
A Reusable Signal Processing Architecture for

Satellite Based Communication Systems

by

Jakobus Stephanus Botha

Thesis presented in partial ful�lment of the requirements for

the degree of Master of Science in Electronical Engineering at

Stellenbosch University

Supervisor: Dr G-J van Rooyen
Department of Electrical and Electronic Engineering

March 2011

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any quali�cation.

Date: March 2011

Copyright © 2011 Stellenbosch University
All rights reserved.

i

Abstract

Keywords: digital signal processing, embedded systems, telecommunications,
satellite technology

The rapid growth of the telecommunications industry is a worldwide phe-
nomenon with people and computers generating and transmitting more and
more information daily. Despite this growth, there are still areas in South
Africa which lack terrestrial communications coverage. People inhabit these
rural areas and their essential communication needs are not met. Satellite
based communication coverage can provide a valuable service in these circum-
stances.

In this thesis, the design of a satellite-based communications payload �
which makes use of software de�ned radio techniques � is presented in terms
of the Open Systems Interconnect layer structure. A robust hardware plat-
form using a space-quali�ed on-board computer, a Xilinx Virtex-5 Field Pro-
grammable Gate Array (FPGA) and a Freescale digital signal processor (DSP)
is designed, implemented and thoroughly tested. A device driver is designed
for hardware and �rmware components. A prototype ground station is also
designed and constructed using a low-power PC, a Xilinx Spartan-3E FPGA,
a Freescale DSP and radio frequency hardware.

A wide range of testing methodologies were successfully utilised to deploy
a functional system which is critically evaluated in the last chapter.

ii

Uittreksel

Sleutelwoord: syferseinverwerking, toegewyde stelsels, telekommunikasie,
satelliettegnologie

Die vinnig groeiende telekommunikasieindustrie is 'n wêreldwye verskynsel
waarin mense en rekenaars daagliks meer en meer data genereer. Ten spyte
van die groei, is daar nog steeds gebiede in Suid-Afrika wat aan 'n gebrek van
aardse kommunikasiedekking lei. Mense bewoon dié areas maar daar word nie
aan hul noodsaaklike kommunikasiebehoeftes voldoen nie. Satelliet-gebaseerde
kommunikasiedekking kan 'n waardevolle diens in hierdie omstandighede wees.

Hierdie tesis beskryf die ontwerp van 'n ruimtegebaseerde kommunikasieloon-
vrag � wat gebruik maak van sagteware-gede�nieerde radiotegnieke � aange-
bied in terme van die Open Systems Interconnect laagstruktuur. 'n Robuuste
apparatuurplatform wat gebruik maak van 'n ruimte-gekwali�seerde rekenaar,
'n Xilinx Virtex-5 Veldprogrameerbare Hek-Skikking (VPHS) en 'n Freescale
syferseinverwerker is ontwerp, geïmplementeer en deeglik getoets. 'n Toestel-
bestuurder moes ontwerp word vir die apparatuur- en fermatuur-komponente.
'n Prototipe grondstasie is ook ontwerp en gebou met behulp van' n lae-krag
PC, 'n Xilinx Spartan-3E VPHS, 'n Freescale seinverwerker en radiofrekwensie
apparatuur.

'n Wye verskeidenheid van toetsmetodes is suksesvol benut om 'n funk-
sionele stelsel te ontwikkel wat krities geëvalueer word in die laaste hoofstuk.

iii

Acknowledgements

� Most of my thanks goes to Dr G-J van Rooyen for his inspiration and
guidance as my supervisor.

� I also extend heartfelt thanks to the Department of Communications of
the South African government for showing a strong interest in extrater-
restrial communications systems and for initialising this project.

� I also acknowledge my friend Adrian Cooke for introducing me to Dr
Riaan Wolhuter after a particularly pleasant hike in Stettynskloof.

� I would like to thank Dr Wolhuter for his support during the project.
His many interesting stories and his wisdom provided me with inspiration
during my studies.

� I would also like to thank the many friends I've made in the E&E faculty.
Some inspiring and thought provoking lunches have helped me grow as a
person. Especially those with Albert Visagie, Pieter Holtzhauzen, Charl
Botha and Edward de Villiers.

� My parents deserve a lot of my thanks for their continued support during
my studies.

� Lastly I would like to thank my colleague Ewald van der Westhuizen for
the long hours of team work during the project's integration phase.

iv

Contents

Declaration i

Acknowledgements iv

Contents v

List of Figures vii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Project Background . 1
1.2 Project Evolution . 2
1.3 Proposed Solution . 3
1.4 Structure of This Thesis . 4

2 Methodology and Perspective 6
2.1 Methodology . 6
2.2 OSI Model . 7
2.3 Top Level Payload Design . 8
2.4 Ground Station Overview . 11

3 Payload Design 12
3.1 Payload Design Overview . 12
3.2 The SH4 On-Board Computer 13
3.3 OBC Design in Terms of the OSI Model 14
3.4 OBC Resource Manager . 17
3.5 Downlink Transmitter . 20
3.6 The Software De�ned Radio . 21
3.7 The Field Programmable Gate Array 25
3.8 FPGA Design in Terms of the OSI Model 26

4 Ground Station Design 32

v

CONTENTS vi

4.1 Necessary Hardware . 32
4.2 Ad Hoc Sensor Network . 34
4.3 PC . 34
4.4 FPGA . 35
4.5 Modem . 37
4.6 DAC . 38
4.7 Quadrature Upmixer . 38
4.8 RF Hardware . 38
4.9 Transmitter (Uplink) Antenna 39
4.10 Receiver (Downlink) Antenna 39
4.11 Downlink Data Radio . 40

5 Payload Implementation 44
5.1 Development Environment . 44
5.2 Electrical Interface Connections 46
5.3 OBC Resource Manager Implementation 47
5.4 FPGA Firmware . 56
5.5 DSP SRAM Interface . 61
5.6 Downlink Data Radio Implementation 62
5.7 Low Level Integration Testing 63

6 Ground Station Implementation 67
6.1 Downlink Receiver . 67
6.2 Uplink Transmitter . 68

7 Integration and Testing 79
7.1 Payload Loopback Tests . 79
7.2 Ground Station Integration Tests 81
7.3 Quadrature Mixing Integration Test 83
7.4 Ground Station Loopback Test 84

8 Conclusion 89
8.1 Summary of Completed Work 89
8.2 Recommendations . 90
8.3 Final Comments . 90

A Timing Diagrams 92

B Ground Station RF Power Measurements 93

Bibliography 95

List of Figures

1.1 Overview of the SAA platform. 4

2.1 A simpli�ed OSI model. 8
2.2 The SAA subsystem. 9

3.2 Client software device access sequence. 17
3.6 DSP-FPGA data�ow diagram. 25
3.1 The greater payload. 27
3.3 Use case diagram for the resource manager. 28
3.4 Interrupt generation sequence. 29
3.5 ISR integration diagram. 30
3.7 Payload FPGA �rmware. 31

4.1 Functional overview of the ground station. 41
4.2 Ground station overview. 42
4.3 Ground station FPGA �rmware. 43

5.1 CAN bus development environment. 45
5.2 io_read() operations. 53
5.3 io_write() operations. 54
5.4 Interrupt interaction detail: write(). 57
5.5 Interrupt interaction detail: read(). 58
5.6 Expansion port read timings. 59
5.7 Expansion port write timings. 59
5.8 FIFO thresholds. 60
5.9 Register loopback test. 63
5.10 OBC single FIFO loopback test. 65
5.11 DSP single FIFO loopback test. 66

6.1 FFT of a single DDS output channel. 69
6.2 Sallen-Key low pass �lter. 70
6.3 FFT of a single reconstruction �lter output channel. 71
6.4 DC o�set adding circuit. 72
6.5 Distortion noted on DAC outputs. 74
6.6 Analogue representation of DAC output scaling. 75

vii

LIST OF FIGURES viii

6.7 Digital DC o�set. 75

7.1 Resource manager with dual FIFO loopback test. 80
7.2 Data radio integration test. 82
7.3 Fast Fourier Transform of the COM-3001 test point 1 signal. 83
7.4 Fast Fourier Transform of a baseband modulated signal generated

in Matlab. 84
7.5 Ground station RF integration. 85
7.6 FFT of a modulated uplink message signal. 86
7.7 FFT of a received baseband signal. 86
7.8 Frequency domain representation of carrier leakage. 87
7.9 SH4 OBC, FPGA and DSP loopback test. 88

A.1 SRAM interface wait timing (software wait only) 92

B.1 Ground station RF measurements. 94

List of Tables

4.1 Quadrature mixer comparison. 38

5.1 Simpli�ed OBC expansion port �rmware model. 49
5.2 OBCS bit de�nitions. 50
5.3 OBCC bit de�nitions. 51

6.1 PA pin voltages. 77
6.2 RF power measurements. 77

ix

Nomenclature

Acronyms

ADC Analogue-to-Digital Converter
ASE Aircraft-to-Satellite Emulator
CAN Controller Area Network
CMOS Complementary Metal-Oxide-Semiconductor
CPG Clock Pulse Generator
CPU Central Processing Unit
DAC Digital-to-Analogue Converter
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
EDC Error Detection and Correction
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
I/Q In-phase/Quadrature
ISM Industrial, Scienti�c and Medical
ISR Interrupt Service Routine
KUL Katholieke Universiteit Leuven
LEO Low Earth Orbit
LNA Low Noise Ampli�er
LO Local Oscillator
LVCMOS Low Voltage CMOS
LVDS Low Voltage Di�erential Signaling
MCCPL Multiple Channel Communications Payload
OBC On Board Computer
PA Power Ampli�er
PLL Phase Locked Loop
POSIX Portable Operating System Interface for Unix
QPSK Quadrature Phase Shift Keying
RF Radio Frequency

x

NOMENCLATURE xi

SAA Steerable Antenna Array
SH4 SuperH-4
SIC Signal Interface Card
SRAM Static Random Access Memory
SPI Serial Peripheral Interface
TM Telemetry
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuits

Terms of Reference

This project began during a commissioning by the Department of Communica-
tions of the South African government � with the University of Stellenbosch as
contractors � for a multiple channel communications system that would pos-
sibly provide telecommunications coverage in remote areas of South Africa. It
was to be implemented as a payload on a low earth orbit satellite.

The project funding was canceled by the Department of Communications
after the �rst year and the project continued in academic form. The Katholieke
Universiteit Leuven (KUL) subsequently expressed interest in developing a
payload for a low earth orbit satellite using a Steerable Antenna Array (SAA).
Much of the development done for the Department of Communications could
be used as-is for the KUL project.

Speci�c constraints were placed on the project by KUL and the project
supervisors:

� two Xilinx �eld programmable gate array boards, an ML501 and a Spartan-
3E were to be used for the research done by Francois Olivier into low
density parity check codes,

� a Freescale DSP developement kit was to be used for the signal processing
tasks as the hardware and design experience was available within the
group,

� a Renesas SH4, from the engineering model of Sumbandila Satellite's
communications payload, was to be used as on-board computer as it was
immediately available and supported by Sun Space,

� the space readiness in terms of radiation tolerance and vibration resis-
tance of the hardware was only to be investigated during a subsequent
phase of the project,

� KUL would supply the steerable antenna array which was to be tested,

� a minimum data rate of 19 200 bits per second was required by KUL for
the communications link and

� the error correction code rate used by Francois Olivier would double
the e�ective data baud rate, resulting in a physical layer baud rate of
38 400 bits per second.

xii

NOMENCLATURE xiii

The speci�c objectives identi�ed for the part of the project documented in
this thesis, were:

� physical integration and interconnection of all hardware components,

� low level software design on the Renesas SH4 to provide software inter-
faces to o�-board hardware resources,

� low level software design on the Freescale DSP to provide a software
interface to the external hardware,

� �rmware design on the Xilinx FPGAs to enable interfacing with external
components,

� radio frequency component selection to enable transmission of data over
the channel and

� design of a prototype ground station which would be used for testing of
the SAA.

Chapter 1

Introduction

1.1 Project Background

The rapid growth of the telecommunications industry is a worldwide phe-
nomenon with people and computers generating and transmitting more and
more information each day. Despite this rapid growth, there are still areas
in South Africa without communications coverage. People inhabit these rural
areas, yet certain essential communication needs are often not met. For exam-
ple, rural hospitals may �nd it very di�cult to communicate with specialists or
suppliers in urban areas. Low-cost, low-bandwidth satellite communications
coverage can be a valuable tool in these circumstances. Such a communications
system can also, for example, play a central role in the transfer of aggregated
data from distributed data capturing units.

SUNSAT, the �rst locally built satellite, was an Orbital Satellite Carrying
Amateur Radio which used frequencies in the Very High Frequency and Ultra
High Frequency bands for communication with terrestrial ground stations [6].
The second locally built satellite, Sumbandila, has a low-cost, low-bandwidth
communications system on board [12].

The communications payload on the Sumbandila satellite was designed
and implemented by Stellenbosch University (SU) and Sun Space and Infor-
mation Systems with the Department of Communications (DoC) of the South
African government as client. The system consists of an On Board Computer
(OBC) and a VHF-UHF Communications Unit (VUCU). The VUCU is a full
duplex communications unit using separate frequency bands for the uplink
and the downlink, the design of which was heavily in�uenced by SUNSAT.
However, the frequencies allocated by the International Telecommunications
Union (ITU) and the Independent Communications Authority of South Africa
for the uplink and downlink are roughly 0.2MHz apart and the unit is unable
to communicate in full-duplex mode as the transmitted signal's power is much
higher than the received signal's, therefore swamping the receiver. Half duplex
therefore had to be implemented in software. This meant that the e�ective

1

CHAPTER 1. INTRODUCTION 2

data throughput rate of the payload fell to under 4800 bps, which allows only
fairly short text messages to be sent.

Also aboard Sumbandila is an experimental payload consisting of various
scienti�c experiments [45]. Among the experiments are:

� An instrument to measure the Earth's atmospheric phenomena
below 30 kHz, developed by the University of KwaZulu-Natal,

� The Southern African Amateur Radio Satellite Association has
placed an amateur radio service on board which communicates in
voice beacon, digipeater and parrot modes,

� The Nelson Mandela Metropolitan University has an experiment to
measure the non-linear vibration e�ects of strings in microgravity and

� Stellenbosch University has an experiment on board which will measure
the e�ects of radiation on
electronics.

Central to these experiments was the Stellenbosch University's Software De-
�ned Radio (SDR) group's Signal Interface Card (SIC) which controls the
electronics and provides an interface between the experiments and an OBC
running Linux. The results of the experiments are then transmitted to earth
via a special version of the VUCU.

The DoC then commissioned SU to design a broadband communications
payload for possible use on a future satellite. The requirement from the DoC
was a high-speed, multi-channel communications system that could be used
with low-cost ground stations that could be deployed throughout the coun-
try. Three phases spanning three years were alloted for the completion of the
project.

In the �rst year a technological proof of concept of the payload was to be
built. During the second year an engineering model would be built. The �nal
phase would see rigorous space readiness testing being done with a �ight model
being built as �nal deliverable.

1.2 Project Evolution

Before the end of the �rst phase the DoC canceled the project. This happened
before the research was completed and put an end to the funding which meant
the project continued in an academic form from then on.

Shortly thereafter KUL approached Stellenbosch University with a pro-
posed project to test their SAA on an LEO satellite for their In-Situ Hyper
Spectral II (IS-HSII) project. KUL has a potentially novel approach to beam
steering from space and they needed a platform on which they could test their

CHAPTER 1. INTRODUCTION 3

antenna. An agreement was reached that Stellenbosch University would pro-
vide KUL with a hardware platform which they could used for testing their
SAA.

Building space compliant hardware was not possible because there was no
existing satellite speci�cation; there were no system constraints such as weight
and available space from which a design could begin.

The solution to this is to use Stellenbosch University's Jora lightweight
two seat glider. A prototype payload platform would be constructed and used
to the test the SAA on the Jora. The prototype would use space compliant
hardware where possible but full space compliance would only be considered
after the �rst successful aircraft �ight test.

Due to the similarities between the MCCPL and the KUL SAA payload it
was decided that the MCCPL architecture would, for the most part, be a good
starting point for the design and was used as such. It was also decided that
the payload would be a good platform on which to continue the SDR modem
design.

1.3 Proposed Solution

Much of the hardware and expertise required to implement the KUL SAA
testing platform was already available within the group. This was in part due
to the MCCPL project. The MCCPL system design was therefore an ideal
starting point for the design of the SAA platform. A modi�ed version of the
MCCPL architecture was presented to Katholieke Universiteit Leuven by F.
Olivier, G-J van Rooyen and R. Wolhuter [47].

The proposal listed the following as key components:

� an aircraft-to-satellite emulator (ASE), which would translate Jora avion-
ics (yaw, pitch and roll) into satellite telemetry,

� the SH4 on-board computer, a space quali�ed processor unit,

� a software de�ned radio (SDR) modem to enable data communication
and

� a ground station which would communicate with the SAA platform.

The proposal was accepted by KUL. It contained speci�cations which pro-
vided clear objectives for the platform. Among the speci�cations are:

� the RF operational band used would be the S-band portion of the In-
dustrial, Scienti�c and Medical (ISM) band,

� a minimum baud rate of 19 200 bps was required for the communications
link,

CHAPTER 1. INTRODUCTION 4

Aircraft
Satellite

Emulator (ASE)

IS-HSII communications payload

 OBC

Expansion board

FPGA

KU Leuven SAA

DSP

Aircraft
Avionics

Ground
Station

Rx Tx

Figure 1.1: Overview of the SAA platform.

� a low-density constellation modulation method such as Quadrature Phase
Shift Keying (QPSK) would be used for the SDR modem design,

� the project was to include aircraft borne �ight hardware and

� Stellenbosch University would develop and supply a ground station for
communicating with the payload.

Due to the size of the project, a team of engineers was required for the
project. The work done which formed a part of this thesis is clearly outlined
in subsequent chapters. An overview of the airborne platform together with a
ground station is presented in Figure 1.1. Recon�gurability was kept in mind
during the course of the thesis to allow reuse of developed components.

1.4 Structure of This Thesis

In Chapter 2 a methodology for complex system design and implementation
is derived. A useful model for explaining concepts throughout the thesis is
presented. The methodology is then used to implement a high level design of
the payload and ground station systems.

Chapter 3 provides a more in-depth view of the platform overview pre-
sented in Figure 1.1. The detailed design of the payload is also presented

CHAPTER 1. INTRODUCTION 5

in this chapter. Software and hardware components are designed from system
constraints and low level schematics are presented. Chapter 4 follows the same
procedure and provides the same level of detail for the ground station system.

In Chapters 5 and 6 the implementation of the payload and ground sta-
tion systems are presented. Low level smoke tests are performed to verify
simple implementations where necessary and these tests are documented here.
Limited integration between components is done.

The integration of the subsystems is then discussed in Chapter 7. The �nal
integration tests are performed and documented in this chapter. A high level
ground-to-air simulation test is also described in this chapter.

In Chapter 8 the results of the system tests are summarized. The testing
results are critically analyzed and recommendations to noted problems are
made based on the analysis. Future work which can be done on the project is
also presented.

Chapter 2

Methodology and Perspective

In this chapter an overview of the platform required by KUL for the testing
of their antenna is presented. The platform's intended use is as a communica-
tions payload on an LEO satellite. As stated in the terms of reference, however,
stringent requirements for harsh space conditions were not considered exten-
sively. Nonetheless, the system is referred to as a payload throughout this
text.

