nm) 

PdI 

Glucose Cellobiose Xylose 

Printed 

Recycle PS 

Selected 
0 6.38 0.00 1.71 226 0.85 

3 0.10 0.00 0.00 256 0.60 

19 
0 7.94 0.00 2.12 313 0.16 

3 0.05 0.00 0.00 240 0.33 

8 
0 3.04 0.00 1.82 264 0.79 

3 0.00 0.00 0.00 345 0.48 

30 
0 0.00 0.21 0.00 413 1.00 

3 0.00 0.00 0.00 518 0.37 

Virgin 

Pulp PS 

Optimised 
0 5.44 0.00 1.11 232 0.62 

3 0.00 0.00 0.00 375 0.25 

38 
0 11.71 0.00 3.10 305 0.30 

3 0.00 0.00 0.00 452 0.56 

50 
0 18.72 0.00 3.85 283 0.29 

3 0.35 0.00 0.05 540 0.15 

60 
0 0.00 0.00 0.00 202 0.65 

3 0.00 0.00 0.00 353 0.46 

 

 

 

Figure 4.16: FTIR spectra of washed enzymatically hydrolysed samples for A) printed recycle PS after one wash step, B) printed 

recycle PS after two wash steps and C) printed recycle PS after three wash steps virgin pulp PS washed after D) virgin pulp PS 

after one wash step, E) virgin pulp PS after two wash steps and F) virgin pulp PS after three wash steps. Duplicate samples were 

measured with at least two measurements each. 

 The general trend in spectra was found to be the same for virgin pulp PS (Figure 4.16D – 4.27F). It 

was evident from the peaks at 1572 and 1393 cm-1 that sodium citrate buffer was still present after three 

washes. For the washing steps of the virgin pulp PS feedstock, the peaks of the carboxyl groups decrease 

in intensity relative to the cellulose fingerprint peaks (1104 – 1029 cm-1). This indicates that the cellulose 
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nanoparticle product from the virgin pulp PS had increased purity in comparison to the cellulose 

nanoparticle product from the printed recycle PS.  

Elemental analysis through Energy dispersive X-ray spectroscopy was conducted for selected 

enzymatically hydrolysed and solids-washed samples of printed recycle and virgin pulp PS, as presented 

in Figure 4.17A and Figure 4.17B, respectively (with raw data in Figure 7.3 and Figure 7.4 in Appendix 

C). It was clear that some ash component (represented by the Cl and Ca (CaO and CaCO3) in ash) and 

sodium (Na) from the sodium citrate buffer are still present in the samples after the third washing step, 

for both feedstock. Yet, the Ca, Na and S are in the minority; for both PS feedstock, less than 8 % (w/w) 

of the sample was ash and citrate buffer impurity. The lack of nitrogen (N) indicated that insignificant 

quantities of enzyme were present for samples from both feedstock. 

 

Figure 4.17: Composition of major elements from EDX elemental analysis of samples submitted to centrifugation washing steps 

of A) printed recycle PS (Standard deviation for all compositions < 3.3%) and B) virgin pulp PS (Standard deviation for all 

compositions < 0.5%). Appendix D shows representative images which was used to determine the elemental analysis through 

SEM imaging. Single measurements of duplicate samples were used. 

For the virgin pulp, an increasing purity was observed with subsequent washing steps. The same 

trend was not seen for the printed recycle. Also, the standard deviation in compositions are larger (up to 

3.3%) for the printed recycle PS, in comparison to the maximum of 0.5% for the virgin pulp PS. The lack 

of trend and increased standard deviation might be due to the ash component in the printed recycle PS. 

In conclusion, the purity of the cellulose nanoparticle products was improved after at least 3 centrifugation 

washing steps as the impurities were removed to substitute less than 8% (w/w) of the product. This was 

in good agreement with the FTIR spectra results from the infrared analysis (Figure 4.16). 
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Table 4.21: Crystallinity of cellulose nanoparticles from enzymatic hydrolysis and raw materials determined by XRD with Peak 

Height Method.  

Feedstock 
Crystallinity (%) 

Untreated PS Enzymatically hydrolysed 

Virgin pulp PS 35.5 ± 0.57 35.8 ± 1.74 

Printed recycle PS 49.4 ± 0.55 47.0 ± 0.81 

 

The cellulose crystallinity of the produced cellulose nanoparticles from the optimised conditions for 

virgin pulp PS and the selected conditions for printed recycle PS were found to be in the same range as 

that of the raw PS materials (Table 4.21). Although previous literature reported increases in crystallinity 

after enzymatic treatment of cotton for the production of cellulose nanoparticles (Paralikar & 

Bhatawdekar, 1984), no significant crystallinity increases were found with the current study. However, 

as no decrease in crystallinity was observed after enzymatic hydrolysis, it could be explained that the 

particles retained predominantly paracrystalline and crystalline regions.  

4.5.5. Cellulose nanoparticle yield estimation 

The cellulose nanoparticle yield is a key characteristic due to its implication for the global cost of 

the process and was determined from an up-scaled set of enzymatically hydrolysed samples according to 

the optimum and selected conditions and conditions set out in Table 4.15. From each sample, one part of 

the hydrolysed supernatant was dialysed, and the other part was washed. The hydrolysed solids mass was 

also washed. 

