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SUMMARY 
 
Grapevine water status is considered to be the most important factor limiting plant growth and 

production in the Mediterranean zones. In these regions with limited summer rainfall and limited 

water resources for irrigation grapevines may experience water deficits for an extended period 

of time. The demand of water for agriculture is constantly increasing, and will continue to do so 

due to the rise in the world population and to the effects of climate change on rainfall and 

evaporative demand in these regions. The Western Cape wine region is also classified as 

Mediterranean and grapevines grown in this region are often exposed to water “stress” 

conditions due to high evaporative demand and low water availability in the soil.  

Plant water status of grapevines may dependent on, amongst other factors, the water potential 

of soil layers close to the root system, canopy size and evaporative demand. The canopy size of 

a grapevine can inherently be seen as a measure of grapevine vigour, and vigour variation 

among grapevines within a vineyard is a common phenomenon in the Western Cape. The 

importance of the contributions from several factors causing vigour variation within vineyards is 

still a subject of debate. This may be largely ascribed to the significant amount of variability in 

vineyards that researchers have to deal with during viticultural studies. However, the recent 

advances in remote sensing technology have established new methods to assess grapevine 

vigour variability.  

   In the face of the recognized variation within vineyards and the importance of a sustained 

grapevine water status, for wine grape productivity and -quality, it is alarming to think that a 

vineyard block is generally managed as a homogeneous entity when it comes to irrigation 

scheduling. What is more alarming is the assumption that grape, juice and wine quality will be 

homogeneous throughout a vineyard block – even without irrigation. 

 

With this in mind, a study was conducted to study the interaction between grapevine vigour and 

grapevine water status within a commercial vineyard with variable vigour by implementing 

various irrigation regimes. Vigour variation was identified through multispectral aerial imagery 

and plant-based water status determinants were used to assess grapevine water status in plots 

of differing vigour within the vineyard. Soil water status was also assessed, and vegetative 

growth quantified to ultimately determine the variability in vigour and its possible contribution to 

the variability through the water status of the plant. Reproductive growth was monitored 

continually before evaluating the effect of water status and grapevine vigour on grape 

composition and subsequent wine quality.  

 

The various methods used to evaluate grapevine vigour showed good correspondence. Pruning 

mass measured at the end of the season confirmed leaf area measurement (main leaves and 

lateral leaves) during vegetative growth, and corresponded well, in terms of main vigour 



 

classifications with the NDVI images collected. Berry weight and volume responded to the 

various classifications, with a decrease in water deficits from one classification to the next 

accompanying an increase in berry weight and volume.  

 
Analyses of the berry composition and wines showed statistically significant differences 

between the classifications. This was found for sugar content per berry, total phenols, total red 

pigment, malic acid, nitrogen and pH for the grape juice analyses. Wine pH and total acidity also 

differed significantly.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

OPSOMMING 
 
In die Mediterreense sones word plantwaterstatus beskou as `n hooffaktor wat groei en 

produksie van `n wingerdstok negatief beinvloed. In hierdie sones kan wingerdstokke vir lang 

periodes `n tekort aan water ervaar a.g.v `n tekort aan reënwater gedurende die somer en lae 

beskikbaarheid van besproeingswater. Die vraag na water vir landbou is ook konstant besig om 

toe te neem in dié sones en die tendens sal voorduur a.g.v die groei in die wêreldbevolking, die 

effek van klimaatsveranderig op reënvalpatrone en die hoë verdampingsfaktor. Die wingerd- en 

wynstreek van die Wes-Kaap word ook geklassifiseer as Mediterreens en wingerdstokke in 

hierdie streek ervaar dikwels waterspanning wat deur hoë evapotranspirasie en min beskikbare 

grondwater veroorsaak word.  

Van die faktore wat die waterstatus van `n wingerdstok bepaal is onder andere die 

waterpotensiaal van die grondlae rondom die wortelstelsel, die grootte van die 

wingerdlowerraamwerk en die evapotranspirasiebehoefte. Die omvang van `n wingerdstok se 

lower binne die prieel word beskou as `n aanduiding van wingerdstokgroeikrag en variasie in 

groeikrag tussen wingerdstokke is `n algemene verskynsel in die Wes-Kaap. Die rangorde, wat 

die effek van die verskeie faktore wat groeikragvariasie tussen wingerdstokke bepaal, word 

steeds gedebatteer. Die debat kan groottendeels toegeskryf word aan die beduidende 

hoeveelheid variasie tussen wingerde waarmee navorsers te doen kry in wingerdkundige 

studies. Hoewel, met onlangse vordering aangaande afstandswaarnemingstegnologie is daar 

nou nuwe metodes beskikbaar om wingerdgroeikrag te evalueer.  

 Dit is kommerwekend om te dink dat `n wyndruifwingerd normaalweg as `n homogene 

eenheid bestuur word as dit kom by besproeiing. Veral met die wete dat groeikragvariasie 

tussen wingerde algemeen erken en aangeteken word, en dat volhoubare waterstatus van `n 

wingerdstok van kardinale belang is vir produksie en kwaliteit van wyndruiwe. Die aanname dat 

wyndruiwe, die sap- en ook wynkwaliteit homogeen sal wees regdeur `n wingerdblok is egter 

meer kommerwekkend.  

 

Na aanvang van dié denke is daar `n studie geloods om die interaksie tussen 

wingerdstokgroeikrag en wingerdstokwaterstatus te evalueer. Met die studie is verskeie 

besproeiingsregimes aangebring binne `n kommersiële wingerd wat interne groeikragvariasie 

tentoonstel. Groeikragvariasie was geïdentifiseer deur middel van multispektrale lugfotos terwyl 

die wingerdstok se waterstatus geëvalueer is met behulp van plantgebaseerde metings in die 

verskillende groeikragareas. Die waterstatus van die grond is geëvalueer tesame met die 

vegetatiewe groei van die wingerd sodat die groeikragvariasie en die invloed van die 

plantwaterstatus op die groeikrag bepaal kon word. Die reproduktiewe groei is deurlopend 

gemonitor voor die effek van wingerdstokwaterstatus en wingerdstokgroeikrag op 

druifsamestelling en wynkwaliteit bepaal is.  



 

 
Daar was `n goeie ooreenkoms tussen die verskeie metodes wat gebruik is om 

wingerdgroeikrag te bepaal. Snoeimassa aan die einde van die seisoen was ooreenkomstig met 

die blaaroppervakte (hooflootblare en sylootblare) wat tydens vegetatiewe groei gemeet is, en 

het ook goed korreleer, met die multispektrale lugfotos se hoof groeikragklassifikasie. 

Korrelgewig en -volume het reageer op die verskeie besproeiingsregimes, en daar was `n 

toename in korrelgewig en -volume saam met die afname in watertekort van een regime tot `n 

ander.  

 

Daar was beduidende verskille tussen die verskeie klassifikasies t.o.v. korrelsamestelling 

analise en wynevaluasie. Die suikerinhoud per korrel, totale fenole, totale rooi pigment, 

appelsuur, stikstof en pH het verskil in druiwesap analises. Die pH en suur van die wyne het ook 

beduidend verskil. 
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GENERAL INTRODUCTION AND PROJECT AIMS 

1.1 INTRODUCTION 

Variability is inherently present in and between all vineyards. Grape producers have known this 

for as long as they have been growing grapes, but still vineyards are sometimes managed on 

the assumption that they are homogenous. Within-vineyard variability in vigour is a 

phenomenon very common to South African vineyards, and especially in the Western Cape 

region because of its highly variable soils and terroir units. The spatial variation in these factors 

may also lead to spatial variation in grape quality and yield within vineyards, potentially leading 

to a reduction in average wine quality and productivity. With an increasing differentiation in 

pricing between grapes based on measured quality attributes becoming inevitable, increasingly 

intelligent management decisions are required to moderate vineyard variability in order to 

produce a higher-quality, higher-value product. Also, vineyard potential will be under-exploited 

and sub-economic end-products obtained when vigour and water deficit variability are not 

accommodated in management decisions. It is fundamental that these decisions are based on 

accurate and reliable data to describe the variability exhibited by the grapevines. Increasing 

knowledge of the causes and effects surrounding within-vineyard variation, mainly in grapevine 

water status and grapevine vigour is leading to an emphasis on developing methods of irrigation 

that would potentially minimise variability. However, irrigation is mostly scheduled at the level of 

a single vineyard block, and localised soil or plant measurements are mostly used to make 

decisions on timing (frequency) and intensity. The advent of precision irrigation methods, such 

as regulated deficit irrigation (RDI) and partial rootzone drying (PRD), has played a major role in 

the optimisation of grapevine water status, vegetative growth and water required for irrigation, 

but has highlighted the need for advanced methods of accurate irrigation scheduling and 

control. 

 

Irrigation scheduling has conventionally aimed to achieve an optimum water status (supply) for 

productivity, with soil water content being maintained close to field capacity (Myburgh, 2005). 

The soil water status is reminiscent of plant available water, seeing that it represents the 

relationship between the soil water content and soil water potential. Soil water status has thus 

traditionally been used as a reference to estimate water deficit in a grapevine. However, 

indicators of grapevine water deficit based on soil water status are not comprehensive, as it has 

questionable value in vineyards with considerable spatial variation in soil properties and root 

distribution. According to Schmitz and Sourell (2000), the possible errors in many types of soil 

moisture readings are usually also high for field applications, mainly due to possible spatial 

variability in soil water content and other factors affecting soil moisture measurements. In recent 
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years new scheduling techniques have been introduced, many of them based on sensing the 

plant water status to water deficits rather than sensing the soil moisture status directly.  

Jones (2004) believes that indicators based on plant attributes may present a useful alternative 

to direct physical measurements of soil water availability, provided that they respond sensitively 

to soil water status. Thus, more attention is being paid to monitoring plant water status in field-

grown grapevines, as researchers believe it would allow the diagnosis of the onset of and 

severity of water deficits so as to schedule irrigation according to actual plant needs (Patakas et 

al., 2005). Changes in plant water status could be described by using a sensitive physiological 

indicator that integrates both soil and climatic conditions. The pressure chamber is considered 

to be a reliable method for determining the water status of field-grown grapevines (Choné et al., 

2001). Use of the pressure chamber technique can provide values for various parameters, such 

as pre-dawn leaf water potential (pre-dawn Ψ), midday leaf water potential (leaf Ψ) and stem 

water potential (stem Ψ).       

 

Although a substantial body of literature characterises the impact of water deficits on grapevine 

physiological responses, and given the complexity of grapevine vigour and the pronounced 

effect water deficits may have on grapevine growth and productivity, there is little information 

that quantitatively relates to an interaction between these two variables. Also, considering the 

potential for variability in plant water status encountered in blocks where there is variability in 

vigour (Deloire et al., 2004), the question arises where and how soil or plant water status should 

be measured to be representative of the whole block. 

 

In this study, NDVI multispectral images were used to establish vigour variation within a 

commercial vineyard block. The experimental plots were then laid out according to the areas of 

differing vigour. Plant-based water status determinants were used to assess grapevine water 

status at the plots of differing vigour within the vineyard, while soil water status was also 

assessed using soil-based measurements. Vegetative growth was quantified to ultimately 

conclude the variability in vigour identified with the NDVI images and to determine the possible 

contribution to the variation by the water status of the plant. Reproductive growth was monitored 

continually before evaluating the effect of grapevine water status and grapevine vigour on grape 

composition and subsequent wine quality.  
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1.2 PROJECT AIMS 

The aim of the study was to investigate relationships between grapevine vigour and plant water 

status in order to assess the potential impact on irrigation scheduling for quality wine 

production. 

 

Main aims: 

(i)  To define and characterise grapevine vigour using multispectral images and to establish 

different irrigation regimes based on monitoring of plant water status  

(ii)  To analyse soil water content and plant water status in reaction to the established 

irrigation regimes 

(iii)  To assess the interaction between grapevine vigour and soil and plant water status and 

to investigate correlations between these factors 

(iv)  To assess grape composition and wine characteristics resulting from specific grapevine 

vigour and grapevine water status combinations 

 

The main hypothesis is that the interactions studied may be used to incorporate the important 

factor of grapevine vigour into the management of the soil-plant-water relationship, which may in 

turn facilitate whole-block or sub-block water status monitoring and irrigation scheduling, 

especially where multispectral imagery is available as a management tool. 

 

1.3 LITERATURE CITED 
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Patakas, A., Noitsakis, B. and Chouzouri, A., 2005. Optimization of irrigation water use in grapevines 
using the relationship between transpiration and plant water status. Agriculture, Ecosystems and 
Environment 106, 253-259. 
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LITERATURE REVIEW 

2.1 INTRODUCTION 

Viticultural studies in recent years were strongly focused on within-vineyard variability and what 

should be done to achieve vineyard uniformity. Researchers mainly believe that vineyard 

uniformity would have a carry-over effect to production, which consequently would lead to 

consistent yields, grape composition and even wine quality. Bramley and Hamilton (2004) 

emphasised this when they said that grape growers and winemakers are searching for answers 

to a number of questions relating to vineyard variability. According to them, these people firstly 

want to know what the key drivers of vineyard variation are and whether these may be managed 

and, secondly, whether targeting the management of variation delivers an economic benefit 

over conventional, uniform management. The answers to these two questions would enable 

growers to better observe and develop an understanding of the variability in their production 

systems, and to use this to better match the production inputs to desired or expected outputs 

(Lamb et al., 2004a).  

 

Within vineyards, variability in grapevine vigour and grapevine water status are seen as the two 

phenomena most common in grape-producing countries. Therefore, the causes of vigour and 

water status variability and the effects thereof on production and quality have been relatively 

well examined. Precision practices (so-called “Precision Viticulture”) are increasingly being 

employed in wine grape production, particularly regarding canopy management and irrigation, to 

control vigour and to optimise grapevine water status (Hall et al., 2008). Despite the availability 

of numerous soil moisture and plant water status monitoring devices, the application of specified 

irrigation may not always be consistent from one season to the next, as it will be influenced by 

environmental factors, in particular by rainfall and evaporative demand (Patakas et al., 2005). 

The responses of the grapevine will also be influenced by genotype and grafting combinations 

(Smart and Coombe, 1983). Added to this is the increasing prevalence of once-off events, such 

as heat waves, periods of drought and subsequent restrictions on water availability, potential 

increases in irrigation water and soil salinity as well as diminished root systems under drip 

irrigation and the need for increased fruit loads to ensure financial viability in the current 

economic environment.   

 

Productivity per unit area is a key factor, along with homogeneous grape composition, in 

determining grapevine performance (McCarthy, 1997). Grapevine performance can be linked to 

numerous single factors, but the combined effect of these factors is more important. Creating an 

understanding of the influential factors consists of identification, quantification and analysis of 
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the outcome on the end product. This review follows these steps to evaluate grapevine vigour 

and grapevine water status as factors determining grapevine performance.  

2.2 GRAPEVINE VIGOUR 

2.2.1  VIGOUR AS A FACTOR OF GRAPEVINE CAPACITY 

When discussing the characteristics of grapevine growth, Winkler et al. (1974) differentiated 

between the terms “vigour” and “capacity”. They interpreted vigour as the rate at which the parts 

of the grapevine actively grow and capacity as the ability of total production, rather than the rate 

of activity. Thus, a grapevine with a well-established permanent structure and more shoots may 

have a substantially higher capacity (ability to ripen fruit) than a grapevine with only a few 

shoots. This ability arises due to the perennial nature of the grapevine. It stores surplus carbon 

in sinks in order to facilitate fruit growth and sugar accumulation during the season, and to 

assist early-season grapevine growth in the following season until carbon supply from the 

mature leaves can sustain the grapevine. In contrast to this, the vigour (ability to grow faster and 

longer) of a grapevine with only a few shoots may be much higher than that of a grapevine with 

many shoots (Archer, 1985). The term “vigour” used by Winkler et al. (1974) mainly gives a 

measure of the grapevine’s ability to maintain a certain level of vegetative growth, but Smart 

(1985) mentions that he refers to a grapevine’s “capacity for growth” when using the term 

vigour.  

 

For a grapevine, vigour and capacity for production can also vary between single shoots, 

resulting in a vigorous shoot to potentially have a larger capacity than a weak shoot. In a study 

by Cloete et al. (2006), comparisons based on certain vegetative growth parameters were made 

between normally developed and underdeveloped shoots. The normally developed shoots had 

an average length of 112 cm and were significantly longer than the underdeveloped shoots, 

which had an average length of 50 cm. The study showed that higher levels of starch formation 

and accumulation occurred in the normally developed shoots. Reserves within these shoots 

were also more evenly distributed. The normally developed shoots seemed to have a greater 

potential for producing a sustainable higher yield of better quality than the underdeveloped 

shoots, as they had a more desirable leaf area composition (more and longer secondary 

shoots) and a larger total leaf area per shoot. This correlates with Winkler et al. (1974), who 

stated that the total active leaf area determines capacity. So, in theory, by increasing the 

number of vigorous shoots on a grapevine you consequently enlarge the total active leaf area, 

and this expansion of leaf area could lead to an increase in the capacity of the grapevine. The 

leaves are the primary sources of carbon assimilates for the plant’s respective organs and the 

four biggest sinks are the bunches, seasonal growth (including leaves and tendrils), perennial 

structures (cordons and trunks) and the root system. An increase in leaf number (source) would 

thus benefit the sinks during the growth period (vegetative and reproductive). The role played by 
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source-sink relationships in grapevine yield and quality was assessed firstly by Ravaz (1906), 

who proposed the yield/pruning mass ratio to estimate the balance between vegetative growth 

and grapevine productivity. This index also supports the definition of grapevine capacity by 

Winkler et al. (1974).   

An increase in the number of shoots and an expansion of leaf area can also have an inverse 

effect on a grapevine’s capacity. Smart et al. (1985a) emphasised that canopies become 

crowded or dense when there is too much leaf area within the volume bounded by the canopy 

surfaces. They correlated the degree of shading in the canopy to the amount of foliage and the 

way the foliage was arranged within the canopy – for example a high value of the ratio leaf 

area:canopy surface area (LA/SA), or leaf layer number (LLN) (Smart, 1985) or shoot density 

(shoots/m canopy) (Smart, 1988). Light levels in dense canopies are very low, often less than 

1% of the values measured at the exposed surfaces of the canopy (Smart, 1985). Transmitted 

light found in shade conditions alters quality as well as quantity, with important physiological 

implications for the leaves found there (Smart, 1987). Thus, by increasing the leaf area and 

causing excess shade within the canopy there will be a decrease in effective leaf area and 

consequently in grapevine capacity. In a vineyard with vigour variation it is thus possible to find 

grapevines for which the capacity is either under- or over-utilised, and under utilisation of 

capacity can also be negative due to increase in vigour over growing seasons in these 

conditions (Strever, 2003).  

 

2.2.2  ASSESSING THE PARAMETERS THAT DEFINE VIGOUR 

By definition, the leaf and shoot system of the grapevine is called the canopy, and the 

dimensions of the canopy (width, length, height, etc.) are used as a quantitative measure to 

classify vigour (Smart et al., 1990). By quantifying the foliage height, lateral growth and leaf 

area density within a growth timeframe, it is possible to differentiate between grapevines of 

varying vigour (Carbonneau et al., 1997). This vigour quantification of a grapevine can be 

sustained from year to year or be dependent on seasonal influences, such as climate or 

season-specific management practices. In general terms, it has always been assumed that 

plants with high vigour are healthier and more productive than plants with low vigour, mainly 

because of the visual image of vitality and productive potential depicted by plants with higher 

vigour (Howell et al., 1987). Fig. 2.1 is a theoretical image of a high and low vigour grapevine. 

Smart (1985) used a diagram of the grapevine canopy to demonstrate the geometry of a 

trellised grapevine (Fig. 2.2). The diagram gives an indication of the dimensions available to 

each grapevine within the grapevine row and consequently in a vineyard. The grapevine 

spacing and trellising system is used to create boundaries of space (width, length, height, etc.).   
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Figure 2.1  Images of what a grapevine with low vigour and a grapevine with high vigour would look like 

theoretically.  
 

 

Figure 2.2  A diagram of the geometrical dimensions of a grapevine canopy (Smart, 1985). 

