
Vision-Based Flight Control for a
Quadrotor UAV

by

J.J. Rademeyer

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Engineering in the Faculty of Engineering at Stellenbosch

University

Study leaders:
Dr J.A.A. Engelbrecht
Prof. H.A. Engelbrecht

March 2020

Plagiaatverklaring / Plagiarism Declaration

1 Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele

eiendom van ander persone asof dit jou eie werk is.

Plagiarism is the use of ideas, material and other intellectual property of another’s work

and to present is as my own.

2 Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van

diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

3 Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

4 Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die

internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks

sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

5 Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my

eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik

ingehandig het vir bepunting in hierdie module/werkstuk of ‘n ander module/werkstuk

nie.

I declare that the work contained in this assignment, except where otherwise stated, is

my original work and that I have not previously (in its entirety or in part) submitted it for

grading in this module/assignment or another module/assignment.

i

Copyright © 2020 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

This thesis presents the development, implementation, and practical verification of a
vision-based flight control and waypoint navigation system for a quadrotor unmanned
aerial vehicle (UAV). The vision-based flight control system was developed to serve
as a building block in a larger project to autonomously navigate an inspection drone
relative to an inspection target in an indoor or GPS-denied environment. The intended
application of this technology is to use autonomous drones to inspect large commercial
airliners for external damage while the aircraft is parked in a maintenance hangar.

For the project, a vision-based UAV research platform was created using commercial
off-the-shelf UAV hardware and open-source software. The Intel Aero RTF Drone was
used as the research vehicle, the PX4 open-source software was used for flight control
and state estimation, the Robotics Operating System (ROS) and the ArUco library was
used for vision-based position and attitude determination, QGroundControl software
was used for the ground control station, and the Gazebo software was used to create
a simulation environment that supports both software-in-the-loop and hardware-in-the-
loop simulations.

The vision-based flight control system was developed by modifying the PX4 flight
control software to replace the existing GPS-based state estimator with our own vision-
based state estimator, and adding vision-based pose estimation software that executes
on a companion computer and determines the quadrotor position and attitude using
external ArUco markers. The PX4 flight control architecture was also reverse-engineered
and the controller gains were re-designed for the Intel Aero RTF flight dynamics. Finally,
a waypoint scheduler was implemented to enable the quadrotor UAV to autonomously
navigate a pre-determined set of position waypoints around an inspection target.

The vision-based flight control system was verified with laboratory experiments, sim-
ulations, and practical flight tests. The practical flight tests showed that the vision-based
pose estimation reliably detects the ArUco markers and provides position and attitude
measurements even during aggressive position and yaw angle steps. The vision-based
state estimator successfully estimates the position, velocity, and attitude of the quadrotor
UAV, and propagates the state when markers are temporarily lost from the camera’s field
of view. The flight tests also demonstrated that the vision-based flight control and way-
point navigation system provides stable and accurate position control for the quadrotor
UAV and successfully navigates the vehicle to follow a given sequence of position

ii

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Hierdie tesis beskryf die ontwerp, implementering, en praktiese verifikasie van ’n visie-
gebaseerde vlugbeheer en wegpunt navigasie stelsel vir ’n vier-rotor onbemande vliegtuig
(UAV). Die visie-gebaseerde vlugbeheerstelsel is ontwerp om te dien as ’n boublok in ’n
groter projek om ’n inspeksie hommeltuig outonoom te navigeer rondom ’n inspeksie
teiken in ’n binne-muurse of GPS-geweierde omgewing. Die praktiese toepassing vir die
tegnologie is om outonome hommeltuie te gebruik om groot passassiersvliegtuie te in-
spekteer vir uitwendige skade terwyl die vliegtuig in ’n loods geparkeer is vir herstelwerk.

Vir die projek is ’n visie-gebaseerde UAV navorsingsplatform geskep deur gebruik te
maak van kommersiële van-die-rak-af UAV hardeware en oopbron sagteware. Die Intel
Aero RTF hommeltuig is gebruik as die navorsingsvoertuig, die PX4 oopbron sagteware
is gebruik vir vlugbeheer en toestandsafskatting, die Robotics Operating System (ROS)
sagteware en die ArUco biblioteek is gebruik vir visie-gebaseerde posisie en oriëntasie
bepaling, die QGroundControl sagteware is gebruik vir die grondstasie, en die Gazebo
sagteware is gebruik om ’n simulasie omgewing te skep wat beide sagteware-in-die-lus en
hardeware-in-die-lus simulasies ondersteun.

Die visie-gebaseerde vlugbeheerstelsel is ontwikkel deur die PX4 vlugbeheer sagteware
te wysig om die bestaande GPS-gebaseerde toestandafskatter te vervang met ons eie
visie-gebaseerde toestandafskatter, en deur visie-gebaseerde lokalisering sagteware by
te voeg wat uitvoer op ’n metgesel rekenaar en die voertuig se posisie en oriëntasie te
bepaal vanaf eksterne ArUco merkers. Die PX4 vlugbeheer argitektuur is ook truwaarts
uitgevind en die beheerder aanwinste is herontwerp vir die Intel Aero RTF vlugdinamika.
Laastens is ’n wegpunt skeduleerder implementeer om die voertuig in staat te stel om ’n
stel voorafbepaalde posisie wegpunte rondom ’n inspeksie teiken outonoom te navigeer.

Die visie-gebaseerde vlugbeheerstelsel is geverifieer met laboratorium eksperimente,
simulasies, en praktiese vlugtoetse. Die praktiese vlugtoetse het gewys dat die visie-
gebaseerde lokalisering die ArUco merkers betroubaar optel en posisie en oriëntasie
metings verskaf selfs tydens aggressiewe posisie en gierhoek trapbewegings. Die visie-
gebaseerde toestandafskatter skat suksesvol die posisie, snelheid en oriëntasie van die vo-
ertuig af, en propageer die toestand wanneer merkers tydelik uit die kamera se gesigsveld
verdwyn. Die vlugtoetse het ook gedemonstreer dat die visie-gebaseerde vlugbeheer en
wegpunt navigasie stelsel stabiele en akkurate posisiebeheer verskaf vir die vier-rotor
UAV, en die voertuig suksesvol navigeer om ’n gegewe reeks posisie wegpunte te volg.

iii

Stellenbosch University https://scholar.sun.ac.za

Contents

Abstract ii

Uittreksel iii

Contents iv

List of Figures viii

List of Tables xi

Nomenclature xii

Acknowledgements xiv

1 Introduction 1
1.1 Background . 1
1.2 Research Goal . 2
1.3 Objectives . 2
1.4 Methodology . 3
1.5 Thesis Outline . 4

2 Literature Review 5
2.1 Basic Multi-rotor Dynamics . 5
2.2 Sensors . 8
2.3 Localisation . 9

2.3.1 SLAM . 9
2.3.2 Indirect Visual Odometery . 9

2.4 Visual Control . 10
2.5 Flight Control Software packages . 11

2.5.1 ESL’s In-house Flight Control Software 11
2.5.2 ArduPilot . 12
2.5.3 PX4 . 12

2.6 Simulation Environments . 12
2.7 Vision-Based Pose Estimation Software 12
2.8 Summary . 13

3 System Overview 14
3.1 Hardware . 14
3.2 Software Tool Chain . 16

iv

Stellenbosch University https://scholar.sun.ac.za

CONTENTS v

3.2.1 PX4 . 16
3.2.2 ROS . 17
3.2.3 Gazebo . 17

3.3 SITL Simulation . 18
3.4 HITL setup . 19
3.5 Flight test . 20
3.6 Summary . 20

4 Aircraft Dynamics 22
4.1 Axes Systems . 22

4.1.1 PX4 Earth Axes . 23
4.1.2 PX4 Body Axes . 23
4.1.3 Gazebo Earth Axes . 23
4.1.4 Gazebo Body Axes . 23
4.1.5 Camera Earth Axes . 23
4.1.6 Camera Body Axes . 23

4.2 Notation . 24
4.3 Aircraft Dynamics Overview . 25
4.4 Six-Degrees-of-Freedom Equations of Motion 25

4.4.1 Kinetics . 25
4.4.2 Kinematics . 26

4.5 Forces and Moments . 28
4.5.1 Actuators . 28
4.5.2 Aerodynamics . 29
4.5.3 Gravity . 29

4.6 Linearisation . 30
4.6.1 Linearising about Trim . 30

4.7 Vehicle Parameters . 32
4.7.1 Mass Moment of Inertia Experiment 32

4.8 Summary . 34

5 Control System Analysis and Design 35
5.1 Overview of PX4 Architecture . 35
5.2 Controller Design Overview . 37

5.2.1 Angular Rate Controller . 37
5.2.2 Roll Rate Gain Design . 38
5.2.3 Attitude Controllers . 43
5.2.4 Roll Angle Gain Design . 43
5.2.5 Velocity Controller . 46
5.2.6 East Velocity Gain Design . 47
5.2.7 Position Controller . 51
5.2.8 East Position Gain Design . 52

5.3 Practical Controller Verification . 53
5.4 Summary and Conclusions . 57

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

6 Visual-Based Pose Estimation 59
6.1 Camera Model . 59
6.2 Camera Calibration . 61
6.3 Distortion . 61
6.4 Pose Estimation . 62
6.5 ArUco Overview . 63

6.5.1 Markers . 63
6.5.2 Marker Detection . 64
6.5.3 Pose Estimation . 65

6.6 Experimental Results . 66
6.6.1 Position . 66
6.6.2 Attitude . 68
6.6.3 Final Values . 70

6.7 Summary . 70

7 State Estimator 71
7.1 Overview of PX4 State Estimator . 71
7.2 Extended Kalman Filter (EKF) . 72

7.2.1 State Prediction . 73
7.2.2 Covariance Prediction . 74
7.2.3 Sensor Fusion . 75

7.3 Output Prediction . 75
7.4 Vision-Based State Estimator . 76
7.5 Estimator Test . 76
7.6 Summary . 78

8 Results 80
8.1 Control Loop and Estimator Test . 80
8.2 Vision-based . 82
8.3 Summary . 85

9 Conclusions and Recommendations 86
9.1 Summary of Work Done . 87
9.2 Off-the-shelf Hardware and Open-source Software 87
9.3 Flight Control System . 88
9.4 Vision-based Localisation . 88
9.5 Flight Test . 89
9.6 Recommendations/Future Work . 89

List of References 91

A Intel® Aero Ready To Fly Specifications 97
A.1 Intel® Aero Compute Board: . 97
A.2 Intel® RealSense™ camera (R200) . 97
A.3 Intel® Aero Flight Controller: . 98
A.4 Pre-assembled quadcopter: . 98

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vii

B Controller Gains 99
B.1 PX4 vs. Custom . 99
*

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 Cross Configuration . 6
2.2 Plus Configuration . 6
2.3 Free-body diagram of a quadrotor . 7

3.1 Hardware configuration of the Intel® Aero Ready-To-Fly drone 15
3.2 Communication flow between the hardware components of the UAV system 15
3.3 Software tool chain . 16
3.4 SITL simulation setup . 19
3.5 HITL simulation setup using the GPS-based state estimator 19
3.6 HITL simulation setup using the vision-based state estimator 20

4.1 PX4 axes system . 22
4.2 Gazebo axes system . 22
4.3 Camera axes system . 22
4.4 Block diagram overview of aircraft dynamics 25
4.5 Axis angle representation . 27
4.6 Special case of axis angle . 27
4.7 Solid disk representation of the experiment 33
4.8 Experimental setup for system identification of the z-axis moment of inertia 33

5.1 PX4 controller overview . 35
5.2 Roll rate control loop . 38
5.3 Root locus plot for the roll rate controller design 40
5.4 Root locus plot for the roll rate controller design (zoomed-in) 40
5.5 Linear vs. PX4 roll rate step response . 41
5.6 Bode plot of all four control loops . 42
5.7 Roll Angle control loop . 43
5.8 Root locus plot for the roll angle controller design 44
5.9 Root locus plot for the roll angle controller design (zoomed-in) 44
5.10 Linear vs. PX4 Roll angle step response 45
5.11 East velocity control loop . 46
5.12 East velocity free-body diagram . 47
5.13 Root locus plot for the East velocity controller design 48
5.14 Root locus plot for the East velocity controller design (zoomed-in) 48
5.15 Linear vs. PX4 East velocity step response 49
5.16 vertical velocity control loop . 50
5.17 Down velocity free-body diagram . 51
5.18 East position control loop . 51
5.19 Root locus used for the East position controller design 52

viii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES ix

5.20 Root locus used for the East position controller design (zoomed-in) 52
5.21 Linear vs. PX4 East position step response 53
5.22 Flight test with designed controller gains and GPS-based state estimation . 54
5.23 Flight test with more aggressive controller gains and GPS-based state esti-

mation . 55
5.24 Flight test with designed controller gains and vision-based state estimation 56
5.25 Flight test with more aggressive controller gains and vision-based state es-

timation . 57

6.1 Basic pinhole camera model . 59
6.2 Side view of basic pinhole camera model 59
6.3 Undistorted images . 62
6.4 Radial distortion . 62
6.5 ArUco marker . 63
6.6 ArUco marker grid . 63
6.7 Thresholded Marker . 64
6.8 Detected Marker . 64
6.9 Physical Flight Marker Detected . 65
6.10 Physical Flight Multiple Markers Detected 65
6.11 Position estimate noise experiment . 67
6.12 Position estimate using a single marker . 67
6.13 Position estimate using multiple markers 67
6.14 Attitude errors using a single marker (during position experiments) 68
6.15 Attitude errors using a multiple markers (during position experiments) . . 68
6.16 Attitude estimate when using only a single marker 69
6.17 Attitude estimate when using multiple markers 69
6.18 Position estimate error during attitude experiments when using only a singe

marker marker . 69
6.19 Position estimate error during attitude experiments when using multiple

markers . 69

7.1 Delayed time horizon estimator . 71
7.2 Estimated position provided by the vision-based state estimator in HITL

simulation . 77
7.3 Estimated attitude provided by the vision-based state estimator in HITL

simulation . 77
7.4 Estimated position provided by the vision-based state estimator in actual

flight . 78
7.5 Estimated attitude provided by the vision-based state estimator in actual

flight . 78

8.1 Estimated position provided by the GPS-based state estimator with more
aggressive gains . 81

8.2 Marker Jig Layout . 82
8.3 Actual Marker Jig . 82
8.4 Estimated position provided by the vision-based state estimator in manual

flight . 83
8.5 Estimated attitude provided by the vision-based state estimator in manual

flight . 83

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES x

8.6 Estimated position provided by the vision-based state estimator with de-
signed gains . 84

8.7 Estimated attitude provided by the vision-based state estimator with de-
signed gains . 84

8.8 Estimated position provided by the vision-based state estimator with more
aggressive gains . 85

8.9 Estimated attitude provided by the vision-based state estimator with more
aggressive gain . 85

Stellenbosch University https://scholar.sun.ac.za

List of Tables

4.1 Linearised Six-Degrees-of-Freedom (6DOF) equations Of motion 31
4.2 Linearised forces and moment . 31
4.3 Quadrotor’s physical properties . 32
4.4 Mass moment of inertia experiment results 33

B.1 Controller Gains . 99

xi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Abbreviations
2D Two Dimensional
3D Three Dimensional
6DOF Six Degree of Freedom
Aero Intel® Aero Ready To Fly Drone
CoG Centre of Gravity
DCM Directional Cosine Matrix
EKF Extended Kalman Filter
EV External Vision
FCU Flight Control Unit
GPS Global Positioning System
HITL Hardware-in-the-loop
IBVS Image-based Visual Servoing
IMU Inertial Measurement Unit
INS Inertial Navigation System
NED North East Down
OBC On-board Computer
PBVS Position-based Visual Servoing
PID Proportional Integral Differential
PnP Perspective-n-Point
pub/sub Publish/Subscribe
ROS Robotic Operating System
RTOS Real-time Operating System
SITL Software-in-the-loop
SLAM Simultaneous Localisation and Mapping
UAV Unmanned Aerial Vehicle
VIO Visual Inertial Odometry
VO Visual Odometry

Aircraft Dynamics
m Mass of Multi-rotor
g Earths Gravitational acceleration
Ixx, Iyy, Izz Mass Moments of Inertia

xii

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xiii

T Motor Thrust
Tc Motor Thrust Command
Tm Maximum Motor Thrust
τ Motor Response Time Constant
darmx , darmy Distance from CoG to Motor in the i direction
rD Rotor Drag
RLD Lift to Drag Ratio
FD Drag Force
ρ Density of Air
CD Coefficient of Drag
Ax, Ay, Az Frontal Area in the i direction
x State Space Representation of Dynamic Model
u Input in State Space Form

Mass Moment of Inertia Experiment
d Distance Between Ropes
l Length of Ropes
tp Time of Oscillation Period

Control System
KP Proportional Gain
KI Integral Gain
KD Derivative Gain
Tf Filter Time Constant
u Input to Control Loop
y Output to Control Loop
DP , Dφ, DV , DE Controller Transfer Function
GP , Gφ, GV , DE Plant Transfer Function
FT Total Thrust Force

Visual Odometry
f Focal Length
cx, cy Camera Centre
P Principal Point
r Radius of Image Plane for Distortion
L(r) Distortion Factor
R Rotation Matrix
Tvec Translation Vector
rvec Rotation Vector
Tvec Translation Vector
β Vector Angle of Axis Angle

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people and organisations
for their contributions to this project:

• My supervisors, Japie and Herman Engelbrecht, for their insights and guidance
throughout this project. Thank you for always being accessible and all the effort
you put in to help solve the problems that arose. I would not have been able to
complete this thesis without your guidance.

• Denel Aeronautics and North-West University for providing a postgraduate bursary
and financial support for this research project under the Technology and Human
Resources for Industry Programme (THRIP) for 2018/2019.

• The safety pilot, Micheal Basson, for his expertise in flying and ensuring that the
multi-rotor landed safely in all the tests.

• Anton Erasmus for all his help with practical set-ups and all the hours spent on
the software.

• Christian Muller for always being of assistance with questions concerning the
project at hand.

• My family, for the their support and aid throughout my studies.

• My wife, Juan-Mari, for her support and always having the time to listen to my
progress and frustrations.

xiv

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Background
A commercial aeroplane that flies through a storm must be inspected for damage. Dam-
age may be caused by lightning strikes or hail of which the pilot might be unaware.
Such inspections can ground an aeroplane for up to 4 hours while every surface is manu-
ally examined for signs of damage. The examination generally consists of an individual
moving around the aeroplane with a ladder or a mobile elevating work platform. This
unscheduled down time is inconvenient and expensive for airlines. Therefore, the use of
a quadrotor inspection drone is proposed as a possible solution to reduce the time loss.
The inspection drone could fly around the aeroplane with a high-resolution camera and
capture images of all the surfaces in a 20-minute flight. The images could be painted onto
a 3D CAD model of the aeroplane and a human inspector or computer algorithm could
then examine the surfaces. Machine learning algorithms combined with computer vision
could speed up the process of identifying problem areas and could highlight them for the
human inspector’s attention. This could be done while the aeroplane is being refuelled
and prepared for the next flight, minimising the overall down time of the aircraft.

A serious problem with replacing an inspector with an unmanned aerial vehicle
(UAV), is that UAVs are not allowed to fly on most commercial airports. The inspection
would therefore have to be carried out inside a hangar, where the global positioning sys-
tem (GPS) signal will be severely degraded, if at all available. An autonomous inspection
drone would have to navigate itself around the circumference of the aircraft without the
aid of GPS sensors. Alternative localisation techniques, such as vision-based localisation,
will have to be employed.

Another potential solution could be for a human pilot to remotely control the inspec-
tion drone so that autonomous navigation is not required. However, this would mean
that a qualified drone pilot would have to be available for all inspections, and also intro-
duces the risk of human error that could lead to damage of the aircraft. The automation
of the inspection drone would allow the inspections to be performed by any technical
person, and would not require them to be skilled in the remote control of drones.

Therefore, a need exists for a GPS-less flight control and waypoint navigation sys-
tem to enable an autonomous inspection drone to navigate itself along a pre-determine
set of position waypoints relative to an inspection target, in an indoor or GPS-denied
environment.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

1.2 Research Goal
The primary goal of this research project is to design, implement, and verify a vision-
based flight control system to control the position of a quadrotor relative to an inspection
target in a GPS-denied environment. For this project, a marker-based pose estimation
approach must be used to accurately determine the position and attitude of the quadrotor
relative to the inspection target. This research will serve as a stepping stone for future
research on markerless pose estimation and vision-based flight control.

A secondary goal of this research project is to develop a UAV research platform using
commercial off-the-shelf UAV hardware and open-source software. This will replace
the Electronic System Laboratory’s (ESL’s) in-house developed avionics, ground control
station, and hardware-in-the-loop simulation environment. The ESL’s UAV research
hardware was developed in the early 2000’s when commercial UAV autopilots were not
available yet. However, the ESL’s electronic components have since become obsolete
and its manufacturing is no longer supported. Therefore, a need has been identified to
migrate to commercially available UAV hardware, and to develop a new UAV research
platform that includes the UAV avionics, a ground control station, and support for
hardware-in-the-loop simulation.

1.3 Objectives
The goals of this project are broken up into smaller objectives, namely:

1. To select and procure a suitable off-the-shelf quadrotor UAV: an airframe, a flight
control unit, an on-board computer, and a suite of sensors including an inertial mea-
surement unit (IMU), GPS sensor, magnetometer, barometric sensor, and camera
module.

2. To select suitable open-source flight control software to serve as the basis for the
vision-based flight control system.

3. To create an integrated UAV system consisting of the UAV, the ground control
station, and the hardware-in-the-loop simulation environment.

4. To establish a mathematical model of the quadrotor UAV flight mechanics that
can be used for flight control design and analysis, and for simulations.

5. To reverse engineer the flight control system and the state estimators implemented
by the open-source flight control software.

6. To re-design the flight controllers gains based on the flight dynamics of the chosen
commercial off-the-shelf quadrotor UAV, if necessary.

7. To design and implement a vision-based localisation algorithm that executes in
real time on-board the quadrotor UAV.

8. To design and implement a vision-based state estimator that estimates the po-
sition, velocity, and attitude of the quadrotor UAV without using GPS sensor
measurements.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

9. To design and implement a vision-based flight control and waypoint navigation
system for the quadrotor UAV.

10. To verify the correct operation of the vision-based localisation, state estimation,
flight control, and waypoint navigation using laboratory experiments, simulation
tests, and practical flight tests.

1.4 Methodology
To reach the aim and objectives of this project the following approach was taken. First,
a quadrotor UAV was sourced that (a) allowed access to the flight control software, (b)
had at least one camera on-board and (c) had on-board computational power for image
processing and position and orientation (pose) estimation. The quadrotor UAV had to be
controllable in flight and, therefore, a control system was required. Different open-source
control software were investigated and the final choice had to be made between the in-
house flight control software of Stellenbosch University’s Electronic Systems Laboratory
(ESL) research group and the ArduPilot and PX4 open-source flight control software
suites. The ESL’s in-house software was developed for the ESL’s in-house avionics hard-
ware and would have to be ported to the chosen commercial off-the-shelf hardware, the
ArduPilot open-source software did not provide support for hardware-in-the-loop simula-
tion. Consequentially, the PX4 open-source software remained as the only viable option
and was chosen as the flight control software. PX4’s controllers were analysed and were
found to be two-degrees-of-freedom successive loop closure PID controllers with various
safety checks. The architecture was fairly complex and it was necessary to create a
simplified representation to design gains for these controllers.

First, a dynamic model of the quadrotor UAV in flight was derived. The dynamic
model was then linearised around hover and used to design gains for the controller
that could be directly implemented into the PX4 controllers. The designed gains were
tested using Software-in-the-loop (SITL) simulations. Finally, practical flight tests were
performed to verify the correct operation of the flight controllers on the real quadrotor
UAV.

The next step was to localise the quadrotor UAV in an environment without GPS.
After a thorough investigation of the available literature, it was found that cameras and
consequently computer vision was a feasible solution. However, in computer vision there
are two main methods of localisation that are commonly used. The first is simultaneous
localisation and mapping (SLAM), where the environment is unknown and the vehicle
is required to simultaneously locate itself while mapping its environment. The second
method is localisation and requires full or partial knowledge of the environment and only
needs to be localised. The second method was chosen, because the shape of the inspection
target will be known and the inspection waypoints will be pre-determined. According to
the literature (that will be reviewed in Chapter 2 Section 2.3.2), the two most popular
solutions for localisation in a known environment is marker-based and marker-less local-
isation, where the marker is any identifiable object placed in the environment with the
sole purpose of facilitating localisation. Marker-based localisation was chosen to medi-
ate time constraints on this project because it was faster to implement. The localisation
technique requires the camera model to be derived and the measurement noise to be
characterised. Open-source software for marker-based localisation was investigated, as
it was the most efficient solution given the time constraints of the project. The ArUco

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

artificial reality libraries were chosen because they are considered the current industry
standard. The system was implemented in hardware and tested. This project made use
of marker-based localisation, as the scope of the project was too large to attempt more
complex methods for this phase in the development of the larger process. However, the
system was implemented in a modular way to allow the localisation algorithms of this
project to be easily substituted and refined for future systems.

An estimator was implemented to fuse the vision-based position and attitude mea-
surements with the other sensors measurements. The PX4 software includes a GPS-
based estimator and a limited vision-based estimator, which was replaced with our own
vision-based state estimator that uses the full three-axis attitude measurement.