Yield estimations from washing of the hydrolysed supernatant (filtrate) were found to be smaller 

than 0.001% (data not shown). In comparison, dialysis of the supernatant resulted in yields of < 1.5% for 

both feedstock (Table 4.22). On the other hand, for yield estimations of the hydrolysed residual solids 

(filter cake) under optimised conditions (Table 4.22), higher yields of 6.0% and 5.9% were achieved for 

the virgin pulp PS and the printed recycle PS, respectively. It was therefore concluded that firstly, 

supernatant washing caused product loss compared to dialysis; and secondly, that most of the 

enzymatically hydrolysed cellulose nanoparticles were entrapped in the hydrolysed solids mass as 

opposed to the supernatant. 

The total cellulose nanoparticle yields were determined from summarising the dialysed supernatant 

and the washed hydrolysed solids mass (Table 4.22). The highest yield of cellulose nanoparticles for the 

virgin pulp PS found to be 7.5% at the optimised conditions. For hydrolysis of printed recycle PS, the 

highest combined yield of 6.9% was obtained at selected conditions of 12 hrs enzymatic hydrolysis of 

6% (w/w) solids loading at CTec2 and FiberCare dosages of 20 FPU/gdPS and 100 ECU/gdPS, 

respectively. This indicated that the selected conditions from the identified possible ranges for printed 

recycle PS hydrolysis provided acceptable conditions in terms of highest yields in comparison to other 

tested enzyme dosage ratios.  
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Table 4.22: Yield estimations of cellulose nanoparticle product of supernatant after hydrolysis, centrifugation, glass-membrane 

filtration and dialysis (dialysis yield) and yield estimations of product of samples after washing of the residual solids (washing 

yield). Sample nr identification are according to the CCD design run conditions in Table 4.7 and Table 4.8.  

Enzyme Feedstock 
Sample 

No. 

FiberCare 

Dosage 
CTec2 
Dosage 

Mean 

Size 

Dialysis 

Yield 

Washing 

Yield 

Total 

Yield 

ECU/gdPS FPU/gdPS nm % (w/w) % (w/w) % (w/w) 

Optimised VP - 80 10 232 1.49 5.99 7.48 

Selected PR 20 100 20 226 0.97 5.90 6.86 

FiberCare 
VP 60 50 0 202 0.20 3.41 3.61 

PR 30 50 0 413 0.51 2.51 3.02 

CTec2 
VP 38 0 20 305 0.33 1.17 1.50 

PR 8 0 20 264 0.84 5.67 6.50 

Endoglucanase-

Enriched Cocktail 

VP 50 100 20 283 0.44 2.98 3.42 

PR 19 50 20 313 0.34 2.61 2.96 

 

For the printed recycle PS, with the relatively higher crystallinity (Section 4.2) of the two starting 

material, a cellulose nanoparticle yield of 6.5% (Table 4.22) with a glucose yield of 11.2% (Table 4.7, 

before washing) was achieved with the CTec2. In comparison, a lower cellulose nanoparticle yield of 

3.0% (Table 4.22) with a higher glucose yield of 29.1% (Table 4.7, before washing) was obtained for the 

endoglucanase-enriched cellulase cocktail. This indicated that a higher endo-to-exo ratio of 

20 FPU/100 ECU was required for hydrolysis of printed recycle PS, due to a higher degree of crystalline 

regions (Figure 4.4) and shorter starting particle sizes (Section 4.1.1), with more available chain ends.  

For virgin pulp PS, a cellulose nanoparticle yield of 3.4% (Table 4.22) and glucose yield of 46.3% (Table 

4.8 before washing) were achieved for hydrolysis with an endoglucanase-enriched cellulase cocktail with 

a lower endo-to-exo ratio of 20 FPU/100 ECU. A lower cellulose nanoparticle yield of 1.5% and a 29.0% 

glucose yield (Table 4.8, before washing) was achieved with CTec2 (Table 4.22), indicating that a low 

endo-to-exo ratio resulted in higher processive hydrolysis of cellulose to soluble oligomers. From the 

optimised conditions for virgin pulp PS with a yield of 7.5% and the glucose yield of 26.9%, it was 

evident that PS with a longer starting particle size (Section 4.1.1) and a low crystallinity (Section 4.2) 

required a higher endo-to-exo ratio (10 FPU/80 ECU). 

Higher yields of 21.1 ± 2.01% from virgin pulp PS and 12.3 ± 0.92% from printed recycle PS were 

achieved through acid hydrolysis (Table 4.12). The low product yields from acid hydrolysis in 

comparison with literature values which are > 30% (Table 2.2) are a consequence of the lower cellulose 

content and impurities in the starting material, whereas other studies have started with purer cellulose 

feedstock (Bondeson, et al., 2006; Satyamurthy, et al., 2011). The generally low yield from enzymatic 

hydrolysis had been widely reported (Anderson, et al., 2014), even with post-hydrolysis sonication or 

mechanical treatment (Fattahi Meyabadi & Dadashian, 2012; Marino, et al., 2015). Nevertheless, SCN 

were produced from enzymatic hydrolysis of PS with mentionable yields and dimensions, morphology 

and crystallinity (Table 4.23) satisfying the standards according to ISO specifications (Table 2.1). 
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Comparatively, with acid hydrolysis of the same starting feedstock, a mixture of CNC and CNF was 

produced, also satisfying the standards according to ISO specifications. The SCN produced through 

enzymatic hydrolysis of PS could be used for thickening of cosmetic and pharmaceutical products, as 

well as immobilization of biological active substances and drugs (Zhang, et al., 2007). 

