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Abstract

The aims of this study is to provide an overview of traditional clustering methods, as well as
introduce and discuss self-organising maps (SOMs) in detail. This study wants to convince
the reader of the usefulness of self-organising maps as a dimension reduction tool. The batch
SOMs algorithm was found to be the most appropriate SOM to use in practice, together with
random initialisation of the prototypes. Ward linkage hierarchical clustering was found to
perform the best on multivariate Gaussian simulated data and it was also found to be the most
appropriate traditional clustering method to fit on top of the SOM. Banking transactional
data was investigated for client behavioural clusters and the clusters of lower socio-economic
class clients, technologically sophisticated clients, older and more traditional clients and
low financial activity clients were found. These clusters emerged consistently throughout 9
different data samples.

Key Words:

Unsupervised learning, Self-organising maps, Clustering, K-means clustering, K-medoids
clustering, hierarchical clustering, CLARA
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Opsomming

Die doel van hierdie studie is om 'n oorsig oor tradisionele groeperings metodes saam te stel,
sowel as om selforganiserende kaarte (SOK) (“self-organising maps”) te bespreek. Hierdie
studie wil die leser oortuig van die bruikbaarheid van SOK as 'n dimensie-vermindering tegniek.
Die bondel-SOK algoritme is die metode wat in die praktyk aanbeveel word, saam met lukrake
inisialisering van die prototipes. Ward-koppeling (“Ward linkage”) hiérargiese groepering
het die beste presteer op multivariaat-Gaussies gesimuleerde data. In hierdies studie is ook
gevind dat Ward-koppeling die mees toepaslike tradisionele groeperingsmetode was om bo-op
die SOK aan te wend. Data uit die transaksionele bank omgewing is ondersoek om kliént
gedragsgroepe te vind. Hierdie gedragsgroepe is geidentifiseer as laer sosio-ekonomiese klas
kliénte, tegnologies gesofistikeerde kliénte, ouer en meer tradisionele kliénte en ook 'n groep
met lae finansiéle aktiwiteit. Die ontleding het hierdie groepe konsekwent oor 9 verskillende
datastelle geidentifiseer.

Sleutelwoorde:

Leer sonder toesig (“unsupervised learning”), selforganiserende kaarte, groepering, K-
gemiddelde groepering, K-“medoid” groepering, hiérargiese groepering, CLARA
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CHAPTER 1: INTRODUCTION

1 Introduction

Self-Organising Maps (SOMs) were introduced in 1982 by Teuvo Kohonen and the original
paper has been cited 9 800 times since then. The book called Self-Organizing Maps, written
by Teuvo Kohonen himself, released its third edition in 2001. Since then it has been cited 23
487 times. These numbers are a testament to the popularity of SOMs and the value it adds
to the field of unsupervised learning.

There are a large number of traditional clustering methods available that are suited to small
datasets with low dimensions. However, the nature of the data that is available in the world
today is more likely to be extremely large and high-dimensional. These traditional methods
break down in high-dimensions and can become time-consuming and unreliable.

SOMs is a method that maps high-dimensional data down to lower dimensions and is
particularly useful in the current data climate. After dimensionality of the data has been
reduced the possibility to apply traditional clustering methods becomes available again. This
means that SOMs can be used to preserve the traditional clustering methods, by making the
data in the modern world accessible to them. For this reason it is important to understand
the traditional clustering methods, along with the SOMs. Even though modern alternatives
for dimension reduction also exist, for example t-Distributed Stochastic Neighbor Embedding
(t-SNE), the focus in this study will be on SOMs.

It is important to apply the methods to simulated and real-world data to understand how they
work. For this study we have access to Bank C’s transactional history data for their savings
clients. There is a need to separate these clients into different financial behavioural groups,
each group with specific needs and requirements from their primary bank. These different
groups of clients can be presented with different banking products, can be supplied with
relevant financial education material and can be addressed in the communication channels
they prefer. It is very important for Bank C that their clients have a good experience and
relationship with the bank, and the clusters formed from a combination of SOMs and a
traditional clustering method can aid in this endeavour.

1.1 Research Objectives and Design

There are several aims in this study. Firstly, this study wants to convince the reader of the
usefulness of SOMs as a dimension reduction tool. Secondly, this study wants to find the
optimal traditional clustering method to fit onto the prototype vectors of a SOM. Thirdly,
we want to find client behavioural clusters in Bank C’s transactional data. These groups
of clients would have different requirements for a good banking experience and have to be
communicated with in different ways.

The testing of the different methods in this project will be done through a simulation study
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in the R programming environment and the data extraction will be done using the SQL
Server query language.

1.2 Chapter Outline

Chapter 2 provides a literature review on traditional clustering methods, originally designed
for small and low-dimensional datasets. We will also investigate different methods for choosing
the appropriate number of clusters and how to evaluate the quality of the clustering outcome.

Chapter 3 provides a literature review on clustering methods that are more appropriate for
large and high-dimensional datasets. Specifically we will investigate SOMs, which is the main
focus of the study.

In Chapter 4 a simulation study on the clustering methods discussed in the literature review
will be provided. The relevant R functions, packages and code will also be discussed and will
form part of the text. In the simulation study we will decide on the clustering methods to
apply to the real-world data.

In Chapter 5 we will discuss the data extraction, cleaning and normalisation process followed
on the real-world data. The data consists of transactional histories of the savings accounts of
Bank C’s clients.

Chapter 6 shows the implementation of the SOM combined with a traditional clustering
method on the cleaned transactional data. The clusters that resulted from this implementation
will be discussed in detail.

Chapter 7 provides a summary of the results found in the simulation study, as well as
recommendations gathered from the literature. A conclusion on the results of the clustering
of the transactional data will be given. It serves as a summary of the entire findings of this
report and also recommendations for future investigations and research.
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CHAPTER 2: LITERATURE REVIEW (PART 1)

2 Traditional Clustering Methods

2.1 Introduction

Cluster analysis is the statistical process of identifying groups or clusters of observations in
a dataset so that the observations in any given group or cluster are more similar to each
other than to the observations in the other groups. It is an unsupervised method because no
outcome variable is used to train the model or test its accuracy. The homogeneous groups
found in the data are called clusters and are mostly non-overlapping. Although there are
methods, such as Fuzzy C-Means clustering, that allow overlapping clusters, these will not be
discussed here. In high-dimensional data, cluster analysis can assist with the understanding
and visualisation of relationships between the variables and between the observations.

One application of cluster analysis is that different treatments can be applied to the different
clusters that have been identified in a dataset. The underlying assumption is that the
individuals in a cluster will respond similarly. For example, in the banking environment, a
group of clients can be assigned a financial sophistication label. This label can be used to
reflect anticipated good or bad financial behaviour. If the anticipated behaviour is of good
quality, certain rewards can be put in place. On the other hand, if the anticipated behaviour
might jeopardise the financial health of a client, financial education can be made available to
the client.

2.1.1 Proximity and Dissimilarity

The term proximity refers to how close one observation is to another and can be defined in
terms of similarity or dissimilarity. In cluster analysis dissimilarity is used as the definition
for proximity. The input into any cluster analysis algorithm is a proximity (or, equivalently,
dissimilarity) matrix D, rather than the raw observation matrix X. The matrix X is an
N X p matrix, where p is the number of variables and N is the number of observations. In
such a case the dissimilarity matrix will be of size N x N. Entries in this matrix will be d;;,
which is the dissimilarity between the observation vector x; and x;;. The diagonal of D will
contain zeroes. If proximity had been defined in terms of similarity, the diagonal of D would
contain ones. The matrix D also has to be symmetric; if this requirement is not met, D can
be replaced by D%DT (Hastie, Tibshirani & Friedman, 2009:503). Some clustering functions
in R, for example kmeans() from the package stats, can create the matrix D as part of the
clustering process. These functions accept the raw observation matrix X as an input.

Whenever p > 1 the dissimilarity between two observation vectors is defined in terms of
dissimilarities for the separate variables. We therefore first consider dissimilarity between two
observations with respect to a given variable before discussing how to measure dissimilarity
between objects. Pairwise dissimilarity uses the notation d;(x;;, zi;) as we briefly defined
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before. This denotes the dissimilarity between observation ¢ and observation i’ measured in
terms of variable j. A choice has to be made regarding the form of the measure d; and this
will be determined by the types of variables occurring in the dataset.

For quantitative variables the dissimilarity can be specified to look like a loss function #(.),
i.e. dj(zj,xy5) = €(|xij — xy]). This “loss function” will assign larger values to observation
pairs that lie further apart, 7.e. are more dissimilar. Most often this function is chosen to
be a squared error, d;(z;;, xy;) = (xij — xi;)?, or an absolute error, d;(z;;, T ;) = |Ti; — Tirj)-
These are well known loss functions that are easily understood and frequently used in
other statistical learning methods. For categorical variables the 0 — 1 loss function is often
chosen, d;(z;j, ;) = I(z;; # xyj), where I(.) denotes the indicator function (Hastie et al.,
2009:503-504).

We now define a measure of dissimilarity between objects based on a set of p variables. We
define D(x;, xy) = 3, dj(2ij, v;) as the dissimilarity between two rows of X. There are
certain requirements that D(x;, x;) has to satisfy to be considered a distance metric:

1. Symmetry: D(x;, xy) = D(xy, x;)
2. POSlthlty D(SUZ, a:i/) > O, VZBZ', €Ty
3. Triangle Inequality: D(x;, ;) < D(x;, @) + D(xk, i), VX, @i, )

4. Reflexivity: D(x;, x;) = 0 if and only if &; = x;.

Frequently weights are attached to some of the dj-values, i.e. to the dissimilarities of certain
variables (Hastie et al., 2009:505; Xu & Wunsch II, 2009:21). This will be discussed later.
Distance measures between clusters will also be discussed later.

The measure of dissimilarity chosen might have a larger impact on the resulting clusters than
the clustering method itself. Therefore, care has to be taken when this measure is specified.
For this research project we will focus on Euclidean distance as dissimilarity measure, defined
by

p
D(wi, 117;/) = \l Z(I‘U — Ii/]’)2.
7=1

Euclidean distance is a popular distance measure as it is easy to understand and finds a
straight line between two observations. In some cases squared Euclidean distance, D(x;, ;) =
|; — @y ||?, will be used. Euclidean distance can only accommodate quantitative variables.
This choice can be made because of a priori knowledge regarding the type of variables
available for the real-world dataset that will be investigated. In this study the real-world
dataset will only contain binary, ordinal and continuous quantitative input variables.

When categorical variables or variables containing strings are present in the input dataset,
other distance measures need to be considered. For strings, it is quite popular to use an edit
distance measure. This refers to the number of edits required for one string to look exactly
like the other. The simplest distance measure for non-ordinal categorical variables would be
to provide a distance of 0 if two categories are the same and a value of 1 if they are different.
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This is called measuring the overlap and more distance measures based on this have been
developed. These distance measures will not be discussed further, but deserve consideration
if categorical or text variables are present in the data.

2.1.2 Combinatorial Algorithms

Clustering can be done in several ways, for example using combinatorial algorithms, mixture
models or bump hunting. In this discussion we will focus on combinatorial algorithms using
the observed data without any assumptions about underlying distributions. More specifically,
K-means clustering, K-medoids clustering, hierarchical clustering, Density-based clustering
and Self-Organising Maps (SOMs) will be explored.

The number of clusters will be denoted by K < N. For certain algorithms the value of K has
to be specified beforehand, for example K-means clustering. Other approaches, for example
hierarchical clustering, requires the value of K to be specified after the algorithm has been
completed. In every case we require an encoder, denoted by C(.), that maps the observations
to the clusters, k = C(i),k € {1,2,...,K},i € {1,2,..., N}. Tt is clear that C(i) therefore
denotes the cluster index for observation i (Hastie et al., 2009:509).

When a cluster analysis is performed we would like the subgroups identified in the data to
have two important properties. Firstly, we would like the observations inside any subgroup to
be homogeneous and to display a low within-cluster dissimilarity. Secondly, we would also like
different subgroups to be as heterogeneous as possible and thus have a high between-cluster
dissimilarity. These two requirements can have different levels of desirability in different
applications.

A cluster algorithm requires specification of a measure of within-cluster variation as well as a
measure of between-cluster variation. The between- and within-cluster variation can assist
in the comparison of clustering algorithms, in choosing an algorithm to use, as well as to
decide when a clustering algorithm has stabilised. The ratio of between- and within-cluster
variation is frequently used for this last purpose.

The total-cluster variation is defined by
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and B(C') refers to between-cluster variation,

B(C) =

DO | —

K
> > dii
C(i)#k

k=1C(i)=k

Either W(C) or B(C) can be chosen as the main focus of a clustering problem (Hastie
et al., 2009:507-508). As an example, consider again clustering in a banking environment,
specifically the problem of classification of transactions into the two groups of recurring and
non-recurring transactions on the monthly bank statement. Here it is more important that
the within-cluster variation be minimised and the transactions in a certain recurring cluster
be almost identical. If a transaction is incorrectly labelled as recurring and an interaction
with the client follows from this, there might be a reputational risk for the bank. The
between-cluster variation is of less importance as the different recurring transactions can be
quite similar as well.

2.2 K-means Clustering

K-means clustering is a well-established and widely used procedure, having been proposed in
the 1950s. Early references to this approach are Lloyd (1957) and Forgy (1965). The term
“K-means” was proposed by MacQueen (1967).

In K-means clustering the value of the parameter K (the number of clusters to be identified
in the data) has to be specified upfront. This is a difficult task, which will be discussed in
more detail later. The K-means algorithm assigns each of the N observations in the dataset
to one of the K non-overlapping clusters.

To illustrate the application of the K-means clustering algorithm a toy dataset generated
from two standard bivariate Gaussian distributions is considered. In this dataset there are
p = 2 variables and three distinct classes of observations, K = 3. The dataset is illustrated
in Figure 1.

Now consider the cluster encoder, k = C(7), in more detail. Define C} to represent the indices
of the observations in the k' cluster and C' = {C, (s, ..., Ck }. There are two requirements
the K clusters found by K-means have to adhere to:

1. CiUCU...UCKk ={1,2,..., N} (Each observation has to belong to at least one cluster)

2. CyNCy = 2,Vk # k' (Each observation can belong to no more than one cluster)

This means that there are % SR (—1)E-k (f) kN possible cluster assignments C' (Jain &

Dubes, 1988). There are no specific constraints on the number of observations allowed or
required per cluster. This amount of calculations are completely infeasible. The iterative
K-means algorithm is used as an approximation to the true search through all possible
clusters (Hastie et al., 2009:508; James, Witten, Hastie & Tibshirani, 2013:386). For clarity,
C}, returns the indices of the observations in the k™ cluster and C/(i) returns the cluster label
of the i*" observation.
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X1

Figure 1: Standard normal data, p =2 and K = 3

Squared Euclidean distance, defined before, is used as the dissimilarity measure of the K-
means algorithm. The within-cluster variation when using squared Euclidean distance as
dissimilarity measure is

l\D\»—t

p
Z Lij — x”

HM
HM

|z; — wi’HQ-

l\.’)\r—t

This expression for W (C') can be simplified to

K
=D Ne Y lwi— il

k=1 C(i)=k

where &), = (T, ..., Tpr) and Ny = SN I(C(i) = k) (Weatherwax & Epstein, 2018:110-112).
The proof of this result can be found in Appendix A.

W (C') defined here is the quantity that K-means clustering would like to minimise. This
means that the total distances between the cluster mean &; and the IV, observations in the
cluster are minimised. This leads to the definition of a criterion for optimising the cluster
encoder and the mean values of the clusters at the same time. The criterion has the form

C* = min ZNk > |x; — my|)?,

CAmt k21 =k

where C' is the set of cluster index values as defined above and my, is the mean vector of
cluster k. The notation my, is used, instead of xy, as this refers to a more general definition
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(a) Step 1 (b) lteration 1, Step 2a
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(c) lteration 1, Step 2b (d) lteration 2, Step 2a
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Figure 2: Figures showing the iterations of the K-means clustering algorithm
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of a cluster center. For K-means clustering it happens to represent the mean vector, but it
could also be the median vector, for example (Hastie et al., 2009:509-510). Below we find the
iterative algorithm for K-means clustering.

Algorithm for K-Means Clustering:
1. Specify the value for K.

2. Initialise C' = {C4, ..., Ck} by randomly assigning every observation to one of the K
clusters.

3. Iterate until the cluster assignment C' stabilises:
a. Calculate the mean vectors for the K clusters through m; = N%ijeck x;,

yielding {my, ms,...,mg}.

b. Update C' by assigning each observation to the cluster label of the closest mean
vector my, using squared Euclidean distance:

C(i) = argmin||z; — my||*.
1<k<K

The K-means algorithm performs well when the underlying clusters in the data are spherical,
but will struggle to identify elongated cluster shapes. K-means also performs well when the
underlying clusters are compact, meaning the observations in a cluster lie very close together.
In Figure 2(a)-(d) we can clearly see how the iterations of the K-means cluster algorithm
evolve. The toy dataset was used for this visualisation with only one random initialisation.
It almost seems that the algorithm has already converged after only two iterations, but this
will not be the case if p and K increase.

A property of the K-means algorithm is that it will always reach a point where the cluster
labels C stabilise. We are not, however, guaranteed that this is the optimal solution. The
K-means algorithm may return different results for different random initialisations of the
cluster means {m;, ms,...,mg}. To counter this problem a wide range of initial cluster
assignments should be made and the final within-cluster variation for each model should be
noted. The best model can be chosen as the model that has the lowest final value for W (C')
(Hastie et al., 2009:510; James et al., 2013:388; Xu & Wunsch II, 2009:68).

2.3 K-medoids clustering

K-medoids clustering is similar to K-means clustering as both methods address the same
optimisation problem. The difference lies in the fact that the centers of the clusters for
K-medoids clustering are not taken as the mean vectors but as observations from the dataset.
This means that we will have K of the N observations in the dataset chosen as the cluster
centers. These K center observations will be called the representative objects or medoids and
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can already contain a lot of information about the data that are being investigated. We can
consider these medoids as a sample reduction from N to K and we hope that the medoids
summarise the characteristics of their closest neighbours to a certain extent (Kaufman &
Rousseeuw, 1990:68).

The clusters are formed around these medoids by including the medoid itself and all the
observations lying closest to it. In this study closeness is defined by squared Euclidean
distance. By using representative observations as the cluster centers, the clusters returned
by the algorithm are more robust to outliers than K-means clusters. The clusters will also
be spherical in nature and this method cannot be used to find irregularly shaped clusters
(Hastie et al., 2009:516).

Similar to K-means clustering, we find a few slightly different algorithms linked to the
K-medoids problem. As an example of a K-medoids algorithm we will discuss the algorithm
called Partitioning Around Medoids (PAM) suggested by Kaufman and Rousseeuw in 1987.
PAM is known for its two phases, the BUILD phase and the SWAP phase. In the BUILD
phase a collection of K medoids are put together as an initialisation for the SWAP phase. In
the SWAP phase each cluster is investigated and different observations are tested to possibly
replace one of the current medoids (Kaufman & Rousseeuw, 1990:102).

We will now discuss the PAM algorithm in more detail. There are two groups of indices that
we need to keep track of:

S: set of indices (S < K) of observations that have been chosen as medoids
U: set of indices of observations that have not been chosen as medoids.

These two sets are defined such that O = S UU is the set of all N observation indices. There
are also two dissimilarity measures we need to calculate and update for each observation
index ¢ € O:

D,: dissimilarity between @, and the closest medoid indexed in S
Ey: dissimilarity between a, and the second closest medoid indexed in S.

Every time S or U changes in the algorithm, D, and E, have to be updated. The part of the
PAM algorithm that is associated with the BUILD phase can be found below.

Algorithm for Partitioning Around Medoids (PAM) BUILD phase:
1. Specify the value of K and note that U = O.

2. Identify an observation with index h from U, such that this observation has the smallest
sum of dissimilarities from all other observations, m}jn Zé\[:#h dp;.-

3. Initialise the set S by placing the index h in S. Note that now S = {h} and U =
{1,..;h—=1,h+1,....,N} and U # O.

4. Randomly choose an index from U, say i. @; can now be tested as the next medoid, as
described in Step 5 to Step 9.

10
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5. For an observation with index j # ¢ € U calculate Dj, as defined above, and dj;, from
the chosen dissimilarity measure for the algorithm.

6. Calculate Cj; = max{(D; — d;;),0} for every j € U # i.
7. Calculate g; = 3y zep Cji for all i € U.
8. Choose i so that the value g; is maximised, Maxg;.
9. Add i to index set S.
10. Iterate Step 4 to 8 until set S is of size K.

In Step 3 of the BUILD phase, S is initialised with the observation that acts as the center,
or the medoid, of the whole observation set. We also look a little closer at the value Cj;
calculated in Step 6 of the BUILD phase. When Cj; > 0 and therefore D; > d;;, it indicates
that x; lies closer to @; than to any of the medoids indexed in S. This means that «; provides
evidence that x; should also be included in the set of medoids. When C}; = 0 and therefore
D; < dj;, it means that x; lies closer to a medoid indexed in S’ than to x;. This provides
evidence against x; and recommends that it should not be included in the set of medoids
(Kaufman & Rousseeuw, 1990:102-103; Simovici, 2011:1-2).

After the BUILD phase we have a set of medoid indices S of size K and a set of indices U of
size N — K that represent the observations not selected as medoids. In the SWAP phase we
will now identify index pairs (7,h) € S x U, where i € S and h € U such that placing ¢ in U
and h in S will improve the clustering. The part of the PAM algorithm that is associated
with the SWAP phase can be found below.

Algorithm for Partitioning Around Medoids (PAM) SWAP phase:

1. Choose an observation index, say i, from S and an observation index, say h, from U, to
be considered for the swap.

2. Choose a third observation index, say j # h, from set U.

3. Calculate D; and Ej, as defined above, and d;; and dj;, from the chosen dissimilarity
measure for the algorithm.

4. Calculate Cj;, according to the conditions set out in Table 1 and Table 2.
5. Calculate T}, = > [j#h}eU Ciin.

6. Choose 7 and h so that the value T}, is minimised, m}lnTih.
1,

7. If T;, < 0, carry out the swap and return to Step 1. If Tj, > 0 end the algorithm.

From Step 4 in the SWAP part of the PAM algorithm and Table 1 and Table 2 we consider
different cases for computing the value of Cj;,. Firstly, we consider the row of N/A values

11
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Table 1: Values of Ci,

Dj < djh Dj = Qjp Dj > djh Summary
j < dﬂ 0 0 dj — Dj min{(djh — Dj), O}
D; =dj; | Table 2 Table 2 Table 2 Table 2
; >dj; | N/A N/A N/A N/A
Table 2: Values of Cji,
Ej < djh Ej = djh Ej > djh Summary
Dj — d]Z Ej — Dj Ej — Dj dj — Dj min{djh, EJ} — Dj

in Table 1 which indicates that D; > dj; cannot occur. As i is in the set S, x; cannot be
further away from its closest medoid in S than from ;.

Secondly, we consider the case where D; < dj;, which means that there is a medoid in S that
is closer to x; than to &;. We now look at the dissimilarity to x; from x; as well. If x; lies
closer to its closest medoid indexed in S than to x; or x;, it will not provide evidence in
favour of the swap of «; and xj. The same goes for the case where x; has the same distance
to its closest medoid indexed in S than to x;. If however, x; lies closer to x; than to its
closest medoid indexed in S, it will provide evidence of the size d;;, — D; for the swap of x;
and xj,.

Thirdly, we consider the row in Table 1 for D; = d;;, referring to Table 2. When D; = dj;,
then «; is the closest medoid indexed in S to ; and we now have to consider the second
closest medoid indexed in S to x;. It is important to remember that we are looking for
evidence that x; and @ should be swapped by investigating their proximities to x;. If x; is
already the closest medoid to @;, we can also investigate a second closest medoid to see if xj,
lies even further away from @, than it’s second closest medoid.

Now if x; is closer to the second closest medoid indexed in S than to xj;, the evidence
provided for the swap of x; and x; is £; — D;. The same evidence is provided if x; is
exactly the same distance from the second closest medoid indexed in S than from ;. The
value of E; — D; will always be positive as the dissimilarity of the second closest medoid
indexed in S to x; is necessarily larger than the closest medoid indexed in S. If x; is closer
to @, than to the second closest medoid indexed in S the contribution to the swap will be
d;n, — Dj = djp — dj;. This value can be positive or negative. The order in which the swaps
are considered for the algorithm should not affect the outcome as all combinations of {S, U}
are considered (Kaufman & Rousseeuw, 1990:103-104; Simovici, 2011:2-3).

2.4 Hierarchical Clustering

Hierarchical clustering is a collection of clustering methods that return nested clusters. This
means that a hierarchical structure is imposed on the data. It is different to K-means or
K-medoids clustering as there is no specification for the desired number of clusters before
running the algorithm. The goal of hierarchical clustering is to place all the observations

12
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in one cluster at the top of a tree structure and after following the clustering process every
observation is in its own cluster at the bottom of the tree, or the other way around. The
clusters containing only one observation are called singletons. The tree structure delivered by
hierarchical clustering is called a dendrogram. It is a visual aid in making a decision on the
appropriate number of clusters and it also captures all the information that is gathered in
the clustering process (Hastie et al., 2009:520-522; James et al., 2013:390; Xu & Wunsch II,
2009:31).

The hierarchical structure brings with it an advantage of faster computing time, because of
the successive nature of the splits and no concerns about the algorithm not converging. This
has a drawback as well, because once a cluster is formed it cannot be split again and vice versa,
once a cluster has been split it cannot be joined together again. There are no error-correction
possibilities in hierarchical clustering (Everitt, Landau, Leese & Stahl, 2011:71; Kaufman &
Rousseeuw, 1990:44-45; Xu & Wunsch II, 2009:40). We will discuss agglomerative hierarchical
clustering, as well as divisive hierarchical clustering, which are two different approaches to
growing a dendrogram.

2.4.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering, also called Bottom-up clustering, starts at the bottom
of a tree with IV singletons and groups observations into clusters until it reaches one big
cluster at the top. The agglomerative hierarchical clustering algorithm can be found below.

Algorithm for Agglomerative Hierarchical Clustering:
1. Choose a dissimilarity measure and view the dataset as N singletons.

2. Iterate until all observations are in one cluster, i.e. i = N, N — 1, ..., 2:

a. Calculate (;) = i(igl) pairwise dissimilarities among the ¢ clusters.

b. Identify the pair of clusters with the smallest pairwise dissimilarity.

c. Create a new cluster by merging all the observations from the clusters identified
in (b) together so that there are now i — 1 clusters.

We need a strategy to determine the dissimilarity between two clusters if either of them, or
both, include more than one observation. We introduce the concept of linkage to assist with
this. In Table 3 and Figure 3 we can see the seven kinds of linkage that we will consider:
complete, single, average, centroid, median, McQuitty and Ward linkage. Figure 3 is again
based on the K = 3 toy dataset. The forms of linkage in Table 3 are explained in terms of
two arbitrary clusters, G and H (Everitt et al., 2011:76-79; James et al., 2013:394-395).

13
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{a) Complete (b} Single

{c} Average {d} Centroid

(g) Ward

Figure 3: Different forms of linkage for K = 3 Toy Data
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Table 3: Linkage for Agglomerative Hierarchical Clustering

Linkage Name Formula Description
Complete linkage | doL(G,H) = max d; Identifies the maximum dissimilar-
{ieG,i’'eH} . . .
ity between all pairs of observations
in cluster G and cluster H
Single linkage dsp(G,H) = {4 gnjnH}dii/ Identifies the minimum dissimilarity
1€Gi' €

between all pairs of observations in
cluster G and cluster H

Average linkage

dar(G, H) = 5oy Siea Zien di

Calculates the unweighted average
dissimilarity between all pairs of ob-
servations in cluster G and cluster
H

Centroid linkage

dCentL(G7 H) = d<iG7 iH)

Calculates the dissimilarity between
the mean vectors of cluster GG and
cluster H

Median linkage

dMedL(G7 H) = d(mediang, medianH)

Calculates the dissimilarity between
the median vectors of cluster G and
cluster H

McQuitty linkage

ndL(Ga H) = % Yiea 2ien div

Calculates the weighted average dis-
similarity between all pairs of ob-
servations in cluster G and cluster
H

Ward linkage

Awarar, (G, H) = %Hi@ —zyl]

Identifies the within-cluster vari-
ance when cluster GG and cluster H
are joined together, using squared
Euclidean distance

15
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In Figure 3 we see the tree structure of the hierarchical clustering dendrogram, with all the
trees being displayed at a 90° anti-clockwise rotation. At the top, or in this case on the left,
of the dendrogram the root node can be seen and this represents all the observations in one
cluster. At the bottom of the dendrogram, in this case on the right, all the singletons can be
seen, also called leaves. The height of the dendrogram reflects the value of dissimilarity at
which two clusters joined together. The dendrogram can be cut at various heights to result
in different numbers of clusters, K (James et al., 2013:391-394; Xu & Wunsch 11, 2009:31).

