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A. Abstract

Background:

HIV and antiretroviral therapy (ART) are associated with cardiovascular disease (CVD). Concomitantly,

air pollution is a global health concern and associated with CVD. Although South Africa (SA) has the largest HIV 

population, ART roll-out programme and also one of the most carbon-intensive economies in world, the effects of 

these emerging cardiovascular risk factors remain under investigated.  

Aim: 

The current study aimed to investigate whether endothelial function (an early marker of cardiovascular 

risk/disease) is a marker of effect of HIV, ART and air pollution in a study cohort residing in the Cape Town region. 

Methods: 

Volunteering participants were recruited from health-care clinics in Worcester and Cape Town. A health 

questionnaire was completed (demographic, lifestyle, and socioeconomic information), anthropometric 

measurements taken (BMI and blood pressure) and fasting blood and urine samples collected from each 

participant for chemical pathology and biomarker analyses. Sub-study 1 followed a repeated measures design 

(baseline and 18-month follow-up visit) to investigate the effects of HIV (viral load) and ART (pre- vs. post-ART 

treatment and an 18-month ART treatment period) on markers of endothelial function. Sub-study 2 investigated 

the effects of personal air pollution exposure (NO2 and BTEX via passive diffusion samplers) in a repeated 

measures design (baseline and 6-month follow-up visit) on markers of endothelial function. Markers of endothelial 

function for both sub-studies included: tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein 

(hsCRP), intercellular adhesion molecule-1 (ICAM-1),vascular cellular adhesion molecule-1 (VCAM-1), e-selectin, 

p-selectin, vascular endothelial growth factor (VEGF), plasminogen activator inhibitor-1 (PAI-1), retinal

microvascular calibres (including central retinal arteriolar/venular equivalent (CRAE; CRVE), CRAE/CRVE ratio 

(AVR)) and flow-mediated dilation (FMD).  

Results: 

Sub-study 1: Each interquartile range (IQR) increment increase in viral load (1300 copies mRNA/ml) was 

associated with CRVE (9.29 μm), AVR (-0.016) and %FMD (-2.13%). Compared to baseline, initiating ART was 

associated with VCAM-1 (-148 ng/ml), VEGF (40.6%), PAI-1 (14.12 ng/ml) and CRVE (-6.42 μm). An 18-month 

ART treatment period was associated with TNF-α (-1.22 pg/ml), ICAM-1 (-45%), e-selectin (-5.57 ng/ml) CRVE (–

7.00 μm) and % FMD (-9.8%). 

Sub-study 2: Each IQR increment increase in NO2 (7.0 µg/m³) was associated with VEGF (-18.9%), CRVE 

(-2.93 µm) and baseline brachial artery diameter (-0.29 µm). Benzene (IQR: 3.3 µg/m³) was associated with p-

selectin (-5.8 pg/ml), toluene (IQR: 30.0 µg/m³) was associated with PA1-1 (7.2 ng/ml). Ethyl-benzene (IQR: 3.8 

µg/m³) was associated with VCAM-1 (-4.9%) and PA1-1 (9.1 ng/ml). m+p-Xylene and o-Xylene (IQR 3.8 µg/m³ 
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respectively) were associated with VCAM-1 (-1.47% and -4.5%) and PA1 (3.08 ng/ml and 11.7 ng/ml). 3+4MHA 

(1380 ng/ml) was associated with %FMD (-0.40%). 

 

Discussion and Conclusion:  

The study showed that endothelial function is a marker of effect of HIV, ART and air pollutants (NO2 and BTEX) in 

the current study population, and that HIV and air pollution contribute to an increased cardiovascular risk profile 

while ART exhibited varying effects. This study underscores the relevance of these emerging cardiovascular risk 

factors in South Africa and the greater sub-Saharan Africa region. This study strongly supports the need for further 

investigation, also in study populations beyond the Western Cape. 
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B. Opsomming

Inleiding:

MIV en anti-retrovirale terapie (ART) is geassosieer met kardiovaskulêre siekte (KVS). Terselfdertyd is

daar wêreldwye kommer oor die gesondheidsimpak van lugbesoedeling met lg. wat ook met KVS geassosieer 

word. Alhoewel Suid-Afrika (SA) die grootste MIV populasie, die grootste ART voorsieningsprogram en ook een 

van die mees koolstof-intensiewe ekonomieë ter wêreld het, word daar min navorsing oor die effekte van hierdie 

ontluikende kardiovaskulêre risikofaktore onderneem.  

Doelstelling: 

Die huidige studie het ten doel gehad om vas te stel of endoteelfunksie (‘n vroeë merker van 

kardiovaskulêre risko/siekte) ‘n merker van die effekte van MIV, ART en lugbesoedeling is in ‘n studie-populasie 

in die Kaapstad omgewing. 

Metodes: 

Vrywillige deelnemers was by gesondheidsklinieke in Worcester en Kaapstad gewerf. ‘n 

Gesondheidsvraelys is voltooi (demografiese, leefstyl en sosioekonomiese inligting), antropometriese afmetings 

(liggaam-massa indeks en bloeddruk) is ingesamel en vastende bloed- en urinemonsters is van elke deelnermer 

verkry vir chemiese patologie en biomerker analises. Sub-studie 1 het ‘n herhaalde-metings-ontwerp gevolg 

(basislyn en ‘n 18-maande opvolg) om die effekte van MIV (virale lading) en ART (pre- vs. post-ART behandeling 

en ‘n 18-maande ART behandelingsperiode) op merkers van endoteelfunksie te bepaal. Sub-studie 2 het ook via 

‘n heraalde metings-ontwerp (basislyn en ‘n 6-maande opvolg besoek) die effekte van persoonlike lugbesoedeling 

blootstelling (NO2 en BTEX m.b.v. passiewe duffusie toestelle) op ‘n reeks merkers van endoteelfunksie bepaal. 

Die volgende merkers van endoteelfunksie is vir beide sub-studies in ag geneem: tumor nekrose faktor-alfa (TNF-

α), hoë sensitiwiteits C-reaktiewe proteïen (hsCRP), intersellulêre adhesiemolekule-1 (ICAM-1), vaskulêre adhesie 

molekule-1 (VCAM-1), e-selectin, p-selectin, vaskulêre endoteel groeifaktor (VEGF), plasminogeen aktiveerder 

inhibitor-1 (PAI-1), retinale mikrovaskulêre afmetings (insluitende sentrale retinale arteriolêre / venulêre ekwivalent 

(CRAE; CRVE), CRAE/CRCE verhouding (AVR) en vloei-gemedieerde dilatasie (FMD).  

Resultate: 

Sub-studie 1: Elke inkrementele interkwartielreikwydte (IKR) verhoging in virale lading (1300 kopieë 

mRNS/ml) was geassosieer met CRVE (9.29 μm), AVR (-0.016) and % FMD (-2.13%). In vergelyking met basislyn, 

was die inisiëring van ART geassosieer met VCAM-1 (-148 ng/ml), VEGF (40.6%), PAI-1 (14.12 ng/ml) en CRVE 

(-6.42 μm). ‘n 18-maande ART behandelingsperiode was geassosieer met TNF-α (-1.22 pg/ml), ICAM-1 (-45%), 

e-selectin (-5.57 ng/ml) CRVE (–7.00 μm) en % FMD (-9.8%).

Sub-studie 2: Elke inkrementele IKR verhoging in NO2 (7.0 µg/m³) was geassosieer met VEGF (-18.9%), 

CRVE (-2.93 µm) en basislyn brachiale arterie deursnee (-0.29 µm). Benseen (IKR: 3.3 µg/m³) was geassosieer 
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met p-selectin (-5.8 pg/ml) en tolueen (IKR: 30.0 µg/m³) met PA1-1 (7.2 ng/ml). Etiel-benseen (IKR: 3.8 µg/m³) 

was geassosieer met VCAM-1 (-4.9%) en PA1-1 (9.1 ng/ml). m+p-Xileen and o-Xileene (IKR: 3.8 µg/m³ 

onderskeidelik) was geassosieer met VCAM-1 (-1.47% en -4.5%) en PAI-1 (3.08 ng/ml en 11.7 ng/ml). 3+4MHA 

(1380 ng/ml) was gesosieer met % FMD (-0.40%). 

 

Gevolgtrekking:  

Die studie het aangetoon dat endoteelfunksie ‘n merker van die effekte van MIV, ART en verskeie 

lugbesoedelingstowwe (NO2 en BTEX) in die huidige studie-populasie is. Die resultate toon dat MIV en 

lugbesoedeling bydra tot ‘n verhoogde kardiovaskulêre risiko profiel terwyl ART wisselende effekte getoon het.  

Die studie beklemtoon verder die relevansie van hierdie ontluikende kardiovaskulêre risikofaktore in Suid-Afrika 

en die groter sub-Sahara Afrika streek. Laastens beklemtoon die studie die behoefte aan verdere navorsing, ook 

in populasies buite die Wes-Kaap. 
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1. Chapter 1: Literature Review. 

1.1. Introduction. 

 

Cardiovascular disease (CVD) remains the greatest global health concern and is responsible for more 

than 18 million deaths annually.[1,2] Although the burden of CVD has substantially decreased in high-income 

countries over recent years, low- and middle-income countries have experienced the greatest increase and 

currently represent 80% of CVD mortality worldwide.[2–4] While communicable diseases such as human 

immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) remains the greatest contributor to the 

burden of disease in sub-Saharan Africa (SSA), the noncommunicable diseases (NCD) mortality rate is expected 

to exceed that of communicable diseases by 2030 in the region.[3] These trends strongly underscore the currently 

evolving epidemiological transition in the SSA region.[5] Although, the aetiology and epidemiology of traditional 

cardiovascular risk factors such as hypertension, obesity and diabetes mellitus in the development of CVD are 

relatively well recognised, an increasing body of evidence - mostly from the developed world - is indicating that 

lesser known non-traditional cardiovascular risk factors such as infectious diseases including HIV/AIDS[6,7] and 

environmental risk factors such as air pollution also play a significant role.[3,8,9] 

 

At the height of the global HIV/AIDS-epidemic (early 2000’s), more than 1.7 million people died annually 

(more than 20% annual mortality rate) as a result of HIV/AIDS, but since the introduction of antiretroviral therapy 

(ART) the prognosis of people living with HIV/AIDS (PLWH) has significantly improved (less than 2% annual 

mortality rate).[10–13] Despite the success of ART, reports on the numerous HIV/AIDS- and ART-associated 

comorbidities have emerged and currently set new challenges in HIV/AIDS healthcare.[14–17] CVD in particular 

has emerged a major health concern in PLWH and appears complex and multifactorial in nature.[7,18,19] Factors 

such as increased exposure to traditional cardiovascular risk factors as a result of improved ART-associated 

longevity, HI-virus viral factors, ART drug toxicity and numerous HIV- and ART-associated comorbidities such as 

lipodystrophy and dyslipidaemia have been implicated.[7,20,21] A 2-fold increase in risk for developing CVD in 

PLWH compared to the general population has previously been reported.[22] The pathogenesis of HIV- and ART-

associated CVD is not well understood, but pro-atherosclerotic processes such as inflammation, oxidative stress 

and endothelial dysfunction have been identified as candidate mechanisms.[7,23–25]  

 

Environmental health risk factors such as ambient air pollution have also become a global environmental 

and health concern and are associated with numerous adverse health effects including respiratory diseases and 

CVDs.[26–28] The World Health Organization (WHO) estimated that about 7 million premature deaths occur 

globally each year as a result of air pollution, nearly 1 million from Africa, and has furthermore identified gaseous 

air pollutants as dangerous to public health.[29–31] These harmful gaseous pollutants include nitrogen dioxide 

(NO2) and numerous aromatic hydrocarbons (benzene, toluene, ethyl-benzene and xylene (ortho (o)-, meta (m)- 

and para (p)-xylene) (BTEX)).[32–36] These pollutants are mostly produced through the incomplete combustion of 
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fossil fuels during industrial, vehicle and household processes and are therefore especially relevant in the urban 

setting.[34,37] Although several gaseous chemical components present in the heterogeneous mixture of ambient 

air pollution have been implicated in adverse cardiovascular outcomes, the exact underlying mechanisms involved 

are not yet fully described, but evidence is pointing to the vascular endothelium and genetic factors as important 

intersections.[26,38–41]  

 

HIV/AIDS, ART and air pollution are important emerging cardiovascular risk factors in South Africa 

(SA).[42–45] SA is currently in the midst of epidemiological transition that is characterised by high rates of 

communicable diseases such as HIV/AIDS while a simultaneous increase in NCDs such as CVD is also 

observed.[45,46] Furthermore, as a developing country, SA is currently experiencing economic transition that is 

characterised by an increase in industrialisation and urbanisation while the escalation of environmental health risk 

factors such as air pollution is observed.[47–50] The current status of HIV/AIDS, its treatment with ART and air 

pollution as emerging cardiovascular risk factors in SA is not well-documented and requires urgent 

investigation.[42,51] 

 

Endothelial function is considered to be a reliable early marker of cardiovascular risk.[52,53] Numerous 

methods have been developed to assess endothelial function as marker of cardiovascular risk/health.[54–57] 

Currently flow-mediated dilatation (FMD) is regarded as the non-invasive golden standard method for assessing 

endothelial function in clinical research.[54] In addition, retinal microvascular imaging has gained much research 

interest in recent years as it offers a unique opportunity to non-invasively observe/assess the microvasculature in 

vivo.[58–60] Numerous microvascular geometric features have been associated with endothelial function and 

considered markers of cardiovascular risk.[58,61–63] Both FMD and retinal microvascular imaging have previously 

been found to be useful in assessing the effects of HIV/AIDS, ART and air pollution on cardiovascular health.[64–

68] These techniques could also be applied in assessing the status of emerging cardiovascular risk factors in the 

SA context.[64–68] Therefore the current study set out to investigate whether HIV/AIDS, ART and personal 

exposure to various gaseous air pollutants as emerging cardiovascular risk factors in SA are associated with 

endothelial dysfunction in a SA population by making use of FMD and retinal imaging techniques.  

 

1.2. The cardiovascular system and vascular endothelium. 

 

It is well known that the cardiovascular system (also referred to as the circulatory system) comprises of 

the heart and a network of blood vessels (vascular system) and is mainly responsible for the transportation of blood 

throughout the whole body.[53,69–71] CVD in turn collectively represents diseases of the heart and blood 

vessels.[3,72] CVD is mostly degenerative in nature and develops undetected from an early age until it manifests 

later in life.[3,73] The process of vascular deterioration over time is also known as atherosclerosis and its 

progression mostly depends on the type, intensity and duration of present risk factors.[74–77] Most cardiovascular 
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risk factors such as smoking, an unhealthy diet, obesity and diabetes mellitus contribute to the development CVD 

through major pro-atherosclerotic mechanisms such as reactive oxygen species (ROS) production, inflammation 

and endothelial dysfunction (Figure 1.1.).[25,75,77] 

 

Figure 1.1. Major pro-atherosclerotic process involved in the development of CVD. Figure designed by the author 

of this dissertation based on content from [52,78–80]. Abbreviations and Symbols: CVD: Cardiovascular 

disease; : Increase.  

Over the last thirty years, scientific research has established that the vascular endothelium and dynamic 

changes in its biology play a central role in the process of atherosclerosis as well as general cardiovascular health 

and disease development.[81–83] Consequently, the vascular endothelium has increasingly become a focus of 

intense cardiovascular research and is now considered to be the pivotal intersection where most cardiovascular 

risk factors converge to exert their harmful effects.[76,77,84]  

 

1.2.1. The vascular endothelium. 

 

The vascular endothelium, located within the tunica intima, is the inner most lining of the blood vessel and 

forms the barrier between circulating blood and underlying tissue (Figure 1.2.).[52,74,85]  
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Figure 1.2. Location of the vascular endothelium in the blood vessel wall. Figure designed by the author of this 

dissertation based on content from [70,86]. 

 

The vascular endothelium is metabolically active, highly specialised and mostly responsible for 

maintaining vascular homeostasis.[52,74,85] As the interface between blood and underlying tissue, the vascular 

endothelium is to a large extent involved with cellular signal transduction which involves synthesising and releasing 

many vasoactive substances such as nitric oxide (NO) in response to various endogenous/exogenous chemical 

(e.g. bradykinin, thrombin and toxins) and mechanical (e.g. shear stress from increased intravascular pressure) 

stimuli in an ultimate attempt to restore and maintain optimal homeostasis.[53,87,88] The role of the vascular 

endothelium in regulating vascular tone (contraction and relaxation) is particularly important as it is directly related 

to vessel diameter, blood pressure, organ perfusion and tissue oxygen (O2) supply.[70,89] Central to many of the 

vascular endothelium’s functions is its ability to produce optimal levels of NO, and the bioavailability of NO is 

therefore also considered an important surrogate marker for endothelial function and general vascular 

health.[52,90,91] 

 

1.2.2. The importance of endothelial-derived NO in vascular function. 

 

NO is a gaseous, lipophilic, free radical, that is involved in vessel dilatation, neuronal transmission, cardiac 

contraction, immunomodulation, and stem cell differentiation/proliferation.[92–95] NO is highly diffusible, has a 

half-life of only seconds, and can be found both inter- and intracellular.[92,94] The biosynthesis of NO is catalysed 

by nitric oxide synthase (NOS) enzymes.[70,84] In  the vascular endothelium, NO is mostly produced by the NOS 

isoform called endothelial NOS (eNOS) located in cellular compartments called caveolae (Figure 1.3.).[70,88,96] 
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Figure 1.3. NO production by eNOS in endothelial cells. Description: 1. Stimuli (e.g. shear stress) triggers Ca2+-

influx through caveolae ion channels and eNOS dissociates from caveolin. 2. eNOS associates with HSP90 for 

protection from proteasomal degradation and other cofactors (e.g. B4H). 3. eNOS activation (phosphorylation by 

PKB/Akt for example). 4. NO is produced by eNOS using mainly L-arginine (amino acid) as substrate in the 

presence of O2. 5. NO rapidly diffuses inter- and intracellularly. Figure designed by the author of this dissertation 

based on content from [70,88,96]. Abbreviations and Symbols: eNOS: Endothelial nitric oxide synthase; NO: 

Nitric oxide; P: Phosphorylated; HSP90: Heat-shock protein 90; PKB/Akt: Protein kinase B/Akt. 

 

NO was first recognised as a potent vasodilator and still remains central to much of vascular research 

done today.[84,93] NO’s function also extends beyond its vasodilation capabilities as it inhibits intimal hyperplasia 

in immunologically or mechanically injured vessels, inhibits cellular apoptosis, promotes proliferation/migration of 

endothelial and smooth muscle cells, inhibits cell proliferation/migration during thrombosis, inhibits platelet 

aggregation/adhesion, monocyte and leucocyte activation/accumulation, and reduces oxidation of low-density 

lipoprotein cholesterol (LDL) and other scavenging lipid radicals.[92–94,96,97] In the heart, NO plays and important 

role in the cardiac contraction and relaxation cycle.[93,98] When cardiovascular risk factors interfere with the 

vascular endothelium’s ability to produce optimal levels of NO, vascular homeostasis becomes dysregulated a 

state of endothelial dysfunction ensues.[89]  

 

1.2.3. Endothelial dysfunction. 

 

Endothelial dysfunction is a complex phenomenon and involves many mechanisms that mostly affect the 

endothelium’s ability to produce NO.[79,89] Endothelial dysfunction can be defined as the partial or complete loss 

of balance between vasoactive (e.g. pro-vasodilatory and pro-vasoconstrictor), growth promoting and growth 

inhibiting, pro-atherogenic and anti-atherogenic, and pro-coagulant and anti-coagulant factors.[79,89,99] Major 

pro-atherosclerotic processes such as oxidative stress and inflammation play an important mechanistic role on the 

development of endothelial dysfunction.[52,89,100] 
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1.2.3.1. Reactive oxygen species (ROS) and endothelial dysfunction. 

 

ROS are potentially cytotoxic free oxygen radicals and collectively include numerous oxidative substances 

that typically have an oxygen and at least one unpaired electron present (e.g. superoxide ion (O2
-), hydroxyl radical 

(OH-) and peroxynitrite ion (ONOO-)) that accounts for their reactive nature.[101–103] ROS can be produced by 

several intracellular kinases and oxygenases such as members of the mitogen activated protein kinases (MAPK), 

cyclooxygenase, lipoxygenase, cytochrome P450 (CYP450) enzyme mono-oxygenase, xanthine oxidase and the 

nicotinamide adenine dinucleotide (phosphate) hydrogen (NAD(P)H) oxidase (major source of O2
-) enzyme 

systems in response to harmful stimuli.[101,104–108] Although ROS also play important roles in cellular signalling 

and homeostasis, excessive levels of ROS can cause oxidative stress and tissue damage.[101,109] ROS, such 

as ONOO-, can be particularly harmful to the vasculature as they are highly reactive/oxidative and can cause 

cellular/tissue damage by reacting with vascular proteins, lipids, carbohydrates and deoxyribonucleic acid 

(DNA).[97,110] ONOO- can also react with carbon and nitrogen oxides (COx and NOx) to form other radicals such 

as nitroso-peroxo carbonate.[97,110] In the mitochondria, ROS such as ONOO- can irreversibly inhibit cellular 

respiration and cause structural and functional mitochondrial DNA (mtDNA) damage.[97,110] As a more indirect 

consequence, ROS can promote endothelial dysfunction through disabling cardioprotective antioxidants (e.g. 

ascorbic acid) and antioxidant enzymes (e.g. glutathione peroxidase).[97] 

 

On the other hand, endothelial dysfunction may contribute to ROS production via a process known as 

eNOS uncoupling which favours redox signalling and involves the upregulation of eNOS expression and 

activation.[77,97] During the process of eNOS uncoupling, excessive O2
- is produced that can associate with haem-

containing (Fe2+) proteins and/or oxygen radicals to produce other ROS (e.g. nitrogen oxides ions: nitrogen dioxide 

ion (NO2
-), nitrate ion (NO3

-), dinitrogen trioxide ion (N2O3
-), ONOO- and hydrogen oxide ions: hydrogen peroxide 

(Figure 1.4.). 
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Figure 1.4. ROS production through eNOS uncoupling during endothelial dysfunction. Description: 1. Activation 

of NADPH oxidase (primary source of ROS in the vascular wall). 2. Production of O2
-. 3. O2

- rapidly reacts with 

eNOS derived NO and forms H2O2 and ONOO-. 4. ONOO- (cytotoxic protein oxidant) degradation (oxidation) of 

H4B (an essential eNOS cofactor) to H2B and (eNOS uncoupled: oxygenase dimer is inactive and reductase dimer 

active). 5. NO production diverted to ROS production by uncoupled eNOS. Figure designed by the author of this 

dissertation based on content from [109,113,114]. Abbreviations: eNOS: Endothelial nitric oxide synthase; NO: 

Nitric oxide; NADPH: Nicotinamide adenine dinucleotide phosphate hydrogenase; H4B: Tetrahydrobiopterin; H2B: 

Dihydrobiopterin; O2
-: Superoxide; H2O2: Hydrogen peroxide; OONO-: peroxynitrite ion. 

 

ROS also play a role in upregulating pro-inflammatory pathways by modulating pro-inflammatory enzyme 

activity (e.g. prostaglandin endoperoxide synthase, CYP450 and 5-lipo-oxygenase) that may further promote 

endothelial dysfunction and atherosclerosis and lead to CVD.[97,115] 

 

1.2.3.2. Inflammation and endothelial dysfunction. 

 

Vascular inflammation is initiated once the vascular endothelium or underlying tissue of the vascular wall 

is exposed to harmful stimuli and/or becomes injured.[116–121] During the acute phase of inflammation the 

endothelium is activated and the release of eNOS-derived NO is upregulated (causes vasorelaxation, increases 

blood supply and endothelium permeability).[122–124] Chemoattractant molecules are also released and initiate 

the recruitment and translocation of circulating monocytes across the endothelium to the injured/affected 

area.[104,119] The translocation of monocytes is achieved through an adhesion cascade between monocytes (e.g. 

leukocytes (e.g. neutrophils)) and endothelium-derived adhesion molecules (e.g. vascular cell adhesion molecule-

1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)).[125,126] Once translocated into the vascular wall, 

monocytes differentiate into macrophages and further upregulate the inflammatory response by releasing 

inflammatory cytokines (e.g. interleukin (IL)-1 and tumor necrosis factor-alpha (TNF-α)).[125,126] These 

inflammatory cytokines in turn upregulate the expression of more adhesion proteins such as p-selectin (increased 

monocyte translocation across the vascular endothelium).[125,127,128] Cytokines also upregulate the expression 
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of e-selectin on endothelial cells surface (act similarly to p-selectin).[125] Finally, macrophages initiate the cellular 

“healing” process by removing pathogens and dead cellular remnants (Figure 1.5.).[75]  

 

Figure 1.5. The involvement of the vascular endothelium in the inflammatory process. Description: 1. Activation 

of the vascular endothelial cells by risk factor exposure. 2. Release of endothelium derived NO that results in 

vasorelaxation. 3. Activation of the endothelial cells by chemokines released from injured tissue/cells. 4. Activation 

and recruitment of circulating monocytes to the vascular endothelium. 5. Translocation of monocytes across the 

vascular endothelium by means of adhesion molecules. 6. Differentiation of monocytes into macrophages and the 

release of inflammatory cytokines. 7. Upregulation of the inflammatory response by cytokines.  Figure designed by 

the author of this dissertation based on content from [82,122–124].  Abbreviations: NO: Nitric oxide; ROS: 

Reactive oxygen species. 

 

Endothelial dysfunction is also linked to inflammation through various mechanism that mostly involve 

reduced NO bioavailability.[53,82] Reduction in NO bioavailability can directly upregulate the expression of 

monocyte chemoattractant protein-1 (increases monocyte recruitment and translocation) and  nuclear factor 

kappa-light-chain enhancer of activated B cells (NF-κB: upregulates VCAM-1 expression).[82,92,129] Increased 

ROS and C-reactive protein (CRP) production (associated with endothelial dysfunction) can also upregulate the 

expression of vascular adhesion molecules and promotes monocyte accumulation in the vascular wall that can 

ultimately develop into lipid-loaded foam cells and plaque formation (thrombosis) over time.[82,108,121] 

Endothelial dysfunction can also increase the oxidation and infiltration of LDL cholesterol into the vascular wall (via 

lectin-like oxidized LDL (oxLDL) receptor-1).[82,108,121] oxLDL in turn has been implicated in reduced eNOS 

expression and increase expression of vascular adhesion molecule.[82,108,121] Reduced NO bioavailability 

additionally promotes thrombogenicity (NO is a potent inhibitor of platelet aggregation) and cause plaque 

destabilisation through activation of matrix metalloproteinases (MMPs; increase risk for thromboembolism).[82,92] 
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Although inflammation is generally considered to be a protective biological response to harmful stimuli 

(e.g. pathogens, damaged cells and irritants), an excessive or prolonged (chronic) inflammatory response can 

have detrimental effects on vascular health/function and contribute to the progression of atherosclerosis.[130–133] 

 

1.2.3.3. Atherosclerosis and endothelial dysfunction. 

 

As a result of chronic ROS generation, inflammation and endothelial dysfunction, white blood cells, dead 

cell remnants, oxLDL and triglycerides continuously accumulate in the vascular wall and a sub-endothelium plaque 

forms.[75,89] Over time the plaque enlarges and vascular smooth muscle cells located in the arterial media 

proliferate (partly as a result of the release of endothelium-derived vascular endothelial growth factors (VEGF)) 

and translocate into the sub-intimal space to form a thrombus (fibrous cap to seal off the plaque).[75,91,134] A 

large thrombus can reduce blood supply distally to the vessel occlusion and cause ischaemia (ischaemic heart 

disease when the thrombus is located in the coronary arteries: greatest cause of death worldwide).[135–137] When 

multiple plaques are formed, vessel elasticity decreases and an increase in pulse pressure is observed.[135–137] 

The increase in blood pressure and the release of fibrinolytic factors may furthermore result in erosion of the fibrous 

cap and cause thromboembolism (ruptures into the vessel lumen) resulting in more serious adverse events such 

as myocardial infarction or a stroke  (Figure 1.6.).[75,81,132]  

 

Figure 1.6. Plaque formation in the arterial wall during advanced atherosclerosis. Description: 1. Translocation 

and accumulation of LDL in the vascular wall. 2. Formation of lipid-loaded foam cells.  3.  Release of vascular 

growth factors. 4. Plaque formation in the vascular wall. 5. Clot formation within the vessel lumen.  6. Rupture of 

the plaque. 7. Detachment of the blood clot. Figure designed by the author of this dissertation based on content 

from [82,96,109,132]. Abbreviations: LDL: Low-density lipoprotein cholesterol; oxLDL: Oxidised LDL. 
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1.2.4. The vascular endothelium as marker of cardiovascular risk. 

 

Total cardiovascular risk represents the cumulative effect of cardiovascular risk factors on cardiovascular 

health over time.[138] Therefore, early assessment and detection of cardiovascular risk allow for timely intervention 

that could prevent or even reverse the pathophysiological processes leading to CVD.[139–141] Determining 

cardiovascular risk is often difficult as numerous known and unknown cardiovascular risk factors may play a 

role.[142–144] Also, the intensity and duration of risk factors, as well as the overlapping of physiological pathways 

seem to have variable effects on cardiovascular health.[142–144] Numerous methods have been developed over 

the years to quantify cardiovascular risk, including mathematical algorithms, electronic instrumentation and 

chemical biomarkers.[54,57,140,145–149]  

Due to its ideal location and central role in many vascular mechanisms, the vascular endothelium and its 

function has become an integrative, yet independent, marker of the cumulative effects of cardiovascular risk factors 

on the vasculature.[77,81,130] Therefore, assessing the degree of endothelial function in the clinical setting has 

proven valuable in terms of the detection, prevention, prediction, management and treatment of not only CVDs, 

but also other health risk factors, disease burdens and their outcomes.[77,80,84] The assessment of endothelial 

function has not only clinical importance in established diseases, but also as early marker at subclinical level where 

underlying diseases/risk factors have not yet manifested into clearly defined complications.[77,80,150]  

 

1.2.4.1. Non-invasive methods for assessing endothelial function. 

 

Appreciation for the vascular endothelium’s role in cardiovascular health and risk assessment has 

increased over the years.[52,77,80] Currently numerous non-invasive techniques such as FMD, brachial-ankle 

index pressure, pulse wave analysis, carotid intima-media thickness measurement, retinal microvascular imaging 

and computed tomography are available to assess endothelial function as marker of cardiovascular 

risk.[25,76,80,151–153] Also, numerous circulating biomarkers that are mechanistically involved in various aspects 

of endothelial function such as ICAM-1, VCAM-1 and p-selectin (see section 1.2.3.2. and Figure 1.5) have been 

identified and proven valuable in endothelial and vascular health assessment.[127,151,154] 

 

1.2.4.1.1. Flow-mediated dilatation (FMD): Principles of the method. 

 

FMD was first described in 1992 and is now considered the non-invasive gold standard technique for 

evaluating vascular endothelial function in clinical research, because of its sensitivity and non-invasive 

nature.[77,150,155] FMD currently remains more applicable in clinical research setting with larger study 

populations rather than individual risk assessment due to lack of a universal standardised protocol.[80] 

The principle of FMD is based on the endothelium’s ability to produce NO (mainly via eNOS’ L-arginine 

pathway) during induced reactive hyperaemia distally and in response to a localised occlusion (usually via inflating 
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a pneumatic blood pressure cuff at 50 mmHg supra-systolic pressure).[77,80,151] During the period of ischaemic 

occlusion, decreased O2 supply and pH (due to increased hydrogen ion (H+)), shear stress (internal and external 

pressure) and changes in metabolite concentrations (increased carbon dioxide (CO2), lactate, adenosine and 

potassium ion (K+) concentrations) disrupt vascular homeostasis.[77,80,151] Following release of the occlusion 

(deflation of the blood-pressure cuff), reactive hyperaemia is triggered as a result of the homeostatic imbalance 

created during ischaemia and massive amounts of eNOS-derived NO is released (results in vasodilation until most 

metabolic waste is removed) in an ultimate attempt to restore homeostatic balance.[77,151,156] At the end of 

reactive hyperaemia, NO-bioavailability decreases and vascular tone (diameter) returns to basal levels (Figure 

1.7.).[77,151,157]  

 

Figure 1.7. Principle of flow-mediated dilatation. Description: 1. Inducing transient ischaemia through vascular 

occlusion of the brachial artery in the forearm. 2. Release of the occlusion triggers reactive hyperaemia and 

vasodilation. Figure designed by the author of this dissertation based on content from  [77,80,151,157].  

Abbreviations and Symbols: NO: Nitric Oxide; eNOS: Endothelial nitric oxide synthase. O2: Oxygen; CO2: 

Carbon dioxide; K+: Potassium ion; H+: Hydrogen ion; ↑: Increase; ↓: Decrease. 

 

Visualisation and quantification of vascular endothelial function during the process of FMD is achieved by 

means of ultrasonography techniques coupled with computerized edge detection technology that measures 

vascular metrics (vessel lumen diameter) at baseline (before occlusion) and during reactive hyperaemia.[77,151] 

The maximum vessel lumen diameter change during reactive hyperaemia (from the baseline measurement) is 

directly related to the vascular endothelium’s ability to produce NO and expressed as a percentage of baseline 

brachial lumen diameter (% FMD).[156,158]  
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1.2.4.1.2. Retinal imaging: Principles of method. 

 

Retinal microvascular imaging by means of a digital retinal camera is a very useful, non-invasive 

technique to probe microvasculature physiology in vivo (Figure 1.8.).[59,159,160]  

 

 

Figure 1.8. A digital fundal retinal image depicting retinal microvasculature is taken through the pupil of the eye. 

Description: 1. Digital fundal image of retinal microvasculature (photographed by the author). 2. Cross-sectional 

representation of the eye (designed by the author of this dissertation based on content from [66]). 

 

The pupil of the eye offers a  unique point of access to non-invasively assess the internal structures of 

the eye including the retinal microvasculature (vessel diameter: 50 – 300 μm).[59,161] Currently, high-resolution 

digital photographs of the retinal microvasculature are used against standardised grading protocols to evaluate 

microvascular characteristics.[59,160,162] Using retinal imaging for cardiovascular risk assessment focus largely 

on geometric features, in particular retinal vessel calibers (arteriole and venule diameters and diameter  ratios), 

although vessel network fractals and branching angle features have also found application.[59,163,164]  

 

Numerous metabolic, anthropometric, demographic, behavioural and environmental cardiovascular risk 

factors have been associated with retinal microvascular geometric features.[58,165–167] Hypertension and 

cardiometabolic risk factors such as dyslipidaemia and diabetes, for example, have been associated with retinal 

arteriole narrowing and wider venules.[62,168,169] Wider retinal venules and narrower retinal arterioles have 

furthermore been linked to pro-atherosclerotic processes such as inflammation, endothelial dysfunction, and 

increased risk for stroke and myocardial infarction.[58,170–172] In terms of branching and vessel network 

geometrics, hypertension, cardiometabolic disorders and degenerative age-related disorders have been shown to 

reduce branching angles, increase tortuosity, and reduce fractal dimensions.[164,173,174] 
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1.2.4.1.3. Chemical biomarkers. 

 

Numerous biochemical markers of endothelial function have been identified.[57,77,133] These 

biomarkers have direct or indirect molecular involvement in physiological pathways related to vascular/endothelial 

dysfunction and atherosclerosis.[57,82,175,176]  

 

Inflammatory biomarkers include CRP and cytokines such as tumour necrosis factor-alpha (TNF-α) and 

IL-6.[77,83,132,133] Cytokines are mostly acute phase inflammatory proteins that are involved in regulating the 

immune response by stimulating the release of other inflammatory-related factors such as CRP and fibrinogen by 

the liver.[142,177] CRP in particular has been identified as an important marker of inflammation and cardiovascular 

risk and involved with propagating the inflammatory response through monocyte and adhesion molecule activation 

during the early stages of atherosclerosis (even at sub-clinical level).[77,142,177]  

Adhesion molecules in turn are also reliable markers of endothelial function and atherosclerosis and 

include VCAM-1, ICAM-1, e-selectin and p-selectin.[71,77] The expression of adhesion molecules is mediated by 

cytokines (e.g. IL-1) and CRP in regions of inflammation.[76,77,178,179] Adhesion molecules participate in the 

process of atherosclerosis by promoting monocyte, macrophage and neutrophil recruitment into the arterial 

intima.[76,77,178,179] Adhesion molecules also play a role in the activation of specific kinases, resulting in 

transcription factor activation that lead to further cytokine production, increased ROS production and vascular cell 

proliferation.[77,82,83,125,180]  

Cellular growth factors such as VEGF mediate vascular cell proliferation.[181] VEGF plays an important 

role in endothelial cell migration, proliferation, survival and NO production.[142,181–183] VEGF also functions as 

a pro-inflammatory cytokine that increases endothelial permeability, induces the expression/activation of adhesion 

molecules and assists with leukocytes adhesion to endothelial cells.[142,181–183]  

Haemostatic factors such as plasminogen activator inhibitor-1 (PAI-1), Von Willebrand factor and 

fibrinogen are well-established markers of endothelial function and markers of cardiovascular risk.[83,142,176,184] 

Von Willebrand factor is mostly produced by the endothelium upon endothelial activation and released into blood 

circulation as a glycoprotein.[77,142,177] Von Willebrand factor, PAI-1 and fibrinogen play a role in promoting 

endothelial activation, cell adhesion, cell proliferation, vasoconstriction, platelet activation and blood aggregation 

and coagulation.[77,142,177] These factors have been independently associated with risk for stroke and 

myocardial infarction.[142,177]  

Other biomarkers of cardiovascular risk include numerous ROS and lipid-related factors such as LDL 

and apolipoproteins (A and B) levels.[142,177] Pro-inflammatory cytokines such as TNF-α and ILs are also known 

to induce endothelial ROS production.[71,142,177] ROS is a major source of LDL oxidation.[142,177] oxLDL in 

turn stimulates endothelial monocyte production and promotes macrophage accumulation and foam cell formation 

in the vascular wall.[142,177] Lipoprotein-A acts similar to LDL as it contains about 40% cholesterol and is thus 
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considered highly atherogenic and plays a role in endothelial cell activation, macrophages function, cell 

proliferation and fibrolysis.[142,177] 

 

1.3. Traditional cardiovascular risk factors: Classification and Prevalence. 

 

Traditional cardiovascular risk factors can be classified as controllable/modifiable or uncontrollable/non-

modifiable cardiovascular risk factors.[3,7,185] Major controllable cardiovascular risk factors such as hypertension, 

abnormal lipid levels, smoking, physical inactivity, an unhealthy diet, diabetes, obesity, socioeconomic factors, 

infection and some pharmaceuticals are relatively well-described in literature.[2,186–188]  

Also, uncontrollable cardiovascular risk factors (often related to genetic factors) such as sex/gender and 

family history of CVD are well-recognised.[189–194] Men, for example, have larger arteries than women while 

women usually have more apparent stenosis.[192,194] Men in general are more likely to engage in risk behaviors 

such as smoking and excessive drinking compared to women, while female hormones such as oestrogen 

predispose women to increased cardiovascular risk as it has been associated with pro-thrombotic effects.[152,194] 

Ageing alone induces tremendous alterations in cardiovascular physiology and carries major cardiovascular risk 

in itself.[189,190] Aside from vascular aging, secondary age related factors such as a sedentary lifestyle and 

dietary alteration/factors also play a role.[195,196]  

Despite the complexity of often interlinked pathophysiological pathways of traditional cardiovascular risk 

factors, ROS production, inflammation and endothelial dysfunction remain the most important junctures where they 

meet.[109,197,198] 

 

Cardiovascular risk factors are highly prevalent and relevant in the SSA context as the continent has vast 

socio-, demographic-, ethnic- and economic diversity.[199–203] Income level, education, urban living and 

psychosocial stress appear to be strong determinants of cardiovascular risk in SSA.[200] Also, a complex 

relationship between overweight (In some countries up to one third of woman is obese) and underweight exist in 

SSA with both being highly prevalent.[200]  

There are furthermore an estimated 10.8 million people in Africa living with diabetes (8-10% of men and 

women).[199,200,204] Raised glucose levels are present in an estimated 10% of people while hypertension 

(systolic blood pressure (SBP) ≥140 mmHg or diastolic blood pressure DBP) ≥90 mmHg) are present in an 

estimated 35% of men and 28% of women.[199] SSA is also burdened heavily by infectious diseases.[200] 

Tuberculosis, for example has been shown to contribute to 45% of new pericarditis cases in low- and middle-

income countries in the region.[200] 

In SA, cardiovascular risk factors are highly prevalent compared to other parts of SSA and comparable to 

the developed world.[46,198] The South African Heart Foundation reported that an estimated 80% people of over 

50 years of age in SA are clinically hypertensive.[205] This rate is the highest in the world.[205] Also, two-thirds of 

women and one-third of men are overweight or obese (~40% of women and ~11% of men are obese in SA).[205] 
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An estimated 20% of people in South-Africa are consuming a high-fat diet with 25% of adults present with elevated 

total cholesterol, a third with elevated LDL-cholesterol and almost one-half low HDL-cholesterol.[205] A furthermore 

25% of adults in SA have impaired blood glucose levels with 10% being diagnosed diabetic.[205] Smoking rates 

are high in both adults and adolescents (20% respectively) (Figure 1.9.).[205]  

 

 

Figure 1.9. Prevalence of prominent cardiovascular risk factors in the SA adult population (more than 15 years of 

age).[205,206] Standards: 1 and 4. BMI (kg/m2): Normal Weight: 15.5 to 24.9; Overweight: 25 to 29.9; Obese: 

equal to or more than 30. 2. Less than 1.2 mmol/L (Less than 1.0 mmol/L in men and less than 1.30 mmol/L in 

women). 3 and 7. Based on criteria as described by SANHANES-1. 5. Systolic blood pressure (SBP) equal to or 

more than 140 mmHg or diastolic blood pressure DBP) equal to or more than 90 mmHg.[207]  6. More than 3 

mmol/L.  8. Based on criteria as described by SANHANES-1.  9. More than 5 mmol/L (Triglycerides: more than 1.7 

mmol/L). 10. Currently smoking or history of smoking. 11. Glycated haemoglobin (HbA1c) equal to or more than 

6.1% 12. Based on a dietary fat score as described by SANHANES-1.[206] 13. Random blood glucose level more 

than 7 mm/L or HbA1c equal to or more than 6.5%. Figure designed by the author of this dissertation based on 

content from [206,207]. Abbreviations: BMI: Body mass index; SBP: Systolic blood pressure; DBP: Diastolic blood 

pressure; HDL: High-density lipoprotein cholesterol; LDL: Low-density lipoprotein cholesterol. 

 

The Heart of Soweto Study highlighted the prevalence of cardiovascular risk factors in the SA urban 

setting and described it as “a ticking time bomb”.[46]  In 1600 subjects (65% women) with a mean age of 46 years 

about 78% of the subjects had at least 1 major cardiovascular risk factor present.[46] The most prevalent risk 

factors were obesity (total 43%; men vs. women (23% vs. 55%), hypertension (33%), elevated glucose (14%) and 

elevated cholesterol (13%).[46]  

In the Bellville area of Western Cape province, a large population-based study (n = more than 500) 

reported highly prevalent cardiovascular risk factors across different age groups.[208] Smoking was highly 
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prevalent in the younger age group (63%: 20 to 30 years of age) compared to the older age group (44%: 51 to 60 

years of age).[208] The obesity (BMI equal to or more than 30 kg/m2) rate was high in middle-aged subjects (20% 

in  20-30 years of age, 44-52% in 31-60 years of age) while the incidence of overweight (BMI equal to or more 

than 25, less than 30 kg/m2) was similar across all age groups (range 25 to 30%).[208] The mean SBP increased 

across age groups from 113 mmHg (20 to 30 years of age) to 126 mmHg (51 to 60 years of age).[208] Reports 

from other parts of SA have made similar findings.[201–203] 

  

1.4. Cardiovascular disease epidemiology. 

 

At the beginning of the 20th century, CVD was responsible for less than 10% of global mortality.[188,209] 

In 2008, 39% of NCD deaths (36 million) under the age of 70 were due to CVD, while 2010 witnessed about 17 

million deaths (48% of all NCD deaths) due to CVD.[2,3,210] Although CVD has substantially decreased in high-

income countries over the last 20 years (due to population wide intervention strategies), it remained the biggest 

contributor to mortality and morbidity in the world with low- and middle-income countries disproportionately affected 

(representing 80% of CVD mortality worldwide).[2–4] Ischaemic heart disease specifically remained the most 

prominent contributor to global mortality in 2010 (13 million deaths due to ischaemic heart disease (13.3% of total 

global deaths, an increase of about 26%-35% from 1990).[3,211] Recent WHO figures (2016) report 17.9 million 

deaths occurred globally due to CVD (More than 75% from low- and middle-income countries).[212] Global 

projections furthermore indicate an increase of 6 million deaths due to CVDs over the next two decades (to about 

23.9 million) with ischaemic heart disease expected to remain one of the three biggest contributors to the global 

burden of disease.[213,214]  

 

SSA is in the earlier stages of epidemiological transition that is characterised by a dual burden of both 

infectious diseases and NCDs.[215] Almost 80% of global NCD and CVDs occur in low- and middle-income 

countries (mostly represented by SSA countries) and rates are rising most rapidly in SSA compared to other 

regions.[46,200,210,215] These trends suggest that CVD is evolving into a major public health issue in 

Africa.[4,200,216] More specifically, the WHO projected a doubling of ischaemic heart disease in the SSA Region 

by 2030.[204] In SA, CVD is the second largest cause of death (following HIV/AIDS) with an estimated 1/6 deaths 

(215 deaths/day) in SA caused by CVD (more than 17% of total deaths) (Figure 1.10.).[205]  
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Figure 1.10. The burden of CVD (1) globally, regionally and (2) in South Africa. Figure designed by the author of 

this dissertation based on content from [205,217,218]. Abbreviations: CVD: Cardiovascular disease. 

 

1.5. Emerging cardiovascular risk factors: HIV-infection and ART. 

1.5.1. Background. 

 

HIV/AIDS was first described by the Centres for Disease Control and Prevention (United States of 

America (USA) in 1981.[219–222] While unexplained immunodeficiency and associated opportunistic infections 

continued to emerge between 1981 and 1983, the causal factor remained unknown, but sexual behaviour was 

quickly implicated.[219,221] The human immunodeficiency (HI) virus (HI-virus) was finally isolated and identified 

by French scientists and confirmed as the cause of AIDS in 1984.[219–221] Since the discovery of HIV, two types 

of HIV-infections were identified.[219,221] HIV type-1 (HIV-1), a virus that was thought to have crossed the animal-

to-human barrier in Western Africa, was identified as the main cause of the HIV/AIDS epidemic.[221] HIV type-2 

(HIV-2) was also identified soon after and was thought to have originated in central/Western Africa, but is rarely 

found outside central Africa.[219,221,223]  

 

The rapid spread of HIV/AIDS in the 1980’s across the world resulted in a massive upscaling of 

international efforts to fight the disease.[219,221] HIV/AIDS singlehandedly reformed the architecture of global 

health and healthcare systems.[219,221] A significant breakthrough in HIV-treatment came when different classes 

of ART were developed.[219,220,224] Zidovudine was the first ART approved for human use.[225]The first 

protease inhibitor (PI; saquinavir) was approved in 1995, but bioavailability was low while high doses needed to 

be administered that led to low tolerance (metabolized by the cytochrome 3A4 isoenzyme of the CYP450 

system).[224] Nevirapine, was the first non-nucleoside reverse transcriptase inhibitor (NNRTI) approved (1996), 

but drug resistance was highly prevalent when administered as a monotreatment.[219,220,224] Another PI, 

Indinavir, was approved in 1996 and set a new hallmark in HIV-treatment when it was realised that combination 

ART (also known as highly active antiretroviral therapy (HAART)) was effective in controlling viral replication and 

that a triple combination ART drug-treatment regime was most often completely viral-
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suppressive.[219,220,224,226] Combination ART quickly revolutionised HIV-care and ultimately changed HIV from 

a fatal infection into a chronic, but manageable disease that required lifelong treatment.[220,224] More than 30 

anti-HIV-1 drugs are currently approved and used in the fight against HIV-infection.[220,224,227] Enormous 

international efforts are still currently continuing to reach 100% coverage across the globe.[228,229] 

 

Although ART treatment was successful in controlling HIV replication and substantially improve the 

longevity of PLWH, drug toxicity has remained a concern, and reports on HIV- and ART-associated co-morbidities 

started to emerge.[230–232] Currently, CVD in PLWH has become a major cause of morbidity and mortality and 

accounting for about one-third of serious non-AIDS conditions and at least 10 % of deaths.[223] A recent study 

found that the relative risk for developing CVD was 1.61-fold higher in HIV-infected patients without ART compared 

to HIV-infected patients on ART-treatment, and 2-fold higher in HIV-infected patients receiving no ART-treatment 

compared to HIV- and ART-naïve controls.[20]  

 

Although not fully understood, increased exposure to traditional cardiovascular risk factors (as a result of 

improved longevity and risky lifestyle), the HI-virus itself, ART drug toxicity, as well as HIV- and ART-associated 

comorbidities (e.g. lipodystrophy and dyslipidaemia) appear to play a role (Figure 1.11.).[7,20,21,233]  

 

 

Figure 1.11. Major factors contributing to CVD in PLWH. Figure designed by the author of this dissertation based 

on content from [7,18,19]. Abbreviations: CVD: Cardiovascular disease, ART: Antiretroviral therapy, HIV/AIDS: 

human immunodeficiency virus/acquired immunodeficiency syndrome. 

 

1.5.2. The HI-virus: Structure and lifecycle. 

 

HIV-1 is a conical shaped retrovirus with a capsid length of 100-120 nm and width of 50-60 nm that can 

cross the nuclear membrane and insert its genome into metabolically active, non-dividing cells.[234,235] HIV-1 

can cross the nuclear membrane of circulating cluster of differentiation-4+ T-lymphocyte cells (CD4 cells) 

independently of mitosis (indicating an active process rather than passive).[234,235] The HIV-capsid (essential for 
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infectivity) contains two single ribonucleic acid (RNA) strands, and viral proteins such as reverse transcriptase and 

integrase.[234–236] After the HI-virus gains access to the body (through bodily fluid transfer), it starts its lifecycle 

by binding to a CD4 cell receptor and its lifecycle ensues (Figure 1.12.).[227,235–238] 

 

Figure 1.12. Lifecycle of the HI-virus with key steps blocked by ART drug classes. Description: 1. Fusion with 

cellular membrane of host cell mediated by HIV-1 envelope glycoprotein-120 (gp120) subunit (Target for fusion 

inhibitor ART). 2. Uncoating: release of viral genetic material (ribonucleic acid) into host cell cytoplasm one hour 

after fusion. 3. HIV reverse transcriptase enzyme converts the single-strand virus RNA into double-strand linear 

HIV DNA 3-4 hours after fusion (Target for reverse transcriptase inhibitor ART). 4. Integration: Viral pre-integration 

complex crosses the nuclear membrane, and integrase enzymes catalyse integration of the viral DNA into the 

host’s own DNA 15-20 hours after fusion (Target for integrase inhibitor ART). 5. Integrated HIV DNA may remain 

inactive for a period of time (even several years) until the host cell becomes activated (encounters a recall antigen 

or certain types of cytokines). 6. Transcription activation: RNA-polymerase replicate the HIV genomic material 

including messenger RNA (mRNA). 7. The HIV protease cuts HIV proteins into smaller HIV proteins (Target for 

protease inhibitor ART). 8. Budding: Newly formed HIV pushes out from the host cell. Figure designed by the 

author of this dissertation based on content from [227,235–238]. Abbreviations and symbols: HIV: Human 

Immunodeficiency virus; RNA: Ribonucleic acid; DNA: Deoxyribonucleic acid; PI: Protease inhibitor; NRTI: 

Nucleoside reverse transcriptase inhibitor; NNRTI: Non-nucleoside reverse transcriptase inhibitor; - = Inhibit. 

 

The acute phase of HIV-infection is the initial phase when a burst of viremia is experienced.[223] HIV 

antibodies remain undetectable during the acute phase with only about 65% of infected individuals experiencing 

acute retroviral syndrome (fever, lymphadenopathy, pharyngitis, skin rash, myalgias and/or arthralgias).[223] 

Without treatment, HIV-1 most commonly develops into AIDS in less than 7 years from inital infection occurred 

while death offen occurs within 3 years once detected.[222] 
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1.5.3. Antiretroviral therapy (ART). 

1.5.3.1. ART treatment guidelines. 

 

ART drugs are designed to block key steps during viral replication in an ultimate attempt to suppress viral 

replication (Figure 1.12.).[227,239,240] Although highly successful in controlling viral replication, ART cannot 

eradicate the virus or its DNA from the host.[220,224,227] A single ART is also not successful in treating HIV/AIDS 

as HIV-1 shows high genetic variability and is capable of quickly developing resistance against single ART 

treatment.[223,236] For more potent viral suppression and to prevent the HI-virus from becoming drug-resistant, 

ART-drugs are administered in a combination of at least three different ARTs from at least two different drug-

classes.[227,241,242]  

 

According to WHO guidelines, ART treatment should be initiated when CD4 count is ≤500 cells/mm3 with 

a first-line ART combinations containing tenofovir (an NRTI) + lamivudine (an NRTI) or emtricitabine (an NRTI) + 

efavirenz (an NNRT) and if plasma HIV RNA reaches more than 1000 copies/ml a second-line ART-combination 

consisting of two NRTIs + a ritonavir-boosted PI for adults.[243] These combination recommendations are also 

followed by the SA Government for its Government-sponsored ART programme; however, a strategy has recently 

been implemented to provide ART treatment for all PLWH regardless of CD4 count or viral load.[244] Similar to 

the WHO guidelines, the South African Government also recommends a first line ART treatment combination 

containing two NRTIs and one NNRTI (tenofovir + emtricitabine (or lamivudine) + efavirenz (preferred)), and a PI-

containing combination (zidovudine + lamivudine + lopinavir booster with ritonavir (lopinavir/r)) for second-line 

treatment (Patients with anaemia and renal failure switch to abacavir (an NRTI).[245] First-line ART fixed-dose 

combination preparations containing tenofovir / emtricitabine / efavirenz are widely used in SA and available as 

Atripla™ or Odimune™  and the second-line PI-containing ART contains lopinavir/r is available as 

Aluvia™.[240,246–248]  

 

1.5.3.2. Major ART drugs and drug classes: Mechanism of action and adverse effects. 

 

Major ART drug classes include the NRTIs, NNRTIs, PIs, fusion inhibitors and integrase inhibitors. 

Generally, the NRTIs, NNRTIs and PIs are most commonly prescribed.[223,245] NRTIs inhibit HIV viral replication 

by actively inhibiting HIV-1 reverse transcriptase (incorporated into nascent viral DNA that leads to chain 

termination; Figure 1.12. number 3).[240,249,250] NNRTIs block HIV replication by binding adjacent to the active 

site (hydrophobic pocket) of the HIV reverse transcriptase.[240,250] This conformational change inhibits reverse 

transcriptase to add nucleosides to the DNA chain, thus preventing viral DNA transcription from being 

completed.[240,250] HIV protease plays a critical role in the HIV lifecycle and is responsible for HIV virion 

cleavage.[227,240] PIs inhibit viral replication by binding to the HIV protease enzyme’s active site that renders it 

inactive (Figure 1.12. number 7).[240,251] 
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Efavirenz  (Sustiva™)  is a NNRTI that is commonly selected as a first-line ART drug for HIV-1 in SA.[252–

254] It diffuses into the cells and binds next to the active site of reverse transcriptase.[252–254] Efavirenz is highly 

plasma protein-bound (predominantly albumin) and the CYP450 enzyme system (mostly isozymes CYP3A4 and 

CYP2B6) is responsible for its metabolization (hydroxylated metabolites that undergo glucuronidation).[240,252–

254] Efavirenz has a long half-life (52-76 hours for oral administration) and has been associated with increased 

non-fasting total cholesterol (~20%) and HDL (~25%) levels in treated patients.[252–254] Efavirenz is also strongly 

associated with mitochondrial toxicity and central nervous system (CNS) effects (neuronal toxicity through 

metabolite 8-hydroxy-efavirenz) and with mood and sleep disorders often reported.[240,255] Possible ART 

associated neuronal effects involve pathways related to brain creatine kinase depletion, calcium haemostasis 

alterations, mitochondrial toxicity and inflammation.[255,256] 

 

Various NRTIs are available commercially (abacavir, emtricitabine, didanosine, lamivudine, stavudine, 

and zidovudine.[240,257] Emtricitabine (Emtriva™) is a synthetic nucleoside (dideoxycytidine) analog (structure 

and resistance similar to lamivudine.[258–261] Cellular enzymes phosphorylate emtricitabine to emtricitabine-5’-

triphosphate which in turn competes with the natural substrate, deoxycytidine 5’-triphosphate.[258–261] Tenofovir 

(Viread™)  is an acyclic nucleoside phosphonate diester analogue of adenosine monophosphate.[262,263] It 

requires initial diester hydrolysis to convert to tenofovir, then phosphorylated by cellular enzymes and subsequently 

converted into active tenofovir diphosphate.[258–261] As is the case with emtricitabine, tenofovir diphosphate 

inhibits HIV-1 reverse transcriptase (competitor for natural substance deoxyadenosine 5’-triphosphate) and leads 

to DNA chain termination after incorporated into the viral-DNA.[258–261] Tenofovir is associated with increased 

fat absorption and increased plasma lipid concentrations.[258–261] 

Various PIs are also commercially available (saquinavir, lopinavir, darunavir, indinavir, tipranavir, 

atazanavir, nelfinavir, and RTV).[227,240] The hepatic enzyme CYP3A4 is mostly responsible for metabolizing 

PIs.[264] PIs are strongly associated with dyslipidaemia (increased hepatic clearance of LDL) and other metabolic 

diseases such as insulin resistance, type-II-diabetes and lipodystrophy.[265–267] lopinavir/r forms part of the 

South African Government’s recommended second-line ART combination.[245,268] Ritonavir (Norvir™) has low 

gastrointestinal tolerance and is therefore administered at a lower dose, but with a PI-booster for example lopinavir 

(increase plasma concentrations and decrease and pill burden and cytochrome enzyme 

metabolism).[241,269,270] Lopinavir/r is co-formulated as Kaletra™ or Aluvia™.[271,272] Lopinavir and ritonavir 

are both metabolized by CYP3A4 and associated with hypertriglyceridemia.[240,273] 

 

1.5.4. Markers of HIV/AIDS disease progression/status: Viral load and CD4 cell count. 

 

Viral load represents the quantity of viral RNA copies in a given blood serum volume and is directly related 

to viral activity/replication.[223,274,275] The HI-virus is also known to target CD4 cells (hence its ability to cause 
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immune deficiency) and therefore CD4 cell count is often inversely related to viral load.[276,277] Viral load and 

CD4 cell count have important prognostic value in terms of monitoring the status of HIV/AIDS disease progression 

and ART post-treatment response.[223] The EuroSIDA collaboration found (after adjustment for age, region, and 

ART) that non-AIDS health events were 61% (p = 0.001) and 66% (p = 0.004) higher respectively in participants 

with viral loads 500 to 9999 copies/ml than in individuals with viral loads less than 500 copies/ml.[223] CD4 count 

on the other hand is a strong indicator of the state of immune function and therefor often directly associated with 

developing HIV-associated malignancies including cancers (lung, anal, oropharyngeal, liver and skin), 

intraepithelial neoplasia (papilloma virus-related), Kaposi sarcoma, melanoma and non-Hodgkin lymphoma.[223]  

 

1.5.5. Epidemiology of HIV/AIDS and coverage of ART treatment. 

 

HIV/AIDS has become a major cause of global mortality in a relatively short period of time and one of 

most prominent infectious diseases that confronted civilisation in the 21st century.[222] Estimating global mortality 

due to HIV/AIDS is very difficult, as mortality is often not reported as being linked to HIV/AIDS status.[228,278] 

Nonetheless, the WHO estimated that at the height of the HIV-epidemic (around 2000) 15 000 people became 

HIV-infected each day, 8000 people died each day and that 25 million people were HIV-infected in the 

world.[228,278,279] In 2004 alone, HIV- and tuberculosis-mortality combined amounted to 3.5 million deaths 

worldwide (5th leading cause of the Global Burden of Disease (GBD)).[228,278] By 2008, the WHO estimated that 

about 60 million people had become infected with the HI-virus since its discovery.[222] The Joint United Nations 

Programme on HIV and AIDS (UNAIDS) reported in 2012 that more than 35 million people have already died as a 

result of AIDS since the pandemic started and that a further 35.3 million were living with the disease.[228,280] Due 

to the success of ART and up-scaled ART coverage efforts, the number of AIDS deaths declined by 1.6 million in 

2012 compared to 2.3 million in 2005.[280] Also in 2012, 9.7 million PLWH in low- and middle-income countries 

(7.6 million people in SSA) had access to ART (61% of all who were eligible according to the 2010 WHO HIV 

treatment guidelines).[224,281]  

More recent estimated data (2017) from UNAIDS show that 36.9 million were living with HIV/AIDS, 21.7 

million PLWH had access to ART, 1.8 million people became newly infected (77.3 million in total have become 

infected since the discovery of HIV) and  0.94 million peopled died of HIV that year (35.4 million total deaths since 

the discovery of HIV) across the world (Figure 1.13.).[282]  
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Figure 1.13. Burden of HIV/AIDS according to UNAIDS for 2017 presented on global, regional and local level. 