Table 4.23: Characteristics of cellulose nanoparticles produced under optimal and selected conditions of enzymatic hydrolysis 

of PS. Mean sizes were determined from single measurements of triplicate samples. The size averages of 100 measurements 

were determined for 3 - 5 SEM images per sample. The average of single measurements of triplicate polydispersity samples were 

determined.   

Feedstock 
Virgin pulp PS Printed recycle PS 

Characteristic Unit 

Morphology  Spherical, non-entangled Spherical, non-entangled 

SCN diameter nm 137 ± 50  30 ± 6 

Sample mean length nm 226 ± 33 626 ± 148 

Polydispersity - 0.62 ± 0.04 0.51 ± 0.02 

Crystallinity % 35.8 ± 1.74 47.0 ± 0.81 

Yield % 7.5 6.9 

Enzymatic hydrolysis of the virgin pulp PS resulted in 9% higher cellulose nanoparticle yield than 

the printed recycle PS. Between the two feedstock, the maximum yield was obtained for the virgin pulp 

PS, at 2 times lower CTec2 dosage (10 FPU/gdPS) and 1.25 times lower FiberCare (80 ECU/gdPS). The 

printed recycle PS gave higher yields at a two times higher solids loading than virgin pulp PS, but this 

was due to the lower glucan content per gram PS. These results collectively suggest that a stand-alone 

enzymatic hydrolysis process with virgin pulp PS provides a higher process performance for production 

of cellulose nanoparticles than printed recycle PS. It was further noted, that even with low R2-values and 

lack of fit of the prediction models developed for printed recycle PS, the selected conditions provided 

yields that was well comparable with that of the optimised conditions of virgin pulp PS. Potential 

applications with the required attributes per cellulose nanoparticle type are summarised in Table 4.24. 
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 Table 4.24: Possible applications and required physical attributes of different types of cellulose nanoparticles (International 

Standards Organization, 2017) 

Particle Type Required Morphology Dimensions Potential Applications 

SCN  Spherical morphology 

 High purity 

 Amorphous, 

paracrystalline or 

crystalline 

Diameter 40 – 600 nm  Immobilization of 

biological active 

substances and drugs 

 Cosmetic and 

pharmaceutical 

products 

CNC  Rod-like morphology 

 Moderate to high purity 

 Paracrystalline or 

crystalline 

Diameter 3 – 50 

Length 100 – 4000 nm 

 Packaging films 

 Sensors 

 Textiles  

 Personal care 

products 

CNF  Network-like 

morphology 

 Moderate to high purity 

 Amorphous, 

paracrystalline and/or 

crystalline 

Diameter 3 – 100 nm 

Length 100 – 100 000 

nm 

 

 Paper processing 

 Composites 

 Adhesives 
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4.6. Proposed cellulase hydrolysis mechanism 

After close inspection of the results from the optimisation experiments and various analyses, it was 

evident that during cellulase hydrolysis, a range of particle sizes with different morphologies will always 

be produced as enzymes work synergistically, having different cleaving and hydrogen-splitting actions 

occurring simultaneously. A possible short-period cellulase hydrolysis mechanism (Figure 4.18) was 

therefore proposed, to explain the formation of the majority of the nanoparticles. This mechanism was 

specifically for higher endoglucanase to exoglucanase ratio:  

Figure 4.18a shows the cellulase enzymes attached to cellulose chains (disrupted chains as shown 

with SEM imaging in Figure 4.2). Endoglucanase attacked the amorphous areas, swelling the fibrils and 

releasing insoluble polymer chains. After termination of the endoglucanase at the start of crystalline 

cellulose regions, new crystalline chain ends were made available for exoglucanase to hydrolyse in a 

processive (cleaving) custom, releasing soluble oligomers. 

Simultaneous hydrolyses at multiple sites decreased the chain diameter and length of the cellulose through 

scission of the β-D-(1,4)-glycosidic linkages (Figure 4.18b). Concurrently, β-glucosidase acted on the 

soluble oligomers to release glucose monomers (Table 4.7 and Table 4.8). Higher amount of 

endoglucanase enzymes, in classical endoglucanase-mode, released a higher amount of chain fragments. 

This limited the exoglucanase action per fragment in effect reducing cellubiose formation. Furthermore, 

change in the intensity and width of the FTIR band in 3600–3000 cm-1 of hydrolyzed PS showed that the 

cellulase enzyme could weaken and split the hydrogen bonds in the cellulose, creating lose fragments as 

well as soluble oligomers (Figure 4.11). 

Figure 4.18c indicates exoglucanases acting on reducing and non-reducing ends of chains created by 

endoglucanases, shortening the cellulose fragments in length.  

Particle size lengths significantly decreased after 9 - 12 h enzymatic hydrolysis (Figure 4.18d). 

Consequently, according to the results of DLS and SEM particle size as well as yield analyses (Table 4.3 

and Table 4.22), the enzymatic hydrolysis led to formation of respectable amounts of particles with 

mostly low aspect ratio, resembling a spherical morphology (Figure 4.12). 
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Figure 4.18: Proposed schematic image of nanoparticle production through enzymatic hydrolysis with a fungal cellulase blend. 