The dimensions of a canopy, consisting of shoots and leaves, will visually increase in volume 

with an increase in grapevine vigour. Shoots exhibiting excessive growth are commonly found in 

vigorous vineyards. Vigorous shoots are characterised by a relatively large diameter, long 

internodes and large leaves, and there is a distinct tendency for active lateral growth (Smart et 

al., 1990). For instance, the distinguishing characteristics recognised in vineyards with high 

 

      Low vigour grapevine                                         High vigour grapevine       
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vigour are grapevines with longer shoots, larger leaves and more lateral shoots compared to 

grapevines in lower-vigour vineyards (Smart et al., 1985a). The study by Smart et al. (1985a) 

conducted in a dryland Shiraz vineyard is a good example of how canopy dimensions differ 

when vigour variation is present. Experimental plots were arranged across a distinct vigour 

gradient (replicate nine was the most vigorous and replicate one the least), which was the result 

of soil depth variability that affected water supply to the grapevine roots. Table 2.1 shows the 

effect of variable vigour on shoot growth, canopy dimensions and yield. A notable trend was the 

larger leaves, longer shoots and higher yield of the more vigorous grapevines, with a resulting 

increase in shading as indicated by the ratio leaf area (LA) / canopy surface area (SA).  

 
 
Table 2.1  Effect of vigour level on vegetative growth, canopy dimensions and yield. Vigour increases 
from experimental plots 1 to 9, situated within a single vineyard block (Smart, 1985a).  
 

Canopy & 

grapevine 

characteristics 

Units Experimental block Sign.

1 2 3 4 5 6 7 8 9 

Canopy surface 

area 

(1000 m2.ha-1) 8.38 8.71 8.96 8.69 9.94 9.94 9.66 9.88 10.51 *

Canopy volume (m3.vine-1) 2.3 2.3 2.3 2.4 2.7 2.7 2.7 2.7 3.0 NS 

Mean main leaf 

area 

(cm2) 81 92 92 101 101 108 105 116 107 **

Mean lateral leaf 

area 

(cm2) 30 32 28 33 32 34 36 28 35 NS 

Nodes / main 

shoot 

 10.5 10.6 11.1 11.2 10.6 11.8 12.1 12.7 13.7 **

Nodes / lateral 

shoot 

 1.8 1.1 1.1 1.4 0.7 3.7 3.8 1.9 9.2 **

Leaf surface area (1000m2.ha-1) 13.2 14.3 15.1 18.0 15.6 19.2 23.3 25.7 29.0 **

Leaf area/canopy 

surface area 

 1.7 1.7 1.8 2.0 1.7 2.0 2.5 2.7 3.0 *

Yield/grapevine (kg) 11.5 14.7 15.4 16.5 16.1 17.2 15.5 22.5 24.7 *

Shoots / 

grapevine 

 135 132 133 141 133 126 145 154 151 NS 

Pruning mass / 

grapevine 

(kg) 1.2 1.6 1.7 1.6 1.8 2.4 2.7 2.4 2.8 **

Mean shoot mass (g) 9.0 12.6 12.6 11.1 13.6 19.1 18.2 15.6 18.9 **

Significance levels: 

(*) = p ≤ 0.05; (**) = p ≤ 0.01; NS = not significant 
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2.2.3  FACTORS CAUSING VIGOUR VARIATION 

The variability amongst grapevines is not a new phenomenon to viticulturists. They are 

generally well aware that grapevine performance (vigour) varies within their vineyards (Bramley 

and Hamilton, 2004). The variability in vigour between vineyards is of an intricate nature, and 

therefore so are the relationships between the factors that affect or cause it (Strever, 2003). The 

variation is even more complex if it occurs within a single vineyard. Research has shown that 

plants integrate the effects of variable environmental conditions, which include climate, soil 

properties, management practices, grapevine stress (due to disease incidence or nutrient and 

water over- or undersupply) and, in some cases, plant factors, through their expressed canopy 

(Dobrowski et al., 2003; Strever, 2003). All of these factors have the ability to enhance or 

reduce grapevine vigour. Detailed reports on the factors causing vigour variation within 

vineyards have been made over the years, but vigour alone cannot as yet be used as a 

parameter for wine quality. This does not mean that the impact of vigour on the grapevine and 

subsequently on the grapes is totally unknown. Substantial research has shown that vigour 

affects fruit ripening (Winkler, 1958; Winkler et al., 1974), pest infestation and disease (English 

et al., 1989; Baldy et al., 1996), water use (Evans et al., 1993; Williams et al., 2003), yield 

(Smart et al., 1990; Baldy et al., 1996; Dry, 2000), as well as fruit characteristics (Smart, 1985; 

Jackson and Lombard, 1993; Mabrouk and Sinoquet, 1998, Lamb et al., 2004b). 

 

2.2.4 POTENTIAL IMPACT OF GRAPEVINE VIGOUR ON GRAPE AND WINE 

COMPOSITION 

Berry size at harvest depends on many factors that modify berry growth at any stage of 

development, and grapevine vigour is known to be such a factor (Smart et al., 1985a; Strever, 

2003). High-vigour grapevines have been shown to produce larger berries than low-vigour 

grapevines and this, in turn, modifies the physiology of the berry to change its composition. The 

‘dilution’ effect of larger berries is also a determining factor when it comes to grape composition 

at harvest and, ultimately, the quality of the wine produced (Jackson and Lombard, 1993). Berry 

sugar concentration is generally lower and berry pH higher with an increase in berry volume. 

Larger berries are also the main factor behind the negative correlation found between high 

vigour, total phenolics and colour in red grapes due to the increased dilution of skin constituents 

(Lamb et al., 2004b). The smaller berries in the lower-vigour areas are thus seen by some as an 

important factor in the achievement of high wine quality. These berries produce quality wine, 

more often than not as they have a high skin/pulp ratio. Pirie and Mullins (1977) favoured small 

berries, mainly due to the existing linkage between the accumulation processes of sugar and 

phenolics. Even for white cultivars, wine composition is normally favoured by a high skin/pulp 

ratio in the berries. However, low-vigour grapevines accompanied by smaller berries have also 

recently shown negative correlations with wine quality, seeing that the low vigour was 

disadvantageous to reproductive growth and berry sugar loading.  
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Grapevine vigour can also have an indirect effect on grape composition via its impact on the 

canopy dimensions of the vineyard, seeing that the vigour expressed is of a natural occurrence.  

If canopy management is performed, such as topping and leaf removal, it is assumed that the 

modified canopy dimensions would directly affect grape composition. According to Carbonneau 

(1995), berry maturation, yield and wine quality are dependent on canopy structure, as it defines 

the microclimate and thus the photosynthetic activity and carbon output of the grapevine. 

Mabrouk and Sinoquet (1998) have shown that the end result of increased grapevine vigour is 

typically increased within-canopy shade and, according to Kliewer and Dokoozlian (2005), open 

type canopies that have moderate shoot vigour are rated highest in the 80-point scoring system 

of Smart and Robinson (1991), which evaluates potential fruit quality. In general, biomass 

production and yield potential have been shown to be related to the amount of solar radiation 

intercepted by the foliage canopy, while grape composition has been associated with the 

exposure to sunlight of leaves and bunches (Smart et al., 1990). Shade within the canopy is 

thus seen as a major cause of poor grape quality, and hence poor wine quality.   

 

The ultimate source of sugar produced in grapevines is leaf photosynthesis, which is dependent 

on the total amount of exposed leaf area (Kliewer and Dokoozlian, 2005). Thus, the sugar 

concentration of the berry is related to the amount of available functional leaf area and to the 

light environment. Smart et al. (1985a) demonstrated that canopy shading causes an increase 

in must potassium (K+) levels and a consequently higher must pH. Shade has also been shown 

to decrease the levels of tartaric acid in the berries and increase that of malic acid 

(Carbonneau, 1995). The development of flavour and colour in red wine grapes is also greatly 

influenced by canopy shade. A study by Lamb et al. (2004b) showed that the location of grapes 

within a given canopy, as well as canopy density and size, influenced the concentrations of 

anthocyanins and phenolics in the berries. The synthesis and accumulation of flavonoids were 

related to direct effects of light on leaves and to interactions between light and temperature 

effects on bunches.   

 

2.2.5  ASSESSMENT OF GRAPEVINE VIGOUR 

Vigour variation within a vineyard block can only be managed or incorporated into management 

practices if it is identified and quantified. Information regarding relative vigour levels has many 

applications for improving management at a sub-vineyard scale. There are numerous 

conventional techniques found throughout the literature to identify differing levels of grapevine 

vigour. In studies where vigour measurements were done, the authors did not use all of the 

techniques nor highlighted a single one as the optimal method to monitor vigour variability. 

These measurements include leaf area (Van Zyl and Van Huyssteen, 1980; Myburgh, 2005; 

Cloete et al., 2006), pruning mass (Howell et al., 1987; Smart et al., 1990; Carbonneau et al., 



13 
 

1997; Hunter, 2000; Kliewer and Dokoozlian, 2005), trunk circumference (Strever, 2003), shoot 

length (Smart et al., 1985a; Constanza et al., 2004) and remote sensing (Johnson, 2003).   

 

It can be said, however, that the techniques used most frequently in viticulture research and 

commercial farming include the measurement of leaf area, pruning mass and shoot length. 

Some of the main problems with the conventional techniques of vigour measurement used in 

viticultural management were identified by Strever (2003) as: i) the limited scale of these 

measurements; ii) the extensive labour inputs; iii) possible experimental error; and iv) the 

difficulty to quantify and explain differences between these measurements. Remote sensing 

technology, which has the ability to quantify spatial vigour variation, has become relatively 

commonplace in agricultural applications. One example of this technology is multispectral aerial 

imagery, which can be used to map and monitor vineyard canopy (vigour) variation (Johnson, 

2003) with the goal of characterising the nature and understanding the source of vineyard 

variability.  

 

2.2.5.1 LEAF AREA 

It is well established that grapevine vigour has an effect on shoot length (determining the 

quantity of leaves), leaf size, extent of lateral growth and the production of leaves situated on 

lateral shoots (Smart, 1985). In a vineyard, the leaf area (LA) and leaf area index (LAI), which is 

defined by the ratio of canopy leaf surface area to vineyard ground surface area, can be 

measured on a single grapevine, unit length, or unit basis. These measurements may be used 

as indicators of grapevine vigour (Smart et al., 1985a, 1990), whole-grapevine photosynthesis 

(Hunter, 1998), evapotranspiration (Evans et al., 1993; Williams and Ayars, 2005), canopy 

density (Johnson, 2003) or to estimate potential sunlight penetration (Smart, 1987, 1988). Leaf 

area measurement is an acknowledged technique used during or at the end of the vegetative 

growth period to evaluate the vigour of a grapevine.   

 

There are various direct or indirect methods to measure leaf area. Direct measurement by leaf 

removal is a technique that is regarded as very accurate, yet time consuming and destructive 

(Johnson et al., 2003). Removal and measurement of all the leaves on a grapevine is not a 

standard practice, seeing that this action would seriously reduce the longevity of the grapevine 

and would possibly end the grapevine’s growth cycle. This is why shoots are sampled from 

representative positions on a grapevine, as well as from grapevines representing the average 

growth vigour in a specific area or whole vineyard. The surface area of each primary and 

secondary leaf of a sampled shoot is measured by means of an electronic leaf surface area 

meter. By determining the leaf area of selected shoots, total grapevine leaf area can be 

estimated by multiplying the average leaf area per shoot by the average or total number of 

shoots per grapevine (Van Zyl and Van Huyssteen, 1980; Hunter, 2000; Constanza et al., 
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2004). When experimental treatment plots consist of only a limited number of grapevines, it 

would not be suitable to make use of a destructive method where leaf sampling entails removal 

of more than one shoot (Myburgh, 1998). Given the complexity of the canopy and the well-

defined effect it may have on the microclimate, photosynthetic activity, yield, grape composition 

and, ultimately, wine quality (Smart et al., 1985b, 1990; Hunter, 2000; Constanza et al., 2004; 

Kliewer and Dokoozlian, 2005), destructive methods should be applied with great care and only 

after thorough consideration of the possible effects on the source-sink balance of the grapevine.    

 

Vineyard management practices such as suckering, topping and leaf removal are noted to have 

an effect on the vegetative and reproductive growth balance of a grapevine (Smart et al., 1990; 

Jackson and Lombard, 1993; Hunter, 2000), which in part would have a quantifiable affect on 

the canopy and its dimensions. The extent of these practices should therefore be considered 

when leaf area is used to estimate the vigour level of a grapevine, and especially within 

vineyards where vigour variability may lead to inconsistency in these management actions, and 

therefore skewed results.  

 

Various indirect methods of leaf area measurement have been developed, mainly to eliminate 

the destructive and time-consuming nature of the direct methods (Johnson, 2003). Non-

destructive indirect methods include measurement of canopy-intercepted solar radiation (Ollat et 

al., 1998) and regressions based on shoot length, shoot number and the lengths of the leaves’ 

secondary nerves (Constanza et al., 2004; Santesteban and Bernardo Royo, 2006).   

 

2.2.5.2 CANE LENGTH AND PRUNING MASS 

Grapevine vigour is one of the main factors that influence the length of a grapevine shoot. 

Smart et al. (1990) reported a strong linear relationship between vigour and shoot length, shoot 

diameter, length of the internodes and the amount of nodes per shoot. These relationships are 

not only confined to the main shoots, as the production and length of lateral shoots are also 

affected by the vigour of a grapevine (Smart, 1985). Regressions between leaf area and shoot 

length are a clear indication of how accurately grapevine vigour can be computed using shoot 

length. A study by Constanza et al. (2004), done on grapevines that were not manipulated and 

grapevines to which seasonal canopy management practices were applied, confirmed this by 

reporting a good correlation between shoot length and total leaf area for primary shoots (Fig. 

2.3) and secondary shoots on the grapevines to which no seasonal canopy management 

practices had been applied. 
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Figure 2.3  Relationship between the primary/secondary shoot length and leaf area (Constanza et al., 
2004). 

 

These correlations may also explain visual observations of vigour differences perceived as 

larger canopies encountered in trellised grapevines (Smart et al., 1985a). Estimates of leaf area 

throughout the vineyard are difficult because of the time-consuming and labour-intensive nature 

of the process. As a result, viticulturists started to utilise the correlation found between pruning 

mass, which is comparatively easy to collect, and leaf area to characterise variation in 

grapevine vigour (Dobrowski et al., 2003). The mass of pruned canes contributes to useful 

information on vigour differences within vineyards, because vigour affects the amount (mass) of 

new wood that will be produced during the growing season (Smart et al., 1985a). It is safe to 

say that shoot length would influence post-season dormant pruned cane length and mass. In 

the literature it has also been shown that dormant grapevine pruning mass can be used to 

measure average shoot mass (Van Zyl and Van Huyssteen, 1980), grapevine size (Howell et 

al., 1987), vegetative growth (Myburgh, 2005) or even if grapevines are well balanced, i.e. the 

vegetative:reproductive relationships (Kliewer and Dokoozlian, 2005). Ravaz (1906) first 

documented the use of pruning mass measurements in conjunction with yield measurements 

(“Ravaz-index”) to calculate the yield-to-pruning mass ratio, estimating the balance between 

vegetative growth and grapevine productivity. According to Smart and Robinson (1991), these 

representations can be viewed as indirect measurements of fruit quality. In recent years, 

different vegetative growth and grapevine productivity indices, all incorporating pruning mass, 

have been evaluated, including: EV (sum of values of yield, pruning weight and grape sugar 

content), EVP (sum of yield and pruning weight) and L/EVP (pruning weight x 100/EVP) 

(Maccarrone et al., 1996). However, as previously stated in the discussion on leaf area, 

seasonal canopy management practices (suckering, topping and leaf removal) may have a 

large effect on the vegetative and reproductive growth of the grapevine. It is known that topping, 

for example, stimulates the growth of laterals and thereby may decrease the grapevine’s total 
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leaf area (Jackson and Lombard, 1993; Hunter, 2000). Topping may thus decrease the length 

and mass of single shoots, but may also cause an increase in total grapevine shoot length and 

pruning mass by stimulating lateral growth. Constanza et al. (2004) found this to be true on 

grapevines to which seasonal canopy management practices had been applied. They found that 

the leaf area estimation based on primary shoot length was largely over-predicted for these 

grapevines, and that estimations based on the secondary shoots were under-predicted. Growth 

compensation seems to be an integral part of the balancing act of the grapevine canopy upon 

manipulation and may have a direct impact on the shoot length and pruning weight. When using 

these measurements to assess grapevine vigour, it may be most feasible on grapevines that are 

not confined to the boundaries of the trellis system by management practices.  

 

2.2.5.3  MULTISPECTRAL AERIAL IMAGERY 

Although geographical information systems (GIS) and remote sensing have been part of 

agricultural management for quite some time, their specific use in “precision viticulture” may be 

deemed a more recent phenomenon. Precision viticulture has been described by Lamb and 

Bramley (2001) as the monitoring and management of spatial variation in productivity and 

quality parameters within single vineyards. This approach, originally developed for perennial 

crops and pastures, is based on the principle of monitoring yield, growth (vigour), and fertilizer 

application, amongst other factors (Cook and Bramley, 1998). Collecting multispectral images 

by aircraft or satellite is the most commonly available methods of remote sensing in vineyards 

(Dobrowski et al., 2002). Hall et al. (2008) showed that remotely sensed imagery provides 

information on a large scale. This information is shown to be appropriate for determining canopy 

attributes on multiple spatial scales and of greatest importance is that the “sampling” intensity is 

much higher than that achievable at ground level. The use of this technology as a means of 

monitoring grapevine growth and development (vegetative and reproductive) has made 

commercial farmers just as curious as researchers. As with everything in commercial farming, 

this interest is driven primarily by the opportunities for the cost-effective generation of spatial 

data (Hall et al., 2002) and the potential for rapidly generating data of appropriate spatial 

resolution (Lamb et al., 2004a). This data, when used in conjunction with computer-based GIS 

incorporating soil and other plant measurements, provides viticulturists with the capability to 

process and map spatial relationships between grapevine attributes and make evaluations of 

vigour based on numerous layers of information (Taylor, 2000). The key to this technology 

remains the ongoing development of an understanding of the links between remotely sensed 

imagery and grapevine canopy characteristics.  

 

The quantification of differences in the reflectance of vegetation at the green, red and near 

infrared wavelengths is the principle behind multispectral image technology (Hall et al., 2001). 

Hence the term “multispectral”, because it describes a radiometric sensor that records 
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information in only a small number of wavebands, typically two to ten (Hall et al., 2002). Most of 

the applications of remote sensing are based on observing crops in distinct areas of the 

electromagnetic spectrum. Visible (red, blue and green light) and infrared energy are the two 

primary components of solar energy interacting with the leaves of the grapevine. The palisade 

chlorophyll present in the leaf absorbs incoming visible light for use in photosynthesis. The 

better absorption of red and blue light by the palisade cells compared to green light gives the 

grapevine its green appearance. Infrared is not affected by chlorophyll, but the cell structure of 

the leaf influences the path of this specific energy through the leaf. The open cell structure of 

the spongy layer reflects half of the incoming infrared light back through the leaf, while the other 

half passes through the leaf unchanged. Healthy plants will reflect more near infrared light and 

on the other hand, damaged leaves reflect more visible light, mainly due to decreased 

chlorophyll levels and therefore decreased absorbance of red and blue light.  

 

The response of vegetation in the visible red and near-infrared (NIR) wavelengths has been 

used to form "Vegetation Indices," which typically involve some ratio of near-infrared to visible 

red reflectance (Jackson, 1986). Vegetation indices (VI) are seen as combinations of spectral 

measurements in different wavelengths, as recorded by a radiometric sensor. The indices aid in 

the analysis of multispectral image information by maximising the sensitivity towards plant 

biophysical parameters and by converting the data into a single value (Dobrowski et al., 2002). 

When Huete et al. (1994) defined vegetation indices, they concluded that “vegetation indices 

serve as indicators of relative growth and/or vigour of green vegetation, and are diagnostic of 

various biophysical vegetation parameters”. In viticulture, vegetation indices are seen as 

common measures of vigour or photosynthetically active biomass (PAB). Remote sensing work 

(Hall et al., 2001, 2002; Dobrowski et al., 2002; Johnson et al., 2003; Lamb et al., 2004a) has 

shown that differences in grapevine vigour (also quantified in part by the PAB) can be identified 

from image data using the Normalised Difference Vegetation Index (NDVI).  