The complete system was integrated with the different software components loaded on
the flight control unit and the on-board computer of the quadrotor UAV. The integrated
system was then tested through a series of practical flight tests. The tests were completed
in consecutive steps, where each of the steps tested a larger part of the system. The
controller and estimator were first tested with GPS, where-after the waypoint scheduler
was added and tested with GPS as well. When both tests were successful, the vision-
based system was activated and tested. The quadrotor UAV was flown by a safety pilot
before switching to the waypoint scheduler for the final test, which was aimed at proving
the integration of all the different subsystems.

1.5 Thesis Outline
Chapter 1 provided the background and motivation for the research, stated the research
goals, enumerated the project objectives, and gave an overview of the methodology.

Chapter 2 presents the literature review. The literature review includes the basic
dynamics of a quadrotor UAV, the typical sensors that are used, the different vision-
based localisation techniques, and the different open-source software packages that are
available.

Chapter 3 presents a system overview with a physical representation of the quadrotor
UAV. This is followed by detailed descriptions of the hardware and software interac-
tions, the software-in-the-loop and hardware-in-the-loop simulation environments, and
the flight tests.

Chapter 4 establishes the mathematical model of the quadrotor vehicle’s flight me-
chanics, and linearises the model for controller design.

Chapter 5 discusses the flight control system design by providing an overview of the
flight control architecture, followed by the detailed designs of the individual controllers,
and finally the step responses to verify the correct design.

Chapter 6 describes the camera model that is used for the image processing, followed
by an overview of the pose estimation process, and the sensor noise characterisation.

Chapter 7 provides an overview of the state estimator, describes the changes that
were made to enable vision-based state estimation, and describes the laboratory tests
that were used to verify the correct operation of the vision-based pose estimation.

Chapter 8 describes the flight tests that were performed and presents and discusses
the flight test results.

Chapter 9 summarises the conclusions and makes recommendations for future re-
search.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

This chapter presents a literature review of previous research relevant to vision-based
flight control of quadrotor UAVs. First, basic multi-rotor dynamics is covered, and an
overview is provided of the on-board sensors that are generally available on quadrotors.
Next, different techniques for vision-based localisation, the difference between marker-
less and marker-based localisation, and different techniques for vision-based control are
covered. Finally, an overview is given of the available open-source software packages for
flight control and simulation.

2.1 Basic Multi-rotor Dynamics
Multi-rotors can be in large number of different configurations. However, the core princi-
ple is that at least two actuators/motors are used with a rotating propeller. The number
of propeller and motor pairs used is determined by its practicality. This project made
use of a quadrotor in a cross-configuration, thereby constraining the configuration down
to use 4 motor and propeller pairs. The two most common configurations for quadrotors
are plus- and cross-configurations. As the name suggests, the plus-orientation resembles
a plus-symbol while flying forward (as shown in Figure 2.2), and the cross-configuration
resembles the letter "X" (as shown in Figure 2.1).

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 6

3 1

42

Figure 2.1: Cross Configuration

3

1

4

2

Figure 2.2: Plus Configuration

At this point it is necessary to turn to the basic principles of quadrotor dynamics.
The first important state - which is also the basis of many of the following concepts - is
when the quadrotor is hovering. Hovering is defined as the state in which the quadrotor is
suspended in the air with no movements (other than the rotors) or rotations. Therefore,
all forces and moments acting on the body sum to zero. A spinning propeller produces a
thrust directly along the axis around which the propeller is rotating, as well as a moment
around the axis in the opposite direction. Each motor’s thrust force and moment are
tightly coupled. Consider the cross-orientation: when each pair of motor and propellers
is represented by a single force and moment, a free-body diagram can be drawn as seen
in Figure 2.3. When all of the motors provide the exact same thrust and the combined
thrust is that of the quadrotor’s weight, the quadrotor will hover.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 7

T1

mg

T4

T2

1

4

3

2

Figure 2.3: Free-body diagram of a quadrotor

Motion of the quadrotor is then achieved by a change in the moment or thrust of the
motors from this equilibrium state, which disturbs the balance and causes the quadrotor
to move. An upward movement is caused by an equal amount of increase in the thrust
of each motor and a downward movement is caused by an equal amount of decrease in
thrust. The propellers are configured so that propeller 1 spins in the opposite direction
from 3 and 4. Similarly, propeller 3 spins in the opposite direction from propeller 1 and
2 (see Figure 2.3). This is to balance the net moments on the quadrotor. Therefore, to
yaw the vehicle a pair of motors (e.g. 1 and 2) must spin faster while the other pair
(e.g. 3 and 4) must spin slower. This keeps the net thrust constant while causing a net
moment, resulting in a constant height and rotation around the axis of gravitation. The
same principle holds for roll and pitch where, depending on the orientation, motor pairs
provide more or less thrust to cause rotation. As the body rotates, more general thrust
is required to keep the quadrotor at the same altitude while moving in the direction of
the desired angle. Therefore, to move forward the quadrotor will produce more thrust
to the back motors (e.g. 2 and 4) and less to the front ones (e.g. 1 and 3). As the
body starts to rotate forward, a thrust increase in all motors will cause the quadrotor to
start accelerating forward. The control system will perform the opposite of the thrust
commands to slow the quadrotor down, stop it or reverse it.

The quadrotor is an inherently unstable system and therefore needs feedback control
for stable flight. A robust control system capable of maintaining a quadrotor in the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 8

air requires feedback from the on-board sensors to stabilise and control the quadrotor
vehicle. Measuring the speed, thrust or moment of each propeller is difficult because the
thrust and moment of each propeller is relative to the speed of the motor’s rotation. The
rotation, in turn, is proportional to the current applied to it. In practice no two motors
will consistently provide the same thrust for the same current. Therefore, the resulting
motion resulting from the thrusts and moments acting on the quadrotor must be mea-
sured with on-board sensors to enable feedback control of the quadrotor’s translational
and rotational motion. The variables that are required for feedback control include the
angular velocity, the attitude, the translational velocity, and the translational position.
The sensors that are typically used for feedback control of a quadrotor will be reviewed
in the next section.

2.2 Sensors
To navigate in three-dimensional space, an autonomous vehicle must be able to deter-
mine its pose (position and attitude) in real time. While there is a wide array of sensors
available, the most commonly used are inertial measurement units (IMUs) and GPS
receivers. The simplest technique is to use an IMU to determine the attitude and a
GPS receiver to determine the position. However, this project is intended for use inside
a hangar where the GPS signal will either be severely degraded or completely absent.
Therefore, auxiliary sensors are required to aid the GPS in positioning or to completely
replace the GPS. Balamurugan, Valarmathi and Naidu [35] performed a survey on the
state-of-the-art localisation techniques used in a GPS-denied environment and the im-
plementation of a system that uses a camera as an auxiliary sensor with additional
validation checks on the GPS signal. Zhou et al. [33] used a GPS to position a vehicle
outside a building and used vision-based localisation to manoeuvre a quadrotor UAV
into a building through an open window.

Cameras are lightweight and inexpensive sensors that provide a high degree of ac-
curacy and bandwidth and have been used more than a decade for localisation. The
placement of the cameras defines the system’s capabilities and reliability. One com-
mon approach is to use external cameras placed in the environment to determine an
object’s position and attitude, which is a process called motion capture (MoCap). Iden-
tifying markers on the object aid in the determination of the object’s pose and the
pose information is then transmitted to the object through telemetry. Tisse, Fauvel and
Durrant-Whyte [53] have shown the success of such a system. However, the risk of losing
telemetry and damaging the inspection target (aeroplane) is too great for such a system
and therefore cameras mounted on-board the vehicle are better suited for the purposes
of this project.

The literature contains many different orientations and camera configurations for
on-board cameras. Some of the more common configurations are monocular1[13][20][21]
[22][29][34][35][36], stereo2[14][24][42] and multi-camera arrays 3[28]. There are some
hybrid camera configurations such as those implemented by Shen et al. [25][26] where a
monocular camera with a high frame rate is used, aided by a secondary stereo camera
with a lower frame rate. This retains the simplicity and robustness of a monocular

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 9

camera, while mitigating the ambiguity of a monocular camera using stereo vision.

2.3 Localisation

2.3.1 SLAM
The visual odometry (VO) system determines the pose of a vehicle by comparing each
image frame to either a previous frame or a reference map of the environment. There
are two ways in which an image frame can be analysed: either directly or indirectly.
Engel, Koltun and Cremers [52] defines "indirect methods" as a combination of the sensor
measurement values into primitive geometric shapes (such as lines, curves, corners, etc.)
used for pose estimation. Direct methods use the raw sensor measurements as inputs to
a probabilistic model to estimate the pose. Regardless of the method of analysis, the
pose is the problem that requires solving. When the environment is unknown, the only
option is to generate a map while simultaneously localising in the environment -a process
known as Simultaneous Localisation and Mapping (SLAM).

A map of the environment can either be sparse or dense, where "sparse" uses a select
number of independent points (mostly corners) to describe the environment and "dense"
maps attempt to use all the pixels in the 2D image plane to describe the environment
[52]. The SLAM solutions considered must be able to run in real-time and on-board a
UAV’s constrained hardware. Dense map solutions make use of an RGB-D camera (a
monocular RGB-camera with a sensor to provide depth for each pixel) and have shown
good representations of the environment, as demonstrated by [43] [44] [45] [46] [47] [48]
[49]. The sparse map solutions provided by [40] [41] [42] [10] [12] [27] [33] use RGB-
cameras and showed working examples of actual flight. A more extensive survey of the
current state-of-the-art SLAM solutions was done by Cadena et al. [51] and answered
the question of whether the problem of SLAM has been solved as follows:

“To achieve truly robust perception and navigation for long-lived autonomous
robots, more research in SLAM is needed. As an academic endeavor with
important real-world implications, SLAM is not solved.” ([51], pp. 1326).

Considering this statement, along with the large computational footprint used by
SLAM algorithms and the fact that the map will be partially known (a 3D model of the
inspection target is available), made it impractical to investigate SLAM solutions any
further. However, SLAM could be a solution to the localisation problem for future work.

2.3.2 Indirect Visual Odometery
When a map of the environment exists, the problem of pose estimation is reduced to a
localisation problem. Indirect methods for localisation can be subdivided into marker-
based and marker-less localisation, where "marker-based" refers to some identifiable
markers placed in the environment of which the pose is exactly known and "marker-less"
is the identifying of features in the image and relating it to a model of the environment
to determine the pose.

3Monocular – single camera mounted facing forward or downwards that can measure infrared (IR),
colour (RGB), black and white (monochrome) or high definition.

3Stereo – Two monocular cameras that are facing in the same direction.
3Multi-camera array – Two cameras facing in different directions or more than two cameras.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 10

Marker-less

Bleser, Wuest and Stricker[21], Jin, Favaro and Soatto [22] and Veth, Raquet and Pachter
[24] showed how marker-less pose estimation can be done for augmented reality, where
Shen, Mulgaonkar, Michael and Kumar implemented a marker-less localisation system
onto a UAV [25] [26].

Marker-based

The markers placed in the environment can be almost anything. The most success-
ful markers are asymmetrical markers, so that detecting the marker will produce a
unique pose estimate. The easiest markers to implement are square co-planar mark-
ers. Metni and Hamel [15], Jayatilleke and Zhang [18], Bacik et al. [38] and Mac
et al. [20] showed the effectiveness and practical results to be expected from square
co-planar markers. Benini, Rutherford and Valavanis [32] did a survey on the state-of-
the-art marker-based libraries for a more comprehensive list of available square markers.
Nguyen et al. [36] showed how circular markers can achieve better accuracy than the
square markers. Nitschke [29] and Singh et al. [37] increased the range from which the
co-planar markers can accurately be used for pose estimation, by nesting markers within
each other (Nitshcke for square markers and Singh et al. for circular markers). Roozing
and Göktogan [19] argued that markers placed in any environment are intrusive and
not aesthetically appealing and, therefore, created invisible IR reflective markers. When
using co-planar markers an ambiguity exists because rotation and translation are tightly
coupled. The result is an estimation error because all the points of the marker lie on a
single plane. Konomura and Hori used pyramid shaped markers to address this problem
[16], while Vogt et al. used a cluster of cylinders of varying height [17].

The ArUco library, created by Rafael Muños and Sergio Garrido [39], was used be-
cause it is the current standard for square co-planar markers [36][37]. Even though the
other marker types have shown great success and accuracy, the author decided to use
the ArUco library. Future projects may use more advanced or less intrusive methods.
The methods used specifically for the detection of the markers and pose estimation will
be discussed in Chapter 6.

2.4 Visual Control
Visual servoing is a technique used to control a vehicle by using visual information.
There are two approaches to visual servoing, namely position-based and image-based.
Both approaches have been successfully used and will now be discussed.

The first approach is the image-based visual servoing (IBVS) controller, which is de-
signed in the 2D image plane, where the pixels are directly used to compute the control
commands. This offers a reduced computational complexity and eliminates any camera
calibration errors. However, the translational and rotational movements are highly cou-
pled, resulting in a nonlinear plant [54], thereby requiring a more complex controller.
IBVS is well suited for use when the environment is unknown or when following a target.
Mebarki, Lippiello and Siciliano showed the design process and implementation of an
IBVS system [55].

The second approach is the position-based visual servoing (PBVS) controller which
requires a pre-controller step, where features are extracted from the image plane and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 11

matched to a known map of the environment. The pre-controller step provides a pose
estimate in Cartesian coordinates to the controller. This results in the control law re-
maining in Cartesian coordinates and decoupling the rotational and translational move-
ments for a linearisable plant [56]. The classical control architecture can therefore be
used, such as using cascaded control loops.

A third approach consists of hybrids of these two approaches. One such hybrid was
designed by Malis, Chaumette and Boudet and is aptly named “2 ½ visual servoing”
[57]. This system decouples the rotational and translational movements by using the
pre-controller step of PBVS for rotational information and the pixels in 2D image plane
for the translational information. This hybrid approach allows for lower computational
complexity than the PBVS, while still using a linear controller.

Even though all three approaches discussed above were viable, the PBVS approach
was best suited to the requirements of this project, since it is the more stable type when
a map of the environment is known. Consequently, the use of nonlinear controllers is
eliminated and the only requirement is a good camera calibration process.

2.5 Flight Control Software packages
The previous sections have emphasised the importance of a good control system for
stable and reliable flight. At the beginning of this project there were three options
to investigate. The first option was Electronic System Laboratory’s (ESL’s) in-house
developed flight control software that has been used in many previous projects. The
other two available options for control software was the open-source software packages,
ArduPilot and PX4. Both PX4 and ArduPilot are commonly used in industry and are
well documented, with active development teams continually improving the systems.

All the software packages have cascaded control architectures, where the different
states are decoupled. Estimation is performed by an extended Kalman Filter (EKF),
where ArduPilot and PX4 also provide other estimation architectures. The major dif-
ferences are described below.

2.5.1 ESL’s In-house Flight Control Software
The ESL flight control software is intended to execute directly on the PIC micro-
controller hardware without an operating system. This allows close control of the timing
and lowers the computational and memory footprint on the processor on which it exe-
cutes. It allows for easier development and simpler code structures. Furthermore, the
ground station software intended for use during flight tests, was created to interact with
the aerial vehicle. Software-in-the-loop (SITL) and hardware-in-the-loop (HITL) simu-
lations environments have been developed, which allow customisable simulation models
to be used for different types of vehicles. The documentation for most of the software is
contained in previous thesis reports in the Stellenbosch library and in inline comments in
the source code. However, the ESL’s in-house developed autopilot hardware has reached
its end-of-life, and its manufacturing is no longer supported. A need has therefore been
identified to develop a UAV research platform using commercial off-the-shelf UAV hard-
ware and open-source software, and to migrate the ESL’s in-house flight control and
guidance systems to the new platform.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 12

2.5.2 ArduPilot
ArduPilot was created to run on a real-time operating system (RTOS). However, the
system was designed to abstract the RTOS to function as a bareback system, which
allowed new developers and hobbyist to easily learn the architecture. The documentation
for ArduPilot provides recommendations for periphery software packages that are well
supported. These include ground station software and simulation environments. At
the time of this project, the ArduPilot’s development team announced their decision to
forego the use and support of Hardware-in-the-loop (HITL) simulations. An overview of
the software architecture can be found online [59].

2.5.3 PX4
PX4 is also designed to run on an RTOS and, unlike ArduPilot, the software makes full
use of the operating system. A publish-and-subscribe pattern software was implemented
allowing for a modular approach, enabling easy addition of functions and adaptation of
existing functions. PX4’s documentation also provides recommendations for peripheral
software packages. PX4 has full support for both SITL and HITL simulations and
provides a lockstep SITL simulation environment. The software documentation can be
found online [60]. PX4 was chosen as the flight control system, because it has full support
for HITL simulations and has an active community with well written documentation.

2.6 Simulation Environments
PX4 provides three open-source software packages as simulation environments, namely
Gazebo, jMAVSim and AirSim. Each one of these environments has easy integration
with PX4 and supports ROS. All three have support for HITL simulations and allow
easy integration. However, jMAVSim does not allow the addition of extra sensors such
as cameras. Consequently, it cannot simulate obstacles or a visual inspection. AirSim
has cameras already included and allows for obstacles to be placed in the environment,
but uses the Unreal Engine 4, which needs a strong Graphics Processing Unit (GPU) to
run [58].

Gazebo allows easy addition of cameras and obstacles and, even though the rendering
of the visualisation can be computationally expensive, it has two separate servers for the
simulation. One server renders the visualisation and the other simulates the physics.
This allows the physics simulator to work independently from the rendering, thereby
freeing up valuable computation time. Gazebo was the logical choice for the simulation
environment.

2.7 Vision-Based Pose Estimation Software
The previous sections covered the software and hardware that were chosen for this
project, namely PX4 for the flight control and state estimation, Gazebo for the sim-
ulations, and an off-the-shelf quadrotor vehicle. Gazebo uses ROS packages for commu-
nications to PX4 and the camera used could stream the images captured as a ROS topic.
Therefore, ROS was well suited to serve as the environment for the image processing.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 13

Despite its name, Robotic Operating System (ROS) is not an operating system, but
rather a middleware software package. Like PX4 and Gazebo, it uses a publish-and-
subscribe pattern and a topic is referred to as a ROS topic. A ROS topic can be any
data type, which includes images. Each class is called a node. For a ROS node to be
executable, a master node is required. The master node simply initialises the system
and manages the ROS topics. MAVROS was chosen to serve as the master node for the
software because it provides functionality to convert ROS topics into MAVLink messages,
and vice versa (Mavlink is the communication protocol used to communicate with PX4).

2.8 Summary
To summarise, a quadrotor in a cross-configuration was selected and flight is achieved
through differential control of the motor and propeller pairs. A camera was chosen as
the sensor to replace the GPS for localisation due to it being inexpensive and accurate.
SLAM algorithms were investigated, but due to the higher complexity and computational
capacity required and the map of the inspection target being known, it was decided to use
localisation only. Marker-based and marker-less localisation methods were discussed and
marker-based localisation was chosen for this project. Different visual control strategies
were compared and Position-Based Visual Servoing (PBVS) was chosen, because it is
more stable when a map of the environment is available. Open-source software was
chosen for the flight control system, visual processing system and simulation programs.
The reason being it allows for faster development and has a community of developers
supporting it. The software packages selected were PX4 for the flight control system,
ROS and ArUco for the image processing, and Gazebo for the simulations.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

System Overview

This chapter provides an overview of the UAV system that was created using commercial
off-the-shelf UAV hardware and open-source software, to achieve the objectives of this
research project. The components of the system included: the quadrotor UAV, the flight
control and guidance system, the ground control station, the simulation environment
(supporting both software-in-the-loop and hardware-in-the-loop simulations), and the
vision-based pose estimation system. The components were individually designed and
verified through simulations and physical testing. Once a component was successfully
tested it was added to the system. The entire system was created in a single simulation
environment and the integration was tested. Due to hardware limitations, which will
be discussed below, the entire system could not be tested through hardware-in-the-loop
(HITL) simulation. However, GPS-based estimation and control could be tested and the
visual inertial odometry system without control could be tested separately. Both showed
successful results. Since all the simulations showed that flight will be feasible, flight tests
were conducted to prove the integration of the system.

Every step will be discussed in more detail in the Chapters to follow, though some
concepts and layouts are complicated. Therefore, it is necessary to describe these con-
cepts and layouts in this Chapter. The concepts and layouts of relevance here are: (1)
The hardware specification and restrictions; (2) How the software was implemented on
the hardware; (3) The communication flow between the different software packages; (4)
How the SITL and HITL simulations were implemented; and (5)A brief overview of the
flight test setup.

3.1 Hardware
The flying platform is the key component, since most of the software is reliant on the
hardware (either directly such as computational power or indirectly such as response
time to commands). The Intel® Aero Ready-To-Fly drone (Intel® Aero RTF drone)
was chosen as best suited for the purpose of this project. A full list of its specifications is
given in appendix A. Important aspects that are relevant for this thesis are: the STM32
F427V chip used as the flight control unit (FCU); the quad-core Intel® Atom computer
used as the on-board computer (OBC); the Intel® RealSense camera module; and the
GPS. The figure below is a visual representation of how these components are placed on
the vehicle.

14

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 15

GPS +
Magnetometer

OBC
FCU

RealSense Camera
moduleRGB camera

Figure 3.1: Hardware configuration of the Intel® Aero Ready-To-Fly drone

Figure 3.2 shows how the different hardware components are connected.

FCU OBC
RealSense
Camera
Module

Ground
Control
Station

IMU

GPS
Mag
Baro

Safety
Pilot

Figure 3.2: Communication flow between the hardware components of the UAV system

The FCU is connected to the OBC via a single HUART serial connection. The
RealSense camera module is directly connected to the OBC, while the rest of the sensors
(inertial measurement unit (IMU), GPS, magnetometer, etc.) are connected directly
to the FCU. The IMU contains a three-axis accelerometer and a three-axis gyrometer
that is directly attached to the FCU. The ground control station is a laptop running
the QGroundControl open-source software, and its communicates with the OBC on the
quadrotor via a Wi-Fi connection. All communications from off-board the vehicle are

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 16

over the Wi-Fi connection to the OBC, except for the wireless connection between the
safety pilot’s transmitter and the receiver connected directly to the FCU.

The Intel® RealSense camera module has two infrared cameras (in a stereo configu-
ration), a depth sensor, and an RGB-camera. Due to the scale of the project, only the
RGB-camera is used. The RGB-camera streams the images at 30 fps with a resolution of
640x480 to a ROS topic (see Section 2.7), along with the camera and distortion matrices.
The camera module is fixed to the front of the vehicle where the RGB-camera’s center
is offset from the centre of gravity (CoG) of the Intel® Aero RTF drone.

3.2 Software Tool Chain
The quadrotor UAV is controlled by on-board flight control and state estimation software.
The PX4 open-source flight control software was chosen to implement the control system
and estimator. The Robotics Operating System (ROS) was chosen to perform the image
processing and pose estimation because the on-board Intel® Realsense camera can stream
the images as a ROS topic. ROS was also used to implement the waypoint scheduler as
a simple navigator to test that the system is successfully integrated. A key component
to verify the system, without the risk of damaging any hardware, is to simulate the
platform and system before practical flight tests. Gazebo was used for these simulations.
An overview of these three software packages follows and the different a summary of the
tool chain is shown in Figure 3.3.

FCU
PX4

OBC
MAVROS
Vision

Way-point

Desktop
Gazebo

Figure 3.3: Software tool chain

3.2.1 PX4
Several flight control and estimator architectures are included in the PX4 package. The
flight control architecture that was chosen for this project is a successive loop closure
architecture with two-degrees-of-freedom (2 DoF) PID controllers. An overview and
analysis of the flight control architecture will be given in Chapter 5.

The state estimation is performed using a delayed time horizon extended Kalman
filter (EKF). The estimator works in two stages. The first stage is a standard strap-
down INS EKF (Inertial Navigation System Extended Kalman Filter), where the sensor
measurements are stored in a buffer and the estimator is delayed between 100 and 200
ms. The EKF works at a delayed time where it uses the stored sensor measurement
from a buffer as it reaches the estimator’s delayed time. This allows the use of sensors
with differing rates. The problem is that the state estimates are delayed by 100 to 200
ms, which is too slow to fly. The second stage is to propagate the delayed states to
the current time using a combination of the latest IMU measurements and an output
prediction algorithm. The estimator is explained in Chapter 7.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 17

In addition to an estimator and controllers, PX4 has safety checks and logging re-
quired for reliable flight. PX4 was loaded onto the FCU.

3.2.2 ROS
The ROS environment allows easy integration of different functionalities required on the
OBC. As mentioned in Chapter 2, the master node used for this project is MAVROS,
which converts ROS topics to Mavlink messages and vice versa. This also means that
different ROS-nodes could subscribe and use the actual flight states. Localisation and
navigation is implemented on the OBC.

Localisation

The localisation used in this project is marker-based. The marker-based localisation
makes use of square fiducial markers placed at known locations and orientations. The
ArUco virtual reality libraries are used for the localisation, which are in turn based on
OpenCV.

Each marker that is used has a black border that encloses a 5x5 grid of black and
white blocks. The ArUco detection process first detects the black square border of the
markers to determine possible candidates. Then it decodes the 25-bit encoding inside
the square border of each identified candidate. The encoding provides a marker ID which
correlates to the marker map, where the marker’s pose is stored. The pose of the camera
can then be calculated by solving a perspective-n-point problem. An overview, including
the camera model used, will be provided in Chapter 6.

Navigation

The waypoint navigation system for this project is implemented by a waypoint scheduler,
where each waypoint is given as a position and heading angle. The scheduler is capable of
sending the position and heading angle references directly to PX4’s controllers through
the MAVROS node. There is no reliance on the ground station for any navigation
commands.