Description: 1. PLWH and PLWH on ART. 2. New HIV-infections that occurred and people who died of HIV/AIDS 

in 2017. Figure designed by the author of this dissertation based on content from [282,283]. Abbreviation: 

HIV/AIDS: HIV/AIDS: human immunodeficiency virus/acquired immunodeficiency syndrome; PLWH: People living 

with HIV; ART: Antiretroviral therapy.  

 

The vast majority of PLWH reside in developing countries (34 million).[5,222,223,228] The WHO 

estimated in 2001 that 3.4 million people from SSA were HIV-infected (700 000 children less than 15 years of age), 

2.3 million HIV/AIDS-associated deaths occurred, and that the region accounted for more than 75% of the 20 

million HIV-related deaths global deaths since the HIV/AIDS epidemic started.[5,222,228] Recent UNAIDS figures 

(2017) for Eastern and Southern Africa estimated that 19.6 million people lived with HIV, 12.9 million PLWH has 

access to ART, 0.8 million people became newly infected and 0.38 million people died of HIV/AIDS that year.[282] 

HIV/AIDS currently remains the leading burden on health in SSA with more than 22.5 million people living with HIV 

on the continent and a 40% higher burden per capita for women than for men aged 15-59 years of age in the 

region.[5,222,228]  

 

SA has the largest population of PLWH in world and has the largest Government supported ART treatment 

programme.[229,283] An estimated 7.1 million people are living with HIV/AIDS in SA and represents about 18% 

of the South African population ages 15 to 49 years of age.[283,284] Despite ART being freely available in SA and 

large preventative measures by the SA Government, more than 100 000 HIV/AIDS deaths still occur each year 

while more than 250 000 people become newly infected.[283,284] It is estimated that only 61% of HIV-infected 

adults and 58% of HIV-infected children (less than 15 years of age) in SA are on ART treatment.[283,284] 

 

 

Stellenbosch University https://scholar.sun.ac.za



24 | P a g e  

 

1.5.6. The HI-virus, endothelial dysfunction and CVD. 

 

The effects of the HI-virus on the cardiovascular system were recognised early on in the HIV-epidemic 

during the pre-ART era.[285,286] Cardiomyopathy and pericarditis in HIV/AIDS patients were reported in the early 

1990’s during the pre-ART era.[287–289] Studies that reported progressive atherosclerotic lesions in young men 

(mean age of 31 years) who died of AIDS soon followed.[285] Other early pre-ART post-mortem reports noted an 

increase in the frequency of dysplasia in coronary arteries in people who died of AIDS compared to controls.[290] 

Also, direct associations between CVD, uncontrolled HIV viremia (untreated viral load) and immune (dys)function 

(CD4 cell depletion) have been found.[19,291,292]  

 

The HI-virus is a well-adapted virus that can enter the host undetected, infects numerous types of cells 

and take advantage of the hosts cellular machinery to replicate.[292] The main target cells for the HI-virus are CD4 

cells, monocytes and macrophages.[292] Other target cells include cells that are sensitive to viral infections such 

as endothelial cells, but do not play an major role in HIV replication.[292] As the vascular endothelium serves as 

the interface between circulating blood and underlying tissue, it is vulnerable to HIV-associated effects/factors and 

may play an important role HIV-related CVD.[293–295] Although the exact mechanism involved is not fully 

understood, viral proteins such as gp120, trans-activator of viral replication (Tat) and HIV-1 negative factor (Nef) 

proteins have been implicated in pro-atherosclerotic events such as increased levels of inflammatory cytokines 

and chemokines (e.g. interferon-alpha and -γ, TNF-α, CRP, IL-1, -6, -8, -10, -15 and -18, monocyte 

chemoattractant protein-1 (MCP-1) and C-C motif ligand-2 (CCL2)), vascular adhesion molecules (e.g. soluble 

VCAM-1, soluble ICAM-1, e-selectin and p-selectin), hemostatic and fibrinolytic factors (e.g. von Willebrand factor, 

tissue plasminogen activator (t-PA) and PAI-1)(Figure 1.14.).[23,25,103,292,295–314] 
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Figure 1.14. HIV-viral factors associated with chronic immune activation and cardiovascular risk. Description: 1. 

Circulating HIV virus infects immune cells. 2. Viral factors such as gp120, Tat and Nef activate endothelial and 

immune cells. 3 Activated endothelial cells and immune cells increase circulating pro-inflammatory cytokines and 

the expression of vascular adhesion factors are upregulated. 4. Macrophage recruitment into the vascular wall is 

increased and vascular inflammation increased.  Figure designed by the author of this dissertation based on 

content from [240,286,292,293,295,304]. Abbreviations and symbols: eNOS: Endothelial nitric oxide synthase; 

ROS: Reactive oxygen species; NO: Nitric oxide; Tat: trans-activator of viral replication. Nef: HIV-1 negative factor; 

Gp120: HIV-1 envelope glycoprotein-120. 

 

HIV gp120 is a glycoprotein expressed on the surface of the HI-virus and infected cells.[293–295] Gp120 

plays an important role in the fusion process (via CD4 receptor C-X-C chemokine receptor type-4 (CXCR4) and C-

C chemokine receptor type-5 (CCR5)) between the HI-virus and the host cells.[293–295] Soluble gp120 can also 

circulate freely in blood.[293–295] Gp120 has been implicated in numerous atherosclerotic process such as 

inflammatory cytokine production (IL-6 and IL-8), hepatic CRP synthesis (IL-6 mediated), ROS production, 

endothelium adhesion molecule expression (e-selectin, ICAM-1 and VCAM-1), monocyte/macrophage recruitment 

(IL-6 and IL-8 mediated) and translocation (via adhesion molecules), increased endothelium permeability, 

increased expression of endothelial damaging matrix MMP-2 and MMP-9 and apoptosis.[293–295]  

The cellular signalling pathways involved in gp120-associated endothelial toxicity are not well described, 

but activation of protein kinase C (PKC), mitogen-activated protein (MAP) kinase signalling and upregulation of the 

bcl-2-like protein 4 (Bax) gene have been identified.[293] Gp120 has also been shown to indirectly reduce 

endothelial NO production or through upregulation of endothelin-1 release.[293,315] As a result of the reduction in 

NO bioavailability, proliferation/migration of smooth muscle cells are initiated, vasoconstriction promoted and 

platelet adhesion/aggregation enhanced.[293–295] 

 

Tat protein regulates and promotes HIV viral transcription in monocytes/macrophages and T/B-cells and 

is released via these cells even during ART viral suppression.[293,316] Tat has been implicated as a pro-cytokine 

with endothelial cell modulating properties that include enhanced membrane transduction.[293] Once bound to the 
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endothelial cell receptors, Tat has been shown to activate cytokine, inflammatory mediators and adhesion molecule 

production (e.g. IL-1β, MPC-1, VCAM-1 and e-selectin via NF-κB), increase ROS production (via NADPH oxidase 

activity) and permeability, and upregulate other pathways related to angiogenesis or apoptosis.[293–295] Tat 

appears to be a potent pro-angiogenic and proliferative factor trough fibroblast growth factor-2, reservation against 

cancellation gene 1 (Rac1) activation (via P21 activated kinase-1 and c-Jun N-terminal kinase (JNK)), and NADPH 

oxidase activation pathways.[293–295] Tat may mediate endothelial cell apoptosis (also observed in 

cardiomyocytes) though increasing TNF-α production.[292,293]  

 

Nef protein is an adapter protein with numerous domains utilised during HIV molecule and host cell 

molecule interaction signalling.[293–295] Nef is mostly transferred from circulating monocytes and CD4 cells to 

the endothelial cell and found both intra- and intercellular.[293–295] Nef has been implicated in cellular apoptosis 

(via fas by fas ligand pathways).[293] It has furthermore been demonstrated that Nef can increase endothelial-

derived ICAM-1 expression (via extracellular signal-regulated kinase (ERK) pathway) and Mesenchymal precursor 

cell-1 (MPC-1) production (via NF-κB signalling pathway).[293–295] Nef has also been shown to activate caveolin-

1 in endothelial cells resulting in decreased HDL-mediated cholesterol efflux and increase foam cell production 

through macrophage activation.[292,293] 

 

Indirect HIV-associated cardiovascular consequences including metabolic disorders such as 

dysregulated lipid levels (hypercholesterolemia: elevated very LDL (vLDL) and triglycerides with lower levels of 

protective HDL).[302,306–308] The decrease in HDL cholesterol levels usually appears during the early stages of 

HIV-infection and evidence suggests that it may, at least in part, be a result of thrombotic activity.[314,317] 

Increased levels of triglycerides and vLDL cholesterol often appear during a later stage in disease progression in 

conjunction with signs and symptoms of AIDS and may be the result of increased hepatic lipogenesis and impaired 

clearance of lipids from the blood.[314,317–321] Viral proteins such as Nef may be involved in HIV-dyslipidaemia 

through inhibition of cell surface cholesterol transporters (e.g. adenosine triphosphate (ATP)-binding cassette 

transporter-1 (ABCA1)) that subsequently causes impaired hepatic cholesterol efflux.[322–324] On the other hand, 

the process of HIV-replication also requires cholesterol and may partially contributed to HIV-associated lipid level 

dysregulation.[322,323] 

Other prevalent HIV-associated adverse effects that may contribute to CVD in PLWH include renal and 

haematological dysfunction.[325–327] Direct infection of kidney cells and chronic HIV-associated 

immune/inflammation have been linked to renal impairment in PLWH.[325–327] HIV-associated anaemia is also 

commonly observed and may be the result of the effects the HI-virus has on haematopoiesis (reduction in 

erythropoietin concentration and bone marrow suppression by HIV-associated cytokines and immune 

destruction).[328–330]  
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1.5.7. ART, endothelial dysfunction and CVD. 

 

Although ART alleviates some viral-associated effects on cardiovascular health, major ART drug classes 

such as PIs, NRTI and NNRTIs have been independently associated with increased risk for CVD.[20,321,331] The 

Data Collection on Adverse Events of Anti-HIV Drugs (DAD) is one of the largest studies (multinational involving 

33 000 patients) to examine the relationship between ART and adverse cardiovascular events.[332] One of the 

major initial findings of the DAD Study was showing an association of ART, especially PIs, with a 16% increased 

risk for myocardial infarction for each year of ART treatment.[333] The DAD Study also reported that PIs were 

associated with 1.05, NRTIs with 1.11 and NNRTIs with 1.04  risk ratio for adverse cardiovascular events for each 

year of ART use.[331] The DAD Study also examined the risk for myocardial infarction in terms of individual ART 

drugs.[334] PIs such as indinavir was associated with a risk of 1.12 for myocardial infarction, while no significant 

association was observed with saquinavir and nelfinavir.[334] Recent use (within 6 months) of the NRTIs abacavir 

and didanosine was associated with a risk ratio of 1.68 and 1.41 for myocardial infarction respectively per year of 

use, while tenofovir showed no significant association.[334]  

 

Although the undesired side-effects of ART have been directly implicated in adverse cardiovascular 

health, ART-associated metabolic derangements appear to contribute greatly to CVD in PLWH and that organ 

systems involved in the ART metabolic pathway such as the kidneys and liver are mostly affected (Figure 

1.15.).[334–336] 
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Figure 1.15. Direct cardiovascular effects and cardiometabolic effects of ART. Description: 1. Hepatic effects. 2. 

Pancreatic effects. 3. Kidney effects. 4. Neuronal effects. 5. Vascular effects. 6. Cardiac effects. Figure designed 

by the author of this dissertation based on content from [25,240,300,334–338]. Abbreviations and symbols: ART: 

Antiretroviral therapy; HIV: Human immunodeficiency; CNS: Central nervous system; PI: Protease inhibitor; NRTI: 

Nucleotide reverse transcriptase inhibitor; NNRTI: Non-nucleoside reverse transcriptase inhibitor. ROS: Reactive 

oxygen species; DNA: Deoxyribonucleic acid; mtDNA: Mitochondrial DNA; ↑: Increase; ↓Decrease. 

 

Long-term use of all major ART-classes (PIs, NRTIs and NNRTIs) has been associated with liver 

dysfunction and appear to affect 30-40% of HIV patients.[339–342] ART-associated hepatic morbidities include 

hepatomegaly, liver fibrosis, liver cirrhosis, non-alcoholic fatty liver disease, hepatic steatosis and elevated liver 

enzymes such as γ–Glutamyltransferase (GGT), a non-specific marker for liver disease.[340] Due to its central 

role in lipid metabolism, hepatic dysfunction in PLWH is also often associated with abnormal lipid levels that 

represent a pro-atherosclerotic profile with increased LDL and decreased HDL concentrations.[231,343–345] Also, 

secondary effects related to the liver and kidneys such as dysregulated cholesterol, triglyceride and glucose 

metabolism are often observed in PLWH on ART.[334,346–349] These ART-associated metabolic abnormalities 

are well-known cardiovascular risk factors.[25,222,350,351]  

 

In the vasculature, available evidence suggests that ART-induced endothelial dysfunction appears to be 

related to decreased NO production as a result of reduction in NOS expression and/or increased production of 

ROS such as hydrogen peroxide.[305,352] PIs in particular have been linked to the pathogenesis of endothelial 

dysfunction, whereas NRTIs and NNRTIs seem to be less detrimental to vascular health.[25,308,337,353] PIs have 

also shown to inhibit human aspartyl proteases (homology to the catalytic site of HIV-1 protease to which all PIs 

bind) and LDL receptor-related protein (LRP).[25] On the other hand, NRTIs may contribute to endothelial 
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dysfunction as a result of mitochondrial toxicity and their associated pro-atherogenic lipid profiles and insulin 

resistance (via inhibition of the enzyme glucose transporter type 4 (GLUT4).[226,314,354] 

 

1.6. Emerging cardiovascular risk factor: Air pollution. 

1.6.1. Background. 

 

Air pollution broadly denotes the harmful heterogeneous mixture of solid, liquid and gaseous substances 

in the Earth’s atmosphere.[8,355,356] Air pollution has emerged globally as a major environmental and health 

concern in both developing and developed countries with an estimated (WHO) 80% of people living in cities 

(population more than 100 000) breathing polluted air (levels that exceed recommended standards).[28,357]  

 

Inhalable air pollution can be classified according to particle size as particulate matter (PM) or gaseous 

pollutants.[358,359] The aerodynamic equivalent diameter of coarse PM is between 2.5 and 10 µm (PM10), fine 

PM  ≤2.5 µm (PM2.5) and ultra-fine PM ≤0.1 µm (PM0.1).[358–360] Gaseous pollutants are the smallest pollutants 

with aerodynamic equivalent diameter in the nanometer range.[358,359] The smaller the pollutant molecule the 

more readily it can enter the body and cause adverse effects.[358,359,361] PM10 is thus mostly associated with 

upper respiratory tract effects while small ambient air pollutants can passively enter the blood circulation during 

respiration and disseminate throughout the body, even at the cellular and nuclear level.[26,362–366]  

The WHO has also identified small pollutants such as NO2, BTEX and PM2.5 as air pollutants that are 

most dangerous to public health.[36,367] These pollutants are mostly produced as a result of the incomplete 

combustion of fossil fuels during industrial, vehicle and household activities and are therefore also considered to 

be a good indicator of combustion-related emissions.[34,368] 

 

Air pollution, especially gaseous pollutants, has been associated with various adverse health effects 

including increased mortality.[369–371] Gaseous pollutants such as NO2, and aromatic hydrocarbons (e.g. BTEX) 

appear to be particularly relevant in the development of adverse health outcomes.[36,372] Although these chemical 

components present in ambient air have also been implicated in adverse cardiovascular outcomes such as 

autonomic nervous system toxicity (dysregulation of vascular tone and heart rate), and pro-atherosclerotic 

processes (e.g. oxidative stress, inflammation, and endothelial dysfunction), the specific contributions and 

underlying mechanisms of individual components are not well understood.[26,38,39,373–376] Gaseous pollutants, 

such as benzene, are also strongly associated with cancer and furthermore linked to structural and functional 

genomic alterations such as telomere shortening (marker for pre-mature molecular ageing), mtDNA depletion 

(marker of mitochondrial damage and insufficient cellular energy production) and states of hypo/hyper-methylation 

(marker of alteration in gene function).[36,377–381] These structural and functional DNA alterations may also 

associate with poorer cardiovascular outcomes.[382–384] 
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1.6.2. Epidemiology of air pollution. 

 

In 2016, the WHO estimated that about 7 million global deaths (94% from low- and middle income 

countries; almost 1 million from Africa) were attributable to the combined effects of both ambient indoor and outdoor 

air pollution.[385] Other reports show that 4.2 million deaths and 3.8 million deaths across the world could be 

attributable to indoor and outdoor ambient air pollution respectively.[386] In terms of attributable fraction of total 

mortality, an estimated 17% of acute lower respiratory disease, 43% of chronic obstructive pulmonary disease, 

29% of lung cancer, 25% of ischaemic heart disease and 24% of stroke deaths in the world in 2016 could be 

attributed to air pollution (indoor and outdoor combined).[367,385] These rates were even higher for lower- and 

middle-income countries in Africa (64% acute lower respiratory disease, 55% chronic obstructive pulmonary 

disease, 39% lung cancer, 38% ischaemic heart disease and 36% stroke).[385]  

 

What is more, it has previously also been shown that demographic factors (e.g. women, children and 

elderly are regarded as vulnerable populations), socioeconomic factors (e.g. poverty and low education) and 

lifestyle choices (e.g. smoking, type of employment and housing location and structural features) are also strong 

determinants of exposure to air pollution and its health effects.[387–390] Women in particular appear to be 

vulnerable to the effects of air pollution.[36] Previous studies in women populations have shown associations 

between air pollutants and risk for CVD and death [391], cognitive decline [392], risk for cardiopulmonary mortality 

[393], incidence of hypertension and diabetes mellitus [394] and risk for  lung cancer [395]. Indoor air pollution due 

to the use of biofuels for cooking purposes places women in developing regions in particular, including SA, at an 

increased risk.[44,396,397]  

Also, communities with lower socioeconomic status have been shown to be disproportionately affected 

by air pollution and these communities are also more susceptibility to poor health.[398–400] A global review study 

by Hajat et al. (2015) evaluated air pollution in relation to socioeconomic disparities.[401] In this review most studies 

were from the developed world (North America: n = 22; Europe: n = 10) while only one study from the African 

region (Ghana (2012); first study from Africa to report socioeconomic inequalities in terms of air pollution) was 

included.[401,402] To address air pollution-related socioeconomic disparities, environmental justice research has 

received increasing attention over recent years and is especially advocating policy changes that would create equal 

opportunity for all to reduce/avoid environmental exposure to pollutants.[399,403]  

Lifestyle choices, especially smoking, significantly contribute to air pollution associated health 

effects.[36,404] Monocyclic and polycyclic aromatic hydrocarbon air pollutants are present in cigarette 

smoke.[36,405] Environmental tobacco smoke (including second hand smoke) is a major source of benzene and 

a major health threat for both smokers and non-smokers especially in the indoor setting.[36] Active smoking has 

been estimated to add between 400 to 1800 µg benzene exposure per day.[406] In homes of smokers it has been 

estimated that cigarette smoke may contribute to about 90% of the total indoor PAH levels.[36,407]     
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Reports on the health effects of air pollution from the African region appear to be relatively scarce 

compared to those from the developed world.[42,408] This was highlighted in a recent review by Katoto et al. 

(2019) who only identified 23 air pollution-related studies from SSA in all literature.[42] Fourteen of the studies 

included by Katoto et al. (2019) were from South Africa.[42] The lack of evidence-based research from the African 

continent was also apparent in the WHO’s Review of Evidence on Health Aspects of Air Pollution – REVIHAAP 

Project.[408] A major finding reported by Katoto et al. (2019) was that ambient air pollution levels in the SSA region 

are 10 to 20 fold higher than WHO standards.[42] Health outcomes associated with ambient air pollution reported 

by Katoto et al. (2019) include mostly respiratory effects (wheezing [409–413], cough [412,414,415], phlegm [415], 

breathlessness [414], airway-hyperresponsiveness [409], bronchitis [409,412], asthma [412,413], rhinitis [416], 

emphysema [412] an pneumonia [412]) while two reports reported on cardio-respiratory effects and mortality [417]. 

All studies from the SSA region were furthermore cross-sectional while the longitudinal effects of air pollution on 

health outcomes remain to be explored.[42] 

Air pollution is also an emerging health concern in SA; however, the burden of disease attibutable to air 

pollution remains relatively poorly explored.[44,50,418] Reports that are available indicate that indoor smoke from 

the burning of solid fuels is a major health concern as an estimated one-third of the South African popluation uses 

solid feuls and an additional 20% uses paraffin (kerosene) for heating and cooking.[418] A report by the The South 

African Medical Research Council in 2000 estimated that 20% of households were exposed to indoor smoke from 

solid fuels and accounted for 2489 deaths (0.5% of all deaths) in SA.[418] SA has also been identified as one of 

the world’s most carbon intensive economies with power generation, industrial processes, domestic energy use 

and vehicle exhaust emission the greatest contributors to air pollution in SA.[419–421] Although the South African 

Government is continuously monitoring outdoor ambient air quality levels through a network of central air quality 

monitoring stations located mostly in urban areas, linking these air quality levels to health outcomes remain mostly 

marginalised.[42,50,419] Nonetheless, previous reports from South Africa have also mostly focused on respiratory 

effects of air pollution.[44,409,418,422] Also, most studies reported on by Katoto et al. (2019) were from Gauteng 

and Kwazulu-Natal (12 reports) and only two reports were from the Western Cape Province (Cape Town) of South 

Africa.[42] The reports from the Western Cape Province showed that proximity to a refinery (<4 km; meteorological 

estimated exposure) was associated with wheezing and asthma [410] and ambient air pollution levels recorded 

between 2001 and 2006 were associated with mortality rates [422]. 

 

Air pollution has also been identified as a driving factor of climate change.[423] Climate change has 

received much attention across the globe, including South Africa  over recent years.[423,424] Climate change not 

only has major ecological, economical and health implications, but also threatens the existence of plant and animal 

life, including humans.[423,425,426] Therefore, air quality research and monitoring have become highly relevant 

as the urgency to address this global threat is escalating.[423–425]  Environmental policies and acts have been 

implemented by Governments and recommendations set forth by international organisations over the years to 

address the threat of air pollution.[36,427,428] In South Africa, the new National Environment Management Act: 
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Air Pollution was adopted in 2005 to “provide reasonable measures for the prevention of pollution” and to “provide 

national norms and standards to regulate air quality”.[429] Although ambient air quality standards for ozone (0.12 

parts per million 1-hour average), NOx (0.2 parts per million annual average), sulphur oxide (0.019 parts per million 

annual average), lead (2.5 micrograms per cubic meter monthly average), PM (60 micrograms per cubic meter 

annual average) have been set in the act, standards for various other air pollutants such as polycyclic aromatic 

hydrocarbons are lacking.[429] The South African air pollution standards are currently under review.[430] In the 

Western Cape, the Western Cape Government has put forward an Air Quality Management Plan with a vision to 

ensure “clean and healthy air for all in the Western Cape” through a mission of “ensuring the effective and 

consistent implementations of sustainable air quality management practices by all spheres of government, 

stakeholders and civil society to progressively achieve and efficiently maintain clean and healthy air in the Western 

Cape”.[431]  

 

1.6.3. Gaseous air pollutants. 

1.6.3.1. Nitrogen oxides (NOx). 

 

Although several NOx are present in ambient air, NO and NO2 are considered to be the most 

predominant.[36,432] NO and NO2 are produced during combustion where NO is the main NOx by-product (more 

than 90%; NO2 less than 10%), but due to its highly reactive nature, it is quickly oxidised by O2 and O3 to form the 

primary pollutant NO2 (Figure 1.16.).[36,432]  

 

 

Figure 1.16. Molecular structure of NO2. Figure based on content from [433]. 

 

The most prominent contributors to outdoor NO2 include traffic-related emission by petrol- and diesel-

powered vehicles, while indoor concentrations can be mostly attributed to heating appliances that use wood, 

kerosene and natural gas as energy sources.[36,432]  NO2 levels can vary greatly across locations (e.g. indoor, 

outdoor and within a city’s microenvironments), regions and seasons.[36,434–436] The EU INDEX report indicated 

variations between indoor (13 to 62 μg/m3), outdoor (24 to 61 μg/m3) and personal (25 to 43 μg/m3) 

measurements.[432] The THADE report showed indoor NO2 concentrations of 10 to 15 μg/m3 in Scandinavian 

countries, while concentrations in Asia appear to be relatively high (43 to 81 μg/m3).[437,438] According to the 

WHO, global annual mean NO2 concentrations mostly range between 20 and 90 μg/m3 across the globe.[36]  

 

In SA, previous studies have reported on NO2 concentrations ranging between 10.9 to 17.2 μg/m3 in 

Durban (2013: from central air monitoring station) and ~1 to ~7 μg/m3 at 37 outdoor sites on the South African 
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Highveld (2005 to 2007; two annual cycles at 30-day intervals using passive samplers).[409,439] The 

Johannesburg-Pretoria conurbation was identified as the NO2 “hot-spot” in SA using satellite-based instruments 

(Scanning Imaging Absorption Spectrometer).[440] In the Western Cape area, recently reported annual mean NO2 

levels from air quality monitoring stations in the Goodwood and Plattekloof areas were 21 µg/m³ and 10 µg/m³ 

respectively while a study by Vanker et al. (2015) reported a median indoor NO2 of 7.9 (Interquartile range (IQR): 

3.8 – 13.3) µg/m3 from 500 homes.[441,442] NO2 has also previously been implicated in photochemical (ultra 

violet) smog formation (brown-haze) in the Cape Town region.[8,443]  

NO2 exposure is associated with various adverse effects that are mostly respiratory- (bronchitis, 

respiratory infections, decreased respiratory function) neurological- and cardiovascular-related.[444] NO2 mainly 

enters the body though inhalation where it acts as a free radical (strong oxidant).[35,36,432] Exposure to NO2 can 

increase oxidative stress through depletion of tissue antioxidant defences (ascorbic acid, uric acid, alpha-

tocopherol and protein thiol groups), increase lipid peroxidation, dysregulation of O2
- levels (activation of NADPH 

oxidase) and inhibition of enhanced glutathione peroxidase expression.[445,446]  

NO2 increases inflammation though increasing cell permeability, upregulating mediators of inflammation 

(Nytrotyrosine, IL-8, IL-1β, heme-oxygenase-1 (HO-1), and TNF-α), which ultimately results in cell death.[447–

450] The genotoxic effects of NO2 remain less understood, but chromosomal aberrations, sister chromatid 

exchanges or DNA single strand breaks have previously been reported.[451,452] Current WHO and SA annual 

ambient mean standards are set at 40 μg/m3.[442,453,454] 

 

1.6.3.2. Volatile organic compounds (VOCs). 

 

VOCs refer to organic chemical compounds with a high volatility (evaporate or sublimate easily) in ambient 

air (under normal atmospheric temperature and pressure).[32,455,456] Due to their volatility, numerous VOCs are 

continuously released from organic compound-containing solids (e.g. solid fuels such as wood and coal) and liquids 

(e.g. various household solvents, detergents and paint) into the atmosphere.[32,457,458] The release of VOCs 

into the atmosphere is dramatically increased in the presence of heat or during combustion processes and 

therefore a close relationship exists between temperature/heat and ambient VOC concentrations.[32,459] VOCs 

can be broadly classified as either cyclic (e.g. benzene) or acyclic (open chain: e.g. ethane and acetic acid).[32] 

Aromatic compounds form part of cyclic VOCs and often consist of one benzene-like ring structure (monocyclic 

aromatic hydrocarbons (e.g. BTEX) or multiple cyclic rings (polycyclic aromatic hydrocarbons (PAH): e.g. pyrene, 

naphthalene, fluorene,  and phenanthrene).[32,33] 
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1.6.3.2.1. Monocyclic aromatic hydrocarbons. 

 

MAHs include BTEX and consists of an organic hexagon benzene ring (containing elements carbon and 

hydrogen). [28,34,37,460,461] (Figure 1.17.).[32,33]  

 

Figure 1.17. Molecular structures of BTEX pollutants present in ambient air. Figure based on content from 

[433,462,463].  

 

Hydrocarbons are naturally present or added (to improve the octane rating) in gasoline and numerous 

consumer products (paints, adhesives and cleaning agents) or used in other industrial processes as solvents (e.g. 

during the production of styrene, nylon, plastics and polyurethanes).[464,465] Aromatic hydrocarbons in ambient 

air are mostly produced from vehicle fuel and other fossil fuel combustion and considered a marker of  industrial 

(coal, oil, natural gas, chemical plants and steel related industries), vehicle (Diesel and petrol) and household 

(heating, cooking (kerosene and natural gas stoves) and cigarette smoking) emissions.[33,34,36,37,460,461]  

 

1.6.3.2.2. Metabolic routes, markers of exposure and exposure standards. 

 

MAHs are mostly metabolised by CYP450 enzymes to optically active phenols which in turn are converted 

to dihydro-diols by epoxide hydrolase.[466] Diol-epoxides are especially reactive and particularly dangerous to 

DNA molecules (accounts for their carcinogenic effects).[36,467] CYP450 enzymes can also metabolise aromatic 

hydrocarbons such as benzene to various carcinogenic quinones.[468] Benzene in particular is a lipophilic 

carcinogen (WHO group A) and mostly accumulates in fatty tissue such as bone marrow where it is associated 

with the development of leukaemia.[28,469]  

Although the metabolic routes of air pollutants are complex and often overlap, specific metabolites 

eliminated in urine have been linked to specific exposures and useful in determining exposure concentration.[470–

472] Major urinary metabolites for BTEX include N-acetyl-S-(3-hydroxypropyl)-L-cysteine (HPMA; a marker of 

acrolein exposure[473]), N-acetyl-s-(phenyl)-L-cysteine (PMA; a marker of benzene exposure[468]), N-acetyl-s-

(benzyl)-L-cysteine (BMA; a marker of toluene exposure [474]), trans,trans-muconic acid (MU; a marker of benzene 

exposure[468]), and 3+4-methylhippuric acid (3+4MHA; a marker of o-, m-, and p-xylene exposure[475]) (Figure 

1.18.).[28,457,476,477] 
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Figure 1.18. Simplified metabolic routes of BTEX. Figure designed by the author of this dissertation based on 

content from [478–483]. Abbreviations: GST: Glutathione S-transferase; mEH: Microsomal epoxide hydrolase; 

ROS: Reactive oxygen species; PMA: Phenyl mercapturic acid; BMA: Benzyl mercapturic acid; MU: Muconic acid; 

MHA: Methyl hippuric acid; HA: hippuric acid.  

 

Various organisations and governments have set recommended standards in order to reduce the health, 

environmental and ecological effects of VOCs.[28,465,484] Currently, the WHO and SA annual mean standard for 

benzene is set at 5 μg/m3 although 0 μg/m3 is recommended for all benzyl-like aromatic hydrocarbons due to their 

carcinogenic properties (Risk for leukaemia: Benzene: risk for leukaemia 6x10-6/1 μg/m3 and PAH: 8.7x10-5/1 μg/m3 

Benzo[a]Pyrene (B[a]P; considered the most reliable marker for PAH exposure)).[28,453,485] 

 

1.6.4. Air pollution and cardiovascular disease. 

 

The health effects of air pollution are strongly time-dose dependent and vulnerable populations are usually 

most at risk (e.g. women, children, the elderly and people living with associated pre-existing conditions e.g. heart 

and respiratory diseases).[385,486,487] The adverse cardiovascular effects of exposure to air pollution can be 

traced from initial exposure during inhalation through to effects observed at cellular and nuclear level with the main 

underlying mechanisms related to CNS toxicity, oxidative stress and inflammation (Figure 1.19.).[8,356]  
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Figure 1.19. Adverse health effects of air pollution on various organ and body systems. Description: 1. Toxic 

effects of air pollution on the respiratory system causes pulmonary ROS production and inflammation. 2. Circulating 

reactive pollutants increase systemic oxidative stress and inflammation. 3. Toxic air pollutants have adverse effects 

on various organ systems resulting in increased ROS and inflammation. 4. Air pollutants can lead to CVD though 

various cytotoxic and pro-atherosclerotic mechanisms. Figure designed by the author of this dissertation based on 

content from [8,355,356,360,417,488–493]. Abbreviations: ROS: Reactive oxygen species; oxLDL: Oxidised low-

density lipoprotein cholesterol; DNA: Deoxyribonucleic acid; CNS: Central nervous system; NO: Nitric oxide. 

 

The initial effects of air pollutant exposure can be observed in the respiratory tract where pollutants can 

cause sensory receptor activation and trigger reflex responses (e.g. coughing and airway constriction especially in 

people living with asthma).[417,489,490] Air pollutants may also be partially deposited/retained on the pulmonary 

epithelium for prolonged periods post-exposure and continue to stimulate reflex responses and cause autonomic 

nervous system dysfunction.[356,360] Depending on the intensity and duration, retained pollutants may 

furthermore promote pulmonary epithelial and endothelial dysfunction through activation of pulmonary sensory 

receptors (stimulate the release of neuropeptides e.g. substance P and neurokinin A) and upregulating pulmonary 

oxidative and inflammatory pathways (upregulate adhesion molecule production and increased pulmonary T- and 

B-lymphocytes infiltration via cytokine release).[8,356,376,490] Chronic pulmonary oxidative stress and 

inflammation due to air pollution exposure increase the risk for pulmonary hypertension, respiratory infections, 

chronic obstructive pulmonary disease and lung cancer.[8,494,495] Pulmonary oxidative stress and inflammation 
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may eventually spill over into the circulatory system and increase systemic oxidative stress and 

inflammation.[8,356] 

 

Once air pollutants are in the blood circulation, pro-oxidative pollutants alter the oxidative state of 

circulating blood by forming OH- through reactions with other radicals such as O2
-.[8,491,492] OH- is extremely 

reactive (reaction rate constant more than 108 M−1.s−1) and oxidise circulating lipids and proteins.[491–493] The 

oxidative state of circulating blood is particularly important for vascular health as it is associated with oxidative 

modification of plasma lipoproteins (e.g. HDL) that ultimately promote atherosclerosis.[490] Air pollution has 

furthermore been associated with numerous other circulating markers of cardiovascular risk (increased production 

of TNF-α, IL-6, IL-8, IL1-α, IL1-β, granulocyte-macrophage colony-stimulating factor and macrophage-

inflammatory protein-2).[116,490] IL-6 in particular plays a direct role in regulating the synthesis of hepatic CRP 

and is a marker of systemic inflammation, directly impairs vasoreactivity and promotes monocyte recruitment to 

the vascular wall.[8] Also increased levels of circulating haemodynamic factors (e.g. fibrinogen and platelet 

aggregation and coagulation factors) have been associated with air pollution exposure.[355,496] The genotoxic 

effects of air pollutants on circulating leukocytes appear to be an important link between air pollution and numerous 

health effects and involve structural and functional DNA alterations.[497–499]  

 

Adverse liver and kidney effects are often associated with air pollution exposure due to the major roles 

these organs play in pollutant metabolism and elimination.[500–502] Air pollution associated adverse hepatic 

effects include liver dysfunction related to increased ROS and pro-inflammatory cytokine production, mitochondrial 

damage, impaired lipid metabolism and lipid peroxidation, hepatic megalocytosis, impaired hepatic glycogen 

storage, genotoxicity DNA damage and liver cancer.[365,503] Pancreatic-related effects of air pollution include 

glucose dysregulation, insulin resistance, diabetes and pancreatic cancer.[26,504] In view of their role as the main 

route of elimination, kidney abnormalities are also associated with air pollution, including impaired kidney 

function/filtration, decreased low-molecular weight protein excretion, decreased glomeration filtration rate and 

increased risk for diseases such as nephrocalcinosis.[26,505]  

 

As the interface between circulating blood and underlying tissue, the vascular endothelium is vulnerable 

to the effects of circulating toxins such as gaseous air pollutants.[41,506,507] Air pollution has been shown to 

increase vascular oxidative stress through the upregulation of ROS generation (activation p47phox and Rac1 

subunits of endothelial NADPH oxidase and increased 3-nitrotyrosine residues), decreased antioxidant gene 

expression, increased O2
- production (via eNOS uncoupling) and decreased NO production (activation of JNK, p38 

mitogen activated protein kinase (MAPK) and ERK1/2 pathways).[490] Air pollution has also been implicated in 

vascular inflammation (upregulation of NF-kB  and TNF-α), increased expression of adhesion molecules (e.g. 

VCAM, e-selectin and p-selectin) and increased levels of haemodynamic factors (fibrinogen, blood 

coagulation/viscosity).[8,356,490] 
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Due to the toxic effects of air pollution on the autonomic nervous system, dysregulation of vascular tone 

(vasoconstriction) heart rate (including arrythmias) and blood pressure are often observed.[8,355,488] 

Vasoconstriction and increased blood pressure may ultimately cause cardiac overload, ventricular remodelling (as 

a result of loss of contractile capacity) and heart failure.[355,488] 

 

1.7. Rationale and problem statement. 

 

SA is currently in the midst of an epidemiological transition that is characterised by a multiple burden of 

communicable (accounts for 57% of all deaths) and NCD (accounts for 43% of total deaths).[14,46,508] The burden 

of NCD in SA is already the highest in SSA, comparable to developed countries, and expected to exceed that of 

communicable diseases within the next two decades.[200,509] 

 

HIV/AIDS remains the greatest contributor to the burden of disease in SA (accounts for more than 100 000 

deaths each year – ~24% of total deaths).[510,511] SA also has the largest HIV/AIDS population in the world (7.1 

million - 18% of the total SA population and 17% of the global HIV/AIDS population) with 0.25 million new HIV-

infections each year.[283,510,511] SA has furthermore the largest Government sponsored ART programme in the 

world (about 5 million PLWH on ART).[12,45,229] Since September 2016, ART is available to all PLWH in SA 

regardless of CD4 count or viral loads.[244] Without the dramatic upscale in ART-coverage, more than 500 000 

people in SA (about 1% of the SA’s total population) would have died each year of HIV/AIDS by 2010.[11,512] 

What is more, in excess of 10 million people undergo HIV tests each year to assess their status, but only an 

estimated 85% of PLWH in SA know their status.[510] Taking all in account, it is with relative good certainty that 

one can expect the HIV/AIDS pandemic to continue to evolve in SA over years to come.[11,219,283] 

 

CVD is currently the second largest cause of death in SA (about 75 000 deaths/year - 17% of all deaths 

in SA).[205] Industrialisation with subsequent economic development and rapid urbanisation have been associated 

with the emergence of the more “affluent” causes of CVD in SA.[47,513] Cardiovascular risk factors such as 

overweight/obesity and hypertension are highly prevalent in the SA population.[205,206] As is the case with most 

industrialised countries, the rise in environmental health risk factors such as air pollution is of great 

concern.[50,419]  Furthermore, SA has one of the world’s most carbon intensive economies and contributes to 

about 1.4% of global CO2 emissions.[419,420] The high carbon emission rate in SA is mostly a result of the county’s 

dependence on coal as the most prominent biofuel for power generation while vehicle emissions in the urban 

settings and the household use of biofuels for cooking and heating in the rural indoor setting (due to high electricity 

costs and lower accessibility) have been identified as major health concern.[44,49,419,420]  

 

While “The Heart of Soweto Study” has reported on the alarming prevalence of cardiovascular risk factors 

present in the SA urban population and referred it as “A time bomb in cardiovascular risk factors in SA”,[46] a 
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recent Editorial in Frontiers in Cardiovascular Medicine has pointed out that HIV-related cardiovascular disease in 

SSA is a “misplaced priority in public health and research agendas” that needs to be recognised and addressed.[51] 

In terms of air pollution, a recent (2019) systematic review reported on urban ambient air pollution levels of 10 to 

20 times higher than recommended WHO standards in some areas of SSA; however, the authors only identified 

14 reports from SA and 23 reports in total from the SSA region that described air pollution-associated health 

outcomes.[42] None of the reports assessed the effects of air pollution exposure on endothelial function or other 

quantitative measurements of cardiovascular health.[42] These reports strongly underscore the need for more 

research attention.  

 

1.8. Aims and objectives. 

 

The overarching aim of the study was to investigate whether an association exists between two emerging, 

non-traditional cardiovascular risk factors (namely HIV-infection with or without ART and air pollution) and vascular 

endothelial function in an adult study cohort residing in the Cape Town region. The specific aims of the study were 

as follows: 

 

Aim 1: To determine whether an association exists between HIV-infection, ART and endothelial 

dysfunction. This aim was achieved by the following objectives: 

• To measure endothelial function in HIV-negative and HIV-infected (with and without ART) study 

participants visiting health care clinics in the Cape Town region at two time points (baseline and 18-

month follow-up) by means of flow-mediated dilatation (FMD) and retinal microvascular morphology 

imaging techniques. 

• To analyse data obtained from comprehensive health questionnaires and anthropometric 

measurements in order to evaluate the study participants’ cardiovascular risk profile. 

• To measure and analyse an array of chemical pathology parameters in blood samples of all study 

participants to determine their cardiovascular risk profile.  

• To measure and analyse biomarkers of vascular inflammation and endothelial function. 

• To determine, based on analysis of the above data, whether there is an association between HIV-

infection ART and endothelial function. 

Aim 2: To assess the personal air pollution exposure in a cohort of healthy HIV-negative study participants 

and determine whether an association exists between personal air pollution exposure and endothelial function. 

This will be achieved by the following objectives: 
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• To measure and analyse personal air pollution exposure in participants at two time-points (6-month 

follow-up) using state-of-the-art passive diffusion air pollution samplers and analyse key urinary 

biomarkers of air pollution. 

• To measure endothelial function in the above participants at the same time-points by means of 

both FMD and retinal microvascular morphology imaging techniques. 

• To analyse data obtained from a comprehensive health questionnaires and anthropometric 

measurements in order to evaluate the study participants’ cardiovascular risk. 

• To measure and analyse an array of chemical pathology parameters in blood samples of all study 

participants to determine their cardiovascular risk profile. 

• To measure and analyse biomarkers of vascular inflammation and endothelial function. 

• To determine, based on analysis of the above data, whether an association between exposure to 

air pollution, endothelial function and cardiovascular risk exist.  

The current study contributes to various South African Sustainable Development Goals and the National 

Development Plan:[514]  

• Good health and well-being: Through investigating the health effects of major health concerns in South 

Africa (HIV and air pollution).  

• Reduced inequalities: Through including inequalities such as education level and employment status as 

confounders in the current research. 

• Sustainable cities and communities: Through evaluating health and environmental factors that directly 

impact sustainability. 

• Climate action: Through evaluating current levels of personal air pollutant exposure. 

• Partnership for the goals: Through international collaboration in the current project.  

 

1.9. Conclusion. 

 

HIV/AIDS, ART and air pollution have been identified as cardiovascular risk factors; however, their status 

in this regard remains largely unexplored in SA.[42,418,515–517] These emerging cardiovascular risk factors could 

potentially already contribute substantially to the increase in cardiovascular morbidity and mortality in SA.[518,519] 

What is more, these cardiovascular risk factors not only pose a threat to millions of people living in SA, but also 

threaten the overextension of already strained healthcare resources in SA over the next few years.[42,51,419,518] 

Despite the looming threat, population-based studies assessing the current status of these emerging 

cardiovascular risk factors in the SA context are lacking, but urgently needed in order to take early preventative 

measures that are based on sound scientific knowledge.[42,43,51]  
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2. Chapter 2: Methods and materials. 

2.1. Study background and introduction. 

 

This study was conducted in the context of a joint PhD agreement between Stellenbosch University and 

the University of Hasselt in Belgium. The study was imbedded in a larger parent study known under the acronym 

“EndoAfrica”.[43] The EndoAfrica research consortium consists of Stellenbosch University (Prof Hans Strijdom – 

Principal investigator and international project coordinator), the Medical University of Graz (Austria), Hasselt 

University (Belgium), and the Flemish Institute for Technological Research (VITO, Belgium).  

The PhD study consisted of two sub-studies aligned with the two overarching aims as described in Section 

1.8 of Chapter 1, with Sub-study 1 pertaining to Aim 1 (To determine whether an association exists between HIV-

infection, ART and endothelial dysfunction) and Sub-study 2 pertaining to Aim 2 (To assess the personal air 

pollution exposure in a cohort of healthy study participants and determine whether an association exists between 

personal air pollution exposure and endothelial function.).   

Several aspects of the study design and methods were shared between the two sub-studies. Where 

relevant, methods that were specific to Sub-study 1 or Sub-study 2 will be described separately in the current 

chapter (Figure 2.1.). 

 

Figure 2.1. General outline of methods applied during the study.  
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2.2. Ethics and ethical considerations. 

 

Ethical clearance for the current study was obtained from the Health Research Ethics Committee of 

Stellenbosch University (Ethics reference number: S16/07/114; in accordance with the Helsinki Declaration) and 

was renewed annually (July 2017 and August 2018). Participation in the study was strictly voluntary and 

participants could withdraw from the study at any point if they wished to do so. Informed consent was conducted 

in the participant’s home language or language of choice. No investigations were performed before full informed 

consent was obtained. Methods for the study were non-invasive (except for blood collection) and without any health 

risk to participants. Participants additionally provided consent for the storage of their biological samples for future 

related studies, as well as for transport and analysis of their samples in laboratories elsewhere if necessary. Each 

participant was given an opportunity to ask questions about uncertain aspects of the study. 

Interaction between the research team and participants was managed discretely, and the anonymity of 

participants in both sub-studies was prioritised throughout. All participants were also assigned a unique participant 

identification number and used for all future study purposes. Backpacks for sub-study 2 were generic and 

unmarked and handed out privately to avoid drawing unnecessary attention to the participants. Data obtained from 

each participant was furthermore stored on a secure database with strictly controlled, password-secured access. 

Test results, health questionnaires and any other information on paper were filed and locked away in a secure 

place with strictly controlled access. Participants had access to all their test results upon request. Participants 

whose assessment indicated health concerns were informed and refereed by the research nurses for further 

treatment. Participants with an unknown HIV-status received standard pre- and post-test counselling. 

 

2.3. Study location, study design in inclusion/exclusion criteria.  

 

The PhD study was conducted in the Western Cape Province of SA. Participants for Sub-study 1 (HIV-

free and HIV-infected) were randomly recruited at primary health care clinics in Elsies River, Bishop Lavis, 

Fisantekraal and Ravensmead (Northern suburbs of Cape Town, SA) and Worcester (170 km north of Cape Town). 

For logistical reasons (collection of backpacks containing air pollution samplers), only participants from the Cape 

Town area were recruited for Sub-study 2. All participants in the Cape Town area were from the residential areas 

of Elsies River, Bishop Lavis, Fisantekraal and Ravensmead (Figure 2.2.).  
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Figure 2.2. Map of the Western Cape Province of SA indicating the study locations of Sub-study 1 and Sub-study 

2. Figure designed by the author of this dissertation based on content from [520]. 

 

Both sub-studies followed a prospective longitudinal cohort design (non-interventional). The repeated 

measures for Sub-study 1 were taken at baseline and 18-months follow-up visits and for Sub-study 2 at baseline 

and 6-month follow-up visits (Figure 2.3.).  

 

Figure 2.3. Broad outline of study design with inclusion criteria for Sub-study 1 and Sub-study 2. 

Participants who were younger than 18 years of age, pregnant (confirmed with pregnancy test), less than 

3 months post-partum, of poor health (including current tuberculosis (confirmed from participant clinic file) and/or 

previous history of heart disease) were excluded. Participants who were HIV-infected were excluded from Sub-

study 2. The inclusion/exclusion criteria were applied and checked for each participant before baseline and follow-

up visits for Sub-study 1 and Sub-study 2. To evaluate the frequency of baseline assessment visits for study group, 

please refer to Appendix C, Figure 1 on page 255.  
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2.4. Study groups. 

 

Sub-study 1 consisted of three main groups: 1) HIV-free control participants (HIV-free), 2) HIV-infected 

ART-naïve participants (HIV/noART) and 3) HIV-infected participants on ART (HIV+ART; 90% of participants on 

fixed-dose, first-line, combination ART containing efavirenz / emtricitabine / tenofovir). Data from participants in 

the HIV/noART group at baseline who initiated ART treatment before the 18-month follow-up visit (more than 1 

month) were additionally evaluated and considered as a sub-group to assess pre- and post-ART effects on variable 

outcomes.  

 Participants for Sub-study 2 were assessed at baseline and again after 6-months. The rationale for the 

6-month follow-up was to take seasonal variations in ambient air pollutants into account and to evaluate seasonal 

patterns in ambient NO2 and BTEX exposure (Figure 2.4.). 

 

Figure 2.4. Study groups for Sub-study 1 and Sub-study 2. Abbreviations: Control: HIV-free control group; 

HIV/noART: HIV-infected participants that are not on any ART treatment; HIV+ART: HIV-infected participants that 

are on ART treatment (90% of participants were on first-line combination ART containing efavirenz / emtricitabine 

/ tenofovir).  

 

Sub-study 2 was designed as a smaller sub-study of the larger parent study, EndoAfrica. Due to budget 

constraints and to limit the number of possible confounding factors, PLWH were excluded from Sub-study 2.  

 

2.5. Participant recruitment. 

 

Qualified research nurses recruited, screened, and obtained informed consent from all volunteering 

participants. Participants for Sub-study 2 were recruited from the HIV-free study population of Sub-study 1. After 

obtaining informed consent participants were officially enrolled in the study (assigned a unique participant number). 

The HIV-status of each participant was confirmed with a rapid HIV-test (SD Bioline HIV 1/2 3.0 
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immunochromatographic test kit; Standard Diagnostics, Republic of Korea). All study samples were labelled with 

bar-codes linked to the participant identification number (Figure 2.5.). 

Figure 2.5. Examples of participant identification numbers and sample barcodes used during the study.  

 

Following successful enrolment, appointments were made for a baseline assessment visit with a 6-month 

follow-up visit for Sub-study 2 and an 18-month follow-up visit for Sub-study 1. Participants who were enrolled in 

Sub-study 2 were handed a backpack for the purpose of air quality monitoring and an appointment was made for 

baseline assessment visit 7 days later. The same procedures were followed for the follow-up visits. 

 

2.6. Air quality monitoring (Sub-study 2). 

 

Each Sub-study 2 participant was equipped with a backpack containing two rapid air monitoring (RAM) 

devices (Gradko rapid NO2 passive diffusion sampler (Gradko International Ltd., Winchester, United Kingdom 

(UK), and a RadielloTM BTEX passive diffusion sampler (Sigma-Aldrich Inc., MO, USA)), as well as an ACR 

SmartButton® temperature logger (ACR Systems Inc., Surrey, B.C., Canada). The devices were placed in the 

external mesh pocket of a backpack that allowed unrestricted air flow (Figure 2.6). 

 

Figure 2.6. Procedures followed for personal exposure measurements. Description: 1. Gradko rapid air NO2 

sampler (product: DIFRAM-100; detection limit: <0.2 μg/m3 for 1-week exposure). 2. Activated Gradko rapid air 

NO2 sampler. 3. RadielloTM diffusive cartridge (right) and diffusive body attached to a triangular support plate (left) 

(products: Rad130, RAD120, and RAD121; detection limit for BTEX: 0.05, 0.01, 0.01, and 0.01 μg/m3, respectively; 

calibration: CS2). 4. ACR Systems Inc. temperature logger (product: SmartButton® (01-0187); detection limit: −40 

°C to 85 °C). 5. Air monitoring devices in the mesh pocket of a backpack (product: Barron BB0110 Curve and Arch 

Design backpacks). 6. Backpack worn by participants with samplers located 50 to 60 cm from the face. Photos 

taken and figure designed by the author of this dissertation based on information previously described.[521]   
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The RAM devices are designed for short-term (1 hour to 14 days) air pollution measurement and function 

on the principle of passive molecular diffusion by collecting air samples at a known rate.[522–524] Pollutants that 

diffuse into the RAM collect onto an absorbent disk.[522,523] These devices are portable (3.5 cm high, 4.5 cm 

wide) and are carried on the person.[525] This enabled the investigator to assess both indoor and outdoor personal 

exposure to air pollutants.   

 

Participants carried the backpack at all times (except during periods of sleep and bathroom use when the 

backpack was placed next to their beds) for the 7-day period prior to each clinical visit. Temperature was recorded 

continuously at 30-minute intervals while the NO2 and BTEX samplers allowed for continuous passive diffusion 

and accumulation of NO2 and BTEX. Following continuous 7-day measurements, participants returned for the first 

assessment visit, during which the backpacks were collected, data extracted from the temperature loggers via ACR 

TrendReader® software (ACR Systems Inc., Surrey, B.C., Canada), and the average temperature (°C) for the 7-

day period was recorded. Once collected the NO2 and BTEX samplers were sealed, stored at 4 °C and sent for 

quantification according to the manufacturer’s protocol. 

 

2.6.1. Quantification of NO2 exposure concentrations. 

 

NO2 samplers were analysed according to UKAS method GLM 7 at Gradko International Ltd. Laboratories 

(United Kingdom Accreditation Services (UKAS) accredited)).[521,525,526] A standard nitrate solution calibration 

curve was prepared at known concentrations of 0,15,30,60,90 and 120 µg/ml (1 g/L nitrite ion (NO2
−)). The colour 

reagent was prepared as previously described and added to each sample (sample:sulphanilamidesolution:N-

1(naphthyl-1)ethylene diamine dihydrochloride solution (NEDD) ratio of 1:2:2 (0.003 g NEDD per 1 g 

sulphanilamide).[525,527]  Samples were eluted by a preparation containing 20% triethanolamine (TEA) solution 

/ 80% deionized water and NO2 concentrations determined via chemiluminescence ultraviolet (UV) 

spectrophotometry (UVS04 Camspec M550; Spectronic Camspec Ltd., Leeds, UK).[525,528] Calibration 

standards and linearity checks were used to calibrate the spectrophotometer, and mid-range and zero standards 

were analysed at intervals throughout the sequence for quality assurance.[525] The calibration curve was used to 

calculate the NO2
− concentration for each sample. The ambient NO2 concentration was calculated from NO2

− 

concentrations and expressed in µg/m3.[525] NO2 exposure concentration (µg/m3) represented the mean for the 

7-day measuring period. The same procedure was followed for the 6-month follow-up visits. 

 

2.6.2. Quantification of BTEX exposure concentrations. 

 

BTEX samplers were sent to VITO (Mol, Belgium) for quantification as previously described.[521,529,530] 

BTEX compounds were extracted from samplers by means of elution. Two ml carbon disulphide (CS2; Sigma-
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Aldrich, MO, USA) and 12.5 µL 2-fluorotoluene internal standard (Sigma-Aldrich, MO, USA)) were added into the 

RadielloTM glass tube containing the cartridge and stirred for 30 minutes (rotational shaker). BTEX quantification 

was performed by means of gas chromatography (Thermo Trace) / mass spectrometer (Thermo DSQ II with helium 

as carries gas at constant flow of 1 mL/min)). A cross-bond diphenyl/dimethylpolysiloxane column (RTX 502.2; 

0.25 mm by 30 m) with a 1.4 µm-thick film was used for sample separation (temperature program: 35 ◦C for 5 

minutes, 14 °C/minute increment until 245 °C). Equipment calibration was performed by injecting a standard 

solution containing benzene, ethyl-benzene, toluene, m-xylene, p-xylene, and o-xylene in CS2 (Sigma-Aldrich, MO, 

USA)) at 0.03 to 30 µg/g before analysis. Sample concentrations were calculated from chromatograms using a 

standard curve. The limit of detection (LOD) was calculated as 3.3 (standard deviation (SD) of areas/slope). 

Samples with concentrations less than LOD were not presented in results. Results were expressed as average 

BTEX exposure concentration (µg/m3) for the7-day measuring period. The same procedure was followed for the 

6-month follow-up visits. 

 

2.7. Health Questionnaire. 

 

The comprehensive health questionnaire was completed by all participants at baseline and follow-up 

assessment visits for both sub-studies 1 and 2. Demographic information included age (years), gender (defined as 

male or female) and ethnicity (self-reported and defined as black or mixed-ancestry). Note on ethnicity: it is 

acknowledged that ethnicity (as opposed to “race” as it is still officially defined by the South African Government), 

should be regarded as an overarching proxy of demographic, socio-economic, cultural and home-language factors 

for the purposes of this study. It is further acknowledged that socio-economic circumstances, rather than genetic 

predisposition as a result of ancestry, are more likely to be an important covariate in the context of this study. For 

this reason, several socioeconomic status indicators were also included (see below). Lifestyle information included 

smoking status (defined as current smoker or non-smoker and smoking frequency: more or less than 20 

cigarettes/day), alcohol consumption (defined as alcohol consumption in the last 12 months (yes/no), and if so, 

more or less than 8 days/month), hours or sleep at night (defined as less than 6 hours, 6 to less than 9 hours, and 

more than 9 hours). Socioeconomic status was defined as unemployed, part-time employed or full-time employed). 

Additional living environment information pertaining to Sub-study 2 included main source of household energy 

(defined as electricity or any biofuel), living next to a main road (yes/no; Defined as a road with constant traffic 

during the day.) and the season during which the assessment visit was conducted (defined as warm season: 

September to February and cold season: March to August). 

 

2.8. Anthropometric measurements. 

 

Anthropometric measures for each participant were taken at each clinical visit for both sub-studies.[531] 

Measurements of body composition included height (cm; measured with a stadiometer), weight (kg; measured on 
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an electronic scale), waist and hip circumferences (cm; measured with a measuring tape). BMI (expressed as kg 

body weight/m2 height) and waist-to-hip ratio ratios were calculated. Body composition was furthermore sub-

classified as underweight (BMI less than 18.5 kg/m2), normal weight (BMI between 18.5 to 24.9 kg/m2), overweight 

(BMI 25 to 29.9 kg/m2) and obese (BMI 30 kg/m2 or more) according to WHO guidelines.[532] Elevated waist 

circumference was defined as more than 94 cm men and more than 80 cm for women (increased risk for metabolic 

complications) according to WHO guidelines.[531] Waist-to-hip ratio was considered elevated at more than 0.90 

for men and more than 0.85 for women (substantial increased risk for metabolic complications) according to WHO 

guidelines.[531]  

Blood pressure (SBP, DBP) and heart rates (3 measurements at 5-minute intervals) were all measured 

via an Omron M6 automatic digital blood pressure monitor (Omron Healthcare, Kyoto, Japan) on the left arm and 

expressed in mmHg and beats per minute (bpm) respectively. Hypertension was defined as systolic blood pressure 

140 mmHg and above or diastolic blood pressure 90 mmHg or above according to WHO guidelines.[533] 

 

2.9. Biochemical Analysis. 

 

Participants were asked to fast from 22h00 the night before baseline and follow-up visits. Qualified 

research nurses collected fasting whole blood samples in blood collection tubes (SGVac, The Scientific Group 

(Pty) Ltd.; Milnerton, Western Cape, SA) and mid-stream urine samples (Figure 2.7.).   

