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ABSTRACT 

 

The tick genus Hyalomma is spread throughout the old world and species in this 

genus are vectors of a number of harmful pathogens. This makes them of key 

veterinary and medical importance, yet their systematics, and the factors giving rise 

to their diversity, remain largely unknown. As different species, and even different 

lineages, can vary in vector potential and level of acaricide resistance, it is thus of 

particular importance to resolve the systematics of the genus. To resolve the 

systematics of the genus and to obtain better insights into the mechanisms that play 

a role in tick evolution, the present study used both a phylogeographic and 

phylogenetic approach. The aims of the study were: 1) to provide a phylogeographic 

perspective for H. truncatum using the mtDNA COI and nDNA H3 and CRT gene 

regions, and 2) to create a comprehensive phylogeny for all the described extant 

Hyalomma species by using morphological and molecular data, derived from multiple 

nuclear and mitochondrial genetic markers (COI, 16S, 28S, ITS II and H3). By 

making use of phylogeographic networks, AMOVA analyses and Bayesian analyses, 

186 H. truncatum specimens could be divided into two lineages across Africa (with a 

northern and southern clade). Historical demographic population analyses suggest 

that the two clades have different evolutionary histories, and support the notion that 

they have been isolated for a prolonged period time. On a regional scale, the 

northern clade showed higher levels of substructure with five COI phylogroups over 

the sampled region. The geographical positioning of these phylogroups aligns with 

those seen in multiple species of ungulates, primates and rodents, and it is argued 

that they have formed as a result of glacial cycles that caused shifts in the 

distribution of host species. The southern clade lacked substructure (probably due to 

the lack of geographic barriers to gene flow in the region). A COI sequence distance 

of 9.88% (SD ± 0.40%) and significant population differentiation at nuclear DNA level 

suggest that the two continental lineages probably represent separate species. To 

gain further insights into the status of H. albiparmatum and H. nitidum, and the 

species status of the two H. truncatum clades, a higher level systematic study was 

conducted on 82 specimens inclusive of all recognised Hyalomma species. Three 

nDNA markers (ITS II, 28S and H3), two mtDNA markers (COI and 16S) and 47 

morphological characters were used to resolve relationships among Hyalomma 
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species. Parsimony and Bayesian analyses were performed and a dated phylogeny 

was also constructed using available fossil data. The data suggests that the first 

diversification within Hyalomma began around 36.25 Mya (95% HPD 34.75-39.80 

Mya) and thereafter later divergences gave rise to five groups. Since Hyalomma 

have limited dispersal capabilities off the host, it is likely that mechanisms 

responsible for speciation events are more than likely coupled to vicariance events 

separating multiple hosts. Certainly several faunal exchanges between 

zoogeographic regions such as those associated with the African-Eurasian land 

bridge across the Arabian plate 16-20 Mya can be correlated to speciation in 

Hyalomma. Furthermore sea-level oscillations of the Mediterranean Sea degradation 

of the Paratethys Sea, and the development of the Himalayan mountainous belt and 

the East African Rift Valley have been proposed as mechanisms driving speciation in 

a number of host such as ungulates and rodents. Although these events likely played 

a role in early Hyalomma evolution, substantiating the mechanisms involved in the 

recent divergences of many extant Hyalomma species remains difficult. The latter is 

mainly due to the availability of limited knowledge on the exact ranges and host 

associations of several taxa. Nevertheless, the results documented in this thesis 

propose a number of changes to the current taxonomy of the genus: 1) Ticks 

recognized as H. truncatum comprised of two distinct species. Following 

conventional zoological nomenclature, we propose the southern clade of H. 

truncatum to likely represent a novel species (H. species nova). 2) Hyalomma 

marginatum and H. turanicum should be regarded as synonyms. 3) Hyalomma 

nitidum should be synonymized with the H. truncatum clade found in north Africa, 

while H. albiparmatum should remain a distinct species entity. 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



4 

 

OPSOMMING 

 

Die bosluis genus Hyalomma se verspreiding strek oor die hele Ou Wêreld en 

spesies in die genus is draers van 'n aantal skadelike patogene. Dus is hulle van 

veeartsenykundige en mediese belang, maar hul sistematiek asook die faktore wat 

aanleiding gee tot hul diversiteit bly grootliks onbekend. Aangesien verskillende 

spesies, en selfs verskillende genetiese groepe binne spesies, verskillende vlakke 

van akarisidiese weerstand en patogeen potensiaal kan hê, is dit van besondere 

belang om die sistematiek van die genus te bepaal. Ten einde die sistematiek van 

die genus te bepaal en beter insig tot die maganismes betrokke by bosluis evolusie 

te bekom, het die huidige studie beide ‘n filogeografiese en filogenetiese benadering 

gevolg. Die doelwitte van die studie was as volg: 1) om ‘n filogoegrafiese perspektief 

vir H. truncatum te verskaf deur gebruik te maak van die mitokondriale (mtDNA) COI 

en nukluêre (nDNA) H3 en CRT geen merkers, en 2) om ‘n omvattende filogenie vir 

alle beskryfde ekstante Hyalomma spesies daar te stel deur beide morfologiese en 

molekulêre data, afkomstig van verskeie nukluêre en mitokondriale genetiese 

merkers (COI, 16S, 28S, ITS II en H3), te gebruik. Filogoegrafiese netwerke, 

AMOVA ontledings, en die bou van 'n Bayesiaanse topologie, het aangedui dat 186 

H. truncatum monsters, onderverdeel kan word in twee genetiese groepe binne 

Afrika (met ‘n noordelike en suidelike klade). Historiese demografiese bevolkings-

resultate dui daarop dat die twee groepe se evolusionêre geskiedenis van mekaar 

verskil, wat moontlik ondersteunig verleen aan die idee dat hulle vir 'n lang tyd reeds 

van mekaar geïsoleer is. Op die streek vlak is ‘n hoër graad van substruktuur, met 

onderverdeling tot vyf filo-groepe regoor die studie gebied, binne die noordelike 

klade gevind. Die geografiese plasing van hierdie filogroepe stem ooreen met dié 

wat reeds in verskeie ander spesies van hoefdiere, primate en knaagdiere beskryf is. 

Dit word aangevoer dat hierdie patrone weens gletser siklusse, wat verskuiwings van 

gasheer spesies se verspreidings versoorsaak het, tot stand gebring is. Daarteen het 

die suidelike klade geen substruktuur getoon nie (waarskynlik as gevolg van die 

gebrek aan geografiese hindernisse tot geenvloei binne die verspreiding). ‘n COI 

volgorde afstand van 9,88% (SD% ± 0,40) gekoppel met beduidende populasie 

differensiasie op die nukluêre DNS vlak, stel voor dat die twee kontinentale 
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genetiese groepe heel moontlik as twee aparte spesies beskou kan word. Om verder 

insigte rondom die status van H. albiparmatum en H. nitidum, asook die spesie 

status van die twee genetiese groepe binne H. truncatum, te bekom, is 'n hoër-vlak 

sistematieke studie met 82 monsters van alle erkende Hyalomma spesies 

onderneem. Drie nDNA merkers (ITS II, 28S en H3), twee mtDNA merkers (COI en 

16S) en 47 morfologiese karakters is gebruik om verwantskappe tussen Hyalomma 

spesies op te los. Parsimoniese en Bayesiaanse ontledings is uitgevoer en 'n 

gedateerde filogenie, wat gebruik maak van beskikbare fossiel data, is ook gebou. 

Die data dui daarop dat die eerste diversifikasie binne Hyalomma rondom 36.25 Mjg 

(miljoen jaar gelede) begin het (95% HPD 34.75-39.80 Mjg) en daarna met gereelde 

tussenposes plaasgevind het, en sodoende gelei het tot die ontstaan van vyf groepe. 

Aangesien Hyalomma se verspreidings-vermoë af van die gasheer beperk is, is dit 

waarskynlik dat meganismes verantwoordelik vir spesiasie gekoppel was aan 

vikariansie gebeurtenisse binne ‘n verskeindenheid van gashere. Verskeie fauna-

uitwisselings tussen zoo-grafieses streke, soos dié wat verband hou met die Afrika-

Eurasiese landbrug oor die Arabiese plaat 16-20 Mjg, korreleer met spesiasie binne 

Hyalomma. Verder is die ossillasie van watervlakke in Parathetys see asook die 

ontwikkeling van die Himalaja-gordel en Oos-Afrika Rift Vallei voorgestel as 

meganismes wat spesiasie binne verskeie gashere, soos hoefdiere en knaagdiere, 

gedryf het. Alhoewel hierdie gebeurtenisse waarskynlik ‘n rol gespeel het by vroeë 

Hyalloma evolusie, is dit steeds moeilik om die meganismes betrokke by die 

onlangse divergensies van verskeie Hyalomma spesies te staaf, weens beperkte 

kennis rondom die presiese omvang van verspreidings en gasheer assosiasies van 

verskeie taksa. Ongeag hiervan, dui die resultate van hierdie tesis op 'n aantal 

voorgestelde veranderinge aan die huidige taksonomie van die genus: 1) Die tans 

erkende H. truncatum bestaan uit twee afsonderlike spesies. Op grond van 

konvensionele dierkundige nomenklatuur stel ons voor dat die suidelike klade van H. 

truncatum waarskynlik 'n nuwe spesie is (H. spesies nova). 2) Hyalomma 

marginatum en H. turanicum moet beskou word as sinonieme. 3) Hyalomma nitidum 

moet verklaar word as ‘n sinoniem tot die H. truncatum klade wat binne noord-Afrika 

voorkom, terwyl H. albiparmatum 'n afsonderlike spesie entiteit behoort te bly. 
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1. Life Histories of Ticks 

 

The origin of ticks as haematophagus ectoparasites dates back to more than 65 Mya 

(de la Fuente 2003; Mans and Neitz 2003), and as such they have had ample time to 

specialize and adapt to their hosts and the changing environments. It is therefore not 

surprising that the life history of extant parasitic ticks is diverse. In particular, species 

differ in the extent of host association (i.e. time spent on the host), host range, and 

mode of transmission (Walker and Bouattour 2003).  

 

Ticks (Acari) fall into three families and can act as vectors of a number of pathogens. 

Their ability to transmit diseases makes them of key importance (Nieberding and 

Olivieri 2007). At present it is widely believed that there are around 900 species of 

ticks globally which are represented by 19 genera. Of these, Ixodidae, or hard ticks, 

represent 14 genera which include around 700 of the total species. Following the 

egg-stage, hard ticks have three distinct life stages: larva, nymph and adult. 

However, in general genera differ in the number of hosts that are required to 

complete their life cycles and also the number of life stages that are free-living in the 

external environment. At the congeneric level, differences are mainly confined to the 

number of host species that are used (Walker and Bouattour 2003). Ixodid ticks can 

therefore be grouped into one-, two- or three-host ticks, of which the latter two types 

are more commonly found. One-host life cycle ticks are associated with a single host 

for their entire life and do not re-enter the open environment after attaching at the 

larval stage (except to lay eggs in the environment at the end of their adult lives; 

Walker and Bouattour 2003). Two-host life cycle ticks follow a similar process, 

however, they drop off the primary host when moulting from nymphs into adults and 

seek new hosts when the process is complete (Walker and Bouattour 2003). 

Generally this allows individuals to switch hosts. For instance, larval and nymphal 

stages associate commonly with smaller hosts, while adults generally seek larger 

hosts. The three-host life cycle follows much the same trend as the two-host life 

cycle, except of an extra period of detachment and entry into the external 

environment between the larval and nymphal stages (Walker and Bouattour 2003). 

 

Given the variation in time spent on the host, and the number and type of hosts that 

are used, it is to be expected that the life cycle and specifically the life history of hard 
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ticks play an important role in their evolutionary history. In addition, external 

environmental conditions commonly influence the survival of free-living stages, which 

in turn may add complexity to evolutionary predictions. Indeed, studies investigating 

the genetic structure of ticks have revealed contrasting results ranging from a 

complete lack of genetic structure to strong genetic structure (see McCoy, Boulinier, 

and Tirard 2005; Kempf et al. 2009; Noureddine, Chauvin, and Plantard 2011; Cangi 

et al. 2013). A few cases as examples include Cangi et al. (2013), who suggested a 

genetic break in southern Africa for Hyalomma rufipes, and they attributed this to 

juvenile survival in the environment and competition with other ticks (probably 

Hyalomma truncatum). Additionally Noureddine, Chauvin, and Plantard (2011) 

argued that the significant genetic disparity observed between Palearctic populations 

of Ixodes ricinus (which has a three-host life cycle and associates with a large 

diversity of hosts including mammals, birds and reptiles) in Europe and North Africa 

was likely a result of different life history traits such as seasonal activity, pathogenic 

potential and varying host associations causing isolation. However the effect of 

spacial scale on genetic patterns should also not be ignored. Biogeography and past 

paleoclimatic events have driven speciation in a number of fauna and these have 

also been used to describe evolutionary patterns in a number of tick species (Qiu et 

al. 2002; Kemp et al. 2009; Beati et al. 2012; Beati et al. 2013). For instance, Ixodes 

ricinus populations within Europe show a lack of genetic structure. This is possibly 

due to a high level of connectedness between populations as a result of passive 

dispersal (dispersal of the parasite via its host without any need to actively move 

from one location to the next), and a recent population expansion (Noureddine, 

Chauvin, and Plantard 2011). Furthermore, Kemp et al. (2009) studied Ixodes uriae 

and has shown substantial population structure between different islands due to 

associations with specific sea bird colonies (not specific seabird species). 

 

 

2. Phylogenetics & Phylogeography 

 

Phylogenetics aims to describe the evolutionary relationship among organisms 

(Nixon and Wheeler 1990). It can look at the higher level evolutionary relationships 

of distinct clades and species, and on a finer scale, can be used to describe the 

historical processes involved in the geographical distribution of individuals (Avise 
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and Wollenberg 1997; Avise 2000). The outcome of the latter research 

(phylogeography), documents the geographic distribution of genetic variation and is 

much needed to describe the processes involved in shaping the evolutionary history 

of species (Avise and Wollenberg 1997; Avise 2000). In most instances, 

phylogeography often only incorporates intra-species structure, while phylogenetics 

usually includes an inter-species approach focussing on higher taxonomic rankings 

(Hickerson et al. 2010).  

 

2.1 The use of morphological data in phylogenetics 

Morphological data in phylogenetics incorporate unique physical characteristics of 

phenotypes of one taxon and compares them to those of another. This can help to 

elucidate evolutionary divergence at the phenotypic level (Patterson 1982). Many 

studies have investigated the utility of morphological data in phylogenies especially 

since the emergence of more advanced molecular techniques (Hillis 1987; Patterson 

1988; Scotland, Olmstead, and Bennett 2003). Through these, a number of broad 

scale advantages and disadvantages between the two data sets have been noted. 

Advantages of morphological data include: 1) The divergence time of lineages can 

be determined using fossil records, especially given the difficulties in using ancient 

DNA, and this may provide a more accurate ancestral evolutionary history of 

lineages; 2) quantifying ancestral states using morphological data allows us to 

speculate about the ecology of extinct taxa more accurately; 3) morphological data 

are not prone to problems associated with contamination (Hillis 1987; Smith 1994). 

On the other hand, there are also a number of disadvantages when morphological 

characters are considered: 1) It often expresses convergent evolution and thus 

homoplasy is rarely quantified (Hillis 1987; Scotland and Pennington 2000; Scotland, 

Olmstead, and Bennett 2003); 2) patterns of inheritance are not always clear and the 

lack of fossil data makes it difficult to elucidate ancestral states (Hillis 1987; 

Scotland, Olmstead, and Bennett 2003); 3) there are far less characters to compare 

than in molecular studies; 4) human bias and interpretation can be a primary concern 

since characters are often continiuous and the results could become subjective to 

the researcher’s perception (Smith 1994; Scotland and Pennington 2000; Scotland, 

Olmstead, and Bennett 2003); 5) different methods of character coding contain 

varying problems (see Archie 1985; Pimentcl and Riggins 1987; Bryant 1989; Nelson 

1994; Pleijel 1995; Brower and Schawaroch 1996; Hawkins, Hughes, and Scotland 
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1997; Scotland and Pennington 2000). It is nowadays widely accepted, that if 

correctly treated, a combination of morphological and molecular data would include 

more informative data points, and thus should increase phylogenetic resolution (Hillis 

1987; Wiens 2004; Lopardo, Giribet, and Hormiga 2011; Del Rosario Castaňeda and 

De Queiroz 2013). 

 

2.2 The use of DNA sequence data in phylogenetics 

Due to heritability, detecting changes in DNA sequences remains arguably a more 

accurate way of determining the evolutionary relatedness of individuals (Cavalli-

Sforza 1998). DNA sequences, through shared genetic similarities, cannot only 

provide us with a better understanding of evolutionary history but can also inform us 

of current population structure. In addition, intra- and inter-specific divergences 

among lineages can form an important component towards an accurate taxonomy. 

Intraspecifically, DNA sequence data can provide us with an idea of which 

populations are interacting and which are more isolated (Cavalli-Sforza 1998). 

However DNA is also not without error. For example, good knowledge of the 

mutation rate of DNA is needed since many parts of the genome of species are 

either mutating too fast or too slow to detect appropriate levels of divergence 

(Slowinski and Page 1999; Zhang and Hewitt 2003; Hurst and Jiggins 2005; Degnan 

and Rosenberg 2009). There may also be conflicts among gene trees, due to 

independent lineage sorting (Degnan and Rosenberg 2009; Kutschera et al. 2014; 

Szöllősi et al. 2015). 

 

The mitochondrial genome provides a useful evolutionary marker in most animals 

and it is generally strictly inherited through female lineages. The cytochrome c 

oxidase sub-unit I region (COI) of the mitochondrial genome has frequently been 

used in bar-coding and phylogeographic studies (see Ruvolo et al. 1994; Yokobori et 

al. 1994; Hebert, Ratnasingham, and deWaard 2003; Mousson et al. 2005; Lopes 

and de Freitas 2012) and ticks are no exception (see Murrell, Campbell, and Barker 

2000; Cruickshank 2002; Noureddine, Chauvin, and Plantard 2011; Cangi et al. 

2013; Zhang and Zhang 2014). The COI region is generally conserved among 

conspecifics, yet at the same time the mutation rate is fast enough to document 

intraspecific divergences (Cruickshank 2002; Hebert, Ratnasingham, and deWaard 

2003; Zhang and Zhang 2014). Additional ribosomal DNA (rDNA) mitochondrial 
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genes also prove useful segments to analyse (Hillis and Dixon 1991; Mueller 2006). 

For ticks, the 16S rRNA region has been shown to be informative at establishing 

evolutionary relationships among species (see Black and Piesman 1994; 

Cruickshank 2002). Mitochondrial markers however are also not without limitations. 

Their biggest advantages can also be their biggest limitation. For instance, they do 

not account for the exchange of nuclear DNA and are therefore biased towards only 

the maternal evolutionary history (Zhang and Hewitt 1996). In addition their fast pace 

of evolution can lead to a loss of phylogenetic signal through homoplasy, particularly 

when distant evolutionary events are studied. Finally, since all genes on the mtDNA 

are linked, only a single frame of evolution (one gene tree) is being investigated 

(Zhang and Hewitt 2003).  

 

Nuclear DNA markers avoid many of the problems associated with mitochondrial 

DNA (mtDNA), but are not without limitations themselves. Nuclear DNA (nDNA) is 

most often less homoplasic in relation to mtDNA (Zhang and Hewitt 2003). This is 

due to primarily slower rates of evolution of nDNA genes, which in turn can reduce 

their informative potential for distinguishing recent divergence events (Zhang and 

Hewitt 2003). Furthermore, recombined nuclear genes are known to be difficult to 

sequence as a result of the montage forms they may take on (Zhang and Hewitt 

2003). Although SNP’s and certain introns can circumnavigate some of these 

problems, the availability of primers to amplify variable regions, especially among 

ticks, remains sparse (Cruickshank 2002). 