Let us discuss the different forms of linkage from Table 3 in more detail. Complete linkage
can also be called furthest-neighbour linkage. It is known for returning well balanced clusters
and this can be seen in the toy data example in Figure 3(a). Complete linkage is useful when
the goal is to find compact clusters that lie relatively close together. It also has an effect
called space dilation, which refers to the fact that similar observations may only be joined
together very low down on the dendrogram. Only the observations that are furthest from
each other in clusters G and H come into play in this form of linkage and the observations
that lie between them, that might be quite similar, are ignored (Hastie et al., 2009:523-524;
James et al., 2013:394-395; Kaufman & Rousseeuw, 1990:48,227). It is a good candidate to be
used in the real world data example to follow in a later chapter and will also be investigated
in the simulation study chapter.

Single linkage can also be called nearest-neighbour linkage. Some problems are foreseen for
single linkage as it can cause a dendrogram structure where singletons are added one at a
time to one big growing cluster. This phenomenon is referred to as chaining and returns
extremely unbalanced clusters. This does not give much insight into the true underlying
structure in the data. There exists the possibility to take advantage of this chaining effect
which arises when the goal is to find elongated clusters. Single linkage also has an effect called
space contraction, the opposite of complete linkage. This refers to the fact that dissimilar
observations may be joined together very high on the dendrogram. Only the observations
that are closest to each other in clusters G and H come into play in this form of linkage
and the observations that lie outside of them, that might be quite dissimilar, are ignored
(Hastie et al., 2009:523-524; James et al., 2013:394-395; Kaufman & Rousseeuw, 1990:48,227).
Chaining can clearly be seen in Figure 3(b) for the toy data example.

Average linkage is a compromise between complete linkage and single linkage. It can also
be called group average (GA) or unweighted pair-group method using the average approach
(UPGMA). It is called unweighted because we explicitly account for the cluster sizes. It aims
to produce compact clusters, as far apart as possible. The compactness of a cluster can be
measured by its diameter, which is the largest dissimilarity among the member observations
of a certain cluster G, i.e.
D= max d.
{ieG,i'eG}

Average linkage also has an effect called space conservation, which refers to the fact that
all observations in cluster G and H contribute to the linkage and none of them are ignored
(Everitt et al., 2011:76,79; Hastie et al., 2009:523-525; James et al., 2013:394-395; Kaufman &
Rousseeuw, 1990:227). Average linkage can be found in Figure 3(c) for the toy data example
and will be investigated further as well.
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Centroid and median linkage can be found in Figure 3(d) and (e), respectively. They also have
the alternative names of unweighted pair-group method using the centroid approach (UPGMC)
and weighted pair-group method using the centroid approach (WPGMC), respectively. It
is clear that the dendrograms returned by these linkage methods are uninterpretable. This
phenomenon of clusters joining together at a lower height than the individual clusters are
called reversals or inversions (Everitt et al., 2011:76-77,79; James et al., 2013:394-395). Again,
even though there might be scenarios where these forms of linkage are useful, they will not
be explored further.

McQuitty linkage can be seen in Figure 3(f) and is also called weighted average linkage
or weighted pair-group method using the average approach (WPGMA). This linkage form
is similar to average linkage, except that it does not account for the cluster sizes (Everitt
et al., 2011:78-79). It may sound counter-intuitive to call this a weighted average and not
specify weights explicitly, but by not accounting for the cluster sizes they essentially act as
implicit weights. Not explicitly accounting for cluster size in the linkage formula may cause
smaller clusters to be assigned larger implicit weights. This may alleviate the bias against
small clusters found in the unweighted average linkage. Mcquitty linkage will be investigated
further.

Lastly we can see Ward linkage in Figure 3(g) and it returns very well balanced clusters.
This form of linkage is similar to centroid linkage, but it uses an explicit weighting of the
centroids. It can be seen as a minimisation of the increase in the total within-cluster variance
as new clusters are formed (Everitt et al., 2011:77-79; Murtagh & Legendre, 2014:281-285).
We will investigate this form of linkage in the simulation study as well.

2.4.2 Divisive Hierarchical Clustering

Divisive hierarchical clustering, also called Top-down clustering, starts from the top of a
dendrogram with one big cluster and moves its way downwards by splitting clusters until
N singletons are formed at the bottom. This clustering method has been documented
less rigorously than agglomerative hierarchical clustering. This is because the number of
possibilities for the first combination of singletons for agglomerative hierarchical clustering is
(gf ), whereas for divisive hierarchical the number of possibilities for the first split into two
clusters is 2V~! — 1. It is a useful method if only a few large clusters are desired from a big
dataset. There is the option to repeatedly use K-means clustering with K = 2 until the data
is divided into N singletons. This process would be unfeasible and hard to duplicate as there
would a random initialisation at each step (Hastie et al., 2009:526; Kaufman & Rousseeuw,
1990:253). A more replicable algorithm for divisive hierarchical clustering proposed by
Macnaughton-Smith, Williams, Dale and Mockett in 1964 can be found below.
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Algorithm for Divisive Hierarchical Clustering:
1. All N observations are placed in a single cluster.
2. Iterate until there are N singletons:
a. Identify the cluster with the largest diameter, call this cluster G.

b. Identify the observation x; with the largest average dissimilarity to all the other
observations in G' by ﬁ Sieri dii-

c. Create a new cluster, called H, containing this observation as the first member.

d. For cluster G iterate until all Diff;-values become negative:
i. Calculate

. 1 -
it = N Ng = 1) 2 D di NGxN 2 2 di

zEG i'#ieG i€eGi'eH

for every observation ¢ in G.

ii. Identify the observation ¢ with the largest positive value for Diff; and place it
in cluster H.

For the very first iteration of the algorithm the cluster identified in Step 2(a) will be the
original cluster containing all the observations. At every iteration of Step 2 the cluster H is
called the splinter group, because it is the cluster that splinters off from the original, G. The
goal is to find all the observations in G that lie closer to observations in the splinter group, H,
than to the other observations in G and then to move them over until the algorithm stabilises.
The Diff;-values measure the average dissimilarity in G compared to the average dissimilarity
between G and H. If Diff; > 0 it means that there are still observations in GG that are more
similar to H than to G. As soon as Diff; < 0,Vi the two clusters have stabilised (Hastie et
al., 2009:526,528; Kaufman & Rousseeuw, 1990:271).

2.5 Practical Issues

2.5.1 Missing Values

Missing values can be treated in several ways. If one of a pair of observation values being
compared is missing, then the specific entry can be omitted from the dissimilarity matrix D.
This will lead to a dissimilarity between two rows of X defined as

D(x;, xy :— d Liiy Lyt
( Py z) p— Z] 1 ZZ]J(SZO IRl zg

i1’ j
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(a) K =1 (b) K =2 (c)K=3

(d)K =4 (e)K=5 MK=6

Figure 4: Figures showing the evolution of K-means clustering for increasing values of K

where d;; = I(x;; or zy; is missing).

Another option is to impute the missing values, but this can become a problem if imputed
values start to play key roles in the clustering algorithm. For example, if an observation with
imputed missing values are chosen as a medoid in K-medoids clustering it would make the
clustering results less trustworthy. If there are missing values present in categorical values,
then a separate category can be created labelled “missing” (Hastie et al., 2009:507; Xu &
Wunsch 11, 2009:20).

We are not worried about missing values in this study as the dataset from Bank C is
guaranteed to be free of missing values. This is because of the process by which the data is
collected. When a client performs a transaction with Bank C the information surrounding
the transaction is automatically recorded.
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2.6 How to choose K

Care has to be taken when specifying the parameter K. If the parameter is specified too
large, unnecessary splitting of groups in the data that belong together may occur. If the
parameter is specified too small, then some groups returned by the cluster algorithm will be
heterogeneous and this may lead to wrong conclusions. For example, in K-means clustering
we are using the minimum within-cluster dissimilarity as the target and there is a risk of
choosing K so large that the within-cluster dissimilarity almost reaches zero. This could
be seen as overfitting in the same way as growing a decision tree to the point where every
terminal node contains only one observation.

Figure 4 shows the different scenarios, for K-means clustering, where K is specified too small
in (a) and (b), correctly in (c¢) and too large in (d) to (f). In this toy dataset, the true number
of classes is 3. K-means clustering is used as an example here, but the principle holds for all
clustering methods. The danger of any clustering algorithm is that it will always return a
set of cluster allocations, no matter how wrong the specification of K may be (Hastie et al.,
2009:518-519).

Regarding the two scenarios of choosing K too large or too small, the latter may cause
more damage to the final conclusions drawn from the analysis. This is because we are more
comfortable with too many homogeneous clusters that can be combined, than with too few
clusters that are still heterogeneous and would need further splitting.

The notation for the within-cluster variation vector, defined as the set W = {W, W, ..., Wi }
before, will be used again and K’ as the specified number of clusters. This K’ may or may not
be different from the underlying true number of clusters K. We now discuss specific methods
of choosing K’ (Hastie et al., 2009:518-519). To clarify, K refers to the true underlying
number of clusters in the data and will not be known if the data is truly unsupervised. K’
refers to the specified number of cluster for the dataset by the analyst. The notation k is
used while different possibilities for K’ is being investigated and the final value for K’ has
not yet been specified.

Firstly we discuss the elbow method which is a heuristic approach to choosing K’. We
increase k from a chosen minimum, in steps of size one, to a chosen maximum and record the
values of W, at each k. The value of W), will decrease as k increases. We can draw the plot
of these decreasing Wj-values and look for a “kink” or an “elbow” in the plot. The “kink”
can be found where the rate of descent in the within-cluster variation suddenly becomes less
steep. An elbow graph for our toy data example can be seen in Figure 5. This figure has
a clear turning point at k& = 3 and we should specify K’ = 3, which is the correct value for
K. The bend in the plot can, however, be much more subtle, which may cause difficulties in
identifying a corresponding K-value (Hastie et al., 2009:519).

Another method for choosing K’ is through the gap statistic. This is illustrated in Figure
6(b) for our toy dataset. This statistic was suggested in 2001 by Tibshirani, Guenther and
Hastie. At a number of clusters k the gap statistic is the difference between the expected
value under a distribution that has no natural clustering present, called a null distribution,
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Figure 5: The elbow method for choosing K’

and log Wj. More formally we define the gap statistic by
Gapy (k) = Ey{log Wi} — log Wy

where E} is the expectation under the null distribution for the sample of size N. This
expectation is not known, but can be estimated using the Bootstrap method. Another
popular alternative is choosing the null distribution to be the uniform distribution, such that
the gap statistic formula above simplifies to

1 B
Gapy (k) = B Z{log Wi} — log Wy,
b—1

where W}, represents the b Monte Carlo replicate of the within-cluster variation under

the uniform distribution for the current number of clusters k. In Figure 6(a) the red line
represents % SP {log W}, } at different values of k and the green line is the log Wj-values at
different values of k. The largest difference between these two lines indicates the appropriate
value of K'. In Figure 6(a) we can already see that the largest difference lies at k = 3, as we
expected.

We can find the standard deviation of log W}, by letting I = & 7% {log W}, } and computing

1 & -
sdy = J B > {log Wi, — 112

b=1

We define s, = sdi/1 + %. The number of chosen clusters K’ is found at the smallest value
of k where Gapy (k) > Gapy(k + 1) — sg1. In Figure 6 we can see that k& = 3 has the largest
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Figure 6: The gap statistic for choosing K’

gap and it lies within one standard error of the value for k = 4. Thus we choose K’ = 3. It is
important to note that the gap statistic can also identify if there is no clustering structure

in the data as the optimal number of clusters returned will be one (Hastie et al., 2009:519;
Tibshirani, Guenther & Hastie, 2001:411-415).

A third method of finding the optimal value of K is called the average silhouette method.
This method evaluates the tightness of the clusters formed, for a given value of k, and how
well they are separated from each other. Consider observation ¢ and assume it was assigned to
cluster A. We define a(7) as the average dissimilarity of i to all the other member observations
of cluster A. Now we identify the closest neighbour cluster of 7. This is done by finding the
other cluster with the lowest average dissimilarity to i. We call this dissimilarity b(7). We
define the silhouette of observation ¢ as:

b(i) — ali)
max{a(i), b(i)}

A large silhouette value means that observation i is nested well inside its own cluster and has
a high dissimilarity from its nearest neighbour cluster. The silhouette values are averaged
over all N observations for every value of k we possibly want to choose. K’ is chosen where
the average silhouette is a maximum (K’ = 3), as can be seen in Figure 7 for the toy dataset
(Rousseeuw, 1987:55-57).

s(i) =
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Figure 7: The average silhouette Method for choosing K’

2.6.1 Standardisation of Variables

Standardisation is necessary when variables are measured on vastly different scales. Variables
with very large measuring units will have an unduly large influence on the clustering algorithm.
Standardisation also inherently means that all the variables are given equal influence, which
will also probably not be the case otherwise. One form of standardisation that is popular is
defined for entry x;; in matrix X by

= _ 1 N o 1 N — \2 .
where 7; = + YL, 7y and s; = \/ﬁ 1(xy; —x;)?. This leaves the values of every

variable with a zero mean and a variance of one. Another possibility is to scale variables
according to the minimum and maximum value per variable. For entry z;; in matrix X this

is implemented by computing
Tij — mm(a:])

max(x ;) — min(z ;)’

where @ ; = {21, 23;, ..., xn; } and would adjust the range of matrix X to [0, 1]. The second
method of standardisation generally outperforms the first (Everitt et al., 2011:67; Xu &
Wunsch 11, 2009:22-23).

An illustration of how standardisation affects the outcome of K-means clustering can be seen
in Figure 8. Figure 8(a) shows a toy dataset with p = 2 and K = 2, generated from two
Gaussian distributions, each N(1,2). The value 3 was added to the X;-values of the first
cluster to translate it to the right. A K-means clustering was performed on this data and
the outcome can be seen in Figure 8(b). The toy dataset was then standardised using the
mean and the standard deviation, and this can be seen in Figure 8(c). A second K-means
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clustering was done on the standardised data and the results are shown in Figure 8(d).
The standardisation of the data caused the K-means algorithm to misinterpret the natural
groupings in the data (Hastie et al., 2009:506).

The example here is shown for K-means clustering, but other methods of clustering can have
a similar experience when variables are standardised. The decision for standardisation should
be made with as much a priori knowledge about the measuring units of the variables as
possible. Clustering can also be performed on the dataset with and without standardisation.
The results can then be compared to determine the influence standardisation of the variables
has on the outcome.

2.6.2 Weighting of Variables

We can also define a measure for the dissimilarity between two objects to contain a weighting
per variable. The weighted dissimilarity across all variables would then be D(x;, ;) =
Z?Zl wjd;(x;j, xy;). The weights attached to the variables are denoted by w; and Zle w; = 1.

If the intention is to give every variable the same influence on the dissimilarity measure, it
would not be adequate to set all the weights to the same value, for example %. Each pair

of observations will have a relative contribution to the total average dissimilarity D. The
influence that a specific X; has on D(x;, x;) depends on this relative contribution. The
average dissimilarity is found by calculating

1 N N
ﬁ Z Z D(a:z, 331-/)
i=114¢=1
1 N N

W)z YD dj(wij, i)

1 i=11¢=1

D

|
M=

J

I
&
Y

<
Il
-

where d; can be seen as the average dissimilarity amongst the data cases with respect to
variable X;. The relative influence of X; on D is w;d;. So if the goal is equal influence for

each variable to the total average dissimilarity, the weight would have to be set at %.
J

When squared Euclidean distance is used as the dissimilarity measure, a weight can be
incorporated by transforming the entries of the X matrix. The input of this new weighted

algorithm would be the matrix Z, which is of the same size as X. The entries of Z are defined

as:
Wy

p

Rij = Tijy | Sp
=1 We

where w, are the weights attached to the variables. Any clustering algorithm can now be used

with the input matrix Z (Hastie et al., 2009:505-506; Weatherwax & Epstein, 2018:112-113).
The proof of the validity of this reweighting can be found in Appendix B.
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(a) Unscaled Data (b) K-Means on Unscaled Data
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Figure 8: Illustration of scaled variables negatively affecting the outcome of K-Means clustering
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Variable selection is also a form of variable weighting as variables are awarded a weight of zero
or equal weights summing to one. Even though clustering does not have a specific outcome
variable to predict, variable selection may still be beneficial. It can assist in the visualisation
of the data in the form of dimension reduction. This will also ease the pressure on clustering
algorithms when applied to cases of large p and can improve the quality of the clusters by
not clustering the noise (Everitt et al., 2011:63-67).

2.7 Cluster Validity

Clustering is inherently an unsupervised problem. There is no clear and agreed upon way to
determine the success of the clustering. Any clustering method will find groups in the data,
whether they truly exist or not. Clustering needs to be understood as an investigation into
the data and structures that may exist. It can also be used as a form of dimension reduction.
However, if we find clusters in the data we would like to know to what extent we can trust
the results and use them in practical applications.

There are different kinds of measures for the validity of a clustering. Firstly, we have external
measures that can be used to compare a clustering to a given set of cluster labels. These
labels can come from a priori knowledge about the data or because the data were generated
in a specific way with cluster labels. Secondly, we can test the internal measures of the
clustering. This mostly relates to hierarchical clustering and determines whether hierarchical
clustering structure is present in the data. Thirdly, we need relative measures to compare
different clustering outcomes. These outcomes can come from different algorithms applied to
the same dataset or from the same algorithm with different parameter initialisations. The
intra- and inter-cluster dissimilarity, which can also be referred to as the separation (isolation)
and the compactness (cohesiveness) of the clusters, are mostly used in these measures (Everitt
et al., 2011:267-268; Hastie et al., 2009:486-487; Xu & Wunsch II, 2009:263-265).

2.7.1 External Criteria

We will define the Rand Index, the Jaccard Index and the Fowlkes and Mallows index for
determining the similarity between two clustering outcomes, also referred to as partitions.
Let us call the first suggested partition P and the second suggested partition P’. There are a
few scenarios that can occur regarding the observations in P and P’ and we will describe
these in terms of the observations indexed by ¢ and 7 below.

SS: number of cases where C(i) = C(j) (z; and «; reside in the same cluster) for P
and P'.

SD: number of cases where C(i) = C(j) for P and C(i) # C(j) («; and «; do not
reside in the same cluster) for P’.

DS: number of cases where C'(i) # C(j) for P and C(i) = C(j) for P'.

DD: number of cases where C(i) # C(j) for P and C(i) # C(j) for P'.

We also define M = (g) = N(A;_l) =95+ SD+ DS+ DD as the total number of pairs (i, j)
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of observations. Firstly, we define the Rand Index by
SS+ DD
—

The Rand Index was proposed by William M. Rand in 1971. The larger the value of R the
more similar P and P’ are to each other. Also, R € [0, 1].

R:

Secondly, we define the Jaccard Coefficient by
B SS
~ SS+SD+ DS

This coefficient was suggested by Paul Jaccard as early as 1901. Here the value of DD is
completely ignored. The larger the value of J the more similar P and P’ are to each other
and J € [0, 1].

Thirdly, we define the Fowlkes and Mallows Index by

SS
FA= \/SS+ SD " 85+ DS

This coefficient was suggested by E.B.Fowlkes and C.L.Mallows in 1983 and F'M € [0, 1].
Again the value of DD is completely ignored. The larger the value of F'M the more similar
P and P’ are to each other. The Fowlkes and Mallows Index progresses toward 1 much more
slowly than the Rand Index and might be better at identifying unrelated cluster structures

(Everitt et al., 2011:264-265; Xu & Wunsch II, 2009:265-266).

2.7.2 Relative Criteria

The relative criteria can all be used to choose the optimal value for K. But once it has been
chosen then these criteria can also be used to compare different clustering algorithms on the
same dataset for the same value of K. For this purpose we can use the average silhouette
method discussed before. Another popular statistic we can use to measure the validity of a
clustering is called the Dunn Index suggested by J.C. Dunn in 1974. This index is defined
by

=1, K | j=itl,. K emaXKdlam(Cg)

-----

where D(C;,C;) = min D(x,y), the distance between two clusters, and diam(C;) is the

zcCyyel;
diameter of a cluster as defined before (largest dissimilarity among the member observations
of a cluster). Different definitions of the distance between two clusters and a cluster diameter
can be explored, but it will not be investigated in this project. The larger the value of Du(K)
the more compact and well separated the clusters are.

Another index that we will consider is the Davies-Bouldin Index suggested by David L.
Davies and Donald W. Bouldin in 1979. It is defined by

DB(K) = ;é {?23‘ (ei; -ej>}

v

27



Stellenbosch University https://scholar.sun.ac.za

where ¢; = N% Z?[:il(mj — x;)? is the average distance between points in cluster i and their
centroid, and D;; = ||&; — ;|| is the distance between the centroids of cluster ¢ and cluster j.
A smaller value of DB(K) indicates a more compact and well separated clustering (Xu &
Wunsch 11, 2009:266-271).

2.8 Summary

In this chapter we investigated the literature available on the traditional clustering methods
of K-means, K-medoids and hierarchical clustering. We also looked at the different possible
ways of specifying the appropriate number of clusters K. Some practical issues were also
discussed, such as missing values, weighting of variables and standardisation. Lastly, the
different criteria available for cluster validation were investigated.

In the second part of the literature review we will discuss clustering methods that are
appropriate for large and high-dimensional datasets. Specifically, we will investigate CLARA
and SOMs.

28



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3: LITERATURE REVIEW (PART 2)

3 Clustering Large and High-Dimensional Datasets

3.1 Introduction

Some of the methods described in the previous chapter start to fail when N or p becomes
large. The reason for this mostly stems from clustering methods taking the dissimilarity
matrix D as input. If N is very large and D is of size N x N, it might be impossible to store
or even calculate a matrix of that size. There are also issues when p becomes large as the
Curse of Dimensionality applies. Most clustering methods rely on distance measures, for
example Euclidean distance, to determine proximity between the observations. The idea of
dissimilarity might become vague as all points will be lying far away from each other in high
dimensional space.

In this chapter we will discuss Clustering Large Applications (CLARA), that was developed
to be useful for large datasets, but still struggles to handle high dimensions. We will also
discuss Self-Organising Maps (SOMs) that provide a method to map high-dimensional data
onto a lower dimensional grid to aid in visualisation and understanding of the data. This grid
can then be fed into more classical clustering methods, since the dimensions of the data have
been reduced. Lastly we will discuss an adaption to SOMs, called Growing Self-Organising
Maps (GSOMs). This method determines the size of the lower dimensional grid as part of
the algorithm and does not require it to be specified beforehand.

3.2 Clustering Large Applications (CLARA)

The CLARA algorithm was proposed in 1986 by Kaufman and Rousseeuw and adds a sampling
step to the PAM algorithm, to be able to apply it to large datasets. CLARA takes the
original dataset as input, because calculating and storing the dissimilarities between the large
N observations would be infeasible. The PAM algorithm is fitted to several random samples
from the original observations and the most successful clustering is returned. The goals of
the two algorithms are the same, to cluster N observations into K groups by minimising the
average distances between the observations and their closest medoids. The CLARA algorithm
is given below.

Algorithm for CLARA:
1. Specify the value K.
2. Take a random sample of minimum size 40 + 2K from the N observations.

3. Fit the PAM algorithm to the sample to determine the K medoids.
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4. Assign the N observations to the K clusters according to their closest medoids, using
Euclidean distance.

5. Calculate the average distance from all observations to their closest medoids as a
summary statistic for the clustering.

6. Repeat Step 2 to 5 for a minimum of 5 times. After the first iteration the K medoids
found in the previous iterations are automatically included in the sample.

7. Choose the clustering linked to the minimum average distance as the final clustering.

The CLARA algorithm finds the same kinds of clusters as the PAM algorithm, i.e. spherical
cluster. This makes sense because the clustering itself is performed by PAM, CLARA is
just a wrapper for PAM with a sampling step. The method is also robust to outliers, as
that is the nature of using medoids instead of mean centroids. The sample sizes need to be
chosen large enough to ensure that all the clusters have some representative observations in
the sample. The random sample is taken with replacement, but discarding any duplicate
observations. What can be considered as a large N has changed over the years, currently
PAM can handle thousands of inputs with a hard upper limit of N = 65536 (Kaufman &
Rousseeuw 1990:41,126,144-145).

3.3 Self-Organising Maps (SOMs)

In the following sections a detailed discussion of SOMs will be presented. This is a clustering
technique with close connections to Neural Networks which is a very popular supervised
learning technique. The SOM was introduced in 1982 by Teuvo Kohonen. It is a form of
Competitive Learning and a brief explanation of Competitive Learning follows in the next
section. In the sections following thereafter we discuss the SOM algorithm, the initialisation
of the SOM, the batch SOM, combining SOMs with other clustering methods and useful
adaptions to the original SOM.

3.3.1 Competitive Learning

In this type of learning we have a network structure with three layers, an input layer, a
competitive layer and an output layer. The competitive layer is similar to the hidden layers,
of which several can be present, in a supervised Neural Network. In the Competitive Learning
process the input layer accepts one p-dimensional observation at a time, ; = {x;1, T2, ..., Tip },
and each of the input nodes represents one of the p-dimensions, x;,. The input nodes are fully
connected to the competitive layer nodes and each of the competitive layer nodes represents
an activation function of the input layer nodes, s(x;, w;). Here w; represents a weight vector
that will be applied to the input vector, so that s(x;, w;) = w;‘.ra:i = >0, wjexie; these weight
vectors are also called prototypes or neurons (these terms will be used interchangeably).
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The number of neurons, say M, will have to be specified beforehand in most of the Competitive
Learning algorithms, except when a growing phase is present, like in GSOMs. The prototypes
are then labelled {w;, w,,...,wy} and M can be specified to be greater than or equal to
the number of desired clusters K, so that M > K. If we specify the number of neurons to
be more than K, a second clustering algorithm will be applied to the final set of neurons to
return the exact number of clusters required (Xu & Wunsch II, 2009:111-112).

Only the neuron with the largest value for s(x;, w;) is activated and pushed through to the
output layer, so that J = argmax{s(x;, w;)} indexes this neuron. It is also called the Best

J
Matching Unit (BMU) to the input observation, or the winner neuron. This neuron, w;, now
receives the opportunity to be adjusted towards the input vector, x;, to resemble it more
closely. The equation for this adjustment has the form:

w;(t + 1) = w;(t) + hy;(t) (@ —w;(1)),

and here we need to introduce some notation and definitions.

Firstly, hy;(t) is a neighbourhood function and €,(¢) is the set of indices of the neurons
that form a neighbourhood around w, i.e. that lie close to w;. As pointed out later, the
neighbourhood will decrease in size as the iterations of the different algorithms continue.
This means the number of points seen as close to w; will decrease.

A simple possibility for specifying h;;(t) would be:

t), ifjeQ,t
hJj(t):{g7(> if;¢QJ((t))'

Here n(t) is the learning rate function which ensures that the algorithm benefits from slow
learning and does not converge too quickly. The learning rate in the above equation is
time-dependent, but it can also be specified as constant, n(t) = 1. Now if we choose to specify
Q;(t) = {J}, this means that a neighbourhood around w; only includes w itself and the
above equation simplifies to:

hy;(t) = { g’(t)’ jj;;

This will cause the updating equation to simplify to:
wy(t+1) =w, (@) +nt) (e —w,(1)).