 

The NDVI is calculated as 

 

 
 RNIR

RNIR
NDVI



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where near infrared (NIR) and red (R) are the reflectance values in those respective bands of 

the electromagnetic spectrum. Calculating this index is based on the principle that 

photosynthetically active vegetation shows high absorption of incident sunlight in the visible red 

wavelengths, and strong reflectance in the near-infrared wavelength (NIR) (Dobrowski et al., 

2002). 
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NDVI-classified imagery is still only used informally by growers to identify canopy variability in 

order to aid in monitoring vineyard health, as well as identifying areas of common canopy 

growth to incorporate into management operations (Hall et al., 2002). These types of 

applications of remote sensing products identify relative differences in grapevine canopy status 

across the vineyard as opposed to absolute differences. However, Johnson and Lobitz (1998) 

showed that classified NDVI imagery of a vineyard could be used to separate a three hectare 

study vineyard into areas of low, medium and high vigour. In order to use remote sensing 

technologies in such a direct and strategic manner to classify vigour variation, it is necessary to 

establish a relationship between remotely sensed data and direct measurements of grapevine 

canopy attributes (Dobrowski et al., 2003). Strever (2003) also pointed out the importance of 

using ground truth data to quantify vigour variation in establishing strong links between 

quantitative measurements and image data, allowing for both spatial and temporal comparisons 

of data between vineyards. Several remote sensing studies have shown that vineyard NDVI 

values correlate with canopy attributes like the leaf area index (LAI), which defines the ratio of 

canopy leaf surface area to vineyard ground surface area (Johnson, 2003; Hall et al., 2001, 

2008), as well as with pruning mass (Dobrowski et al., 2003). 

 

Grapevines express vigour not only in terms of density of the canopy, but also in the spatial 

extent of the canopy itself. Therefore, the relationship between spatial variations in grapevine 

vigour, as perceived by a remote sensing instrument, and spatial variations in grapevine 

productivity (yield and quality) may be complex. However, recent studies have shown by 

implication that spatial variation in other qualities, such as grapevine yield or berry properties, 

may be inferred from the vegetation indices. The potential of determining grape composition 

and eventual wine quality for differing areas in a vineyard, based on relationships between 

grapevine vigour (described by NDVI imagery) and fruit composition has been demonstrated by 

Lamb et al. (2004b).  

 

Vineyard canopies can present some remote sensing challenges. The canopies are highly 

discontinuous, with foliage clumped in individual grapevines or along rows and a relatively low 

overall ground cover fraction and soils may contain foliage as cover crops or weeds (Johnson et 

al., 2003). In addition, canopy architecture can vary between vineyards because of the use of 

different trellising systems. All of these affect the image properties and could result in erratic 

interpretation of vigour variation (Hall et al., 2002; Lamb et al., 2004a). 
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2.3  GRAPEVINE WATER STATUS  

2.3.1  THE FUNCTION OF WATER IN THE GRAPEVINE 

The main functions of water in the grapevine, as described by Mullins et al. (1992), are to fill the 

symplast, to carry solutes, to maintain carbohydrate production through photosynthesis and to 

promote heat dissipation by evaporation. To an extent, all physiological processes in the 

grapevine are dependent on water and, if we focus on the larger scheme of plant processes, it 

is known that water plays a fundamental role in driving grapevine growth (Winkler et al., 1974; 

Smart et al., 1985). Turgor pressure is a pressure exerted outward by the cells of adequately 

watered plants and this pressure causes cell enlargement, which in turn leads to an increase in 

tissue and organ size, such as the lengthening of shoots (Mullins et al., 1992). All of these 

functions involve the movement of water between “compartments”, over short or long distances. 

These water movements within the grapevine are controlled by a gradient of water potential 

crossing a structure formally analogous to a resistance (Ohm’s law) (Delrot et al., 2001).   

 

2.3.2  THE SOIL-PLANT-ATMOSPHERE CONTINUUM 

The dynamics behind water movement is best described by Van Rooyen et al. (1980), who 

compare it to a stream flowing from a source of unlimited capacity and of variable potential, 

namely the soil moisture reservoir, to a sink of unlimited capacity and of variable potential, i.e. 

the atmosphere. This also entails that, as the sink potential become less negative (increase in 

evaporative demand), moisture will be lost from the plant, with a subsequent loss of turgor and 

eventual physiological ability. Thus, water moves from the soil via the grapevine to the 

atmosphere through a complex series of conductance, as shown in Fig. 2.4: the soil-root 

interface is indicated by (a), radial transfer from the cortex to the xylem vessels and through the 

xylem to the foliage is indicated by (b), and to the atmosphere through the stomata is indicated 

by (c). This water movement through the soil-plant-atmosphere continuum (SPAC) occurs along 

a gradient of water potential that becomes more negative from the soil, through the plant, to the 

atmosphere (Smart and Coombe, 1983). 
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Figure 2.4  A diagram of water flow through the soil-plant-atmosphere continuum. 

The soil plays a fundamental role in the SPAC, since it is the only source of water to the 

grapevine. Therefore, the effect of soil water storage and availability, and the extent of its effect 

on the SPAC, is a topic that receives a great deal of attention in the viticultural industry, as well 

as the literature. A lack of water is associated mainly with climate, storage of water in the soil 

and root access to the stored water (Schmitz and Sourell, 2000). Root penetration and 

limitations to water storage may arise from soil texture characteristics (Gebregiorgis and 

Savage, 2006). Soil texture refers to the relative relationship of various particle sizes (sand, silt 

and clay) and a texture triangle is used to classify the soil into texture groups, as indicated in 

Fig. 2.5. Coarse-textured soils have higher percentages of sand particles, while finer-textured 

soils have greater amounts of the smaller silt and clay particles.  

Texture is shown to influence soil behaviour through its effect on soil structure, water retention, 

aeration, drainage, temperature and nutrient retention (White, 2003). One of the most important 

factors affecting the amount of water and oxygen harboured in a soil is its void space or its 

porosity, which in turn influences the soil moisture content (Ley et al., 1994). Sandy soils have 

C

A

B



21 
 

large pores due to the large individual particle sizes, but smaller total porosity overall compared 

with finer-textured soils. Thus, because of pore size and total porosity differences, sandy soils 

are free-draining and have a subsequent lower soil water-holding capacity, whereas fine and 

medium-textured soils (clay, silty clays and clay loams) have a heavy texture and a higher 

water-holding capacity (White, 2003). Clay particles have the largest surface area to volume 

ratio, making water storage much higher than in other soils, but it could influence plant water 

uptake.  

 

Soil structure is determined by the arrangement of primary soil particles relative to each other 

into secondary units, also referred to as “peds” (White, 2003). The secondary units are 

characterised and classified on the basis of size, shape and comprehensibility into four types. 

Soil structure is important in developing large pores (macro-pores) that are essential for the 

rapid movement of water and air through soils (Ley et al., 1994). Soil structure is seen as a 

more important factor contributing to water availability than texture due to the high degree of 

macro-porosity.   

 

 

Figure 2.5  Textural triangle based on the USDA particle-size classification (Ley et al., 1994). 



22 
 

The relationship between soil water content and soil water potential determines the water status 

of a soil, which is indicative of plant-available water. Hunter (1998) found soil water depletion to 

be a very important regulator of plant performance. Hence, the availability of water to the 

grapevine, which is essentially controlled by soil properties and irrigation, plays an important 

role in determining the ability to achieve a target grapevine performance. The availability of soil 

water to the grapevine affects yield, fruit quality and grape quality – both directly and indirectly. 

The major effects are indirect and act via vegetative growth due to the direct effects of leaf 

water potential, turgor, translocation of organic and inorganic substances, and canopy 

photosynthesis (Pellegrino et al., 2005). Soil water status is also a fundamental property 

affecting the transport and transformation of soil nutrients in the soil-plant system. In general, 

grapevine growth and productivity are effected by grapevine water status, which is strongly 

correlated with the amount of available soil moisture (Van Zyl and Weber, 1981). 

 

2.3.2.1  ASSESSMENT OF SOIL WATER STATUS 

According to Hsiao (1990), monitoring and measuring the soil water status of irrigated 

grapevines is part of an integrated management package and helps avoid: 1) the economic 

losses due to effects of both under-irrigation and over-irrigation on grape yield and berry quality, 

and 2) the environmentally costly effects of over-irrigation: wasted water, energy and the 

leaching of nutrients. The information obtained from assessing soil water status is thus used for 

irrigation scheduling, achieving high irrigation efficiencies, optimising yield and berry quality and 

minimising lost yield due to water logging and excess vigour. Soil-based irrigation scheduling is 

conventionally based on ‘soil water measurement’, where the soil water status is measured 

directly to determine the need for irrigation. There are two ways to assess the soil water status: 

by measuring the soil water content and by measuring soil water potential. It should be noted, 

however, that while soil water status can provide a direct measure of soil water potential and 

volume, it does not provide any insight into the water status of the grapevine.  

 

The concept of soil water content leads to the assumption that a given soil can hold a certain 

amount of water in the root zone of the plant, against gravity and flow to the underground water 

table (Schmitz and Sourell, 2000). In contrast to this, soil water potential is the measure of soil 

water tension, which is the suction that the root has to exert to withdraw water from the soil 

(Lebon et al., 2003). Direct determination of soil water availability is difficult because of the 

heterogeneity of soils and uncertainty about the rooting depth of grapevines (Lebon et al., 

2003). Knowledge of the spatial variability of the soil water content is important for managing 

soil water in spatially variable soils, but spatial variability in soil water potential may be more 

important than water content, because it determines plant water availability. The 

characterisation of soil water profiles along the root zone may also need to be taken into 

account when assessing soil water status. Indicators used to measure soil water status are time 
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consuming and have questionable value in vineyards with considerable spatial variation in 

depth and lateral spread of roots. Furthermore, grapevine roots may explore localised water 

confined in cracks or soil pockets that develop in heterogeneous soils (Pellegrino et al., 2005). 

Under such conditions, it is not possible to report the quantity of water that is, in effect, available 

for grapevine growth and yield maturation. This may produce a large degree of uncertainty, as 

the development of plant water deficits depends on the fraction of water consumed by the 

grapevine, which must consequently be replaced in the soil, and also on soil water-holding 

capacity (Girona et al., 2006). 

 

2.3.2.1.1  NEUTRON PROBE 

The neutron moisture meter or probe has been universally used since the early 1950s and is 

seen as a time-tested technique for measuring total soil water content by volume (Mc Dougall et 

al., accessed 2008). This method estimates the amount of water in a volume of soil by 

measuring the amount of hydrogen atoms present. According to Bell (1987), the neutron probe 

has the ability to provide precision in situ measurements of change in soil moisture and it is a 

rapid and non-destructive technique with a high degree of repeatability (Reichardt et al., 1997). 

Measuring soil water status by means of neutron dispersion has been used extensively as an 

effective and reliable technique in both research and commercial viticulture, and is one of the 

techniques that is currently being utilised for everyday irrigation scheduling applications.  

   

The neutron moisture meter consists of two main components, namely (i) a probe that contains 

a source of high-energy, rapidly-moving neutrons as well as a sensor that is sensitive to slow-

moving neutrons, and (ii) a control unit that includes electronics for time control, a pulse counter 

that can register the flow of slow-moving neutrons in the soil, and memory (Ley et al., 1994). 

The control unit remains on the surface, while the probe, which is connected by cable to the 

control unit, is lowered into the ground. Access tubes are usually installed beyond the depth of 

the expected rooting zone and clips on the cable allow the probe to be set at pre-selected 

depths in the soil profile. 

 

The probe contains a radioactive source that emits fast neutrons through the access tube into 

the surrounding soil. Collisions with the nuclei of the soil atoms, predominantly those of 

hydrogen in the soil water, cause the neutrons to scatter, to slow and to lose kinetic energy 

(Bell, 1987). Hydrogen molecules are particularly effective in slowing the fast neutrons, since 

they are both of near equal mass (Ley et al., 1994). As the speed of the once fast-moving 

neutrons declines, it reaches the speed of particles that is characteristic of the prevailing 

environmental temperature. The neutrons are now called slow-moving or thermal neutrons, and 

their collisions with the atomic nuclei in the soil continue until they are absorbed by the nuclei 

(Ley et al., 1994). Thus a “cloud” of slow neutrons is generated in the soil around the source. 
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The density of this cloud, which is largely a function of the soil water content, is sampled by a 

slow neutron detector, which is also in the probe. The electrical pulses from the detector are 

amplified and shaped before they are passed to the control unit, where their mean count rate is 

displayed (Bell, 1987). For a specified interval of time, the mean count rate is linearly related to 

the total volumetric soil water content (Hignett and Evett, 2002). A higher count indicates higher 

soil water content and vice versa. However, the neutron probe unfortunately does not give a 

measure of the matrix potential of the soil, therefore the measured soil water content cannot be 

regarded as plant available water. This potential problem can be overcome by using a 

tensiometer in combination with a neutron probe at all the measuring depths, because the 

tensiometer gives a measure of soil water tension, or the force with which the water is being 

held by the soil (E. Hoffman, Stellenbosch University, personal communication, 2008). 

 

The neutron count and subsequent soil water content would be affected by a number of factors 

relating to soil characteristics. Both soil density and chemical composition affect the 

concentration of thermalised neutrons by changing the scattering and absorption properties of 

the soil (Hignett en Evett, 2002). Because H and C are both effective neutron thermalisers, the 

organic matter content of soils is one of the main factors that should be taken into consideration 

when measuring water content by means of neutron dispersion. There are also other atomic 

nuclei in the soil besides hydrogen, carbon and oxygen that have a considerable ability to 

moderate the fast-moving neutrons. These are B, Cd, Cl, Fe, F, Li and K. Therefore, the 

necessity of calibrating the neutron probe for the measurement of soil moisture in individual 

soils has been widely debated and is seen by Reichardt et al. (1997) as the main constraint of 

this technique. A calibration equation must consequently be developed for every soil type that 

differs with respect to the content of organic matter, texture, bulk density, porosity, particle 

composition and even soluble salt content (Bell, 1987). The count rate displayed by the counter 

can only be translated into soil moisture content (by volume) using the appropriate calibration 

equation or curve.  

 

2.3.3  GRAPEVINE WATER USE 

The availability of soil moisture to grapevines and the extent of the effect thereof on the growth 

and plant water relationships have been controversial subjects for years. Taken to extremes, 

either excessive or severe lack of water appeared to have detrimental influences on vineyard 

growth, yield and grape quality (Pellegrino et al., 2005). Some water management techniques in 

a vineyard require that water use is evaluated to assist in the quantification of grapevine water 

status (Lebon et al., 2003). However, grapevine water use cannot be directly used as an 

indication of grapevine water status. Estimating grapevine water use can be accomplished with 

models that simulate grapevine water consumption. These simulations are commonly based on 

reference atmospheric evaporative demand (Class A-pan), or potential evapotranspiration and a 
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crop coefficient (Van Zyl and Weber, 1981; Evans et al., 1993). Lebon et al. (2003) indicated 

that other approaches have partitioned evapotranspiration into plant and soil components or 

inverted the Penman-Monteith equation to estimate canopy conductance and then grapevine 

transpiration. The seasonal water use of mature grapevines has been estimated in several 

studies using various methods or models (Van Zyl and van Huyssteen, 1980, 1988; Peacock et 

al., 1987; Grimes and Williams, 1990; Evans et al., 1993; Stevens and Harvey, 1996), and the 

basic water relations in grapevines have been reviewed by Smart and Coombe (1983). The 

results obtained during these studies indicate that vineyard water use varies greatly, and that 

water use is substantially affected by the cultivar, soil structure/texture and depth, cultural 

practices (pruning, crop level and cover cropping), trellis height and width, grapevine or row 

spacing, row direction, as well as water management programmes and climate (Evans et al., 

1993; Hunter 1998). An important point raised by Williams et al. (2003) was that it is unknown 

how much of the variability from vineyard to vineyard reported in grapevine water use studies is 

the result of differences in production practices or the method of determining grapevine water 

use, where measuring devices are often placed without consideration of soil variation.   

 

2.3.4  INFLUENCE OF GRAPEVINE WATER STATUS ON THE GRAPEVINE  

It is important at this point to give a definition of “water stress”, seeing that this term is used 

without a lot of explanation or validation in the literature. A “stress”, as seen in the context of 

viticulture, is normally an external factor that exerts a disadvantageous effect on the grapevine. 

The influence of the stress is usually apparent as changes in the vegetative or reproductive 

growth of the grapevine. However, stress can be classified as either an elastic stress or a plastic 

stress (Mr A.E Strever, personal communication, 2008). An elastic stress is better defined as a 

“strain”, seeing that this type of stress is reversible. The effect that elastic stress has on the 

grapevine is not of a permanent nature and would be normalised as soon as the stress is 

neutralised. Plastic stress, on the other hand, is usually associated with negative and 

permanent effects on the grapevine; it is irreversible, unmanageable and seen as long term. 

Thus, water stress is usually indicative of nothing more than a grapevine water deficit. During 

the rest of this review, a water deficit would, for all practical purposes, point out a water 

shortage within the grapevine, or an altered grapevine water status. 

 

In general, grapevine growth and productivity are affected by grapevine water status, which 

serves as an excellent indicator of the availability of soil moisture to the plant (Van Zyl and 

Weber, 1981). When internal demand for water is high in plants and supply is limited, water 

uptake by the roots becomes insufficient, causing plants to experience a plant water deficit. 

While a grapevine is subjected to the water deficit there are numerous ways in which the plant 

can and will respond, not to tolerate or resist the deficit, but to avoid it (Cuevas et al., 2006).  
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Choné et al. (2001) mentioned that internal plant water deficits occur to fit xylem sap flow to leaf 

transpiration in relation to soil water availability. According to Tardieu (2004), as water 

availability to the roots decreases, a grapevine would have a tendency to decrease transpiration 

by two means: a) short-term effects, which entail the closure of the stomata, thereby reducing 

water flux through the plant, and b) long-term effects, which consist of a reduction in leaf 

expansion, resulting in a smaller transpiration area. By reducing transpiration via these two 

mechanisms, which are adaptive processes, water is conserved for later stages of plant 

development. This emphasises the general thought that grapevines respond to soil water 

deficits by mechanism of drought avoidance rather than tolerance. When stomata partially 

close, thereby decreasing transpiration, leaf water potential becomes less negative, resulting in 

increased leaf hydration. This mechanism allows the leaves to maintain their water status in an 

acceptable and functional range (Choné et al., 2001; Tardieu, 2004). Stomatal closure is among 

the first processes occurring in the leaves in response to drought (Cifre et al., 2005). It is 

certainly recognised that leaf water status interacts with stomatal closure and transpiration, and 

Medrano et al. (2002) observed that there is a good correlation between leaf water potential and 

stomatal conductance under water stress. Stomatal conductance is not controlled by soil water 

availability alone, however, but by an intricate interaction of factors internal and external to the 

leaf. On the basis of information in the literature, it appears likely that root ABA synthesis in 

response to water stress controls the stomatal responses in grapevines to some extent, 

although this could also be modulated by osmotic adjustment, xylem hydraulic conductivity and 

environmental factors such as humidity (Winkel and Rambal, 1993; Naor, 1998; Lovisolo et al., 

2002; Medrano et al., 2002; Cifre et al., 2005). A primary process also affected by altered 

grapevine water status is photosynthesis, primarily due to stomatal closure, which decreases 

water loss but also carbon flux to the sites of carboxylation (Tarara et al., 2005). A high degree 

of co-regulation of stomatal conductance and photosynthesis is usually found in grapevines 

(Farquhar et al., 2001). A decrease in grapevine photosynthesis would result in a decline of 

energy that is available to drive the grapevine’s vital biochemical functions (Pool and Lakso, 

2000). 

 

2.3.5  POTENTIAL IMPACT OF GRAPEVINE WATER STATUS ON GRAPE AND WINE 

COMPOSITION  

The effect of grapevine water status on berry development and subsequent composition is a 

more complex system than the effect of vigour on the latter. The double sigmoid growth curve of 

the berry, which is divided into three major phases, is the main reason for the complexity. It 

should be noted that the berries would follow this growth curve even if or not there is a 

difference in the water status of the grapevine. However, a change in water status would modify 

both the onset and duration of the individual phases (Ojeda, 2001). The reduction in cell volume 

will induce modifications in the composition and physical properties of the cells. Sivilotti et al. 
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(2005) and Wang et al. (2003) have shown that a water deficit before véraison would reduce 

berry size at harvest, and there could even be a loss of moisture from the berry through 

transpiration. This reduction would influence the sink/pulp ratio and would more or less have the 

same consequences for berry composition as described earlier.  