 

A combination of mtDNA and nDNA markers is advantageous to overcome some of 

the problems highlighted above (Zhang and Hewitt 1996; Rubinoff and Holland 2005; 

de Queiroz and Gatesy 2007). Nuclear rDNA markers, like 28S proves to be useful 

in substantiating mtDNA gene trees (Cruickshank 2002). Like the COI and 16S, 28S 

has suitable mutation rates for interspecific investigations and thus have been widely 

used in phylogenetic studies of invertebrates (see Hillis and Dixon 1991; Crampton, 

McKay, and Barker 1996; Klompen et al. 1996; Whiting et al. 1997; Cruickshank and 

Thomas 1999; Giribet et al. 1999; Mallatt, Garey, and Shultz 2004). Additionally 

other nDNA regions such as the Calreticulin gene region (CRT), Histone 3 (H3) and 

Internal Transcribed Spacer region 2 (ITS II) have also been shown to be variable 

enough to show adequate resolution (see Wesson et al. 1993; Kuraku et al. 1999; 
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Marko 2002; Svenson and Whiting 2004; Xu et al. 2004; Xu et al. 2005; Buhay et al. 

2007; Yeo et al. 2007; Colgan, Hutchings, and Beacham 2008; Schultz and Wolf 

2009; Agnarsson 2010; Goto et al. 2012; Assunção et al. 2013; Cangi et al. 2013; 

Wielstra, Baird, and Arntzen 2013). 

 

 

3. Old World Biogeography & Paleoecology 

 

Throughout the Old World (Africa, Asia and Europe), a number of major geographic 

structures and climatic variables (past and present) have facilitated genetic breaks, 

habitat shifts and speciation events in a broad range of terrestrial fauna. 

 

3.1 African biogeography 

In Africa historical geological and climatic factors have been implicated in causing 

genetic discontinuity of many species that can act as hosts for ticks. For example, 

Moodley and Bruford (2007) studied the highly mobile bushbuck antelope, 

Tragelaphus scriptus, and proposed 26 key biogeographical regions within sub-

Saharan Africa. Colangelo et al. (2013) investigated the phylogeography of the 

rodent, Mastomys natalensis, over most of sub-Saharan Africa and described the 

existence of 6 distinct phylogroups. From these studies and others (see Freitag and 

Robinson 1993; Grubb et al. 1999; Lehmann et al. 1999; Barnett et al. 2006; Nicolas 

et al. 2008; Brouat et al. 2009; Evans et al. 2011; Lorenzen, Heller, and Siegismund 

2012), the East African Rift Valley system is often implicated as a vicariant barrier 

causing speciation. The Rift Valley runs from as far north as Ethiopia to as far south 

as Malawi (Roberts et al. 2012). Although rifting dates back to at least 25-30 million 

years ago (Mya), major uplift of the rift also occurred between 13.5-15 Mya, 3-5 Mya, 

and it reached its present day extent approximately 1.6-2 Mya (Denys, Chorowicz, 

and Tiercelin 1986; Leakey and Harris 1987; Wichura et al 2010; Roberts et al. 

2012). Colangelo et al. (2013) also proposed that large historical lakes that formed 

as part of rifting (Trauth et al. 2005; Trauth et al. 2007; Salzburger, Van Bocxlaer, 

and Cohen 2014), could be implicated as possible contributors to the formation of 2 

of the 3 phylogroups in M. natalensis. Other mountain ranges have also been 

indicated to have prevented gene flow over the continent such as the Cameroon 

Volcanic Line (see Hassanin et al. 2007; Moodley and Bruford 2007; Fjeldså and 
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Bowie 2008; Colangelo et al. 2013), the Zimbabwe Highlands (see Loader, Poynton, 

and Mariaux 2004) and the Drakensberg (see Schwab et al. 2012). Dense forests 

and wooded areas have also been suggested as possible barriers to gene flow to 

some species. The most pertinent of these has been the equatorial forests of 

Guinea-Congo, Cameroonian Highland forests, East African forests and the 

Brachystegia woodland (see Coe and Skinner 1993; Freitag and Robinson 1993; 

Lovett and Wasser 1993; Matthee and Robinson 1997; van Alphen-Stahl, Bloomer, 

and Crowe 2005; Colangelo et al. 2013). Large rivers and their systems such as the 

Congo, Sanaga, Niger, Volta, Nile, Orange and the Zambezi have also been key 

obstacles to gene flow (see Morales and Melnick 1997; Eriksson et al. 2004; Van 

Daele et al. 2004; Dobigny et al. 2005; Sole, Scholtz, and Bastos 2005; Anthony et 

al. 2007; Nicolas et al. 2008; Brouat et al. 2009).  Arid areas in Africa such as the 

Kalahari (Kalahari sand flows) and Sahara are also no exception (see Werger 1978; 

Carnahan et al. 2002; Matthee and Flemming 2002; Hassain et al. 2007).  

 

3.2 Asian biogeography 

In Asia, similar to Africa, a number of geographic and climatic variables have been 

proposed to restrict ranges and dispersal of numerous species. The most obvious of 

these are the mountain ranges: The extreme altitudes of the Himalayas, the Kunlun 

and Tien Shan, the Tanggula Mountains, the Altai Mountains, Anatoli, Caucasus and 

Zagros belts, the Kopet-Dagh Mountains, and the Ural Mountains have all been 

suggested to restrict gene flow (see Kurup 1974; Sanmartín 2003; Dennell 2004; 

Guo and Wang 2007; Melville et al. 2009). Interestingly most of the uplift around 

central Asia occurred in three main steps around 20 Mya, 8 Mya and 3.6 Mya 

(Harrison et al. 1992; Harrison et al. 1995; Cui et al. 1996; Li et al. 1996; Voelker 

1999). Large water bodies and rivers such as the Caspian Sea, Amu Darya River, 

Red Sea and those around the Isthmus of Suez, Black Sea, the Yenisei River and 

Persian Gulf have been proposed to restrict the movement of terrestrial animals from 

crossing from Asia into and out of Africa and Europe, while also restricting 

movement within Asia (see Dumont 1998; Sanmartín 2003; Melville et al. 2009; 

Graham, Oláh-Hemmings, and Fet 2012).  The Arabian, Syrian and Thar deserts 

have all been linked to the restriction of movement of animals (see Kurup 1974; 

Sanmartín 2003). In addition, certain areas of isolation such as the Tarim Basin, 

Tibetan Plateau, Junggar Basin, Alashan Plateau have all been suggested as areas 
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of high endemism (see Guo and Wang 2007; Melville et al. 2009). In south-east Asia 

the Brahmaputra and Salween rivers and the mountain ranges in Myanmar (Burma), 

have been implicated in preventing dispersal between the Indian and south-east 

Asian regions (see Takacs et al. 2005; Su et al. 2007; Veron et al. 2007; Patou et al. 

2010). Finally the Isthmus of Kra, near the Thai–Malaysian border, represents a limit 

between the Indo-Chinese and Sundaic subregions (see Corbet and Hill 1992; 

Hughes, Round, and Woodruff 2003; Woodruff and Turner 2009; Patou et al. 2010). 

During high-sea-level periods, a restriction in the land region around the Isthmus of 

Kra caused faunal compressions north and south of the isthmus (Woodruff and 

Turner 2009). 

 

3.3 European biogeography 

While studies exploring European biogeography are dominated by the extreme 

altitudes of the Alps and temporal variation north and south of them (see Boccaletti, 

Elter, and Guazzone 1971; Taberlet et al. 1998; Bilton et al. 1998; Hewitt 1999; 

Schmitt, Gießl, and Seitz 2002; Melis et al. 2006; Heikinheimo et al. 2007), others 

have also been noted. Mountain ranges like the Carpathian and Pyrenees have been 

suggested to play dominant rolls in the population dynamics over the region (see 

Schmitt, Gießl, and Seitz 2002; Dennell 2004; Heikinheimo et al. 2007; Braaker and 

Heckel 2009). Internal water bodies such as the Adriatic Sea (see Sanmartín 2003; 

Dennell 2004; Heikinheimo et al. 2007), and external, between Europe, Africa and 

Asia (the Aegean and Bosporus, the Black and the Mediterranean seas) have all 

been shown to be major mechanisms of isolation for terrestrial species (see 

Sanmartín 2003; Dennell 2004). 

 

3.4 Old World paleoclimates and habitat shifts 

Above geology and current habitat constraints, paleoclimates and habitat shifts 

associated with glacial cycles have been noted as major contributors to speciation 

events and current phylogeographic patterning of species (see Taberlet et al. 1998; 

Hewitt 2004; Dubey et al. 2006; Weiss and Ferrand 2007; Zhang et al. 2008; 

Lorenzen, Heller, and Siegismund 2012). Among these, glacial cycles from the 

Miocene right through to the Pleistocene played a role (see Kukla and Cílek 1996; 

Reed 1997; Potts 1998; Taberlet et al. 1998; Hewitt 1999; Nichol 1999; Dynesius 

and Jansson 2000; Hewitt 2000; Zachos et al. 2001; Mercer and Roth 2003; 
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deMenocal 2004; Hewitt 2004; Chase and Meadows 2007; Potts 2007; Weiss and 

Ferrand 2007; Zhang et al. 2008; Lorenzen et al. 2010). These have caused 

favourable habitats to shift, and the development of grasslands was observed from 

the end of Eocene, 40 Mya (Retallack 2001). Although grasslands had an early 

origin, their expanse and shift towards becoming a dominant biome in the Old World 

seems to be closer tied to climatic events post the mid-Miocene (see Cerling 1992; 

Cerling et al. 1997; Retallack 2001; Mercer and Roth 2003; deMenocal 2004; 

Dennell 2004; Jacobs 2004). 

 

 

4. The Study Taxon 

 

4.1 Hyalomma 

The genus Hyalomma (Koch 1844) refers to a group of ticks with defining 

characteristics such as scutums / conscutums that are dark reddish-brown to near 

black, protruding eyes and the appearance of striped ligaments. There are currently 

27 recognized species found throughout Asia, Europe and Africa (Guglielmone and 

Nava 2014). Most members of this genus have a three-host life cycle, but exceptions 

exist: H. dromedarii, H. schulzei, H. truncatum, H. nitidum and H. albiparmatum are 

confined to one or two hosts (see Murrell, Campbell, and Barker 2001; Apanaskevich 

and Horak 2008a; Apanaskevich and Horak 2008b; Apanaskevich, Schuster, and 

Horak 2008).  

 

Initial studies proposed Hyalomma to have an Asian origin (Balashov 1994). Murrell, 

Campbell, and Barker (2001), using a total evidence approach, proposed that the 

lineage containing Nosomma–Hyalomma likely evolved from an Oriental common 

ancestor that lived in the region around 19 Mya. They suggested that if this holds, 

dispersal occurred from this point into Africa and Eurasia around 14 Mya (Murrell, 

Campbell, and Barker 2001). Subsequent to this, de la Fuente’s (2003) described a 

Hyalomma amber fossil, dated to the Eocene (35-50 Mya) and from the Baltic region, 

suggesting that the age and origin of the genus could be substantially older and 

further west than initially thought.  
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Taxonomic uncertainties are rife within the Hyalomma genus. At the higher 

taxonomic level a number of recent changes have been proposed and include those 

by Camicas et al. (1998); Murrell, Campbell, and Barker (2001), Rees, Dioli, and 

Kirkendall (2003), Barker and Murrell (2004), Apanaskevich and Horak (2006), 

Apanaskevich and Horak (2008a), Apanaskevich and Horak (2008b), Apanaskevich, 

Schuster, and Horak (2008), Apanaskevich, Filippova, and Horak (2010), 

Guglielmone and Nava (2014), and Zhang and Zhang (2014). Most of these were 

however based on morphological differentiation which is often very difficult to 

interpret (see Camicas et al. 1998; Murrell, Campbell, and Barker 2001; 

Apanaskevich and Horak 2008a; Apanaskevich and Horak 2008b; Apanaskevich, 

Schuster, and Horak 2008; Apanaskevich, Filippova, and Horak 2010; Guglielmone 

and Nava 2014). The lack of a clear phylogenetic understanding within the genus is 

also perplexed by a number of unresolved species complexes. In addition, the virtual 

absence of genetic data is best exemplified by a “GenBank” search where 

sequences of only ten members of the genus are available (www.ncbi.nlm.nih.gov/). 

Furthermore, it is believed that the number of species may be confounded due to 

initial misidentification of specimens used for sequencing (Zhang and Zhang 2014). 

There is thus a critical need to compare morphologically identified species against 

molecular data in order to provide more robust evidence. The phylogeny, in turn, can 

provide valuable taxonomic insights and can also be useful to ascertain which 

factors were more than likely responsible for generating the taxonomic diversity in 

the genus.   

 

4.2 Species complexes 

The genus Hyalomma is characterized by several species complexes. Resolving 

these are important in modern conservation and evolutionary biology (Donoghue 

1985; Bickford et al. 2007). A species complex represents a group of possible 

closely related species, where the exact recognition of status between species is 

cryptic or unresolved (Bickford et al. 2007). This stems from conflicting 

characteristics among members in relation to varying species concepts (Meier 2000; 

Bickford et al. 2007). Species complexes are taxonomically very difficult to unravel 

since members belonging to these complexes can often also hybridize, 

morphological characters can lead to misinterpretation (due to convergent evolution), 
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and the degree of geographic isolation between members are not constant 

(Donoghue 1985; Bickford et al. 2007).  

 

In Hyalomma, recent morphological studies addressed the species status of certain 

taxa by indicating possible cryptic species or complexes (see Apanaskevich and 

Horak 2006; Apanaskevich and Horak 2008a; Apanaskevich and Horak 2008b; 

Guglielmone and Nava 2014). The proposed possible hybridization ability between 

well-defined Hyalomma species implies that species complexes in the genus could 

be more difficult to resolve taxonomically than previously thought (see Rees, Dioli, 

and Kirkendall 2003; Dalal, Kumar, and Gupta 2007; Zhang and Zhang 2014). 

Hybridization has been suggested between H. truncatum / H. rufipes / H. dromedarii 

(Rees, Dioli, and Kirkendall 2003) and H. dromedarii / H. anatolicum (Dalal, Kumar, 

and Gupta 2007). Furthermore, based on a database review, H. truncatum / H. 

marginatum / H. dromedarii have also been suggested to be in a complex 

relationship (Zhang and Zhang 2014).  

 

Hybridization among H. truncatum, H. nitidum and H. albiparmatum (that form the 

focus of the present study) is not well studied, adding further difficulties in 

deciphering the validity of yet another species complex in the genus. Due to the wide 

distribution of members of the H. (Euhyalomma) truncatum complex (Koch 1844) the 

complex was regarded as valid with three species (see Feldman-Muhsam 1962; 

Apanaskevich and Horak 2008b). It was suggested that the extensive distribution 

range of the species is the reason for the wide range of morphological variability 

present in this taxon (Apanaskevich and Horak 2008b). It is thus not surprising that 

in the early 1900’s Schulze described a number of species close to H. truncatum. 

Many of these, including H. nitidum (Schulze 1919) and H. albiparmatum (Schulze 

1919) were later suggested to be synonyms of H. truncatum (see Feldman-Muhsam 

1962; Camicas et al. 1998). However Hoogstraal (1956) and Walker (1974) 

examined a large number of H. albiparmatum from Kenya and Tanzania, and 

concluded that they are not a synonym of H. truncatum, but a separate species. This 

decision, however, was based only on a single morphological character in male 

specimens (Hoogstraal 1956; Walker 1974; Apanaskevich and Horak 2008b). Male 

H. albiparmatum can only be distinguished from H. truncatum by an ivory-coloured 

parma (Apanaskevich and Horak 2008b). It is impossible to distinguish between the 
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females and immature stages of these species (Apanaskevich and Horak 2008b). 

Hoogstraal (1979) also proposed the re-instating of H. nitidum as a separate species 

and indicated that a description of this species would be published in a future 

communication. Unfortunately the formal description never materialized but the 

species name H. nitidum now appears in the literature to describe west and central 

African H. truncatum specimens. More recently Tomassone et al. (2005) published a 

paper on the discriminating characters, distribution and host-parasite records of H. 

nitidum. He suggested two criteria for distinguishing H. nitidum from H. truncatum: 

The reduction in clarity of ivory-coloured bands on the segments of the legs (both 

sexes), and the external cuticular preatrial fold of the genital operculum that differs in 

shape (females only) (Tomassone et al. 2005).  

 

The current debate persists surrounding the taxonomic uncertainty of the members 

of the H. (E.) truncatum complex. Do these members represent a single species, 

namely H. truncatum or are H. albiparmatum and H. nitidum also valid entities 

(Hoogstraal 1956; Feldman-Muhsam 1962; Walker 1974; Hoogstraal 1979; Camicas 

et al. 1998; Tomassone et al. 2005; Apanaskevich and Horak 2008b)? 

 

4.3 Hyalomma truncatum, H. nitidum and H. albiparmatum life history and 

distribution 

Hyalomma truncatum has a two-host life cycle (Apanaskevich and Horak 2008b). 

While adults can be commonly found on a large spectrum of hosts from medium 

sized mammals, reptiles and even birds, they are primarily found on larger domestic 

and wild ungulates of the orders Cetartiodactyla and Perissodactyla (see 

Apanaskevich and Horak 2008b and references therein). Juvenile ticks infest and 

parasitize small mammals such as rodents and hares, and are usually excluded from 

larger mammals and birds (see Apanaskevich and Horak 2008b and references 

therein). Hyalomma truncatum has been noted throughout Africa; this range extends 

the full breadth of the continent, while occurring from as far north as southern Egypt 

to South Africa in the south (Hoogstraal 1956; Theiler 1962; Kolonin 1982; 

Apanaskevich and Horak 2008b) (Fig 1.1). The species has been noted as a vector 

of viruses (e.g. Crimean-Congo haemorrhagic fever), protozoa (e.g. Equine 

piroplasmosis) and toxins causing harmful effects to their hosts (e.g. sweating 
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sickness) (see Bezuidenhout and Malherbe 1981; Hoogstraal, Wassef, and Buttiker 

1981; De Waal 1990; De Waal 1992). 

 

Hyalomma albiparmatum also maintain a two-host life cycle (Apanaskevich and 

Horak 2008b). Adults have been found on a range of medium-large domestic and 

wild mammalian fauna, while their presence on birds should be neglected (see 

Apanaskevich and Horak 2008b). Juveniles have only been noted on Lepus 

capensis (Cape Hare) although they likely could also be found on a variety of similar 

sized mammalian fauna (Hoogstraal 1956; Walker 1974; Apanaskevich and Horak 

2008b). The species is confined to east Africa where valid records of the species 

have been recorded in Kenya and Tanzania (Yeoman et al. 1967; Walker 1974; 

Apanaskevich and Horak 2008b) (Fig 1.1). Disease relationships are much the same 

as for H. truncatum, however they have also been recorded as vectors of Rickettsia 

conorii, which are known to cause Kenya Tick Typhus (also known as Tick Bite 

Fever in humans) (see Heisch et al. 1962).  

 

Hyalomma nitidum, as with H. albiparmatum and H. truncatum, also maintains a two-

host life cycle, with much the same adult and juvenile hosts as the other two species 

(see Apanaskevich and Horak 2008b). They can be found in the humid regions of 

west and central Africa from Senegal in the north-west to the Central African 

Republic in the south-east (Tomassone et al. 2005; Apanaskevich and Horak 2008b) 

(Fig 1.1). Our knowledge of disease relationships with H. nitidum is very limited. To 

date, only Crimean-Congo haemorrhagic fever has been associated with this species 

(Sureau et al. 1976; Tomassone et al. 2005; Apanaskevich and Horak 2008b). 
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5. Scope & Aims of The Study  

 

5.1 Scope of the study 

The overall aim of the MSc study was to investigate systematic questions relating to 

the medically important tick genus, Hyalomma. The detection of phylogeographic 

pattern/s of the widely distributed H. truncatum should increase our understanding of 

genetic barriers to gene flow at the continental scale and the data could furthermore 

provide insights into the mechanisms involved in the evolution of ticks (Apanaskevich 

2004; Apanaskevich and Horak 2008b). In addition, understanding the mechanisms 

responsible for the dispersal of ticks across the landscape can aid in predicting the 

Figure 1.1: The approximate distribution of Hyalomma albiparmatum, Hyalomma nitidum 
and Hyalomma truncatum throughout Africa. 
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spread of diseases. For example, the vector potential of Hyalomma ticks may vary 

between different genetic lineages, species, or assemblages (see Hoogstraal and 

Aeschlimann 1982; Swanepoel and Burt 2004; Shyma et al. 2012; Gou et al. 2013). 