Figure not drawn to scale. 
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4.7. Mass balancing  

A mass balance evaluation was conducted for each of the PS feedstocks, with 100 g of dry feedstock 

assumed as feed basis (Table 4.25). In a closed system, the total amount of glucose into a system (1) 

should equal the amount of glucose out of a system (2 + 3 + 4). Percentage errors of 11.9% and 10.1% 

were determined for printed recycle and virgin pulp PS, respectively. These errors could have resulted 

partly due to the residual solids that could not be captured (mass loss on the filter paper during phase 

separation or in the reactor flask) as well as partly due to analytical error. Nevertheless, the estimated 

percentage errors were relatively small and therefore, the mass balance verified the integrity and 

consistency of the analysis approaches and data. 

Table 4.25: Mass balance for the printed recycle PS and virgin pulp PS. 100 g of PS assumed as feed basis 

Mass Balance Values Unit  Printed Recycle  Virgin Pulp 

PS Feed Mass Basis g  100 100 

Glucan Fraction in PS1 %  42.0 57.2 

1. Mass of Glucose in Glucan2 g  37.8 51.3 

     

Yield of Cellulose Nanoparticles Produced3 %  6.86 7.48 

2. Mass of Glucose in Cellulose Nanoparticles4 g  6.18 6.73 

3. Mass of Glucose as Hydrolysis Products in Supernatant5 g  2.17 2.96 

4. Mass of Glucose in Residual Solids6 g  24.9 36.4 

Mass Summation7 g  33.3 46.1 

Percentage Error8 %  11.9 10.1 

 
  

                                                      
1 Fractions as determined by chemical compositional analysis 
2 Glucan fraction * Anhydro Correction Factor (Equation 3) 
3 Gravimetric Estimation [Total cellulose nanoparticles produced / Mass PS fed *100] (Equation 4) 
4 Glucose amount calculated with Anhydro Correction factor, mass calculated with liquor volume of samples 
5 Analysed with HPLC, mass calculated with liquor volume of samples 
6 Compositional analysis of residual solids, and determined from washing process and dialysis process, mass calculated with 

liquor volume of samples 
7 Mass summation = [2] + [3] + [4] 
8 Percentage error (%) = ([1] - ∑([2]+[3]+[4]))/[1] * 100 
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Chapter 5. General conclusions and recommendations 

The aim of this study was to develop and optimize a process for cellulose nanoparticle production 

from waste PS with enzymatic hydrolysis as the integral process. This was conducted by identifying 

efficient preparation of two PS feedstock selected from South African paper and pulp mills and screening 

of commercial enzymes for cellulose nanoparticle production. Based on the screening data, optimisation 

of virgin pulp PS was done for minimal mean particle size and minimal glucose formation. Due to 

statistical insignificance of the printed recycle PS optimisation models, a selection procedure was 

conducted to determine favourable conditions for cellulose nanoparticle production by enzymatic 

hydrolysis. Downstream processes were studied to improve on purity, quality and yield of the cellulose 

nanoparticles produced. 

5.1. Conclusions 

Main conclusions from this study are discussed based on the objectives as specified in Section 2.6. 

i) Effective PS feedstock preparation for enzymatic hydrolysis 

Small-scale disintegration filter-washing significantly reduced the ash content of high ash-content 

PS which created a high glucan-content feedstock for enzymatic hydrolysis. An achieved ash decrease 

with as much as 56% lowered the amount of enzyme inhibitors per solid loading and led to increased 

yield during cellulose nanoparticle production. 

Steam explosion of low ash-content PS was found to be an ineffective treatment to increase the PS 

accessibility for hydrolysis. Insignificant digestibility increases were found for subsequent enzymatic 

hydrolysis of the steam exploded PS with Cellic® CTec2, as indicated by analysis of glucose 

concentrations.  

ii) Selection of enzymes for PS hydrolysis to cellulose nanoparticles 

Cellic® CTec2, in comparison with ViscamylTM Flo, was found to be the better-suited available 

commercial cellulase cocktail for cellulase blending to create an enzyme cocktail in terms of nanoparticle 

and minimal by-product formation for both virgin pulp and printed recycle PS. The monocomponent 

endoglucanase, FiberCare® R produced particles in mean particle size ranges similar to that of the 

cellulase cocktail Cellic® CTec2, with less by-product formation. 

iii) Statistical optimisation of enzymatic hydrolysis of PS  

Short-time cellulase hydrolysis of virgin pulp as well as printed recycle PS with commercial cocktail, 

Cellic® CTec2 enriched with the commercial monocomponent endoglucanase, FiberCare® R, resulted 

in the production of spherical cellulose nanoparticles (SCN). Statistical modelling of the mean particle 

size from the mechanically-pulped printed recycle PS presented difficulties due to the possible changes 
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in the microstructure of the recycled fibres, caused inconsistent, decreased cellulase activity on the 

cellulose chains of the recycled fibres, which resulted in inevitably wide particle size distributions. For 

virgin pulp PS, the collected data proved to be sufficient for optimisation of the production of cellulose 

nanoparticles. Optimised conditions for virgin pulp PS were found to be a hydrolysis time of 9 hrs, 3% 

(w/w) solids loading, low dosages of CTec2 (10 FPU/gdPS) and a FiberCare dosage of 80 ECU/gdPS. 