The payload is split into subsystems, where possible, to allow modular
design, implementation, and testing; the subsystems are all presented in this
chapter and are used to separate the work which formed part of this thesis
from work which was done by others.

Firstly a useful model is presented to the reader to assist in the description
of the subsystems during subsequent chapters. Thereafter an overview of the
payload is presented. The satellite earth station, also referred to as the ground
station, is then described.

2.1 Methodology

The methodology derived in this section describes the design process, the im-
plementation process and the testing process, all of which are presented in
subsequent chapters.

2.1.1 Outline

The design of a new communications system is a complex process. There
is usually not a prede�ned sequence of steps to follow which lead you to a
correct or optimal solution. There are, however, certain system constraints
(stated in the terms of reference) which form a base from which the design can
begin. Furthermore, there exist speci�c outcome criteria; a set of functional
requirements for the payload are known.

6

CHAPTER 2. METHODOLOGY AND PERSPECTIVE 7

The outcome criteria are abstract concepts � top level speci�cations which
do not entail implementation details. Since the objective of this thesis is
ultimately the construction and testing of an operational system, implemen-
tation details need to be considered extensively. Based upon these two givens
(known top level speci�cations and required real world implementation) a work
methodology for the entire thesis is formed.

2.1.2 Derivation

When implementing a system, all components should be smoke tested before
integration. This is to cater for components that do not perform according to
speci�cation. From this, it is evident that the most e�ective methodology for
this thesis is top-level design followed by bottom-up implementation.

Once the lowest level subsystems have been tested successfully, integration
begins. After each step of integration a new subsystem is formed. This sub-
system must then be tested. This iterative process continues until the entire
system has passed an end-to-end test and is performing according to speci�-
cation. There is a feedback path from the implementation stage whereby the
top-level design can be updated if, for example, a component does not perform
as expected.

2.1.3 Presentation

The derived methodology is strictly adhered to throughout the thesis. The de-
tailed level design of the entire system down to component level was performed
�rst and is presented in the two design chapters. Each design chapter contains
a detailed �gure of the design which clearly distinguishes between the parts
of the system that were implemented as a part of this thesis and the parts
that were implemented by others. The implementation of the bottom level
components is described in the two implementation chapters. The integration
and end-to-end system testing is described in the �nal testing chapter.

2.2 OSI Model

The International Standards for Organisation developed a model called the
Open Systems Interconnect (OSI) model as a tool for subdividing communica-
tions systems [27]. The model consists of divisions called layers; the layers are
stacked in a consecutive hierarchy. Each layer interfaces with the layers above
and below it: it provides services to layers other than itself and it requests
�services� from other layers. This is useful in partitioning designs, developing
robust independent blocks, and implementing top-down or bottom-up design.

For this project a simpli�ed version of the OSI Model that does not include
the session, presentation and network layers is used. This is because full com-

CHAPTER 2. METHODOLOGY AND PERSPECTIVE 8

munications functionality and testing of the SAA is provided without them.
The simpli�ed model is depicted in �gure 2.1. In summary, the layers are:

� Physical Layer: At the bottom of the OSI Layer is the physical layer.
This layer is described in terms of the raw transmission of bits between
nodes in the communication network. Logical concepts such as frames
and packets do not exist at the physical layer. Furthermore, not all
physical devices and interfaces form part of the physical layer, only those
that form the lowest layer of transmission.

� Data Link Layer: The Data Link Layer is the �rst layer above the
physical layer and is the layer which builds frames from data words. The
Data Link Layer is the protocol layer which transfers data between nodes.
It might provide the ability to detect and correct errors that occurred in
the physical layer.

� Transport Layer: The Transport Layer provides end-to-end commu-
nication services for applications. It also provides services such as relia-
bility, i.e. it ensures that data from the application layer is transmitted
reliably.

� Application Layer: High level system and user applications reside in
the application layer. The application layer has no concept of physical
error correction, low level data words or frames. It uses logical address-
ing.

2.3 Top Level Payload Design

This section uses the two top level payload objectives (of communicating with
a system in space and testing the SAA) to provide a setting for the rest of the

Application Layer

Transport Layer

Data Link Layer

Physical Layer

Ground stationSatellite

Application Layer

Transport Layer

Data Link Layer

Physical Layer

Figure 2.1: A simpli�ed OSI model.

CHAPTER 2. METHODOLOGY AND PERSPECTIVE 9

thesis. The objectives of the payload place certain constraints on the design.
The purpose of the payload is twofold: �rstly it must serve as a platform
on which KUL's SAA can be tested. Secondly, the payload must enable the
transmission of useful data between ground stations i.e. it must function as a
communications payload. These two objectives are now described in detail.

2.3.1 Testing of the KUL Antenna

The SAA subsystem is supplied by KUL. It is depicted in Figure 2.2. The SAA
itself is intended to be used as a receiver and consists of m× n individual re-
ceiving elements. Each element is a Right-Hand Circularly Polarised (RHCP)
antenna with a wavelength of 416.6̇ × 10−12m. Digital Beam Steering (DBS)
techniques are used to alter the radiation pattern of the array to improve the
performance of the RF link. The DBS calculations are done on the digitised
signal by an FPGA with an Ethernet interface.

The beam steering is controlled by sending x-y coordinates to the steering
control logic on the FPGA which performs phase and gain calculations to cre-
ate a radiation pattern with a peak at the received coordinates. A transmitter
must therefore be designed to transmit an RF signal to the SAA. Testing will
then involve varying the angle of incidence between this transmitter and the
SAA over time and measuring the gain of the SAA while altering its radiation
pattern.

Ultimately the SAA will be on board a Low Earth Orbit (LEO) satellite.
The orbital path of the satellite results in a varying angle of incidence as the

KU Leuven SAA

RF Rx SAA Rx

DBS FPGA

ADCs

DBS
Calculations

UART control
interface

Digital I/Q

Figure 2.2: The SAA subsystem.

CHAPTER 2. METHODOLOGY AND PERSPECTIVE 10

satellite passes overhead. Whilst simple tests to vary the angle of incidence of
the received RF signal can be carried out over long distances between two ter-
restrial points, a more realistic test would be to �y overhead with the payload
mounted on an aircraft. This kind of test would reconstruct signal attenuation
near the horizon.

It was recognised that to test the payload on an aircraft would require
a satellite emulator to convert avionic data into orbital data. This aircraft
emulator was designed and implemented by Iwan Kruger [31].

2.3.2 Communications Link

The SAA implements quadrature mixing to achieve greater spectral e�ciency
and make the system less prone to channel noise. This means that the re-
ceived RF signal is demodulated into separate In Phase (I) and Quadrature
(Q) components. The I and Q signals are then digitised by a pair of Analogue
to Digital Converters (ADCs) in the SAA subsystem. These digitised I and Q
signal samples then require further demodulation to extract the raw data bit
stream. These samples are presented to external components via an Ethernet
interface.

The two interfaces to the SAA subsystem are a bidirectional control in-
terface for sending and receiving beam steering commands and an Ethernet
interface which delivers the digitised signal samples. This means a processor is
required to send commands over the serial interface and some type of demodu-
lation communications hardware is required to demodulate the signal samples.
The major subsystems required to implement the payload communications
system are therefore:

� a processor,

� a modulator/demodulator and

� an FPGA.

The FPGA is used for signal routing and data marshaling between compo-
nents. The modem used is an extension of the modem written by Ewald van
der Westhuizen from the multiple channel communications payload [7]. The
processor used is the SH4 On Board Computer from the Sumbandila Commu-
nications Payload [16].

Error Detection and Correction (EDAC) is used in communications systems
to improve bit error rates. A data protocol is used to ensure reliable data
transfer. EDAC methods for the payload were investigated by Francois Olivier
[36]. These methods are currently being implemented by Riaan Wiid [46].

It was also noted that the scheduling system on Sumbandila's communica-
tions payload, written by H. R. Gerber and A. Cooke [12], used a suboptimal
scheduling mechanism. If the orbital parameters (two line elements) and the

CHAPTER 2. METHODOLOGY AND PERSPECTIVE 11

precise location of the ground station are known, it is possible to design an
e�cient scheduler. This was done by John Gilmore [22].

To implement a useful communications link, three more components are
required:

� an uplink transmitter,

� a downlink transmitter and

� a downlink receiver

The downlink transmitter implementation had no direct e�ect on the testing
of the SAA itself. Therefore an o�-the-shelf data radio would be used to im-
plement the downlink. The uplink transmitter and downlink receiver systems
form part of the ground station, an overview of which will be presented next.

2.4 Ground Station Overview

The ground station's primary function is to transmit an RF signal to the pay-
load in such a manner that the operation of the SAA can be tested accurately.
A secondary function of the ground station is to transmit some kind of useful
data over the communications link to another ground station. A speci�c list
of functional system requirements will now be constructed from these broadly
stated requirements.

The SAA acts as an RF receiver system centered at 2.45GHz. It expects
a waveform that is Right Hand Circularly Polarised (RHCP) � clockwise in
the direction of propagation. The SAA performs quadrature down mixing
and sampling to deliver baseband digital I and Q signals on its output. The
functional system requirements for the ground station can now be listed. They
are:

� the ground station must transmit an RF signal of the correct amplitude,
frequency and polarisation,

� the RF signal must contain a complex I/Q message signal and

� the I/Q message signals must in turn contain modulated information.

These three speci�cations form the criteria against which all other design de-
cisions will be made. These design decisions are further discussed in Chapter
4.

Chapter 3

Payload Design

In this chapter the detailed design of all the components on the payload is
presented. In the �rst section an overview of the payload provides background
for the subsequent sections. Each major component is presented in its own
section and is followed by a detailed design in terms of the OSI model, where
deemed useful to the discussion. The SDR modem, for example, exists purely
on the physical layer, so its design will not be handled in terms of the OSI
layers. Figure 3.1 is a diagram of the payload.

3.1 Payload Design Overview

The payload consists of individual interconnected components. To provide a
clear picture of the payload's operation and the interconnection of the com-
ponents, all components will be described brie�y. Due to the large nature of
the project, the implementation of certain components fell outside the scope of
this thesis. These components and subsystems were the responsibility of other
team members. This section describes exactly which components formed part
of this thesis and which did not.

At the core of the payload is the SAA subsystem designed by KUL which
must be tested. The SAA subsystem has the following components:

� the physical antenna array,

� RF receiver hardware for down mixing and demodulation,

� ADCs for sampling the baseband signals and

� an FPGA which performs beam steering calculations and provides inter-
faces to the greater payload.

The SAA interface uses a Ethernet physical layer chip [34] to transmit I/Q
samples to the greater payload. The components on the payload that formed
a part of this thesis are:

12

CHAPTER 3. PAYLOAD DESIGN 13

� data marshaling �rmware which routes the digital I/Q samples from the
SAA to the SDR modem via the FPGA,

� �rmware to route the demodulated data from the SDR modem to the
OBC,

� a device driver on the OBC acting as an interface to the FPGA and

� �rmware to route the data from the OBC to the downlink data radio.

The remainder of the work that forms part of this thesis was done on the
ground station, discussed in later sections.

3.2 The SH4 On-Board Computer

As stated in the terms of reference, the OBC to be used for this project was
designed and built by SunSpace. It is space quali�ed and has withstood the
harsh space environment on the Sumbandila Satellite which is in orbit at the
time of writing [41]. The OBC is based on a 32-bit RISC processor, the Renesas
SH7750R [39] (referred to as the SH4 in this thesis). The OBC features a dual
redundant CAN interface, NAND �ash non-volatile memory, a bi-directional
Low Voltage Di�erential Signaling (LVDS) I/O port and a memory expansion
port.

The actual OBC unit used for this thesis was the same OBC from the
Sumbandila Communications Payload engineering model. It was loaded with
the QNX operating system making it ready for use immediately. Although the
Linux operating system has been ported to the SH4 OBC in [45], it was decided
to use QNX for reasons explained below, despite the fact that running Linux
on the OBC has certain advantages (such as code portability and development
�exibility).

The decision to use QNX as operating system was based on the following
two points. Firstly, QNX is a commercial operating system which means that
professional support is available from QNX Software Systems. Secondly, other
engineers would be involved in the development of the payload, so a reliable
operating system was required. If the operating system required development
it could cause delays in other research projects.

The SH4 OBC provides two serial ports which can be used. One of the serial
ports, /dev/ser1, is permanently mapped to a terminal by the QNX image
[17]. The second serial port is mapped to a serial device, /dev/ser2, which can
be used as a general purpose Universal Asynchronous Receiver/Transmitter
(UART), but which was used by Kruger's Aircraft Satellite Emulator to send
beam steering commands to the SAA subsystem [31].

CHAPTER 3. PAYLOAD DESIGN 14

3.3 OBC Design in Terms of the OSI Model

A view of the software components and hardware interfaces required on the
OBC are now presented. Most of the OBC-related work done for this thesis was
on the physical layer of the OSI model, yet the application and data link layer
components are brie�y described to provide an understanding of the system.

3.3.1 Application Layer

System software running on the application layer is required to provide the
communications payload with store and forward capability. Store and for-
ward means that useful data can be transmitted between ground stations via
the payload. When multiple ground stations are trying to communicate with
the payload simultaneously, some type of scheduling system is required. The
scheduling system implemented by H.R. Gerber and A. Cooke [12] simply chose
a ground station from a master list at random until all ground stations were
serviced. It was realised that, if the location of the ground stations and the
orbit of the satellite is known, it is possible to design a much more e�cient,
potentially optimal scheduling system. This area of research did not form part
of the work done in this thesis, however, and was done by J. Gilmore [22].

3.3.2 Transport Layer

Data from the application software must be transmitted (and received) over
the channel. This is done by using a very simple transport protocol to ensure
the reliable delivery of packets at the receiver's transport layer. The protocol
used to accomplish this is the Automatic Repeat Request (ARQ) protocol,
implemented by J. Gilmore and R. Wiid [21].

3.3.3 Data Link Layer

The ARQ packets from the transport layer must be sent to the physical layer.
This is done by splitting the packets up into frames as per the Telecommand
and Telemetry (TM) protocol designed by the European Cooperation for Space
Standardization [18]. A single TM frame is 84 bytes in length. The TM
protocol was implemented by F. Olivier, E. van der Westhuizen and R. Wiid
[46].

3.3.4 Physical Layer

TM frames from the data link layer on the OBC need to be physically trans-
ported to the FPGA which relays them to the modem for modulation. A
suitable electrical interface must be chosen between the OBC and the FPGA.

CHAPTER 3. PAYLOAD DESIGN 15

A software interface must be designed allowing other programs on the OBC
to use this interface.

Electrical Interface

The SH4 OBC has the following physical interfaces:

� an LVDS I/O interface,

� two Controller Area Netwrok (CAN) bus interfaces,

� two serial ports and

� a memory expansion port.

Considerations for the design of the interfaces include: su�cient data rates,
electrical compatibility between physical components and features such as ad-
dressing, interrupts and DMA.

The CAN bus interfaces are intended for connecting the �major compo-
nents� of the satellite and are reserved for this purpose. Of the two serial
ports, one is mapped to a Unix serial console which is useful for connecting to
the SH4. The other serial port is reserved for sending control commands to
the SAA. The LVDS I/O is useful for high speed point to point data trans-
fers. While it could be used for our interface to the FPGA, it would require
additional addressing wrappers because more than one address on the FPGA
needs to be accessed. This leaves the expansion port, which, as is described
below, meets the requirements.

The expansion port comes in the form of a PC-104+ connector into which
a daughter board typically slots. This connector provides a 32-bit data bus
which is memory mapped as external memory to the SH4's address space.
It also provides an active low power up reset pin, RESET, that allows the
daughter board to reset to a known state at startup. There is also an interrupt
pin, IRL3, that allows the daughter board to generate hardware interrupts.
Four chip select pins are also provided to allow multiple components to be
connected to the expansion port on the same address and data bus.

All of the pins on the expansion port are connected to LVCMOS-3.3 bu�ers,
the 74ALVC162245 from Fairchild Semiconductor [19]. These bu�ers then
connect to the �outside world�. This protects the SH4 from accidental damage.

The maximum data rate of the expansion port is a crucial consideration to
ensure that data transfers between the OBC and the FPGA occur timeously.
Calculating the theoretical maximum data rate of the expansion port is not
trivial. The expansion port has its own clock which determines the speed at
which data transfers occur. The maximum internal clock to bus clock ratio
equals 1

2
. To determine the maximum internal clock speed, it is noted in [17]

that the internal clock speed is determined by the external mode pins MD[2..0].
These pins have a �xed value of 011 and cannot be adjusted. From [39], Table

CHAPTER 3. PAYLOAD DESIGN 16

10.3(2), this means that the on-chip Phase Locked Loop (PLL) is activated
with a multiplication factor of 12. The SH4 input clock pin is fed by a 16MHz
crystal. The internal clock frequency is therefore �xed at 192MHz and the
maximum bus clock speed is therefore 96MHz.

The SH4 has a 32-bit virtual address space. The virtual address is di-
vided into �ve areas according to the upper address value. External memory
comprises a 29-bit address space, divided into eight areas. Various memory
modules can be connected to the seven areas of external address, and chip
select signals CS[0-6] are used to multiplex all the data buses. CS[2-5] are
available on the expansion port. CS2 was chosen and its corresponding exter-
nal area is Area 2. All Area 2 address (0x8000000 - 0xC000000) accesses will
activate CS2.

Given a clock frequency, fc, the theoretical upper bound on the transfer
data rate, r, is determined by cm, the number of cycles per memory access and
ci, the number of cycles for inter-area accesses. This is given by

r =
fc

cm + ci
× w bps (3.3.1)

where w is the word size (32 bits in this case).
The required data rate across the interface is determined by the baud rate

speci�cation of 19 200 bps. The required bidirectional data rate across the
expansion port is therefore 38 400 bps because the physical interface is half
duplex.

Assuming external memory is accessed as synchronous SRAM, the SRAM
timing diagram, provided in [39] is consulted. It is evident that a no-wait
memory access lasts for two bus clock cycles. The minimum inter-area access
wait period is one clock cycle. Substituting these values into equation 3.3.1
yields

r =
96× 106

3
× 32 = 1024× 106 bps (3.3.2)

However, since the expansion port is memory mapped directly to the SH4's
data and memory buses, accessing it will be much slower than this upper limit
because memory accesses are shared with other processes running on the SH4.
It is not possible to say exactly what the e�ective throughput will be � this
will have to be measured.

It is, however, possible to say that the upper limit is �ve orders of magni-
tude faster than the required data rate so it seems feasible that the expansion
port will not become congested.

The total required pin count for implementing an SRAM interface to the
OBC on the FPGA is 40: 32 pins for data, three pins for the clock, read and
write strobes respectively, RESET, IRL3, a single chip select and two address
pins. Whilst only one pin is required for addressing � for reading and writing

CHAPTER 3. PAYLOAD DESIGN 17

to the modem � an extra pin is included in the design to allow for address
expansion.

Resource Manager

Data transfers over the expansion port must be managed by a piece of dedi-
cated software. Software which is dedicated to managing hardware is called a
Resource Manager in QNX terminology. The resource manager must provide
an interface to client software enabling access to a physical resource, in this
case the expansion port. A multi threaded, interrupt driven, full duplex re-
source manager was developed as part of this thesis and is discussed in Section
3.4.