In addition, it has been documented that distinct genetic lineages can show different 

levels of acaricide resistance (Criscione, Poulin, and Blouin 2005), which in turn may 

directly impact on the health of local livestock and even humans (Hornok and 

Horváth 2012; Bente et al. 2013; Nyangiwe et al. 2013). Finally, the study aims to 

provide a molecular perspective on the complex relationship of H. truncatum, 

particularly to H. nitidum and H. albiparmatum (Apanaskevich and Horak 2008b). 

Given the importance to decipher species complexes, further emphasis was placed 

on molecularly quantifying conflicting taxonomic descriptions based on morphology 

alone. Murrell, Campbell, and Barker (2001) already highlighted the need for such a 

revision. To assist in this goal a higher-level phylogeny of Hyalomma was also 

constructed. Intensive global sampling was performed with the objective to obtain all 

recognised Hyalomma species from as many locations as possible. Deciphering the 

evolutionary relationships among species within Hyalomma will provide significant 

taxonomic advances in this field. 

 

5.2 Aims 

The aims of the present study were: 

 

1. To provide a phylogeographic perspective for H. truncatum using the mtDNA 

COI and, nDNA H3 and CRT gene regions.  

 

2. To create a comprehensive phylogeny for all the described extant Hyalomma 

species by using morphological data and molecular data, derived from 

multiple nuclear and mitochondrial genetic markers (COI, 16S, 28S, ITS II and 

H3).  
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CHAPTER 2 

 

THE CONTINENTAL PHYLOGEOGRAPHY OF HYALOMMA 

TRUNCATUM (Ixodida: Ixodidae: Hylomminae) 
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1. Introduction 

 

Hyalomma truncatum (Koch 1844) is suggested to be one of the most widely 

distributed ixodid ticks within the Afrotropical zoogeographic region. It is present from 

southern Egypt in the north to South Africa in the south, and its range spans the full 

breadth of the continent from Senegal to Somalia (Fig 1.1). They are only absent in 

certain areas of the Afrotropical Zoogeographic Region, where extreme levels of 

humidity and moisture prevails, and in the extreme arid conditions of the Sahara in 

north Africa (Fig 1.1) (Apanaskevich and Horak 2008b). Furthermore they display a 

two-host life cycle (Apanaskevich and Horak 2008b). Adults are primarily found on 

larger domestic and wild ungulates of the orders Cetartiodactyla and Perissodactyla, 

but can also be found on other medium sized mammals, reptiles and even birds (see 

Apanaskevich and Horak 2008b and references therein). Juvenile ticks parasitize 

small mammals such as rodents and hares, and can be excluded from larger 

mammals and birds (see Apanaskevich and Horak 2008b and references therein). 

 

The phylogeographic patterns of other tick species in the Afrotropical Zoogeographic 

region (e.g. H. rufipes, I. ricinus and Amblyomma variegatum) depict substantial 

genetic structure (Noureddine, Chauvin, and Plantard 2011; Beati et al. 2012; Cangi 

et al. 2013) that may suggest that H. truncatum may also be similarly structured. 

Furthermore, morphological variation within H. truncatum, and the large extent of its 

range, lead Schulze (1919) and Schulze and Schlottke (1930) to describe a number 

of species within H. truncatum, but these were later synonymized (Camicas et al. 

1998; Apanaskevich and Horak 2008b).  

 

To the best of our knowledge, no phylogeographic study on H. truncatum has taken 

place to date and thus the mechanisms responsible for possible diversification are 

not yet known. Looking at the phylogeographic patterns for other ixodid tick species, 

Noureddine, Chauvin and Plantard (2011), suggested that latitudinal temporal 

variation caused shifts in reproduction stages between European and African 

populations of I. ricinus and this limitations to gene flow between the continental 

populations. Beati et al. (2012) suggested host selection rather than isolation by 

distance (IBD) was the most probable cause of phylogeographic structure in A. 

variegatum across north Africa (also see Madhav et al. 2004). Interestingly Cangi et 
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al. (2013) proposed that the phylogeographic structure of H. rufipes was likely due to 

life history variables associated with interspecific competition (possibly with H. 

truncatum) and consequently, juvenile survival in the environment. 

 

Apart from life history characteristics, we can expect that biogeography and 

paleoecology implicated in host diversification, may also have an effect on the 

genetic structure of H. truncatum. The most pertinent of these are glacial cycles and 

habitat shifts over the Plio-Pleistocene boundary (see Potts 1998; Dynesuis and 

Jansson 2000; Hewitt 2000; Zachos et al. 2001; deMenocal 2004; Chase and 

Meadows 2007). For example, the East African Rift Valley and associated lakes 

have often been implicated in east-west and east-south divergences within and 

between species that can act as hosts for the ticks (see Freitag and Robinson 1993; 

Hassain et al. 2007; Moodley and Bruford 2007; Nicolas et al. 2008; Lorenzen, 

Heller, and Siegismund 2012; Colangelo et al. 2013). Additionally other mountain 

ranges and lakes, (Cameroon Volcanic Line, Lake Chad), rivers (Congo, Niger, Volta 

and Zambezi), deserts (Kalahari and Sahara), and even woodlands and forests 

(Cameroonian Highland, Guinea-Congo and Brachystegia) have been proposed as 

barriers to gene flow (see Matthee and Robinson 1997; Girman et al. 2001; Eriksson 

et al. 2004; Hassanin et al. 2007; Moodley and Bruford 2007; Nicolas et al. 2008; 

Lorenzen, Heller, and Siegismund 2012; Colangelo et al. 2013).  

 

We hypothesize that H. truncatum populations will show high levels of geneflow at 

the smaller geographic scale (due to their occurrance on large ungulates) but at the 

larger geographic scale, the pattern will more reflect host vicariance (multiple hosts 

species show similar phylogeographic patterns across the continent).  If this holds, 

the east African rift system and moist forests of central African may pose barriers to 

dispersal of this species. 

 

 

2. Materials and Methods 

 

2.1 Sampling design 

Hyalomma truncatum specimens were collected from 22 localities across southern, 

eastern and western Africa (Fig 2.1). While attempts were made to sample H. 
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Figure 2.1: The 22 Hyalomma truncatum sampling localities, through 11 countries 
across Africa. Locality codes correspond to those available in Sup. Table 2.   

truncatum from five localities in the central African region (in Burundi and the 

Democratic Republic of the Congo), our sampling recorded only H. rufipes across 

these sites. Nevertheless specimens were sampled according to protocols described 

by Cangi et al. (2013) and for this study were collected from cattle (Bos taurus), 

horse (Equus caballus), pig (Sus domesticus), sheep (Ovis aries) and goat (Capra 

aegagrus). Ticks were placed in 100% ethanol until further analysis. Special note 

was made of the sampling locality through Global Positioning System (GPS) data. 

During sampling it was aimed to collect at least 15 tick specimens from each location 

(Sup. Table 1). To expand our sampling, sequences from one locality in Ethiopia 

were drawn from GenBank (AJ437084.1; AJ437085.1; AJ437086.1; AJ437087.1). In 

total, 186 individuals from 11 countries were included (Fig 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Validation of H. truncatum 

Morphological validation of Hyalomma species remains difficult due to the cryptic 

nature of their morphology. All identification of H. truncatum specimens used in this 

study were carried out by D.A. Apanaskevich (National Tick Collection, Georgia 

Southern University) and I.G. Horak (Department of Veterinary Tropical Diseases,  

University of Pretoria) who compared all specimens against known voucher 

representatives of H. truncatum. Diagnostic morphological characters compared 
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included: 1) the width and shape of the genital operculum in H. truncatum females 

which is represented by a wide, high “U”-shaped arc; 2) the narrowing of the 

conscutum in an area of spiracular plates among males (which is greater than any 

other Hyalomma species); 3) generally smoother conscutums in relation to other 

common Hyalomma species found over the sampled range (for example H. glabrum 

(Apanaskevich and Horak 2006), H. rufipes (Apanaskevich and Horak 2008a) and H. 

somalicum (Apanaskevich and Horak 2009)). To distinguish between more closely 

related morpho-species, such as H. albiparmatum and H. nitidum we further 

inspected individuals believed to overlap in range for further morphological 

differences: Male H. albiparmatum can only be distinguished from H. truncatum by 

an ivory-coloured parma in the male (Apanaskevich and Horak 2008b). It is 

impossible to distinguish between the females and immature stages of H. 

albiparmatum and H. truncatum, and for this reason, only male H. truncatum from 

overlapping areas (Kenya) were identified and included. While Tomassone et al. 

(2005) suggested two criteria for distinguishing H. nitidum from H. truncatum: 1) the 

reduction in clarity of ivory-coloured bands on the segments of the legs (both sexes); 

2) the external cuticular preatrial fold of the genital operculum that differs in shape, 

being concave in H. truncatum and convex in H. nitidum (females only). Finally 

validation of specimens was also conducted by making use of GenBank blast 

searches (http://www.ncbi.nlm.nih.gov/). Although the pitfalls and limitations of using 

DNA barcodes in species identifications have been widely discussed (Yassin et al. 

2010; Goldstein and DeSalle 2011; Zhang and Zhang 2014), similar phylogeny 

based studies of ticks show high levels of success (Klompen et al. 2000; Murrell, 

Campbell, and Barker 2001; Barker and Murrell 2004).  

 

2.3 Molecular techniques  

Total genomic DNA was isolated using a CTAB manual extraction technique 

(Winnepenninckx, Backeljau, and De Wachter 1993) with minor modifications. The 

extraction utilized the complete animal which was left in the buffer in a heat block for 

48 hours to digest at 55ºC. Exoskeletons of digested specimens were removed and 

stored in 100% ethanol for future reference.  

 

DNA sequences were generated for the mtDNA Cytochrome c oxidase I (COI) gene 

and two nDNA genes, Histone 3 (H3) and Calreticulin (CRT). The primers used in 
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the amplification were either taken from published sources or designed specific to 

Hyalomma using the NCBI’s Primer 3 software (www.ncbi.nlm.nih.gov/tools/primer-

blast) (Table 2.1). This was done via blast searches and aligning the targeted region 

against a range of available Hyalomma sequences on Genbank.  

 

Amplifications were performed in a GeneAmp PCR 2700 thermal cycler (Applied 

Biosystems) (Sup Table 1). PCR cycling conditions followed those described in 

Sands et al. (2015) although annealing varied according to the primer pair and locus 

selected (Table 2.1). Aliquots of PCR products were separated by 1% agarose gel 

electrophoresis. In certain instances PCR products were excised from the gel and 

purified using a BioFlux, Biospin Gel Extraction Kit (Bioer Technology Co., Ltd.). 

Finally, all sequencing of PCR products was performed by the University of 

Stellenbosch Sequencing Facility using BigDye Chemistry and an ABI 3730 XL DNA 

Analyzer (Applied Biosystems).  

 

 

 

 

 

 

 

 

 

 

2.4 Sequence editing and alignment 

Sequences were visually inspected and edited using the program Geneious R7.1 

(Biomatters Ltd.). Sequence ambiguities associated with heterozygote states in the 

nDNA sequences were resolved by determining the gametic phase of alleles via 

PHASE 2.1 (Stephens, Smith, and Donnelly 2001; Stephens and Donnelly 2003) 

algorithms in DnaSP 5.10.01 (Librado and Rozas 2009). MCMC simulations were 

run for 100,000 generations with a thinning interval of 1 in every 10,000 generations 

discarded as burn-in. A probability threshold of 0.9 was considered for the 

differentiation between all phases. To optimize sequence quality and to limit missing 

 

Region Gene F/R Primer name  

Edited 
sequence 

length (BP) 

Optimal 
annealing 

temperature Source 

mtDNA COI 

Forward AR-U-COIa 5’-AAACTRTKTRCCTTCAAAG-3’ 

666 45⁰C 

Cangi et al. 2013 

Reverse AR-L-COIa 5’-GTRTTAAARTTTCGATCSGTTA-
3’ 

Cangi et al. 2013 

nDNA 

CRT 

Forward HyCRT+F1 5'-GAGTCBACGAAAGGCGACAA-3' 

516 60⁰C 

Designed for present study 

Reverse HyCRT-R1 5'-CSTCSGGGTCCTTGATCTTC-3' Designed for present study 

H3 

Forward HyH3F 5'-GTGGATGGCRCAMARGTTGG-3' 

267 56.5⁰C 

Designed for present study 

Reverse HyH3R 5'-GCAAGAGYACCGGWGGVAAR-3' Designed for present study 

Table 2.1: Gene regions, primer names, primer sequence and the edited sequence length of the amplified product used 
in this chapter. The optimal annealing temperatures of the primer pairs and  the sources of the primers used are also 

indicated. 
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data, ends were trimmed. All sequences were aligned by the CrustalW Multiple 

Alignment tool (Thompson, Higgins, and Gibson 1994) in BioEdit 7.1.3.0 (Hall 1999).  

 

2.5 Phylogeographic analyses  

Evolutionary relationships among DNA haplotypes were established in TCS 1.21 

(Clement, Posada, and Crandall 2000) which generates statistical haplotype 

networks with 95% confidence connections. To further test for differentiation among  

geographical populations (containing more than ten specimens) the groups identified 

by the TCS haplotype networks were used as priors in analyses of molecular 

variance (AMOVAs) (Excoffier, Smouse, and Quattro 1992). The latter were 

executed in Arlequin 3.5.1.2 (Excoffier and Lischer 2010), where calculated Φst 

values act to indicate the level of genetic variation between preassigned populations. 

To limit error associated with multiple pairwise comparisons, p-values of Φst values 

were subjected to Holm’s sequential Bonferroni corrections (Dunn 1961; Holm 1979). 

Additionally Arlequin 3.5.1.2 (Excoffier and Lischer 2010) was also used to calculate: 

1) Haplotypic diversity (h) and nucleotide diversity (π); 2) Fu’s Fs (Fu 1997) and 

mismatch distribution (Harpending et al. 1998), using a 1,000 replicates of the 

parametric bootstrap method (Schneider and Excoffier 1999). Furthermore, isolation 

by distance (IBD) was calculated using GenAlEx 6.5 (Peakall and Smouse 2012) to 

ascertain the level of genetic variation attributed to geographic distance.  

 

SplitsTree 4.13.1 (Huson and Bryant 2006) was used to calculate COI sequence 

distance between samples and create Neighbour-Net (Bryant and Moulton 2004) 

phylogenetic networks. Furthermore MrBayes 3.2.5 (Ronquist et al. 2012) was 

incorporated to construct a Bayesian topology for the COI data. jModelTest 0.1.1 

(Guindon and Gascuel 2003; Posada 2008) and the Akaike Information Criterion 

(AIC) (Akaike 1973) was used to determine the best-fit model for the COI data to 

define as the prior (Posada and Buckley 2004). Bayesian inference MCMC chains 

ran for 5,000,000 generations, saving one tree every 1,000 generations. Validation of 

convergence and mixing was assessed in Tracer 1.5 (Rambaut and Drummond 

2007) to ensure that all effective sample size (ESS) values were > 200. 

TreeAnnotator 1.8.2 (Drummond et al. 2012) was used to summarize trees, after 

discarding 2,000 trees as burn-in. Furthermore BASP 6.0 (Corander et al. 2008) was 

used to investigate posterior coalescent clusterings. Clustering of linked loci was 
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selected and the codon linkage model selected. The analysis was run 5 times each 

for K 1-22 as the assumed maximum number of populations present. 

 

To test for common evolutionary history among lineages, lineages with notable 

differentiation on the topology and average COI sequence distances > 2% (that are 

proposed to be out of the bounds of normal intraspecific structure for Ixodid ticks 

(Zhang and Zhang 2014)) were pooled and subjected to temporal population 

demographic analyses. Bayesian Skyline Plots (Drummond et al. 2005) were 

generated  through BEAST 1.8.2 (Drummond et al. 2012) where MCMC simulation 

ran for 100,000,000 generations, sampling every 10,000 generations. The COI 

codon position was established in MacClade 4.0 (Maddison and Maddison 2000) 

and the data was subsequently partitioned into 1st + 2nd and 3rd codon positions in 

the input file (BEAuti 1.8.2 (Drummond et al. 2012)). jModelTest 0.1.1 (Guindon and 

Gascuel 2003; Posada 2008), using the Akaike Information Criterion (AIC) (Akaike 

1992), was used to select HKY model for sequence evolution and the construction of 

the plots was completed through Tracer 1.5 (Rambaut and Drummond 2007), as well 

as to assure that ESS values were > 200. Dating of the events were done using a 

COI rate of evolution of 1.5% per million years. This was established through 

divergence dating via fossil calibration of the genus (see Chapter 3). 

 

 

3. Results 

 

3.1 Phylogeographic networks and analysis of molecular variance (AMOVA) 

The mtDNA COI gene, representing 666 bp of the mtDNA genome, revealed 118 

unique haplotypes (GenBank accession numbers: KT999398-KT999579). TCS 

analysis showed four distinct groups that could not be connected with 95% certainty 

(Fig 2.2). These groups corresponded to geographic regions (southern African, 

western African, central-eastern African and eastern African) and there was no 

haplotype sharing among them. Within the groups, haplotype sharing was more 

common among geographic sampling localities especially in the southern African 

clade and the western African clade (Fig 2.2). There is no clear visual indication of 

geographic population substructure within the southern and eastern African clades, 

but some substructure was evident across the western African region where three 
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subclusters can be visualized (Figs 2.2 and 2.3). These were partly confirmed by 

BAPS analysis, which supported the presence of a single group within the southern 

African region, three groups within the west African region, but a single group in the 

east African region (D; Fig 2.3).  

 

Haplotypic diversity (h) within these geographic regions was remarkably similar: 

southern, 0.97 (SD ± 0.09); eastern, 0.96 (SD ± 0.03); western, 0.97 (SD ± 0.01). 

Hyalomma truncatum nucleotide diversity (π) was found to be 0.056% (SD ± 

0.026%) overall, while within regions similar low diversity were again found (although 

moderately higher in western Africa): southern, 0.007% (SD ± 0.004%); eastern 

0.007% (SD ± 0.004%); western, 0.014% (SD ± 0.007%). AMOVA analyses 

indicated strong levels of regional population differentiation with the highest level of 

differentiation between the southern African population and the remainder of the 

populations in eastern and western Africa (Table 2.2).  

 

 

 

 

 

 

 

 

The Bayesian topology (Fig 2.3) indicates H. truncatum is divided into two well 

supported lineages, one representing northern sampling localities and the other 

representing southern African localities (Fig 2.3). Furthermore, five phylogroups with 

mostly weak posterior probabilities were identified across northern Africa, while the 

southern African lineage showed no such substructure. Additionally the Neighbour-

Net (Bryant and Moulton 2004) phylogenic network, using COI sequence data, 

clearly depicts a large differentiation between the northern sampling regions 

(western, central-eastern, eastern) and the southern region (southern) (Fig 2.3). This 

mtDNA COI sequence divergence reflected by these long branches is 9.88% (SD ± 

0.40%), while within the two groups an average sequence diversity of 1.84% (SD ± 

1.00%) is present for H. truncatum across northern Africa and 0.73% (SD ± 0.30%) 

for southern African H. truncatum (Fig 2.3).  

Table 2.2: mtDNA: Cytochrome c oxidase 1 AMOVA results showing the pairwise Φst values with p-
values (below) for regional population comparisons (significant p ≤ 0.05, based on corrected p-values, 

are highlighted in bold). The central-east African clade was omitted due to limited samples. 