 

Figure 2.7. Fasting blood and urine samples collected for the study. Description: 1. Yellow top (1 x 7 ml): Serum 

separator tube (SST) containing acid citrate dextrose solution (clot activator) for total cholesterol, HDL, LDL, 

triglyceride, blood creatinine and GGT analysis. 2. Grey top (1 x 5 ml): Potassium oxalate (anticoagulant) and 

sodium fluoride (preservative) tube for fasting glucose analysis. 3. Purple top (2 x 5 ml): Ethylenediamine tetra-

acetic acid (EDTA; strong anticoagulant) tube for haemoglobin (Hb), haemoglobin A1c (HbA1c), HIV viral load and 

CD4 count determination. 4. The buffy coat was extracted from the EDTA tube for analysis pertaining to Sub-study 

2 (Leukocyte telomere length, mtDNA content and DNA methylation). 5. Red top (1 x 3 ml): Serum blood collection 

tube containing a lithium heparin (clot activator). 6. Serum (250 µl) was allocated into a 1.5 ml microcentrifuge tube 
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and sent to the NHLS for hsCRP quantification. 7. Additional serum (250 µl) was allocated into a 1.5 ml 

microcentrifuge tube and sent to Division of Molecular Biology and Human Genetics, University of Stellenbosch, 

for determination of biomarkers of vascular endothelial dysfunction.8. Mid-stream urine sample (10 ml) was 

collected. Five ml of the urine was sent to the NHLS for determination of creatinine and microalbuminuria levels. 

9. A 5 ml aliquot urine was sent to VITO (Belgium) for quantification of urinary markers/metabolite of air pollution 

exposure (only Sub-study 2).  

 

Fasting blood samples were transported (according to SANS 10231 regulations) to the National Health 

Laboratory Service (NHLS, Tygerberg Hospital: SA National Accreditation System (SANAS) accredited), for 

determination of fasting glucose and glycated haemoglobin (HbA1c), lipogram (total cholesterol, LDL-cholesterol, 

HDL-cholesterol and triglycerides), haemoglobin (Hb), blood creatinine, C-reactive protein and GGT. CD4 count 

and HIV viral load were only determined for HIV-infected participants (Sub-study 1). Urine samples were analysed 

by the NHLS for urine creatinine, urine microalbuminuria and urine albumin-creatinine ratio. 

Fasting serum samples were collected, serum extracted (10 minutes at 2000g or 43 rpm with a DM0412 

clinical centrifuge; DLAD Scientific, Beijing, China), stored at -80 °C and sent to the Division of Molecular Biology 

and Human Genetics, University of Stellenbosch, for determination of markers of vascular endothelial dysfunction 

(TNF-α, adhesion molecules (VCAM-1 and ICAM-1), PAI-1, e-selectin, and p-selectin). Additionally for Sub-study 

2, buffy coat samples (0.5 ml extracted from each participant’s EDTA blood collection tube at 10 minutes, 2000g 

or 43 rpm with a DM0412 clinical centrifuge; DLAD Scientific, Beijing, China) and urine samples (5 ml per 

participant) was stored at -80 °C and sent to VITO and the University of Hasselt (Belgium) where the buffy coat 

samples were analysed for the determination of leukocyte DNA methylation, mtDNA content and telomere length, 

and the urine samples for the quantification of urinary markers/metabolites of air pollution (BTEX) exposure. 

 

2.9.1. High-sensitivity C-Reactive Protein (hsCRP). 

 

High-sensitivity C-reactive protein (hsCRP) was determined at the NHLS by means of an IMMAGE® 

Immunochemistry Systems and Calibrator 5 Plus assay kit (LOD: 0.02 mg/dL; Beckman Coulter, Inc., CA, 

USA).[521] The principle for the specific chemiluminescence analysis was based on the highly sensitive near 

infrared particle immunoassay rate methodology where anti-CRP antibody-coated particles bind to the CRP in the 

serum sample resulting in an insoluble aggregate formation. The hsCRP concentration was determined 

automatically as the rate of aggregate formation (directly proportional).  

 

Circulating hsCRP is a marker of systemic inflammation and a predictor of cardiovascular risk.[131,534] 

Inflammation as indicated by hsCRP has relevance in PLWH and air pollution exposure.[374,535] For the purposes 

of this study, increased hsCRP was defined as hsCRP levels of more than 3 mg/L based on previous reports 

indicating that hsCRP levels above this cut-off value are associated with increased cardiovascular risk.[534] 
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2.9.2. Lipid Profile: Total cholesterol, HDL, LDL and triglycerides. 

 

Total cholesterol (LOD: 0.1 mmol/L), HDL cholesterol (LOD: 0.08 mmol/L), LDL cholesterol, (LOD: 0.08 

mmol/L) and triglyceride levels (LOD: 0.1 mmol/L) were determined by the NHLS via chemiluminescence 

methodology (cobas® 301/501 analyser, Roche/Hitachi cobas® c systems, Basel, Switzerland).[536–539] The 

principle of the enzymatic, colorimetric method for the determination of total cholesterol and triglyceride levels was 

based on the cleavage of these esters by cholesterol esterase to produce free cholesterol and fatty acids.[536] 

Cholesterol oxidase subsequently catalases free cholesterol oxidation to produce chelest-4-en-3-one and 

hydrogen peroxide.[536] The production of quinone-imine dye is mediated by the reaction of hydrogen peroxide 

(oxidative coupling of phenol and 4-aminophenazone).[536] A direct relationship between the dye’s colour intensity 

and cholesterol concentration exist.[536]  

A homogeneous enzymatic colorimetric test principle was used for the determination of HDL and LDL 

levels.[537]  The test principle for LDL determination is based on the formation of water-soluble complexes of LDL 

in the presence of magnesium ions and dextran sulphate.[537]  The test principal for HDL determination is based 

on the formation of polyethylene glycol coupled amino groups by cholesterol esterase and cholesterol oxidase 

reaction. [537] The colour intensities produced during these reactions are determined photometrically and are 

directly proportional to the respective concentrations.[537] 

 

Dyslipidaemia (High total cholesterol, LDL and triglyceride levels and / or low HDL levels) is an established 

cardiovascular risk factor.[540–542] HIV/AIDS, ART treatment and exposure to air pollution have been associated 

with dysregulated lipid levels.[543–545] For the purpose of this study, desirable fasting cholesterol levels were 

defined as less than 5 mmol/L for total cholesterol (male and female), less than 3 mmol/L for LDL cholesterol (male 

and female), more than 1.2 mmol/L for female and 1.0 mmol/L for male HDL cholesterol, and less than 1.7 mmol/L 

for triglyceride levels according to the Heart and Stroke Foundation of SA, NHLS and the US National Institutes of 

Health (NIH) guidelines.[540,546–548] 

 

2.9.3. Glucose metabolism: Fasting glucose levels and HbA1c. 

 

Fasting glucose (LOD: 0.11 mmol/L) and HbA1c (LOD: 0.186 mmol/L or 4.2%) levels were determined 

by the NHLS via chemiluminescence methodology (Hemolysate application on a cobas® 311/501 analyser; 

Roche/Hitachi cobas® c systems, Basel, Switzerland).[549] The UV test principal (enzymatic reference method) is 

based on the formation of glucose-6-phosphate by a hexokinase catalysed phosphorylation reaction of glucose 

and the subsequent oxidation of glucose-6-phosphate by glucose-6-phosphate dehydrogenase to form gluconate-

6-phosphate.[549] The formation of NADPH during this process is directly proportional to the colour intensity 

(determined photochemically) of the dye and glucose concentration.[549]  

Stellenbosch University https://scholar.sun.ac.za



51 | P a g e  

 

The principle of HbA1c determination is based on using haemolysed whole blood (haemolysing reagent: 

tetradecyltrimethylammonium bromide) in a turbidimetric inhibition immunoassay.[550] Glycohemoglobin reacts 

with anti-HbA1c antibody to form soluble antigen-antibody complexes that are quantified turbidimetrically.[550] 

HbA1c is finally expressed as mmol/mol HbA1c or % HbA1c (calculated as a % of HbA1c/Hb ratio).[550]  

 

Fasting glucose is an important marker of cardiometabolic risk and has application in both PLWH and air 

pollution exposure.[350,551,552] For the purposes of this study, desirable fasting glucose levels were defined as 

less than 5.6 mmol/L, and elevated as 5.6 mmol/L or more according to The Heart and Stroke Foundation of South 

Africa.[546] HbA1c levels less than 5.9% were considered normal, elevated when above 5.9% (indication of 

hyperglycaemia during the preceding 2 to 3 months or longer) and 6.5 % HbA1c or above suitable for the diagnosis 

of diabetes mellitus according to The South African Heart and Stroke Foundation, NHLS and the American Diabetic 

Association standards.[546,553–555] 

 

2.9.4. Haemoglobin levels (Hb). 

 

Hb levels (LOD: 2.48 mmol/L (= 4g/dL)) were determined by chemiluminescence methodology (whole 

blood application on a cobas® 311/501 analyser; Roche/Hitachi cobas® c systems, Basel, Switzerland).[549] The 

haemolysed sample has a specific absorbance spectrum and determined bichromatically (during pre-incubation 

phase of HbA1c immunoassay).[550] 

 

Low Hb has been associated with increased cardiovascular risk and has application in HIV/AIDS and air 

pollution exposure.[556–560] For the purpose of this study, desirable Hb levels were defined as more than 12 and 

more than 13 g/dL for women and men respectively according to WHO guidelines.[561] 

 

2.9.5. Liver function: γ-Glutamyl transferase (GGT). 

 

GGT levels (LOD: 3 U/L) were determined by chemiluminescence methodology (Enzymatic colorimetric 

assay [562]) on a cobas® 311/501 analyser (Roche/Hitachi cobas® c systems, Basel, Switzerland).[563] The 

principal of the test analysis is based on an enzymatic colorimetric assay where γ‑glutamyl transferase transfers 

the γ‑glutamyl group of L‑γ‑glutamyl‑3‑carboxy‑4‑nitroanilide to form glycylglycine.[563] The GGT is proportional 

to 5‑amino‑2‑nitrobenzoate produced during the reaction.[563] GGT levels are determined by photometrically 

measuring the increase in absorbance.[563]  

 

Increased GGT levels have been associated with increased cardiometabolic and cardiovascular risk.[564] 

HIV/AIDS, ART treatment and air pollution exposure have been associated with impaired liver function as 

demonstrated by increased GGT levels.[565,566] Elevated GGT levels have also been shown in people with high 
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alcohol consumption.[567] GGT levels less than 60 U/L for men and less than 40 U/L for women were considered 

normal, and elevated when equal to or above these levels according to NHLS standards.[563] 

 

2.9.6. Kidney function: Albuminuria, serum and urine creatinine, urine albumin-to-creatinine ratio and 

eGFR. 

 

Albuminuria was measured by chemiluminescence methodology (Enzymatic method [562]) on a cobas® 

501/502 analyser (Roche/Hitachi cobas® c systems, Basel, Switzerland) (LOD: 3 mg/L (0.05 µmol/L (0.3 

mg/dL)).[568] In the immunoturbidimetric assay, antigen in the sample reacts with anti‑albumin antibodies and 

produces (agglutinates) antigen/antibody complexes and quantified turbidimetrically.[568]  

Serum and urine creatinine levels were determined by chemiluminescence methodology (Enzymatic 

method [562]) on a cobas® 311/501 analyser (Roche/Hitachi cobas® c systems, Basel, Switzerland) (LOD: 5 

µmol/L (1.1 mg/dL)).[569] The enzymatic method for creatinine determination is based on the production of glycine, 

formaldehyde and hydrogen peroxide from creatinine in the presence of creatininase, creatinase, and sarcosine 

oxidase.[569] The colour intensity produced during the formation of quinone imine chromogen (hydrogen peroxide 

reacts with 4‑aminophenazone) is directly proportional to the creatinine concentration in the reaction mixture.[569] 

Urine albumin-to-creatinine ratio has application in air pollution and HIV/AIDS.[570,571] 

Microalbuminuria in particular is associated with cardiovascular risk and considered an independent marker of 

hypertension and cardiovascular risk.[572–575] albumin-to-creatinine ratio was calculated and expressed as 

mg/mmol. An albumin-to-creatinine ratio below 30 mg/g has previously been associated with hypertension and 

increased risk for CVD. A level higher than 3 mg/mmol was considered elevated in for the purpose of the current 

study according to the South African an UK Renal Association.[576] Estimated glomerular filtration rates (eGFR) 

has been associated with CVD and has application in terms of air pollution and HIV/AIDS.[577–580] eGRF was 

calculated according the CKD-EPI formula (mL/minute/1.73 m3) as previously described.[581] eGFR more than 90 

mL/minute/1.73 m3 was considered normal. Decreased (increased risk for diabetes mellitus, hypertension and 

kidney disease) eGFR was defined as 90 mL/minute/1.73 m3 and below.[582,583]  

 

2.9.7. Markers of HIV/AIDS progression: CD4 count and viral load. 

 

Flow cytometry (FC 500 MPL) with MXP software (Backman Coulter, Brae, CA, US) were used for the 

determination of CD4 cell count.[584] The principle of the analysis is based on a cell count after labelling cells with 

a surface marker.[585]  Viral load was determined by a COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 

(LOD:20 cp/ml or 33 IU/ml).[586] The HIV-1 nucleic acid amplification (PCR) test is based on reverse transcription 

of the target RNA to generate complementary DNA (cDNA).[587] Viral cDNA is detection by a cleaved dual-labelled 

oligonucleotide detection probe specific to the target.[587]  
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For the purpose of this study immunological failure was defined as CD4 count 250 cells/mm3 and 

unsuccessful viral suppression at viral load above 1000 copies mRNA/ml according to the WHO 

guidelines.[588,589] 

 

2.9.8. Biomarkers of vascular endothelial function. 

 

Serum was sent to the Division of Molecular Biology and Human Genetics, University of Stellenbosch, for 

determination of biomarkers of vascular endothelial dysfunction. A magnetic Luminex® assay with a Luminex® 

MAGPIX® CCD Imager (xPONENT software; Research & Diagnostics Systems Inc.® a Bio-techne® brand 

(Catalog number LXSAHM); Minneapolis, NE, USA) was used for the determination of TNF-α, VEGF and adhesion 

molecules (VCAM-1 and ICAM-1, PAI-1 and e-selectin, and p-selectin).[590] The principle of the 

chemiluminescence methodology is based on the pre-coating of analyte specific antibodies onto fluorophore 

embedded microparticles at protein-specific ratios.[590] The specific antibodies bind to the proteins of interest.[590] 

Excess (unbound) antibodies were washed off and a protein-specific biotinylate antibody was added that binds to 

the proteins of interest.[590] Excess biotinylate was washed off and streptavidin-phycoerythrin was added. 

Streptavidin-phycoerythrin binds to the biotinylate antibody and excess (unbound) streptavidin-phycoerythrin is 

washed off.[590] The coated proteins of interest were resuspended in a buffer solution.[590] The proteins of interest 

is finally read (CCD camera with differential filters to detect various excitation levels) by the Luminex® MAGPIX® 

Analyser.[590] This is achieved by magnetic capturing of superparamagnetic proteins in a monolayer which is 

illuminated by two light emitting diodes.[590] Luminescence generated is directly proportional to protein content 

and quantified photometrically.[590] Inter-run samples/calibration standards at known concentrations were run 

between study samples for quality control purposes (Coefficients of variance was achieved between inter-run 

samples). 

 

2.9.9. Genetic analysis. 

 

For Sub-study 2, buffy coats were extracted (0.5 ml) from EDTA blood collection tubes stored at -80 °C 

and sent to VITO and the University of Hasselt (Belgium) for analysis (Leukocyte: DNA methylation, mtDNA content 

and telomere length). 

 

2.9.9.1. DNA extraction from buffy coats. 

 

DNA was extracted from buffy coats by means of a QIAamp® DNA Mini Kit (250) (Catalogue number: 

51306; QIAGEN; Hilden, Germany).[591,592] DNA extraction was conducted in the Molecular Epidemiology DNA 

Laboratory, University of Hasselt.  
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Sample preparation: Buffy coats (200 µl), RNase A (4 µl), AL buffer (guanidinium chloride) and 

proteinase K (20 µl) were added to a microcentrifuge tube (1.5 ml) and pulse-vortexed (Avantir ® VWRTM Vortex; 

Radnor, Pennsylvania, USA) for 15 seconds. Samples were then incubated for 1 hour at 56 °C (1.5 ml 

microcentrifuge tube via ThermoMixer®; Hamburg, Germany) and vortexed (30 seconds short-spin at 14 000 rpm).  

DNA purification:  Ethanol (200 µl; 96 to 100 % Ethanol) was added to the sample tubes and mixed (15 

seconds pulse-vortexing). The samples were transferred to QIAamp Mini spin columns and centrifuged for 1 minute 

(14 000 rpm). The columns were removed from the collection tube, placed on a new collection tube and 500 µl 

AW1 buffer added. The samples were centrifuged for 1 minute at 8000 rpm and the flow-through removed. Five-

hundred µl AW2 buffer was added to each sample, centrifuged for 3 minutes (14 000 rpm) and the flow-through 

removed. The column was place in a 1.5 ml microcentrifuge tube, 100 µl AE buffer added, incubated for 1 minute 

(room temperature) and centrifuged for 1 minute at 8000 rpm. Subsequently another 100 µl AE buffer was added, 

incubated for 5 minutes (at room temperature) and centrifuged for 1 minute at 14 000 rpm to elute the full sample. 

The columns were removed, the microcentrifuge tube closed, and placed on ice for DNA concentration 

determination.  

DNA concentration determination: The DNA concentration (ng/ml) in each sample was determined at 

260 nm by a NanoDropTM ND-1000 spectrophotometer (ND-1000, Isogen, Life Science, Belgium). One µl of each 

sample was placed on the NanoDropTM pedestal, the arm closed and the concentration recorded. DNA 

concentration (ng/µl) and purity ratios (A260/280 and A260/230) were determined. Extracted DNA samples were 

stored (–20°C) and used for the determination of leukocyte DNA methylation, mtDNA content and telomere length.  

 

2.9.9.2. Determination of DNA methylation. 

 

DNA methylation analysis was performed at VITO (Belgium) by means of liquid chromatography/mass 

spectrometry (LC/MS) coupled with UV detection. 

 

Standard curve preparation: A standard curve was prepared by adding a stock solution 1 (S1) 

containing internal standards for 2-methylcytosine (2dC: 242 μl at 1002 μg/ml (VITO stock number: MIE-OR-dc-

003)) and deaminated 5-methylcytosine (5mdC: 24.0 μl at 1006 μg/ml (VITO stock number: MIE-OR-5mdc-002)) 

to miliQ (mQ) water (9734 μl). The dilutions for the standard curve was prepared by adding 750 μl mQ water to a 

vial as a blank and adding S1 to a vial numbered S1 (2dC 24248 μg/L and 5mdC 2414 μg/L). Dilution 

concentrations for a linear calibrations curve were prepared by adding 750 μl mQ water to vials numbered S2 to 

S12 and adding 750 μl from S1 to S2 (2dC 12124 μg/L and 5mdC 1207 μg/L), 750 μl S2 to S3 (2dC 6062 μg/L and 

5mdC 604 μg/L), 750 μl S3 to S4 (2dC 3031 μg/L and 5mdC 302 μg/L), etc. 

Quality control samples: Two pooled DNA samples (P1 and P2 at known concentrations of 500 ng/μl) 

were prepared for quality control purposes by adding 19.5 μl mQ water, 2 μl Pool DNA, 2.5 μl 10xDNA degradase 
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reaction buffer (pH 7.5-8) and 1 μl DNA degradase  (5 units/μl) in a 1.5 ml microcentrifuge tube (total volume 25 

μl). 

Sample preparation: The volume of samples needed for 1 μg DNA was calculated by using previously 

NanoDrop-determined concentrations (μg/μl) (DNA extracted concentration / 1000). Each calculated volume was 

added to labelled vials. The volume mQ water need for each sample was calculated (21.5 μl minus the calculated 

amount of sample). If the required parent sample volume exceeded 21.5 μl, no mQ water was added. Samples 

were incubated (2 hours at 37°C (to activate enzymes)) followed by a 30-minute incubation period at 70°C (to stop 

enzyme activity) and transferred to GC/MS vials. 

Sample analysis: Samples were analysed at the VITO laboratories with Acquity Ultra pressure liquid 

chromatography / mass spectrometry (UPLC/MS) coupled with UV detection using the following settings: Injection 

volume 7.5 μl; Injection type PLUNO; Sample temperature: 4°C; Sample loop: 10 μl; Needle loop: 30 μl; Injection 

needle type: Peek needle. The columns used were Nucleosil SA ion exchange silica columns (150x4.6mm-5μm).  

The UPLC system was optimised before and after analysis (column rinsed: 100% acetonitrile (ACN) for 

60 minutes and 50/50% ACN/mobile phase for 15 minutes. Equilibration was achieved at 100% mobile phase until 

no fluctuation of the baseline was observed. Column temperature was set at 30°C. UV detection wavelength for 

dC was set at 272 nm and for mdC at 279 nm. Running fluid consisted of 50 nM NH4Ac in 15% ACN at pH 4.8 

(3854g NH4Ac dissolved in 850ml mQ water + 150ml ACN, pH brought to 4.8 with acetic acid). The washing 

solvent for the strong needle wash (highly concentrated washing solvent to prevent carryover) consisted of 

H2O/IPA/MeOH +0.1% formic acid, for the weak needle wash (to replace the strong wash solvent with a less elutive 

solvent) consisted of H2O/ACN (70/30) and for the seal wash (to further elute the weak needle wash): H2O/ACN 

(90/10). Sample concentrations were determined (directly proportional) by calculating the area under the curve on 

chromatograms and substituting the value into the formula for the linear trend line of the calibration curve. Results 

were expressed as a 5mdC/2dC ratio as previously described.[593] 

 

2.9.9.3. Determination of mtDNA content. 

 

Mitochondrial DNA content was determined on a 7900HT Fast Real-Time PCR System (Applied 

Biosystems, USA) in a 384-well format. Gene ratios of two mitochondrial gene copy numbers were used to 

calculate mtDNA content.[594] These gene ratios included MTF3212/R3319 (mitochondrial forward primer 

sequence from nucleotide 3212 (CACCCAAGAACAGGGTTTGT) and reverse primer sequence from nucleotide 

3319 (TGGCCATGGGTATGTTGTTAA)) and MT-ND1 (mitochondrial encoded NADH dehydrogenase 1; Forward: 

ATGGCCAACCTCCTACTCCT Reverse: CTACAACGTTGGGGCCTTT) to three single-copy nuclear control 

genes (RPLP0 - acidic ribosomal phosphoprotein P0: forward GGAATGTGGGCTTTGTGTTC and reverse 

CCCAATTGTCCCCTTACCTT; ACTB - beta actin: forward ACTCTTCCAGCCTTCCTTCC and reverse 

GGCAGGACTTAGCTTCCACA; and HBB - haemoglobin beta: forward GTGCACCTGACTCCTGAGGAGA and 

reverse: CCTTGATACCAACCTGCCCAG). All primer sequences were diluted to 300 nM in the master mix.[594]  
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Extracted DNA samples were diluted with RNase free water to a uniform 5 ng/μl concentration and 

aliquoted (2.5 μl) into 7.5 μl master mix (Fast SYBR® Green I dye 2× (Applied Biosystems; 5 µL/reaction), 

forward/reverse primer (0.3./0.3 µL/reaction) in RNase free water (1.9 µL/reaction)) into each well (final volume 

10 µL/reaction). For quality control, two control and 6 inter-run calibrators were added to each plate. The thermal 

cycling specification included 20 sec at 95°C (activation of the AmpliTaq Gold® DNA-polymerase), followed by 

denaturation (40 1-second cycles at 95°C) and annealing/extension (20 seconds at 60°C). A melting curve analysis 

(15 seconds at 95°C, 15 seconds at 60°C and 15 sec at 95°C) confirmed amplification specificity and absence of 

primer dimers at the end of each run. Calculations included CT (cycle threshold) and normalization of the two 

mitochondrial genes values relative to the three nuclear reference genes (qBase software (Biogazelle, Zwijnaarde, 

Belgium)). Data was expressed as mtDNA content relative to nuclear DNA copy number (ratio) as previously 

described.[595] Inter-run calibration algorithms corrected for run-to-run differences. The coefficient of variation for 

the mtDNA content in inter-run samples was ~4.0%.[594] 

 

2.9.9.4. Determination of Leukocyte Telomere Length (LTL). 

 

A similar qPCR methodology was applied for LTL determination. Extracted DNA samples were diluted to 

ensure a uniform DNA input (5 ng) for each quantitative real-time polymerase chain reaction (qPCR) and checked 

using a Quant-iT PicoGreen dsDNA Assay Kit (LifeTechnologies, Europe).[592] All LTL measurements were 

performed in triplicate on a 7900HT Fast Real-Time PCR System (Applied Biosystems, USA) in a 384-well format. 

The telomere-specific qPCR reaction mixture contained 1x QuantiTect SYBR Green PCR master mix (Qiagen, 

Inc., Venlo, the Netherlands), 2 mM dithiothreitol (DTT), 300 nM telg primer 

(ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT) and 900 nM telc primer 

(TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA). Cycling conditions used were: 1 cycle at 95°C 

for 10 minutes, followed by 2 cycles at 94°C for 15 seconds and 49°C for 2 minutes and 30 cycles at 94°C for 15 

seconds, 62°C for 20 seconds, and 74°C for 1 minute and 40 seconds. The single-copy gene qPCR mixture 

contained 1x QuantiTect SYBR Green PCR master mix, 300 nM 36B4u primer 

(CAGCAAGTGGGAAGGTGTAATCC) and 500 nM 36B4d primer (CCCATTCTATCATCAACGGGTACAA). After 

each qPCR a melting curve analysis was performed. On each run, a 6-point serial dilution of pooled buffy coat 

DNA was run to assess PCR efficiency as well as three inter-run calibrators to account for inter-run variability. We 

achieved coefficients of variation (CV) within triplicates of the telomere runs, single-copy gene runs, and telomere 

repeated copy number / single gene copy number ratios (T/S ratios as previously described [596]) of 0.71 %, 0.38 

%, and 7.1 %, respectively.[383] 
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2.9.10.  Urinary markers of BTEX exposure. 

 

Mid-stream urine samples were stored at −80◦C and sent to VITO (Mol, Belgium) for level determination 

of the following urinary metabolites: N-acetyl-S-(3-hydroxypropyl)-L-cysteine (HPMA; a marker of acrolein 

exposure [34]), N-acetyl-s-(phenyl)-L-cysteine (PMA; a marker of benzene exposure [35]), N-acetyl-s-(benzyl)-L-

cysteine (BMA; a marker of toluene exposure [36]), trans,trans-muconic acid (MU; a marker of benzene exposure 

[35]), and 3+4-methylhippuric acid (3+4MHA; a marker of o-, m-, and p-xylene exposure [37]).  

 

Calibration curve: A matrix-matched calibration curve was applied for the quantification of HPMA, BMA, 

and PMA to compensate for the matrix effect. To achieve this, spiked urine samples were used containing 10 µL 

urine, 25 µL mixed internal standard (MU-d4 and 2,3 and 4 MHA-d7: 2000 ng/ml, 20 µL low and high spiked 

standards (low spike: HPMA, 37.5 ng/ml; PMA, 0.25 ng/ml; MU 5.0 ng/ml, BMA, 1.25 ng/ml; 3+4MHA, 20.0 ng/ml; 

and high spike: HPMA, 75.0 ng/ml PMA, 0.5ng/ml; MU, 10.0ng/ml; BMA, 2.5ng/ml; 3+4MHA, 40.0 ng/ml (Toronto 

Research chemicals Inc., ON, Canada)) and 445 µl 1 acetic acid ( HAc; Merck, NJ, USA) in ultra-pure water.  

Sample Preparation: Samples were prepared using 10 µL urine, 25 µL mixed internal standard (2000 

ng/ml in methanol:water(1:1, v:v)) MU-d4 and MU-d3 (Santa Cruz Biotechnology, TX, USA), and 4 MHA-d7 

(Toronto research chemicals Inc., ON, Canada) with 465 µL 1% HAc.  

Sample analysis: Twenty microliters of each sample were injected in an ultra-performance liquid 

chromatography (UPLS; Waters I-class Acquity UPLC system, Milford, MA, USA)/mass spectrometry (MS; Waters 

Xevo TQ-S tandem in the negative electrospray ionization mode (ESI−)). An Acquity UPLC® high-strength silica 

T3 column (50 mm×2.1 mm; 1.8 µm; at a constant temperature of 40 °C) with UV detection (Photodiode array 

(PDA) detector set at 259 nm) was used for the simultaneous quantification of the urinary metabolites [38]. 

Retained compounds were eluted with 4 mL HAc solution (10%, v:v). Levels of metabolites were calculated based 

on the corresponding matrix-matched calibration curve.[597,598] 

 

2.10. Flow-mediated dilatation (FMD). 

 

To create optimal/standardised conditions for the FMD procedure, guidelines from the International 

Brachial Artery Reactivity Task Force were followed.[156] According to these guidelines, fasting participants were 

instructed to refrain from smoking, exercise and taking medication the morning (4 to 6 hours) before clinical 

assessment visits.[156] The FMD procedure was also performed in a temperature-controlled room at constant 22 

°C. Time was allowed for participants to feel comfortable and acclimatise before measurements began (more than 

10 minutes).[156] To limit inter-operator variability, the number of researchers involved in measuring the FMD was 

restricted, and each operator was allocated specific tasks in a consistent fashion. All operators were furthermore 

trained and evaluated by experts in the technique. Random FMD procedures were selected and evaluated by 
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blinded experts for quality control purposes. Interobserver variability for the FMD procedure was assessed at the 

end of the study (please refer to Appendix C, Table C2 on page 255). 

 

Fasting participants were positioned comfortably in a supine position with their right arm extended (without 

hyperextension) at an 80° angle from their body. The blood pressure cuff was positioned around the forearm distal 

to the elbow. Sonography gel was added onto the transducer (probe) crystal. The probe was fixed in the probe 

holder and placed in an area 3 to 4 cm proximal to the elbow (cubital fossa) and the brachial artery located by 

adjusting the probe’s angle and position until a clear image was obtained. Correct vessel localisation was verified 

by visualising the real-time image in the colour-flow mode (doppler mode; arteries will appear red and veins blue). 

Once the position for a clear digital image was confirmed, the probe holder’s arm was fixed to keep the probe in 

position (Figure 2.8.).  

 

 

Figure 2.8. Instrumentation and participant position. Description: 1. Esaote MyLabTM Five portable ultrasound. 2. 

Participant in the supine position with arm extended at an 80° angle in relation to the body. 3. Doppler probe placed 

3–4 cm proximal to the elbow. Photos of the procedure were taken by the author of this dissertation after consent 

was obtained by the person posing in the photos and the figure was designed by the author of this dissertation. 

 

FMD was determined with a mobile Esaote MyLabTM Five portable ultrasound device (Genoa, Italy) with 

an Esaote Doppler probe (LA523, 12 MHz) connected to computerized software with edge detection technology 

(Quipu Cardiovascular Suite™; Pisa, Italy) as previously described.[43,157] The ultrasound was set at a frequency 

of 6.6 Hz (according to the depth of the artery) and to a depth of 3 cm. The pulse repetition frequency (PRF: 

determined by the velocity of blood flow rate detected in the blood vessel), also known as scale, was set at 6.7 Hz. 

To optimise the visualisation of the image the steer was angled so that the top and bottom margins of the steer 

box were parallel to the vessel walls and set at a 60° angle. The pulse wave setting was adjusted to match the 

angle of the vessel. Sample volume size was set at 1 (according to vessel size). The basal mode was switched to 

normal mode (for inverse pulse waves the reverse setting was applied). 
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Cardiovascular SuiteTM UE 2.8.1. (build 120) computerised software was used for edge detection and 

calculations. The FMS Studio software (part of Cardiovascular SuiteTM software) setting was selected (for vascular 

measurements). The recording times were set (baseline vessel diameter assessment: 60 seconds; period of 

ischaemia: 300 seconds; period of reactive hyperaemia: 120 seconds). The flow period (seconds) on the Doppler 

flow profile’s x-axis, the flow amount (cm/second) on the y-axis and the doppler flow region was manually selected. 

The region of interest on the vessel image was selected. Once the edges of the vessel were properly detected the 

baseline measurements commenced.  

 

The computerized software determined the mean baseline brachial artery lumen diameter (mm) over a 

60-second period. Following the baseline measurements, the blood pressure cuff around the forearm was inflated 

to more than 50 mmHg supra-systolic blood pressure. The ischaemic occlusion was maintained for a 5-minute 

period according to previously described recommendations. [599,600] Following the 5-minute ischaemic occlusion, 

deflating the blood pressure cuff triggered reactive hyperaemia and the maximum brachial artery lumen diameter 

(µm) was recorded during this period. The maximum lumen diameter displacement during reactive hyperaemia 

from the mean baseline measurements was expressed as the percentage of the mean baseline brachial lumen 

diameter (% FMD) (Figure 2.9.). 

 

 

Figure 2.9. Measurement of flow-mediated dilatation with edge detection technology. Description: 1. Baseline 

diameter measurement of the brachial artery. 2. Period of occlusion/ischaemia. 3. Brachial artery diameter 

measurement during reactive hyperaemia. Images were captured and the figure designed by the author of this 

dissertation. 
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2.11. Retinal Imaging. 

2.11.1. Retinal image capturing. 

 

Retinal images were captured with a Canon CR2 digital camera (Canon Europa NV, The Netherlands) 

and analysed with semi-automated software (MONA REVA 2.1.1 developed at VITO; https://mona.health) against 

standardised protocol as previously described (Figure 2.10.).[521,601] 

 

 

Figure 2.10. Procedure for ocular fundus retinal imaging. Description: 1. Participant seated in front of the camera 

in darkened room. 2. The participant places his/her chin and forehead in the correct position. 3. The camera is 

positioned in line with the eye. 4. An image of the eye is visualised on the digital screen of the camera. 5. The 

alignment and focus of the image are adjusted. 6. The camera’s zoom is set on the retina and the focus and 

alignment adjusted so that the optic disc appears in the centre of image. 7. The image is captured and appears on 

the monitor to assess quality. Photos of the procedure were taken after consent was obtained by the person posing 

in the photos. The figure was designed by the author of this dissertation. 

 

 The flash light during image capturing is not harmful to the eye. After fundus images (~15 megapixels) 

of both eyes were obtained, the best quality image (based on clarity and centrality) was selected for analyses. No 

significant difference in left and right images were observed (CRAE left vs. right eye images (mean ± SD): 157.2 

vs. 157.7 µm; p = 0.865).[163] Image analysis was performed blinded/masked to avoid bias. 

 

2.11.2.  Image analysis. 

 

The semi-automated image analysis software is able to determine retinal vessel calibre.[601] The 

measurements for retinal calibre are standardised (the distance between centre of the optic disc and the fovea and 

performed in a designated zone against standardised protocol (Figure 2.11.).[163] 
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Figure 2.11. Vessel calibre determination.[163,602,603] Description: 1. Determination of vessel calibres were 

performed in the zone 0.5- and 1-disc diameter from the optic disc margin. 2. Arterioles were presented in red. 3. 

Venules were presented in blue. 4. The vessel diameter was calculated as the mean of multiple cross-sectional 

measurements (n = >30). 5. Measurements were performed from the inner border of analysis zone. 6. 

Measurements for a vessel were only determined before branches and 6. the daughter vessels were excluded 

from further measurements. 7. When vessel branching was too close to the inner border to allow 30 diameter 

measurements, 8. the daughter vessels were used for measurements. 9. Vessel segments beyond arteriole-venule 

crossings within the zone for analysis were not included in the measurements.  

 

The semi-automated software detected vessels in the zone 0.5- and 1-disc diameter from the optic disc 

margin and classified them according to colour (Red: arterioles and blue venules.). The software furthermore 

automatically measures the diameter of the vessel within the area for analysis and calculated the mean diameter 

for each vessel (more than 30 individual diameter measurements need to be taken for each vessel). Vessels that 

were misclassified were corrected and edges that were incorrectly detected were manually adjusted by the grader. 

Differences in features between arterioles and venules that helped the grader to distinguish vessel from each other 

included: 

• Arterioles appear lighter in colour than venules. 

• Arterioles will never cross arterioles and venules will never cross venules in the analysis zone.  

• Venules generally appear straighter than arterioles.  
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• The mean diameters for arterioles are generally smaller than that of venules.  

The mean vessel diameter of the six largest arterioles and venules were determined by computerised 

software according to the revised Knudtson-Pass-Hubbard formula and summarised as central retinal arteriolar 

equivalent (CRAE) and central retinal venular equivalent (CRVE) values respectively. Finally, an arteriole/venule-

ratio was also calculated by the software (Table 2.1.). [602]  

 

Table 2.1. Vessel calibre endpoints.[163,602,603] 

 Parameter/Feature Definition 

1 Central arteriolar equivalent (CRAE) (µm) The mean diameter of the 6 largest arterioles 0.5- 

and 1-disc diameter from the optic disc margin.  

2 Central retinal venular equivalent (CRVE) (µm) The mean diameter of the 6 largest venules 0.5- and 

1-disc diameter from the optic disc margin.  

3 CRAE/CRVE ratio (AVR) The ratio of CRAE and CRVE. 

 

CRAE and CRVE measurements are mostly associated with systemic diseases.[160] Venules, for example, may 

be dilated in response to an inflammatory condition, while the arteriole diameter increases due to underlying 

hypertension.[160] 

 

2.12. Data capturing. 

 

All participant data obtained for the purpose of this study were captured on Research Electronic Data 

Capture application (REDCapTM). Access to the data was restricted and password-protected, and data were 

verified only by researchers who had been granted access to the REDCap database management platform. All 

hard copy documentation such as informed consent documents was filed and stored away in an access-controlled 

area in the Division of Medical Physiology, Stellenbosch University. Data (no personal information) was extracted 

from REDCap in the form of excel files for statistical analysis. 

 

2.13.  Statistical analysis. 

 

All statistical analyses were performed with IBM® SPSS® software (version 25; New York, NY, USA).  

Extensive statistical power analyses have been conducted to justify the proposed sample sizes for this 

study. A thorough literature search was undertaken with the assistance of the Biostatistics Unit (Faculty of Medicine 

and Health Sciences, Stellenbosch University), and according to Donald et al. (2008),[158] a case sample size of 

between n=100 - 400 over a 3 month follow-up period is sufficiently powerful to secure endothelial function 

measurement reproducibility and statistical significance (1-2% effect size; 80% statistical power and 5% 
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significance). In the EndoAfrica pilot studies performed in 2015, significant correlations (adjusted for age, gender, 

medication and smoking status) were observed between risk factors such as HbA1C and LDL-cholesterol, and 

FMD and retinal microvascular diameters in a sample size of n = 65. 

A table depicting the distribution of baseline assessment visits for each study group is available in 

Appendix C (Figure C1, page 255). The number of participants lost at follow-up visits and the reasons why were 

reported in Table C1, page 255.). Interobserver variability for the FMD procedure was evaluated and results were 

reported in Appendix C (Table C2, page 255). 

The data distribution (parametric or non-parametric) for each variable was determined by a Shapiro-Wilk 

test and evaluating data histograms and Q-Q-plots. Baseline population characteristics were presented as the 

mean ± standard deviation (SD) for continuous parametric data and median (range: minimum to maximum) for 

non-parametric continuous variables. Categorical variable outcomes were presented as the sample size (n, %).  

To compare differences between two groups, a paired Student’s t-test (parametric data) or a Wilcoxon 

test (non-parametric data) were used. An independent samples t-test (parametric data) or a Mann-Whitney U test 

(non-parametric) was used to compare unpaired data between two groups. For comparing 3 groups (Sub-Study 1) 

a Kruskal Wallis test was used. A Spearman correlation was used in Sub-study 2 to evaluate the relationship 

between variables.  

Linear mixed model regression analysis was applied to determine effects of exposure (Sub-study 1: 

HIV/AIDS and ART; Sub-study 2: NO2, BTEX and urinary metabolites of exposure) on variable outcomes. A within 

group analysis was performed for Sub-study 1 and Sub-Study 2. A between group analysis was not performed in 

Sub-study 1 due to large differences in groups sizes and large difference in population characteristics. Variables 

with skewed data distribution (nonparametric) were log10-transformed. For each analysis, participants were nested 

in each visit and participants at each time point were included as random effects factor variables with random 

intercept to account for possible inter-individual variation while adjusting for selected covariates. To evaluate 

effects of exposure on variable outcomes independent of potential confounding effects, a priori covariates with a 

potential link between exposure and dependent variable outcomes were selected. For small groups (e.g. in HIV/no 

ART) or variables with limited data (biomarkers analysis) models were minimally adjusted. Exposure to other 

possible residual confounding pollutants were not considered or adjusted for (e.g. through diet and other pollutants 

beyond the scope of this study). Q-Q plots of the residuals were used to test the assumptions of linearity. Specific 

linear mixed model adjustments are indicated in the results chapters under each results table. Estimated effects 

are expressed as a change (parametric data) or a % difference (non-parametric data). The significance threshold 

for all statistical analysis was set at p < 0.05. All statistical analyses were performed by the PhD candidate, and 

verified by a professional biostatistician. 
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3. Chapter 3 – Results and discussion: HIV and ART (Sub-study 1). 

3.1. Baseline population characteristics. 

3.1.1. Baseline demographic, lifestyle, medical history and socioeconomic characteristics. 

 

A total number of 295 volunteering participants completed baseline and follow-up visits. Participants who 

did not consent to take part in the follow-up visit or whose follow-up data were not available were excluded from 

the study. The HIV-free group consisted of n = 107 participants with a mean age of 42.3 years. The HIV-free group 

was furthermore mostly represented by females (n = 90, 94%), people of mixed ancestry (n = 103, 96%) and 

participants from the Cape Town area (n = 81, 76%). The HIV+ART group consisted of n = 151 participants with a 

mean age of 40.4 years. The HIV+ART group was predominantly female (n = 99, 66%), of mixed ancestry (n = 

108, 72%) with a more even distribution across recruitment areas (Cape Town area: n = 70, 47%; Worcester: n = 

80, 53%) compared to other groups. The HIV/noART group (n =37) represented participants that were not on ART 

at baseline, but initiated ART before the 18-month follow-up visit. This group consisted mostly of female participants 

(n = 24, 65%) with a mean age of 35.7 years. Participants in the HIV/noART group were also mostly of mixed 

ancestry (n = 33, 89%) and from the Worcester recruitment area (n = 23, 62%). 

 

HIV-free represented 36%, HIV+ART 51% and HIV/noART 13% of the total study population. HIV/noART 

participants were significantly younger than HIV-free (p = 0.005) and HIV+ART (p = 0.012). Group composition in 

terms of gender significantly differed between HIV-free and HIV+ART (p = 0.001), and HIV-free and HIV/noART (p 

= 0.013), and in terms of ethnicity between HIV-free and HIV+ART (p < 0.001). Group proportions in terms of 

recruitment locations also significantly differed between HIV-free and HIV+ART (p < 0.001) and HIV-free and 

HIV/noART (p < 0.001). No other significant differences were observed (Table 3.1.). 
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Table 3.1. Baseline demographic characteristics. 

Variable a HIV-free  HIV+ART  HIV/noART 

Age (years) 42.3 ± 11.4 40.4 ± 8.9 35.7 ± 10.1 b 

Gender, n (%)    

    Male, n (%) 17 (16%) 51 (34%)  13 (35%) 

    Female, n (%) 90 (84%) 99 (66%) 24 (65%) 

Ethnicity    

    Black, n (%) 4 (4%) 42 (28%) 4 (11%) 

    Mixed, n (%) 103 (96%) 108 (72%) 33 (89%) 

Location    

    Cape Town, n (%) 81 (76%) 70 (47%) 14 (39%) 

    Worcester, n (%) 26 (24%) 80 (53%) 23 (62%) 

a Data presented as mean ± SD or n (% of group; HIV-free: n = 107; HIV+ART: n = 151; HIV/noART: n = 37). b vs. 

HIV-free, p = 0.005 and vs. HIV+ART, p = 0.012. 

 
The HIV-free group had the highest percentage of smokers (n = 69, 65%) while about half of the HIV-free 

population consumed alcohol in the last 12 months (n = 54, 51%) at a frequency of less than 8 days a month (n = 

48, 89%). About one-third of HIV-free participants were using any other medication other than ART at the baseline 

visit (n = 38, 36%).  

About half of HIV+ART participants were current smokers (n = 80, 53%) and consumed alcohol within the 

last 12 months pre-baseline visit (n = 78, 52%) at a frequency less than 8 days per month (n = 61, 78%). HIV+ART 

participants mostly reported sleeping between 6 and 9 hours at night (n = 70, 47%). Almost three-quarters of 

HIV+ART participants reported being on some medication aside from ART (n = 107, 72%).  

The HIV/noART group also consisted mostly of smokers (n = 26, 70%). More than half of HIV/noART 

participants consumed alcohol in the last 12 months pre-baseline visit (n = 22, 59%) at frequency less than 8 days 

per month (n = 18, 82%). Participants in the HIV/noART group also mostly reported using some form of medication 

at the baseline visit (n = 26, 70%) (Table 3.2.). 
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Table 3.2. Baseline lifestyle and health characteristics. 

Variable a HIV-free  HIV+ART HIV/noART 

Smoking status     

    Current smoker, n (%) 69 (65%) 80 (53%) 26 (70%) 

Alcohol consumption (Yes), n (%) b 54 (51%) 78 (52%) 22 (59%) 

   < 8 days/month, n (%) c 48 (89%) 61 (78%) 18 (82%) 

Medication other than ART (Yes), n = (%) 

d 
38 (36%) 107 (72%) 26 (70%) 

a Data presented as n (% of group; HIV-free: n = 107; HIV+ART: n = 151; HIV/noART: n = 37). b Within the last 12 

months. c Data presented as n = (% of population that consumed alcohol in last 12 months within each group). d 

Whether the participant reported currently using any other medication than other ART. 

 

About half of participants in the HIV-free group were unemployed (n = 57, 53%) with education that did 

not extend beyond primary school level (n = 68, 64%). Similarly, about half of participants in the HIV+ART and 

HIV/noART groups were unemployed (n = 79, 53% and n = 18, 49%, respectively) with mostly primary school 

education (n = 90, 60% and n = 22, 60%, respectively) (Table 3.4.). 

 

Table 3.4. Socioeconomic characteristics for baseline and follow-up. 

Variable a HIV-free 
 

HIV+ART HIV/noART 

Employment     

    Unemployed, n (%) 57 (53%) 79 (53%) 18 (49%) 

    Part-time, n (%) 26 (24%) 26 (17%) 6 (16%) 

    Full-time, n (%) 24 (22%) 45 (30%) 13 (35%) 

Level of education    

    None 0 (0%) 16 (11%) 4 (11%) 

    Primary school 68 (64%) 90 (60%) 22 (60%) 

    Secondary school 16 (15%) 32 (21%) 9 (24%) 

    University/collage and/or ABET b 23 (21%) 12 (8%) 2 (5%) 

a Data presented as n (% of group; HIV-free: n = 107; HIV+ART: n = 151; HIV/noART: n = 37). b Adult basic 

education training. 
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3.1.2. Baseline HIV-related and ART characteristics. 

 

The median viral load in the HIV+ART group (20 copies mRNA/ml) fell within the WHO recommended 

range (<1000 copies mRNA/ml) for successful viral suppression with only n = 26 (13%) participants exceeding the 

WHO standard.[588]  The median CD4 cell count in the HIV+ART group (503 cells/mm3) was above the WHO 

recommended cut-off level of 250 cells/mm3.[588] Most participants in the HIV+ART group were on first-line ART 

(n = 135, 90%) with the median ART treatment duration 124 weeks (range: 8 to 780 weeks). 

The median viral load for HIV/noART (13123 copies mRNA/ml) was more than 10-fold higher than the 

maximum WHO recommended level,[588] and most participants presented at their baseline visit with a viral load 

that exceeded this cut-off level (n = 28, 78%). Despite a relatively high median viral load in the HIV/noART group, 

the median CD4 cell count (469 cells/mm3) was within the WHO recommended range with only n = 7 (19%) 

participants presenting with CD4 cell counts below the WHO recommended cut-off level at the baseline visit. 

The median viral load in the HIV/noART group was significantly higher compared to HIV+ART (p < 0.001), 

but no significant differences were observed in the median CD4 cell count between HIV+ART and HIV/noART 

(Table 3.5.). 

 

Table 3.5. Baseline HIV and ART characteristics. 

Variable a HIV+ART HIV/noART 

HIV   

Viral Load (copies mRNA/ml) 20 (10 to 187073) 13123 (10 to 662545) c 

    High, n (%) b 20 (13%) 28 (78%)  

CD4 count (cells/mm3) 503 (49 to 1434) 469 (91 to 1236) 

    Low, n (%) b 21 (14%) 7 (19%) 

Antiretroviral Therapy   

Duration (Weeks) 124 (8 to 780) - 

First/Second-line ART   

    First-line (Yes), n (%) d 135 (90%) - 

a Data presented as median (range) or n (% of group; HIV+ART: n = 147 to 151; HIV/noART: n = 34 to 37). b 

According to the WHO guidelines.[588] c vs. HIV+ART, p < 0.001. d Fixed-dose, combination ART containing 

emtricitabine / tenofovir / efavirenz.   

 

3.1.3. Baseline body composition characteristics. 

 

The mean BMI of the HIV-free group (27.8 kg/m2) was in the overweight range (BMI 25 – 29.9 kg/m2)  

although the largest percentage of participants (n = 42, 39%) was defined obese (BMI > 30 kg/m2) according to 
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WHO criteria.[531,532] Also, more than half of participants in the HIV-free group presented with an elevated waist-

to-hip ratio according to WHO criteria.[531,532] The mean BMI of the HIV+ART was in the normal range (23.7 

kg/m³) with almost half of the participants in the HIV+ART group (n = 74, 49%) presenting with a normal BMI at 

baseline according to WHO standards.[531,532] Also, more than two-thirds of participants in the HIV+ART had 

elevated waist-to-hip ratios (n = 98, 65%) according to WHO standards.[531,532] The mean BMI in the HIV/noART 

group was in the underweight range (22.6 kg/m2) according to WHO standards.[531,532] About one-third of 

participants in the HIV/noART was clinically defined as underweight (n = 12, 32%). Despite the high frequency of 

underweight individuals in the HIV/noART group, most participants presented with an elevated waist-to-hip ratio at 

baseline visit (n = 23, 62%) according to WHO standards.[531,532] 

 

Participants in the HIV+ART and HIV/noART groups showed significantly lower mean BMI and body 

weight values compared to the mean BMI and body weight of the HIV-free group (p < 0.001, respectively). Although 

the waist-to-hip ratio did not significantly differ between groups, the mean waist circumference was significantly 

lower in HIV/noART compared to HIV-free (p = 0.07) while the hip circumferences in HIV+ART and HIV/noART 

were significantly lower than HIV-free (p = 0.001, respectively) (Table 3.6.). 

 

Table 3.6. Baseline body composition characteristics. 

Variable a HIV-free HIV+ART HIV/noART 

Body Mass Index (BMI), kg/m2 27.8 ± 8.3 c 23.7 ± 6.0  22.6 ± 7.5 

    Weight (kg) 70.7 ± 21.4 d 62.6 ± 15.8 60.2 ± 17.0 

Body composition classification according to BMIb   

    Underweight (BMI < 18.5 kg/m2), n (%) 12 (11%)  21 (14%) 12 (32%) 

    Normal weight (BMI 18.5 to < 25 kg/m2), n (%) 34 (32%) 74 (49%) 15 (41%) 

    Overweight (BMI 25 to < 30 kg/m2), n (%) 19 (18%) 31 (21%) 6 (16%) 

    Obese (BMI > 30 kg/m2), n (%) 42 (39%) 24 (16%) 4 (11%) 

Waist-to-hip ratio  0.89 ± 0.08 0.89 ± 0.07 0.89 ± 0.07 

    Elevated (>0.95/>0.90 women/men) b 60 (56%) 98 (65%) 23 (62%) 

    Waist circumference (cm) 92.3 ± 17.8 e 87.4 ± 12.8 83.9 ± 14.5 

    Hip circumference (cm) 104 ± 15.7 f 97.7 ± 13.1 94.6 ± 14.5 

a Data presented as mean ± SD or n (% of group; HIV-free: n = 107; HIV+ART: n = 151; HIV/noART: n = 37). b 

According to WHO guidelines.[531,532] c vs. HIV+ART and HIV/noART, p < 0.001, respectively. d vs. HIV+ART, p 

= 0.004 and HIV/noART, p = 0.007. e vs. HIV/noART; p = 0.07. f vs. HIV/+ART and HIV/noART; p = 0.001, 

respectively. 
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3.1.4. Baseline fasting lipid, glucose and HbA1c measurements. 

 

The mean total cholesterol levels in HIV-free (4.57 mmol/L), HIV+ART (4.61 mmol/L) and HIV/noART 

(4.05 mmol/L) were in the normal range (≥5 mmol/L) according to the Heart and Stroke Foundation of South Africa 

criteria.[546]  The mean total cholesterol levels of HIV/noART were significantly lower than HIV-free (p = 0.003) 

and HIV+ART (p < 0.001).  About one-third of participants in the HIV-free (n = 31, 29%) and HIV+ART (n = 47, 

31%) groups presented with elevated total cholesterol levels compared to the HIV/noART group (n = 4, 11%).  

 

The mean HDL cholesterol levels in HIV-free (1.42 mmol/L) and HIV+ART (1.51 mmol/L) were above 

recommended Heart and Stroke Foundation of South Africa cut-off levels  (1.2 mmol/L for female and 1.0 mmol/L 

for male).[546] The mean HDL cholesterol level in HIV/noART (1.12 mmol/L) were between the Heart and Stroke 

Foundation of South Africa cut-off points for decreased HDL cholesterol levels for men (≤1.0 mmol/L) and women 

(≤1.2 mmol/L).[546]  The mean HDL cholesterol levels in HIV/noART were significantly lower compared to HIV-

free and HIV+ART (p < 0.001, respectively). Also, significantly (p < 0.001, respectively) more participants in the 

HIV/noART group (n = 25, 68%) presented with decreased HDL cholesterol levels compared to HIV-free (n = 36, 

34%) and HIV+ART (n = 36, 24%).  

 

 The mean LDL cholesterol levels in HIV-free (2.62 mmol/L), HIV+ART (2.55 mmol/L) and HIV/noART 

(2.41 mmol/L) were below Heart and Stroke Foundation of South Africa standards (≥3 mmol/L).[546] More than 

one-quarter of participants in HIV-free (n = 38, 36%) and HIV+ART (n = 41, 28%) presented with elevated LDL 

cholesterol levels. In HIV/noART n = 6 (16%) presented with elevated LDL cholesterol levels.  

 

The mean triglyceride levels in HIV-free (1.15 mmol/L), HIV+ART (1.27 mmol/L) and HIV/noART (1.14 

mmol/L) were below Heart and Stroke Foundation of South Africa standards for elevated triglyceride levels (≥1.7 

mmol/L).[546] The frequency of participants in HIV-free (n = 10, 9%) and HIV+ART (n = 26, 17%) and HIV/noART 

(n = 4, 11%) who presented with elevated triglyceride levels was relatively low. No significant differences in terms 

of triglyceride measurements were observed between groups. 

 

The mean fasting glucose levels in HIV-free (4.95 mmol/L), HIV+ART (4.87 mmol/L) and HIV/noART (4.98 

mmol/L) were below Heart and Stroke Foundation of South Africa standards for elevated fasting glucose levels 

(≥5.6 mmol/L).[546] Also, the frequency of participants in HIV-free (n = 15, 14%) and HIV+ART (n = 19, 13%) and 

HIV/noART (n = 3, 8%) who presented with elevated fasting glucose levels was relatively low. No significant 

differences in terms of fasting glucose levels were observed between groups. 

The mean fasting HbA1c levels in HIV-free (5.42%), HIV+ART (5.29%) and HIV/noART (5.46%) were 

below Heart and Stroke Foundation of South Africa standards for elevated HbA1c levels (≥5.9%).[546] The 

frequency of participants in HIV-free (n = 11, 10%) and HIV+ART (n = 11, 7%) and HIV/noART (n = 3, 8%) who 
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presented with elevated HbA1C levels was also relatively low. No significant differences in terms of HbA1c 

measurements were observed between groups (Table 3.7.).  

 

Table 3.7. Baseline fasting lipid, glucose and HbA1c measurements. 

Variable a HIV-free HIV+ART HIV/noART  

Lipid Profile    

Total Cholesterol (mmol/L) 4.57 ± 0.91 4.61 ± 1.02 4.05 ± 0.84 d 

    Elevated (≥5 mmol/L), n (%) b 31 (29%) 47 (31%) 4 (11%) 

High-Density Lipoprotein Cholesterol (HDL) (mmol/L) 1.42 ± 0.47 1.51 ± 0.74 1.12 ± 0.43 e 

    Decreased (≤1.2/1.0 mmol/L women/men), n (%) b 36 (34%) 36 (24%) 25 (68%) 

Low-Density Lipoprotein Cholesterol (LDL) (mmol/L) 2.62 ± 0.84 2.55 ± 0.81 2.41 ± 0.69 

    Elevated (≥3 mmol/L), n (%) b 38 (36%) 41 (28%) 6 (16%) 

Triglycerides (mmol/L)  1.15 ± 0.61 1.27 ± 0.93 b 1.14 ± 0.57 

    Elevated (≥1.7 mmol/L), n (%) 10 (9%) 26 (17%) 4 (11%) 

Glucose Homeostasis    

Fasting glucose (mmol/L) 4.95 ± 1.60 4.87 ± 1.04 4.98 ± 1.59 

    Elevated (≥5.6 mmol/L), n (%) c 15 (14%) 19 (13%) 3 (8%) 

Glycated Haemoglobin (HbA1c) (%) 5.42 ± 0.80 5.29 ± 0.55 5.46 ± 0.99 

    Elevated (≥5.9%), n (%) c 11 (10%) 11 (7%) 3 (8%) 

a Data presented as mean ± SD or n (% of group; HIV-free: n = 105 to 107; HIV+ART: n = 151; HIV/noART: n = 

36 to 37).  b According to the Heart and Stroke Foundation of South Africa, NHLS and the US National Institutes of 

Health (NIH) guidelines.[540,546–548] c According to The Heart and Stroke Foundation of South Africa 

guidelines.[546,553–555] d vs. HIV-free, p = 0.003 and HIV+ART, p < 0.001. e vs. HIV-free and HIV+ART, p < 

0.001, respectively. 

 

3.1.5. Baseline Hb, GGT and markers of kidney function (serum creatinine, urine albumin, ACR and 

eGFR levels). 

 

The mean Hb levels in the HIV-free (13.7 g/dL), HIV+ART (13.5 g/dL) and HIV/noART (13.2 g/dL) were 

within WHO recommended standards (Women: <12.0 g/dL and men: <13.0 g/dL).[561] More than one-third of 

participants in HIV-free (n = 37, 35%), HIV+ART (n = 59, 40%) and HIV/noART (n = 15, 41%) respectively 

presented with decreased Hb levels at baseline visit. Hb measurements did not significantly differ between 

groups. 
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The median GGT levels in the HIV-free (25.0 U/L), and HIV/noART (24.0 U/L) were within WHO 

recommended standards, while the median GGT level for HIV+ART (51.0 U/L) were higher than the cut-off value 

for men (≥60 U/L), but lower than the cut-off value for women (≥40 U/L).[561] The median GGT level in the 

HIV+ART group was significantly higher compared to HIV-free and HIV/noART (p < 0.001, respectively). About 

one-fifth of participants in the HIV-free group (n = 21, 20%) and HIV/noART group (n = 7, 20%) presented with 

elevated GGT levels at baseline. Most participants in the HIV+ART group (n = 86, 57%) presented with elevated 

GGT levels. GGT measurements did not significantly differ between HIV-free and HIV/noART. 

 

The mean serum creatinine and median urine albumin levels did not significantly differ between groups. 