This is called Hard Competitive Learning and can also be referred to as Winner Takes All
(WTA). If a neighbourhood of neurons around w is adjusted towards «; it is called a Winner
Takes Most (WTM) method or Soft Competitive Learning (Hastie et al., 2009:528-529; Xu &
Wunsch 11, 2009:113,139).

We refrain from using the update equation w;(t + 1) = w;(t) + n(t)x;, which could lead
to exponential growth of the neurons, without an upper limit. With Hard Competitive
Learning we run the risk of leaving certain neurons untouched as they might never have
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the largest activation value. With Soft Competitive Learning and the introduction of the
neighbourhood function, hy;(t), we alleviate this problem by updating a whole group of
neurons and, hopefully, improving all the neurons in the neighbourhood’s probability of being
the next BMU (Xu & Wunsch II, 2009:113).

3.3.2 Details about SOMs

The SOM was suggested as an unsupervised method for dimension reduction and clustering.
It was also originally suggested as an online method for illustrative purposes. An online
learning method is presented the training data observations in a sequential order and the
outcome is updated for each observation. Batch learning methods are presented the full

training dataset in one iteration of the learning algorithm. We will first discuss the online
SOM and the batch SOM follows in a later section.

If class labels are known beforehand a supervised or semi-supervised SOM can be fitted,
although this will not be discussed further in this study. The SOM provides a way for a
high dimensional dataset to be mapped onto a lower dimensional grid of prototypes. The
most popular choice for the dimensionality of the SOM grid is two dimensions, even though
just one dimension or dimensions larger than two are also possible. We will only discuss
two-dimensional SOMs in this study and the two-dimensional SOM grid is illustrated in
Figure 10.

The grid of prototypes captures as much of the information in the full dataset as possible
and tries to preserve the topology of the input space. This means that observations that lie
close together in the input space should lie close together in the prototype grid. For this
purpose the input space may only be stretched and bent, it is not allowed to cut or tear the
space to fit the input observations onto this grid. This provides a way of visualising and
understanding the proximities between the observations of the high-dimensional dataset in
a two dimensional plane. For lower dimensional and smaller datasets the SOM might not
be the best option and one of the methods designed for small sets should rather be used
(Hastie et al., 2009:528; Kohonen, 2001:105-106; Kohonen, 2013:53,55-56; Xu & Wunsch II,
2009:138).

To illustrate the various aspects of the SOM a toy dataset generated from a Multivariate
Gaussian distribution is considered. In this dataset there are p = 4 variables and three
distinct classes of observations, K = 3. The dataset is illustrated in Figure 9, plotted on the
first two PCs which explained 87.1% of the variance in the data.

Each prototype can be labelled according to its position in the map. We can see the two
dimensional map as an axis system and each prototype can receive a coordinate pair that
references its location in the map. There will be M coordinate pairs with the horizontal axis
called ¢; and the vertical axis called g;. We count the rows from the bottom upwards and the
columns from left to right (Hastie et al., 2009:528). For example, the first prototype in the
left bottom corner of the grid will be labelled 71 = (1.1, ¢21). The position label r; refers to
the coordinate pair of the position of the prototype w;.
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Figure 9: Multivariate Gaussian data, p =4 and K = 3

The concepts of a neighbourhood and “closeness” can be defined within this coordinate
system and Euclidean distance can be used for this purpose. A neighbourhood around the
prototype w; will include the prototype itself and the prototypes that lie close to it in the
two dimensional coordinate plane, similarly all the r; that lie close to r; will be included in
the neighbourhood. It is important to note that the neighbourhood in a SOM is determined
in the two dimensional grid and not in the original high-dimensional input space and that
distance is calculated in R?, not in RP (Hastie et al., 2009:528-529; Kohonen, 2001:111).

The prototypes can be represented on the SOM grid in different formats. The grid can be
rectangular with the prototypes lining up horizontally and vertically. Another possibility
is to have the prototypes present in a hexagonal way and the prototype grid will look
like a honey comb. Kohonen (2013:55) recommends the use of the hexagonal map as this
visualisation may be closer to the truth of how the prototypes align in the original input space.
Observations and prototypes are unlikely to perfectly align to a rectangular grid in the input
space. The algorithm may benefit from the extra flexibility to order the prototypes, because
in a rectangular grid each prototype has four immediate neighbours and in a hexagonal grid
that increases to six. There is also the possibility to organise the prototypes in an irregular
fashion, for example to fit the shape of a geographical map, which can be useful in spatial
and geographical clustering (Kohonen, 2001:110; Mayer, Merkl & Rauber, 2005).

Self Organising Map (SOM) Online Algorithm:

1. Initialise the prototype grid by deciding the grid dimensions and initialising the proto-
types w; € RP, j =1,2,..., M.

2. Determine the learning rate function 7(¢) and the neighbourhood function h;(t).

3. Choose an input observation x; randomly.
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4. Find the closest prototype w;(t) to @; in the input space R? using Euclidean distance,

J = argmax{ | — w,(t)|]}.
J

5. Establish the neighbourhood of prototypes 2,(t) around w ;(t) with h;;(¢) and calculate
the current learning rate 7(t). The size of this neighbourhood (i.e. the number of
prototypes it contains) decreases to 1 with ¢.

6. Update all w;(t) in the neighbourhood of w(t) to move closer to input point x; with

w;(t+1) =w;(t) + hy(t)(z; —w;(t)).

7. ITterate Step 3 to 6 until convergence, i.e. no significant change in the positions of the
prototypes.

After the prototype grid has converged, new datasets can also be mapped onto the grid.
Each prototype in the grid might represent a cluster by itself or might be grouped with
other prototypes to form a larger cluster. The new observations then belong to the same
clusters as their best matching prototypes; these best matching prototypes are determined
using Euclidean distance (Hastie et al., 2009:528-529; Kohonen, 2013:54,56; Xu & Wunsch II,
2009:139-141).

A requirement for the neighbourhood function and the learning rate is that they should both
be monotonically decreasing with time. The learning rate update function can be defined as
n(t + 1) = an(t). Here the value for 0 < o < 1 will depend on the speed of learning required,
but should be chosen close to 1 for slow learning. We would like () — 0 as ¢ — oo. This
will be achieved by choosing 7(0) very large and having many steps in the algorithm (> 1000)
(Alahakoon et al., 2000:606).

The neighbourhood function should start very wide and grow smaller until the algorithm
turns into an online K-Means algorithm and only updates one prototype at a time. This is a
progression from Soft Competitive Learning to Hard Competitive Learning in slow and small
steps. A good choice for the neighbourhood function is to multiply the learning rate with a
radial basis function kernel that has the form:

—|lry — ;]2 ,
hy;(t) = n(t) exp (W) , for all j.

The function o(¢) has to be monotonically decreasing with time as we would like the
neighbourhood to shrink with time (Kohonen, 2001:111-112).

A suggested function for o(¢) by Xu & Wunsch II (2009:140) is

t

o(t) = ogexp (—7_> :

where oy is a large initial value and 7 is a constant. Kohonen (2001:111; 2013:56-57) believes
that specifying the form of the function o(¢) is not too important to the SOM algorithm.
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The requirement for the function is that it starts out very large (half of the diameter of the
whole map) and reduces to a very small size (one or two prototypes) as t progresses. The
importance of carefully specifying the parameters increases with the prototype grid size, if
the grid is relatively small (for example, less than 100 nodes) then it would be sufficient
to choose the parameters in a very simple fashion. The size of the initial neighbourhood
would depend on the initialisation method for the SOM grid. If the prototypes are relatively
ordered, as with linear initialisation discussed below, then the algorithm can go straight to
the convergence phase. If the prototypes are not ordered at initialisation, as with random
initialisation also discussed below, and the starting neighbourhood is chosen too small the
map might not reach convergence. Convergence represents the point where the prototype
vectors no longer change considerably from one iteration to the next.

3.3.3 Initialisation of the SOM

The first part of initialising the prototype grid is deciding on the number of prototypes and
how they will be organised. The number of prototypes in a two dimensional grid can range
from four to thousands. It will depend on the specific data problem and may also include
some prior knowledge about the data or the number of clusters expected. It is recommended,
as with most statistical learning models, that a few different grid sizes are tested on the data
and an appropriate size is identified.

The height and width of the SOM can be determined by using principal component analysis
(PCA). We can find the first two PCs and the eigenvalues linked to them and then create
a ratio of the largest eigenvalue of the data to the second largest eigenvalue. Using this
ratio as a rule of thumb should help define appropriate dimensions for the prototype grid by
determining the height over width ratio of the SOM in the same way. For the toy dataset
this ratio was 1.89, which means we can initialise the prototype grid on the ratio 2 : 1.
For example, if we want the width to be 3, we have to make the height 6. An example of
this, together with the two types of SOM topologies, can be seen in Figure 10. The pie
charts inside the prototype vectors represent the weight that is given to each variable in that
prototype. These value come from a quick SOM fit with a Gaussian neighbourhood and
random initialisation, for illustrative purposes.

SOMs, unfortunately, suffer from border effects as data are more sparse around the edges of
the map and the spacing of the prototypes might be less reliable. This is a phenomenon that
is witnessed in almost all statistical methods as it is harder to extrapolate a model around
the edges of the data than interpolate in the interior of the dataset. In SOMs it has been
suggested that the border effect can be alleviated by using spherical maps. Even though this
sounds promising it will not be investigated further in this study. Growing SOMs, discussed
in detail later, circumvent the problem of deciding on the size of the prototype grid as the
method starts with a 2 x 2 grid and grows additional nodes as they are needed. This is a
major improvement over the trial-and-error method that would have to be used for deciding
the size of the prototype grid of the original SOM (Alahakoon, Halgamuge & Srinivasan,
2000:602; Kohonen, 2001:142; Kohonen, 2013:55-56).
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(a) Rectangular Topology

(b) Hexagonal Topology

Figure 10: Examples of the two types of SOM topologies, (a) Rectangular and (b) Hexagonal,
with dimensions according to the ratio of the first two eigenvalues and the pie charts
representing the weights of the prototype vectors
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The second part of initialising the prototype grid focuses on determining the initial weight
vectors themselves. A first option, called random initialisation, is to assign observations
randomly to the prototype vectors. This might cause the algorithm to take longer to stabilise
as there is no pattern in the starting weight vectors. Initialising the SOM at random was
initially done for illustrative purposes and simplicity when the SOM was developed.

It is also possible to initialise the map in such a way that there is already some order
amongst the prototypes. This means that the algorithm does not have to use valuable time
to create a sensible order in the prototypes. A way to do this is by using the first two
principal components (PCs) of the input dataset, this is called linear initialisation. Akinduko,
Mirkes and Gorban in 2016:220-221 found that there is merit in both types of initialisation.
They found that the optimal initialisation method is dependent on the linearity of the data
presented to the algorithm. For linear and semi-linear datasets it is more beneficial to use
linear initialisation. Nonlinear data benefits from random initialisation, as many different
starting values can be tested.

We now look at linear initialisation in more detail. A SOM algorithm should give the same
results for the same PC initialisation, which means that it is completely reproducible. Random
initialisation will only be reproducible if a seed has been set. The prototype vectors are then
set as linear combinations of the first two PCs of the input data. According to the toy data
example, the first two PCs are PC; = (-0.58, -0.81, -0.04, -0.02) and PC, = (0.81, -0.59, 0.05,
0). If we would like to initialise a grid of size 6 x 3 then we could create two weight vectors,
which are called a; and a, for the PC-values, ranging between [—1,1]. As an example of how
a; and ay can be specified we set a; = (-1, -0.6, -0.2, 0.2, 0.6, 1) and ay = (-1, 0, 1). To
initialise the prototype vector with location r; and with coordinates (1, 1) the values would
be w1(0) = a1 X PCy + @z x PCy = (—1) x PC; + (—1) x PCy = (-0.23, 1.4, -0.01, 0.02).
A second example is the prototype vector with location 75 and with coordinates (2,2) the
values would be wg(0) = (—0.6) x PC; + 0 x PCy = (0.35, 0.49, 0.02, 0.01).

According to Kohonen in 2001:142-143, when linear initialisation is used, the prototypes are
already ordered and the first part of the SOM algorithm can be bypassed. The first 100 to
1000 iterations of the SOM algorithm are seen as the ordering phase where the learning rate
is chosen initially large, as well as the neighbourhood. When linear initialisation is used the
convergence phase can be started with a relatively small learning rate and neighbourhood,
meaning that the ordering of the prototypes is basically done and fine-tuning can begin.
Linear initialisation has some downfalls as there might be some empty prototypes at the end
of the algorithm. This happens because the distribution of the input data over the input
space is not taken into account in the SOM algorithm, meaning that the density of the points
in the input space might be misrepresented in the final map (Akinduko et al., 2016:216,
220-221; Kohonen, 2001:142; Kohonen, 2013:57).

3.3.4 The Batch SOM

SOMs were initially designed as an online method and was theoretically proven as such.
However, Teuvo Kohonen in his 2013 paper suggests that the batch SOM is much more
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appropriate for practical use. There are fewer parameters to specify, for example the learning
rate falls away. The algorithm also converges faster than the online algorithm (Kohonen,
2013:53,57). It is interesting that in other sources the batch SOM is not explored in such
detail and not always recommended above the online SOM. The algorithm for the batch
SOM can be found below.

Self Organising Map (SOM) Batch Algorithm:

1. Initialise the prototype grid by deciding the grid dimensions and initialising the proto-
types w; € RP, 5 =1,2,..., M.

Determine the neighbourhood function h;(t).
Supply each prototype vector with an empty sublist, C}.

Choose an input observation ;.

AN ol R

Find the closest prototype w;(t) to «; in the input space R? using Euclidean distance,

J = argmax{ | — w,(t)|]}.
J

6. Add the input observation x; to w;(t)’s sublist, C}.

7. Repeat Step 4 to 6 until all inputs have been presented to the prototype grid, this
represents one epoch.

8. Establish the neighbourhood of prototypes €2;(t) around each w;(t) with h;;(¢).

9. Update each w,(t) with the weighted mean vector of input observations in C}:

Zrﬂr/{zl N (8) Py (8) T,
Z%:l N (8) g (1) ’

where n,,(t) is the number of observations in the sublist C,, for prototype m.

10. Iterate Step 3 to 9 until convergence.

In Step 9 x,,, = #(t) > icCon (1) Ti, Which is the mean of all the input vectors in the sublist of
prototype m. If the neighbourhood function would simply award a weight of 1 to prototypes
in the neighbourhood around each w; and 0 to the others, the update function in Step 9
M Here Cq,(t) = {C;} and j € Q,(t) is a union
i€Cq J(t) g
of the sublists from the prototypes in the neighbourhood. Convergence again represents the
point where the prototype vectors no longer change considerably from one iteration to the
next (Akinduko et al., 2016:214-215; Kohonen, 2001:138-140; Kohonen, 2013:57-58).

The batch SOM is motivated by the fact that the online SOM converges to a stable state
after enough iterations. This implies that

would simplify to w;(t + 1) =

Jim Euw, ¢+ 1)} = JimE{w; (1)}
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and

E{hs;(t) (i — w;(t))} = 0, Vj.
These expected values are taken with respect to the underlying distribution generating the
data. This means that in the limit we expect the values of the prototype vectors to stop
changing from one iteration to the next. Let us define x(t) as the observation chosen at

iteration . We can now let ¢ — oo and approximate the expected value by the mean of all
the time states to return:

H—\»—t

i {h;(t) —wj;)} =0
= Z;{hjj(w(w(t) —wh)} =0
= 3 hy(0a(t) - 0] 30 -

> S 0)elt) = w; 3y ()

=> w.: = ,
! Z;f)il hJj<t)

where w} represents a stabilised prototype vector that does not change with increments
of time. Similarly to the online SOM, the batch SOM reduces to a K-Means algorithm
when the neighbourhood function has become small enough to only include the BMU
(Kohonen, 2001:138-140; Kohonen, 2013:57). Both the batch SOM and the online SOM will
be investigated in the Simulation Study that will follow.

3.3.5 Combining SOMs and other clustering methods

SOMs can in itself be used as a clustering method, but it can also be used as a dimension
reduction technique before a second round of clustering. Dimension reduction referred to
in this discussion is based on the fact that clustering the prototypes is based on the two-
dimensional structure of the SOM. Instead of having to cluster points in p dimensions, the
problem reduces to clustering prototypes in two dimensions.

This would entail specifying the prototype grid fairly large, such that M >> K. The
prototype vectors are then used as the input vectors to a second clustering. Each observation
in the input data is then assigned to the cluster its prototype vector belongs to. Now that
the dimensionality of the data has been reduced to only two dimensions, any of the classic
clustering methods (that break down in high dimensions or with large datasets) can be used.
Classic clustering methods refer to hierarchical clustering and K-means, for example, or any
of the clustering methods discussed.

The grid of prototypes also contain much less noise than the original dataset; each prototype
is a mean-like summary of the data points assigned to it and thus leads to a reduction in
variation in the data. When using the prototypes as input to a clustering algorithm it is
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recommended to exclude any prototypes that did not get the opportunity to be the BMU
(Vesanto, & Alhoniemi, 2000:586,588,592; Xu & Wunsch II, 2009:138). This two-tiered data
clustering approach will be investigated in the Simulation Study and also the clustering
methods that fit optimally on top of a SOM.

3.3.6 Growing Self-organizing Maps (GSOMs) and Growing Hierarchical Self-
organizing Maps (GHSOMs)

As mentioned before, GSOMs are SOMs with an initial prototype grid of size 2 x 2 and it
grows additional nodes as they are needed. This means that the map can expand into certain
areas of the data where more prototypes are needed and sparse areas of the data can be
served by only one or two prototypes. This also alleviates the problem that is found in SOMs,
that the data structure has to be anticipated in the initialisation of the prototype grid and
also in deciding on an appropriate number of iterations for the algorithm to converge. There
is also the possibility to impose a hierarchical structure on the GSOM. This would mean
that the GSOM is grown in different phases. The first phase grows the initial SOM and the
subsequent phases, in essence, ‘zoom in’ on certain parts of the map. At each phase a certain
part of the GSOM map is fed into a second GSOM algorithm. The advantage here is to
learn more about the regions in the data that contain more information than others. Regions
that provide little information may indicate noise or outliers (Alahakoon et al., 2000:602-603;
Kohonen, 2013:56).

The algorithm for GSOM is given below. It is important to note that we keep a counter at
each of the prototypes, called the total error, TE;. Each time the specific prototype is the
BMU, the difference between the input node and the BMU (before updating) is added to the
total error of the prototype. If this TE; value exceeds the growth threshold, GT, then the
opportunity exists to grow new nodes.

Growing Self Organising Map (GSOM) Algorithm:
1. Initialise the prototypes w; € RP and set TE; = 0, for j = 1,2,3,4.

2. Calculate the initial growth threshold (GT), determine the learning rate function 7(¢)
and the neighbourhood function h;(t).

3. Choose an input observation x; randomly, without replacement. This is repeated until
one epoch is complete, then all of the observations are put back in the sample.

4. Find the closest prototype w(t) to @; in the input space RP using Euclidean distance,

J = argmax{||@; — w;(t)[}-
J

5. Establish the neighbourhood of prototypes €2;(¢) around w ;(t) with h;;(¢) and calculate
the current learning rate 7(t).

6. Update all w;(t) in the neighbourhood of w;(t) to move closer to input point x; with
wj(t+1) = w;(t) + hy; () (e — w;(t))
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7. Calculate the error err;(t) = ||&; — w,;(t)|*
8. Update the total error for prototype w;(t): TE; = E;(t + 1) = E;(t) + err (t).
9. If TE; > GT and

a) wy(t) is a boundary node, then grow new nodes and initialise them as discussed
below.

b) w,(t) is an interior node, then distribute the error to neighbouring prototypes -
see later for full description.

10. Reset the learning rate function 7(t) to the starting value.

11. Tterate Step 3 to 10 so that at least one epoch has been completed and node growth is
at a minimum (convergence has occurred).

12. Set a small starting value for the learning rate function n(t) and a small starting
neighbourhood width for h;(¢).

13. Continue only running the SOM algorithm until the algorithm has converged.

The chosen method of initialisation for the prototype grid in Step 1 is random initialisation
and the grid shape is specified as rectangular. The error calculated in Step 7 can also be
calculated with different distance measures, but squared Euclidean distance was chosen here
(Alahakoon et al., 2000:603-604).

Extra nodes can only be grown from boundary nodes and they are added in all possible
growing directions. This means that a corner node would grow two extra nodes, one vertical
and one horizontal; a boundary node that is not a corner node will only grow one extra
node to the open side. Choosing the initial shape of the prototype grid as 2 x 2 allows the
algorithm many options as to which direction to expand into. Growing nodes in all of the
directions available to a border node may cause some unnecessary nodes that will never be
the BMU. These unnecessary nodes can again be removed in a ‘clean up’ phase at the end
of the algorithm or can be used to clearly indicated cluster borders in the prototype grid.
When the prototype grid is too small there will be too many input observations assigned to
one of the prototypes and it will drive up that specific node’s TE ;. This indicates that that
specific area of the input space needs more attention and node growth is necessary in that
direction (Alahakoon et al., 2000:604-605).

In GSOMs it makes sense to have the neighbourhood function start much smaller than for
the original SOM, as the grid itself is very small. Mostly the neighbourhood function has the

form

hi(t) = { 0, if )¢t
The learning rate will be dependent on the number of nodes in the current iteration of the
GSOM. It makes sense to start with a small value for 7(t), because of the small grid, but as
the grid grows the learning rate might have to inflate before it can decrease again. This logic
allows us to introduce the update function for the learning rate as n(t+1) = ax(m(t)) xn(t).
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Here 0 < o < 1 is the parameter that controls the size of the learning rate reduction from

one iteration of the algorithm to the next. The function ¢ (m(t)) is dependent on the

current number of nodes in the prototype grid, m(t), and a good choice for this function is
R

w(m(t)) = (1 — W) Here R is an arbitrary constant but can be something similar to the

initial number of prototypes in the grid, for example 4 (Alahakoon et al., 2000:603,606).

When new nodes are added to the GSOM it is important to pay attention to the weight
initialisation. When a new node is added between two existing nodes, it is acceptable to
take the average of the two neighbouring nodes as the initialisation value. Mostly, newly
grown nodes will only have one neighbour from the existing nodes. The node where the
growth originates from will have neighbours of its own, and these will have to be used to
help initialise the new node.

Let us call the node where growth originates from w4 and its neighbour wp. If |Jwg|| > w4l
then the new weight vector will be ws — (wp — w4) and if ||wp|| < ||wa|| then the new
weight vector will be w4 + (w4 — wpg), where ||.|| is the Euclidean norm of a vector. It is
always preferable to choose wp to form a straight line between w4 and the new node, but if
that is not available any of the neighbours will be useful for the new weight initialisation.
The formula stays the same, regardless of where the neighbour is attached. There is also the
possibility, due to trimming of the prototype grid, that a new node may be grown from a
prototype with no other neighbours. Initialisation in this case is just the average between
the largest and smallest prototype in the grid. Here largest and smallest refers to the weight
vectors with the largest and smallest Euclidean norms, respectively. The newly assigned
weight values might be weighted down or up to make sure that they fit in with the organisation
of the existing grid (Alahakoon et al., 2000:605).

We also have to discuss the distribution of the error to other nodes in the prototype map if
an interior node’s TE was larger than the growth threshold, GT. Because the node where
the growth is needed is in the interior of the grid the error of nodes around it must be
increased. As the algorithm evolves, this increasing of the error of the neighbours of the
winning node will eventually reach a border node. This process allows interior BMUs to also
have an influence on the size of the final grid. The error of the BMU itself will be updated
by E;(t+1) = % All the bordering nodes to w(t) will have their errors updated by
E;(t+1) =E;(t) +v x E;(t), where 0 < v < 1 is called the factor of distribution. This can

be decided in line with how fast the map is desired to grow (Alahakoon et al., 2000:607).

The growth threshold, GT, also needs to be discussed. The growth threshold controls the
spread of the prototype grid and its size can be dictated by the purpose of the GSOM. If the
goal is for the map to be large and very detailed then a small GT value will be required. If
a smaller map with less detail is required as a brief overview of the data, or as a starting
point for further GSOMs on smaller parts of the map, then a large value of GT should be
chosen. The number of variables in the input dataset should also be considered because the
TE value at each node will become higher with higher dimensionality of the input data. This
is because the Curse of Dimensionality starts moving observations further apart.

The spread factor, SF, is introduced here as a universal parameter that controls the spread
of the GSOM and allows the GSOMs from different datasets with different dimensionalities
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to be comparable. We define the equation GT = —p x In(SF), where 0 < SF < 1 and the
derivation will not be discussed here but can be found in Alahakoon et al., 2000:608-609.
This SF has full control over the growth of a GSOM. It is recommended to use 0 < SF < 0.3
in the exploratory phase of data analysis which should provide a good overview of the input
dataset. Now a new GSOM can be grown with an SF > 0.3 if it is required or a certain area
of the data can be chosen to ‘zoom in’ on (Alahakoon et al., 2000:604,607-609).

An advantage of the GSOM is that the shape of the map itself already reveals the different
possible clusters in the data. It will branch out into the different areas of interest and will be
relatively easy to pick out and investigate further with larger SF values. The original GSOM
can be grown with a certain SF, and once a subsection of the data is identified, a second
GSOM can be grown with a different SF. This process can continue until a range of different
maps have been grown with a range of different SF values. As long as each map was grown on
a subsection of the previous map, a hierarchical structure of maps (GHSOM) will be created.
This can reveal all the possible clusters in the data (Alahakoon et al., 2000:610,613).

3.4 Summary

In this part of the literature review we have discussed methods to be used for large and high

dimensional datasets. The methods discussed were CLARA, SOMs, GSOMs and GHSOMs.
Only CLARA and SOMs can be tested and investigated in the following simulation study
because R software for the other methods have not been developed.

43



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4: SIMULATION STUDY

4 Data Simulation Study

4.1 Introduction

The purpose of the simulation study is to illustrate the application of the different clustering
methods discussed in the literature review. These include the more traditional methods of
K-means, K-medoids and hierarchical clustering, where data samples are assumed to be small
to medium sized and low-dimensional. We will also investigate methods that are more geared
towards larger datasets such as CLARA, as well as SOM that can handle high dimensions.

By generating the datasets according to certain specifications, the environment is controlled.
The data will be generated from a multivariate Gaussian distribution. All the groups will
have the same covariance matrix, but the mean vectors will be varied to set the groups apart.
The differences amongst the mean vectors will be varied in a systematic way. By this we
mean that we will move the mean vectors of the groups closer together to ascertain how
difficult the methods find it to separate the data into distinct clusters.

We will also use larger datasets with more clusters to test CLARA and SOMs. Datasets that
were generated to have specific cluster shapes, i.e. not spherical, will be used to determine how
the different methods handle different cluster shapes that will probably occur in real-world
data. The methods investigated in this simulation study are inherently unsupervised learning
methods. Investigating them in a supervised fashion, by specifying clusters in the data
beforehand, is a way of determining their effectiveness in different scenarios.

In the simulation study the simulated data will first be specified and visualised. Next the
various clustering methods will be discussed, along with the approriate R packages and
functions to use for each method. The relevant R code and output will form part of the text
to ensure that the study is reproducible and understandable. The clustering methods will
also be compared using certain criteria discussed in the literature review.

4.2 Design of the Datasets

We first load all the packages that will be needed. ML ASS is used when generating multivariate
Gaussian data (Venables & Ripley, 2002), while ggplot2 is used for visualisations (Wickham,
2016), along with grid, gridBase and gridExtra to arrange more than one plot in a grid
(R Core Team, 2018; Murrell, 2014; Auguie, 2017). The package xtable and the function
with the same name are very useful for creating Latex code for tables from R output (Dahl,
2016). The R package knitr is used for importing images into the final pdf (Xie, 2018). The
necessary further explanations will be provided as the packages are being called.

library (MASS)
library(xtable)
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library(ggplot2)
library(ggalt)
library(grid)
library(gridBase)
library(gridExtra)
library(knitr)
library(cluster)
library(factoextra)
library(dendextend)
library(clv)
library(kohonen)
library(SOMbrero)

In Table 4 a summary of the data scenarios that were chosen for this simulation study can
be seen. The details that are available per scenario are the number of variables, the number
of clusters, the number of observations, the shapes of the clusters (spherical, elongated or
mixed) and the cluster size balance. The scenarios will be discussed in detail throughout the
study.