COI  southern Africa western Africa eastern Africa 

southern Africa X na na 

  X na na 

western Africa 0.899 X na 

  p≤0.05 (+) X na 

eastern Africa 0.925 0.557 X 

  p≤0.05 (+) p≤0.05 (+) X 
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Figure 2.3: A: Bayesian topology based on the COI gene region. Bayesian posterior- probabilities are indicated 
below the branches. Colour circles are indicative of the sampling locality (Fig 2.1) and “n” the number of 
haplotypes within the phylogroup. Phylogroups are listed “I-VI” and correspond to those seen in the Neighbour-Net 
phylogenetic network and map. B: COI Neighbour-Net phylogenetic network for H. truncatum showing strong 
disparity between northern and southern regions/lineages. Multiple connections represent possible conflict due to 
ambiguous signals in the data. Haplotype groupings are labelled according to the results of the statistical 
parsimony network (see Fig 3.2). C: Map of Africa indicating the locations of the six phylogroups as found by 
haplotype networks and the Bayesian topology. D: Map of Africa indicating the locations of the five groups as 
established by BAPS. 
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Due to the strong inter-regional structure, yet weak intra-regional structure, a subset 

of samples used for regional COI analyses were investigated at the nDNA level 

(Sup. Table 1). A 267 bp potion of the H3 gene, representing 72 individuals (144 

Phased alleles) revealed 57 unique haplotypes (GenBank accession numbers: 

KT999646-KT999717). Unlike the COI data, unique haplotypes did not confirm the 

geographic genetic structure and 19 haplotypes were shared among the three 

mtDNA clades considered. Similar to COI, haplotypic diversity (h) for the H3 gene 

was congruent among sampling regions: southern, 0.967 (SD ± 0.013); eastern, 

0.966 (SD ± 0.018); western, 0.959 (SD ± 0.010). H3 nucleotide diversity (π) within 

H. truncatum across Africa was found to be 0.020% (SD ± 0.011%), while intra-

regionally this was: southern 0.018% (SD ± 0.010%); eastern, 0.021% (SD ± 

0.011%); western, 0.019% (SD ± 0.010%).  

 

A 516 bp portion of the CRT gene region, for 66 individuals (132 Phased alleles), 

revealed 53 unique haplotypes (GenBank accession numbers: KT999580-

KT999645). Very much the same as for H3, CRT haplotypes were not restricted to 

regions, and seven haplotypes were shared between regions. Intra-regional CRT 

haplotypic diversity (h) was found to be: southern, 0.955 (SD ± 0.013); eastern, 

0.942 (SD ± 0.037); western, 0.865 (SD ± 0.029). Overall nucleotide diversity (π) for 

H. truncatum across Africa was noted at 0.007% (SD ± 0.004%) and intra-regional: 

southern, 0.006% (SD ± 0.004%); eastern, 0.008% (SD ± 0.005%); western, 0.005% 

(SD ± 0.003%). 

 

When the nuclear DNA data was a-priori assigned to the same geographic regions 

than that obtained for the COI data both nDNA genes’ AMOVA results indicated non-

significant Φst (p > 0.05) values of population differentiation between the western 

and eastern African regions (Table 2.3). However these two regions showed 

significant Φst differentiation from southern Africa (p ≤ 0.5) (Table 2.3). Interestingly 

TCS haplotype networks based on H3 and CRT regions, showed very little structure 

with regard to haplotype portioning between sampling regions, although greater 

haplotype sharing seem to be evident between western and eastern Africa (Figs 2.4 

and 2.5): Equally weighted to account for differences in population size, 65.12% of 

the H3 haplotypes between western Africa and eastern Africa are shared. Southern 

Africa and western Africa only share 39.39% of their haplotypes and southern Africa 
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and eastern Africa share 33.75% of their haplotypes. Similarly, with CRT, 43.79% of 

haplotypes between western Africa and eastern Africa are shared, while again those 

between southern Africa and western Africa equates to 29.61% and 29.04% 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Histone 3 statistical parsimony network where circle sizes represent relative 
frequencies of haplotypes and the number of site changes are indicated by solid dots. Colours 
correspond to those on the map (see Fig 2.2).  
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Table 2.3: nDNA: Histone 3 (Above the diagonal) and Calreticulin (Below the diagonal) AMOVA 
results showing the pairwise Φst values with p-values (below) for regional populations comparisons 
(significant p ≤ 0.05, based on corrected p-values, are highlighted in bold). The central-east African 
clade was omitted due to limited samples. 

CRT & H3  southern Africa western Africa eastern Africa 

southern Africa X 0.092 0.086 

  X p≤0.05 (+) p≤0.05 (+) 

western Africa 0.222 X 0.003 

  p≤0.05 (+) X p>0.05 (-) 

eastern Africa 0.187 0.035 X 

  p≤0.05 (+) p>0.05 (-) X 

 

Figure 2.5: Calreticulin statistical parsimony network where circle sizes represent relative 
frequencies of haplotypes and the number of site changes are indicated by solid dots. Colours 
correspond to those on the map (see Fig 2.2). 
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3.2 Ancestral population demographics 

Based on high COI sequence distances differentiating the two lineages, it was 

necessary to test whether the two genetic assemblages (northern and southern 

Africa) experienced the same population demographics. Interestingly there is a 

significant and strong indication of IBD for northern African H. truncatum (R2 = 0.418, 

p ≤ 0.05) (Sup. Fig 1), while the southern African lineage of H. truncatum projects a 

significant, but weak indication of IBD (R2 = 0.028, p ≤ 0.05) (Sup. Fig 2).  

 

The wide occurrence of a common COI haplotypes among sampling localities within 

the individual phylogroups (regions), and shared H3 and CRT haplotypes between 

phylogroups would suggest possible recent historical expansion events. This is 

supported by negative and significant Fu’s Fs values for both species (northern: COI 

Fu’s Fs = -24.30, p ≤ 0.05: H3 Fu’s Fs = -18.58, p ≤ 0.05: CRT Fu’s Fs = -26.18, p ≤ 

0.05) (southern: COI Fu’s Fs = -25.53, p ≤ 0.05: H3 Fu’s Fs = -23.62, p ≤ 0.05: CRT 

Fu’s Fs = -14.45, p ≤ 0.05) coupled to the majority of mismatch distribution results for 

each set of DNA sequences (northern: COI SSD = 0.01, p > 0.05: H3 SSD = 0.00, p 

> 0.05: CRT SSD = 0.21, p ≤ 0.05) (southern: COI SSD = 0.01, p ≤ 0.05: H3 SSD = 

0.00, p > 0.05: CRT SSD = 0.00, p > 0.05).  Bayesian Skyline Plots, using the 

optimal model (HKY + G) indicates noticeable population expansions for both 

lineages (Fig 2.6): In southern Africa expansion seems to have been more gradual 

with a smaller expansion event around 100 thousand years ago (Kya), while in 

northern Africa, a clear expansion event likely occurred just over 200 Kya (Fig 2.6). 
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4. Discussion 

 

Evident from the study is that H. truncatum can be divided into two major 

geographically distinct lineages that also do not share similar population 

demographics through mtDNA analyses (Figs 2.3 and 2.6). These two major 

lineages are also supported by with nDNA AMOVA analyses. Additionally, mtDNA 

COI analyses, at the finer scale, identified four major groups, some of which there is 

further evidence for substructure. Life history characteristics of H. truncatum are 

unlikely drivers of the observed phylogeographic structure: at least when considering 

the marked differences in the phylogeography when compared to H. rufipes (see 

Cangi et al. 2013). For one, H. truncatum does not display a similar genetic break 

within southern Africa (see Cangi et al. 2013). In fact, it is more likely that climatic 

effects and biogeographic barriers have contributed to the structure observed in H. 

truncatum. The dispersal capabilities of ticks off the host is often limited (Randolf 

1998; Anderson and Magnarelli 2008; Cangi et al. 2013) and it is thus reasonable to 

suggest that the dispersal of the ticks can be attributed to long distance host 

dispersal. Indeed, dispersal within geographic clades seems to be high since 

haplotypes are shared among localities within geographic regions (despite 

sometimes being isolated by large distances). At the continental scale, the species 

show a pattern more congruent with vicariant barriers known to effect the distribution 

of  multiple host species (Matthee and Robinson 1997; van Alphen-Stahl, Bloomer, 

and Crowe 2005; Moodley and Bruford 2007; Lorenzen, Heller, and Siegismund 

2012; Colangelo et al. 2013;). 

 

In the northern H. truncatum lineage substructure shows congruence with specific 

geographic areas. Up to five phylogroups can be recognized across northern Africa 

and the genetic pattern obtained here can be coupled to significant indications of 

isolation by distance (R2 = 0.418, p ≤ 0.05). The formation of most of Africa’s 

mountain ranges and drainage systems are probably too old to have played a major 

role in the phylogeographic structure observed across northern Africa (Halliday et al. 

1988; Burke 2001; Stankiewicz and Wit 2006; Moore et al. 2007; Bryja et al. 2010; 

Wichura et al. 2010). Rather the phylogeographic structure is more likely a direct 

cause of more relatively recent glacial cycles, restricting host movement. In west 

Africa, Booth (1958) already hypothesized that three areas of faunal refugia exist 
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and their contemporary boundaries are the Volta and Niger rivers. The refugia are, 

west of the Volta River, another east of the Niger River, and a third between the 

Niger and Volta rivers. Interestingly, a number of host species such as rodents 

(Nicolas et al. 2008; Brouat et al. 2009; Bryja et al. 2010; Colangelo et al 2013), 

primates (Harcourt 2012; Zinner et al. 2013), ungulates (Moodley and Burford 2007) 

and even birds (Fuch and Bowie 2015) support this pattern and show similar breaks 

according to the rivers. It is thus likely that the phylogeographic signature depicted 

by H. truncatum over western Africa is the effect of the isolation of host species. If 

this holds, the Volta river, which runs from Burkina Faso to the Atlantic Ocean 

through Ghana, has likely acted as the contemporary barrier between phylogroups I 

and II. The Niger River likely has a similar effect between phylogroups II and III. 

Similarly, the eastern African phylogroup (IV) and the central-eastern African 

phylogroup (V) were probably also driven and maintained by host divergence in the 

region, caused by habitat shifts around the East African Rift Valley and associated 

lakes (see Arctander, Johansen, and Coutellec-Vreto 1999; Girman et al. 2001; 

Colangelo et al. 2013). However, it is important to note that the presence of 

phylogroup (V) is disputable according to BAPS analyses (D; Fig 2.3), this is 

probably due to the limited sampling in the region, and thus conclusions based on 

the divergence of these two east African phylogroups should be treated cautiously. 

Limited sampling over central-northern Africa, means it is difficult to conclude on 

specific barriers to gene flow between west and east parts of the continent, however 

host gene flow between west and east Africa have been largely governed by three 

major barriers across the region: 1) Guineo-Congolian and Cameroonian highland 

forests; 2) the Cameroon volcanic line; 3) the East African Rift Valley and associated 

lakes (see Moodley and Bruford 2007; Lorenzen, Heller, and Siegismund 2012; 

Colangelo et al. 2013 and references therein). These may have thus acted as similar 

contemporary barriers to gene flow between H. truncatum phylogroups in western 

Africa (I, II and III) and those on the eastern side (IV and V) (Fig 2.3).  

 

Unlike northern Africa, in southern Africa, there are limited indications of 

geographical partitioning among H. truncatum haplotypes. Instead, southern Africa is 

characterized by weak IBD (R2 = 0.028, p ≤ 0.05), more individuals sharing common 

haplotypes, and common haplotypes are found at distant localities within the region 

(Fig 2.2). Although this supports the hypothesis that the phylogeography of H. 
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truncatum in southern Africa may also have been greatly affected by glacial cycles 

and habitat oscillations over the last 400,000 years (van Zinderen Bakker 1978; 

Partridge 1997; Dynesius and Jansson 2000; deMenocal 2004), the data suggest 

that these events are more recent. The lack of structure suggest that the vicariant 

barriers documented for this region (Matthee and Flemming 2002; Moodley and 

Buford 2009; du Toit et al. 20012; Schwab et al. 2012) did not affect H. truncatum in 

the same way as in north Africa.  Interestingly, despite the well documented barriers 

to dispersal for some host species, exceptions exist in multimammate mice, 

Mastomys spp. (Sands et al. 2015), springhare, Pedetes capensis (Matthee and 

Robinson 1997), yellow mongoose, Cynictis penicillata (van Vuuren and Robinson 

1997), cape buffalo, Syncerus caffer (Van Hooft, Groen, and Prins 2002), cheetah, 

Acinonyx jubatus (Charruau and Fernandes 2011) and several other savannah 

ungulates (Lorenzen, Heller, and Siegismund 2012) occuring in this region. 

Additionally Bayesian Skyline Plots of demographic population expansion events for 

H. truncatum also support a recent range expansion that postdate the vicariance 

events documented (Matthee and Flemming 2002; du Toit et al. 20012; Schwab et 

al. 2012). 

 

An interesting phenomenon to also consider is that the demographic expansion 

detected in southern Africa also correlates with more recent expanses of grasslands 

and the subseqeunt movement of domesticated agricultural livestock breeds (Fig 

2.6) (see van Zinderen Bakker 1978; Bradley et al. 1996; Luikart et al. 2001; Bruford, 

Bradley, and Luikart 2003; Jacobs 2004; Relethford 2008; Kalinowski 2011). The fact 

that ticks were collected solely from domestic animals may account for passive 

dispersal of ticks in the southern African region and thus also contribute towards the 

lack of phylogenetic patterning observed. However similar effects would then also be 

expected for northern Africa and thus it would not account for the more pronounced 

phylogeographic structure observed for H. truncatum across northern Africa, nor 

explain the strong phylogenetic disparity between the two lineages of H. truncatum 

(northern and southern).  

 

The far higher level of divergence between the northern African phylogroups (I, II, III, 

IV and V) and the single southern African phylogroup (VI) in H. truncatum is 

noteworthy and potentially points to the existence of two species. Seasonal shifts in 
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the activity of I. ricinus populations in Europe and north Africa have been suggested 

as the major driver of genetic diversity in this tick species (Noureddine, Chauvin, and 

Plantard 2011). In addition, Ogden, Mechai and Margos (2013) modelled climate as 

a major factor affecting the ranges of ticks due to their effects on life cycles. As in the 

case of Hyalomma, it has been noted that adult activity in the genus is more 

prevalent during the warmer months (Yousfi-Monod and Aeschlimann 1986; 

Boulkaboul 2003) which is also supported by the higher prevalence for Crimean-

Congo haemorrhagic fever during these times (Bente et al. 2013). Since H. 

truncatum occurs in two different hemispheres, they may have developed different 

breeding cycles and this would further contribute as a potential postmating isolating 

mechanism. Irrespective, Zhang and Zhang (2014), proposed that the COI gene may 

be very useful in distinguishing ixodid tick species and further suggested that the 

average interspecific sequence distance among recognised species is around 8%, 

while intraspecifically this is generally regarded as < 2%. If this holds, the current 

recognition of H. truncatum as single species is incorrect. The 9.88% sequence 

distance between the northern and southern lineages and the < 2% seen 

intraspecifically in each lineage would be far better compared to values obtained 

between and within well-established species. This is further supported by our nDNA 

AMOVA results (Table 2.3). CRT and H3 AMOVA analyses indicate no population 

differentiation among northern populations, while strong differentiation to the 

southern lineage (Table 2.3). However, at this stage the taxonomy of H. truncatum is 

complicated. The taxon forms part of a species complex and shares a close 

morphological relationships with H. albiparmatum and H. nitidum (see Apanaskevich 

2008b and references therein). It is thus critically important that a molecular review 

of the genus take place to resolve the taxonomy of H. truncatum.  

 

This study could also have importance for animal health. The close evolutionary 

relationships among all H. truncatum in northern Africa (≤ 1.84% COI sequence 

distance) might mean that ticks in central-eastern and eastern Africa may be equally 

likely to be potential vectors of pathogens associated with H. truncatum in western 

Africa and vice versa. The viruses, such as Bhanja (a Phlebovirus implicated in 

Meningoencephalitis and partial paralysis), Dugbe (a Nairovirus) and Jos (a 

Thogotovirus implicated in cell necrosis), and causative organism of Q-fever, Kenyan 

tick typhus, as well as certain Theileria species have all been suggested to be 
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carried by H. truncatum across north Africa (Heisch et al. 1962; Hoogstraal, Wassef, 

and Buttiker 1981). Additionally a number of pathogens have been attributed to H. 

truncatum in southern Africa; sweating sickness (Bezuidenhout and Malherbe 1981) 

and Babesia caballi, that causes equine piroplasmosis (De Waal 1990) and it is not 

ascertained whether the genetically distinct lineages in fact both harbour and spread 

all these diseases.  
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CHAPTER 3 

 

SYSTEMATICS OF THE PARASITIC TICK GENUS,                                            

HYALOMMA (Ixodida: Ixodidae: Hylomminae),                                 

USING A MULTI-DISCIPLINARY APPROACH 
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1. Introduction 

 

Ticks within the genus Hyalomma are obligate haematophagus ectoparasites of 

many wild and domesticated animals, including humans. Members of the genus are 

of immense medical and veterinary importance (see Heisch et al. 1962; Taboada 

and Merchant 1991; Aktas, Dumanli, and Angin 2004; Norval et al. 2004; 

Formosinho and Santos-Silva 2006; Bente et al. 2013) and different species and 

lineages of Hyalomma have been shown to vary in acaricidal resistance and vector 

potential (see Hoogstraal and Aeschlimann 1982; Swanepoel and Burt 2004; Shyma 

et al. 2012; Gou et al. 2013).  

 

The taxonomic description of Hyalomma is based mainly on morphology (see 

Apanaskevich and Horak 2005; Apanaskevich and Horak 2006; Apanaskevich and 

Horak 2008a; Apanaskevich and Horak 2008b; Apanaskevich, Santos-Silva, and 

Horak 2008; Apanaskevich, Schuster, and Horak 2008; Apanaskevich and Horak 

2009; Apanaskevich, Filippova, and Horak 2010; Apanaskevich and Horak 2010), 

with genetic investigations primarily focussing at the relationships among tick genera 

(see Black and Piesman 1994; Black, Klompen, and Keirans 1997; Mangold, 

Bargues, and Mas-Coma 1997; Mangold, Bargues, and Mas-Coma 1998; Klompen 

et al. 2000; Murrell, Campbell, and Barker 2001; Barker and Murrell 2004). In fact, to 

date the most comprehensive phylogeny of the genus only includes five 

representatives of Hyalomma (see Barker and Murrell 2004; Zhang and Zhang 

2014).  

 

The generally low levels of interspecific morphological differentiation, coupled to high 

levels of intraspecific variation in Hyalomma (see Howell 1978; Walker 1991; 

Pretorius and Clarke 2000), are causing significant vaccilations in the taxonomy of 

the group (Camicas et al. 1998; Murrell, Campbell, and Barker 2001; Rees, Dioli, 

and Kirkendall 2003; Barker and Murrell 2004; Apanaskevich and Horak 2006; 

Apanaskevich and Horak 2008a; Apanaskevich and Horak 2008b; Apanaskevich, 

Schuster, and Horak 2008; Apanaskevich, Filippova, and Horak 2010; Guglielmone 

and Nava 2014). There are furthermore clear indications of hybridization between 

recognized morpho-species (Rees, Dioli, and Kirkendall 2003; Dalal, Kumar, and 

Gupta 2007). However using morphological characters to identify the species may 
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be less fruitful than previously thought: Lv et al. (2014) suggested engorgement of 

ticks may cause structural changes that could complicate species assignment, and 

other anomalies such as gynandromorphism (where both male and female 

characteristics are simultaneously displayed in an organism) has been noted in a 

wide range of Hyalomma (see Buczek, Bartosik, and Buczek 2014; Chen et al. 2015; 

Kar et al. 2015; Keskin, Bursali, and Tekin 2012). In addition, problems may exist on 

reference databases such as GenBank due to the incorrect identification of 

Hyalomma species in previous literature (Zhang and Zhang 2014). Finally, the genus 

is characterized by several species complexes and species with wide ranges that 

may show cryptic lineages (Chapter 2; Cangi et al. 2013; Zhang and Zhang 2014).  

