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ABSTRACT 

Insights into the role of oxidative stress and pancreatic β-cell dysfunction in the pathogenesis 

of type 2 diabetes (T2D) reveals an opportunity for the development of novel therapeutics 

that directly protect and preserve β-cells. The protective role of dietary antioxidants, such as 

plant polyphenols, against oxidative stress induced diseases, including T2D, is increasingly 

under scrutiny. Polyphenol-rich extracts of Cyclopia spp, containing mangiferin, may provide 

novel therapeutics. An aqueous extract of unfermented Cyclopia maculata, containing more 

than 6 % mangiferin, was assessed for its protective effect in pancreatic β-cells in vitro, ex 

vivo and in vivo under conditions characteristic of T2D. The effect of mangiferin was also 

evaluated in vitro and ex vivo, with N-acetyl cysteine (NAC) as an antioxidant control. 

 

In this study, we established in vitro toxicity models in RIN-5F insulinoma cells based on 

conditions β-cells are exposed to in T2D; i.e. lipotoxicity, inflammation and oxidative stress 

conditions. To achieve this, cells were exposed to the following stressors: palmitic acid (PA), 

a pro-inflammatory cytokine combination and streptozotocin (STZ), respectively. Thereafter, 

the ability of the C. maculata extract, mangiferin and NAC to protect RIN-5F cells from the 

effects of these stressors was assessed by measuring β-cell viability, function and oxidative 

stress. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, adenosine triphosphate and annexin-V and propidium iodide 

assays. Cell function was evaluated by measuring glucose stimulated insulin secretion, cell 

proliferation and cellular calcium. To assess oxidative stress in the RIN-5F cells, 

diaminofluorescein-FM and dihydroethidium fluorescence, and superoxide dismutase 

enzyme activity were measured. The in vitro findings were then verified in isolated 

pancreatic rat islets using methods and models established in the RIN-5F experiments. The 

protective effect of the extract, NAC and metformin was assessed in STZ induced diabetic 

Wistar rats, using two treatment regimes, i.e. by treating rats with established diabetes and 

by pretreating rats prior to induction of diabetes by STZ. Glucose metabolism, oxidative 

stress and pancreatic morphology were assessed by performing an oral glucose tolerance 

test, measuring serum insulin, triglycerides, nitrites, catalase and glutathione. Hepatic 

thiobarbituric acid reactive substances and nitrotyrosine were also assessed. 

Immunohistochemical labelling of pancreata with insulin, glucagon and MIB-5 was used for 

morphological assessment. 
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The extract improved β-cell viability, function and attenuated oxidative stress, most 

apparently in STZ and PA induced toxicity models comparable with NAC both in vitro and in 

isolated islets. Mangiferin was not as effective, showing only marginal improvement in RIN-

5F cell and islet function, and oxidative stress. Pretreatment of STZ induced diabetic Wistar 

rats with extract was as effective as, if not better than, metformin in improving glucose 

tolerance, hypertriglyceridaemia and pancreatic islet morphology related to improved β-cell 

function.  

 

This study demonstrated that the aqueous extract of unfermented C. maculata was able to 

protect pancreatic β-cells from STZ and PA induced toxicity in vitro and ex vivo. In vivo, 

pretreatment with the extract improved glucose metabolism and pancreatic islet morphology 

in STZ induced diabetic Wistar rats. 
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OPSOMMING 

Insigte oor die rol wat oksidatiewe stres en pankreas β-sel disfunksie in die patogenese van 

tipe 2-diabetes (T2D) speel, bied 'n geleentheid vir die ontwikkeling van nuwe terapeutiese 

middels wat β-selle direk daarteen beskerm. Die beskermende rol van antioksidante in die 

dieët soos plantaardige polifenole teen oksidatiewe stres geinduseerde siektes soos T2D, 

is toenemend onder die soeklig. Polifenolryk ekstrakte van Cyclopia spp wat mangiferin 

bevat mag nuwe terapeutiese middels lewer. ‘n Waterekstrak van ongefermenteerde 

Cyclopia maculata wat meer as 6% mangiferin bevat, is ondersoek vir sy beskermende effek 

op pankreas ß-selle in vitro, ex vivo en in vivo teen kondisies kenmerkend aan T2D. Die 

effek van mangiferin is ook in vitro en ex vivo geëvalueer, met N-asetielsistien (NAC) as 'n 

antioksidant kontrole. 

 

In hierdie studie is in vitro toksisiteitsmodelle in RIN-5F insulinoomselle gevestig. Die 

modelle is gebaseer op toestande waaraan β-selle blootgestel word tydens T2D; d.w.s. 

lipotoksisiteit, inflammasie en oksidatiewe stres. Hiervoor is die selle aan die volgende 

stressors blootgestel: palmitiensuur (PA), ‘n pro-inflammatoriese sitokien mengsel en 

streptozotosien (STZ). Vervolgens is die vermoë van die C. maculata ekstrak, mangiferin en 

NAC om die RIN-5Fselle teen hierdie stressors te beskerm, beoordeel deur die meting van 

β-sellewensvatbaarheid, funksie en oksidatiewe stres. Sellewensvatbaarheid is bepaal met 

3-(4,5-dimetielthiazol-2-yl)-2,5-difenieltetrazolium bromied, adenosientrifosfaat en 

anneksien-V and propidium jodied toetse. Selfunksie is geëvalueer d.m.v. glukose 

gestimuleerde insuliensekresie, selproliferasie en sellulêre kalsium bepaling. Oksidatiewe 

stres in die RIN-5Fselle is geëvalueer d.m.v. diaminofluorescein-FM en dihidroethidium 

fluoressensie bepalings, asook meting van superoksied dismutase ensiemaktiwiteit. Die in 

vitro bevindings is daarna in geїsoleerde rot pankreaseilande bevestig deur die metodes en 

modelle wat in die RIN-5F eksperimente gebruik is. Die antidiabetiese effekte van die 

ekstrak, NAC en metformien in STZ-geїnduseerde diabetiese Wistar rotte is bepaal d.m.v. 

twee behandlingsregimes, d.w.s. die behandeling van rotte met gevestigde diabetes of deur 

die behandeling voor die induksie van diabetes te begin. Glukose metabolisme, oksidatiewe 

stres en veranderinge in die pankreasmorfologie is ondersoek d.m.v. orale glukose 

toleransie toetse en die bepaling van serum insulien, trigliseriedes, nitriete, katalase en 

glutationien. Hepatiese tiobarbituursuur reaktiewe stowwe en nitrotirosien is ook 

geëvalueer. Immunohistochemiese kleuring van pankreas snitte is gebruik vir morfologiese 

assessering van insulien, glukagon en MIB-5. 
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Die ekstrak het mees opvallend β-sel lewensvatbaarheid en funksie verbeter, terwyl 

oksidatiewe stres verminder is in die STZ- en PA-geїnduseerde toksisiteitmodelle. 