 

Grapevine water status affects berry sugar concentration in a complex manner, as, sometimes, 

when there is no water deficit, a higher sugar concentration is found as a consequence of 

higher photosynthetic activity (Tarara et al., 2005), or at other times lower sugar concentrations 

are measured due to the dilution of sugars that occurs as a result of increased berry growth 

(Santesteban and Bernardo Royo, 2006). Carbohydrates produced via photosynthesis are 

exported from the leaf and transported in the phloem as sucrose to the berries. When a 

grapevine is experiencing a water deficit, less water and assimilates are translocated to the 

berries (Bota et al., 2004). Matthews and Anderson (1988) showed that water deficit can 

increase phenols in the juice and skin and anthocyanins in the skin, and reduce malate. Ojeda 

et al. (2002) found that berry size influences the concentration of phenolics and that the 

phenolic content was dependent on the skin weight, which was dependent on deficit irrigation. 

In reviewing irrigation effects, Smart and Coombe (1983) noted that excessive irrigation 

increased yield partially by berry enlargement, and caused elevated juice pH and acid content. 

 

2.3.6  ASSESSMENT OF GRAPEVINE WATER STATUS 

Plant-based monitoring is considered to be a reliable, practical approach to measure the water 

status of a grapevine. These measurements assess the grapevine itself, rather than the external 

elements of its environment, to determine its water potential or related internal stress level. 

Plant water status is seen as a key metabolic indicator and the measurement provides a 

valuable gauge of grapevine growth and grape development. Grapevine vegetative and 

reproductive growth processes relate directly to the grapevine’s water status, but only indirectly 

to the surrounding soil moisture and atmospheric conditions (Grimes and Williams, 1990; 

Sivilotti et al., 2005). However, for any measure of plant water status to be a sensitive indicator 

of water deficit, it must be responsive to differences in soil moisture status and/or the resulting 

growth differences due to water application. The measure should also be closely related to 

short- and medium-term plant stress responses, and less dependent on changes in 

environmental conditions (Williams and Araujo, 2002).   

 

In recent years a wide range of novel approaches to plant-based irrigation scheduling have 

been proposed which have not yet been widely adopted (Jones, 2004). Plant-based irrigation 

scheduling includes both water status measurements and plant response measurements. 

These approaches are focused mainly on sensing the plant response to water deficits, rather 

than sensing the soil moisture status directly. However, it should be noted that, while grapevine 
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water status can provide a direct measure of when water is required, it does not provide a direct 

volumetric measure of the volume of water required to effectively counteract the water deficit. 

The portability of the measuring equipment, potential for automation and the skills required for 

operation and interpretation are some of the factors setting apart the various indicators of 

grapevine water status. Relative advantages and disadvantages of these measurements are not 

unambiguously addressed here, as such comparisons should include ease of use as well as 

cost (time and labour) and training requirements.  

 

2.3.6.1  VISUAL INDICATORS 

Perhaps the first approach to the use of the plant itself as an indicator of grapevine water status, 

and one still frequently adopted today, is to evaluate visible drought symptoms (Jones, 2004). 

The physiological reaction of a grapevine to a water deficit will affect the growth and 

development of the leaves, shoots and fruit, depending on the timing and level of deficit during 

the season. Van Zyl and Weber (1981) noted the transformation of visual drought symptoms in 

vineyards from the start of shoot growth towards harvesting time. They found that, as shoot 

growth accelerates during spring and early summer, the rate of elongation of newly formed 

shoots and of the associated tendrils is very sensitive to changes in grapevine water status.   

 

According to Smart and Coombe (1983), the wilting of young tendrils and leaves is one of the 

early symptoms of a grapevine water deficit. As a visual indicator, the tendrils are very useful to 

identify water deficit within a vineyard, considering that the second tendril at the shoot growth 

tips will start to droop if grapevines are stressed, forming an angle of approximately 90° with the 

shoot (Fig. 2.6) (Strever, 2003; original photographs by E. Archer). Tendrils at the tip of inhibited 

shoots are also prone to abscise.  
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Figure 2.6  Angle of second tendril from shoot apex. An angle of 90° (a) indicates water stress, while a 
more acute angle (b) indicates an absence of water stress (Strever, 2003). 

Shoot tip growth arrest can also be a useful indicator of the extent of the water deficit 

experienced by the grapevine. Smart and Coombe (1983) noted the rigorousness of water 

deficit in comparison to the presence of active, inactive or desiccated shoot tips at the ripening 

stage. Begg (1980) showed that, when leaf area development is complete, changes in 

grapevine leaf angle are one of the main mechanisms for adapting to water deficit. This can be 

an effective mechanism for reducing the radiation load on the leaves. The movements that the 

leaf would perform due to water deficit include leaf folding, leaf drooping and the orientation of 

leaves parallel to incoming sunlight (parahelionastic movement) (Smart and Coombe, 1983). 

From a study by Bruwer et al. (2004), it came apparent that leaf folding and leaf drooping were 

the most common leaf stress symptoms observed on Sauvignon blanc. Leaf colour is also an 

indicator of water deficit, since young leaves become yellow-green and mature leaves become 

dull grey-green (Smart and Coombe, 1983). Prolonged water deficit may lead to the 

development of necrotic areas at the edges of leaves, especially basal leaves, which turn yellow 

(chlorosis) in the bunch zone and abscise early after necrosis. Unfortunately, by the time these 

symptoms are apparent a substantial proportion of the potential yield may already have been 

lost (Jones, 2004). Although visual water deficit symptoms are important indicators of grapevine 

water status, they should be aided by quantitative measurements of plant water content. More 

rigorous and more sensitive measures of plant water status are therefore required.   
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Figure 2.7  Visual symptoms of water stress – yellow or dead leaves and necrotic leaf edges within the 
bunch zone (Bruwer et al., 2004). 
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2.3.6.2 PHYSIOLOGICAL PARAMETERS   

When stomatal pores are open, they allow carbon dioxide diffusion into the leaf and unavoidably 

account for water loss from the leaf. According to Mullins et al. (1992), the apoplastic cavity of 

spongy mesophyll and palisade parenchyma is filled with moisture-saturated air, so water 

molecules have a strong tendency to diffuse from intercellular spaces (the point of less negative 

water potential) to the atmosphere (the point of more negative water potential). This control that 

stomata exert on transpiration and carbon assimilation is expressed in terms of the stomatal 

conductance or its inverse, the stomatal resistance. It is a property that relates the conductance 

across a unit area of a leaf, therefore it does not correspond to the effort of single stomata 

(Buckley, 2005). As outlined earlier, it appears that stomatal conductance is particularly 

sensitive to developing water deficits, with stomatal closure being among the first plant 

responses to drought (Cifre et al., 2005). It is also known that stomatal conductance has an 

effect on other physiological processes. Stomatal closure is generally accepted to be the main 

determinant for decreased photosynthesis under mild to moderate drought (Medrano et al., 

2002) and, according to Martin (1998), transpiration is controlled by leaf boundary layer 

conductance and stomatal conductance in series. Therefore, the determination of stomatal 

conductance (Medrano et al., 2002), transpiration (Delrot et al., 2001; Jones, 2004) and 

photosynthesis (Sivilotti et al., 2005) potentially provide a good indication of irrigation needs and 

these aspects have also been widely used as indicators of water status in grapevines. Stomatal 

conductance is measured with a porometer, which measures the mass flux and the 

concentration difference of water and carbon dioxide between the leaf surface and free or well-

stirred air. The porometer usually comes as a portable steady-state gas exchange system 

(Choné et al., 2001) that mainly measures stomatal conductance, but leaf transpiration can also 

be measured. 

 

There are various kinds of instruments that can be used to measure the rate of photosynthesis 

or transpiration of a grapevine, for example an open photosynthesis system with an infrared gas 

analysis instrument. Net photosynthesis, transpiration, stomatal conductance and internal CO2 

concentration can also be determined with a portable gas-exchange analysis system (Sivilotti et 

al., 2005; Patakas et al., 2005). Measurements are conducted on single leaves throughout the 

canopy so that an indication of either total photosynthesis or transpiration can be obtained to 

assess grapevine water status.   

 

Even though the measurement of these parameters is as easy as using a single instrument, it 

can be affected by various factors. Grant et al. (2007) pointed out that, for any given stomatal 

conductance, the leaf-to-air temperature difference depends not only on the atmospheric water 

vapour pressure deficit, but also on canopy surface roughness. Furthermore, changes in 

weather conditions (radiation, humidity and wind speed) during the day or between different 
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days also affect measurements and make the interpretation of these parameters difficult (Lebon 

et al., 2003). However, according to Medrano et al. (2002), stomatal conductance would 

represent a more integrative basis for the overall effects of drought, since stomatal conductance 

is responsive to all the external (soil water availability, water vapour pressure deficit, canopy 

dimensions) and internal (ABA, xylem conductivity, leaf water status) factors related to drought. 

On the other hand, Jones (2004) indicated that the complex regulation of stomatal conductance 

is related to important differences among cultivars and vineyards in the response of stomata to 

leaf water potential, relative water content, ABA and other parameters, making it difficult to 

define a model of responses to drought. The near-isohydric behaviour of the grapevine 

documented by Choné et al. (2001) and Schultz (2003) questioned the use of physiological 

parameters to assess water status. These authors found that the grapevine can show 

substantial photosynthetic limitations without any detectable change in its relative water content, 

a trait that defines isohydric plants, and this raises questions as to the suitability of physiological 

parameters when assessing grapevine water status. 

 

2.3.6.3 LEAF/CANOPY TEMPERATURE 

An important consequence of the stomatal closure that occurs when plants are subject to water 

deficit is that energy dissipation is decreased, causing leaf temperature to rise (Jones et al., 

2002). The decrease in transpiration affects the evaporative cooling of the plant and could also 

result in higher internal leaf temperatures. This rise in temperature could have a detrimental 

effect on the enzymes and metabolic reactions within the leaf. If the temperature of the leaves 

keeps increasing, or the leaf temperature is too high for a prolonged period, the leaves will 

overheat and become bleached or necrotic (Pool and Lakso, 2000). The temperature of the leaf 

can be used as an aid to determine water deficit long before the visual effects of increased 

temperature are present (Jones, 2004). The idea of using leaf or canopy temperature as an 

indicator of plant water deficit is definitely not a new one. According to Jones (1999), this 

initiative already gained ground in the early 1980s. Measuring leaf/canopy temperatures is a 

non-destructive method that has the benefit of repeated measurements on the same leaf to 

indicate grapevine water deficit. Measuring the temperature of a grapevine leaf can be as easy 

as using an infrared thermometer. Infrared thermometry (IRT) is used in conjunction with a crop 

water-stress index (CWSI), which presents leaf/canopy temperature as a factor of leaf or 

canopy temperature relative to the environmental (ambient) temperature and reference 

temperature values of leaves or canopies. 
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According to Idso et al. (1981) and Jones (1999), the value of the CWSI for a canopy is defined 

as 

   TbaseTTbaseTsCWSI  max/  

 
where Ts is the actual canopy surface temperature under given environmental conditions, Tmax 

is the upper boundary for canopy temperature and equates to the temperature of a non-

transpiring canopy, such as would occur if the stomata were completely closed as a result of 

drought, while Tbase is the ‘non-water-deficit baseline’, representing the “typical” canopy 

temperature when the stomata are fully open. This index can also be used where individual 

leaves are measured, or dry or wetted leaves are used to mimic leaves with fully closed or fully 

open stomata respectively (Jones et al., 2002). A CWSI of 0 would indicate no water deficit, 

while a value of 1 represents maximum water deficit. Although the theoretical basis of the 

approach of IRT is well established, it does have severe limitations in environments with 

significant climatic variability. Grant et al. (2007) pointed out that, for any given stomatal 

conductance, the leaf-to-air temperature difference depends not only on the atmospheric water 

vapour pressure deficit, which is fully accounted for in the calculation of CWSI, but also on wind 

speed, canopy surface roughness and net radiation. Another difficulty that has commonly been 

found with the application of infrared thermometry to assess crop water status has been the 

difficulty of separating leaf and non-leaf (soil, sky, bark etc.) temperatures. This has led to the 

development of thermal imaging and associated image analysis software to overcome the 

problems experienced by researchers using IRT in vineyards (Jones et al., 2002; Cohen et al., 

2005). Thermal imaging systems also allow for rapid and non-invasive measurements, which 

produce a collection of data, integrated over the area of individual leaves or canopies, to obtain 

thermal indices (Grant et al., 2007). Experiments done with IRT and thermal imaging have 

shown that: i) the average temperatures of areas of canopies containing several leaves are 

perhaps more useful for distinguishing between grapevines with differing water deficits than the 

temperature of individual leaves and ii) canopy temperature can be used to distinguish between 

grapevines that are encountering water deficits and those that are not.  

 

2.3.6.4 GRAPEVINE WATER POTENTIAL 

In the literature it is often argued that plant water potential is a rigorous and generally applicable 

measure of plant water status, mainly because water potential gradients develop in the 

grapevine as a consequence of flow along the SPAC pathway, in which gravitational potential 

and frictional resistance are overcome (Smart and Coombe, 1983). Plant water potential, 

especially of the leaves, is interpreted by researchers as a measure of plant water status 

(Jones, 2004). Leaf water potential is therefore widely used to measure water status and does 

not involve very sophisticated equipment. The pressure chamber used by Scholander et al. 

(1965) to determine grapevine water potential is regarded as a reliable method for determining 
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the water status of field-grown grapevines. There are basically three ways it can be used to 

measure grapevine water status, namely to quantify pre-dawn leaf water potential (pre-dawn 

Ψ), midday leaf water potential (leaf Ψ) and stem water potential (stem Ψ). These three 

methods vary mainly in the timing of the measurement and the preparation of the leaf to be 

sampled.  

 

A measurement of midday leaf Ψ is taken in the one-hour period beginning thirty minutes prior 

to solar noon and ending thirty minutes after solar noon. It is during this time that maximal 

diurnal water use or canopy conductance has been measured on grapevines with no water 

deficit (Naor, 1998). Midday leaf Ψ measured on a single leaf has been shown to reflect a 

combination of many factors: a) local leaf water demand, b) soil water availability, c) stomatal 

regulation and d) internal plant hydraulic conductivity (Choné et al., 2001). Pre-dawn Ψ is 

determined using the same basic methodology as midday leaf Ψ, but the reading is taken one 

to two hours before sunrise. This measurement assumes that, before sunrise, the grapevine is 

in equilibrium with the soil’s water potential, making it a sensitive indicator of soil water 

availability. It is assumed that pre-dawn Ψ measures plant water status when plant water 

fluctuations are zero, therefore providing information on the root zone soil water potential 

(Choné et al., 2001). Stem Ψ is measured in the same timeframe as midday leaf Ψ, but the 

preparation of the leaf to be sampled for measurement is different. The leaf is bagged in a 

relatively airtight plastic bag with aluminium foil on the outside, at least one hour before it is 

sampled. Bagging effectively stops the natural transpiration of the leaf, allowing the leaf water 

potential to equilibrate with the xylem (stem) water potential. Stem Ψ, measured on a non-

transpiring leaf, would provide an indication of the capacity of the grapevine to conduct water 

from the soil to the atmosphere (Girona et al., 2006). The stem is also thought to be less 

susceptible to fluctuations in environmental pressures than the leaf and therefore more 

representative of the actual water deficits in the entire grapevine. Daily stem Ψ is seen to also 

exclude the near-isohydric behaviour of the grapevine and rapid temporal fluctuations observed 

as a function of environmental conditions, such as passing clouds. 

 

In general, the use of any plant-based or similar indicator for irrigation scheduling requires the 

definition of reference or threshold values beyond which irrigation is necessary. Such reference 

values are defined by Deloire et al. (2004) in Table 2.2. This indicates the physiological 

responses of a grapevine when subjected to water deficit. Obtaining extensive information on 

the behaviour of these reference values as environmental conditions change is an important 

stage in the development and validation of such a method. 
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Table 2.2  Physiological responses of the grapevine to different levels of water deficits, expressed as pre-
dawn Ψ (Deloire et al., 2004) 

 Pre-dawn 
Ψ 

Vegetative growth 
 

Berry growth Photosynthesis Berry ripening 

1 0 to -200 
KPa 

normal normal normal normal 

2 -300 to -500 
KPa 

reduced 
normal to 
reduced 

normal to 
reduced 

normal to 
stimulated 

3 -600 to -800 
KPa 

reduced to inhibited
reduced to 
inhibited 

reduced to 
inhibited 

reduced to 
inhibited 

4 -900 KPa 
and less 

inhibited inhibited 
partial or total 

inhibition 
partial or total 

inhibition 
 

Williams and Araujo (2002) compared the three methods of measuring grapevine water 

potential and also correlated data from their trials to other measures of soil and plant water 

status. The results under the conditions of their study showed that all three methods of 

estimating grapevine water status were similarly correlated with the soil water content and 

applied amounts of water, and were also significantly correlated with net CO2 assimilation and 

stomatal conductance at midday. A high correlation between the methods was also found, 

although Escalona et al. (1999) found midday leaf Ψ to be a poor indicator of water stress in 

contrast with pre-dawn Ψ or stem Ψ. This is mainly due to the large impact that climatic 

conditions can have on the measurement of midday leaf Ψ. Naor (1998) also found correlations 

of stomatal conductance with stem Ψ to be significantly higher than those with midday leaf Ψ 

and, according to Choné et al. (2001), stem Ψ was also demonstrated to be a comprehensive 

indicator of early water deficit in plants and appeared to be a powerful tool to assess grapevine 

water status. They concluded that stem Ψ was the result of whole-plant transpiration, and soil 

and root/soil hydraulic conductivity in the trunk and shoot sap pathway.  

2.4  CONCLUDING REMARKS 

Viticultural practices are focused on establishing grapevines that would produce sustainable 

yields, of which the grapes are homogenous in composition and of a high quality for wine 

production. However, this output represents the net integration of numerous factors, hence the 

efforts by researchers to link them and to understand the most important drivers.  

 

Defining vigour and water status as key drivers of vineyard variability, and the verification of the 

methods available to assess them within a vineyard, was main aims of this review. Validation of 

within-vineyard variation and the quantification of the variables can be seen as half the battle 

won towards uniformity. Secondary to the main aim, the impact of vigour on grapevine 

sustainability (capacity) and the dynamics regarding grapevine water status (SPAC) were 

recognised. After these two aims it was only natural, from a viticultural standpoint, to investigate 

the possible effects of variability on grape composition and the subsequent wine quality.   
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It was clear from the literature studied that, even though the factors leading to variability within 

vineyards and their effects are very complex, the potential exists for wine grape producers to 

acquire detailed information to tailor the production of both grapes and the resultant wines 

according to expectations of vineyard performance, and according to desired goals in terms of 

both yield and quality. However, it is critical that more attention should be devoted to 

investigating the possible interactions between vigour and grapevine water status (at the level of 

a single grapevine), in conjunction with the particular studies of these variables. This is critical 

for improving our knowledge and manipulation of variables impacting grape composition and 

eventual wine quality.  
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MATERIAL AND METHODS 

3.1 EXPERIMENTAL VINEYARD 

The study was carried out over two consecutive years (2006-2007) on a commercial wine estate 

in the Stellenbosch district, South Africa. The experimental plots were laid out in the commercial 

vineyard during 2006, thus all the measurements were conducted in the 2006/2007 season. 

 

3.1.1 VINEYARD CHARACTERISTICS  

The experiments were conducted on a 10-year-old commercial vineyard of Vitis vinifera L. cv. 

Merlot noir clone MO 9, grafted on Richter 110 (Vitis berlandieri x Vitis rupestris). The soil profile 

was characterised as an Oakleaf type and the soil family classified as Oa2110 (based on the 

South African Binomial Soil Classification System, MacVicar et al., 1977). The grapevines were 

planted in a northeast-southwest row direction and spaced at 2.7 x 1.5 m. The training system is 

a vertically shoot-positioned seven-wire hedge trellis system with six moveable wires. The 

grapevines were spur pruned to an average of 10 spurs per grapevine. Canopy management 

practices included shoot positioning and mechanical shoot topping/hedging. A full cover 

herbicide programme was applied throughout both growing seasons. Irrigation water was 

supplied through a drip irrigation system consisting of 2.3 l/h drippers with a dripper spacing of 

0.75 m. The system was operated by a valve that was manually controlled for each 

experimental plot.  

 
3.1.2 EXPERIMENTAL LAYOUT   

The experimental vineyards were divided into 48 plots consisting of 48 grapevines each. The 

plots were selected in zones of variable vigour determined from a multispectral image, and were 

classified using a normalised difference vegetation index (NDVI) that was collected in January 

2006. The plots were arranged throughout the vineyard in three relative vigour zones, namely 

high, medium and low vigour, according to the multispectral image (Fig. 3.1).   
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Figure 3.1  Normalised difference vegetation index (NDVI) aerial image that indicate variable vigour 

zones within the vineyard in January 2006.  