3.2.3 Gazebo
The last component required for the successful completion of this project was the sim-
ulation of all the previous components to enable testing and developing without risk to
the hardware. Gazebo is an open-source software package used for simulations and has
many protocols already implemented for communication with PX4 and ROS. Its largest
advantage is the ability to add cameras to a model and to stream the raw images to a
ROS topic. This enables for a simulation environment that closely resembles an actual
flight. Gazebo allows the addition of noise, drift and biases on sensor models (including
the camera models). This allows conceptual testing with noiseless sensor measurements
and robustness testing with noisy sensor measurements.

Gazebo provides a simulation environment in which gravity, ground plane and wind
conditions are defined. A model can be added, which can be either static or dynamic,
allowing for the addition of vehicles and obstacles. A Gazebo model contains a phys-
ical component (also referred to as the collision component) and a visual component.
Gazebo’s physics engine acts on the physical component: the visual component is merely

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 18

the way in which it renders. The visual component does not influence the physics or be-
havior of the model, except for the additional computational power necessary to render
it.

The physical component consists of at least one link but can contain any number of
links. A link is a geometrical shape which has a mass, a moment of inertia and a defined
magnitude. Different links are connected together by joints. A joint’s movement can be
restricted in any or none of the six-degrees-of-freedom. The combination of links and
joints creates a model, with which the physics engine of Gazebo interacts. Therefore, no
explicit mathematical equations are required, enabling easier and more complex mod-
eling. A practical example is a case where a quadrotor is created in this manner. The
base would be a simple (or complex) box, four beams for the motor arms (with static
joints), a cylinder at the end of each arm for the motors, and a propeller on each motor
(jointed to the motors with constraints only allowing rotation around one axis). Each
link requires the mass and moments of inertia to be known. Each propeller would have
a small script (also known as a plug-in) providing correlation between rotational speed
and thrust. The control software connected to such a simulation would send rotational
speed commands to the propellers and the rest of the physics would be managed by
Gazebo’s physics engine.

Since there are many variables that have to be tested to verify that Gazebo’s physical
simulator is comparable to the mathematical derivations, it was decided to bypass most
of it.

Instead of multiple links, a single box with the mass of the vehicle and inertias of
the vehicle was used. A plug-in was created to accept motor thrust commands and by
using the dynamic equations of motion (which are provided in Chapter 4) the force and
moment vectors acting on the body were calculated. This is a solution in which the
motion of the vehicle is based on the mathematical model derived in Chapter 4 and
can be verified, but still uses the messaging protocols of Gazebo to connect to the other
open-source software packages.

3.3 SITL Simulation
The first type of simulation used to test the different components was software-in-the-
loop (SITL) simulations. One of the control board architectures for which PX4 can be
configured, is a Linux-based operating system. Therefore, PX4 can run on a stand-alone
desktop computer in exactly the same manner as it would run on an STM32 chip. The
only difference is that for SITL simulations, the controllers and estimator are set to
simulation mode and the communication protocols used are slightly different.

A model of the Intel® Aero RTF drone was created and placed in a Gazebo envi-
ronment with ArUco markers. The model contains a camera mounted on the front of
the vehicle with all the offsets measured from the actual platform. The Gazebo camera
streams a generated image of the camera’s view as a ROS topic at 14 Hz and the rest of
the generated sensors’ measurements are sent straight to PX4. A representation of the
software connections is shown in Figure 3.4.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 19

PX4
MAVROS
Vision

Way-point

Gazebo

Desktop

Figure 3.4: SITL simulation setup

The OBC has Ubuntu 16.04 LTS as an operating system and ROS installed on it.
Therefore, there is no difference between ROS running on the stand-alone desktop com-
puter or on the OBC. Both the waypoint scheduler and the vision-based pose estimation
algorithm could be tested along with the rest of the software.

A recent update of Gazebo allows for lockstep between Gazebo and the PX4 software
in both SITL and HITL simulations. "Lockstep" is where the controller waits for the
sensor readings before executing and the physics simulator waits on the controller for
motor commands. The simulation time is therefore independent of actual time. The
simulations could be executed in less time than actual time would pass, or more time if
the computational power was a problem. But this does not apply to all the sensors: the
most notable sensor excluded from lockstep by Gazebo, was the on-board camera.

3.4 HITL setup
The second type of simulations used is HITL simulations. A HITL simulation gener-
ally involves uploading all the software on the hardware and connecting it to a simula-
tion computer. The computer runs the physics simulator that generates sensors’ mea-
surements and receives the motor commands. This simulation tests the software in an
embedded/on-board environment and ensures that each component works as designed.
The ideal HITL simulation for this project would be the system shown in Figure 3.5.

FCU
PX4

Desktop
Gazebo

OBC
GazeboOBC

Figure 3.5: HITL simulation setup using the GPS-based state estimator

PX4 is loaded on the FCU. The OBC has MAVROS, the visual pose estimation
node, and the waypoint scheduler loaded on it. Gazebo is then running on a stand-alone
computer connected directly to the FCU and the OBC. Motor commands are received
from the FCU and sensor measurements are sent to it and the images are streamed to
the OBC. This setup will then test the full integration of the entire system, since the
OBC and the FCU are not aware that it is not an actual flight. The FCU does not have
any external ports to which a computer can connect. Therefore, all connections had to
go through the OBC.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 20

Consequently, the HITL simulations for this project were done in two steps. Firstly,
the estimator and control system were tested using a simulated GPS. Secondly, the
visual odometry system was tested with the estimator. The splitting of simulations was
necessary because of the high computational load placed on the OBC when Gazebo and
ROS are running on it. The other option was to use the OBC as a bridge between the
stand-alone computer and the FCU. ROS could not be run on the OBC, because the
bridge used blocked any access from the OBC to the FCU. The two different options are
shown in Figure 3.6.

FCU
PX4

OBC
MAVROS
Vision

Way-point

RealSense
Camera
Module

Figure 3.6: HITL simulation setup using the vision-based state estimator

The first simulation tests showed that the estimator and control system work when
receiving sensor readings and that the logging does not slow the process down. The
second simulation tests did not have simulated images streamed, but the actual cameras
and IMU were used when the vehicle was picked up and moved manually in front of
the markers. The visual pose estimation’s accuracy will be discussed in Chapter 6. The
estimator combines the IMU and visual estimates together in a timely manner for flight.
Therefore, a flight test could safely be done, as the different systems were working with
the estimator, overlapping in both simulations.

3.5 Flight test
PX4 was uploaded onto the FCU and MAVROS. The ArUco libraries and the waypoint
scheduler was uploaded onto the OBC. Each software package used on the OBC has
a separate script that activates it, so that the different components could be tested
sequentially to incrementally build confidence in the system. The test procedures were
done with GPS-based pose estimation and tested the control loops sequentially and
thereafter the waypoint scheduler. The Visual Inertial Odometry (VIO) system was
activated and the estimator with vision was tested. Finally, the full system with vision-
based localisation was tested. The results of the flight test will be provided in Chapter
8.

3.6 Summary
The Intel® Aero Ready-To-Fly drone was chosen as the flying platform for this project.
PX4 was uploaded onto the FCU and was responsible for the control system and state
estimation. The companion computer of the Intel® Aero RTF drone was used as the
OBC and had Ubuntu 16.04 LTS as an operating system. ROS, a MAVROS node, the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 21

waypoint scheduler, and the visual pose estimation node was installed on the OBC.
QGroundControl was the software used for the ground station and connected to the
vehicle over a Wi-Fi connection. Gazebo was used for the simulation testing. Due to a
physical wiring restriction, a full system HITL simulation could not be achieved and two
separate simulations were done to test the system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Aircraft Dynamics

This chapter establishes a mathematical model for the quadrotor UAV flight mechan-
ics that can be used for the flight control design and analysis, and as the basis for a
simulation model. First, the various axis systems that are used by the PX4 flight con-
trol software, the Gazebo simulation software, and the camera system are defined. The
standard notation for the aircraft variables are also introduced. Next, the differential
equations that describe the six-degrees-of-freedom motion of a general aircraft are pre-
sented, followed by the force and moment models that are specific to a quadrotor UAV.
The force and moment models include models for the actuators (rotor thrusts), the aero-
dynamics, and the gravitational force. The full quadrotor model is then summarised,
and a linear model is derived to serve as the basis for the control system design and
analysis. Finally, the vehicle parameters for the Intel® Aero RTF are determined.

4.1 Axes Systems
The mathematical models used to model the motion of a vehicle in the air require a
frame of reference. As different open-source software packages were used, different axes
systems are involved, namely: PX4’s earth and body axes, Gazebo’s earth and body
axes, and the camera’s earth and body axes. PX4’s axis systems were considered as the
reference axis for all the axes systems and the estimator and controller were therefore
defined in terms of PX4’s body and earth axes. Therefore, in this chapter "the body
axes" refers to PX4’s body axes and "the earth axes" refers to PX4’s earth axes. The
axes are shown in Figures 4.1, 4.2 and 4.3.

D

N

E

XP E

ZP E

YP EXP B

ZP B

YP B

Figure 4.1: PX4 axes system

D

N

E

YGE

ZGE

XGEXGB

ZGB

YGB

Figure 4.2: Gazebo axes sys-
tem

D
N

E

ZCE

YCE

XCE

ZCB

YCB

XCB

Figure 4.3: Camera axes
system

22

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 23

4.1.1 PX4 Earth Axes
An earth axis system, also commonly referred to as an inertial axis system, is required to
apply any of Newton’s laws of motion. The PX4 earth axis system serves as the base to
which all the other axes systems are measured. In this case, it is assumed that the earth
is flat and not rotating, because a small UAV is used and is intended for short-range
flights. The orientation follows the North East Down (NED) convention, where the origin
of the axis system is placed at a convenient position, generally the take-off location. The
x-axis coincides with the North direction, the y-axis with the East direction and the
z-axis in the Down directions.

4.1.2 PX4 Body Axes
A body axis system is generally fixed to the aircraft body and its origin is chosen to be at
the center of gravity (CoG). The x-axis points forward between the two front motors, the
y-axis is positioned right between the two side motors and the z-axis faces downwards,
relative to the vehicle. The rotation and translation of the body axis is expressed relative
to the PX4 earth axis.

4.1.3 Gazebo Earth Axes
The Gazebo earth axes (also the simulation axes) is similar to the PX4 earth axes, as it is
fixed to the world and non-moving. The difference is the orientation of the axis system.
Instead of using a NED convention, an East North Up (ENU) convention is used. The
origin is placed at the origin of PX4’s earth axes. However, the y-axis corresponds to
the x-axis of PX4, the x-axis corresponds to the y-axis of PX4, and the z-axis points in
an upwards direction. It is therefore termed "Gazebo Earth Axes" as the earth axes is
utilised by Gazebo and ROS.

4.1.4 Gazebo Body Axes
These body axes (also the simulation axes) coincide with the PX4 body axes, but also
uses an ENU convention, where the x-axis points forward, the y-axis to the left, and
the z-axis upward relative to the vehicle. The orientation of the Gazebo body axes is
expressed relative to the Gazebo Earth axes.

4.1.5 Camera Earth Axes
The camera earth axes origin coincides with both of the other two earth axes. However,
it uses an East Down North (EDN) convention, where the x-axis is in the East direction,
the y-axis is in the Down direction, and the z-axis is in the North direction. This strange
orientation is the result of how OpenCV defines its axis system.

4.1.6 Camera Body Axes
The camera body axes’ origin is placed at an offset from the other two body axes.
Therefore, it is in the position of the lens relative to the CoG (xyz = [0.12, 0.038, 0.0]
metre in PX4 body axis). The orientation of the axes follows that of the camera’s earth
axis, where the x-axis is to the right, the y-axis is pointing downward, and the z-axis is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 24

pointing forward. The pose estimate of the visual odometry system is expressed in this
axis system and is given relative to the camera’s earth axes.

Image Axis

There exists an image plane which is the projection of the 3D environment onto the
camera. This plane is measured relative to the camera body axis and, while it is not
indicated in Figure 4.3, it will be discussed and used in Chapter 6.

4.2 Notation
The following standard notation is used for the variables that are used in the quadrotor
UAV model.

X,Y,Z Coordinates of the force vector in body axes (axial, lateral, and normal force)

L,M,N Coordinates of the moment vector in body axes (rolling, pitching, and yawing
moment)

N,E,D: Coordinates of the position vector in earth axes

U,V,W Coordinates of the linear velocity vector in body axes (axial, lateral, and normal
velocity)

φ,θ,ψ: The Euler 3-2-1 attitude vector of the body axis system with respect to the
earth axis system

αi: The quaternion describing the rotation of the body axis system with respect to the
earth axis system, where i is from w to z

P,Q,R Coordinates of the angular velocity vector in body axes (roll, pitch, and yaw
rate)

δA,δE,δR Virtual aileron, elevator and rudder control

As discussed in the Chapter 2.1, a quadrotor does not have any control surfaces
(ailerons, elevators and rudders) like aeroplanes. The mathematical models and control
laws for these control surfaces have been extensively researched and are well understood.
Therefore, a virtual control surface was defined, where the motors were grouped together
so that the virtual actuator deflection on the quadrotor vehicle would have a similar ef-
fect as a physical actuator deflection on a fixed-wing aircraft. The exact conventions and
mathematical model used is given in Section 4.5.1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 25

4.3 Aircraft Dynamics Overview
The block diagram in Figure 4.3 provides the full nonlinear aircraft dynamics model that
will be described in the following sections.

Actuators

Aerodynamics

Gravity

[X,Y,Z]

[L,M,N]
Kinetics Kinematics

[U,V,W]

[P,Q,R]

[N,E,D]

[φ,θ,ψ]

States

Controls

Forces and Moments 6 DoF Equations of Motion

Figure 4.4: Block diagram overview of aircraft dynamics

The right-hand side contains the 6DOF equations of motion that describe the motion
of a rigid body in 3D space, given a force and moment vector. The left-hand side models
the forces and moments that act on the rigid body, given a commanded virtual actuator
deflections (aileron, elevator, rudder, and thrust) and the current state of the rigid body.

4.4 Six-Degrees-of-Freedom Equations of Motion
Now that the aircraft variables are defined and an overview was provided, the equations
of motion for the quadrotor can be derived. The quadrotor is subject to six-degrees-of-
freedom when moving in a 3D-space - this being a translation along the NED axes and a
rotation around each axis. The modelling of the quadrotor in 6DOF was done by using
two fields of dynamics (a subset of mechanics), namely kinetics and kinematics, where
Hebbeler [4] (pp. 3-6) defines kinetics and kinematics as follows:

Kinetics The analysis or study of motion caused by forces.

Kinematics The study of the geometric aspects of motion, such as acceleration, ve-
locity and position.

In the following Sections it is assumed that the quadrotor is a rigid body, which
implies that its CoG remains fixed relative to the body axis.

4.4.1 Kinetics
The derivation steps for the kinetic equations of motion used for this model are provided
in the textbook by J.H. Blakelock[1]. Blakelock uses Newton’s second Law of Motion,
which states that all forces acting on an object must equate to zero, assuming zero accel-
eration. The aircraft is symmetrical about its XZ-plane and YZ-plane. Consequentially

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 26

it is assumed that the cross product of the moment of inertias (Ixy, Iyz and Ixz) all equate
to zero. Therefore, the equations derived by Blakelock are simplified into the following:

X = m(U̇ − V R +WQ) (4.4.1)
Y = m(V̇ + UR−WP) (4.4.2)
Z = m(Q̇− UQ+ V P) (4.4.3)
L = Ṗ Ixx +QR(Izz − Iyy) (4.4.4)
M = Q̇Iyy + PR(Ixx − Izz) (4.4.5)
N = ṘIzz + PQ(Iyy − Ixx) (4.4.6)

where m is the quadrotor’s mass, and Ixx, Iyy and Izz are the principal moments of
inertia about the respective body axes.

4.4.2 Kinematics
According to Hibbeler[4], at every time instant, the kinematics of a particle is specified
by its position, velocity and acceleration. Both linear and angular motion are present
in the case of a quadrotor, but for this project angular acceleration was not considered.
Both Euler angles and quaternions were used to represent orientation. A brief overview
of each follows and also of the position and orientation dynamics.

Euler Angles

The attitude of an aircraft can be described using one of three main parameterising
techniques, namely Euler angles, Quaternions and Directional Cosine Matrix (DCM).
Each of the techniques have advantages and disadvantages. Quaternions and the DCM
parametrisation are mathematically more complex and are not as intuitive as Euler
angles, while Euler angles have the problem of a singularity when one of the angles
reaches a 90◦ rotation. This problem is generally solved by assuming that, during regular
flight, the pitch angle will never reach the singularity angle. Throughout this thesis an
attitude parametrisation of 3-2-1 is used and it refers to the order of rotation which is:

1. Yaw: the axis is firstly rotated through the heading angle (ψ) around the D-axis.

2. Pitch: the axis is secondly rotated through the pitching angle (θ) around the body’s
new E-axis.

3. Roll: the axis is lastly rotated through the rolling angle (φ) around the body’s new
N -axis.

Euler angles are therefore intuitive and easily understood.

Quaternions

The other attitude parameterisation used in this thesis is quaternions, specifically unit
quaternions. Like Euler angles, quaternions are descriptions of the rotation from one

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 27

axis system to another, but lacks the limitation of the specific order of operation like
Euler angles. Quaternions are commonly provided in the general form:

ᾱ =
[
αw αxi αyj αzk

]
. (4.4.7)

where αw, αx, αy and αz are real numbers and i, j and k are the quaternion units.
A more visual definition of quaternions can be seen when converting it from an axis

angle representation. Axis angle is a way of representing an orientation by the use of a
three element vector and an angle of rotation around the vector shown in Figure 4.5.

r

β

x y

z

Figure 4.5: Axis angle representation

r
β

x y

z

Figure 4.6: Special case of axis angle

Given that r̄ = [rx ry rz]T the quaternion equivalent is:

ᾱ =

αw
αx
αy
αz

 =

cos (β/2)
rx sin (β/2)
ry sin (β/2)
rz sin (β/2)

 . (4.4.8)

where β is the angle around the r̄ vector. However, if the vector is only in one dimen-
sion (i.e. coincides with one of the axes) then β is directly equal to the Euler angle
representative around that axis as shown in Figure 4.6.

Attitude Dynamics

Even though Euler angles and quaternions serve the same purpose, this project made
use of both because PX4’s controllers use quaternions. Euler angles were used to design
the controller, since (when linearised) Euler angles are double the quaternion equivalent
(as shown in Section 4.6) and Euler angles are simpler. The equation describing the
relationship between the angular velocity in the body axis to earth axis, as derived by
Etkin and Reid [3] (pp. 100), is provided below:φ̇θ̇

ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)

PQ
R

 ,where |θ| 6= π/2 (4.4.9)

A singularity occurs when the pitch angle equals 90◦. However, Euler angles are only
used on the linearised model, where small angles are assumed (as Section 4.6 will explain)
and are therefore not a concern, as quaternions are used for the non-linear model.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 28

Position Dynamics

The last part of the kinematic model is the linear velocity measured in the earth axis.
Etkin and Reid[3] (pp. 104) derived a relation between these variables expressed by the
following equation:

ṄĖ
Ḋ

 =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
SθCψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ SφCθ CφCθ

UV
W

C# = cos(#)
S# = sin(#) (4.4.10)

Should the reader require be interested in the derivation, Möller’s master’s thesis[5]
contains a detailed approach.

4.5 Forces and Moments
Besides the dynamics of the quadrotor, which were discussed above, there are forces
and moments acting upon the quadrotor. These forces and moments are caused by the
actuators (i.e. motors and propellers) and environmental effects (i.e. gravity and aero-
dynamics). The ground and consequently ground effects also cause forces and moments,
but for this model they were not taken into consideration. This section will expand on
the importance and function of these forces and moments acting on the quadrotor.

4.5.1 Actuators
The first of these forces and moments acting on the body is that of the actuators (motor
and propeller pair). As a quadrotor in a cross orientation (see Section 2.1) was used,
all the definitions are for a cross configuration. The forces and moments acting on the
quadrotor was due to the different actuators running at different speeds. The largest
influence on the maneuver ability of a quadrotor is arguably the time delay (lag) of each
actuator’s to respond to a command. The effect of a time delay was modelled as a simple
first order equation as seen below:

Ṫ = (Tc − T)/τ (4.5.1)

where Tc is the commanded thrust, T is the actual thrust and τ is the time delay of a
single actuator.

The motors were fixed in place and constant pitch propellers were used. Consequently,
the forces caused by the actuators were only in the negative z-axis (of the body). How-
ever, varying speeds on each actuator caused moments around the three axes. The forces
and moments due to actuators are given as:

ZT = −δT (4.5.2)
LT = darmyδA (4.5.3)
MT = darmxδE (4.5.4)

NT = rD
RLD

δR (4.5.5)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 29

where darmj is the distance from the actuator centre point to CoG, rD is the rotor drag
coefficient, and RLD is the lift to drag ratio.

As mentioned in Section 4.2, a quadrotor does not have control surfaces. However, a
mixing matrix is used that maps the virtual actuator commands to physical rotor thrust
commands. The mixing matrix is defined as:

δT
δA
δE
δR

 =

1 1 1 1
− 1√

2
1√
2

1√
2 − 1√

2
1√
2 − 1√

2
1√
2 − 1√

2
1 1 −1 −1

T1
T2
T3
T4

 (4.5.6)

where the 1√
2 is due to the geometry, since the darmi is measured from the actuator

center to the CoG and the moment is only proportional to the distance in either the x-
axis or the y-axis. The cross-configuration’s x-axis and y-axis components are therefore
darmi cos (45◦).

4.5.2 Aerodynamics
One of the environmental effects acting on the vehicle is aerodynamics. The aerodynamic
model that was used was a simple application of the dynamic drag due to the frontal
area. The equation describes the drag force experienced by an object moving through a
liquid and is represented by:

FD = −aD · v2 (4.5.7)

where
aD = 1

2ρCDAi (4.5.8)

where ρ is the air density, v is the linear velocity of the object, CD is the drag coefficient,
and Ai is the reference area.

The equations assumed a blunt form factor. It was assumed that the projected area
in all directions was 1 m2 and that the error due to this assumption was absorbed by the
drag coefficient. The resultant force produced by aerodynamics drag was proportional
to the velocity of the quadrotor through the air and can be expressed as:X

A

Y A

ZA

 = −aD

 U |U |V |V |
W |W |

 (4.5.9)

4.5.3 Gravity
The last environmental effect affecting the vehicle is gravity. The resultant force de-
rived from gravity, at stable hover, will merely be the weight acting on the body in the
downwards direction and was expressed as:X

G

Y G

ZG

 =

0
0
1

mg (4.5.10)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 30

where m is the mass of the vehicle and g is the gravitation acceleration constant for
earth. When the quadrotor rotates, equation (4.5.10) is also rotated. This rotation can
be described by the DCM given in equation (4.4.10) and the resultant equation is:

X
G

Y G

ZG

 =

 −sin(θ)
cos(θ)sin(φ)
cos(θ)cos(φ)

mg (4.5.11)

There were no resultant moments due to gravity, because gravity only acts through
the quadrotor’s CoG.

4.6 Linearisation
The full nonlinear aircraft system allows for accurate simulations, but a linearised, time-
invariant model is required for control system design and analysis using linear control
theory. Therefore, this section focuses on linearising the nonlinear model around hover.

4.6.1 Linearising about Trim
The nonlinear dynamics equations of interest can be represented in the state space form:

ẋ = f(x,u) (4.6.1)

where:

x =
[
δT δA δE δR U V W Φ Θ Ψ P Q R

]T
(4.6.2)

u =
[
δTR δAR δER δRR

]T
(4.6.3)

and u is the virtual control surface reference commands. The states can be defined
as the sum of the trim values and small deviations around trim. Therefore, small angle
approximation was used. As the state deviations are assumed to be small, multiplication
of two near-zero states result in an insignificantly small value and can be ignored. The
trim condition for a quadrotor in this project was chosen as hover. Therefore, the states
were re-defined as:

x = xTrim + ∆x (4.6.4)
u = uTrim + ∆u (4.6.5)

while:

xTrim =
[
0 0 0 0 0 0 0 0 0 0 0 0 0

]T
(4.6.6)

uTrim =
[
Thover 0 0 0

]T
(4.6.7)

∆x =
[
δt δa δe δr u v w φ θ ψ p q r

]T
(4.6.8)

∆u =
[
δtR δaR δeR δrR

]T
(4.6.9)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 31

where Thover is the total thrust required at hover. The notable 6 DoF nonlinear equations
with their linearised counter parts are summarised in table 4.1.

Standard Form Linearised Form
δ̇T = δTR

τ
− δT

τ
δ̇t = δtR

τ
− δt

τ

δ̇A = δAR
τ
− δA

τ
δ̇a = δaR

τ
− δa

τ
˙δE = δER

τ
− δE

τ
δ̇e = δeR

τ
− δe

τ
˙δR = δRR

τ
− δR

τ
δ̇r = δrR

τ
− δr

τ

U̇ = X/m+ V R−WQ x = u̇m
V̇ = Y/m− UR +WP y = v̇m
Ẇ = Z/m+ UQ− V P z = ẇm

Φ̇ = P +Q sin (φ) tan (θ) +R cos (φ) tan (θ) φ̇ = p

Θ̇ = Q cos (φ)−R sin (φ) θ̇ = q

Ψ̇ = Q sin (φ) sec (θ) +R cos (φ) sec (θ) ψ̇ = r
Ṗ = L/Ixx −QR(Izz − Iyy)/Ixx l = ṗIxx
Q̇ = M/Iyy −RR(Ixx − Izz)/Iyy m = q̇Iyy
Ṙ = N/Izz − PQ(Ixx − Iyy)/Izz n = ṙIzz
αw = cos (β/2) αw,l ≈ 1
αx = r1 sin (β/2) αx,l ≈ φ/2
αy = r2 sin (β/2) αy,l ≈ θ/2
αz = r3 sin (β/2) αz,l ≈ ψ/2

Table 4.1: Linearised 6DOF equations Of motion

Similarly, the equations of the forces and moments were linearised around hover. The
nonlinear and linear equations are summarised in table 4.2.