Also, the median albumin-to-creatinine ratio for HIV-free (0.64 mg/mmol), HIV+ART (1.03 mg/mmol) and 

HIV/noART (1.14 mg/mmol) were below South African guidelines (>3 mg/mmol).[604]  

The median albumin-to-creatinine ratio of HIV+ART (1.03 mg/mmol) was significantly higher (p = 0.011) 

compared to HIV-free (0.64 mg/mmol). The mean eGRF for HIV-free (106 mL/minute/1.73 m3), HIV+ART (118 

mL/minute/1.73 m3) and HIV/noART (119 mL/minute/1.73 m3) were within the recommended range as stipulated 

for the EPI-CKD formula [581] used for the calculation (< 90 mL/minute/1.73 m3).[582,583] Compared to HIV-free, 

the mean eGRF values for both HIV+ART and HIV/noART were significantly higher (p < 0.001) with the proportion 

of participants presenting with decreased eGRF significantly higher in HIV-free (n = 17, 16%) compared to 

HIV+ART (n = 7, 4%; p = 0.002) and HIV/noART  (n = 0, 0%; p = 0.009) (Table 3.8.). 
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Table 3.8. Baseline Hb, GGT, serum creatinine, urine albumin, albumin-to-creatinine ratio and eGFR levels. 

Variable a HIV-free HIV+ART HIV/noART 

Haemoglobin (g/dL) 13.7 ± 1.4 13.5 ± 1.6 13.2 ± 1.4 

   Decreased (Women: <12.0, men: <13.0 g/dL), n (%) b 37 (35%) 59 (40%) 15 (41%) 

Liver function    

γ-Glutamyl transferase (U/L)  25.0 (7 to 1058) 51.0 (14 to 848) f 25.0 (10 to 94) 

   Elevated (≥40/≥60 U/L women/men), n (%) c 21 (20%) 86 (57%) 7 (20%) 

Kidney Function    

Serum creatinine (μmol/L) 62.9 ± 13.9 59.5 ± 14.5 59.4 ± 12.0 

Urine albumin (mg/L) 7.1 (0.12 to 617) 9.0 (0.13 to 578) 13.0 (1.5 to 794) 

Albumin-to-creatinine ratio (mg/mmol) 0.64 (0.10 to 29.7) 1.03 (0.01 to 94.8) g 1.14 (0.18 to 110) 

   Increased (>3 mg/mmol), n (%) d 13 (14%) 27 (21%) 7 (27%) 

eGRF (mL/minute/1.73 m3) 106 ± 17.0 118 ± 16.1 h 119 ± 12.8 h 

   Decreased (< 90 mL/minute/1.73 m3), n (%) e 17 (16%) 7 (4%) 0 (0%) 

a Data presented as mean ± SD or median (range) or n (% of group; HIV-free: n = 91 to 107; HIV+ART: n = 127 

to 151; HIV/noART: n = 33 to 37).  b According to WHO guidelines.[561] c According to NHLS standards.[563] d 

According to the UK Renal Association.[576] e According to information from [582,583]. f vs. HIV-free and 

HIV/noART; p < 0.001, respectively. g vs. HIV-free; p = 0.011. h vs. HIV-free, p < 0.001. 

 

3.1.6. Baseline blood pressure and heart rate measurements. 

 

The mean SBP values in the HIV-free (126 mmHg), HIV+ART (124 mmHg) and HIV/noART (121 mmHg) groups 

fell within the clinically normal range (WHO and South African Hypertension Society guidelines) and did not differ 

significantly between the groups.[533,604] The percentage of participants who presented with elevated SBP in 

HIV-free (n = 22, 21%) was higher than in the HIV+ART (n = 21, 14%) and HIV-noART (n = 5, 14%) groups 

respectively at baseline. 

Similarly, the mean DBP values in the HIV-free (87 mmHg), HIV+ART (86 mmHg) and HIV/noART (83 

mmHg) groups fell within the clinically normal range (WHO and South African Hypertension Society guidelines) 

and did not differ significantly between the groups.[533,604] More than half of participants in the HIV-free (n = 68, 

64%), HIV+ART (n = 98, 64%) and HIV/noART (n =21, 57%) groups respectively presented with elevated DBP at 

baseline.  

The mean heart rate in HIV-free (72 bpm), HIV+ART (71 bpm) and HIV/noART (77 bpm) did not 

significantly differ between groups (Table 3.9.). 
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Table 3.9. Baseline blood pressure and heart rate measurements. 

Variable a HIV-free  HIV+ART HIV/noART 

Systolic Blood Pressure (mmHg) 126 ± 20 124 ± 18 121 ± 17 

    Elevated (>140 mmHg), n (%) b 22 (21%) 21 (14%) 5 (14%) 

Diastolic Blood pressure (mmHg) 87 ± 13 86 ± 12 83 ± 11 

    Elevated (>90 mmHg), n (%) b 68 (64%) 98 (64%) 21 (57%) 

Hypertension (SBP >140 mmHg or 

DBP >90 mmHg), n (%) b 
69 (64%) 98 (64%) 21 (57%) 

Heart Rate (bpm) 72 ± 12 71 ± 12 77 ± 18 

a Data presented as mean ± SD or median (range) or n (% of group; HIV-free: n = 107; HIV+ART: n = 151; 

HIV/noART: n = 37). b According to WHO and South African Hypertension Society guidelines.[533,604] 

 

3.1.7. Baseline systemic inflammation and vascular endothelial biomarker measurements. 

 

The median hsCRP levels for HIV-free (5.7 mg/L), HIV+ART (5.3 mg/L) and HIV/noART (8.2 mg/L) were 

higher than levels previously shown to be associated with increased cardiovascular risk (>3mg/L).[534] Also, more 

than half of participants in HIV-free (n = 64, 60%), HIV+ART (n = 95, 60%) and HIV/noART (n = 25, 69%) presented 

with elevated hsCRP levels at baseline.  

No significant differences were observed in the mean TNF-α levels between HIV-free (23.3 pg/ml), 

HIV+ART (22.8 pg/ml) and HIV/noART (23.1 pg/ml). The mean VCAM-1 levels in the HIV/noART group (1157 

ng/ml) was significantly higher than HIV-free (829 ng/ml, p = 0.005) while the median ICAM-1 levels in the HIV+ART 

group (225 ng/ml) was significantly lower than HIV-free (351 ng/ml p = 0.017). No significant differences in terms 

of e-selectin, p-selectin and VEGF were observed between groups. The mean PAI1-1 levels in the HIV+ART (82 

ng/ml) and HIV/noART (77 ng/ml) groups were significantly lower compared to HIV-free (103 ng/ml) (Table 3.10.). 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



74 | P a g e  

 

Table 3.10. Baseline levels for circulating biomarkers of systemic inflammation and vascular endothelial function 

/ dysfunction. 

Variable a n HIV-free  n HIV+ART  n HIV/noART  

hsCRP (mg/L) 103 5.7 (0.2 to 57) 148 5.3 (0.2 to 42) 36 8.2 (0.2 to 200) 

 Elevated (>3mg/L), n (%) b  64 (60%)  95 (60%)  25 (69%) 

TNF-α (pg/ml) 50 23.3 ± 4.4 50 22.8 ± 6.8 28 23.1 ± 6.6 

VCAM-1 (ng/ml) 50 829 ± 358 50 982 ± 482 29 1157 ± 574 c 

ICAM-1 (ng/ml) 49 351 (50 to 1343) 49 225 (4 to 1348) d 28 376 (155 to 1488) 

E-selectin (ng/ml) 49 37.4 ± 13.2 50 38.0 ± 20.0 28 36.5 (12.0 to 75.1) 

P-selectin (ng/ml) 50 40.0 ± 15.0 50 34.9 ± 16.4 29 27.9 (3.0 to 61.4) 

VEGF (pg/ml) 49 90 (24 to 415) 50 70 (12 to 768) 29 56.2 (1.5 to 317) 

PAI-1 (ng/ml) 50 103 ± 35 50 82 ± 39 e 29 77 ± 40 f 

a Data presented as mean ± SD or median (range) or n (% of group). b According to the cut-off value associated 

with increased cardiovascular risk.[534] c vs. HIV-free; p = 0.005. d vs. HIV-free; p = 0.017. e vs. HIV-free; p = 0.006. 

f vs. HIV-free; p = 0.002. 

 

3.1.8. Baseline retinal microvascular calibers. 

 

The mean CRVE for HIV+ART (229 μm) was significantly lower compared to HIV-free (240 μm) and 

HIV/noART (243 μm). No significant differences in mean CRAE between HIV-free (156 μm), HIV+ART (153 μm) 

and HIV/noART (159 μm) were observed. Also, no significantly differences were observed in terms of AVR between 

the HIV-free (0.65 μm), HIV+ART (0.67 μm) and HIV/noART (0.66 μm) groups respectively (Table 3.11.). 

 

Table 3.11. Baseline retinal vessel caliber characteristics. 

Variable a HIV-free HIV+ART HIV/noART 

Central retinal arteriolar equivalent (CRAE) (μm) 156 ± 16 153 ± 15 159 ± 16 

Central retinal venular equivalent (CRVE) (μm) 240 ± 21 229 ± 20 b, c 243 ± 22 

CRAE/CRVE ratio (AVR) 0.65 ± 0.06 0.67 ± 0.06 0.66 ± 0.06 

a Data presented as mean ± SD (HIV-free: n = 103 to 107; HIV+ART: n = 143; HIV/noART: n = 35. b vs. HIV-free; 

p < 0.001. c vs. HIV/noART; p = 0.002. 
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3.1.9. Baseline flow-mediated dilatation measurements. 

 

The mean baseline brachial artery diameter did not significantly differ between the HIV-free (3.37 mm), 

HIV+ART (3.37 mm) and HIV/noART (3.39 mm) groups. The median % FMD for HIV+ART (7.50 %) was 

significantly higher than HIV-free (5.66%) and HIV/noART (4.30 %). The median % FMD did not significantly differ 

between HIV-free and HIV/noART (Table 3.12). 

 

Table 3.12. Baseline FMD variable outcomes. 

Variable a 
HIV-free 

n = 105 

HIV+ART 

n = 149 

HIV/noART 

n = 37 

Baseline brachial artery diameter (mm) 3.37 ± 0.67 3.37 ± 0.67 3.39 ± 0.62 

% Flow-mediated dilatation (%) 5.66 (-8.0 to 22.6) 7.50 (-3.10 to 36) b, c 4.30 (-1.7 to 16) 

a Data presented as mean ± SD or median (range) (HIV-free: n = 105; HIV+ART: n = 49; HIV/noART: n = 37). b 

vs. HIV-free, p = 0.002. c vs. HIV/noART, p = 0.002. 

 

3.2. Estimated effects of HIV and ART. 

 

Only significant findings are presented in the following sections. For full data tables containing all 

estimated effects, please refer to Appendix A1 to A9: A1. Effects of HIV and ART status on body composition. 

(Page 216 to 218); A2. Effects of HIV and ART on lipid and glucose levels (Page 219 to 221); A3. Effects of HIV 

and ART on Hb levels. (Page 222); A4. Effects of HIV and ART on GGT levels (Page 223); A5. Effects of HIV and 

ART on markers of kidney function (Creatinine, microalbumin, ACR and eGFR levels) (Page 224 to 225). A6. 

Effects of HIV and ART on blood pressure and heart rate (Page 226 to 227); A7. Effects of HIV and ART on 

circulating markers of vascular endothelial function (Page 228 to 231); A8. Effects of HIV and ART on retinal vessel 

calibre (Page 232 to 233); A9. Effects of HIV and ART on flow-mediated dilation parameters (Page 234). 

 

3.2.1. HIV disease progression/regression in the HIV+ART and HIV/noART groups between baseline 

visit and 18-month follow-up visit. 

 

At baseline, the median viral load (20 copies mRNA/ml) and CD4 cell count (503 cells/mm3) values in the 

HIV+ART group fell within the normal range as recommended by the WHO (Table 3.5.).[588] Viral load and CD4 

cell count in the HIV+ART group did not significantly change between baseline and follow-up visit (-10.9%, p = 

0.639 and 7.1%, p = 0.059, respectively). At baseline 20 participants (13%) in HIV+ART did not show viral load 

suppression according to the WHO guidelines.[72]. Similarly, at 18 months, 20 participants (13%) in HIV+ART did 

not show viral load suppression.  At baseline, 28 participants (78%) in HIV/noART were not viral load suppressed. 

At 18 months, only 10 participants (29%) in HIV+ART were not viral load suppressed. 

Stellenbosch University https://scholar.sun.ac.za



76 | P a g e  

 

What is more, in the HIV/noART group, the median viral load (13123 copies mRNA/ml) and CD4 cell 

count (469 cells/mm3) levels were above recommended WHO cut-off levels at baseline (Table 3.5.).[588] 

Compared to baseline (without ART), the median viral load levels in HIV/noART significantly decreased at follow-

up visit after initiating ART (-97.7%, p = < 0.001), but the mean CD4 cell count did not significantly differ (12.6%, p 

= 0.103) (Table 3.12.). 

 

Table 3.13. Temporal changes in viral load and CD4 cell count at 18 months post-baseline. 

Variable % Difference a 
95% CI 

p-values 
Lower Upper 

Baseline vs. Follow-up b     

    HIV+ART     

        Viral load (copies mRNA/ml)  -10.9 -45.2 44.8 0.639 

        CD4 cell count (cells/mm3) 7.1 -0.3 15.1 0.059 

Pre- vs. post-ART treatment effects (Initiating ART treatment) c 

    HIV/noART     

        Viral load (copies mRNA/ml) -97.7 -99.3 -93.0 < 0.001 

        CD4 cell count (cells/mm3) 12.6 -2.5 29.9 0.103 

a Estimates expressed an 18-month % difference. b HIV+ART group adjusted for age, gender, ethnicity, recruitment 

area, smoking, employment, use of medication, alcohol consumption, SBP, BMI and ART duration at baseline visit. 

c HIV/noART group adjusted for age and smoking. 

 

3.2.2. Effects of initiating ART treatment in HIV-infected participants. 

 

To evaluate the effects of pre vs. post-ART treatment (i.e. initiating ART during the study period of 18 

months) in PLWH, linear mixed model regression analysis was applied to the HIV/noART group. Due to the small 

population size (n =37), models were only adjusted for age, smoking, viral load and CD4 cell count.  

 

Compared to baseline (HIV without ART treatment), ART treatment (at 18-month follow-up: HIV with ART 

treatment), was associated with a significant increase in total cholesterol (0.30 mmol/L), HDL cholesterol (0.39 

mmol/L), and GGT levels (37.6%). Initiating ART was associated with a significant decrease in VCAM-1 (-148 

ng/ml) and a significant increase in VEGF (40.6%) and PAI-1 (14.12 ng/ml). Initiating ART was also associated 

with a significant decrease in CRVE (-6.42 μm) (Table 3.11.). 
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Table 3.14. Significant effects of initiating ART in HIV-infected participants. 

Variable 
Estimate /  

% Difference a 

95% CI 
p-values 

Lower Upper 

Lipid metabolism     

    Total cholesterol (mmol/L) 0.301 0.072 0.530 0.011 

    HDL cholesterol levels 

(mmol/L) 0.393 0.216 0.569 < 0.001 

Liver function     

    GGT levels (U/L) 37.6% 14.3 65.8 0.001 

Cardiovascular effects     

    VCAM-1 levels (ng/ml) -148 -274 -23 0.022 

    VEGF levels (pg/ml) 40.6% 0.5 96.7 0.047 

    PAI-1 levels (ng/ml) 14.12 1.16 27.07 0.034 

    CRVE (μm) -6.42 -10.99 -1.85 0.007 

a Adjusted for age, smoking, viral load and CD4 cell count with estimates expressed as change or % difference for 

baseline vs. follow-up visit. 

 

3.2.3. Effects of the 18-month ART treatment period in HIV-infected participants.  

 

To assess the effects if ART over an 18-month treatment period in PLWH, linear mixed model regression 

analysis was applied in the HIV+ART group. An 18-month ART treatment period was inversely associated with 

waist circumference (-3.43 cm) and hip circumference (-2.59 cm). The 18-month ART treatment period was 

positively associated with HDL cholesterol (0.104 mmol/L), and inversely associated with LDL cholesterol levels (-

0.138 mmol/L). In terms of renal function, the 18-month ART treatment period was positively associated with serum 

creatinine (3.71 μmol/L) and inversely associated with eGFR (-2.93 mL/minute/1.73 m3).  

 

ART was also associated with various vascular outcomes. In terms of circulating endothelial function 

biomarkers, the 18-month ART treatment period was inversely associated with TNF-α (-1.22 pg/ml), ICAM-1 (-

45%) and e-selectin (-5.57 ng/ml). The 18-month ART treatment period was furthermore inversely associated with 

CRVE (–7.00 μm) and positively associated with AVR (0.019). ART was negatively associated with % FMD (-9.8%) 

(Table 3.15.). 
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Table 3.15. Estimated effects of the 18-month ART treatment period in HIV-infected participants. 

Variable 
Estimate /  

% Difference a 

95% CI 
p-values 

Lower Upper 

Body composition     

    Waist circumference (cm) b -3.43 -5.02 -1.84 < 0.001 

    Hip circumference (cm) b -2.59 -4.00 -1.19 < 0.001 

Lipid metabolism     

    HDL cholesterol levels (mmol/L) c 0.104 0.005 0.203 0.040 

    LDL cholesterol levels (mmol/L) c -0.138 -0.254 -0.022 0.020 

Renal effects     

    Creatinine levels (μmol/L) c 3.71 1.98 5.44 < 0.001 

    eGFR (mL/minute/1.73 m3) c -2.93 -4.94 -0.93 0.004 

Cardiovascular effects     

   TNF-α (pg/ml) d -1.22 -2.29 -0.16 0.025 

    ICAM-1 (ng/ml) d -45% -88 -1.3 0.043 

    E-selectin (ng/ml) d -5.57 -9.52 -1.62 0.006 

    CRVE (μm) c -7.00 -12.64 -1.36 0.015 

    AVR c 0.019 0.008 0.031 0.001 

    % FMD e -9.8% -17.6 -1.2 0.026 

a Estimates expressed an 18-month change or 18-month % difference. b Model A: Adjusted for age, gender, 

ethnicity, smoking, employment, SBP, recruitment location, use of medication other than ART, alcohol 

consumption, ART duration at baseline visit, viral load and CD4 cell count. c Model A additionally adjusted for BMI. 

d Adjusted for age, smoking, SBP, BMI, viral load and CD4 cell count. e Model A additionally adjusted for BMI and 

baseline brachial artery diameter. 

 

3.2.4. Effects of markers of HIV disease progression/regression.  

 

To evaluate the effects of HIV disease progression/regression, linear mixed model analysis was applied 

to the total HIV population (HIV+ART and HIV/noART combined).  

 

Viral load was inversely associated with body composition. Each IQR increment increase in viral load 

(1300 copies mRNA/ml) was inversely associated with body weight (-0.61 kg), BMI (-0.40 kg/m3), waist 

circumference (-1.43 cm) and hip circumference (-0.70 cm). Each IQR increment increase in viral load (1300 copies 

mRNA/ml) was also inversely associated with total cholesterol (-0.29 mmol/L), HDL cholesterol (-0.20 mmol/L) and 

LDL cholesterol (-0.11 mmol/L). Furthermore, each IQR increment increase in viral load (1300 copies mRNA/ml) 

was inversely associated with haemoglobin (-0.31 g/dL) and liver function (GGT: -22.2% U/L).  
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In terms of vascular variable outcomes, each IQR increment increase in viral load (1300 copies mRNA/ml) 

was positively associated with CRVE (9.29 μm) and inversely associated with AVR (-0.016) and % FMD (-2.13%) 

(Table 3.16.). 

 

Table 3.16. Significant effects of viral load in HIV-infected participants over an 18-month period. 

Variable 
Estimate /  

% Difference a 

95% CI 
p-values 

Lower Upper 

Body composition     

     Body weight (kg) b -0.61 -1.9 0.69 0.043 

     BMI (kg/m2) b -0.40 -1.01 0.20 0.026 

     Waist circumference (cm) b -1.43 -2.84 -0.03 0.046 

     Hip circumference (cm) b -0.70 -1.99 0.58 0.040 

Lipid metabolism     

    Total cholesterol (mmol/L) c -0.287 -0.413 -0.162 < 0.001 

    HDL cholesterol levels (mmol/L) c -0.204 -0.282 -0.125 < 0.001 

    LDL cholesterol levels (mmol/L) c -0.109 -0.211 -0.007 0.036 

Haemoglobin     

    Hb levels (g/dL) c -0.31 -0.53 -0.09 0.006 

Liver function     

    GGT levels (U/L) c -22.2% -30.1 -13.3 < 0.001 

Cardiovascular effects     

    CRVE (μm) c 9.29 5.28 13.30  < 0.001 

    AVR c -0.016 -0.025 -0.006 0.001 

    % FMD d -2.13% -3.34 -0.92 0.001 

a Estimates expressed an 18-month change or 18-month % difference. b Model A: Adjusted for age, gender, 

ethnicity, smoking, employment, SBP, recruitment location, use of medication other than ART and alcohol 

consumption. c Model A additionally adjusted for BMI. d Model A additionally adjusted for BMI and baseline brachial 

artery diameter. 

 

Each IQR increment increase in CD4 cell count (320 cells/mm3) was positively associated with body weight 

(1.37kg), BMI (0.76 kg/m2) and waist circumference (1.49 cm). Each IQR increment increase in CD4 cell count 

(320 cells/mm3) was positively associated with fasting glucose levels (0.22 mmol/L).  

In terms of vascular outcomes, each IQR increment increase in CD4 cell count (320 cells/mm3) was 

inversely associated with TNF-α (-2.11 mg/L) and positively associated with % FMD (8.43%) (Table 3.17.). 
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Table 3.17. Significant effects of CD4 cell count in HIV-infected participants over an 18-month period. 

Variable 
Estimate /  

% Difference a 

95% CI 
p-values 

Lower Upper 

Body composition     

    Body weight (kg) b 1.37 0.09 2.64 0.036 

    BMI (kg/m2) b 0.76 0.18 1.35 0.010 

    Waist circumference (cm) b 1.49 0.09 2.89 0.037 

Glucose metabolism     

    Fasting glucose levels (mmol/L) c 0.22 0.036 0.41 0.020 

Cardiovascular effects     

    TNF-α levels (pg/ml) d -2.11 -3.46 -0.76 0.002 

    % FMD e 8.43% 0.91 15.95 0.028 

a Estimates expressed an 18-month change or 18-month % difference. b Model A: Adjusted for age, gender, 

ethnicity, smoking, employment, SBP, recruitment location, use of medication other than ART, alcohol 

consumption, ART duration at baseline visit, viral load and CD4 cell count. c Model A additionally adjusted for BMI. 

d Adjusted for age, smoking, SBP, BMI, viral load and CD4 cell count. e Model A additionally adjusted for BMI and 

baseline brachial artery diameter. 

 

3.3. Discussion of Sub-study 1 results. 

 

The main aim of Sub-study 1 was to determine whether endothelial function is a marker of the effect of 

HIV (disease progression: viral load and disease regression: CD4 cell count) and ART (Initiating ART treatment 

and an 18-month ART treatment period). The findings of the current study show that HIV and ART are associated 

with various markers of cardiovascular risk and endothelial function: 

 

• HIV disease progression (using viral load as a marker) in the study population, was inversely associated 

with various cardiometabolic factors including body composition, lipid metabolism, Hb levels and GGT 

levels. HIV was furthermore associated with retinal vessel calibres (CRVE and AVR) and with reduced % 

FMD (Figure 3.1.).  
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Figure 3.1. Summary of the effect of viral load on markers of cardiovascular risk. Description: 1. Inverse 

association with body composition (body weight, BMI, waist circumference and hip circumference). 2. Inverse 

association with serum lipid levels (total cholesterol, HDL cholesterol and LDL cholesterol). 3. Inverse association 

with haemoglobin levels. 4. Inverse association with liver GGT levels. 5. Positive association with retinal venular 

diameter (CRVE) and inverse association with AVR. 5. Inverse association with %FMD. Abbreviations and 

symbols: BMI: Body mass index; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; GGT: γ-Glutamyl 

transferase; CRVE: Central retinal venular equivalent; FMD: Flow-mediated dilatation; ↑: Increase; ↓: Decrease. 

 

• HIV immune status (using the CD4 cell count as a marker) was positively associated with various 

cardiometabolic factors including body weight, BMI and waist circumference, fasting glucose levels. CD4 

cell count was also associated with markers of vascular endothelial function including reduced TNF-α levels 

and increased %FMD (Figure 3.2.).  

 

 

Figure 3.2. Summary of the effect of CD4 cell count on markers of cardiovascular risk. Description: 1. Positive 

association with body composition as indicated by body weight, BMI and waist circumference. 2. Positive 

association with fasting glucose levels. 3. Inverse association with TNF-α and positive association with % FMD. 

Abbreviations and symbols: BMI: Body mass index; TNF-α: Tumour necrosis factor-alpha; FMD: Flow-mediated 

dilatation; ↑: Increase; ↓: Decrease. 

 

• Initiating ART during the study period (i.e. changing from ART naïve to ART treatment) was associated with 

various cardiometabolic factors including total and HDL cholesterol levels and GGT levels. Initiating ART was 

also associated with markers of vascular function including PAI-1, VEGF, VCAM-1 and CRVE. (Figure 3.1.). 

 

Stellenbosch University https://scholar.sun.ac.za



82 | P a g e  

 

 

Figure 3.3. Summary of the effect of initiating ART. Description: 1. Positive association with total and HDL 

cholesterol. 2. Positive association with GGT levels.  3. Positive association with PAI-1 and VEGF, and a negative 

association with VCAM and CRVE. Abbreviations and symbols: HDL: High-density lipoprotein; GGT: γ-Glutamyl 

transferase; PAI-1: Plasminogen activator inhibitor-1; VCAM-1: Vascular cell adhesion molecule-1; CRVE: Central 

retinal venular equivalent; ↑: Increase; ↓: Decrease. 

 

• An 18-month ART treatment period in the current study was associated with various cardiometabolic factors 

including waist and hip circumference, HDL cholesterol and LDL cholesterol, serum creatinine and eGRF.  

An 18-month ART treatment period was also associated with markers of vascular function TNF- α, e-

selectin, ICAM-1, CRVE, AVR and % FMD (Figure 3.3.). 

 

 

Figure 3.4. Summary of the effect of an 18-months ART treatment period. Description: 1. Negative association 

with waist and hip circumference. 2. Positive association with HDL cholesterol and negative association with LDL 

cholesterol. 3. Positive association with serum creatinine and a negative association with in glomeration filtration 

rate. 4.  Negative association with TNF-α, e-selectin, ICAM-1, CRVE, % FMD and a positive association AVR and. 

Abbreviations and symbols: HDL: High-density lipoprotein; LDL: Low-density lipoprotein; eGRF: Estimate 

glomeration filtration rate; TNF-α: Tumour necrosis factor-alpha; ICAM-1: Intercellular adhesion molecule-PAI-1: 

Plasminogen activator inhibitor-1; VCAM-1: Vascular adhesion molecule-1; CRVE: Central retinal venular 

equivalent; FMD: Flow-mediated dilatation; ↑: Increase; ↓: Decrease. 
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3.3.1. The effects of HIV and ART on body composition. 

 

The wasting effects of HIV-infection (especially when progressing to AIDS) on body composition is one 

of the most well-known consequences of the disease and well documented throughout the pre-highly active 

antiretroviral therapy (HAART: treatment with multiple types of ART drugs simultaneously) era,[605,606] while the 

success of ART is characterised by the reversal of HIV-associated weight-loss and improved health.[607]  

 

In unadjusted comparisons between groups at baseline, HIV/noART in the current study presented with 

a significantly lower body composition parameters (BMI, body weight, waist circumference and hip circumference) 

compared to HIV-free at baseline (Table 3.6.). In addition, 32% of HIV/noART participants were classified 

underweight [531] at baseline compared to 11% in HIV-free and 14% in HIV+ART respectively (Table 3.6.). These 

results indicate that HIV-associated weight loss is prevalent in the current study population.  

 

After adjusting for confounders, viral load was inversely associated with body weight, BMI, waist 

circumference and hip circumference (Table 3.16.), while CD4 cell count was positively associated with body 

weight, BMI, waist circumference and hip circumference (Table 3.17.). These results show that insufficient viral 

suppression was associated with decreased body composition parameters. The detrimental effects of HIV-infection 

on body composition is characterised by the loss of metabolically active tissue such as muscle and especially 

adipose tissue.[608,609] It has been shown that adipose tissue expresses the receptors (CD4 and CXCR4 and 

CCR5) necessary to allow the HI-virus to enter adipocytes where they can disrupt cellular metabolism.[610,611] 

On the other hand, circulatory HIV-proteins such as Tat (mostly produced by infected lymphocytes and 

macrophages) can also enter adipocytes and inhibit adipogenesis through suppressing peroxisome proliferator-

activated receptor-γ (PPAR-γ) activity (involved in preadipocyte cell differentiation).[612] 

 

Neither initiating ART during the study period nor an 18-month ART treatment period was significantly 

associated with changes in body composition after adjusting for confounding factors (Appendix A, Table A1.1. to 

A1.5.). This finding suggests that ART treatment was not successful in reversing the wasting effects of HIV-

infection in the current study-population. Interestingly, an 18-month ART treatment period was inversely associated 

with waist and hip circumferences while body weight and BMI remained unaffected. At first, these findings appear 

to indicate ART may be associated with lipodystrophy in the current HIV study-population, but ART-associated 

lipodystrophy is characterised by the redistribution of adipose tissue from the peripheral area of the body 

(lipoatrophy) to the central area (lipohypertrophy).[613] It is difficult to explain this finding, but the poor response 

to ART treatment in terms of body composition suggest that nutritional status or viral factors may still be at play.  

Various factors may account for the poor recovery of HIV-associated weight-loss. It has also been shown 

that a higher BMI at the time of initiating ART treatment is associated with an improved recovery of body 

composition.[614] The decreased body composition observed in HIV+ART and HIV/noART at the baseline visit 
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may explain the poor response to ART treatment in terms of reversing the wasting effects of HIV in the current HIV 

study population. Other ART-associated adverse effects such poor absorption of nutrients and diarrhoea may also 

have been involved.[615,616] Lifestyle factors such as smoking may also have contributed. More investigation is 

needed. 

 

Although overweight and obesity are well-known cardiovascular risk factors, a BMI in the underweight 

range has previously also been shown to be associated with increased cardiovascular risk.[617] These results 

indicate that the poor recovery of HIV-associated weight loss, may contribute to increased cardiovascular risk in 

the current HIV study population. These findings also underscore the importance of healthy lifestyle choices and 

monitoring the nutritional status of PLWH. 

3.3.2. Effects of HIV and ART on lipid metabolism. 

HIV without ART treatment is often characterised by a rapid decrease in HDL cholesterol levels, which 

may contribute to increased cardiovascular risk.[618,619] In accordance with previous findings, in our study 

population, HIV/noART presented with significant lower unadjusted mean total cholesterol and HDL cholesterol 

levels compared to HIV-free and HIV+ART at the baseline visit (Table 3.7.). Also, after adjusting for confounding 

factors, viral load, a marker of disease progression, was inversely associated with total and HIDL cholesterol levels 

(Table 3.16.).  

Findings of the current study support those of Bernel et al. (2008), who demonstrated that viral load (even 

at a concentration less than 50 copies mRNA/ml) is inversely associated with HDL cholesterol levels.[620] In 

contrast to previous reports,[621]  the current study could not demonstrate any significant association between HIV 

and triglyceride levels (Table 3.16.).Reports indicate that HIV-associated hypertriglyceridemia is often a long-term 

consequence of untreated HIV and becomes more pronounced in advanced HIV and HIV-associated metabolic 

dysregulation.[231,622–626] Although no significant associations between HIV and ART with triglyceride levels 

were observed in the current study, previous reports have indicated that the effects of HIV and ART on triglyceride 

levels may become more pronounced in advanced HIV disease progression or in ART-treated PLWH with 

metabolic dysregulation.[231,622–626] Continued monitoring is needed.     

Reports on the effects of HIV (in PLW HIV without ART) and ART (after adjusting for the effects of HIV) 

on LDL cholesterol are often conflicting.[627–630] The viral protein Nef may has been shown to impair  hepatic 

cholesterol efflux [631] and may account for the inverse association between viral load and LDL cholesterol 

observed in the current study, and may also account for the inverse assertion observed between viral load and 

total, HDL and LDL cholesterol levels, but requires more investigation in the current study population. 

Nonetheless, these results show that HIV in the current study may contribute to increased cardiovascular 

risk through decreasing HDL cholesterol levels. These results also show that HIV-associated dyslipidaemia may 

be relevant in the current study population and that monitoring lipid dysregulation in the current study population 

is important.  
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The effects of ART on lipid metabolism were recognised soon after the introduction of 

HAART.[543,632,633] ART is generally associated with a pro-atherosclerotic lipid profile in PLWH (increased total 

cholesterol, LDL cholesterol and triglyceride levels)[20,634] although these effects on lipid metabolism may vary 

greatly between different ART drug classes and treatment combinations (differential effects of different ART drugs 

and drug classes fell outside the scope of the current study).[20,619,634]  

Initiating ART (Table 3.14.) and an 18-month ART treatment period (Table 3.15.) were both positively 

associated with HDL cholesterol levels. These findings support those of Riddler et al. (2003), who also found a 

significant increase in total and HDL cholesterol levels in their HIV study population after initiating ART 

treatment.[632] These findings also support those of Tadewos et al. (2012), who evaluated the effects of ART on 

the lipid profile in an Ethiopian study population, and found a positive association between ART treatment and total 

and HDL cholesterol levels.[635] These findings suggest that ART in the current HIV study population may have 

exerted a measure of HIV-associated cardiovascular risk reduction by increasing cardioprotective HDL cholesterol 

levels. 

 

Our results showed no association between ART and triglyceride levels (Appendix A2, Table A2.4.), 

which is in contrast to the findings of Tadewos et al. (2012) who observed a positive association between ART and 

triglyceride levels.[635] Tadewos et al. (2012) attributed hypertriglyceridemia observed in their study population to 

a high prevalence in liver steatosis (supported by others [636]).[635] Hypertriglyceridemia often manifests due to 

ART toxicity (especially PI-containing regimens) and is closely associated with metabolic dysregulation in 

PLWH.[543,619,637,638] Hypertriglyceridemia is also commonly observed in ART-associated lipodystrophy 

(redistribution of adiposity from limbs to the central body area).[633,639,640] Liver steatosis and lipodystrophy 

remained beyond the scope of the current study, but may have accounted with discrepancies between previous 

studies and the current study.  

On the other hand, the negative association between an 18-month ART treatment period was also 

observed in the HIV-free participants (Appendix A2, Table A2.3.). These results suggest that the observed 

negative association with LDL cholesterol levels may have been unrelated to ART treatment per se. One can only 

speculate that environmental, seasonal or dietary effects may have been involved.[641–643] More investigation is 

needed.  

These results also show that ART is not significantly associated with dyslipidaemia in the current HIV 

study population, but was associated with putative cardioprotective effects by reversing the effects of HIV on HDL 

cholesterol levels. ART-associated dyslipidaemia my become more relevant in ART-associated metabolic 

dysregulation.[633,639,640] Continued monitoring is needed. 
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3.3.3. Effects of HIV and ART on glucose metabolism. 

 

HIV and ART have previously been associated with increased risk for the development of insulin 

resistance and type-2 diabetes.[644–647] Possible mechanisms include ART-associated metabolic dysregulation 

such as lipodystrophy (especially in the presence of hypertriglyceridemia), dyslipidaemia, and ectopic lipid 

deposition in pancreatic cells (also associated with hypertriglyceridemia), while the direct cytotoxicity of ART has 

also been implicated.[644–647]  

In contrast to these reports, no significant differences were observed in the unadjusted mean values of 

fasting glucose or HbA1c levels between HIV-free, HIV+ART and HIV/noART at baseline (Table 3.7.). In addition, 

after adjusting for possible confounding factors, no significant associations were observed with either initiating ART 

or an 18-month ART treatment period (Appendix A2, Table A2.5 and A2.6.). These results suggest that HIV and 

ART in the current study population are not associated with impaired glucose homeostasis. 

 

On the other hand, CD4 cell count was positively associated with fasting glucose levels (Table 3.17.). A 

close relationship between CD4 cells and glucose metabolism in HIV has previously been established.[648]  It has 

been shown that the expression of GLUT1 in HIV-infected CD4 cells is upregulated to compensate for the 

increased energy demand for viral replication and also associated with CD4 cell apoptosis,[648] These findings 

may explain the positive association observed between fasting glucose levels and CD4 cell count. The close 

positive relationship between CD4 cell count, body composition and glucose levels may also explain these findings 

as increased CD4 cell counts often reflect the successful reversal of HIV-associated wasting.[649] 

 

3.3.4. Effects of HIV and ART on haemoglobin. 

 

The adverse effects of HIV on Hb (a marker of anaemia) is well-recognised, affects 20% to 80% of PLWH, 

and is associated with disease progression and mortality.[559,650,651] In line with these reports, viral load in the 

current study was inversely associated with Hb (Table 3.16.). Numerous HIV and ART related pathophysiological 

pathways have been implicated, including bone marrow toxicity/suppression, cytokine mediated haematopoiesis 

[652], inhibition of erythropoietin [653], secondary infections [654,655], vitamin and iron deficiency [656] and 

immune destruction of red blood cells.[657] Decreased Hb in PLWH has previously been associated with poorer 

health outcomes and increased risk for CVD.[558,559,650] Our findings therefore suggest that poor viral 

suppression may significantly reduce Hb and potentially contribute to increased cardiovascular risk in the study 

population.  

 

ART is generally associated with reversal of HIV-associated anaemia, although ART-associated 

cytotoxicity in bone marrow and erythrocytes has been shown to contribute to low Hb levels (a marker of 

anaemia).[577,658,659] In contrast to these adverse reports, no significant differences in the unadjusted mean Hb 
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levels between HIV-free, HIV+ART and HIV/noART were observed at baseline, (Table 3.8.). Also, after adjusting 

for possible confounding factors, initiating ART and an 18-month ART treatment period were not significantly 

associated with Hb levels (Appendix A3, Table A3.1.). These findings support those of Takuva et al. (2013) who 

also found that ART was not associated with adverse effects on Hb in a South African HIV-infected population.[660] 

In contrast, a study by Obirikoran and Yeboah (2009) showed that specific ART drugs such as zidovudine 

(uncommonly included in the first-line ART treatment in SA) was directly associated with decreased Hb levels.[559] 

These results suggest that ART does not increase cardiovascular risk through adverse effects on Hb metabolism 

in the current study population; however, continued monitoring remains important especially in advanced disease 

progression and in PLWH on ART treatment regimens that may affect red blood cell production or destruction. 

 

3.3.5. Effects of HIV and ART on liver function. 

 

The adverse effects of ART on liver function is well recognised in the literature.[565,661–665] In line with 

these reports, HIV+ART in the current study presented with a significantly higher unadjusted median GGT level 

compared to HIV-free and HIV/noART at baseline visit (Table 3.8.). Even after adjusting for confounding factors, 

including alcohol consumption, initiating ART was positively associated with GGT levels (Table 3.14.). As elevated 

GGT levels is associated with liver disease and increased cardiovascular risk,[564] these results suggest that ART 

in the current HIV study population may increase the risk for developing liver disease and may contribute to 

increased cardiovascular risk in participants who have initiated ART during the past 18 months. 

 

In contrast, an 18-month ART treatment period was not significantly associated with GGT levels 

(Appendix A4, Table A4.1.). The non-significant association between an 18-month ART treatment period and GGT 

levels, despite elevated levels compared to HIV-free at baseline, suggest that the continued use of ART in the 

current HIV+ART study population may not exacerbate the initial effects of initiating ART on GGT levels. As liver 

function plays an important role in whole-body metabolic regulation (lipid, Hb and glucose), this finding may also 

explain the non-significant effects observed between an 18-month ART treatment period and other metabolic 

parameters (such as BMI, triglyceride levels, glucose levels, HbA1C and Hb levels).[663–665]  

These results show that the effects of ART-induced liver toxicity in current HIV study population remains 

relevant. These findings furthermore underscore the need for the further development of less toxic ARTs. Although 

on-going ART treatment was not significantly associated with GGT levels, the longer-term effects need to be 

explored. 

3.3.6. Effects of HIV and ART on kidney function. 

 

It has been shown that the HI-virus can infect kidney cells (tubular and glomerular epithelium) and cause 

focal segmental glomerulosclerosis and increase eGFR.[666,667] In line with these reports, eGFR was significantly 

higher in HIV/noART compared to HIV-free in the current study (Table 3.8.). After adjusting for confounding factors, 
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a borderline significant positive association (p = 0.052) was observed between viral load and eGRF (Appendix A5, 

Table A5.4.). HIV-associated kidney disease has furthermore previously been associated with CVD.[668] These 

results indicate that uncontrolled HIV is associated with kidney dysfunction in the current study population and 

contribute to increased cardiovascular risk. 

 

On the other hand, ART has also previously been associated with kidney disease and is characterised by 

an increase in serum creatinine and a decrease in eGFR levels.[666,667,669,670] ART-associated kidney disease 

as observed in PLWH on ART is also associated with increased risk for CVD and heart failure.[668,671]  

As was observed in the HIV/noART study group, HIV+ART presented with a significant higher unadjusted 

mean eGFR compared to HIV-free at baseline (Table 3.8.). As obesity is often associated with kidney disease as 

indicated by reduced eGFR,[672,673] the higher unadjusted mean eGRF observed in HIV+ART compared to HIV-

free may be explained by the high prevalence of obesity in the HIV-free population (39%, Table 3.6.) compared to 

HIV+ART (16%).  

Nonetheless, the unadjusted mean eGRF was well-above the cut-off values for the CKD-EPI formula that 

indicate chronic kidney disease (<90 mL/minute/1.73 m3 CKD-EPI formula), which indicates that chronic kidney 

disease may not have been a health concern in the present HIV+ART study population;[581] however, following 

adjustment for confounders, including BMI, an 18-month ART-treatment period was positively associated with 

serum creatinine and inversely associated with eGFR (Table 3.15.). Although non-significant, the same trend was 

observed between initiation ART and serum creatinine and eGRF (p = 0.054 and p = 0.073; Appendix A5, Table 

A5.1. and A5.4.). An increase in serum creatine with a simultaneous decrease in eGRF is indicative of impaired 

kidney function,[674,675] these results suggest that a longer ART treatment period may be associated with renal 

dysfunction. 

These findings indicate that an 18-month ART treatment period may be associated with the reversal of 

the effects of HIV-infection on eGFR (HIV: increased eGRF), but may also contribute to kidney dysfunction despite 

a relatively high eGRF compared to HIV-free at baseline. These findings furthermore suggest that kidney 

dysfunction may become more pronounced in PLWH who are long-term ART. Impaired kidney function may also 

contribute to an increased cardiovascular risk profile. Therefore, monitoring renal function in the current study 

population remains pivotal especially in long-term experienced ART-use.[676] 

 

The trends observed for urine albumin and albumin-to-creatinine ratio (used as additional markers of 

kidney function) did not reflect those observed for serum creatinine and eGFR. The findings suggest that urine 

albumin may not be associated with ART in the current study population or that urine albumin and urine albumin-

to-creatinine ratio may not be reliable markers of kidney function in the current study population. A skewed data 

distribution, various outliers and a large data range may have contributed to this observation (Appendix A5, Table 

A5.2. and A5.3.). It has been proposed that the CKD-EPI formula (utilised in the current study) may give the most 

reliable estimation of eGRF and indication of kidney disease in PLWH.[666,667,677,678] As proposed in literature, 
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the mean of multiple albumin and albumin-to-creatinine ratio determinations over a period of time should be 

considered in future research for more reliable results.[666,679]  

 

3.3.7. Effects of HIV and ART on markers of cardiovascular risk. 

3.3.7.1. Effects of HIV and ART on blood pressure and heart rate. 

 

ART is often associated with hypertension due to direct adverse effects on the vascular endothelium or 

indirectly through associated metabolic disturbances.[680–682] In contrast to these reports, no significant 

differences in unadjusted mean SBP, DBP or heart rate were observed between HIV-free and HIV+ART in the 

current study population (Table 3.9.). Also, no significant associations between initiating ART an 18-month ART 

treatment period and SBP, DBP and heart rate were observed after adjusting for possible confounders (Appendix 

A6, Table A6.1 to A6.3.).  

 

These findings support those of Dimala et al. (2018) who reported in a systematic review and meta-

analysis that ART status was not significantly associated with hypertension in sub-Saharan African 

populations.[683] Findings by Dimala et al. (2018) were made despite a positive association between ART and 

other cardiovascular risk factors such as total cholesterol (observed in current study) and hypertriglyceridemia (not 

observed in the current study).[683] In contrast, a study by Malaza et al. (2012)  investigated obesity and 

hypertension in PLWH compared to HIV-free and found that, despite a decreased BMI compared to HIV-negative 

(also observed in the current study), hypertension was significantly associated with ART status in a rural SA 

population.[684]  

These findings indicate that ART is not associated with blood pressure in the current study’s HIV 

population. It is possible that mostly non-significant effects between ART in terms of cardiometabolic traits 

observed in the current study population may have contributed to this encouraging result.  

Although ART was not significantly associated with blood pressure, the prevalence of hypertension in 

HIV-free (64%), HIV+ART (64%) and HIV/noART (57%) remained high (Table 3.9.). This shows that hypertension 

may already predispose the current study population for the development of cardiovascular risk and underscore 

the relevance of hypertension in the combat against CVD in South Africans, regardless of their HIV-status.  

Heart rate has also previously been associated with increased cardiovascular risk.[685] Heart rate 

appears to be closely associated with ART drug classes that exert neurotoxic side-effects (autonomic 

dysfunction).[686–689] Our findings support those of Askgaard et al. (2011) who reported no association between 

heart rate and ART or ART duration.[687] Askgaard et al. (2011) furthermore reported that heart rate was inversely 

associated with HbA1c and hypertriglyceridemia in their HIV on ART population.[687] ART was not significantly 

associated with HbA1c or hypertriglyceridemia in the current study. These results show that ART is unlikely to be 

a contributing factor in the development of increased cardiovascular risk through effects on heart rate in the current 

study population, but these effects my become more relevant in the presence of ART-associated metabolic 
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disturbances and neurotoxic properties. Heart rate in PLWH who exhibit metabolic disturbances needs to be 

monitored.  

 

Although ART and HIV was not significantly associated with blood pressure, the 18-month follow-up 

period in HIV-free was positively associated with SBP (Appendix A6, Table A6.1.). This phenomenon as observed 

in HIV-free may be explained by the positive association between an 18-month period and waist-to-hip ratio 

(Appendix A1, Table A1.5.) as an increase in body composition (e.g. waist-to-hip ratio) has previously been shown 

to associate with increased blood pressure.[690,691] These findings indicate that visceral adiposity (as shown by 

increased waist circumference) was increasing over time in the HIV-free study population and may have 

contributed to the rise in SBP. On the other hand, these results also suggest that the poor response in HIV+ART 

to ART in terms of body composition and lack of adverse effects on lipid metabolism may account for the sparing 

effects of ART exhibited in terms of blood pressure.  

3.3.7.2. Effects of HIV and ART on systemic inflammation and circulating markers of vascular 

function. 

3.3.7.2.1. Effects of HIV and ART on hsCRP. 

 

hsCRP is produced by the liver and vascular endothelium during immune activation.[692,693] It has also 

been shown that hsCRP has a clinical value in PLWH in terms of predicting long-term disease progression, viral 

activity and risk for developing CVD.[692] At baseline, no significant differences in unadjusted median hsCRP 

levels were observed between HIV-free, HIV+ART and HIV/noART, although HIV-free, HIV+ART and HIV/noART 

presented with median hsCRP levels above recommended cut-off values (Table 3.10.). Our findings support those 

of O’Halloran et al. (2015), who also reported no significant differences in hsCRP between their HIV treated and 

untreated study groups. They furthermore found no significant differences at 12 weeks following ART 

treatment.[694] Nonetheless, a study by De Luca et al, (2013), found that hsCRP levels above 3.3 mg/L in PLWH 

is associated with increased risk for CVD independent of other metabolic factors.[695] These results show that 

regardless of HIV or ART, systemic inflammation is prevalent in our study population (possibly due to environmental 

factors such as chronic microbial exposure and unhealthy lifestyle choices e.g. smoking), which may predispose 

the participants to develop CVD.   

 

What is more, after adjusting for possible confounders, no significant associations were observed 

between hsCRP and viral load, CD4 cell count, initiating ART or an 18-month ART treatment period, although 

relatively large effect sizes between these parameters and hsCRP were noted (Appendix A7, Table A7.1.).These 

findings support other reports that have shown that ART had little to modest effects on hsCRP levels (42 months 

indinavir treatment,[696] 96 weeks lopinavir/ritonavir treatment [697] and 96 weeks of Efavirenz treatment [303]). 

These findings either indicate that HIV and ART are not significantly associated with systemic 

inflammation as indicated by hsCRP levels in the current study population, or that hsCRP may not be an accurate 
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predictor of inflammation in the current HIV study population. Nonetheless, based on the disproportionally high 

median hsCRP levels, systemic inflammation may result in an increased cardiovascular risk in the current study 

population. Longer term follow-up studies may shed light on this possibility. 

 

3.3.7.2.2. Effects of HIV and ART on TNF-α. 

 

TNF-α is an acute phase inflammatory cytokine produced by immune cells (e.g. macrophages and T-

cells) during immune activation and plays a role in cellular apoptosis, proliferation and inflammation regulation.[304] 

TNF-α has previously been positively associated with endothelial dysfunction and increased cardiovascular 

risk.[698,699] HIV and viral proteins such as Tat and Nef have been positively associated with TNF-α.[700] It has 

also been shown that the HI-virus can interact with the TNF-α receptor, activating various related cellular pathways 

[700] to stimulate pro-survival TNF-α pathways (e.g. NF-κB) to fuel viral replication or apoptotic pathways which 

lead to cellular death.[701,702]  

 

In contrast to these observations, viral load was not associated with TNF-α in the current study population 

(Appendix A7, Table A7.2.). Our findings do not support those of Keating et al. (2012) who reported increased 

levels of inflammatory cytokines in untreated PLWH and a positive association between TNF-α and viral load.[703]  

Since TNF-α  is an inflammatory cytokine, it is possible that that the effects of HIV on TNF-α may be more 

pronounced in HIV-associated metabolic dysregulation.[704] Previous studies have indicated a close relationship 

between TNF-α and HIV-associated metabolic disturbances that resemble the pro-atherosclerotic phenotype such 

as impaired glucose homeostasis, insulin resistance and dyslipidaemia (especially hypertriglyceridemia) in PLWH 

as these effects are also closely associated with systemic inflammation.[701,705,706] Viral load in the current 

study was not significantly associated with triglyceride levels and glucose metabolism. These results suggest that 

HIV in the current study population is not associated with a pro-inflammatory environment as indicated by TNF-α, 

or may be more pronounced in terms of other well-established biomarkers of inflammation in HIV such as IL-6 (not 

measured in the current study).[707–709] These results also indicate that the non-significant effects between viral 

load and other metabolic parameters such as glucose levels and triglyceride levels may have contribute to this 

finding. 

 

In PLWH, ART is mostly associated with a reversal of the pro-inflammatory effects of HIV [703,710] 

although positive associations between ART status and TNF-α have been reported and appears to be mostly 

related to ART-associated metabolic dysregulation.[710] Similar to the hsCRP results, no significant differences 

were observed in TNF-α levels between the unadjusted mean HIV-free, HIV+ART or HIV/noART in the current HV 

study population (Table 3.10.). In support of previously reported beneficial effects of ART,[703,710] an 18-month 

ART treatment period was inversely associated with TNF-α after adjusting for confounders (Table 3.15.). These 

findings indicate that ART treatment in the current study population may exhibit anti-inflammatory properties. Our 
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findings support those of Keating et al. (2012), who also reported an inverse association between ART treatment 

and TNF-α.[703] Alternatively, a study by Rönsholt et al. (2013), positively associated ART with TNF-α in PLWH 

with 12 years’ ART-experienced.[710] These findings show that ART may exhibit (cardioprotective) anti-

inflammatory properties when using TNF-α as a marker of effect in the current HIV study population, but that the 

pro-inflammatory effects, as shown by Rönsholt et al. (2013), may become more pronounced in prolonged ART 

treatment.[710]  

 

3.3.7.2.3. Effects of HIV and ART on VCAM-1 and ICAM-1. 

 

VCAM-1 and ICAM-1 are vascular adhesion molecules upregulated during the inflammatory response 

and play a role in the adhesion of immune cells to the vasculature.[129,298,711] VCAM-1 and ICAM-1 are also 

regarded as biomarkers of endothelial dysfunction, including in PLWH.[129,298,711–713] 

Reports show that HIV-infection is positively associated with VCAM-1 and ICAM-1 in untreated 

PLWH.[713–715] In contrast, HIV viral load and CD4 cell count were not significantly associated with ICAM-1 or 

VCAM-1 levels in the current study (Appendix A7, Table A7.4.). As adhesion molecules such as VCAM-1 and 

ICAM-1 are directly related to an inflammatory response, these results may be explained by the non-significant 

association between viral load and inflammatory markers (hsCRP and TNF-α) in the current study. 

 

On the other hand, reports on the effects of ART treatment on VCAM-1 and ICAM-1 are conflicting, with 

studies showing both downregulation [694]) and upregulation.[107,716] Supporting previous reports indicating 

beneficial  effects,[694,713–715] initiating ART was inversely associated with VCAM-1, but not ICAM-1 (Table 

3.14.) in the current study. As indicated by previous reports,[713–715] these results suggest that initiating ART 

may reverse the effects of HIV and exhibit anti-inflammatory (and potentially endothelioprotective) properties in the 

current study population.  It has been shown that VCAM-1 plays a major role in the early initiation of atherosclerosis 

(including preceding endothelial dysfunction), while the role of ICAM-1 becomes more prominent later [178] which 

may explain the non-significant association between initiating ART and ICAM-1 and a significant association 

between the longer 18-month treatment period and ICAM-1. 

In support of the previous statement, the unadjusted median ICAM-1 level in HIV+ART was significantly 

lower than HIV-free at baseline (Table 3.10.) and an 18-month ART treatment period was inversely associated 

with ICAM-1 levels after adjustment for confounders (Table 3.15.). Findings in the current study support those of 

O’Halloran et al. (2015), who showed a reduction in the levels of ICAM-1 following 12 weeks of ART treatment.[694] 

The current findings also support Arildson et al. (2013) who reported an inverse association between ART and 

ICAM-1.[354] In contrast, Rönsholt et al. (2013), reported a positively associated ART an ICAM-1 in PLWH who 

were 12 years’ ART-experienced.[710] A study by Mosepele et al. (2018) also found that ART treatment (> 6 

months, PI-containing) was positively associated with ICAM-1 and VCAM-1 levels despite successful viral 

suppression.[712] Ninety-percent (90%) of the current HIV+ART study population was on PI-free first-line ART 
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treatment, with a mean of 124 weeks ART experience at baseline (Table 3.5.). This may explain the discrepancy 

between the findings of the current study and those of Rönsholt et al. (2013) [710] and Mosepele et al. (2018) 

[712]. 

 

These findings indicate that ART in the current study population may exhibit cardioprotective properties 

through its anti-inflammatory effect. The findings also suggest that the pro-inflammatory effects may become 

pronounced in long-term ART treatment, as observed by Rönsholt et al. (2013),[710] or in PI-containing ART 

treatment combination, as observed by Mosepele et al. (2018).[712]  

 

3.3.7.2.4. Effects of HIV and ART on p-selectin and e-selectin. 

 

P-selectin (produced by endothelial cells and platelets) and e-selectin (mostly produced by endothelial 

cells) are also vascular adhesion molecules upregulated during immune activation, and hence regarded as 

biomarkers of endothelial dysfunction.[301,717] As is the case with ICAM-1 and VCAM-1, HIV and ART have 

previously been associated with p-selectin and e-selectin. The pro-inflammatory effects of HIV-infection are 

accompanied by the upregulation of p-selectin and e-selectin, while reports on the effects of ART are often 

conflicting.[296,353,694,718]  

In the current study, no significant differences in the unadjusted mean e-selectin or p-selection levels 

were observed between HIV-free, HIV+ART and HIV/noART at baseline (Table 3.10.). After adjusting for 

confounding factors, no significant associations between viral load, CD4 cell count and initiating ART were 

observed (Appendix A7, Table A7.5. and Table A7.6.). As mentioned in the previous section, the non-significant 

association between circulating markers of inflammation (hsCRP and TNF-α) and viral load, CD4 cell count and 

initiating ART may account for this result.  

 

On the other hand, an 18-month ART treatment period was inversely associated with e-selectin, although 

p-selectin remained unaffected after adjusting for confounding factors (Table 3.15.). Similar to the current study, 

O’Halloran et al. (2015), reported  that ART reduced circulating markers of vascular cell adhesion (including p-

selectin) despite no significant ART-associated effects on hsCRP at 12 weeks following ART treatment.[694] 

Current findings also support those of Kristoffersen et al. (2009) who investigated the effects of ART and found 

that 14 months of ART treatment was inversely associated with e-selectin (but not p-selectin) [300] and Francisci 

et al. (2009) who showed that ART was inversely associated with VCAM-1, while p-selectin also remained 

unaffected.[353]  

In support of the findings reported in the previous section, these results further support the notion that 

ART exhibits anti-inflammatory (and endothelioprotective) properties in the current study population, but that the 

detrimental effects of ART may become more pronounced after long-term ART treatment as reported by Mosepele 

et al. (2018) Rönsholt et al. (2013.[710,712]  
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3.3.7.2.5. Effects of HIV and ART on VEGF. 

 

VEGF, also a biomarker of endothelial function, is a well-known mediator of vascular growth 

(angiogenesis and neovascularisation) and is upregulated during the vascular inflammatory response to initiate 

vascular repair.[182] During prolonged immune activation (as observed in HIV), VEGF can promote endothelial 

dysfunction and atherosclerosis by causing thickening of vessel walls that result in arterial stiffness.[182,719–721] 

HIV and viral proteins such as Tat and Nef have been shown to directly activate endothelial cells and upregulate 

VEGF.[306,722–724] ART is associated with the reversal of the pro-inflammatory effects of HIV on VEGF [703] 

while ART-associated metabolic dysregulation (mostly not observed in the current study population) has been 

shown to promote the pro-atherosclerotic effects of VEGF.[725] In contrast, direct ART-associated cytotoxic effects 

on the vasculature has also been shown to inhibit vascular growth.[726]  

Although not significantly different, trends in the median VEGF levels between HIV-free (90 pg/ml), 

HIV+ART (70 pg/ml) and HIV/noART (56 pg/ml) indicate that HIV status may lean toward a reduced pro-vascular 

growth status in the current study population (Table 3.10.). A large data range and a skewed data distribution may 

have contributed to the non-significant differences between the groups. Nonetheless, after adjusting for 

confounders, the current study could not find an association between viral load or CD4 cell count and VEGF. 

(Appendix A7, Table A7.7.). Findings in the current study do not support those of Sporer et al. (2004), who showed 

that VEGF expression was significantly higher in PLWH without treatment compared to HIV with treatment.[727] 

Nyagol et al. (2008) furthermore showed that HIV proteins Tat can mimic VEGF and was associated with micro-

vessel density [724] and associated with HIV-related malignancies.[728,729] These results suggest that HIV is not 

associated with endothelial dysfunction (when using VEGF as a biomarker) in the current study population. The 

non-significant association between viral activity and inflammation (hsCRP and TNF-α) in the current study may 

also account for these results.  

In support of the pro-atherosclerotic effects of ART previously reported,[725] initiating ART was positively 

associated with VEGF after adjusting for confounding factors (Table 3.14.) although an 18-month ART treatment 

period was not significantly associated (Table 3.15.). These results suggest that initiating ART may upregulate 

VEGF, which may potentially suggest a pro-endothelial dysfunction state. On the other hand, based on the non-

significant trends observed at baseline between groups, these results may also indicate reversal of the effects of 

HIV.  