All the plots consisted of four grapevine rows, and each row was divided into two segments of 

six grapevines each, as indicated in Fig. 3.2. Only the sixteen green grapevines in the two 

middle rows, indicated by the yellow background (rows 2 and 3), were used for the experimental 

measurements. The red grapevines at the ends of these rows (rows 2 and 3) acted as buffer 

grapevines. The other two rows with the blue background (rows 1 and 4) were buffer rows. 

 The aerial image in Fig 3.3 also shows 50 x 50 cm white melamine-covered hardboard 

panels that were placed on top of poles in the vineyard to delineate the boundaries of the 

various plots. The white panels act as a visual aid when colour images are viewed and can be 

used when the plot boundaries are drawn in on the image, as seen in Fig. 3.4. The white panels 

will also be used in a follow-up project on image pixel processing.       

 

High vigour

Medium vigour

Low vigour
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Figure 3.2  A diagram indicating the composition of each plot in the vineyard. Each of the four rows 

consists of two segments with six grapevines each. The rows with the blue background acted as buffer 

rows and the red grapevines at the end of each middle row acted as buffer grapevines, while the 

measurements were done on the grapevines in the remaining two rows.  

Experimental plots were randomly assigned to four irrigation treatments with 12 replications 

each. The four irrigation regimes were established according to target pre-dawn leaf water 

potential (pre-dawn Ψ) and stem water potential (stem Ψ) measurements, as indicated in Table 

3.1. 

 

Table 3.1  The pre-dawn leaf water and stem water potential targets according to which the four irrigation 

regimes were scheduled.  

Treatment 
Leaf water 
potential 

Plant water status target (KPa) 

Low deficit irrigation 
Pre-dawn Ψ  Between -200 and -300  

Stem Ψ  Between -1000 and -1200  

Moderate deficit 
irrigation 

Pre-dawn Ψ  Between -300 and -400  

Stem Ψ  Between -1200 and -1400  

Dryland No irrigation 
Irrigate only if stem Ψ becomes more negative 
than -1700 KPa 

 
The random placement of the four irrigation treatments throughout the vineyard is illustrated in 

Fig. 3.5. Each of the different colours corresponds to a specific irrigation treatment.  
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3.2 PLANT WATER STATUS MEASUREMENTS 

Pre-dawn leaf water potential, as well as midday leaf water potential, was measured with a 

pressure chamber (bomb) as described by Scholander et al. (1965). Stem water potential was 

measured as described by Choné at al. (2001), also with a pressure chamber. However, the 

leaves used to measure stem water potential were bagged for only 20 minutes, and not for one 

hour as recommended by Choné at al. (2001). The reason for this was that another researcher 

had found that these measurements are generally stable with regard to plant variation after 20 

minutes (P.A. Myburgh, Nietvoorbij Institute for Viticulture and Oenology, personal 

communication, 2006). The measurements were conducted on the 16 grapevines situated in 

row two and three of each plot. Ten leaves were sampled from these rows during each 

measurement interval. The leaves chosen were fully expanded leaves on main shoots and 

leaves were taken from the sun exposed and shaded sides of the canopy. These leaves were 

placed in a Sholander-type pressure chamber (ARIMAD-3000, M.R.C., Ltd., Rachmanov 

Bookstein, Isreal) for the measurement of water potential. The pressure value was recorded 

when the first signs of sap appeared from the petiole. 

3.3 SOIL CHARACTERISTICS 

3.3.1  SOIL WATER CONTENT 

Soil water content was measured at 0.3 m depth intervals to a depth of 1 m at the plots 

indicated in Fig. 3.6, using the neutron scattering technique. Measurements started in June 

2006 and were taken once a week before bud break, after bud break the frequency increased to 

twice a week. Polyvinyl chloride (PVC) access tubes for the 503DR Hydroprobe (CPN Corp., 

Pacheco, CA) were installed in the grapevine row, 0.5 m from the grapevine, for the monitoring 

of relative soil water content. The installation of the neutron probe access tubes was performed 

similarly at all the plots, and the placement of access tubes with respect to the irrigation drippers 

was also considered. The tubes were installed using a hand auger of the same diameter as the 

tube so as to ensure a tight fit between soil and tube. A 32-second neutron probe reading was 

taken at each 0.3 m depth interval, and the count data were converted to a count ratio (CR) 

using a standard count obtained from a water drum. Gravimetric soil moisture content was also 

measured at the same plots and at a depth of 30 cm, 60 cm and 90 cm. Gravimetric soil 

moisture data were used in an accompanying study to compute the calibration of the neutron 

probe.  
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3.3.2  SOIL PROFILE PREPARATION AND ROOT DISTRIBUTION ANALYSIS  

Soil profile pits were dug to obtain a general soil classification, root distribution and effective 

root depth at nine positions in the vineyard (Fig. 3.7). These subplots were selected to represent 

the major vigour gradients indicated by the multispectral image. The soil profile pits were 1.2 m 

deep and 1.6 m wide and were dug across and parallel to the grapevine row, 50 cm from the 

grapevine trunks. A healthy grapevine representing the average growth vigour of the plot was 

selected for the placement of the profile pits. The soil profile wall was prepared according to the 

method of Böhm (1979). Approximately 10 cm of soil were removed from the pit wall to expose 

the grapevine roots. After all the necessary soil had been removed, the roots were spray-

painted white to allow discrimination from the background soil on the pit wall. A lime green grid 

that consisted of 100 mm x 100 mm blocks was placed against the pit wall and the wall was 

then photographed. The descriptions of the soil in the different layers were analysed and the 

total number of roots observed were also counted for each depth level.      

 

3.3.3  SOIL DESCRIPTIONS AND SOIL CHEMICAL ANALYSIS 

A complete soil survey of all the pits was performed by a practising soil scientist, who provided 

soil descriptors and classification for the specific plots. The soil samples were collected at 30 cm 

intervals (0-30 cm, 30-60 cm, 60-90 cm) throughout the profile at the nine soil profile pits, and 

were sent to an independent laboratory, BEMLAB (Somerset-West, South Africa), for analyses. 

The mechanical composition, pH, electrical conductivity and base saturation for each sample 

were determined. Soil bulk density and porosity were determined in triplicate at 30 cm, 60 cm 

and 90 cm, using the core method (Blake and Hartge, 1986). 

3.4 VEGETATIVE CHARACTERISTICS 

3.4.1  LEAF AREA MEASUREMENTS 

Plots where shoots were destructively sampled were selected to represent different vigour areas 

in the vineyard, as observed on the multispectral image. Two representative grapevines were 

identified at each specific plot directly after harvest. For both of these grapevines, one 

representative shoot was harvested from each cordon arm at a spur position close to the centre 

of the grapevine. Main shoot length, lateral shoot length, lateral shoot number and leaf number 

(main and lateral) were determined for these shoots. Leaves were then removed from the 

shoots to determine the leaf area of the main and lateral shoots separately, using a Delta-T leaf 

area meter (Delta-T Devices, Cambridge, UK). From this, the average leaf size, total leaf area 

per shoot and leaf area per grapevine could be determined. 
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3.4.2  CANE MEASUREMENTS 

Each grapevine in all the experimental plots was pruned at the end of June to two-bud spurs. 

The number of canes per grapevine was counted and then tied together to be weighed, using a 

Micro Digital Hanging Scale (FS 30) (Scalerite, South Africa). A representative cane from each 

grapevine was sampled and cane length (main and lateral), internode length, node number and 

diameter were determined.  

3.5 REPRODUCTIVE CHARACTERISTICS 

3.5.1  BERRY ANALYSES 

3.5.1.1  Berry sampling 

Berry sampling was performed at the same plots throughout the season. An average of 150 

berries was randomly sampled each time, from the inside and outside of the canopy and from 

the top, middle and bottom of the bunches. Both sun-exposed and inner-canopy bunches were 

sampled. One hundred berries were then randomly selected in the laboratory and weighed, and 

their volume was determined by adding the berries to a known amount (300 ml) of water in a 

measuring flask. The volume of water displaced was recorded as the volume of 100 berries.     

 

3.5.1.2  Berry composition 

The 100 berries selected in par. 3.5.1.1 were hand crushed in a plastic bag and the juice was 

separated from the skins by passing it through a sieve. Total soluble solids (°B) were measured 

with a PAL-1 Atago pocket refractometer (ATAGO CO., Ltd., Tokyo), and the pH of the juice 

was measured with a CRISON basic 20 pH meter from Crison Instruments (Lasec, South 

Africa). A 785 DMP Titrino automatic titration instrument (Metrohm Ltd., Herisau, Switzerland) 

was used to determine the titratable acidity (TA) of the juice.   

 The juice was also analysed using Fourier-transform mid-infrared (FT-IR) spectroscopy 

(WineScan spectrometer, Foss Analytical, Hillerod, Denmark). A WineScan FT 120 instrument 

(FOSS Electric A/S, Hillerod, Denmark) that employs a Michelson interferometer was used to 

obtain the FT-IR spectra. Instrument settings included a cell path length of 37 µm, sample 

temperature set to 40°C, and sample volume of 7 to 8 ml. Samples are pumped through the 

heat exchanger and the CaF2-lined cuvette and scanned from 926 to 5012 cm-1 at 4 cm-1 

intervals. Prior to the analyses, the juice was filtered in a filtration unit (Foss Analytical, Hillerod, 

Denmark) that uses filter paper graded at 20 to 25 µm. The instrument was cleaned with 

solution before any calibration and cleaning was also programmed to occur 5 min after a 

completed analysis of a sample set. The instrument was zeroed before any set of analyses 

using Zero Liquid S-6060 that was scanned prior to the sample under exactly the same 

conditions as described for the sample (WineScan FT 120 Type 77110 and 77310 Reference 
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Manual, 2001; Foss Analytical). Global calibrations of wine grape composition were used for the 

FT-IR spectroscopic analyses. 

  

3.5.2  HARVEST MEASUREMENTS 

The harvested plots correspond to the plots that were used for berry sampling. Only every other 

grapevine in the middle rows (rows 2 and 3 in Fig. 3.2) of these plots was harvested to provide 

sufficient grapes for small-scale vinification (and to limit the impact on the producer). Bunch 

number per grapevine was determined, and the bunches were weighed to determine yield per 

grapevine. Twelve bunches were randomly sampled from three harvesting crates at each 

experimental plot, placed in plastic bags and frozen to determine bunch mass, berry number 

and berry mass.   

3.6 MICROVINIFICATION 

Wines were made in triplicate for each experimental plot. After crushing the grapes and before 

yeast inoculation, the must was analysed using FT-IR spectroscopy, and the total soluble solids 

(°B), pH and TA were measured as described in Section 3.5.1.2. Standard experimental 

winemaking procedures were carried out as specified by the Department of Viticulture and 

Oenology, Stellenbosch University. The yeast used for fermentation was WE372. 

 

3.6.1  WINE ANALYSES  

Wine analyses were performed after bottling. FT-IR spectroscopy and gas chromatography-

flame ionisation detector (GC-FID) analyses were performed to determine wine volatile 

components. Five ml of wine, with added internal standard (4-methyl-2-pentanol) and 100 µl of 

a 0.5mg/l soaking solution, were extracted with 1 ml of diethyl ether by placing the ether/wine 

mixture in an ultrasonic bath for 5 min. The wine/ether mixture was then centrifuged at 4000 rpm 

for 3 min. The ether layer was removed and dried on NaSO4. This extract was then injected into 

the GC-FID (Agilent, Santa Clara, California, USA) (Witbooi, 2008).   

  

3.6.2  WINE SENORY ANALYSIS 

The sensory analysis was conducted by a trained panel consisting of 8 members to determine if 

any aroma and flavour differences could be quantified. The wines from the respective plots 

were each tasted twice in a blind tasting by every member of the panel. The wines were 

randomised for each taster using the Latin Square method, as specified by Cochran and Cox 

(1950). Wine tasting sheets with unstructured line scales, marked from 0 to 100%, were created 

to account for different aroma components potentially present in the wine of this specific cultivar. 

Training involved calibration sessions held with all of the tasters during which they were 
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familiarised with the different aroma components. The standards used during the calibration 

sessions were present throughout the formal sensory evaluation sessions.     

3.7  STATISTICAL ANALYSIS 

The data were analysed by repeated measures analysis of variance (ANOVA) using the mixed 

model approach. Pruning mass was included in the model as a covariant. Pruning mass was 

also analysed using ANOVA. These statistics were used to investigate the effects between 

plots, as well as the interactions between repeated measures and between treatments. 

Descriptive statistics were also performed to display the means and standard deviations for the 

variables. 
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Figure 3.3 Aerial image that indicate white panels placed in the vineyard to delineate the boundaries of 

the plots laid out in the experimental vineyard. 

 



51 
 

 

Figure 3.4 Aerial image that indicate the 48 plots laid out in the vineyard. The borders of each plot is 

indicated via the white lines drawn on the image. 
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Figure 3.5 Aerial image that indicate the outlines of each of the 48 plots laid out in the vineyard. The 48 

plots are randomly divided into the four treatments mentioned and each of the four colours corresponds to 

a treatment. The blue plots represent the wet treatment, the green plots represent the dry treatment, the 

pink plots represent the dry-land treatment and the yellow plots represent a ripening treatment that is not 

applicable to this particular project. 

 
 
 
 
 

 
 
 
 

 

 

 Low deficit irrigation treatment 

 Moderate deficit irrigation treatment 

 Dry-land treatment 

 Ripening treatment 
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Figure 3.6 Aerial image that indicate the plots where soil water content was measured at 0.3 m depth 

intervals to a depth of 1 m using a neutron probe. Gravimetric soil moisture content was also measured at 

the same plots at a depth of 30cm, 60cm and 90cm.  
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Figure 3.7 Aerial image where the white plots indicate the plots where soil profile pits were dug to obtain 

a general soil classification, root distribution and effective root dept.  

 

 
 
 
 
 
 
 
 
 
 
 
 



55 
 

3.8  LITERATURE CITED 

Böhm, W. 1979. Methods of studying root systems. Ecological Studies, Vol. 33. Springer, Berlin. 

Blake, G.M. and Hartge, K.H. 1986. Bulk density – core method. In: Soil analysis Part 1, Physical and 
mineralogical methods, Second Edition. Number 9 (Part 1) in the series AGRONOMY. American 
Society of Agronomy, Inc., Soil Science Society of America, Inc. 364-367. 

Choné, X., Van Leeuwen, C., Dubourclieu, D. and Gaudillère, J.P. 2001. Stem water potential is a 
sensitive indicator of grapevine water status. Annals of Botany 87, 477-483. 

Cochran, W.G. and Cox, G. 1950. Experimental designs. Wiley, New York. 

Jackson, D.I. and Lombard, P.B., 1993. Environmental and management practices affecting grape 
composition and wine quality – a review. Am J. Enol. Vitic. 44, 409-430.  

MacVicar, C.N., De Villiers, J.M., Loxton, R.F., Verster, E., Lambrechts, J.J.N., Merryweather, F.R., Le 
Roux, J., Van Rooyen, T.H. and Von Harmse, H.J. 1977. Grondklassifikasie. `n Binomiese Sisteem vir 
Suid-Afrika. Department of Agricultural Technical Services, Pretoria. 

Scholander, P.F., Hammer, H.T., Bradstreet, E.D. and Hemmingsen, E.A. 1965. Sap pressure in vascular 
plants. Science 148, 339-346. 

Witbooi, E.H. 2008. The ecophysiological characterization of terroirs in Stellenbosch: the contribution of 
soil surface colour. MScAgric thesis, Stellenbosch University, Private Bag X1, 7602, Matieland 
(Stellenbosch), South Africa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



56 
 

CChhaapptteerr  44  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESEARCH RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 



57 
 

RESEARCH RESULTS 

4.1 RECLASSIFICATION OF TREATMENTS 

Manipulation of soil water content using different irrigation regimes was done mainly to establish 

a desired grapevine water status, in an attempt to consequently study the interaction between 

grapevine vigour and grapevine water status. Grapevine vigour variability was present naturally 

within the vineyard, and therefore no manipulation was needed to obtain canopy microclimate 

variability in this trial. The four irrigation regimes, as described in the materials and methods, 

were maintained throughout the season. Water was applied only when and if the grapevine’s 

water status was in the desired deficit ranges. However, it became apparent during soil moisture 

measurements that the amount of water in the soil at an experimental plot did not always 

correspond to the amount of water that was applied. Some of the plots that received the low 

deficit (wet) irrigation treatment did not reflect the large amounts of water applied. The inverse 

effect was also present at plots that received the moderate deficit or dry-land treatment, where 

the soil profile was just as wet as some of the low deficit irrigation treatment plots. The two 

graphs in Fig 4.1 is a clear indication of such an example. Plot A3 (B) received the low deficit 

irrigation treatment and plot B1 (A) is part of the moderate deficit irrigation treatment. The 

neutron count ratios of the soils, measured at a depth of 60 cm, for the two plots is shown over 

time. The arrowed line on the graphs is an indication of the average count ratio (CR) for all the 

plots throughout the vineyard, measured at 60 cm. It is clear from Fig 4.1 that the neutron count 

ratio of plot B1 (A) is higher than plot A3 (B) for all the measuring dates and that the CR of plot 

B1 stayed above average until harvest, whereas the count ratio of plot A3 were way below the 

average.  It is predominantly topographic and soil characteristic differences within the block that 

may be responsible for these observations. However, it is not only the variation in soil 

characteristics (such as texture) and the lateral movement of water throughout the vineyard that 

is accountable but also the inevitable effect of rain during the season. Water applied to the other 

parts of the vineyard (excluding experimental plots) could also be a factor, considering that the 

experiment was conducted in a commercial irrigated vineyard. In a commercial setting the count 

ratios would be calibrated for different soils by taking into account soil characteristics such as 

texture and gravimetric soil water content, yielding volumetric soil water content. These 

calibrations have been performed in another study on this vineyard block.  It can be seen from 

Table 3 in the Appendix that the texture of plots B1 and A3 (situated next to plot 3) is very 

similar. 
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Plot=B1

Mean Plot of CR grouped by  Date
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Figure 4.1 Relative soil water content of plot B1 (A) and plot A3 (B) over time for a depth of 60 cm. The 

arrowed line on the graphs is an indication of the average count ratio (CR) for all the plots throughout the 

vineyard, measured at 60 cm. 

 
In terms of quantifying the interaction between plant vigour and water deficits, the experimental 

plots could thus no longer be classified according to the irrigation regimes initially applied. 

Assessing the effect of differences in soil gravimetric water content and bulk density to ascertain 

possible effects on volumetric water content was not in the scope of this study, and is part of a 

companion project on this same site from 2007. Reclassification of treatments was therefore 

inevitable, seeing that the water status and grapevine vigour interaction could still be evaluated 

if the plots are grouped according to plant reaction to primarily soil water content. Pre-dawn leaf 

water potential (pre-dawn Ψ) was the defining parameter used as an aid to establish the 

reclassification treatments. 

  

Pre-dawn Ψ was used as a parameter for irrigation scheduling and gave a clear indication of the 

plant water status of the grapevines throughout the season. Thus, during reclassification it 

A 

B 
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became apparent that the accumulative grapevine water status (the sums of means at the 

different measuring dates throughout the season) is more significant than comparing the single 

measurements at specific dates. The total pre-dawn Ψ during the season for the experimental 

plots (Fig. 4.2) were used to classify them as “dry” or “wet”. In the scope of this experiment, the 

plots with an accumulative pre-dawn Ψ higher than 1400 KPa were primarily classified as dry 

and plots with an accumulative pre-dawn Ψ lower than 1400 KPa were classified as wet. 

However the pre-dawn Ψ of each plot over time were also evaluated during classification, in 

order to ensure that the seasonal water status (and especially the situation during grape 

ripening) of the grapevines was still accounted for. The exception to the 1400 KPa “rule” was 

plot A3 and B3 that was classified as wet even though they had an accumulative pre-dawn Ψ 

higher than 1400 KPa. The reason for this was because the pre-dawn Ψ of these plots for the 

latter part of the season (from vèraison to ripeness) was indicative of the other wet plots.  

Fig. 4.3 shows the pre-dawn Ψ of plot A3 over time and indicates the lower water potential 

during the final part of the season, the pre-dawn Ψ of plot B3 followed the same trend.  Plot P12 

on the other hand had a “dry” water potential throughout the season except for one measuring 

date and were thus classified as dry, even though the accumulative mean pre-dawn Ψ was 

lower than 1400 KPa.  