Standard Form Linearised Form
X = −FDU2 −mg sin (θ) x = −mgθ
Y = −FDV 2 +mg sin (φ) y = mgφ
Z = −FDW 2 +mg − δT z = mg − δt
L = darmyδA l = darmyδa
M = darmxδE m = darmxδe
N = δRrD/RLD n = δrrD/RLD

.

Table 4.2: Linearised forces and moment

By combining the linear equations of both tables 4.1 and 4.2, the linearised state
space can be calculated and simplified to:

ẋ = A∆x + B∆u (4.6.10)

or when expanded shown to be:

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 32

∆ẋ =

− δt
τ

− δa
τ

− δe
τ

− δr
τ

−gθ
gφ
δt
m

p
q
r

darmy δa
Ixx

darmxδe
Iyy
δrrD

IzzRLD

+

δtR
τ
δaR
τ
δeR
τ
δrR
τ

0
0
0
0
0
0
0
0
0

(4.6.11)

This linearised model was used for the controller design that will be presented in
Chapter 5.

4.7 Vehicle Parameters
The physical parameters of the vehicle is the final requirement for a full aircraft dynamic
model. The parameters used to model the vehicle are shown in table 4.3. The mass was
measured with a digital scale, the motor arms where measured with a ruler, the rotor
drag was read off the propeller’s data sheet, the lift to drag coefficient was estimated,
and an overview of how the moments of inertia were calculated is given below.

Property Symbol Value Unit
Mas m 1.190 kg
Principle moment of inertia around x-axis Ixx 0.014 kg·m2

Principle moment of inertia around y-axis Iyy 0.022 kg·m2

Principle moment of inertia around z-axis Izz 0.032 kg·m2

Motor moment arm in x-axis darmx 0.180 m
Motor moment arm in y-axis darmy 0.180 m
Rotor drag coefficient rD 0.437 No Unit
Rotor lift to drag coefficient RLD 10.000 No Unit
Aerodynamics Drag coefficient CD 0.025 No Unit
Body reference Area Ai 1.000 m2

Table 4.3: Quadrotor’s physical properties

4.7.1 Mass Moment of Inertia Experiment
The identification of the moments of inertia was performed using a simple experiment.
Treurnicht [6] describes an experiment for calculating the moment of inertia, where the
object is suspended from two ropes. The axis around which the inertia is to be measured
is placed perpendicular to the horizon and parallel to the ropes. The object is rotated
slightly and allowed to oscillate. A sketch of the experiment is shown in Figure 4.7.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 33

l

d

Iii

Figure 4.7: Solid disk representation of the experiment

The equation to determine the moment of inertia is as follows:

Ii =
m· g· d2 · t2p

16π2 · l
(4.7.1)

wherem is the mass, g is the gravitational acceleration on earth, d is the distance between
the two parallel ropes, l is the length of the ropes, and tp is the period of the oscillation.

The experiment was repeated 3 times per axis for all three axes. The result of each
experiment is provided below and the final values are given in table 4.4.

Inertia d[m] l[m] tp,1[s] tp,2[s] tp,3[s]
Ixx 0.23 0.81 1.702 1.667 1.737
Iyy 0.25 0.77 1.883 1.917 1.933
Izz 0.24 0.77 2.383 2.424 2.413

Table 4.4: Mass moment of inertia experiment results

Figure 4.8 shows how the vehicle was attached to determine the Izz variable.

l

d

Iii

Figure 4.8: Experimental setup for system identification of the z-axis moment of inertia

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. AIRCRAFT DYNAMICS 34

4.8 Summary
This chapter established a mathematical model for the quadrotor UAV flight mechanics.
The various axis systems that are used by PX4 flight control and state estimation soft-
ware, the Gazebo simulation software, and the camera system were defined. An overview
of the standard notation used for the aircraft variables were provided. Thereafter, the
differential equations that the describe the six-degrees-of-freedom of the aircraft was
presented and the force and moment model specific to the quadrotor UAV. The full
quadrotor model was summarised, and a linear model was derived to serve as aid in the
control system design and analysis. The final part of this chapter was the determination
of the vehicle parameters for the Intel® Aero RTF drone, which included an experiment
to estimate the moment of inertias.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Control System Analysis and Design

PX4 is the control system used and what follows here is an overview of PX4’s control
architecture, the structure used to design the controllers and the tests that verified the
design process.

PX4’s control system can be uploaded on a wide range of vehicles because the con-
trollers are normalised and are therefore not bound to a single airframe. The commands
are scaled to the appropriate size at a vehicle level. To design controller gains specifically
for the Aero, the quadcopter’s physical properties had to be considered and a control
structure similar to PX4’s was created. The structure included the normalised controller
laws which was denormalised and made use of the linearised vehicle dynamics deter-
mined in Chapter 4 to simplify the equations. The control structure consists of four
control loops and each control loop was designed individually. Each loop will be given
an overview and the detailed design process will be shown. The loops were all tested
through SITL simulations to verify that the behaviour was satisfactory.

5.1 Overview of PX4 Architecture
The PX4 flight control architecture uses a successive loop closure approach, with four
layers of control loops, from the fastest inner-loop controllers to the slowest outer-loop
controllers. The control loops from innermost to outermost are the angular rate con-
trollers, the attitude controllers, the velocity controllers, and the position controllers. A
block diagram depicting the control architecture used by PX4 is shown in Figure 5.1:

Attitude Angular
Rate Mixing

Matrix
Force to
Attitude

VelocityPosition

δT

δiF MotorsPE VE α ω
ψ ψ

Figure 5.1: PX4 controller overview

where P̄E is the positions in earth axis, ψ is the heading angle, V̄E is the linear velocity
in the earth axis, F̄ is a force vector, ω is the angular rates in body axis and δi is the vir-
tual control surface commands (δA, δE, δR). The position control loop receives the local
position from a GPS or vision-based localisation system and controls the vehicle position
to follow a commanded position reference by actuating the velocity controller references.

35

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 36

The velocity controllers controls the measured velocity to follow a commanded velocity
reference by actuating a force vector reference. which is in turn converted to an attitude
reference for the attitude controllers and a thrust command. The conversion is done by
multiplying the acceleration by the mass of the vehicle, since F = ma. The force vector
then points in the direction which the motors are required to provide thrust. Therefore,
the thrust command is the magnitude of the vector and the attitude set-point is the
orientation of the plane perpendicular to the vector. The heading angle is assumed as
the rotation around the force. The attitude of the vehicle is obtained from a GPS-based
or vision-based state estimator, which estimates the full vehicle state using a fusion of
on-board sensor measurements, which include inertial sensor measurements.The attitude
controllers control the vehicle attitude to follow a commanded attitude reference by ac-
tuating the angular rate references for the angular rate controllers. The final and fastest
loop actuate the motor thrusts to control the angular rate references. PX4 abstracts the
motor thrusts from the controllers by implementing a virtual control surface, mapping
it to the motors. Therefore, the angular rate loop controls the virtual aileron, elevator
and rudder. The conversion from acceleration to attitude and the abstraction of the
direct control of the motor thrust introduces some uncertainty into the control system,
which could cause unwanted behaviours and introduces unpredicted disturbances. It
is assumed that PX4 needs a controller that is good at disturbance rejection and that
reduces the influence of the references on the control signals. Therefore, PX4 chooses to
control these loops with a two-degrees-of-freedom proportional integral and derivative (2
DoF PID) controller, instead of the normal PID controllers.

The degrees of freedom referred to in the name of this controller type is the number
of closed-loop transfer functions that are capable of changing independently [9]. Araki
and Taguchi [8] made comparisons between the two types of PID controller and noted
that the 2DoF was better at reducing the influence of the reference (set-point) signal
on the control signal and better at retaining the overshoot, while also increasing the
disturbance rejection. These improvements are due to the weight that was added to the
set-points of the proportional and derivative terms, which results in a change in the form
of the control law:

u = KP (b· r − y) + KI

s
(r − y) + KD · s

Tf · s+ 1(c· r − y) (5.1.1)

where r is the reference, u is the control signal, y is the current state, KP is the propor-
tional gain, KI is the integral gain, KD is the derivative gain, Tf is the derivative filter
time, b is the proportional set-point weight and c is the derivative set-point weight.

The equation above is the standard form for a 2DoF PID controller. However, PX4
uses a special case where b = 1 and c = 0. These weights result in an equally weighted
proportional and integral term, while the derivative term’s weight causes the derivative
term to ignore the reference. Therefore, the 2DoF PID controller is used to increase the
reliability and robustness of these controllers. The position and attitude loops actuates
the references to these finely controlled loops and do not require more than proportional
control for satisfactory responses.

In addition to the control loops, PX4 uses normalised forces and thrusts throughout
the controller design, that allows any vehicle type to use the controllers. The vehicle type
(or air-frame model) is then required to denormalise the thrust before it is passed on to
the actuators. This modular control system has been implemented by various hobbyist
and developers and have shown that the control system is functional. The design of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 37

the controllers that was used for this project was based on this architecture and will be
explained in the next Section.

5.2 Controller Design Overview
Successive control loop closure with interchanged P and PID control is a sensible solution
to control a quadrotor UAV. PID control is a suitable choice for an on-board control
system with limited computational power, as it is easy to implement, is generally low
on resources, it can be easily tuned while being robust to mismatched tuning and it has
very good disturbance rejection. Utilizing only PID controllers for the critical loops (and
P control on the other loops) is a logical choice because the system provides satisfactory
control while not taking up more computation than necessary. The linearised aircraft
model derived in Section 4.6 was used for the controller design. The simulations did not
make use of the 2DoF PID controllers because the linear model (with normal 1 DoF
control) provided a close representation of the 2DoF response. Additionally, the gains
were also tuned with the SITL simulations and the flight tests. The designed gains are
implemented directly in PX4’s architecture. Therefore, the controller gains are designed
in a normalised form.

The controllers were designed sequentially from the fastest inner loops to the slowest
outer loops, namely angular rate controllers, attitude controllers, velocity controllers,
and position controllers. Each control loop layer consists of three individual controllers,
one for each axis that is controlled. For example, the three-axis angular rate control is
performed using three separate controllers for roll rate, pitch rate, and yaw rate, and the
three-axis position control is performed using three separate controllers for North posi-
tion, East position, and Down position, respectively. The controllers are also categorised
into the following four groups into which the linearised model is decoupled: longitudinal,
lateral, heave, and heading. In most cases, identical control architectures and design
procedures are used for all three axes. Where there are differences (as is the case for the
velocity controllers), the differences will be highlighted and discussed.

In the following Sections, the detailed design of the controllers for the East axis will be
presented, namely the roll rate controller, roll angle controller, East velocity controller,
and East position controller. The architectures and design procedures for the North and
Down directions are similar, and will therefore not be presented explicitly.

5.2.1 Angular Rate Controller
The angular rate controllers are the fastest and most critical for stability in the system.
The controller receives an angular rate reference and commands a virtual deflector and/or
virtual thrust to match the reference. The controllers receive feedback of the quadrotors
orientation from the gyrometers. PX4’s controllers use normalised control gains to allow
the control architecture to be used with any type of vehicle. Therefore, the output
commands sent to the actuators (which range from−1 to 1) by the normalised controllers
are scaled for the design model to denormalised it before supplying it to the denormalised
plant.

The block diagram of the roll rate controller is given in Figure 5.2. The plant for this
controller is the linearised roll rate dynamics derived in Chapter 4 and represents the
response from virtual aileron command to roll rate. The angular rate controllers of PX4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 38

uses a 2 DOF PID controller, however a 1 DOF PID controller was chosen to design the
gains with. The assumption was made that when a linearised model was used that the
difference between 1 DOF and 2 DOF will be negligible and it simplifies the equations.
The controller gains were tested through SITL simulations and if the responses of the 2
DOF PID controllers were not in specifications adjustments were made.

+ -

KPp

KIp
s

sKDp

2Tm P (s)
δaR

1
s

pR pe δaR,norm δaR ṗ p

Controller

+++

Figure 5.2: Roll rate control loop

The roll rate error pe is calculated by subtracting the measured roll rate p from the
roll rate reference pR. The error is processed by the normalised controller to provide
a normalised aileron command. The normalised aileron command is denormalised by
the appropriate scaling factor before supplying it to the denormalised plant model. The
time taken between aileron command to the actual aileron deflection is assumed to be a
first-order response. The result in the linear model is the rate of change in the roll rate
and requires integration to provide the next time step’s roll rate.

The detailed design of the controllers were done by the combination of Bode plots
and root locus design.

5.2.2 Roll Rate Gain Design
The angular rate controllers are primarily responsible for the stability and response time
of the quadrotor. Therefore, the roll rate controller should (a) be as fast as possible
(not faster than 33ms response time), (b) have a well damped response and (c) have
steady-state error rejection.

The controller architectures and design procedures for the different axes are identical
for all three angular rate components (roll, pitch and yaw rate). However, the controller
gains may differ due to the different physical properties of the aircraft about each of the
three axes.

The plant is a mathematical equation that provides a roll rate if an aileron command
is given. The two equations that were used were given in Section 4.6 and their Laplace
transforms are:

δa(s) = δaR(s)
(s+ 1

τ
)τ (5.2.1)

P (s) = darmy

Ixx · s
δa(s) (5.2.2)

where τ is the motor’s time constant, darmy is the distance from the CoG to the motor
in the Y-axis, and Ixx is the moment of inertia in the X-axis. When the above two

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 39

equations are combined then the plant’s transfer function is derived:

P (s)
δaR(s) = darmy

τIxx · s(s+ 1
τ
) (5.2.3)

The control law implemented by PX4 is in terms of the normalised control gains
and is given in equation (5.2.4). This law will be denormalised to scale the commands
like PX4s airframe modules does to ensure that the gains that are designed are directly
implementable in PX4.

δa,norm(t) = KPp(pR − p) +KIp

∫
(pR − p)dt+KDp

d((−p)
dt

(5.2.4)

where pR is the roll rate reference, δa,norm is the normalised aileron command, KPp

is the proportional gain, KIp is the integral gain, and KDp is the derivative gain. The
relationship between the normalised and denormalised aileron commands are required for
denormalisation, which in turn requires the relationship between the normalised aileron
command and the normalised rotor thrust. The PX4 flight control software uses the
following mixing matrix to convert the four normalised rotor thrusts to the normalised
total thrust, and the normalised virtual aileron, elevator, and rudder deflections:

δt
δa
δe
δr

norm

=

1 − 1√

2
1√
2 1

1 1√
2 − 1√

2 1
1 1√

2
1√
2 −1

1 − 1√
2 −

1√
2 −1

T1
T2
T3
T4

norm

(5.2.5)

The denormalised rotor thrust commands can be calculated by scaling the normalised
rotor thrust commands with the maximum rotor thrust, as follows:

Ti = Tm ·Ti,norm (5.2.6)

where Tm is the maximum denormalised thrust of an individual rotor and i is the motor
index. By combining equations (5.2.5), (4.5.6) and (5.2.6) the relationship between the
normalised and denormalised virtual control surface commands is expressed as:

δt
δa
δe
δr

 = Tm

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4

δt
δa
δe
δr

norm

(5.2.7)

The virtual aileron command can then be denormalised and shown to be:

δaR = 2Tm · δa,norm (5.2.8)

where δaR is the linearised virtual aileron reference. Note that the denormalised elevator
command will have the same relationship with the normalised elevator command, but
the denormalised rudder deflection will use a factor of 4 instead of 2. Up until now, all
the equations have been provided in the time domain, but root locus analysis will be
used for the gain design. Therefore, the equations must be transformed to the s-plane
by Laplace transformations. The control law then becomes:

δaR(s) = 2Tm · (KPp(pR − p) + KIp(pR − p)
s

+KDp · s(−p)) (5.2.9)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 40

Figures 5.3 and 5.4 show the root locus plot generated using the plant transfer func-
tion with the normalised aileron command as input, and the roll rate as output, as shown
in Figure 5.2. The root locus plot also shows the placement of the closed-loop poles.
Both figures are of the same root locus response, where Figure 5.3 is the full view and
Figure 5.4 is a magnified view closer to the origin.

-100 -80 -60 -40 -20 0
-30

-20

-10

0

10

20

30

Figure 5.3: Root locus plot for the roll rate
controller design

-2 -1.5 -1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

Figure 5.4: Root locus plot for the roll rate
controller design (zoomed-in)

The plant has two open-loop poles, one at the origin (s = 0) and another at the
inverse of the motor’s time constant τ (s+ 1

τ
= 0). Consequently, the pole at the origin

will be the dominant pole and the pole due to the motor delay (τ) will be the non-
dominant pole of the plant at s = −100. However, the PID controller that was added,
placed a zero close to the origin that caused the motor time constant pole to become the
dominant pole and the pole at the origin the non-dominant pole.

The motor time constant could not be experimentally measured with the available
equipment and it was therefore estimated based on the values used for other quadrotor
vehicles in the research group. Since the other quadrotor vehicles have larger motors
with larger propellers, it is assumed that the small quadrotor used in this project would
have a smaller motor time constant. Because of the parameter uncertainty in the mo-
tor time constant, the controller gains for the angular rate controllers were designed
conservatively.

The proportional gain size was chosen so that the bandwidth of the angular rate
controller would be smaller than one third of the bandwidth of the plant. Generally,
a closed-loop bandwidth less than half of the open-loop bandwidth is recommended to
provide robustness to parameter uncertainty.

The integral term was then added to provide disturbance rejection for external distur-
bance torques such as asymmetrical thrust biases in the rotors, or external aerodynamic
torques because the centre of pressure may be displaced relative to the centre of mass.
The compensated system, therefore, has two free integrators in the open loop: one from
the plant and one from the controller. Therefore, the control loop is type 2, and should
be able to follow step and ramp angular rate references with zero steady-state error.

The integral term combined with the proportional term adds a pole at the origin and
a zero close to the origin. The derivative term adds more damping to the system and
combined with the proportional term places a zero just faster than the dominant plant
pole.

The roll rate control system has three stable, real closed-loop poles at s = −0.55,
−28, and −97, as shown in Figures 5.3 and 5.4. The pole at s = −0.55 has a zero close

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 41

to it, and is therefore non-dominant. The closed-loop pole at s = −28 is the slowest
closed-loop pole that does not have a zero close to it and is the dominant pole of the
closed system. Since all three closed-loop poles are real, the closed-loop response is not
expected to exhibit overshoot. The zero due to the derivative term at s = −110 is not
4 times faster than the dominant close-loop pole as s = −28 and can cause overshoot.

Closed-loop step responses for the roll angle controller were obtained using the lin-
earised, reduced-order model that was used for the control design, and also using the
nonlinear, full-order PX4 software-in-the-loop (SITL) simulation. The simulated step
response for both the linear model and the PX4 SITL model are shown in Figure 5.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step
PX4
Linear

0.9

0.1

Figure 5.5: Linear vs. PX4 roll rate step response

The closed-loop step responses for both the linear model and the PX4 SITL simulation
show overdamped transient responses with slight overshoot (linear model has 1.75% and
PX4 has 1.98%). The response (not shown) has a long tail or decay to the commanded
roll rate reference, which is generally an indicator that a dominant zero is influencing
the system. The fast zero does not influence the system’s stability. The rise time of both
graphs are almost identical at 75 ms. The speed of the response is measured by the time
constant τp, which is inversely proportional to the real part of the dominant pole. The
expected time constant is 36 ms, since the bandwidth was 28.3 rad/s. The closed-loop
Bode plots of all four controllers (roll rate, roll angle, East velocity, and East position)
are shown in Figure 5.6.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 42

Bode Diagram

-50

-40

-30

-20

-10

0 Roll Rate
Roll
V

E

E

10 -2 10 -1 10 0 10 1 10 2 10 3
-300

-250

-200

-150

-100

-50

0
Roll Rate
Roll
V

E

E

28.33.60.6

-3

10.9

Figure 5.6: Bode plot of all four control loops

Note that the Bode plot shows all four controllers. The choices for the bandwidths
of the other controllers will be discussed in the sections below.

The time constant of the PX4 SITL simulation is 44ms and 53ms for the linear model.
Both of the responses are slower than the expected 36 ms from the dominant close-loop
pole, but it is still within the bandwidth range that is acceptable. The SITL simulation
is almost noiseless with a small amount of sensor noise and random walk added on the
IMU measurements, which are required for the safety checks of the estimator. This
accounts for the slight bends in the PX4 graphs. The graphs are close enough together
so that the linear controller gains can be directly used without further adjustments to
reach the design specifications.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 43

5.2.3 Attitude Controllers
The attitude controllers actuate the references of the angular rate controllers (that were
discussed in the previous section) to follow a commanded angular reference. The con-
troller’s purpose is to stop oscillations. The block diagram of the roll angle controller is
shown in Figure 5.7.

+
-

KPφ
1
s

φR φe pR φ

Controller

Hp(s)
p

Figure 5.7: Roll Angle control loop

The roll angle error φe is calculated by subtracting the measured roll angle φ from
the roll angle reference φR. The error is scaled with the proportional gain and sent to
the roll rate controller as the roll rate reference. The roll rate controller controls the
roll rate to follow the commanded roll rate, and the roll rate is integrated to result in a
change in the roll angle.

The plant of this controller is the closed-loop transfer function of the angular rate
controllers with a integrator in series. The next control loop that will be closed around
the roll angle controller is the horizontal velocity controller which includes an integral
term and can therefore provide zero steady-state tracking error for horizontal velocity
references, and can provide disturbance rejection for horizontal disturbance forces. It
is assumed that this is the reason why the PX4 flight control architecture uses only
proportional control, rather than PI or PID control, for the roll angle controller. The
output of this controller is the orientation, which is measured by the gyrometers and
vision.

The design of the gains for the attitude controllers uses a combination of Bode plots
and root locus designs.

5.2.4 Roll Angle Gain Design
The attitude controllers were designed to have a fast, but overdamped response so that
the system would not exhibit oscillations. There also had to be a large enough time
separation between the angular rate controller and the attitude controller to avoid any
interference.

PX4’s attitude controllers use quaternions to represent the orientation of the body
axis system relative to the earth axis system. However, for small angles, the Euler angles
(φ, θ, ψ) are approximately equal to twice their corresponding quaterion components
(α1, α2, α3). The three-axis attitude of the quadrotor is controlled using three separate,
decoupled angle controllers: the roll angle controller, the pitch angle controller, and
the yaw angle controller. controller architectures and design procedures for all three
attitude controllers (roll, pitch, and yaw) are identical, and the only differences are due
to the physical properties encapsulated in the angular rate controllers. Only the detailed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 44

design of the roll angle controller will be presented in this Section. The architectures
and design procedures for the pitch angle and yaw angle controllers are similar, and will
not be presented explicitly.

The roll angle controller is designed using the linearised, reduced-order roll angle
dynamics plant with the roll rate reference for the roll rate controller as the input signal
and the roll angle as output signal. In the linear model, the rate of change of the roll
angle φ̇ is approximately equal to the roll rate p. The closed-loop roll rate controller is
expressed as:

Hp(s) = Dp(s) ·Gp(s)
1 +Dp(s) ·Gp(s)

(5.2.10)

where Gp is the roll rate dynamic plant and Dp is the denormalised PID controller that
controls the roll rate. The plant for the roll angle controller is the closed-loop transfer
function of the roll rate controller augmented with an integrator that integrates roll rate
to roll angle.

The control law for the roll angle controller is formulated in terms of the quaternion
attitude as follows:

pR = 2KPα(signum(αw) ·αx,error) (5.2.11)

where signum(αw) is the sign of the first element of the quaternion (either 1 or −1)
and αx,error(t) is the error in the quaternion component corresponding to the roll angle.
When substituting the roll angle approximation into the equation above, the control law
becomes:

pR = 2KPα · φerror
2 = KPα(φR − φ) (5.2.12)

where φR is the roll angle reference. None of the values here required scaling, because
PX4 does not normalise any states involved in this controller.

The root locus of the combined roll rate and roll angle controllers are shown in Figures
5.8 and 5.9.

-100 -80 -60 -40 -20 0
-15

-10

-5

0

5

10

15

Figure 5.8: Root locus plot for the roll angle
controller design

-30 -25 -20 -15 -10 -5 0

-6

-4

-2

0

2

4

6

Figure 5.9: Root locus plot for the roll angle
controller design (zoomed-in)

Since a proportional controller is used, no open-loop poles or zeroes are added by the
controller. The open-loop pole at the origin is the most dominant pole of the system, but
the zero added by the integrator cancels the pole at the origin. Therefore, the dominant
open-loop pole was the pole at s = −28.3 and was replaced by a slower closed-loop
pole due to the proportional gain. The dominant pole was replaced by a complex pole
pair at s = −13.68 ± 6j, which have a damping ratio of 0.91 and a natural frequency
of wn = 14.9rad/s. This response will be underdamped because the damping ration is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 45

below one (zeta < 1), but for a damping ratio larger than 0.9 the response does not show
oscillations. Furthermore, the step response is used to show that oscillations were not
present.