 

3.3.7.2.6. Effects of HIV and ART on PAI-1. 

 

PAI-1 is an inhibitor of t-PA activator and associated with thrombolysis, and regarded as a biomarker of 

endothelial function.[730,731] Studies indicate that PAI-1 levels are increased in HIV with or without ART and 

closely associated with HIV and ART-dependent metabolic dysfunction.[517,732]  
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In contrast to these reports, our findings show that PAI-1 levels were significantly lower in HIV+ART and 

HIV/noART compared to HIV-free at baseline (Table 3.10.), but after adjusting for confounders, initiating ART was 

positively associated with PAI-1 (Table 3.14.). An 18-month ART treatment period was, however, not significantly 

associated (Appendix A7, Table A7.8.). Our findings support those of Jeremiah et al. (2012) who reported that 

initiating ART was associated with a progressive increase in PAI-1 after a 3-month period on ART.[733] Our 

findings also support Francisci et al. (2009), who found that ART did not affect PAI-1 levels over the course of a 

longer 24-months ART treatment period.[353]  

It appears that PAI-1 is also closely associated with HIV and ART associated metabolic dysregulation. 

This is supported by a study by Masiá et al. (2010) who found a strong positive association between PAI-1 and 

ART-associated lipodystrophy.[734] Also, Yki-Järvinen et al. (2003) showed that PLWH on ART with lipodystrophy 

had high levels of PAI-1 compared to HIV-free control and compared to HIV+ART without lipodystrophy.[735] 

Wirunsawanya et al. (2017) furthermore reported that PAI-1 was a predictor of insulin senility in PLWH.[732] 

As ART was not associated with major metabolic abnormalities in the current study population, our results 

suggest that initiating ART may be associated with cardioprotective effects through lowering of PAI-1 levels.[736] 

These results furthermore suggest that HIV and ART may contribute to endothelial dysfunction through PAI-1 in 

PLWH who exhibited HIV- and ART-associated metabolic dysfunction.  

 

3.3.7.3. Effects of HIV and ART on retinal calibre. 

 

At baseline no significant differences were observed in CRAE between HIV-free, HIV+ART and 

HIV/noART (Table 3.11.). Also, no significant associations between CRAE and viral load, CD4 cell count, initiating 

ART or an 18-month ART treatment period were observed after adjusting for confounding factors (Appendix A8, 

Table A8.1.). These results suggest that HIV and ART in the current study population are not associated with 

retinal arteriolar morphological changes.  

A similar study by Pathia et al. (2012) investigated the longitudinal effects of HIV and ART in a study 

population from the Cape Town region with a similar mean age (40 years) and CD4 cell count (468 cells/µL) to the 

current study.[65] The mean CRAE in HIV-free control (161.34±17.38 µm) and HIV study group (163.67±17.69 

µm) in the study by Pathia et al. (2012) appeared to be slightly higher, but comparable to those observed in the 

current study.[65] In contrast to the current study, HIV and ART duration was associated with a narrower CRAE in 

the study by Pathia et al. (2012).[65] The authors attributed their findings to HIV and ART associated 

inflammation.[65] Narrowing of CRAE is independently associated with atherosclerosis.[737] It has been shown 

that ART often presents with pro-atherosclerotic effects in retinal vessels.[738] HIV and ART was not associated 

with increased inflammation in the current study. On the contrary, ART exhibited anti-inflammatory effects and may 

account for discrepancies between the findings of the current study and those of previous reports. Nonetheless, 

these results suggest that HIV and ART are not associated with cardiovascular risk when using CRAE as a marker 

of effect in the current study population.  
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On the other hand, atherosclerosis and inflammation are associated with higher CRVE values.[739,740] 

HIV+ART presented with a significantly lower CRVE compared to HIV-free and HIV/noART (Table 3.11.). After 

adjusting for confounding factors, initiating ART and on-going ART treatment were inversely associated with CRVE 

(Table 3.14. and Table 3.15.). The unadjusted mean CRVE in HIV-free (270.81±18.98 µm) and HIV on ART 

(267.77±18.21 µm) groups in the study by Pathia et al. (2012) appeared to be higher than those observed in the 

current study.[65] Although the mean CRVE in the study by Pathia et al. (2012) appeared to be significantly higher, 

they were also significantly different, as reported in the current study.[65] HIV and ART duration were not 

significantly associated with CRVE in the study by Pathia et al. (2012).[65] Pathia et al. (2012) postulated that age-

related changes in retinal venular calibre (narrowing) may manifest earlier in PLWH.[65] Narrowing of retinal 

venules due to age has previously been reported elsewhere.[65,741,742] As initiating ART and an 18 month ART 

treatment period were both inversely associated with CRVE, these results suggest that ART may exhibit an aging 

effect on retinal venules. Decreased levels of adhesion molecules, as observed in the current study, are 

conventionally interpreted as an anti-atherosclerotic and cardioprotective, the effect of upregulation of PAI-1 and 

reduced vascular adhesion molecules is also strongly associated with apoptosis via caspase 3 signaling [743] and 

deep-vein thrombosis [744,745]. This may explain the significant ART-associated effects on retinal venules, while 

no effects on arterioles were observed. Alternatively, a more plausible explanation for the inverse association 

between ART and CRAE may involve the anti-inflammatory properties observed with ART in the current study 

population.  

 

At baseline, AVR did not significantly differ between HIV-free, HIV+ART and HIV/noART (Appendix A8, 

Table A8.1.). Following regression analysis viral load was inversely associated with AVR and an 18-month ART 

treatment period was positively associated with AVR (Table 3.15. and Table 3.16.). Gangaputra et al. (2012) 

reported that a decrease of 0.1 in AVR was associated with a 12% increase in risk for mortality in their ART treated 

HIV population.[746] These results show that HIV in current study population may increase the mortality risk, while 

ART reduces the risk. The results underscore the protective effects ART exhibited in the current study population. 

 

3.3.7.4. Effects of HIV and ART on flow-mediated dilatation. 

 

The adverse effects of HIV on endothelial function is well described in literature [654,747,748] while 

reports on the effects of ART on endothelial function are often conflicting.[748–751] Variability in the reports may 

be related to differences in ART combinations, treatment durations and cardiometabolic profiles.[308,748,752] 

 

HIV and ART in the current study did not affect baseline brachial artery diameter. No significant 

differences in baseline brachial artery diameter were observed between HIV-free, HIV+ART or HIV/noART (Table 

3.12.). Also, no significant associations were observed between baseline brachial artery diameter and viral load, 
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CD4 cell count, initiating ART or on-going ART treatment period (Appendix A9, Table A9.1.). HIV and ART have 

previously been implicated in autonomic dysregulation, which may manifest as vasoconstriction (reduced baseline 

artery diameter), increased blood pressure and heart rate variability, but neither HIV, nor ART, was associated 

with any of these effects.[753–755] Our baseline brachial artery diameter findings reflect similar trends to those 

observed with CRAE and suggest that HIV and ART did not affect basal arterial function. 

 

At baseline the unadjusted median % FMD did not significantly differ between HIV-free and HIV/noART 

(Table 3.12.), but after adjusting for confounding factors, viral load was inversely associated with % FMD and CD4 

cell count was positively associated with % FMD (Table 3.17.). In line with previous reports showing that HIV may 

exert detrimental effects on endothelial function,[654,747,748] this finding shows that HIV in the current study 

population is associated with endothelial dysfunction and contributes to increased cardiovascular risk.  

On the other hand, ART exhibited cardioprotective effects at baseline as indicated by % FMD. HIV+ART 

presented with a significant higher unadjusted median % FMD compared to HIV-free and HIV/noART at baseline 

(Table 3.12.), but, surprisingly, an 18-month ART treatment period was negatively associated with % FMD after 

adjusting for confounding factors, (Table 3.15.) while initiating ART was not significantly associated with % FMD 

(Appendix A9, Table A9.2.). These results show that ART is associated with endothelial dysfunction when using 

FMD as a marker of effect in the current study population.  

Our findings support those of various other reports. In a meta-analysis (57 articles) by Sun et al. (2015), 

it was reported that HIV and ART were associated with decreased % FMD.[748] Oliviero et al. (2009), who showed 

that HIV without treatment was associated with endothelial dysfunction compared to healthy controls and that viral 

load was inversely associated with endothelial dysfunction.[747] Similarly, Hsue et al. (2009) showed that ART 

was associated with endothelial dysfunction as indicated by % FMD.[756] Other studies reported the same 

effect.[654,757]  

 

A study by Da Silva et al. (2011) described a possible mechanism that may underlie HIV-associated 

endothelial dysfunction. They showed that HIV infection is inversely associated with % FMD through inhibition of 

endothelial progenitor cells and upregulation of microparticles (released from apoptotic cells) independent of other 

cardiovascular risk factors such as inflammation.[752] These findings by Da Silva et al. (2011) suggest that HIV 

can inhibit endothelial cell turn-over and inhibit vascular responses to immune activation.[752] These findings may 

also explain the general lack of response in terms circulating serum biomarkers to increasing viral load (viral load 

was not significantly associated with any circulating markers of endothelial dysfunction) in the current study. These 

findings also indicate that HIV may contribute to endothelial cell senescence as previously reported by various 

other studies.[758–760] 

 

The detrimental effects of ART on endothelial function (as measured with the FMD procedure), despite 

mostly beneficial effects, suggest that ART may have direct mechanistic involvement in eNOS activity and/or the 
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release of NO from endothelial cells during a stress response. A review by Wang et al. (2009) evaluated the effects 

of ART on endothelial function [761] and described possible mechanisms, including oxidative stress, activation of 

MAP-kinases and down-regulation of eNOS expression.[761,762] A study by Kappert et al. (2006) showed that 

ART can also inhibit the endothelial cell healing process.[763] In terms of vascular reactivity (rat aortic ring model), 

Jiang et al. (2006) showed that ART increases mitochondrial ROS production resulting in cellular dysfunction.[764] 

ART has also been shown to induce the release of microparticles PLWH.[765] Microparticles are released from 

cells in response to cytokines, thrombin, endotoxins and hypoxia, and is furthermore associated with 

apoptosis.[750,751] These findings suggest that ART may have contributed to poor recovery following a stress 

response such as reactive hyperaemia, despite exhibiting anti-inflammatory properties and that these effects may 

be due to ART-associated oxidative stress. 

 

Almost all participants (90%) that enrolled in the HIV+ART study group in the current study were on a PI-

free first-line ART treatment combination (Table 3.5.). The detrimental effects of PIs in endothelial function and 

cardiovascular health are well-recognised in literature.[267,634,726,766] Compared to PIs, NRTIs and NNRTIs are 

usually associated with an improved cardiovascular risk profile, but have also been implicated in increased 

cardiovascular risk compared to HIV-free as shown by the large D:A:D study.[767,768] A commonly prescribed 

first-line ART fixed-dose combination drug in SA contains two NRTIs (emtricitabine and tenofovir) and an NNRTI 

(efavirenz). A study by Faltz et al. (2017) linked efavirenz, but not emtricitabine and tenofovir, directly to endothelial 

dysfunction through an impaired response to acetylcholine (impaired relaxation), promoting oxidative stress, 

dysregulating PARP-activity, decreased cell viability and increasing apoptosis and necrosis.[769] A study by Gupta 

et al. (2012) also showed that a 12-month ART treatment period was associated with endothelial dysfunction as 

indicated by % FMD and that efavirenz-containing treatment combinations exhibited worse effects compared to 

PI-containing regimens on endothelial function despite a good response to ART in terms of CD4 cell count, viral 

load, HDL cholesterol and VCAM-1.[338] These results suggest that emtricitabine may have directly promoted 

endothelial dysfunction in the current study population. The differential effects of individual ART drugs need more 

investigation to develop safer ART combination. 

 

3.4. Summary of main findings. 

 

The aim of Sub-study 1 was to investigate if endothelial function is a marker of effects of HIV and ART in 

a study population residing in the Cape Town area. Markers of vascular and endothelial function in the current 

study included circulating serum biomarkers (markers of inflammation, vascular adhesion and thrombosis), blood 

pressure (SBP and DBP), retinal vessel diameters (CRAE and CRVE) and flow, mediated dilatation (baseline 

brachial artery diameter and % FMD). Results in the current study show that HIV (as indicated by viral load), and 

ART (as indicated by initiation ART and an 18-month ART treatment period) were significantly associated with 

various markers of endothelial function and cardiometabolic effects (Table 3.18.).  
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Table 3.18. Summary of main findings of Sub-study 1. 

Variables a Viral 

Load 

CD4 cell 

count 

Initiating 

ART 

18 months 

ART 
V

as
cu

la
r 

E
nd

ot
he

lia
l a

nd
 C

ar
di

ov
as

cu
la

r 

Biomarkers     

    Inflammation  ↑  ↓ 

    Vascular adhesion   ↓ ↓ 

    Vascular growth   ↑  

    Thrombolysis   ↑  

Blood pressure     

Heart rate     

Retinal vessel 

diameter 

    

    CRAE     

    CRVE ↑  ↓ ↓ 

    AVR ↓   ↑ 

FMD     

    Baseline brachial 

diameter 

    

    % FMD ↓ ↑  ↓ 

C
ar

di
om

et
ab

ol
ic

 

Body composition ↓ ↑  ↓ 

Lipid metabolism     

    Total cholesterol ↓  ↑ ↑ 

    HDL cholesterol ↓  ↑ ↑ 

    LDL cholesterol ↓   ↓ 

    Triglycerides     

Glucose metabolism  ↑   

Haemoglobin ↓    

Liver function (GGT) ↓  ↑  

Kidney function    ↓ 

a Symbols: ↑: Positive association; ↓: Negative association. Empty cells indicate no significant association.  

3.5. Strengths and limitations specific to Sub-study 1. 

 

There are a number strengths and limitations in Sub-study 1. The overall power of the statistical analyses 

performed on the HIV-free and HIV+ART data was relatively strong given the reasonable population sizes, which 
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allowed for the adjustment of various confounding factors. The ability to adopt a repeated measures design for 

these study groups may also have contributed to statistical power. Sub-study 1 included a wide range of 

cardiometabolic and cardiovascular endpoints, which contributed to a better understanding in terms of the effects 

of HIV and ART. The current study was also able to recruit HIV participants that were ART-naïve at their baseline 

visit before ART commenced. This allowed to evaluate the pre- vs. post ART (“initiating ART”) effects. Results from 

the HIV-free groups also provided insight into the cardiovascular risk profile of a relatively comparable sample of 

the general population in the recruitment area.  

The current study cohort was relatively young. The results indicate that HIV and ART, to some extent, 

may promote the development of premature CVD, since several markers of cardiovascular risk in general, and 

vascular endothelial impairment in particular, were already observed in our study population. The effects of HIV 

and ART may become more prominent as the study population ages, and effects not observed during the time of 

data collection in the current study (e.g. the effects viral load on circulating biomarkers) may become more 

pronounced over time. The findings of the current study therefore underscore the importance of early screening, 

detection and management of early warning signs that may later contribute to CVD in PLWH.   

Unfortunately, the relative proportions of gender and ethnicity varied between groups, which did pose a 

statistical challenge. Only 16% (n = 17) of HIV-free participants were male, compared to 34% (n = 51) males in 

HIV+ART. Almost all participants (98%) in HIV-free consisted of participants of mixed ancestry compared to 72% 

in HIV+ART. Therefore, results for HIV-free mostly pertain to a population of mixed ancestry as ethnicity was not 

included as a confounder in this group. Due to large differences and uneven distribution in population 

characteristics it was decided to rather perform within-group statistical analysis and compare trends between 

groups as opposed to between-group analysis where controlling for possible confounders such as ethnicity and 

gender would not have been included in the model.  

The total HIV population (HIV+ART and HIV/noART combined) was used to explore the effects of viral 

replication as indicated by viral load and immune restoration as indicated by CD4 cell count. The rationale for 

including all HIV-infected participants in this analysis was to have a larger range and thus a better contrast 

(high/low) in viral load. Unfortunately, this also meant that the results do not exclusively represent the effects of 

viral load (without the presence of ART). Concomitantly, the exclusive effects of ART (without the presence of viral 

replication) could not be presented. A larger HIV/noART study population would have allowed for more reliable 

adjustment of these confounders. This needs to be considered for future research and publications. 

Analysis for circulating biomarkers of vascular function were not performed for all participants (due to cost 

implications and budget constraints), which limited the scope of adjustment possible in the regression analyses. 

Also, a small population size in HIV/noART restricted statistical power while very limited adjustment could be 

performed for this group. Adjusting for smoking status based on whether a participant smokes or not may also not 

have been ideal. For future studies, the inclusion of a biomarker such as cotinine as a marker of tobacco exposure 

is recommended. This will also allow to account for second-hand smoke exposure. Sub-study 1 also did not include 
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markers of oxidative stress. This should be considered in future studies as it would provide a clearer picture in 

terms of role that oxidative stress played in disease mechanisms.  

Adherence to ART in the HIV+ART population over the 18-months period could not be verified 

independently and was therefore not accounted for in the results. Also, the exact duration of HIV-infection remained 

unknown to a large extent in the current study population and could not be accounted for in regression analysis. 

Almost all participants (90%) were on first-line ART and therefore adjustment for first-line and second-line ART 

treatment was not performed in regression analysis. However, the results reported in the current study mostly 

reflected the effects of SA’s recommended first-line ART treatment combination at the time of undertaking the 

study. These results thus provide a better understanding of the effects of a first-line treatment combination in a SA 

population. It has furthermore been shown that the health effects of different ART drugs, drug classes and 

treatment combinations can vary greatly. Results for the Sub-study 1 were discussed in terms of general ART 

effects as reported in the literature. Drug-specific effects needs to be considered in future research. Despite this, 

the ART findings presented in this study are novel insofar as it concerns the specific use of a once daily, fixed-

dose combination ART drug, for which limited data are available in the literature. 

 

Despite some limitations, results in the current study show that endothelial function is a marker of the 

effects of HIV and ART in our study population. HIV exhibited detrimental effects on cardiometabolic and vascular 

function. On the other hand, ART results were mixed showing beneficial and detrimental effects. Overall, this study 

provides a novel contribution to existing knowledge on the cardiovascular, metabolic and vascular endothelial 

effects of HIV-infection and first line ART in the context of a South African population. We are not aware of any 

previous studies that have investigated such a wide range of cardiovascular-related endpoints in a South African 

study population using a longitudinal study design. The findings of the present study underscore the relevance of 

cardiovascular disease in PLWH, and that more research in terms of the effects of HIV and ART on cardiovascular 

health is urgently needed. 
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4. Chapter 4: Results and discussion: Air pollution (Sub-study 2). 

4.1. Baseline population characteristics. 

4.1.1. Baseline demographic, lifestyle, socioeconomic and living environment characteristics. 

 

A total number of 77 female and 14 male participants, all of whom were also recruited as HIV-free control 

participants for Sub-study 1, were enrolled into Sub-study 2. Of these, 16 female participants who completed their 

baseline visits did not consent to continue with the 6-month follow-up visit and were excluded from the study. 

Furthermore, only 6 male participants consented for follow-up visits. Due to their low enrollment rate, males were 

subsequently excluded from Sub-study 2. Therefore, this chapter will present the data collected from a total number 

of 61 female participants who successfully completed both baseline and follow-up assessment visits. 

 

The study population had a mean age of 42.5 years (mean ± SD: 42.5 ± 13.4 years) at baseline, and 

most participants were smokers (n = 42, 69%) with a smoking frequency less than 20 cigarettes per day. Twenty-

eight (34%) participants indicated that they had consumed alcohol in the preceding 12 months at a frequency of 

less than 8 days per month. Most participants slept 6 to 9 hours at night (n = 37 (61%)). About half of the participants 

were unemployed (n = 30 (49%)). All participants used electricity as their main source of energy at home and only 

3 participants (5%) indicated that they lived next to a main road (Table 4.1.).  
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Table 4.1. Baseline demographic, lifestyle, socioeconomic and living environment characteristics. 

Variable Baseline a 

Age (years) 42.5 ± 13.4 

Lifestyle  

Smoking status   

    Non-smoker, n (%) 19 (31%) 

    Current smoker, n (%) 42 (69%) 

        Smoking frequency (<20 cigarettes/day) 42 (69%) 

Alcohol consumption (Last 12 months: Yes, n (%)) 28 (34%) 

<8 days/month, n (%) 28 (34%) 

Hours of sleep per night  

   ≤6 hours, n (%) 8 (13%) 

   6 to ≤9 hours, n (%) 37 (61%) 

   >9 hours. n (%) 16 (25%) 

Socioeconomic  

Employment   

    Unemployed, n (%)  30 (49%) 

    Part-time, n (%) 25 (41%) 

    Full-time, n (%) 6 (10%) 

Living Environment  

Main source of energy  

    Electricity, n (%) 61 (100%) 

Living next to a main road  

    Yes, n (%) 2 (3%) 

    No, n (%) 59 (97%) 

a Data presented as mean ± SD or n (%) for n = 61 women. 

 

4.1.2. Baseline body composition characteristics. 

 

Most participants presented with elevated body mass measurements (overweight n = 11 (18%) and obese 

n = 22 (36%)) while the mean ± SD BMI was in the overweight range (27.7 ± 8.4 kg/m2) according to WHO 

criteria.[532] Most participants also had an elevated waist circumference (n = 36 (59%), but elevated waist-to-hip 

ratios were less frequently observed (n = 24 (39%)) (Table 4.2.).  
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Table 4.2. Baseline body composition population characteristics. 

Variable Baseline a  

Body Mass Index (BMI), kg/m2 27.7 ± 8.4 

    Weight (kg) 68.7 ± 22.7 

    Height (cm) 157.0 ± 6.9 

Body composition classification according to BMI b  

    Underweight (BMI < 18.5 kg/m2), n (%) 6 (10%) 

    Normal weight (BMI 18.5 to < 25 kg/m2), n (%) 22 (36%) 

    Overweight (BMI 25 to < 30 kg/m2), n (%) 11 (18%) 

    Obese (BMI > 30 kg/m2), n (%) 22 (36%) 

Waist-to-hip ratio  0.85 ± 0.08 

    Waist circumference (cm) 88.0 ± 17.1 

       Elevated (>80 cm), n (%) b 36 (59%) 

a Data presented as mean ± SD or n (%) for n = 61 women. b According to WHO guidelines.[531,532] 

 

4.1.3. Baseline fasting lipid, glucose and HbA1c measurements. 

 

The mean fasting total-, HDL-, and LDL-cholesterol and triglyceride levels fell within the normal range 

although 30% (n = 18) of the participants presented with elevated LDL cholesterol (Table 4.3.).  
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Table 4.3. Baseline fasting lipid, glucose and HbA1c measurements. 

Variable Baseline a 

Lipid Profile  

Total Cholesterol (mmol/L) 4.43 ± 0.84 

    Elevated (≥5 mmol/L), n (%) b 14 (23%) 

High-Density Lipoprotein Cholesterol (HDL) (mmol/L) 1.38 ± 0.37 

    Decreased (≤1.2 mmol/L), n (%) b 10 (16%) 

Low-Density Lipoprotein Cholesterol (LDL) (mmol/L) 2.54 ± 0.84 

    Elevated (≥3 mmol/L), n (%) b 18 (30%) 

Triglycerides (mmol/L) b 1.11 ± 0.65 

    Elevated (≥1.7 mmol/L), n (%) 6 (10%) 

Glucose Homeostasis  

Fasting glucose (mmol/L) 5.11 ± 1.93  

    Elevated (≥5.6 mmol/L), n (%) c 4 (7%) 

Glycated Haemoglobin (HbA1c) (%) 5.43 ± 0.99 

    Elevated (≥5.9%), n (%) c 10 (16%) 

a Data presented as mean ± SD or n (%) for n = 61 women. b According to the Heart and Stroke Foundation of 

South Africa, NHLS and the US National Institutes of Health (NIH) guidelines.[540,546–548] c According to The 

Heart and Stroke Foundation of South Africa guidelines.[546,553–555] 

 

4.1.4. Baseline Hb, GGT and eGRF measurements. 

 

The mean baseline values for Hb, GGT and eGFR fell within the normal range. Twenty-five percent (n = 

15 (25%)) of the study participants had elevated GGT levels (Table 4.4.). All linear mixed model regression analysis 

for the urine metabolite 3+4MHA were adjusted for urine creatinine. 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



106 | P a g e  

 

Table 4.4. Baseline Hb, GGT, urine creatinine and eGFR measurements. 

Variable Baseline a 

Haemoglobin (Hb)  

Haemoglobin (g/dL) 13.42 ± 1.22 

    Decreased (<12.0 g/dL), n (%) b 7 (11%) 

Liver Function  

γ-Glutamyl transferase (U/L)  41.42 ± 22.44 

    Elevated (≥40 U/L), n (%) c 15 (25%) 

Kidney Function  

Estimated glomeration filtration rate (mL/minute/1.73 m3) 103.43 ± 19.14 

    Decreased (< 90 mL/minute/1.73 m3), n (%) d 13 (21%) 

a Data presented as mean ± SD or n (%) for n = 61 women. b According to WHO guidelines.[561] c According to 

NHLS standards.[563] d According to information from [582,583]. 

 

4.1.5. Baseline LTL, mtDNA content and % DNA methylation measurements. 

 

Baseline population characteristics for LTL, mtDNA and % DNA methylation are reported in Table 4.5. 

 

Table 4.5. Baseline genetic markers. 

Variable Baseline a 

Leukocyte telomere length (T/S ratio d) b  0.98 (0.58 to 1.55)  

Mitochondrial DNA content b, e 1.05 (0.29 to 2.39) 

% DNA methylation (%) c, f 4.36 (3.31 to 4.95) 

a Data presented as median (range) for b n = 57 and c n = 47 women.  d Telomere repeated copy number / single 

gene copy number ratio (T/S ratio) according to methodology previously described [596] e mtDNA content relative 

to nuclear DNA copy number according to methodology previously described.[595] f Expressed as a 5mdC/2dC 

ratio according to methodology previously described.[593] 

 

Baseline age was inversely correlated with LTL (r = -0.30; p = 0.025; Figure 4.1a.) and a positive 

correlation between baseline and follow-up LTL was achieved (r = 0.70; p < 0.001; Figure 4.1b.). 
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Figure. 4.1a and 4.1b. a. Spearman’s Rho correlation between age (years) and LTL (T/S Ratio) at baseline. A 

trend line with 95% CI was indicated. Four DNA samples at baseline did not yield sufficient DNA content for LTL 

determination. b. Spearman’s Rho correlation between LTL (T/S Ratio) at baseline and follow-up. A trend line with 

95% CI was indicated. Three samples at baseline and 6 at follow-up did not yield sufficient DNA for LTL 

quantification. Fifty-two samples had both baseline and follow-up measurements available. 

 

4.1.6. Baseline blood pressure and heart rate measurements. 

 

The mean SBP and DBP values fell within the normal clinical range, although 25% of participants (n = 

15) were hypertensive according to WHO and South African Hypertension Society guidelines (SBP >140 mmHg 

or DBP of >90 mmHg) (Table 4.6.).[604] 

 

Table 4.6. Baseline blood pressure and heart rate measurements. 

Variable Baseline a 

Systolic Blood Pressure (mmHg) 122.5 ± 19.9 

    Elevated (>140 mmHg), n (%) b 11 (18%) 

Diastolic Blood pressure (mmHg) 84.1±12.0 

    Elevated (>90 mmHg), n (%) b 16 (26%) 

Hypertension (SBP >140 mmHg or DBP >90 mmHg) b  

    Yes, n (%)  15 (25%) 

    No, n (%) 46 (75%) 

Heart Rate (bpm) 71.6 ± 10.3 

a Data presented as mean ± SD or n (%) for n = 61 women. b According to WHO and South African Hypertension 

Society guidelines guidelines.[533,604] 
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4.1.7. Baseline vascular endothelial biomarker measurements. 

 

More than half of participants presented with increased levels of systemic inflammation as indicated by 

hsCRP (n = 35 (57%)) (Table 4.7.). 

 

Table 4.7. Baseline levels for circulating biomarkers of vascular endothelial function / dysfunction. 

Variable Baseline a 

Markers of inflammation  

High-Sensitivity C-Reactive Protein (mg/L) b 6.3 (0.2 to 37.1) 

     Elevated (>3mg/L), n (%) d 35 (57%) 

Tumour necrosis factor-alpha (TNF-α) (pg/ml) c 23.8 ± 3.9  

Markers of vascular adhesion  

Vascular cell adhesion molecule 1 (VCAM-1) (ng/ml) c 728 (429 to 2036) 

Intercellular adhesion molecule (ICAM-1) (ng/ml) c 363 (50 to 1344) 

Endothelial-leukocyte adhesion molecule (E-selectin) (ng/ml) c 37.1 ± 13.4 

Endothelial-Platelet adhesion molecule (P-selectin) (ng/ml) c 38.5 ±13.4 

Marker of vascular growth  

Vascular endothelial growth factor-A (VEGF) (pg/ml) c 97.5 (23.7 to 414.5) 

Marker of thrombolysis  

Plasminogen activator inhibitor-1 (PAI-1) (ng/ml) c 103 ± 37.1 

a Data presented as mean ± SD, median (range) or n (%) for b n = 57 and c n = 36 women. d According to the cut-

off value associated with increased cardiovascular risk.[534]. 

 

4.1.8. Baseline retinal microvascular calibres. 

 

Fifty-eight good quality images were obtained for vessel calibre determination at baseline. The baseline 

mean ± SD for vessel calibre parameters are reported in Table 4.8.  

 

Table 4.8. Baseline retinal vessel caliber characteristics. 

Vessel calibre Baseline a 

Central retinal arteriolar equivalent (CRAE) (μm) 157.9 ± 16.4 

Central retinal venular equivalent (CRVE) (μm) 238.4 ± 20.1 

CRAE/CRVE ratio (AVR) 0.66 ± 0.06 

a Data presented as mean ± SD for n = 58 women. 
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4.1.9. Baseline flow-mediated dilatation measurements. 

 

Baseline FMD measurements were successfully completed for 58 women. Baseline FMD characteristics 

are reported in Table 4.9.  

 

Table 4.9. Baseline FMD variable outcomes. 

FMD parameters Baseline a 

Baseline (pre-ischaemia) brachial artery diameter (mm) 3.22 ± 0.69 

% Flow-mediated dilatation (%) 6.17 ± 4.45 

a Data presented as mean ± SD for n = 58 women. 

 

4.2. Air Pollution Exposure. 

4.2.1. NO2 and BTEX exposure measurements at baseline and follow-up. 

 

The mean NO2 (p = 0.003) and median benzene (p = 0.045), ethyl-benzene (p = 0.042), m+p-xylene (p = 

0.019) and o-xylene (p =0.014) concentrations were significantly higher at the baseline assessment visit compared 

to the 6-month follow-up visit. No significant differences were observed in toluene (p = 0.199) concentration and 

temperature (p = 0.598) (Table 4.10.).  

 

Table 4.10. Personal NO2, BTEX and temperature exposure measurements at baseline and follow-up assessment 

visits. 

Variable  Baseline a Follow-up a Combined b 

 Mean ± SD / 

Median (Range) 

Mean ± SD / 

Median (Range) 

Mean / 

Median  

Range  IQR 

NO2 (µg/m³) c 13.6 ± 4.8 10.6 ± 4.7** 12.1 4.0 to 25.4  7.0 

Benzene (µg/m³) d 3.9 (0.7 to 14.2) 2.2 (0.5 to 9.3)* 2.7 0.5 to 14.2  3.3 

Toluene (µg/m³) d 22.1 (5.6 to 189) 18.0 (3.7 to 284) 19.8 3.7 to 284  30.0 

Ethyl-benzene (µg/m³) d 2.8 (1.1 to 34.4) 2.3 (0.7 to 21.4)*  2.7 0.6 to 34.4  3.8 

m+p-xylene c (µg/m³) d 9.2 (3.4 to 117.4) 7.5 (2.0 to 74.8)* 8.4 2.0 to 43.8  3.8 

o-xylene c (µg/m³) d 3.2 (1.2 to 43.8) 2.7 (0.7 to 24.7)* 3.0 0.7 to 43.8  3.8 

Temperature (°C) e 21.6 ± 3.2 21.9 ± 2.7 21.7 15 to 27.9  4.4 

a Data presented as mean ± SD or median (range). Values represent the mean or median for the 7-day period 

prior to the assessment visit. b Baseline and follow-up data combined. c Lower limit of detection (LOD): 0.2 µg/m³, 

n = 60 and 61. d LOD for BTEX: 0.05, 0.01, 0.01, and 0.01 µg/m3, respectively, n = 56 and 57. e Represents the 

average 7-day recorded temperatures for all 30-minute interval temperature recordings for each participant for the 
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7 days prior to the assessment visit (n = 60 and 61 for baseline and follow-up). * p < 0.05 vs. Baseline. ** p < 0.01 

vs. Baseline. 

 

All BTEX concentrations were positively correlated and inversely correlated with temperature (Table 

4.11.).  

 

Table 4.11. Spearman’s rho correlation coefficients (r) between temperature and BTEX exposure concentrations. 

Variable a Benzene Toluene 
Ethyl-

benzene 

m+p-

Xylene 
o-Xylene 

Temperature (°C)  -0.329*** -0.344*** -0.258** -0.281** -0.263** 

Benzene (µg/m³) c  0.461** 0.585** 0.595** 0.589** 

Toluene (µg/m³) c   0.652** 0.658** 0.667** 

Ethyl-benzene (µg/m³) c    0.983** 0.972** 

m+p-Xylene (µg/m³) c     0.989* 

a Baseline and follow-up visits combined, n = 111 to 112. Significance: * p < 0.05. ** p < 0.01. *** p < 0.001. 

 

Seasonal participant recruitment (cold season vs. warm season) was unevenly distributed between 

baseline and follow-up visits (Chi-square test: (n = 37 vs. 24) vs. (n = 24 vs. 37); p = 0.029). Stratifying all personal 

NO2 and BTEX exposure concentrations according to a warmer (September to February) and a colder season 

(March to August), significantly higher (p < 0.001) exposure concentrations were observed during the colder 

season vs. warmer season (Figure 4.2.).  
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Figure 4.2. NO2 and BTEX exposure concentrations stratified according to warm season and cold season. NO2 

(Independent Student t-test; n = 60 and 61): Mean ± SD 8.7±3.4 vs. 15.4 ± 4.0 µg/m³. BTEX (Mann-Whitney U-

test; n = 58 and 55) median (25-75% IQR): Benzene 1.6 (1.0 to 2.8) vs. 4.4 (2.7 to 5.5) µg/m; Toluene 14.2.1 (6.8 

to 30.7) vs. 28.3 (15.3 to 55.24) µg/m³; Ethyl-benzene 1.7 (1.2 to 2.7) vs. 3.5 (2.7 to 8.8) µg/m³; m+p-Xylene 5.1 

(3.8 to 8.7) vs. 11.47 (8.3 to 30.1) µg/m³; o-Xylene 1.28 (0.4 to 2.5) vs. 4.2 (3.0 to 12.7) µg/m³. ***p < 0.001. 

 

4.2.2. Urinary markers of BTEX exposure at baseline and follow-up assessment visits. 

 

Urinary markers for BTEX exposure did not differ significantly between baseline and follow-up visits 

(Wilcoxon signed rank test: p > 0.05). Less than half of PMA (baseline and follow-up n = 10 and 6) and MU (baseline 

and follow-up n = 14 and 20) sample concentrations were above the lower limit of detection (LOD) and were 

excluded from further analysis (Table 4.12.).  
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Table 4.12. Urinary concentrations of BTEX exposure markers at baseline and follow-up visits. 

Variable Baseline a, b Follow-up a, b Combined 

Mean ± SD / Median 

(Range) 

Mean ± SD / 

Median (Range) 

Median Range IQR 

Urinary metabolites of BTEX 

HPMA (µg/ml) c 1.69 (92 to 12.8) 1.8 (0.12 to 12.6) 1.7 92 to 12.8 3.2 

PMA (ng/ml) d 0.05 (0.05 to 0.34) 0.05 (0.05 to 2.50) 0.05 0.05 to 2.5 0.01 

MU (ng/ml) e 62.5 (62.5 to 498) 62.5 (62.5 to 595) 62.5 62.5 to 595 97.3 

BMA (ng/ml) f 14.7 (2.5 to 588.0) 14.3 (2.5 to 699.0) 14.3 2.5 to 699 34.3 

3+4MHA (µg/ml)g 1.06 (0.03 to 9.5) 0.85 (0.05 to 32)  0.925 0.03 to 32 1.38 

 a Data presented as median (range). b Values of samples that were below the lower limit of detection (LOD) were 

replaced by LOD/2. c Samples with concentrations above LOD (>80 ng/ml): Baseline/follow-up n = 61/61. d Samples 

with concentrations above LOD (>0.09 ng/ml): Baseline/follow-up n = 10/6. e Samples with concentrations above 

LOD (>125 ng/mL): Baseline/follow-up n = 14/20. f Samples with concentrations above LOD (>5 ng/ml): 

Baseline/follow-up n = 46/45. g Samples with concentrations above LOD (>100 ng/ml): Baseline/follow-up n = 

60/58. 

 

The urinary marker 3+4MHA was positively correlated with all BTEX exposure concentrations and 

inversely correlated with temperature and was therefore considered the most prominent urinary marker for BTEX 

exposure (Table 4.13).  

 

Table 4.13. Spearman’s Rho correlations coefficients (r) for NO2, BTEX, temperature and urinary markers of BTEX 

exposure. 

Urinary markers a Temp. Benzene Toluene Ethyl-benzene m+p-Xylene o-Xylene 

 HPMA (ng/ml) -0.113 0.186* -0.020 -0.002 0.023 0.017 

 BMA (ng/ml) 0.100 -0.070 0.120 -0.023 -0.018 -0.005 

 3+4MHA (ng/ml) -0.200* 0.341*** 0.219* 0.192* 0.215* 0.210* 

a Baseline and follow-up data combined, n = 111 to 121. Significance: * p < 0.005. ** p < 0.01. *** p < 0.001. 

 

4.2.3. Relationship between exposure and smoking, employment and hours of sleep at night.  

 

Baseline ambient NO2 and BTEX exposure concentrations did not differ across smoking status, but the 

urinary marker 3+4MHA (p = 0.010) was significantly higher in smokers than non-smokers (Table 4.14.).  
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Table 4.14. NO2, BTEX and 3+4MHA according to smoking status. 

Variable a Current smoker  Non-smoker 

NO2 (µg/m³) 13.6 ± 5.1 13.4 ± 5.1 

Benzene (µg/m³) 4.1 (0.7 to 12.6) 2.8 (0.9 to 14.2) 

Toluene (µg/m³) 24.6 (5.6 to 173.1) 25.5 (8.3 to 189.1) 

Ethyl-Benzene (µg/m³) 2.8 (1.1 to 34.4) 2.8 (1.5 to 19.4) 

m+p-Xylene (µg/m³) 9.3 (3.4 to 117.3) 8.8 (4.5 to 75.2) 

o-Xylene (µg/m³) 3.3 (1.2 to 43.8) 3.2 (1.6 to 20.5) 

Urinary metabolite   

    3+4MHA (ng/mL) 1268 (31.8 to 9512) 405 (50 to 4192) b 

a Data presented as mean ± SD or median (range). Smoking vs. non-smoking: b Mann-Whitney U-test (3+4MHA: 

n = 42 and 19): p = 0.010. 

 

Baseline ambient NO2 exposure concentrations were significantly higher in the part-time employed 

participant group (p = 0.000) and full-time employed (p = 0.042) compared to the unemployed study population 

while toluene exposure was significantly higher in the group that was full-time employed compared to the 

unemployed group (p = 0.033) (Table 4.15.). 

 

Table 4.15. NO2, BTEX and 3+4MHA according to employment status. 

Variable a Unemployed Part-time 

Employed 

Full-time 

Employed 

NO2 (µg/m³) 11.4 ± 4.8  16.6 ± 3.3 b 11.8 ± 4.8 b 

Benzene (µg/m³) 2.7 (0.7 to 7.8) 4.4 (1.6 to 8.3)  2.6 (0.9 to 14.1) 

Toluene (µg/m³) 16.0 (5.6 to 189.1) 30.1 (7.7 to 162.4) 58.5 (20.3 to 

173.1) c 

Ethyl-Benzene 

(µg/m³) 

2.4 (1.4 to 34.4) 5.0 (1.4 to 26.2) 6.2 (1.5 to 28.2)  

m+p-Xylene (µg/m³) 7.3 (3.7 to 117.3) 16.6 (3.7 to 82.0) 19.5 (5.1 to 91.5)  

o-Xylene (µg/m³) 2.8 (1.2 to 43.8) 5.8 (1.2 to 29.2) 6.9 (1.7 to 34.8)  

Urinary metabolite    

    3+4MHA (ng/mL) 1384 (50 to 9512) 1170 (32 to 5436) 984 (335 to 2548)   

a Data presented as mean ± SD or median (range). One-way ANOVA with Bonferroni post hoc across employment 

status: b (n = 30) vs. unemployed (n = 25; p = 0.000) and vs. full-time employed (n = 6; p 0.042); c (n = 6) vs. 

unemployed (n = 22; p = 0.033). 
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Baseline ambient NO2, BTEX or 3+4MHA concentrations were not significantly associated (Kruskal-Wallis 

test for between groups) with self-reported hours of sleep at night (Table 4.16.). 

 

Table 4.16. NO2, BTEX and urinary 3+4MHA according to hours of sleep at night. 

Variable a Hours of sleep 

≤6 hours  6 to ≤9 hours >9 hours 

NO2 (µg/m³) 10.4 ± 6.14  14.2 ± 4.7 13.7 ± 4.1 

Benzene (µg/m³) 4.0 (0.8 to 5.5) 3.5 (0.7 to 14.1) 2.3 (1.0 to 8.0) 

Toluene (µg/m³) 37.1 (5.6 to 141.9) 28.3 (7.2 to 173.2) 14.7 (6.0 to 189.1) 

Ethyl-Benzene (µg/m³) 2.4 (1.1 to 18.3) 3.5 (1.1 to 34.4) 2.6 (1.2 to 19.4) 

m+p-Xylene (µg/m³) 7.2 (3.6 to 58.8) 11.2 (3.7 to 117.3) 8.3 (3.4 to 75.2) 

o-Xylene (µg/m³) 2.9 (1.2 to 27.6) 3.9 (1.2 to 43.8) 2.9 (1.4 to 20.5) 

Urinary metabolite     

    3+4MHA (ng/mL) 1172 (31.8 to 4065) 1170 (50 to 5914) 818 (169 to 9512) 

a Data presented as mean ± SD or median (range). 

 

4.3. Estimated effects of NO2, BTEX and 3+4MHA. 

 

Only significant findings are presented in the following sections. For full data tables containing all effect 

sizes, please refer to Appendix B1 to B9: B1. Effects of exposure on body composition (Page 235); B2. Effects of 

exposure on lipid and glucose levels (Page 236 to 238); B3. Effects of exposure on Hb. (Page 239); B4. Effects of 

exposure on GGT (Page 240); B5. Effects of exposure variable outcomes on eGRF (Page 241). B6. Effects of 

exposure on LTL, mtDNA content and % DNA methylation (Page 242 to 244); B7. Effects of exposure on blood 

pressure and heart rate (Page 245 and 246); B8. Effects of exposure on circulating markers of vascular endothelial 

function (Page 247 and 250); B9. Effects of exposure on retinal vessel calibre (Page 251 and 252); B10. Effects 

of exposure on flow-mediated vasodilation parameters (Page 253).  

 

4.3.1. Estimated effects of NO2. 

 

Each IQR increment increase in NO2 (7.0 µg/m³) was significantly associated with molecular aging (LTL 

(-12.9%), raised blood pressure (SBP (3.41 mmHg) and DBP (2.48 mmHg)), decreased vascular endothelial 

growth factor (VEGF (-18.9%), decreased CRVE (-2.93 µm), and decreased baseline brachial artery diameter (-

0.29 µm) (Table 4.17.). 
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Table 4.17. Estimated effects of NO2 (µg/m³). 

Exposure 
(%) Difference/ 

Difference a 

95% CI 
p-values 

Lower Upper 

Genetic markers     

        Leukocyte telomere length (LTL) b -12.9% -20.8 -4.1 0.001 

Blood pressure c     

    Systolic Blood Pressure (SBP) (mmHg) 3.41 0.04 6.77 0.047 

    Diastolic Blood Pressure (DBP) (mmHg) 2.48 -0.01 4.97 0.050 

Biomarkers d     

    Vascular endothelial growth factor (VEGF) (pg/ml) -18.9% -30.7 -5.2 0.010 

Retinal vessel calibre e     

    Central retinal venular equivalent (CRVE) (µm) -2.93 -5.83 -0.03 0.048 

Flow-mediated vasodilation e     

    Baseline brachial diameter (mm) -0.29 -0.50 -0.079 0.005 

a Estimates expressed as a difference or % difference for each IQR (7.0 µg/m³) increment change in NO2. b Model 

adjusted for age, BMI, smoking and employment status. c Model adjusted for age, BMI, temperature, date of clinical 

visit, smoking, hours of sleep at night and employment status. d Model adjusted for age, BMI, SBP, temperature 

and smoking status. e Model adjusted for age, BMI, SBP, date of clinical visit, temperature, smoking status and 

employment status. 

 

4.3.2. Estimated effects of BTEX. 

4.3.2.1. Effects of benzene. 

 

Each IQR increment increase in benzene (3.3 µg/m³) was significantly associated with elevated fasting 

glucose levels (0.34 mmol/L) molecular aging (LTL (-8.5%)) and decreased p-selectin (-5.8 pg/ml) (Table 4.18.). 
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Table 4.18. Estimated effects of benzene (µg/m³). 

Exposure 
(%) Difference/ 

Difference a 

95% CI 
p-values 

Lower Upper 

Glucose levels b     

    Fasting glucose (mmol/L)  0.34 0.02 0.65 0.037 

Genetic markers     

    Leukocyte telomere length (LTL) c -8.5% -15.7 -0.75 0.005 

Biomarkers d     

    P-selectin (pg/ml) -5.8 -9.33 -2.26 0.002 

a Estimates expressed as a difference or % difference for each IQR (3.3 µg/m³) increment change in benzene. b 

Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. c Model 

adjusted for age, BMI, smoking and employment status. d Model adjusted for adjusted for age, BMI, SBP, 

temperature and smoking status.  

 

4.3.2.2. Estimated effects of toluene. 

 

Each IQR increment increase (30.0 µg/m³) in toluene was significantly associated with raised cholesterol 

(Total cholesterol (0.10 mmol/L), HDL cholesterol (3.8 mmol/L) and LDL cholesterol (11.1 mmol/L)), decreased 

eGRF (-7.82 ml/minute/1.73 m3), increased mtDNA content (7.6%) and increased PA1 (7.2 ng/ml) (Table 4.19.). 
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Table 4.19. Estimated effects of toluene (µg/m³). 

Exposure 
% Difference/ 

Difference a 

95% CI 
p-values 

Lower Upper 

Lipid levels b     

Total cholesterol (mmol/L)  0.10 0.04 0.17 0.003 

High-density lipoprotein cholesterol (HDL) (mmol/L)   3.8 0.2 7.4 0.040 

Low-density lipoprotein cholesterol (LDL) (mmol/L)   11.1 1.9 20.2 0.018 

Kidney function     

Estimated glomeration filtration rate (eGRF) 

(ml/minute/1.73 m3) 
-7.82 -15.32 -0.439 0.038 

Genetic markers c     

Mitochondrial DNA content (mtDNA) 7.6% 0.2 15.5 0.044 

Biomarkers d     

Plasminogen activator inhibitor (PA1-1) (ng/ml) 7.2 2.3 12.1 0.005 

a Estimates expressed as a difference or % difference for each IQR (30.0 µg/m³) increment change in toluene. b 

Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. c Model 

adjusted for age, BMI, smoking and employment status. d Model adjusted for age, BMI, SBP, temperature and 

smoking status. 

 

4.3.2.3. Estimated effects of ethyl-benzene. 

 

Each IQR increment increase in ethyl-benzene (3.8 µg/m³) was significantly associated with decreased 

VCAM-1 (-4.9%) and increased PA1 (9.1 ng/ml) (Table 4.20.)  

 

Table 4.20. Estimated effects of ethyl-benzene (µg/m³). 

Exposure 
(%) Difference/ 

Difference a 

95% CI 
p-values 

Lower Upper 

Biomarkers c     

    Vascular cell adhesion molecule 1 (VCAM-1) (ng/ml) -4.9% -8.6 -0.9 0.018 

    Plasminogen activator inhibitor-1 (PA1-1) (ng/ml) 9.1 2.4 15.7 0.008 

a Estimates expressed as a difference or % difference for each IQR (3.8 µg/m³) increment change in ethyl-benzene. 

b Model adjusted for age, BMI, SBP, DBP, smoking and employment status. 
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4.3.2.4. Estimated effects of m+p-xylene. 

 

Each IQR increment increase in m+p-xylene (3.8 µg/m³) was significantly associated increased VCAM-1 

(-1.47%) and increased PA1 (3.08 ng/ml) (Table 4.21.). 

 

Table 4.21. Estimated effects of m+p-xylene (µg/m³). 

Exposure 
(%) Difference/ 

Difference a 

95% CI 
p-values 

Lower Upper 

Biomarkers b     

   Vascular cell adhesion molecule 1 (VCAM-1) (ng/ml) -1.47% -2.68 -0.25 0.020 

   Plasminogen activator inhibitor-1 (PA1-1) (ng/ml) 3.08 1.09 5.08 0.003 

a Estimates expressed as a difference or % difference for each IQR (3.8 µg/m³) increment change in m+p-xylene. 

b Model adjusted for age, BMI, SBP, temperature and smoking status.  

 

4.3.2.5. Estimated effects of o-xylene. 

 

Each IQR increment increase in o-xylene (3.8 µg/m³) was significantly associated with DBP (0.82 mmHg), 

increased VCAM-1 (-4.5%) and increased PA1 (11.7 ng/ml) (Table 4.22.)  

 

Table 4.22. Estimated effects of o-xylene (µg/m³). 

Exposure 
(%) Difference/ 

Difference a 

95% CI 
p-values 

Lower Upper 

Blood pressure b     

     Diastolic Blood Pressure (DBP) (mmHg) 0.82 0.01 1.63 0.029 

Biomarkers c     

    Vascular cell adhesion molecule 1 (VCAM-1) (ng/ml) -4.5 % -8.4 -0.4 0.033 

    Plasminogen activator inhibitor-1 (PA1-1) (ng/ml) 11.7 5.2 18.1 0.001 

a Estimates expressed as a difference or % difference for each IQR (3.8 µg/m³) increment change in o-xylene. b 

Model adjusted for age, BMI, temperature, date of clinical visit, smoking, hours of sleep at night and employment 

status. c Model adjusted for age, BMI, SBP, temperature and smoking status.  

 

4.3.3. Estimated effects of 3+4MHA. 

 

Each IQR increment increase in 3+4MHA (1380 ng/ml) was significantly associated with increased LDL 

cholesterol (37.461), PA1 (12.9 ng/ml), and decreased % FMD (-0.40%) (Table 4.23.). 
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Table 4.23. Estimated effects of 3+4MHA (ng/ml). 

Exposure Difference a 
95% CI 

p-values 
Lower Upper 

Lipid levels b     

    Low-density lipoprotein cholesterol (LDL) (mmol/L)   37.461 2.642 72.280 0.035 

Biomarkers c     

   Plasminogen activator inhibitor-1 (PA1-1) (ng/ml) 12.9 3.2 22.5 0.010 

Flow-mediated vasodilation d     

    % Flow-mediated dilatation (% FMD) -0.40 -1.28 0.48 0.003 

a Estimates expressed as a difference for each IQR (1380 ng/ml) increment change in 3+4MHA. b Model adjusted 

for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. c Model adjusted for adjusted 

for age, BMI, SBP, temperature, urine creatinine and smoking status. d Model adjusted for age, BMI, SBP, date of 

clinical visit, temperature, urine creatinine, brachial diameter, smoking status and employment status. 

 

4.4. Discussion of Sub-study 2 results. 

 

The main aim of Sub-study 2 was to measure personal NO2 and BTEX air pollution exposure levels in the 

study population and determine whether endothelial function was a marker of effect. The current study found that 

air pollution was associated with various markers of endothelial function. 

 

Summary of main personal exposure findings: 

• Observation of relatively low personal NO2 and BTEX exposure concentration in the current study (Table 

4.10.), 

• Observation of significant higher exposure concentrations during the colder season than the warmer season 

(Figure 4.2.), and 

• Observation of significantly higher NO2 and toluene exposure concentrations in employed participants (Table 

4.15.). 

 

Despite the relatively low exposure concentrations, various significantly associations between NO2 (Table 

4.17.), BTEX (including urinary 3+4MHA) (Table 4.18 to 4.23.) and markers of cardiovascular risk were observed:  

 

• Cardiometabolic dysregulation: Increased fasting glucose levels (benzene) and increased cholesterol levels 

(toluene: total cholesterol, HDL and LDL; 3+4MHA: LDL). 

• Decreased kidney filtration: eGFR (Toluene). 

• Molecular aging and oxidative stress: Decreased LTL (NO2 and benzene) and increased mtDNA content 

(toluene). 
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Associations with markers of endothelial function: 

• Decreased vascular growth and adhesion, and increased blood coagulation/clot formation: Decreased VEGF 

(NO2), p-selectin (benzene) and VCAM-1 (ethyl-benzene-, m+p-xylene- and o-xylene) and increased PAI-1 

(Toluene, ethyl-benzene-, m+p-xylene, o-xylene and 3+4MHA). 

• Reduced vascular calibres and increased blood pressure: Decreased baseline brachial artery diameter and 

CRVE (NO2) and increased SBP (NO2) and DBP (NO2 and o-xylene). 

• Impaired brachial artery endothelial function: Reduced % FMD (3+4MHA). 

 

4.4.1. Personal exposure levels in perspective. 

4.4.1.1. NO2 exposure concentrations compared to other reported levels. 

 

The mean personal NO2 exposure concentration observed in the current study was significantly lower 

than the recommended WHO cut-off value for annual mean exposure (NO2: <40 µg/m³ [36]), while none of the 

individual NO2 exposure values in the participants (Range: 4.0 to 25.4 µg/m³) exceeded that of the WHO 

recommended cut-off level for NO2 exposure (Figure 4.3.). 
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Figure 4.3. Personal NO2 exposure concentrations observed in the current study population compared to 

previously reported ambient NO2 concentrations in the Cape Town area and other parts of the Western Cape 

Province, South Africa. Description: 1. Mean personal NO2 exposure of the current study: Baseline and follow-up 

combined. 2. Cape Town City Hall (Annual outdoor mean; ~24 km from Bellville).[770] 3. Table View (Annual 

outdoor mean; ~18 km from Belville).[770] 4. Plattekloof (Annual outdoor mean; ~9 km from Bellville).[770] 5. 

Bothasig (Annual outdoor mean; ~12 km from Bellville).[770] 6. Goodwood (Annual outdoor mean; ~10 km from 

Belville).[770] 7. Khayelitsha (Annual outdoor mean; ~25 km from Bellville).[770] 8. to 10. Khayelitsha, Marconi-

Beam (~14 km from Bellville) and Masiphumulele (~54 km from Bellville) combined outdoor annual mean (8) and 

mean for the warm season (9) and cold season (10) (1-week measurements  (n = 106) in each season with passive 

diffusion samplers placed inside residence).[771] 11. and 13. Mbekweni (11: indoor 2-week measurements for n 

= 747 women. 13: Indoor 24-hour measurements (n > 1000); ~41 km from Bellville).[441,772] 12. and 14. Newman 

(11: indoor 2-week measurements for n = 747 women. 13: Indoor 24-hour measurements (n > 1000); ~42 km from 

Bellville).[441,772] 15. Stellenbosch (32 km from Bellville).[770] 16. Malmesbury (~60 km from Bellville).[770] 17. 

George (~414 km from Bellville).[770] 18. Hermanus (~118 km from Bellville).[770] Bellville is a suburb of Cape 

Town, and used as the closest geographic reference point from where the majority of the present study participants 

were recruited. Figure designed by the author of this dissertation based on information from [441,770,772]. 

 

Compared to other reported ambient NO2 concentrations in the Cape Town area (Figure 4.3.), the mean 

NO2 exposure concentration in the current study was comparable with the reported annual outdoor mean 

(Centralised air quality monitoring station) of Cape Town City Centre (City Hall: ~14 µg/m³), within the lower range 
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of other Cape Town areas (Minimum: Table View: ~10 µg/m³; Maximum: Goodwood: ~22 µg/m³) and lower than 

other cities/town in the Western Cape Province (Stellenbosch and Hermanus: 35 µg/m³) for the year 2017.[770]  

The personal NO2 exposure concentrations measured in the current study are comparable to previously 

reported annual outdoor mean values (Plattekloof: ~9 km from Bellville and Bothasig ~12 km from Bellville).[770] 

Bellville is a suburb of Cape Town, and used as the closest geographic reference point from where the majority of 

the present study participants were recruited. 

Compared to published reported indoor exposure concentrations from the Western Cape Province, our 

personal NO2 exposure concentration appeared to be slightly higher (Maximum: Mbekweni ~8 µg/m³)[441,772] ; 

however, it needs to be considered that the measurements in the present study were reflective of both indoor and 

outdoor exposure. 

Personal mean NO2 exposure concentrations in the current study were comparable with outdoor 

concentrations from Tshwane (~12 µg/m³ [773]), but lower than concentrations reported from outdoor monitoring 

sites in Durban (Minimum: ~21 µg/m³; Maximum ~42 µg/m³ [774,775]) (Figure 4.4.). 
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Figure 4.4. Personal NO2 exposure concentrations in the current study compared to reported ambient NO2 

concentrations from other parts of South African, Africa and a global estimated mean. Description: 1. Mean 

personal NO2 exposure of the current study: Baseline and follow-up combined. 2. Outdoor annual mean according 

to air quality systems data.[773] 3. Seven outdoor monitoring sites (n = 129 measurements).[774] 4. Durban North 

outdoor monitoring sites near schools (24-hour measurements).[775] 5. Durban South outdoor monitoring sites 

near schools (24-hour measurements).[775] 6. Estimated annual mean for the African region using land-use 

regression analysis of n = 5220 unique monitors globally.[778] 7. Outdoor monitoring station (n = 15) over 4 

years.[779] 8. Las Palmas de Gran Canaria (outdoor traffic related 24-hour measurements).[780] 9. Santa Cruz 

de Tenerife (outdoor traffic related 24-hour measurements).[780] 10. Kampala and Ninja (2-week outdoor 

measurements in commercial and residential land use areas).[435] 11. and 12. Bagamoyo homes (n = 100 24-

hour sampling measurements) (11: indoor kitchen and 12: outdoor control).[434] 13. to 17. Rural residences levels 

according to fuel sources and seasons (n = 17215 indoor and outdoor measurements) (13: Wood, 14: Cow dung, 

15: Crop residues, 16: Dry season, 17: Wet Season).[436] 18. to 21. Kinshasa at 4 road intersections (n = 425 

outdoor measurements).[781] 22. Estimated annual global mean using land-use regression analysis and n = 5220 

unique monitors globally.[778]. Figure designed by the author of this dissertation based on information from 

[434,435,773–775,778–781]. 