The variables have a multivariate Gaussian distribution with varying mean vectors for different
cluster labels. We specify the covariance matrix as being the same for all the clusters. A
very small correlation between the variables is added. Below is the function to create the
covariance matrix and the desired output from the function. This covariance matrix will be
used for all data generation.

CovMatFunc <- function(p, corx, sdx){
#p: number of wvariables
#corxz: specified pairwise correlation value (same for all pairs)
#sdx: specified standard deviation per variable (same for all wvartiables)

CovMat <- matrix((sdx~2)*corx, nrow = p, ncol = p)
diag(CovMat) <- (sdx)~2

return(CovMat)
}
[ 1 015 015 ... 0.15 ]
015 1 015 ... 0.15
y— | 015 015 1 0.15
: : . 0.15
| 015 015 015 ... 1 |

The function that assembles all of the datasets can be seen in Appendix C. This function,
called GenXDat, can generate spherical and elongated clusters. The p-vectors will determine
how well separated the clusters are.
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Table 4: Scenario A and B overview

Scenario | A B
p 10 10
K 3 11

N 600 15000
Shapes Spherical | Mix
Balance | Balanced | Imbalanced

4.2.1 Datasets for Scenarios A and B

Scenario A is purposefully designed to be simple and to be used for illustration of all
the traditional clustering techniques. These include K-means, K-medoids and hierarchical
clustering. This scenario has compact and spherical clusters lying fairly close together, but
with minimal overlap. The idea is that all the traditional methods should perform well on
this dataset. Scenario B is specifically designed to have a large number of observations and
to have more clusters than the previous scenario. The aim of this is to play to the strengths
of a method such as SOMs, that can handle high-dimensional data and large datasets. It
is designed to be more complex with elongated clusters. This is to test the effectiveness of
SOMs and also to investigate how well the traditional clustering methods fit on top of SOMs.

For simplicity, the number of clusters is chosen as three, K = 3, for Scenario A. Initially we
will also keep the clusters of the same size, N; = Ny = N3 = 200 and N4 = 600 for Scenario
A. Scenario B will have eleven clusters so that K = 11. Also, Ny = Ny = Ny; = 2000,
N3 = N4 = Ng = N10 = 1500, N6 = Ng = 1000, N5 = N7 = 500 and NB = 15000. We would
like to investigate these scenarios in 10-dimensional space, 7.e. p = 10. The mean vectors
for Scenarios A and B will be varied to observe how the results change as the generated
clusters move further away from each other, 7.e. distances among mean vectors increase.
“Further away” in this case refers to distance in Euclidean space. Scenario B will test how
the clustering methods react to elongated clusters. For Scenario B three elongated clusters
will be included.

The first p-vector for Cluster 1 will be kept fixed at the origin, for both scenarios, as a
reference point:

p=[0000000000]

The two p-vectors compared to the origin for Scenario A are:

ph=[6 66660000 0]
ph=13333300000]
We hope that specifying the cluster means in this way will result in three clusters that are

simple to separate. These three clusters serve an illustrative purpose and should be the easier
of the two scenarios.

46



Stellenbosch University https://scholar.sun.ac.za

The ten p-vectors compared to the origin for Scenario B are:

py=112 120 0 0 0 0 0 0 0|

ph=[11 11 11 11 0 0 0 0 0 0|
pi=[10 10 10 10 10 10 0 0 0 0|
9 9 '

o o o O
o o o O

_]
.

The mean vectors for Scenario B results in clusters of varying levels of separation. This
means that we expect some of the clusters to be more difficult to separate than others. We
expect the elongated clusters and the clusters with a high level of overlap to pose the largest
difficulty to the clustering methods.
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4.2.2 Visualising 10-dimensional data for Scenarios A and B

The generated data are more than three-dimensional and are therefore impossible to visualise
without some kind of simplification or projection. Principal Component Analysis (PCA) will
be used to find the first two principal components (PCs) of the data. The clusters can then
be visualised as projections onto these two PCs. The function prcomp in the R stats package
allows us to perform this PCA (R Core Team, 2018). The R code for determining the PCs for
Scenario A and determining the percentage of variance explained by each PC can be found
below. In the table below we also find the output of the percentage variance explained per
PC for Scenarios A and B.

pca_A <- prcomp(XDatSet_A[,-11], center = FALSE, scale. = FALSE)
perc_explained A <- (pca_A$sdev™2)/sum(pca_A$sdev™2)

xtable(perc_explained_AB)

% Var Explained PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCI0
Scenario A 90.5 1.7 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.8
Scenario B 76.5 9.9 7.0 3.4 1.6 0.4 0.3 0.3 0.3 0.3

We can see in the table above that for Scenario A only the first one or possibly two PCs
are significant. A clear, large drop in percentage variance explained can be seen after the
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(a) Scenario A (b) Scenario B
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Figure 11: Data Scenarios A and B plotted in terms of their first two PCs with given class
labels

1%* PC and a much smaller drop after the 2" PC. For Scenario B the first 5 PCs seem to
be significant. A large drop in percentage variance explained can be seen after the 15* PC
and much smaller drops after the next 4 PCs. Also, because we have specified the covariance
matrix and we know that all the variances will be the same, we do not need to normalise the
data. For a real-world dataset normalisation will be required so as to not favour variables
with larger measurement units.

As we can see in Figure 11(a) the three classes are separable in Scenario A, and there is
practically no overlap between the classes. Here the first two PCs explained 92.2% of the
variance in the data. Figure 11(b) shows Scenario B where the first two PCs explained
86.4% of the variance in the data. In Figure 11(b) we can see the larger number of clusters
of Scenario B. There is some overlap between some of the clusters, while others are well
separated. The three elongated clusters can also be seen clearly.

The shaded areas in Figure 11 are created by the function geom__encircle from the package
ggalt (Rudis, Bolker & Schulz, 2017). The R code to create Figure 11(a) is given below and
the code is similar for the rest of the colour-coded cluster plots. The function ggplot only
takes dataframes as input, so a dataframe needs to be created if the data is not already in
the correct format.
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dat_for_plot_A <- cbind(as.data.frame(pca_A$x[, 1:2]),
labels = as.factor(XDatSet A[,11]))

plot_A <- ggplot(dat_for_plot A, aes(x = PCl, y = PC2, colour = labels))+
geom_point (show.legend = F)+
ggtitle("(a) Scenario A")+
theme(plot.title = element_text(size = 15))+

xlab(paste("PC1 (", perc_explained_A[1], "%)", sep = ""))+
ylab(paste("PC2 (", perc_explained A[2], "/)", sep = ""))+
scale_color_manual (breaks = c("1", "2",6 "3"),

values = c("orange", "seagreen3","indianredl"))+

geom_encircle(data = subset(dat_for_plot_ A, labels == 1),

aes(x=PC1, y=PC2), fill = "orange", colour = "orange",

alpha = 0.1, s_shape = 0.5, expand= 0.005)+
geom_encircle(data = subset(dat_for_plot_A, labels == 2),

aes(x=PC1, y=PC2), fill = "seagreen3", colour = "seagreen3",

alpha = 0.1, s_shape = 0.5, expand= 0.005)+
geom_encircle(data = subset(dat_for_plot_A, labels == 3),

aes(x=PC1, y=PC2), fill = "indianredl",

colour = "indianredl", alpha = 0.1,

s_shape = 0.5, expand= 0.005)

4.3 Cluster Validation

After we have applied the different clustering methods we would like to get an indication of
the appropriateness of the clusters found and also their isolation and compactness. These
concepts were discussed in the literature review. There is an R package called clv for this
purpose. It was designed by Lukasz Nieweglowski and was last updated on 19 February
2015. This package contains calculations for some external criteria, for example the Rand
Index, Jaccard Coefficient and Fowlkes and Mallows Index we discussed before. We also use
this package for calculating relative criteria, such as the Dunn and Davies-Bouldin indices
(Nieweglowski, 2015). We will also use the average silhouette value per clustering to compare
the different clustering algorithms. This is done at the end of each of the scenario discussions.

Comments about performance can only be made because we have the luxury of knowing the
true underlying partitioning of the data. The cluster labels were not used in the training of the
clustering algorithms and the cluster labels will also not be available in a real-world dataset.
There is no measure of accuracy available for clustering in an unsupervised environment. We
can simply use the clusters to gain more insight into the kind of subgroups that might exist
in our data.

All the conclusions made about the different clustering methods, and the R software for them,
are very specific to the data that were generated here. If a different distribution is used or
different parameters are chosen, then the conclusions might have been different. This also
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holds for the conclusions about the methods for choosing K.

4.4 Scenario A

We will use Scenario A to explain all the R software needed for fitting different clustering
methods. We will also show all visualisations available and how to create them. For the
remaining scenarios only the interesting findings or outcomes will be shown.

4.4.1 K-means Clustering

The most popular R software associated with K-means comes from the stats package that is
automatically loaded with the R environment (R Core Team, 2018). The function is called
kmeans. Input parameters for this function include:

x: the data matrix X (in the format of a vector, matrix or dataframe)

centers: the number of clusters K

iter.max: the maximum number of iterations of the algorithm

nstart: number of random initialisations of the mean vectors

algorithm: can choose between Hartigan-Wong, Lloyd, Forgy or MacQueen (we will
use the default, Hartigan-Wong, as it is almost certain to converge)

The most important outputs include:

cluster: the vector of cluster allocation indices, C'

centers: the matrix of cluster centers, {m;, mo,..mg}

totss: the total sum of within- and between-cluster variation, 7'(C') = W(C) + B(C)
withinss: a vector of the within-cluster variations

tot.withinss: total within-cluster variation, W(C) = £ 31, Yop=r Zogin=k dir
betweenss: total between-cluster variation, B(C) = 1 Y8, >oC )=k 2-C i)k i
size: number of points in each cluster

iter: number of iterations actually performed

We need to specify a value for K as the first step in the K-means algorithm. The data were
generated, so we know it should be K = 3 for Scenario A. We would like to confirm that
the gap statistic, elbow method and average silhouette method, explained in the literature
review, find this value as well.

4.4.1.1 Choosing the value of K

We use the function clusGap from the package cluster to determine the values to calculate
the gap statistic. Input parameters for this function include:

x: the data matrix X (in the format of a matrix or dataframe)
FUNcluster: the clustering algorithm to use
K.max: number of clusters to test, must be larger than one
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B: number of Bootstrap samples to use for the null distribution
d.power: power applied to the Euclidean distance

The most important output is:

Tab: the output matrix with a row for every K.max value and columns logW, E.logW,
gap, and SE.sim; gap = E.logW - logW; SE.sim = sd,/1 + %; sdy is the standard error
of the gap

This package was last updated on 9 April 2018 and is largely based on the methods described
in the book Finding Groups in Data by Kaufman and Rousseeuw (Maechler, Rousseeuw,
Struyf, Hubert & Hornik, 2018). We use this package several times in this study, for PAM,
CLARA and divisive hierarchical clustering.

We also use the function fviz_gap_stat from the package factoextra for the visualisation of
the gap statistic. Input parameters for this function include:

gap_ stat: an object returned from the function clusGap

maxSE: a list of two parameters, method and SFE.factor; method: we use
Tibs2001SEmax as this was proposed in the paper by Tibshirani et al. in 2001; other
options are globalmax, firstmax, firstSEmax; SFE.factor: number of standard errors to
consider

The output is a ggplot object. This package was last updated on 22 August 2017 (Kassambara
& Mundt, 2017). The R code used to create the gap statistic and its plots can be seen below
for Scenario A.

set.seed(159874)

gap_out_A <- clusGap(x = XDatSet_A[,-11], FUNcluster = kmeans, B = 500,
K.max = 10, nstart = 25, d.power = 2)

ClusFrame A <- data.frame(cbind(gap_out_ A$Tab[,1:2], K = c(1:10)))

Gap_1A <- ggplot(ClusFrame A, aes(x = K, y = logW))+

geom_point(color = "darkgreen")+ geom_line(color = "darkgreen")+
geom_point(aes(x = K, y = E.logW), color = "maroon")+

geom_line(aes(x = K, y = E.logW), color = "maroon")+
scale_x_continuous(breaks = 1:10, labels = c("1", "2", "3, 5 n4qn ngn - ugn,

||7||’ ”8“, ||9||, ||10||))+
ggtitle("(a)") + xlab("k") + ylab(expression(logW[k]))

Gap_2A <- fviz_gap_stat(gap_out_ A, maxSE = list(method = "Tibs2001SEmax",
SE.factor = 1))+
ggtitle("(b)") + xlab("k") + ylab(expression(Gap[N](k)))

The function fviz _nbclust from the package factoextra is used for the visualisations of the
elbow method and the average silhouette method. Input parameters for this function include:

x: the data matrix X (in the format of a matrix or dataframe)
FUNcluster: the clustering algorithm to use
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Figure 12: The gap statistic (a) and (b), the elbow method (c) and the silhouette method (d)
for choosing K for Scenario A using K-means clustering

bR ENA4

method: the optimal number of clusters selection method; can be “wss”, “silhouette”
or “gap_stat”

k.max: number of clusters to test, must be larger than one

nboot: number of Bootstrap samples to use for the null distribution; only needed when
method = “gap_stat”

nstart: the number of random initialisations if FUNcluster = “kmeans”

This function also returns a ggplot object and it can be manipulated as such. The code for
plotting the elbow method and the average silhouette method graphs can be seen below for
Scenario A.

set.seed(159874)
Elbow A <- fviz_nbclust(x = XDatSet A[,-11], FUNcluster = kmeans,
method = "wss", k.max = 10, nstart = 25)+
ggtitle("(c)") + xlab("k") + ylab(expression(W[k]))+
geom_vline(xintercept = 3, linetype = 2, color = "steelblue")

set.seed(159874)
Silhouette A <- fviz_nbclust(x = XDatSet A[,-11], FUNcluster = kmeans,
method = "silhouette", k.max = 10, nstart = 25)+
ggtitle("(d)") + ylab("Average Silhouettes") + xlab("k")

grid.arrange(Gap_1A, Gap_2A, Elbow_A, Silhouette A, nrow = 2, ncol = 2)

Figure 12 shows the results when applying the gap statistic, the elbow method and the
average silhouette method to Scenario A for K-means clustering. Figures 12(a) and (b)
illustrate that the gap statistic chose the appropriate number of clusters for Scenario A,
K = 3. The elbow method, that can be seen in Figure 12(c), chose the number of appropriate
clusters to be 3, as there seems to be a “kink” in the plot at K = 3. A warning for the elbow
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method is that the “kink” in the plot might be very subtle and other methods for the choice
of the optimal number of clusters will have to be relied on. In Figure 12(d) we can see the
average silhouette method for Scenario A. Here the number of clusters was chosen as K = 2.
This is incorrect according to how the data were generated, but it hints at a problem that
will be experienced in real-world data.

In real-world data we will not know the true underlying clustering structure in the data. If
clusters are overlapping or superimposed, the analyst will not know this and has to trust the
output from methods such as the gap statistic or the elbow method to suggest an appropriate
number of clusters. The conclusion regarding the choice of the value K is to apply all three
methods, the gap statistic, the elbow method and the average silhouette method. If they
agree on the value for K, then the decision is made. If the three methods do not agree, a
majority vote has to be taken or an educated guess has to be made.

There might be some prior knowledge about the underlying clusters in the data that can
be incorporated here. A range of values for K can also be fitted and the most appropriate
model can be chosen from this range. There also exists an R package called NbClust that
can calculate 30 different statistics for determining the value of K. It can be included in the
analysis if the three methods discussed above completely disagree. Otherwise it might be
unnecessary duplication of work (Charrad, Ghazzali, Boiteau, & Niknafs, 2014).

4.4.1.2 Fitting K-means

We can now fit a K-means clustering to Scenario A of which the R code can be seen below.
The known value K = 3 will be used. This value is only known because the data were
generated from a known structure. With a real-world dataset the value of K will have to be
estimated.

set.seed(98745)

kmeans A <- kmeans(x = XDatSet A[,-11], centers = 3, iter.max = 20,
nstart = 25) #algorithm = "Lloyd")

#Harttigan—-Wong algorithm used as default

centers_Akm <- kmeans A$centers[,-11] %#J, pca_A$rotation[, c(1,2)]

We will create a plot of the K-means clustering with the data observations colour-coded in
terms of their cluster labels. The R code used for this purpose similar to the R code for
Figure 11 and will not be given again. We will also create a silhouette plot by using the
function silhouette from the package cluster (Maechler et al., 2018). We defined the concept
of a silhouette of an observation in the literature review. A larger silhouette value means
that an observation is nested well inside its own cluster and has a high dissimilarity from its
nearest neighbour cluster. This plot returns the silhouette value for every observation in the
cluster and plots these values as a very dense bar chart. We also receive more information
per cluster, such as the number of observations per cluster and the average silhouette value
per cluster. We are also given the overall average silhouette value.

As the two plotting outcomes are of different types, the command par(mfrow = ¢()) or the
function grid.arrange cannot be used. We have to create an empty plotting grid and then
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Figure 13: Scenario A plotted in terms of the first two PCs with class labels from K-means
clustering (a) and the silhouette plot (b)

specify the specific viewports we would like to place our next plot into. We use a combination
of pushViewport and pop Viewport, from the package grid, to plot a ggplot object and a base
R plot in the same grid (R Core Team, 2018). The R code for this can be seen below.

D mat _euclid A <- dist(XDatSet A[,-11], method = "euclidean")
Sil Akm <- silhouette(x = kmeans A$cluster, dist = D_mat_euclid_A)

plot.new()
pushViewport (viewport(layout = grid.layout(l, 2)))

pushViewport (viewport(layout.pos.row = 1, layout.pos.col = 1))
print(plot_Akm, newpage = FALSE)

popViewport ()

pushViewport (viewport(layout.pos.row = 1, layout.pos.col = 2))

par(fig = gridFIG(), new = TRUE)

plot(Sil Akm, main = "(b)", cex.main = 0.75, font.main = 1,
col = c("orange", "seagreen3", "indianredl"),
border = NA)

popViewport ()

In Figure 13(a) we can see the K-means clusters for data Scenario A. Here the colour-coded
clusters are plotted with the first two PCs as the axes. The center for each cluster has also
been indicated with a larger plotting character. If we compare this figure to Figure 11(a)
we can see that the colours for the clusters have been re-ordered. The K-means algorithm,
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together with any of the clustering algorithms, has no sense of the ordering of the clusters
and labels them in a random way. As long as the observations that belong together are
placed in the same cluster, the actual cluster labels are not important. K-means clustering
performed well in separating the three clusters for Scenario A.

Figure 13(b) shows the silhouette plot for K-means clustering of Scenario A using Euclidean
distance as the distance measure. A value close to one for the silhouette index indicates
a “good” clustering in terms of compact and isolated clusters. In Figure 13(b) we see that
the average silhouette value is 0.43, so the K-means clusters can be seen as an “average”
clustering. This may be attributed to the fact that the clusters lie close together and are not
very isolated. The cluster sizes are almost perfectly balanced and cluster 1 and 2 have larger
silhouette values, indicating that the points inside the clusters lie close together and far from
the second nearest cluster. We can see from Figure 13(a) why cluster 3 has a lower average
silhouette value as there are more outliers present in this cluster.

4.4.2 K-medoids Clustering

We would like to fit a K-medoids or a Partitioning Around Medoids (PAM) clustering to
data Scenario A. For this we will use the function pam from the package cluster (Maechler
et al., 2018). The important inputs here are:

x: the input matrix X or the dissimilarity matrix D

k: the number of clusters K

diss: a logical parameter where TRUE indicates that x is a dissimilarity matrix, FALSE
indicates that x is the original input matrix.

metric: the distance measure for dissimilarity, currently only supports Euclidean and
Manhattan distance; only used if diss is FALSE; default is Euclidean

medoids: the vector of indices specifying initial medoids if desired; default is NULL
stand: a logical parameter where TRUE indicates that x will be standardised before
the dissimilarities are calculated; only used if diss is FALSE; default is FALSE

The most important outputs include:

medoids: the K x p matrix of cluster medoids, {m, mo,...mg}
id.med: the vector of the indices of the medoids in the original dataset
clustering: a vector of length N of the cluster assignment for each observation

The function pam only supports datasets with N < 65536. When datasets larger than this
are considered, the function clara, which will be discussed later and also comes from the
package cluster, should be used. The clusters found by the PAM algorithm are plotted in
the same way as the K-means clusters and the code will not be repeated. We tested the
gap statistic, the elbow method and the average silhouette method for finding K and the
respective values found were again 3, 3 and 2. The value for K will be taken as the true
value, which is 3. The code that fits the PAM algorithm to Scenario A and returns the cluster
centers can be found below.
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Figure 14: Scenario A plotted in terms of the first two PCs with class labels from K-medoids
clustering (a) and the silhouette plot (b)

set.seed(98745)
pam_A <- pam(x = D_mat_euclid_A, k = 3, diss = TRUE, stand = FALSE)

centers_Apam <- XDatSet_ A[pam_ A$medoids,-11] %*’, pca_A$rotation[, c(1,2)]

In Figure 14(a) and (b) we can see the outcome of the PAM algorithm being fit to the data
of Scenario A. Figure 14(a) again plots the colour-coded clusters with the first two PCs as
the axes. The medoid for each cluster has been indicated with a larger plotting character. In
Figure 13(a) we can see that the cluster centers lie perfectly in the middle of the clusters.
Comparing this to Figure 14(a) we can see that the medoids lie slightly off-center in the
clusters and this is because the medoids have to be actual observations in the dataset. From
Figure 14(a) it can be seen that K-medoids clustering did a relatively good job at separating
the three classes with only minor misclassifications. The outliers from cluster 2 were in this
case assigned to cluster 3, whereas K-means assigned them correctly.

Figure 14(b) shows the silhouette plot for K-medoids clustering of Scenario A using Euclidean
distance as the distance measure. We see the average silhouette value is again 0.43. The
cluster sizes are almost perfectly balanced and cluster 1 and 3 have larger silhouette values.
Intuitively cluster 3 should have the lowest silhouette value as it has the most outliers, but
the positioning of the medoid has alleviated this problem, as can be seen in Figure 14(b).
This might also emphasise the affect of outliers on the PAM algorithm and that there might
be value in removing outliers before running the algorithm.
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4.4.3 Clustering Large Applications (CLARA)

We would like to fit the CLARA clustering algorithm to data Scenario A. Even though it is
geared towards large datasets it will be used here for illustrative purposes. When samples
are small to medium sized it might be more appropriate to use the PAM algorithm. PAM
has a hard limit of NV = 65536, so any datasets larger than that would necessarily have to be
handled by CLARA or another algorithm for large datasets. For the CLARA algorithm we
will use the function clara from the package cluster (Maechler et al., 2018). The important
inputs here are:

X: the input matrix X

k: the number of clusters K

metric: the distance measure for dissimilarity, currently only supports Euclidean,
Manhattan and Jaccard distance; default is Euclidean

stand: a logical parameter where TRUE indicates that x will be standardised before
the dissimilarities are calculated; default is FALSE

samples: the number of samples to be drawn from the large dataset; default is 5;
recommended to be set larger

sampsize: the size of each sample; default is 40 + 2 x K; recommended to be set larger
medoids.x: a logical indicator where TRUE indicates that the medoids themselves
will be kept, if FALSE then the indices of the medoids will be returned and memory is
saved

keep.data: a logical indicator where TRUE indicates that the data will be kept, if
FALSE memory and time will be saved

rngR: a logical indicator where if TRUE an R random number generator is used, if
FALSE the old random number generator from the original FORTRAN code is used
pamLike: a logical indicator where TRUE indicates that the SWAP phase from the
PAM algorithm should also take place, if FALSE the SWAP phase will be skipped

The most important outputs are:

sample: the labels of the observations from the “best” sample, the sample that was
chosen as the best clustering by the CLARA algorithm

medoids: a K x p matrix of cluster medoids, {m, ms,..mg}; NULL if medoids.x
= FALSE

id.med: the vector of the indices of the medoids in the original dataset

clustering: the vector of length N of the cluster assignment for each observation

We will use K = 3, the true number of clusters. The gap statistic, elbow method and average
silhouette method returned 3, 3 and 2 as the values for K, respectively. The R code that fits
the CLARA algorithm to Scenario A and returns the cluster centers can be found below.
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Figure 15: Scenario A plotted in terms of the first two PCs with class labels from the CLARA
algorithm (a) and the silhouette plot for Scenario A (b)

set.seed(1014789)

clara_A <- clara(x = XDatSet A[,-11], k = 3, metric = "euclidean",
samples = 10, sampsize = 100, medoids.x = FALSE,
keep.data = FALSE, rngR = TRUE, pamLike = TRUE)

centers_Aclara <- XDatSet_A[clara_A$i.med,-11] %#*7 pca_AS$rotation[, c(1,2)]

In Figure 15(a) and (b) we can see the outcome of the CLARA algorithm fit to Scenario A.
Figure 15(a) plots the colour-coded clusters with the first two PCs as the axes. The medoid
for each cluster is indicated with a larger plotting character. Again the medoids lie slightly
off-center in the clusters and this is because the medoids have to be actual observations in
the dataset and because the medoids were only determined from samples of the data. From
Figure 15(a) it can be seen that CLARA clustering did a relatively good job at separating
the three clusters with only minor misclassifications.

Figure 15(b) shows the silhouette plot for the CLARA clustering of Scenario A using Euclidean
distance as the distance measure. We see the average silhouette value is again 0.43. The
cluster sizes are fairly balanced and cluster 1 and 3 have larger silhouette values. The negative
silhouette values come from the misclassified observations.

4.4.4 Agglomerative Hierarchical Clustering

We would like to apply agglomerative hierarchical clustering to the data of Scenario A. We
would also like to test the different forms of linkage for agglomerative hierarchical clustering.
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In the stats package there exists a function hclust used for agglomerative hierarchical
clustering (R Core Team, 2018). The important inputs here are:

d: the dissimilarity matrix D
method: the method of linkage; the options are Ward(two different types), Single,
Complete, Average, Mcquitty, Median and Centroid linkage

The most important outputs include:

merge: an (N — 1) x 2 matrix; the rows represent the steps of the clustering algorithm;
the two elements of the rows represent the two clusters that were merged; if a value in
the row is negative it represents a singleton.

height: a vector of length N — 1 containing the values of dissimilarity at which the
clusters were merged; will go on the vertical axis of a dendrogram.

order: a vector of length N returning a permutation of the original observations to
ensure that branches do not cross in the plotting of a dendrogram

labels: the cluster label for each observation

There is also a function in the cluster package, called agnes, that performs agglomerative
hierarchical clustering in a similar way to hclust (Maechler et al., 2018). This function takes
the original dataset X as an input, and a metric for distance, for example Euclidean, needs to
be specified. The linkage methods for this function includes single, complete, average, Ward
(which corresponds to hclust’s second Ward type), weighted (which corresponds to hclust’s
Mecquitty) and a few others which will not be discussed here. The functions hclust and agnes
can return agglomerative coefficients (ACs) that measure the level of hierarchical clustering
structure in the underlying data. Both hclust and agnes provide output that can be plotted
on a dendrogram. Since hclust has more forms of linkage available and produces a similar
output to agnes, we feel comfortable only using hclust for fitting agglomerative hierarchical
clustering.

We will investigate the different forms of linkage that can be used for Scenario A. Because
the clusters in Scenario A are fairly compact but close together we believe that complete
linkage will perform well. We have already looked at all the different forms of linkage in
the literature review, so only the linkage forms with sensible dendrograms will be discussed
here. We will leave out single, centroid and median linkage. Below the code for fitting
agglomerative hierarchical clustering to Scenario A can be seen for complete linkage. We
will also use the package dendextend for making adjustments to the visualisation of the
dendrograms (Galili, 2015).

hclust_complete_A <- hclust(d = D_mat_euclid_A, method = "complete")

hclust_complete_dend A <- as.dendrogram(hclust_complete_ A)

hclust_complete_dend2 A <- color_branches(hclust_complete_dend A, k=3,
col = c("orange", "seagreen3", "indianredl"))

It is important to note whether an algorithm needs Euclidean distance, or squared Euclidean
distance, as input. In the hclust function we find ward.D and ward.D2 linkage methods.
The difference between the two is that ward. D uses squared Euclidean distance as input
and ward.D2 only needs Euclidean distance. It is also recommended that the heights of the

59



Stellenbosch University https://scholar.sun.ac.za

{a) Complete, AC = 0.89 (b) Average, AC= 0.79

(c) Mcquitty, AC = 0.82 (d) Ward, AC = 0.99

LR T Tﬂ"-ﬁ"l .

i

12 10 B8 ] 4 2 0 150 100 50 0

Figure 16: Dendrograms for different forms of linkage for Scenario A
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dendrogram be squared before plotting for ward. D. We will assume equivalence of the two
methods and not investigate it further, thus only ward.D2 linkage will be used (Murtagh &
Legendre, 2014).