Since the roll angle controller only has one free integrator in the open loop, it is a type
1 system, and is expected to have zero steady-state error for step references, and a finite
steady-state error for ramp references. The desired closed-loop bandwidth for the roll
angle controller was chosen to be less than half of the bandwidth of the roll rate controller
(which is 28.3 rad/s) to ensure adequate time scale separation between the controllers
(see Figure 5.6). The desired closed-loop bandwidth for the roll angle controller was
initially chosen as 14 rad/s, which is just below half the closed-loop bandwidth of 28.3
rad/s for the roll angle controller. However, this choice resulted in the roll angle controller
exhibiting a very underdamped response. The proportional gain was lowered until no
oscillations were present, which was when the closed-loop bandwidth of the roll angle
controller equaled 10.9 rad/s. The gain that was found was implemented in the PX4
SITL simulation, and the linear response compared to the SITL response is shown in
Figure 5.10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step
PX4
Linear

Figure 5.10: Linear vs. PX4 Roll angle step response

The rise time of both graphs are 200 ms and both have zero overshoot. The real part
of the dominant closed-loop poles was placed at s = −13.68, which gives an expected
time constant τφ of 74 ms. The time constants for the linear model was 150 ms and for
the PX4 simulation was measured as 156 ms. Both of the response were just more than
twice as slow as what was expected from the dominant close-loop pole. The response
time was still satisfactory as it responded nearly three times slower than the roll rate
controller allowing a large enough time separation between the two controllers. The
PX4 controller response show disturbances, which is caused by the noise added to IMU
sensors, since noise is required for the safety checks of PX4’s EKF. The linear response

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 46

was close enough to the simulation response to considered it identical and no adjustments
were required for the gains to be implemented in PX4.

5.2.5 Velocity Controller
The velocity controllers were the most complex to linearise, as a result of the acceleration
to thrust to attitude conversion implemented by PX4. The controller architectures and
design procedures for the horizontal velocity controllers are similar and, therefore, only
the detailed design of the East velocity controller will be presented. The controller ar-
chitecture for the vertical velocity controller differs from those for the horizontal velocity
controllers, and will also be presented.

East Direction

The horizontal velocity controller is tasked with with following changing velocity com-
mands and rejecting high-frequency force disturbances, such as wind. The block diagram
of the controller is shown in Figure 5.11. The controller receives horizontal velocity ref-
erences and actuates the attitude controller, where the command is converted from an
acceleration reference to an attitude references.

+-

KPv

KIv
s

sKDv

4Tm Hφ
1
s

vER ve FER,norm FER φ vE

Controller

1
m

v̇Emg
FE1

mg
φR++

+

Figure 5.11: East velocity control loop

The East velocity error is calculated by subtracting the measured East velocity from
the reference East velocity. The error is used in the PID controller and a normalised
East force command is produced. The normalised East force command is denormalised
by the scaling factor and divided by the weight to provide a roll angle reference. The
roll angle reference is sent to the roll angle controller, which controls the roll angle to
follow the reference. The roll angle is scaled by the weight to provide a force again and
the force is divided by the mass to provide the resulting East acceleration. The East
acceleration is integrated to produce a change in the East velocity.

The plant of this controller is the conversion process to change the acceleration com-
mand to an attitude command used by the attitude controller and changing the resultant
attitude back to an acceleration, which is integrated to produce a velocity measurement.
The controller, therefore, outputs an acceleration reference and receives a velocity mea-
surement as feedback, which is generally measured by either a GPS or vision-based
system.

A 2 DoF PID controller is used by PX4 as this controller should be able to resist
velocity disturbance. The gains were designed through a combination of Bode plot and
root locus designs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 47

5.2.6 East Velocity Gain Design
The East velocity controller has to be fast and stable to allow for smooth velocity re-
sponses that eases the detection process of the camera.

The plant for the horizontal velocity controllers are the most complex of the control
group because it is not just the roll angle controller transfer function Hphi given in
equation (5.2.13), but is the whole series of blocks from the normalised East force FER,norm

to the East velocity vE, as shown in Figure 5.11.:

Hφ = Dφ ·Gφ

1 +Dφ ·Gφ

(5.2.13)

where Dφ is the proportional controller of the roll angle controller and Gφ is the roll angle
controller’s plant. The aspect that complicated the design of the velocity controller was
how to convert the desired horizontal acceleration to an angle reference. The approach
followed here was to first look at the free-body diagram of the vehicle when a small roll
angle is present, as shown in Figure 5.12.

φ

φ

mg

FT

D

E

Figure 5.12: East velocity free-body diagram

FT is the total maximum thrust produced by all four motor and propeller pairs. It
is assumed that the vehicle starts at rest and that the free-body diagram depicts the
vehicle that is about to move in the East direction, and is, therefore, experiencing a
positive acceleration in the East direction. The vehicle will maintain a constant altitude,
thus the acceleration in the Down direction will be zero. According to Newton’s second
law of motion, the acceleration of an object will be directly proportional to the net force
acting on the object and inversely proportional to the mass. Therefore, the sum of the
forces in the Down direction can be expressed as:

FT cosφ−mg = 0 (5.2.14)

Small angle approximation is assumed here, which simplifies the above equation to:

FT ≈ mg (5.2.15)

The force in the East direction is the component of the thrust in the East direction
and is expressed as:

FE = FT sinφ ≈ mgφ (5.2.16)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 48

where FT from equation (5.2.15) was substituted into equation 5.2.16. Using Newton’s
law again, the acceleration in the East direction is related to the force in the East
direction by:

FE = m· V̇E (5.2.17)
where V̇E is acceleration in the East direction. Two different definitions for the force
in the East direction were calculated, one in terms of the roll angle and one in terms
velocity.

The total thrust was normalised for PX4, consequently the controller gains are nor-
malised and will have to be denormalised to be useful. The normalised control law for
the East velocity controller is given by:

FE,norm(t) = KPv(vER − vE) +KIv

∫
(vER − vE)dt+KDv

d(−vE)
dt

(5.2.18)

where FE,norm is the normalised force in the East direction, KPv is the proportional gain,
KIv is the integral gain, KDv is the derivative gain and vR is the velocity reference.

To scale this control law, it had to be multiplied by 4 times the maximum thrust
produced by one motor propeller pair. This to add the weight each motor pair adds to
the thrust equation. This is symbolically expressed as:

FE = 4Tm ·FE,norm (5.2.19)

where Tm is the maximum thrust a single actuator can provide. The control law imple-
mented in the linear model was used in the Laplace transform and is shown as:

FE(s) = 4Tm[KPv(vER − vE) + KIv(vER − vE)
s

+ s·KDv(−vE)] (5.2.20)

The root locus of the Earth velocity controller is shown in Figures 5.13 and 5.14.

-100 -80 -60 -40 -20 0
-10

-5

0

5

10

Figure 5.13: Root locus plot for the East
velocity controller design

-16 -14 -12 -10 -8 -6 -4 -2 0
-8

-6

-4

-2

0

2

4

6

8

Figure 5.14: Root locus plot for the East
velocity controller design (zoomed-in)

The closed-loop system of the horizontal velocity controller has two real poles near
the origin: one is an integrator at the origin and the other is at s = −0.53. It also has
two complex poles at s = −13.68±6.1j and a zero at s = −0.57. The zero and pole near
s = −0.55 do not influence the system because of pole-zero cancellation, which causes
the two imaginary poles to be the dominant poles of the system.

The first consideration was to ensure enough time separation between the attitude
controller and the velocity controller. In the Bode plot in Figure 5.6, the roll angle
bandwidth was 10.9 rad/s. The velocity controller was chosen to have a third of the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 49

bandwidth (3.6 rad/s), thereby ensuring a large enough time separation between the
controllers. A third of the bandwidth was chosen in preference to half of the bandwidth
to make the horizontal motion less aggressive to ensure that the vision-based localisation
system did not lose the markers.

The integral term combined with the proportional term added an integrator at the
origin and a zero near the origin at s = −0.13. The added integrator caused the system
to again have two free integrators. Therefore, it was a type 2 system, which could follow
a ramp input with a zero steady-state error and reject disturbances due to modelling
errors.

The derivative term was added last for better damping and combined with the pro-
portional term added a zero at s = −15. The system has three closed-loop poles that
need to be placed, one real pole and one complex pole pair. The real pole is the slowest
and the dominant pole. The complex pole pair are close enough to still influence the
dynamic response. The result is an overdamped system that can reject disturbances,
but has a slight overshoot because of the complex pole pair.

The gains were implemented in a SITL simulation with PX4 and the step response
of the linear model and the PX4 SITL simulation is shown are Figure 5.15.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

Step
PX4
Linear

0.9

0.1

Figure 5.15: Linear vs. PX4 East velocity step response

The PX4 response has a rise time of 600 ms and overshoot of 5.8%. The linear
response has a rise time of 545 ms and and overshoot of 3.8%. The rise time of the linear
model is roughly 10% faster than that of PX4 and has a lower overshoot.

The most dominant closed-loop pole at s = −3.7 is overdamped and no overshoot
would be expected, but the complex pole pair at s = −13.68 ± 6.1j is close enough
to influence the response, as seen with the overshoot. The response also shows a long
"tail" or "decay" of the response, which is generally associated with a dominant zero.
Therefore, the zero at s = −14.9 is not fast enough to be ignored and does still influence
the response.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 50

With the dominant real pole at s = −3.7 a time constant of 270 ms is expected, but
again both the response show much slower time responses. The linear model has a time
constant of 495 ms and the PX4 simulation response has a time constant of 519 ms. The
response is more than double as slow and also shows the influence that the complex pole
pair has on the system. The response time is still within bound, as both respond well
slower than half the roll angle controller.

The linear model is not exactly identical to the PX4 simulations, but it is within
bounds to use the controller gains without further adjustments. The two responses were
close, considering that the linear model made use of PID control for the velocity controller
and Euler angle representation was used for the attitude controller (where PX4 uses a
2 DoF PID controller for the velocity controller and a quaternion representation for the
attitude controller).

Down Direction

Unlike the horizontal velocity controllers, the Down (vertical) velocity controller does
not have faster inner loops, and is itself the innermost controller for the Down direction.
This controller controls the vertical velocity and, therefore, follows a slightly different
design. The controller architecture for the vertical velocity controller is shown in Figure
5.16.

+
-

+
+
+

KPw

KIw
s

sKDw

4Tm − 1
m

1
s

vDR vDe FDR,norm FDR v̇D

Controller

vD

Figure 5.16: vertical velocity control loop

The vertical velocity error vDe is obtained by subtracting the measured vertical ve-
locity vD from the vertical velocity reference vDR. The PID controller operates on the
vertical velocity error to produce the normalised vertical force command FDR,norm . The
force is denormalised with a scaling factor. The vertical acceleration is the force divided
by the mass and, is integrated to obtain the vertical velocity.

The plant of this controller is the denormalisation of the controller thrust reference,
converting it to acceleration and integrating the acceleration to provide a velocity.

The controller actuates the motors general thrust to produce lift and the barometer
or vision-based system provides the measurements used to determine the altitude. The
controller uses the 2 DoF PID controllers like the angular rate and horizontal velocity
controllers. The same methods used to design the gains for the horizontal gain were used
and will not be provided again. However, the plant model will be provided.

The free-body diagram for the vehicle with zero pitch and roll, is given in Figure
5.17.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 51

mg

FTD

E

Figure 5.17: Down velocity free-body diagram

The free-body diagram shows all the forces acting on the body in the Down direction.
Using Newton’s second law of motion and adding the forces in the Down direction, the
equation for the downward acceleration is:

− FD = mD̈ ≈ mv̇D (5.2.21)

The plant model for the vertical controller is simpler than the plant models for the
horizontal controllers.

5.2.7 Position Controller
The position controller is the simplest of the four controllers because it receives a position
reference in inertial axis and commands a linear velocity. This block diagram for the
East position controller is shown in Figure 5.18. The controller enables the following of
position references and ensures that the movement is stable for the cameras to not loose
marker.

+
-

KPe
1
s

eR ee vR e

Controller

Hv(s)
v

Figure 5.18: East position control loop

The error in position is calculated by subtracting the current position from the refer-
ence position. The error is then scaled by a proportional controller and supplied to the
closed-loop transfer function of the velocity controller. The velocity controller produces
a velocity which is integrated to determine the current position used for the feedback.
The current position is measured by either the GPS or vision-based system and is given
in the earth axis. The design of this controller was a combination of Bode plot and root
locus design.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 52

5.2.8 East Position Gain Design
The vision-based localisation system is dependent on identifying markers in each frame.
The images are usually distorted if the camera moves too fast. The distortion could be
so severe that no markers are detected. When this occurs, it is referred to as "motion
blur". The exact speed at which motion blur would occur was unknown. Therefore, the
position controllers had to be designed to not be aggressive and to have an overdamped
response. The design presented below is that of the East position controller. There were
no differences between the different axes.

The positional controllers are not normalised in PX4 and therefore does not require
to be denormalised. The plant of this system was the closed-loop transfer function of
the velocity controller combined with a integrator in line and was calculated as follows:

Hv(s) = Dv ·Gv

s+ s·DvGv

(5.2.22)

where Dv is the scaled PID controllers of the East velocity and Gv is the plant of the
East velocity controller.

The position controllers utilised proportional control and the East direction’s control
law is expressed as:

vER = KPe(ER − E) (5.2.23)

where KPe is the proportional gain, ER is the East position reference, and E is the East
position.

The Bode plot shown in Figure 5.6 shows thee closed-loop bandwidth of the East
direction velocity controller to be 3.6 rad/s. To allow for the slow movement of the
quadrotor to the position controller closed-loop bandwidth was chosen to be a sixth of
the close-loop bandwidth of the horizontal velocity controller. The gain was chosen to
provide a bandwidth of 0.6 rad/s. The East position controller root locus is shown in
Figures 5.13 and 5.14.

-20 -15 -10 -5 0
-10

-5

0

5

10

Figure 5.19: Root locus used for the East
position controller design

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-3

-2

-1

0

1

2

3

Figure 5.20: Root locus used for the East
position controller design (zoomed-in)

Since a proportional controller is used, no open-loop poles or zeroes are added by the
East position controller. From the placement of the close-loop poles, the dominant pole
becomes the one at s = −2.6. The dominant pole lies on the real axis and consequently
the system is overdamped. The gains were again implemented in a SITL simulation and
compared to the linear model. The resultant step response are shown in Figure 5.21.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 53

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Step
PX4
Linear

0.1

0.9

Figure 5.21: Linear vs. PX4 East position step response

Neither of the graphs show overshoot. The PX4 response has a rise time of 3.15 s
and the linear model has a rise time of 3.60 s. When looking at the graphs, the PX4
system does not have the same shape as the linear model, which could be cross-coupling
effects between the vertical and horizontal controllers as a full 3 axes simulation was
done in PX4. A response time of 385 ms is expected from the most dominant pole
at s = −2.6. However, the response times of the linear model and PX4 simulation was
2, 380 ms and 2, 490 ms respectively, which is much slower than what was expected. This
suggest that the slower pole does influence the response and its influence is not entirely
cancelled by the zero. Both the responses show a overdamped system and there is a
large enough time separation, both in rise time and time constant, between the position
controller and velocity controller (nearly 5 times slower) to not cause any interference.
The linear model’s response was close enough to the PX4 simulation response to use the
gains without any alteration.

The other directions for each of the control loops were designed in exactly the same
manner as described above, where different physical characteristics were used when ap-
propriate. The exact gains used for the flight is provided in table B.1 in Appendix B,
as well as a set of gains that was recommended by PX4 for the Intel® Aero RTF drone
air-frame.

5.3 Practical Controller Verification
This section presents the practically measured step responses for the position controllers
performed during actual flight tests. The details of the flight tests will be discussed
in Chapter 8, but the practical step response results are presented here in order to
compare them to the simulated step responses of the linear model, and to the expected
dynamics responses based on the controller designs. Only the practical step responses
of the position controllers were measured and are presented here. The linear positional
controller will be compared to the actual flight data in the following Section. This

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 54

comparison is possible, because the waypoints that were followed caused the vehicle
to step in the East direction (first a 1 m step and then a 10 m step). The first two
flight tests were performed using the GPS-based state estimation, to verify that the
controllers operate as expected before introducing the vision-based state estimation. The
first flight test was performed using the GPS-based state estimation and the controller
gains designed in this chapter; the second flight test was performed using the GPS-based
state estimation and the more aggressive controller gains supplied with the PX4 flight
control software.

The third and fourth flight tests were performed using the vision-based state esti-
mation, to verify that the controllers operate as expected when using the vision-based
localisation instead of GPS. The third flight test was performed using the vision-based
state estimation and the controller gains designed in this chapter; the fourth flight test
was performed using the vision-based state estimation and the more aggressive controller
gains supplied with the PX4 flight control software. Due to the difficulty of safely allow-
ing the vehicle to follow step commands for the faster loops, only the step responses for
the position controllers were practically measured in flight tests and will be presented in
this section. It should be noted that there was a slight wind from the South West present
on the day of these flight tests. The first flight was that of the controllers designed in
the previous section and the resultant log is shown in Figure 5.22.

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

Step
PX4
Linear

Figure 5.22: Flight test with designed controller gains and GPS-based state estimation

The graphs show that some disturbances were present as the vehicle reached a hover
state. These disturbances could easily be accounted for by the presence of wind on the
day of the flight test, noise of the GPS, the motor vibrations causing harmonic responses,
or any combination of these. The average transient response seems to be overdamped,
where the apparent oscillations are due to external disturbances. The average steady-
state position follows the commanded position reference. The time constant of both the
practical flight test and the linear model is just over 2 seconds with negligible difference

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 55

between them. Therefore, the response time of the two system are considered similar.
When comparing only the rise time until the vehicle stepped 70% (at 1 m) of the
step distance, the difference was within 30 ms of each other. The designed controllers
were functional and had the slow movement and the low attitude angle change that was
desired. PX4’s more aggressive controllers were uploaded onto the vehicle and the same
test was conducted again using the GPS-based state estimator. The result of the test is
plotted against a linear response (with the same gains) in Figure 5.23.

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Step
PX4
Linear

Figure 5.23: Flight test with more aggressive controller gains and GPS-based state esti-
mation

As with the previous test, disturbances were again present, but since the GPS sys-
tem, wind and the motors were all still in the system, the cause could be the result of a
variety of factors. However, the shapes of the disturbances are different, which supports
the notion that these disturbances were caused by environmental influences and not by
a fault in the controllers. The average steady-state position again shows that the prac-
tical system follows the commander position reference, and that the oscillation motion
is due to external disturbances and not due to damping. There is a very good agree-
ment between the two time constant of the linear response and the practically measured
response. The average transient response also shows an underdamped response, which
was expected with the more aggressive controllers. The rise time of the linear response
was 950 ms and the actual flight had a rise time of 1010 ms. The rise times were close
enough to be considered identical. The response was unexpected. The expectation was
that it would show the interference of the position controller on the velocity controller,
since the time scale separation (according to our model) was too small. This suggests
that the time constant of the motors was smaller than estimated because the smaller
the time constant, the faster the response of the velocity controller and the greater the
time scale separation between the two controllers. This test provided enough confidence

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 56

to test both sets of controllers for the vision-based system flights, because both sets of
controller gains maintained a controlled flight.

The controller gains designed in this chapter were again uploaded onto the vehicle
and the vision-based system was activated. There were limitations on where markers
could be placed and, as a result, only a step of 1 m could be performed. The results of
this test are in Figure 5.24.

0 2 4 6 8 10 12 14 16 18
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step
PX4
Linear

Figure 5.24: Flight test with designed controller gains and vision-based state estimation

The graphs show an interesting disturbance shape when steady-state was reached.
The influence of the GPS was excluded and replaced by the vision-based system. The
test was done close to the markers, where only one marker at a time was visible for the
most part of the flight. As will be shown in Chapter 6, the more markers visible, the
lower the noise of the localisation process. Despite the strange disturbances in the flight
test, the linear model appears to show the same type of response. The average transient
response show an overdamped response with no overshoot, where the oscillations are
due to external disturbance. The practical measured response shows a slightly slower
response time of 2.2 seconds compared to the linear response of 2.1 seconds, but the
difference is small enough to be considered negligible.

The vehicle did move slow enough so that motion blur was not a problem and con-
trolled flight was achieved. The success of the slower controller resulted in the decision
that the faster controller should also be tested to determine whether motion blur would
occur. The results of the more aggressive controller are in Figure 5.25.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 57

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step
PX4
Linear

Figure 5.25: Flight test with more aggressive controller gains and vision-based state
estimation

The vehicle was placed further away from the markers than in the previous test.
Therefore, it had a less noisy localisation system. Yet, there are still un-modelled os-
cillations in the response that further verifies the external disturbances. The responses
again show strong time constant agreement, with near identical rise times. The average
transient steady-state is at the commanded position reference and show an underdamped
response. Again the lack of interference between the position controller and velocity con-
troller is unexpected and suggest that the time constant of the motor, that was assumed,
is smaller than what is assumed here. The more aggressive controllers did not cause the
camera to loose markers and controlled flight with vision was achieved.

Considering that the linear model (using a 1 DoF PID controller with no safety checks
or noise) was compared to an actual flight test result (where the values were measured
with sensors, filtered through an estimator and where 2 DoF PID controllers were used),
these graphs show that the linear model could be used to design controller gains.

5.4 Summary and Conclusions
This chapter gave an overview of PX4’s control architecture as it was used with the
hardware. The design process of a similar control structure was shown, where some
assumptions and simplifications were made. The process followed the design of the
roll rate, roll angle, East velocity and East position control loops. Each controller was
compared with a step response of the PX4 control structure using SITL simulations. The
linear controller used for the design was then compared with the results of the practical
flight tests. Safety concerns resulted in the testing of only the position controller with
step commands and only the East direction controller was analysed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONTROL SYSTEM ANALYSIS AND DESIGN 58

The results showed that the linear model gave a fair representation of the practical
system and that even though the results were not exactly similar, it was satisfactory
for the design requirements. Two different sets of controller gains were tested: the gain
designs discussed in this chapter and the gains provided by PX4 specifically for the
Intel® Aero RTF drone air-frame. The controllers that were designed for this project
were chosen to be slow to avoid motion blur on the cameras. The faster gains of PX4
were demonstrated to be slow enough to avoid the occurrence of motion blur. According
to the model, there should have been control loop interference between the position and
velocity controller for the faster controllers. But the flight data does not indicate that
there was such interference, which leads to the assumption that the time constant of
the motors was too large and that a smaller time constant could have been used. It is
recommended that faster control gains are used for future work.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Visual-Based Pose Estimation

The aim of the visual odometry system is to provide an estimate of the vehicle’s pose
(position and attitude) in the environment and relative to the inspection target. First,
the camera model that will be used will be defined, and the distortion compensation
and camera calibration will be described. Thereafter, an overview of ArUco’s marker
detection and pose estimation algorithm will be given. Lastly, the camera noise will be
calculated.

6.1 Camera Model
A basic pinhole camera model is used to describe the projection of a point in a 3D space
onto a 2D image plane [7] pp.153. This model is highly dependent on the accuracy
and type of camera, but it is considered the industry standard for computer vision
applications. A representation of the model can be seen in Figure 6.1, where the camera
axis system (denoted with the subscript CB) is located at the origin of the camera and
the image plane (denoted with the subscript I) is parallel to the XCB – YCB plane.

XCB

YCB

ZCB

XI

P

aCB

aI

(cx, cy)

Figure 6.1: Basic pinhole camera model

YCB

ZCBP

aCB

aI

(cx, cy)

f

f
Y Z

Figure 6.2: Side view of basic pinhole cam-
era model

The point at which the ZCB-axis (principle axis) and the image plane intersect should
ideally be in the middle of the image plane (camera centre) and is called the principle
point. The offset of the camera centre relative to the principle point is defined as cx and
cy for the two axes in the image plane. The distance between the camera axis system
origin and the principle point is called the "focal length" and denoted by f . When

59

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 60

considering a point in the 3D space aCB, it would be captured on the image plane at aI,
where a straight line between aCB and the camera axis origin intersects with the image
plane as shown in Figure 6.2. Given that:

aCB =
[
xCB yCB zCB

]T
, (6.1.1)

and using similar triangles, the projection onto the image plane is represented by:

aI =
[
f xCB
zCB

+ cx f yCB
zCB

+ cy f
]T

(6.1.2)

A convenient way of representing points for computer vision, is by using homoge-
neous vectors. A homogeneous vector describes a 2D point using three elements: aI is
represented as AI where aI,x = AI,x

AI,z
and aI,y = AI,y

AI,z
. The relation given in equation

(6.1.2) can also be rewritten in homogeneous vector form as:

AI =

XI

YI
ZI

 =

f 0 cx 0
0 f cy 0
0 0 1 0

xI
yI
zI
1

 , (6.1.3)

and more concisely written as:

AI = P

xI
yI
zI
1

 (6.1.4)

where:

P = K[I|0] (6.1.5)

∴ K =

f 0 cx
0 f cy
0 0 1

 . (6.1.6)

where P is called the camera projection matrix and K is the camera calibration matrix.
The rotation and translation of the camera axis system to body axis system is discussed
in Section 4.1. So far, it has been assumed that square pixels are used, but that is not
always the case. A scaling is required to rectify the model to include rectangular pixels
and a skewing parameter is necessary to accommodate parallelograms. The camera
calibration matrix is, therefore, given as:

K =

mx 0 0
0 my 0
0 0 1

f 0 cx

0 f cy
0 0 1

 +

0 s 0
0 0 0
0 0 0

 =

fmx s cxmx

0 fmy cymy

0 0 1

 (6.1.7)

where mx is the scaling in the x-direction, my is the scaling factor in the y-direction and
s is the skew factor. The model is considered to have 11 degrees-of-freedom, as 6 are
from the translation and rotation in the three axes and 5 are from the calibration matrix
above.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 61

6.2 Camera Calibration
The camera model described in the previous section provides a relation between 3D
points and 2D image representations when P is known. Several 3D points and the
corresponding 2D representations are required to calculate P ([7] pp.178). Given a set
of n points in 3D space (AI,n), and the corresponding 2D points (aI,n) in homogeneous
coordinates and using equation (6.1.4), the correspondence can be shown as:

aI,n = P · AI,n =

P
T
1
P T

2
P T

3

 · AI,n (6.2.1)

where P is written in terms of its rows and n = 1, ..., m. Due to how homogeneous
coordinates work, aI,n does not exactly equal PAI,n, as there can be a magnitude dif-
ference. Yet, when written as the cross product aI,n ×PAI,n, it will equate to zero and
will provide a linear solution. Equation (6.2.1) in the vector cross product notation is: 0T −ATI,n yI,n ·ATI,n

ATI,n 0T −xI,n ·ATI,n
−yI,n ·ATI,n xI,n ·ATI,n 0T

P

T
1
P T

2
P T

3

 = 0. (6.2.2)

However, the third row of the cross product matrix is dependent on the first two
rows, where the first two are linearly independent. The solution can be simplified to:

[
0T −ATI,n yI,n ·ATI,n
ATI,n 0T −xI,n ·ATI,n

] P
T
1
P T

2
P T

3

 = 0. (6.2.3)

Consequently, every point of correspondence provides two equations and 11 equations
are required to solve an 11 DoF system. Thus, 5 and a half points are required to calculate
P. The camera used for this project came pre-calibrated from Intel® and the calibration
process is proprietary information. Yet, the camera matrix and distortion matrix could
be streamed directly as a ROS topic to the ArUco marker detection algorithm.