Bogenoemde effekte van die ekstrak in vitro en in die geїsoleerde eilande was vergelykbaar 

met die van NAC. Mangiferin was minder effektief, met slegs ‘n marginale verbetering in die 

funksie van RIN-5Fselle en eilande, asook t.o.v. oksidatiewe stres. Behandeling van die 

Wistar rotte met die ekstrak voor induksie van diabetes met STZ was net so effektief, of selfs 

beter as metformien in terme van verbeterde glukosetoleransie, trigliseriedvlakke en die 

morfologie van pankreas eilande wat verband gehou het met β-sel funksie. 

 

Hierdie studie het getoon dat die waterekstrak van ongefermenteerde C. maculata pankreas 

β-selle teen veral STZ- en PA-geїnduseerde toksisiteit in vitro en ex vivo beskerm het. In 

vivo het behandeling met die ekstrak voor en na induksie van diabetes, glukosemetabolisme 

en die morfologie van pankreas eilande in STZ-geїnduseerde diabetiese Wistar rotte 

verbeter. 
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The incidence of type 2 diabetes (T2D) is dramatically increasing (Shaw et al., 2010), not 

only globally, but also here in South Africa (Bertram et al., 2013). The socio-economic 

burden of this disease epidemic is not only direct (i.e. treatment of hyperglycemia), but is 

further exacerbated by health complications associated with this metabolic disease (Kirigia 

et al., 2009; Bertram et al., 2013). These complications include retinopathy, nephropathy, 

neuropathy, cardiovascular diseases, as well as physical disability due to surgical 

amputation of limbs as a result of vascular insufficiency (Bertram et al., 2013). In Africa, the 

economic burden of this disease was estimated at 11 431.60 international dollars (i.e. 

Geary-Khamis dollars) per T2D patient per year (Kirigia et al., 2009). With over nine percent 

of adults over thirty being diagnosed as T2D, and still a further estimated 55 % of 

undiagnosed cases (Bertram et al., 2013), austere strain is added to an already challenged 

national health system in South Africa. New therapeutic avenues in treating T2D are needed 

to avoid or delay the onset of the co-morbidities associated with T2D. New insights into the 

role of oxidative stress and pancreatic β-cell dysfunction in the pathogenesis of T2D offers 

opportunities for novel therapeutics (Kaneto et al., 1999; Lee et al., 2011). Increasingly, the 

protective role of dietary antioxidants against oxidative stress-induced degenerative and 

age-related diseases is under scrutiny in order to find candidates that could ameliorate T2D 

associated β-cell dysfunction (Frei, 2004; Scalbert et al., 2005; Lee et al., 2011). 

 

The progression of T2D has typically been described as a steady decline in insulin action 

(insulin resistance), followed by the inability of pancreatic β-cells to compensate for the 

higher insulin demand required to maintain glucose homeostasis (Porte, 1991; Arora, 2010; 

Aziz and Wheatcroft, 2011). Pancreatic β-cell dysfunction has recently been proposed as a 

putative mechanism, and may, in fact, play a bigger role in the earlier stages of T2D than 

originally thought (Meier and Bonadonna, 2013). This said, protecting the vulnerable β-cell 

is becoming increasingly important, making it a high priority therapeutic target. Much 

emphasis has been placed in preserving β-cell number/mass, which has been shown to be 

severely reduced in autopsy studies of T2D patients (Butler et al., 2003). Concomitant 

preservation of β-cell function is also necessary since chronic β-cell stress (e.g. insulin 

hyper-secretory demand, hyperglycemia, and hypertriglyceridemia) has been shown to 

cause β-cell dysfunction and eventual failure (Meier and Bonadonna, 2013). Hence, 

preservation of the functional β-cell mass and not just β-cell number should be a priority. As 

Bertram et al. (2013) concluded in their study, “Some of the attributed burden (of T2D) can 

be prevented through early detection and treatment”. The question thus arises if efforts to 
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preserve functional β-cell mass could improve treatment success and reduce the burden of 

T2D not just here in South Africa, but also globally. 

 

Previous studies have demonstrated that T2D patients have elevated levels of oxidative 

stress (Johansen et al., 2005; Houstis et al., 2006). Pancreatic β-cells are particularly 

sensitive to oxidative stress due to their low cellular levels of free-radical quenching 

enzymes such as glutathione peroxidase and superoxide dismutase (Abdollahi et al., 2004). 

Long term complications of T2D may be exacerbated by oxygen-free radical activity (e.g. 

reactive nitrogen species) which can initiate peroxidation of lipids and the associated 

deleterious downstream effects thereof (Baynes, 1991).  

 

Current clinical T2D therapies include biguanides, sulfonylureas and thiazolidinediones 

(TZDs), which act predominantly by enhancing insulin action (Seufert et al., 2004). Recently, 

newer therapeutic approaches, including incretin mimetics and dipeptidyl peptidase-IV 

(DPP-IV) inhibitors, have been introduced either exclusively in a few cases, or more 

commonly, in combination with current clinical therapies (Vinik, 2007). Apart from a few 

negative side-effects, including gastrointestinal upsets, current therapies have been 

effective in the management of T2D; albeit limited in long-term treatment, with many patients 

resorting to insulin therapy. A key factor to consider is protection of the functional β-cell 

mass by increasing the efficacy of T2D treatment in the long-term. The biguanide metformin 

has been shown to indirectly improve β-cell function in the short term (Wiernsperger and 

Bailey, 2009). Similar to metformin, TZDs appear to exert beneficial effects on β-cell 

function. There is, however, no current clinical evidence of direct protection of β-cells by 

these therapies. Since metformin generally tends to target catabolic pathways (i.e. 

glycolysis) and TZDs tend to target anabolic pathways (i.e. glycogenesis), a synergy in the 

combination of the two has been demonstrated (Seufert et al., 2004). With integrated 

combination therapies being so multifaceted, they are now being promoted in the clinical 

treatment and management of T2D (Tibaldi, 2014). Coupling classical clinical therapies such 

as biguanides, sulfonylureas and TZDs with newer incretin based therapies has proved 

beneficial since both incretin mimetics and DPP-IV inhibitors have been shown to exert both 

pancreatic and extra-pancreatic glucoregulatory effects (Bosi et al., 2008). Exploiting the 

incretin hormones and enteroinsular axis have been shown to assist in the preservation of 

both β-cell mass and function (Bosi et al., 2008; Tibaldi, 2014). Safety in the long-term and 
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high cost implications are still major concerns facing the use of incretin based therapies 

(Tibaldi, 2014). 

 

A window of opportunity presents itself for the development of therapeutic agents specifically 

and directly targeting the protection and preservation of a functional pancreatic β-cell mass. 