The value for K will be taken as the true value, 3, for each of the linkage types. We did
confirm this value for each linkage method with the gap statistic, elbow method and average
silhouette method. For all complete, average, McQuitty and Ward linkage the values for K
were 3 as given by the gap statistic, 3 as given by the elbow method and 2 as given by the
average silhouette method.

In Figure 16(a) to (d) we can see the dendrograms for (a) complete, (b) average, (c) McQuitty
and (d) Ward linkage clustering in Scenario A. Looking at the dendrograms, all the cluster
methods seem to have returned balanced clusters. In the heading of each dendrogram the AC
can be found. The closer to 1 the AC-value lies, the more hierarchical clustering structure
was found in the data. In Figure 16(d) we can see that Ward linkage clustering found the
highest level of clustering structure in the data.

In Figure 17(a) to (h) we can see the outcome of agglomerative hierarchical clustering, with
different forms of linkage, being fit to the data in Scenario A. The plots in the first column
are colour-coded clusters with the first two PCs as the axes. The center for each cluster is
not shown here as it is not part of the clustering algorithm. In the second column of Figure
17 we can see the silhouette plots for the different linkage methods. From Figure 17(a),
(c) and (e) it can be seen that complete, average and McQuitty linkage made some clear
misclassifications. There are some points lying very clearly in a neighbouring cluster and
this also accounts for the negative values that can be seen in the corresponding silhouette
plots in 17(b), (d) and (f), respectively. Ward linkage, seen in Figure 17(g) and (h), did the
best job at separating the clusters and no obvious misclassifications were made. No negative
silhouette values are present here.

We see the average silhouette values for all the clusterings are again 0.43. All of the suggested
clusters are fairly balanced, but again Ward linkage produced the most balanced clustering
suggestion. For all the silhouette plots in the right column of Figure 17 we can see that the
average silhouette values for cluster 1 and 3 were higher than for cluster 2. The reasoning for
this is again the clear outliers present in cluster 2.

4.4.5 Divisive Hierarchical Clustering

We would like to apply divisive hierarchical clustering to Scenario A. The implementation
and interpretation are very similar to agglomerative hierarchical clustering and a dendrogram
is also returned. Divisive hierarchical clustering does not implement different forms of linkage,
only the maximum diameter of the clusters are used. In the cluster package there exists a
function diana that will be used for divisive hierarchical clustering (Maechler et al., 2018).
The important inputs here are:

x: the input matrix X or the dissimilarity matrix D
diss: a logical parameter where TRUE indicates that x is a dissimilarity matrix, FALSE
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Figure 17: Agglomerative hierarchical clustering data plots and silhouette plots with (a)-(b)
complete, (¢)-(d) average, (e)-(f) McQuitty and (g)-(h) Ward linkage in Scenario A
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Figure 18: Divisive hierarchical clustering (a) dendrogram, (b) cluster plot and (c) silhouette
plot for Scenario A

indicates that x is the original input matrix

metric: the distance measure for dissimilarity, currently only supports Euclidean and
Manhattan distance; only used if diss is FALSE; default is Euclidean

stand: a logical parameter where TRUE indicates that x will be standardised before
the dissimilarities are calculated; only used if diss is FALSE; default is FALSE

The most important outputs include:

order: a vector of length N returning a permutation of the original observations to
ensure that branches do not cross in the plotting of a dendrogram

height: a vector with diameters of clusters before splitting occurred

dc: the divisive coefficient, giving an indication of hierarchical clustering structure in
the data

merge: a matrix of size (N — 1) x 2; the rows represent the steps of the clustering
algorithm; the two elements of the rows represent the two clusters that were formed at
each split; if a value in the row is negative it represents a singleton that was split off

Below we can see the R code for applying the divisive hierarchical clustering algorithm to
Scenario A. We will use the true number of clusters, K = 3. The gap statistic, elbow method
and average silhouette method returned values for K of 4, 4 and 2, respectively. This is
slightly disheartening because we would have liked our methods of choosing K with the
DIANA algorithm to recognise the “correct” cluster structure in the data.

diana A <- diana(x = D _mat euclid A, diss = TRUE, stand = FALSE)
diana_dend_ A <- as.dendrogram(diana_A)
diana_dend2 A <- color_branches(diana_dend A, k=3,

col = c("orange", "seagreen3", "indianredl"))

In Figure 18(a) to (c) we can see the plots for the divisive hierarchical clustering algorithm,
DIANA, in Scenario A. Figure 18(a) shows the dendrogram for this clustering and here we
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can already see that the first split in the algorithm basically splits the data in half. Since the
DIANA algorithm is error non-correcting, there is no way for the observations of cluster 2
that were assigned to cluster 1 to be put in their correct cluster.

The divisive coefficient (DC) was quite high, meaning that the DIANA algorithm found
evidence of a hierarchical clustering structure in the data. In Figure 18(b), the colour-coded
clusters with the first two PCs as the axes can be seen. The center for each cluster is not
shown here as it is not part of the clustering algorithm. Here we can clearly see that cluster 1
is much larger than it should be. Figure 18(c) contains the silhouette plots for this clustering.
The cluster sizes are extremely unbalanced and the overall average silhouette value of 0.28 is
quite low. The very low average silhouette value and the negative silhouette values for cluster
1 can be explained by the fact that 1 contains many observations that belong to cluster 3.

4.4.6 Self-Organising Maps (SOMs)

Now we fit a few variations of SOMs to Scenario A. The main purpose is to unpack the R
software available to use for SOMs and to find informative ways to visualise our results. The
package we will use is called kohonen and it was last updated on 17 August 2018 (Wehrens
& Buydens, 2007; Wehrens & Kruisselbrink, 2018). The main uses of this package are to
fit unsupervised SOMs and also SuperSOMs; these SOMs have the ability to accept more
than one layer of input data. We will not investigate them further here. Another part of the
package that we will not investigate is supervised SOMs. This package can also be used to
map new data observations onto an already trained SOM. Firstly, the function somgrid is
used to specify the dimensions and the form of the prototype grid. The important inputs
here are:

xdim: the number of columns of the prototype grid

ydim: the number of rows of the prototype grid

topo: the topology of the grid; options are “hexagonal” or “rectangular”
neighbourhood.fct: the neighbourhood kernel function; options are “bubble” (refers
to an indicator weight function) or “gaussian”

toroidal: a logical value where TRUE indicates that the prototype grid has to be
toroidal, 7.e. the bottom and the top of the grid are connected and the left and the
right sides of the grid are connected

This function outputs the map that has to be fed into the SOM training function called som.
The important inputs here are:

X: the input matrix X in matrix format (does not accept dataframes)

grid: output from the function somgrid

rlen: the number of data epochs

alpha: the learning rate, specified as the initialisation value and the end value; the
algorithm will linearly decrease from the one value to the other over the iterations of
the data; ignored if batch SOM is chosen; default is 0.05 to 0.01

radius: radius of the neighbourhood, specified (as with alpha) as the initialisation value
and the size of the final neighbourhood; if only one value is provided, the algorithm will
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decrease to zero over the iterations; default is % of total distances between all prototypes;
radius < 1 only updates prototype itself

mode: the algorithm type; options are “online”, “batch” and “pbatch”; we will only
use “online” and “batch”

init: the initialisation vectors for the prototypes in terms of a matrix with the rows as
the prototype vectors; if init = NULL, then chosen randomly (without replacement)
from X

The most important outputs include:

unit.classif: the BMU for each observation

distances: the distances from the observations to their BMUs

code: the list of the prototype vectors

changes: the mean distance of all the observations to their prototypes

We now fit a SOM onto the data of Scenario A using a hexagonal map topology. To initialise
the SOM we need to decide on the dimensions of the map. The ratio of the first eigenvalue
linked to the largest PC to the second eigenvalue linked to the second largest PC is 52.99.
This means that the SOM map should be initialised in the ratio 53 : 1. This ratio is quite
high, so for convenience the map will have a ratio of 10 : 3. We will also use a Gaussian
neighbourhood function and will test the batch SOM and the online SOM algorithms. We
will also test random initialisation and linear initialisation.

As the kohonen package does not calculate linear initialisation, it must be calculated
manually and provided to the function. The first two PCs of Scenario A are PC; = (-0.45,
-0.45, -0.45, -0.45, -0.44, -0.01, 0, 0, -0.01, -0.01) and PC, = (0.11, -0.13, 0.01, 0.02, 0.01,
-0.41, -0.53, -0.46, -0.32, -0.45). We also define two vectors a; = (-1, -0.78, -0.56, -0.33, -0.11,
0.11, 0.33, 0.56, 0.78, 1) and as = (-1, 0, 1). The vectors a; and a, are specified to be equally
distributed between —1 and 1 along both dimensions of the SOM. We can use these vectors
to initialise the weight vectors for the SOM algorithm. Below the code for linear initialisation
of the SOM grid can be seen.

10)
3)

a_1 <- seq(from =-1, to= 1, length.out
a_2 <- seq(from =-1, to= 1, length.out
PC_1 <- pca_A$rotation[,1]
PC_2 <- pca_A$rotation[,?2]
a1 PC1<- a1l %% t(PC_1)
a 2 PC 2 <- a_2 %*% t(PC_2)
mat_1 <- rbind(a_1 PC 1, a 1 PC 1, a_1 PC 1)

mat2_index <- c(rep(1,10), rep(2,10), rep(3, 10))
mat 2 <- a_2 PC _2[mat2_ index,]

proto_vec <- mat_1 + mat_2

We can now test four versions of the SOM algorithm, by using random initialisation with the
batch SOM and the online SOM and also linear initialisation with the batch SOM and the
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online SOM. We also plot the U-matrices for these map outcomes. A U-matrix is a plot of
the sum of the distances to all the immediate neighbours of each prototype. For example, if a
hexagonal prototype grid topology is used, each prototype has 6 other prototypes surrounding
it. The entry in the U-matrix will be the sum of the distances from the prototype in question
to each of these 6 immediately adjacent prototypes.

This means that a colour-coded map can be created that reveals the natural clustering in the
data. The R code for fitting the SOMs and plotting the U-matrices can be seen below. As a
side note, the SOM algorithm can start overfitting when too many data epochs are chosen,
specifically in the online algorithm. For example, using 5000 data epochs is not necessary,
the method normally stabilises in less than 1000 epochs.

SOMgrid_A <- kohonen::somgrid(xdim = 3, ydim = 10, topo = "hexagonal",
neighbourhood.fct = "gaussian", toroidal = FALSE)

SOM_Arandbatch <- som(X = XDatSet_A[,-11], grid = SOMgrid_A, rlen = 1000,
mode = "batch")

SOM_Arandonline <- som(X = XDatSet A[,-11], grid = SOMgrid_A, rlen = 1000,
alpha = c(0.5, 0.01), mode = "online")

SOM_Alinbatch <- som(X = XDatSet_A[,-11], grid = SOMgrid_A, rlen = 1000,
mode = "batch", init = proto_vec)

SOM_Alinonline <- som(X = XDatSet_A[,-11], grid = SOMgrid_A, rlen = 1000,
alpha = c(0.5, 0.01), mode = "online", init = proto_vec)

par (mfrow = c(2,2))

plot (SOM_Arandbatch, type = "dist.neighbours", main = "(a)")
plot (SOM_Arandonline, type = "dist.neighbours", main = "(b)")
plot(SOM_Alinbatch, type = "dist.neighbours", main = "(c)")
plot(SOM_Alinonline, type = "dist.neighbours", main = "(d)")

In Figure 19(a) to (d) we can see the U-matrices for (a) the batch SOM with random
initialisation, (b) the online SOM with random initialisation, (c) the batch SOM with linear
initialisation and (d) the online SOM with linear initialisation for Scenario A. In all of the
U-matrices we can clearly see three clusters forming in the data. The darker the colour of
the prototypes, the closer the prototypes are lying together. That means that the lighter
coloured prototypes form natural boundaries for the three clusters.

We can now fit Ward linkage agglomerative hierarchical clustering on top of the SOM. To
illustrate this, we will use the batch SOM with linear initialisation. In Figure 20(a) to (d) the
outcome of Ward linkage on top of the batch SOM can be seen for Scenario A. In Figure 20(a)
the prototype grid can be seen with the weight vectors represented as pie charts. The clusters
found by Ward linkage has also been indicated. Figure 20(b) shows the dendrograms for
this clustering; the AC is 0.93 and this indicates a very good natural hierarchical clustering
structure in the data.

In Figure 20(c) the colour-coded clusters formed by the Ward linkage and SOM combination
can be seen. Visually the clustering looks very good with a few minor misclassifications.
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(a) (b)

Figure 19: SOM U-matrices for (a) the batch SOM with random initialisation, (b) the online
SOM with random initilisation, (c) the batch SOM with linear initialisation and (d) the
online SOM with linear initialisation for Scenario A
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Figure 20: Ward linkage clustering on top of the batch SOM with linear initialisation for
Scenario A, (a) prototype grid with pie charts representing prototype weights, (b) dendrogram
of Ward linkage clustering on top of the batch SOM, (c) colour-coded cluster outcome and
(d) silhouette plot
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Figure 20(d), the silhouette plot, also supports this with the average silhouette value being
similar to all the clustering methods we have looked at in the chapter. The returned clusters
are fairly balanced and very few negative silhouette values are present. This method of
clustering the SOM seems to have worked very well and will be tested on more complex data
later. Although not reported here it might have been insightful to calculate the values of K
suggested by the gap statistic, elbow method and the average silhouette method as well.

Another package we could use is called SOMbrero and it was last updated on 5 February
2018 (Villa-Vialaneix, Bendhaiba & Olteanu , 2018). The main uses of this package are
to fit unsupervised SOMs on different data types; the options available are numeric data,
contingency table data and also relational table data (dissimilarity matrices). For this package
only the online SOM algorithm can be used, the batch SOM is not available. There is also a
Graphical User Interface (GUI) available so that the functionality is available to users who
are not fully R proficient (Boelaert, Bendhaiba, Olteanu & Villa-Vialaneix, 2014).

In this package there is a function called trainSOM used for training the SOMs. The
important inputs here are:

x.data: the input matrix X, as a matrix or a dataframe

dimension: the dimensions of the prototype grid provided as a vector of length 2;
default is (5,5)

topo: the only current topology available is “square”

radius.type: the neighbourhood kernel function; options are “gaussian” or “letremy’
(the latter refers to an indicator weight function)

dist.type: the distance function for determining the neighbourhood; if ra-
dius.type="letremy”, then the default dist.type is “letremy”, if radius.type="gaussian”,
then dist.type is “euclidean”; other options are “maximum”, “manhattan”, “canberra”,
“binary” and “minkowski”

type: the input type for the SOM; options are “numeric”, “korresp” and “relational”;
default is “numeric”

mode: the SOM algorithm type; currently only “online” is available

maxit: the maximum number of iterations allowed; default value is 500, but more is
recommended

nb.save: the number of snapshots (back-ups) that are taken during the training
process; these are useful when the energy of the algorithm wants to be displayed
visually; default is 0

verbose: a logical indicator that when TRUE reports the process of the algorithm as

it evolves, if FALSE then feedback is only given after the algorithm stops; default is
FALSE

proto0: the values to initialise the prototype vectors, if they are desired to be given;
default value is NULL

init.proto: the method for initialising the prototype vectors; options are “random’
(completely random values), “obs” (random observations chosen) and “pca” (first two
PCs are used, as explained in the literature review)

scaling: the type of centering and scaling that needs to be done on the data before the
algorithm starts; options for type = “numeric” are “unitvar” (centered and scaled),

)

)
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“none” (no centering or scaling) and “center” (only centering); default is “unitvar”

eps0: the learning rate according to the formula: ﬁ%_gie;’s?, where dim is the prototype

dim

grid number of columns multiplied by the number of rows

The most important outputs include:

clustering: the vector of cluster allocation indices, C'

prototypes: the final prototype vectors

backup: depending on the input nb.save, this will return the number of back-ups
made throughout the algorithm’s progress

This package would deliver very similar results to the kohonen package for numerical data
and will not be tested further. However, when other data types are present SOMbrero
might be a very good option.

4.4.7 Discussing the validity of the clusters for Scenario A

4.4.7.1 External Criteria Validity

In Table 5 we can see the Rand, Jaccard and Folkes and Mallows indices calculated for
Scenario A against the true clustering of the datasets. We have to keep in mind that the closer

these three indices are to 1, the closer the clustering algorithm came to the true clustering.

We can clearly see that divisive hierarchical clustering did very poorly in Scenario A; this was
apparent in Figure 18 as well. The other methods all did fairly well, achieving index values
above 0.9 for the Rand, Jaccard and Folkes and Mallows indices. According to all three

indices, K-means did the best in Scenario A with Ward linkage clustering as a close second.

After divisive hierarchical clustering, complete linkage clustering did the second worst. As
the Ward linkage on the SOM was for illustrative purposes only, it will not be compared to
the other methods here.

4.4.7.2 Relative Criteria Validity

In Table 5 we can also see the average silhouette, Dunn and Davies-Bouldin indices calculated
for Scenario A. These indices all indicate a level of compactness of clusters and how well
they are separated. We would like the average silhouette and the Dunn indices to be as
large as possible and the Davies-Bouldin index to be as small as possible. It must be noted

Table 5: Scenario A Comparison of Clustering Algorithms

Index K-Means | PAM | CLARA | Complete | Average | McQuitty | Ward | Divisive
Rand 0.996 0.991 | 0.989 0.982 0.989 0.985 0.993 | 0.814
Jaccard 0.987 0.974 | 0.967 0.948 0.967 0.955 0.98 0.595
FolkesMallows | 0.993 0.987 | 0.983 0.973 0.983 0.977 0.99 0.749
Ave Silhouette | 0.432 0.431 | 0.429 0.428 0.429 0.43 0.432 | 0.282
Dunn 0.127 0.127 | 0.238 0.224 0.236 0.222 0.258 | 0.118
DaviesBouldin | 0.894 0.895 | 0.899 0.895 0.895 0.893 0.892 | 1.111
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that all the average silhouette and the Dunn index values are smaller than we would have
liked, similarly the Davies-Bouldin index is much larger than we would have liked. This can
possibly be attributed to the fact that the clusters in Scenario A lie fairly close to each other.
According to these indices, divisive hierarchical clustering still did very poorly in Scenario A.
All the other methods returned fairly similar values for the different indices. The average
silhouette awarded the same values to K-means clustering and Ward linkage clustering and
they jointly had the best clustering in Scenario A. PAM had the second highest average
silhouette value. The Dunn index gave the highest value to Ward linkage clustering and the
second highest value to Average linkage clustering. The Davies-Bouldin index awarded the
lowest value to Ward linkage and the second lowest to McQuitty linkage clustering.

In conclusion, summarising the values found in Table 5, Ward linkage clustering performed
the best in Scenario A, returning the correct cluster labels and choosing compact and isolated
clusters. As the Ward linkage on the SOM was for illustrative purposes only, it will not be
compared to the other methods here.

4.5 Scenario B

For Scenario B we would like to fit the different traditional clustering algorithms, discussed
before, on top of a SOM. We would also like to fit the traditional clustering algorithms
without the dimension reduction step of the SOM, for comparison. This proved difficult as
the dissimilarity matrix of Scenario B is big and this slowed down the clustering methods
considerably. The traditional methods that were used were K-means, K-medoids and Ward
linkage clustering. CLARA was also used to determine how it compares to PAM on a large
dataset. The traditional clustering methods that were fit on top of the SOM were K-means,
K-medoids, Ward linkage and divisive hierarchical clustering.

For the SOM the hexagonal map topology, used before, was chosen again. A Gaussian
neighbourhood function was used again. Scenario B was tested on the batch SOM and the
online SOM with both random and linear initialisation. The test involved fitting all four of
these models to the data of Scenario B and then fitting Ward linkage clustering on top to
determine how well the prototypes clustered, compared to the true clustering. This test is
not perfect, as it may capture the capabilities of the Ward linkage clustering in the process as
well. Different numbers of epochs were also tried, but 100 epochs seemed sufficient. For the
online algorithm the learning rate was decreased from 0.1 to 0.01 over the data epochs. The
grid was chosen of size 80 x 10 as explained below. In Table 6, the summary of the validity
statistics for these tests can be seen.

Of these options the batch SOM with random initialisation was the best performing algorithm
and will be used going forward. This is in line with Kohonen’s (2013:53,57) recommendation
that the batch SOM is more appropriate to use for practical applications. It is also in line
with the recommendation of Akinduko et al. 2016:220-221 that random initialisation is more
appropriate when the data is extremely nonlinear and complex. This means that it would be
impossible to fit a straight line or hyperplane to the data. The ratio of the first eigenvalue to
the second is 7.72. This means that the SOM map should be initialised in the ratio 8 : 1, so
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Table 6: Scenario B Comparison SOM Algorithms and Initialisations

Index Batch Random | Batch Linear | Online Random | Online Linear
Rand 0.963 0.951 0.948 0.94

Jaccard 0.718 0.649 0.632 0.572
FolkesMallows | 0.838 0.79 0.779 0.729

Ave Silhouette | 0.41 0.41 0.4 0.4
DaviesBouldin | 0.922 0.92 0.913 0.94

Table 7: Scenario B Comparison of Clustering Algorithms

K-MeansS | PAMS | WardS | DIANAS | K-Means | PAM | CLARA | Ward

0.949 0.96 0.964 0.946 0.935 0.95 0.951 0.957
Jaccard 0.628 0.697 0.725 0.622 0.558 0.628 | 0.642 0.681
FolkesMallows | 0.773 0.824 0.843 0.771 0.719 0.773 | 0.784 0.812
Ave Silhouette | 0.428 0.405 0.407 0.37 0.393 0.412 | 0.43 0.408
DaviesBouldin | 0.834 0.924 0.916 1.231 0.928 0.935 | 0.835 0.871

the maps are chosen to be of size 80 x 10.

In Figure 21 we can see the U-matrix of the batch SOM with random initialisation fitted
to Scenario B. Here we can see from the lighter regions in the U-matrix that 5 or 6 natural
clusters are forming in the data. We know that the true number of clusters is 11, but some
of these clusters lie very close together and are overlapping, so it makes sense that the SOM
finds it difficult to recognise all these clusters.

In Table 7 we can see the Rand, Jaccard and Folkes and Mallows indices used to compare the
tested clustering methods to the underlying clustering in the data. The first four columns
contain the methods fit on top of the SOM and the last four columns are the methods fit to
the original dataset. We can see that Ward linkage on top of the batch SOM with random
initialisation performed the best in Scenario B. The second best method seems to have been
K-medoids (PAM) clustering combined with the batch SOM. K-means fit on the original
dataset seems to have performed the worst in this case, but worst is very relative, as all the
methods had very similar results.

In Table 7 we can also see the average silhouette and Davies-Bouldin indices calculated for
Scenario B. The Dunn index could not be calculated on such a large dataset. For the average
silhouette the best method was CLARA as it has the highest value. The second best was
K-means combined with the batch SOM and the worst was DIANA combined with the batch

SOM. DIANA also had the highest value for the Davies-Bouldin index which is undesirable.

The lowest Davies-Bouldin value was found by K-means combined with the batch SOM and
the second lowest was found by CLARA. This indicates that CLARA and K-means combined
with the batch SOM produced the most compact and well separated clusters.

It is interesting to note how PAM and CLARA performed on the dataset of Scenario B. The
PAM algorithm took very long to run on the dataset and the CLARA algorithm was almost
instant, proving the usefulness of CLARA on large datasets. CLARA also performed better
than PAM in Scenario B. It had higher Rand, Jaccard, Fowlkes and Mallows and average
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Figure 21: The U-matrix for a batch SOM with random initialisation on Scenario B
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AC = 0.99
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Figure 22: Dendrogram of Ward linkage on a batch SOM in Scenario B

silhouette indices and a lower value for the Davies-Bouldin index.

In Figure 22 we can see the dendrogram of Ward linkage clustering on the batch SOM.
The AC in this case was 0.99, meaning that Ward linkage found overwhelming evidence for
hierarchical clustering structure in the data made up of the SOM prototypes. The clusters
here are also clearly not balanced, but this is to be expected as the clusters were purposefully
designed to be of different sizes.

In Figure 23(a) we can see the cluster plot with colour-coded cluster labels. Here it is apparent
that some misclassifications have been made. Only two of the three elongated clusters were
identified. Cluster 1 is supposed to be two different clusters, but they seem to have been too
overlapping to tell them apart. Figure 23(b) shows the silhouette plot of Ward linkage on
the batch SOM and there clearly are some negative silhouette values present. Clusters 3, 4,
5,6, 9, 10 and 11 seem to have been identified mostly correctly. The cluster sizes have been
identified very well and the unbalanced nature of the cluster sizes was captured.

In Figure 24(a) we can see the cluster plot with colour-coded cluster labels for CLARA applied
in Scenario B. The representative observations have also been indicated with larger plotting
characters. Some misclassifications have clearly been made and all three of the elongated
clusters were incorrectly identified. Cluster 4 is supposed to be two different clusters, but as
mentioned before, they lie very close together and overlap considerably. Figure 24(b) shows

74



Stellenbosch University https://scholar.sun.ac.za

(a)

(b)

n=15000 11 clusters C;
17l aveeg s

1: 3499 | 0.41

2: 2001 | 015

3: 1501 | 0.49

4- 999 | 0.48
5. 091 | 0.46
6: 499 | 055
7. 1252 | 021
8: 757 | 0.45

9: 1501 | 0.42

.
© @ N ;o ok W R

.
=

10: 1500 | 0.59
11: 500 | 0.63
[ I I I I I I 1
04 0.2 0.0 0.2 04 06 08 1.0
Silhouette width s

Average silhouette width . 0.41

PC1 (76.5%)

Figure 23: Ward linkage on top of the batch SOM (a) cluster plot and (b) silhouette plot for
Scenario B
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Figure 24: CLARA clustering for (a) cluster plot and (b) silhouette plot for Scenario B
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the silhouette plot of the CLARA clustering and there are some negative silhouette values
present, but less than for Ward linkage on the batch SOM. CLARA had the highest average
silhouette value of all the clustering methods tested in Scenario B, meaning that it produced
the most compact and isolated clusters. Here, clusters 3, 7, 8, 9, 10 and 11 seem to have
been identified mostly correctly. The cluster sizes have been identified very well and the
unbalanced nature of the cluster sizes was captured.

CLARA (and SOMs) perform on par with traditional clustering methods, but they have the
added advantage to be useful in the presence of many input variables and large datasets as
well. This means that we can use these methods in the real-world data example with the
confidence that we will do at least as well as traditional clustering methods.

4.6 Summary

In this chapter different clustering methods were studied in a simple data scenario, Scenario
A. The methods were also tested on a more complex dataset, Scenario B, and SOMs were also
implemented as a dimension reduction for this scenario. Ward linkage clustering performed
the best in Scenario A and also in Scenario B, combined with the batch SOM. The batch
SOM as a dimension reduction technique was very successful and increased the accuracy of
the classification of the data points in Scenario B. In the next chapter we will investigate
real-world data in the form of transactional data per client from Bank C. We will use the
batch SOM as a dimension reduction tool and apply Ward linkage hierarchical clustering to
find clusters in the data.
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CHAPTER 5: DATA EXTRACTION AND CLEAN-
ING

5 Data Extraction and Cleaning

5.1 Introduction

In the literature review we investigated the traditional clustering methods of K-means,
K-medoids and hierarchical clustering. We also investigated SOMs and some of its variants
such as GSOMs and GHSOMs. In the simulation study we looked at these methods in a
controlled environment and determined which methods performed the best on simulated data.
The traditional clustering methods were also fit on top of the SOMs to determine if there are
some methods that are more appropriate for this task. The conclusion from this study was
that Ward linkage hierarchical clustering performs well on its own and also on top of the
SOM. CLARA also performed better than PAM on a larger data sample. We determined
that the batch SOM with random initialisation is the best SOM algorithm to use for large
and high-dimensional datasets.