6.3 Distortion
So far it was assumed that the transition between 3D space and 2D plane is linear, but
any physical camera that has a lens will distort the incoming light. The distortion is
generally small at the camera center and increases radially towards the periphery. The
distortion is the result of the domed shape of a lens. Because the camera model and
calibration process assumes undistorted images, this distortion requires correction. An
example of what radial distortion does to an image can be seen below, where Figure 6.3
is the undistorted image and Figure 6.4 is the same image with radial distortion.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 62

Figure 6.3: Undistorted images Figure 6.4: Radial distortion

The degree of distortion is proportional to the distance from the center point of the
distortion [x0D y0D]T , which is generally close to the principle point. If the distorted
point is given as [xD yD]T , the rectified point is [xI yI] and the distance from the centre
of distortion is:

r =
√

(x0D − xD)2 + (y0D − yD)2, (6.3.1)
Then the distortion can be described as:[

xI
yI

]
=

[
x0D
y0D

]
+ L(r)

[
xD − x0D
yD − y0D

]
(6.3.2)

where L(r) is a distortion factor which is function of r.
As the exact function is not known, it is approximated by the Taylor expansion:

L(r) = 1 + κ1r + κ2r
2 + κ3r

3 + ... (6.3.3)

The parameters used for radial distortion correction (D = {x0D , y0D , κ1, κ2, κ3, ...})
are considered as additional calibration intrinsics. This project used the assumption
that a 3rd order representation of L(r) is sufficient to describe the distortion. The
OpenCV function that was used to calculate the P also has an optimization algorithm
that solves for the D parameters. Since the camera matrix and distortion matrix have
been calculated and a camera model has been derived, the pose estimation can now be
considered.

6.4 Pose Estimation
The pose estimation of the camera is now achievable, because the distortion has been
compensated for and the camera is calibrated. The method used in this thesis uses
techniques that find the translation and rotation between the 2D image plane coordinates
of a detected object and the reference 3D coordinates of the object. The relationship
between these can be expressed as:

aI = K
[
R Tvec

]
AI (6.4.1)

or expanded as: axay
1

 =

fmx s cxmx

0 fmy cymy

0 0 1

R11 R12 R13 T1
R21 R22 R23 T2
R31 R32 R33 T3

XI

YI
ZI
1

 (6.4.2)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 63

where R is a 3x3 rotation matrix and Tvec is a 3x1 translation vector. This equation is
an extension of equation (6.1.4), where instead of P equal to K[I|0], it instead equals
K[R|Tvec]. The former is true if the image plane perfectly aligned with the axis in which
the environment is defined, while the latter incorporates a change in the position and
orientation of the camera axis.

There are many different algorithms and solutions to solve this problem. What makes
this a difficult problem to solve is to have the exact position of both the 2D image plane
coordinates that correspond to the 3D coordinates. In most cases the projection on
the 2D plane is measured, but the 3d coordinates are not so simple to measured. The
algorithm chosen for this project was OpenCV’s "solvePNP" function.

6.5 ArUco Overview
The previous sections have provided the basis for the image processing. As mentioned
in Chapter 2, the ArUco library was used and, therefore, this section will provide an
overview of the marker based detection and pose estimation.

6.5.1 Markers
The markers are one of the most crucial components to consider, since marker-based
localisation relies solely on markers for the pose estimation. Different dictionaries of
markers are provided in the ArUco libraries, where the main difference is merely in the
number of bits used in the encoding. An example of a marker is shown in Figure 6.5 and
the grid is shown in Figure 6.6.

Figure 6.5: ArUco marker

10

5 76

11 1312

17 1918

23

1615

20

43

8

2

9

14

242221

10

Border

Figure 6.6: ArUco marker grid

The encoding refers to the 5x5 grid of blocks that are either black or white. This
example uses a 25 bit encoding, where each marker has a unique code that is listed
in a dictionary. The encoding does not directly relate to the decimal position in the
list, as the created pattern does not follow the standard binary numbering, which is
a result of asymmetry in the pattern. The asymmetrical pattern eliminates ambiguity

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 64

in the detection. Therefore, the dictionary of each marker group is essential for the
identification of markers.

6.5.2 Marker Detection
These markers are placed in the environment and mapped in the camera inertial axis
system. The camera takes an image of the environment. The process of marker detection
is done in two main steps: the identification of marker candidates and the decoding to
determine the marker ID. Using adaptive thresholding, the image is segmented and then
contours are extracted. All non-convex and square shapes are discarded and the remain-
ing candidates are sent through another filter, which provides a list of all the marker
candidates in the image. Figure 6.7 shows a marker candidate after the thresholding
process.

The list of candidates are then analysed further to extract the binary encoding to
identify the marker. A perspective transformation is used to extract the canonical
form of each candidate because a rotation will exist between the image plane and the
marker. The inner grid of white and black blocks are extracted using Otsu’s thresholding
technique[68]. The marker dictionary defines the size of the grid (i.e. 5x5 or 25 bit) and,
combined with the mean values of pixels, the encoding is extracted. Should the encoding
not be defined in the dictionary, that candidate is ignored. If the encoding is defined,
the four corners of the square border are saved in the order top left, top right, bottom
right and bottom left; as shown in Figure 6.8.

Figure 6.7: Thresholded Marker

1

Figure 6.8: Detected Marker

Figures 6.9 and 6.10 show pictures from the on-board camera after processing. Note
how the bottom marker in figure 6.10 is not detected, since the bottom edge is out of
view.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 65

Figure 6.9: Physical Flight Marker De-
tected

Figure 6.10: Physical Flight Multiple
Markers Detected

6.5.3 Pose Estimation
The pose estimation is done using OpenCV’s solvePnP function, the algorithms of which
were discussed in Section 6.4. A map in which the position of the four corners of each
marker is provided (measured in the camera earth axis) is also required. The ArUco
marker detection process (see Section 6.4) extracts the four corner positions (in pixels)
of each marker that is projected onto the image plane. The 3D points, along with the
corresponding 2D points are transformed by equation (6.4.1), resulting in 3x1 rotation
(rvec) and 3x1 translation vector (tvec) that is measured relative to the camera earth
axis origin. Because OpenCV provides the orientation in the most compact form of axis
angle representation, it requires transformation to a quaternion representation. rvec is
the denormalised vector of an axis angle representation and the angle (β) rotated around
the vector is equal to the magnitude of the vector. This can be mathematically shown
as:

β =
√
r2
x + r2

y + r2
z (6.5.1)

with:

rvec =

rxry
rz

 (6.5.2)

and when normalised, it equals:

r̄ = rvec
β
, (6.5.3)

which is then transformed to quaternion representation by equation 4.4.8. tvec was
calculated after the rotation was done and, therefore, needs to be corrected before being
used. rvec can be transformed into a 3x3 rotation matrix (R) through the Rodrigues
transformation. A 4x4 pose matrix (M) can then be created to contain the rotation and
translation. It is expressed as:

M =
[
R tvec
0 0

]
. (6.5.4)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 66

The translation (PC), with respect to the camera earth axis, is then equal to the
inverse of M :

PC =

PcxPcy
Pcz

 =

M
−1
14

M−1
24

M−1
34

 . (6.5.5)

Both the translation and rotation vectors are then rotated to be represented relative
to Gazebo’s earth axis. Gazebo’s earth axis is the axis system used by ROS and was
described in Section 4.1.

6.6 Experimental Results
An important aspect for reliable pose estimation is knowing the measurement noise.
This noise is the error in the estimation of the camera’s pose relative to the world. To
establish the noise characteristics of the camera and pose estimation algorithm, a series
of experiments were done.

These experiments were done to establish the accuracy of the pose estimation (posi-
tion accuracy and orientation accuracy) and to show the difference between the estima-
tion error when only one marker is detected in comparison to when multiple markers are
detected. The camera used was the RGB-camera that was part of the Intel® RealSense
camera module.

The first tests performed were laboratory experiments to evaluate the accuracy of the
position estimates and attitude estimates. The experimentally determined accuracy was
used to specify the pose estimate measurement noise values for the vision-based Kalman
filter.

6.6.1 Position
The experiment used to parameterise the position error was done by placing the marker(s)
against a wall and marking a horizontal surface in front of the wall with the grid shown
in Figure 6.11. The grid’s origin (marked [0.0;0.0]) was placed 1 metre away from the
marker in the negative North direction and the center of the marker was inline with the
center of the camera in both the East and Down axes. The camera was placed at each
of the nodes, starting in the top right corner and was then moved as shown by the blue
arrows in Figure 6.11. At each node the camera was left stationary for 30 seconds and
15 seconds was then allowed for the transition between nodes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 67

(0.0;0.0) (0.2;0.0)(-0.2;0.0)

(0.0;-0.1) (0.2;-0.1)(-0.2;-0.1)

(0.0;-0.2) (0.2;-0.2)(-0.2;-0.2)

(0.0;0.1) (0.2;0.1)(-0.2;0.1)

(0.0;0.2) (0.2;0.2)(-0.2;0.2)

M
ar
ke
r

E

N

Figure 6.11: Position estimate noise experiment

The results of the position estimate from the marker detection is plotted in Figures
6.12 to 6.15. Figures 6.12 and 6.13 show the estimated positions compared to the true
positions in the Earth axis system. In 6.12 only one marker was detected and in 6.13
at least two markers were detected. When multiple markers were detected the East
position estimate was less noisy and, conversely, when only a single marker is detected,
the East position estimate is more noisy (shown by the thicker line thickness). The
vision estimates are denoted as EV, which stands for external vision. This term is used
by PX4 to refer to any camera system’s measurements.

100 200 300 400 500 600 700 800 900 1000
-0.2

-0.1

0

0.1

0.2

EV
Gnd

100 200 300 400 500 600 700 800 900 1000

-0.2

-0.1

0

0.1

0.2

EV
Gnd

100 200 300 400 500 600 700 800 900 1000

-0.1

0

0.1

EV
Gnd

Figure 6.12: Position estimate using a sin-
gle marker

100 200 300 400 500 600 700 800 900 1000
-0.2

-0.1

0

0.1

0.2

EV
Gnd

100 200 300 400 500 600 700 800 900 1000

-0.2

-0.1

0

0.1

0.2

EV
Gnd

100 200 300 400 500 600 700 800 900 1000

-0.1

0

0.1

EV
Gnd

Figure 6.13: Position estimate using multi-
ple markers

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 68

Figures 6.14 and 6.15 show the attitude estimate errors during the position exper-
iments. The results show that when only a single marker is detected, then there are
coupled bias errors in the East position and yaw angle, and the attitude estimates are
more noisy.

100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1
EV
Gnd

100 200 300 400 500 600 700 800 900 1000
-2

0

2

4
EV
Gnd

100 200 300 400 500 600 700 800 900 1000

85

90

95
EV
Gnd

Figure 6.14: Attitude errors using a single
marker (during position experiments)

100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1
EV
Gnd

100 200 300 400 500 600 700 800 900 1000
-2

0

2

4
EV
Gnd

100 200 300 400 500 600 700 800 900 1000

85

90

95
EV
Gnd

Figure 6.15: Attitude errors using a multi-
ple markers (during position experiments)

6.6.2 Attitude
The attitude pose estimation accuracy was practically measured using a similar exper-
imental setup as the one used for the position estimate experiments. The camera was
placed in line with the center of the marker in the East and Down directions and 0.9
m in the negative North direction. The yaw angles were drawn on the flat surface on
which the camera was placed with the angles marked from −15◦ to 15◦ with 5◦ intervals.
Two wooden blocks were used, one for a 10◦ and the other for a 5◦ angle, to consistently
place the camera at the correct roll and pitch angles. The camera was rotated assuming
a Euler 3-2-1 sequence: rotate through yaw angle first, then through pitch angle, and
finally through roll angle. At each angle the camera was left stationary for 30 seconds,
after which there was a 15 second transition period. The results of the attitude estimate
experiments are shown in Figures 6.16 to 6.19.

Figures 6.16 and 6.17 show the estimated attitude (of the body axis system) relative
to the PX4 Earth axis system. The attitude estimate is less noisy when multiple markers
are detected. Yet when a single marker is detected, an accuracy of 2◦ is still achieved.
However, the pitch angle estimate exhibits a large bias error when only a single marker
is detected.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 69

100 200 300 400 500 600 700 800 900 1000

-10

-5

0

5

10
EV
Gnd

100 200 300 400 500 600 700 800 900 1000

-10

-5

0

5

10 EV
Gnd

100 200 300 400 500 600 700 800 900 1000

80

90

100

110
EV
Gnd

Figure 6.16: Attitude estimate when using
only a single marker

100 200 300 400 500 600 700 800 900 1000

-10

-5

0

5

10
EV
Gnd

100 200 300 400 500 600 700 800 900 1000

-10

-5

0

5

10 EV
Gnd

100 200 300 400 500 600 700 800 900 1000

80

90

100

110
EV
Gnd

Figure 6.17: Attitude estimate when using
multiple markers

Figures 6.18 and 6.19 show the position estimate errors during the attitude exper-
iments. The position errors appear to be coupled with the orientation, since there are
clear changes in position as the orientation changes. However, the way in which the ex-
periment was done (on a flat surface with blocks lifting the camera on one side) caused
the camera to move. Therefore, these figures were used to characterise the position
estimate error noise values instead of treating them as bias errors.

100 200 300 400 500 600 700 800 900 1000

0

0.05

0.1

0.15
EV
Gnd

100 200 300 400 500 600 700 800 900 1000
-0.1

-0.05

0

0.05

0.1
EV
Gnd

100 200 300 400 500 600 700 800 900 1000
-0.1

-0.05

0

0.05

0.1
EV
Gnd

Figure 6.18: Position estimate error dur-
ing attitude experiments when using only a
singe marker marker

100 200 300 400 500 600 700 800 900 1000

0

0.05

0.1

0.15
EV
Gnd

100 200 300 400 500 600 700 800 900 1000
-0.1

-0.05

0

0.05

0.1
EV
Gnd

100 200 300 400 500 600 700 800 900 1000
-0.1

-0.05

0

0.05

0.1
EV
Gnd

Figure 6.19: Position estimate error during
attitude experiments when using multiple
markers

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. VISUAL-BASED POSE ESTIMATION 70

6.6.3 Final Values
The position and orientation experiments tested the pose estimation system against
ground truth and showed a maximum position estimate error of 100 mm (taking bias
errors as noise), and a maximum attitude angle error of 5 degrees. However, in general
the position and attitude estimate errors were lower than these maximum values. The
position estimate error was, therefore, assumed to have a standard deviation of 50 mm,
and the attitude estimate errors was assumed to have a standard deviation of 2.5 degrees.
This would be one standard deviation, where three standard deviations would include
99.7% of measurements. The 3 standard deviation mark is in both cases higher than
the maximum measured at 150 mm and 7.5 degree, but this compensated for additional
noise due to motion blur. These values were then used as the measurements noise values
for the vision-based state estimator that will be discussed in the next chapter.

As will be seen in the next chapter, the state estimator also needs to know the time
delay of the pose estimate relative to the true pose. The image processing takes at
most 10 ms from the point that the images are received by the ArUco library to the
point that the pose estimate is published. The time stamp on the images when the pose
estimation process was completed was a 100 ms after the image was captured. This
suggests that the time stamping of when the original photo was taken has some delays
and that more delay is added in the transmission of the image from the cameras to the
software. Therefore, the time delay associated with the pose estimation used in PX4
from the VIO system was 100 ms.

6.7 Summary
This chapter described the pose estimation system that is used to determine the position
and attitude of the quadrotor vehicle using computer vision and external ArUco markers.
The basic pinhole camera model was shown, and the camera calibration and distortion
compensation was discussed. An overview of ArUco’s marker detection and pose estima-
tion process were given and the markers used was explained. Laboratory experiments
were performed to measure the accuracy of the position and attitude estimates provided
by the pose estimation algorithm. The results of these experiments were also used to
characterise the pose estimate noise values that will be used by the vision-based state
estimator in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

State Estimator

This chapter describes the state estimator that is used to perform vision-based flight
control. The PX4 flight control software was modified to replace the existing GPS-based
state estimator with our own vision-based state estimator, and it was then integrated
with the pose estimation system that was presented in the previous chapter. The first
part of this chapter will give an overview of the existing PX4 delayed time horizon
state estimation architecture, followed by a more detailed look at each step of the state
estimation process.

The second part of the chapter will describe how the state estimator was modified
to use the position and attitude measurements from the pose estimation system instead
of using the GPS measurements. Finally, the results of hardware-in-the-loop (HITL)
simulation tests and flight tests that were performed to verify the vision-based state
estimator will be presented.

7.1 Overview of PX4 State Estimator
A block diagram showing the delayed time horizon estimator that was used, is shown in
Figure 7.1. Each block of the diagram will be discussed in the sections to follow.

IMU Down
Sample

FIFO
Buffer

State
Prediction

Predict
Covariance

Fuse
Sensors

Sensor FIFO
Buffer

Output
Predictor

FIFO
Buffer

State
Correction

state estimate
100 200ms delayed

delayed state bias

state correction

++
- current state

+-

P

EKF

Figure 7.1: Delayed time horizon estimator

71

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 72

The estimator used by PX4 is a strapdown inertial navigation system (INS) extended
Kalman filter (EKF) at a delayed time horizon, with an output state predictor to provide
a current state estimate. A strapdown INS is like an EKF, where the motion model is
determined by measuring the kinematic states. The kinematic states are measured by a
3-axis accelerometer and 3-axis gyroscope, which (when combined) is commonly called
the IMU. The inertial measurement unit (IMU) measures the acceleration and rate of
rotation which are integrated to provide the velocity, position and attitude. A strapdown
INS is an inexpensive, small system in comparison to gimballed navigation [67]. The
specific implementation that was used is based on the work of Bortz [61], where the
changes suggested by Savage and Miller [62][63][64][65] have been implemented.

The delayed horizon state estimation architecture is based on the work done by
Khosravian et al. [66], which is an estimator design that incorporates sensors of differing
rates. State estimation is a difficult task because PX4 allows any combination of sensors
(of varying rates). Allowing the EKF to operate at a delayed time and to propagate the
delayed states forward with an output predictor to provide an estimate of the current
states solves this problem. The EKF therefore uses the raw measurements at the exact
time the measurements were taken and need not alter the data for time delays. The
measurements are stored in a first-in-first-out (FIFO) buffer and are timestamped at
the time the measurement was taken. As the EKF updates, it checks to see if its own
(delayed) time correlates with the time stamp of the measurement. If the time matches,
then the measurement is used. Otherwise, it is left in the buffer for the next update.
The estimate will generally be delayed by 100 − 200 ms, which are considered too long
for robust flight. The current state is predicted by using the latest IMU measurement
and subtracting the EKF’s delayed state biases. The measurement is then corrected by
a prediction algorithm to compensate for the time delay.

7.2 Extended Kalman Filter (EKF)
The extended Kalman filter estimates a state vector that contains 24 states, namely:

x =

Quaternions(αw, αx, αy, αz)
Velocity(Vn, Ve, Vd)
Position(N,E,D)

Gyro delta angle bias(X, Y, Z)
Accelerometer bias(X, Y, Z)

Earth magnetic field vector(N,E,D)
Magnetometer bias errors(X, Y, Z)

Wind velocity(N,E)

(7.2.1)

where NED denotes coordinates in the PX4 earth axis and XY Z denotes coordinates in
the PX4 body axis. The state space model for the system is represented by the following
discrete-time state transition and output functions:

xk = g(uk,xk−1) + εk (7.2.2)

zk = h(xk) + δk (7.2.3)

where the subscript k indicates the discrete time step index, x is the state vector, z is the
output vector or measurement vector, g is the nonlinear discrete-time state transition

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 73

function that relates the next state to the current state and the current input, h is the
nonlinear output function that relates the outputs / sensor measurements to the states,
ε is the process noise, and δ is the measurement noise.

The IMU measurements are coordinated in the body axis system and the position and
velocity states (and measurements) are coordinated in the Earth axis system. Therefore,
a rotation matrix is required to transform between body axes and Earth axes. The
direction cosine matrix (DCM) (BE

B) for the rotation from body to earth axes is:NE
D

 = BE
B

XY
Z

 , (7.2.4)

where:

BE
B =

 α2
w + α2

x − α2
y − α2

z 2(αx ·αy − αw ·αz) 2(αx ·αz + αw ·αy)
2(αx ·αy + αw ·αz) α2

w − α2
x + α2

y − α2
z 2(αy ·αz − αw ·αx)

2(αx ·αz − αw ·αy) 2(αy ·αz + αw ·αx) α2
w − α2

x − α2
y + α2

z

 (7.2.5)

and the rotation from earth to body axes is just the transpose of BE
B , which is expressed

as BB
E .
These rotations are necessary to keep all the parameters in the same frame of reference

and are necessary to express the attitude relative to the earth axis system. As all the
variables are now coordinated in the same axis system, the states can be estimated (a
process which occurs in four steps in the EKF). The first step is the prediction of the
next states, which will be discussed in the next Sections.

7.2.1 State Prediction
The state prediction discussed here is that of position, velocity and attitude. These
make up the first 10 states listed in equation (7.2.1). The first four states represent the
attitude quaternion, which is propagated by integrating the gyrometers. The gyrometer
provides delta angular movements around the three axes, which is symbolically expressed
as:

∆angle =
∫ tk+1

tk

ω dt− Biasgyro (7.2.6)

where ω is the angular rotation measured with the gyrometers, Biasgyro is the estimated
bias of the gyrometers, tk is the current time step and tk+1 is the next time step. ∆angle

represents the incremental angle changes measured around the 3 axes. However, the
incremental attitude change must be expressed in quaternions and the conversion is as
follows:

∆α =

∆αw
∆αx
∆αy
∆αz

 =

1

∆angle,X

2
∆angle,Y

2
∆angle,Z

2

 (7.2.7)

Equations (7.2.1) and (7.2.1) are simplifications of the mathematics involved and only
holds for small angle approximations. The quaternion attitude is updated by rotating
current attitude by the ∆α, which in quaternion notation is expressed as:

αk+1 = αk ⊗∆α (7.2.8)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 74

The velocity states are propagated by integrating the measured accelerations. The ac-
celerometers measure an acceleration coordinated in the body axis system, which repre-
sents the rate of change of the velocity. The acceleration measurement generally has a
bias offset that requires correction. This correction is expressed in the following equation:

∆vel = ∆IMU − Biasacc (7.2.9)

where ∆IMU is the acceleration measured by the accelerometers and Biasacc is the es-
timated bias of the accelerometers. Since the linear velocity is required in the earth
axis system and the accelerometers measure acceleration in the body axis system, the
incremental velocity change ∆vel must be rotated to the Earth axis system before being
integrated. The accelerometer measurements include the acceleration due to gravity, for
which correction is required. Therefore, the velocity is propagated using the following
equation: VNVE

VD

k+1

=

VNVE
VD

k

+BE
B · ∆veldt+

0
0
g

 · dt (7.2.10)

where dt is the time interval between two measurements and g is the gravitational ac-
celeration constant for the earth. The position is the last state to be updated and is
predicted by adding the trapezoidal integration of the velocity, which is expressed by the
following equation: NE

D

k+1

=

NE
D

k

+ 0.5 · (

VNVE
VD

k

−

VNVE
VD

k+1

) · dt (7.2.11)

As all the states have now been predicted, the corresponding covariance needs to be
calculated. The covariance matrix describes the variance between two sequential states
and the changes for each new prediction.

7.2.2 Covariance Prediction
The general form for the state transition between two time steps can be found in equation
((7.2.2)), where the Guassian noise was added to the non-linear function. PX4 uses a
model where the noise is added to the measured INS values, which can be expressed as:

xk = g(xk−1 + εk, u) + εstatic (7.2.12)

where εk is the noise of the IMU and εstatic is a Guassian spread of static noise that is
not related to the IMU. The covariance matrix can then be expressed as:

Σk = GkΣk−1G
T
k +GkΣεG

T
k +Qk (7.2.13)

where Σ is the covariance matrix, G is the Jacobian of the non-linear function g that
governs the transition, Σε is the process noise of the IMU, and Q is the non-IMU process
noise.