 

Based on a morphological review of the genus, a number of close relationships 

among species have been proposed (see Delpy 1949; Tendeiro 1955; Hoogstraal 

1956; Hoogstraal and Kaiser 1959; Hoogstraal, Wassef, and Buttiker 1981; Camicas 

et al. 1998; Apanaskevich 2004; Apanaskevich and Horak 2005; Apanaskevich and 

Horak 2006; Apanaskevich and Horak 2008a; Apanaskevich and Horak 2008b; 

Apanaskevich, Santos-Silva, and Horak 2008; Apanaskevich, Schuster, and Horak 

2008; Apanaskevich and Horak 2009; Apanaskevich, Filippova, and Horak 2010). 

For instance, Delpy (1949) and Tendeiro (1955) suggested H. somalicum and H. 

excavatum to be closely related species, however a review by Hoogstraal and Kaiser 

(1959) suggests H. somalicum likely represent a subspecies of H. impeltatum. This 

was further corroborated by Apanaskevich and Horak (2009) and Apanaskevich, 

Schuster and Horak (2008) who suggested that the species should remain distinct 

entities, and that they likely form a close relationship within the group of species 

containing H. asiaticum, H. dromedarii, and H. schulzei. Additionally Filippova (2003) 

indicated that H. scupense may be closely related to H. marginatum (at the time 

considered to be in a complex with H. glabrum, H. isaaci, H. rufipes and H. 

turanicum, which were later re-instated as valid species; see Apanaskevich and 

Horak 2006; Apanaskevich and Horak 2008a). Complex relationships are not limited 

to the aforementioned examples. Hyalomma lusitanicum has been considered either 

synonyms or subspecies of both H. aegypticum and H. excavatum (Neumann 1899; 

Deply 1949; Hoogstraal 1956). Interestingly, H. franchinii has also been 

synonymised under the latter species (Delpy 1949; Tenderio 1955). But finally, 

Hoogstraal and Kaiser (1959) afforded H. excavatum, H. franchinii and H. 
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lusitanicum individual species status and proposed that they likely form a close 

relationship within a group further consisting of H. anatolicum. This hypothesis has 

been recently corroborated by Apanaskevich and Horak (2005) and Apanaskevich, 

Santos-Silva and Horak (2008). Lastly, H. albiparmatum, H. impressum, H. nitidum 

and H. truncatum have been proposed to be in a very close relationship due to the 

lack of morphological disparity between species (Apanaskevich and Horak 2008b). 

In fact, the individual species status of H. albiparmatum, H. nitidum and H. truncatum 

have been subjected to much debate in the literature (see Hoogstraal 1956; 

Feldman-Muhsam 1962; Walker 1974; Hoogstraal 1979; Camicas et al. 1998; 

Tomassone et al. 2005; Apanaskevich and Horak 2008b). A recent phylogeographic 

study on H. truncatum (see chapter 2) observed two lineages of H. truncatum which 

have a similar sequence divergence between them than that reported for other 

recognized species. Resolving this issue is particularly pertinent since the species 

validity of H. albiparmatum, H. nitidum and, to a lesser extent, H. impressum (based 

on morphology) have recently been questioned (see Apanaskevich and Horak 

2008b). 

 

Irrespective ofthe problems associated with the taxonomy of Hyalomma, at present it 

is believed that the genus comprises 27 recognized species (Table 3.1). Members of 

the genus are geographically widespread across the Afrotropical, Palearctic and 

Oriental Zoogeographic Regions (Kolonin 1982). It has been suggested that the 

genus originated in the Oriental region 19 Mya (Balashov 1994; Murrell, Campbell, 

and Barker 2001) but a later discovery of an older fossil in the Baltic area dates the 

genus back to at least 35-50 Mya (de la Fuente 2003). What gave rise to the 

diversity of species characterising Hyalomma is completely unknown at present.  

 

Since members of the genus are mostly generalist ectoparasites occurring on a 

multitude of host species during different life stages (Apanaskevich 2004) the role of 

host diversification within this genus is probably negligible (Casati et al. 2008; Kempf 

et al. 2009; Noureddine, Chauvin, and Plantard 2011; Beati et al. 2013; Cangi et al. 

2013; van der Mescht, Matthee, and Matthee 2015). Instead, we propose that large 

scale abiotic changes that will influence the majority of host species in the same way 

(vicariance), will more than likely pose barriers to dispersal to multiple hosts and this 

in turn may result in allopatric speciation processes within the genus Hyalomma 
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(Matthee et al. 2004; Heikinheimo et al. 2007; Kempf et al. 2009; Lorenzen, Heller, 

and Siegismund 2012).  

 

The tectonic uplift due to colliding plates and varying sea levels around the 

continental meeting points of Africa, Asia and Europe have often been recorded in 

early faunal exchange events, it is thus likely that changes in the Mediterranean Sea 

and other water bodies surrounding the Arabian peninsula could have acted as early 

mechanisms for allopatric speciation, especially between zoogeographic regions 

(see Rögl 1999; Matthee et al. 2004; Koufos, Kostopoulos, and Vlachou 2005; 

Gaubert and Cordeiro-Estrela 2006; Harzhauser et al. 2007; Sen 2013). While within 

regions, the formation of mountains (such as with the Himalayas, East African Rift 

Valley and those around the Baltic region; and the development of lakes and 

drainage systems associated with the uplift) may have played key roles in 

restructuring the landscape and driving diversification among a variety of taxa post 

the Oligocene (Matthee and Robinson 1997; Sanmartin 2003; Lou et al. 2004; 

Moodley and Burford 2007; Pisano et al 2015). Additionally, it has been suggested 

that seasonal changes across the equator may have also acted as a contemporary 

barrier within Hyalomma species through impacts on breeding cycles (see chapter 2 

and references therein). Importantly, the influences of further climatic changes 

(Randolph 1997; Beati et al. 2013; Medlock et al. 2013; Ogden, Mechai, and Margos 

2013) and other life history traits, such as the availability of suitable hosts in the 

environment and competition (Kempf et al. 2009; Cangi et al. 2013; Ogden, Mechai, 

and Margos 2013), should not be ignored as part of the mechanisms responsible for 

tick speciation, but it is proposed that these events are effecting the more recent 

intraspecific divergences within species (see Chapter 2). 

 

To address the mechanisms involved in shaping the evolution of Hyalomma, and to 

test the various taxonomic hypotheses proposed for the genus, we constructed a 

phylogeny based on comprehensive taxonomic sampling. A combination of data 

derived from morphological, mtDNA and nDNA markers were used. We hypothesize 

that species complexes may be fairly common within the genus, particularly among 

members with low levels of morphological variation (H. truncatum, H. albiparmatum 

and H. nitidum; Apanaskevich and Horak 2008b), and those suggested to be able to 

hybridise (H. truncatum, H. rufipes, H. dromedarii and H. anatolicum (Dalal, Kumar, 
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and Gupta 2007; Rees, Dioli, and Kirkendall 2003). We also hypothesize that 

Hyalomma likely evolved in the Oriental region and diversified outwards from the 

Palearctic region. If the latter holds, the pattern and dates of the divergences will co-

inside with large scale abiotic changes affecting a large number of host species that 

showed pulses of intercontinental exchanges (for example see Matthee et al. 2004 

and references therein). It is proposed that the outcome of this study will significantly 

improve our current understanding of the number of species within the genus (which 

is also important for disease ecology and control) and by including a molecular clock, 

we may be able to provide additional evidence to explain the mechanisms involved 

in tick evolution in general. 

 

 

2. Materials & Methods 

 

2.1 Sampling design 

Hyalomma specimens were collected from the same hosts as described in Chapter 2 

and also from domestic, buffalo (Bubalus bubalis) and wild one and two humped 

camels (Camelus sp.), Arabian oryx (Oryx leucoryx), European hedgehog (Erinaceus 

sp.), white rhinoceros (Ceratotherium simum), and the spur-thighed tortoise (Testudo 

graeca) among others. Eighty-two Hyalomma specimens, representing all 27 known 

species from 26 different countries were included (Table 3.1). It was aimed to include 

at least three representatives of each of the recognised species covering as much of 

the geographic variation as possible for each species (Table 3.1). All freshly 

collected specimens were placed in 100% ethanol for further analysis. Outgroups 

(Amblyomma variegatum and Nossoma monstrosum) were chosen based on their 

published close taxonomic relationships with Hyalomma (Murrell, Cambell, and 

Barker 2000; Murrell, Cambell, and Barker 2001). Mitochondrial DNA GenBank 

sequences for eight Hyalomma species were also available (Sup. Table 2). These 

sequences formed part of previous studies and were included to cross reference the 

sampled members of the Hyalomma genus.   
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Table 3.1: Sampling localities for Hyalomma and respective outgroups included in the present study. The letters “a”, “b” or “c” 
following the country of origin are indicative of the collaborating authority responsible for providing the sample: (a) Dmitry A. 
Apanaskevich, United States National Tick Collection, Institute of Arthropodology and Parasitology, Georgia Southern 
University, Statesboro, Georgia, 30460-8056, USA. (b) Ivan G. Horak, Department of Veterinary Tropical Diseases, Faculty of 
Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa. (Current genus scrutiny: Hyalomma). (c) Sonja 
Matthee, Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Stelenbosch, 7602, 
South Africa. 
 

 No. Species 
Country of 

origin 
GenBank accession 

no.  No. Species 
Country of 

origin 
GenBank accession 

no. 
 Hyalomma  1 H. nitidum Benin (a) KU130449, KU130531,  KU130613, 

KU130698, KU130778 
1 H. aegyptium  Israel (a) KU130407, KU130490, KU130573, 

KU130656, KU130737 
 2 H. nitidum Benin (a) KU130450, KU130532,  KU130614, 

KU130699, KU130779 
2 H. aegyptium  Israel (a) KU130408, KU130491,  

KU130574, KU130657, KU130738 
 3 H. nitidum Benin (a) KU130451, KU130533, KU130615, 

KU130700, KU130780 
3 H. aegyptium  Israel (a) KU130409, KU130492,  

KU130575, KU130658, KU130739 
 1 H. punt Somalia (b) KU130452, KU130534,  KU130616, 

KU130701, KU130781 
1 H. albiparmatum  Kenya (a) KU130410, KU130493, KU130576, 

KU130659, KU130740 
 2 H. punt Somalia (b) KU130453, KU130535, KU130617, 

KU130702, KU130782 
2 H. albiparmatum  Kenya (a) KU130411, KU130494, KU130577, 

KU130660, KU130741 
 3 H. punt Somalia (b) KU130454, KU130536,  KU130618, 

KU130703, KU130783 
3 H. albiparmatum  Kenya (a) KU130412, KU130495,  

KU130578, KU130661, KU130742 
 1 H. rhipicephaloides Israel (a) KU130455, KU130537,  KU130619, 

KU130704, KU130784 
1 H. anatolicum  Iraq (a) KU130413, KU130496,  

KU130579, KU130662, KU130743 
 2 H. rhipicephaloides Israel (a) KU130456, KU130538,  KU130620, 

KU130705, KU130785 
2 H. anatolicum  Pakistan (a) KU130414, KU130497,  

KU130580, KU130663, KU130744 
 1 H. rufipes Senegal (a) KU130457, KU130539,  KU130621, 

KU130706, KU130786 
3 H. anatolicum  Pakistan (a) KU130415, KU130498, KU130581, 

KU130664, KU130745 
 2 H. rufipes Senegal (a) KU130458, KU130540,  KU130622, 

KU130707, KU130787 
1 H. arabica Saudi Arabia (a) KU130416, KU130499, KU130582, 

KU130665, KU130746 
 3 H. rufipes Nigeria (a) KU130459, KU130541,  KU130623, 

KU130708, KU130788 
2 H. arabica Saudi Arabia (a) KU130417, KU130500,  

KU130583, KU130666, KU130747 
 4 H. rufipes Burkina Fuso (a) KU130460, KU130542,  KU130624, 

KU130709, KU130789 
3 H. arabica Saudi Arabia (a) KU130418, KU130501,  

KU130584, KU130667, KU130748 
 5 H. rufipes Somalia (b) KU130543, KU130625, KU130710, 

KU130790 
1 H. asiaticum Turkmenistan (a) KU130419, KU130502,  

KU130585, KU130668, KU130749 
 6 H. rufipes Namibia (c) KU130461, KU130544,  KU130626, 

KU130711, KU130791 
2 H. asiaticum Turkmenistan (a) KU130420, KU130503,  

KU130586, KU130669, KU130750 
 7 H. rufipes Namibia (c) KU130462, KU130545,  KU130627, 

KU130712, KU130792 
3 H. asiaticum Turkmenistan (a) KU130421, KU130504,  

KU130587, KU130670, KU130751 
 8 H. rufipes Mozambique (c) KU130463, KU130546,  KU130628, 

KU130713, KU130793 
1 H. brevipunctatum India (a) Morphological data only  9 H. rufipes Mozambique (c) KU130464, KU130547,  KU130629, 

KU130714, KU130794 
1 H. dromedarii Iraq (a) KU130422, KU130505,  

KU130588, KU130671, KU130752 
 10 H. rufipes South Africa (c) KU130465, KU130548,  KU130630, 

KU130715, KU130795 
2 H. dromedarii Pakistan (a) KU130423, KU130506,  

KU130589, KU130672, KU130753 
 1 H. schulzei Iraq (a) KU130466, KU130549,  KU130631, 

KU130716, KU130796 

3 H. dromedarii Saudi Arabia (a) KU130424, KU130507,  
KU130590, KU130673, KU130754 

 2 H. schulzei Iraq (a) KU130467, KU130550,  KU130632, 
KU130717, KU130797 

4 H. dromedarii Senegal (a) KU130425, KU130508, KU130591, 
KU130674, KU130755 

 1 H. scupense Russia (a) KU130468, KU130551,  KU130633, 
KU130718, KU130798 

1 H. excavatum Israel (a) KU130426, KU130509,  
KU130592, KU130675, KU130755 

 2 H. scupense Pakistan (a) KU130469, KU130552,  KU130634, 
KU130719, KU130799 

2 H. excavatum Israel (a) KU130427, KU130510,  
KU130593, KU130676, KU130756 

 3 H. scupense Tunisia (a) KU130470, KU130553,  KU130635, 
KU130720, KU130800 

3 H. excavatum Tunisia (a) KU130428, KU130511,  
KU130594, KU130677, KU130757 

 4 H. scupense Iran (a) KU130471, KU130554,  KU130636, 
KU130721, KU130801 

4 H. excavatum Israel (a) KU130429, KU130512,  
KU130595, KU130678, KU130758 

 1 H. somalicum Somalia (b) KU130472, KU130555,  KU130637, 
KU130722, KU130802 

1 H. franchinii Egypt (a) Morphological data only  2 H. somalicum Somalia (b) KU130473, KU130556,  KU130638, 
KU130723, KU130803 

1 H. glabrum South Africa (a) KU130430, KU130513,  
KU130596, KU130679, KU130759 

 1 H. truncatum Benin (a) KU130474, KU130557,  KU130639, 
KU130724, KU130804 

2 H. glabrum South Africa (a) KU130431, KU130514,  
KU130597, KU130680, KU130760 

 2 H. truncatum Kenya (a) KU130475,  KU130558,  
KU130640, KU130725, KU130805 

3 H. glabrum South Africa (c) KU130432, KU130515,  
KU130598, KU130681, KU130761 

 3 H. truncatum Senegal (a) KU130476, KU130559,  KU130641, 
KU130726, KU130806 

1 H. hussaini Pakistan (a) KU130433, KU130516,  
KU130682, KU130762 

 4 H. truncatum Mali (a) KU130477, KU130560,  KU130642, 
KU130727, KU130807 

1 H. hystricis   India (a) Morphological data only  5 H. truncatum South Africa (a) KU130478, KU130561,  KU130643, 
KU130728, 
KU130808 

1 H. impeltatum  Senegal (a) KU130434, KU130517,  
KU130599, KU130683, KU130763 

 6 H. truncatum Namibia (a) KU130479, KU130562,  KU130644, 
KU130729, KU130809 

2 H. impeltatum  Saudi Arabia (a) KU130435, KU130518,  
KU130600, KU130684, KU130764 

 7 H. truncatum Somalia (b) KU130563, KU130645, KU130730, 
KU130810 

3 H. impeltatum  Senegal (a) KU130436, KU130519,  
KU130601, KU130685, KU130765 

 1 H. turanicum Iraq (a) KU130480, KU130564,  KU130646, 
KU130731, KU130811 

1 H. impressum  Benin (a) KU130437, KU130520,  
KU130602, KU130686, KU130766 

 2 H. turanicum Iraq (a) KU130481, KU130565,  KU130647, 
KU130732, KU130812 

2 H. impressum  Benin (a) KU130438, KU130521,  
KU130603, KU130687, KU130767 

 3 H. turanicum Iraq (a) KU130482, KU130566,  KU130648, 
KU130733, KU130813 

1 H. isaaci  Pakistan (a) KU130439, KU130522,  
KU130604, KU130688, KU130768 

 4 H. turanicum Pakistan (a) KU130483, KU130649, KU130734, 
KU130814 

2 H. isaaci  Sri Lanka (a) KU130440, KU130523,  
KU130605, KU130689, KU130769 

  Amblyomma 

3 H. isaaci Pakistan (a) KU130441, KU130524,  
KU130606, KU130690, KU130770 

 1 A. variegatum Senegal (a) KU130401, KU130484,  KU130567, 
KU130650 

1 H. kumari Pakistan (a) KU130442, KU130525,  
KU130607, KU130691, KU130771 

 2 A. variegatum Senegal (a) KU130402, KU130485,  KU130568, 
KU130651  

2 H. kumari Pakistan (a) KU130443, KU130526,  
KU130608, KU130692, KU130772 

 3 A. variegatum Nigeria (a) KU130403, KU130486,  KU130569, 
KU130652 

1 H. lusitanicum Portugal (a) KU130444, KU130527,  
KU130609, KU130693, KU130773 

 4 A. variegatum Nigeria (a) KU130404, KU130487,  KU130570, 
KU130653 

2 H. lusitanicum Italy (a) KU130445, KU130694, KU130774   Nosomma 

1 H. marginatum Ukraine (a) KU130446, KU130528,  
KU130610, KU130695, KU130775 

 1 N. monstrosum Sri Lanka (a) KU130405, KU130488,  KU130571, 
KU130654, KU130735 

2 H. marginatum Portugal (a) KU130447, KU130529,  
KU130611, KU130696, KU130776  2 N. monstrosum Sri Lanka (a) KU130406, KU130489, KU130572, 

KU130655, KU130736 

3 H. marginatum Russia (a) KU130448, KU130530, KU130612, 
KU130697, KU130777      
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2.2 Morphological data matrix 

Hyalomma are easily distinguished from other genera. Defining characteristics such 

as scutums / conscutums that are dark reddish-brown to near black, protruding eyes 

and the appearance of striped ligaments, makes them easy to separate from closely 

related genera, such as Nossoma, Rhipicephalus and Amblyomma. Intraspecifically 

morphological differentiation among Hyalomma species remains difficult due to the 

cryptic nature of external morphology. The majority of the 47 morphological 

characters incorporated in this study were collected by Apanaskevich and partners 

during a recent morphological review of the genus (see Apanaskevich 2003; 

Apanaskevich and Horak 2005; Apanaskevich and Horak 2006; Apanaskevich and 

Horak 2007; Apanakevich and Horak 2008a; Apanaskevich and Horak 2008b; 

Apanaskevich, Santos-Silva, and Horak 2008; Apanaskevich, Schuster, and Horak 

2008; Apanaskevich and Horak 2009; Apanaskevich, Filippova, and Horak 2010; 

Apanaskevich and Horak 2010) (Table 3.2). In summary, stereoscopic microscope 

comparisons of representatives of each of the 27 species at larval, nymph and adult 

life stages were compared against known vouchers or descriptions thereof (Table 

3.2). In most instances the specimens studied were either collected in the field or 

laboratory reared and are housed in various collections worldwide (see references 

above). Where data was not available or the character state could not be 

established, we treated the data as missing (Table 3.2). Similar to Beati and Keirans 

(2001), we assumed morphological characters are independent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
a
b

le
 3

.2
: 

T
h
e
 4

7
 m

o
rp

h
o
lo

g
ic

a
l 
c
h
a
ra

c
te

r 
s
ta

te
s
 i
n
c
o

rp
o
ra

te
d

 i
n

 t
h

is
 s

tu
d
y
 f
o
r 

e
a

c
h
 H

y
a
lo

m
m

a
 s

p
e
c
ie

s
. 