 

NO2 exposure concentrations of the current study were also lower than the reported African (~24 µg/m³) 

and global (~22 µg/m³) estimated means [778] and various other reported indoor and outdoor NO2 exposure 

concentrations from the African region (Minimum: Bagamoyo (Tanzania) outdoor residential concentration ~13 

µg/m³; Maximum: Democratic Republic of Congo outdoor roadside concentrations [434,781]).  
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These findings indicate that personal NO2 exposure concentrations observed in the current study are 

comparable to the annual reported outdoor mean concentrations from the Cape Town area rather than indoor and 

outdoor NO2 exposure concentrations reported from other areas in the Western-Cape Province.[441,770,772] The 

findings of the present study also suggest that the personal NO2 exposure and associated cardiovascular effects 

were observed at relatively low NO2 exposure concentrations compared to WHO air quality guideline levels and 

other parts of the Western Cape Province and African regions.[36]  

 

According to National Environmental Management Act: Air Quality Act of 2005, air pollution levels need 

to be monitored,[776] but evaluating the data from the Western Cape State of Air Quality Management Report 

(State of Air Quality Management 2017) and reports from other parts of SA,[777] large gaps in continuous data 

recording/monitoring were observed and may influence the accuracy of the data presented in reports, public access 

to air quality information and the evaluation of aherence to levels sepcified in the National Environmental 

Management Act: Air Quality Act of 2005.[429,770]  

 

4.4.1.2. BTEX exposure concentrations compared to other reported levels. 

 

Median personal benzene (2.7 µg/m³; range: 0.5 to 14.2 µg/m³) and toluene (19.8 µg/m³; Range: 3.7 to 

284 µg/m³) exposure concentrations in the current study (baseline and follow-up combined) were lower than WHO 

recommended standards (Benzene: 5 µg/m³ annual mean; Toluene (260 µg/m³) weekly mean.).[36,782] 

Compared to the annual outdoor mean benzene exposure concentrations reported by the Western Cape 

Government for 2017, the median benzene exposure concentration in the current study was higher than the 

Southern Cape town of Mossel Bay (~1.2 µg/m³), but lower than other Cape Town areas such as Potsdam (~5.2 

µg/m³) and the Foreshore area of Cape Town CBD (~5.1 µg/m), the latter which exceeded WHO recommended 

standards for benzene.[770] Annual outdoor benzene, ethylbenzene and xylene exposure concentrations were not 

reported by the Western Cape Government (Figure 4.5.).[770]   

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



125 | P a g e  

 

 

 

Figure 4.5a. to 4.5e. Personal BTEX exposure concentrations in the current study compared to reported ambient 

concentrations from other parts of the Western Cape Province [770] and the ranges reported in a review [34] on 

the health effects of BTEX. Description: a. Exposure concentrations for benzene. b. Exposure concentrations for 

toluene. c. Exposure concentrations for ethyl-benzene. d. Exposure concentrations for m+p-xylene. e. Exposure 

concentrations for o-xylene. f. Median exposure concentrations observed during the current study. g. Western 

Cape Government reported ambient exposure concentrations from centralised air quality monitoring stations in the 
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Western Cape Province (Mossel Bay: ~370 km from Belville; Potsdam: ~18 km from Belville; Foreshore: ~21 km 

from Bellville).[770] h. Indoor/home exposure concentrations reported in a birth cohort study (Paarl District: 

Mbekweni: ~41 km from Bellville; Newman ~42 km from Bellville.).[441,772] i. BTEX exposure concentration 

ranges (High and low exposure concentrations) of reports featured in a review by Bolden et al. (2015) on the health 

effects of BTEX exposure (stratified according to personal, indoor and outdoor exposure concentrations).[770] j. 

WHO recommended annual benzene exposure standard.[34] k. WHO recommended weekly toluene exposure 

standard.[782] Bellville is a suburb of Cape Town, and used as the closest geographic reference point from where 

the majority of the present study participants were recruited. Figure designed by the author of this dissertation 

based on information from [34,441,770,772]. 

 

All median BTEX exposure concentrations measured in the present study were higher than reported 

indoor mean BTEX exposure concentrations for Mbekweni and Newman (combined mean).[441,772] A review by 

Bolden et al. (2015) on the health effects of BTEX exposure stratified previously published BTEX exposure 

concentrations according to personal, indoor and outdoor exposure concentrations.[770] All median BTEX 

exposure concentrations of the current study fell within these personal, indoor and outdoor exposure ranges 

(minimum and maximum).[770]  

 

The above findings indicate that although relatively low personal BTEX exposure concentrations were 

observed in the current study, other areas close to the city of Cape Town already exceed annual WHO 

recommended standards for benzene. It can be speculated that the BTEX-associated effects observed in the 

current study may be even more pronounced in these highly polluted areas. Also, BTEX exposure concentrations 

appear to be infrequently measured in SA and the African region. South Africa is also the only country in Africa 

that has both a national air quality act and also air quality standards.[421,776] More research in terms of BTEX 

exposure concentrations and their health effects in the African region/context is urgently needed.  

 

4.4.1.3. Seasonal and occupational trends of NO2 and BTEX exposure concentrations. 

 

Our NO2 and BEX exposure concentrations were significantly higher during the cold season compared to 

the warm season (Figure 4.2.). Seasonal variation in ambient NO2 and BTEX exposure concentrations have 

previously been reported to be higher in the colder season.[770,771] The 2017 State of Air Pollution Reports from 

the Western Cape Government also indicated increased air pollution concentrations during the colder season 

compared to warmer season.[770] Our findings in terms of seasonal NO2 exposure concentrations furthermore 

support findings by Saucy et al. (2018) who reported significantly higher exposure concentrations in the 

Khayelitsha, Marconi-Beam and Masiphumulele area during the colder season (~18 µg/m³) compared to the 

warmer season (~8 µg/m³).[771] Similar season trends for BTEX exposure concentrations observed in the current 
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study have previously been reported and is in part related to an increased in energy demand for heating 

purposes.[37,770,783–785]  

It has previously been shown that higher air pollution levels during the colder season are associated with 

increased cardiovascular risk.[786–788] These seasonal trends indicate that the NO2- and BTEX-associated health 

risk may be greater in the colder season than the warmer season in the Cape Town area. Determining the exact 

seasonal effects of exposure concentrations remain beyond the scope of the current study, but should be included 

in future studies.  

 

NO2 and toluene exposure concentrations in the current study were associated with employment (Table 

4.15.). The exact occupations of participants in the current study were not evaluated; however, it could be 

speculated that higher occupational exposure concentration may have played a role, as previously reported and 

most probably related to combustion process, chemical solvent/mixtures and poor air ventilation.[388,789–791] 

These results indicate that occupational exposure to NO2 and toluene may be regarded as a potential health risk 

factor for the employed participants in the study population. Occupational exposure to air pollution is poorly 

reported in SA.[418,791] More investigations related to occupation exposure to air pollution in the Cape Town area 

are needed.  

 

4.4.2. The effects of exposure concentrations on various markers of cardiovascular risk. 

 

The health effects of ambient air pollution are mostly attributable to small chemically reactive pollutant 

with pro-oxidative potentials [363,371,507,792]. Once translocated into the blood circulation, these air-pollutants 

mostly act as ROS and ultimately cause oxidative cellular/tissue damage and result in upregulation of the pro-

atherosclerotic inflammatory cascade in the vasculature.[793–795] Exposure concentrations in the current study 

were not significantly associated with markers of inflammation (hsCRP and TNF-α, Appendix Table B8.1. and 

Table B8.2.). On the contrary (albeit not significant), rather large estimated effects in the negative direction 

between all the measured exposure concentrations and hsCRP suggest exposure-associated suppression of 

systemic inflammation rather than immune activation may have been more pronounced.[796–798] It could also be 

speculated that exposure-associated oxidative stress or other possible routes of inflammation (not evaluated in the 

current study) may have played a role in findings observed.[375,797,799] More investigations with a more 

integrative panel of markers for oxidative stress and inflammation should be considered in future research.   

 

4.4.2.1. Exposure-associated cardio-metabolic dysregulation. 

 

Personal benzene exposure was positively associated with raised fasting glucose levels (Table 4.18.). 

These findings support  those of Brook et al. (2008) and Coogan et al. (2013) who demonstrated that exposure to 

traffic/combustion related air pollutants (Canada and USA) was associated with increased risk for developing 
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diabetes mellitus in women (Brook: 17% increase in odds ratio for developing diabetes mellitus; Coogan: incident 

rate ratio 1.25 (95% CI 1.07-1.46)) at exposure concentrations relatively lower and higher compared to the current 

study (~7.5 µg/m³ and ~23 µg/m³, respectively).[394,800] Brook et al. (2008) could not demonstrate the same 

significant effects in their male study population, and postulated that women, as represented by the current study 

population, are possibly more susceptible to the effects of air pollution on glucose metabolism compared to 

men.[800]  

The findings of the present study are in contrast those of others (Brook et al. (2008) and Coogan et al. 

(2013)), who showed an association between NOx exposure and increased risk for developing diabetes in 

women.[394,800] The current study could not demonstrate a significant association between NO2 exposure 

concentrations and fasting glucose levels. Furthermore, no significant associations were observed between 

exposure concentrations and HbA1c levels, a marker of long-term impaired glucose homeostasis (Appendix Table 

B2.6.). It is possible that the effects of chronic high-level NOx exposure, as observed in the study by Coogan et al. 

(10 years at ~23 µg/m³), may account for more pronounced effects compared to the current study (two 1-week 

measurements at ~12 µg/m³).[394]  

 

The mechanistic pathway through which benzene exposure may lead to increased fasting glucose levels 

(glucose intolerance) is not fully described, but the pro-inflammatory and pro-oxidative effects on pancreatic 

function and insulin receptors/signalling have both been implicated.[504,801–803] Bahadar et al. (2015), who 

investigated the effects of benzene and a benzene metabolite, hydroquinone, on the islets of Langerhans, showed 

that benzene exposed rats presented with increased higher fasting glucose levels compared to unexposed 

control.[804] Bahadar et al. (2015), furthermore showed that this effect was mediated, in part at least, through 

glucose 6-phospatase upregulation (phosphorylate glucose 6-phosphate resulting in phosphate and free 

glucose).[804] The metabolite, hydroquinone, was associated with decreased anti-oxidant capacity/defence and 

an increase in proteases associated with cellular death (caspase 3).[804] It has furthermore been shown by others 

that increased circulating reactive oxidants, such as air pollutants, activate c-Jun n-terminal and NF-κB 

(serine/threonine kinase cascade), and may result in phosphorylation of insulin receptor and the insulin receptor 

substrate proteins (associated with degradation of insulin reseptor-1).[805]  

 

Toluene was positively associated with total cholesterol, HDL and LDL cholesterol levels (Table 4.19.) 

and the urinary metabolite 3+4MHA (also considered a marker of toluene exposure [469]) was positively associated 

with increased LDL cholesterol in the current study (Table 4.23.). Toluene is a well-known lipophilic monocyclic 

aromatic hydrocarbon that is widely used as a solvent and thinner in household products and industrial process, 

ink, coatings and paint [481,806]). Increased exposure to BTEX, including toluene, is often linked to occupational 

risk factors [472,807,808] and may account, at least in part, for the association that was observed between toluene 

exposure and employment status (part-time) in the current study.  
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The effects of air pollution on serum lipid levels have previously been investigated and it has been shown 

that exposure to air pollution is generally associated with a dyslipideamic profile (raised total cholesterol and LDL 

with decreased HDL levels).[809–811] Metabolic dysregulation and the toxic effects of air pollution on major organ 

systems such as the liver, pancreas and kidney seem to mimic those observed in smokers as cigarette smoke 

contains numerous VOCs.[552,812] Findings in terms of HDL cholesterol appear to be more inconsistent with 

reports showing positive, negative and no associations with air pollution exposure.[810,811,813–816] Our results 

support findings by McGuinn at al. (2019) who investigated the effects of ultra-fine PM on serum lipid levels and 

found positive association between ultra-fine PM exposure and total cholesterol, total LDL cholesterol particle count 

(all subfractions combined) and total HDL cholesterol particle count (All sub-fractions combined), but additionally 

noted variable effects across HLD sub-fractions.[811]  

Our results do not support findings by Bell et all. (2017) who reported an inverse association between PM 

and total HDL cholesterol particle count, but also noted variable effects across HDL sub-fractions.[810] Kim et al. 

(2015) also found an inverse association between toluene exposure and HDL cholesterol.[806]  Kim et al. (2015) 

furthermore highlighted differential metabolic effects of toluene across gender and various nationalities of foreign 

workers in their study population that may in part explain discrepancies between various reports.[806]  

Also, compared to men, pre-menopausal women, typically present with higher HDL cholesterol levels due 

to increased oestrogen production.[817] With limited evidence, it has been postulated that air pollutants may also 

act as a xenoestrogen and have HDL raising effects in pre-menopausal women.[818,819] These effects may have 

played a role in the current study, but more investigation is needed.  

Despite the positive association between toluene and HDL cholesterol levels, increased HDL may not 

necessarily offer increased cardiovascular protection. It has also been shown that combustion related air pollutants 

may disrupt HDL’s cholesterol efflux capacity, and cause dysfunctional pro-oxidative and pro-inflammatory HDL 

molecules through oxidative modifications of either HDL’s protein and/or lipid sub-components.[490,814,820] As 

pointed out by Bell et al. (2017), the effects of air pollution on HDL have not been well documented in literature 

and needs further investigation.[810]  

 

4.4.2.2. Toluene associated adverse effect on kidney filtration. 

 

Toluene was inversely associated with kidney function as indicated by eGFR in the current study (Table 

4.19.). Combustion related air pollution, including toluene, has previously been associated with adverse effects on 

kidney function and eGFR.[821–826] Findings in the current study support those of Lue et al. (2013) who showed 

that higher exposure concentrations (living near a major roadway (50 m) vs. 1 km away from the roadway) was 

inversely associated with eGFR (-3.9 ml/min/1.73 m2 (95% CI 1.0 to 6.7 ml/min/1.73 m2); p = 0.007) in Boston, 

USA (n = 1103).[821]  

Toluene-specific nephrotoxicity has previously been investigated although mostly in animal models.[823] 

Meydan et al. (2016) injected male Wistar rats with a once-off 500 g/kg toluene dose.[823] After 14 days superoxide 
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dismutase  and catalase (anti-oxidant enzymes that catalyse the degradation of hydrogen peroxide to oxygen and 

water) were significantly lower in toluene treated rats compared to untreated control.[823] 

Histological/morphological analysis furthermore showed glomerular and tubular tissue damage.[823] Similar 

effects have also been reported in other animal studies evaluating the effects of toluene (gas exposure) on other 

organ tissues (decreased SOD in frontal cortex of rats [827]; decreased SOD and catalase in liver tissue) with 

toluene-associated lipid peroxidation as mediating factor in in observed oxidative tissue damage.[827,828] Other 

adverse effects associated with toluene-related nephrotoxicity reported elsewhere include metabolic acidosis, 

distal tubular renal acidosis, formation of renal stones, hypokalaemia, haematuria, proteinuria, and pyuria.[824–

826]  

 

4.4.2.3. Molecular aging. 

 

NO2 and benzene exposure concentrations were inversely associated with LTL (Table 4.17. and Table 

4.18.) while toluene was positively associated with mtDNA content (Table 4.19.). Findings in the current study are 

in line with the conclusions of a systematic review by Zhao et al. (2018), in which it was reported that the majority 

of papers reviewed had shown inverse associations between LTL and various air pollutants (n = 15 out of 19 

reports pertaining to LTL).[829] Findings of the current study furthermore support previous studies that investigated 

the acute and chronic effects at low exposure concentrations on telomere length.[383,830–834] These studies 

include students exposed to PAH,[832] traffic-related air pollution (proximity to main roads) in twins,[833] and PM2.5 

exposure in elderly participants (annual PM2.5) and (prenatal PM2.5 exposure) new-borns.[383,834] The BTEX-

specific findings of the current study are similar to those reported by Hoxha et al. (2009) who showed a negative 

association between short-term benzene (-6.4%) and toluene (-6.2%) exposure on LTL in office workers (referents) 

and traffic officers.[380] The current study could not confirm a significant association between toluene exposure 

and LTL, which may be explained by the lower toluene exposure levels in our study compared to those measured 

in the study by Hoxha et al. (2009).  

On the other hand, other studies reported positive associations between air pollution exposure and LTL 

(mostly high-level occupational-related exposure).[497,835,836] These studies include metal-rich PM exposure in 

steel workers,[497] high-level PM exposure in truck drivers [835] and PAH in asphalt pavers [836]. NO2-specific 

effects on LTL observed in the current study also do not support findings by Ward-Gaviness et al. (2016) who 

showed no significant association between NO2 and NOx exposure and LTL (land-use regression model) at NOx 

exposure concentrations lower (8.39 µg/m3; Augsburg, Germany) than the current study.[831] Higher NO2 

exposure concentrations observed in the current study compared to NOx levels observed by Ward-Gaviness et al. 

(2016) may account for these differences.[831]  

 

LTL findings presented in the current study were more representative of low-level exposure rather than 

high-level exposure. It has been postulated with limited evidence that chronic oxidative stress/damage most often 
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inversely associate with TLT at low exposure concentrations than high exposure concentrations[837–839], while 

acute inflammatory processes in highly exposed (short-term) individuals (as observed by Dioni et al. and Hou et 

al.) have been shown to upregulate leucocyte cell proliferation (clonal capacity) that may contribute to an acute 

increase in LTL.[829,840–842] It is thus possible that the pro-oxidative effects of low NO2 and benzene exposure 

concentrations observed in the current study contributed to advanced molecular aging on the level of LTL in our 

study population consisting of female participants. The study by Ward-Gaviness et al. (2016) highlights sex-specific 

differences and differences between traffic (combustion related pollutants) and non-traffic pollutants (PM) on 

epigenetic aging.[831] These differences need to be explored in the SA context. 

 

Toluene was positively associated with mtDNA content in the current study (Table 5.19.). mtDNA content 

is an established marker of oxidative stress as the mitochondria are one of the main sources and preferred targets 

of intracellular ROS.[843,844] As air pollutants are generally strong oxidants and pro-oxidative stimuli, positive 

associations between exposure to air pollution and mtDNA content are often reported in literature.[373,844,845] 

Reports also show that upregulation of mtDNA copy numbers in cells under oxidative stress is a response to cope 

with cellular respiratory demands in an attempt to maintain homeostasis and repair oxidative damage.[846–848] 

As is the case with LTL, studies also show that high- (inflammatory-associated) and low (oxidative stress-related) 

exposure concentrations or acute and chronic exposure periods may affect mtDNA content in opposite directions 

with low-level exposure upregulating cellular respiration while high-level exposure can block cellular respiration 

irreversibly.[849–852]  

 

Low-level toluene exposure, as observed in the current study, and its metabolites (epoxides) have 

previously been associated with genotoxicity.[853–855] An in vitro study by Revilla et al. (2007), investigated 

possible mechanisms by which toluene and xylene exposure contribute to mitochondrial toxicity.[856]  This study 

showed that toluene (at 0.5 to 2.5 mM exposure) and xylene (at 0.25 to 1 mM exposure) dissipate mitochondrial 

membrane potentials and Ca2+ release (mitochondrial uncoupling) with stimulation of state 4 respiration, but that 

2.5 to 5 mM exposure concentrations,  toluene and xylene induces state 3 respiration inhibition.[856]  At 0.1 to 1 

mM xylene exposure concentration resulted in a significant increase in ROS production and mitochondrial swelling, 

while 1 mM toluene and xylene exposure concentrations caused Ca2+-associated mitochondrial ATP depletion 

(66.3% and 40.3%, respectively).[856]  

Toluene-associated dyslipidaemia (associated with increased lipid peroxidation), also observed in the 

current study, has previously been implicated in genotoxicity (mitochondrial stress/damage).[857] The positive 

association between toluene and cholesterol levels in the current study suggest that that toluene associated 

metabolic dysregulation may also have been a mediating factor in toluene-associated mitochondrial toxicity in the 

current study. Positive, but borderline non-significant associations with relatively large estimated effects between 

mtDNA content and ethyl-benzene (p = 0.055), m+p-xylene (p = 0.053) and o-xylene (p = 0.063) exposure 
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concentrations were also observed in the current study and suggest possible underlying involvement (Appendix 

Table B6.4.) that may become more pronounced at higher exposure concentrations. 

 

Our findings are in contrast to those of other studies that demonstrated significant negative associations 

between benzene exposure and mtDNA content, with hyperglycaemia  (associated with benzene in the current 

study) as a possible mediating factor.[850,851,858,859] Positive associations between higher benzene exposure 

concentrations and mtDNA content (as observed by Carugno et al. (2012)) compared to the current study may 

have played a role in discrepancies between reports (69.9 µg/m3, 34.4 µg/m3 and 20 µg/m3).[850] 

 

4.4.2.4. Exposure-associated effects on biomarkers of vascular endothelial function. 

 

Personal NO2 exposure in the current study was inversely associated with VEGF levels (Table 4.17.). 

VEGF is a well know vascular signal transduction molecule that promotes the formation of blood vessels 

(vasculogenesis and angiogenesis) and promotes cell proliferation in the vascular wall.[182,183] It has also been 

shown than VEGF activates eNOS and thus stimulates the production of NO, while NO has been shown to induce 

VEGF synthase.[860–863] Expression of VEGF is also upregulated during the inflammatory cascade to help repair 

damaged vasculature/tissue.[864,865] As NO2 was not significantly associated with markers of inflammation 

(hsCRP or TNF-α (Table B7.1 and B7.2.)), NO2-associated oxidative effects on VEGF, may have been more 

prominent in the current study, but needs further investigation. Also, the significant inverse association between 

NO2 exposure concentrations and LTL, an indicator if molecular aging, suggests that reduced immune function 

may have been involved as previously described.[830,866–871] 

 

The reduction-oxidation (REDOX) reaction in which NO2 takes part and its relationship with NO indeed 

provides an attractive underlying candidate mechanistic pathway that could explain various findings observed in 

the current study. Once translocated into blood circulation, NO2 also acts as a ROS that can react with NO (Fenton 

reaction) to form various reactive nitrogen species such as peroxynitrite (ONOO-) and nitrous acid (HONO) 

resulting in nitrosative and oxidative stress and a reduction in bioavailability of NO.[793,795,872] Nitrosative stress, 

on the other hand, has also been implicated in immune suppression (through upregulation of anti-inflammatory 

cytokines such as TGFβ, IL-10 and IL-3/IL-13).[872] The NO2-associated reduction in NO bioavailability during 

these reactions/mechanisms may result in decreased expression of VEGF, decreased vasorelaxation and 

subsequently an increase in vascular tone/vasoconstriction.[793,795,872,873] These pathways may thus also 

account for the NO2-associated reduction in vessel diameters discussed later in the current chapter.[85,874]  

 

Benzene was inversely associated with p-selectin (Table 4.18.). P-selectin, mostly produced by platelets 

and endothelial cells, plays a significant role in platelet-endothelial and leukocyte-endothelial cell adhesion during 

pro-inflammatory immune activation, and is hence regarded as a biomarker of endothelial 
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function/dysfunction.[126,128,875] Relatively low-level benzene exposure was not significantly associated with 

immune activation in the current study population (hsCRP and TNF-α, Appendix Table B7.1. and B7.2.), which 

suggests that other possible mechanisms such as immune dysregulation and oxidative stress may have been 

involved.  

Benzene exposure has previously been associated with immune dysfunction in human and animal 

studies.[876–879] These effects appear to be more prevalent at lower exposure concentrations than at high-

exposure concentrations.[876–879] For example, asymptomatic mild benzene-exposed workers from China 

exhibited reduced gene expression for CD4 and CD4+:CD8+ ratios.[876] Also, chronic low-level benzene exposed 

residence in Croatia living near a railroad exhibited increase in regulatory T cells (reduces immune response).[877] 

Benzene exposed mice furthermore showed suppressed splenocyte proliferation and total circulating neutrophils 

while suppressions of B- and T-cell mitogenesis was observed.[878,879]. Also, benzene metabolites such as 

hydroquinone have shown strong scavenging properties (react with NO) resulting in reduce NO 

bioavailability/production (via eNOS inhibition), which also may contribute to immune dysregulation.[880–882] A 

study by Lahiri et al. (2010), showed mixed immune effects in women in India exposed to indoor smoke from 

biofuels (reduction in absolute number of CD4+ T-helper cells (17%) and reduced CD19+ B-lymphocytes (14%) 

and an increase in CD16+ CD56+ natural killer cells (31%) and CD8+ T-lymphocytes (12%)).[883]  

 

Our findings also do not support those by Schmitt-Sody et al. (2007) additionally showed that p-selectin 

is significantly involved in leukocyte-endothelial cell interaction in mice during immune activation and inflammation 

(p-selectin wildtype vs. p-selectin knockout mice).[717] The negative association between benzene and LTL in the 

current study (Appendix Table B6.1.) suggests that immune function may indeed have played a role in the current 

study, but in the opposite direction than Schmitt-Sody et al. (2007). Similarly Ray et al. (2007) also showed a 

positive association between occupation-related high-level (n = 50) benzene exposure concentrations (55.2 

µg/m3); p < 0.0001) and circulating p-selectin (6090/µl in control (n = 35 office workers) vs. 13 640/µl in exposed 

subjects) in Kolkata, India.[884] Ray et al. (2007) furthermore attributed their effects (decreased CD4+, CD8+ and 

CD19+ cells, but increased CD16+ CD56+) to immune activation in their highly exposed study population.[884]  

Ray et al. (2007) additionally reported increased levels of red blood cells and white blood cells and 

speculated that these results may be due to benzene-associated pro-inflammatory immune activation and hypoxia 

that translated into upregulation of the expression of these cells.[884]  Reduced red blood cell concentrations were 

also reported elsewhere and ascribed to possible benzene-associated bone marrow suppression.[885–887] These 

parameters were not included in the current study and needs to be considered in future studies. Nonetheless, the 

non-significant associated effects on Hb observed in the current study (Appendix Table B3.1.) suggests that 

hypoxia and bone marrow-suppression may not have been involved in current study.  

 

Ethyl-benzene-, m+p-xylene- and o-xylene were inversely associated with another biomarker of vascular 

endothelial function, VCAM-1 (Table 4.20. to 4.23.). VCAM-1 plays a mediation role in the adhesion of 
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lymphocytes, monocytes, eosinophils and basophils to the vascular endothelium during immune 

activation.[127,129] VCAM-1 is also involved in leukocyte-endothelial adhesion/signal transduction and its 

expression mostly upregulated by TNF-α (primarily produced by immune cells, including macrophages, T 

lymphocytes, and natural killer cells) during the inflammatory cascade.[888–890]  

Our findings do not support those of Bind et al. (2012) who showed positive associations between traffic-

related pollutants and CRP, ICAM-1, and VCAM-1 in elderly participants.[506] The author associated these effects 

with changes in DNA methylation status (hypomethylation), but only at higher exposure concentrations.[506] The 

current study could not demonstrate any significant association between exposure concentrations and DNA 

methylation (Appendix Table B6.5.). What is more, Bind et al. (2014) also showed increased air pollution-related 

inflammation (CRP) can regulate ICAM-1 expression in a positive direction, with greater effects at higher CRP 

levels.[891] As no significant associations between ethyl-benzene-, m+p-xylene- and o-xylene and hsCRP 

(Appendix Table B8.1. and B8.2.) or TNF-α (Appendix Table B8.2.) were observed, other possible mechanism 

may have been involved and needs to be further investigated. 

 

Toluene, ethyl-benzene-, m+p-xylene, o-xylene and the urinary metabolite 3+4MHA were positively 

associated with PAI1-1 (Appendix Table B8.8.). PAI-1, a serine PI, is the main and potent inhibitor of t-PA 

(activates plasminogen and fibrinolysis).[126,731,892–894] PAI-1 is primarily produced by the endothelium, but 

can also be secreted by hepatocytes and adipose tissue (including visceral fat).[894] PAI-1 is often associated with 

obesity and metabolic dysregulation.[731,895–897] The thrombotic effects of PAI-1 due to oxidative stress, 

independent of inflammation (not observed in the current study), have also previously been reported.[730,898–

901], thus making it useful biomarker of endothelial function/dysfunction. 

Our findings support those of various other studies.[902–904] The studies include PM exposure in healthy 

young students  (PAI-1 was positively associated with 1- to 3-day averages for PM10, PM2.5, sulfate, and O3 and 2- 

to 3-day averages for nitrate)[902] and in highly exposed underground workers in Stockholm (higher plasma 

concentrations of PAI-1 positively associated with higher exposure concentration).[903] A study by Green et al. 

(2017) investigated the effects of long-term ozone and PM2.5 (1999 to 2004) exposure on haemostatic markers in 

women and showed a 35% (95% CI: 19 to 53%) increase in PAI-1 for every10  μg/m3 increase in PM2.5 

exposure.[904]  

PAI-1 is also closely associated with metabolic dysregulation including lipid and glucose 

dysregulation.[905–907] Hepatic, adipose and endothelial derived PAI-1 has been associated with increased 

insulin and LDL-cholesterol levels.[905–907] The positive associations between benzene and fasting glucose 

levels (associated with increased insulin), and toluene and cholesterol levels in the current study suggest that 

exposure-associated metabolic dysregulation may have played a possible mediating role. LDL cholesterol in 

particular (associated with toluene and 3+4MHA), has been shown to increase PAI-1 transcription in endothelial 

cells.[908,909] On the other hand, PAI-1 expressed in adipose tissue has been implicated in exacerbating adipose 

tissue dysfunction, which may contributed to increased LDL levels as observed in the current study.[910,911] PAI-
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1 has furthermore been associated with decreased insulin sensitivity by disruption of insulin signaling.[912] This 

disruption in insulin metabolism may decrease PKB activation, decreased VEGF expression and cell 

migration.[912]  

 

The exposure-associated effects on PAI-1 may furthermore explain various results observed in the current 

study. The toluene-, ethylbenzene- and xylene-associated inverse relationship with vascular adhesion molecules 

may have been mediated by PAI-1 as PAI-1 have been shown to control in part the vascular adhesion/migration 

(or cause molecular detachment form cells).[913,914] This is accomplished by binding to vitronectin (high affinity) 

and inhibiting urokinase plasminogen activator (u-PA induces chemotaxis)[913,914] or by direct or indirect 

association/deactivation of integrins (conformational changes of integrins or associated proteins [915]). Although 

decreased levels of adhesion molecules are traditionally interpreted as an anti-atherosclerotic and improved 

vascular profile, the effects of PAI-1 on vascular adhesion is also strongly associated with caspase 3 mediated 

apoptosis [743] and deep-vein thrombosis [744,745]. 

 

4.4.2.5. Exposure associated reduced baseline vessel diameters and increased blood pressure. 

 

NO2 exposure was inversely associated with both the macro and micro vessel baseline diameters 

measured in this study (CRVE and baseline brachial artery diameter), whilst NO2 (SBP and DBP) and o-xylene 

(DBP) were positively associated with blood pressure (Table 4.17. and 4.22.). Reports from literature often indicate 

that air pollution exposure may result in raised blood pressure through various possible mechanistic 

pathways.[34,916–919] As the determination of CRVE includes the vascular wall in vessel width measurements, 

inhibition of VEGF may have contributed to decreased micro-venular vessel diameters.[920–922] On the other 

hand, the measurement of the baseline brachial artery diameter excludes the vessel wall. Possible autonomic 

nervous system dysregulation with subsequent basal vasoconstriction may have played a role [923,924] while 

VEGF reduction may have been a more indirect consequence (through decreased NO production).[719–721] 

 

VEGF-associated decreases in vessel growth/diameter is well documented and implemented as a 

therapeutic target in anti-angiogenic cancer treatment.[920–922] Suppression of VEGF is also closely associated 

with increased blood pressure due to its relation with pro-NO producing pathways in the vascular endothelium 

(activation of PKB/Akt, eNOS and MAP kinase pathways).[719–721] In the eye, increased VEGF has been shown 

to induce retinal vessel dilation while over-expression may contribute to retinal edema.[925]  

The effects of blood pressure on retinal vessels have also previously been reported with variable results. 

A study by Wong et al. (2003) associated a 10 mmHg increase in mean arterial blood pressure with a 4.4 μm 

decrease (95% CI, 3.8–5.0) in CRAE in their study cohort, but failed to find an association between blood pressure 

and CRVE.[926] A study by Leung et al, (2003) showed inverse associations between blood pressure and CRAE, 

CRVE and AVR (10 mmHg increase in mean arterial blood pressure was associated with 0.012 μm decrease in 
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AVR, a 3.5 μm decrease in CRAE and a 0.96 μm decrease in CRVE).[927] Kawasaki et al. (2009), on the other 

hand demonstrated that narrower CRAE and wider CRVE are significantly associated with the development of 

hypertension (OR per SD decrease in CRAE 1.20 (95%CI 1.02 to 1.42) and CRVE 1.18 (95%CI 1.02 to 1.37)).[928]  

 

The effects of air pollution on the CNS is relatively well documented and include neuronal mitochondria 

toxicity, oxidative damage to neurons, alterations in neuron membrane potentials that disrupt signal transduction 

and autoimmune dysregulation.[502,794,929] Also, the vasoconstrictive effects of both long- and short-term at low- 

and high-exposure concentrations have previously been described. [923,924]  

Both NO2 and xylene exposure have previously been implicated.[36,475,808,930] Our findings support 

those of Chan et al. (2015) who examined the effects of NO2 and fine PM (≤2.5 μm; MP2.5) in a female population 

and showed that a 10 ppb (~20 µg/m3) increase in NO2 was associated with a higher pulse pressure (0.4 

mmHg).[931] In the same study, PM2.5 was also associated with higher SBP (1.4 mmHg), pulse pressure (1.0 

mmHg) and mean arterial pressure (0.8 mmHg).[931] The authors furthermore speculated that exposure-

associated autonomic dysregulation of vascular tone may explain their findings.[931,932] In the study by Brook et 

al. (2002), an inverse relationship with brachial artery diameter (ultrasonography) was demonstrated in healthy 

adults (exposed vs. control (filtered clean air): −0.09 ± 0.15 mm vs. +0.01 ± 0.18 mm, p = 0.03), albeit at 

significantly higher exposure concentrations (150 µg/m3 fine-MP, 120 ppb 03) and a shorter exposure period (2-

hour) than the current study.[923] Previous studies suggest possible mechanisms such as stimulation of the 

pulmonary vagal afferent neurons and the subsequent increase in sympathetic nervous system reflex activity or 

an upregulation (directly or via oxidative stress pathways) of vascular endothelin 1 and 3 (vasoconstrictors) may 

be involved in air pollution exposure-associated vasoconstriction.[923,933] However, more studies are required to 

fully elucidate the underlying mechanisms involved for individual pollutants.  

 

4.4.2.6. Exposure associated effects on flow-mediated dilatation.  

 

The urinary metabolite 3+4MHA was significantly associated with PAI-1 and LDL cholesterol, and 

inversely associated with % FMD (Table 4.23.). These findings suggest that increased PAI-1 and LDL cholesterol 

may, at least in part, explain the pro-endothelial dysfunction effects associated with 3+4MHA.  

 

Findings in the current study support those by Dales et al. (2017) who showed that PM2.5 at 30 µg/m3 was 

inversely associated with % FMD of the brachial artery (0.48% reduction in FMD (p = 0.05)) in a cohort of males 

and females who were asked to sit for 2 hours at a two different subway stations in the city of Ottawa.[934] A report 

from the large Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA) by Krishnan et al. (2012) also showed 

each 3 μg/m3 change in long-term PM2.5 exposure (1 year), but not short-term, was associated with a 0.3% (95% 

CI: -0.6 to -0.03 %; p = 0.03) change in FMD (n = 3040 in 6 cities using central air quality monitoring station reported 

exposure concentrations).[935] Also similar to current study, Dales et al. (2017) could not find any significant 
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associations between % FMD and NO2 in their study population (male and female), suggesting that NO2 exposure 

may not be a major role-player in the development of clinically detectable endothelial dysfunction.[934]  

Brook et al. (2002) failed to demonstrate exposure-associated effects on % FMD following 2-hours 

exposure to concentrated ambient fine particles at 150 μg/m3 and 120 ppb ozone vs. control (filtered air) although 

exposure was significantly associated with heart rate variability.[923] These results suggest that different 

pollutants, different exposure concentrations and different periods of exposure may have variable effects on 

endothelial function and needs more investigation.  

 

As previously described PAI-1 may have deleterious effects on vascular function though metabolic 

dysregulation associated with vascular adhesion/migration [913,914] and activation of apoptosis independent of 

inflammation (Section 4.4.2.4.).[743,905–907]. Exposure to gaseous pollutants that are associated with 

hypertension (e.g. NO2 and BTEX) may also have also played a role as shown by Brook et al., (2009) who found 

an inverse association between exposure associated with hypertension and % FMD (-2.0% and -2.9% 

respectively)).[936] Brook et al., (2009) furthermore postulated that acute autonomic nervous system imbalance 

through blunting of parasympathetic vascular tone (favouring sympathetic activity) or α-adrenergic stimulation were 

the most likely mechanisms involved in their findings.[936–938] Although heart rate is associated with air pollution 

exposure through autonomic nervous system dysregulation,[939], this was not observed in the current study 

(Appendix Table B7.3.) or by Brook et al., (2009).[936] It is possible that increased heart rate may be more 

pronounced in vulnerable populations such as the elderly,[940] at higher air pollution exposure concentrations 

[941] or through pro-inflammatory pathways.[942]  

 

Exposure to air pollution may also interfere with vasoactive factors such bradykinin and acetylcholine. 

Diesel exhaust pollutants has been shown to inhibit acetylcholine-mediated vasorelaxation.[943] Mills et al., (2005) 

examined the effects of diesel exhaust exposure (300 µg/m3) 2 to 6 hours after exposure and showed that 

bradykinin, although a vasodilator, significantly upregulated PAI-1 (dose dependent manner), but these effects 

were suppressed 6 hours post-exposure.[944] The author speculated that vascular responses to air pollution 

exposure observed in their study was mediated through smooth muscle and/or endothelial dysfunction and that 

oxidative stress may have been a prominent mediating factor (diesel exhaust pollutants increases superoxide, 

reacts with NO to form peroxynitrite, and subsequently reduce NO bioavailability [945]).[944] These findings 

suggest  that the pro-oxidative effects of air pollution exposure may have contributed to endothelial dysfunction 

through inhibition of acetylcholine-mediated vasodilation in the current study population, but needs further 

investigation. 
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4.4.3. Summary of results. 

 

Our results show that relatively low personal NO2 exposure was associated increased cardiovascular risk 

in women in the Cape Town area through various possible mechanistic pathways that may include oxidative stress 

(not measured in the current study), molecular/immunological aging, vascular growth factor inhibition and 

autonomic nervous system dysregulation (not measured in the current study) (Figure 4.6.). 

 

 

Figure 4.6. Summary of results and a proposed mechanistic pathway through which personal NO2 exposure 

concentrations may be associated with increased cardiovascular risk in the current study population.  Description: 

1. Personal NO2 exposure concentrations were increased in the cold season and associated with employment. 2. 

NO2-associated oxidative stress. 3. NO2-associated molecular aging as indicated by shorter LTL. 4. NO2-

associated vascular growth factor inhibition. 5. NO2-associated autonomic nervous system activation as indicated 

by CRVE and baseline brachial artery diameter. 6. NO2-associated increase in blood pressure. The figure was 

designed by the author of this dissertation based on cited information from Section 4.4.2. Abbreviations and 

symbols: NO2: Nitrogen dioxide; LTL: Leukocyte telomere length; VEGF: Vascular endothelial growth factor; 

CRVE: Central retinal venular equivalent; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; ↑: 

Increase; ↓: Decrease. 

 

Relatively low personal BTEX exposure was also associated with numerous cardiovascular risk factors 

in the study population through mechanisms that include metabolic dysregulation, molecular/immunological aging 

and dysregulation of vascular function and endothelial dysfunction (Figure 4.7.). 
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Figure 4.7. Summary of results and a proposed mechanistic pathway through which personal BTEX exposure 

concentrations are associated with increased cardiovascular risk in the study population. Description: 1. Personal 

exposure to BEX was associated with the cold season and toluene with employment. 2. BTEX associated oxidative 

stress may be the mediating factor in BTEX associated cardiovascular risk. 3. Benzene (glucose intolerance) and 

toluene (dyslipidaemia) were associated with metabolic dysregulation. 4. Benzene was associated with 

molecular/immunological aging (LTL shortening) and toluene with mitochondrial oxidative stress (mtDNA content). 

5. Toluene was associated with a pro-clotting effects as shown by an association with increased PAI-1; Ethyl-

benzene and xylenes were associated vascular adhesion dysregulation. 6. Toluene associated metabolic 

dysregulation may have mediated decreased kidney function. 7. o-Xylene was associated with increased DBP with 

vascular adhesion dysregulation as a possible mediating factor. 8. The urinary metabolite 3+4MHA, predominantly 

a xylene and toluene metabolite, exhibited pro-thrombotic properties (as shown by an association with increased 

PAI-1) and was associated with increased LDL, 9. which was associated with endothelial dysfunction (as indicated 

by reduced % FMD). The figure was designed by the author of this dissertation based on cited information from 

Section 4.4.2. Abbreviations and symbols: 3+4MHA: 3+4-Methylhippuric acid; eGRF: estimated glomeration 

filtration rate; LTL: Leukocyte telomere length; mtDNA: Mitochondrial DNA; VCAM-1: Vascular adhesion molecule-

1; PAI-1: Plasminogen activator inhibitor-1;LDL: Low-density lipoprotein; DBP: Diastolic blood pressure; FMD: 

Flow-mediated dilatation; ↑: Increase; ↓: Decrease. 

 

4.4.4. Limitations specific to Sub-study 2 and future direction. 

 

Results from the current study are presented with some strengths and limitations. Measurement of 

personal exposure levels compared to centralised air quality monitoring stations and spatial distribution/land-use 

regression models are considered more accurate in terms investing exposure-associated health effects.[946] The 

study furthermore evaluated numerous markers of cardiovascular risk to elucidate possible mechanistic pathways 

involved in exposure-associated cardiovascular risk. The study followed a repeated measures design, which may 
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have contributed to greater statistical power despite a relatively small population size. With repeated measures 

taken once in the cold season and once in the warm season for each participant provided a clearer understanding 

in terms of the seasonal trends of pollutants investigated in the current study. The inclusion of various urinary 

metabolite measurements provided additional support to findings observed in the current study although only 

3+4MHA appeared to be a reliable urinary marker of exposure in the current study. 

Limitations of the study include a relatively small population size representing only women, of whom the 

majority was smokers. Male participant enrolment rate was low and attributed in part to employment obligations 

that prevented participation in the current study. The high prevalence of smokers in the current study population 

may be ascribed to the high smoking rates that have previously been reported in the region.[208,947,948] The 

recruitment of only non-smokers in the current study may have eliminated possible effects of smoking not 

accounted for in the current study. Also, the correction for the effects of smoking on various outcomes based only 

on smoking status, may not have been optimal. Using biomarkers for smoking exposure such as cotinine would 

have been a more accurate adjustment for smoking effects and would have also included the effects of possible 

second-hand smoke exposure. As previously shown, the effects of air pollution vary across sex, ethnicity and 

health status.[390,831,949–952] Our results represent only the effects of exposure in an apparently healthy, female 

population of mixed ancestry and care should be taken to not extrapolate our findings to the general population. 

The study also did not account for possible background exposure or other possible sources of exposure 

(e.g. dietary exposure).[953] Although blank samplers were included for analysis, the inclusion of blank field 

samples should be considered in future studies. Future studies should include blood cell counts and markers of 

oxidative stress such as urinary isoprostanes [954] that could give a clearer picture in terms of metabolic pathways 

and the role oxidative stress in exposure-associated effects. 

Finally, air pollution consists of a heterogeneous mixture of numerous reactive chemicals that can take 

part in various chemical reactions.[36,955,956] The heterogeneous nature and complex dynamics of air pollution 

remains a  challenge to elucidate the individual contribution and exact underlying mechanisms involved in the 

health effects of specific air pollutants. Air pollution is also influenced by geographical and meteorological factors 

such as humidity, UV-radiation and temperature.[957,958] The health effects of air pollutants may furthermore vary 

across demographic factors such age, gender and ethnicity.[36,389,461] Many of these factors remained beyond 

the scope of the study, and were hence unaccounted for.  

 

Results presented in the current chapter show that endothelial function is a marker of effect of personal 

NO2 and BTEX exposure. These results furthermore show that personal NO2 and BTEX exposure increases 

cardiovascular risk in women in the Cape Town area despite relative low exposure concentrations. The current 

study also indicates various possible mechanistic pathways that may have been involved such as molecular aging, 

vascular growth factor inhibition and autonomic nervous system dysregulation.  
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5. Chapter 5: Conclusion. 

5.1. Final conclusion. 

 

Populations in the developing world, including SSA, are confronted with major socioeconomic and 

environmental challenges on a daily basis. These challenges translate into an increased burden of disease and 

poorer health outcomes. The current study set out to investigate two major contributors to the burden of disease 

in SA that confront millions of people each day. The one a well-known contributor to the burden of disease in SA, 

the other greatly underestimated: HIV (including treatment with ART) and air pollution. Although unrelated on most 

levels, these health risk factors share commonality as major cardiovascular risk factors. This is especially relevant 

and of great concern in the SA context as this country hosts the largest population living with HIV in the world, has 

the largest Government-sponsored ART roll-out programme in the world, and is one of the most carbon-intensive 

economies in the world.[12,283,419] The current study postulated that the vascular endothelium is an important 

intersection where these cardiovascular risk factors converge in the development of CVD. Following the successful 

completion of all aims and objectives of the current study, it can be concluded that endothelial function is a marker 

of effect of HIV, ART and air pollution (Figure 5.1.).  

 

 

 

Figure 5.1. Endothelial function as the interface of major health challenges in SA. Abbreviations: HIV: Human 

immunodeficiency syndrome; ART: Antiretroviral therapy, NO2: Nitrogen dioxide; BTEX: Benzene, toluene, ethyl-

benzene and xylene (ortho (o)-, meta (m)- and para (p)-xylene.  

 

CVD is a leading cause of death globally and affects lower-income regions, such as SSA 

disproportionately compared to the rest of world.[959] Although CVD is a major contributor to the burden of disease 

in SSA, including SA, its impact has historically been overshadowed by the high prevalence of communicable 

diseases such as HIV/AIDS in the region. The current study showed that the convergence of communicable 
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diseases such as HIV and NCDs such as CVD is a major health concern and could potentially overextend already 

strained healthcare resources in the region. The findings of the study emphasize the need to prioritise CVD in 

PLWH in the healthcare setting.  

 

Interpreting the results of the current study also shed more light on the temporal effects of HIV and ART 

in terms of endothelial function (and cardiovascular risk). Results indicate that HIV disease progression decreases 

endothelial function, while initiating ART mostly reverses these effects and contribute to an improved 

cardiovascular risk profile. On the other hand, results also indicate that although pro-longed ART-use may exhibit 

mostly beneficial effects, it may also have deleterious effects over time (Figure 5.2.).  

 

Figure 5.2. Temporal effects of HIV and ART. Abbreviations: HIV: Human immunodeficiency virus. ART: 

Antiretroviral therapy. 

 

More specifically in terms of the effects of HIV disease progression (using viral load as the indicator): 

Many of the vascular endpoints showed adverse trends (endothelial dysfunction, increased CRVE and reduced 

AVR). On the other hand, ART was also associated with various markers of endothelial function. Initiating ART 

appeared to be mainly vasculo-and endothelioprotective (reduced vascular adhesion molecule levels, reduced 

thrombosis and reduced CRVE). Interestingly, the 18-month ART treatment period demonstrated both beneficial 

and adverse effects (anti-inflammatory and reduced vascular adhesion profile on the one hand, and impaired 

endothelial function on the other). This is a key finding of the current study with potentially future relevance. It 

demonstrates that although the first line fixed-dose combination ART drug used by the participants in this study 

was mostly associated with beneficial effects on the vasculature, it was also shown that vascular reactivity may be 

compromised by longer exposure to ART. Following these participants for longer periods may shed further light. 

 

The status of air pollution on the African continent has not received sufficient research attention, but 

reports indicate that it already contributes substantially to the burden of disease.[42] The current study shows that 
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air pollution is an evolving public health issue in SA and contributes to an increased cardiovascular risk profile in 

the Cape Town region even at relatively low exposure concentrations. Results of the current study underscore the 

need for more investigation in terms of the status of air pollution and its health effects, not only in SA but also the 

greater SSA region.  

More specifically, personal air pollution was associated with vascular and endothelial effects. NO2 exposure was 

associated with reduced vascular growth, increased SBP and DBP, reduced CRVE and reduced baseline brachial 

artery diameter, whereas personal BTEX exposure was associated with reduced vascular adhesion biomarkers 

and a pro-clotting profile. In a novel finding in the context of the sub-Saharan African and South African research 

setting, the study showed that air pollution (NO2 and benzene) was associated with molecular ageing as indicated 

by decreased LTL. This finding was particularly relevant as LTL is a marker for numerous degenerative diseases 

including CVD and various malignancies.[382,960,961]  

 

This study furthermore indicates that, non-invasive, relatively quick and inexpensive techniques such as 

retinal microvascular imaging have the potential to be utilised as screening tests of cardiovascular risk, especially 

in a limited resource setting such as the African region. Results also show that FMD has application as a marker 

of effect of HIV and ART and could, together with retinal imaging, be further explored as measures of 

cardiovascular risk, but standardisation is currently lacking. The study furthermore showed that circulating 

biomarkers such as adhesion molecules have application in cardiovascular risk assessment in PLWH in SA and 

provide better insight in the mechanistic pathways that underlie die development of CVD in PLWH. Understanding 

the mechanistic pathways involved in disease development remains pivotal in prevention and treatment. 

 

In conclusion, the present study, despite its limitations that were discussed in previous chapters, 

generated several novel findings. Our results show that endothelial function, and many other markers of vascular 

function in general, may be regarded as a candidate marker of effect in people exposed to HIV, ART and air 

pollution. This study also showed that HIV and air pollution are possibly associated with increased cardiovascular 

risk through endothelial dysfunction. This study underscores the need for further research in terms of the effects 

of HIV, ART and air pollution on cardiovascular health in SA.  

 

5.2. Future directions. 

 

The current study evaluated the effects of HIV and ART, and the effects of air pollution in two separate 

sub-studies. As HIV, ART and air pollution were implicated in the cardiovascular continuum in the current study 

population, a possible intersection between these cardiovascular risk factors may exist. Previous studies have 

shown that air pollution contributes to the disease burden in PLWH and that PLWH are more susceptible to the 

effects of air pollution.[962–964] Reports already indicate that NCD and HIV/AIDS are on a collision course and 

that the convergence of these diseases may overextend already strained heath resources.[14] More investigation 
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is needed to elucidate the combined effects of HIV (with and without ART) and air pollution in SA. A larger study 

population would have been required to account for additional confounding factors. Due to financial constraints the 

intersection between HIV, ART and air pollution was not explored in the current study. Due to the large number of 

variables assessed in the current study, false positive/negative findings are likely. As an observational study, 

findings in the current study were furthermore discussed in relation to findings from other reports. For possible 

future publication purposes, the relationship between all variable outcomes assessed in the current study needs 

to be further explored to elucidate true causality. Also, testing the robustness of models used in regression analysis 

should be assessed by means of sensitivity analysis.  

Telomere length has been shown to be a relevant marker of the effects of HIV/AIDS and ART in terms of immune 

function and other associated degenerative disease.[965–968] Future studies may consider including telomere 

length as an endpoint.  

Other air pollutants such as SO2 and 03 are also relevant in CVD and the SA context. The Western Cape 

Government reported on these levels in their annual air quality report, but the health effect of these pollutants are 

not investigated and needs further investigation.[969,970] What is more, occupational exposure to air pollution is 

poorly reported in SA although health and safety regulations are in place.[429,971] Our results indicate that this 

needs to be further investigated.  

The relationship between demographic, socioeconomic and lifestyle factors and HIV, ART and air pollution were 

beyond the scope of the current study although reports indicate that these factors play a role in health 

outcomes.[199,972] Future studies should include more defined questions pertaining to smoking (e.g. pack/day) 

and alcohol consumption (e.g. alcoholic drinks per session) frequencies. Also, the long-term effects of HIV, ART 

and air pollution need further investigation. Literature shows that the long- vs. short-term exposure may 

vary.[353,973,974] These factors need to be investigated. 

Retinal microvascular image analysis is a non-invasive, operator-friendly and relatively inexpensive 

technique for the assessment of cardiovascular risk/health.[160] Retinal imaging as a marker of cardiovascular risk 

has gained research attention in HIV/AIDS recently as numerous retinal microvascular markers of cardiovascular 

risk have been associated with HIV/ART-associated adverse health effects including systemic, cardiovascular, 

cardiometabolic, renal, liver and cognitive diseases.[64,65,160] More validation of the use of retinal imaging 

techniques in the current study population is still needed. Also, the potential value of non-invasive, retinal 

microvascular imaging as a marker of cardiovascular risk/health in HIV/AIDS, particularly in a resource-constrained 

setting such as SA, warrants further investigation. 

 

5.3. Role and activities of the Ph.D. candidate pertaining to the study. 

 

• Active member of the EndoAfrica research team; participated in field-work and gathering and capturing of 

data for both sub-studies.  
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• Assisted in general laboratory work for both sub-studies: Collecting blood and urine samples from research 

nurses, processing these samples for storage and delivering samples to the NHLS for further analyses.  

• Sub-study 2: Co-ordinated most research activities pertaining to Sub-study 2. Setting up, handing out and 

gathering backpacks. Storage and shipment of samples and samplers for analysis. Extracting and capturing 

data from temperature loggers. Capturing data of laboratory results after analysis.  

• Laboratory work in Belgium pertaining to Sub-study 2: Preparation of samples for quantification of BTEX and 

urinary metabolite concentrations. DNA extraction and sample preparation for determination of DNA 

methylation, mtDNA content and telomere length. Responsible for all retinal imaging activities, capturing 

retinal images, analysing all images for both sub-studies, capturing and analyzing data.  

• Performed all statistical analysis for Sub-study 1 and 2. Biostatisticians and other experts in the field of 

epidemiology were consulted when and if necessary to ensure validity of statistical models. 

• Responsible for two original research manuscripts, one published, and the other currently under revision. 

 

5.4. Research outputs pertaining to the current study produced. 

 

First-author peer reviewed journal publications: 

 

• Everson, F.; De Boever, P.; Nawrot, T.S.; Goswami, N.; Mthethwa, M.; Webster, I.; Martens, D.S.; 

Mashele, N.; Charania, S.; Kamau, F.; Strijdom, H. Personal NO2 and Volatile Organic Compounds 

Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region 

of South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2–18.[521] 

• Everson, F.; Martens, D.S.; Nawrot, T.S.; Goswami, N.; Mthethwa, M.; Webster, I.; Mashele, N.; 

Charania, S.; Kamau, F.; De Boever, P.; et al. Personal exposure to NO2 and benzene in the Cape Town 

region of South Africa is associated with shorter leukocyte telomere length in women. Environ. Res. 2020, 

182, 108993.[975] 

 

Co-author peer reviewed journal publication 

• Strijdom, H., De Boever, P., Walzl, G., Essop, F., Nawrot, T.S., Webster, I.,Westcott, C., Mashele, N., 

Everson, F., Malherbe, S.T., Stanley, K, Kessler, H.H.,Stelzl, H., Goswami, N. Cardiovascular risk and 

endothelial function in people living with HIV/AIDS: Design of the multi-site, longitudinal EndoAfrica study 

in the Western Cape Province of South Africa. BMC Infect. Dis. 2017, 17, 1–9.[43] 

 

First-author peer reviewed conference proceedings: 

 

• 2018: 12th International Symposium on Molecular Diagnostics. 12th International Symposium on 

Molecular Diagnostics.  
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The effect of HIV/AIDS and combination ART on retinal microvascular in a South African HIV-infected 

(with and without ART) study population. Frans Everson, Patrick De Boever, Nandu Goswami, Tim S. 

Nawrot, M. Faadiel Essop, Mashudu Mthethwa, Nyiko Mashele, Sana Charania, Yolandi Espach, Ingrid 

Webster, Hans Strijdom. Graz, Austria.[976] 

• 2018: Conference of Biomedical and Natural Sciences and Therapeutics (Physiology Society of Southern 

Africa Annual Conference).  

Repeated measurements study to investigate exposure to ambient air pollution and possible association 

with cardiovascular physiology indicators in the Cape Town region.  

Frans Everson, Nandu Goswami, Patrick De Boever, Tim S. Nawrot, M. Faadiel Essop, Mashudu 

Mthethwa, Nyiko Mashele, Sana Charania, Yolandi Espach, Ingrid Webster, Hans Strijdom. South 

Africa.[977] 

• 2018: 19th Annual SA Heart Congress. The effect of a fixed-dose combination ART regimen on retinal 

microvascular calibres in a South African HIV-infected study population. Frans Everson, Nandu 

Goswami, Patrick De Boever, Tim S. Nawrot, M. Faadiel Essop, Mashudu Mthethwa, Nyiko Mashele, 

Sana Charania, Yolandi Espach, Ingrid Webster, Hans Strijdom. Sun City, South Africa.[978] 

 

Other related research outputs: 

 

• 2018: Stellenbosch University: Annual Academic Day.  

Poster presentation: HIV/AIDS (ART-naive) and cardiovascular risk: Are retinal microvascular geometric 

features markers of effects? Frans Everson, Nandu Goswami, Patrick De Boever, Tim S. Nawrot, M. 

Faadiel Essop, Mashudu Mthethwa, Nyiko Mashele, Sana Charania, Yolandi Espach, Ingrid Webster, 

Hans Strijdom. 

• 2019: Stellenbosch University Annual Academic Day.  

Oral presentation: Personal air pollution is associated with markers of cardiovascular risk: Findings from 

the EndoAfrica Study. Everson, F., De Boever, P., Nawrot, T.S., Goswami, N., Mthethwa, M., Webster, 

I., Martens, D.S., Mashele, N., Charania, S., Kamau, F., Strijdom, H. 
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7. Appendix A: Supplementary data for Sub-study 1. 

7.1. Appendix A1 – Effects of HIV and ART on body composition. 

 

Table A1.1. Estimated effects of HIV and ART status on body weight (kg). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.13 -1.02 1.28 0.818 

    HIV+ART c -0.05 -1.57 1.47 0.948 

    Initiating ART treatment a     

        HIV/noART d 0.29 -1.64 2.22 0.764 

Effects of markers of HIV progression/regression e 

    Viral load (copies mRNA/ml) f -0.61 -1.90 0.69 0.043 

    CD4 cell count (cells/mm3) f 1.37 0.09  2.64 0.036 

a Estimates expressed as an 18-month change. b Model A: adjusted for age, gender, recruitment location, smoking, 

employment, use of medication, alcohol consumption and SBP. c Model A additionally adjusted for ethnicity, ART duration at 

baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking viral load and CD4-cell count. e HIV+ART and 

HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count (320 cells/mm3) and viral load 

(1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A1.2. Estimated effects of HIV and ART status on BMI (kg/m2). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.03 -0.46 0.51 0.904 

    HIV+ART c 0.41 -0.24 1.07 0.214 

    Initiating ART treatment a     

        HIV/noART d 0.64 -0.24 1.52 0.147 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.40 -1.01 0.20 0.026 

    CD4 cell count (cells/mm3) f 0.76 0.18 1.35 0.010 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment location, smoking, employment, 

use of medication, alcohol consumption and SBP. c Model A additionally adjusted for ethnicity, ART duration at baseline visit, 

viral load and CD4-cell count. d Adjusted for age, smoking viral load and CD4-cell count.  

e HIV+ART HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count (320 cells/mm3) 

and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A1.3. Estimated effects of HIV and ART status on waist circumference (cm). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.18 -1.20 1.56 0.795 

    HIV+ART c -3.43 -5.02 -1.84 < 0.001 

    Initiating ART treatment a     

        HIV/noART d 0.51 -2.03 3.05 0.686 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -1.43 -2.84 -0.03 0.046 

    CD4 cell count (cells/mm3) f 1.49 0.09 2.89 0.037 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment location, smoking, 

employment, use of medication, alcohol consumption and SBP. c Model A additionally adjusted for ethnicity, ART 

duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking viral load and CD4-cell count. 

e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count 

(320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A1.4. Estimated effects of HIV and ART status on hip circumference (cm). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -1.22 -2.54 0.10 0.069 

    HIV+ART c -2.59 -4.00 -1.19 < 0.001 

    Initiating ART treatment a     

        HIV/noART d -2.16 -4.35 0.02 0.052 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.70 -1.99 0.58 0.040 

    CD4 cell count (cells/mm3) f 1.12 -0.11 2.34 0.074 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment location, smoking, 

employment, use of medication, alcohol consumption and SBP. c Model A additionally adjusted for ethnicity, ART 

duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking viral load and CD4-cell count. 

e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count 

(320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A1.5. Estimated effects of HIV and ART status on waist-to-hip ratio. 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal (18-months) a     

    HIV-free b 0.012 0.000 0.024 0.047 

    HIV+ART c -0.010 -0.021 0.002 0.100 

    Initiating ART treatment a     

        HIV/noART d -0.011 -0.035 0.013 0.358 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.002 -0.015 0.012 0.810 

    CD4 cell count (cells/mm3) f -0.005 -0.015 0.005 0.347 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment location, smoking, 

employment, use of medication, alcohol consumption and SBP. c Model A additionally adjusted for ethnicity, ART 

duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking viral load and CD4-cell count. 

e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count 

(320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.2. Appendix A2 – Effects of HIV and ART status on lipid and glucose levels. 