Through these optimised hydrolysis conditions for virgin pulp PS, SCN with mean particle size and 

glucose concentrations of 232 nm and 5.44 g/L were produced. Selected conditions for hydrolysis with 

printed recycle PS were 12 hrs, 6% (w/w) solids loading, low dosages of CTec2 (20 FPU/gdPS) and a 

FiberCare dosage of 100 ECU/gdPS. These hydrolysis conditions for printed recycle PS resulted in SCN 

particles with a mean particle size and glucose concentrations of 226 nm and 6.38 g/L.  

By short-time, stand-alone enzymatic hydrolysis conditions, cellulose losses to glucose could be 

minimised and a selected cellulose nanoparticle type, including CNC and SCN within ISO standard 

specifications could be produced. This is beneficial over the stand-alone acid hydrolysis process, which 

produced a mixture of CNC and CNF. For printed recycle PS, cellulase dosages with high endoglucanase 

to exoglucanase ratio (20 FPU/100 ECU) was required to produce SCN while for virgin pulp PS, lower 

dosages with an even higher endoglucanase to exoglucanase ratio (10 FPU/80 ECU) was necessary. 

iv) Characterisation of cellulose nanoparticles produced through enzymatic hydrolysis compared to 

acid hydrolysis 

Acid hydrolysis produced higher yields of cellulose nanoparticles (10 – 20%) in comparison with 

the yields through enzymatic hydrolysis (< 10%). However, enzymatic hydrolysis produced either SCN 

or CNC as single-morphology products, depending on the ratio of enzyme dosages used, which is 

advantageous over acid hydrolysis of PS that resulted in a mixture of CNC and CNF particles for both 

feedstock. With a commercial cellulase blend such as CTec2 (20 FPU/gdPS), SCN could be produced 

from virgin pulp PS. However, for printed recycle PS, a higher endoglucanase dosage (20 FPU/100 ECU) 

was required to produce SCN. Furthermore, hydrolysis with a monocomponent endoglucanase 

(FiberCare) resulted in CNC production from both PS feedstocks. 

v) Post-hydrolysis processes on quality of cellulose nanoparticles produced from enzymatic 

hydrolysis 

Post-hydrolysis microfiltration increases the quality of SCN produced, due to narrowed particle 

size distributions. However, microfiltration would not be recommended for industrial applications due to 

the operating impracticality of 0.45 µm membranes. Results from high-shear homogenization of 

hydrolysed supernatant suggested that the quality of micrometre mean-sized printed recycle PS samples 

could be increased, especially before glass-membrane filtration for accordingly diluted hydrolysed 

slurries. High-shear homogenization for sample with nanometer mean-sized particles, however, were not 

affected.  
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vi) Recovery processes on purity and yield of cellulose nanoparticles from enzymatic hydrolysis  

Dialysis and solids-washing recovery processes were found to be essential for product purification 

and yield estimation. Dialysis of the hydrolysed suspensions improved the purity of the cellulose 

nanoparticles, as all sugar impurities were removed. Washing of the hydrolysed solids resulted in sugar 

concentrations of < 0.1 g/L for both virgin pulp and printed recycle PS feedstock. FTIR and elemental 

analysis confirmed that after washing of the cellulose nanoparticle product, minority fraction was non-

cellulosic materials. Higher yields for both PS feedstock were achieved with washing of the residual 

solids part of the hydrolysed sample in comparison to dialysis of the supernatant part of the sample. After 

purification, final and maximised cellulose SCN yields of 6.9% for were achieved with enzymatic 

hydrolysis of printed recycle PS under selected, endoglucanase-enriched conditions and 7.5% for virgin 

pulp PS under optimised conditions. 

Summary 

This study provides a potential green method for the production of cellulose nanoparticles from 

waste PS, containing a low or high ash component, using different ratios of monocomponent 

endoglucanase and cellulase cocktails. Enzymatic hydrolysis of virgin pulp PS provides a higher process 

performance for the production of cellulose nanoparticles than printed recycle PS, based on the use of 

lower enzyme dosages, lower by-product formation and higher final yields achieved. However, printed 

recycle PS has an advantage of the possibility of higher solids loading compared to virgin pulp PS. 

5.2. Recommendations and future work 

Post-hydrolysis recovery and purification steps 

Investigation of the effects of decreasing the starting material particle size to < 200 µm as well as 

using effluent water instead of a pH-controlling buffer for enzymatic hydrolysis, could lead to increased 

product purity and quality, saving costs on downstream processes. Enzymatic hydrolysis of pulp and 

paper effluent has been used for biohydrogen production (Lakshmidevi & Muthukumar, 2010), and could 

therefore hold potential for use in production of cellulose nanoparticles. 

It is possible that a dilution of the enzymatically hydrolysed slurry before glass-membrane filtration 

would benefit more from the high-shear homogenisation treatment, which would also increase the yield. 

The use of high-pressure homogenisers are more common in literature due to its increased efficiency of 

producing cellulose nanoparticles, and could therefore also be recommended (Besbes, et al., 2011; Qing, 

et al., 2013). 
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Improved cellulose nanoparticle analyses 

The use of spray-drying of hydrolysed suspensions instead of freeze-drying could prevent particle 

agglomeration, easing solids analyses and yield estimations (Peng & Chen, 2011). STEM imaging was a 

more effective microscopy analysis, as gold-coating was required for SEM analysis for enhanced 

conductivity which could interfere with particle morphology determinations.  