The covariance matrix is used in order to calculate the Kalman gain, which in turn is a
measurement of how aggressively sensor readings need to be incorporated. Sensor fusion,
namely the use of sensor measurements for correct prediction, is the next important point
of discussion.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 75

7.2.3 Sensor Fusion
Once the new states have been predicted and the covariance updated, the next step is to
determine if new (non-IMU) sensor measurements are available. If there are no sensor
measures available then this step is skipped. Otherwise, the innovation variance needs
to be calculated. The innovation variance is:

Sk = HkΣkH
T
k +Rk (7.2.14)

where Hk is the Jacobian of the measurement function and Rk is the measurement noise.
As briefly noted earlier, the covariance matrix is used along with the innovation variance
to determine the Kalman gain, which is a matrix used to correct the prediction with the
measurement. The Kalman gain is expressed as:

Kk = ΣkHkS
−1
k (7.2.15)

and the states are then updated as follows:

x′k = xk −Kk(xk − z̄k) (7.2.16)
where z̄k is the measurement taken at the current time and x′k is the newly updated
states. The covariance matrix is then corrected with the latest Kalman gain. These four
steps form the EKF. The EKF executes at a delayed time and these delayed estimates
require must be propagated forward in time in order to be used by the flight controller.
This forward propagation is called output prediction, which will be discussed next.

7.3 Output Prediction
The method used by PX4 to predict current states based on the delayed states are
primarily reliant on the latest IMU measurements. The delayed state biases (from the
EKF) are subtracted from the IMU measurements to determine the current states. These
values require correction because of the uncertainty of the delayed time. PX4 uses a
time constant (τPX4) that correlates how closely the predicted output should follow the
delayed EKF estimates. The current time step’s states are therefore predicted as follows:

xk = ∆k,IMU + xcorrect −Biask−d (7.3.1)

where:

xcorrect = xgain · xerror +
xerr integral · x2

gain

10 (7.3.2)

xgain = dt

τPX4
(7.3.3)

xerror = xk − xk−d (7.3.4)
xerr integral = xerr integral + xerror (7.3.5)

and dt is the size of one time step of the EKF. The state xk is the state used by the
controllers and is logged. Note that these states would ideally be the position, velocity
and attitude. But PX4 does not provide state correction for the attitude, as the necessary
computational time was considered too large. Therefore, no state correction was done
on the latest gyrometer measurements after the delayed state bias was subtracted.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 76

7.4 Vision-Based State Estimator
The estimator architecture of PX4, as described above, allows any combination of sensors.
Therefore, changing the system from GPS-based to vision-based does not require any
change in the estimation architecture. The only requirements were: ensuring that the
information was published to the correct topics and that the delay time was correctly
specified. Regardless of the sensors that were used, an IMU was always required for a
strapdown INS system.

The estimator, as provided by PX4, does not use the attitude of the vision to correct
the estimated states, but to extract the heading angle, which is given in equation: (7.4.1).

ψ = arctan 2[αxαy + αwαz]
α2
w + α2

x − α2
y − α2

z

(7.4.1)

The heading estimate was updated by using the attitude innovation as:

innov = ψpredicted − ψ (7.4.2)

This is because the attitude is not corrected for the output prediction step. The
standard estimator was changed. Instead of extracting only the heading, the full attitude
from external vision is used to correct the attitude estimate. The system that was
implemented did not pre-calculate the heading, but rather used the full quaternion of the
visual system for correcting the predicted attitude. The new equation used to describe
the innovation was done element wise and expressed as:

innov = αpredicted − αvision (7.4.3)

This allowed for a more accurate estimation of the attitude.

7.5 Estimator Test
In Chapter 6, the visual odometry system was tested against ground truths and the
errors of the system were characterised. Therefore, the visual system’s pose estimate
was considered the truth of the position system, where the noise was incorporated into
the estimators. Consequently, the estimator was tested to verify that it could function
satisfactorily. The tests were done through hardware-in-the-loop simulations and flight
testing. For the HITL test, the vehicle was placed in front of a set of markers in a GPS-
denied environment (inside a building) and the visual odometry system was activated.
The vehicle was then manually moved around and both the pose estimated from the
visual odometry system and the estimator’s belief was logged. The results are shown in
Figures 7.2 and 7.3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 77

100 110 120 130 140 150
-0.6

-0.4

-0.2

0 EKF
EV

100 110 120 130 140 150

-0.2

0

0.2

0.4

0.6
EKF
EV

100 110 120 130 140 150

1

1.2

1.4

1.6 EKF
EV

Figure 7.2: Estimated position provided by
the vision-based state estimator in HITL
simulation

100 110 120 130 140 150

-20

0

20 EKF
EV

100 110 120 130 140 150

-20

-10

0

10 EKF
EV

100 110 120 130 140 150

-20

0

20

40 EKF
EV

Figure 7.3: Estimated attitude provided by
the vision-based state estimator in HITL
simulation

The results show that the estimated position and attitude provided by the vision-
based state estimator generally follows the measured position and attitude provided by
the pose estimation system. However, the measured pose estimate is more noisy and
exhibits "jumps" when no markers are detected in the image frame. The position and
attitude estimated by the vision-based state estimator is less noisy and does not exhibit
the jumps. This is because the vision-based state estimator ignores the outlier mea-
surements supplied by the pose estimation system, and uses the inertial measurements
to propagates the states when the pose estimate measurements are not available. The
results shown in the two figures above provided enough evidence of satisfactory func-
tioning of the visual estimator for an actual flight test. The flight test was conducted by
placing the quadrotor UAV in front of a jig with markers attached to it (the jig will be
explained in Chapter 8). The vision-based state estimator was activated and the safety
pilot flew the quadrotor UAV in front of the markers. The results of the flight test are
shown in Figures 7.4 and 7.5.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 78

150 160 170 180 190 200

-0.6

-0.5

-0.4

-0.3
EKF
EV

150 160 170 180 190 200

0

0.5

1

EKF
EV

150 160 170 180 190 200

1.5

1.6

1.7

1.8
EKF
EV

Figure 7.4: Estimated position provided by
the vision-based state estimator in actual
flight

150 160 170 180 190 200

-5

0

5 EKF
EV

150 160 170 180 190 200
-8

-6

-4

-2

0

2

4
EKF
EV

150 160 170 180 190 200
-20

-10

0

10 EKF
EV

Figure 7.5: Estimated attitude provided by
the vision-based state estimator in actual
flight

The results show that the estimated position and attitude provided by the vision-
based state estimator generally follows the measured position and attitude provided by
the pose estimation system. Again the measured pose estimate is more noisy and exhibits
the "jumps" when no markers are detected (like between 173s and 175s). The estimator
again the results show the estimator ignoring the outliers. The estimator propagated
forward based off of the inertial sensors when no markers were detected showing that
the marker detection and pose estimation is very robust during flight.

The two tests showed that the estimator functioned as expected when receiving vision
estimates. The estimation system was robust enough to deal with flight conditions,
filtered out noise on the measurements and could propagate the states forward when no
visual estimates were present.

7.6 Summary
This chapter provided an overview of the delayed time horizon EKF used by PX4. The
EKF was a strapdown INS system that was executed with a delay. The sensor measure-
ments were buffered to allow the EKF to use unaltered values. The four steps involved in
estimating future states were shown, which predicted the next time step’s states. Then
the prediction of the corresponding covariance matrix, the fusion of the available sensors
to correct the predicted states and, finally, the correction of the covariance matrix with
the corrected states was discussed. The delayed state estimation was then predicted
forward to the current time by an output prediction algorithm that combined the latest
IMU measurements with the delayed states and corrected for the error. The estimation
system was designed to work with different sensors, updating at different rates. There-
fore, the visual system’s estimates were easily added. The EKF did not use the full

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. STATE ESTIMATOR 79

quaternion to update the attitude and this was changed. Finally, the estimator was ver-
ified by an HITL simulations and a flight test. In both the HITL simulation and flight
test the the estimator followed the measured position and the marker detection and pose
estimation was shown to be very robust during flight. The estimator ignored outliers
and propagated the states forward using only inertial measurements.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Results

The Chapters have thus far explained the design and testing of different systems. Each
system was tested individually in software. Some of the systems (like the controllers and
the visual odometry system) were tested with HITL simulations, but this only proved
that it should work in theory. This chapter will show how these different systems were
integrated and tested in flight tests.

As discussed in Chapter 3, the HITL simulations were done in two steps. The same
procedure was followed for the flight tests. The first test aimed to verify that the control
system and the estimator worked as expected. The different control loops were tested
with GPS providing localisation information and with the vision-based system switched
off in the first test. The test was conducted by switching between different modes, where
each mode gave the safety pilot control of the set-points of the loop that was being
tested, i.e. in "acro-mode" the transmitter commands were directly given as angular rate
references. Once the controllers and estimator were verified to function as expected, the
waypoint scheduler was tested. The vehicle was flown to an altitude of 10m by the safety
pilot and switched over to the waypoint scheduler, which then executed a series of points
for the vehicle to follow.

Satisfied that the waypoint scheduler was working, the vehicle was switched from
GPS-based localisation to vision-based localisation for the second set of tests. The vehicle
was placed in front of a jig with markers attached to it. The safety pilot controlled the
vehicle for the first flight and tested that the system functioned correctly. The success
of this test provided enough confidence to proceed to switch the vision-based system
on to follow waypoints. The vehicle followed the waypoints successfully and the safety
pilot landed the vehicle. Each of the flight tests, with the corresponding log files, will be
discussed in more detail below.

8.1 Control Loop and Estimator Test
During the test, the safety pilot controlled the vehicle with a wireless transmitter. The
control system was tested, starting with the fastest loops and only proceeding with the
slower loop once the faster loop was verified as functional. The angular rate loop’s mode
was called "acro" and in this mode the safety pilot flew at a low altitude to minimise
damage, should something go wrong. The flight was successful. Since a flight mode
was now tested and found to be reliable, the vehicle was flown to roughly 5 m and
switched over to the attitude control loop that uses the "stability" mode. The safety pilot
flew the vehicle around and the control loop functioned as expected. The vehicle was

80

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. RESULTS 81

then switched over to the velocity controller (that is somewhat mislabelled as "position
mode"). This mode used GPS for the vehicle’s velocity and again, the controller was
verified as functional. The vehicle was landed and the waypoints were uploaded into it.
The position controller could only be tested by the waypoint scheduler, as the transmitter
had no mode that allowed for position references. The vehicle was again controlled by
the safety pilot up to a height of 10 m and the waypoint scheduler was switched on. Due
to an error with the logger, only the waypoint scheduler’s logs were saved and the results
are shown in Figure 8.1.

220 240 260 280 300 320 340 360 380
0

5

10

EKF
GPS

220 240 260 280 300 320 340 360 380

0

2

4

6

8 EKF
GPS

220 240 260 280 300 320 340 360 380

4

5

6

7
EKF
GPS

10

Figure 8.1: Estimated position provided by the GPS-based state estimator with more
aggressive gains

The results shown above relate to the controller gains of PX4 and not the gains that
were designed in Chapter 5. The controller verification was also discussed in Chapter
5 and this is only to show that the waypoint scheduler and estimator functioned as
expected. It is noteworthy that for the Down direction, the GPS does not match the
estimated altitude. This was because the estimator used the barometer as its primary
source of altitude and used the GPS for latitude and longitudinal positioning. The
waypoints that were commanded were the following: a 1 m step North, wait 20 s, then
step back to the origin, wait 20 s, step 10 s North, wait 20 s, step back to the origin.
The same steps were repeated the in the East direction. On the day of the flight test,
a slight wind form the South West was present. Small changes in the East direction
were observed when North steps were performed and the slightly less but still visible
changes in the North direction when East steps were performed. This was the result of
the method used by PX4 to prioritise the limited motor thrust commands. There was
not enough thrust authority left to control the lateral directions when big steps in the
longitudinal direction were commanded, and vice versa. It did correct fairly quickly for
the slight deviations and the result was a stable flight following the waypoints.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. RESULTS 82

8.2 Vision-based
Following the success of these first tests, the vision-based localisation system test could
commence. The first flight was done with the safety pilot controlling the vehicle again.
The vehicle was placed in front of an upside down ’L’-shaped structure that contained
14 markers, as seen in Figures 8.2 and 8.3.

Figure 8.2: Marker Jig Layout Figure 8.3: Actual Marker Jig

The markers were intentionally placed in a zig-zag pattern to lower the inaccuracies
of co-planar markers. The vehicle was flown in line with the top row of markers and
switched over to position mode. This mode uses the pose estimate of the vision system
to localise the vehicle. It hovered stationary, showing that the system was working. The
safety pilot then flew the vehicle in this mode at the same altitude. This ensured that
the vehicle could fly with visual localisation. Figures 8.4 and 8.5 show the results of this
flight.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. RESULTS 83

140 160 180 200 220 240 260 280

-1

-0.5

0 EKF
EV
GPS

140 160 180 200 220 240 260 280

0

0.5

1

1.5
EKF
EV
GPS

140 160 180 200 220 240 260 280

0

1

2

3
EKF
EV
GPS

Figure 8.4: Estimated position provided by
the vision-based state estimator in manual
flight

140 160 180 200 220 240 260 280

-5

0

5 EKF
EV

140 160 180 200 220 240 260 280

-5

0

5

EKF
EV

140 160 180 200 220 240 260 280
-20

-10

0

10 EKF
EV

Figure 8.5: Estimated attitude provided by
the vision-based state estimator in manual
flight

The flight proved that the time delay that was set on the pose estimates from the
vision, as well as the noise parameters, was correct. The flight was noisy, but this could
be due to the influence of a slight wind on the day of the flight test. Despite the influence
that the wind had on the aircraft, the result of this flight test was a stable flight.

The next flight test was performed with less aggressive controllers. The safety pilot
controlled the vehicle and let it hover in front of the marker in the top, left corner of
the jig and then switched the vehicle over to "off-board mode" for autonomous control.
The navigation was a waypoint scheduler that sent position and yaw commands to the
controllers. The waypoints that were used, were measured relative to the position that
the autonomous mode was switched on. The position and heading angle of the vehicle
(when the "off-board mode" was switched on) is considered the origin (0, 0, 0, 0) of the
waypoint scheduler. The position waypoints were given in metres and the heading angle
in degrees. The waypoints were:

1. (0, 0, 0, 0)

2. (0, 1.2, 0, 0)

3. (0, 0, 0, 0)

4. (-0.5, 0, 0, 0)

5. (0, 0, 0, 0)

6. (0, 0, 0, 15)

7. (0, 0, 0, 0)

The waypoints are provided as North, East and Down in metres, where the heading
angle is given in degrees (as mentioned above). Each waypoint was held for 20 seconds

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. RESULTS 84

before proceeding to the next point. The results from this flight is provided in Figures
8.6 and 8.7.

520 540 560 580 600 620 640 660
-0.4

-0.2

0

0.2

0.4
EKF
EV
GPS

520 540 560 580 600 620 640 660

-0.5

0

0.5

1 EKF
EV
GPS

520 540 560 580 600 620 640 660

0

0.5

1

1.5

2

2.5
EKF
EV
GPS

Figure 8.6: Estimated position provided by
the vision-based state estimator with de-
signed gains

520 540 560 580 600 620 640 660

0

2

4

EKF
EV

520 540 560 580 600 620 640 660

-2

0

2

4 EKF
EV

520 540 560 580 600 620 640 660

-5

0

5

10

15

EKF
EV

Figure 8.7: Estimated attitude provided by
the vision-based state estimator with de-
signed gains

Again, the GPS drift was clearly visible. The flight was done with the vehicle 800
mm away from the markers. After reviewing the on-board video, it was clear that most
of the time only one marker was visible in the image frame at a time. However, the flight
showed that the autonomous navigation with vision-based localisation was successfully
implemented.

The last test flight was done exactly like the previous one, with the safety pilot
controlling the vehicle in place and then switching it over. The same waypoints were
used. The only difference was that the more aggressive controllers were used. The flight
results are shown in Figures 8.8 and 8.9.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. RESULTS 85

200 220 240 260 280 300 320

-1.5

-1

-0.5

0
EKF
EV
GPS

200 220 240 260 280 300 320

-0.5

0

0.5

1

1.5
EKF
EV
GPS

200 220 240 260 280 300 320

1

2

3
EKF
EV
GPS

Figure 8.8: Estimated position provided by
the vision-based state estimator with more
aggressive gains

200 220 240 260 280 300 320

-10

0

10 EKF
EV

200 220 240 260 280 300 320

-10

0

10 EKF
EV

200 220 240 260 280 300 320
-5

0

5

10

15

20

EKF
EV

Figure 8.9: Estimated attitude provided by
the vision-based state estimator with more
aggressive gain

As can be seen, the more aggressive controllers were slow enough to not cause motion
blur. The vehicle was also placed 2 m away from the markers, which caused multiple
markers to be constantly visible.

To conclude, the less aggressive controller appears to be underdamped and slow. This
behaviour could result from the close proximity to the markers because it had only one
marker in frame at a time (the effect of which was shown in Section 6.6). Both the
flights showed that the system was implemented successfully. The system proved to be
remarkably robust to the loss of markers in its visual field, as it did not fail in the periods
where no markers were visible. Stable flight was maintained throughout the tests.

8.3 Summary
The results were obtained by a series of flight tests. The tests followed consecutively,
where every successive test was only performed when the previous test was successful.
The test started with the fastest control loops and gradually tested the slower control
loops, where GPS was used for the localisation. The waypoint scheduler was used for the
positional control loops and, following the satisfactory behaviour of the controllers and
estimator, the vision system was added and the GPS excluded. The vision-based system
was first tested by manual control before handing the controls over to the waypoint
scheduler and control system. All the flights were performed successfully.

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Conclusions and Recommendations

This project set out to design, implement and verify a vision based flight control system
that controls the position of a quadrotor relative to an inspection target in a GPS-
denied environment.A secondary goal was set to develop a UAV research platform using
off-the-shelf UAV hardware and open-source software to replace the Electronic System
Laboratory’s (ESL’s) in-house developed avionics, ground control station, and hardware-
in-the-loop simulation environment. These goals were divided into ten objectives to
ensure the goals were reached. These objectives were:

1. To select and procure a suitable off-the-shelf quadrotor UAV: an airframe, a flight
control unit, an on-board computer, and a suite of sensors including an inertial mea-
surement unit (IMU), GPS sensor, magnetometer, barometric sensor, and camera
module.

2. To select suitable open-source flight control software to serve as the basis for the
vision-based flight control system.

3. To create an integrated UAV system consisting of the UAV, the ground control
station, and the hardware-in-the-loop simulation environment.

4. To establish a mathematical model of the quadrotor UAV flight mechanics that
can be used for flight control design and analysis, and for simulations.

5. To reverse engineer the flight control system and the state estimators implemented
by the open-source flight control software.

6. To re-design the flight controllers gains based on the flight dynamics of the chosen
commercial off-the-shelf quadrotor UAV, if necessary.

7. To design and implement a vision-based localisation algorithm that executes in
real time on-board the quadrotor UAV.

8. To design and implement a vision-based state estimator that estimates the po-
sition, velocity, and attitude of the quadrotor UAV without using GPS sensor
measurements.

9. To design and implement a vision-based flight control and waypoint navigation
system for the quadrotor UAV.

86

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 87

10. To verify the correct operation of the vision-based localisation, state estimation,
flight control, and waypoint navigation using laboratory experiments, simulation
tests, and practical flight tests.

This chapter will present how these objectives and goals were completed. The first
section of this chapter contains a summary of the work done in this thesis. This will
be followed by a discussion on the hardware and software that was used, where-after
a discussion on the flight control system will be presented. A discussion of the vision-
based localisation system is then presented, upon which the tests performed to verify the
successful integration of the different systems will also be given. Lastly, recommendations
will be made for future projects.

9.1 Summary of Work Done
This thesis begins with a review of the literature on the basic dynamics of a multi-rotor
was, including the sensors that was required, the different methodologies for vision-based
pose estimation and the open-source software packages that were considered. Thereafter
follows a system overview of the specific hardware that was chosen and a discussion
on the different ways in which the software packages and hardware were connected.
This is followed by a demonstration of the mathematical models used to describe the
dynamics of a quadrotor and the dynamics were linearised around hover. The linear
model was used to design a control system that was based on the open-source flight
control software of PX4’s architecture. The control system was tested in a flight test
and the simulation results were compared to that of the flight test. The vision-based
localisation approach was designed, where the camera model used was first defined.
Thereafter, an overview of ArUco’s marker detection and pose estimation algorithm was
given. Finally, the noise characteristics of the camera that was used was determined. The
estimator architecture that incorporates the vision-based pose estimation and the IMU
was described, as well as an overview of all of the changes that were made to them. The
full system was implemented onto the vehicle and flight tests were performed without
the use of GPS. The flight tests proved that the system was successfully integrated and
worked as expected.

9.2 Off-the-shelf Hardware and Open-source
Software

The first three objectives required the obtaining of open-source software, off-the-shelf
hardware and the integration of different components in one UAV system. The Intel®
Aero Ready-To-Fly drone that was procured had an on-board flight control unit (FCU),
a separate on-board computer (OBC), and a range of sensors that included an inertial
measurement unit (IMU), a GPS-receiver, a magnetometer, a barometric sensor, and a
camera module.

A benefit of the Intel® Aero RTF drone is that it has an OBC on-board that allows
the open source flight control software (PX4) to be loaded onto the FCU and ArUco’s
open-source vision-based pose estimation software to be loaded on the OBC. This allowed
both the flight control and vision-based pose estimation software adequate computational
power. The vision-based pose estimation software was written as a Robot Operating

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 88

System (ROS) node. Successful integration was achieved because the PX4 software
supports ROS nodes.

Both PX4 and ROS has support for the open-source ground control software QGround-
control and the simulation software Gazebo. Gazebo enabled hardware-in-the-loop sim-
ulation. However, a complete system hardware-in-the-loop simulation was not achieved
as a result of physical wiring restrictions on the hardware. Such difficulties with simu-
lations were resolved via laboratory experiments that tested the system’s hardware in a
safe manner. These experiments, in addition to simulations, verified system integration
before flight tests were conducted.

In conclusion, off-the-shelf hardware was procured, a suitable open-source flight con-
trol software was selected and an integrated UAV system was created. Therefore, the
first three objectives listed were achieved.

9.3 Flight Control System
The next three objectives focused on the flight control system. In Chapter 4, differential
equations of a quadrotor UAV flight mechanics were established and combined with the
force and moment model, which provides a mathematical model of the quadrotor’s flight
mechanics. The model was linearised to provide the basis of the control system design
and the Intel® Aero RTF drone’s physical properties were determined.

PX4’s control system was reverse engineered and an overview can be found in Chapter
5. The architecture used by PX4 was successive loop closure. The loops were (in order of
fastest to slowest) (1) angular rate, (2) attitude, (3) velocity and (4) position; where the
angular rate and velocity loops used a two-degree-of-freedom PID (2 DoF PID) controller
and the attitude and position loop used proportional control. The architecture of PX4
was followed and the flight controller gains were re-designed for the Intel® Aero RTF
drone. The gains were implemented in PX4’s flight control system and was verified by
simulations and flight tests.

A functional flight control system was therefore available, satisfying the fourth, fifth
and sixth objectives.

9.4 Vision-based Localisation
Objectives 7 to 9 were based on the vision-based localisation algorithm. ArUco’s marker
detection and pose estimation algorithms were used with ArUco’s square markers. The
markers had a black square border around a 5x5 grid of either black or white blocks,
which encoded the markers ID. The marker detection algorithm consisted of two steps.
The first step was the detection of all possible markers by finding the square borders
in an image via a combination of adaptive thresholding and contouring. The second
step consisted of verifying each detected border and identify the ID by decoding the 5x5
grid within the border. Each detected marker was then matched to the corresponding
points on a map of the environment. Each detected marker’s four corner points, the
2D projection and the 3D points from the map were used to solve the PnP problem.
This provided a pose estimate of the camera relative to the inertial axis. The estimate
was then sent to the estimator, where it was combined with the IMU measurements
to estimate the pose of the quadrotor UAV. The marker detection and pose estimation
was tested in simulation and by practical laboratory tests that used the actual camera

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 89

and on-board computer. The position and attitude accuracy of the pose estimation
system was experimentally determined, and were used to set the sensor measurement
noise covariances for the vision-based state estimator. The first actual test consisted of
moving the vehicle manually in front of the actual markers and the estimation of both
the vision system and EKF were analysed to ensure that the system functioned correctly.
The camera was accurate within 50 mm in position and 2.5◦ in orientation. The EKF
followed the vision estimate closely and could predict the movement of the vehicle even
when no markers were detected. Objectives 7 to 9 was therefore achieved, where the
second part of objective 9 (the waypoint navigation will be proved in the next section).

9.5 Flight Test
The full integration of all the different systems and hardware was tested in a series of
flight tests. The controllers and the GPS-based estimator were first tested (with the
GPS enabled) by a safety pilot that commanded the references for each of the control
loops directly. The test was successful and proved that the flight control system was
functional.

The following test was done with the waypoint scheduler controlling the quadrotor.
The waypoint scheduler successfully commanded a series of waypoints to be followed at
an altitude of 10 m, which proved that the control system and waypoint scheduler was
successfully integrated.

After successful testing of the waypoint scheduler, the visual system was armed and
the quadrotor UAV was placed in front of a jig that held 14 markers. The safety pilot
flew the quadrotor UAV level with the top row of markers and switched over to the
waypoint scheduler. The quadrotor UAV then flew a series of steps in the lateral and
longitudinal direction and made a yaw movement. This flight proved that the integration
of the vision-based localisation, state estimation, flight control and waypoint navigation
systems was successfully implemented.