 

Table A2.1. Estimated effects of HIV and ART status on total cholesterol (mmol/L). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.091 -0.209 0.027 0.131 

    HIV+ART c -0.016 -0.156 0.124 0.826 

    Initiating ART treatment a     

        HIV/noART d 0.301 0.072 0.530 0.011 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.287 -0.413 -0.162 < 0.001 

    CD4 cell count (cells/mm3) f 0.052 -0.066 0.171 0.384 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A2.2. Estimated effects of HIV and ART status on HDL cholesterol levels (mmol/L). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.014 -0.055 0.084 0.681 

    HIV+ART c 0.104 0.005 0.203 0.040 

Initiating ART treatment a     

        HIV/noART d 0.393 0.216 0.569 < 0.001 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.204 -0.282 -0.125 < 0.001 

    CD4 cell count (cells/mm3) f 0.070 -0.016 0.156 0.111 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A2.3. Estimated effects of HIV and ART status on LDL cholesterol levels (mmol/L). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.108 -0.210 -0.006 0.038 

    HIV+ART c -0.138 -0.254 -0.022 0.020 

    Initiating ART treatment a     

        HIV/noART d -0.031 -0.233 0.171 0.755 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.109 -0.211 -0.007 0.036 

    CD4 cell count (cells/mm3) f -0.028 -0.122 0.066 0.553 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A2.4. Estimated effects of HIV and ART status on triglyceride levels (mmol/L). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.023 -0.053 0.099 0.549 

    HIV+ART c 0.037 -0.095 0.168 0.584 

    Initiating ART treatment a     

        HIV/noART d -0.114 -0.298 0.070 0.218 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 0.044 -0.068 0.155 0.443 

    CD4 cell count (cells/mm3) f -0.019 -0.118 0.080 0.707 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A2.5. Estimated effects of HIV and ART status on fasting glucose levels (mmol/L). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.086 -0.289 0.117 0.402 

    HIV+ART c 0.091 -0.257 0.439 0.605 

    Initiating ART treatment a     

        HIV/noART d 0.015 -0.485 0.515 0.952 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.116 -0.322 0.090 0.270 

    CD4 cell count (cells/mm3) f 0.221 0.036 0.407 0.020 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A2.6. Estimated effects of HIV and ART status on % HbA1c. 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.061 -0.047 0.169 0.264 

    HIV+ART c -0.035 -0.186 0.117 0.654 

    Initiating ART treatment a     

        HIV/noART d -0.121 -0.359 0.117 0.309 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 0.055 -0.057 0.166 0.334 

    CD4 cell count (cells/mm3) f 0.088 -0.014 0.191 0.092 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.3. Appendix A3 – Effects of HIV and ART status on Hb levels. 

 

Table A3.1. Estimated effects of HIV and ART status on Hb levels (g/dL). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.206 -0.419 0.006 0.056 

    HIV+ART c -0.078 -0.309 0.153 0.506 

    Initiating ART treatment a     

        HIV/noART d 0.143 -0.316 0.602 0.532 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.31 -0.53 -0.09 0.006 

    CD4 cell count (cells/mm3) f 0.16 -0.04 0.35 0.121 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.4. Appendix A4 – Effects of HIV and ART status on GGT levels. 

 

Table A4.1. Estimated effects of HIV and ART status on GGT levels (U/L). 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 9.0 0.3 18.5 0.042 

    HIV+ART c -9.3 -19.4 2.0 0.101 

    Initiating ART treatment a     

        HIV/noART d 37.6 14.3 65.8 0.001 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -22.2 -30.1 -13.3 < 0.001 

    CD4 cell count (cells/mm3) f -5.0 -14.8 5.8 0.347 

a Estimates expressed an 18-month % difference. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as % difference for each IQR increment in 

CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.5. Appendix A5 – Effects of HIV and ART status on markers of kidney function (Creatinine, 

microalbumin, ACR and eGFR levels). 

 

Table A5.1. Estimated effects of HIV and ART status on creatinine levels (μmol/L). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.92 -2.68 0.85 0.305 

    HIV+ART c 3.71 1.98 5.44 < 0.001 

    Initiating ART treatment a     

        HIV/noART d 3.03 -0.05 6.11 0.054 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.29 -1.91 1.32 0.720 

    CD4 cell count (cells/mm3) f -0.93 -3.02 1.16 0.383 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A5.2. Estimated effects of HIV and ART status on urine albumin levels (mg/L). 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 11.5 -22.4 60.2 0.553 

    HIV+ART c 22.8 -11.1 69.7 0.211 

    Initiating ART treatment a     

        HIV/noART d -20.1 -50.9 30.0 0.352 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 20.0 -5.3 52.1 0.131 

    CD4 cell count (cells/mm3) f -7.9 -25.9 14.4 0.459 

a Estimates expressed an 18-month %difference. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as % difference for each IQR increment in 

CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A5.3. Estimated effects of HIV and ART status on albumin-to-creatinine ratio (mg/g). 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 17.3 -13.6 59.4 0.303 

    HIV+ART c -8.3 -32.9 25.2 0.582 

    Initiating ART treatment a     

        HIV/noART d -30.0 -56.7 13.1 0.137 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.05 -0.18 0.08 0.476 

    CD4 cell count (cells/mm3) f -7.03 -23.97 13.68 0.476 

a Estimates expressed an 18-month %difference. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as % difference for each IQR increment in 

CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A5.4. Estimated effects of HIV and ART status on eGFR (mL/minute/1.73 m3). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 1.01 -0.90 2.91 0.298 

    HIV+ART c -2.93 -4.94 -0.93 0.004 

    Initiating ART treatment a     

        HIV/noART d -3.41 -7.16 0.33 0.073 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 2.18 -0.02 4.38 0.052 

    CD4 cell count (cells/mm3) f 0.67 -1.38 2.71 0.522 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.6. Appendix A6 – Effects of HIV and ART status on blood pressure and heart rate. 

 

Table A6.1. Estimated effects of HIV and ART status on SBP (mmHg). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 3.46 0.20 6.72 0.038 

    HIV+ART c -0.88 -3.95 2.18 0.570 

    Initiating ART treatment a     

        HIV/noART d -3.47 -9.07 2.13 0.217 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -1.73 -5.62 2.17 0.384 

    CD4 cell count (cells/mm3) f 1.49 -1.02 4.01 0.244 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption and BMI. c Model A additionally adjusted for ethnicity, ART 

duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell count. 

e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count 

(320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A6.2. Estimated effects of HIV and ART status on DBP (mmHg). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 1.80 -0.41 4.01 0.108 

    HIV+ART c -1.25 -3.24 0.75 0.219 

    Initiating ART treatment a     

        HIV/noART d -1.47 -5.73 2.78 0.487 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.33 -6.03 5.37 0.826 

    CD4 cell count (cells/mm3) f 0.57 -1.13 2.27 0.511 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption and BMI. c Model A additionally adjusted for ethnicity, ART 

duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell count.  

e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 count 

(320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A6.3. Estimated effects of HIV and ART status on heart rate (bpm). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -1.28 -3.33 0.78 0.221 

    HIV+ART c 0.26 -1.64 2.17 0.787 

    Initiating ART treatment a     

        HIV/noART d 0.72 -3.48 4.93 0.729 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 0.66 -2.75 4.07 0.705 

    CD4 cell count (cells/mm3) f -1.30 -3.07 0.48 0.151 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.7. Appendix A7 – Effects of HIV and ART status on circulating biomarkers of systemic 

inflammation and vascular endothelial function. 

 

Table A7.1. Estimated effects of HIV and ART status on hsCRP levels (mg/L). 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.8 -22.0 30.3 0.950 

    HIV+ART c 10.8 -12.6 40.3 0.395 

    Initiating ART treatment a     

        HIV/noART d -24.8 -57.4 32.9 0.318 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 12.5 -42.4 37.2 0.594 

    CD4 cell count (cells/mm3) f -38.2 -96.2 45.5 0.734 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A7.2. Estimated effects of HIV and ART status on TNF-α levels (pg/ml). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.11 -1.56 1.79 0.893 

    HIV+ART c -1.22 -2.29 -0.16 0.025 

    Initiating ART treatment a     

        HIV/noART d 0.30 -3.40 4.00 0.870 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) b 0.26 -1.58 2.10 0.783 

    CD4 cell count (cells/mm3) b -2.11 -3.46 -0.76 0.002 

a Estimates expressed an 18-month change. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as change for each 

IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 
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Table A7.3. Estimated effects of HIV and ART status on VCAM-1 levels (ng/ml). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 21.1 -50.7 92.9 0.559 

    HIV+ART c -128 -270 14 0.076 

    Initiating ART treatment a     

        HIV/noART d -148 -274 -23 0.022 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) b 13.6 -4.0 34.3 0.136 

    CD4 cell count (cells/mm3) b -2.8 -12.4 8.0 0.598 

a Estimates expressed an 18-month change. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as change for each 

IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 

 

Table A7.4. Estimated effects of HIV and ART status on ICAM-1 levels (ng/ml). 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 2.4 -3.2 8.4 0.394 

    HIV+ART c -45 -88 -1.3 0.043 

    Initiating ART treatment a     

        HIV/noART d 15 -37 68 0.555 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) b 3.7 -9.8 19.2 0.610 

    CD4 cell count (cells/mm3) b -3.5 -13.7 8.0 0.535 

a Estimates expressed an 18-month % difference. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as % difference for 

each IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 
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Table A7.5. Estimated effects of HIV and ART status on e-selectin levels (ng/ml). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 1.83 -0.73 4.39 0.157 

    HIV+ART c -5.57 -9.52 -1.62 0.006 

    Initiating ART treatment a     

        HIV/noART d -0.22 -5.39 4.96 0.933 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) b -2.99 -7.06 1.07 0.147 

    CD4 cell count (cells/mm3) b 0.42 -2.79 3.63 0.796 

a Estimates expressed an 18-month change. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as change for each 

IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 

 

Table A7.6. Estimated effects of HIV and ART status on p-selectin levels (ng/ml). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -2.39 -6.05 1.27 0.195 

    HIV+ART c -2.09 -5.63 1.45 0.243 

    Initiating ART treatment a     

        HIV/noART d 3.25 -1.42 7.92 0.165 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) b 1.87 -1.08 4.83 0.212 

    CD4 cell count (cells/mm3) b -2.80 -6.52 0.92 0.139 

a Estimates expressed an 18-month change. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as change for each 

IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 
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Table A7.7. Estimated effects of HIV and ART status on VEGF levels (pg/ml). 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.5 -12.8 13.6 0.941 

    HIV+ART c 4.6 -9.7 21.2 0.545 

    Initiating ART treatment a     

        HIV/noART d 40.6 0.5 96.7 0.047 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) b -13.2 -29.2 6.5 0.173 

    CD4 cell count (cells/mm3) b 2.2 -13.2 20.4 0.793 

a Estimates expressed an 18-month % difference. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as % difference for 

each IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 

 

Table A7.8. Estimated effects of HIV and ART status on PAI-1 levels (ng/ml). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -7.09 -19.34 5.16 0.251 

    HIV+ART c -3.97 -16.20 8.26 0.518 

    Initiating ART treatment a     

        HIV/noART d 14.12 1.16 27.07 0.034 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) a 7.49 -4.07 19.06 0.202 

    CD4 cell count (cells/mm3) a -4.27 -11.46 2.93 0.243 

a Estimates expressed an 18-month change. b Model A: adjusted for age, smoking, SBP and BMI. c Model A 

additionally adjusted for ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, 

viral load and CD4-cell count. e HIV+ART and HIV/noART combined with estimate expressed as change for each 

IQR increment in CD4 count (320 cells/mm3) and viral load (1300 copies mRNA/ml). 
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7.8. Appendix A8 – Effects of HIV and ART status on retinal vessel calibre. 

 

Table A8.1. Estimated effects of HIV and ART status on CRAE (μm). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 1.01 -0.47 2.50 0.180 

    HIV+ART c 0.94 -0.96 2.83 0.332 

    Initiating ART treatment a     

        HIV/noART d -0.038 -3.01 2.93 0.980 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 1.97 -0.73 4.67 0.152 

    CD4 cell count (cells/mm3) f 0.18 -1.67 2.02 0.849 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A8.2. Estimated effects of HIV and ART status on CRVE (μm). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.64 -2.84 1.56 0.565 

    HIV+ART c -7.00 -12.64 -1.36 0.015 

    Initiating ART treatment a     

        HIV/noART d -6.42 -10.99 -1.85 0.007 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 9.29 5.28 13.30  < 0.000 

    CD4 cell count (cells/mm3) f -2.66 -5.39 0.07 0.056 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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Table A8.3. Estimated effects of HIV and ART status on AVR. 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 0.007 -0.001 0.014 0.068 

    HIV+ART c 0.019 0.008 0.031 0.001 

    Initiating ART treatment a     

        HIV/noART d 0.014 0.000 0.028 0.051 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -0.016 -0.025 -0.006 0.001 

    CD4 cell count (cells/mm3) f 0.007 -0.001 0.015 0.067 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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7.9. Appendix A9 – Effects of HIV and ART status on flow-mediated dilation parameters. 

 

Table A9.1. Estimated effects of HIV and ART status on baseline brachial artery diameter (mm). 

 Estimate 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b -0.062 -0.148 0.025 0.161 

    HIV+ART c 0.023 -0.052 0.098 0.548 

    Initiating ART treatment a     

        HIV/noART d -0.018 -0.169 0.133 0.810 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f 0.046 -0.060 0.152 0.398 

    CD4 cell count (cells/mm3) f -0.006 -0.076 0.065 0.875 

a Estimates expressed an 18-month change. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP and BMI. c Model A additionally adjusted for ethnicity, 

ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, smoking, viral load and CD4-cell 

count. e HIV+ART and HIV/noART combined with estimate expressed as change for each IQR increment in CD4 

count (320 cells/mm3) and viral load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 

 

Table A9.2. Estimated effects of HIV and ART status on % FMD. 

 % Difference 
95% CI 

p-values 
Lower Upper 

Temporal effects (18-months) a     

    HIV-free b 1.9 -7.2 11.8 0.692 

    HIV+ART c -9.8 -17.6 -1.2 0.026 

    Initiating ART treatment a     

        HIV/noART d 11.1 -6.9 32.6 0.234 

Effects of markers of HIV progression/regression e 

    Viral Load (copies mRNA/ml) f -2.127 -3.337 -0.918 0.001 

    CD4 cell count (cells/mm3) f 8.43 0.91 15.95 0.028 

a Estimates expressed an 18-month % difference. b Model A: adjusted for age, gender, recruitment area, smoking, 

employment, use of medication, alcohol consumption, SBP, BMI and baseline brachial artery diameter. c Model A 

additionally adjusted for ethnicity, ART duration at baseline visit, viral load and CD4-cell count. d Adjusted for age, 

smoking, baseline brachial artery diameter and viral load and CD4-cell count. e HIV+ART and HIV/noART 

combined with estimate expressed as % difference for each IQR increment in CD4 count (320 cells/mm3) and viral 

load (1300 copies mRNA/ml). f Model A additionally adjusted for ethnicity. 
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8. Appendix B: Supplementary data for Sub-study 2. 

8.1. Appendix B1 – Effects of exposure variable outcomes on body composition. 

 

Table B1.1. Estimated effects of exposure variable outcomes on BMI (kg/m2). 

Exposure a Estimate b 
95% CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.064 -0.285 0.413 0.716 

Benzene (µg/m³) -0.071 -0.535 0.392 0.759 

Toluene (µg/m³) 0.053 -0.141 0.247 0.589 

Ethyl-Benzene (µg/m³) 0.003 -0.158 0.163 0.975 

m+p-Xylene (µg/m³) 0.001 -0.048 0.048 0.996 

o-Xylene (µg/m³) 0.007 -0.131 0.144 0.924 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.059 -0.033 0.152 0.201 

a Model adjusted for age, temperature, date of clinical visit, smoking and employment status. b Estimates expressed 

as a difference in BMI (kg/m2) for each IQR increment in exposure c Additionally adjusted for urine creatinine. IQR: 

NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B1.2. Estimated effects of exposure variable outcomes on waist-to-hip ratio. 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.003 -0.013 0.019 0.682 

Benzene (µg/m³) 0.003 -0.014 0.021 0.702 

Toluene (µg/m³) 0.001 -0.007 0.009 0.780 

Ethyl-Benzene (µg/m³) 0.003 -0.004 0.010 0.336 

m+p-Xylene (µg/m³) 0.001 -0.001 0.003 0.293 

o-Xylene (µg/m³) 0.003 -0.003 0.009 0.333 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.0003 -0.0055 0.0041 0.901 

a Model adjusted for age, temperature, date of clinical visit, smoking and employment status. b Estimates expressed 

as a difference in waist-to-hip ratio for each IQR increment in exposure c Additionally adjusted for urine creatinine.  

IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.2. Appendix B2 – Effects of exposure variable outcomes on lipid and glucose variable outcomes. 

 

Table B2.1. Estimated effects of exposure variable outcomes on total cholesterol levels (mmol/L). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.021 -0.144 0.187 0.798 

Benzene (µg/m³) 0.153 -0.013 0.319 0.070 

Toluene (µg/m³) 0.104 0.036 0.173 0.003 

Ethyl-Benzene (µg/m³) 0.065 -0.004 0.134 0.064 

m+p-Xylene (µg/m³) 0.020 -0.001 0.041 0.061 

o-Xylene (µg/m³) 0.044 -0.014 0.103 0.137 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.036 -0.006 0.077 0.084 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in total cholesterol levels (mmol/L) for each IQR increment in exposure c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B2.2. Estimated effects of exposure variable outcomes on HDL cholesterol levels (mmol/L). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.010 -0.069 0.050 0.749 

Benzene (µg/m³) 0.274 -0.232 0.781 0.283 

Toluene (µg/m³) 3.805 0.173 7.436 0.040 

Ethyl-Benzene (µg/m³) 0.244 -0.181 0.669 0.254 

m+p-Xylene (µg/m³) 0.213 -0.214 0.640 0.321 

o-Xylene (µg/m³) 0.179 -0.262 0.620 0.420 

Urinary metabolite c     

    3+4MHA (ng/ml) 10.239 -1.713 22.191 0.092 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in total HDL cholesterol for each IQR increment in exposure c Additionally adjusted for 

urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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Table B2.3. Estimated effects of exposure variable outcomes on LDL cholesterol levels (mmol/L). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.043 -0.221 0.134 0.629 

Benzene (µg/m³) 0.486 -0.846 1.818 0.471 

Toluene (µg/m³) 11.050 1.900 20.199 0.018 

Ethyl-Benzene (µg/m³) 0.763 -0.455 1.981 0.216 

m+p-Xylene (µg/m³) 0.830 -0.390 2.050 0.180 

o-Xylene (µg/m³) 0.475 -0.776 1.726 0.453 

Urinary metabolite c     

    3+4MHA (ng/ml) 37.461 2.642 72.280 0.035 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in LDL cholesterol for each IQR increment in exposure c Additionally adjusted for urine 

creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B2.4. Estimated effects of exposure variable outcomes on triglyceride levels (mmol/L). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.016 -0.075 0.107 0.727 

Benzene (µg/m³) 0.089 -0.011 0.189 0.080 

Toluene (µg/m³) -0.012 -0.059 0.035 0.610 

Ethyl-Benzene (µg/m³) -0.002 -0.037 0.034 0.920 

m+p-Xylene (µg/m³) 0.000 -0.011 0.010 0.926 

o-Xylene (µg/m³) -0.009 -0.040 0.021 0.545 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.014 -0.017 0.044 0.362 

a adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in triglyceride levels (mmol/L) for each IQR increment in exposure c Additionally adjusted 

for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



238 | P a g e  

 

 

Table B2.5. Estimated effects of exposure variable outcomes on fasting glucose levels (mmol/L). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.183 -0.110 0.476 0.216 

Benzene (µg/m³) 0.335 0.021 0.649 0.037 

Toluene (µg/m³) -0.052 -0.200 0.096 0.482 

Ethyl-Benzene (µg/m³) -0.001 -0.119 0.117 0.988 

m+p-Xylene (µg/m³) 0.002 -0.033 0.038 0.899 

o-Xylene (µg/m³) 0.013 -0.089 0.115 0.800 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.004 -0.094 0.087 0.939 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in fasting glucose levels (mmol/L) for each IQR increment in exposure c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B2.6. Estimated effects of exposure variable outcomes on % HbA1c levels. 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.034 -0.134 0.066 0.500 

Benzene (µg/m³) -0.057 -0.183 0.069 0.367 

Toluene (µg/m³) -0.018 -0.072 0.036 0.510 

Ethyl-Benzene (µg/m³) -0.016 -0.059 0.027 0.457 

m+p-Xylene (µg/m³) -0.005 -0.018 0.008 0.422 

o-Xylene (µg/m³) -0.010 -0.047 0.027 0.573 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.012 -0.015 0.041 0.374 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in %HbA1c levels for each IQR increment in exposure c Additionally adjusted for urine 

creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.3. Appendix B3 – Effects of exposure variable outcomes on Hb levels. 

 

Table B3.1. Estimated effects of exposure variable outcomes on Hb levels (g/dL). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.070 -0.171 0.311 0.564 

Benzene (µg/m³) 0.070 -0.199 0.338 0.607 

Toluene (µg/m³) 0.067 -0.039 0.173 0.215 

Ethyl-Benzene (µg/m³) 0.029 -0.078 0.136 0.590 

m+p-Xylene (µg/m³) 0.014 -0.018 0.046 0.395 

o-Xylene (µg/m³) 0.032 -0.059 0.123 0.485 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.003 -0.058 0.062 0.940 

a Model adjusted for adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment 

status. b Estimates expressed as a difference in Hb levels (g/dL) for each IQR increment in exposure c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.4. Appendix B4 – Effects of exposure variable outcomes on GGT. 

 

Table B4.1. Estimated effects of exposure variable outcomes on GGT levels (U/L).  

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.74 -4.95 3.47 0.726 

Benzene (µg/m³) -0.75 -5.76 4.27 0.768 

Toluene (µg/m³) -0.14 -2.23 1.96 0.896 

Ethyl-Benzene (µg/m³) -0.12 -1.94 1.71 0.897 

m+p-Xylene (µg/m³) -0.01 -0.55 0.55 0.991 

o-Xylene (µg/m³) 9.9 -22.6 42.5 0.546 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.20 -2.40 2.90 0.853 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in GGT levels (U/L) for each IQR increment in exposure c Additionally adjusted for urine 

creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.5. Appendix B5 – Effects of exposure variable outcomes on eGRF. 

 

Table B5.1. Estimated effects of exposure variable outcomes on eGRF levels (ml/minute/1.73 m3).  

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.35 -1.08 1.79 0.629 

Benzene (µg/m³) 0.19 1.76 1.99 0.900 

Toluene (µg/m³) -7.82 -15.32 -0.439 0.038 

Ethyl-Benzene (µg/m³) 0.25 -1.27 1.72 0.745 

m+p-Xylene (µg/m³) 0.17 -1.35 1.69 0.826 

o-Xylene (µg/m³) 0.028 -1.11 1.17 0.962 

Urinary metabolite c     

    3+4MHA (ng/ml) -1.385 -3.38 0.614 0.172 

a Model adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment status. b Estimates 

expressed as a difference in eGRF levels (ml/minute/1.73 m3) for each IQR increment in exposure c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.6. Appendix B6 – Effects of exposure variable outcomes on LTL, mtDNA content and % DNA 

methylation. 

 

Table B6.1. Estimated effects of exposure variable outcomes on LTL (Main LMM). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -12.9 -20.8 -4.1 0.001 

Benzene (µg/m³) -8.5 -15.7 -0.8 0.005 

Toluene (µg/m³) 1.53 -1.26 4.41 0.480 

Ethyl-Benzene (µg/m³) 1.27 -4.27 7.13 0.110 

m+p-Xylene (µg/m³) 0.46 -1.20 2.15 0.120 

o-Xylene (µg/m³) 0.73 -3.87 5.54 0.160 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.95 -2.82 0.96 0.130 

a Main model adjusted for age, BMI, smoking and employment status. b Estimates expressed as a % difference in 

LTL for each IQR increment in exposure c Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 

3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B6.2. Estimated effects of exposure variable outcomes on LTL (Main model additionally adjusted for 

temperature). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -12.7 -21.3 -3.2 0.005 

Benzene (µg/m³) -8.1 -15.5 -0.1 0.030 

Toluene (µg/m³) 1.69 -1.66 5.17 0.830 

Ethyl-Benzene (µg/m³) 1.12 -4.66 7.25 0.200 

m+p-Xylene (µg/m³) 0.42 -1.29 2.17 0.220 

o-Xylene (µg/m³) 0.71 -3.89 5.53 0.290 

Urinary metabolite c     

    3+4MHA (µg/mL) -1.26 -2.82 0.96 0.150 

a Model adjusted for adjusted for age, BMI, temperature, smoking and employment status. b Estimates expressed 

as a % difference in LTL (n = 61 at baseline and n = 61 at follow-up) for each SD increment in exposure c 

Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 

ng/ml. 
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Table B6.3. Estimated effects of exposure variable outcomes on LTL (Main model additionally adjusted for SBP 

and DBP). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -10.9 -20.52 -0.32 0.001 

Benzene (µg/m³) -8.1 -16.18 0.83 0.004 

Toluene (µg/m³) 1.23 -2.20 4.79 0.310 

Ethyl-Benzene (µg/m³) 0.63 -5.01 6.60 0.09 

m+p-Xylene (µg/m³) 0.277 -1.494 2.08 0.045 

o-Xylene (µg/m³) 0.60 -4.63 4.97 0.060 

Urinary metabolite c     

    3+4MHA (µg/mL) -1.58 -3.74 0.64 0.180 

a Model adjusted for adjusted for age, BMI, SBP, DBP, smoking and employment status. b Estimates expressed 

as a % difference in LTL for each SD increment in exposure c Additionally adjusted for urine creatinine. IQR: NO2 

7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B6.4. Estimated effects of exposure variable outcomes on mtDNA content. 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -1.36 -9.73 7.78 0.760 

Benzene (µg/m³) -3.56 -10.73 4.17 0.352 

Toluene (µg/m³) 7.57 0.21 15.45 0.044 

Ethyl-Benzene (µg/m³) 8.62 -0.19 18.21 0.055 

m+p-Xylene (µg/m³) 8.63 -0.09 18.12 0.053 

o-Xylene (µg/m³) 8.12 -0.44 17.43 0.063 

Urinary metabolite c     

    3+4MHA (ng/ml) -1.43 -7.60 4.40 0.604 

a Model adjusted for adjusted for age, BMI, smoking and employment status. b Estimates expressed as a % 

difference in mtDNA content (n = 61 at baseline and n = 61 at follow-up) for each IQR increment in exposure. c 

Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 

ng/ml. 
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Table B6.5. Estimated effects of exposure variable outcomes on % DNA methylation. 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -1.54 -4.61 1.637 0.332 

Benzene (µg/m³) -2.28 -4.94 0.45 0.099 

Toluene (µg/m³) -0.35 -1.75 1.07 0.624 

Ethyl-Benzene (µg/m³) -0.53 -1.61 0.56 0.328 

m+p-Xylene (µg/m³) -0.17 -0.50 0.15 0.288 

o-Xylene (µg/m³) -0.57 -1.46 0.34 0.214 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.95 -2.82 0.96 0.259 

a Model adjusted for age, BMI, smoking and employment status. b Estimates expressed as a % difference in % 

DNA methylation for each IQR increment in exposure. c Additionally adjusted for urine creatinine. IQR: NO2 7.0 

µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.7. Appendix B7 – Effects of exposure variable outcomes on blood pressure and heart rate. 

 

Table B7.1. Estimated effects of exposure variable outcomes on SBP (mmHg). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 3.41 0.04 6.77 0.047 

Benzene (µg/m³) 2.80 -0.87 6.48 0.070 

Toluene (µg/m³) 0.01 -1.56 1.58 0.539 

Ethyl-Benzene (µg/m³) 0.18 -1.27 1.63 0.272 

m+p-Xylene (µg/m³) 0.07 -0.37 0.50 0.224 

o-Xylene (µg/m³) 2.12 -0.50 4.74 0.112 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.71 -0.25 1.67 0.687 

a Model adjusted for age, BMI, temperature, date of clinical visit, smoking, hours of sleep at night and employment 

status. b Estimates expressed as a difference in SBP (mmHg) for each IQR increment in exposure. c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B7.2. Estimated effects of exposure variable outcomes on DBP (mmHg). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 2.48 -0.01 4.97 0.050 

Benzene (µg/m³) 1.44 -1.15 4.03 0.220 

Toluene (µg/m³) 0.93 -0.15 2.01 0.860 

Ethyl-Benzene (µg/m³) 0.71 -0.29 1.70 0.080 

m+p-Xylene (µg/m³) 0.22 -0.08 0.52 0.062 

o-Xylene (µg/m³) 0.82 0.01 1.63 0.029 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.60 -0.09 1.29 0.673 

a Model adjusted for adjusted for age, BMI, temperature, date of clinical visit, smoking, hours of sleep at night and 

employment status. b Estimates expressed as a difference in DBP (mmHg) for each IQR increment in exposure. c 

Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 

ng/ml. 
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Table B7.3. Estimated effects of exposure variable outcomes on heart rate (bpm). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -1.30 -3.51 0.91 0.244 

Benzene (µg/m³) -1.00 -3.28 1.29 0.388 

Toluene (µg/m³) 0.54 -0.45 1.53 0.280 

Ethyl-Benzene (µg/m³) -0.33 -1.21 0.55 0.456 

m+p-Xylene (µg/m³) -0.07 -0.33 0.20 0.612 

o-Xylene (µg/m³) -0.09 -0.85 0.67 0.808 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.04 -0.58 0.67 0.892 

a Model adjusted for adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking and employment 

status. b Estimates expressed as a difference in heart rate (bpm) for each IQR increment in exposure. c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.8. Appendix B8 – Effects of exposure on circulating markers of vascular endothelial function. 

 

Table B8.1. Estimated effects of exposure variable outcomes on hsCRP levels (mg/L). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -12.8 -34.0 15.1 0.328 

Benzene (µg/m³) -7.7 -30.2 22.2 0.574 

Toluene (µg/m³) -2.9 -14.3 10.0 0.643 

Ethyl-Benzene (µg/m³) -9.5 -18.7 0.8 0.069 

m+p-Xylene (µg/m³) -3.0 -6.1 0.2 0.068 

o-Xylene (µg/m³) -7.4 -15.6 1.5 0.100 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.96 -7.05 10.00 0.806 

a Model adjusted for adjusted for age, BMI, SBP, temperature, date of clinical visit, smoking status and 

employment. b Estimates expressed as a % difference in hsCRP levels (mg/L) for each IQR increment in exposure. 

c Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 

1380 ng/ml. 

 

Table B8.2. Estimated effects of exposure variable outcomes on TNF-α levels (pg/ml). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.70 -1.93 0.54 0.260 

Benzene (µg/m³) -0.20 -1.38 0.98 0.736 

Toluene (µg/m³) 0.01 -0.58 0.59 0.977 

Ethyl-Benzene (µg/m³) -0.04 -0.68 0.60 0.896 

m+p-Xylene (µg/m³) -0.02 -0.21 0.18 0.873 

o-Xylene (µg/m³) -0.05 -0.68 0.58 0.260 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.87 -0.09 1.83 0.877 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a 

difference TNF-α levels (pg/ml) for each IQR increment in exposure. c Additionally adjusted for urine creatinine. 

IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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Table B8.3. Estimated effects of exposure variable outcomes on VCAM-1 levels (ng/ml). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 1.70 -6.39 10.49 0.683 

Benzene (µg/m³) -3.21 -10.94 5.18 0.433 

Toluene (µg/m³) -0.52 -4.36 3.48 0.792 

Ethyl-Benzene (µg/m³) -4.85 -8.64 -0.91 0.018 

m+p-Xylene (µg/m³) -1.47 -2.68 -0.25 0.020 

o-Xylene (µg/m³) -4.47 -8.39 -0.39 0.033 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.95 -6.75 5.55 0.777 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a % 

difference in VCAM-1 levels (ng/ml) for each IQR increment in exposure. c Additionally adjusted for urine creatinine. 

IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B8.4. Estimated effects of exposure variable outcomes on ICAM-1 levels (ng/ml). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -3.25 -9.45 3.37 0.317 

Benzene (µg/m³) -1.93 -9.47 6.24 0.625 

Toluene (µg/m³) -0.01 -3.60 3.72 0.995 

Ethyl-Benzene (µg/m³) -0.65 -4.67 3.55 0.752 

m+p-Xylene (µg/m³) -0.19 -1.44 1.08 0.767 

o-Xylene (µg/m³) -0.66 -4.97 3.84 0.762 

Urinary metabolite c     

    3+4MHA (ng/ml) -1.26 -5.86 3.23 0.540 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a % 

difference in ICAM-1 for each IQR increment in exposure. c Additionally adjusted for urine creatinine. IQR: NO2 7.0 

µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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Table B8.5. Estimated effects of exposure variable outcomes on e-selectin levels (ng/ml). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.11 -2.24 2.45 0.927 

Benzene (µg/m³) -1.00 -3.27 1.27 0.378 

Toluene (µg/m³) -0.50 -1.68 0.68 0.395 

Ethyl-Benzene (µg/m³) -0.44 -1.64 0.76 0.458 

m+p-Xylene (µg/m³) -0.11 -0.47 0.25 0.541 

o-Xylene (µg/m³) -0.20 -1.40 1.00 0.739 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.91 -2.67 0.85 0.303 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a 

difference in e-selectin levels (ng/ml) for each IQR increment in exposure. c Additionally adjusted for urine 

creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B8.6. Estimated effects of exposure variable outcomes on p-selectin levels (ng/ml). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -1.05 -5.47 3.37 0.635 

Benzene (µg/m³) -5.79 -9.33 -2.26 0.002 

Toluene (µg/m³) -0.45 -2.07 1.17 0.581 

Ethyl-Benzene (µg/m³) 0.20 -2.05 2.45 0.859 

m+p-Xylene (µg/m³) -0.04 -0.72 0.64 0.906 

o-Xylene (µg/m³) -0.26 -2.48 1.97 0.813 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.44 -3.65 2.77 0.786 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a 

difference in p-selectin levels (ng/ml) for each IQR increment in exposure. c Additionally adjusted for urine 

creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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Table B8.7. Estimated effects of exposure variable outcomes on VEGF levels (pg/ml). 

Exposure a % Difference b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -18.9 -30.7 -5.2 0.010 

Benzene (µg/m³) -4.0 -19.2 13.9 0.632 

Toluene (µg/m³) 0.1 -7.8 8.5 0.990 

Ethyl-Benzene (µg/m³) -5.5 -13.8 3.5 0.216 

m+p-Xylene (µg/m³) -1.7 -4.4 1.0 0.209 

o-Xylene (µg/m³) -3.2 -11.8 6.3 0.491 

Urinary metabolite c     

    3+4MHA (ng/ml) 4.2 -9.1 19.5 0.545 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a % 

difference in VEGF (pg/ml) for each IQR increment in exposure c Additionally adjusted for urine creatinine. IQR: 

NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B8.8. Estimated effects of exposure variable outcomes on PAI-1 levels (ng/ml). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -3.4 -16.7 9.9 0.612 

Benzene (µg/m³) 1.4 -10.4 13.2 0.811 

Toluene (µg/m³) 7.2 2.3 12.1 0.005 

Ethyl-Benzene (µg/m³) 9.1 2.4 15.7 0.008 

m+p-Xylene (µg/m³) 3.08 1.09 5.1 0.003 

o-Xylene (µg/m³) 11.7 5.2 18.1 0.001 

Urinary metabolite c     

    3+4MHA (ng/ml) 12.9 3.8 22.6 0.010 

a Model adjusted for adjusted for age, BMI, SBP, temperature and smoking status. b Estimates expressed as a 

difference in PAI-1 levels (ng/ml) for each IQR increment in exposure c Additionally adjusted for urine creatinine. 

IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.9. Appendix B9 – Effects of exposure variable outcomes on retinal vessel calibre. 

 

Table B9.1. Estimated effects of exposure variable outcomes on CRAE (µm). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.66 -3.17 1.84 0.599 

Benzene (µg/m³) -0.69 -3.49 2.10 0.582 

Toluene (µg/m³) -0.04 -1.16 1.09 0.500 

Ethyl-Benzene (µg/m³) -0.46 -1.44 0.52 0.579 

m+p-Xylene (µg/m³) -0.16 -0.45 0.14 0.511 

o-Xylene (µg/m³) -0.43 -1.27 0.41 0.461 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.02 -2.48 2.45 0.517 

a Model adjusted for adjusted for age, BMI, SBP, date of clinical visit, temperature, smoking status and employment 

status. b Estimates expressed as a difference in CRAE (µm) for each IQR increment in exposure c Additionally 

adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 

 

Table B9.2. Estimated effects of exposure variable outcomes on CRVE (µm). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -2.93 -5.83 -0.03 0.048 

Benzene (µg/m³) -0.38 -3.81 3.04 0.588 

Toluene (µg/m³) 0.51 -0.89 1.91 0.768 

Ethyl-Benzene (µg/m³) -0.36 -1.50 0.79 0.616 

m+p-Xylene (µg/m³) -0.10 -0.45 0.25 0.638 

o-Xylene (µg/m³) -0.34 -1.32 0.65 0.587 

Urinary metabolite c     

    3+4MHA (ng/ml) -0.32 -1.05 0.42 0.890 

a Model adjusted for age, BMI, SBP, date of clinical visit, temperature, smoking status and employment status. b 

Estimates expressed as a difference in CRVE (µm) for each IQR increment in exposure c Additionally adjusted for 

urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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Table B9.3. Estimated effects of exposure variable outcomes on AVR. 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) 0.0073 -0.0034 0.0179 0.179 

Benzene (µg/m³) -0.0006 -0.0124 0.0113 0.924 

Toluene (µg/m³) -0.0008 -0.0057 0.0040 0.721 

Ethyl-Benzene (µg/m³) -0.0004 -0.0049 0.0041 0.842 

m+p-Xylene (µg/m³) -0.0002 -0.0015 0.0012 0.729 

o-Xylene (µg/m³) -0.0003 -0.0037 0.0031 0.869 

Urinary metabolite c     

    3+4MHA (ng/ml) 0.0005 -0.0028 0.0028 0.735 

a Model adjusted for adjusted for age, BMI, SBP, date of clinical visit, temperature, smoking status and employment 

status. b Estimates expressed as a difference in AVR for each IQR increment in exposure c Additionally adjusted 

for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 1380 ng/ml. 
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8.10. Appendix B10 – Effects of exposure variable outcomes on flow-mediated vasodilation 

parameters. 

 

Table B10.1. Estimated effects of exposure variable outcomes on baseline brachial artery diameter (mm). 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.11 -0.19 -0.03 0.005 

Benzene (µg/m³) -1.01 -0.10 0.08 0.760 

Toluene (µg/m³) -0.09 -0.17 0.01 0.065 

Ethyl-Benzene (µg/m³) -0.08 -0.17 0.00 0.057 

m+p-Xylene (µg/m³) -0.06 -0.15 0.02 0.144 

o-Xylene (µg/m³) -0.06 -0.15 0.03 0.189 

Urinary metabolites c     

    3+4MHA (ng/ml) 0.02 -0.07 0.11 0.647 

a Model adjusted for age, BMI, SBP, date of clinical visit, temperature, smoking status and employment status. b 

Estimates expressed as a difference in baseline brachial artery diameter (mm) for each IQR increment in exposure 

c Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 3+4MHA 

1380 ng/ml. 

 

Table B10.2. Estimated effects of exposure variable outcomes on % FMD. 

Exposure a Estimate b 
95%CI 

p-values 
Lower Upper 

NO2 (µg/m³) -0.11 -1.00 0.77 0.801 

Benzene (µg/m³) -0.01 -0.87 0.85 0.982 

Toluene (µg/m³) 0.36 -0.50 1.22 0.403 

Ethyl-Benzene (µg/m³) 0.35 -0.76 0.90 0.870 

m+p-Xylene (µg/m³) 0.07 -0.77 0.92 0.862 

o-Xylene (µg/m³) 0.16 -0.68 1.00 0.705 

Urinary metabolites c     

    3+4MHA (ng/ml) -1.45 -2.38 -0.51 0.003 

a Model adjusted for adjusted for age, BMI, SBP, date of clinical visit, temperature, brachial diameter, smoking 

status and employment status. b Estimates expressed as a difference in % FMD for each IQR increment in 

exposure c Additionally adjusted for urine creatinine. IQR: NO2 7.0 µg/m³; BTEX 3.3, 30.0, 3.8, 3.8, 3.8 µg/m³; 

3+4MHA 1380 ng/ml. 
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9. Appendix C: Additional Information.  

 

Figure C1. A figure depicting the distribution of baseline assessment visits for each study group. 

Table C1. Reasons for loss of participants at follow-up visit for Sub-study 1 and 2 combined.  

Number of Participants Reason 

n = 48 Moved away from recruitment area or could not be located.  

n = 32 Did not wish to continue with the study. 

n = 17 Did not show up for appointments. 

n = 16 Could not attend follow-up visit due to employment obligations.  

n = 13 Diseased before follow-up visit. 

n = 7 Enrolled in study, but baseline visit was incomplete.  

n = 5 Participant became pregnant. 

n = 4 Contracted tuberculosis. 

n = 142 Total 

 

Table C2. Assessment of interobserver variability for the FMD procedure.  

Probe Operator Baseline Brachial Lumen Diameter a, b % FMD a, c 

1 3.2 (0.84) mm 6.2 (7.2) % 

2 3.2 (0.72) mm 6.2 (7.8) % 

3 3.3 (0.81) mm 6.2 (6.0) % 

4 3.3 (0.64) mm 6.6 (6.2) % 

a Data presented as the median (IQR). Kruskal Wallis test: Between-subjects effects b p = 0.401 and c p = 0.396. 
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10. Appendix D: First-Author Publications. 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Personal exposure to NO2 and benzene in the Cape Town region of South
Africa is associated with shorter leukocyte telomere length in women

Frans Eversona, Dries S. Martensb, Tim S. Nawrotb,∗, Nandu Goswamic, Mashudu Mthethwaa,
Ingrid Webstera, Nyiko Mashelea, Sana Charaniaa, Festus Kamaua, Patrick De Boeverb,d,
Hans Strijdoma

a Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000,
South Africa
b Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
c Division of Physiology, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, 8036, Graz, Austria
dHealth Unit, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium

A R T I C L E I N F O

Keywords:
Air pollution
Nitrogen dioxide
Benzene
Leukocyte telomere length
South Africa

A B S T R A C T

Air pollution exposure is a major global health concern and has been associated with molecular aging.
Unfortunately, the situation has not received much attention in the African region. The aim of this study was to
investigate whether current personal ambient NO2 and benzene, toluene, ethyl-benzene and xylenes (ortho (o)-,
meta (m)- and para (p)-xylene (BTEX) exposure is associated with leukocyte telomere length (LTL), a marker of
molecular ageing, in apparently healthy women (mean ± SD age: 42.5 ± 13.4 years) residing in the Cape
Town region of South Africa. The repeated measures study collected data from 61 women. Seven-day median
(interquartile range (IQR)) personal NO2 and BTEX exposure levels were determined via compact passive dif-
fusion samplers carried on the person prior to baseline (NO2: 14.2 (9.4–17.2) μg/m³; Benzene: 3.1 (2.1–5.3) μg/
m³) and 6-month follow-up (NO2: 10.6 (6.6–13.6) μg/m³; Benzene: 2.2 (1.3–4.9) μg/m³) visits. LTL was mea-
sured at baseline and follow-up using a real-time PCR method. Multiple linear mixed model analyses (adjusting
for age, body mass index, smoking, employment status, level of education and assessment visit) showed that each
IQR increment increase in NO2 (7.0 μg/m³) and benzene (3.3 μg/m³) was associated with −7.30% (95% CI:
−10.98 to −3.46%; p < 0.001) and −6.78% (95% CI: −11.88 to −1.39%; p = 0.015) difference in LTL,
respectively. The magnitude of these effects of NO2 and benzene corresponds to the effect of an increase of 10.3-
and 6.0-year in chronological age on LTL. Our study shows that personal exposures to NO2 and benzene are
associated with molecular ageing as indicated by LTL in healthy women residing in the Cape Town region.

1. Introduction

The World Health Organization (WHO) estimates that 7 million
premature deaths occur globally each year due to air pollution, in-
cluding almost 1 million in Africa (Kuehn, 2014). Pollutants such as
NO2, benzene, toluene, ethyl-benzene and xylenes (ortho (o)-, meta (m)-
and para (p)-xylene (BTEX) and small ambient particulate matter
(< 2.5 μm diameter (PM2.5) have been identified as culprits (Bolden
et al., 2015; Łatka et al., 2018; World Health Organization, 2018,
2016). They are mostly produced through the incomplete combustion
of fossil fuels during industrial, vehicle and household processes and
therefore relevant in the indoor and outdoor setting in both urban and
rural spaces (Bolden et al., 2015; Miri et al., 2016).

Telomeres, protein complexes located at the end of chromosomes,
play an important role in maintaining chromosomal structural and
functional integrity by protecting the chromosome against degradation
and loss of genetic information (O'Sullivan and Karlseder, 2010). Tel-
omeres shorten over time due to DNA replication and the adverse ef-
fects of oxidative stress and inflammation (O'Sullivan and Karlseder,
2010). Leukocyte telomere length (LTL) is therefor considered a marker
of cellular ageing and is associated with degenerative diseases/dis-
orders such as atherosclerosis, cancer and all-cause mortality (Haycock
et al., 2014; Martens and Nawrot, 2016; Miri et al., 2019; Wang et al.,
2018).

Evidence has shown that telomeres may also be an important in-
termediate marker of health outcomes following air pollution exposure
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(Desai et al., 2017; Hoxha et al., 2009; Miri et al., 2019; Zglinicki et al.,
2005; Zhao et al., 2018). Although the exact underlying mechanisms
involved remain incompletely described (De Prins et al., 2013; Desai
et al., 2017; Zglinicki et al., 2005; Zhao et al., 2018), acute high-level
exposure to air pollution is often associated with increased telomere
length (TL) that could be attributed to an acute inflammatory response
(Dioni et al., 2011; Hou et al., 2012; Xu et al., 2018), while negative
associations between LTL and air pollution exposure are often reported
in studies investigating chronic high- and low-level exposure with
oxidative damage as a possible major mechanism (Bijnens et al., 2015;
Ling et al., 2016; Pieters et al., 2016).

Reports on the effects of air pollution on TL in South African and
sub-Saharan African populations are currently lacking, as mentioned in
a recent systematic review and meta-analysis on the effects of air pol-
lution on LTL (Miri et al., 2019), which showed that none of the 19
eligible publications were from the African region (Miri et al., 2019). In
fact there seems to be a general shortage of studies on the health effects
of air pollution in the Sub-Saharan Africa region. A recent review by
Katoto et al. (2019) highlighted this general paucity by identifying only
23 reports from the sub-Saharan Africa region that assessed associations
between air pollution and health outcomes (Katoto et al., 2019). Re-
ports have furthermore shown that combustion processes used for coal-
based power generation, industries, domestic heating and cooking and
transport are mostly contributing to air pollution in South Africa, but
air pollution levels are seldom linked to health outcomes
(Klausbruckner et al., 2016; South African Department of
Environmental Affairs., 2007). In light of the general paucity of avail-
able data, especially on intermediate health markers such as LTL, the
aim of the current repeated measures study was to investigate whether
LTL is a marker of the effect of personal ambient NO2 and BTEX ex-
posure in apparently healthy women (with no medical history or signs
of overt disease) residing in the Cape Town region of South Africa.

2. Materials and methods

2.1. Study ethics, design and population

The study formed part of a larger parent study called EndoAfrica
(Strijdom et al., 2017). Ethics clearance for the current study was ob-
tained from The Health Research Ethics Committee, Stellenbosch Uni-
versity, South Africa (in accordance with the Helsinki Declaration;
Reference number: S16/07/114). The methodologies used for partici-
pant recruitment, air quality and temperature monitoring, and the
quantification of biochemical analysis have previously been reported
(Everson et al., 2019).

The study followed a repeated measures design with a baseline visit
and one 6-month follow-up visit. Qualified research nurses recruited
and obtained informed consent from apparently healthy volunteering
women with no recorded history or signs of overt disease (confirmed
from participant file at local clinics). A total number of 77 women
successfully completed the first clinical visit (Baseline visit). Sixteen
participants did not give consent to be included for the 6-month follow-
up assessment and were subsequently excluded. All volunteering par-
ticipants were from neighbouring residential areas in the northern
suburbs of Cape Town area. Healthy participants who were>18 years
of age, HIV-negative (confirmed with a rapid HIV-test; SD Bioline HIV
1/2 3.0 immunochromatographic test kit; Standard Diagnostics,
Republic of Korea), free of genetic, chronic and acute diseases such as
diabetes- and tuberculosis (confirmed from participant file at local
clinics), not pregnant (confirmed with pregnancy test) and>3 months
post-partum were included. Baseline assessments were conducted from
September 2016 to August 2017 and 6-month follow-up visits were
completed by February 2018. All backpacks containing samplers were
handed out and collected between 8h00 and 11h00 in the morning.

2.2. Air quality and temperature monitoring

A NO2 passive diffusion sampler (Gradko International Ltd., UK),
Radiello™ BTEX passive diffusion sampler (Sigma-Aldrich Inc., USA)
and ACR SmartButton® temperature logger (ACR Systems, Surrey, B.C.
Canada) were placed inside the external mesh pocket of a backpack for
each participant. All participants carried the backpacks for a 7-day
period prior to each assessment visit. The passive diffusion samplers
allowed continuous air diffusion and the temperature logger recorded
temperature (°C) at 30-min intervals in a 50–60 cm radius from the face
for the 7-day period prior to each assessment visit. Backpacks were
placed next to the participant's bed during periods of sleep and bath-
room use.

Following 7 days of continuous measurements, participants re-
turned for assessment visits. Data were extracted from the temperature
loggers via ACR TrendReader® software (ACR Systems, Surrey, B.C.
Canada). NO2 and BTEX samplers were sealed, stored at 4 °C and sent
for quantification as previously described (Everson et al., 2019). NO2

samplers (a total of n = 121; one sampler lost by a participant) were
sent to Gradko International (Ltd.) Laboratories (United Kingdom) for
quantification by means of United Kingdom Accreditation Services
(UKAS: GLM 7) accredited chemiluminescence ultra-violet (UV) spec-
trophotometry methodology (UVS04 Camspec M550; Spectronic Cam-
spec Ltd., Leeds, UK) as previously described (Everson et al., 2019;
Targa and Loader, 2008). A calibration curve consisted of a blank
(deionised water only) and standard nitrate solutions (nitrite ion
(NO2

−) at 15, 30, 60, 90 μg/mL). Samples were eluted by means of a
20% triethanolamine solution/80% deionised water. The colour re-
agent was prepared according to previously described specification
(0.003 g naphthyl-1 ethylene diamine dihydrochloride per 1 g sulpha-
nilamide) (Palmes et al., 1976). For quality assurance, calibration
standards and linearity checks were performed and mid-range and zero
standards were analysed at intervals throughout the sequence. The
NO2

− concentration of each sample was determined against the cali-
bration curve and expressed as μg/m3. All NO2 exposure concentration
levels were within the detectable range (LOD - NO2:> 0.2 μg/m³).

BTEX samplers were analysed at the Flemish Institute for
Technological Research (VITO; Mol, Belgium) by accredited Thermo
Trace gas chromatography/mass spectrometry methodology (Thermo
DSQ II with helium as carries gas (at a constant flow of 1 ml/min) as
previously described (Everson et al., 2019; McAlary et al., 2015; Pegas
et al., 2011). Samples were eluted (30 min on a rotational shaker) by
means of 2 ml carbon disulphide (Sigma-Aldrich, MO, USA) containing
12.5 μl 2-fluorotoluene internal standard (Sigma-Aldrich, MO, USA).
For sample separation, an RTX 502.2, 0.25 mm by 30 m crossbond
diphenyl/dimethylpolysiloxane column with a 1.4 μm-thick film was
used. The temperature program was set at 35 °C for 5 min with sub-
sequent 14 °C/min increment increases until 245 °C. A 0.03–30 μg/g
calibration curve that comprised of a standard solution containing
benzene, ethyl-benzene, toluene, m-xylene, p-xylene, and o-xylene in
carbon disulphide (Sigma-Aldrich, MO, USA) was injected before ana-
lysis to calibrate the equipment. Results were expressed as mean BTEX
exposure concentrations respective (μg/m3) for the 7-day measuring
period.

Results from a total number of n = 114 BTEX samplers were suc-
cessfully obtained. One BTEX sampler was lost by a participant. Three
samplers were returned damaged and were excluded for analysis.
Results from two samplers were flagged by the laboratory as ques-
tionable and were subsequently excluded. Also, two BTEX samplers
yielded exposure concentrations below the detectable range (Benzene:
0.05 μg/m³, toluene: 0.01 μg/m³, ethyl-benzene: 0.01 μg/m³ and xy-
lene: 0.01 μg/m³) and were excluded from further analysis. Excluding
results form the two samples that yielded below detectable range from
further analysis as opposed to using LOD/2 values did not significantly
affect any results presented in the current study.
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2.3. Study endpoints

2.3.1. Health questionnaire and anthropometric measurements
Age, lifestyle and socioeconomic information were collected from

each participant at each visit. Lifestyle information included smoking
status (defined as smoking or non-smoking) and alcohol constitution
(defined as yes/no and if yes, more or less than 8 days a month).
Socioeconomic information included employment status (defined as
either unemployed, part-time employed or full-time employed) and
highest level of education obtained (defined as either primary school,
secondary school or a tertiary education). Anthropometric measure-
ments included body-mass index (BMI) expressed as kg body weight/m2

height (measured on an electronic scale and stadiometer), and resting
systolic and diastolic blood pressure (SBP and DBP) expressed as the
average mmHg of three measurements taken at 5-min intervals on the
left arm (Omron M6 automatic digital blood pressure monitor: Omron
Healthcare, Kyoto, Japan) as previously described (Everson et al.,
2019).

2.3.2. Biochemical and telomere measurements
Fasting blood samples were collected in serum blood collection

tubes (SGVac, The Scientific Group (Pty) Ltd.; Milnerton, Western Cape,
SA) at each clinical visit and transported to South African National
Health Laboratory Service (Tygerberg Hospital, South Africa) for de-
termination of high-sensitivity C-reactive protein (hsCRP) levels
(Everson et al., 2019). HsCRP levels> 0.3 mg/L were considered to be
elevated (Ridker, 2016).

The buffy coats of fasted peripheral blood samples (EDTA blood
collection tubes (SGVac, The Scientific Group (Pty) Ltd.; Milnerton,
Western Cape, SA)) were extracted, stored at −80 °C and sent to the
University of Hasselt (Belgium) for DNA extraction (QIAamp® DNA
Mini Kit QIAGEN, Hilden, Germany) and quantification as previously
described (Martens et al., 2016). After DNA extraction, the DNA content
in each sample was quantified by a Nanodrop 1000 spectrophotometer
(Isogen, Life Science, Belgium) and the DNA quality evaluated using
agarose gelelectrophoresis. Extracted DNA samples were diluted to
ensure a uniform DNA input (5 ng) for each quantitative real-time
polymerase chain reaction (qPCR) and checked using a Quant-iT Pico-
Green dsDNA Assay Kit (LifeTechnologies, Europe).

All LTL measurements were performed in triplicate on a 7900HT
Fast Real-Time PCR System (Applied Biosystems, USA) in a 384-well
format. The telomere-specific qPCR reaction mixture contained 1x
QuantiTect SYBR Green PCR master mix (Qiagen, Inc., Venlo, the
Netherlands), 2 mM dithiothreitol (DTT), 300 nM telg primer (ACACT
AAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT) and 900 nM telc
primer (TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA).
Cycling conditions used were: 1 cycle at 95 °C for 10 min, followed by 2
cycles at 94 °C for 15 s and 49 °C for 2 min and 30 cycles at 94 °C for
15 s, 62 °C for 20 s, and 74 °C for 1 min and 40 s. The single-copy gene
qPCR mixture contained 1x QuantiTect SYBR Green PCR master mix,
300 nM 36B4u primer (CAGCAAGTGGGAAGGTGTAATCC) and 500 nM
36B4d primer (CCCATTCTATCATCAACGGGTACAA).

After each qPCR a melting curve analysis was performed. On each
run, a 6-point serial dilution of pooled buffy coat DNA was run to assess
PCR efficiency as well as three inter-run calibrators to account for inter-
run variability. We achieved coefficients of variation (CV) within tri-
plicates of the telomere runs, single-copy gene runs, and T/S ratios of
0.71%, 0.38%, and 7.1%, respectively.

2.4. Statistical analysis

All statistical analyses were performed with IBM SPSS software
(version 25; New York, USA). Paired sample Student's t-tests (para-
metric) or Wilcoxon signed ranks tests (non-parametric) were per-
formed to identify significant differences between baseline and follow-
up visits. Spearman rank correlations were used for all correlation

analysis. Multiple linear mixed model analysis (LMM) was applied to
evaluate the associations of NO2 and BTEX compounds with LTL.
Variables with skewed data distribution were log10-transformed. All
LMMs included participants nested in each visit as a random effects
factor variable with random intercept (to account for possible inter-
individual variation). Covariates that are known determinants of LTL
and variables with a potential link between personal air pollution ex-
posure and LTL were selected (Cherkas et al., 2006; Fitzpatrick et al.,
2007; Sanders and Newman, 2013; Valdes et al., 2005). Model A was
only adjusted for age while the fully adjusted Model B was adjusted for
age and BMI, as continuous fixed effects, smoking status, employment
status level of education and assessment visit (baseline and follow-up)
as fixed categorical variables. Sensitivity analyses were performed by
means of additionally adjusting Model B for average temperature
(Model B1), SBP and DBP (Model B2), and alcohol consumption (Model
B3) respectively. To further evaluate the robustness of the fully adjusted
model, a non-linear term age*age was included in the model. Estimates
were presented as a % difference in LTL for an IQR increment in ex-
posure. Q-Q plots and distribution (Shapiro-Wilk test) of residuals were
used to test the assumptions of linearity and normality. The significant
threshold was set at p < 0.05 for all statistical analysis.

3. Results

3.1. Baseline population characteristics

Sixty-one healthy women with a mean ± SD age of 42.5 ± 13.4
years (range: 19–70 years) completed the study (Table 1). The majority
of study participants were unemployed (49%) and current smokers
(69%) with a smoking frequency< 20 cigarettes/day. Less than half of
the participants reported that they consumed alcohol (46%; at a fre-
quency of less than 8 days a month for all). Seventy-two percent of
participants reporting primary school education as their highest level of
education obtained.

The mean SBP and DBP were furthermore clinically normal ac-
cording to South African Hypertension Society guidelines
(SBP< 140 mmHg or DBP of< 90 mmHg) (Seedat and Rayner, 2013).
The mean ± SD BMI of the study population (27.7 ± 8.4 kg/m2) fell
within the overweight range (BMI 25 to < 30 kg/m2 (World Health
Organization Expert Committee on Physical Status, 1995). Most parti-
cipants (61%) presented with elevated hsCRP levels (Table 2).

Baseline age was negatively correlated with LTL (r = −0.30;
p = 0.025; Supplementary Figs. 1a) and a positive correlation between
baseline and follow-up LTL was observed (r = 0.70; p < 0.001;
Supplementary Fig. 1b). NO2 (r = 0.321; p = 0.018) and benzene

Table 1
Baseline demographic, lifestyle and socioeconomic characteristics for 61
women living in the Cape Town region.