In this chapter we introduce real-world data. This real-world data consist of transactional
data from Bank C and will be used to determine if certain financial behaviours can be
clustered together in the data. The format that will be used is similar to the simulation study:
different sampling designs will be used to determine how the most value can be extracted
from the data. The data is unsupervised, large and high-dimensional. This means that the
data investigation can be quite subjective and a trial-and-error process can help with finding
knowledge hidden in the data.

5.2 Bank C Transactional Data

The dataset that will be used in this research project was provided by Bank C and it comes
from the transaction histories of the clients of the bank. The dataset, before any cleaning,
records every transaction a client makes from their Bank C savings account. The nature of
the transactions and the channel it was actioned through are also captured. There are details
about the transactions available, such as amount, the account balance after the transaction
and the transaction description. These transactions may be financial or non-financial, but
the attention will be focused on financial transactions. Fees and interest payments for Bank
C itself will be excluded, along with transfers clients make between their own accounts, since
these do not truly reflect a flow of funds. The initial data extractions were done in the SQL
query language from the data warehouse of Bank C.

In this data warehouse there is a specific group of datasets which is built up from pre-
engineered features from transactional data. It is a work in progress and there are four
datasets of data currently available to be used. Only certain variables from these features will
be extracted. The first set is called Account Balance History and focuses on the movement
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of the client’s savings account balance from month to month. The second dataset is called
Outflows History and is a summary of the outflows (debit transactions) from a client’s account
from month to month. The third dataset we have available is the Inflows History, which is a
summary of the inflows (credit transactions) into a client’s account, month to month. The
last set that is available is called Top 50 Variables and is a summary of variables that are
used very often in Bank C’s data models. This includes various channels used for outflows,
for example the cellphone application or cash withdrawals. It also includes branch visits and
card-not-present sales, for example Snapscan or Zapper. There are some variables specifically
capturing negative information, for example the number of times the client had insufficient
funds or disputed a debit order.

5.3 Data Sampling

The variables in all four of these datasets are available as snapshots per client at the end of
the month. The last date in the data sample for this research project was 31 August 2018. In
the data extraction these variables were summarised for the last 3 months, which would mean
a summary of the client’s transactional activity from 1 June 2018 to 31 August 2018. A 6
month summary, for 1 March 2018 to 31 August 2018, and a 12 month summary, 1 September
2017 to 31 August 2018, were also created. The reason for creating these summaries is to
determine whether the clustering structure in the data remains constant for different time
periods of observation for the same clients.

It was also decided that each client in the sample had to have at least R2000 deposited into
their account every month from September 2017 to August 2018. This inherently requires
that the clients in the sample would have active accounts at Bank C from at least September
2017. Similarly it was required that at least 5 debit transactions were to be performed each
month from September 2017 to August 2018. These requirements were set in place to ensure
that the clients in the sample were financially active throughout the observation period. After
these requirements were implemented a sample of 1 735 276 Bank C clients were left.

From the 3 month summary dataset for the 1 735 276 clients, three more datasets were
created. These consisted of roughly 10%, 6% and 3% of the clients and resulted in three
datasets of sizes 173 648, 104 463 and 52 145, respectively. These subsets are much smaller
than the original dataset, but they are still representative of the full populations as the
data were sampled randomly. The three datasets were named 3M__SAMP1, 3M__SAMP2
and 3M__SAMP3, respectively, for ease of reference. The sampling was done randomly and
without replacement. The reason for creating the three datasets is again to determine how
stable the clustering structure in the data is with three samples of three different sizes.
Sampling was also needed as there were constraints on computing power and resources.

These same clients were also extracted from the 6 month and 12 month samples, creating
6 further datasets denoted by 6M_SAMP1, 6M_SAMP2, 6M_SAMP3, 12M_SAMPI,
12M__SAMP2 and 12M__SAMP3. For clarity, all the samples ending in _ SAMP1 will contain
the same clients, similarly for the datasets ending in _ SAMP2 and _ SAMP3. This leaves a
total of 9 different datasets to investigate and to cluster.

78



Stellenbosch University https://scholar.sun.ac.za

Table 8: Account Balance History Variables (Last 3 months)

Variable Name

Description

Ave Days Above XXX L3M

Number of days the balance was above RX, divided by the
number of days with a positive balance. Calculated for R10,
R100, R500, R1000, R2500, R5000, R10000, R20000 and
R50000. (9 Variables)

Avg Dep Bal L3M

Average balance of days with a positive balance.

Dep Bal Spend Ratio L3M

(Maximum balance - Minimum balance) divided by the (Max-
imum balance), only calculated for days with a positive bal-
ance.

AVG_TTSBX L3M

The average time in days it takes a client to spend X% of
the maximum balance. Calculated for 90%, 75%, 50% and
25%. (4 Variables)

Table 9: Outflows an

d Inflows History Variables (Last 3 months)

Name

Description

Ratio Out Above Xk L3M

Number of outflows above RX, divided by the total number
of outflows. Calculated for R1k, R5k, R10k and R20k. (4
Variables)

Ratio In Above Xk L3M

Number of inflows above RX, divided by the total number
of inflows. Calculated for R1k, R5k, R10k and R20k. (4

Variables)

5.4 Variable Set Description

A total of 120 variables were collected for each of the 9 datasets. In Table 8 the variables
collected from the Account Balance History dataset can be found. It is important to note
that the discussion here is for the 3 month summary variables, but the same was done for the
6 and 12 month summaries. The letter ‘X’ acts as a placeholder in the variable names and
can be replaced with the different numbers mentioned in the variable descriptions. Account
Balance History contributed 15 variables to each of the datasets.

The Outflows History and Inflows History variables were combined in Table 9. Each of these
datasets contributed 4 variables to the total collection of variables. In Outflows History and
Inflows History there also exist variables for the total amount and number of outflows and
inflows. Similar variables, summing the total debit and credit transactions, are also present
in the Top 50 Variables dataset and were chosen to rather be collected from there.

Before discussing the variables in the Top 50 Variables set, some definitions for the transaction
types are needed here and these can be found in Table 10. This is not an exhaustive list of
transaction types, but they are the types that have been identified in the data so far. The
Other category should catch all the unidentified transactions. Further work is being done at
Bank C to investigate more detailed transaction types, but the scope thereof lies outside this
research project.
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Table 10: Definitions of Variable Names

Name Definition

Ct Credit transactions or Inflows into the client’s account

Dt Debit transactions or Outflows from the client’s account

USSD Cellphone Banking transactions, excluding transactions from the Cellphone
Banking Application

App Cellphone Banking Application transactions

INET Internet Banking transactions

DO Debit Orders

SO Stop Orders

CW Cash Withdrawals

POS Point of Sale transactions, *i.e.* any transaction where the client’s card is
"swiped"

CNP Card-not-present transactions, for example Snapscan, Zapper or Capitec
Masterpass

Branch Transactions performed in a Branch

Elec Electricity purchase transaction

Air Airtime purchase transaction

Other Any transaction that was not classified into the categories above

In Table 11 we can find a summary of the variables coming from the Top 50 Variables set.
This dataset contributed 97 variables to our total collection of variables. The reader will
also notice that 97 > 50, and it should be assumed that 50 is just an arbitrary number to
represent the, however many, useful variables in the Bank C database.

5.5 Variable Cleaning and Transformations

The variables described above are measured on different scales and some of the variables
have very large ranges. This necessitates some variable transformation, and also variable
normalisation at a later stage. The steps that were followed to clean the datasets and prepare
them for model fitting will be explained for the dataset called 3M__SAMP1.

Initial 5-point summaries of all the variables were constructed and these can be seen in
Appendix D for the full 120 variables. From this initial summary it is clear that a log-
transformation of the variables that are not on a 0-1 scale is needed. This transformation
can draw in the outliers and place them on a more interpretable scale. This will allow visual
inspection of the variables to be more valuable. The first concern in this regard is negative
values present in the variables Avg Dep Bal L3M and Dep Bal Spend Ratio L3M, as
seen in the output below.
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Table 11: Top 50 Variables (Last 3 months)

Name Description

Val Z L3M Monetary value of Z transactions. Z can be replaced by
Ct_ Tran, Dt_ Tran, USSD, App, INET, DO, SO, CW, POS,
CNP, Branch, Elec, Air and Other. (14 Variables)

Ave 7 L3M Average (per active months) monetary value of Z transactions.
7 can be replaced by Ct, Dt, USSD, App, INET, DO, SO,
CW, POS, CNP, Branch, Elec and Air. (13 Variables)

Num 7 L3M Count of Z transactions. 7 can be replaced by Ct_Tran,

Dt_Tran, USSD, App, INET, DO, SO, CW, POS, CNP,
Branch, Elec and Air. (13 Variables)

Num 7 Months L3M

Average number of months containing 7 transactions. Z can
be replaced by USSD, App, INET, DO, SO, CW, POS, CNP,
Branch, Elec and Air. (11 Variables)

Time Since 7Z L3M

Average number of months since a 7 transaction was per-
formed. Z can be replaced by USSD, App, INET, DO, SO,
CW, POS, CNP, Branch, Elec and Air. (11 Variables)

Z Perc L3M

Ratio of monetary value of Z transactions to monetary value
of all debit transactions. Z can be replaced by USSD, App,
INET, DO, SO, CW, POS, CNP, Branch, Elec, Air and
Other. (12 Variables)

Z NumPerc L3M

Ratio of count of Z transactions to count of all debit trans-
actions. Z can be replaced by USSD, App, INET, DO, SO,
CW, POS, CNP, Branch, Elec and Air. (11 Variables)

Ratio CW_ POS L3M

Ratio of monetary value of Cash Withdrawals to monetary
value of POS transactions.

CW__Util_L3M

Ratio of monetary value of Cash Withdrawals to total avail-
able funds (Month end Balance + all Credit transactions).

CSWEEP PX NumPerc L3M

Ratio of number of times a Cash Withdrawal of X% of the
Balance was made, divided by the number of Cash With-
drawals. Calculated for 90%, 80% and 70%. (3 Variables)

InsufFunds L3M

Number of times an Insufficient Funds flag was raised.

Naedo L3M

Number of Non-Authenticated Early Debit Orders
(NAEDO).

DO_ InsufFunds L3M

Number of times a Debit Order Insufficient Funds flag was
raised.

DO _Dispute L3M

Number of times a Debit Order was disputed.

Num Loan L3M

Number of Term Loans.

Num Loan Months L3M

Average number of months containing Term Loans.

Quality Banking L3M

Flag for a Quality Banking client.
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## V1 V2

## Min. : -499 Min. :=36.0220
## 1st Qu.: 453 1st Qu.: 0.9757
## Median : 984 Median : 0.9901
## Mean : 3518 Mean : 0.9607
## 3rd Qu.: 2208 3rd Qu.: 0.9950
## Max. :5905004 Max. : 10.5341

Even though negative values make sense for these two variables, as a client can have
an overdraft on their savings account, it cannot be subjected to a log-transformation.
Avg Dep_ Bal L3M and Dep_Bal Spend Ratio L3M were therefore limited to have
a minimum value of zero. Another concern for the log-transformation is the large number
of zero values in the data. This problem was solved by adding a constant of one to all the
variables and applying the log-transform after that, thus a log(z + 1) transform was used.

Some indicator variables were also created at this point, called Flag CNP__L3M,
Flag Branch L3M, Flag SO L3M, Flag INET L3M, Flag InsufFunds_L3M,
Flag DO_ InsufFunds L3M and Flag DO _Dispute L3M. The reason for this was
that the CNP, INET, SO, Branch, InsfFunds, DO _ InsufFunds and DO_ Dispute variables
were very sparse and could lead to skewing of the data. Including an indicator variable,
taking the value 1 when these types of transactions were present, and dropping all the other
variables in these categories could limit the skewing effect or the noise that they were adding.
These added variables increased the variable count to 127.

5.6 Outlier Detection

For outlier detection only the variables Val Ct_ Tran L3M, Val Dt Tran L3M,
Num Ct Tran L3M and Num Dt Tran L3M were considered. The reason for this was
that it would be undesirable for a client to be a complete outlier on their total transactions
and transaction amounts, but the patterns in the more granular variables should be preserved.
For example, if a client spent all of his income through the USSD channel it may be seen
as an outlier, but it captures a certain behaviour that could provide valuable insight. The
only clients that we would like to exclude are those in a much higher income bracket than
the majority and also possible fraudulent transactions. For outlier detection, boxplots were
visually inspected and these can be seen in Figure 25(a) to (d).

Based on Figure 25(a) it was decided to limit the value of the log-transform of credit
transactions to be less than 14, so that Val Ct_Tran L3M < 14. Based on Figure 25(b) it
was decided to limit the log-transform of the value of debit transactions to be more than
8 and less than 14, so that 8 < Val_Dt_ Tran_L3M < 14. Figure 25(c) indicates that a
limit of 6.25 should be placed on the log-transform of the number of credit transactions,
so that Num_ Ct_ Tran_L3M < 6.25. Based on Figure 25(d) it was decided to limit the
log-transform of the number of debit transactions to 6.5, so that Num_ Dt Tran L3M < 6.5.
After removing 131 of the clients through these limitations, a dataset of size 173 517 still
remains. In Appendix E the histograms of all the variables at this point in the data cleaning
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(a) Boxplot of Val_Ct_Tran_L3M

Wal_Ct_Tran_L3m

0.4

(c) Boxplot of Num_Ct_Tran_L3M

MNum _Ct_Tran_L3m

Figure 25:

Boxplots of (a)

Val _Ct_Tran_L3M, (b) Val Dt Tran L3M,

Mum _Dt_Tran_L3M

wal_Dt_Tran_L3m

0.4

(b) Boxplot of Val_Dt_Tran_L3M

(d) Boxplot of Num_Dt_Tran_L3M

Num_ Ct Tran L3M and (d) Num_ Dt Tran L3M
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process, before data reduction and normalisation, can be seen.

It is important to note here that limiting the variables to exclude outliers is quite subjective
and the decision of how many outliers to exclude is determined by the analyst. By excluding
too many extreme values the concept of “cherry-picking” might start to step in and the model
can only be applied to a very specific group of clients. The differentiating factors in the data
might be lying around the edges of the data, and this valuable information will be removed if
too many outliers are removed. It may therefore make sense to investigate different options
regarding the omission of outliers in future work.

5.7 Dimension Reduction

The next step in the data cleaning process is to remove all unnecessary variables. Including
variables in the dataset that do not serve a purpose may distract from the underlying
clustering structure in the data. Firstly, we exclude variables that are very sparse. As a rule
of thumb, all variables with more than 75% zeros were investigated to possibly be excluded.
Some prior knowledge about the data and knowledge about previous model fitting trials fed
into the decision of which variables to exclude.

It was decided to exclude the transaction channels of CNP, SO, Branch and INET, and only
keep their indicator variables for the 3 month datasets. For the 6 month datasets only the
CNP and Branch variables were excluded and for the 12 month datasets only the CNP channel
was excluded. It was also decided to include the negative variables, such as insufficient funds
and disputes, only as indicator variables in the 3 month datasets. They were included as the
original variables in the 6 and 12 month datasets. It is to be expected that some variables
contain more information after 12 months of observation than after 3 months.

The variables that were excluded from the 3 month datasets can be found in the data extract
below, together with their percentage zeros. In Appendix F the percentage zero values can be
found for the full set of variables. The Val X L3M variables are shown for the channels of
INET, SO, CNP and Branch and the percentage zeros will be similar for all other variables
involving these channels.

## Vars p_zeros
## 1 Val_INET_L3M 80.43
## 2 Val_SO_L3M 75.43
## 3 Val _CNP_L3M 94.42
## 4 Val_Branch_L3M 89.86
## 5 Num_INET_L3M 80.43
## 6 InsufFunds L3M 77.44
##H 7 DO_InsufFunds_L3M 72.19
## 8 DO_Dispute_L3M 79.75
## 9 Ave_Days_Above_50000_L3M 95.8

## 10 Ratio_Out_Above_10k_L3M 94.52
## 11 Ratio_Out_Above_ 20k _L3M  96.89
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After 34 variables are excluded due to sparsity, 93 variables are still left in the 3 month dataset.
We need to consider the Pearson correlation amongst these variables. Only correlations
between —0.7 and 0.7 were tolerated as this seemed to be a reasonable cut-off point. Figure
26 contains the correlation plot of all the variables that were excluded from the final sample.
Between two variables that were highly correlated with each other, the one with the highest
correlation with other variables was excluded first. There were 52 variables excluded in the
correlation checking phase of the data cleaning process. This leaves 41 variables that will be
used for data modelling. In Figure 27 the correlation plot of the final variable batch can be
seen. Comparing Figure 27 to Figure 26 we can clearly see that Figure 27 has much lower
correlations amongst the variables and no correlation above 0.7 or below —0.7.

5.8 Data Normalisation and Final Dataset

All of the variables are still measured on different scales and it is important to normalise
the data before any model fitting. If model fitting is continued without normalisation the
variables measured on the largest scales will have the largest influence on the clustering
algorithm. The method of normalisation is chosen as the min-max scaling described in the
literature review. The R function used for this purpose can be seen below.

Norm_func <- function(x) (x - min(x))/(max(x)-min(x))

Next we look at different groups of variables in the final dataset for 3M__SAMP1. The
first group we would like to look at is the group of variables containing monetary values,
transaction counts and monetary averages. The variables in this group are Val _Other_L3M,
Num_ Ct Tran L3M, Num Dt Tran L3M, Num CW_L3M, Ave Ct L3M and
Naedo_L3M. All of these variables were normalised as they did not have measurements on a
0-1 scale. In Figure 28 we can see the histograms for these 6 variables after normalisation.

Val Other L3M and Naedo L3M have quite a large group of zeros each. Apart from
the zeros, Val _Other L3M has a tail to the left and Naedo L3M has a tail to the right.
Num_ Ct_ Tran L3M and Ave Ct L3M have similar distributions, which is to be expected,
as they both relate to inflows on the client’s account. Both of these variables have distributions
that are skewed to the right. Num_Dt_Tran L3M seems to be fairly normally distributed,
and similarly Num_CW__L3M seems to be normally distributed, but with a slight tail to the
left.

The second group of variables to investigate contains information on the monthly usage of the
different transactional channels. The variables in this group are Num_DO_ Months L3M,
Time Since USSD L3M, Time Since CW _L3M, Time Since POS L3M, Time Since -
Elec L3M, Time Since Air L3M and Num Loan Months L3M. These variables were
already expressed as a ratio to the total number of months,; in this case 3, and did not need
normalisation. Figure 29 shows the histograms for these 7 variables.

It is important to note that the Num_ X Months [L3M variables and the Time Since X L3M
variables are inversely related for the same value of X. This means that the histograms
will be skewed in opposite directions, but emphasise the same kind of behviour. Most of
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Figure 26: Correlation plot of 52 variables to be excluded
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Figure 27: Correlation plot of 41 variables to keep
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Figure 28: Histograms for the monetary values, transaction counts and monetary averages
variables

the 7 variables resembled indicator variables, with large weights on the 0 and 1 values
and small weights on the interior values. Num_ DO _ Months [L3M indicates that most
clients in the sample have monthly debit orders linked to their savings accounts. Similarly,
Time Since CW_L3M and Time Since POS_ L3M show that most clients make cash
withdrawals and POS transactions every month. Time Since USSD_L3M indicates
that a large portion of the client sample do not make use of USSD transactions and a
second smaller portion uses the transaction channel monthly. The same can be said for
Time_ Since Elec L3M: two groups in the data arise, a group that never buys electricity
and a group that buys electricity at least monthly. Time_ Since Air L3M has a similar
pattern, but inversely to Time Since USSD L3M and Time_ Since_Elec L3M. The two
groups that emerge here are the monthly airtime buyers and a much smaller group that
almost never buys airtime. According to Num_ Loan Months L3M, most clients in the
sample did not have any Term Loans.

The third group of variables we would like to look at is the group of variables contain-
ing ratios and percentages. The variables in this group are Ratio CW__POS_ L3M,
CW_ Perc_L3M, POS_Perc L3M, DO_Perc L3M, Elec_Perc L3M, Air Perc L3M,
Other Perc_L3M, DO_NumPerc_ L3M, App_ NumPerc_L3M, Air  NumPerc L3M and
CSWEEP_ P90 NumPerc L3M. The only variable in this group that needed normalisation
was Ratio CW__POS_L3M. In Figure 30 we can see the histograms for the 11 variables in
this group.

All of the distributions are clearly skewed to the right with tails of varying lengths and
thickness. This is to be expected for all the percentage variables as we would not expect all
of a clients’ transactions to be spent through one channel only. Airtime and electricity make
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Figure 29: Histograms for the variables containing information on monthly frequency of the
different channel usage

out a very small portion of the expenditure of most of the clients, but airtime makes out a
larger portion of the number of transactions. There are also a large number of zero values
present in this batch of variables. Also, as expected, cash withdrawals, POS transactions and
debit orders make out larger portions of the total expenditure. These are more traditional
channels compared to USSD or App.

The fourth group of variables contains information on the sizes of the inflows and outflows.
The variables in this group are Ave Days Above 10 L3M, Ave Days Above 500 L3M,
AVG TTSB25 L3M, Ratio Out_Above 1k L3M, Ratio Out Above 5k L3M, Ra-
tio_In_Above 1k L3M, Ratio In Above 5k L3M, Ratio In Above 10k L3M and
Ratio In Above 20k L3M. All of these variables had to be normalised to place them on a
0-1 scale. Figure 31 contains the histograms for these 9 variables.

Most of the variables are distributed skew to the right. Ave Days Above 10 L3M is
skewed to the left, meaning that most clients have a balance above R10, on most days.
Ave_Days_Above 500 _L3M has a peak to the right as well as the left; this means that
there is a group of clients who always have a balance above R500, but also a large group of
clients who have a balance above R500 only 25% of the time. Overall it seems that larger
amounts are coming into the clients’ accounts than leaving the accounts. This deduction
can be made because the Ratio In_Above Xk L3M variables are more evenly distributed
to the right than the Ratio_ Out__Above Xk [L3M variables. Some of these variables are
very skew and will almost act as indicator variables in the clustering process. This is still an
important task as it can identify small pockets of clients around the edges of the data.

The fifth group of variables we would like to look at is the group of variables containing
indicator variables. The variables in this group are Quality Banking L3M, Flag  CNP_ L3M,
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Figure 32: Histograms for the indicator variables

Flag Branch L3M, Flag SO L3M, Flag INET L3M, Flag InsufFunds L3M,
Flag DO_ InsufFunds L3M and Flag DO_ Dispute L3M. All of these variables,
except Quality Banking L3M, were created to compensate for variables that were otherwise
too sparse to have an influence on the clustering of the data. These variables did not need
normalisation as they are inherently on a 0-1 scale. In Figure 32 we can see the histograms
of these 8 variables.

As with the sparse variables in the previous batch of variables, the indicators can help identify
subtle differences between clients and can play an important role in clustering of the data.
Quality Banking [.3M indicates which clients Bank C sees as good quality clients, which in
this case comprises of almost the whole sample. This variable shifts more in the 6 month and
12 month summary datasets. Flag CNP_L3M also indicates a very small group of clients
that utilise CNP transactions and might be seen as a proxy for financial sophistication or
being versed in the newest technology. Stop orders and internet banking are slightly more
utilised. The negative variables of insufficient fund and dispute indicators will also play a
role in clustering of the clients, as they can indicate propensity to delinquency.

5.9 Summary

In this chapter we focused on the steps in the data cleaning process. The reasoning behind
certain decisions pertaining to variable exclusion was also discussed. A similar method was
followed for each of the 9 datasets and this process resulted in 9 clean and normalised datasets
to be used in SOM fitting.

In the next chapter a SOM will be applied to each of the datasets to determine if SOMs
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are useful as a dimension reduction technique in practice. We will also use Ward linkage to
cluster the SOM prototypes to investigate the underlying clustering structure in the data.
The cluster results from the 9 datasets will be compared to see if consistent client groups
emerged across the datasets.
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CHAPTER 6: DATA MODELLING

6 Data Modelling

6.1 Introduction

In the previous chapter we prepared the real-world Bank C data for SOM fitting by cleaning
and transforming it to a usable format. The idea is to use the SOM as a dimension reduction
technique and to fit Ward linkage clustering on the prototypes output by the SOM. The
Ward linkage can help us determine if certain clustering behaviours for clients can be found
in the data. There are 9 datasets available, three sets of varying size for the 3 month, 6
month and 12 month data summaries. We would like to find clusters that remain stable
across the different datasets. Meaning that we would like the clusters to hold for varying
cluster sizes, as well as varying observation windows.

6.2 Data Summary and Visualisation

In Table 12 we can find a summary of the 9 cleaned and normalised datasets. The available
information on each dataset includes the original percentage of data sampled, the current
sample size and the number of variables included. The datasets that contained the same
amount of clients, for example all the SAMP1 datasets, now have slightly varying sample
sizes because of outliers being removed from each dataset. The number of variables also differ
slightly, with more variables being included for the longer observation windows. This makes
sense, because some variables might have become stronger or the distributions might have
shifted with more information available to them.

Before model fitting we inspect the data visually to determine if some information can already
be extracted. As before, we plot the data observations on the first two PCs, because the
data is high-dimensional and cannot be visualised otherwise. In contrast to the simulation

Table 12: Summary of the 9 Datasets

Dataset Name | Perc of Data | Sample Size | Num of Vars
3M_SAMP1 10 173517 41
3M__SAMP2 6 104439 38
3M__SAMP3 3 52120 39
6M__SAMP1 10 173585 43
6M__SAMP2 6 104395 44
6M__SAMP3 3 52107 41
12M__SAMP1 10 173588 49
12M__SAMP2 6 104397 49
12M__SAMP3 3 52102 48
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Figure 33: Normalised data plot on first two PCs for all 9 datasets
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Table 13: Summary of PCs and SOM dimensions

Dataset Name | Perc Var Explained | Ratio of Eigen | SOM rows | SOM columns | Epochs
3M_SAMP1 72.1% 17.66 159 9 50
3M__SAMP2 72.1% 15.59 125 8 75
3M__SAMP3 71.9% 15.35 93 6 100
6M__SAMP1 76.3% 13.5 136 10 50
6M__SAMP2 78.7% 16.63 134 8 75
6M__SAMP3 76.4% 13.33 94 7 100
12M__SAMP1 83.8% 21.24 170 8 50
12M__SAMP2 83.4% 19.49 156 8 75
12M__SAMP3 84% 19.52 118 6 100

study chapter, we do not know the underlying clustering structure in the data and cannot
colour-code the observations according to their true clusters.

In Figure 33 we find the plots of the normalised data observations on the first two PCs for
all the datasets. No clear clustering structure is present in the data and the data is very
compact. The 12 month summary sample has more observations that appear as outliers, even
after outlier removal. It is difficult to make assumptions about what these points represent
as the data we are looking at is high-dimensional. It is impossible to know what we should
expect to see in the data plots. In the Simulation Study, clear clusters were visible in the
data plots on the first two PCs. It is important to note the contrast between the simulated
data and the real-world data. The simulated data had a Gaussian distribution and only 10
dimensions. In Figure 33 we have at least 38 dimensions and we do not know the combined
distribution of the variables.

6.3 SOM fitting

We now fit a SOM to each of the datasets described above. We will use the Batch SOM
with random initialisation and a hexagonal map topology, as was used in the simulation
study. The ratio of the eigenvalues related to the first two PCs will be used to decide on the
dimensions of the SOM prototype grids. In Table 13 a summary is given on the percentage
variance explained by the first two PCs for each dataset. In this table the ratio of the first
two eigenvalues can also be found, together with dimensions decided on for the prototype
grids and the number of data epochs used in the Batch SOM algorithm.