Apart for the enormous health benefits, such an agent developed indigenously will provide 

much needed socio-economic benefits locally. The World Health Organisation (WHO) 

developed the “Traditional Medicine Strategy” to better manage traditional medicines and 

their usage, and outlined the interest in plant-derived medicines, as well as the need for 

proper safety and scientific validation (World Health Organisation, 2002). Plant polyphenols 

have been described as possessing both anti-inflammatory and antioxidative properties 

(Hanhineva et al., 2010) and are increasingly pursued as alternatives to pharmaceutical 

intervention (Ding et al., 2013). As far back as 1980, Logani and Davies suggested that 

supplementation with non-toxic antioxidants may have a chemoprotective role in T2D by 

ameliorating oxidative stress. Antioxidants (N-acetyl cysteine and vitamins C and E) have 

been shown to preserve β-cell function in vivo (Kaneto et al.,1999). The second generation 

sulphonylurea, glibenclamide, has also been shown to be effective in treating moderate 

hyperglycemia, not just by reducing elevated blood glucose levels, but also by restoring 

antioxidant activities in the tissues of diabetic animals (Rahimi et al., 2005).  The efficacy of 

various South African plant-derived traditional medicines used to treat T2D has been verified 

both in in vitro and ex vivo experimentation (Deutschlander et al., 2009). Their efficacy was 

assessed in terms of glucose uptake and utilisation, with no emphasis on potential 

amelioritive or protective effects in pancreatic β-cells. South African herbal teas, in particular 

rooibos and honeybush (Cyclopia spp.), have become well-known for their antioxidant 

properties, associated with their phenolic constituents (Joubert et al., 2008). The ubiquitous 

presence of the xanthone mangiferin in Cyclopia spp. not only contribute to their in vitro 

antioxidant activity (Joubert et al., 2008), but most likely promote the anti-diabetic effects 

observed for C. intermedia (Muller et al., 2011). In addition to its antioxidant properties 

(Sanchez et al., 2000; Leiro et al., 2003), several studies have demonstarted  anti-diabetic 

actions of mangiferin (Ichiki et al., 1998; Miura et al., 2001; Muruganandan et al., 2002; 

Sellamuthu et al., 2013).  

 

In this study, we developed a range of in vitro and ex vivo experimental models in which to 

assess the efficacy of an aqueous extract from unfermented C. maculata, one of the 
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Cyclopia spp. showing commercial potential as a cultivated crop, in protecting pancreatic β-

cells exposed to conditions mimicking that of T2D. The major phenolic constituents of the 

extract, including the mangiferin content, were determined by high-performance liquid 

chromatography coupled to diode-array detection. A model of streptozotocin (STZ)-induced 

diabetes was used to determine the in vivo effect in rats. 

 

In vitro, the RIN-5F pancreatic β-cell model in this study incorporated stressors associated 

with T2D such as hyperlipidemia, exogenous cytotoxins and inflammation. Elevated levels 

of palmitic acid (PA) were used to induce hyperlipidemic conditions, STZ was used as an 

exogenous cytotoxin and inflammation was induced by a combination of inflammatory 

cytokines (i.e. TNF-α, IFN-γ and IL-1β). The ex vivo model in this study involved the isolation 

of pancreatic islets from Wistar rats and the treatment thereof based on the findings of the 

in vitro experiments. The efficacy of the C. maculata extract in terms of β-cell protection in 

the RIN-5F cells and the isolated islets was tested under these conditions and compared to 

N-acetyl cysteine (NAC), as well as mangiferin. 

 

RIN-5F cell viability was assessed by measuring mitochondrial dehydrogenase (MDH) 

activity using the MTT assay and by quantifying cellular ATP. Furthermore, apoptosis and 

necrosis were assessed by annexin-V and propidium iodide fluorescent staining. The 

function of RIN-5F cells was evaluated in terms of cellular calcium, proliferation and insulin 

secretion. The antioxidant status of these cells was assessed by measuring cellular 

antioxidant enzymes, as well as reactive oxygen species (ROS) and nitrogen species (RNS) 

staining with fluorescent probes. Cellular proteins associated with apoptosis and β-cell 

function were assessed by Western blot analysis. Cell viability of isolated pancreatic islets 

was measured by annexin-V and propidium iodide fluorescent staining, β-cell function using 

an insulin secretion assay, and antioxidant status by measuring ROS, RNS and cellular 

antioxidant enzymes. To assess the in vivo efficacy of the C. maculata extract, rats were 

treated with the extract, metformin and NAC either before induction of diabetes with STZ or 

after. Glucose tolerance was assessed by means of an oral glucose tolerance test (OGTT) 

and by measuring serum insulin. Other blood parameters measured, included serum 

triglycerides, alkaline phosphatase (AP), aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT). In addition, the oxidative status of the rats was extensively studied 

using the following assays: serum nitrites, catalase (CAT) and glutathione (GSH), as well as 

liver thiobarbituric acid reactive substances (TBARS) and nitrotyrosine (pNK-β). The 
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pancreases of the rats were assessed by immunohistochemical staining using insulin and 

glucagon double labelling, as well as the proliferation marker MIB-5. Using the parameters 

mentioned above, our objective was to determine the potential protective effect of an 

aqueous extract of unfermented C. maculata on pancreatic β-cells.  
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1. Type 2 diabetes mellitus 

Type 2 diabetes (T2D) is by far the most prominent form of diabetes mellitus, accounting for 

approximately 90 % of all cases according to the International Diabetes Federation (IDF). 

Other forms of diabetes mellitus, such as type 1, type 3, secondary and gestational diabetes, 

account for most of the remaining 10 % of cases (IDF, 2013). The incidence and prevalence 

of T2D are dramatically increasing both globally (Shaw et al., 2010; IDF, 2013) as well as 

locally, in South Africa (Bertram et al., 2013).  This disease has been described as one of 

the greatest challenges to healthcare systems and has previously been underrated as a 

threat to global public health (Alberti and Zimmet, 2014). According to the IDF, 382 million 

people worldwide are living with diabetes (Fig. 1), with a further 46 % of the international 

population still undiagnosed (IDF, 2013). At the current rate at which T2D is increasing 

globally, one in ten adults will be afflicted with this disease by 2035 (IDF, 2013). In Africa, 

approximately 56 % of diabetic cases are undiagnosed (IDF, 2013). Just under five percent 

of the global population of diabetic patients are found in Africa (regional prevalence = 4.8 

%), with South Africa tipping the scale with a national prevalence of over seven percent (IDF, 

2013).  

 

Figure 1. Prevalence of T2D worldwide.  

The prevalence of T2D is increasing worldwide, with 20 million T2D patients in Africa. Western Pacific countries 

contribute the highest number of T2D patients (138 million) to the global prevalence of 382 million (from IDF, 

2013). 
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1.1. Burden of disease 

The burden of this disease epidemic on low- and middle-income countries is substantial as 

these countries account for approximately 80 % of T2D patients worldwide (Shaw et al., 

2010; IDF, 2013). The socio-economic burden of T2D is already significant in Africa and as 

lifestyle changes and urbanisation increase so too is the prevalence of T2D predicted to 

increase dramatically over the next 20 years by approximately 109 %. With such a high 

percentage of undiagnosed cases in Africa, the financial burden of the disease is 

exacerbated since the benefits of early diagnosis are lost (Kirigia et al., 2009; IDF, 2013). 