 The adapted classifications are summarised in Table 4.1. The data is thus further discussed 

according to the grouping classifications of wet and dry. After reclassification of the treatment 

plots it was grouped in Fig. 4.4 according to ‘wet” and “dry” to indicate the outcome of the 

accumulative pre-dawn Ψ.           
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Figure 4.2 Accumulative mean pre-dawn water potential (KPa) during the season for the plots used 

during the reclassification of the treatments.  
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Figure 4.3 Means with error plot of the pre-dawn water potential (KPa) of plot A3 during the season 

(Vertical bars denote 0.95 confidence intervals). 
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Table 4.1 Summary of the plots classified as wet- or dry according to accumulative mean pre-dawn water 

potential (KPa). 

 

Classified Treatments 

Classification Treatment Plots 

Wet (pre-dawn Ψ) 8 A2 A3 A4 A12 B1 B3 

Wet  
Plots reclassified as: 

W1 W2 W3 W4 W5 W6 W7 

  

Classification Treatment Plots 

Dry (pre-dawn Ψ) 1 2 3 B12 P1 P3 P12 

Dry  
Plots reclassified as: 

D1 D2 D3 D4 D5 D6 D7 
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Figure 4.4 Accumulative mean pre-dawn water potential (KPa) during the season of the reclassified plots. 

 

 

 

 

 



62 
 

 

 

To study the interaction between grapevine vigour and water status, the vigour of each plot 

were quantified and incorporated into the statistical analyses. Pruning mass has been used 

throughout literature as a parameter to quantify the vigour level of a grapevine (Smart et al., 

1985, Myburgh, 2005). From an ANOVA of pruning mass for the different plots (Fig 4.5) it is 

possible to see the large and mostly significant vigour differences between the various plots. 

Pruning mass was therefore used as a covariate during statistical analyses in order to show the 

effect of vigour differences on the measured parameters. When discussing this project’s results, 

the treatment effect was first evaluated and then the combined effect of vigour along with the 

treatments, via the incorporation of the covariate. The analysis performed without the covariate 

therefore still incorporates the inherent vigour differences shown in Fig 4.5 into the analysis, 

while the analysis with the covariate incorporated removes the effects of vigour differences from 

the analysis, in effect making clear the possible initial effects that vigour had on the analysis. 
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Figure 4.5 One way ANOVA of the pruning mass for the different plots during the 2007 season (Vertical 

bars denote 0.95 confidence intervals) (P≤0.01). 
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4.2 SOIL CHARACTERISTICS 

4.2.1  SOIL WATER CONTENT 

The count ratios of the soil were determined at 0.3 m depth intervals to a depth of 1.0 m at the 

fourteen plots that were used to establish the reclassification in Table 4.1. The count ratio of the 

whole profile was measured. An increase in the count ratio is mostly an indication of an increase 

in volumetric soil moisture, should soil texture and bulk density not differ significantly (Mc 

Dougall et al., accessed 2008). The variability in count ratios of the various treatment plots over 

the season were discussed in section 4.1 and this variability were the reason for reclassification 

of the treatments according to pre-dawn Ψ. After reclassification the data shown that there was 

no significant difference in count ratios between the wet and dry classifications at the end of the 

season. Count ratios at the three depths during the season and between classifications also did 

not indicate any differences (Table 4.2). The combined count ratios for each of the 

classifications at the three depths measured however showed a possible trend of increased soil 

wetness over depth (Fig. 4.6). The soil profile for all classifications was significantly wetter at a 

depth of 0.9 m than at 0.6 m for both the wet and the dry classification. A higher percentage of 

clay at a depth of 0.9 m is seen as the reason for this outcome (Table 4, Appendix) as explained 

by White (2003).  

Table 4.2 ANOVA of count ratio of the plots after reclassification. 

  DF F p 

Pruning mass (kg) 117 9.08 p < 0.01 

Depth 18 15.45 p < 0.01 

Classifications 9 0.66 p >0.05 

Date*Depth 117 1.03 p >0.05 

Depth*Classifications 18 0.34 p >0.05 
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Figure 4.6 Graph showing least squares (LS) means of the count ratios of soil water content for the wet 

and dry classifications for 30, 60 and 90cm soil depths (Vertical bars denote 0.95 confidence intervals). 

 

 
4.2.2  ROOT PENETRATION AND DISTRIBUTION 

Root penetration and distribution were evaluated after the profile wall was prepared, roots were 

divided in to size classes, counted and then photos were taken in the various profile pits Figs. 1 

to 5 (see Appendix).   

 

Plot D2, Dry classification (Fig. 1):  The colour hue differences throughout the profile give the 

impression of red “tongues” coming in from the left. It is evident here that the roots are 

predominantly found in the dark brown parts of the profile. The darker parts had a lower clay 

percentage that the red zones, and a higher coarse sand and stone fraction. This “tongue” 

effect of soil coloration may be caused by soil preparation procedures, stressing the importance 

of judicious soil preparation techniques, and the potential detrimental effects of bad soil 

preparation (Van Huyssteen, 1987). The pH (KCI) of the profile is relatively higher than what is 

optimum for root growth.   

 

Plot D3, Dry classification (Fig. 2):  The most important observation here is the low total number 

of roots throughout the face of the wall. Roots were mainly found in the top left hand side of the 

profile and the soil zones where the least amount of roots was found were redder in colour.  
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The low root density can be ascribed to a low pH (KCI) of 4.5 throughout the profile. Conradie 

(1994) indicated that a soil pH (KCI) of at least 5.5 is optimal for grapevine root penetration and 

growth. 

Plot W1, Wet classification (Fig. 3):  In this profile a high quantity of large stones were found that 

did not allow for easy root penetration; however the soil had a high sand fraction that in turn 

may have stimulated it. It is also visible that the majority of roots were found at the 40 to 90 cm 

depth levels. 

 

Plot A10, (Fig. 4):  It was apparent in this profile that most of the roots were found in the layers 

from 50 to 90 cm. Root distribution was fairly homogenous throughout the profile, except for the 

top 20 cm, where only fine roots could be found. Larger roots were also lacking, seeing that 

almost all of the roots in the profile are 2 mm and smaller.   

 

Plot B8, (Fig. 5):  This profile is exemplary of optimal root distribution throughout the soil. Roots 

are present in all the layers of the soil and the ratio of thin and thick roots are also healthier than 

in the other profile pits. The colour hue are also very homogenous, more so than the previous 

profiles.   

 

In Table 4.3 there is a summary of the size classification and root count found at different 

depths at each profile pit. The amount of roots counted and the distribution of the various root 

classes varied significantly among the plots, as seen in the profile photos. The root count 

indicated that the majority of the roots are between 0.5 and 2 mm in size and the bulk of all the 

roots are situated in the 30 cm to 70 cm depth range. 
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Table 4.3 Summary of the size classification and root counts found at different depths at each soil profile 

pit. 

Plot 

Root 
size Soil depth 

Total 

(mm) 
10 
cm 

20 
cm 

30 
cm 

40 
cm 

50 
cm 

60 
cm 

70 
cm 

80 
cm 

90 
cm 

100 
cm 

2 

< 0.5 1 1 2 4 14 5 5 7 10 6 55 
0.5 - 2 2 5 14 20 23 27 24 18 23 22 178 
2 - 5      2 1 1 2 3 3   5 17 
5 - 7         1    1 5 7 
> 7            1     1   2 

3 

< 0.5 1 4 9   1 2 2   1 1 21 
0.5 - 2 23 15 26 18 28 12 17 10 9 15 173 
2 - 5    3 2 3 1   2 1     12 
5 - 7        1      1   2 
> 7              1 1     2 

4 

< 0.5   11 1 1       1     14 
0.5 - 2 3 9 15 27 22 21 33 28 35 41 234 
2 - 5      4 2 1 2 3 5 4 10 31 
5 - 7        1 1  2     4 
> 7                      0 

8 

< 0.5   16 14 16             46 
0.5 - 2 4 4 1 4 10 8 16 14 12 9 82 
2 - 5         3 2 5 5 1 1 17 
5 - 7                  0 
> 7          1           1 

A10 

< 0.5                     0 
0.5 - 2 3 20 20 21 23 25 24 31 24 16 207 
2 - 5    1 3 1 4 5 5 7 1 4 31 
5 - 7     1   1 1    1   4 
> 7            1 2       3 

B1 

< 0.5        3 1         4 
0.5 - 2  5 5 13 18 15 18 12 9 14 109 
2 - 5   1 1 2 1 3  1 2 1 12 
5 - 7       1        1 2 
> 7           1         1 

B8 

< 0.5   4         2       6 
0.5 - 2 2 16 23 25 27 34 22 35 25 24 233 
2 - 5      1 6 4 5 4 2 9 3 34 
5 - 7      3 1 1 1 1 2   9 
> 7                    2 2 

B11 

< 0.5                     0 
0.5 - 2 3 8 20 31 20 18 9 18 3 156 286 
2 - 5    1 5 6 4      1 2 19 
5 - 7     1         1   2 
> 7        1 1 1         3 

B12 

< 0.5                     0 
0.5 - 2   3 14 9 16 5 15 10 13 24 109 
2 - 5    4  6 1 6 8 8 5 8 46 
5 - 7         2    1 2 5 
> 7          1 1 1       3 
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4.2.3  SOIL DESCRIPTIONS AND CHEMICAL ANALYSIS 

A soil scientist classified each soil profile into soil form and soil family, the classification codes 

correspond to the Binomial System for Soil classification of MacVicar et al. (1977), which is 

indicated in Table 1 (see Appendix). All of the plots except for one (B1) consisted of three 

horizons, and the first two horizons out of the three are exactly the same for all of the plots. The 

parent material of plot 8 was classified as granite with sandstone as additional material, but the 

parent material of all the other plots were classified as predominantly granite. All the plots were 

classified as an Oakleaf soil form belonging to the 2110 soil family. No significant variation in 

description was found between the various plots in wetness class and soil vigour potential.  

 

A review of all the results obtained from soil analysis is summarised in Tables 2, 3 and 4 (see 

Appendix). General soil analyses, base saturation and mechanical analyses were conducted. 

The bulk density and porosity of the soil were also analysed to be used for a companion study 

(data not shown).   

 In general the soil composition is indicative of the area and type of soil (Mr P. Raath, 

personal communication, 2008). There are however some aspects that have to be addressed. 

By comparing the pH (KCI) of the plots to a norm of 5.5 – 7.5 (Conradie, 1994) it becomes 

apparent that the pH (KCI) of plot 3 is relatively low and can be classified as an acidic soil. The 

low pH (KCI) also corresponds with the higher H+ values encountered at this plot. Plot B11 and 

B12 also show low pH values in the 60-90 and 90 cm depth levels respectively. The phosphate 

content, that should be in the range of 25 mg/kg for this specific soil with its measured clay 

content (Conradie, 1994), is definitely too low at the depths of 60 cm and deeper. This could 

indicate that the soil phosphate content was not successfully rectified during soil preparation. 

The high phosphate levels in the topsoil (30cm) are mainly due to fertilisers applied to rectify the 

phosphate shortage. The potassium (K) content of the soil is quite controversial when it comes 

to wine grapes, seeing that K is absorbed by the grapevine and could cause an increase in 

grape juice pH (Strever, 2003). As a norm K were usually supplemented until it amounted up to 

about 4% of the CEC, but in recent years a concentration of 70-80 mg/kg is deemed sufficient 

(Conradie, 1994). The K content in the profile is therefore at an optimum level. The levels of K at 

30 cm depth is definitely too high, especially at plots B1, B8 and B11. The K would eventually 

leach into the profile, but this does not mean that it would be easily absorbed by the grapevine 

roots as many factors affect its absorption. The bulk of the roots is also situated between a 

depth of 30 - 70 cm and would not be affected by this high levels of K in the topsoil. The organic 

material (C%) content is seemingly at an optimum range for the type of soil, with optimal ranges 

indicated by Conradie (1994) as 0.6-0.9 (%). 
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4.3 PLANT WATER STATUS 

4.3.1  PRE-DAWN LEAF WATER POTENTIAL 

Pre-dawn leaf water potential (pre-dawn Ψ) was initially measured to provide a reference value 

for irrigation scheduling. However, these measurements performed at various dates during the 

season also gave a clear indication of the water status of the grapevines. The treatment effect 

and vigour influence on the grapevine water status were evaluated at the various dates and at 

the end of the season. The combined pre-dawn Ψ for both classifications, as measured at five 

different dates during the season is shown in Fig. 4.7. It is clear that the water status of the 

grapevines varied considerable during the season and that the pre-dawn Ψ became less 

negative as the season progressed, thus the wet and dry classification ended up with a relative 

lower grapevine water deficit at the end of the season. However, the total seasonal pre-dawn Ψ 

of the classifications showed that there was a significant difference in water deficit between the 

classifications (Fig. 4.8) (Table 4.4). The seasonal pre-dawn Ψ of the dry classification plots was 

significantly more negative than that of the wet classification plots. This indicates that the 

treatment plots were correctly classified as wet or dry, and that the grapevine water status 

would be accounted for in all the analyses incorporating the classification.     
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Figure 4.7 Graph showing least squares (LS) means of the combined pre-dawn Ψ for both classifications 

at the various measurement dates (Vertical bars denote 0.95 confidence intervals) (P≤0.01). 
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This variation in pre-dawn Ψ might be a result of the amount of water present in root zones of 

the classifications. As according to Choné et al. (2001) pre-dawn Ψ measure plant water status 

when the vine is in equilibrium with the soil’s water potential, therefore providing information on 

the root zone soil water potential. However in the scope of this study the count ratio did not 

show the same trend exhibited here. In section 4.2.1 it was apparent that there was no 

significant difference in count ratio between the wet and dry classification plots, probably due to 

the high levels of variability in count ratios between plots in this study, specifically regarding soil 

physical properties (Table 4, appendix).  
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Figure 4.8 Graph showing least squares (LS) means of the total seasonal pre-dawn Ψ for the two 

classifications established (Vertical bars denote 0.95 confidence intervals) (P≤0.01). 

 
Vine vigour as covariate was included in the statistical analyses to evaluate the effect thereof on 

the seasonal pre-dawn Ψ. The analyses indicated that the vigour of the vines did not have an 

effect on the variance in pre-dawn Ψ of the vines as indicated by a P value >0.05 (Table 4.4). 

The significant difference in pre-dawn Ψ is thus mainly a factor of the treatments implemented 

as irrigation regimes. The availability of water and not the vigour of the grapevines resulted in 

the grapevine water status exhibited. This corresponds with Van Zyl and Weber (1981) which 

found that vine water status is strongly correlated with the amount of available soil moisture. 

Even though Table 4.4 indicates that the classifications does not vary significantly by date the 

specific graph is indicative of the variation seen if Fig. 4.8. The pre-dawn Ψ of the two 

classifications over the season is shown individually in Fig. 4.9. 
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Table 4.4 ANOVA of the effect of water deficit and vigour on pre-dawn leaf water potential. 

 

  DF F p 

Pruning mass (kg) 43 1.53 p >0.05 
Classifications 12 16.56 p < 0.01 

Date*Classifications 43 0.67 p >0.05 
 

It is clear that the individual pre-dawn Ψ trends throughout the season correspond exactly with 

the trend in Fig. 4.7 and the trends of the classifications also match each other. Both 

classifications had a lower water deficit (less negative pre-dawn Ψ values) at the end of the 

season. Figure 4.9 also indicates that the dry classification started off with the highest water 

deficit and the wet classification with the lowest, however, these vines experienced only a 

moderate water deficit throughout the season as the pre-dawn Ψ never exceeded -600 KPa. 

This is when measurement values of this study are compared with the reference values 

supplied by Deloire et al. (2004), as described in Table 2.2.    
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Figure 4.9 Graph showing least squares (LS) means of the individual pre-dawn Ψ for both classifications 

at the various measurement dates (Vertical bars denote 0.95 confidence intervals) (P≥0.05). 
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4.3.2  STEM WATER POTENTIAL 

Stem water potential (stem Ψ) measured during the season acted as an additional aid for 

irrigation scheduling. However stem Ψ were not measured throughout the whole period of grape 

ripening. Stem Ψ measurements were already conducted at the end of 2006 even though pre-

dawn Ψ measurements started end of January 2007. The early measurements were used to 

evaluate the grapevine water status before implementing the irrigation regimes. The combined 

stem Ψ for the classifications, as measured at the various dates during the season are shown in 

Fig. 4.10. The first three dates on the graph shows how grapevine water status became more 

negative until it reached the potential target at which the irrigation regimes were started. The 

second half of the graph (Fig. 4.10) can be compared with the pre-dawn Ψ graph (Fig. 4.7) to 

evaluate the same time of grape ripening. Stem Ψ showed the same trend and decrease in 

grapevine water potential as pre-dawn Ψ during the middle part of the season. However, the 

stem Ψ of the dry classification was not significantly more negative than that of the wet 

classification for the period of measurement (Table 4.5). This outcome is mainly due to the fact 

that the stem Ψ was not measured during the latter part of grape ripening. During this stage it 

was apparent that the wet and dry classification plots had a significant difference in grapevine 

water status, as indicated by pre-dawn Ψ. Also, the various classification plots did not differ 

significantly during the first period of measurement before irrigation was applied and pre-dawn 

Ψ measured. The result is significantly different when the stem Ψ is evaluated for the post 

irrigation implementation period. It can be observed that the stem Ψ of the dry classification is 

significantly more negative than that of the wet classification, especially at the last measuring 

date (Fig. 4.11). Further measurement of stem Ψ, in line with pre-dawn Ψ, would probably have 

shown the same significant difference as pre-dawn Ψ.  

 Grapevine vigour as a covariant did not have any significant effect on the stem Ψ of the 

classifications (P>0.05), as with pre-dawn Ψ.  

Table 4.5 ANOVA of the effect of water deficit and vigour on stem water potential. 

 

DF F p 

Pruning mass (kg) 14 0.02 p >0.05 
Classifications 10 2.88 p >0.05 

Date*Classifications 14 2.22 p >0.05 
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Figure 4.10 Graph showing least squares (LS) means of the combined stem Ψ for both classifications at 

the various measurement dates (Vertical bars denote 0.95 confidence intervals) (P≤0.01). 
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Figure 4.11 Graph showing least squares (LS) means of the individual stem Ψ for the two classifications 

at the various measurement dates (Vertical bars denote 0.95 confidence intervals) (P≥0.05). 
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4.4 VEGETATIVE CHARACTERISTICS 

4.4.1  LEAF AREA MEASUREMENTS 

Leaf area measurements were conducted at various plots, at the end of the vegetative growth 

cycle, throughout the vineyard. The selection of these plots were based on the multispectral 

aerial image, which were used in the beginning of the season to differentiate between three 

relative vigour zones, high-, medium- and low vigour. The aim of leaf area measurements was 

mainly to collect ground truth data, to be used to calibrate the NDVI image and to quantify 

vigour variation at the end of vegetative growth. Thus, to establish the degree of vigour variation 

during the season as opposed to later in the season when pruning mass measurements at 

dormancy are used to indicate vigour variability. However, the vineyard was mechanically 

topped before leaf area could be measured, which could have an effect on the outcome of leaf 

measurements. The topping actions were also not conducted throughout the whole vineyard by 

the producer, as it was mainly focused on the areas with relative higher vigour that has 

overgrown the trellising system.  

 Statistical analyses showed that the canopy management had no significant effect on the 

number of laterals and the total lateral length measured on the canes during pruning, but it did 

have the obvious effect on the main cane length and total cane weight (main plus lateral 

canes)(data shown later). However after reclassification Table 4.6 shows that the outcome of 

the classification effect on the parameters measured was not influenced by the canopy 

management. This explain why there were still a correlation between pruning mass and total 

main leaf area (r2=0.3876 and r=0.6226, P≤0.1) as well as pruning mass and total lateral leaf 

area (r2=0.4239 and r=0.6511, P≤0.1) despite the topping action.       

 If only plot 1 and plot 8 is assessed (reclassified as plot D1 and plot W1 respectively in 

Table 4.1), which are laid out in acutely differing vigour areas it becomes apparent that ground 

truth data do validate the trends exhibited by the NDVI aerial image. On the aerial image plot 1 

is classified as high vigour and plot 8 as low vigour. An ANOVA of pruning mass for these two 

plots corresponds with the image classification (Fig. 4.12). The same result was obtained in a 

study by Dobrowski et al. (2003) where aerial image analysis was utilised to predict dormant 

pruning weights.  
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Table 4.6 ANOVA of the effect of canopy management on the outcome of the classifications on cane 

mass , cane length, total internodes, total laterals and total lateral length. 