The percentage variance explained by the first two PCs in Table 13 seems to be increasing
from the 3 month to the 12 month summary data. More data epochs were used for smaller
sample sizes to make sure that the prototype maps converged. A trial-and-error process was
followed to determine the correct amount of epochs, but the values in Table 13 seem to have
been sufficient. The dimensions of the SOM grids were decided on so that each prototype
would receive between 70 and 150 of the observations, on average. This was also as a result
of a trial-and-error process.
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Figure 34: U-Matrix of the SOM of 3M__SAMP1
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Figure 35: Gap statistic, elbow method and average silhouette method plot for the 3M__SAMP1
dataset

In Figure 34 the U-Matrix for the SOM map on dataset 3M__SAMP1 can be found. The
distances between the prototypes form an interesting pattern and the lighter areas are
supposed to indicate borders between clusters. Counting the darker areas is somewhat
subjective, but it seems that around 25 areas can be counted. As they are not all lying equally
far away from each other, there might be the possibility that two of these darker regions
could still belong to the same cluster. Therefore some further techniques on choosing the
optimal number of clusters will be implemented. In Appendix G, Figure 58 to Figure 60, the
U-Matrices of the remaining 8 datasets is given. These Figures are a good representation of
the output of the SOMs, even if it is almost impossible to decide on the appropriate number
of clusters by visual inspection only.

6.4 Deciding on the Appropriate Values for K

For this purpose we will use the methods described and tested before, the gap statistic, the
elbow method and the average silhouette method. We will also use the function NbClust
to calculate 19 more possible values for K. A majority vote will have to be taken between
all the outcomes. We will limit the maximum number of clusters to 10, for the sake of
interpretability, even though this might return clusters that are still heterogeneous. It would
be desirable for the number of clusters to be below 10 as a different treatment might have to
be applied to each group by Bank C. The larger the number of clusters, the more difficult
it becomes to determine which groups need a specific treatment and which groups should
not be interfered with. It is recommended that in further studies, larger numbers for K are
explored.
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Table 14: Summary of Possible Values of K

Dataset Name | First Choice K | Second Choice K | Third Choice K
3M_SAMP1 5 10 4
3M__SAMP2 7 10 2
3M__SAMP3 10 3 7
6M_SAMP1 3 10 2
6M__SAMP2 3 10 2
6M__SAMP3 10 3 2
12M__SAMP1 10 3 2
12M__ SAMP2 3 10 2
12M__SAMP3 10 2 4

In Figure 35(a) and (b) we find the plots of the gap statistic. These plots are very inconclusive
as the gap statistic chose the largest option available for K. This is always a cause for suspicion
as it indicates that a value larger than the maximum of K provided might be preferred. We
can also see that the gap statistic plot looks like it is still increasing and not close to a turning
point. An important note is that the gap statistic plot did not choose K = 1, so there is
underlying clustering structure present in the data. The elbow method in Figure 35(c) is
not helpful either. There is no clear “kink” in the plot, but there might be a subtle turning
point at K = 5. In Figure 35(d) the average silhouette values for the different values of K
can be seen and the maximum number of clusters were also chosen. There is an internal
turning point at K = 5, which could indicate that 5 is also a possibility for K. The gap
statistic, elbow method and average silhouette plots for the remaining datasets can be seen
in Appendix H, Figure 61 to Figure 68.

In Table 14 a summary of the possible values for K for the different datasets can be found.
There are some recurring numbers of clusters between the datasets, but it is not as similar
as we would have hoped. The value K = 10 appears in each of the datasets’ top three
appropriate values for K, confirming that larger values of K need to be investigated. It is
also important to remember that the datasets containing SAMP1 in the name consist of the
same clients, similarly for SAMP2 and SAMP3 respectively. Therefore we would like to fit
the same amount of clusters to the samples containing the same clients, to ensure that the
results are comparable.

It was decided that K = 5 will be chosen for all the cluster modelling to follow. The value 5
only appears once in Table 14, whereas the values 2, 3 and 4 appeared often, suggesting that
a low number of clusters may also be appropriate. The value K = 5 is a good halfway mark
between K = 2 and K = 10, as well as returning an interpretable number of clusters. It also
seemed to be an appropriate cutpoint in the dendrograms that will follow in the next section.
Heterogeneous clusters can be identified to be investigated further.
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6.5 Fitting Ward linkage clustering on the SOMs

Now that we have decided on the number of clusters, we fit Ward linkage clustering on top
of each of the SOMs. We will first look at the dendrograms for the 9 datasets and these are
shown in Figure 36(a) to (i). The clusters are more balanced in some dendrograms than
others, for example Figure 36(c) and (g). We do not know how balanced the true clusters are
and it is unlikely that they are all of the same size. Clusters around the edges of the data
are expected to be smaller than interior clusters as they might contain more extreme cases
of client behaviour. For the 12 month samples, Figure 36(g) to (i), the dendrograms look
quite similar, indicating that the client distribution might have stabilised after 12 months of
variable observation. The dendrograms for the 6 month samples, Figure 36(d) to (f), and the
3 month samples, Figure 36(a) to (c), are more varied and the cluster sizes, together with
the clients they contain, change from sample to sample.

We would also like to visually inspect the colour-coded cluster plots on the two largest PCs
for all 9 samples, together with the silhouette plots of the prototypes. These plots will give
an insight into how compact and well-separated the formed clusters are. In Figure 37(a) to
(f) the colour-coded clusters and the silhouette plots for the three 3 month datasets can be
found. Figure 38(a) to (f) summarise the clusterings for the three 6 month datasets and
Figure 39(a) to (f) provide a summary for the output of the three 12 month datasets.

A general comment, that is clear from the colour-coded cluster plots, is that a fuzzy clustering
method might have been more appropriate for these datasets. The clusters are extremely
overlapping and this might mean that clients do not belong to only one cluster. There might
be a few possible behaviour categories each client could fall into, with a certain probability
attached to each one.

Even though there is quite a lot of overlap, some clustering structure can be seen in the
colour-coded plots. For example, in Figure 37(a) the observations of cluster 5 are located
around the bottom-left of the dataset and the observations for cluster 4 are situated at the
top. Some of the clusters group together in a more compact way than others and also have
higher average silhouette values as a result, for example, cluster 5 in Figure 37(b) or cluster
5 in Figure 37(f). The average silhouette values for all the data clusterings are quite low,
between 0.14 and 0.23. This might be due to the shapes of the clusters not being compact
and spherical, and the fact that the clusters are also not well separated. It is important to
note that the silhouette plots take the prototypes as input values and not the cluster labels
mapped onto the original dataset. The reason for this is that silhouette calculation uses a
dissimilarity matrix and our datasets are too large for dissimilarity matrix calculations.

6.6 Client Behaviour Profiles

To extract the most information from the clusters formed in the previous section we would
like to develop client behaviour profiles. The output from the 3M__SAMP1 sample will be
investigated in detail, as before, and will be used as a baseline for comparison. We will use
histograms and distribution plots of the variable type groups, described in the Data Cleaning
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Figure 40: Histograms for the monetary values, transaction counts and monetary averages
variables, colour-coded according to clusters for 3M__SAMP1
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Figure 41: Density plots for the monetary values, transaction counts and monetary averages
variables, colour-coded according to clusters for SM__SAMP1
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Figure 42: Histograms of the variables containing information on monthly frequency of the
different channel’s usage, colour-coded according to clusters for SM__SAMP1
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Figure 43: Density plots of the variables containing information on monthly frequency of the
different channel’s usage, colour-coded according to clusters for 3M__SAMP1
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Figure 44: Histograms of percentage and ratio variables, colour-coded according to clusters
for SM_ SAMP1
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Figure 45: Density plots of percentage and ratio variables, colour-coded according to clusters

for SM_ SAMP1

108



Stellenbosch University https://scholar.sun.ac.za

Histogram of Ave_Days_Above_10_L3M

150000~

100000~

count

0. bﬂ 0. ‘2.5 0. l‘ﬂ 0. ‘75 1 bﬂ
Ave_Days_Above_10_L3H

Histogram of Ratio_Out_Above_1k_L3M

count

10000~

000 025 0z 75 100
Ratio_Out_Above_1k_L3M

Histogram of Ratio_In_Above_5k_L3M

80000~

count

-
0. E)ﬂ 0. ‘25 0. l‘ﬂ 0. +5 1 bﬂ
Ratio_in_Above_Sk_L3M

EEEEN

EEEEN
court

Histogram of Ave_Days_Above_500_L3M

nd 10000
'
: ot
2 8
.
5 5000~
o
0. E)ﬂ 0. ‘25 0. éﬂ 0. ‘75 1 60
Ave_Days_Above_S00_L3M
Histogram of Ratio_Out_Above_5k_L3M
150000

nd 100000~

000 03 0z 35 100
Ratio_Out_Above_Sk_L3M

Histogram of Ratio_In_Above_10k_L3M

100000~

72000~
legend
| B
| EN
H: 3 o
Kl
B

22000+

o —
060 0‘2.5 Ol‘ﬂ 0‘75 |6ﬂ

Ratio_in_Above_10k_L3M

EEEEN EEEEN

EEEEN

Histogram of AVG_TTSB25_L3M

000+
legend
| B
¥ om0 | B
H | B
Kl
B
0000+

%

0. E)ﬂ 0. ‘25 0. l‘ﬂ 0. +5 1 bﬂ
AVG_TTSB25_L3M

Histogram of Ratio_In_Above_1k_L3M

15000~

count

10000-

075 1.00

000 025 £
Ratio_in_Above_1k_L3M

Histogram of Ratio_In_Above_20k_L3M

legend

e
% o
3 M-

s
BeiDés .5
oevoo- - —

0. E)ﬂ 0. ‘25 50 0. +5 1 bﬂ
Ratio_in_Above_20k_L3M

Figure 46: Histograms of the variables containing information on sizes of inflows and outflows,
colour-coded according to clusters for 3M__SAMP1
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Figure 47: Density plots of the variables containing information on sizes of inflows and
outflows, colour-coded according to clusters for 3M__ SAMP1
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chapter, to determine if the different clusters represent different behavioural traits of clients.
These histograms and distribution plots can be found in Figure 40 to Figure 49.

It is difficult to separate the clusters into vastly different behavioural characteristic groups
as the clusters are overlapping. The main characteristics of the clients in each cluster is
listed, together with an extrapolation of what the average client would look like in South
Africa. These extrapolations could contain personal bias and prior knowledge and should be
re-evaluated if any more information becomes available.

Cluster 1:

o Clients make very little use of Debit Orders and NAEDOs

e Clients make use of the USSD channel

o Clients frequently buy electricity and airtime

e Clients have lower inflow values and a lower number of inflows

Cluster 1 could represent a lower socio-economic class of clients. The usage of USSD
transactions might indicate that the clients do not have smartphones. The repeated electricity
transactions may indicate that the clients live in apartments or small houses, as most larger
houses in South Africa would receive monthly electricity bills and not make use of prepaid
electricity. The repeated airtime transactions can also indicate that prepaid cellphones are
used, as cellphone contracts are paid monthly through Debit Orders.

This cluster of clients possibly has lower interaction with emails, but could possibly be reached
through SMS or through a phone call. If financial education is made available to these clients
it might have to be delivered in person to be effective.

Cluster 2:

o Clients make the most use of the INET, App and CNP channels
» Clients rarely utilise the USSD channel

o Clients rely less on cash withdrawals and cash usage

o Clients have the largest number of inflows and outflows

o Clients have the highest inflow values, on average

Cluster 2 may possibly represent the technologically sophisticated clients in the middle to
upper socio-economic classes. These clients probably have smartphones and make use of
CNP transactions, that are only used by more “tech savvy” clients. These clients are also
very financially active and have moved away from cash usage.

The clients in Cluster 2 possibly do not want to be bothered by phone calls or SMS. The
best way to reach these clients would possibly be through emails, so they can respond in
their own time, or through notifications on the Bank C cellphone application. If any further
financial education is needed it could most likely be communicated via email.

Cluster 3:

o Clients frequently buy airtime
o Clients rely less on cash withdrawals and cash usage
o Clients had the largest number of DO Insufficient Fund flags
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Cluster 3 does not have particular traits that sets it apart from the other clusters. This
cluster might contain clients that could not fit into the other four clusters. This cluster can
be investigated further to determine if subclusters are needed.

Cluster 4:

o Clients make the most use of Debit Orders and NAEDOs

o Clients have the most Debit Order disputes, but this might follow from the high Debit
Order usage

o Clients frequently buy airtime

o Clients do not utilise the App channel

o Majority of the clients are Quality Banking clients

Cluster 4 may contain some older, more traditional clients that prefer the usage of Debit
Orders, but do not prefer to make use of a cellphone banking application for banking. These
clients are mostly Quality Banking clients, which will put them in a good income bracket
and they display consistent loyal behaviour towards Bank C.

Seeing as Cluster 4 consists of more traditional clients it might be necessary to use traditional
communication channels. These would include phone calls, or even letters in the post. Some
traditional clients are using internet banking and emails, but are not fully comfortable with
cellphone banking. Financial education for this group might mean education on how to use
a cellphone banking application and what the benefits would be of switching over to this
banking channel.

Cluster 5:

o Clients do not really make use of the USSD channel

o Clients do not buy electricity or airtime

o Clients mostly rely on cash withdrawals and cash usage

o Clients had the lowest number of debit transactions, indicating lower financial activity
« Clients have lower inflow values

Cluster 5 seems to be heterogeneous as there are variables, like Ratio In_Above 1k L3M
and Ave Days Above 500 L3M, where the distributions have more than one peak. This
could indicate a mixture distribution and that the clients could be split into smaller groups.
The distributions for these two variables seem to be leaning towards uniformity, which could
also indicate that these variables do not have an influence on cluster 5. Regardless of the
concerns stated here, Cluster 5 contains clients with lower financial activity. This might be
due to limited finances or this might indicate that Bank C is not the primary bank. Another
possibility is that these clients mostly utilise cash and there is no way to know how it was
spent.

It is not completely clear what the best channels of communication for Cluster 5 would be.
It would be beneficial to get more information from these clients, either by encouraging less
cash based transactions or by convincing them of the benefits of switching to Bank C as
primary bank.

In Appendix I the histograms and density plots of the variables for the 3M__SAMP2 dataset

113



Stellenbosch University https://scholar.sun.ac.za

can also be found, together with summaries of the cluster traits. It was found that natural
borders between the clusters form in terms of technological sophistication and possible income
level and economic standing.

The 5 clusters outlined above appear consistently throughout the different data samples,
with minor variations in the characteristics. The results from the remaining 7 datasets were
investigated and the four main clusters of lower socio-economic class clients, technologically
sophisticated clients, older and more traditional clients and low financial activity clients were
present, to some extent, in all of them. A fifth cluster capturing all the clients who did not
fit into the other clusters were also present. This result is very comforting, as consistently
finding 5 similar clusters in all the datasets confirm that the clients can indeed be separated
into groups. Different communication methods can be applied to each group and financial
education and product recommendations can be made. The final result will hopefully be to
drive up client satisfaction and quality of life.

It would have been useful to name the different clusters to provide archetypes associated
with each cluster. This proves difficult as two of the clusters still need further investigation.
Naming the clusters is recommended for a second round investigation once the clusters are
more homogeneous.

It would have also been insightful to compare the different cluster outcomes for the different
time horizons using external criteria, such as the Rand index or the Jaccard index. This
might have given an indication of the similarities between the different cluster outcomes. It
is recommended for further investigation.

6.7 Summary

In this chapter we investigated the real-world transactional datasets provided by Bank C.
SOMs with Ward linkage clustering fit on top was used to partition the data into 5 different
clusters. The clustering structure held consistently for the different datasets. These clusters
represented lower socio-economic class clients, technologically sophisticated clients, older and
more traditional clients and low financial activity clients. These groups of clients have to
be approached in different ways and would have different requirements for a good banking
experience.

More research remains to be done. Firstly, into larger values for K and secondly, into the
possibility of using a fuzzy clustering technique. It is also possible to reduce the number of
variables further, to try and reduce noise and enhance the signal. The clusters that have been
formed can also be investigated further by mapping the original sample of roughly 1.7 million
clients onto the clusters. This will be a good test to determine if the clustering structure
holds for the whole dataset.

In the next chapter the conclusions from this study will be discussed, along with a summary
of the scope of this study and recommendations for further work and research.
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CHAPTER 7: CONCLUSION

7 Summary, Conclusion and Recommendations

7.1 Introduction

This study focused on clustering and the various methods available for this task. Traditional
clustering methods, as well as Self-Organising Maps (SOMs) and CLARA, were investigated.
The aim of investigating the different methods was to find a traditional method that performs
well when applied on top of a SOM. The purpose of this combination of methods was to
investigate high-dimensional transactional banking data and to determine whether client
behaviour groups could be formed in the data. Data extraction, cleaning and normalisation
was also part of the process.

7.2 Summary of Main Findings

Chapter 2 provided a literature review on traditional clustering methods, originally designed
for small and low-dimensional datasets. Traditional clustering methods included K-means,
K-medoids (PAM) and agglomerative and divisive hierarchical clustering. The algorithms
for these methods were discussed in detail. The different forms of linkage available to
agglomerative hierarchical clustering were also discussed. We investigated different methods
for choosing the appropriate number of clusters which were the gap statistic, the elbow
method and the average silhouette method.

We summarised criteria to use for cluster validation, even though there is no agreed upon
way by researchers of quantifying the quality of a clustering. The indices used to compare a
clustering of the data to the true cluster labels were Rand, Jaccard and Fowlkes and Mallows.
The indices used to compare the compactness and isolation of two sets of clusters were the
average silhouette value, the Dunn index and the Davies-Bouldin index.

In Chapter 3 we looked at large and high-dimensional datasets and clustering methods that
would be more appropriate for this. CLARA was described as an adaption to the PAM
algorithm, by including a random sampling step, for large datasets. SOMs, which is the
main focus of this study, were discussed in detail. The batch and online versions of the
SOM algorithm were investigated, as well as competitive learning, which is the foundation
of the SOM algorithm. We discussed different ways of choosing the dimensions for and
initialising the SOM prototype grid, as well as the initialisation for the learning rate and the
neighbourhood function. A SOM adaption, called Growing SOMs, were also discussed. This
algorithm allows the SOM grid to grow to the size that is appropriate for the data. We also
discussed the possibility of using SOMs for dimension reduction and fitting other clustering
methods with the prototypes as the inputs.

We would like the SOM to learn slowly, thus the learning rate and neighbourhood functions
were recommended to be set very large and to slowly decrease over many iterations of the
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algorithm. It was recommended that the batch SOM is the most suited SOM algorithm
to be used in practice as it needs limited parameter tuning and converges faster than the
online SOM. A hexagonal map topology was recommended to be used as it resembles the
input space more closely. It was also recommended that random initialisation be used when
datasets are nonlinear and complex.

Chapter 4 contained a simulation study of the clustering methods discussed before. Two
simulated Gaussian 10-dimensional data scenarios were used to fit the different clustering
methods and to compare the outcomes. Scenario A, with only three balanced clusters, was
simpler than Scenario B, with 11 unbalanced clusters, and was used to explain all of the R
functions and packages that would be needed. Scenario B was used to compare the different
SOM algorithms and also to determine which traditional clustering method fits the best on
top of a SOM.

From Scenario A we concluded that Ward linkage clustering performs the best from the
traditional clustering methods. Ward linkage returned compact clusters and also returned
the correct cluster labels, even though the clusters were close together. Scenario B helped
confirm the recommendations made in the literature review and showed that the batch SOM
with random initialisation and a hexagonal grid topology is the most appropriate for complex
data exhibiting nonlinear relationships between the input variables. Scenario B was also used
to confirm that CLARA performs better than PAM with a large dataset. Ward linkage was
determined to be the most appropriate traditional clustering algorithm to fit on top of the
batch SOM. The batch SOM as a dimension reduction technique was very successful and
increased the accuracy of the classification of the data points of Scenario B.

In Chapter 5 we focused our attention on a real-world dataset. This dataset is transactional
information of clients provided by Bank C. The goal is to find client behavioural groups in
the transactional data. These groups can be communicated with in different ways, they might
have different banking product needs and can also be offered financial education material
if needed. Before model fitting, the data had to be extracted and cleaned. Nine different
samples, of varying sizes and observation windows, were extracted from the original data.
A log-transformation was applied to increase the interpretability of the variables. Outliers
were also eliminated to alleviate the skewness of the data. The dimensions of the data were
reduced by investigating the number of zero values in each variable and also the correlations
between the variables. Lastly, the data had to be normalised to place all the variables on the
same measurement scale. This resulted in 9 clean datasets with the number of observations
varying between roughly 50 000 and 174 000. The number of variables are varying from 38 to
49.

Chapter 6 was the data modelling chapter. We applied a batch SOM to each of the datasets
as a dimension reduction tool. Ward linkage was fit on top of each of these SOMs and resulted
in 5 clusters each of different client behavioral groups. These clusters represented lower
socio-economic class clients, technologically sophisticated clients, older and more traditional
clients and low financial activity clients. The fifth cluster represented clients that did not
have a clear set of characteristics that could be combined into a client profile.
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7.3 Recommendations

Further research can be done into fuzzy clustering methods as the real-world dataset seemed
more suited to this kind of clustering. The data is very compact and there is large overlap
between the clusters found by the SOM with Ward linkage on top.

Different methods of outlier detection is another topic that should also be investigated further.
The transactional datasets could have benefited from more thorough outlier detection and
removal, as some of the variables were very skewed. Similarly, variable reduction methods for
unsupervised learning could also be investigated. It would have been beneficial if there was a
way to determine the influence of each of the variables on the clustering.

Thirdly, there is an opportunity to consider a higher number of clusters than 5. Evidence
for this was returned by the gap statistic and the average silhouette method. This would be
more time consuming, but would possibly lead to more homogeneous clusters.

Spending time developing an R package for GSOMs would also be very useful. There was no
way to test the GSOMs algorithm in R, which was rather disappointing.

There are also further developments available for SOMs, for example the Adaptive Moving Self-
Organising Map (AMSOM) that also incorporates dynamic SOM grid growth or SOMs grown
on irregular maps, like mnemonic SOMs, that can be investigated. The SOM was proven as
a worthwhile dimension reduction tool and learning about further possible applications can
be very useful.
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where o=, ;i = Npxp (Weatherwax & Epstein, 2018:110-112).

121



Stellenbosch University https://scholar.sun.ac.za

Appendix B
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Appendix C

The piece of code below generates spherical and elongated clusters and can also add noise
points. The types of clusters can be a mix of spherical and elongated clusters. The default
state of the function is that there are no elongated clusters and that no noise points are
present.

GenXDat <- function(N_vec, mu_mat, cov_mat, elong num = 0){
#N_vec: vector of cluster sizes
#mu_mat: matrixz with mean wvectors as Tows
#cov_mat: covariance matrir generated by CovMatFunc
#elong_num: number of elongated clusters

Num_clus <- length(N_vec)
Num_p <- ncol(mu_mat)
XDat_Mat <- NULL
XDat_Mat_Norm <- NULL

if (elong num == Num_clus){

XDat_Mat_Norml <- NULL
XDat_Mat_Norm2 <- NULL
XDat_Mat_Norm3 <- NULL

for(i in (1:Num_clus)){

set.seed (123456 + ix*115)

XDat_Mat_Norml <- mvrnorm(n = (ceiling((N_vec[i])/3)), mu
Sigma = cov_mat)

XDat_Mat Norm2 <- mvrnorm(n = (ceiling((N_vec[i])/3)), mu
Sigma = cov_mat)

XDat_Mat Norm3 <- mvrnorm(n = N_vec[i] - (2*ceiling((N_vec[i])/3)),
mu = mu_mat[i,]+1.5, Sigma = cov_mat)

XDat_Mat Norm <- rbind(XDat_Mat Norml, XDat Mat Norm2, XDat Mat Norm3)

XDat_Mat Norm <- cbind(XDat Mat Norm, i)

XDat_Mat <- rbind(XDat_Mat, XDat_Mat_Norm)

mu_mat[i,],

mu_mat[i,]+3,

telse if(elong num > 0 & elong num != Num_clus){
XDat_Mat_Norml <- NULL
XDat_Mat_Norm2 <- NULL
XDat_Mat_Norm3 <- NULL

for(i in (1:elong num)){
set.seed (123456 + ix*115)
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XDat_Mat Norml <- mvrnorm(n = (ceiling((N_vec[i])/3)), mu = mu_mat[i,],
Sigma = cov_mat)

XDat_Mat Norm2 <- mvrnorm(n = (ceiling((N_vec[i])/3)), mu
Sigma = cov_mat)

XDat_Mat Norm3 <- mvrnorm(n = N_vec[i] - (2*ceiling((N_vec[i])/3)),
mu = mu_mat[i,]+1.5, Sigma = cov_mat)

XDat_Mat Norm <- rbind(XDat_Mat Norml, XDat Mat Norm2, XDat Mat Norm3)

XDat_Mat Norm <- cbind(XDat_Mat Norm, i)

XDat_Mat <- rbind(XDat_Mat, XDat_Mat_Norm)

mu_mat[i,]+3,

for(i in ((elong num+1) :Num_clus)){
set.seed (7896 + i*115)
XDat_Mat_Norm <- mvrnorm(n = N_vec[i], mu = mu mat[i,], Sigma = cov_mat)
XDat_Mat_Norm <- cbind(XDat_Mat_Norm, i)
XDat_Mat <- rbind(XDat_Mat, XDat_Mat Norm)

Yelse{

for(i in (1:Num_clus)){
set.seed (7896 + i*115)
XDat_Mat_Norm <- mvrnorm(n = N_vec[i], mu = mu mat[i,], Sigma = cov_mat)
XDat Mat Norm <- cbind(XDat Mat Norm, i)
XDat Mat <- rbind(XDat Mat, XDat Mat Norm)

colnames (XDat_Mat) <- c(paste("X", 1:Num_p, sep = ""), "Class")
return(XDat Mat)
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Appendix D

Here a 5-point summary for each of the variables in dataset 3M__SAMP1 can be seen. The
variables have not been cleaned and can be seen in their raw states, containing outliers and

on the original measurement scales.