Co-production of bioethanol and cellulose nanoparticles 

For maximized use of PS as a feedstock and minimizing the hydrolysis residue, an integrated system 

for production of cellulose nanoparticles must be considered (Zhu, et al., 2011). Integrating a cellulose 

nanoparticles process with a sugar or bioethanol production process could offer promising results and add 

economic value. Duran et al. (2011) reports on an exhaustive economic analysis for producing CNW as 

a co-product in an ethanol bio-refinery with use of ASPEN Plus-based process models. The data 

suggested that production of CNW would be an enhancement to the economic feasibility of a wheat straw 

to ethanol production.  
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Appendices 

Appendix A: Image Processing 

The image was converted to 8-bit, Gaussian blurred, convoluted and with the use of the ‘Find edges’ 

plug-in in Image J software, processed for optimised mean particle size estimation. 

 

Figure 7.1: STEM image of cellulose nanocrystals from enzymatically hydrolysed virgin pulp PS 

 

Figure 7.2: SEM image processing to determine lengths of cellulose nanoparticles obtained by acid hydrolysis of printed recycle 

PS as representative of image processing to estimate dimensions with Image J and SEM_Img_Studio imaging programs. 

  

200 nm 20 kV 250 pA 

200 nm 5 kV 250 pA 
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Appendix B: Infrared spectra bond classification 

Table 7.1: Peak wavelength of infrared absorption bands, the corresponding interpretation according to literature 

Wavenumber 

(cm-1) 

Interpretation/Assignment Component 

Identification 

Reference 

3488 - 3340 Intramolecular hydrogen bond 

stretching 

Cellulose Schwanninger, et al., 2004; 

Siroky, et al., 2010 

2910 - 2890 CH stretching (cellulose II) Cellulose Schwanninger, et al., 2004; 

Siroky, et al., 2010 

1740 - 1693 C=O stretch, aromatics Hemicellulose, 

lignin 

Schwanninger, et al., 2004; 

Sabiha-Hanim & Aziatul-

Akma, 2016; Lisperguer, et 

al., 2009) 

1646 O-H bending, absorbed water Cellulose Poletto, et al., 2013 

1579 - 1565 Symmetric oscillations of 

carboxylate ion COO- 

Citrate Lakshmanan, 1956; 

Sritham & Gunaserekaran, 

2017 

1517 C=O stretching, aromatic 

skeletal vibrations 

Hemicellulose, 

lignin 

Schwanninger, et al., 2004; 

Lisperguer, et al., 2009 

1442 - 1420 CH, CH2 and OCH in-plane 

bending vibrations 

Cellulose 

(crystalline) 

Poletto, et al., 2013; 

Ciolacu, et al., 2010 

1392 Asymmetric oscillations of 

carboxylate ion COO- 

Citrate Sritham & Gunaserekaran, 

2017; Lakshmanan, 1956 

1373 CH deformation vibration Cellulose Siroky, et al., 2010 

1275 C-H deformation, C=O stretch Hemicellulose, 

lignin 

Schwanninger, et al., 2004 

1248 - 1245 O–H in-plain deformation at C6, 

also C=O stretching 

Cellulose. 

hemicellulose 

Schwanninger, et al., 2004 

1122 - 1100 Asymmetric in-phase ring, C-C 

and C-O stretching 

Cellulose Schwanninger, et al., 2004; 

Siroky, et al., 2010 

1078 - 1052 C-O valence vibrating from C3-

O3H 

Cellulose Poletto, et al., 2013; 

Ciolacu, et al., 2010 

1029 - 988 C-O valence vibration C6 Cellulose Poletto, et al., 2013; 

Ciolacu, et al., 2010; 

Adina, et al., 2010 

912 C-H out-of-plane, aromatic Cellulose, lignin Schwanninger, et al., 2004 

898 - 832 COC, CCO, CCH deformation of 

C5 and C6 atoms 

Cellulose 

(amorphous) 

Poletto, et al., 2013; 

Nguyen, et al., 2013: 

Ciolacu, et al., 2010 
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Appendix C: Elemental Analysis 

 

Figure 7.3: Elemental analysis (through electron microscopy imaging) of a printed recycle PS sample, enzymatically hydrolysed, 

centrifuged, glass-filtered and washed. The gold and aluminium elements, Au and Al, were subtracted during analysis as it was 

from the stub on which the sample was mounted and the coating for better conductivity. 

 

Figure 7.4: Elemental analysis through electron microscopy imaging of a virgin pulp PS sample, enzymatically hydrolysed, 

centrifuged, glass-filtered and washed. The gold and aluminium elements, Au and Al, were subtracted during analysis as it was 

from the stub on which the sample was mounted and the coating for better conductivity. 