The financial cost of T2D is two-fold, loss of economic and social productivity, as well as 

increased health costs (IDF, 2013). According to Statistics South Africa, T2D was amongst 

the top ten leading causes of death in South Africa in 2010, accounting for approximately 21 

deaths in 1000 (Statistics South Africa, 2010). Health costs are further exacerbated by 

complications associated with this metabolic disease (Kirigia et al., 2009; Bertram et al., 

2013). These complications include retinopathy, nephropathy, neuropathy, poor oral health 

and micro- and macro-vascular diseases, including coronary heart and cerebrovascular 

diseases (Fig. 2) (Bertram et al., 2013; IDF, 2013). Physical disability due to surgical 

amputation of limbs as a result of peripheral vascular insufficiency is also a confounding 

element (Bertram et al., 2013). 

 

In Africa, the economic burden of T2D was estimated at 11 431.60 international dollars (i.e. 

Geary-Khamis dollars, which is a hypothetical currency with the same purchasing power 

parity as the US dollar) per T2D patient per annum in 2000 (Kirigia et al., 2009), which 

equates to approximately ZAR 120 760. According to the latest published statistics, there 

were 1 283 000 T2D patients in South Africa in 2010 (Statistics South Africa, 2010 and 

Bertram et al., 2013), which means that at ZAR 120 760 per person per annum, the cost of 

T2D alone far exceeds the budget allocated to South African National Healthcare. Not even 

the 2014/15 budget of ZAR 145.7 billion is sufficient to compensate for 2010 diabetes costs 

(South African National Treasury, 2014).  
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Figure 2.Type 2 diabetes-associated complications. 

Several health complications are associated with T2D, and they include cerebrovascular disease, neuropathy, 

foot ulcerations, peripheral vascular insufficiency, nephropathy, coronary heart disease, poor oral health and 

retinopathy (adapted from IDF, 2013). 
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1.2. Pathophysiology of type 2 diabetes 

Typically in T2D, insulin action steadily declines, followed by the inability of pancreatic β-

cells to compensate for the higher insulin demand required to maintain glucose homeostasis 

(Porte, 1991; Arora, 2010; Aziz; Wheatcroft, 2011). In the insulin resistant state, β-cells 

compensate by hypersecretion of insulin, hypertrophy and hyperplasia; failure of these cells 

to adequately compensate results in hyperglycaemia (Weir and Bonner-Weir, 2004; Arora, 

2010; Quan et al., 2013). Chronic hyperglycaemia, hypoinsulinaemia and disturbances in 

carbohydrate, lipid and protein metabolism are characteristic of T2D (Kahn et al., 2006). 

Fundamental in the progression of this disease are the deleterious effects of inflammation 

and oxidative stress, which exacerbate the insulin resistant state and both directly and 

indirectly influence the failure of β-cells (Kahn et al., 2014). Furthermore, compensatory 

failure of β-cells is often followed by a reduction in β-cell mass as a result of increased cell 

death and reduced cell renewal (either by proliferation or neogenesis) (Bonner-Weir and 

O’Brien, 2008; Meier and Bonadonna, 2013). 

 

1.2.1. Defective insulin signalling 

Insulin signalling defects play significant roles in many metabolic diseases, including T2D 

(Rask-Madsen and Kahn, 2012). Insulin is a peptide hormone, produced by pancreatic β-

cells, that regulates carbohydrate, protein and lipid metabolism, as well as vascular 

compliance (Nedachi and Kanzaki, 2006). Insulin binds to the insulin receptor on cell 

surfaces, thereby activating the receptor and initiating a cascade of phosphorylation events, 

second messenger generation, and protein-protein interactions heterogeneously throughout 

various tissue types (Meerza et al., 2013). Under normal conditions, insulin regulates the 

hypothalamus, hepatocytes, adipocytes, cardiac and skeletal muscle, macrophages, 

endothelial cells, and the very β-cells that produce the hormone (Fig. 3) (Rask-Madsen and 

Kahn, 2012). In the hypothalamus, insulin binding to its receptor on neuronal cells 

suppresses appetite which is, in part, mediated by melanocortin. Suppression of 

melanocortin activity and increased appetite was observed in obese individuals (Benoit et 

al., 2002). Another important function of insulin in the hypothalamus is suppression of 

hepatic glucose production (HGP), which is mediated by the vagal nerve (Rask-Madsen and 

Kahn, 2012). Insulin also has direct effects on hepatocytes, which include the suppression 

of gluconeogenesis (glucose production) and glycogenolysis (glycogen breakdown), and the 

stimulation of glucose uptake and glycogenesis (glycogen synthesis). Insulin is also 

responsible for stimulation of lipogenesis as well as the inhibition of lipoprotein lipase (Rask-
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Madsen and Kahn, 2012; Meerza et al., 2013). Defective insulin signalling results in a 

significant increase in HGP, as well as circulating non-esterified fatty acids (NEFAs) and 

triglycerides. The ability of insulin to increase glucose uptake and glycogenesis in skeletal 

muscle is impaired in T2D and insulin resistant states, and, in conjunction with increased 

HGP, results in hyperglycaemia (Nedachi and Kanzaki, 2006; Rask-Madsen and Kahn, 

2012; Meerza et al., 2013). The inability of insulin to suppress lipolysis and stimulate 

lipogenesis in insulin resistant adipose tissue and the liver results in further increased levels 

of circulating NEFAs and triglycerides. In addition, defective insulin signalling results in the 

accumulation of macrophages, as a result of an increase in the chemotactic response, in 

adipose tissue, exacerbating obesity associated insulin resistance and inflammation (Rask-

Madsen and Kahn, 2012; Meerza et al., 2013). Insulin increases blood flow by vasodilation 

and capillary perfusion, thereby contributing to increased delivery of both insulin and glucose 

to tissues such as skeletal muscle and adipose tissues. Elevated insulin stimulates 

transendothelial transport of the hormone to target tissues (Laakso et al., 1990; Rask-

Madsen and Kahn, 2012). The insulin-producing β-cells are also responsive to the secreted 

hormone; under normal conditions, insulin promotes β-cell proliferation and glucose sensing 

ability (via glucokinase regulation), and reduces apoptosis (Leibiger et al., 2002; Rask-

Madsen and Kahn, 2012). Insulin dependent increase in cytosolic calcium is responsible for 

the rapid and sustained exocytosis of insulin during the first phase of secretion (Leibiger et 

al., 2002). This autocrine effect of insulin involves the regulation of downstream first phase 

insulin secretion via the activation of phosphatidylinositol-3-kinase (PI3-K) and regulation of 

gene transcription and translation (e.g. pancreatic homeobox-1 - PDX-1) (Leibiger et al., 

2002). The role of insulin on β-cell potassium channels is still not clearly illucidated, however 

it is suggested that insulin activation of PI3-K may  be responsible for opening of these 

channels, thus modulating insulin secretion (Leibiger et al., 2002). The inability of β-cells to 

secrete stored insulin in response to a glucose challenge, as observed in impaired glucose 

tolerance tests, may be as a result of defective insulin signalling in the β-cells themselves. 

Insulin signalling defects in the β-cell also result in failure of compensatory hyperplasia, and, 

in fact, increases β-cell death by apoptosis (Rask-Madsen and Kahn, 2012).  
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Figure 3. Insulin signalling mechanisms.  