    MS F p 

Classification*Canopy 
management 

Cane mass 0.01 0.35 p >0.05 

Cane Length 40.14 0.21 p >0.05 

Total Internodes 0.99 0.16 p >0.05 

Total Laterals 0.14 1.57 p >0.05 

Total Lateral Length 0.06 0.01 p >0.05 
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Figure 4.12 One way ANOVA of the pruning mass for plot D1 and plot W1 (Vertical bars denote 0.95 

confidence intervals) (P≤0.01).    

 
Total leaf area also corresponded to the pruning mass (Fig. 4.13) and this support the theory 

that vigour can already be differentiated during or at the end of vegetative growth, it is however 

not clearly visible where the vigour differences are less significant.   

 Total leaf area by definition is made up out of multiple components which are associated 

with the grapevine, its shoots and leaves, and its arrangement in space, as provided by the 

trellising system. The various components of leaf area do not always complement each other 

and must therefore also be individually evaluated. In Fig. 4.14 it is evident that the average main 

leaf area (leaf size) per shoot confirms the trend previous seen, however Fig. 4.15 shows the 

opposite outcome than expected. The larger lateral leaves of plot W1 did not have a substantial 

effect on the lateral leaf area per shoot (Fig. 4.16). This is due to the fact that plot D1 had a lot 

of small lateral leaves, compared to plot W1 which had a fewer but larger leaves. The total main 

and lateral leaf area per grapevine for plot D1 and plot W1 is shown in Fig. 4.17. As with 

pruning mass, the leaf area of plot D1 and plot W1 corresponds with the multispectral image. 

D1 W1
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Leaf area per grapevine also indicates a possible correlation with the NDVI values taken for 

these plots. Derived as the ratio of canopy leaf surface area to vineyard ground surface area, 

leaf area index (LAI) has previously been directly correlated to NDVI values (Hall et al., 2008). 
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Figure 4.13 One way ANOVA of the total leaf area for plot D1 and plot W1. 
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Figure 4.14 Means with error plot of the average main leaf area per shoot for plots D1 and W1 (Vertical 

bars denote 0.95 confidence intervals). 
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Figure 4.15 Means with error plot of the average lateral leaf area per shoot for plot D1 and plot W1 

(Vertical bars denote 0.95 confidence intervals). 
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Figure 4.16 Means with error plot of the total main leaf area and total lateral leaf area per shoot for plot 

D1 and plot W1 (Vertical bars denote 0.95 confidence intervals). 
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Figure 4.17 The total main leaf area and total lateral leaf area per grapevine for plot D1 and plot W1. 

 
 
 
4.4.2  CANE MEASUREMENTS 

The pruning mass of each grapevine at every plot were determined to establish the within 

vineyard variation at the end of the season. During these measurements canes were sampled 

and cane weight, length (main and lateral), internode length, node number and diameter were 

determined. After reclassification the total cane weight of the wet classification were significantly 

higher than that of the dry classification (Table 4.7). This trend was also seen when the average 

weight per cane were evaluated (Fig. 4.18). Consequently the total pruning mass of the plots 

that make up the wet and dry classifications were also significantly different. This ANOVA could 

imply that the irrigation applied as treatments could have affected grapevine vigour, in that a 

decreased water deficit led to a higher cane/pruning mass. However, Table 4.7 indicates that 

grapevine vigour as a covariate had an effect on the measured cane weight and length. But 

vigour was not influential on the outcome of the lateral canes. The wet classification did also 

have significantly more and longer lateral canes than the dry classification (Table 4.7). These 

higher numbers of lateral canes measured at the wet classification plots were also a 

complementing factor to the variance exhibited in pruning mass. The measurements of total 

number of internodes and the cane diameter at the top, middle and bottom did not show any 

significant difference between the classifications.  

 
 
 
 

 D1 W1
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Table 4.7 ANOVA of the effect of water deficit and vigour on cane mass, cane length, total internodes, 

total laterals and total lateral length. 

    MS F p 

Pruning mass (kg) 

Total Cane Mass 0.50 17.33 p < 0.01 

Total Cane Length 1178.98 6.28 p < 0.05 
Total Internodes 7.69 1.27 p >0.05 

Total Laterals 0.09 1.07 p >0.05 

Total Lateral Length 10.90 1.24 p >0.05 

Classifications 

Total Cane Mass 0.29 10.14 p < 0.05 

Total Cane Length 475.91 2.53 p >0.05 
Total Internodes 5.04 0.83 p >0.05 

Total Laterals 0.62 7.15 p < 0.05 

Total Lateral Length 69.43 7.88 p < 0.05 
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Figure 4.18 Graph showing least squares (LS) means of the average weight per cane for both 

classifications (Vertical bars denote 0.95 confidence intervals) (P≤0.01). 
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4.5 REPRODUCTIVE CHARACTERISTICS 

4.5.1  BERRY ANALYSIS 

4.5.1.1  Berry development 

The classification (treatment effect) and vigour influence on berry development were evaluated 

at various dates during the season. The combined average berry weight for both classifications, 

as measured during the season is shown in Fig. 4.19.  
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Figure 4.19 Graph showing least squares (LS) means of the combined average berry weight for the two 

classifications at the various measurement dates (Vertical bars denote 0.95 confidence intervals) 

(P≤0.01). 

 
The total seasonal average berry weight for each of the classifications showed that there was a 

significant increase in berry weight from the dry classification to the wet classification (Table 

4.8). Berry volume responded the same as berry weight but was not significant according Table 

4.8. However, the graph of berry volume (Fig. 4.20) showed that the variation was high between 

the wet and dry classification. These outcomes in berry parameters are as expected, seeing that 

an increase in plant available water (PAW) and a decrease in plant water deficit contributes to 

larger grape berries. In the Breede River valley, irrigation at 75% PAW depletion throughout the 

season significantly reduced berry mass of Colombar grapevines in loamy soil compared to 

30% and 50% PAW depletion (Van Zyl, 1984).The correlation between the classifications and 

average berry weight (r2=0.2006 and r=0.4479, P≤0.01), and the correlation between berry 

volume (r2=0.1855 and r=0.4307, P≤0.01) and the classifications corresponded well to the 

correlation found between berry weight at harvest and the average pre-dawn Ψ during the 
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season for the various classification plots (r2=0.2839 and r=-0.5328, P≤0.01) (correlation data 

not shown). 

However, when vine vigour as covariate was included in the statistical analyses it became 

apparent that the variation in average berry size is mainly a factor of grapevine vigour (Table 

4.8). This indicates that vigour was the main cause of the variation, but it does not mean that 

influence of the plant water status of the grapevines should be ignored.  

 

Table 4.8 ANOVA of the effect of water deficit and vigour on average berry weight and berry volume. 

    DF F p 

Pruning mass (kg) 
Ave berry weight 83 11.77 p < 0.01 

Berry volume 83 11.58 p < 0.01 

Classifications 
Ave berry weight 12 4.94 p < 0.05 

Berry volume 12 3.81 p >0.05 

Date*Classifications 
Ave berry weight 83 0.64 p >0.05 
Berry volume 83 0.43 p >0.05 
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Figure 4.20 Graph showing least squares (LS) means of berry volume for the classifications established 

(Vertical bars denote 0.95 confidence intervals) (P≥0.05). 
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4.5.1.2  Berry composition 

Grape ripening analysis was done on the grape samples collected throughout the season. 

Grape juice from these samples were also analysed with the FOSS® grapescan. The seasonal 

total soluble solid content of the classifications showed a slight trend of lower TSS content for 

dry classification compared to the wet classification. However, it was only at one measuring 

date that the classifications showed a significant difference. The slight trend at the end of the 

season could be ascribed to the fact that the berries of the dry classification were smaller with 

less juice (Table 4.8). The berries of the dry classification could also have lost water through 

transpiration during the latter part of the season as the water deficit of the grapevines increased, 

while the wet classification berries were supplied with sufficient water. A relative measurement 

was used to compensate for the differences in berry mass, namely the sugar per berry. The 

trend of this measurement was the opposite of the TSS content, as the wet classification tended 

to have higher sugar content per berry weight than the dry classification (Fig. 4.21). According 

to Myburgh (2009) severe water deficits can inhibit sugar accumulation. The measurement 

compensated for the variation in berry size, seeing that it is indicative of the amount of sugar 

actually loaded into the berries. The grapevines of the wet classification that did not experience 

mild water deficits possibly induced better sugar loading into the berries, seeing that the leaves 

could have had a better physiological efficiency (Kliewer and Dokoozlian, 2005). In Table 4.9 it 

is shown that vigour also had a significant effect on the sugar per berry measured. The 

generally higher vigour of the wet classification grapevines would be the main cause. The 

possible combined effect of larger berries and the higher sugar content per berry found at the 

wet classification should also result in a higher degree of balling at harvest. Van Zyl (1984) also 

found that the sugar content of berries increased with continued irrigations at limited quantities 

during the ripening period.        

 There was a significant difference in juice pH between the classifications (P<0.05), the low 

water deficit of the wet classification had a positive (decreasing) effect on berry pH. This 

resulted in the berry pH of the dry classification to be significantly higher than that of the wet 

classification (Fig. 4.22).  The lower pH of the wet classification was visible as from 8 February 

2007 until the end of the season. The vigour of the grapevines did not contribute to the pH effect 

(Table 4.9). It is recognized that a high water deficit may affect the chemical breakdown or 

formation of important berry acids that contribute to berry pH (Sivilotti et al., 2005).   

The total acidity (TA) differences were not significant. It was expected that the wet classification 

would have a higher TA content in the berries, as was found by Esteban et al. (1999) and Smart 

and Coombe (1983). Vigour did however have a significant influence on the total acid (TA) of 

the berries (Table 4.9). This can be due to the shading-induced increase in TA in high vigour 

grapevines. 
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The FOSS® data in Table 4.10 also indicated that the berries of the dry classification had a 

higher pH than the berries of the wet classification. The FOSS® measurement of malic acid 

showed a significant difference, with the wet classification having a higher amount. Carbonneau 

(1995) also found that excess shade in higher vigour vines decrease the levels of tartaric acid 

and increase that of malic acid in grape berries. As shown earlier the higher vigour (shaded 

canopies) were encountered at the grapevines of the wet classification. Tartaric acid tended to 

be lower in the berries of the wet classification but it was not significant. Pruning mass as a 

covariate however showed that vigour affected the measurement. The significantly higher total 

phenols (OD 280) and total red pigment content (OD 520) of the dry classification berries could 

be due to the smaller berries of this classification at harvest. It also seems that the berries of the 

dry classification had a higher nitrogen contents in the form of ammonium and alpha amino 

nitrogen. Myburgh (2006) also found that the nitrogen concentration in grape juice decreased 

with irrigation applied continuously during grape ripening. 

 

Table 4.9 ANOVA of the effect of water deficit and vigour on sugar per berry, pH and total acid per berry. 

    DF F p 

Pruning mass (kg) 

Sugar per berry 83 6.73 p < 0.05 

pH 83 0.04 p >0.05 

Total acid (TA) 83 20.53 p < 0.01 

Classifications 

Sugar per berry 12 2.79 p >0.05 

pH 12 7.28 p < 0.05 

Total acid (TA) 12 0.53 p >0.05 

Date*Classifications 

Sugar per berry 83 0.88 p >0.05 

pH 83 1.19 p >0.05 

Total acid (TA) 83 0.71 p >0.05 
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Table 4.10 ANOVA of the effect of water deficit and vigour on FOSS grape parameters. 

  DF F p 

Pruning mass (kg) 

Glucose-Fructose 71 3.53 p >0.05 

Density 71 1.96 p >0.05 

Total Acid 71 35.73 p < 0.01 

pH 71 0.17 p >0.05 

Tartaric Acid 71 4.83 p < 0.05 

Malic Acid 71 86.07 p < 0.01 

Volatile Acid 71 4.70 p < 0.05 

Folin C index 71 1.72 p >0.05 

OD 280 71 1.80 p >0.05 

OD 520 71 0.17 p >0.05 

Colour Intensity 71 0.11 p >0.05 

Anthocyanins 71 7.23 p < 0.01 

 Ammonia 71 1.54 p >0.05 

Alpha Amino Nitrogen 71 0.13 p >0.05 

Classifications 

Glucose-Fructose 12 0.05 p >0.05 

Density 12 0.01 p >0.05 

Total Acid 12 2.59 p >0.05 

pH 12 16.82 p < 0.05 

Tartaric Acid 12 1.49 p >0.05 

Malic Acid 12 14.94 p < 0.01 

Volatile Acid 12 21.70 p < 0.01 

Folin C index 12 13.41 p < 0.01 

OD 280 12 20.00 p < 0.01 

OD 520 12 13.27 p < 0.01 

Colour Intensity 12 2.02 p >0.05 

Anthocyanins 12 0.20 p >0.05 

 Ammonia 12 5.24 p < 0.05 

Alpha Amino Nitrogen 12 14.34 p < 0.01 

Date*Classifications 

Glucose-Fructose 71 0.21 p >0.05 

Density 71 0.25 p >0.05 

Total Acid 71 0.54 p >0.05 

pH 71 0.95 p >0.05 

Tartaric Acid 71 1.44 p >0.05 

Malic Acid 71 0.38 p >0.05 

Volatile Acid 71 2.57 p < 0.05 

Folin C index 71 0.17 p >0.05 

OD 280 71 0.41 p >0.05 

OD 520 71 0.51 p >0.05 

Colour Intensity 71 0.76 p >0.05 

Anthocyanins 71 1.73 p >0.05 

 Ammonia 71 0.29 p >0.05 

Alpha Amino Nitrogen 71 0.14 p >0.05 
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Figure 4.21 Graph showing least squares (LS) means of sugar content per berry for the classifications 

established (Vertical bars denote 0.95 confidence intervals) (P≥0.05). 
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Figure 4.22 Graph showing least squares (LS) means of berry pH for the classifications established 

(Vertical bars denote 0.95 confidence intervals) (P≤0.05). 
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4.5.2  HARVEST MEASUREMENTS 

Measurements of yield, bunch weight and average berry size at harvest gave an indication of 

how the plant water status and vigour variation affected the reproductive growth of the 

grapevines. The total seasonal effect on the grapes can be evaluated from these results. The 

yield measurements (Fig. 4.21) indicated that the grapevines of the wet classification had the 

highest yield per grapevine. The measurement of yield is a combination of bunch number per 

grapevine and the weight of these bunches. The average bunch weight at harvest of the 

classifications showed the same tendency as yield per grapevine, but the significance between 

classifications was increased. The number of berries and consequent bunch weights of the wet 

classification were significantly more/higher than the dry classification. The average weight per 

berry was also significantly higher for the wet classification (Table 4.11). The grapevine vigour 

(covariate) contributed significantly to the outcome of each of these yield parameters. Berry 

weight and volume has been shown to increase with an increase in grapevine vigour (Smart et 

al., 1985), as was the case during this study. The number of bunches per grapevine were not 

different for the classifications (Table 4.12). Even though all the mentioned parameters showed 

significant differences the end difference in yield was not significant between classifications (Fig. 

4.21).  

 The classification of the plots indicates that plant water status did also have an effect on the 

outcome. The increase in yield from the wet- to dry classification can be linked to possible 

higher soil water content and lower grapevine water deficits in the wet classification grapevines, 

compared to the dry classification grapevines. Grapevine water status as a factor of average 

bunch weight was evaluated by using the average seasonal stem water potential (SWP). 

Average bunch weight are definitely affected by the water status of the grapevine, as seen by a 

correlation between average SWP and bunch weight (r2=0.2496 and r=-0.4996, P≤0.1) (data not 

shown). Myburgh (2005) also mentioned that yield can be affected by soil moisture content 

(irrigation) and grapevine water status. However, correlations between grapevine pruning mass 

and yield (r2=0.4943 and r=0.7030, P≤0.01) (data not shown) indicated that vigour also had an 

effect on the mass of grapes produced by the grapevines. The more vigorous grapevines 

correlated strongly with a higher yield, which confirms observations by Smart et al. (1985a). 

These correlations are in line with the results shown in Table 4.11.  
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Figure 4.23 Graph showing least squares (LS) means of yield per vine for the classifications established 

(Vertical bars denote 0.95 confidence intervals) (P≥0.05). 

 

 

Table 4.11 ANOVA of the effect of water deficit and vigour on bunch weight, total number of berries per 

vine, total berry weight and average berry weight. 

  MS F p 

Pruning mass (kg) 

Bunch weight 5178.80 15.89 p < 0.01 

Berry count 749.69 7.01 p < 0.05 

Total berry weight 5057.08 15.84 p < 0.01 

Average berry weight 0.13 22.46 p < 0.01 

Classifications 

Bunch weight 2914.20 8.94 p < 0.05 

Berry count 553.60 5.18 p < 0.05 

Total berry weight 2729.93 8.55 p < 0.05 

Average berry weight 0.04 7.75 p < 0.05 

 

 

Table 4.12 ANOVA of the effect of water deficit and vigour on the total number of bunches per vine. 

  MS F p 

Pruning mass (kg) 178.22 21.41 p < 0.01 

Classifications 0.18 0.02 p >0.05 
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4.6 MICROVINIFICATION 

4.6.1  WINE CHEMICAL ANALYSES 

FOSS® wine scan (FT-IR spectroscopy) and gas chromatography-flame ionisation detector 

(GC-FID) analyses were performed on all the wines produced from microvinification. The 

significance between the classifications for the parameters analysed were evaluated with and 

without the covariant and the influence of the covariant is also indicated. The FOSS® data is 

calibrated for routine analyses performed by winemakers to evaluate the final product or to 

make adaptations. The analysis showed no large differences between most of the parameters 

analysed, except for pH, total acid and malic acid (Table 4.13). The outcomes of the other 

parameters measured are not shown. Wine pH showed the same significant outcome as seen 

during the berry analyses (Fig. 4.24). The pH of the wet classification wines was significantly 

lower than that of the dry classification wines. The FOSS® wine scan also indicated that there is 

a significant tendency for malic acid to be higher in the wet classification wines than in the dry 

classification wines (Fig. 4.25). This outcome is also in line with the results found during berry 

composition analysis. The expected outcome of Total acid (TA) as discussed under berry 

composition was seen during wine analyses. The wines of the wet classification had a 

significantly higher TA concentration than the wines of the dry classification (Fig. 4.27). The 

significantly higher total phenols (OD 280) and total red pigment content (OD 520), as persieved 

via the grapescan, of the dry classification was not reflected during wine chemical analyses. 

 

Table 4.13 ANOVA of the effect of water deficit and vigour on FOSS wine parameters. 

    MS F p 

Pruning mass (kg) 

pH 0.02 15.39 p < 0.01 

Total acid 0.24 18.89 p < 0.01 

Malic acid 0.04 1.99 p >0.05 

Classification  

pH 0.01 9.17 p < 0.05 

Total acid 0.07 5.23 p < 0.05 

Malic acid 0.12 5.24 p < 0.05 
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Figure 4.24 Graph showing least squares (LS) means of wine pH for the classifications established 

(Vertical bars denote 0.95 confidence intervals) (P≤0.05). 
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Figure 4.25 Graph showing least squares (LS) means of wine pH for the classifications established 

(Vertical bars denote 0.95 confidence intervals) (P≤0.05). 
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Figure 4.26 Graph showing least squares (LS) means of wine pH for the classifications established 

(Vertical bars denote 0.95 confidence intervals) (P≤0.05). 

 

Wine volatile components present in the wine are quantified with GC-FID analyses. As with 

some of the the FOSS® data the volatile components present in the wines showed no great 

variance among classifications. The odour active values of each component were also 

compared to see if the threshold values of each component would be influential, but the results 

were similar (Tao et al., 2008). Only the components that showed a significant variation 

between the classifications and there corresponding aroma compounds are summarised in 

Table 4.14. The Ethyl Acetate, Butanol, Propionic Acid and Valeric Acid concentration in the dry 

classification wines were significantly higher than in the wet classification wines. The 

concentrations of Ethyl Lactate and Iso-Butyric Acid were significantly higher in the wet 

classification wines. 
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Table 4.14 ANOVA of the effect of water deficit and vigour on GC-FID wine parameters. 