Appendix D: Statistical model development and ANOVA Analysis 

The data obtained from the experimental runs in Table 4.7 and Table 4.8 were used to develop models 

for the prediction of the mean particle size and the glucose concentrations for the virgin pulp and printed 

recycle PS feedstock. Mathematical relationships between the independent variables (FiberCare dosage 

X1, cellulase cocktail dosage X2, solids loading X3 and hydrolysis time X4) and the responses of these 

variables (the mean particle size 𝑌1 and glucose concentration 𝑌2) aid in identifying trends within the 

hydrolysis process and are presented by a quadratic polynomial equation:  

Equation 6  𝑌𝑖 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝑋4 + 𝑏11𝑋1
2 + 𝑏22𝑋2

2 + 𝑏33𝑋3
2 + 𝑏44𝑋4

2 +

𝑏12𝑋1𝑋2 + 𝑏13𝑋1𝑋3 + 𝑏14𝑋1𝑋4 + 𝑏23𝑋2𝑋3 + 𝑏24𝑋2𝑋4 + 𝑏34𝑋3𝑋4 
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where 𝑏0 is intercept, 𝑏1, 𝑏2, 𝑏3 and 𝑏4 are linear coefficients, 𝑏11, 𝑏22, 𝑏33 and 𝑏44 are squared 

coefficients, and 𝑏12, 𝑏13, 𝑏14, 𝑏23, 𝑏24 and 𝑏34 are the interaction coefficients. The empirical 

relationships relating the mean particle size (𝑌𝑆,𝑠𝑖𝑧𝑒) and the glucose (𝑌𝑆,𝑔𝑙𝑢𝑐𝑜𝑠𝑒) concentration from virgin 

pulp PS to the four independent variables are presented as second-order polynomial correlations in 

Equation 7 and Equation 8, respectively.  

Equation 7  𝑌𝑆,𝑠𝑖𝑧𝑒 = 287 − 0.38𝑋1 + 3.69𝑋2 − 16.1𝑋3 + 4.74𝑋4 − 0.38𝑋1
2 − 0.15𝑋2

2 +

1.22𝑋3
2 − 0.44𝑋4

2 + 0.01𝑋1𝑋2 − 0.12𝑋1𝑋3 + 0.13𝑋1𝑋4 + 0.18𝑋2𝑋3 + 0.21𝑋2𝑋4 − 0.54𝑋3𝑋4 

Equation 8  𝑌𝑆,𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = −18.3 + 0.11𝑋1 + 1.19𝑋2 + 2.49𝑋3 + 0.08𝑋4 − 0.001𝑋1
2 − 0.01𝑋2

2 −

0.13𝑋3
2 − 0.004𝑋4

2 − 0.003𝑋1𝑋2 + 0.01𝑋1𝑋3 + 0.002𝑋1𝑋4 + 0.01𝑋2𝑋3 − 0.02𝑋2𝑋4 + 0.09𝑋3𝑋4 

Table 7.2: Analysis of variance for the fitted quadratic polynomial model for virgin pulp PS feedstock with mean particle size 

as response value 

Factor DF SS MS F-value p-value 
95% CI 

low 

95% CI 

high 

X1: Endoglucanase Dosage 1 4.54 4.54 0.004 0.952 -17.92 17.04 

X1
2 1 386.8 386.8 0.348 0.581 -20.11 12.59 

X2: Cellulase cocktail Dosage 1 6160 6160 5.549 0.065 -1.461 33.50 

X2
2 1 6155 6155 5.544 0.065 -31.33 1.373 

X3: Solids Loading 1 22868 22868 20.60 0.006 -48.35 -13.38 

X3
2 1 3288 3288 2.962 0.145 -5.404 27.30 

X4: Hydrolysis Time 1 1894 1894 1.706 0.248 -8.597 26.36 

X4
2 1 6765 6765 6.094 0.056 -32.05 0.64 

X1
2 1 51.24 51.24 0.046 0.838 -19.62 23.20 

X1X3 1 1222 1222 1.101 0.342 -30.15 12.67 

X1X4 1 5772 5772 5.199 0.071 -2.418 40.41 

X2X3 1 456.9 456.8 0.412 0.549 -16.06 26.76 

X2X4 1 2457 2457 2.213 0.196 -9.018 33.81 

X3X4 1 1524 1524 1.373 0.294 -31.17 11.65 

Residual error 15 924251 61616     

Lack of fit 10 780339 78034 2.712 0.141   

Pure error 5 143912 28782     

Cor Total 29 1887032      
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Table 7.3: Analysis of variance for the fitted quadratic polynomial model for virgin pulp PS feedstock with glucose concentration 

as response value 

Factor DF SS MS F-value p-value 
95% CI 

low 

95% CI 

high 

X1: Endoglucanase Dosage 1 28.29 28.29 1.888 0.189 -0.598 2.770 

X1
2 1 4.391 4.391 0.293 0.596 -1.975 1.175 

X2: Cellulase cocktail Dosage 1 200.0 200.0 13.34 0.002 1.202 4.571 

X2
2 1 50.40 50.40 3.363 0.086 -2.931 0.219 

X3: Solids Loading 1 1344 1344 89.71 0.000 5.800 9.168 

X3
2 1 35.02 35.02 2.337 0.147 -2.705 0.445 

X4: Hydrolysis Time 1 181.5 181.5 12.12 0.003 1.066 4.434 

X4
2 1 0.510 0.510 0.034 0.856 -1.439 1.712 

X1
2 1 11.26 11.26 0.752 0.399 -2.902 1.224 

X1X3 1 3.180 3.180 0.212 0.651 -1.616 2.508 

X1X4 1 1.835 1.835 0.122 0.731 -1.724 2.401 

X2X3 1 0.589 0.589 0.039 0.845 -1.871 2.254 

X2X4 1 20.28 20.28 1.353 0.262 -3.188 0.936 

X3X4 1 42.62 42.62 2.844 0.112 -0.430 3.694 

Residual error 15 112.4 7.496     

Lack of fit 10 98.14 9.814 3.428 0.093   

Pure error 5 14.31 2.862     

Cor Total 29 351.2      

 