 

 

 
 

 
 

 
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

H
Y

A
L

O
M

M
A

 S
P

E
C

IE
S

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 O
U

T
G

R
O

U
P
 

 

  C
H

A
R

A
C

T
E

R
 

  0
 

  1
 

  2
 

H. aegyptium 

H. albiparmatum 

H. anatolicum 

H. arabica 

H. asiaticum 

H. brevipunctata 

H. dromedarii 

H. excavatum 

H. franchinii 

H. glabrum 

H. hussaini 

H. hystricis 

H. impeltatum 

H. impressum 

H. isaaci 

H. kumari 

H. lusitanicum 

H. marginatum 

H. nitidum 

H. punt 

H. rhipicephaloides 

H. rufipes 

H. schulzei 

H. scupense 

H. somalicum 

H. truncatum 

H. turanicum 

Amblyomma 

hebraeum 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

1
 

S
h

a
p

e
 o

f 
e

ye
s
 (

a
ll 

s
ta

g
e

s
) 

R
o

u
n

d
is

h
 

O
v
a

l 
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

2
 

S
h

a
p

e
 o

f 
e

ye
s
 (

a
d

u
lt
s
) 

F
la

t 
S

p
h

e
ri
c
a

l 
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

3
 

P
o

s
it
io

n
 o

f 
e

y
e

s
 (

a
d
u

lt
s
) 

M
a
rg

in
a

l 
O

rb
it
a

l 
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

4
 

P
ig

m
e

n
ta

ti
o

n
 o

n
 s

c
u

tu
m

 
o

r 
c
o

n
s
c
u

tu
m

 (
a

d
u

lt
s
) 

In
te

n
s
iv

e
 

M
a
rb

le
d

 
A

b
s
e

n
t 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

1
 

1
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

1
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

0
 

5
 

N
u

m
b

e
r 

o
f 

v
e

n
tr

o
-

m
e

d
ia

n
 s

e
ta

e
 o

n
 I

 
s
e

g
m

e
n
t 

o
f 

p
a
lp

i 
(a

d
u

lt
s
) 

<
 5

 
5
 <

 
 

1
 

1
 

1
 

0
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

0
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

6
 

S
p

u
rs

 o
f 

c
o

x
a

 I
 (

a
d

u
lt
s
) 

S
e

p
a

ra
te

d
 

J
u

x
ta

p
o

s
e

d
 

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

7
 

M
e
d

ia
n
 s

p
u
r 

o
f 

c
o

x
a

 I
 

(a
d
u

lt
s
) 

A
b

s
e

n
t 

P
re

s
e

n
t 

 
1

 
1

 
1

 
0

 
1

 
0

 
1

 
1

 
1

 
1

 
0

 
0

 
1

 
1

 
1

 
0

 
1

 
1

 
1

 
1

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

8
 

C
o

lo
ra

ti
o

n
 o

f 
le

g
 

s
e

g
m

e
n
ts

 (
a

d
u

lt
s
) 

U
n

if
o

rm
ly

 
b

ro
w

n
 

Iv
o

ry
-c

o
lo

u
re

d
 

p
ig

m
e
n

t 
d

if
fu

s
e

d
 

Iv
o

ry
 

p
ig

m
e
n

t 
fo

rm
in

g
 r

in
g
s
 

a
n
d

 s
tr

ip
s
 

0
 

2
 

1
 

0
 

2
 

0
 

2
 

1
 

1
 

2
 

0
 

0
 

2
 

2
 

2
 

0
 

1
 

2
 

2
 

2
 

0
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

9
 

N
u

m
b

e
r 

o
f 

a
n
a

l 
s
h

ie
ld

s
 

(m
a

le
) 

2
 p

a
ir
s
 

3
 p

a
ir
s
 

A
b

s
e

n
t 

1
 

1
 

1
 

0
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

0
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

0
 

0
 

1
 

1
 

1
 

1
 

1
 

1
 

- 

1
0

 
R

a
to

i 
le

n
g

th
 :
 w

id
th

 o
f 

a
d
a

n
a

l 
s
c
h

ie
ld

 (
m

a
le

) 
<

 1
.5

 
1

.5
 <

 
 

0
 

1
 

1
 

0
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

1
 

1
 

1
 

- 

1
1

 
V

e
n
tr

a
l 
la

te
ra

l 
p

ro
je

c
ti
o

n
s
 o

f 
b

a
s
is

 
c
a

p
it
u

li 
(m

a
le

) 
A

b
s
e

n
t 

P
re

s
e

n
t 

 
0

 
0

 
0

 
1

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

1
2

 
F

e
s
to

o
n

s
 (

m
a

le
) 

1
1

 
4

 o
r 

5
 

 
0

 
1

 
1

 
0

 
1

 
0

 
1

 
1

 
1

 
1

 
0

 
0

 
1

 
1

 
1

 
0

 
1

 
1

 
1

 
0

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

1
3

 
C

a
u

d
a

l 
fi
e

ld
 (

m
a

le
) 

N
o

t 
p

ro
n

o
u

n
c
e

d
 

P
ro

n
o

u
n
c
e

d
 

 
0

 
1

 
1

 
0

 
1

 
0

 
1

 
1

 
1

 
1

 
0

 
0

 
1

 
1

 
1

 
0

 
1

 
1

 
1

 
0

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

1
4

 
C

e
rv

ic
a

l 
g

ro
o

v
e

s
 (

m
a

le
) 

P
it
-l

ik
e

 
F

u
rr

o
w

-l
ik

e
 

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

1
5

 
C

e
rv

ic
a

l 
g

ro
o

v
e

s
 (

m
a

le
) 

S
h

o
rt

 (
d

is
ti
n

c
t 

in
 1

/3
 o

f 
c
o

n
s
c
u

tu
m

 o
r 

le
s
s
) 

L
o
n

g
 (

d
is

ti
n

c
t 

in
 1

/2
 o

f 
c
o

n
s
c
u

tu
m

 o
r 

m
o
re

) 

 
0

 
0

 
0

 
0

 
1

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 

1
6

 
L

a
te

ra
l 
g

ro
o

v
e

s
 (

m
a

le
) 

L
o
n

g
 (

re
a
c
h

 
m

id
le

n
g
th

 o
f 

c
o

n
s
c
u

tu
m

) 

S
h

o
rt

 (
d

o
n
''t

 
re

a
c
h

 
m

id
le

n
g
th

 o
f 

c
o

n
s
c
u

tu
m

) 

 
- 

0
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 

0
 

0
 

- 
1

 
0

 
0

 
0

 
1

 
0

 
0

 
1

 
1

 
0

 
1

 
1

 
1

 
0

 
0

 
1

 

1
7

 
P

o
s
te

ri
o
-m

e
d
ia

n
 m

a
rg

in
 

o
f 

a
d
a

n
a

l 
s
h

ie
ld

s
 (

m
a

le
) 

S
tr

a
ig

h
t 

C
u

rv
e

d
 

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
1

 
0

 
1

 
0

 
0

 
- 

1
8

 
P

a
rm

a
 (

m
a

le
) 

A
lw

a
y
s
 a

b
s
e

n
t 

P
re

s
e

n
t 

(a
t 

le
a
s
t 

s
o

m
e

ti
m

e
s
) 

 
0

 
1

 
1

 
0

 
1

 
0

 
1

 
1

 
1

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
1

 
1

 
1

 
0

 
0

 
0

 

1
9

 
M

e
d

ia
n
 p

ro
je

c
ti
o

n
 o

f 
a

d
a

n
a

l 
s
h

ie
ld

s
 (

m
a

le
) 

P
o

o
r 

d
e
v
e

lo
p
e

d
 

A
b

s
e

n
t 

W
e

ll 
d

e
v
e

lo
p
e

d
 

1
 

2
 

2
 

1
 

2
 

1
 

2
 

2
 

2
 

2
 

1
 

1
 

2
 

2
 

2
 

1
 

2
 

2
 

2
 

0
 

1
 

2
 

2
 

2
 

2
 

2
 

2
 

- 

2
0

 
R

a
ti
o

 l
 :

 w
 o

f 
b

a
s
is

 
c
a

p
it
u

li 
(m

a
le

) 
<

 1
.7

 
1

.9
 <

 
 

0
 

0
 

0
 

1
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

2
1

 
M

a
rg

in
a

l 
g

ro
o

v
e

s
 (

m
a

le
) 

P
re

s
e

n
t 

A
b

s
e

n
t 

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

Stellenbosch University  https://scholar.sun.ac.za



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2
2

 

N
a
rr

o
w

in
g

 o
f 

c
o

n
s
c
u

tu
m

 i
n

 a
re

a
 o

f 
s
p

ir
a

c
u

la
r 

p
la

te
s

 
(m

a
le

) 

N
o

t 
c
le

a
r 

C
le

a
r 

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 

2
3

 
V

e
n
tr

a
l 
la

te
ra

l 
p
ro

je
c
ti
o
n
s
 o

f 
b
a
s
is

 
c
a
p
it
u

li 
(f

e
m

a
le

) 
A

b
s
e
n
t 

P
re

s
e
n
t 

 
0

 
0

 
0

 
1

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
1

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

2
4

 
G

e
n
it
a
l 
o
p
e
rc

u
lu

m
 

(f
e
m

a
le

) 
W

id
e
 

N
a
rr

o
w

 
 

0
 

0
 

0
 

0
 

1
 

1
 

1
 

0
 

0
 

0
 

0
 

1
 

1
 

1
 

0
 

1
 

0
 

0
 

0
 

1
 

1
 

0
 

0
 

0
 

1
 

0
 

0
 

1
 

2
5

 
G

e
n
it
a
l 
o
p
e
rc

u
lu

m
 

(f
e
m

a
le

) 
H

ig
h

 a
rc

 (
U

) 
V

-s
h
a
p
e

d
 

(h
ig

h
) 

L
o
w

 a
rc

 
0

 
0

 
2

 
0

 
0

 
0

 
1

 
2

 
2

 
?

 
0

 
0

 
0

 
0

 
2

 
0

 
2

 
2

 
0

 
0

 
0

 
2

 
0

 
0

 
1

 
0

 
2

 
1

 

2
6

 
V

e
s
ti
b
u
la

r 
p
a
rt

 o
f 

v
a

g
in

a
 

(f
e
m

a
le

) 
S

w
o

lle
n

 
N

o
t 
s
w

o
lle

n
 

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 

2
7

 
R

a
ti
o
 l
 :

 w
 o

f 
b
a
s
is

 
c
a
p
it
u

li 
(f

e
m

a
le

) 
A

p
p
ro

x
im

a
te

ly
 

≤
2
 

A
p
p
ro

x
im

a
te

ly
 

2
.5

 
 

0
 

0
 

0
 

1
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

2
8

 
R

a
ti
o
 l
 :

 w
 o

f 
g
n
a
th

o
s
o
m

a
 (

a
d
u
lt
s
) 

l 
>

 w
 

l 
=

 w
 

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

2
9

 
R

a
ti
o
 l
 o

f 
p
a
lp

i 
(I

I 
a
n

d
 I
II
 

a
rt

ic
le

s
) 

: 
l 
o
f 

b
a
s
is

 
c
a
p
it
u

li 
(a

d
u

lt
s
) 

P
a
lp

i 
>

 b
a
s
is

 
c
a
p
it
u

li 
P

a
lp

i 
<

=
 b

a
s
is

 
c
a
p
it
u

li 
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

3
0

 
R

a
ti
o
 l
 :

 w
 o

f 
g
n
a
th

o
s
o
m

a
 (

fe
m

a
le

) 
l 
>

 w
 i
n
 2

 t
im

e
s
 

a
n
d
 m

o
re

 
l 
<

 w
 

l 
>

 w
 i
n
 1

.3
 t
o

 
1
.6

 t
im

e
s
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

0
 

3
1

 
L
a
te

ra
l 
p
ro

je
c
ti
o
n
s
 o

f 
b
a
s
is

 c
a
p

it
u

li 
(f

e
m

a
le

) 
A

b
s
e
n
t 

A
lm

o
s
t 
n

o
t 

p
ro

n
o

u
n
c
e
 

fr
o
m

 l
a
te

ra
l 

e
d
g
e

 

C
le

a
rl

y
 

p
ro

n
o

u
n
c
e
 

fr
o
m

 t
h

e
 

la
te

ra
l 
a

d
g

e
 

1
 

1
 

1
 

2
 

1
 

2
 

1
 

1
 

1
 

1
 

2
 

1
 

1
 

1
 

1
 

2
 

1
 

1
 

1
 

1
 

2
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

3
2

 
P

o
s
it
io

n
 o

f 
la

te
ra

l 
p
ro

je
c
ti
o
n
s
 o

f 
b
a
s
is

 
c
a
p
it
u

li 
(f

e
m

a
le

) 
A

b
s
e
n
t 

A
n
te

ri
o
rl
y
 

M
id

d
le

 o
r 

p
o
s
te

ri
o
r 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

2
 

0
 

3
3

 
B

a
s
e
 o

f 
c
a
p

it
u

li 
(n

y
m

p
h
) 

H
e
x
a
g
o

n
a
l 

T
ri
a
n
g

u
la

r 
R

e
c
ta

n
g

u
la

r 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
?

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
?

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

3
4

 
L
a
te

ra
l 
p
ro

je
c
ti
o
n
s
 o

f 
b
a
s
is

 c
a
p

it
u

li 
(n

y
m

p
h
) 

M
id

le
n
g
th

 
P

o
s
te

ri
o
r 

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
?

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
?

 
1

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

3
5

 
H

y
p

o
s
to

m
e
 (

n
y
m

p
h
) 

S
tr

o
n

g
 

d
e
n
ta

te
d

 
P

o
o
re

ly
 

d
e
n
ta

te
d

 
 

1
 

0
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

1
 

?
 

1
 

0
 

0
 

1
 

1
 

0
 

0
 

?
 

1
 

0
 

1
 

1
 

1
 

0
 

0
 

1
 

3
6

 
S

c
u
tu

m
 r

a
ti
o
 l
 :
 w

 
(n

y
m

p
h
) 

l 
≥
 w

 
l 
<

 w
 

 
1

 
1

 
1

 
0

 
1

 
0

 
1

 
1

 
1

 
1

 
0

 
?

 
1

 
1

 
1

 
0

 
1

 
1

 
1

 
?

 
0

 
1

 
1

 
1

 
1

 
1

 
1

 
0

 

3
7

 
S

e
ta

e
 o

f 
a
llo

s
c
u
tu

m
 

(n
y
m

p
h
) 

W
it
h
 d

e
n
ta

ti
o

n
 

W
it
h
o
u
t 

d
e
n
ta

ti
o
n

 
 

0
 

0
 

1
 

?
 

1
 

0
 

1
 

1
 

1
 

1
 

0
 

?
 

1
 

0
 

1
 

0
 

0
 

1
 

0
 

?
 

1
 

1
 

1
 

1
 

1
 

0
 

1
 

0
 

3
8

 
S

p
u
rs

 o
f 

c
a
x
a
e
 I
I-

IV
 

(n
y
m

p
h
) 

M
o
d
e
ra

te
 

L
a
rg

e
 

R
e
d
u
c
e

d
 

(f
o
ld

-l
ik

e
) 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

0
 

?
 

0
 

0
 

1
 

0
 

0
 

1
 

0
 

?
 

0
 

1
 

0
 

2
 

0
 

0
 

1
 

1
 

3
9

 
C

o
x
a
l 
p
o
re

 (
n

y
m

p
h
) 

P
re

s
e
n
t 

A
b
s
e
n
t 

 
0

 
0

 
1

 
?

 
0

 
0

 
1

 
1

 
0

 
1

 
0

 
?

 
0

 
0

 
1

 
0

 
0

 
1

 
0

 
?

 
1

 
1

 
1

 
1

 
0

 
0

 
1

 
0

 

4
0

 
R

a
ti
o
 I
I 
: 

II
I 
s
e
g
m

e
n
ts

 o
f 

p
a
lp

i 
(n

y
m

p
h
) 

II
 <

 I
II
 m

o
re

 
th

a
n
 2

 t
im

e
s
 

II
 <

 I
II
 l
e
s
s
 t
h
a
n

 
2
 t
im

e
s
 

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
?

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
?

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

4
1

 
S

p
u
rs

 o
f 

c
o
x
a
e
 I
 

(n
y
m

p
h
) 

S
e
p

a
ra

te
d

 
C

lo
s
e
 t

o
g
e

th
e
r 

 
0

 
0

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
0

 
1

 
?

 
0

 
0

 
0

 
1

 
0

 
0

 
0

 
?

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

4
2

 
S

p
u
rs

 o
f 

c
o
x
a
e
 I
 

(n
y
m

p
h
) 

N
a
rr

o
w

 
B

ro
a
d

 
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

0
 

?
 

0
 

0
 

0
 

0
 

1
 

1
 

0
 

?
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

4
3

 
P

o
s
te

ro
m

e
d
ia

n
 s

p
u
r 

o
f 

c
o
x
a
e
 I
s
h

 
S

h
o
rt

e
r 

th
a

n
 

p
o
s
te

ro
la

te
ra

l 
S

u
b

e
q
u

a
l 
to

 
p
o
s
te

ro
la

te
ra

l 
 

0
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

1
 

1
 

?
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

?
 

0
 

1
 

1
 

0
 

1
 

1
 

1
 

0
 

4
4

 
S

c
u
tu

m
 (

la
rv

a
) 

S
h
o
rt

  
(p

o
rt

io
n
 

o
f 
s
c
u
tu

m
 

p
o
s
te

ri
o
r 

to
 

e
y
e
s
 1

/4
 o

r 
le

s
s
 o

f 
s
c
u
ta

l 
le

n
g
th

) 

M
o
d
e
ra

te
ly

 
lo

n
g
 (

p
o
rt

io
n
 o

f 
s
c
u
tu

m
 

p
o
s
te

ri
o
r 

to
 

e
y
e
s
 c

a
 1

/3
 o

f 
s
c
u
ta

l 
le

n
g

th
) 

L
o
n
g

 (
p
o
rt

io
n
 

o
f 
s
c
u
tu

m
 

p
o
s
te

ri
o
r 

to
 

e
y
e
s
 c

a
 1

/2
 

o
f 
s
c
u
ta

l 
le

n
g
th

) 

2
 

2
 

1
 

0
 

0
 

0
 

0
 

1
 

2
 

2
 

0
 

?
 

0
 

1
 

2
 

0
 

2
 

2
 

2
 

?
 

0
 

2
 

0
 

2
 

0
 

2
 

2
 

2
 

4
5

 
I 
s
e
g
m

e
n
t 
o
f 

p
a
lp

i 
(l

a
rv

a
) 

P
re

s
e
n
t 

R
e
d
u
c
e

d
 

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
?

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
?

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
4
6

 
E

y
e
s
 (

la
rv

a
) 

U
n
d
iv

id
e

d
 

D
iv

id
e
d

 
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

?
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

?
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
 

Stellenbosch University  https://scholar.sun.ac.za



61 

 

2.3 Molecular data generation  

DNA extraction, primer design, amplification, sequencing and validation of DNA 

products, via GenBank blasting, were performed as described in Chapter 2 (see 

Chapter 2: 2). For this study DNA sequences were generated for two mitochondrial 

genes (mtDNA), Cytochrome c oxidase I (COI) and 16S rRNA (16S), and three 

nuclear genes (nDNA), Histone 3 (H3), 28S rRNA (28S) and the Internal Transcribed 

Spacer 2 region (ITS II) (Table 3.3).  

 

2.4 Sequence editing and alignment 

Sequences were visually inspected and edited using the program BioEdit 7.1.3.0 

(Hall 1999). Once confirmed, sequences were aligned by the CrustalW Multiple 

Alignment (Thompson, Higgins, and Gibson 1994) in BioEdit 7.1.3.0 (Hall 1999). To 

limit missing data, ends of all genes were trimmed, and gaps were inserted in 16S, 

28S and ITS II to best align hypervariable regions associated with loops in the 

secondary structures. Furthermore, 32 bp of the 16S hypervariable region (between 

positions 152 bp and 186 bp) were removed due to ambiguous sequence alignment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Gene regions, primer names, primer sequence and the edited sequence length of the amplified product 
used in this chapter. The optimal annealing temperatures of the primer pairs and  the sources of the primers used 
are also indicated. 