## Val Ct_Tran L3M Val Dt _Tran L3M Val _USSD_L3M

## Min. 6046 Min. 2522 Min. : 0

## 1st Qu.: 21714 1st Qu.: 21458 1st Qu.: 0

## Median : 36703 Median : 36345 Median : 0

## Mean 53683 Mean 53075 Mean 2525

## 3rd Qu.: 61497 3rd Qu.: 61028 3rd Qu.: 2250

## Max. 1145671395 Max. 1143100952 Max. 12204310

##  Val_App_L3M Val INET L3M Val DO _L3M

## Min. : 0 Min. : 0 Min. : 0.0

## 1st Qu.: 0 1st Qu.: 0 1st Qu.: 573.5

## Median : 0 Median : 0 Median : 2779.8

## Mean 10806 Mean 2706 Mean 6728.6

## 3rd Qu.: 9436 3rd Qu.: 0 3rd Qu.: 8676.8

## Max. 14114724 Max. 110379077 Max. :611655.8

## Val SO _L3M Val CW_L3M Val POS_L3M Val CNP_L3M

## Min. : 0.0 Min. : 0 Min. : 0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 5200 1st Qu.: 2967 1st Qu.: 0.0
## Median : 0.0 Median : 9876 Median : 7036 Median : 0.0
## Mean 923.1 Mean : 13014 Mean 10817 Mean 123.6
## 3rd Qu.: 0.0 3rd Qu.: 16920 3rd Qu.: 13950 3rd Qu.: 0.0
## Max. :252535.8  Max. 1406000 Max. 11488517 Max. :284759.1
## Val Branch L3M Val_Elec_L3M Val_Air L3M Val_Other_L3M
## Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0
## 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 84.0 1st Qu.: 0
## Median : 0 Median : 0.0 Median : 386.0 Median : 784
## Mean 3152 Mean 180.2 Mean 667.7 Mean 3343
## 3rd Qu.: 0 3rd Qu.: 100.0 3rd Qu.: 894.0 3rd Qu.: 4600
## Max. 1143018645 Max. :40100.0 Max. :26845.0 Max. : 1000000
## Num Ct Tran L3M Num Dt Tran L3M  Num USSD L3M Num_App_L3M

## Min. : 3.00 Min. 18.0 Min. : 0.000 Min. : 0.00

## 1st Qu.: 8.00 1st Qu.: 58.0 1st Qu.: 0.000 1st Qu.: 0.00

## Median : 15.00 Median : 89.0 Median : 0.000 Median : 0.00

## Mean : 20.73 Mean 104.1 Mean . 4.624 Mean : 13.29

## 3rd Qu.: 26.00 3rd Qu.: 134.0 3rd Qu.: 6.000 3rd Qu.: 18.00

## Max. :963.00 Max. :1080.0 Max. :363.000 Max. :616.00

## Num_ INET L3M Num DO_L3M Num_SO0_L3M Num CW_L3M

## Min. 0.000 Min. 0.00 Min. 0.000 Min. 0.00

## 1st Qu.: 0.000 1st Qu.: 3.00 1st Qu.: 0.000 1st Qu.: 8.00

## Median : 0.000 Median : 8.00 Median : 0.000 Median : 14.00
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Mean 1.154 Mean : 10.47 Mean 1.186 Mean 16.06
3rd Qu.: 0.000 3rd Qu.: 15.00 3rd Qu.: 0.000 3rd Qu.: 21.00
Max. :1080.000 Max. :241.00 Max. :309.000 Max. :207.00
Num POS_L3M Num CNP L3M Num Branch L3M Num Elec L3M
Min. : 0.0 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
1st Qu.: 12.0 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.000
Median : 27.0 Median : 0.0000 Median : 0.0000 Median : 0.000
Mean : 36.8 Mean 0.5691 Mean : 0.1882 Mean : 1.543
3rd Qu.: 50.0 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 1.000
Max. :634.0 Max. :290.0000 Max. :49.0000 Max. :141.000
Num_Air L3M Num_USSD_Months_L3M Num_App_Months_L3M
Min. : 0.00 Min. :0.0000 Min. :0.0000
1st Qu.: 4.00 1st Qu.:0.0000 1st Qu.:0.0000
Median : 16.00 Median :0.0000 Median :0.0000
Mean : 23.72 Mean :0.2604 Mean :0.4044
3rd Qu.: 33.00 3rd Qu.:0.6666 3rd Qu.:1.0000
Max. :472.00 Max. :1.0000 Max. :1.0000
Num_INET Months_L3M Num_DO_Months L3M Num_SO_Months_L3M Num_CW_Months_L3M
Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.00000 1st Qu.:0.6666 1st Qu.:0.0000 1st Qu.:1.0000
Median :0.00000 Median :1.0000 Median :0.0000 Median :1.0000
Mean :0.09726 Mean :0.7850 Mean :0.2063 Mean :0.9371
3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000
Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.0000
Num POS Months L3M Num CNP Months L3M Num Branch Months L3M
Min. :0.0000 Min. :0.00000 Min. :0.00000
1st Qu.:1.0000 1st Qu.:0.00000 1st Qu.:0.00000
Median :1.0000 Median :0.00000 Median :0.00000
Mean :0.9148 Mean :0.03843 Mean :0.04296
3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.0000 Max. :1.00000 Max. :1.00000
Num_Elec_Months L3M Num_Air Months L3M Ave_Ct_L3M
Min. :0.0000 Min. :0.0000 Min. 2015
1st Qu.:0.0000 1st Qu.:0.6666 1st Qu.: 7238
Median :0.0000 Median :1.0000 Median : 12235
Mean :0.2250 Mean :0.7600 Mean 17895
3rd Qu.:0.3333 3rd Qu.:1.0000 3rd Qu.: 20499
Max. :1.0000 Max. :1.0000 Max. 148557132
Ave _Dt_L3M Ave_USSD_L3M Ave_App_L3M Ave_INET_L3M
Min. : 841 Min. : 0 Min. : 0 Min. : 0
1st Qu.: 7153 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0
Median : 12115 Median : 0 Median : 0 Median : 0
Mean 17692 Mean 1289 Mean 3870 Mean 1530
3rd Qu.: 20343 3rd Qu.: 1360 3rd Qu.: 3533 3rd Qu.: 0
Max. 147700317 Max. 1734770 Max. 11371575 Max. : 3459692
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Ave DO_L3M
Min. : 0.0
1st Qu.: 232.3
Median : 970.0
Mean 2277 .1
3rd Qu.: 2931.8
Max. :220000.0

Ave CNP_ L3M
Min. 0.00
1st Qu.: 0.00
Median : 0.00
Mean 53.65
3rd Qu.: 0.00
Max. :94919.70

Ave Air L3M
Min. : 0.0
1st Qu.: 39.0
Median : 136.0
Mean : 228.3
3rd Qu.: 303.0
Max. :8948.3

DO_Perc_L3M
Min. :0.0000
1st Qu.:0.0166
Median :0.0775
Mean :0.1340
3rd Qu.:0.2046
Max. :0.9937
Elec_Perc_L3M
Min. :0.000000

1st Qu.:0.000000
Median :0.000000
Mean :0.003728
3rd Qu.:0.002400
Max. :0.469100

Branch _Perc_L3M

Min. :0.
0.0000
0.0000

Mean :0.
0.0000

1st Qu.:
Median :

3rd Qu.:

Max . :0.

0000

0189

9994

DO_NumPerc L3M

Min. :0.
1st Qu.:0.

0000
0272
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Ave S0_L3M Ave CW_L3M Ave POS_L3M
Min. : 0.0 Min. : 0 Min. : 0
1st Qu.: 0.0 1st Qu.: 1850 1st Qu.: 1084
Median : 0.0 Median : 3367 Median : 2406
Mean 362.5 Mean 4430 Mean 3679
3rd Qu.: 0.0 3rd Qu.: 5700 3rd Qu.: 4700
Max. :100000.0  Max. :135333  Max. 1496173
Ave_Branch_L3M Ave_Elec_L3M
Min. : 0 Min. : 0.00
1st Qu.: 0 1st Qu.: 0.00
Median : 0 Median : 0.00
Mean 2747 Mean 75.42
3rd Qu.: 0 3rd Qu.: 60.00
Max. 1143018645  Max. :13366.67

Ratio_CW_POS_L3M CW_Perc_L3M POS_Perc_L3M

Min. : 0.000 Min. :0.0000 Min. :0.0000

1st Qu.: 0.472 1st Qu.:0.1401 1st Qu.:0.0958

Median : 1.280 Median :0.2991 Median :0.1930

Mean 7.610 Mean :0.3321 Mean :0.2244

3rd Qu.: 3.440 3rd Qu.:0.4922 3rd Qu.:0.3159

Max. :6053.000 Max. :1.0000 Max. :1.0000

INET Perc_L3M App_Perc_L3M USSD_Perc_L3M

Min. :0.00000 Min. :0.0000  Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000

Median :0.00000 Median :0.0000 Median :0.00000

Mean 0.02464 Mean 0.1282 Mean :0.05934

3rd Qu.:0.00000 3rd Qu.:0.2200 3rd Qu.:0.06820

Max. :1.00000 Max. :1.0000 Max. :0.99900
Air Perc_L3M CNP_Perc_L3M S0_Perc_L3M
Min. :0.00000 Min. :0.000000  Min. :0.00000
1st Qu.:0.00230 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.01060 Median :0.000000 Median :0.00000
Mean :0.01615 Mean :0.001689 Mean :0.02211
3rd Qu.:0.02230 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :0.55520 Max. :0.995300 Max. :0.95790

Other_Perc_L3M CW_NumPerc_L3M  POS_NumPerc_ L3M

Min. :0.00000 Min. :0.0000 Min. :0.0000

1st Qu.:0.00000 1st Qu.:0.0873 1st Qu.:0.1747

Median :0.02400 Median :0.1578 Median :0.3033

Mean 0.07974 Mean :0.1912 Mean :0.3240

3rd Qu.:0.12660 3rd Qu.:0.2580 3rd Qu.:0.4500

Max. :0.93230 Max. :1.0000 Max. :1.0000

INET NumPerc_L3M  App_NumPerc L3M USSD_NumPerc_ L3M

Min. :0.000000  Min. :0.0000 Min. :0.00000

1st Qu.:0.000000 1st Qu.:0.0000 1st Qu.:0.00000
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Median :0.0845 Median :0.000000 Median :0.0000 Median :0.00000
Mean :0.1218 Mean :0.009624 Mean :0.1031 Mean :0.04489
3rd Qu.:0.1733 3rd Qu.:0.000000 3rd Qu.:0.1703 3rd Qu.:0.06380
Max. :0.9696 Max. :1.000000 Max. :1.0000 Max. :0.96150
Elec_NumPerc L3M Air NumPerc_L3M CNP_NumPerc L3M SO0_NumPerc_L3M
Min. :0.00000 Min. :0.0000 Min. :0.000000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.0506 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.00000 Median :0.1886 Median :0.000000 Median :0.00000
Mean :0.01321 Mean :0.2024 Mean :0.003572 Mean :0.01459
3rd Qu.:0.01470 3rd Qu.:0.3142 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :0.70790 Max. :0.9714  Max. :0.937500 Max. :0.80640
Branch_NumPerc L3M CSWEEP_P90_NumPerc_L3M CSWEEP_P80_NumPerc_ L3M

Min. :0.000000  Min. :0.0000 Min. :0.0000

1st Qu.:0.000000 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.000000 Median :0.0400 Median :0.1250

Mean 0.002192 Mean :0.1064 Mean :0.1866

3rd Qu.:0.000000 3rd Qu.:0.1538 3rd Qu.:0.2857

Max. :0.439000 Max. :1.0000 Max. :1.0000

CSWEEP_P70 NumPerc L3M CW Util L3M Time Since USSD_L3M

Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0476 1st Qu.:0.1278 1st Qu.:0.0000

Median :0.1935 Median :0.2750 Median :1.0000

Mean :0.2507 Mean 0.3125 Mean :0.6531

3rd Qu.:0.3888 3rd Qu.:0.4598 3rd Qu.:1.0000

Max. :1.0000 Max. :5.2903 Max. :1.0000
Time_Since_App_L3M Time_Since_ INET_L3M Time_Since_DO_L3M

Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.0000

Median :1.0000 Median :1.0000 Median :0.0000

Mean :0.5586 Mean :0.8944 Mean :0.1887

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000
Time_Since_S0_L3M Time_Since_CW_L3M Time_Since_P0OS_L3M Time_Since_CNP_L3M
Min. :0.0000 Min. :0.00000 Min. :0.00000 Min. :0.0000
1st Qu.:1.0000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:1.0000
Median :1.0000 Median :0.00000 Median :0.00000 Median :1.0000
Mean :0.7724 Mean :0.03517 Mean 0.05076 Mean :0.9516
3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.00000 Max. :1.00000 Max. :1.0000
Time Since Branch L3M Time Since Elec L3M Time Since Air L3M

Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:1.0000 1st Qu.:0.3333 1st Qu.:0.0000

Median :1.0000 Median :1.0000 Median :0.0000

Mean :0.9262 Mean :0.7182 Mean :0.2072

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000
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Max. :1.0000 Max. :1.0000 Max. :1.0000
InsufFunds_L3M Naedo_L3M DO_InsufFunds_L3M DO Dlspute L3M

Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000

Median : 0.0000 Median : 3.000 Median : 0.000 Median : 0.0000

Mean : 0.4632 Mean 4.577 Mean 0.899 Mean : 0.7891
3rd Qu.: 0.0000 3rd Qu.: 7.000 3rd Qu.: 1.000 3rd Qu.: 0.0000

Max. :51.0000 Max. :163.000 Max. :63.000 Max. :45.0000
Num_Loan_L3M Num_Loan_Months_L3M Quality_Banking L3M

Min. : 0.000 Min. :0.000 Min. :0.0000

1st Qu.: 0.000 1st Qu.:0.000 1st Qu.:1.0000

Median : 0.000 Median :0.000 Median :1.0000

Mean 1.863 Mean :0.338 Mean :0.9133

3rd Qu.: 0.000 3rd Qu.:0.000 3rd Qu.:1.0000

Max. :317.000 Max. :3.000 Max. :1.0000
Ave_Days_Above_10_L3M Ave_Days_Above_100_L3M Ave_Days_Above_500_L3M

Min. :0.0500 Min. :0.0000 Min. :0.0000

1st Qu.:1.0000 1st Qu.:0.3804 1st Qu.:0.2065

Median :1.0000 Median :0.6195 Median :0.3913

Mean :0.9893 Mean 0.6065 Mean 0.4391

3rd Qu.:1.0000 3rd Qu.:0.8586 3rd Qu.:0.6413

Max. :1.0000 Max. :1.0000 Max. :1.0000
Ave_Days_Above_1000_L3M Ave_Days_Above_2500_L3M Ave_Days_Above_5000_L3M

Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.1304 1st Qu.:0.0326 1st Qu.:0.0000

Median :0.2608 Median :0.1195 Median :0.0326

Mean :0.3400 Mean :0.2028 Mean :0.1167

3rd Qu.:0.4891 3rd Qu.:0.2717 3rd Qu.:0.1304

Max. :1.0000 Max. :1.0000 Max. :1.0000

Ave Days_Above_10000_L3M Ave_Days_Above_20000_L3M

Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000

Median :0.00000 Median :0.00000

Mean :0.05834 Mean :0.02684

3rd Qu.:0.03260 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000

Ave_Days_Above_50000_L3M Avg Dep_Bal L3M Dep_Bal_Spend_Ratio_L3M

Min. :0.000000 Min. -499 Min. :=-36.0220

1st Qu.:0.000000 1st Qu.: 453 1st Qu.: 0.9757

Median :0.000000 Median : 984  Median : 0.9901

Mean 0.009734 Mean 3518 Mean 0.9607

3rd Qu.:0.000000 3rd Qu.: 2208 3rd Qu.: 0.9950

Max. :1.000000 Max. :5905004  Max. 10.5341
AVG_TTSBOO L3M AVG_TTSB75 L3M  AVG_TTSB50_L3M AVG TTSB25_L3M

Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000

Stellenbosch University https://scholar.sun.ac.za

129



Stellenbosch University https://scholar.sun.ac.za

1st Qu.: 8.00 1st Qu.: 4.000 1st Qu.: 2.000 1st Qu.: 1.000
Median :12.00 Median : 7.000 Median : 4.000 Median : 2.000

Mean :13.44 Mean : 8.957 Mean : 5.171 Mean 1 2.804
3rd Qu.:18.00 3rd Qu.:12.000 3rd Qu.: 6.000 3rd Qu.: 3.000
Max. :30.00 Max. :30.000 Max. :30.000 Max. :30.000
Ratio_Out_Above_1k L3M Ratio_(Out_Above_5k _L3M Ratio_Out_Above_ 10k _L3M
Min. :0.0000 Min. :0.000000 Min. :0.000000
1st Qu.:0.0588 1st Qu.:0.000000 1st Qu.:0.000000
Median :0.1075 Median :0.000000 Median :0.000000
Mean :0.1300 Mean :0.007723 Mean :0.001135
3rd Qu.:0.1756 3rd Qu.:0.000000 3rd Qu.:0.000000
Max. :1.0000 Max. :0.821400 Max. :0.470500
Ratio_QOut_Above_20k_L3M Ratio_In_Above_1k_L3M Ratio_In_Above_5k_L3M
Min. :0.0000000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000000 1st Qu.:0.1250 1st Qu.:0.0000
Median :0.0000000 Median :0.2500 Median :0.0357
Mean :0.0006073 Mean :0.3052 Mean :0.1210

3rd Qu.:0.0000000 3rd Qu.:0.4285 3rd Qu.:0.1666
Max. :0.5172000 Max. :1.0000 Max. :1.0000
Ratio In Above 10k L3M Ratio In Above 20k L3M

Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000

Median :0.00000 Median :0.00000

Mean :0.08419 Mean :0.02939

3rd Qu.:0.12500 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000
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Appendix E

In Figure 50 to Figure 57 we find the histograms of the 127 variables of the 3M__SAMP1
sample. These variables have been log-transformed and the outliers have been removed. The
next step is to start the dimension reduction process.
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Histogram of Val_Ct_Tran_L3M Histogram of Val_Dt_Tran_L3M Histogram of Val_USSD_L3M
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Figure 50: Variable 1 to 15

132



count

Histogram of Num_INET_L3M

Tesds-

count

Setdd-

fes00) |
0
Num_NET_L3M

Histogram of Num_CW_L3M

20000~

count

’ : Num_CW_L3M
Histogram of Num_Branch_L3M

150000~

100000~

count

50000~

o H - -
8 1 2 i
Num_Branch_LaH

Histogram of Num_USSD_Months_L3M

100000~

75000~

count

50000~

22000+ I I
o

0.00 028

Num_USSD_Months_L3H

Histogram of Num_DO_Months_L3M

75

count

5e4D4-

seco] I = n

050 0.5 E ors
Num_DO_Wonths_L3h

Histogram of Num_POS_Months_L3M

150000
100000~

50000~

- m u I

0.5 075
Num_POS_Months_L3M

Stellenbosch University https://scholar.sun.ac.za

Histogram of Num_DO_L3M

30000~

Histogram of Num_SO_L3M

tesose
20000
£ £
10000~
3, | ol I N
B 0 2 4 0 2 ‘
Mum_DO_L3M Mum_SO_L3M
Histogram of Num_POS_L3M Histogram of Num_CNP_L3M
5000~ 150000~
10000 100000~
t t
g g
so00- s0000-
ol I I I . -
0 H ° 2 i
Hum_POS_L3M Hum_CNP_L 31
Histogram of Num_Elec_L3M Histogram of Num_Air_L3M
1200m0-
30000~
90000~
20000~
T coono- £
8 8
10000~
0000~
N | [ N i L
4 8 1 2 i 4 s ° H 4 5
Num_Elec_L3M Num_Air_L3M
Histogram of Num_App_Months_L3M Histogram of Num_INET_Months_L3M
75000~
s
E so00- t
g g
LR
25000~

|3_ [ | | |

02400 L] L]
100 000 035 o5 078 100 000 035 o5 078 100
Num_App_Wonths_| 34 Num_INET_Wonths_| 34
Histogram of Num_SO_Months_L3M Histogram of Num_CW_Months_L3M
150000
-
100000~
E E
2 2
sei04-
50000~
tes00 ] | | I - - [ |
000 0zs ot ors 10 000 0zs 0w ors 100
Num_S0_Menths_L3M Num_CW_Months_L3M
Histogram of Num_CNP_Months_L3M Histogram of Num_Branch_Months_L3M
15000
150000
100000~ 100000
£ £
H H
50000~ som00-
o = - = o | -
000 03 5

0.51 075 100 0.0 0z 5 075 100
Num_CNP_Months_L3M Num_Branch_Months_L3M

Figure 51: Variable 19 to 36
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Figure 52: Variable 37 to 54
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Figure 53: Variable 55 to 69
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Figure 54: Variable 70 to 84
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Figure 55: Variable 85 to 99
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Figure 56: Variable 100 to 114
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Figure 57: Variable 115 to 127
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Appendix F

Here a list of the percentage zero values for each variable in dataset 3M__SAMP1 can be seen.
The variables have not been cleaned and can be seen in their raw states, containing outliers
and on the original measurement scales.

#it Vars p_zeros
##H 1 Val Ct _Tran L3M 0
## 2 Val Dt_Tran L3M 0
## 3 Val _USSD_L3M  58.22
## 4 Val_ App_L3M 54.16
## 5 Val_INET_L3M 80.43
## 6 Val DO_L3M 17.34
#H 7 Val_SO_L3M 75.43
## 8 Val_CwW_L3M 1.56
## 9 Val_POS_L3M 2.7
## 10 Val CNP_L3M 94.42
## 11 Val_Branch L3M 89.86
## 12 Val_Elec_L3M 66.99
## 13 Val_Air L3M 18.27
## 14 Val_Other_L3M 26.98
## 15 Num_Ct_Tran_L3M 0
## 16 Num_Dt_Tran_L3M 0
## 17 Num_USSD_L3M  58.22
## 18 Num_App_L3M 54.16
## 19 Num_INET_L3M 80.43
## 20 Num DO_L3M 17.34
## 21 Num SO_L3M 75.43
## 22 Num_CW_L3M 1.56
## 23 Num_POS_L3M 2.7
## 24 Num_CNP_L3M  94.42
## 25 Num_Branch L3M 89.86
## 26 Num_Elec_L3M 66.99
## 27 Num_Air L3M  18.27
## 28 Num_USSD_Months_L3M  58.22
## 29 Num_App_Months_L3M 54.16
## 30 Num_INET Months_L3M  80.43
## 31 Num_DO_Months_L3M 17.34
## 32 Num_SO_Months_L3M  75.43
## 33 Num_CW_Months_L3M 1.56
## 34 Num_POS_Months_L3M 2.7
## 35 Num_CNP_Months_L3M  94.42
## 36 Num_Branch_Months L3M 89.86
## 37 Num_Elec_Months_L3M 66.99
## 38 Num_Air Months L3M  18.27
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Ave Ct_L3M
Ave Dt _L3M
Ave_USSD_L3M
Ave_App_L3M
Ave_INET_L3M

Ave _DO_L3M
Ave_S0_L3M
Ave_CW_L3M
Ave_POS_L3M

Ave CNP_L3M

Ave Branch L3M
Ave_Elec_L3M
Ave_Air L3M

Ratio CW_P0OS_L3M
CW_Perc_L3M
POS_Perc_L3M
DO_Perc_L3M

INET Perc_L3M
App_Perc_L3M
USSD_Perc L3M
Elec_Perc_L3M

Air Perc_L3M
CNP_Perc_L3M
S0_Perc_L3M
Branch_Perc_L3M
Other_Perc_L3M
CW_NumPerc_L3M
POS_NumPerc_L3M
DO_NumPerc_L3M
INET_NumPerc_L3M
App_NumPerc_L3M
USSD_NumPerc_L3M
Elec_NumPerc L3M
Air NumPerc_ L3M
CNP_NumPerc_L3M
SO0_NumPerc_L3M
Branch_NumPerc_L3M
CSWEEP_P90_NumPerc_L3M
CSWEEP_P80_NumPerc_L3M
CSWEEP P70 NumPerc L3M
CW_Util_L3M
Time_Since_USSD_L3M
Time_Since_App_L3M
Time_Since_INET_L3M
Time Since DO _L3M

58.22
54.16
80.43
17.34
75.43

2.7
94 .42
89.86
66.99
18.27

[

.56

17.35
80.53
54.2
58.23
66.99
18.31
94 .45
75.46
89.88
27.04

2.7
17.34
80.43
54.16
58.22
66.99
18.27
94 .42
75.43
89.86
46.51
29.99
22.23

26.12
41.81

79.17
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Time_Since_SO_L3M
Time_Since_CW_L3M

Time Since POS L3M

Time Since CNP_L3M
Time_Since_Branch_ L3M
Time_Since Elec_L3M
Time_Since_Air_ L3M
InsufFunds_L3M
Naedo_L3M
DO_InsufFunds_L3M
DO_Dispute_L3M
Num_Loan_L3M
Num_Loan_Months_L3M
Quality_Banking_ L3M
Ave_Days_Above_10_L3M
Ave_Days_Above_100_L3M
Ave_Days_Above_500_L3M
Ave_Days_Above_1000_L3M
Ave_Days_Above_2500_L3M
Ave_Days_Above_5000_L3M
Ave_Days_Above_10000_L3M
Ave_Days_Above_20000_L3M
Ave_Days_Above_50000_L3M
Avg Dep_Bal_L3M
Dep_Bal_Spend_Ratio_L3M
AVG_TTSB9OO_L3M
AVG_TTSB75_L3M
AVG_TTSB50_L3M
AVG_TTSB25_L3M
Ratio_QOut_Above_1k_L3M
Ratio_Out_Above_bk L3M
Ratio_Out_Above_10k_L3M
Ratio_(Out_Above_20k_L3M
Ratio_In_Above_1k_L3M
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Figure 58: U-matrices of (a) the SOM of 3M_SAMP2 and (b) the SOM of 3M_SAMP3
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Figure 59: U-Matrix of (a) the SOM of 6M__SAMP1, (b) the SOM of 6M_SAMP2 and (c)
the SOM of 6M_SAMP3
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Figure 61: Gap Statistic, Elbow method and Average Silhouette method plot for the
3M SAMP2 dataset
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Figure 62: Gap Statistic, Elbow method and Average Silhouette method plot for the
3M_ SAMP3 dataset
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Figure 63: Gap Statistic, Elbow method and Average Silhouette method plot for the
6M_SAMP1 dataset
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Figure 64: Gap Statistic, Elbow method and Average Silhouette method plot for the
6M SAMP2 dataset
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Figure 65: Gap Statistic, Elbow method and Average Silhouette method plot for the
6M_SAMP3 dataset
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Figure 66: Gap Statistic, Elbow method and Average Silhouette method plot for the
12M  SAMP1 dataset
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Figure 67: Gap Statistic, Elbow method and Average Silhouette method plot for the
12M_SAMP2 dataset
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Figure 68: Gap Statistic, Elbow method and Average Silhouette method plot for the
12M  SAMP3 dataset
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Appendix I

From Figure 69 to Figure 78 the following cluster traits were extracted.
Cluster 1:

o Clients make very little use of Debit Orders, NAEDOs and Stop Orders
o Clients rely less on cash withdrawals and cash usage

o Clients frequently buy Airtime

o Clients have lower inflow values

o Cluster has the least Quality Banking clients

This cluster has many similarities to cluster 1 of 3M__ SAMP1.
Cluster 2:

o Clients have lower inflow values and a lower number of inflow transactions
o Clients least frequently buy electricity and airtime
o Clients least frequently use the Banking Application or Card Not Present transactions

These clients have similarities with cluster 5 of 3M__SAMP1. These clients may possibly not
be very financially active or be constrained by low income.

Cluster 3:

o C(lients make the most use of Debit Orders, but have the least Debit Order Insufficient
Fund flags

o Cluster has the most Quality Banking clients

o Clients make use of Branch visits

o Clients have the least Internet Banking usage

The clients have similarities to cluster 4 of 3M__SAMP1.
Cluster 4:

o Clients have high value and frequent inflows

o Clients have a high frequency of performing App, INET, POS, CNP and Airtime
transactions

» Clients have a very low USSD and cash usage

o Clients make the least use of branch transactions

e Cluster has the many Quality Banking clients

These client have similarities to cluster 2 of 3M_SAMP1.
Cluster 5:

o Clients make the most use of NAEDOs and very frequent use of Debit Orders
o Clients also have a high number DO Insufficient Funds flags and also DO Disputes
o Client make very little use of POS transactions

This has some traits from cluster 4 of 3M_SAMP1, but feels like a cluster with no true
grouping. Like cluster 3 of 3M__SAMP1, it might contain all the clients that did not completely
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Figure 69: Histograms for the monetary values, transaction counts and monetary averages
variables, colour-coded according to clusters for 3M__SAMP2

fit elsewhere.
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Figure 70: Density plots for the monetary values, transaction counts and monetary averages
variables, colour-coded according to clusters for 3M__SAMP2
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Figure 71: Histograms of the variables containing information on monthly frequency of the
different channel’s usage, colour-coded according to clusters for 3M__ SAMP2

154



Stellenbosch University https://scholar.sun.ac.za

Density of Num_CW_Months_L3M Density of Time_Since_DO_L3M Density of Time_Since_POS_L3M

legend

legend
0 0

legend
H:

Time_since_POS_L3M

density
[

density
i
) density

CLLTs

Time_Since_DO_L3M

Density of Time_Since_Air_L3M

j legend legend
q: = | '

Time_Since_at_L3N

Num_CW_Honths_L3M

Density of Time_Since_Elec_L3M

densty

QT
densty
QT

Time_Since_Flec_L3M

Figure 72: Density plots of the variables containing information on monthly frequency of the
different channel’s usage, colour-coded according to clusters for 3SM__SAMP2
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Figure 73: Histograms of percentage and ratio variables, colour-coded according to clusters
for SM__ SAMP2
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Figure 74: Density plots of percentage and ratio variables, colour-coded according to clusters

for 3M__ SAMP2
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Figure 75: Histograms of the variables containing information on sizes of inflows and outflows,
colour-coded according to clusters for 3M__SAMP2
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Figure 76: Density plots of the variables containing information on sizes of inflows and
outflows, colour-coded according to clusters for 3M_ SAMP2
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Figure 77: Histograms of indicator variables, colour-coded according to clusters for
3M__SAMP2
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