Insulin is a stimulus for several important signalling pathways in various cell types, including neurons, 

endothelial cells, cardiomyocytes, macrophages, adipocytes, skeletal myocytes, hepatocytes and pancreatic 

β-cells (adapted from Rask-Madsen and Kahn, 2012). (Akt – protein kinase B; Akt2 – protein kinase B2 gene; 

CD36 – cluster of differentiation 36 (fatty acid translocase); ENOS – endothelial nitric oxide synthase; ER – 

endoplasmic reticulum; Erk - extracellular signal-regulated kinases; ET1 – endothelin 1 receptor; FFA – free 

fatty acid; FoxO - forkhead box protein O; GLUT-4 - glucose transporter-4; IR – insulin receptor; IL-6 – 

interleukin-6; IRS-1 – insulin receptor substrate-1; KATP – potassium adenosine triphosphate gated channel; 

LDL – low density lipoprotein; LDLR – low density lipoprotein receptor; mTORC1 - mammalian target of 

rapamycin complex 1; NO – nitric oxide; PI3-K - phosphatidylinositol-3-kinase; PKA – protein kinase A; PSCK9 

- proprotein convertase subtilisin/kexin 9; SREBP-1C - sterol regulatory element binding protein-1C; TNF – 

tumour necrosis factor; VCAM1 - vascular cell adhesion molecule 1; β-MHC – beta myosin heavy chain).  
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1.2.2. Role of oxidative stress and inflammation in type 2 diabetes 

Several factors contribute to the initiation and progression of T2D. These factors include 

decreased energy expenditure, increased calorie intake of energy dense foods, human 

microbiota, as well as environmental chemicals, such as nicotine, bisphenol A and 

pesticides (Kahn et al., 2014). In combination with genetic predispositions, these dynamics 

contribute to the global increase in obesity and the associated increase in T2D (Kahn et al., 

2014). The association of obesity with T2D has been described as devastating, mainly due 

to the role of elevated NEFAs and pro-inflammatory cytokines in obese subjects, which 

induce insulin resistance and impair β-cell function (Rask-Madsen and Kahn, 2012; Quan et 

al., 2013; Kahn et al., 2014). Obesity and a sedentary lifestyle are associated with 

approximately 80 % of T2D cases (Venables and Jeukendrup, 2009). Clinical and 

experimental evidence suggests that there is a strong association between T2D, 

inflammation and oxidative stress, with diabetics having increased levels of free radicals 

associated with a decline of antioxidant defence mechanisms (Johansen et al., 2005; 

Houstis et al., 2006). 

 

Elevated free radicals contribute to both insulin resistance as well as dysfunctional insulin 

secretion in T2D (Houstis et al., 2006). An alteration in primary sites of superoxide formation, 

such as the mitochondrial complex one and ubiquinone complex three interface, is 

associated with T2D, resulting in the excessive generation of free radicals (Valko et al., 

2007). Increased lipoxygenase expression in T2D results in the release of free radicals by 

eicosanoid formation (Brash, 1999). In vitro studies have also demonstrated the formation 

of hydroxyl radicals from the reaction of glucose with hydrogen peroxide (Robertson et al., 

2003). The deleterious effects of free radicals, including both reactive oxygen species (ROS) 

and reactive nitrogen species (RNS), are proposed to be mediated by intracellular pathways 

that interact directly with insulin signalling via serine/threonine inhibitory phosphorylation of 

insulin receptor substrate (IRS) (Johansen et al., 2005; Bastard et al., 2006). The 

competitive phosphorylation of IRS inhibits the insulin signalling pathway, causing a 

reduction in the stimulatory capacity of secreted insulin, thereby inducing insulin resistance 

(Johansen et al., 2005; Bastard et al., 2006). Free radicals also directly damage 

deoxyribonucleic acids (DNA), proteins and other biological components through the 

removal of hydrogen atoms, electron transfer and addition reactions (Zhang et al., 2010). 

Long term complications of T2D are exacerbated by oxygen-free radical activity (e.g. RNS), 

which can initiate peroxidation of lipids and the deleterious downstream effects thereof, 
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which include microvascular complications, particularly associated with diabetic 

nephropathy that results in renal disease (Baynes, 1991).  

 

Inflammatory mediators have been shown to be increased in T2D patients, as well as in 

states of obesity and insulin resistance (Dandona et al., 2004; Shoelsen et al., 2006). 

Activation of inflammatory responses in adipose tissue due to obesity and associated 

ectopic adipose deposition, together with recruited immune cells, such as macrophages, 

increases the production of cytokines and chemokines (Dandona et al., 2004; Moser and 

Williman, 2004; Shoelsen et al., 2006; Lin and Sun, 2010). These pro-inflammatory 

cytokines, including tumour necrosis factor-α (TNF-α), and chemokines, such as monocyte 

chemotactic protein-1 (MCP-1), create a systemic inflammatory predisposition that 

promotes insulin resistance in tissues, such as skeletal muscle and liver, and atherogenesis 

in the vasculature (Shoelsen et al., 2006). Although inflammation is well known to contribute 

to T2D, the state of insulin resistance itself promotes inflammation since the anti-

inflammatory effects of insulin are also suppressed (Dandona et al., 2004). 
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2. The diabetic pancreas 

Pancreatic islets, also known as islets of Langerhans, comprise a mere 1-2% of the total 

pancreas (Fig. 4), yet they contain insulin-producing cells that are responsible for global 

glucose uptake and metabolism (Feldman et al., 2009). Main islet cell types include insulin-

producing β-cells, glucagon-producing α-cells, as well as pancreatic polypeptide-producing 

γ- and somatostatin-producing δ-cells (Brissova et al., 2005; Feldman et al., 2009). Many 

different islet profiles exist amongst mammalians, with rodent islets having a core cluster of 

β-cells, with α-, γ- and δ-cells on the periphery. Human and non-human primate islets are 

arranged with β- and α-cells in close relationship with each other throughout the islet cluster 

(Elayat et al., 1995; Brissova et al., 2005).  

 

 

Figure 4. Immunolabelled islets of Langerhans in vervet monkey pancreas.  

Pancreatic islets, the endocrine portion of the pancreas, are comprised of 65-85 % of insulin-producing β-cells 

(pink), with α-cells (brown) comprising 15-20 % (courtesy of the Diabetes Discovery Platform, SA Medical 

Research Council). 