 

REGION GENE F/R 
PRIMER 
NAME  

EDITED 
SEQUENCE 

LENGTH (bp) 

OPTIMAL 
ANNEALING 

TEMPERATURE SOURCE 

mtDNA 

16S 

Forward 16+1 
5'-

CTGCTCAATGATTTTTTAAATTGCTGTGG-3' 
378 52⁰C 

Black and Piesman 1994 

Reverse 16S-1 5'-CCGGTCTGAACTCAGATCAAGT-3' Black and Piesman 1994 

COI 

Forward AR-U-COIa 5’-AAACTRTKTRCCTTCAAAG-3’ 

664 45⁰C 

Cangi et al. 2013 

Reverse AR-L-COIa 5’-GTRTTAAARTTTCGATCSGTTA-3’ Cangi et al. 2013 

nDNA 

ITS II 

Forward RIB-8 5’-GTCGTAGTCCGCCGTC-3’ 

273 62⁰C 

Rees, Dioli and Kirkendall 
2003 

Reverse RIB-11 5’-GAGTACGACGCCCTACC-3 
Rees, Dioli and Kirkendall 
2003 

28S 

Forward 28v 5'-AAGGTAGCCAAATGCCTCG-3' 

632 55⁰C 

Hillis and Dixon 1991 

Reverse 28x 5'-GTGAATTCTGCTTCACAATGATAGGA-3' Hillis and Dixon 1991 

H3 

Forward HyH3F 5'-GTGGATGGCRCAMARGTTGG-3' 

268 56.5⁰C 

Designed for present study 

Reverse HyH3R 5'-GCAAGAGYACCGGWGGVAAR-3' Designed for present study 
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2.5 Phylogenetic reconstruction and divergence dating 

Trees were generated for each data type separately to explore potential conflict 

among phylogenies. In contrast to the morphological phylogeny containing all 

currently recognised species, the individual gene trees only contained 24 of the 27 

recognised species (Figs 3.1 and 3.2; Sup. Figs 4 and 5). Since combined analyses 

of nDNA, mtDNA and morphological character fragments have been shown to 

generally increase resolution for closely related lineages (Klompen et al. 2000; 

Murrell, Campbell, and Barker 2001; Cruickshank 2002; Matthee et al. 2004; de 

Queiroz and Gatesy 2007), the phylogenetic relationships were also derived from a 

combined matrix of all available data (COI, 16S, 28S, H3, ITS II and 47 distinct 

morphological characters).  

 

All phylogenetic reconstructions were based on Parsimony (MP) and Bayesian 

inference (BI). The MP analysis was performed in PAUP 4.0b10 (Swofford 2001), 

using the heuristic search option, with TBR branch swopping and random taxon 

addition. In instances where multiple equally parsimonious trees were retrieved, only 

1000 equally parsimonious trees were saved during each replicate. Nucleotide 

substitutions were unweighted and the robustness of nodes was assessed by the 

bootstrap method using a 1,000 replicates (Felsenstein 1985). Nodal bootstrap 

values > 70% were considered well supported. For the Bayesian analyses, 

jModelTest 0.1.1 (Guindon and Gascuel 2003; Posada 2008) and the Akaike 

Information Criterion (AIC) (Akaike 1973) was used to determine the best-fit model to 

define as the priors for each gene fragment separately (Posada and Buckley 2004). 

The Standard Discrete Model was used for the morphological dataset (Ronquist and 

Huelsenbeck 2003). To determine the posterior probability (PP) of associations, we 

used MrBayes 3.2.5 (Ronquist et al. 2012). These probabilities were generated in 

two parallel Markov Chain Monte Carlo (MCMC) simulations using five chains for 

5,000,000 generations, saving one tree in every 1,000 generations. Burnin of 10% of 

the total generations was determined via parameter convergence in Tracer 1.5 

(Rambaut and Drummond 2007) after standard deviation (SD) of split frequencies 

had reached stationarity. 

 

Divergence dating was performed on the recognised 24 species for which 

comprehensive molecular data were available. A lognormal relaxed molecular clock 
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approach (Drummond et al. 2006) was utilized in BEAST 1.8.2 (Drummond et al. 

2012). Input files were generated in BEAUti 1.8.2 (Drummond et al. 2012) using 

fossil calibrated divergence dates and the best-fit models as determined by 

jModelTest 0.1.1 (Guindon and Gascuel 2003; Posada 2008). Early runs were 

evaluated in Tracer 1.5 (Rambaut and Drummond 2007) to optimise run-time 

parameters before final analysis. We used exponential priors for the established 

divergence date calibration. Hard minimum and relaxed maximum bounds were set 

so that 95% of the probability was contained around the divergence date. The 

divergence date of the Nosomma–Hyalomma lineage from Rhipicephalus has been 

proposed to have occurred 19 Mya (Balashov 1994; Murrell, Campbell, and Barker 

2001), but the amber fossil data suggests the genus was present between 35-50 

Mya (de la Fuente 2003). The divergence date of the origin of Hyalomma was thus 

set to fall between 35-50 Mya. Data were treated as unpartitioned and the Birth-

Death Process was used as tree prior. The consensus topology MCMC simulation 

ran for 100,000,000 generations, sampling every 10,000 generations. Validation of 

convergence and mixing was assessed in Tracer 1.5 (Rambaut and Drummond 

2007) to ensure that all effective sample size (ESS) values were > 200. 

TreeAnnotator 1.8.2 (Drummond et al. 2012) was used to summarize trees, after 

discarding 2,000 trees as burn-in. 

 

The dated consensus tree was then evaluated in RASP 3.2 (Yu et al. 2015), where 

the current zoogeographic distribution of extant taxa was aligned to plot ancestral 

distributions at each node. This was done via Statistical Dispersal-Vicariance 

Analysis (S-DIVA) (Yu, Harris, and He 2010). S-DIVA is an advanced form of DIVA 

(Ronquist 2001) designed to circumnavigate impossible ranges. The software also 

models events such as dispersal, extinction, vicariance and duplication, all the while 

not making assumptions on biogeographic patterns (Ronquist 2001). It can thus be 

very useful in reconstructing ancestral distributions among organisms with a shared 

evolutionary history (Ronquist 1997).  
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3. Results 

 

3.1 Taxonomy of Hyalomma  

Among 23 recognised species and for which COI data was available, the average 

COI sequence divergence between species is 11.46% (SD = 2.5%) and within 

species the average diversity is 0.50% (SD ± 0.6%) (Table 3.4). In sharp contrast to 

this general pattern, the sequence divergence between H. nitidum and H. truncatum 

from western Africa is 1.12% (SD ± 0.59%), and between H. marginatum and H 

turanicum it is 0.44% (SD ± 0.16%) (Table 3.4). On the other side of the spectrum, 

an intraspecific sequence divergence of 10.22% (SD ± 0.38%) separated northern 

African H. truncatum and southern African H. truncatum (Table 3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAMPLE 
SIZE (N) 

AVERAGE 
SEQUENCE 

DISTANCE (%) 
STANDARD 

DEVIATION (SD) RANGE 

Between 24 recognised Hyalomma species 84 11.46% ±2.47% 0.44-16.62% 

Between 8 GenBank available species of Hyalomma 37 10.93% ±2.78% 2.34-15.68% 

Within 24 recognised Hyalomma species 84 0.50% ±0.57% 0.00-2.096% 

Within 8 GenBank available species of Hyalomma 37 0.81% ±1.21% 0.00-3.51% 

     

Between H. truncatum & H. spp. n.  (5 + 2) 10.28% ±0.38% 9.78-10.71% 

Within H. truncatum (NORTHERN) 5 2.10% ±0.76% 0.31-2.80% 

Within H. spp. n. (Recognised as H. truncatum from 

SOUTHERN Africa) 
2 0.62% ±0.00% 0.62% 

Between H. nitidum & H. truncatum (western) (3 + 3) 1.12% ±0.59% 0.31-1.71% 

Between H. nitidum & H. truncatum (NORTHERN) (3 + 5) 1.67% ±0.83% 0.31-2.64% 

Between H. nitidum & H. spp. n.  (3 + 2) 10.04% ±0.08% 9.94-10.09% 

Between H. albipermatum & H. truncatum (NORTHERN) (3 + 5) 7.30% ±0.35% 6.87-7.76% 

Between H. albipermatum & H. spp. n. (3 + 2) 10.33% ±0.09% 10.25-10.40% 

Between H. albipermatum & H. nitidum (3 + 3) 6.63% ±0.28% 6.37-7.14% 

Between H. spp. n. & H. impressum (2 + 2) 11.34% ±0.18% 11.18-11.49% 

     

Between H. rufipes (NORTHERN : SOUTHERN) (6 + 4) 2.67% ±0.25% 2.17-2.95% 

Within H. rufipes  (NORTHERN) 6 0.35% ±0.27% 0.00-0.78% 

Within H. rufipes (SOUTHERN) 4 0.41% ±0.21% 0.00-0.62% 

     

Between H. marginatum & H. turanicum (3 + 4) 0.44% ±0.16% 0.16-0.62% 

Within H. marginatum 3 0.10% ±0.09% 0.00-0.16% 

Within H. turanicum 4 0.31% ±0.34% 0.00-0.62% 

Table 3.4: COI sequence distances within and between Hyalomma species. GenBank comparisons are 
based on sequences provided in Sup. Table 2. 
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3.2 Phylogenetic associations 

Individual phylogenetic analyses of mtDNA, nDNA and morphology were not all 

equally informative in resolving the evolutionary history of Hyalomma. The faster 

evolving COI and 16S mtDNA gene trees separately (data not shown) and 

combined, and the morphological data set, showed a higher degree of resolution 

when compared to the individual (data not shown) and combined nDNA data sets 

(28S, ITS II and H3) (Sup. Fig 5). The different molecular data sets revealed different 

outcomes, but none of the conflicting nodes had high bootstrap or posterior 

probability values (Sup. Figs 4 and 5). The combined mtDNA topology showed the 

most resolution and supported the monophyly of 22 of 25 Hyalomma (13 internal 

nodes had PP and or BS support). On the other hand, the combined nDNA only 

supported the monophyly of 11 Hyalomma species and two internal nodes displayed 

PP and BS support. The only relationship that was supported by both methods and 

both data sets was the sister taxon relationship between H. arabica and H. 

rhipicephaltoidies. Interestingly a further two nodes are supported by either BS or PP 

(the node supporting the monophyly of H. hussaini and H. kumari and the node 

supporting the monophyly of H. asiaticum, H. dromedarii, H. impeltatum, H. punt, H. 

schulzei and H. somalicum (although the latter remains unresolved internally). While 

nDNA may show little congruency with mtDNA data, it is not in conflict with that 

presented (Sup. Figs 4 and 5). The morphological data alone also showed weak 

support for many of the relationships (Sup. Fig 3), but also in lieu of no strongly 

supported conflict. Combining the data in a single supermatrix or “total evidence 

approach” gave the best resolution (also see Klompen et al. 2000; Murrell, Campbell, 

and Barker 2001; de Queiroz and Gatesy 2007). 

 

The combined total supermatrix comprised 2,242 characters, for 85 taxa (H. 

brevipunctata, H. franchinii and H. hystricis were omitted due to a lack of DNA data). 

The optimal prior model for the BI analysis were nst = 6, rates = gamma for all five 

gene regions. This same data set revealed 545 parsimony informative characters 

and the MP analysis saved a 1,000 equally parsimonious trees containing 1,680 

steps. The majority of the branch swapping was confined to associations among 

individuals within the same species. Overall, the MP and BI analyses resulted in a 

fairly well supported topology where 5 higher level clades supported by both 
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parsimony and posterior probabilities could be identified (1-5; Fig 3.1). In addition, 

some substructure was also identified within two of these clades (4 and 5; Fig 3.1) 

 

The monophyly of Hyalomma was well supported (BS = 100%, PP = 1.00) (Fig 3.1). 

Although seven interspecific nodes were weakly supported, five of these were 

related to species complexes where the species status of these lineages have been 

questioned: Specifically the nodes reflecting the associations between H. nitidum, H. 

truncatum (northern and southern lineage; Chapter 2) and H. impressum and also 

the node describing the relationships among H. marginatum and H. turanicum (Fig 

3.1).  Apart from these, the monophyly of the rest of the Hyalomma species is 

supported by significant PP and BS ranging from 77% for H. excavatum to > 87% for 

the remaining species (Fig 3.1). The combined analysis also increased the support 

for some associations suggested by the individual data set trees. For example: The 

monophyly of H. lusitanicum, H. excavatum and H. anatolicum was previously found 

but not supported and now has stronger support (previously a PP = 0.85; now BS = 

86%, PP = 1.00). The placement of H. aegypticum is also better supported (BS = 

100%, PP = 1.00). More resolution is also obtained regarding the more basal 

placement of the clade containing H. arabica and H. rhipicephaloides, and finally the 

clade containing H. glabrum, H. marginatum, H. turanicum and H. rufipes (Fig 3.1). 
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3.3 Divergence dating 

The BEAST topology based on molecular data only (COI, 16S, 28S, H3, ITS II) (Fig 

3.2) differs in some respects from the supermatrix topology (Fig 3.1). The first of 

these differences concerns lineage (5.4), the placement of H. isaaci, which moves to 

a more basal position but still within clade five (Figs 3.1 and 3.2). The second 

difference concerns the relationship between southern H. truncatum and H. 

impressum. Importantly, however, none of these nodes had high support in the 

combined analysis where all data were used. The exact biogeographic interpretation 

and dating of these species are thus speculative and will not be discussed as part of 

this section. 

 

Molecular clock estimates and S-DIVA analysis suggest Hyalomma (senso stricto) 

likely had an Oriental origin between 36.25-59.62 Mya (Fig 3.2). The first divergence 

within the genus likely occurred around 36.25 Mya (95% HPD 34.75-39.80 Mya) with 

a westward expansion into the Palearctic region (Fig 3.2). Since this point, members 

of the genus diverged repeatedly at regular intervals giving rise to the present 

species composition and range (Fig 3.2). From the Palearctic region, the southward 

expansion into the Afrotropical region likely occurred in two separate events: 22.69 

Mya (95% HPD 16.79-25.08 Mya) and 16.23 Mya (95% HPD 12.57-19.40 Mya) and 

were probably followed by regional vicariant events as suggested by S-DIVA (Yu, 

Harris, and He 2010), showing a conserved ancestral distribution in in a number of 

lineages (5.1, 5.2, 4.1 and 4.2) (Fig 3.2). However it would appear a number of 

dispersal events have reached their peak in more recent times (< 2 Mya). This has 

led to the Oriental region to be recolonized by species, such as H. anatolicum, H. 

dromedarii and H. isaaci and H. scupense (Fig 3.2). Hyalomma excavatum and H. 

anatolicum have dispersed back into the Afrotropical, as the ancestral lineage likely 

became restricted in the Palearctic region approximately 10.82 Mya (95% HPD 8.03-

14.06 Mya) (Fig 3.2). Furthermore, the Palearctic region has been recolonized by H. 

dromedarii and H. impeltatum as they have likely dispersed from an Afrotropical 

origin. There is little indication of direct dispersal from the Afrotropical region to the 

Oriental region and vice versa. It would appear stepwise dispersal events between 

these two regions have occurred through, or in conjunction with, the Palearctic 

region (Fig 3.2).  
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4. Discussion 

 

4.1 Phylogenetic assessment  

The present study provides strong molecular support for the monophyly of 

Hyalomma (Balashov 1994; Barker and Murrell 2004; Murrell, Campbell, and Barker 

2001). Although H. brevipunctatum, H. franchinii, H. hystricis are not incorporated 

into our complete data matrix, supplementary data based on morphological data 

alone suggest H. brevipunctatum shares a monophyletic origin with H. hussaini and 

H. kumari. They share 46 of the 47 characters compared in this study and are 

distinguished from all other Hyalomma by the shape of the basis capituli, which is 

dorsally triangular and hexagonal in all other Hyalomma. Furthermore the three 

species share similar ranges, and both H. kumari and H. brevipunctatum are found 

solely in the Oriental region. Hyalomma franchinii is nested in a clade comprising H. 

lusitanicum, H. excavatum, H. anatolicum and this association is supported by 41 of 

the 46 morphological characters and furthermore, adults of the four species share 

diffused ivory-coloured pigments on their legs as opposed to other Hyalomma which 

either are more uniformly brown or the ivory-coloured pigments form more distinct 

rings and stripes. Additionally H. franchinii shares similar distribution with these 

species over north Africa and south-western Asia. Finally, the position of H. hystricis 

is totally unresolved. The lack of characters for H. hysterics at laval and nymph 

stages, means the species appears to share an equal association to a number of 

different Hyalomma species making it difficult to speculate on its position at this 

point.    

 

Combining the data into a single matrix increases the support for several of the 

interspecific associations (Fig 3.1; Sup. Figs 3, 4 and 5). The total evidence suggests 

the existence of at least five well resolved groups within the genus, and within these 

additional statistical and BS support was recovered for several additional subgroups 

(Fig 3.1). Despite the reported limitations of morphological data when drawing 

phylogenenies for ticks (such as structural changes during feeding, Lv et al. 2014; 

gynandromorphisms, Buczek, Bartosik, and Buczek 2014; hybridization, Rees, Dioli, 

and Kirkendall 2003), the combined topology presented herein supports many of 

previous hypotheses based on morphology alone. For example, the relationships 

among H. dromedarii, H. somalicum, H. impeltatum and H. punt (subclade 4.2; Fig 
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3.1) form part of a larger lineage including H. asiaticum and H. schulzei  (clade 4; Fig 

3.1) as previously proposed (see Apanaskevich, Schuster and Horak 2008; 

Apanaskevich and Horak 2010; Apanaskevich, Filippova and Horak 2010). The close 

relationships between H. anatolicum, H. excavatum and H. lusitanicum are also 

corroborated in our study (subclade 5.2; Fig 3.1) (Hoogstraal and Kaiser 1959; 

Apanaskevich and Horak 2005), and so are the reportedly close relationships 

between H. glabrum, H. marginatum and H. rufipes (subclade 5.3; Fig 3.1) 

(Apanaskevich and Horak 2008a; Apanaskevich and Horak 2009). The topology 

presented herein not only supports most of the previous morphological suggestions 

but also advanced our understanding on some other phylogenetic relationships 

proposed in the literature. For example, Hoogstraal and Kaiser (1959) and 

Apanaskevich and Horak (2009) suggested a close relationship between H. 

somalicum and H. impeltatum. Although the data presented herein support a 

subclade association including both these species (subclade 4.2; Fig 3.1), it 

advanced our knowledge by strongly suggesting sister taxon relationships between 

H. impeltatum and H. punt and also between H. somalicum and H. dromedarii 

(subclade 4.2; Figs 3.1 and 3.2).  

 

Despite good total evidence support for the majority of the phylogenetic hypotheses 

based on morphology alone, the addition of molecular data also provided new 

insights to help resolve the questionable vacillations in the taxonomy of some 

species.  Extremely low levels of genetic differentiation was detected between H. 

marginatum and H. turanicum (at the mtDNA COI level = 0.44% ± 0.16%; Table 3.4). 