  MS F p 

Pruning mass (kg) 

Ethyl Acetate 16.48 0.09 p >0.05 

Butanol 0.00 0.00 p >0.05 

Ethyl Lactate  32.24 14.50 p < 0.01 

Propionic Acid 0.40 0.59 p >0.05 

Iso-Butyric Acid 0.00 0.02 p >0.05 

Valeric Acid 0.00 3.91 p >0.05 

Classification 2 

Ethyl Acetate 992.69 5.70 p < 0.05 

Butanol 0.10 6.18 p < 0.05 

Ethyl Lactate  26.96 12.13 p < 0.01 

Propionic Acid 3.65 5.42 p < 0.05 

Iso-Butyric Acid 0.24 7.49 p < 0.05 

Valeric Acid 0.00 7.57 p < 0.05 

 

Componets  Aroma compound 

Ethyl Acetate apple, pineapple 

Butanol pharmaceutical 

Ethyl Lactate  butter 

Propionic Acid rancid, slight pungent 

Iso-Butyric Acid rancid, butter, cheese 

Valeric Acid no reverence 
 

 

4.6.2  WINE SENSORY ANALYSIS 

In spite of the restrictions found during sensorial assessment, it is regarded as the ultimate 

test to evaluate the success of a particular irrigation strategy. According to Myburgh (2009) 

wine sensory analysis should be preferred to indirect quality assessments based only on 

berry size or the chemical composition of juice or wine. Regrettably the results obtained 

during this study from the tasting panel did not differentiate the wines of the various 

classifications before or after reclassification. The classifications showed no indication of 

difference in any of the components selected for sensory analysis of Merlot. This however, does 

not mean that the plant water status or vigour did not have an effect on the wine subsequently 

produced. Various factors were influential during the tasting that could have possibly skewed 

this data. The sensory evaluation of wine showed to be a more complex exercise than 

anticipated. The tasters showed high variation among each other, regarding the evaluation of 

the wine components, even though they seemed to show little variation between own tasting 

replications. Not even the wine volatile components quantified with GC-FID analyses that were 

above their threshold values corresponded with remarks made by the tasters. The unstructured 

line scales used could be the main cause of this, not the training (which was performed in 

separate sessions with examples of typical sensory attributes before the tasting) or tasting 
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ability of the panel. The variation in component evaluation among tasters is seen in Fig. 4.27. 

The graph indicates how each of the tasters evaluated the specific component for all the wines 

he or she tasted. It is important to note that the tasters all perceive the component in a personal 

(subjective) range as indicated via the confidence intervals on the graph (vertical bars denote 

0.95 confidence intervals). Taster 2 indicated that a high range for this component is around 

30% and a low range of 24%, where as taster 5 has a high range of 19% and a low range of 

13% for the same component. These two tasters are relatively in the same evaluation range, 

but if taster 7 with the lowest range is compared to taster 6 with the highest range the variation 

becomes extensive. 
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Figure 4.27 ANOVA computed for covariates at their means of the component: fruity-dried fruit evaluated 

on all the wines and differentiated among tasters (Vertical bars denote 0.95 confidence intervals) 

(P≥0.05).   
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GENERAL DISCUSSION AND CONCLUSION 

5.1 GENERAL DISCUSSION AND CONCLUSION 

To study the interaction between grapevine vigour and grapevine water status, as this study set 

out to do, there must be a measurable variation in vigour within the vineyard. The variation must 

also be quantified to identify the zones where the water status of the grapevines must be altered 

and consequently validated. Only then it is possible to study the interaction between these two 

variables. Therefore the first action performed during this study was the collection of 

multispectral images in January 2006 which were classified using a normalised difference 

vegetation index (NDVI). These multispectral images were used to define and characterise 

grapevine vigour variation within the vineyard block. The experimental design was almost 

completely dependent on the vigour classification obtained from the multispectral images even 

though visual observations of grapevine vigour at block level were also performed throughout 

the 2006 season. The multispectral images taken in 2007 after the plots were laid out were 

used as the main vigour reference at the start of experimentation, seeing that the irrigation 

regimes were implemented in 2007. The first aim of this study was fully reached with the leaf 

area and pruning mass measurements at the end of 2007 that corresponded with the arbitrary 

classifications of the NDVI classification of multispectral images collected during the 2007 

growing season. Thus, the relative vigour zones chosen at the hand of the multispectral images 

corresponded to the vigour data gathered at vineyard level.  

 

The irrigation regimes established in the experimental vineyard were based on plant water 

status measurements, as it was proposed during the aims. The soil water content and plant 

water status in reaction to the established irrigation regimes were measured during the season. 

During the gathering and evaluation of this data it became apparent that the irrigation applied 

could not be used directly to classify the classifications, as mentioned during the results 

discussion. Reclassification of the classifications was therefore done to encapsulate the global 

effect encountered in the vineyard during the experiment. By doing this it was possible to 

evaluate the response of the grapevines on actual growing conditions, as some complications 

arose from only considering soil water status by way of neutron count ratios as a factor 

interacting with vigour. Even though the classifications of the various plots were re-evaluated, 

the vigour level of each plot were quantified at the end of the season and incorporated into the 

statistical analyses. The pruning mass was used to quantify the vigour of each plot and it was 

therefore possible to study the interaction of vigour by using the pruning mass as a covariate 

during statistical analyses.  

The various methods used to establish the vigour of the grapevines corresponded very well with 

each other. The pruning mass measured at the end of the season correlated well with the leaf 
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area (main leaves and lateral leaves) of the grapevines during vegetative growth, and it 

corresponded just as well with the NDVI images taken of vineyard. The pruning mass trend 

exhibited among the classifications was expected, seeing that a decrease in grapevine water 

deficit coincides with vigorous growth. However, the classifications did not exactly mimic the 

vigour variability measured between classifications, probably strongly related to the built-in 

survival and adaptive mechanisms in the grapevine.       

 

Variation in berry weight and volume signified the response of the grapevine’s reproductive 

growth towards the various classifications. An increase in wetness from one classification to a 

next correlated with the increase in berry weight and volume. The variation in yield per 

grapevine and the trend in yield among classifications were indicative of the berry weight and 

volume. The water status of the grapevine regulated berry development to an extent, as shown 

by a correlation between berry weight at harvest and average pre-dawn Ψ for the various plots 

during the season. However, yield also correlated with grapevine vigour (pruning mass). The 

combining effect of vigour and grapevine water status was responsible for the size of the 

harvest.   

 

Analyses of the berry composition throughout the season showed statistical variance among the 

classifications. The wet classification showed a higher sugar content per berry weight than the 

dry classification, with the covariate (vigour) having a significant influence on the sugar per berry 

measured. A significant differences was found in juice pH between the classifications (P<0.05), 

the berry pH of the dry classification was higher than that of the wet classification. The FOSS® 

data (grape scan) also indicated this significance in berry pH. The statistical analyses indicated 

that vigour did not contribute to the pH of the grapevines. The total acid (TA) content of the 

grapes showed no variation among the classifications. The grape scan measurement of malic 

acid showed a significant difference, with the wet classification having a higher amount present 

in the berries. The same analyse also showed a significantly higher total phenols (OD 280) and 

total red pigment content (OD 520) in the grapes of the dry classification. It also seems that the 

berries of the dry classification had a higher nitrogen contents in the form of ammonium and 

alpha amino nitrogen. 

 

Wine pH showed the same significant outcome as seen during the berry analyses with the wet 

classification wines having a significantly lower pH than that of the dry classification wines. The 

FOSS® wine scan indicated that there is a significant tendency for malic acid to be higher in the 

dry classification wines than in the wet classification wines. This outcome was also in line with 

the results found during berry composition analysis. The expected outcome of Total acid (TA) as 

discussed under berry composition was seen during wine analyses. The wines of the wet 

classification had a significantly higher TA concentration than the wines of the dry classification. 
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None of the variations found during wine chemical analyses could be differentiated during wine 

sensory analyses. The classifications also showed no indication of difference in any of the 

components selected for sensory analysis of Merlot. 

 

Assessment of grapevine vigour, grapevine water status, berry growth and composition within 

the course of a season, clearly shows maxima and low values at different parts of the season 

for the various parameters. Since it has been proven that irrigation can affect each of these 

parameters individually, it can be anticipated that judicious irrigation management could be 

used as a powerful tool to contain unnecessary and even detrimental grapevine growth and to 

improve growth of fruit and quality aspects. 

 

The information gathered during this study does not give rise to the practical irrigation strategies 

necessary to enable wine quality to be optimised for varying combinations of grapevine water 

status, soil type and vineyard vigour. However, within the scope of this study it became 

apparent that sub-block irrigation can be used to manipulate areas (grapevines) of a vineyard 

block, and considering effects on berry size and some grape and wine chemical composition 

aspects could potentially be used to negate wine style. Differences in grapevine vigour and 

plant water status due to possible variability in soil water status could be either reduced or 

deliberately accentuated if irrigation is applied in sub-vineyard block areas. Sub-block irrigation 

should even be more beneficial if it is implemented during the establishing of a new vineyard 

block, after analysing soil differences and possible long-term effects on grapevine vigour. 

However, altering an irrigation system to introduce sub-block irrigation would not always be 

economical viable for smaller blocks especially if the main viticultural outcome is focused on 

bulk- rather than quality wine production.     
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Fig.1 Soil profile pit with a grid indicating root 
penetration and distribution of Plot D2, Dryland 
treatment, Dry classification. 
Merlot noir/Richter 110 on Oakleaf 2110 
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Fig.2 Soil profile pit with a grid indicating root 
penetration and distribution of Plot D3, Dryland 
Treatment, Dry classification. 
Merlot noir/Richter 110 on Oakleaf 2110 
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Fig.3 Soil profile pit with a grid indicating root 
penetration and distribution of Plot W1, Dryland 
Treatment, Wet classification. 
Merlot noir/Richter 110 on Oakleaf 2110 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                                   
                                                                                                                                                                            
                                                                                                                                                                             
 
 
 
 
 
 
 
 

10 

40 

30 

20 

60 

50 

80 

70 

90 

100 

30 20 10 40 50 60 70 80 90 100

     

     

     

     

     

Vine

Fig.4 Soil profile pit with a grid indicating root 
penetration and distribution of Plot A10, Low deficit 
irrigation Treatment (no classification). 
Merlot noir/Richter 110 on Oakleaf 2110 
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Fig.5 Soil profile pit with a grid indicating root 
penetration and distribution of Plot B8, Moderate deficit 
irrigation Treatment (no classification). 
Merlot noir/Richter 110 on Oakleaf 2110 



Table 1:  Soil survey providing soil descriptors and classification for the different profile pits.  See extra table for legend.  

Plot Horizon  
Lower 
depth  Sand Munsell colour Parent  

Soil 
form Soil Wetness

Soil 
vigour 

classification of horizon grade Hue Value Chroma geology name family class potential 

2 
A 40 cm fi/co 7.5YR 3 4 GR 

Oa 2110 1 7.75 ne/ye 90 cm fi/co 7.5YR 5 8 GR 
ne/sp + fi/co 7.5YR 5 8 GR 

3 
A 40 cm fi/co 7.5YR 3 4 GR 

Oa 2110 1 7.75 ne/ye 90 cm fi/co 7.5YR 5 8 GR 
ne/sp + fi/co 7.5YR 5 8 GR 

4 
A 40 cm fi/co 7.5YR 3 4 GR 

Oa 2110 1 7.75 ne/ye 90 cm fi/co 7.5YR 5 8 GR 
ne/sp + fi/co 7.5YR 5 8 GR 

8 
A 35 cm fi/co 10YR 3 6 GR, SN 

Oa 2110 1 7 ne/ye 85 cm fi/co 7.5YR 4 6 GR, SN 
ne/ye + fi/co 10YR 4 6 GR, SN 

A10 
A 40 cm fi/co 10YR 3 6 GR 

Oa 2110 1 7.5 ne/ye 95 cm fi/co 7.5YR 5 8 GR 
ne/ye + fi/co 7.5YR 6 8 GR 

B1 
A 40 cm fi/co 10YR 3 4 GR 

Oa 2110 1 7.75 
ne/ye + fi/co 7.5YR 5 8 GR 

B8 
A 40 cm fi/co 10YR 3 4 GR 

Oa 2110 2 7.75 ne/ye 95 cm fi/co 7.5YR 5 6 GR 
ne/sp + fi/co 7.5YR 6 8 GR 

B11 
A 40 cm fi/co 10YR 3 4 GR 

Oa 2110 1 7.7 ne/ye 95 cm fi/co 5YR 5 8 GR 
ne/ye + fi/co 7.5YR 5 6 GR 

B12 
A 45 cm fi/co 10YR 3 4 GR 

Oa 2110 2 7.75 ne/ye 95 cm fi/co 10YR 4 6 GR 
ne/ye + fi/co 10YR 5 6 GR 

*Legend follows in next table  



Horizon 
classification Identification of type of horizon using symbols of soil description code. 

Lower depth of 
horizon 

Lower depth of each horizon in centimetres from the soil surface.  "+" indicates that the horizon extends to an unknown depth below the 
profile hole depth. 

Sand grade co = course; fi = fine;  Combinations indicate a finer categorization.  The first category given is the category it tends towards.  

Parent geology GR = granite; Sn = sandstone 

Wetness class 
A number between 1 and 9 indicating wetness class based on the depth at which saturation occurs in the profile and the length of time for  
which the soil remains saturated.  1 indicates that no signs of wetness are present 

Soil vigour potential 
An estimated rating out of 10 of the soil vigour potential for grapevines, based on the system used by Western Cape soil scientists 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2:  Results of the soil analyses from sampling done in the different profile pits. 

Plot 
Depth Soil pH Resist. H+ Stone P K Exchangeable cations C CEC 

            Bray II   (cmol(+)/kg)   (pH 7) 

(cm)   (KCI) (Ohm) (cmol/kg) (Vol%) mg/kg Na K Ca Mg % cmol(+)/kg 

2 
30 Sand 6.1 2170   2 25 133 0.04 0.34 4.62 0.90 0.84 5.11 

60 Sand 6.4 2520   3 7 46 0.05 0.12 3.57 0.62 0.33 4.06 

90 Sand 6.4 2250   2 6 38 0.06 0.10 3.54 0.63 0.46 3.92 

3 
30 Sand 4.6 3970 1.23 1 6 82 0.05 0.21 1.53 0.51 0.75 4.25 

60 Sand 4.4 4130 1.44 1 6 42 0.07 0.11 1.25 0.45 0.66 3.92 

90 Sand 4.6 3150 1.18 1 5 39 0.06 0.10 1.35 0.55 0.54 3.54 

4 
30 Sand 5.9 2890 0.46 2 22 97 0.06 0.25 4.78 1.08 0.98 5.22 

60 Sand 5.7 3000 0.51 2 7 34 0.06 0.09 2.89 0.88 0.40 4.47 

90 Sand 5.8 3130 0.41 2 8 24 0.06 0.06 2.67 0.82 0.36 4.14 

8 
30 Sand 5.5 3370 0.51 6 13 123 0.04 0.31 3.26 0.78 0.77 4.69 

60 Sand 6.1 3020   6 12 56 0.05 0.14 4.31 1.06 0.17 4.85 

90 Sand 5.8 3170 0.41 10 7 37 0.04 0.09 2.72 0.69 0.47 4.55 

A10 
30 Sand 5.6 3050 0.57 3 13 69 0.13 0.18 3.10 0.70 0.75 4.50 

60 Sand 5.6 3680 0.46 2 4 29 0.12 0.07 2.40 0.55 0.40 4.18 

90 Sand 5.4 2560 0.51 3 3 33 0.13 0.08 2.03 0.65 0.48 3.71 

B1 
30 Sand 6.3 1790   2 28 206 0.03 0.53 5.44 1.22 0.85 5.47 

60 Sand 6.1 2170   2 6 67 0.04 0.17 3.61 0.95 0.37 4.25 

90 Sand 5.3 1160 0.62 2 3 43 0.07 0.11 2.17 0.43 0.12 3.39 

B8 
30 Sand 5.8 2230 0.51 2 40 222 0.06 0.57 4.93 0.94 0.95 5.39 

60 Sand 5.8 2950 0.46 2 18 94 0.10 0.24 4.18 0.81 0.73 5.20 

90 Sand 5.3 3770 0.62 3 2 82 0.06 0.21 2.14 0.57 0.26 3.35 

B11 
30 Sand 6.1 1540   2 29 261 0.04 0.67 4.29 1.63 1.10 6.76 

60 Sand 4.5 3910 1.13 3 3 48 0.04 0.12 1.45 0.62 0.39 4.76 

90 Sand 4.8 3340 0.93 3 4 32 0.06 0.08 1.50 0.77 0.42 4.81 

B12 
30 Sand 5.8 2840 0.51 2 60 134 0.07 0.34 5.09 1.13 1.07 6.82 

60 Sand 5.1 3340 0.72 2 19 45 0.07 0.11 2.91 0.88 0.81 5.39 

90 Sand 4.4 4540 1.49 1 6 34 0.04 0.09 0.83 0.30 0.68 4.94 



Table 3:  Base saturation results of the soil analyses from sampling done in the different profile pits. 

Plot Depth 
Na K Ca Mg T value 
% % % % cmol/kg

2 
30 0.68 5.79 78.32 15.20 5.89 
60 1.11 2.69 81.93 14.27 4.36 
90 1.33 2.27 81.85 14.54 4.32 

3 
30 1.49 5.91 43.25 14.55 3.53 
60 2.05 3.21 37.76 13.63 3.32 
90 1.86 3.08 41.68 16.92 3.24 

4 
30 0.94 3.75 72.08 16.28 6.63 
60 1.34 1.97 65.26 19.91 4.42 
90 1.50 1.50 66.46 20.34 4.02 

8 
30 0.74 6.43 66.54 15.87 4.89 
60 0.87 2.56 77.54 19.03 5.55 
90 1.06 2.38 68.78 17.43 3.96 

A10 
30 2.82 3.75 66.28 14.96 4.68 
60 3.34 2.03 66.61 15.23 3.60 
90 3.83 2.47 59.65 19.09 3.41 

B1 
30 0.43 7.28 75.34 16.95 7.23 
60 0.86 3.58 75.69 19.86 4.77 
90 1.95 3.22 63.90 12.69 3.40 

B8 
30 0.88 8.11 70.33 13.40 7.01 
60 1.81 4.16 72.15 13.95 5.79 
90 1.65 5.85 59.33 15.96 3.60 

B11 
30 0.58 10.08 64.71 24.63 6.63 
60 1.28 3.64 43.01 18.46 3.36 
90 1.73 2.44 44.89 23.03 3.33 

B12 
30 0.95 4.79 71.29 15.84 7.14 
60 1.40 2.44 62.09 18.70 4.68 
90 1.48 3.16 30.24 10.91 2.75 

 



Table 4:  Mechanical analysis results from soil sampling done in the different profile pits. 

Plot Depth 
Clay Silt Fine Medium Coarse 

Classification    sand sand sand 
% % % % % 

2 
30 8.4 13.6 48.3 15.1 14.6 SaLm 
60 13.8 12.2 40.3 13.2 20.5 SaLm 
90 14.4 12.6 44.4 13.3 15.3 SaLm 

3 
30 7.4 13.4 50.1 15.4 13.7 LmSa 
60 9 11.8 50.4 15.4 13.4 LmSa 
90 12 12.8 46.2 14.4 14.6 SaLm 

4 
30 6.8 15.4 46.6 15.7 15.5 LmSa 
60 13.6 12.2 42.9 14.8 16.5 SaLm 
90 15.6 12.8 39.3 14 18.3 SaLm 

8 
30 10 15.2 39.6 17.3 17.9 SaLm 
60 8.4 14.6 42.3 17.4 17.3 SaLm 
90 11.4 13.8 41.1 17 16.7 SaLm 

A10 
30 8 15 43.1 17.8 16.1 SaLm 
60 12.4 13.4 41.4 15.6 17.2 SaLm 
90 12 3.4 42.9 15.3 16.4 SaLm 

B1 
30 5.8 16 47.6 15.2 15.4 LmSa 
60 10.2 11.8 45.5 14.6 17.9 SaLm 
90 13.6 10.6 43.4 13.8 18.6 SaLm 

B8 
30 7.6 19.4 44.7 15.8 12.5 SaLm 
60 11.6 16.8 41.5 14.8 15.3 SaLm 
90 19.4 12.8 35.8 14 18 SaLm 

B11 
30 2.6 15.6 52.6 17.1 12.1 LmSa 
60 12.6 14.4 41.8 15.6 15.6 SaLm 
90 13 12.6 43.5 16.2 14.7 SaLm 

B12 
30 2.4 13.6 53.3 19.3 11.4 LmSa 
60 1.6 12.4 54.1 20.3 11.6 LmSa 
90 2 12.4 56.3 20.8 8.5 LmSa 
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