Variable Baseline

Age, years 42.5 ± 13.4
Smoking Status

Yes, n (%) 42 (69%)
No, n (%) 19 (31%)

Alcohol consumption
No, n (%) 33 (54%)
Yes, n (%) 28 (46%)
Frequency (< 8 days a month) 28 (46%)

Employment
Unemployed, n (%) 30 (49%)
Part-time, n (%) 25 (41%)
Full-time, n (%) 6 (10%)

Education Level
Primary school, n (%) 44 (72%)
Secondary school, n (%) 12 (20%)
Tertiary education, n (%) 5 (8%)

Data presented as mean ± standard deviation (SD) or n (%).
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(r = 0.322; p = 0.020) was inversely correlated with LTL and a higher
level of education was positively correlated with LTL (r = 0.332;
p = 0.012) (Supplementary Table 1). Employment status was positively
correlated with NO2 (r = 0.369; p = 0.003), benzene, (r = 0.285;
p = 0.028), toluene (r = 0.382; p = 0.003), ethyl-benzene (r = 0.340;
p = 0.008), m + p-xylene (r = 0.358; p = 0.005) and o-xylene
(r = 0.337; p = 0.009) exposure concentrations. Inflammation was
evaluated as a potential mediator between exposure effects and LTL;
however, no significant associations between exposure, hsCRP and LTL
were observed (Supplementary Table 1).

3.2. Personal ambient exposure

NO2, benzene, ethyl-benzene and xylene levels were significantly
higher (p < 0.05) at baseline than follow-up visit (Fig. 1). The median
(IQR) temperature for baseline (21.9 (19.4–24.3) °C) and follow-up

(22.0 (20.4–23.9) °C) did not significantly differ (p > 0.05). NO2 and
BTEX exposure concentrations were positively correlated and inversely
associated with temperature (Supplemental Table 2).

3.3. Air pollution exposure and leukocyte telomere length

At baseline, determinants of LTL included age, level of education,
NO2 and benzene exposure while employment and temperature were
determinants of NO2 and BTEX exposure (Supplementary Table 1).
After controlling for age only, each IQR increment in NO2 (7.0 μg/m³)
and benzene (3.3 μg/m³) exposure was associated with a −11.4% and

Table 2
Baseline anthropometric and biochemical characteristics for 61 women living in
the Cape Town region.

Variable Baseline

Blood Pressure
SBP, mmHg 122.5 ± 19.9
DBP, mmHg 84.1 ± 12.0

Hypertension (SBP >140 mmHg or DBP >90 mmHg)
Yes, n (%) 15 (25%)
No, n (%) 46 (75%)

BMI, kg/m2 27.7 ± 8.4
Underweight (BMI < 18.5 kg/m2), n (%) 6 (10%)
Normal weight (BMI 18.5 to < 25 kg/m2), n (%) 22 (36%)
Overweight (BMI 25 to < 30 kg/m2), n (%) 11 (18%)
Obese (BMI > 30 kg/m2), n (%) 22 (36%)

hsCRP, mg/L a 6.3 (0.2–37.1)
Elevated hsCRP (> 3 mg/L)

Yes, n (%) 35 (61%)
No, n (%) 22 (39%)

Leukocyte Telomere Length (LTL) b 0.98 (0.58–1.55)

Data presented as mean ± standard deviation (SD) or median (range) or n (%).
a Sample size: n = 58. b n = 57, four samples had insufficient DNA content.

Fig. 1. a and b. Personal (a.) NO2 and (b.) BTEX exposure concentrations (Median (IQR)) at baseline vs. 6-month follow-up for 61 women living in the Cape Town
region. a.) NO2: 14.2 (9.4–17.4) vs. 10.6 (6.6–13.6) μg/m³, p = 0.003. b.) BTEX: Benzene 3.1 (2.1–5.3) vs. 2.2 (1.3–4.9) μg/m³, p = 0.045; Toluene 22.1
(12.7–50.7) vs. 18.0 (10.3–36.7) μg/m³, p = 0.199; Ethyl-benzene 2.8 (2.0–8.9) vs. 2.3 (1.5–4.6) μg/m³, p = 042; m +p-Xylene 9.2 (6.3–29.6) vs. 7.5 (4.6–14.2)
μg/m³, p = 0.019; o-Xylene 3.2 (2.3–10.7) vs. 2.8 (1.7–4.7) μg/m³, p = 0.014. *p < 0.05 for Baseline vs. Follow-up.

Table 3
Estimated effects of personal NO2 and BTEX on LTL in n = 61 women from the
Cape Town region.

Exposure % Difference (95%CI) a p-values

Model A NO2 −11.4 (−19.9; −2.08) 0.019
BTEX
Benzene −10.0 (−19.2; 0.28) 0.056
Toluene −1.37 (−21.3; 23.7) 0.90
Ethyl-benzene −4.17 (−13.5; 6.17) 0.41
m + p-Xylene −7.72 (−24.8; 13.2) 0.44
o-Xylene −4.22 (−14.45; 7.24) 0.45

Model B NO2 −7.30 (−10.9; −3.46) <0.001
BTEX
Benzene −6.78 (−11.9; −1.39) 0.015
Toluene −1.56 (−13.6; 12.1) 0.81
Ethyl-benzene −2.13 (−6.61; 2.57) 0.36
m + p-Xylene −3.75 (−12.4; 5.72) 0.42
o-Xylene −1.62 (−6.74; 3.78) 0.54

All models include participants (n = 61) nested in each visit with random in-
tercept (Random factor: participant). Model A: adjusted for age. Model B (fully
adjusted model; Residual distribution (Shapiro-Wilk test): p = ≥ 0.05 for all
analyses): Adjusted for age, BMI, smoking, employment status, level of educa-
tion and assessment visit (baseline and follow-up visit). a Estimates presented as
the % difference in LTL for a IQR increment in exposure (NO2: 7.0 μg/m³;
Benzene: 3.3 μg/m³; Toluene 30 μg/m³: Ethyl-benzene: 3.3 μg/m³; m + p-
Xylene: 11.4 μg/m³; o-xylene 3.8 μg/m³). LTL: n= 57 at baseline and n = 55 at
follow-up.
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−10.0% difference in LTL (Table 3). After controlling for age, BMI,
smoking, employment, level of education and assessment visit (baseline
and follow-up visit) in the fully adjusted model, the effects of NO2 and
benzene on LTL significantly decreased. In the fully adjusted model
each IQR increment in personal NO2 and benzene exposure was asso-
ciated with a −7.30% and −6.78% difference in LTL, respectively. In
the fully adjusted models associating NO2 and benzene with LTL, a 1-
year increase in chronological age was associated with a −0.67%
(95%CI -1.11 to −0.20; p = 0.007) and a −0.55% (95%CI -1.02 to
−0.01; p = 0.045) difference in LTL, respectively. The magnitudes of 1
IQR increment increase in NO2 and benzene concentrations therefore
correspond to a 10.4-year and a 6.0-year increase in chronological age
on the level of LTL. We did not observe significant associations between
other BTEX exposure and LTL (Table 3).

In sensitivity analysis, the fully adjusted model (model B) was ad-
ditionally adjusted for average temperature (Supplementary Table 3),
for SBP and DBP (Supplementary Table 4), and alcohol consumption
(Supplementary Table 5) respectively. Compared to the fully adjusted
model, additional adjustment for temperature slightly increased the
effect size of NO2 on LTL from −7.30% to −8.17% while additional
adjustment for alcohol consumption slightly increased the effect size of
benzene on LTL from −6.78% to −7.73%. Also, additional adjustment
of model B for a non-linear variable (age*age) appeared to have little
effect compared to the fully adjusted model (Supplementary Table 6).

4. Discussion

In this study we evaluated NO2 and BTEX exposure and LTL in a
continuous way, and we expressed our effects of air pollutants on LTL
for an IQR increment of exposure. Our findings show that personal
exposure to NO2 and benzene was negatively associated with LTL, a
proxy for molecular ageing phenotype, in healthy women residing in
the Cape Town region of South Africa. To our knowledge, the current
study is the first from sub-Sahara Africa to investigate the effects of
personal air pollution exposure on LTL (Miri et al., 2019). The findings
contribute in a meaningful way to the general paucity of data on the
health effects of air pollution in the sub-Saharan region (Katoto et al.,
2019).

Our results may gain some further strength if exposure effects on
LTL could be performed using a high vs. low or non-exposed population.
However, because we have a rather low sample size to contrast our
population in a high vs. low exposed group, we were not able to eval-
uated exposure effects in this way. Our findings, however support those
of a study by Hoxha et al. (2009) who examined the effects of benzene
and toluene exposure on LTL in a low exposed group of office workers
(mean benzene: 13.0 μg/m3 and toluene: 43.4 μg/m3) and a high ex-
posed group of traffic officers (mean benzene: 31.8 μg/m3 and toluene:
128.7 μg/m3). They showed a negative association between short-term
personal traffic-related benzene exposure (−6.4%) and LTL. Hoxha
et al. (2009) furthermore showed a negative association between to-
luene (−6.2%) exposure and LTL at higher (128.7 μg/m3) exposure
concentrations compared to our observed concentrations (Fig. 1)
(Hoxha et al., 2009). As observed in the current study, the effect of
toluene on LTL was not observed in their low-exposure referents
(Hoxha et al., 2009). These findings suggest that although toluene was
not associated with LTL in the current study population, the effect may
become more pronounced at higher toluene exposure concentrations.
Our findings in terms of the effect of ageing on the level of LTL
(−0.55% for each year increase in chronological age) are also in line
with those observed by Hoxha et al. (2009) in their low-exposure re-
ferent population (0.5% for each year increase in chronological age)
(Hoxha et al., 2009). The aging effect of benzene in LTL observed by
Hoxha et al. (2009) translated into a>12-year ageing effect on LTL in
their highly-exposed study population for each IQR increment change
in benzene (Hoxha et al., 2009), compared to 6 years in the current
study.

The significant negative association between exposure concentra-
tions and LTL in the present study are also consistent with previous
studies that investigated the acute and chronic effects at lower exposure
concentrations on TL (Martens and Nawrot, 2018). These studies in-
clude annual PM2.5 concentrations in elderly participants (Pieters et al.,
2016), proximity to traffic-related air pollution in twins (Bijnens et al.,
2015), prenatal PM2.5 exposure in newborns (Martens et al., 2017) and
PAH exposure in students (Ling et al., 2016).

In contrast to our findings, several studies that investigated the ef-
fects of acute high-level exposure on TL (mostly occupational-related)
reported positive associations. These studies include metal-rich PM
exposure in steel workers (Dioni et al., 2011), high-level PM exposure
in truck driver (Hou et al., 2012) and PAH in asphalt pavers (Xu et al.,
2018). The negative associations reported in our study appear to be
representative of observations made for chronic long-term exposure
rather than acute high-level exposure. Although not fully understood, it
has been proposed that at chronic lower exposure concentrations, the
cumulative effects of chronic oxidative stress/damage may be more
pronounced in a negative direction (Grahame and Schlesinger, 2012;
Heath Effects Institute: Panel on the Health Effects of Traffic-Related
Air Pollution., 2010; Weng, 2002). On the other hand, upregulation of
leukocyte cell proliferation (clonal capacity) during acute inflammatory
processes in highly short-term exposed cells/populations (as observed
Dioni et al. and Hou et al.) may contribute to an increase in TL (Hodes
et al., 2002; Weng et al., 1997). Since, we could not confirm associa-
tions between our exposure concentrations and inflammation (hsCRP)
and LTL, these findings suggest exposure-associated oxidative damage
or other routes of inflammation may have played a role in our findings.
Investigation with a more integrative panel of markers for oxidative
stress and inflammation should be performed in subsequent research.
Other factors such as type of exposure, age, gender and socioeconomic
differences between studies may also account for discrepancies between
reports (Gardner et al., 2014; O'Neill et al., 2012; Oeseburg et al., 2010;
World Health Organization: Regional Office for Europe., 2010).

The present study also has clinical and public health relevance as TL
is regarded to be a surrogate marker of cellular aging (Müezzinler et al.,
2013). TL is also considered a biosignature of the cumulative effects of
oxidative stress and inflammation, and considered to be an inter-
mediate marker of risk for various degenerative adverse health out-
comes such as atherosclerosis and cancer (Haycock et al., 2014; Sanders
and Newman, 2013; Wentzensen et al., 2011). The estimate effects of 1
IQR increment increase in NO2 and benzene exposure equated to a
chronological aging equivalent of more than 10 years and 6 years re-
spectively on LTL in our study population. Our findings were observed
at median NO2 and median benzene exposure concentrations below
WHO and South African recommended standards (annual mean: 40 μg/
m³ and 5 μg/m³ respectively) (South African Western Cape
Government., 2014; World Health Organization: Regional Office for
Europe., 2010). These findings underscore the relevance of ambient
NO2 and benzene exposure as public health concerns despite the re-
lative low exposure concentration observed in our study (World Health
Organization: Regional Office for Europe., 2010).

Findings in our study are presented with some strengths and lim-
itations. Personal exposure measurements are considered more accurate
in linking ambient exposure and health outcomes (Koehler and Peters,
2015) and in combination with repeated measures taken in the same
population may have contributed to significant findings despite a re-
lative small study population. We did not account for possible back-
ground exposure. The inclusion of blank field samples should be con-
sidered in future studies. We furthermore did not conduct full blood
count analyses; therefore the effects of air pollution exposure on leu-
kocyte and platelet counts are not available. Previous studies have
shown the importance of taking these parameters into account
(Gutmajster et al., 2013; Mazidi et al., 2017) and should be included in
future studies. The majority of our study population were current
smokers. The high prevalence of smokers in similar South African study
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populations has previously been shown by others (Matsha et al., 2012;
Sitas et al., 2013). Using a biomarker for exposure to tobacco smoke,
such as cotinine, would have been more accurate in correcting for the
effects of active and passive smoking. Also, the inclusion of markers of
oxidative stress such as urinary isoprostanes (Montuschi et al., 2004)
could have provided a clearer understanding in terms of the role of
oxidative stress in findings observed in the current study. In our study,
the effects were observed in healthy women. Gender and socioeconomic
differences in terms of LTL and air pollution-related health outcomes
have previously been described in other populations (Clougherty, 2010;
Gardner et al., 2014; Ward-Caviness et al., 2016). It therefore is im-
portant to note that the findings shown in the current study population
may not be universally representative of all South African populations.

5. Conclusion

These findings show that current personal NO2 and benzene ex-
posure concentrations are associated with molecular aging as indicated
by LTL in a cohort of apparently healthy women in the Cape Town
region of South Africa and may contribute to future adverse health
effects.
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Abstract: Exposure to ambient NO2 and benzene, toluene ethyl-benzene and m+p- and o-xylenes
(BTEX) is associated with adverse cardiovascular effects, but limited information is available on
the effects of personal exposure to these compounds in South African populations. This 6-month
follow-up study aims to determine 7-day personal ambient NO2 and BTEX exposure levels via
compact passive diffusion samplers in female participants from Cape Town, and investigate whether
exposure levels are associated with cardiovascular risk markers. Overall, the measured air pollutant
exposure levels were lower compared to international standards. NO2 was positively associated with
systolic and diastolic blood pressure (SBP and DBP), and inversely associated with the central retinal
venular equivalent (CRVE) and mean baseline brachial artery diameter. o-xylene was associated
with DBP and benzene was strongly associated with carotid intima media thickness (cIMT). Our
findings showed that personal air pollution exposure, even at relatively low levels, was associated
with several markers of cardiovascular risk in women residing in the Cape Town region.

Keywords: air pollution; nitrogen dioxide; BTEX; cardiovascular risk; South Africa

1. Introduction

Ambient air pollution is a global health concern and is associated with numerous adverse health
effects including cardiovascular disease (CVD) [1–3]. The health effects of ambient air pollution
are mostly attributable to small particles and chemically reactive compounds with pro-oxidative
potential [4–7]. Previous reports have suggested that the adverse cardiovascular effects associated
with air pollution exposure may be due to autonomic nervous system dysregulation of vascular
tone and heart rates [8,9], and pro-atherosclerotic processes such as oxidative stress, inflammation,
and endothelial dysfunction [9–11]. Although several chemical components present in ambient
air have been implicated in adverse cardiovascular outcomes (e.g., nitrogen and carbon oxides,
and particulate matter (PM)), the specific contributions and underlying mechanisms of exposure to
individual components are not well understood [1,12,13].
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The World Health Organization (WHO) has identified gaseous pollutants such as NO2 and
PM with a diameter of ≤2.5 µm (PM2.5) as the air pollutants that are most dangerous to public
health [14]. Other gaseous pollutants in ambient air include polycyclic aromatic hydrocarbons (PAHs)
such as benzene, toluene ethyl-benzene and m+p- and o-xylenes (BTEX) [15–18]. These gaseous
pollutions are mostly produced as a result of the incomplete combustion of fossil fuels during industrial,
vehicle, and household activities and are therefore considered a good proxy for general air quality
and combustion-related emissions [15–18]. Due to their small molecular size (molecular diameter:
<0.1 nm), these ambient air pollutants are able to passively enter the blood circulation during respiration
(predominant route of exposure) and disseminate throughout the body, even at the cellular and nuclear
levels where they can exert their harmful effects [1,7,19].

Reports on air pollution levels and related health effects are mostly based on data from the
developed world, while the situation in developing countries remains under-reported [20–23]. A
recently published systematic review by Katoto et al. (2019) highlighted the lack of air pollution data
from the sub-Saharan Africa (SSA) region [23]. The authors identified only 23 published research
articles from SSA (of which 14 were from South Africa) that reported on the health effects associated
with ambient air pollution. It is evident, however, that data from personal quantitative exposure
measurements are under-reported, and none of these studies investigated the effects of air pollution
on vascular health and function. The review furthermore reported on studies demonstrating urban
air pollution levels of up to 10–20 times greater than recommended WHO standards in some SSA
locations [23]. In light of these findings and knowledge gaps, the overarching aims of the current study
were to: (1) determine current levels of personal NO2 and BTEX exposure during two 1-week time
periods in a repeated-measurements study (6-month follow-up) of apparently healthy women residing
in the Cape Town region of South Africa, and (2) determine whether current levels of personal NO2 and
BTEX exposure are associated with markers of cardiovascular risk, including blood pressure (systolic
blood pressure (SBP) and diastolic blood pressure (DBP), respectively), flow-mediated vasodilatation
(FMD), retinal blood vessel widths, and carotid intima media thickness (cIMT).

2. Materials and Methods

2.1. Study Ethics, Design, and Population

The current study formed part of a larger parent study called EndoAfrica and participants
for the current study were recruited from the healthy control study group of the parent study [24].
Ethical clearance for the current study was obtained from the Health Research Ethics Committee
of Stellenbosch University (ethics reference number: S16/07/114), which subscribes to the principles
of the Helsinki Declaration (1975). The study followed a non-interventional, longitudinal (6-month
follow-up) cohort design. Healthy volunteering female participants of mixed ancestry were randomLy
recruited for the first assessment visit (baseline) from September 2016 to August 2017 at primary
health care clinics in the Cape Town region. All participants were from the residential areas of Elsies
River, Bishop Lavis, and Ravensmead. All 6-month assessment visits (follow-up) were completed by
February 2018. Qualified research nurses recruited, screened, and obtained informed consent from all
participants. Participants who were <18 years of age, with human immunodeficiency virus/acquired
immunodeficiency syndrome (HIV/AIDS; confirmed with a rapid HIV test; SD Bioline HIV 1/2 3.0
immunochromatographic test kit; Standard Diagnostics, Republic of Korea), with current tuberculosis
(confirmed from participant clinic files), pregnant (confirmed with a pregnancy test), <3 months
post-partum, of poor health, or with a current or previous history of heart disease were excluded.

2.2. Air Quality and Temperature Monitoring

Each participant was equipped with a Gradko rapid NO2 device (Gradko International Ltd.,
Winchester, UK), a RadielloTM BTEX passive diffusion sampler (Sigma-Aldrich Inc., MO, USA), and
an ACR SmartButton® temperature logger (ACR Systems Inc., Surrey, B.C., Canada) placed in the
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external mesh pocket of a backpack (Figure A1a–d). The mesh pocket allowed for unrestricted
continuous contact with ambient indoor and outdoor temperature and air (Figure A1e). Although
previous studies have measured personal sampling within a 30 cm hemisphere from the face [25,26],
personal exposure for the current study was measured within a hemisphere of 50 to 60 cm from the
face (Figure A1f). Participants carried the backpack at all times (except during periods of sleep and
bathroom use when the backpack was placed next to their beds) for a 7-day period. Temperature was
recorded continuously at 30-minute intervals while the NO2 and BTEX samplers allowed for continuous
passive diffusion and accumulation of NO2 and BTEX. Following continuous 7-day measurements,
participants returned for the first assessment visit, during which the backpacks were collected, data
were extracted from the temperature loggers via ACR TrendReader® software (ACR Systems Inc.,
Surrey, B.C., Canada), and the average temperature (◦C) for the 7-day period was recorded. Once
collected, the NO2 and BTEX samplers were sealed, stored at 4 ◦C and sent for quantification according
to the manufacturer’s protocol.

NO2 samplers were sent to Gradko International Ltd. laboratories (United Kingdom Accreditation
Services (UKAS) accredited)) for quantification according to UKAS method GLM 7 [27]. A calibration
curve (blank with only deionized water, 15, 30, 60, 90 120 µg/mL) was prepared from a standard nitrate
solution (1 g/L nitrite ion (NO2

−)). The color reagent was prepared as previously described [28] and
used in a sample:sulphanilamide solution:N-1 (naphthyl-1) ethylene diamine dihydrochloride solution
(NEDD) ratio of 1:2:2 (0.003 g NEDD per 1 g sulphanilamide). After sample elution (preparation:
20 % triethanolamine (TEA) solution/80% deionized water), NO2 concentrations were determined
via chemiluminescence ultraviolet (UV) spectrophotometry (UVS04 Camspec M550; Spectronic
Camspec Ltd., Leeds, UK). Calibration standards and linearity checks were used to calibrate the
spectrophotometer, and mid-range and zero standards were analyzed at intervals throughout the
sequence for quality assurance. The calibration curve was used to calculate the NO2

- concentration for
each sample. The ambient NO2 concentration was calculated from NO2

− concentrations and expressed
as µg/m3 [29].

BTEX samplers were sent to the Flemish Institute for Technology and Research (VITO; Mol,
Belgium) for quantification as previously described [30,31]. BTEX samples were extracted from
exposed samplers by means of elution in the RadielloTM glass tube containing the cartridge
(2 mL carbon disulphide (CS2; Sigma-Aldrich, MO, USA) and 12.5 µL 2-fluorotoluene internal
standard (Sigma-Aldrich, MO, USA)). The tube was stirred for 30 minutes on a rotational shaker.
BTEX quantification was performed by means of gas chromatography (Thermo Trace) and a mass
spectrometer (Thermo DSQ II with helium as carries gas (a constant flow of 1 mL/min)). A cross-bond
diphenyl/dimethylpolysiloxane column (RTX 502.2; 0.25 mm by 30 m) with a 1.4 µm-thick film was
used for sample separation (temperature program: 35 ◦C for 5 minutes, 14 ◦C/minute increment
until 245 ◦C). Equipment calibration was performed by injecting the standard solution (benzene,
ethyl-benzene, toluene, m-xylene, p-xylene, and o-xylene in CS2 (Sigma-Aldrich, MO, USA)) at 0.03 to
30 µg/g before analysis. Sample concentrations were calculated from chromatograms using a standard
curve. The limit of detection (LOD) was calculated as 3.3 (standard deviation (SD) of areas/slope).
Samples with conc. <LOD were not presented. Results were expressed as average NO2 and BTEX
exposure concentration (µg/m3) for the 7-day measuring period. The same procedure was followed for
the 6-month follow-up visits.

2.3. Study Endpoints

2.3.1. Health Questionnaire and Anthropometric Measurements

At each visit, participants completed a comprehensive questionnaire to collect data on age, smoking
status (defined as smoking or non-smoking), socioeconomic information (including employment status
defined as either unemployed, part-time employed, or full-time employed), and lifestyle (hours of sleep
at night defined as 1 to 3 hours, between 3 and 6 hours, 6 to 9 hours, and >9 hours). Qualified research
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nurses measured fasting blood glucose levels (mmol/L) by finger prick (Gluco PlusTM, Cipla DIBCARE,
Bellville, South Africa) and collected fasting blood and mid-stream urine samples. Cardiovascular
measurements included SBP and DBP (calculated as an average of 3 measurements at 5-minute intervals
on the left arm and expressed in mmHg) via an Omron M6 automatic digital blood pressure monitor
(Omron Healthcare, Kyoto, Japan). Hypertension was defined as either SBP of ≥140 mmHg or DBP of
≥90 mmHg, based on the South African Hypertension Society guidelines [32]. Body mass (kg) was
determined on an electronic scale, and height (cm) was decided by means of a stadiometer. Finally,
body-mass index (BMI) was expressed as kg body weight/m2 height.

2.3.2. Biochemical Analysis

Fasting whole blood was collected in blood collection tubes (SGVac, The Scientific Group (Pty)
Ltd.; Milnerton, Western Cape, SA). Serum was extracted from whole blood samples and stored at
−80 ◦C. Serum samples were analyzed by the South African National Health Laboratory Service
(NHLS; Tygerberg Hospital, Cape Town, South Africa), a South African National Accreditation System
(SANAS)-accredited laboratory, for high-sensitivity C-reactive protein (hsCRP) levels by means of
an IMMAGE® Immunochemistry Systems and Calibrator 5 Plus assay kit (Beckman Coulter, Inc.,
CA, USA). This specific chemiluminescence analysis was based on the highly sensitive Near Infrared
Particle Immunoassay rate methodology where anti-CRP antibody-coated particles bind to the CRP in
the serum sample resulting in an insoluble aggregate formation and turbidity. Samples were prepared
for analysis by adding 4.5 µL serum sample, 42 µL antibody-coated particles (particle-bound goat and
mouse anti-CRP antibody), 125 µL buffer 4 and 42 µL diluent (sodium azide: <0.1% (w/w)). The hsCRP
concentration was determined automatically as the rate of aggregate formation (directly proportional).
For the purposes of this study, increased hsCRP was defined as hsCRP levels of >3 mg/L based on
previous reports suggesting that hsCRP levels above this cut-off value are associated with increased
cardiovascular risk [33].

Mid-stream urine samples were obtained at each visit, placed on ice and immediately delivered to
the NHLS for the quantification of urinary creatinine levels by means of chemiluminescence (cobas®-c
analyzer and CREP2 kit; Roche Diagnostics, Basel, Switzerland). The principal of the method was
based on the enzymatic formation of hydrogen peroxide (catalyzed by peroxidase) that reacted with
2,4,6-triiodo-3-hydroxybenzoic acid for quinone imine chromogen. Creatinine levels were determined
by the color intensity of the quinone imine chromogen (directly proportional).

2.3.3. Urinary Analysis of Metabolites of Volatile Organic Compounds

Additional mid-stream urine samples were stored at −80 ◦C and sent to VITO (Mol, Belgium) for
level determinations of the following urinary metabolites: N-acetyl-S-(3-hydroxypropyl)-L-cysteine
(HPMA; a marker of acrolein exposure [34]), N-acetyl-s-(phenyl)-L-cysteine (PMA; a marker of
benzene exposure [35]), N-acetyl-s-(benzyl)-L-cysteine (BMA; a marker of toluene exposure [36]),
trans,trans-muconic acid (MU; a marker of benzene exposure [35]), and 3+4-methylhippuric acid
(3+4MHA; a marker of o-, m-, and p-xylene exposure [37]). Samples were prepared using 10 µL
urine, 25 µL mixed internal standard (2000 ng/mL in methanol:water(1:1, v:v)) MU-d4 and 3 (Santa
Cruz Biotechnology, TX, USA), and 4 MHA-d7 (Toronto research chemicals Inc., ON, Canada) with
465 µL 1% acetic acid (HAc; Merck, NJ, USA). A matrix-matched calibration curve was applied for
the quantification of HPMA, BMA, and PMA to compensate for the matrix effect. To achieve this,
spiked urine samples were used containing 10 µL urine, 25 µL mixed internal standard (MU-d4 and
2,3 and 4 MHA-d7: 2000 ng/mL, 20 µL low and high spiked standards (low spike: HPMA, 37.5 ng/mL;
PMA, 0.25 ng/mL; MU 5.0 ng/mL, BMA, 1.25 ng/mL; 3+4MHA, 20.0 ng/mL; and high spike: HPMA,
75.0 ng/mL PMA, 0.5 ng/mL; MU, 10.0 ng/mL; BMA, 2.5 ng/mL; 3+4MHA, 40.0 ng/mL (Toronto research
chemicals Inc., ON, Canada)) and 445 µL 1% HAc in ultra-pure water.

Twenty microliters of each sample was injected in an ultra-performance liquid chromatography
(UPLS; Waters I-class Acquity UPLC system, Milford, MA, USA)/mass spectrometry (MS; Waters Xevo
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TQ-S tandem in the negative electrospray ionization mode (ESI−)). An Acquity UPLC® high-strength
silica T3 column (50 mm × 2.1 mm; 1.8 µm; at a constant temperature of 40 ◦C) with UV detection
(Photodiode array (PDA) detector set at 259 nm) was used for the simultaneous quantification of the
urinary metabolites [38]. Retained compounds were eluted with 4 mL HAc solution (10%, v:v). Levels
of metabolites were calculated based on the corresponding matrix-matched calibration curve.

2.3.4. Assessment of Endothelial Function, Carotid Intima Media Thickness, and Retinal
Microvascular Caliber

Vascular endothelial function was assessed via FMD of the right brachial artery, 3–4 cm proximal
to the elbow. FMD was measured in the supine position with a mobile Esaote MyLabTM Five portable
ultrasound device (Genoa, Italy) with an Esaote Doppler probe (LA523, 12 MHz) connected to
computerized software with edge detection technology (Quipu Cardiovascular Suite™; Pisa, Italy)
as previously described [24,39]. Briefly, the computerized software determined the mean baseline
brachial artery lumen diameter (mm) over a 60-second period, followed by a 5-minute ischaemic
occlusion (inflation of a manual blood pressure cuff on the forearm to 50 mmHg supra-systolic
pressure). Following the 5-minute ischaemic occlusion, deflating the blood pressure cuff triggered
reactive hyperaemia and the maximum brachial artery lumen diameter (µm) was recorded during
this period. The maximum lumen diameter displacement during reactive hyperaemia from the mean
baseline measurements was expressed as the percentage of the mean baseline brachial lumen diameter
(% FMD).

The cIMTs of the left and right carotid arteries were determined by B-mode ultrasonography as
previously described [40,41]. cIMT measurements were performed in the supine position with the
head tilted in a 45◦ angle upwards. The diameter of carotid intima was determined using an Esaote
MyLabTM Five portable ultrasound device (Genova, Italy) and a B-linear-mode Esaote Doppler probe
(LA523, 12 MHz, Genoa, Italy) connected to computerized software (RF-QIMT software, Genova, Italy)
specific for the determination of carotid metrics. Measurements were taken 5 mm proximal to the
dilation of the carotid bulb. The mean of the left and right carotid diameter and mean of the left and
right cIMT were calculated and used for statistical analysis.

Additionally, retinal images were captured with a Canon CR2 digital camera (Canon Europa
NV, The Netherlands) and analyzed with semi-automated software (MONA REVA 2.1.1 developed
at VITO; https://mona.health) by trained investigators using a standardized protocol as previously
described [24]. Briefly, the central retinal arteriolar equivalent (CRAE) of the 6 largest arterioles and the
central retinal venular equivalent (CRVE) of the 6 largest venules were determined in the area between
0.5 and 1 disc diameter from the optic disc margin and also expressed as a CRAE/CRVE ratio (AVR).
The calculations of the vessel metrics were based on the revised Parr-Hubbard formulas as reported
previously [42].

2.4. Statistical Analysis

All statistical analyses were performed with IBM® SPSS® software (version 25; New York, NY,
USA). Depending on data distribution, a paired sample Student’s t-test (parametric) or Wilcoxon
signed-rank test (non-parametric) was used to identify significant differences between baseline and
follow-up visits. A Spearman’s Rho correlation (nonparametric data) was used to identify correlations
between variables. To determine the association between NO2 or individual BTEX compounds or total
BTEX (a summation of all individual BTEX compounds for each participant as a proxy for combined
effect of BTEX) and different cardiovascular outcomes, a linear mixed model (LMM) regression analysis
was used with participants nested in each visit. Variables with skewed data distribution (BTEX
and total BTEX) were log-transformed for regression analysis. To evaluate personal air pollution
effects on cardiovascular outcomes independent of potential confounding effects, we selected a priori
covariates that are known determinants for cardiovascular outcomes and variables with a potential
link with personal air pollution exposure and cardiovascular outcomes. These include age, BMI,
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smoking, socio-economic status (reflected by employment), sleep, and ambient temperature [43–47].
For estimated effects on SBP and DBP, the statistical model included NO2 or BTEX or total BTEX
as an exposure variable, participants at each time point as a random effects factor variable with
random intercept to account for possible inter-individual variation while adjusting for age, BMI, date of
assessment visit, and average temperature as continuous fixed effects and smoking status, employment
status, and hours of sleep at night as fixed categorical variables. For effects on other vascular outcomes,
we additionally adjusted LMMs for SBP. To determine estimated effects on % FMD and cIMT, the mean
brachial diameter and carotid diameter were additionally adjusted for, respectively. Q-Q plots of the
residuals were used to test the assumptions of linearity. The significance threshold was set at p < 0.05
for all statistical analysis.

3. Results

3.1. Baseline Population Characteristics

A total number of 77 female participants were recruited for the study. Sixteen participants who
completed their baseline visits did not consent to continue with the 6-month follow-up visit and were
excluded from the study. A total number of 61 healthy female participants (mean ± SD age at baseline:
42.5 ± 13.4 years) of mixed ancestry completed both assessment visits (Table 1).

The majority of participants were current smokers (69%; smoking frequency, <20 cigarettes/day),
but none reported any history of heart or other current serious health problems. Participants were mostly
unemployed (49%). Most participants were overweight with a mean ± SD BMI of 27.7 ± 8.4 kg/m2.
Most participants (n = 37; 61%) reported that they sleep 6 to 9 hours per night. The mean ± SD SBP and
DBP values (SBP: 122.5 ± 19.9) mmHg, and DBP: 84.2 ± 12.0 mmHg) were within the normal range
(Table 2). In total, 11 participants (18%) presented with hypertension (either SBP of ≥140 mmHg or
DBP of ≥90 mmHg) at baseline. The median hsCRP level was above the 3 mg/L cut-off value, and the
majority of participants (n = 35; 61%) exhibited elevated hsCRP levels.

Table 1. Baseline study population characteristics (n = 61).

Variable Baseline

Age (years) 42.5 ± 13.4
Smoking status

Current smoker (n) 42 (69%)
Employment

Unemployed (n) 30 (49%)
Part-time (n) 25 (41%)
Full-time (n) 6 (10%)

Hours of sleep per night
<3 h (n) 1 (2%)
3 to ≤6 h (n) 7 (12%)
6 to ≤9 h (n) 37 (61%)
>9 h (n) 16 (25%)

BMI, kg/m3 (n) 27.7 ± 8.4
High-sensitivity C-reactive protein (mg/L) a, b 6.3 (0.2 to 37.1)
Elevated hsCRP (>3 mg/L)

Yes (n) 35 (61%)
No (n) 22 (39%)

Urine creatinine (mmol/L) 13.5 ± 7.1

Data presented as mean ± SD or n (%); a data presented as median (range); b sample size: n = 57.
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Table 2. Baseline cardiovascular parameters (n = 61).

Variable Baseline

Blood pressure
Systolic blood pressure (SBP); mmHg) 122.5 ± 19.9
Diastolic blood pressure (DBP; mmHg) 84.15 ± 12.0
Hypertension

(Either SBP of >140 mmHg or DBP of >90 mmHg)
Yes, n 15 (25%)
No, n 46 (75%)

Flow-mediated vasodilatation a

Brachial diameter (mm) 3.22 ± 0.69
% Flow-mediated Dilatation (% FMD) b 5.21 (−7.93 to 23.50)

Retinal caliber c

Central retinal arteriolar equivalent (CRAE; µm) 157.9 ± 16.4
Central retinal venular equivalent (CRVE; µm) 238.4 ± 20.1
CRAE/CRVE ratio (AVR) 0.66 ± 0.06

Carotid artery
Carotid diameter (mm) 7.16 ± 0.84
Carotid intima media thickness (cIMT; µm) 657.2 ± 159.3

Data presented as mean ± SD or n (%); a sample size: n = 60; b data presented as median (range); c sample size:
n = 58.

3.2. Personal Ambient Exposure Variable Outcomes and Urinary Metabolites

The mean NO2 and median benzene, ethyl-benzene, m+p-xylene, and o-xylene levels were
significantly higher at the baseline visit compared to at the follow-up visit (Table 3). Personal toluene
exposure accounted for ~50% of the total BTEX exposure level at baseline and follow-up visits, while
benzene exposure was the lowest at both baseline and follow-up visits. The mean temperature did not
differ between baseline and follow-up (Table 3). Strong positive correlations were observed between
all personal exposure concentrations (p < 0.001) (Table A1). No significant differences in urinary
metabolites were observed between baseline and follow-up visits.

Table 3. Air pollution characteristics at baseline and 6-month follow-up (n = 61).

Variable Baseline Follow-Up

Temperature a, b (◦C) 21.6 ± 3.2 21.9 ± 2.7

Personal air pollution measurements
NO2

a, c (µg/m3) 13.6 ± 4.8 10.6 ± 4.7 **
Total BTEX c, d (µg/m3) 43.0 (12.0 to 327.7) 34.31 (7.1 to 405.1)

Benzene c (µg/m3) 3.9 (0.7 to 14.2) 2.2 (0.5 to 9.3) *
Toluene c (µg/m3) 22.1 (5.6 to 189.2) 18.0 (3.7 to 284.1)
Ethyl-benzene c (µg/m3) 2.8 (1.1 to 34.4) 2.3 (0.7 to 21.4) *
m+p-xylene c (µg/m3) 9.2 (3.4 to 117.4) 7.5 (2.0 to 74.8) *
o-xylene c (µg/m3) 3.2 (1.2 to 43.8) 2.7 (0.7 to 24.7) *

Urinary metabolites e

HPMA f (ng/mL) 1686 (92 to 12,793) 1812 (120 to 12,613)
PMA g (ng/mL) 0.05 (0.05 to 0.34) 0.05 (0.05 to 0.34)
MU h (ng/mL) 62.5 (62.5 to 498.0) 62.5 (62.5 to 595.0)
BMA i (ng/mL) 14.7 (2.5 to 588.0) 14.3 (2.5 to 699.0)
3+4MHA j (ng/mL) 1061 (31.8 to 9512.0) 845 (50.0 to 32,078.0)

Data presented as median (range) or a mean ± SD; b the mean represents the average 7-day recorded temperatures
(30-minute interval temperature recordings) for each participant prior to the assessment visit, n = 60. c Values reflect
the mean 7-day average during the 7-day period prior to the assessment visit, n = 56 to 61. d Values represent
the mean values of the sum of individual BTEX measurements for each participant as a proxy for total BTEX
exposure. e Values of samples below limit of detection (LOD) were replaced by LOD/2. f Samples concentrations
above LOD (>80 ng/mL; baseline/follow-up: n = 61/61). g Samples concentrations above LOD (>0.09 ng/mL;
baseline/follow-up: n = 10/6). h Samples concentrations above LOD (>125 ng/mL; baseline/follow-up: n = 14/20).
i Samples concentrations above LOD (>5 ng/mL; baseline/follow-up: n = 46/45). j samples concentrations above
LOD (>100 ng/mL; baseline/follow-up: n = 60/58). * p < 0.05; ** p < 0.01.
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3.3. Air Pollution Exposure and Cardiovascular Endpoints

NO2 exposure was positively associated with blood pressure and negatively associated with
blood vessel diameters. Each SD increment (4.96 µg/m3) in NO2 was associated with 2.42 mmHg
(95% CI: 0.03 to 4.80 mmHg; p = 0.047) and 1.76 mmHg (95% CI: 0.00 to 3.52 mmHg; p = 0.050) increase
in SBP and DBP, respectively (Table 4). Each NO2 SD increment was associated with −2.08 µm (95% CI:
−4.13 to −0.02 µm; p = 0.048) decrease in CRVE and −0.11 mm (95% CI: −0.19 to −0.03 mm; p < 0.010)
decrease in mean baseline brachial diameter.

Table 4. Estimated effects of personal NO2 and total BTEX on vascular outcomes.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

SBP c (mmHg) NO2 2.42 (0.03; 4.80) 0.047
Total BTEX 1.54 (−1.38; 4.46) 0.297

DBP c (mmHg) NO2 1.76 (0.00; 3.52) 0.050
Total BTEX 2.07 (0.06; 4.07) 0.043

CRAE d (µm) NO2 −0.47 (−2.25; 1.31) 0.599
Total BTEX −0.70 (−2.88; 1.47) 0.521

CRVE d (µm) NO2 −2.08 (−4.14; −0.02) 0.048
Total BTEX −0.29 (−3.00; 2.39) 0.829

Mean brachial diameter d (mm) NO2 −0.11 (−0.19; −0.03) 0.005
Total BTEX −0.08 (−0.17; 0.01) 0.090

% FMD e NO2 −0.11 (−1.00; 0.77) 0.801
Total BTEX 0.30 (−0.56; 1.15) 0.492

Carotid Diameter d (mm) NO2 −0.06 (−0.19; 0.08) 0.393
Total BTEX −0.12 (−0.26; 0.02) 0.082

cIMT f (µm) NO2 1.23 (−23.63; 26.09) 0.921
Total BTEX 12.76 (−10.55; 36.06) 0.275

a All models adjusted for date of assessment visit, average temperature, age, body-mass index (BMI), smoking, and
employment status (random factor: participant). b Estimates expressed as a difference in cardiovascular endpoint
for each SD increment in exposure. c Additionally adjusted for hours of sleep at night. d Additionally adjusted
for SBP. e Additionally adjusted for SBP and mean brachial diameter. f Additionally adjusted for the SBP and
carotid diameter.

BTEX exposure was positively associated with blood pressure and cIMT measurements. Each SD
increments in total BTEX (2.56 µg/m3) and o-xylene (2.51 µg/m3) were associated with a 2.07 mmHg
(95% CI: 0.06 to 4.07 mmHg; p = 0.043) and 2.00 mmHg (95% CI: 0.21 to 3.80 mmHg; p = 0.029) increase
in DBP, respectively (Table 4; and Table A2). Each SD (2.08 µg/m3) increment increase in benzene was
positively associated with 24.88 µm (95% CI: 2.19 to 47.57 µm); p = 0.032) increase in cIMT (Table A5).

The urinary metabolite 3+4MHA was negatively associated with vascular function as indicated
by % FMD with an estimated effect of −1.45% (95% CI: −2.38% to −0.51%; p = 0.003) for each SD
(3.12 ng/mL) increment in 3+4MHA (Table A4). For more detailed results on effects of exposure on
vascular outcomes, refer to Tables A2–A5.

4. Discussion

The current study set out to determine personal air pollution exposure levels as measured by NO2

and BTEX, in a panel study of female adults residing in the Cape Town region of South Africa, and
investigated whether these exposure levels are associated with markers of cardiovascular risk. Major
findings of the study are: (1) compared to international air quality standards, our participants’ personal
exposure to NO2 and BTEX was relatively low, and (2) despite the relatively low exposure levels, we
could demonstrate associations between air pollutants and several cardiovascular parameters: SBP
and DBP (NO2 and BTEX), baseline brachial artery diameter (NO2), CRVE (NO2), and cIMT (benzene).

The mean 7-day personal NO2 exposure concentrations (Table 3) observed during the course of
the study (range: 2.94 µg/m3–25.35 µg/m3) remained below the recommended WHO, European Union
(EU) and South African air quality standards for NO2: annual exposure of <40 µg/m3 and 1-hour
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exposure of <200 µg/m3 [48–51]. At baseline, 24 (22%) of the individual mean benzene measurements
(range: 0.475 µg/m3–14.17 µg/m3) were higher than WHO and EU annual recommended standards
(<5 µg/m3), although the median values were below the standards [17,48].

Furthermore, the mean NO2 and median benzene concentrations at baseline in our study
population (NO2: 13.6 ± 4.8 µg/m3 and benzene: 3.22 (0.77–14.17) µg/m3) were within the lower range
of annual mean ambient NO2 and benzene concentrations of major European cities, with NO2 ranging
from 8 µg/m3 in Stockholm to 43 µg/m3 in Barcelona, and benzene ranging between 2 and 12 µg/m3

across various cities [3,52–54].
Compared to other studies from the Western Cape Province, the observed mean personal NO2

levels in our study were comparable with recently reported annual mean NO2 levels from air quality
monitoring stations in neighboring areas (Goodwood: 21 µg/m3; Plattekloof: 10 µg/m3) [49]. The
personal NO2 and individual BTEX concentrations in the current study were furthermore similar to
those measured previously (2011–2014) in the Drakenstein sub-district, ~60 km from the City of Cape
Town [55]. In this study, household NO2 and BTEX levels (reported as 2-week median values) were
measured in more than 500 homes of families of African and mixed ancestry (NO2: 7.9 (Interquartile
range (IQR): 3.8–13.3) µg/m3, benzene: 5.6 (IQR: 2.6–17.1) µg/m3, toluene: 19.8 (IQR: 9.3–53.2) µg/m3,
ethyl-benzene: 2.1 (IQR: 0.9–53.2) µg/m3, m+p-xylene: 5.8 (2.4–16.2) µg/m3, and o-xylene 2.4 (IQR:
1.1–7.0) µg/m3).

Ambient outdoor BTEX levels are infrequently measured in the Western Cape Province of South
Africa. The Provincial Government Report (2013) reported on BTEX levels (measured with passive
samplers) from only two locations in one rural town (Riversdale) in the province [49]. The reported
values from Riversdale (two locations with benzene concentrations of 0.89 and 1.05 µg/m3, respectively,
toluene concentrations of 2.66 and 1.04 µg/m3, respectively, ethyl-benzene concentrations of 0.43 and
0.27 µg/m3, respectively, and xylene concentrations of 1.82 and 1.19 µg/m3, respectively,) were generally
lower than the personal BTEX exposure levels measured in our study [49].

Our results showed that personal NO2 and total BTEX (mostly driven by o-xylene) exposure
was positively associated with blood pressure outcomes after adjusting for covariates (Table 4). Both
long- and short-term exposure to ambient gaseous pollutants has previously been associated with
haemodynamic changes including blood pressure, even at low exposure concentrations [18,56–59].

Our findings support those of Chan et al. (2015) who examined the effects of NO2 and fine PM
(≤2.5 µm; PM2.5) in a female population and showed that a 10 ppb increase in NO2 was associated with
a higher pulse pressure (0.4 mmHg) [60]. In the same study, PM2.5 was also associated with higher SBP
(1.4 mmHg), pulse pressure (1.0 mmHg), and mean arterial pressure (0.8 mmHg) [60]. The authors
speculated that exposure-associated autonomic dysregulation of vascular tone may be a possible
underlying mechanism of their findings [60,61]. This may indeed be the case, as our results showed
negative associations between NO2 and vessel diameters as indicated by the baseline brachial artery
diameter and CRVE. The vasoconstrictive effects of both long-term low-concentrations and short-term
high-concentration exposure to ambient air pollution have previously been described [62,63]. In the
study by Brook et al. (2002), an inverse relationship with brachial artery diameter (ultrasonography)
was also demonstrated in 25 healthy adults, although at higher exposure concentrations (150 µg/m3 fine
PM and 120 ppb O3) and a shorter exposure period (2 hour) compared to our exposure concentrations
and exposure period [62]. The authors, in a finding similar to ours, failed to demonstrate ambient air
pollution exposure-associated effects on FMD [62].

Previous studies have investigated the possible mechanism involved in air pollution
exposure-associated vasoconstriction and suggested possible stimulation of the pulmonary vagal
afferent neurons and the subsequent increase in sympathetic nervous system reflex activity or
an upregulation (directly or via oxidative stress pathways) of vascular endothelin 1 and 3
(vasoconstrictors) [62,64]; however, more studies are required to elucidate the underlying mechanisms.
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Benzene exposure was associated with sub-clinical atherosclerotic changes as measured by
cIMT in our study with a relatively large estimated effect on cIMT. cIMT is considered a marker of
pro-atherosclerotic processes such as inflammation, a strong predictor of future cardiovascular events [65],
and increased cIMT has previously been implicated in long-term ambient PM exposure [19,66]. It has also
been suggested that women are at higher risk of increased PM-induced cIMT than men [19]. Short-term
air pollutant exposure levels in our study were not significantly associated with inflammation (as
measured by hsCRP), suggesting that other possible mechanisms may explain the pro-atherosclerotic
effects of benzene.

3+4MHA appeared to be a prominent urinary metabolite/tracer for exposure in our study as
it strongly correlated with all personal exposure levels (Table A1). 3+4MHA is a urinary marker
for toluene (80% inhaled toluene metabolized to BMA or MHA) and the primary metabolite for
xylene exposure (95% inhaled xylene metabolized to MHA post-exposure) [38,67–70]. Aside from
being a diesel exhaust derivative, xylene is also often used as a solvent in industrial and household
products (e.g., adhesives, coatings, degreasers, detergents, dyes, ink, paint, pesticides, polishes, and
solvents) [18,56–59].

Xylene is a carcinogen and also associated with central nervous system abnormities such as brain
and neurobehavioral morbidities [71,72]. In our study, the positive association between personal total
BTEX and DBP was mostly driven by o-xylene, while no adverse associations between BMA (marker of
toluene exposure) and vascular endpoints were observed. The significant association between o-xylene
and DBP, as well as between its primary urinary metabolite, 3+4MHA (Table A4), and endothelial
function suggests that o-xylene may significantly contribute to vascular dysfunction (increased DBP
and reduced endothelial function as measured by % FMD) in our study population. More focused
investigations on possible underlying mechanisms are required.

5. Strengths and Limitations

The results from the current study are presented with some strengths and limitations. Strengths
of current study include the measurement of personal exposure levels, as opposed to levels obtained
from centralized air quality monitoring stations in many previous studies from the SSA region.
Personal measurements are generally considered a more accurate representation of exposure levels.
An additional strength of the study is the fact that we used measurements of different cardiovascular
endpoints to investigate physiological effects. To the best of our knowledge, this study is the first
to explore the cardiovascular health effects of personal air pollution exposure, in combination with
urinary exposure markers, in the South African research setting.

Limitations of the study include a relatively small sample size representing only women, of whom
the majority were smokers. The male participant enrolment rate was low, mostly due to employment
obligations that resulted in difficulty to attend assessment visits. The high prevalence of smokers
in our cohort may be ascribed to the high smoking rates that have previously been reported in the
region [73,74]. The robust correction for the effects of smoking on various outcomes, based only on
smoking status, may not have been optimal. Using levels of biomarkers of smoking such as cotinine
may have been a more accurate adjustment for the smoking effect and would have also included
the effects of possible second-hand smoke. Personal exposure measurements with a 30 cm radius
extended in front of the face (within the breathing zone) and the inclusion of blank field samples
in the study would also have been more desirable. These factors should be considered in future
studies. Additionally, as previously shown, the effects of air pollution vary across sex, ethnicity,
and health status [75–77]. Our results represent only the exposure effects in an apparently healthy,
female population of mixed ancestry and care should be taken to not extrapolate our findings to the
general population.
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6. Conclusions

Our results show that personal ambient air pollution exposure in women residing in Cape
Town, even at relatively low levels, is associated with markers of cardiovascular risk including blood
pressure (SBP and DBP), vascular tone/diameter (baseline brachial artery diameter and CRVE), vascular
endothelial function (% FMD), and subclinical atherosclerosis (cIMT).
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Figure A1. Photos of samplers used for personal exposure measurements: (a) Gradko rapid air NO2

sampler (product: DIFRAM-100; UKAS method: GLM 7; detection limit: <0.2 µg/m3 for 1-week
exposure); (b) activated Gradko rapid air NO2 sampler; (c) RadielloTM diffusive cartridge (right) and
diffusive body attached to a triangular support plate (left) (products: Rad130, RAD120, and RAD121;
detection limit for BTEX: 0.05, 0.01, 0.01, and 0.01 µg/m3, respectively; calibration: CS2); (d) ACR
Systems Inc. temperature logger (product: SmartButton (01-0187); detection limit: −40 ◦C to 85 ◦C);
(e) air monitoring devices in the mesh pocket of a backpack (product: Barron BB0110 Curve and Arch
Design backpacks); (f) backpack worn by participants with samplers located 50 to 60 cm from the face.
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Table A1. Spearman’s Rho correlations coefficients (r) for all personal measures of exposure and
urinary metabolites.

NO2 Benzene Toluene Ethyl-benzene m+p-xylene o-xylene

Personal Exposure a

Benzene 0.616 ***
Toluene 0.452 *** 0.461 ***
Ethyl-benzene 0.622 *** 0.585 *** 0.652 ***
m+p-xylene 0.642 *** 0.595 *** 0.658 *** 0.983 ***
o-xylene 0.643 *** 0.589 *** 0.667 *** 0.972 *** 0.989 ***
Total BTEX b 0.524 *** 0.474 *** 0.951 *** 0.790 *** 0.798 *** 0.808 ***

Urinary metabolites c

HPMA 0.081 0.186 * −0.020 −0.002 0.023 0.017
PMA 0.117 0.011 −0.218 * −0.112 −0.105 −0.123
MU 0.061 0.152 −0.009 −0.749 −0.038 −0.024
BMA −0.051 −0.070 0.120 −0.023 −0.018 −0.005
3+4MHA 0.273 ** 0.341 *** 0.218 * 0.192 * 0.215 * 0.210 *
a n = 111 to 113; b values represent the mean values of the sum of individual BTEX measurements for each participant;
c n = 111 to 121; * p < 0.05; ** p < 0.01; *** p < 0.001.

Table A2. Estimated effects of personal NO2, total BTEX, BTEX, and 3+4MHA urinary metabolite on
SBP and DBP.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

SBP c (mmHg) NO2 2.42 (0.03; 4.80) 0.047
Total BTEX 1.54 (−1.38; 4.46) 0.297

Benzene 2.51 (−0.21; 5.22) 0.070
Toluene 0.92 (−2.04; 3.88) 0.539
Ethyl-benzene 1.44 (−1.15; 4.03) 0.272
m+p-xylene 1.62 (−1.01; 4.25) 0.224
o-Xylene 2.12 (−0.50; 4.74) 0.112

Urinary metabolite d

3+4MHA −0.52 (−3.10; 2.05) 0.687

DBP c (mmHg) NO2 1.76 (0.00; 3.52) 0.050
Total BTEX 2.07 (0.06; 4.07) 0.043

Benzene 1.19 (−0.73; 3.10) 0.220
Toluene 1.77 (−0.25; 3.80) 0.086
Ethyl-benzene 1.58 (−0.20; 3.36) 0.080
m+p-xylene 1.72 (−0.09; 3.53) 0.062
o-xylene 2.01 (0.21; 3.80) 0.029

Urinary metabolite d

3+4MHA −0.40 (−2.28; 1.48) 0.673
a All models adjusted for date of assessment visit, average temperature, age, BMI, smoking, and employment status
(random factor: participant). b Estimates expressed as a difference in cardiovascular endpoint for each SD increment
in exposure. c Additionally adjusted for hours of sleep at night. d Additionally adjusted for hours of sleep at night
and urine creatinine.

Table A3. Estimated effects of personal NO2, total BTEX, BTEX, and 3+4MHA urinary metabolite on
CRAE and CRVE.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

CRAE c (µm) NO2 −0.47 (−2.25; 1.31) 0.599
Total BTEX −0.70 (−2.88; 1.47) 0.521
Benzene −0.54 (−2.51; 1.42) 0.582

Toluene −0.74 (−2.90; 1.43) 0.500
Ethyl-benzene −0.49 (−2.24; 1.26) 0.579
m+p-xylene −0.60 (−2.40; 1.21) 0.511
o-xylene −0.68 (−2.53; 1.16) 0.461

Urinary metabolite d

3+4MHA −0.57 (−2.297; 1.167) 0.517
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Table A3. Cont.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

CRVE c (µm) NO2 −2.08 (−4.14; −0.02) 0.048
Total BTEX −0.29 (−3.00; 2.39) 0.829

Benzene −0.67 (−3.11; 1.78) 0.588
Toluene −0.40 (−3.11; 2.31) 0.768
Ethyl-benzene −0.53 (−2.64; 1.58) 0.616
m+p-xylene −0.50 (−2.62; 1.62) 0.638
o-xylene −0.61 (−2.85; 1.63) 0.587

Urinary metabolite d

3+4MHA −0.14 (−2.19; 1.91) 0.890
a All models adjusted for date of assessment visit, age, BMI, average temperature, smoking, and employment status
(random factor: participant). b Estimates expressed as a difference in cardiovascular endpoint for each SD increment
in exposure. c Additionally adjusted for SBP. d Additionally adjusted for SBP and urine creatinine.

Table A4. Estimated effects of personal NO2, total BTEX, BTEX, and 3+4MHA urinary metabolite on
FMD measurements.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

Mean brachial
diameter c (mm) NO2 −0.11 (−0.19; −0.03) 0.005

Total BTEX −0.08 (−0.17; 0.01) 0.090
Benzene −0.01 (−0.10; 0.08) 0.760
Toluene −0.09 (−0.17; 0.01) 0.065
Ethyl-benzene −0.08 (−0.17; 0.00) 0.057
m+p-xylene −0.06 (−0.15; 0.02) 0.144
o-xylene −0.06 (−0.15; 0.03) 0.189

Urinary metabolite d

3+4MHA 0.02 (−0.07; 0.11) 0.647

% FMD e NO2 −0.11 (−1.00; 0.77) 0.801
Total BTEX 0.30 (−0.56; 1.15) 0.492

Benzene −0.01 (−0.87; 0.85) 0.982
Toluene 0.36 (−0.50; 1.22) 0.403
Ethyl-benzene 0.35 (−0.76; 0.90) 0.870
m+p-xylene 0.07 (−0.77; 0.92) 0.862
o-xylene 0.16 (−0.68; 1.00) 0.705

Urinary metabolite f

3+4MHA −1.45 (−2.38; −0.51) 0.003
a All models adjusted for date of assessment visit, age, BMI, average temperature, smoking, and employment status
(random factor: participant). b Estimates expressed as a difference in cardiovascular endpoint for each SD increment
in exposure. c Additionally adjusted for SBP. d Additionally adjusted for SBP and urine creatinine. e Additionally
adjusted for SBP and baseline brachial diameter. f Additionally adjusted for the SBP, baseline brachial diameter, and
urine creatinine.

Table A5. Estimated effects of personal NO2, total BTEX, BTEX, and 3+4MHA urinary metabolite on
carotid artery measurements.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

Carotid diameter c

(mm) NO2 −0.06 (−0.19; 0.08) 0.393

Total BTEX −0.12 (−0.26; 0.02) 0.082
Benzene −0.07 (−0.20; 0.07) 0.331
Toluene −0.11 (−0.25; 0.03) 0.132
Ethyl-benzene −0.10 (−0.22; 0.02) 0.097
m+p-xylene −0.10 (−0.23; 0.02) 0.109
o-xylene −0.09 (−0.22; 0.04) 0.156

Urinary metabolite d

3+4MHA −0.07 (−0.20; 0.07) 0.325
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Table A5. Cont.

Variable Exposure Variable Estimate a,b (95% CI) p-Values

cIMT e (µm) NO2 1.23 (−23.63; 26.09) 0.921
Total BTEX 12.76 (−10.55; 36.06) 0.275

Benzene 24.88 (2.19; 47.57) 0.032
Toluene 9.37 (−13.24; 31.99) 0.407
Ethyl-benzene 9.10 (−14.32; 32.52) 0.437
m+p-xylene 8.64 (−15.36; 32.64) 0.471
o-xylene 13.06 (−10.74; 36.85) 0.274

Urinary metabolite f

3+4MHA −10.56 (−30.75; 9.63) 0.302
a All models adjusted for date of assessment visit, age, BMI, average temperature, smoking, and employment status
(random factor: participant). b Estimates expressed as a difference in cardiovascular endpoint for each SD increment
in exposure. c Additionally adjusted for SBP. d Additionally adjusted for SBP and urinary creatinine. e Additionally
adjusted for SBP and mean brachial diameter. f Additionally adjusted for the SBP, mean carotid diameter, and
urinary creatinine.
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