This level of differentiation is much more similar to intraspecific divergences as 

suggested by Zhang and Zhang (2014), and when considering the paraphyletic 

clustering in the tree (Fig 3.1), we suggest that H. turanicum should be synonymized 

under H. marginatum. The latter is based on priority since H. turanicum 

(Pomerantzev 1946) was first described as a subspecies of H. marginatum (Koch 

1844). Whether subspecies status should be reinstated, would require a much more 

detailed investigation at the phylogeographic level. A second point is the relationship 

between H. albiparmatum, H. impressum, H. nitidum, and H. truncatum (sublineage 

5.1; Fig 3.1): The validity of H. nitidum (Schulze 1919) and H. albiparmatum (Schulze 

1919) has been subject to much debate (see Hoogstraal 1956; Feldman-Muhsam 

1962; Walker 1974; Hoogstraal 1979; Camicas et al. 1998; Tomassone et al. 2005; 
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Apanaskevich and Horak 2008b). Most recently, Apanaskevich and Horak (2008b) 

proposed that the phenotypic variation observed between H. albiparmatum, H. 

nitidum and H. truncatum is simply due to the large distribution range of a single 

species and the former two should rather be synonymised into H. truncatum (which 

has priority). The molecular tree and sequence distances among these putative 

species partly support this hypothesis in strongly suggesting that H. nitidum should 

be synonymized with H. truncatum (sublineage 5.1; Fig 3.1; Table 3.4). In 

accordance with the rules of priority of the International Code for Zoological 

Nomenclature, H. nitidum represents a junior synonym of H. truncatum (west and 

eastern African lineages; Fig 3.1; Chapter 2). Hyalomma truncatum however are 

found to be further paraphyletic if H. albiparmatum is considered to be a unique 

species entity (subclade 5.1; Fig 3.1). Based on sequence distances and the 

topology (Figs 3.1 and 3.2; Table 3.4; Zhang and Zhang 2014), H. albiparmatum is 

unique and genetically diverse from all other taxa and should thus retain its species 

status. If this is followed, the southern lineage of H. truncatum needs to be described 

as a separate species. Interestingly, H. truncatum was first described and named by 

Koch (1844) and the type specimen is from Senegal. The northern African (eastern 

and western Africa clades) lineage which incorporates Senegalese specimens 

should thus retain the original name. However, H. truncatum has been described in 

Africa under a number of synonyms. Many of these were described within narrow 

margins of the equator and thus could be problematic to assign. The earliest and 

most reliable synonym that could form part of the southern African lineage is H. 

zambesianum, Schulze and Schlottke (1930). Hyalomma zambesianum was 

collected on the banks of the Zambezi River, although it is unclear as to the exact 

location or country (Schulze and Schlottke 1930). Depending on the validation of the 

type specimens to the southern African specimens, a synonym, such as the above, 

may be favoured or a new description and naming may need to be issued. For the 

purpose of the rest of this dissertation we refer to the southern lineage of H. 

truncatum as Hyalomma species nova (H. sp. nov.). 

 

4.2 Divergence time estimates and faunal exchanges 

At the larger continental scale the diversification in Hyalomma, giving rise to five 

lineages, likely begun 36.25 Mya (95% HPD 34.75-39.80 Mya). S-DIVA results 

suggested that the common ancestor was probably widespread over the larger 
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Palearctic and possibly also the Oriental regions (Fig 3.2). The current species 

composition and distribution would suggest that regular faunal exchanges occurred 

in a stepwise fashion between zoogeographic regions followed by subsequent 

vicariant events (Fig 2.2). These mechanisms of vicariance could have affected the 

evolution of Hyalomma directly (through affecting natural dispersal of ticks) or 

indirectly (by affecting a broad range of faunal hosts). We propose that host 

movement is probably more influential in this. Tick dispersal off the host is limited 

(Randolf 1998; Anderson and Magnarelli 2008; Cangi et al. 2013), and subsequently 

a number of studies have indicated host selection among ticks is a key factor in their 

dispersal and range (Scott et al. 2001; Madhav et al. 2004; Kempf et al. 2009; Beati 

et al. 2012; Cangi et al. 2013).  

 

Hyalomma kumari and H. hussaini represent the earliest diverging lineage within the 

genus (clade 1; Fig 3.2) followed by a lineage containing H. rhipicephaloides and H. 

arabica (clade 2; Fig 3.2). The divergence between clades one and two, 36.25 Mya 

(95% HPD 34.75-39.80 Mya) was likely caused by a vicariant event on the Oriental-

Palearctic boundary. Interestingly, approximately 35 Mya, major uplift of the 

Himalayas has been reported (due to the collision of the Indian and Eurasian Plates) 

and it is this likely that this event could have contributed towards the early 

diversification in Hyalomma (Molnar and Tapponnier 1977; Najman et al. 1994; 

Rashid 2014; Tamma and Ramakrishnan 2015). A number of fairly rapid 

divergences, probably in the central- and western-Palearctic region (due to the 

distribution of extant taxa and S-DIVA results), followed during the Oligocene 

between 31.53-27.43 Mya (95% HPD 34.02-20.07 Mya). These finally gave rise to 

another monophyletic assemblage: H. aegyptium (clade 3; Fig 3.2), and the common 

ancestor of the rest of the genus (clades 4 and 5; Fig 3.2). The divergence of clade 

three, and occurrence of the common ancestor of clades four and five, correlate to a 

time period when the eastern Mediterranean and Paratethys seas were undergoing 

many structural changes (Rögl 1999). Outcrops of land were continuously joining 

and segregating from mainland Eurasia during this period and it is possible that 

Hyalomma may have become isolated on such land bodies, driving speciation (Rögl 

1999). The divergence of the common ancestor of clade four, 22.69 Mya (95% HPD 

16.79-25.08 Mya), and the common ancestor of clade five 16.23 Mya (95% HPD 

12.57-19.39 Mya), both from a Palearctic-Afrotropical origin, suggests at least two 
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early dispersal events into the Afrotropical region occurred. The latter date partly 

overlaps with the formation of the landbridge between Africa and Eurasia 16-20 Mya 

(Rögl 1999; Cox 2000; Krijgsman 2002; Koufos, Kostopoulos, and Vlachou 2005; 

Harzhauser et al. 2007; Sen 2013).  

 

The subsequent divergence events in clades and subclades would appear to have 

evolved independently within specific areas, with only very recent re-colonization 

events among zoogeographic regions. Certainly H. albiparmatum, H. impressum, H. 

truncatum and H. sp. nov. (subclade 5.1; Fig 3.2), and H. dromedarii, H. impeltatum, 

H. punt and H. somalicum (subclade 4.2; Fig 3.2) have strong Afrotropical origins. 

Furthermore, similar can be said for H. arabica and H. rhipicephaloides (clade 3; Fig 

3.2), H. asiaticum, H. schulzei and H. scupense (subclade 4.1; Fig 3.2), and H. 

anatolicum, H. excavatum and H. lusitanicum (subclade 5.2; Fig 3.2) in the 

Palearctic region, and H. hussaini and H. kumari (clade 1; Fig 3.2) in the Oriental 

region. The divergence of H. glabrum, H. rufipes and H. marginatum (subclade 5.3; 

Fig 3), appears to be the only lineage with mixed zoogeographic origins, probably 

diversifying on the fringe of the Afrotropical and Palearctic regions. These 

divergences during the Miocene and Pliocene have occurred at points of huge 

biogeographic activity, such as shifts in habitats and biomes, and the formation of 

mountains, drainage systems and lakes, in Africa, Asia and Europe (Csontos et al. 

1992; Jolivet and Faccenna 2000; Retallack 2001; Briggs 2003; Sanmartin 2003; 

Jacobs 2004; Wichura et al 2010; Salzburger, Van Bocxlaer, and Cohen 2014), 

which have been used to substantiate speciation in a number of taxa (Matthee and 

Robinson 1997; Sanmartin 2003; Lou et al. 2004; Moodley and Burford 2007; Pisano 

et al 2015). This would suggest allopatric speciation has been a key driver of many 

Hyalomma species, yet it is difficult to speculate the exact event or formation 

involved in each of the divergence events. For one, exact ranges among extant 

Hyalomma species is most often very loosely defined to countries and host 

associations, may be more diverse than recorded (see Apanaskevich and Horak 

2005; Apanaskevich and Horak 2008a; Apanaskevich, Santos-Silva, and Horak 

2008; Apanaskevich, Schuster, and Horak 2008; Apanaskevich, Filippova, and 

Horak 2010; Apanaskevich and Horak 2010). The extent of distributions have been 

quantified on linking morphological identification, with older literature, which may be 

problematic. This means correlating geographical formations (such as rivers, lakes 
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and mountains) to specific breaks among many Hyalomma species, or ancestral 

hosts, is a difficult task.  

 

4.3 African biogeography and the evolution of H. truncatum and H. sp. nov. 

From a biogeographic viewpoint, it is interesting to see that the same geographic 

north-south divide present in H. truncatum-H. sp. nov. is also present in H. rufipes 

(Fig 3.1). Although the split in H. rufipes is also well supported by BS and PP (Fig 

3.1), the two H. rufipes lineages are monophyletic and the mtDNA COI differentiation 

is much lower (2.67% (SD ± 0.25%)). More so, the divergence date is relatively 

recent in H. rufipes (2.34 Mya (95% HPD 1.33-3.41 Mya) and much older in H. 

truncatum 12.02 Mya (95% HPD 8.55-14.26 Mya) (Fig 3.2). From this it can be 

argued that different biogeographic events separated these two lineages. 

Interestingly, within H. rufipes more substructure was also evident within the 

southern region of the range (Cangi et al. 2013; Chapter 2). The complexity of 

finding the mechanisms involved in tick speciation are also exemplified by this study 

where it was suggested that life history traits, particularly juvenile survival and 

competition with other Hyalomma species were probably responsible for the 

observed fine scale genetic structure. In the case of H. truncatum showing a much 

older isolation, the effects of the development of the Brachystegia woodland, the 

Zambezi River and rifting in east Africa could have also played a major role since 

multiple potential hosts show similar geographic vicariance (for example see Freitag 

and Robinson 1993; Matthee and Robinson 1997; Arctander, Johansen, and 

Coutellec-Vreto 1999; Lehmann et al. 1999; van Alphen-Stahl, Bloomer, and Crowe 

2005), but the exact dates do not correlate well. The initiation of the East African Rift 

Valley probably began 30 Mya, and was a notable geological formation by 15 Mya 

(subsequently the same time that the drainage pattern of the Zambezi was 

established; Moore and Larkin 2001), while later uplift and the development of major 

rift lakes only occurred post 7 Mya (see Chorowicz 2005; Trauth et al. 2005; Wichura 

et al 2010; Roberts et al. 2012; Salzburger, Van Bocxlaer, and Cohen 2014). The 

Brachystegia woodland has as yet only been suggested to have acted as a key 

dispersal barrier over more recent times (Matthee and Robinson 1997; Lehmann et 

al. 1999; van Alphen-Stahl, Bloomer, and Crowe 2005).  Probably the most reliable 

reason for this Hyalomma divergence was caused by an isolation event in southern 

Africa and the development of different breeding cycles that can now act as 
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contemporary barries between the hemispheres. Adult Hyalomma in general have 

been noted to be more active during warmer months (Yousfi-Monod and 

Aeschlimann 1986; Boulkaboul 2003; Bente et al. 2013) and thus shifts in 

reproduction cycles have been used to argue a contemporary barrier in the region for 

H. truncatum and H. sp. nov. (see Chapter 2). However, the later divergence 

between H. albiparmatum and H. truncatum around 6.51 Mya (95% HPD 4.98-9.04 

Mya) aligns better with biogeographic barriers that may have been driven by 

vicariance among hosts species. The isolation of grassland habitats (Jacobs 2004), 

rifting in parts of the western branch of the East African Rift Valley around 6 Mya 

(see Delvaux et al. 1992; Ebinger 1989; Logatchev, Beloussov, and Milanovsky 

1972; Partridge, Wood, and deMenocal 1995), and the development of many rift 

lakes 7-3mya (see Cohen, Soreghan, and Scholz 1993; Stiassny and Meyer 1999) 

have been suggested as major drivers of speciation in a number of possible host 

species over this time frame, including springhare, Padetes spp. (Matthee and 

Robinson 1997) and bushbuck, Tragelaphus spp. (Moodley and Burford 2007). 

These may have led to a prolonged period of isolation, enough to have caused the 

divergence between H. albiparmatum and H. truncatum.   
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Summary 

 

 
Phylogeographic results indicated that H. truncatum comprised two distinct lineages 

with a southern and a northern African clade. Furthermore, strong regional 

partitioning was observed for H. truncatum across northern Africa lineages, 

suggesting up to five phylogroups. In southern Africa there was no additional 

substructure. In northern Africa, we proposed that glacial cycles caused habitat 

changes that resulted in the disruption of geneflow in host species. The latter 

probably played a key role in phylogroup formation. In southern Africa, the lack of 

phylogeographic patterning is likely due to the absence of a single barrier affecting 

multiple hosts allowing for a high degree of passive dispersal across the region. 

However, the sequence distance between the northern and southern H. truncatum 

clades is high and more representative of interspecific values within Hyalomma. 

Haplotype networks and ancestral population demographics also suggest the two 

lineages evolved independently. In concert these data suggest that the two lineages 

may possibly represent two distinct species, favouring H. truncatum for the northern 

clade. The distinct species status for H. truncatum from southern Africa (H. sp. nov.), 

was investigated by conducting full phylogenetic analyses of the genus. The 

phylogenetic analyses indicated that Hyalomma likely arose in the oriental region 

and begun to diversify 36.25 Mya (95% HPD 34.75-39.80 Mya) from a westward 

expansion into the Palearctic region. Speciation events occurred at regular intervals, 

notably with the expanse of grasslands and the formation of putative geological 

structures, such as rivers and mountains. Additionally, it is possible that climatic 

oscillations and thus habitat shifts from the Miocene onwards may have also aided in 

later speciation events. The range of extant taxa suggest multiple faunal exchanges 

between zoogeographic regions. These exchanges seem to align with both those 

seen in other species, and points to the importance of tectonic uplift and lowered sea 

levels around continental margins. In total, there are five monophyletic species 

groups within Hyalomma. The incorporation of molecular data has revealed a 

number of outcomes for consideration: Firstly, H. marginatum and H. turanicum, 

previously believed to be distinct entities, show limited evolutionary partitioning. 

Secondly, our results corroborate Cangi et al. (2013) and propose two clades for H. 

rufipes across the Afrotropical region that dissect over Mozambique (northern and 
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southern). Thirdly, we found limited indications of disparity between H. truncatum 

and H. nitidum, and thus believe the latter should be considered a synonym of H. 

truncatum. Finally, we find limited support for a hypothesis that H. albiparmatum may 

also represent a synonym of H. truncatum. Sequence distance between H. 

albiparmatum and H. truncatum correlates closer to that seen between other 

currently recognised species. The high sequence distance among H. truncatum 

clades and the paraphyletic clustering of these lineages within the genus, provide 

novel support for the hypothesis that the southern clade be regarded as a new 

species of Hyalomma. 
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Supplementary Table 1: Geographic sampling localities and regions for specimens collected and incorporated 
in Chapter 3.  

 

Country Location/Region 
Location 

Code GPS 

Number of vouchers/sequences 
 

Specimens # COI 
H3  

(phased) 
CRT 

(phased) 
GenBank 

Accession # 

 SOUTHERN AFRICA     
 

 SOUTHERN AFRICA 133 97 50 46 
 

Mozambique 

Cahora Bassa CB 15.33S 31.52E 11 9 22 22 
COI: KT999398-999406 
CRT: KT999594-999604 
H3: KT999646-999656 

Manica CR 18.95S 32.79E 17 6   
COI: KT999407-999412 
CRT: 
H3: 

Namibia 

Gobabis GH 22.42S 18.77E 15 13 28 24 
COI: KT999413-999425 
CRT: KT999620-999631 
H3: KT999673-999686 

Mariental MR 24.63S 17.97E 10 10   
COI: KT999449-999458 
CRT: 
H3: 

Otjiwarongo OW 20.47S 16.59E 17 16   
COI: KT999459-999474 
CRT: 
H3: 

South Africa 

Upington UP 28.34S 21.23E 17 11   
COI: KT999475-999485 
CRT: 
H3: 

Three Sisters WC 31.93S 23.00E 6 6   
COI: KT999486-999491 
CRT: 
H3: 

Free State FS 28.20S 26.46E 9 3   
COI: KT999492-999494 
CRT: 
H3: 

Kruger National Park KN 23.99S 31.55E 18 13   
COI: KT999426-999438 
CRT: 
H3: 

Kuruman KU 27.46S 23.43E 13 10   
COI: KT999439-999448 
CRT: 
H3: 

 NORTHERN AFRICA     
 

 WESTERN AFRICA 84 66 62 58 
 

Benin Central Benin BE 9.33N 2.45W 5 5   
COI: KT999574-999578 
CRT: 
H3: 

Burkina 
Faso 

Burkina Faso BF 11.56N 3.32W 15 11   
COI: KT999560-999570 
CRT: 
H3: 

Mali Banamba ML 13.57N 7.14W 1 1   
COI: KT999579 
CRT: 
H3: 

Nigeria 

Fufore FF 9.14N 12.35E 16 16 32 30 
COI: KT999529-999544 
CRT: KT999605-999619 
H3: KT999657-999672 

Jos GY 9.81N 8.83E 15 15   
COI: KT999545-999559 
CRT: 
H3: 

Senegal 

Dielmon SD 
13.43N 
16.24W 

15 2 2 2 
COI: KT999497-999498 
CRT: KT999580 
H3: KT999717 

Sine-Saloum SS 
14.56N 
16.25W 

15 14 28 26 
COI: KT999499-999512 
CRT: KT999581-999593 
H3: KT999703-999716 

Keur Momar Sarr ST 
15.54N 
15.57W 

2 2   
COI: KT999495-999496 
CRT: 
H3: 

 NORTH-EASTERN AFRICA 16 20 32 28 
 

Ethiopia Gode ET 5.95N 43.61E Genbank 4   
COI: AJ437084-437087 
CRT: 
H3: 

Somalia 

Central Somalia SM 5.41N 46.52E 6 6 12 12 
COI: KT999513-999518 
CRT: KT999640-999645 
H3: KT999696-999702 

Mogadishu SX 2.01N 44.85E 10 10 20 16 
COI: KT999519-999528 
CRT: KT999632-999639 
H3: KT999687-999695 

 EASTERN AFRICA 3 3 na na 
 

Kenya Nairobi KE 1.01S 37.23E 3 3   
COI: KT999571-999573 
CRT: 
H3: 
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Supplementary Figure 2:  Isolation by Distance; Genetic Distance verse Geographic Distance for H. truncatum 
(H. truncatum from northern Africa).  

Supplementary Figure 1:  Isolation by Distance; Genetic Distance verse Geographic Distance for H. sp. 
nov.  (H. truncatum from southern Africa). 
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HYALOMMA 
NUMBER OF 
SEQUENCES GENBANK ACCESSION NUMBERS 

H. anatolicum 5 
JQ7377067.1, KJ912622.2, KM235710.1, 
KF583576.1, KC203438.1 

H. turanicum 3 KM235709.1, KM235706.1, KM235708.1 

H. asiaticum 4 
KC203440.1, KF527440.1, JX051147.1, 
JQ737070.1 

H. lusitanicum 7 
EU827741.1, EU827719.1, EU027730.1, 
EU827729.1, EU827712.1, EU827700.1, 
EU827698.1 

H. scupense 8 
KM235713.1, KM235714.1, KM235712.1, 
EU827695.1, KF583581.1, JQ737069.1, 
KC203435.1, EU827694.1 

H. marginatum 2 EU827693.1, EU827692.1 

H. dromedarii 3 KM235697.1, AJ437061.1, GQ483461.1 

H. aegypticum 5 
JX394191.1, JX394190.1, JX394192.1, 
AF132821.1 

 

Supplementary Table 2: GenBank sequences incorporated into the study. 
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Supplementary Figure 3: Hyalomma Bayesian tree based on 47 morphological characters. Maximum parsimony 
bootstrap values are indicated below and Bayesian posterior- probabilities are above branches. Branch lengths 
represent the number of character changes. 
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Supplementary Figure 4: 
Hyalomma Bayesian tree 
based on mtDNA data (COI 
and 16S). Maximum 
parsimony bootstrap values 
are indicated below and 
Bayesian posterior- 
probabilities are above 
branches. Branch lengths 
represent the number of 
base-pair changes. 
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Supplementary Figure 5: 
Hyalomma Bayesian tree 
based on nDNA data (28S, 
H3 and ITS II). Maximum 
parsimony bootstrap values 
are indicated below and 
Bayesian posterior- 
probabilities are above 
branches. Branch lengths 
represent the number of base-
pair changes. 
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