 

Pancreatic β-cell dysfunction has recently been proposed as a putative mechanism of T2D, 

and may, in fact, play a bigger role in the earlier stages of T2D than originally thought (Meier 

and Bonadonna, 2013). Progressive β-cell dysfunction in a large number of T2D patients on 

antidiabetic treatment was observed in the UK Prospective Diabetes Study, with many 

patients  eventually requiring additional oral antidiabetic medication and even insulin 

treatment (Turner, 1998). Amyloid deposition and a reduction in β-cell number are observed 

in islets from long-standing T2D patients (Bonner-Weir and O’Brien, 2008). Initially, as 

previously mentioned, a compensatory increase in β-cell mass is observed in islets from 
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pre-diabetic and early diabetic patients, with eventual decreased β-cell mass as a result of 

an imbalance in loss and renewal of β-cells due to dysfuntion and exhaustion (Butler et al., 

2003; Bonner-Weir and O’Brien, 2008; Meier and Bonadonna, 2013). Poor metabolic control 

has been shown to promote glycogen (Toreson, 1951; Liu et al., 2008) and lipid (Lee et al., 

1994) accumulation in islets. Patients with T2D also have elevated levels of oxidative stress 

(Tanaka et al., 2002; Johansen et al., 2005; Houstis et al., 2006). Pancreatic β-cells are 

particularly sensitive to oxidative stress due to their low cellular levels of free radical 

quenching enzymes such as glutathione peroxidase and superoxide dismutase (Sakuraba 

et al., 2002; Tanaka et al., 2002; Abdollahi et al., 2004). 

 

Under normal physiological conditions, the β-cell secretes insulin in response to elevated 

blood glucose levels. Glucose transporter-2 (GLUT-2), along with the high affinity glucose 

sensor, glucokinase, facilitates the sensing and transport of glucose into the β-cell. The 

NAD(P)H+: NAD(P)+ ratio increases, followed by an increase in mitochondrial matrix calcium 

levels and adenosine triphosphate (ATP) synthase activity (De Marchi et al., 2014). This 

increase in glucose oxidation results in an increase in the ATP: adenosine diphosphate 

(ADP) ratio, which in turn inactivates the ATP-gated potassium channels, resulting in 

depolarization of the β-cell membrane. Calcium channels open, increasing cellular calcium 

ion concentration which leads to exocytosis of insulin from storage granules (Fig. 5), with 

calcium being a strong and necessary trigger for oscillatory insulin exocytosis (Cartailler, 

2001; Stumvoll et al., 2005). This oscillatory insulin secretion is dependent on intracellular 

calcium concentrations, rather than β-cell metabolism (Gilon et al., 2002). Glucose mediated 

calcium influx is essential for first phase insulin secretion and is thus an indicator of normal 

β-cell function, since it is known to be attenuated in T2D (Henquin et al., 2003). 
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Figure 5. Glucose stimulated insulin secretion in pancreatic β-cells.  

Glucose sensing by GLUT-2 and glucokinase triggers a cascade of cellular events in β-cells that result in 

stored insulin release (from Cartailler, 2001). 

 

This process of insulin secretion is disrupted in dysfunctional β-cells as a result of 

irreversible damage to cellular components of insulin production over time, such as the 

endoplasmic reticulum (ER) and mitochondria (Stumvoll et al., 2005). Several factors have 

been directly linked to defective insulin production and secretion, and thus β-cell dysfunction 

that includes glucotoxicity, lipotoxicity and inflammation, which are all associated with an 

increase in oxidative stress (Stumvoll et al., 2005; Maedler, 2008; Biden et al., 2014). 

 

2.1. Glucotoxicity and the β-cell 

Glucotoxic conditions (i.e. chronic hyperglycaemia) disrupt the secretion of insulin by β-cells, 

as well as the synthesis thereof (Maedler, 2008). During short exposures, elevated glucose 

in culture media was shown to increase β-cell proliferation in human islets, however this 

effect was lost during chronic exposure to high glucose, with a concomitant increase in β-

cell apoptosis (Maedler et al., 2001). Pancreatic β-cells have a high affinity for glucose as is 
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evident in the high level of expression of GLUT-2 and glucokinase (Montane et al., 2014). 

Although glucose is an important physiological fuel for the β-cell, as well as a trigger for 

insulin secretion, persistently elevated levels of glucose have been reported to cause a 

direct reaction between glucose and free amine groups on proteins and lipids, yielding a 

group of harmful compounds known as advanced glycation end products (AGEs) (Ling et 

al., 2001; Maedler, 2008). These compounds act via mitochondrial complex three, resulting 

in increased ROS production in response to hyperglycaemia. Hyperglycaemia increases the 

rate of glucose oxidation in β-cells thereby stimulating one of the main sources of ROS in 

the β-cell, namely the mitochondrial electron transport chain (Gurgul et al., 2004). It is the 

excessive amount of hyperglycaemia induced ROS in β-cells that damages cellular 

components (Stumvoll et al., 2005). ER stress also plays a role in hyperglycaemia induced 

β-cell dysfunction, although to a lesser extent as observed in lipotoxicity (discussed in 

section 2.2. below). The unfolded protein response (UPR) is initiated in order to resolve ER 

stress and has a key role in adjusting pro-insulin (the peptide precursor to insulin) 

biosynthesis to acute variations in glucose concentration (Lipson et al., 2006; Maedler, 2008; 

Biden et al., 2014). Chronically elevated glucose desensitises β-cells to glucose. These 

conditions also disrupt the UPR processing of pro-insulin and increase the synthesis of 

misfolded proteins by depleting ER lumenal calcium ion concentrations (Fig. 6) (Lipson et 

al., 2006; Maedler, 2008; Biden et al., 2014). Protein misfolding in the ER due to glucotoxicity 

induced overload, caused by the imbalance in the rate of protein synthesis exceeding that 

of protein exit from the ER, is a contributing factor to ER dysfunction (Biden et al., 2014). 

Glucotoxicity in β-cells has also been shown to activate the Fas ligand apoptotic pathway 

as well as stimulate production of the inflammatory cytokine interleukin-1β (IL-1β) (Maedler 

et al., 2002). Other mechanisms have also been described in the dysfunction of pancreatic 

β-cells as a result of glucotoxicity. These include the impairment of insulin gene transcription 

and activation of members of the mitogen-activated protein kinase (MAPK) family (Maedler, 

2008). PDX-1 is a transcription factor necessary for pancreatic development and β-cell 

maturation. Binding activity of PDX-1 is reduced by glucotoxic conditions in the β-cell 

(Marshak et al., 1999). Hyperglycaemia induced increases in glucokinase synthase activity 

in β-cells have also been shown to suppress PDX-1 activity (Liu et al., 2008). Co-secretion 

of amylin with insulin by β-cells has also been implicated in hyperglycaemia induced β-cell 

dysfunction due to cytotoxic aggregations of islet amyloid polypeptide (Stumvoll et al., 2005). 
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Figure 6. Protein misfolding in the ER.  

Gluco- and lipo-toxicity results in increased protein misfolding in the ER with diminished lumenal calcium and 

protein overload induced ER dysfunction (from Biden et al., 2014). 