3.4 OBC Resource Manager

The QNX kernel is a micro-kernel which means that the resource manager is a
user level program. The client connecting to the resource manager is the TM
protocol written by Wiid et al. [46]. The sequence in which the client software
interacts with the resource manager, the operating system and the physical
device is designed to hide implementation details of the resource manager
from the client. The sequence is presented in Figure 3.2.

process

manager

resource

manager

client

2

1

3

4

device

5

Figure 3.2: Client software device access sequence.

When the resource manager is launched, it registers a device in the names-
pace such as /dev/exp. When a client wants to access the device, the following
steps take place:

CHAPTER 3. PAYLOAD DESIGN 18

� the client initially queries the process manager (a module responsible for
pathname management) using the open() call and asks it to look up the
name /dev/exp,

� in step 2 the process manager responds with some values which uniquely
identify an open communication channel to the resource manager,

� the client then connects to the resource manager on this channel,

� once the resource manager receives the connection it generally responds
with a success (and open() returns with a �le descriptor) or an error,

� the client then uses this �le descriptor to communicate with the device
through read() and write() calls.

The Unix standard of exposing a device as a �le is used in QNX. The standard
open(), read(), write() and devctl() �le operations are implemented. The TM
protocol implementation consists of two threads, namely a reader thread and
a writer thread, which attempt to transfer TM frames from and to the ground
station respectively.

Note that the design must cater for two separate transmit paths at this
stage. The �rst transmit path is for the downlink data radio (an o�-the-shelf
component used to rapidly implement a working prototype) while the second
transmit path is for a dedicated DAC that will eventually form part of the
downlink transmitter chain.

The resource manager therefore exposes a serial device, /dev/ser3, to allow
data to be transmitted to the downlink data radio. It was decided to implement
both devices, /dev/exp and /dev/ser3 with a single resource manager. This
is because the data radio connects to a UART on the ML501 FPGA board and
all tra�c to it must also cross the expansion port. Stated di�erently, there is
only a single physical device � the expansion port � and it is managed by a
single resource manager which provides two logical devices.

The required behaviour of the resource manager is presented in Figure 3.3
as a use case diagram.

3.4.1 Software Polling vs Hardware Interrupts

Because the CPU is shared with other processes, such as the ground station
scheduler, CPU e�ciency is an important design criterion for the resource
manager. The possible responses of the resource manager, speci�cally to a
read() system call, are analysed to determine which response method uses
the least CPU cycles. The result is extrapolated to the write() system call
response.

When a client makes a read call to the resource manager to read from the
modem, there is either data available or not. If there is nothing available, the
read() function can exit with a return value indicating that zero bytes were

CHAPTER 3. PAYLOAD DESIGN 19

read. In this case, the read thread would need to poll the resource manager
until data became available � an unwanted scenario implying wasted CPU
cycles. Alternatively, the resource manager blocks the reading thread, and the
resource manager returns with data when it is available.

If the reading thread is blocked, the resource manager can poll the FPGA
to determine whether data is available. This is another scenario where CPU
cycles would be wasted. A third scenario exists wherein the resource manager
is designed to be driven by hardware interrupts. When the read blocks, the
resource manager can reply at a later stage after an interrupt has indicated
that data is available. This interrupt driven design is clearly the most e�cient
choice and the design thereof is now analysed.

3.4.2 Interrupt Driven Resource Manager Design

The SH4 has 4 external interrupt pins, IRL[3-0], whereby interrupts can be
generated. The pins can be con�gured as a single interrupt source, with the
levels determining the interrupt priority. A level of 0000 indicates the highest
level interrupt request. Alternatively, each interrupt pin can be con�gured as
an independent interrupt source, with the priority of each interrupt source also
con�gurable. The expansion port, however, provides only a single interrupt
pin, IRL3, so it was decided to con�gure it as an independent interrupt source.

When generating an interrupt on the IRL3 pin, the FPGA must assert the
interrupt until the interrupt is acknowledged. This is because the interrupts
on the SH4 are level triggered. Once the interrupt has been acknowledged,
the process generating the interrupt on the FPGA must allow the SH4 some
time to process the interrupt before generating another one. A countdown
timer is used for this. The process is depicted in Figure 3.4. A required
component in an interrupt driven resource manager is an Interrupt Service
Routine (ISR). The ISR runs at the highest possible scheduling priority. The
ISR must therefore be lightweight and simple, performing only critical tasks,
with the �real� work being scheduled to worker threads. The ISR is responsible
for:

� masking (disabling) further interrupts,

� determining the source of the interrupt,

� notifying the FPGA that the interrupt was received,

� updating a data structure shared between the ISR and some of the
threads in the resource manager,

� signaling the resource manager that some kind of event has occurred.

Determining the source of the interrupt must be done in software because
there is only a single interrupt pin available yet there are multiple interrupt

CHAPTER 3. PAYLOAD DESIGN 20

conditions. The simplest way to do this is by reading a status register on the
FPGA. The process is described in detail in Section 5.3.5.

The action of reading the status register can be used as an interrupt ac-
knowledge. If the value of the status register is read while the FPGA is gen-
erating an interrupt, that signi�es that the ISR has received the interrupt. To
prevent accidental acknowledgement of the interrupt, it is ensured that the
ISR is the only part of the resource manager which ever accesses the status
register.

Because the ISR runs with the highest priority available, it should not
perform tasks such as block data transfer. A dedicated thread is therefore
included in the resource manager design for this purpose. When an interrupt
is generated, the ISR acknowledges the interrupt by reading the value of the
status register. The value of the status register is then passed to the worker
thread. The worker thread can then use this value to determine the source of
the interrupt. When the worker thread reads this value, care must be taken
to ensure that the value is not updated by another interrupt. The thread
therefore disables interrupts when checking this value, and enables them once
it is �nished handling the interrupt. Data accesses to this shared value should
therefore be kept to a minimum.

In the idle state, the worker thread waits for a signal from the ISR that
there is �work� to be done. QNX provides two methods for doing this. In
the �rst method the ISRs sole purpose is to signal the thread. In the second
method the ISR performs some critical task and then signals the thread. The
second method is used in this design.

The worker thread is what reads and writes data from the FPGA bu�ers.
It checks the value of the status register (passed to it by the ISR) and decides
which bu�ers to service based on this value. The data it has read from the
bu�ers must then be made available to the software client, in this case the
TM protocol threads. If the worker thread tries to pass the data directly to
the client, and if the client is not immediately ready to receive the data, this
data will be overwritten when the worker thread reads new data. The data
is therefore stored in circular bu�ers until the client is ready to read it. The
data �ow between the various bu�ers is depicted in Figure 3.5.

3.5 Downlink Transmitter

An o� the shelf data radio was used as a downlink transmitter to simplify the
implementation of the prototype. A data radio is a device which accepts data
bits at the input and outputs a modulated RF signal which is �t for propaga-
tion over the channel. A data radio with a data rate of 19 200 bps, transmit
power of 1W, receiver sensitivity of −110 dBm operating in the 900MHz ISM
band was sought. These link budget requirements were drawn up by Iwan
Kruger [30]. The ISM band was chosen because o�-the-shelf components which

CHAPTER 3. PAYLOAD DESIGN 21

operate in it are readily available. The XTend OEM RF module was identi�ed
as a suitable data radio. It is a 1W, 900MHz RF module that accepts serial
data at its input via a UART at a data rate of up to 115 200 bps. The receiving
module then delivers the same data at its output, assuming the two modules
are within range.

3.6 The Software De�ned Radio

The modem deals purely with the manipulation of physical data bits. It does
not have any Error Detection and Correction (EDAC) functionality, does not
implement any protocols or run any application software. It is therefore situ-
ated, in its entirety, in the physical layer of the OSI model.

The function of the software modem is to act as a translator between
digital information and radio frequency communication. The detailed design
and implementation of the modem was done by Ewald van der Westhuizen
[44]. The work done in this thesis involved integrating the modem to the rest
of the payload.

A brief overview of the modulation techniques used are presented to pro-
vide an understanding of how the modem connects with the greater payload.
Thereafter a detailed analysis of the physical interfaces is done.

3.6.1 Modem Overview

The stream of bits at the modem's input is a digital pulse train. Any aspect
of this signal can be modulated � amplitude, frequency or phase. The three
basic digital modulation schemes which use these aspects are Amplitude Shift
Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying. One
of these had to be chosen as a modulation scheme. It is evident from [37] that
Phase Shift Keying achieves better power e�ciency and bandwidth e�ciency
than the ASK or FSK schemes.

A more complex form of Phase Shift Keying namely Quadrature Phase Shift
Keying (QPSK) provides greater bandwidth e�ciency than ordinary PSK.
Only a brief description of QPSK will be given because this thesis did not
entail the implementation of QPSK. In QPSK modulation, a cosine carrier's
phase is varied in time. Given two carriers, typically called the I and Q signals,
each carrier's phase will change once within a time slot. A change in phase
represents a symbol transition. A symbol therefore consists of two bits.

Di�erential QPSK is a method whereby only relative symbol transitions are
used to demodulate the data. This is useful when incoherent demodulation is
required. D-QPSK was used as the �nal modulation scheme for the modem.

A sampling frequency of 230 400Hz is required for successful demodulation
of a received signal in this application [44]. Also speci�ed in the SDR modem
design is a sample size of 16 bits. To calculate the data �ow rate for the modem

CHAPTER 3. PAYLOAD DESIGN 22

at the given sampling frequency, the data rates of the following data paths are
summed:

� unmodulated incoming data from the OBC,

� modulated data to be sent to the DACs,

� signal samples from the ADCs that need to be demodulated and

� demodulated data to the OBC.

The rate of the user data from the OBC is the e�ective data rate speci�ed in
the terms of reference, 19 200 bps. The data destined for the OBC �ows at the
same rate. The total data rate of I and Q samples being sent to the DACs can
be calculated as 230 400× 16× 2 = 7 372 800 bps. The data rate for incoming
samples from the ADCs is the same. The e�ective bidirectional data rate is
therefore 38 400 + 7 372 800× 2 = 14 784 000 bps.

For this thesis, however, only the uplink signal was generated using the
SDR modem. The downlink was implemented using an o�-the-shelf radio.
The e�ective data rate that was implemented is thus 7 392 000 bps.

3.6.2 General Purpose I/O Pins

The DSP has 34 I/O pins which can be programmed to function as general
purpose I/O. These pins can be programmed to behave in an arbitrary manner.
For example, code could be written to implement a Universal Asynchronous
Receiver/Transmitter (UART) using these pins. However, dedicated hardware
usually provides faster data rates and requires less code to be written. Based
upon this, it was decided by the author that one of the dedicated and more
�exible hardware interfaces would be considered.

3.6.3 Host Interface

The Host Interface is a byte wide interface supporting 8-, 16- or 24-bit word
data transfers. It has rich features such as:

� host commands whereby the host (in this case the FPGA) can issue
commands to the DSP,

� a choice of either polling, interrupt-driven or Direct Memory Access
(DMA) transfer modes and

� a maximum data rate of roughly 81MB/s.

The Host Interface lacks built-in addressing hardware, which means an ad-
dressing scheme must be implemented. A relatively simple scheme would be
to add an 8 bit control byte to each 16 bit sample and use the interface in

CHAPTER 3. PAYLOAD DESIGN 23

24 bit mode. Contained in this control byte would be an address which the
FPGA can use to determine whether the data is destined for the DAC, the
ADC or the OBC.

The Host Interface meets all the requirements and provides useful addi-
tional functionality. It was therefore chosen above the other interfaces and the
FPGA �rmware was designed around the Host Interface. However, during im-
plementation, unexpected behaviour was encountered. Speci�cally, a double
assert of the data strobe by the DSP would occur during the middle of a three
byte transfer. This caused entire words to be discarded when being transferred
over the interface. The data strobe is normally asserted as an active low sig-
nal once to indicate a strobe. The double strobe phenomenon is de�ned as
two such strobes occuring directly after one other, causing the host device to
recognise it as two seperate strobes (while only a single strobe was expected).

After extensive investigation this double assertion waveform was measured
with a logic analyser and a copy of the measurement was sent to Freescale to get
assistance. Direct contact was made with a Freescale engineer who was unable
to explain the behaviour. The double data strobe assertion phenomenon was
also independently con�rmed by Ewald van der Westhuizen on a separate
Freescale development board. The Host Interface was thus deemed unusable.

3.6.4 Enhanced Synchronous Serial Interface (ESSI)

The DSP has two full-duplex ESSI ports allowing serial communication be-
tween devices at a maximum rate of 44MB/s [20]. The ESSI does not feature
any dedicated addressing hardware so, as with the Host Interface, additional
complexity must be added to implement addressing. The two ESSI ports were
designed for 6 channel digital surround sound applications as each ESSI can
function with a single receiver and drive three separate transmitters.

3.6.5 External Memory Expansion Port

The DSP expansion port can be used for either memory expansion or as mem-
ory mapped I/O. It consists of a 24-bit address bus, a 24-bit data bus, and
control lines that provide features such as chip select and bus arbitration. The
expansion port supports the implementation of external Static Random Ac-
cess Memory (SRAM) or Dynamic Random Access Memory (DRAM). The
implementation of DRAM on an FPGA is more complex than that of SRAM.
Furthermore, the DRAM timing speci�cations were not present in the DSP's
data sheet. The SRAM timing waveforms were available so it was decided to
investigate the implementation of an SRAM interface over the expansion port.

Read and write operations over the SRAM interface are synchronous with
the DSP's internal core clock. The DSP's internal clock runs at 275MHz. A
single SRAM access takes one clock cycle. Up to 31 wait states can be inserted
by programming the Bus Control Register. An in�nite number of wait states

CHAPTER 3. PAYLOAD DESIGN 24

can be added by the TA control signal. The expansion port is therefore capable
of providing the required data rate.
The total required pin count for implementing an SRAM interface to the DSP
on the FPGA is 30: 24 pins for the data bus, a pin for the clock signal, a
read strobe and a write strobe. Whilst only 2 pins are required for addressing
(this is because only 3 addresses on the FPGA are used, namely DAC write,
ADC read and OBC read / write) three pins are used in the design to allow
for address expansion.

3.6.6 SRAM Code

The DSP is the bus master of the SRAM interface. The modem has two main
function calls namely modulate() and demodulate(). Each of these function
calls requires two data bu�ers. There are therefore four bu�ers containing
data on the DSP. The simplest implementation of data transfer is round robin
software polling, although this wastes clock cycles unnecessarily. Interrupt
and DMA driven transfers are also possible, although it was not possible to get
DMA transfers working during the implementation phase. The DMA controller
was con�gured as per the data sheet, the source address, destination address
and block size values loaded and the DMA controller was told to initiate the
transfer yet the data was never transferred to the destination address. The
cause of this problem remains unknown. For this reason it was decided to use
interrupt driven transfers over the SRAM interface where possible.

Four dedicated hardware interrupt lines are available on the DSP. The
FPGA can generate an interrupt when it has data in its bu�ers which the
DSP must read. The corresponding ISR reads a block of data from the FPGA
and places it in a bu�er. When the DSP has a block of data that it wants to
transmit to the FPGA, however, it must poll a status register on the FPGA
to determine whether there is space in its bu�ers to accept the data. If there
is space in the bu�er it performs a write, otherwise it retries at a later stage.
This polling will only occur once a block of data is available in the appropri-
ate bu�ers, which means not many clock cycles are wasted on polling in this
direction. The data �ow of this design is depicted in Figure 3.6.

CHAPTER 3. PAYLOAD DESIGN 25

FIFO

FIFO

modulated data

(samples to DAC)

demodulated data

(to OBC)

Status Register

demodulate()

DSP FPGA

modulate()

ISR_A
unmodulated data

(from OBC)

modulated data

(samples from ADC)
ISR_B

buffer level

monitoring

buffer level

monitoring
FIFO

FIFO

SRAM Data Marshalling CodeModem

Figure 3.6: DSP-FPGA data�ow diagram.

3.7 The Field Programmable Gate Array

The choice of an FPGA was driven by two main requirements. Because the
FPGA's primary function was marshaling the �ow of the various data between
components, enough I/O pins were a primary requirement. Furthermore, func-
tional blocks such as First In First Out (FIFO) bu�ers were required to allow
reliable data transfer between clock domains. Thirdly, PCB layout was to be
avoided where possible during the prototyping phase due to the complexity of
the system.

Two FPGA boards were immediately identi�ed as being available. The
�rst was a prototype version of the Signal Interface Card (SIC) from the ex-
perimental payload research on Sumbandila Satellite. The second was a Xilinx
Virtex-5 ML501 development board [49]. The SIC has a PC104+ connector
which slots into the SH4 OBC making it ideal for this project and was cho-
sen above the Xilinx board for this reason. However, during implementation,
it was discovered that the FPGA on the SIC, an Actel ProAsicPlus, did not
have functional FIFO blocks. This was thoroughly investigated. Actel's docu-
mentation indicated problems with the FIFO blocks and stated that they had
been obsoleted and should be �used with caution� [5]. The fact that Actel's
Asynchronous FIFO cores would discard words occasionally was also con�rmed
in a private communication with Heiko Berner from SunSpace. This meant
that the Xilinx ML501 board was used in the implementation of the payload
prototype.

CHAPTER 3. PAYLOAD DESIGN 26

3.8 FPGA Design in Terms of the OSI Model

The FPGA deals primarily with the physical transport of data between the
major subsystems in the payload. Also implemented on the FPGA are EDAC
modules implemented by Wiid. The FPGA therefore spans the Physical and
Data Link layers.

3.8.1 Physical Layer

It is noted that the ML501 FPGA board has two selectable I/O standards:
LVCMOS-2.5 and LVCMOS-3.3. The LVCMOS-3.3 standard is what both the
OBC and the DSP use. This means that FPGA I/O pins can be connected
directly to both the OBC expansion port and the DSP expansion port.
The ML501 has the following available interfaces:

� an ethernet interface,

� an expansion header,

� an RS-232 serial port,

� a Universal Serial Bus (USB) host port and

� a USB peripheral port.

As described in Section 2.3.1, the ethernet interface is used for receiving base-
band I/Q samples from the KUL SAA. The serial part is also unavailable, as it
is used to connect to the downlink data radio. That leaves the USB port and
the expansion header. The clear choice in this case is the expansion header
because it contains a total of 78 single ended general purpose I/O pins. As
calculated earlier in the chapter, we require 40 pins to implement the SRAM
interface to the OBC and 30 pins for the DSP SRAM interface. This leaves 8
pins for debugging purposes.

3.8.2 Data Link Layer

Unmodulated data in the form of a TM frame from the OBC is sent through
various stages before it gets passed to the modem for modulation. Firstly a
Cyclic Redundancy Check gets calculated and added to the TM frame. The
data is then passed to a pseudo randomiser to prevent a DC component from
forming in the modulated signal. The randomised data is then passed to an
Attach Synchronisation Marker (ASM) module. These three modules were
implemented by Wiid. The SRAM interface to the OBC is connected to the
CRC module, and the ASM module is connected to the DSP SRAM interface.
The payload �rmware is depicted in Figure 3.7. Objects bound in dashed line
boxes represent o� board components and components that did not form a
part of the work done for this thesis.