 

 

Table 7.4: Analysis of variance for the fitted quadratic polynomial model for printed recycle PS feedstock with mean particle 

size as response value 

 Factor DF SS MS F-value p-value 
95% CI 

low 

95% CI 

high 

X1: Endoglucanase Dosage 1 84251 84251 1.367 0.260 -29.7 148.2 

X1
2 1 188.2 188.2 0.003 0.956 -85.8 80.65 

X2: Cellulase cocktail Dosage 1 7748 7748 0.125 0.727 -71.0 106.9 

X2
2 1 5746 5746 0.093 0.764 -97.7 68.79 

X3: Solids Loading 1 362190 362189 5.878 0.028 33.8 211.8 

X3
2 1 356289 356289 5.782 0.029 30.7 197.2 

X4: Hydrolysis Time 1 32143 32143 0.521 0.481 -52.4 125.61 

X4
2 1 89.4 89.4 0.001 0.970 -81.4 85.07 

X1
2 1 28155 28155 0.456 0.509 -67.0 150.9 

X1X3 1 13954 13954 0.226 0.641 -138.5 79.49 

X1X4 1 17373 17372 0.281 0.603 -76.0 141.9 

X2X3 1 3385 3385 0.054 0.817 -94.4 123.5 

X2X4 1 3863 3863 0.062 0.805 -124.5 93.48 

X3X4 1 18186 18186 0.295 0.594 -75.3 142.7 

Residual error 15 64783 4318     

Lack of fit 10 59233 5923 5.336 0.039   

Pure error 5 5550 1110     

Cor Total 29 124790      
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Table 7.5: Analysis of variance for the fitted quadratic polynomial model for printed recycle PS feedstock with glucose 

concentration as response value 

Factor DF SS MS F-value p-value 
95% CI 

low 

95% CI 

high 

X1: Endoglucanase Dosage 1 0.9037 0.9037 0.120 0.733 -0.997 1.385 

X1
2 1 32.667 32.667 4.357 0.054 -2.205 0.022 

X2: Cellulase cocktail Dosage 1 43.333 43.333 5.780 0.029 0.152 2.534 

X2
2 1 3.3740 3.3740 0.450 0.512 -1.465 0.763 

X3: Solids Loading 1 114.26 114.25 15.24 0.001 0.990 3.373 

X3
2 1 9.5391 9.5391 1.272 0.277 -1.704 0.524 

X4: Hydrolysis Time 1 11.456 11.455 1.528 0.235 -0.500 1.882 

X4
2 1 0.4369 0.4369 0.058 0.812 -1.240 0.988 

X1
2 1 5.0865 5.0865 0.678 0.423 -0.895 2.022 

X1X3 1 0.8275 0.8275 0.110 0.744 -1.686 1.231 

X1X4 1 5.6644 5.6644 0.756 0.398 -0.864 2.054 

X2X3 1 1.2963 1.2963 0.172 0.683 -1.743 1.174 

X2X4 1 4.1353 4.1353 0.551 0.469 -0.950 1.967 

X3X4 1 13.051 13.051 1.740 0.206 -0.555 2.362 

Residual error 15 224.77 14.985     

Lack of fit 10 223.65 22.365 99.75 0.00004   

Pure error 5 1.121 0.224     

Cor Total 29 2139.9      

 

The percentage errors of the different models compared to the experimental values were determined 

(Equation 5) to test which provided the best predictions (Table 7.6). The model with only significant 

‘pure error’ effects had percentage errors ranging from 4.4 - 26.2%, while the model with only the 

significant effects based on the ‘residual’ had high errors ranging from 90 – 174%. In comparison, the 

complete model had the most accurate predictions with the minimum percentage errors ranging from 2.9 

to 17.7 %. The percentage errors were presented specifically for the glucose concentration model of virgin 

pulp PS, but the same trend was found for the remaining three models, and therefore the complete models 

were considered for optimisation. 

Table 7.6: Percentage errors of glucose concentration models of the virgin pulp PS with and without insignificant terms according 

to residual statistical analysis and pure error statistical analysis. The data of the first four entries of the CCD design were 

considered for representation, with the same trend applying to all the entries. Sample numbers provided are identification of 

experiment conditions as set out in Table 4.8 

Sample 

no. 

Experimental 

Glucose 

Concen-

tration 

Complete 

predicted  

model 

Percentage 

error 

Model with 

significant 

residual 

effects only 

Percentage 

error 

Model with 

significant 

pure error 

effects only 

Percentage 

error 

 g/L g/L % g/L % g/L % 

31 15.4 12.6 17.7 34.2 122.8 11.9 22.3 

32 22.8 18.9 17.1 62.4 173.6 16.8 26.2 

33 30.5 28.6 6.3 58.0 90.0 25.6 16.0 

34 18.0 18.5 2.9 38.6 114.6 17.2 4.4 
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