 

2.2. Lipotoxicity and the β-cell 

Lipotoxic conditions are induced in β-cells during chronic exposure to elevated levels of 

NEFAs, which is characteristic of obesity and T2D (Kahn et al., 2014). Although 

demonstrated to increase insulin secretion in β-cells in acute experiments, exposure to 

chronically elevated NEFAs inhibits insulin secretion (Robertson et al., 2004). One of the 

more deleterious effects of elevated NEFAs on β-cells is the accumulation of long-chain acyl 

coenzyme A (LC-CoA). This occurs as a result of elevated glucose inhibiting fatty acid 

oxidation (Robertson et al., 2004; Stumvoll et al., 2005). The accumulation of LC-CoA 

directly inhibits insulin secretion by opening β-cell potassium channels and reduces ATP 

formation by increasing the expression of uncoupling protein-2 (UCP-2) (Stumvoll et al., 

2005). Furthermore, NEFA disruption of protein trafficking from the ER to the Golgi, 

particularly by saturated fatty acids like palmitate has been proposed to cause protein 

overload induced ER stress (Fig. 7). In addition, the disruption of ER lipid raft composition 

by NEFAs also disrupts protein trafficking (Boslem et al., 2013). ER stress induced by 

NEFAs increases protein misfolding and ER overload, further increasing β-cell dysfunction 

and death (Laybutt et al., 2007; Biden et al., 2014). High levels of lipid exposure not only 
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increase islet inflammation, but also exacerbate oxidative stress in T2D; direct inhibition of 

β-cell proliferation by lipotoxicity was also demonstrated (Sharma and Alonso, 2014).  

 

 

Figure 7. Protein overload the ER.  

Lipotoxicity impairs protein export from the ER to the Golgi, resulting in protein overload (from Biden et al., 

2014). 

  

2.3. Inflammation and the β-cell 

Islet inflammation is well characterised as part of the pathogenesis of T2D (Quan et al., 

2013; Montane et al., 2014). Pro-inflammatory cytokines from adipose tissue, cellular 

cholesterol, islet amyloid peptide, glucotoxicity and lipotoxicity induce β-cell inflammation by 

activating ER and oxidative stress pathways (Montane et al., 2014). The UPR is activated 

under conditions of ER stress. Inflammatory pathways involving c-Jun N-terminal kinases 

(JNKs) and nuclear factor kappa B (NF-κB) are triggered causing increased expression of 

pro-inflammatory molecules such as interleukin-6 (IL-6), interleukin-8 (IL-8), MCP-1 and 

TNF-α in the β-cell (Li et al., 2005; Montane et al., 2014). These locally produced pro-

inflammatory molecules attract macrophages to the islets, thereby exacerbating 

inflammation (Ehses et al., 2007). Stimulation of the JNK pathway also promotes insulin 

resistance in the β-cell, as well as in peripheral tissues (Hirosumi et al., 2002; Lanuza-

Masdeu et al., 2013; Montane et al., 2014). Increased activation of the NF-κB pathway 
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further exacerbates islet inflammation via inflammasome-mediated pro-inflammatory 

cytokine production (Dixit, 2013). Increased inflammation-induced apoptosis in β-cells is 

also mediated by increased NF-κB activation in response to elevated ROS (Stumvoll et al., 

2005). Elevated ROS also activates MCP-1 and pro-inflammatory cytokine production 

(Montane et al., 2014). Furthermore, increased nitric oxide is generated, thus exacerbating 

oxidative stress, in response to pro-inflammatory cytokines, as a result of NF-κB induced 

increase in inducible nitric oxide synthase activity (Kharroubi et al., 2004). In in vitro 

simulations of inflammation in β-cells, a combination of IL-1β, TNF-α and interferon-γ (IFN-

γ) is typically used (Tabatabaie et al., 2000; Barbu et al., 2002), since these cytokines initiate 

β-cell death by several mechanisms, similar to that observed in T2D (Fig. 8) (Vincenz et al., 

2011; Vetere et al. 2014). NF-κB is the main mediator of both IL-1β and TNF-α signalling in 

β-cells (Kwon et al., 1995; Flodstrom et al., 1996; Ortis et al., 2006). In addition, IL-1β also 

activates suppressor of cytokine signalling-3 (SOCS-3) which potentiates the activation of 

NF-κB, and suppresses insulin receptor auto-phosphorylation, IRS tyrosine phosphorylation 

and PI3-K activation (Emanuelli et al., 2004). Signalling of IFN-γ in β-cells is primarily 

mediated by the Janus kinase/signal transducer and activator of transcription-1 (JAK/STAT-

1) pathway (Takeda & Akira, 2000; Vincenz et al., 2011). The effects of these cytokines 

culminate in the loss of β-cell function, induction of cell stress and eventually, β-cell death.  

 

Figure 8. IL-1β, TNF-α and IFN-γ signalling in β-cells.  

The cytokine combination of IL-1β, TNF-α and IFN-γ induce signalling cascades which lead to β-cell 

dysfunction and death (adapted from Vincenz et al., 2011). 

 

JAK/STAT-1 
NF-κB 

ERK1/2 
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In addition, the IL-1β, TNF-α and IFN-γ cytokine combination is known to activate inducible 

nitric oxide synthase, elevating nitric oxide and oxidative stress (Kacheva et al., 2011). The 

extrinsic apoptotic pathway is also activated in response to cytokine combinations such as 

IL-1β, TNF-α and IFN-γ, with the activation of Fas by cytokine induced elevations in nitric 

oxide and increased cell death by necrosis (Stassi et al., 1997). RIN-5F insulinoma cells 

were observed to have higher expression of Fas following exposure to a pro-inflammatory 

cytokine combination which consisted of IL-1β, TNF-α and IFN-γ, as well as streptozotocin 

(STZ), which thereby induced apoptosis in these cells (Lin et al., 2003). 

 

2.4. Streptozotocin and β-cell death 

Oxidative stress contributes significantly to the pathogenesis of T2D, thus the glucosamine-

nitrosourea, STZ, is frequently used to induce diabetes in experimental systems since its 

cytotoxic action is associated with the generation of ROS (Szkudelski, 2001). The STZ 

compound is specifically taken up by pancreatic β-cells via GLUT-2, inducing cell death 

mainly by DNA alkylation (Wang and Gleichmann, 1995; Elsner et al., 2000). Due to effects 

on mitochondria, which include decreasing mitochondrial oxygen usage and limiting ATP 

generation, as well as by increasing the activity of xanthine oxidase, STZ generates ROS, 

which contributes to an increase in oxidative stress and DNA fragmentation (Kroncke et al., 

1995; Szkudelski, 2001). Since STZ is a nitric oxide donor, nitric oxide generated from STZ 

metabolism exacerbates the pro-oxidative state of the cell and, in combination with ROS, 

forms highly toxic and reactive peroxynitrites (Szkudelski, 2001). STZ also reduces cellular 

ATP, thereby inhibiting insulin synthesis and secretion (Nukatsuka et al., 1990). 

 

2.5. Mechanisms of β-cell death 

As a result of the deleterious effects of T2D associated inflammation and oxidative stress 

on the pancreatic β-cells, cell death processes are initiated when these cells are no longer 

able to compensate. Programmed cell death, apoptosis, is an energy dependent process 

that constitutes the largest proportion of β-cell death under both normal and, even more so, 

in diseased conditions, with necrosis and the atypical apoptosis like form of programmed 

cell death, “necroptosis” (Cnop et al., 2005; Donath et al., 2005; Elmore, 2007; Cerf, 2013; 

Yang and Johnson, 2013). 