CHAPTER 3. PAYLOAD DESIGN 27

A
irc

ra
ft

S
at

el
lit

e
E

m
ul

a
to

r
(A

S
E

)

IS
-H

S
II

co
m

m
un

ic
at

io
n

s
pa

yl
oa

d

A
vi

on
ic

s
E

qu
ip

m
en

t
U

S
B

 to
C

A
N

 M
od

ul
e

W
in

d
o

w
s

X
P

b

as
ed

in
d

u
s

tr
ia

l
P

C
w

it
h

 e
m

u
la

to
r

 s
o

ft
w

ar
e

RS232

USB

S
H

4
O

B
C

CAN

U
A

R
T

M
e

m
o

ry
m

ap
pe

d
 IO

A
R

Q
p

ro
to

co
l

S
at

el
lit

e
C

o
m

m
un

ic
at

io
n

s
S

of
tw

a
re

 S
ys

te
m

S
A

A
 C

o
nt

ro
l

S
o

ft
w

ar
e

E
xp

a
ns

io
n

 b
oa

rd

F
P

G
A

S
C

I

Data marshalling

Data marshalling

D
ec

od
in

g

M
od

u
la

tio
n

D
em

od
ul

a
tio

n

E
nc

od
in

g
(o

pt
io

n
al

)

R
F

 T
x

O
ff-

th
e-

sh
el

f
D

at
a

R
ad

io

K
U

 L
eu

ve
n

S
A

A

R
F

 R
x

U
A

R
T

co
nt

ro
l

in
te

rf
a

ce

S
A

A
 R

x

T
x

A
nt

en
na

Data bus

se
ri

al
 d

ig
ita

l c
o

nt
ro

l s
ig

na
ls

 f
o

r
p

ha
se

 s
hi

ft
er

 A
D

C
s

an
d

do
p

pl
e

r

D
ig

ita
l I

/O

D
S

P

A
D

C
s

D
B

S
 F

P
G

A

T
M

p
ro

to
co

l

U
A

R
T

R
S

-2
32

le
ve

l c
on

ve
rt

er

D
B

S
ca

lc
ul

at
io

ns

E
th

er
n

et
 P

H
Y

Ethernet PHY

S
R

A
M

I/
O

 B
u

s

K
o

bu
s

B
ot

ha

E
w

al
d

va
n

 d
er

 W
es

tu
iz

en

Iw
an

 K
ru

ge
r

F
ra

nc
oi

s
O

liv
ie

r

R
ia

an
 W

iid

Jo
h

n
G

ilm
or

e

Figure 3.1: The greater payload.

CHAPTER 3. PAYLOAD DESIGN 28

TM read thread

TM write thread

 Reset
Devices

Transmit data
to modem

Read data
from modem

Transmit data
to ground station

Modem

FPGA

Data Radio

Figure 3.3: Use case diagram for the resource manager.

CHAPTER 3. PAYLOAD DESIGN 29

idle

Interrupt

condition?

No

Generate interrupt

Yes

Interrupt

acknowledged?

No

Allow the SH4

time to process

interrupt

Yes

Figure 3.4: Interrupt generation sequence.

CHAPTER 3. PAYLOAD DESIGN 30

FIFO

FIFO

TX circular buffer

RX circular buffer

Status Register

ISR

Interrupt worker

thread

read()

write()

Client Resource Manager FPGA

write()

handler

read()

handler

Figure 3.5: ISR integration diagram.

CHAPTER 3. PAYLOAD DESIGN 31

F
IF

O

tr
i-

st
at

e

ad
dr

es
s

de
co

di
ng

D
at

a
lin

k
la

ye
r

de
co

di
ng

da
ta

 li
nk

 la
ye

r
en

co
di

ng

tr
i-

st
at

e

ad
dr

es
s

de
co

di
ng

st
at

us
re

gi
st

er

D
Q

F
IF

O

F
IF

O

st
at

us
re

gi
st

er

D
Q

co
nt

ro
l

re
gi

st
er

D
Q

co
nt

ro
l

re
gi

st
er

D
Q

D
A

C

M
ic

ro
bl

az
e

co
re

S
A

A
A

D
C

D
A

T
A

 B
U

S

D
A

T
A

 B
U

S

A
D

D
R

E
S

S
 B

U
S

A
D

D
R

E
S

S
 B

U
S

O
B

C

D
S

P
re

pl
ac

ed
 w

ith
 d

at
a

ra
di

o
to

 im
pl

em
en

t p
ro

to
ty

pe
do

w
nl

in
k

Figure 3.7: Payload FPGA �rmware.

Chapter 4

Ground Station Design

In this chapter the design of the ground station will be presented. The purpose
of the ground station is to transmit an RF signal to the payload in such a way
that the testing of the Steerable Antenna Array on the payload is possible,
while demonstrating the ability to transmit information to a remote ground
station via the communications link. These given functions are used as a
basis from which a list of required hardware components is constructed. Each
component is then discussed in its own section.

There are two important �gures in this chapter namely Figures 4.2 and 4.1.
They provide an overview of the ground station data �ow paths and a detailed
view of the design, respectively. Figure 4.1 is especially important because
it de�nes which parts of the system formed a part of the work done for this
thesis and which parts were implemented by others. The implementation of
the components and interfaces which formed a part of this thesis are presented
in Chapter 5.

4.1 Necessary Hardware

The four ground station criteria outlined in Chapter 2 are repeated here for
the reader's convenience:

� The ground station must transmit an RF signal of the correct amplitude,
frequency and polarisation to the SAA uplink receiver,

� the RF signal must contain a complex I/Q message signal,

� the I/Q message signal must in turn contain modulated data, i.e. data
from environmental sensors and

� the ground station must be able to receive data from the downlink trans-
mitter.

From these criteria a list of necessary hardware components follows:

32

CHAPTER 4. GROUND STATION DESIGN 33

� RF tools such as antennas and ampli�ers are required to generate the
desired RF Signal for propagation,

� an I/Q modulator will be required to generate the complex I/Q signal
from the two quadrature baseband signals,

� some type of modem is required to modulate the user data into baseband
I/Q signals,

� a digital to analogue converter is required to feed the modem samples
into the I/Q mixer,

� a data processor such as a PC computer will be required to generate and
manage the useful information,

� RF tools for the downlink receiver,

� hardware �glue� such as an FPGA is required to manage and connect all
the digital interfaces of the above components.

Visualising the end-to-end �ow of data through the system provides a good
idea of the kind of interfaces required between components. This data �ow
will be described using an example of data being sent from ground station A
to ground station B. The two ground stations do not have a line of sight path
and need to transmit the data via the payload. The transmit path of A will
illustrate the uplink and the received path of B the downlink. The transmit
and receive paths are illustrated in blue and green respectively in Figure 4.2.

To begin with, environmental data such as weather data are sensed, sam-
pled and transmitted to ground station A via an ad hoc network. The data is
collected on the ground station PC by application software. This data must
then be transmitted to the modem for modulation. It passes through the data
link layer where the data is broken into packets using the simple Automatic
Repeat reQuest (ARQ) protocol. These packets are passed to the Telemetry
(TM) protocol where they are separated into frames. The frames are sent to
the physical layer for channel coding. A Cyclic Redundancy Check (CRC) is
added to the TM frames which then get randomised and sent to the modem.

The modem modulates the data bits and sends the modulated data back
to the FPGA as samples. The FPGA then sends these samples to the Digital
to Analogue (DAC) converter to escape the digital domain. The output of the
DAC is connected to an I/Q modulator which generates the real signal from
the composite complex baseband signals. The output of the modulator gets
mixed to the desired carrier frequency. The RF signal then gets ampli�ed to
the desired level and transmitted via an antenna.

The RF signal propagates through free space and reaches the payload. To
simplify the scenario the payload will be represented by a bent pipe. The data
gets retransmitted by the payload to ground station B.

CHAPTER 4. GROUND STATION DESIGN 34

Ground station B's receiving antenna directs the RF signal to an o�-the-
shelf data radio. The data radio demodulates the signal and sends the raw
data to the PC (via the FPGA) where the application layer software processes
it. Note that the data radio has its own built-in EDAC.

The uplink and downlink are required to run in full duplex mode. The
above processes are depicted running simultaneously in Figure 4.2.

The various components in the ground station design will now be analysed.

4.2 Ad Hoc Sensor Network

Designing an ad hoc sensor network was not the main goal of this thesis. How-
ever, it was noted that the basic requirements for each node are a transducer,
in the form of a sensor, and an Analogue to Digital Converter (ADC) to sam-
ple the analogue values. Furthermore, each node requires some kind of radio
equipment to communicate with other nodes. Finally there must be a single
node in range of the ground station which will handle the transfer of data from
all the other nodes to the ground station PC.

An immediate solution for a node was identi�ed as one consisting of a Rene-
sas micro-controller (with built-in ADC) connected to an RF Digital RFDP8
[40]. The RFDP8 is a complete 2.4GHz transceiver with a built-in ad hoc
protocol available at low-cost from RF Design at the time of writing. The
RFDP8 has a UART which allows it to connect to either the Renesas board
or a PC, using some level conversion circuitry such as the MAX232.

It was decided that this was a su�cient design for the purposes of this
thesis. The design was implemented by Christopher Gautun from ENSEIRB
Matmeca.

4.3 PC

The choice of PC was simpli�ed by the fact that a lightweight PC was sought
since the ground station would ultimately be deployed in the �eld. That
excluded machines such as desktops and servers. The Fit-PC is a very small
PC which requires a regulated DC power supply [2]. It consists of an AMD
Geode 500MHz CPU, 256MB of RAM, a 160GB disk drive, 4x USB ports
and comes preloaded with Ubuntu Linux. This would be su�cient for running
the application and data link layer software and provides physical interfaces to
the outside world. A Fit-PC was immediately available for development from
the Sumbandila Satellite Communications Payload project. It was therefore
decided to use the Fit-PC as a ground station PC.

CHAPTER 4. GROUND STATION DESIGN 35

4.4 FPGA

The following criteria must be met by the FPGA used for the ground station:

� it must have a su�cient number of Input/Output pins to interconnect
all the components, and

� it must have su�cient capacity for implementing the EDAC �rmware for
the data link layer.

Two Xilinx Spartan-3E evaluation kits were immediately available for use.
The Spartan-3E kit provides 43 dedicated I/O pins. It also has USB and serial
digital data interfaces. The FPGA is a crucial component which connects the
electrical interfaces of the digital components to each other. Each of these
interfaces is now analysed.

4.4.1 FPGA to Fit-PC Interface

The Fit-PC has 4x USB ports as digital data interfaces. It does not provide
any other interfaces such as serial or parallel ports or expansion buses. Imple-
menting serial port data transfer is considerably simpler than USB transfer. A
serial data transfer design was therefore chosen. A USB to serial bridge, using
the PL-2303 microchip, can be used to provide a serial port as a data interface.
Given our data rate of 19200 baud, the serial port would be su�cient as baud
rates of 115 200 are feasible.

Both the Fit-PC and the FPGA are Data Communications Equipment
(DCE) devices (all this means is that both the FPGA and the Fit-PC receive
and transmit data) so a null-modem cable must be used to connect the two.
A null-modem cable has its receive (Rx) and transmit (Tx) lines swapped at
one end. This enables the Fit-PC to receive and transmit data to the FPGA
and vice versa.

The Spartan-3E kit provides two serial ports in the form of DB-9 connec-
tors, together with level conversion circuitry to convert from UART TTL levels
to serial port RS-232 levels. A UART would be implemented in VHDL on the
FPGA. The UART requires 2 pins on the FPGA (transmit and receive).

Regarding the �ow control of data over the serial interface, the DB-9 con-
nectors on the Spartan-3E board have no connections for the hardware �ow
control pins. Flow control therefore has to be implemented in software. On
the Fit-PC the serial port device driver handles the �ow control. The driver is
well documented and will not be explained here [32]. The serial port is opened
in asynchronous, full duplex mode with XON/XOFF software �ow control. On
Linux systems this is accomplished by issuing the following command:

stty --file=/dev/ttyUSB0 ixon

CHAPTER 4. GROUND STATION DESIGN 36

The /dev/ttyUSB0 is the UART to USB bridge supplied by the PL2303
chip and recognised as such by the Linux kernel. The ixon option tells the serial
port to enable XON/XOFF �ow control. This means the driver will listen for
the XOFF character (ASCII 17) and stop transmitting when this character
is received. Similarly, it will resume transmission when the XON character
(ASCII 19) is received. Because the XON/XOFF characters may appear in
normal data transfer, an escape code is used to transmit these characters.
The serial port device driver is POSIX compliant so open(), read(), write()
and ioctl() calls will be used to manipulate the serial port and ultimately the
FPGA as well as the modem.

4.4.2 FPGA to DSP Interface

As discussed in Chapter 3 there is a plethora of interfaces to the Freescale
DSP. The interface to the modem will be the same SRAM interface used on
the payload and described in Chapter 3. The SRAM interface requires 30 I/O
pins, leaving 13 available.

4.4.3 FPGA to DAC Interface

The Spartan-3E has an on-board four channel DAC, the National LTC2624.
This simpli�es interfacing to the DAC as no glue logic or adapter circuitry
is needed. The LTC2624 has a well documented serial interface used to load
and update its registers [33]. The serial interface is connected directly to the
FPGA.

4.4.4 Firmware

Once all the components have been connected to the FPGA, the �rmware
is what ensures that the electrical interfaces conform to the speci�cations.
Writing �rmware in VHDL is a simple four step process. Firstly the design
is performed in hardware using low level components such as logic gates and
�ip-�ops. Secondly, VHDL is written to implement this hardware design.
Thirdly, a VHDL test bench is written which simulates the performance of
the hardware in software. Finally, the VHDL is synthesised (analogous to
compilation of code) and programmed onto the FPGA.

Before beginning the hardware design it is noted that the various digital
components run at di�erent clock speeds. The notable clock speeds in the
system are the baud rate of the UART to the PC, the sampling rate of the
DAC and the clock speed of the DSP chip. As done on the �rmware for the
payload, FIFO bu�ers will be used to ensure that data is transferred reliably
between these clock domains.

O�-the-shelf, open source UARTs written in VHDL are freely available
from numerous sources [4], [3]. The Constant (K) Compact UART written by

CHAPTER 4. GROUND STATION DESIGN 37

Ken Chapman of Xilinx is a fully functional, freely available VHDL module
consisting of transmit and receive macros written for Spartan, Virtex and
Virtex-E devices [9]. Each macro handles data in little endian mode with one
start bit, eight data bits and one stop bit. Each macro also contains a built-in
16 byte FIFO. These macros are perfectly suited for communicating with the
UART on the Fit-PC.

Unmodulated data received from the Fit-PC must be stored in a FIFO
which will be read from to transmit data to the modem. Software �ow control
must be implemented in the �rmware to avoid an over�ow of this FIFO. The
FIFO has a programmable threshold. This threshold can be used to trigger
the sending of an XOFF command to the device driver on the Fit-PC to
indicate that a full condition is approaching. Once the FIFO is safely below
this threshold, an XON command can be sent to resume reception.

In addition to the XON/XOFF commands, the �rmware must be able to
respond to other commands from the Fit-PC. One of them is the startup
�HELLO� sequence which is used by the system software on the PC to verify
hardware connectivity. To aid in the processing of these commands, the Pi-
coBlaze core from Xilinx was used [50]. The PicoBlaze core is an 8-bit RISC
soft processor core which is freely available from Xilinx. The core has a basic
set of assembler instructions with which it is programmed. The assembly code
for the PicoBlaze processor was written by Ewald van der Westhuizen.

The ground station FPGA �rmware is depicted in Figure 4.3.

4.5 Modem

A QPSK modulator is required to modulate the user data into baseband I/Q
signal samples which can be converted into an analogue signal and sent to
the quadrature mixer. The top level modem design was done by Dr Gert-Jan
van Rooyen, Ewald van der Westhuizen and Kobus Botha during the multiple
channel communications payload project [7]. It was implemented in the C
language on a Freescale DSP56321 by Ewald van der Westhuizen with the
assistance of Dr van Rooyen.

The modem generates symbols from the user data two bits at a time. These
bit pairs, which are the symbol values, are used to generate a message signal
pulse train. The message pulse train is sent through a raised-cosine �lter to
smooth the phase transitions. The output of the �lter is the message signal.
A baseband carrier wave is then generated using DDS and mixed with the
message signal to create the modulated baseband signal samples which can be
sent to the DAC.

CHAPTER 4. GROUND STATION DESIGN 38

Table 4.1: Quadrature mixer comparison.

Feature HMC495LP3 COM-4001
Frequency Range (MHz) 250− 3 800 902− 928 / 2 025− 2 500
Output Power (dBm) −9 −9
Integrated LO No Yes
Connectorized Yes Yes

4.6 DAC

The modulated baseband signal has a bandwidth of 19 200Hz. The Nyquist-
Shannon sampling theorem states that, for a signal with a bandwidth of F Hz,
samples spaced less than 1

2F
seconds apart will be a lossless representation of

the signal. Typically in practice this is extended to 1
3F

and 1
4F

(a technique
known as oversampling, typically used to create safety margins to cater for
�lter roll o�). The DAC sample rate must therefore have a minimum value of
4 × 19 200 = 76 800 samples per second. Furthermore, the samples from the
modem represent 16 bits each, so the ideal DAC will have a sample word size
of 16 bits.

4.7 Quadrature Upmixer

As explained in Chapter 3, the SAA expects a QPSK signal centered at
2.45GHz. The modulated baseband signals from the modem must therefore
be mixed up to 2.45GHz. QPSK signals can be combined to form a single real
signal using a technique known as quadrature upmixing [8]. The HMC495LP3
from Hittite Microwave Corporation was identi�ed as being a suitable device
capable of performing direct quadrature upmixing to frequencies between 250
and 3 800MHz [24]. Another quadrature mixer that was identi�ed is the COM-
4001 from ComBlock [11]. Both were feasible for use with the ground station
yet, due to time constraints a connectorised evaluation module was sought,
preferably with a built-in local oscillator (LO). This was to simplify the imple-
mentation of the transmitter chain and to avoid a potentially lengthy circuit
layout process. The comparison between these two modules is summarised in
Table 4.1.

It was decided to evaluate the COM-4001 because it does not require an
external LO.

4.8 RF Hardware

The RF output signal from the quadrature upmixer requires ampli�cation to
meet the equivalent isotropically radiated power of 1W (30 dBm) required
by the link budget. Assuming an antenna gain of 6 dB, this means a total

CHAPTER 4. GROUND STATION DESIGN 39

gain of 30− 6− (−9) = 33 dBm is needed. Sourcing an ampli�er with a gain
of 33 dBm was not possible. What is typically done to achieve this kind of
gain is that the low-power signal is ampli�ed using successive stages. The �rst
ampli�er, referred to as a Low Noise Ampli�er (LNA), lifts the signal enough
to be su�ciently ampli�ed by a second ampli�er, a Power Ampli�er (PA). The
noise injected into the signal by the �rst ampli�er in the stage gets multiplied
by the second one, hence the low noise �gure of the �rst ampli�er.

O�-the-shelf components were sought to minimise costs. Two products,
both from Hittite Microwave, were identi�ed as being suitable. An LNA,
the Hittite HMC286, provides 19 dB of gain for signals in the 2.3 − 2.5GHz
range and is available as a connectorised evaluation module [23]. The Hittite
HMC755LP4E is a 1W PA that provides a gain of 31 dB for signals in the
2.3− 2.8GHz range and is also available as a connectorised evaluation module
[25].

The HMC286 has a maximum allowable input power of 0 dBm, so it is
compatible with the COM-4001. However, the HMC286's output 1 dB com-
pression point is at 6 dBm. With a gain of 19 dB this means that input signals
with a power greater than 6−19 = −13 dBm will cause the LNA to operate in
the compression range and the input signal will become distorted. This is not
a problem, however, because the COM-4001 has a soft programmable output
power.