The final test flight achieved the primary goal that was set out, which was the suc-
cessful flight of a quadrotor UAV in a GPS-denied environment with vision-based flight
control and state estimation.

9.6 Recommendations/Future Work
The work described in this thesis forms part of a larger project, which still requires the
addition of post-flight processing and analysis.

1. The vision-based pose estimation process as set out in this thesis, is reliant on
accurately placed markers that are relatively close to one another. The author
recommends that further investigation into different techniques are required, such
as markerless pose estimation.

2. The more aggressive controller showed unstable vertical position dynamics that
requires further investigation. The more aggressive controller shows promise, since
the more aggressive controllers did not cause motion blur.

3. At present, the state estimation process does not include the attitude in the output
prediction stage. It should be investigated whether the addition of the attitude

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 90

will cause a computational load that is too large for the FCU.

4. The system can be upgraded by replacing the FCU with one that is connected to
the OBC directly and has an additional open serial port on the FCU to connect
to an external computer, for example the Pixhawk range. This will allow the fully
combined UAV system to be tested in HITL simulations.

5. The OBC of the Intel® Aero RTF drone does allow the architecture to be changed
with FPGA and could possibly solve the HITL simulation problems by activating
one of the two unused open UART channels.

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] J.H. Blakelock, 1991, Automatic control of aircraft and missiles, 2nd edn, John Wiley
and Sons, New York, United States of America.

[2] M.V. Cook, 2013, Flight Dynamics Principles: A Linear Systems Approach to
Aircraft Stability and Control, 3rd edn, Elsevier Butterworth-Heinemann, Oxford,
United Kingdom.

[3] B. Etkin & L.D. Reid, 1996, Dynamics of Flight (Stability and control), 3rd edn,
John Wiley and Sons, New York, United States of America.

[4] R.C. Hibbeler, 2016, Engineering Mechanics Dynamics, 14th edn, Pearson Prentice
Hall, Hoboken, United States of America.

[5] P.D.S. Möller, 2015, ’Automated Landing of a Quadrotor Unmanned Aerial Vehicle
on a Translating Platform’, MA thesis, University of Stellenbosch, accessed 20 May
2018 from the University of Stellenbosch library database.

[6] J. Treurnicht, 2006, ’Two-Rope Inertia Calculation’, technical report. Stellenbosch
University, accessed 17 August 2018 from the University of Stellenbosch library
database.

[7] R. Hartley & A. Zisserman, 2004, Multiple View Geometry, 2nd edn, Cambridge
University Press, Cape Town, South Africa.

[8] M. Araki & H. Taguchi, 2003, ’Two-Degree-of-Freedom PID Controllers’, Interna-
tional Journal of Control, Automation, and Systems, vol. 1, no.4, pp.401-411.

[9] I.M. Horowitz, 1963, Synthesis of Feedback Systems, Academic Press Inc. (London)
Ltd., London, United Kingdom.

[10] P. Tripicchio, M. Unetti, N. Giordani, A. Avizzana & M. Satler, 2014, ‘A Lightweight
SLAM Algorithm for Indoor Autonomous Navigation’, Proceedings of Australasian
on Robotics and Automation, The University of Melbourne, Melbourne, Australia,
2-4 December.

[11] M. Li & A.I. Mourikis, 2013, ‘High-precision, consistent EKF-based visual-inertial
odometry’, The International Journal of Robotics Research, vol. 32, no. 6, pp. 690-
711.

[12] S. Weiss, D. Scaramuzza & R. Siegwart, 2011, ‘Monocular-SLAM–based navigation
for autonomous micro helicopters in GPS-denied environments’, Journal of Field
Robotics (Special Issue: Safety, Security, and Rescue Robotics), vol. 28, no.6, pp.
854-874.

91

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 92

[13] A. Mourikis & S. Roumeliotis, 2007, ‘A Multi-State Constraint Kalman Filter for
Vision-aided Inertial Navigation’, in Mourikis, 2007 IEEE International Conference
on Robotics and Automation, Rome, Italy, 10-14 April, pp. 3565-3572.

[14] A. Assa & F. Janabi-Sharifi, 2014, ‘A Robust Vision-Based Sensor Fusion Approach
for Real-Time Pose Estimation’, IEEE Transactions on Cybernetics, vol. 44, no.2, pp.
217-227.

[15] N. Metni & T. Hamel, 2006, ‘A UAV for bridge inspection: Visual servoing control
law with orientation limits’, Automation in Construction, vol. 17, no. 1, pp. 3 -10.

[16] R. Konomura & K. Hori, 2016, ‘FPGA-based 6-DoF Pose Estimation with a Monoc-
ular Camera Using Non Co-planer Marker and Application on Micro Quadcopter’,
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Dae-
jeon, Korea, 9-14 October, pp. 4250-4257.

[17] S. Vogt, A. Khamene, F. Sauer & H. Niemann, 2003, ‘Single camera tracking of
marker clusters: multiparameter cluster optimization and experimental verification’,
2002 IEEE International Symposium on Mixed and Augmented Reality, Darmstadt,
Germany, 1 October, pp. 127-136, DOI:10.1109/ISMAR.2002.1115082.

[18] L. Jayatilleke & N. Zhang, 2013, ‘Landmark-Based Localization for Unmanned
Aerial Vehicles’, 2013 IEEE International Systems Conference, Orlando, United
States of America, 15-18 April, pp. 448-451, DOI:10.1109/SysCon.2013.6549921.

[19] W. Roozing & A.H. Göktogan, 2013, ‘Low-Cost Vision-Based 6-DOF MAV Lo-
calization Using IR Beacons’, 2013 IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics, Wollongong, Australia, 9-12 July, pp. 1003-1009,
DOI:10.1109/AIM.2013.6584225.

[20] T.T. Mac, C. Copot, R. De Keyser & C.M. Ionescu, 2018, ‘The development of an
autonomous navigation system with optimal control of an UAV in partly unknown
indoor environment’, Mechatronics, vol. 49, no. 1, pp. 187-196.

[21] G. Bleser, H. Wuest & D. Stricker, 2006, ‘Online camera pose estimation in partially
known and dynamic scenes’, 2006 IEEE/ACM International Symposium on Mixed
and Augmented Reality, Santa Barbara, United States of America, 22-25 October,
pp. 56-65, DOI:10.1109/ISMAR.2006.297795.

[22] H. Jin, P. Favaro & S. Soatto, 2000, ‘Real-time 3D motion and structure of point
features: a front-end system for vision-based control and interaction’, 2000 IEEE
Conference on Computer Vision and Pattern Recognition, Hilton Head Island, United
States of America, 15 June, vol. 2, pp. 778- 779, DOI:10.1109/CVPR.2000.854954.

[23] P. Lu & Q. Geng, 2011, ‘Real-time Simulation System for UAV Based on
Matlab (Simulink)’, 2011 IEEE 2nd International Conference on Computing,
Control and Industrial Engineering, Wuhan, China, 20-21 August, pp.399-404,
DOI:10.1109/CCIENG.2011.6008043.

[24] M. Veth, J. Raquet & M. Pachter, 2006, ‘Stochastic Constraints for Efficient Image
Correspondence Search’, IEEE Transactions on Aerospace and Electronic Systems,
vol. 42, no.3, pp.973-982, DOI:10.1109/TAES.2006.4439212.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 93

[25] S. Shen, Y. Mulgaonkar, N. Michael & V. Kumar, 2013, ‘Vision-Based State Esti-
mation and Trajectory Control Towards High-Speed Flight with a Quadrotor’, in P.
Newman, D. Fox & D. Hsu, Robotics: Science and Systems IX, Technische Univer-
sität Berlin, Berlin, Germany, 24-28 June, DOI:10.15607/RSS.2013.IX.032.

[26] S. Shen, Y. Mulgaonkar, N. Michael & V. Kumar, 2013, ‘Vision-Based State Es-
timation for Autonomous Rotorcraft MAVs in Complex Enviroments’, 2013 IEEE
International Conference on Robotics and Automation, Karlsruhe, Germany, 6-10
May, pp. 1758-1764, DOI:10.1109/ICRA.2013.6630808.

[27] E.S. Jones & S. Soatto, 2011, ‘Visual-inertial navigation, mapping and localiza-
tion: A scalable real-time casual approach’, The International Journal of Robotics
Research, vol. 30, no. 4, pp. 407-430.

[28] A. Zarándy, M. Nemeth, Z. Nagy, A. Kiss, L. Santha & T. Zsedrovits, 2016, ‘A real-
time multi-camera vision system for UAV collision warning and navigation’, Journal
of Real-Time Image Processing, vol. 12, no. 4, pp.709-724.

[29] C. Nitschke, 2014, ‘Marker-based Tracking with Unmanned Aerial Vehicles’, 2014
IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, 5-10
December, pp. 1331-1338, DOI:10.1109/ROBIO.2014.7090518.

[30] D. Mellinger & V. Kumar, 2011, ‘Minimum Snap Trajectory Generation and Control
for Quadrotors’, 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9-13 May, pp. 2520-2525, DOI:10.1109/ICRA.2011.5980409.

[31] L.R García Carrillo, A.E. Dzul López, R. Lozano & C. Pégard, 2013, Quad Ro-
torcraft Control: Vision-based Hovering and Navigation, 1st edn, Springer-Verlag
London, London.

[32] A. Benini, M.J. Rutherford & K.P. Valavanis, 2016, ‘Real-time, GPU-based Pose
Estimation of a UAV for Autonomous Takeoff and Landing’, 2016 IEEE International
Conference on Robotics and Automation, Stockholm, Sweden, 16-21 May, pp. 3463-
3470, DOI:10.1109/ICRA.2016.7487525.

[33] S. Zhou, G. Flores, E. Bazan, R. Lozano & A. Rodriguez, 2015, ‘Real-Time
Object Detection and Pose Estimation using Stereo Vision. An application for a
Quadrotor MAV’, 2015 Workshop on Research, Education and Development of Un-
manned Aerial Systems, Cancun, Mexico, 23-25 Nov, pp. 72-77, DOI:10.1109/RED-
UAS.2015.7440992.

[34] C. Eschmann, C.M. Kuo, C.H. Kuo & C. Boller, 2012, ‘Unmanned Aircraft Sys-
tems for Remote Building Inspection and Monitoring’, 6th European Workshop on
Structural Health Monitoring, Dresden, Germany, 3-6 July, pp. 1-8.

[35] G. Balamurugan, J. Valarmathi & V.P.S. Naidu, 2016, ‘Survey on UAV navigation
in GPS denied environments’, 2016 IEEE International Conference on Signal Pro-
cessing, Communication, Power and Embedded System, Paralakhemundi, India, 3-5
October, pp. 198-204, DOI:10.1109/SCOPES.2016.7955787.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 94

[36] P.H. Nguyen, K.W. Kim, Y.W. Lee & K.R. Park, 2017, ‘Remote Marker-Based
Tracking of UAV Landing Using Visible-Light Camera Sensor’, Sensors, vol. 17, no.
9, Article no. 1987.

[37] A.M. Singh, Q.P. Ha, D.K. Wood & M. Bishop, 2017, ‘Low-latency Vision-based
Fiducial Detection and Localisation for Object Tracking’, 34th International Sym-
posium on Automation and Robotics in Construction, Waterloo, United States of
America, 28 June - 1 July, pp. 706-711.

[38] J. Bacik, F. Durovsky, P. Fedor & D. Perdukova, 2017, ‘Autonomous flying with
quadrocopter using fuzzy control and ArUco markers’, Intelligent Service Robotics,
vol. 10, no. 3, pp. 185-194.

[39] S. Garrido-Jurado, R. Muños-Salinas, F.J. Madrid-Cuevas & M.J. Marín-Jiménez,
2014, ‘Automatic generation and detection of highly reliable fiducial markers under
occlusion’, Pattern Recognition, vol. 47, no.6, pp. 2280-2292.

[40] G. Klein & D. Murray, 2007, ‘Parallel Tracking and Mapping for Small AR
Workspace’, 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality, IEEE Computer Society Washington, USA, 13-16 November, pp. 1-10, DOI:
10.1109/ISMAR.2007.4538852

[41] R. Mur-Artal, J.M.M. Montiel & J.D. Tardós, 2015, ‘ORB-SLAM: A versatile and
accurate monocular SLAM system’, IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1147-1163, DOI:10.1109/TRO.2015.2463671.

[42] I. Cvišić, J. Ćesić, I. Marković & I. Petrović, 2017, ‘SOFT-SLAM: Computationally
efficient stereo visual simultaneous localization and mapping for autonomous un-
manned aerial vehicles’, Journal of Field Robotics, vol. 35, no. 4, pp. 578-595, DOI:
10.1002/rob.21762

[43] T. Whelan, S. Leutenegger, R.F. Salas-Moreno, B. Glocker & A.J. Davison, 2015,
‘ElasticFusion: Dense SLAM without a pose graph’, Robotics: Science and Sys-
tems XI, Sapienza University of Rome, Rome, Italy, 12-17 July, article no. 1, DOI:
10.15607/RSS.2015.XI.001.

[44] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J. Davison, P.
Kohli, J. Shotton, S. Hodges & A. Fitzgibbon, 2011, ‘KinectFusion: Real-time
dense surface mapping and tracking’, 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, Basel, Switzerland, 26-29 October, 10.1109/IS-
MAR.2011.6092378.

[45] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J.J. Leonard & J. McDonald,
2014, ‘Real-time large scale dense RGB-D SLAM with volumetric fusion’, The
International Journal of Robotics Research, vol. 34, no. 4-5, pp. 598-626, DOI:
10.1177/0278364914551008.

[46] T. Whelan, M. Kaess, J.J Leonard & J. McDonald, 2013, ‘Deformation-based Loop
Closure for Large Scale Dense RGB-D SLAM’, 2013 IEEE/RJS International Con-
ference on Intelligent Robots and Systems, Tokyo, Japan, 3-7 November, pp. 548-555,
DOI:10.1109/IROS.2013.6696405.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 95

[47] T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard & J. McDonald, 2013, ‘Robust
real-time visual odometry for dense RGB-D mapping’, 2013 IEEE International Con-
ference on Robotics and Automation, Karlsruhe, Germany, 6-10 May, pp. 5724-5731,
DOI: 10.1109/ICRA.2013.6631400.

[48] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson & J.J. Leonard,
2012, ‘Kintinuous: Spatially extended KinectFusion’, technical report, Massachusetts
Institute of Technology, accessed 10 September 2019 from CSAIL Technical Reports
(July 1, 2003 – present).

[49] J.J. Leonard, M. Kaess, J. McDonald & T.J. Whelan, 2013, Method for mapping an
environment, US9412173B2.

[50] A.J. Davison, I.D. Reid, N.D. Molton & O. Stasse, 2007, ‘MonoSLAM: Real-time
single camera SLAM’, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 29, no. 6, pp. 1052-1067, DOI: 10.1109/TPAMI.2007.1049.

[51] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid & J.J.
Leonard, 2016, ‘Past, present, and future of simultameous localization and mapping:
Towards the robust-perception age’, IEEE Transaction on Robotics, vol. 32, no. 6,
pp. 1309-1332, DOI: 10.1109/TRO.2016.2624754.

[52] J. Engel, V. Koltun & D. Cremers, 2018, ‘Direct Sparse Odometry’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611-625,
DOI:10.1109/TPAMI.2017.2658577.

[53] C. Tisse, T. Fauvel & H. Durrant-Whyte, 2005, ’A micro aerial vehicle motion
capture system’, 1st International Conference on Sensing Technology, Palmerston
North, New Zealand, 21-23 November, pp. 533-538.

[54] S. Hutchinson, G.D Hager, & P.I Corke, 1996, ‘A tutorial on visual servo control’,
IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651–670.

[55] R. Mebarki, V. Lippiello & B. Siciliano, 2015, ‘Nonlinear visual control of unmanned
aerial vehicles in GPS-denied enviroments’, IEEE Transaction on Robots, vol. 31, no.
4, pp. 1004-1017.

[56] M.G. Popova & H.H.T. Liu, 2016, ‘Position-based visual servoing for target tracking
by a quadrotor uav’, AIAA Guidance, Navigation, and Control Conference, San
Diego, United States of America, 4-8 January, pp. 1-12, DOI:10.2514/6.2016-2092.

[57] E. Malis, F. Chaumette & S. Boudet, 1999, ‘2 ½ d visual servoing’, IEEE Transac-
tions on Robotics and Automation, vol. 15, no. 1, pp. 238-250.

[58] A. Driss, L. Krichen, F. Mohamed & L.C. Fourati, 2018, ’Simulation tools, en-
vironments and frameworks for UAV system analysis’, 14th International Wireless
Communications and Mobile Computing Conference,Limassol, Cyprus, 25-29 June,
pp. 1495-1500, DOI:10.1109/IWCMC.2018.8450505.

[59] ArduPilot, 2018, ’Code Overview (Copter)’, [Online] Available at :
http://ardupilot.org/dev/docs/apmcopter-code-overview.html, [2019, October
10].

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 96

[60] PX4, 2019, ’Developers Guide’, [Online] Available at : https://px4.io/developer-
guide/, [2019, October 10].

[61] J.E. Bortz, 1971, ’A new mathematical formulation for strapdown inertial naviga-
tion’, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-7, no. 1,
pp. 61-66, DOI:10.1109/TAES.1971.310252.

[62] P.G. Savage, 1998, ’Strapdown inertial navigation algorithm design part 1: Attitude
algorithm’, Journal of Guidance, Control and Dynamics, vol. 21, no. 1, pp. 19-28.

[63] P.G. Savage, 1998, ’Strapdown inertial navigation algorithm design part 2: Velocity
and position algorithm’, Journal of Guidance, Control and Dynamics, vol. 21, no. 2,
pp. 208-221.

[64] R.B. Miller, 1983, ’A new strapdown attitude algorithm’, Journal of guidance, con-
trol, and dynamics, vol. 6, no. 4, pp. 287-291, DOI:10.2514/3.19831.

[65] P.G. Savage, 2015, ’Computational elements for strapdown systems’, Strapdown
associates, vol. WBN-14010, pp. 1-39.

[66] A. Khosravian, J. Trumpf, R. Mahony & T. Hamel, 2015, ’Recursive attitude es-
timation in the presence of multi-rate and multi-delay vector measurements’, 2015
American control conference, Palmer House Hilton, Chicago, USA, 1-3 July, pp.
3199-3205.

[67] E. Chan, 2017, ’Strapdown inertial navigation system’, ECE Se-
nior Capstone Project, Technical notes, [Online] Available at :
https://sites.tufts.edu/eeseniordesignhandbook/files/2017/05/Chan_SHP_FINAL-
NoLinks.pdf, [2019, October 29].

[68] T. Kurita, N. Otsu, & N. Abdelmalek, 1992, ’Maximum likelihood thresholding
based on population mixture models’, Pattern Recognition, vol. 25, no. 10, pp. 1231-
1240, DOI:10.1016/0031-3203(92)90024-D

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Intel® Aero Ready To Fly
Specifications

A.1 Intel® Aero Compute Board:
• Intel® Atom™ x7-Z8750 processor quad-core

• 4 GB LPDDR3-1600

• 32 GB eMMC

• Intel® Dual Band Wireless-AC 8260

• USB 3.0 OTG

• Reprogrammable I/O via Altera® Max® 10 FPGA

• 8MP RGB camera (front-facing) – one of the 3 camera modules included with the
Aero Vision Accessory Kit

• VGA camera, global shutter, monochrome (down-facing)

• Insyde Software InsydeH2O* UEFI BIOS optimized for the Intel® Aero Platform
for UAVs.

A.2 Intel® RealSense™ camera (R200)
• 0.5m - 3.5m Operating Range

• 640 x 480 Resolution @ 30fps

• 2 Infrared Cameras

• Active Depth Sense through Stereo

97

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. INTEL® AERO READY TO FLY SPECIFICATIONS 98

A.3 Intel® Aero Flight Controller:
• STM32 F427V microcontroller

• Temperature compensated: 6 DoF IMU, magnetometer, and altitude sensors

• Connected to the Aero Compute board over HSUART and communicates using
MAVLink* protocol

A.4 Pre-assembled quadcopter:
• Carbon fiber air-frame

• GPS and compass

• Power distribution board

• 4 Yuneec Tyhpoon H electronic speed controllers

• 4 Yuneec Tyhpoon H motors

• Yuneec Tyhpoon H snap-on propellers

• Spektrum DSMX Serial Receiver

• Spektrum DXe Transmitter (2.4GHz DSMX)

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Controller Gains

B.1 PX4 vs. Custom

Controllers Symbol Custom Gains PX4 Gains
Roll Rate P KPp 0.1300 0.1300
Roll Rate I KIp 0.0700 0.0700
Roll Rate D KDp 0.0012 0.0012
Pitch Rate P KPq 0.1300 0.1300
Pitch Rate I KIq 0.0700 0.0700
Pitch Rate D KDq 0.0012 0.0012
Yaw Rate P KPr 0.1200 0.11999999973
Yaw Rate I KIr 0.0500 0.05000000745
Yaw Rate D KDr 0.0000 0.0000
Roll P KPφ 4.0000 8.0000
Pitch P KPθ 3.0000 8.0000
Yaw P KPψ 1.0000 4.0000
North Velocity P KPu 0.0800 0.1500
North Velocity I KIu 0.0100 0.0200
North Velocity D KDu 0.0050 0.0100
East Velocity P KPv 0.0800 0.1500
East Velocity I KIv 0.0100 0.0200
East Velocity D KDv 0.0050 0.0100
Down Velocity P KPw 0.8000 0.8000
Down Velocity I KIw 0.0150 0.0150
Down Velocity D KDw 0.0000 0.0000
North Position P KPn 0.5000 1.5000
East Position P KPe 0.5000 1.5000
Down Position P KPd 1.0000 1.0000

Table B.1: Controller Gains

99

Stellenbosch University https://scholar.sun.ac.za

	Abstract
	Uittreksel
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Research Goal
	1.3 Objectives
	1.4 Methodology
	1.5 Thesis Outline

	2 Literature Review
	2.1 Basic Multi-rotor Dynamics
	2.2 Sensors
	2.3 Localisation
	2.3.1 SLAM
	2.3.2 Indirect Visual Odometery

	2.4 Visual Control
	2.5 Flight Control Software packages
	2.5.1 ESL's In-house Flight Control Software
	2.5.2 ArduPilot
	2.5.3 PX4

	2.6 Simulation Environments
	2.7 Vision-Based Pose Estimation Software
	2.8 Summary

	3 System Overview
	3.1 Hardware
	3.2 Software Tool Chain
	3.2.1 PX4
	3.2.2 ROS
	3.2.3 Gazebo

	3.3 SITL Simulation
	3.4 HITL setup
	3.5 Flight test
	3.6 Summary

	4 Aircraft Dynamics
	4.1 Axes Systems
	4.1.1 PX4 Earth Axes
	4.1.2 PX4 Body Axes
	4.1.3 Gazebo Earth Axes
	4.1.4 Gazebo Body Axes
	4.1.5 Camera Earth Axes
	4.1.6 Camera Body Axes

	4.2 Notation
	4.3 Aircraft Dynamics Overview
	4.4 Six-Degrees-of-Freedom Equations of Motion
	4.4.1 Kinetics
	4.4.2 Kinematics

	4.5 Forces and Moments
	4.5.1 Actuators
	4.5.2 Aerodynamics
	4.5.3 Gravity

	4.6 Linearisation
	4.6.1 Linearising about Trim

	4.7 Vehicle Parameters
	4.7.1 Mass Moment of Inertia Experiment

	4.8 Summary

	5 Control System Analysis and Design
	5.1 Overview of PX4 Architecture
	5.2 Controller Design Overview
	5.2.1 Angular Rate Controller
	5.2.2 Roll Rate Gain Design
	5.2.3 Attitude Controllers
	5.2.4 Roll Angle Gain Design
	5.2.5 Velocity Controller
	5.2.6 East Velocity Gain Design
	5.2.7 Position Controller
	5.2.8 East Position Gain Design

	5.3 Practical Controller Verification
	5.4 Summary and Conclusions

	6 Visual-Based Pose Estimation
	6.1 Camera Model
	6.2 Camera Calibration
	6.3 Distortion
	6.4 Pose Estimation
	6.5 ArUco Overview
	6.5.1 Markers
	6.5.2 Marker Detection
	6.5.3 Pose Estimation

	6.6 Experimental Results
	6.6.1 Position
	6.6.2 Attitude
	6.6.3 Final Values

	6.7 Summary

	7 State Estimator
	7.1 Overview of PX4 State Estimator
	7.2 Extended Kalman Filter (EKF)
	7.2.1 State Prediction
	7.2.2 Covariance Prediction
	7.2.3 Sensor Fusion

	7.3 Output Prediction
	7.4 Vision-Based State Estimator
	7.5 Estimator Test
	7.6 Summary

	8 Results
	8.1 Control Loop and Estimator Test
	8.2 Vision-based
	8.3 Summary

	9 Conclusions and Recommendations
	9.1 Summary of Work Done
	9.2 Off-the-shelf Hardware and Open-source Software
	9.3 Flight Control System
	9.4 Vision-based Localisation
	9.5 Flight Test
	9.6 Recommendations/Future Work

	List of References
	A Intel® Aero Ready To Fly Specifications
	A.1 Intel® Aero Compute Board:
	A.2 Intel® RealSense™ camera (R200)
	A.3 Intel® Aero Flight Controller:
	A.4 Pre-assembled quadcopter:

	B Controller Gains
	B.1 PX4 vs. Custom