If the LNA is driven with a−14 dBm signal from the COM-4001, the output
will be 5 dBm. Adding the 31 dB from the PA gives 36 dBm. This is also not
a problem as the gain of the PA can be attenuated using control voltages to
provide the required output power.

4.9 Transmitter (Uplink) Antenna

Antenna design did not form a part of the work done for this thesis, and the
designed and construction of the antenna was done by Wynand van Eeden.
The antenna speci�cations are:

� the radiated wave must be circularly polarised as required by KUL,

� the antenna should display high return loss when fed a 2.45GHz signal
as this means that the signal is radiated e�ectively at this frequency,

� the radiation pattern should be omnidirectional to eliminate the need for
antenna tracking as this simpli�es the ground station implementation.

4.10 Receiver (Downlink) Antenna

A 900MHz omnidirectional antenna was chosen for the RF downlink. The
Aerocomm 0600-00019 is a 915MHz omnidirectional half wave dipole antenna

CHAPTER 4. GROUND STATION DESIGN 40

with a 2 dBi gain [1]. Two antennas were obtained for implementing the down-
link transmitter and receiver.

4.11 Downlink Data Radio

The required data rate for the downlink is 19 200 bps. The XTend� OEM RF
module provides a data rate of up to 115 200 bps and was used for this thesis
[14].

CHAPTER 4. GROUND STATION DESIGN 41

B
P

F
 I

/Q
 M

ix
er

(C
o

m
B

lo
ck

)

P
C

R
X

 A
n

te
n

na

T
X

 A
n

te
nn

a
E

xp
an

si
on

 b
oa

rd

F
P

G
A

Data marshalling

D
at

a
m

ar
sh

al
lin

g

E
n

co
di

ng

M
od

ul
at

io
n

D
em

o
du

la
tio

n

D
S

P
 M

od
em

U
A

R
T

R
F

 R
x

O
ff-

th
e-

sh
el

f
D

at
a

R
ad

io

D
A

C
s

U
A

R
T

/ R
S

-2
32

U
A

R
T

/ R
S

-2
32

R
S

-2
3

2
le

ve
l c

o
nv

er
te

r

G
ro

un
d

S
ta

tio
n

S
W

S
R

A
M

 I
/O

B
us

L
N

A
P

A

A
d

 h
oc

S
en

so
r

N
et

w
or

k
LP

F

K
ob

us
 B

ot
ha

E
w

al
d

va
n

de
r

W
es

th
ui

ze
n

F.
 O

liv
ie

r
&

 R
.

W
iid

Figure 4.1: Functional overview of the ground station.

CHAPTER 4. GROUND STATION DESIGN 42

PC

SDR
Modem

Data
Radio

PA
stages

Tx
Antenna

I/Q
Mod

Rx
Antenna

raw data for modulation

DAC

modulated I/Q samples

raw data

baseband I/Q signals

FPGA

Ad hoc
Sensor
Network

environmental
sensor data

Figure 4.2: Ground station overview.

CHAPTER 4. GROUND STATION DESIGN 43

E
nc

od
in

g

da
ta

 r
eg

is
te

r

P
ic

oB
la

ze

F
IF

O
U

A
R

T
 R

x

U
A

R
T

 T
x

U
A

R
T

da
ta

 +
co

m
m

an
d

s

co
m

m
an

d
s

d
at

a

st
at

us
 r

eg
is

te
r

co
m

m
an

d
 r

eg
is

te
r

F
IF

O
ba

ud
cl

oc
k

m
u

lti
pl

ex
er

tr
i s

ta
te

S
R

A
M

 d
at

a
S

R
A

M
 a

dd
re

ss
S

R
A

M
 s

tr
ob

e
s

st
a

tu
s

b
its

F
it-

P
C

F
IF

O

D
A

C
C

on
tr

ol
le

r
D

A
C

D
S

P

K
ob

us
 B

ot
ha

F.
 O

liv
ie

r
&

 R
.

W
iid

E
w

al
d

va
n

de
r

W
es

th
ui

ze
n

Figure 4.3: Ground station FPGA �rmware.

Chapter 5

Payload Implementation

This chapter explains how the design presented in Chapter 3 was implemented.
The bottom-up construction of a system involves implementing the lowest level
components �rst. Smoke tests are performed on all components before inte-
gration to any other components. Once smoke testing is passed, components
are then connected to each other to form subsystems of increased complexity.

These subsystems are then connected to each other and tested. This pro-
cess is repeated until all the components are connected to form a single system.
The tests done for each component are described at the end of that compo-
nent's implementation description in this chapter. These smoke tests are only
intended to verify the operation of single components.

The integration of all the components into a single payload system is pre-
sented at the end of the chapter, along with a few integration tests. Final
integration tests are documented in detail in Chapter 7.

5.1 Development Environment

The SH4, FPGA and DSP all have their own set of development tools and set
up requirements. These are brie�y presented in this section.

5.1.1 Accessing the OBC

Accessing the QNX image on the SH4 is possible through the CAN bus [15].
Dedicated Cygnal CAN controllers in combination with SunSpace's CAN driver
on the SH4 make this possible. However, typical PCs do not have CAN bus
terminals. An intermediate device, the Ground Station Equipment - Ethernet
Interface (GSE-EI) module from SunSpace, was used to access the CAN bus.
The GSE-EI converts Ethernet packets into CAN packets. The Ethernet to
CAN tunnel set up by the GSE-EI is con�gured by the Lua CAN Interface
(LCI) software provided by SunSpace.

44

CHAPTER 5. PAYLOAD IMPLEMENTATION 45

dev PC

GSE-EI

Aircraft
Satellite
Emulator

SH4 OBC

Ethernet

CAN Bus

LCI server

Figure 5.1: CAN bus development environment.

A dedicated PC running the LCI software on the same Ethernet segment is
required to use the GSE-EI. Once LCI is running and the QNX image on the
SH4 has booted, data can be transferred to and from the SH4 using standard
IP tools such as ftp and rsync. The CAN bus development environment is
depicted in Figure 5.1. The SH4 can also be accessed via a serial terminal
which is always active. This serial terminal is crucial when debugging boot
problems as it displays a boot progress log.

5.1.2 QNX Programming

QNX supplies a cross-compiler allowing SH4 executables to be compiled on
various other architectures such as x86. The cross-compiler supports C and
C++ code. POSIX compliant C code was written where ever possible for code
portability as certain software components could be reused on the ground
station. A Linux version of the QNX Integrated Development Environment
(IDE) was used to write and compile code with.

Executables were transferred to the SH4 using the QNX connection man-
ager, qconn, and can either be executed from within the IDE or from the
command line during a telnet or rsh session. The programs are stored on the
OBC's non-volatile memory and are con�gured to execute at start up, using
the SunSpace ProcessMonitor component, putting the SH4 in a known state
after a cold start [42].

CHAPTER 5. PAYLOAD IMPLEMENTATION 46

5.1.3 ML501 FPGA Programming

Xilinx provides the Integrated Synthesis Environment (ISE) software suite for
generating bitstream programming �les from VHDL code. The Xilinx Virtex-5
family FPGAs use �ash-erase EEPROM technology for programming �rmware.
The �rmware must therefore be loaded after each cold start. Six con�guration
interfaces are available for loading a generated bitstream �le onto the FPGA.
Serial con�guration via JTAG was used to load new �rmware onto the FPGA
during development cycles. Once a version of the �rmware was considered
stable it was loaded onto a compact �ash card. The image from the compact
�ash is loaded onto the FPGA after a cold start by dedicated �ash hardware
on the ML501 board, ensuring that the system is in a known state.

When generating bitstream �les in ISE, it is crucial to note that unused pins
on the FPGA are connected to ground by default. This could be catastrophic
if the pin is ever connected to a positive supply pin. ISE must be instructed
to let unused pins �oat as this decreases the possibility of accidental damage.

5.1.4 DSP Programming

Motorola CLASS COF (.CLD) �les are loaded onto the DSP via the DSP56300
Hardware Debugger which is part of the Motorola DSP Software Development
Tools suite. CLD �les can be compiled using an assembler, a C compiler or
a C++ compiler. Motorola provides a free-to-use assembler which was used
for initial testing of the DSP's host interface. The Tasking software suite,
which provides C and C++ compilers, was subsequently purchased. The DSP
software was therefore written in C, compiled and linked by the Tasking IDE
and uploaded to the DSP by the hardware debugger through the JTAG port
using a parallel port cable. Stable versions of the code were written to the
Atmel AT29LV010A-20TC chip which provides 128K× 8 bits of CMOS �ash
memory from which the DSP boots, putting the DSP in a known state after a
cold start.

5.2 Electrical Interface Connections

Physical connects must be made between the various components of the pay-
load. The implementation of these connections is now described.

5.2.1 FPGA-OBC

The SH4 OBC PC104+ connector is a socket type quad-row 30 pin connector.
An adapter board must therefore be constructed which slots into this connector
by means of another PC104+ connector. Similarly, to connect to the ML501,
an adapter board must be constructed which slots onto the two XGI headers,
which are triple-row 30 pin headers with standard 0.1" spacing. Some of the

CHAPTER 5. PAYLOAD IMPLEMENTATION 47

pins on this adapter board will connect to the DSP and some will connect to the
OBC. Furthermore, one of the two adapter boards should contain standard 0.1"
header rows which piggyback on the standard I/O pins, allowing convenient
measurement of voltage levels on the I/O pins. This is to assist in debugging.

PCB layouts were made for both adapter boards. The OBC adapter board
was tested using a continuity test. The ML501 adapter board was tested in
two ways. An input test was done by synthesising �rmware with a single line
of VHDL:

LED <= in0 or in1 or in2 ... or inN;

where N was the last pin. One of the LEDs on the board would then light up
whenever a 3.3V signal was applied to an I/O pin. The ability for each pin to
act as an input was veri�ed in this way. As an output test, an M-bit counter
was output on M output pins. The frequency at which each pin toggled was
then measured using an oscilloscope. This test veri�ed the ability of each
output pin to drive a signal.

5.2.2 FPGA-DSP

The DSP56311 Evaluation kit provides access to the DSP's address, data and
control buses in the form of three seperate 0.1" headers. Ribbon cable and
0.1" header sockets were used for connecting the ML501 adapter board pins
directly to the DSP.

5.2.3 FPGA-SAA

The interface supplied by KUL to their SAA is an Ethernet interface. Ewald
van der Westhuizen implemented a PicoBlaze module on the Virtex-5 FPGA
which handles the reception of ADC samples from the SAA over Ethernet.
All that is required to connect the ML501 board to the SAA subsystem is an
Ethernet cable.

5.2.4 FPGA-Data Radio

The Xtend OEM accepts UART TTL levels at its data port. This is not
compatible with the RS-232 levels of the ML501 serial port connector. A level
translation board was therefore constructed for the Xtend module to allow it
to connect to the ML501 board's RS-232 port.

5.3 OBC Resource Manager Implementation

The resource manager was written in the C language as it is a well documented
language for writing QNX applications. QNX also provide well documented C

CHAPTER 5. PAYLOAD IMPLEMENTATION 48

development libraries.
QNX provides an InterProcess Communication (IPC) mechanism called

message passing which can be used to send data in a reliable manner between
processes. Using message passing involves creating a message channel for in-
coming messages, listening for incoming messages on that channel, and then
replying to any messages received on the channel. The resource manager uses
message passing for all IPC tasks.

5.3.1 Expansion Port Setup

The �rst thing that the resource manager does is to ensure that the timing of
the expansion port hardware agrees with what the �rmware expects. When
accessing the expansion port the SH4 is the bus master. All timing is depen-
dent on the speed of the bus clock, CKIO, which is set up using the frequency
control registers. The SRAM wait states are controlled by the Bus State Con-
troller (BSC).

CKIO setup

A 16MHz crystal oscillator is fed to the SH4 which has an on-chip PLL for
generation of internal and external frequencies. The Clock Pulse Generator
(CPG) has three clocks which are set externally by the external mode pins
MD[2..0]. The CPG is set to clock operating mode 3 by these pins. The
default frequency of CKIO is therefore 64MHz (and the internal clock runs
at 192MHz). During testing of the adapter board, however, electromagnetic
interference (EMI) was detected on the adapter board. The existence of EMI
on a data bus is easily detected using the transmission of an up counter value
over the bus. When the counter is 3 bits wide, all the values are transferred over
the interface successfully. However, as the counter becomes wider, the number
of parallel wires containing a logic 1 increases. In other words, a 3 bit counter
will transition from 111 to 000 and a 15 bit counter from 111111111111111 to
000000000000000.

When a large number of bits on the bus change their value, EMI will mani-
fest as a �remnant� voltage on certain wires. This is due to mutual induction �
the current in one wire creates a magnetic �eld, and that magnetic �eld a�ects
the adjacent wires [28]. For example, a change from 215 to 0 fails because the
actual value on the bus is, for example, 000000010000000 when the value is
latched. The stray 1 is due to the induced magnetic �eld.

A simple solution to measured EMI is reducing the clock speed of the
interface. This provides the wires time to settle to their correct values. For
this reason the frequency of CKIO was halved. Substituting this new value of
CKIO into Equation 3.3.1 yields

r =
32× 106

3
× 32 ' 341× 106 bps (5.3.1)

CHAPTER 5. PAYLOAD IMPLEMENTATION 49

Table 5.1: Simpli�ed OBC expansion port �rmware model.

Address Read Write Description
0x00 3 7 TM receive register
0x01 7 3 TM transmit register
0x02 3 7 status register
0x03 3 3 control register

The required data rate of 7 392 000 bps still falls within this upper limit and
the e�ective data rate over the expansion port was not impacted negatively by
this change. This was veri�ed during subsequent measurements.

After halving of CKIO's frequency, EMI e�ects were not measured any-
more at latch time and reliable data transfers were achieved. The setting of
CKIO involves writing set up values of 0xA567, 0x5A00 and 0xE23 to registers
WTCNT, WTCSR and FRQCR respectively.

BSC setup

The bus state controller controls the number of wait states inserted during
SRAM access operations over the expansion port. The minimum number of
wait states is aimed for to maximise the data throughput rate. The BSC
inserts the same number of wait states for either read or write operations.

For a write operation, data becomes valid on the �rst falling edge of CKIO
after the assertion of WE2. The �ip-�ops in �rmware only latch data on rising
edges of CKIO. This means that the data must be latched after the �rst rising
edge of CKIO whenWE2 is asserted. Zero wait states are needed to accomplish
this.

For read operations, the SH4 expects valid data on the data bus after N
rising edges of CKIO, where N is the number of wait states. However, the data
must �rst be �popped� out of the FIFO onto the data bus into a register. This
takes two clock cycles: one for popping from the FIFO, and one for latching
into the register. Two wait states must therefore be inserted. This is done by
writing 0x400 into the WCR2 register (see Figure A.1 in Appendix A).

5.3.2 Simpli�ed Firmware Interface

A simpli�ed model of the �rmware, summarised in Table 5.1, is used to hide
�rmware implementation details from the resource manager. The resource
manager reads and writes to four registers when accessing the expansion port.
The resource manager also contains an interrupt handler which is triggered
by the �rmware. The rest of the �rmware implementation is hidden from
the resource manager. This model allows the greater �rmware transmit and
receive paths to be implemented in any manner without needing to update the
resource manager. Each of the registers is now detailed.

CHAPTER 5. PAYLOAD IMPLEMENTATION 50

Table 5.2: OBCS bit de�nitions.

Bit Name Reset Value Description

31-8 Reserved - Not used
7 TMWPF 0 Programmable full threshold of the TM

write FIFO
6 TMWPE 1 Programmable empty threshold of the

TM write FIFO
5 TMWF 0 Full threshold of the TM write FIFO
4 TMWE 1 Empty threshold of the TM write FIFO
3 TMRPF 0 Programmable full threshold of the TM

read FIFO
2 TMRPE 1 Programmable empty threshold of the

TM read FIFO
1 TMRF 0 Full threshold of the TM read FIFO
0 TMRE 1 Empty threshold of the TM read FIFO

OBC Expansion Port Status Register (OBCS)

The status register OBCS is a 32-bit read only register that is used by the
resource manager to poll the status of the bu�ers on the FPGA. The Telemetry
(TM) write FIFO is the bu�er containing TM frame � which was sent from the
TM write module on the SH4 � and must be written to the EDAC �rmware
components. The TM read bu�er contains decoded data from the EDAC
components which are destined for the TM protocol on the SH4. The bits of
the OBCS register are de�ned in Table 5.2. The bit names used conform to
the Xilinx FIFO speci�cation [48] and they are depicted in Figure 5.8.
The status register is read by the resource manager interrupt handler. The
interrupt processor thread then checks the TMWPF bit to determine if the TM
write FIFO has available space. The interrupt processing thread also checks
the TMRE bit to determine whether there is data on the FPGA waiting to be
read.

OBC Control Register (OBCC)

The control register OBCC is a 32-bit read/write register used for the OBC
to set �ags which can be read by the FPGA. The bits of the OBCC register
are de�ned in Table 5.3. Currently the only bit used in this register is RST,
at position 0, which allows the OBC to reset the FPGA and DSP hardware.
Writing a 1 to this bit will generate a �rmware reset on the next rising edge
of the expansion port bus clock.

CHAPTER 5. PAYLOAD IMPLEMENTATION 51

Table 5.3: OBCC bit de�nitions.

Bit Number Bit Name Reset Value Description
31-1 Reserved - Not used
0 RST 0 User programmable reset

TM Registers

When writing to the TM write register, data is clocked into the TM write
FIFO. Reading from the TM read register reads data from the TM read FIFO.

5.3.3 Resource Manager Components

QNX provides various layers which are used to build resource managers. These
layers (as named within the QNX documentation) are:

� iofunc layer (the top layer)

� resmgr layer

� dispatch layer

� thread pool layer (the bottom layer)

iofunc layer

This layer provides the standard set of functions which provide the device with
a POSIX �appearance� to the outside world. This layer ensures that all POSIX
calls made to the device return without error. This layer was used because it
removes the need to implement every single POSIX function. Only four of the
POSIX �le functions, open(), read(), write() and devctl() are implemented.

The iofunc layer also provides helper functions which are used throughout
the resource manager. These helper functions simplify the implementation of
the device functions. All iofunc_* functions are part of the iofunc layer.

resmgr layer

The resmgr layer handles most of the resource manager details. It waits for
and examines incoming messages, and calls the appropriate handler to process
each received message. Functions beginning with resmgr_ form part of the
resmgr layer.

The resmgr_attach() function is used to create a name in the pathname
space:

resmgr_attach (dpp, &resmgr_attr, "/dev/exp", _FTYPE_ANY, 0,

&cfuncs, &ifuncs, &attr)

CHAPTER 5. PAYLOAD IMPLEMENTATION 52

The resmgr_block() function blocks the resource manager until a client con-
nects to it. When a client has connected, resmgr_handler() is called to process
the message by calling the appropriate handler function (open, write, read,
etc).

dispatch layer

The dispatch layer is useful for handling other types of IPC available in QNX,
such as pulses, and is not used in the implementation of the resource manager.

thread pool layer

This layer allows the resource manager to respond to multiple simultaneous
read or write calls. Because the OBC expansion port is physically a half
duplex interface, it is only necessary to service one of the TM reader or writer
threads at a time. This layer is therefore not used in the resource manager
implementation. The resource manager is, however, multi-threaded, but this is
to allow e�cient handling of the interrupts, and the standard POSIX pthread
library was used for this purpose.

5.3.4 POSIX File Functions

The io_open() handler function implementation is reduced to a single line of
code, provided that the iofunc_open_default() helper function is used:

int io_open (resmgr_context_t *ctp, io_open_t *msg,

RESMGR_HANDLE_T *handle, void *extra) {

return (iofunc_open_default(ctp, msg, handle,extra));

}

The operations performed by the read and write function handlers are
expressed as �owcharts in Figures 5.2 and 5.3 respectively.

CHAPTER 5. PAYLOAD IMPLEMENTATION 53

does client

have read

permissions?

return

EPERM
No

store client blocking type

(blocking or non-blocking I/O)

Yes

incoming

io_read() from

client

data available

in TX circular

buffer?

Noblocking read?

return

EAGAIN

No

store client channel ID

(interrupt thread replies

at later stage)

return

_RESMGR_NOREPLY

Yes Yes

extract data from circular

buffer

MsgReply() sends data to

client

Figure 5.2: io_read() operations.

The io_devctl() function handler checks the integer value passed to it in a
case statement and takes action accordingly. At the time of writing the only
value recognised is 0, which causes the resource manager to write a value of
0x01 into the OBCC register. This value generates a reset on the FPGA and
the DSP hardware. Adding more devctl operations is as simple as adding more
clauses to the case statement in this function.

CHAPTER 5. PAYLOAD IMPLEMENTATION 54

does client

have write

permissions?

return

EPERM
No

Yes

incoming

io_write() from

client

space available

in FIFO?
Noreturn ENSPC

Yes

obtain mutex lock on

circular buffer

insert data into circular

buffer to be processed

later by interrupt thread

read OBCS

register

release mutex lock and

return EOK

Figure 5.3: io_write() operations.

CHAPTER 5. PAYLOAD IMPLEMENTATION 55

5.3.5 Interrupt Handler

The interrupt handler module consists of two components: an Interrupt Service
Routine (ISR) and an interrupt processing thread.

ISR

The ISR runs with the highest possible priority so it must be kept short to
avoid creating a bottleneck. The ISR:

� services the hardware by reading a register,

� updates a data structure shared between the ISR and the interrupt pro-
cessing thread and

� signals the resource manager application that an event has occurred.

All of these tasks are accomplished with the following code:

const struct sigevent *intHandler(void *arg, int id) {

InterruptMask(intr,intId);

status_reg = regbase[REG_STATUS];

return (&event);

}

The �rst thing the ISR does is to mask any further interrupts. Thereafter it
reads the status register from the FPGA and in doing so noti�es the FPGA
that the interrupt was received. It then returns a pointer to a special type of
eventm SIGEV_INTR, that only has a meaning for the interrupt processing
thread. The event structure is initialised in the resource manager's main()
function.
Attaching the ISR to the interrupt handler is handled by the QNX operating
system and is done using the InterruptAttach() function (where intHandler()
is the ISR) :

intId = InterruptAttach(intr, intHandler,

(void *) &status_reg, 0, 0);

A pointer to status_reg, a 32-bit unsigned integer variable, is passed to Inter-
ruptAttach. This couples the ISR to the variable.

Interrupt Processing Thread

This thread does the actual �work� when an interrupt is received. The thread
waits for noti�cation from the ISR that an interrupt occurred as part of a
while(1) loop:

InterruptWait (NULL, NULL);

CHAPTER 5. PAYLOAD IMPLEMENTATION 56

When InterruptWait() unblocks, the ISR has returned a SIGEV_INTR, in-
dicating that some form of work needs to be done. The interrupt processing
thread then checks the value in status_reg. If there is data waiting to be
read from the TM read FIFO, it must be read from the FIFO and inserted in
the receive circular bu�er to be accessed by later by a read() call. Similarly,
if there is data in the transmit circular bu�er from a previous write() call,
that data must be written to the TM write FIFO (given that there is space in
the FIFO). Finally the thread unmasks interrupts by calling the InterruptUn-
mask() function.
The conditions under which interrupts are generated are explained in Section
5.4, but a problematic scenario was identi�ed wherein interrupts would con-
stantly be generated when the TM write FIFO was waiting for data. This was
remedied by implementing selective interrupt unmasking.

Interrupts are unmasked under four conditions: when the interrupt process-
ing thread launches, after a block of data is written from the TX circular bu�er
to the TM write FIFO, after a block of data is read from the TM read FIFO
into the RX circular bu�er and after a successful io_write() call. These four
conditions ensure that bu�er over�ows do not occur and that the unnecessary
processing of interrupts is avoided.

As is evident from the �gures, there are two threads manipulating the
circular bu�ers at the same time. The circular bu�ers were not designed for
�asynchronous� read and write access. A mutex was therefore used to ensure
that only one thread would be accessing a circular bu�er at any time.

5.3.6 Testing

Because the design of the resource manager is so tightly coupled to the design
of the FPGA �rmware, testing the resource manager also involved testing the
�rmware. This is classi�ed as an integration test and is described in Section
5.7.

5.4 FPGA Firmware

In this section the components of the �rmware are implemented and tested.
Certain integration tests between components are inevitable at this stage to
verify that the �rmware is operating as expected. These tests are described in
this section.

5.4.1 OBC SRAM Interface Implementation

The expansion port on the SH4 OBC provides a 32-bit memory mapped SRAM
type interface to external devices. The SH4 is the bus master for all transfers
over this interface. When CS2 goes low, it indicates that the SH4 is using

CHAPTER 5. PAYLOAD IMPLEMENTATION 57

In
te

rr
u

p
t
p

ro
c
e

s
s
in

g
firmware interrupt processio_write() handlerinterrupt thread

InterruptWait() TMWPF == 0 or

TMRPE == 0?

assert interrupt pin

IRL3

data in TX

circbuff?

TMWPF == 0?

Transfer block of

data from TX

cirbuff to TM write

FIFO.

Increment umask

variable.

InterruptUnmask()

TMPE == 0?

Yes

Yes

No

No

free space in

RX circbuff?

inc buffer overflow

count

Transfer block of

data from TM read

FIFO to RX

circbuff.

Increment umask

Variable.

blocked read

exists?

extract block of

data from RX

circbuff and reply

to blocked read

Yes

No

Yes

No

Yes

read data from

client

space in TX

circbuff?

insert block of

data into TX

circbuff

InterruptUnmask()

inc buffer overflow

count, return

EAGAIN

return EOK

Yes

Yes

umask > 0?

Yes

No

interrupt ack

received?

No

release interrupt

pin and sleep

(allow interrupt

processing)

Yes

No

Figure 5.4: Interrupt interaction detail: write().

CHAPTER 5. PAYLOAD IMPLEMENTATION 58

In
te

rr
u

p
t
p

ro
c
e

s
s
in

g

firmware interrupt processio_read() handlerinterrupt thread

data in RX

circbuff?

read data from RX

circbuff and reply

blocking read? return EAGAIN

Yes

No

No

store channel ID and

return

_RESMGR_NOREPLY.

Interrupt thread will

reply to client later.

Yes

Yes

No

Yes

No

assert interrupt pin

IRL3

TMWPF == 0 or

TMRPE == 0?

release interrupt

pin and sleep

(allow interrupt

processing)

interrupt ack

received?

Yes

Yes

No

No

Yes

No

Yes

No

Yes

Yes

No

TMWPF == 0?

TMPE == 0?

data in TX

circbuff?

Transfer block of

data from TX

cirbuff to TM write

FIFO.

Increment umask

variable.

free space in

RX circbuff?

Transfer block of

data from TM read

FIFO to RX

circbuff.

Increment umask

Variable.

inc buffer overflow

count

blocked read

exists?

InterruptWait()

extract block of

data from RX

circbuff and reply

to blocked read

InterruptUnmask()

umask > 0?

Figure 5.5: Interrupt interaction detail: read().

CHAPTER 5. PAYLOAD IMPLEMENTATION 59

the expansion port to access external memory area 2. As described in Section
5.3.1, the timing of the waveforms on the expansion port are determined by
control registers on the SH4.

To verify the setup values written to these control registers, the expansion
port waveforms were measured using a logic analyser. The waveform timings
for the read and write operations are presented in Figures 5.6 and 5.7 respec-
tively.
The simplest test is to test the reading and writing of data between the OBC
and the FPGA by using a single register.

124nsnCS

nWE2

32ns

nRD

RDnWR

96ns

Figure 5.6: Expansion port read timings.

124nsnCS

94nsnWE2

16ns

nRD

124nsRDnWR

Figure 5.7: Expansion port write timings.

CHAPTER 5. PAYLOAD IMPLEMENTATION 60

5.4.2 FIFO Implementation

The FIFOs generated by the Xilinx core generator are �rst tested with a VHDL
test bench in the ISE simulator to verify their operation. Once their operation
has been veri�ed they are incorporated into the simple register based �rmware.
Data is latched into the FIFO on a synchronous rising edge of the wr_en
and wr_clk input ports. This means that wr_en must be high for a single
clock period or else the value at the data input will be written twice. This is
accomplished using the edge detector circuit depicted in Figure 5.10.

When implementing FIFOs, the unwanted conditions are under�ows and
over�ows. These are considered critical errors and are prevented in the design.
They are not dealt with other than incrementing a counter.

TM Read FIFO Under�ow

If a TM Read under�ow occurs, stale values will be read from the FIFO and
inserted into the RX circular bu�er by the interrupt thread. The interrupt
thread therefore checks the value of the programmable empty threshold before
reading a block of data. The programmable empty threshold is speci�ed by
an integer input port to the FIFO. When the number of words in the FIFO is
less than or equal to this integer, the programmable empty bit has a value of
one. Under all other circumstances the bit has a value of zero. The threshold
is set to the size of the data block minus one. The threshold is depicted in
Figure 5.8.

TM Write FIFO Under�ow

If a TM write under�ow occurs, the FEC encoder will encode a stale value.
The process that drives the FEC encoder therefore checks the empty bit. If
the empty bit is zero, there is at least one word in the FIFO, and that word is
sent to the encoder.

TM Read FIFO

TM Write FIFO

programmable full
(TMWPF bit) programmable empty

(TMRPE bit)

OBC FEC

Figure 5.8: FIFO thresholds.

CHAPTER 5. PAYLOAD IMPLEMENTATION 61

TM Read FIFO Over�ow

If a TM read over�ow occurs, the FEC decoder will overwrite words that have
not been read yet. This is avoided by checking the full �ag. If the �ag is zero,
there is space in the FIFO and a single word is written to the FIFO.

TM Write FIFO Over�ow

A TM write over�ow is avoided by checking the programmable full bit. When
this bit is zero, the word count in the FIFO is less than or equal to the
programmable full threshold value. The bit equals one otherwise. The pro-
grammable full threshold is set to 75%. The threshold is depicted in Figure
5.8.

5.4.3 Control Process

A control process is implemented in the �rmware to monitor the value in
the control register and to monitor the interrupt conditions. When the reset
bit in the control register is set, this process generates a reset signal which
reinitialises all state machines, registers and bu�ers.

When the interrupt conditions are met, this process handles the generation
of interrupts. The process generates an interrupt when:

� the TM Read FIFO programmable empty bit equals zero and

� the TM Write FIFO programmable full bit equals zero.

The thresholds determining these bits are depicted in Figure 5.8. Both inter-
rupt conditions are satis�ed in the diagram and an interrupt will be generated.

After generating an interrupt, the process waits for an interrupt acknowl-
edge, which is generated when the interrupt processing thread reads the value
of the status register. When the interrupt acknowledge is received, the in-
terrupt pin is released (de-asserted). The process then pauses brie�y to allow
processing of the interrupt before checking the interrupt conditions again. This
is repeated ad in�nitum.

5.4.4 Testing

VHDL test benches were used to verify the behaviour of the edge detector,
register and FIFO components.

5.5 DSP SRAM Interface

The DSP SRAM interface on the DSP56311 EV Kit does not contain a clock
i.e. it is asynchronous. Asynchronous SRAM access is therefore implemented

CHAPTER 5. PAYLOAD IMPLEMENTATION 62

in �rmware by using an edge detector similar to that used on the OBC SRAM
interface.

During implementation of the modem by Ewald van der Westhuizen it
became apparent that the DSP56311 did not support a su�ciently high clock
speed for real time modem operation. The DSP56321 is a faster chip and was
placed on the EV Kit, toegether with a faster 20MHz crystal.

The timing of the SRAM interface waveforms is determined by the speed
at which the DSP56321 runs and the number of wait states con�gured in the
Address Atribute Register. The DSP56321 has a digital PLL which is set to
run at 275MHz by the modem software. A single read/write cycle over SRAM
takes one clock cycle. The ML501 FPGA is fed by a 100MHz crystal so wait
states must be inserted.

The maximum number of wait states, 31, were inserted to provide a safety
margin against EMI e�ects. With 31 wait states, 24-bit read/write operations
take 32 clock cycles. This provides a data rate of 275×106

32
× 24 = 24.59MB/s

which is greater than the required data rate calculated in Chapter 3. A value
of 0x1F is written to the Bus Stace Control (BSC) register to insert 31 wait
states during SRAM accesses.

External SRAM access is memory mapped to I/O by writing 0x14C11 to
register AAR0. All addresses in the range 0x10000 - 0x1F000 are treated as
external SRAM memory addresses.

5.5.1 Testing

A VHDL test bench was used to verify that the operation and timing of the
DSP SRAM �rmware module functioned correctly.

5.6 Downlink Data Radio Implementation

The XTend OEM module supports an RF data rate of 115 200 bps and is
accessed via a UART. An RS-232 level converter is used to enable interfacing
with standard serial ports. All of the SH4 OBC serial ports are connected to
components. A single RS-232 port on the ML501 FPGA board is available
and was identi�ed as being a suitable electrical interface to use for the XTend
module.

A UART module, based on Ken Chapman's Compact-K UART [9], was
implemented in �rmware on the ML501 FPGA. This UART was then accessed
via the resource manager on the SH4. The resource manager exposed the
data radio as /dev/ser3. The baud rate was hard coded into the �rmware as
115 200 bps but it would be possible to implement a programmable baud rate
UART using a con�guration register.

The downlink data radios support both hardware and software �ow control.
However, by setting the RF baud rate of the radios to 115 200 bps and the data

CHAPTER 5. PAYLOAD IMPLEMENTATION 63

interface baud rate to 57 600 bps, it is possible to prevent bu�er over�ows from
occurring by designing the resource manager to check the status of the UART
FIFO on the FPGA before allowing client software to perform a write.

5.7 Low Level Integration Testing

In this section the lowest level intercomponent testing is described. Basic build-
ing blocks are veri�ed and electrical stability of inter-component connectivity
is tested.

5.7.1 OBC SRAM Interface Low Level Loopback Rest

This is the simplest test to con�rm that 32-bit data words can be transferred
between the OBC and the FPGA.

Test Setup and Procedure

The gated �ip-�op in Figure 5.9 is synthesised on the FPGA, with its output
looped back to the expansion port data bus. The input is gated with the CS2
signal to ensure that only Area 2 writes on the expansion port are handled. The
WE2 enable signal from the SH4 must be delayed by one clock cycle because
the data is only valid after the second rising edge of CKIO [39]. The test setup
is depicted in Figure 5.9. SunSpace provides convenient command line utilities
for accessing memory locations on the SH4. Mempoke writes to memory and

D Q

tri-

state

E

DATA BUS

D Q

nCS2

nRD

nWE2

SH4

OBC

Expansion Port

FPGA

CKIO

single clock cycle delay

Figure 5.9: Register loopback test.

CHAPTER 5. PAYLOAD IMPLEMENTATION 64

mempeek reads from memory. Because the expansion port is implemented as
memory-mapped I/O, writing to the �rmware register is accomplished with:

mempoke -r 32 0x88000000 42

The -r switch speci�es 32-bit memory access. All addresses in the 0x88000000
range are Area 2 addresses. Reading from the register is done with:

mempeek -r 32 0x88000000

Expected results

The value written with mempoke should be returned by the mempeek com-
mand.

Actual results

The output of the commands display the result:

mempoke -r 32 0x88000000 5

MemPoke, v0.1, Compiled on May 7 2007 11:41:08

Writing to address = 0x88000000, value = 0x00000005

mempeek -r 32 0x88000000

0x88000000: 0x00000005 (5) [0000 ... 0000 0101]

Analysis of Results

From the output of mempeek it seems that the implementation of the register
was successful. However, the full range of 32-bit values should be transferred,
read and veri�ed repeatedly by an automated stress test program to ensure
that no glitches or EMI e�ects exist on the interface. This was done during
the FIFO test described next.

5.7.2 OBC SRAM with FIFO Loopback Test

This is the simplest test using a single FIFO and some registers.

Test Setup and Procedure

The �rmware depicted in Figure 5.10 was synthesised on the FPGA. A C
program was written which would write N 32-bit values, where N is the capacity
of the FIFO (in this case the FIFO can hold 256 32-bit words), and then read
N words. The read values were compared to the written values and an error
was raised if the values did not match. This process was placed inside a for()
loop which ran 232 times. After each iteration of the loop, each element in the
collection of values to send was incremented. This test ensured that the entire
range of values were tested.

CHAPTER 5. PAYLOAD IMPLEMENTATION 65

Expected Results

The 256 values read from the FIFO should correspond to the values sent to
the FIFO.

Actual Results

The values read from the FIFO were equal to the values written to the FIFO.

Analysis of Results

All synthesised components were operating as expected.

5.7.3 DSP SRAM with FIFO Loopback Test

The testing procedures for the DSP SRAM interface tests were very similar
to the OBC SRAM interface tests and will not be described here. Both the
single register and FIFO loopback tests passed and it was concluded that data
could be reliably transferred between the DSP and the FPGA. The �rmware
used for the FIFO loopback test is depicted in Figure 5.11.

5.7.4 Data Radio Testing

This smoke test is to verify that the RS-232 level conversion circuitry is func-
tional and that data can be sent over the air via the radios.

Test Setup and Procedure

The test was performed using a Fit-PC, two USB to RS-232 converters and
two XTend data radios with antennas. Both radios were set up in transparent

D Q

E

DATA BUS

D Q D Q

falling edge detector

FIFO

wr_en

data in data out

SH4

OBC

Expansion

Port

nCS2

nRD

nWE2

tri-

state

FPGA

Figure 5.10: OBC single FIFO loopback test.

CHAPTER 5. PAYLOAD IMPLEMENTATION 66

mode. Data was transmitted to one serial port with:

$ echo "1234567890" > /dev/ttyUSB0

The other serial port was monitored for incoming data:

$ cat /dev/ttyUSB1

Expected Results

The transmitted string should be received without loss.

Actual Results

The following output was noted:

$ cat /dev/ttyUSB1

1234567890

Analysis of Results

The test string was successfully transmitted over the air using the data radios.
The radios perform according to speci�cation. Note that this test also veri�es
that the downlink receiver is functioning properly.

D Q

E

DATA BUS

D Q

falling edge detector

FIFO

wr_en

data in data out

DSP

SRAM

interface

nWR

nRD

tri-

state

FPGA

D Q D Q

delay network

Figure 5.11: DSP single FIFO loopback test.

Chapter 6

Ground Station Implementation

The implementation of the ground station system presented in Chapter 4 is
explained in this chapter. As with the implementation of the payload, the
top-level components are constructed from the ground up. Basic smoke tests
of the bottom level components are performed after each implementation step.
Detailed integration and system testing is presented in Chapter 7.

In general, component choice is more �exible for the ground station be-
cause:

� single event e�ects (such as latchups caused by ions or electro-magnetic
radiation) do not have to be considered,

� there is more physical space for component layout and

� more power is available on the ground.

The ground station RF hardware is discussed in terms of the uplink transmitter
and the downlink receiver. The �rmware on the FPGA is then discussed as is
the modem integration.

6.1 Downlink Receiver

The XTend OEM module used for the downlink was connected to the ground
station PC via a Proli�c pl2303 USB-to-UART converter [38]. The pl2303
does not provide hardware �ow control. Software �ow control is disabled on
the PC driver. Flow control is not required because the radio only receives
data. The baud rate of the serial port is set to 57 600 bps with the following
command:

stty 57600 -F /dev/ttyUSB0 ixoff

The smoke testing of the data radios performed in Chapter 5 showed that
this setup was su�cient to allow reception of data on the downlink using the
XTend module.

67

CHAPTER 6. GROUND STATION IMPLEMENTATION 68

6.2 Uplink Transmitter

The uplink transmitter is required to transmit the modulated data bits as a
complex I/Q signal of appropriate power and frequency. To achieve this the
following tools must be used:

� a means to transport the raw data bits from the PC to the DAC,

� a DAC to escape the digital domain of the modulator,

� a reconstruction �lter at the DAC output,

� a quadrature mixer to create a complex RF signal from the I/Q signals,

� an ampli�er stage to achieve the required signal strength and

� an antenna.

As outlined in Chapter 4, the Spartan-3E FPGA development board is used for
physical data routing between the various components with digital interfaces.

6.2.1 DAC Implementation

As described in Chapter 4, a 16-bit DAC was sought with a minimum sam-
ple rate of 76 800 samples per second. Because the Spartan-3E board was
used there was a constraint on the number of available output pins. A 16-
bit, 500MSps DAC evaluation board was available from the Multiple Channel
Communications Payload project, but this DAC has 32 parallel data inputs.
The Spartan-3E board has a total of 43 I/O pins [51], 32 of which are re-
quired for interfacing to the DSP modem. An alternative solution was there-
fore sought.

The Spartan-3E board has an on-board quad-channel, 12-bit, voltage out-
put DAC: the Linear Technology LTC2624. The LTC2624 has a 2-wire serial
input which makes it suitable for the limited Spartan-3E board I/O pin count.

6.2.2 DAC DDS Output Test

Evaluation of DAC performance requires analysis of many parameters [29].
This test's focus was on ensuring that the �rmware was operating the DAC
correctly. The focus was not on the DACs performance.

Test Setup and Procedure

To test the implementation of the DAC �rmware a Direct Digital Synthesis
(DDS) module was used to generate 12-bit sine and cosine values at a sampling
rate of 230 400 with a signal frequency of 38 400Hz. These were then fed to
two of the output channels. The outputs were measured using an oscilloscope.

CHAPTER 6. GROUND STATION IMPLEMENTATION 69

Figure 6.1: FFT of a single DDS output channel.

Expected Results

It was expected to see a discrete valued time signal on the DAC outputs.

Actual Results

The Fast Fourier Transform (FFT) of the sinusoidal output is displayed in
Figure 6.1.

Analysis of Results

The main frequency component is clearly visible along with a �fth harmonic
with roughly 15 dB of attenuation. This test con�rmed that the DACs were
being operated correctly by the �rmware.

6.2.3 Reconstruction Filter Implementation

The Sallen-Key �lter topology can be used to implement second-order active
�lters [43] with linear phase responses. The phase response is important be-
cause phase modulated signals will be passed through the �lter. The low-pass
con�guration used is depicted in Figure 6.2. The cuto� frequency for this
circuit is given as f = 1/2πRC, with C1 =

√
2C and C2 =

√
2C/2. The

desired cuto� frequency is 38 400Hz as this is the bandwidth of the modulated
message signal from the modem.

Using standard 1K resistors and choosing C1 = 3.9 nF results in C2 =
1.95 nF. A value of 1.95 nF was not readily available, so 1.85 nF was used
instead. LF351 wide-bandwidth operational ampli�ers with supply voltages of
±10V were used [35].

CHAPTER 6. GROUND STATION IMPLEMENTATION 70

C2

RR

C1

Vin

Vout

V+

V-

+

-

Figure 6.2: Sallen-Key low pass �lter.

6.2.4 Reconstruction Filter Frequency Response Test

The �lter circuit is now tested to verify the cuto� frequency.

Test Setup and Procedure

The same 38 400Hz signal generated previously is fed to the �lter input. The
FFT of the �lter's output is taken.

Expected Results

It is expected that the frequency component at 38 400Hz remain unattenuated.
Any higher frequencies should be �ltered out.

Actual Results

The FFT of the �lter output is displayed in Figure 6.3.

Analysis of Results

Only the desired frequency component is present. When compared with Figure
6.1, it is evident that the components at higher frequencies have been �ltered
out. The �lter is therefore suitable for use with the rest of the system.

6.2.5 Quadrature Mixer Implementation

The ComBlock COM-4001 was used as a quadrature upmixer. The COM-4001
has a built-in mixer to mix the complex baseband signal to the desired carrier
frequency, the output of which can then be fed to an ampli�cation stage. It
expects 1V peak-to-peak input signals with a 0.85V DC o�set [11]. This is
because the inputs of the COM-4001 are fed to operational ampli�ers which
do not operate well near the 0V or 3.3V rails. In practice, the COM-4001 can

CHAPTER 6. GROUND STATION IMPLEMENTATION 71

Figure 6.3: FFT of a single reconstruction �lter output channel.

accept a DC o�set anywhere within 0.35V of the rails. This means that, for a
1Vpp signal,

0.35 ≤ Vin ≤ 2.95 (6.2.1)

Ideally, the full-scale output of the DAC must satisfy these criteria. The full-
scale output of the DAC is de�ned by �ve reference pins:

� REF LO, the �oor (zero) of the full scale output

� REF A, B, C and D, each of which de�nes the ceiling of the full scale
output for the respective channel.

The obvious solution is to connect 0.35V to REF LO, and 1.35V to REF C and
D, where channels C and D are the output channels of the I and Q message
signals, respectively. According to the data sheet, however, the maximum
value of REF LO is 100mV [33]. The obvious solution is therefore not feasible.
Two other possibilities present themselves:

� add an analogue DC o�set

� add a digital DC o�set

Construction of an analogue circuit requires circuit design, sourcing of compo-
nents and testing. This is more time consuming than implementing a digital
solution using VHDL. Adding a constant digitally, however, would involve dis-
carding a portion of the full scale output provided by the DACs. This loss of
resolution is not ideal, so it was decided to add the DC o�set using analogue
components.

The output of the DACs are AC waveforms. The simplest circuit for adding
DC o�set to an AC waveform is presented in Figure 6.4. The DC voltage at

CHAPTER 6. GROUND STATION IMPLEMENTATION 72

Vout is given by the relation:

Vout = Vin ×
R2

R1 +R2

(6.2.2)

R1

R2

C1

AC

Vin

Vout

Figure 6.4: DC o�set adding circuit.

The capacitor C1 in Figure 6.4 decouples the DAC output from the rest
of the circuit and forms a high pass �lter (together with the load impedance
connected to it). The choice of a value for C1 is not an exact calculation,
but it can be estimated as follows. The input impedance of the COM-4001 is
not known. It is only known that it has a high impedance. Assume it to be
1MΩ. The equivalent impedance of the voltage divider is R1 ‖ R2 = 500Ω.
So C1 connects to a load of about 500 Ω. C1 therefore has a minimum value
of 16 nF so that the 3 dB point will be below the lowest frequency component
of 19 200Hz.
The values for R1 and R2 are determined by two factors:

� the value of Vout in Equation 6.2.2 must be greater than or equal to
0.85V and

� the current �owing in the voltage divider should be large compared with
the current �owing into the COM-4001 input [26].

Vin = +1.8V is used because a �xed regulator with this value as output is read-
ily available and closer to the required DC o�set than the +5V supplies of the
COMBLOCKs and the Spartan-3E. Substituting Vin = 1.8V, R1 = 1KΩ and
Vout = 0.85V into Equation 6.2.2 yields:

R2 =
0.85

0.95
R1 = 894 Ω

The closest standard value to 894 is 820, but the DC bias should be above
0.85V so R2 was chosen as 1KΩ, giving a DC bias of 0.9V.

CHAPTER 6. GROUND STATION IMPLEMENTATION 73

6.2.6 DAC Output Test

The loaded and unloaded AC outputs of the DAC are measured in this test.

Test Setup and Procedure

The circuit in Figure 6.4 was constructed and connected to both of the DAC
outputs. The system was powered up and the outputs measured with an
oscilloscope. A 500Ω resistor was connected between Vout and ground and the
measurement repeated.

Expected Test Results

A 1V peak-to-peak sinusoid with a DC o�set of 0.9V should be measured in
both cases.

Actual Results

It was veri�ed that the peak-to-peak value was 1V and that the DC o�set
was 0.9V. A 500 Ω resistor was connected between Vout and ground and the
measured waveform remained unchanged.

Analysis of Results

This test veri�ed that the circuit added the desired DC o�set of 0.9V and did
distort the output signal under load.

6.2.7 DAC COM-4001 DDS Test

In this integration test the DC o�set circuit was connected to the input of the
COM-4001.

Test Setup and Procedure

The DC o�set circuit from the DAC is connected to the input of the COM-
4001. The FPGA subsystem is powered up. Then the COM-4001 system is
powered up. The sine and cosine outputs from the DAC are measured to
ensure that they remain unchanged under load.

Expected Results

It is expected that the same AC waveforms are seen at the outputs of the
DACs after the COM-4001 is powered up.

CHAPTER 6. GROUND STATION IMPLEMENTATION 74

Figure 6.5: Distortion noted on DAC outputs.

Actual Results

When power was supplied to the COM-4001, the signal distortion depicted in
Figure 6.5 was noted on the DAC outputs. Speci�cally, clamping was noted
at voltages near 0.35 and 1.35V .

Analysis of Results

The clamping could have been caused by the following conditions:

� the DAC output voltage headroom near the 0V rail was too high or

� the DC-bias level was lower than the value the COM-4001 expected,
i.e. the value in the data sheet was wrong.

Increasing the DC-bias o�set to 1V did not a�ect the distortion of the wave-
form, neither did decreasing the peak-to-peak value of the signal. For this
reason it seemed as if the DAC was having di�culty maintaining output volt-
ages near the lower rail. This could be due to the fact that the DAC was
sinking too much current at these voltages [33]. It was therefore decided to
place a bu�er between the DAC output and the COM-4001 input.

The standard LM324 operational ampli�er was chosen because it was read-
ily available. A voltage follower circuit was implemented. The output signal
remained distorted except the clamping was happening at the positive rail too.
A di�erential ampli�er with unity gain was also tested with failure.

Due to time-constraints it was decided to add the DC-o�set in the digital
domain, although further tests that could possibly solve this problem are:

� supplying the LM324 with rails other than 0 and 5V, such as ±6V,

CHAPTER 6. GROUND STATION IMPLEMENTATION 75

� testing with a di�erent operational ampli�er,

� testing higher DC-o�set values.

6.2.8 Digital DC-o�set Implementation

Adding the DC-o�set digitally involves a two step process of scaling and sum-
ming. Firstly, REF C and REF D are both set to 1.35V. Each sample is then
multiplied with a scaling factor of 1

1.35
' 0.74. After this, a constant value of

0.35 is added to each sample. The process is depicted in Figure 6.6.
To implement this in VHDL �xed point arithmetic was used. The full

scale value of each 12-bit DAC output is 212. The �xed point equivalents of the
scaling factor and the DC o�set constant are 212×0.74 ' 3031 and 0.35

1.35
×212 '

1062 respectively. The equivalent hardware pipeline was constructed using
the standard Spartan-3 multiplier and adder cores. The sample outputs were
�rst fed into the multiplier and multiplied by the scaling constant. When
multiplying two 12-bit �xed point integers the result is a 24-bit value. The 12
least signi�cant bits are truncated and the remaining 12-bit integer is fed to the
adder block. The output of the adder is sent directly to the DAC output which
is then DC coupled to the COM-4001 input. The �rmware implementation of
this is depicted in Figure 6.7.

time

Vout
1.35

0.74

1.00

Σ

0.35

1.35

0.35

Figure 6.6: Analogue representation of DAC output scaling.

DDS

sin

cos

trunc

3031

3031

trunc

24
+

+

1062

1062

12

COM-4001

I

Q

TP

Figure 6.7: Digital DC o�set.

CHAPTER 6. GROUND STATION IMPLEMENTATION 76

6.2.9 Digital DC-o�set Test

In this test the digital DC o�set �rmware componented was connected to the
input of the COM-4001 and tested.

Test Setup and Procedure

The digital DC o�set �rmware is synthesised and loaded on the Spartan-3E.
The outputs from the DAC are connected to the inputs of the COM-4001. The
FPGA subsystem is powered up. Then the COM-4001 system is powered up.
The sine and cosine outputs from the DAC are measured. The RF signal at
the output of the COM-4001 is measured using a power meter.

Expected Results

It is expected that the undistorted sinusoidal AC waveforms are seen at the
outputs of the DACs after the COM-4001 is powered up. A −9 dBm RF signal
is expected at the output of the COM-4001.

Actual Results

When power was supplied to the COM-4001, no signal distortion was noted.
A −6.7 dBm signal was measured at the output of the COM-4001.

Analysis of Results

This result veri�ed that the DAC output scaling was implemented correctly
and that the correct DAC output voltage was maintained. It also seemed that
the I/Q signals were being modulated properly and that the complex baseband
signal was being mixed to the correct frequency.

6.2.10 RF Ampli�cation Stage Implementation

As described in the Chapter 4, the Hittite HMC286 and HMC755LP4E were
identi�ed as being su�cient components for creating a 1W RF signal. All
three components are fully connectorised so implementation involved supplying
power to the components and connecting them to each other.

The HMC286 LNA has a single supply pin and a �xed gain of 19 dB. The
output 1 dB compression point is at 6 dBm. This means that, if the −9 dBm
output of the COM-4001 were connected to the HMC286, the output would
be driven into compression. The COM-4001 output gain is therefore adjusted
in software to a value of 6 − 19 = −13 dBm. Another 3 dB of headroom is
allowed. Setting the COM-4001 output to −16 dBm is done by setting the
gain control parameter to 550 in the control software.

CHAPTER 6. GROUND STATION IMPLEMENTATION 77

Table 6.1: PA pin voltages.

Pin Value (V)
VCS 5
VEN1-3 3.5
Vcc1-3 5

Table 6.2: RF power measurements.

Point Value (dBm)
COM-4001 RF output −17.94
LNA RF output 1.79
PA RF output 28.93

6.2.11 RF Ampli�cation Stage Test Measurements

The output power of the COM-4001, the LNA and the PA are measured in
this test. A basic spectral examination of each component's RF output signal
is also performed.

Test Setup and Procedure

The COM-4001 module is supplied with 5V and connected to the reconstruc-
tion �lter from the DACs on the Spartan-3E board. The RF output of the
COM-4001 is measured. The LNA supply pin is connected to a +3V supply
and connected to the COM-4001. The output of the LNA is then measured.
The PA pins are then set to the voltages in Table 6.1, as per the data sheet
[25], and the PA's RF input is connected to the LNA RF output. The PA RF
output is then measured.

Expected Test Results

A measured gain of 19 dB is expected from the LNA. A measured gain of 31 dB
is expected from the PA. Linear frequency response is expected from all the
components.

Actual Test Results

The measured output power at each point in the RF chain is presented in
Table 6.2.

Note that a 30 dB attenuator was connected to the output of the PA as the
Rhode & Schwarz spectrum analyzer used for the measurements has a maxi-
mum input power threshold of 20 dBm. The spectrum analyzer measurements
are provided in Appendix B. No obvious spectral distortion was noted at any
of the measurement points.

CHAPTER 6. GROUND STATION IMPLEMENTATION 78

Analysis of Results

The gain supplied by the LNA is 1.79− (−17.94) = 19.73 dB so it is operating
with slightly more gain than expected. The gain of the PA is 28.93 − 1.79 =
27.14 dB which is less than the maximum speci�ed gain of 31 dB. This discrep-
ancy could be explained by excessively high operating temperatures. During
testing it was noted that the evaluation board was very hot to the touch. Ac-
cording to the product data sheet, a maximum gain of 28 dB is achievable at
high temperatures.

Assuming a maximum gain of 27 dBm (measured), an antenna gain of
30 − 27 = 3 dB is required to achieve the required equivalent isotropically
radiated power of 1W speci�ed by the link budget.

Chapter 7

Integration and Testing

In this chapter the various bottom level components of the system are con-
nected and tested to form stable subcomponents. These subcomponents are
then connected to each other in an iterative manner. After each step, larger,
more complex subcomponents are formed and tested. Ground station and
payload loopback tests are documented and presented here.

7.1 Payload Loopback Tests

The two SRAM interfaces are �rst stress tested to ensure the physical inter-
face is reliable. Thereafter, and continuing from the OBC SRAM with FIFO
loopback test presented in Chapter 5, components get added to the system
being tested until all the payload components form a single unit which can be
tested.

7.1.1 Resource Manager Integration Stress Test

In this test 1.5GB of data was transferred over the expansion port to verify
100% reliability of the physical layer interface between the SH4 OBC and the
ML501 FPGA board. Key components under testing were:

� the resource manager,

� the physical layer connection between the OBC and the ML501 board
and

� the �rmware on the FPGA.

Test Setup and Procedure

Figure 7.1 is a simpli�ed representation of the �rmware that was synthesised
onto the ML501 board FPGA for this test. The interrupt driven resource
manager was started on the SH4. A test program was written to test the

79

CHAPTER 7. INTEGRATION AND TESTING 80

behaviour of the resource manager. The test program opens the expansion
port �le using open(), spawns a reader thread and a writer thread and then
exits. The writer thread transmits a block of 21 bytes using write() and checks
the return code:

wd = write(fd, sendblock, sizeof(sendblock));

If a retry error was returned, the program delays for 10 milliseconds and retries
on the next iteration. If no error was returned, the data values in the block are
incremented. The reader thread reads data from the device as fast as possible.
It performs blocking reads:

rd = read(fd, &rcvblock, sizeof(rcvblock));

Once a block of data is read, the values in the block are checked to see if any
errors occurred. The reader thread must have known values from the writer
thread with which to compare the read values. Instead of implementing a
complex sliding window scheme to synchronize the transmitted values with the
reader thread, the writer thread increments each value in the data block after
each write operation. The reader thread can then use the following conditions
to test data it has read:

dk+20 − dk = 1 (7.1.1)

and
dk+1 − dk = 1 (7.1.2)

where dk represents a single 32-bit data word containing an integer value. This
process is then allowed to run for 2 hours.

Expected Results

If data is being transmitted successfully, no errors will be reported by the
reader thread of the test program when checking the relations in Equations
7.1.1 and 7.1.2.

DATA BUS

FPGA

/d
e

v
/e

x
p

resouce

manager

reader

thread

writer

thread

SH4

ADDRESS BUS

CTRL LINES

status

register

FIFO

data in data out

FIFO

data indata out

threshold flags

threshold flags

FIFO copy process

(finite state machine)

in
te

rr
u

p
t

g
e

n
e

ra
ti
o

n

a
d

d
re

s
s

d
e

c
o

d
in

g

Figure 7.1: Resource manager with dual FIFO loopback test.

CHAPTER 7. INTEGRATION AND TESTING 81

Actual Results

After running for two hours, a total of 1.5GB of data was transmitted over
the interface and no errors were detected.

Analysis of Results

The e�ective throughput of the interface was 10 000 read/write cycles every 8
seconds, where a read/write cycle consisted of transmitting a 21-element block
of 32-bit words i.e. the data rate was 10 000

7
× 21× 32× 2× 1

1024×8
' 234KB/s.

The interface was tested extensively and no errors were found.

7.1.2 DSP Expansion Port Integration Stress Test

The testing procedure for the DSP SRAM interface stress test was very sim-
ilar to the OBC SRAM interface stress test: data was written to a FIFO on
the FPGA from the OBC. The data is then sent to the modem for modula-
tion. An internal loopback in the modem copies the modulated samples to the
demodulator. The demodulated data is then sent back to the FPGA where
the reader thread on the SH4 reads the values. The test setup is depicted in
Figure 7.9. The read values are compared to the transmitted values and an
error is �agged if there is a discrepancy. When an error is �agged, the code
halts and a red LED on the DSP is illuminated indicating error. The stress
test did not result in any invalid data values and it was concluded that data
could be reliably transferred between the DSP and the SH4 via the FPGA.

7.2 Ground Station Integration Tests

Firstly, all the components that implement the downlink are integrated and
tested. Secondly, a loopback test including the quadrature upmixer is per-
formed and a problem with the SDR modem is identi�ed. Finally, the LNA
and PA are integrated and tested.

7.2.1 Data Radio Integration

On the ground station the data radio was connected directly to the Fit-PC.
On the payload however, all the RS-232 ports on the SH4 were in use so the
data radio was connected to an available RS-232 port on the ML501 FPGA
board. An integration test was required to verify that the resource manager
and FPGA �rmware interfaced with the radio properly.

CHAPTER 7. INTEGRATION AND TESTING 82

Ground

station PC

XTend

radio

R
S

-2
3

2
FPGA

firmware

ml501 board

SH4 OBC

resource

manager

/dev/ser3

client

(test code)

XTend

radio

Figure 7.2: Data radio integration test.

Test Setup and Procedure

The resource manager on the SH4, /usr/sbin/devc-exp, was started. The data
radio was connected to the RS-232 port of the ML501 board and powered up.
The ML501 board was powered up and loaded with the payload �rmware. A
block of data was transmitted over the downlink via the resource manager
from within a C program on the SH4:

fd = open ("/dev/ser3", O_RDWR));

rd = write(fd, sendblock, sizeof(sendblock));

Note that /dev/ser3 is not a physical serial port, but a logical one exposed
by the resource manager. On the ground station PC, the serial port was
constantly monitored for incoming data:

cat /dev/ttyUSB0

The test setup is depicted in Figure 7.2.

Expected Results

The data block transmitted from the SH4 should be received on the ground
station PC.

Actual Results

The data was successfully received on the ground station PC.

CHAPTER 7. INTEGRATION AND TESTING 83

Figure 7.3: Fast Fourier Transform of the COM-3001 test point 1 signal.

Analysis of Results

POSIX compliant interfaces are created for the downlink allowing higher layer
programs to transmit data seamlessly to the ground.

7.3 Quadrature Mixing Integration Test

The integration testing of the quadrature mixer modules is now described.

Test Setup and Procedure

In this test the �ltered analogue baseband I/Q message signals from the modem
are sent to the COM-4001 quadrature upmixer module. The RF output of
the COM-4001 module is attenuated and fed to the COM-3001 quadrature
downmixer receiver. The COM-3001 has two 10-bit ADC outputs and two
analogue test points (I and Q). The test points expose the ADC inputs and
contain the baseband I/Q message signals. One of the test points was sampled
using a data capture unit and software written by JJ Cronjé [13]. The fast
Fourier transofrm of a modulated message signal was also generated using
Matlab.

Expected Results

Upon inspection, the frequency �footprint� of the received and transmitted
signals should be identical.

Actual Results

The spectrum of the test point 1 signal on the quadrature downmixer is shown
in Figure 7.3. The spectrum of the modulated signal which was generated in
Matlab is shown in Figure 7.4.

CHAPTER 7. INTEGRATION AND TESTING 84

Figure 7.4: Fast Fourier Transform of a baseband modulated signal generated in

Matlab.

Analysis Results

When the two spectrums are compared it is evident that, except for some at-
tenuation and carrier leakage, the transmitted signal was received successfully.
The attenuation can be adjusted by the gain control voltage pin on the COM-
3001 module. The carrier leakage is discussed in the following test. This test
veri�ed that both the COM-3001 and the COM-4001 are operating according
to speci�cation.

7.4 Ground Station Loopback Test

In this test the aim is to integrate the ground station components with the RF
components.

Test Setup and Procedure

The components are connected as depicted in Figure 7.5. The necessary com-
ponents for this test are:

� a Fit-PC acting as ground station PC,

� a Spartan-3E FPGA board acting as ground station FPGA,

� the DSP modem,

� the reconstruction �lter for the DAC outputs,

� the COM-4001 and COM-3001 RF modules and

� a second Spartan-3E FPGA board acting as a loopback �KUL� FPGA.

The PC transmits imitation TM frames to the ground station Spartan-
3E FPGA via an on-board UART. The frames represent the raw user data
which need to be modulated and are sent to the modem. The modulated
samples from the modem are sent to the DAC via the FPGA. The output

CHAPTER 7. INTEGRATION AND TESTING 85

of the DAC is connected to the reconstruction �lter. The �ltered baseband
I/Q signals are then connected to the quadrature upmixer. An attenuator is
connected to weaken the signal before connecting it to the COM-3001 input.
The demodulated I/Q signals are then captured on another Spartan-3E FPGA
board. They are sent to the DAC as a test point. The samples are also passed
to the ground station Spartan-3E board via the on-board Ethernet. These
samples are then passed to the modem for demodulation. The demodulated
data is then transmitted to the PC where it is compared to the transmitted
data.

Expected Results

It is expected that the transmitted data is looped back successfully i.e. the
received data should match the transmitted data.

Actual Results

The modem was unable to demodulate the incoming data successfully. Samples
were being sent to the modem for demodulation so all other components in
the chain were operational.

Analysis of Results

The FFT of a single channel at the output of the reconstruction �lter was taken
and is presented in Figure 7.6. Figure 7.7 depicts the received signal as seen
at the output of the COM-3001 module. It is evident that there is a frequency
component � near 12.5 kHz � in the received signal which is not present in the

PC

D
A

C

LPF
COM-

4001COM-

3001

P

H

Y

P

H

Y

ground station

FPGA

attenuator

DSP

UART

UART

CAPTURE

DAC

Figure 7.5: Ground station RF integration.

CHAPTER 7. INTEGRATION AND TESTING 86

Figure 7.6: FFT of a modulated uplink message signal.

Figure 7.7: FFT of a received baseband signal.

CHAPTER 7. INTEGRATION AND TESTING 87

f0 fc

quadrature
upmixing

 + Δ

quadrature
downmixing

fc fc
f0

fr

 + Δfr

Figure 7.8: Frequency domain representation of carrier leakage.

transmitted signal. The modem is locking onto this component and not the
message signal and is therefore unable to demodulate. The presence of the
frequency component is now explained. As described in Chapter 5, the COM-
4001 quadrature upmixer expects a DC o�set of 0.85V at its input. This DC
component translates to a component at 0Hz in the frequency domain. When
the baseband signal is then mixed up to the carrier frequency of 2.45GHz, the
DC component also gets mixed up.

Upon reception of the RF signal, the COM-3001 mixes the signal down
to baseband. However, because the COM-4001 and COM-3001 modules have
their own independent oscillators, there is a discrepancy between the upmixing
and downmixing frequencies. This is easily understood after taking a closer
look at the the 40MHz oscillators on the COMBLOCK modules [11]. Due
to frequency tolerance of the oscillators and the Phase Locked Loop (PLL)
multiplication factor, a di�erence will be noted in the two local oscillators.
The maximum frequency di�erence, ∆fr, between the two local oscillators can
be calculated with the following formula:

∆fr = f0 ×mf(d∆fe − b∆fc) (7.4.1)

The multiplication factor, mf , is 2.45×109/40×106 = 61.25. Furthermore,
with a maximum frequency tolerance, ∆f , of ±50 ppm [10], and a nominal
frequency, f0, of 40 × 106Hz, this could result in a di�erence of 40 × 106 ×
61.25(100/106) = 245 000Hz. Luckily both units are operating at the same
temperature, so the di�erence will not be so extreme.

The mixing process and the resulting unwanted frequency component is
depicted in Figure 7.8.

At the time of writing it was not known what the solution to this problem
is, but it could be useful to mix up to a higher intermediate frequency to ensure
that the message signal is not near the DC component. The DC component
could then be �ltered out.

CHAPTER 7. INTEGRATION AND TESTING 88

D
A

T
A

 B
U

S

F
P

G
A

C
T

R
L

 L
IN

E
S

A
D

D
R

E
S

S
 B

U
S

/dev/exp

re
s
o

u
c
e

m
a

n
a

g
e

r

re
a

d
e

r

th
re

a
d

w
ri
te

r

th
re

a
d

S
H

4

s
ta

tu
s

re
g

is
te

r

F
IF

O

d
a

ta
 i
n

d
a

ta
 o

u
t

F
IF

O

d
a

ta
 i
n

d
a

ta
 o

u
t

th
re

s
h

o
ld

 f
la

g
s

th
re

s
h

o
ld

 f
la

g
s

interrupt

generation

address

decoding

D
S

P

data

marshalling

D
A

T
A

 B
U

S

A
D

D
R

E
S

S
 B

U
S

C
T

R
L

 L
IN

E
S

modulate() demodulate()

loopback

data

marshalling

Figure 7.9: SH4 OBC, FPGA and DSP loopback test.

Chapter 8

Conclusion

This thesis has presented the a reusable signal processing architecture which
is implemented in the form of a satellite communications payload for a LEO
satellite.

8.1 Summary of Completed Work

This thesis was presented in three sections. The work began with an analysis
of the proposed solution which led to a detailed design. The detailed design
then required implementation. Thirdly, the implementation was tested.

The �rst section showed that, from a design perspective, a novel airborne
signal processing platform was feasible. The platform was shown to be able
to test a steerable antenna array and implement an extraterrestrial communi-
cations link. A prototype remote sensing ground station was presented as an
example use case of the communications link.

Section two showed that implementation of both the payload and the
ground station was feasible. A functional airborne signal processing architec-
ture was constructed, tested and documented. A robust, space-quali�ed on-
board computer was combined with a signal processor and a high-end FPGA
to demonstrate that the implementation of a satellite-based communications
payload using software de�ned radio and forward error correction technology
is feasible.

Section three used rigorous testing to verify the reliability of the payload
architecture. Integration of other research projects such as the software de�ned
radio modem was shown to be feasible, even if the projects were not fully
functional at the time of writing.

A variety of buses and interfaces such as CAN, SRAM and Ethernet, were
made available for future projects. A reliable and extendable resource man-
ager for the SH4 OBC was developed which allows software on the SH4 to
interface with a wide range of hardware. Stress testing was used to transfer
large amounts of data throughout all the components in the system and this

89

CHAPTER 8. CONCLUSION 90

showed that the physical layer was error-free.

8.2 Recommendations

The signal processing architecture was designed to be recon�gurable. Full
system integration with the various hardware components was demonstrated.
Solving di�culties with the SDR modem and implementing FEC modules will
complete the entire communications system. Certain improvements, optimi-
sations and tasks were identi�ed during the course of the thesis:

� it should be possible to switch the payload into a test mode wherein all
non-critical system functionality is disabled and a test signal is transmit-
ted to the ground to assist in debugging should the payload not operate
as expected,

� the downlink data radio should be replaced with the SDR modem, a
DAC, a reconstruction �lter, a quadrature upmixer and a power ampli-
�er,

� once the SDR modem integration is successful, a dedicated SH4 daughter
board consisting of the Virtex-5 FPGA and the Freescale DSP should be
designed and built,

� more extensive testing with more than one ground station should be done
to test the scheduling software implemented by J. Gilmore,

� the EDAC modules implemented by R. Wiid should be integrated into
the system once the SDR modem is operational,

� once the components have been �nalized, space quali�cation of the com-
ponents should be investigated,

� the integration of the SAA should be tested in a controlled environment
before the �rst �ight test and

� the cost of the ground station transmitter could be reduced by designing
a quadrature upmixer PCB to replace the COM-4001 module.

8.3 Final Comments

Standard interfacing techniques, protocols and o�-the-shelf components were
used wherever possible to save development time and reduce project costs.
It was shown that the system worked correctly through the use of thorough
testing. It was shown that the SDR modem needs further development. The

CHAPTER 8. CONCLUSION 91

design goal of creating a reusable signal processing architecture for satellite-
based communications systems was achieved. The South African space indus-
try can use the platform for further research into digital signal processing in
space based communications systems.

Appendix A

Timing Diagrams

Figure A.1: SRAM interface wait timing (software wait only)

92

Appendix B

Ground Station RF Power

Measurements

93

APPENDIX B. GROUND STATION RF POWER MEASUREMENTS 94

Figure B.1: Ground station RF measurements.

Bibliography

[1] �Aerocomm �xed mount antenna - mmcx.�
http://www.rfdesign.co.za/pages/5645456/Products/868-MHz-Wireless-
Products/Antennas.asp.

[2] �Fit-pc.� http://www.�t-pc.com/.

[3] �A simpli�ed vhdl uart.� http://esd.cs.ucr.edu/labs/uart/uart.html.

[4] �Uart 16550 core.� http://opencores.org/project,uart16550.

[5] ACTEL, CA. Libero IDE Online Help.

[6] AMSAT, �SUNSAT-OSCAR 35.�
http://www.amsat.org/amsat-new/satellites/satInfo.php?satID=53.

[7] BOTHA, K., VAN DER WESTHUIZEN, E., and VAN ROOYEN, G.-J.,
�A Digital Modem Card for a Multi-channel Satellite Communications
Payload.� presented at SATNAC 2008.

[8] CHANG, K., Encyclopedia of RF and Microwave Engineering . New
Jersey: John Wiley and Sons, Inc., 2005.

[9] CHAPMAN, K., �200 MHz UART with internal 16-byte bu�er.�
http://www.xilinx.com/support/documentation/application_notes/
xapp223.pdf.

[10] CITIZEN. AT Cut Crystal Unit .

[11] COMBLOCK, Maryland. COM-4001-C/D Data Sheet .

[12] COOKE, A., �Rural Email System for the Sumbandila Satellite.�
Master's thesis, University of Stellenbosch, 2007.

[13] CRONJÉ, J., �Software Architecture Design of a Software De�ned Radio
System.� Master's thesis, University of Stellenbosch, 2004.

[14] DIGI, MN. XTend OEM RF Module Product Data Sheet .

[15] DREYER, G., Generic Speci�cation: CAN Node. SunSpace and
Information Systems, Stellenbosch.

95

BIBLIOGRAPHY 96

[16] DREYER, G., Speci�cation for the On Board Computer SH4-6U-01 .
SunSpace and Information Systems, Stellenbosch.

[17] DREYER, G., User manual for the SH4 OBC . SunSpace and
Information Systems, Stellenbosch.

[18] EUROPEAN COOPERATION FOR SPACE STANDARDIZATION,
Noordwijk. Space data links - Telecommand protocols, synchronization
and channel coding .

[19] FAIRCHILD SEMICONDUCTOR, ME. 74ALVC162245 Data Sheet .

[20] FREESCALE SEMICONDUCTOR, TX. DSP56321 Technical Data.

[21] GILMORE, J., �Detailed design: Satellite transport protocol.� IS-HSII
Project Documentation, 2010.

[22] GILMORE, J., �Development of a Satellite Communications Software
System and Scheduling Strategy.� Master's thesis, University of
Stellenbosch, 2010.

[23] HITTITE, MA. HMC286 / 286E Data Sheet .

[24] HITTITE, MA. HMC495LP3 / 495LP3E Data Sheet .

[25] HITTITE, MA. HMC755LP4E Data Sheet .

[26] HOROWITZ, P. and HILL, W., The art of electronics . Second edition.
Cambridge: Cambridge University Press, 1996.

[27] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.
ISO/IEC standard 7498-1:1994 .

[28] JOHNSON, H. W. and GRAHAM, M., High-speed digital Design: A
Handbook of Black Magic, pp. 29�36. New Jersey: Prentice Hall, 1993.

[29] KESTER, W., Evaluating High Speed DAC Performance. Analog
Devices, MA.

[30] KRUGER, I., �Ku leuven is-hsii project linkbudget.� IS-HSII Project
Documentation, 2008.

[31] KRUGER, I., �Detailed design: Aircraft satellite emulator.� IS-HSII
Project Documentation, 2010.

[32] LAWYER, D. S., �Linux serial howto.�
http://tldp.org/HOWTO/Serial-HOWTO.html.

[33] LINEAR TECHNOLOGY, CA. LTC2624 Data Sheet .

BIBLIOGRAPHY 97

[34] NATIONAL SEMICONDUCTOR, CA. DP83865 Gig PHYTER Data
Sheet .

[35] NATIONAL SEMICONDUCTOR, CA. LF351 Wide Bandwidth JFET
Input Operational Ampli�er .

[36] OLIVIER, F., �An LDPC Error Control Strategy for Low Earth Orbit
Satellite Communication Link Applications.� Master's thesis, University
of Stellenbosch, 2009.

[37] PROAKIS, J. G., Wiley Encyclopedia of Telecommunications . New
Jersey: John Wiley and Sons, Inc., 2003.

[38] PROLIFIC, Taiwan. PL-2303 Product Data Sheet .

[39] RENESAS. SH7750 Series Hardware Manual .

[40] RF DIGITAL CORPORATION, CA. RFDP8 RF Module.

[41] SUNSPACE, �New software for ADCS processor.�
http://sumbandilamission.blogspot.com/2009/09/new-software-for-adcs-
processor.html.

[42] SUNSPACE AND INFORMATION SYSTEMS, Stellenbosch. Process
Monitor User Documentation.

[43] TEXAS INSTRUMENTS, TX. Analysis of the Sallen-Key Architecture:
Application Report , 2002.

[44] VAN DER WESTHUIZEN, E., �Detailed design of a software de�ned
radio modem.� IS-HSII Project Documentation, 2009.

[45] VAN WYK, J. F., �Reusable software de�ned radio platform for
micro-satellites.� Master's thesis, University of Stellenbosch, 2008.

[46] WIID, R., VAN DER WESTHUIZEN, E., and OLIVIER, F., �Detailed
design: Tm protocol.� IS-HSII Project Documentation, 2010.

[47] WOLHUTER, R., VAN ROOYEN, G.-J., and OLIVIER, F., �IS-HSII
project proposal for ground station development and systems integration
with aircraft based satellite emulator.� IS-HSII Project Documentation,
2008.

[48] XILINX, CA. LogiCORE IP FIFO Generator v6.1 .

[49] XILINX, CA. ML501 Evaluation Platform.

[50] XILINX, CA. PicoBlaze 8-bit Embedded Microcontroller User Guide.

[51] XILINX, CA. Spartan-3E Starter Kit Board User Guide.