 

Apoptotic β-cell death can be initiated by both intrinsic and extrinsic signalling pathways that 

culminate in, what is known as, the execution pathway of cell death via the activation of 
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caspases, particularly caspase-3, -6 and -7 (Cnop et al., 2005; Elmore, 2007). The intrinsic 

pathway is not mediated by receptor activation, but rather by intracellular signalling that 

triggers mitochondrial outer membrane permeabilisation, the release of cytochrome c and 

the execution of cell death (Saelens et al., 2004; Elmore, 2007). The extrinsic signalling 

pathway, however, is receptor mediated, involves death receptors that transmit the death 

signal from the β-cell surface to intracellular signalling pathways (Donath et al., 2005; 

Elmore, 2007). The Fas receptor, as well as the TNF-α receptor are the main triggers of β-

cell apoptosis via the extrinsic pathway (Locksley et al., 2001). Necrotic β-cell death, induced 

by external activation, is associated with an increase in inflammation as cells rupture and 

scavenger macrophages are attracted to the islet (Zeiss, 2003). The concept of necroptotic 

cell death involves β-cell death via a pathway that does not follow the classic definition of 

apoptosis, and mimics necrotic cell death at the same time (Yang and Johnson, 2013). 
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3. Current type 2 antidiabetic therapies 

Over the past 20 years, the introduction of new classes of antidiabetic drugs has rapidly 

escalated (Fig. 9) (Kahn et al., 2014). Apart from a few negative side effects, including 

gastrointestinal upsets and weight gain, current T2D therapies have been effective in the 

management of T2D, albeit limited in long-term treatment, with many patients requiring 

exogenous insulin therapy (Seufert et al., 2004). 

 

Figure 9. Current antidiabetic therapeutics.  

An escalation in new classes of antidiabetic drugs has been observed in the last 20 years, with the 

discontinuation of both animal and inhaled* insulins due to safety concerns (marked in red) (from Kahn et al., 

2014). *Note: As of July 2014, the FDA has approved an improved inhaled insulin, Afrezza®, by Pfizer. 

 

3.1. Conventional antidiabetic therapeutics 

Current conventional oral antidiabetic therapeutics include thiazolidinediones (TZDs), 

sulfonylureas and biguanides, which act predominantly by enhancing insulin action (Seufert 

et al., 2004; Stumvoll et al., 2005; Kahn et al., 2014). Injectable exogenous insulin therapy 

was typically initiated only in advanced stages of T2D, when oral antidiabetic agents no 

longer maintained glucose homeostasis (Stumvoll et al., 2005; McLellan et al., 2014). 

Recently, however, earlier intervention with basal insulin therapy is being used to restore 

glucose regulation in prediabetic patients, with a concomitant reduction in micro-vascular 

disease (Perreault et al., 2012). 

 

As peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists, TZDs primarily 

alter adipose tissue metabolism and distribution, resulting in enhanced insulin sensitivity, a 
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reduction in elevated blood glucose, improved vascular function and improved lipid and 

inflammatory profiles in T2D patients (Yki-Jarvinen, 2004; Stumvoll et al., 2005). The insulin 

sensitising and anti-inflammatory properties of TZDs are associated with a drug induced 

increase of adiponectin and reduction of leptin (Kim and Ahn, 2004). By sequestering NEFAs 

in less lipolytic subcutaneous compartments, TZDs reduce circulating NEFAs and the 

associated pro-inflammatory cytokines, such as TNF-α (Stumvoll et al., 2005; Kahn et al., 

2014). Furthermore, TZDs have been shown to increase the expression of two isoforms of 

IRS, IRS-1 and IRS-2, thereby increasing insulin sensitivity and glucose uptake in skeletal 

muscle and the liver (Iwata et al., 2001; Smith et al., 2001). In addition to insulin sensitising 

effects in adipose tissue and skeletal muscle, TZDs suppress HGP by sensitising 

hepatocytes to glucose via PPAR-γ (Kim and Ahn, 2004). Generally, TZDs are better 

tolerated by T2D patients than other oral hypoglycaemic drugs, with fewer gastro-intestinal 

side effects, however, weight gain and fluid retention are associated with this drug (Nesto et 

al., 2003; Stumvoll et al., 2005). Congestive heart failure as a result of fluid retention is also 

a concern in the use of TZDs (Nesto et al., 2003). By ameliorating insulin resistance and 

thus the secretory demand on β-cells, TZDs offer some protection to pancreatic β-cells 

(Buchanan et al., 2002). In addition, activation of PPAR-γ in β-cells is known to improve their 

function and morphology by increasing their glucose sensing ability via GLUT-2 and 

glucokinase (Kim and Ahn, 2004). 

 

Sulfonylureas decrease blood glucose by closing potassium channels, resulting in 

stimulated insulin secretion from β-cells (Stumvoll et al., 2005; Del et al., 2007). The use of 

sulfonylureas has also been associated with a reduction in the risk for the occurrence of 

both micro- and macro-vascular disease (United Kingdom Prospective Diabetes Study 

Group, 1998). Although successful in reducing glycaemia in the short term, sulfonylureas 

have several negative side effects, which include hypoglycaemic episodes, weight gain and 

β-cell dysfunction due to overstimulation of insulin secretion (Rendell, 2004). In addition, it 

has been proposed that sulfonylureas accelerate β-cell loss via increased deposition of islet 

amyloid (Rachman et al., 1998), as well as closure of inwardly rectifying potassium channels 

in β-cells (Maedler et al., 2005). 

 

The biguanide, metformin, has an insulin sparing effect since it works independently of the 

pancreas by improving hepatic and peripheral sensitivity to insulin (Stumvoll et al., 2005; 

Wiernsperger and Bailey, 2009). Metformin suppresses hepatic gluconeogenesis by 
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stimulating 5'-adenosine monophosphate-activated protein kinase (AMPK) and potentiating 

the effect of insulin while decreasing the effect of glucagon (Knowler et al., 2002). In addition, 

metformin increases functional properties of insulin and glucose sensitive transporters, thus 

improving insulin stimulated glucose uptake in skeletal muscle (Reddi and Jyothirmayi, 

1992). Reduced hypertriglyceridaemia has also been observed in metformin treated T2D 

patients, which is attributed to the suppression of lipolysis in adipose tissue, the suppression 

of hepatic lipid synthesis, as well as increased re-esterification of triglycerides in adipose 

tissue (Giannarelli et al., 2003). Metformin therapy has been described as less robust as 

that of TZDs, but T2D patients treated with this biguanide have a much lower risk of overt 

hypoglycaemia and are not subject to the weight gain associated with TZDs (Stumvoll et al., 

2005; Wiernsperger and Bailey, 2009). Metformin has been shown to indirectly improve β-

cell function, albeit in the short term only (Wiernsperger and Bailey, 2009). Metformin has 

acute beneficial effects on β-cells by improving glucose stimulated insulin secretion in islets 

isolated from T2D patients (Marchetti et al., 2004). In addition, metformin acutely improved 

glucose metabolism and responsiveness of isolated human islets exposed to lipotoxic 

conditions by the reduction of fatty acid oxidation (Lupi et al., 2002). Metformin therapy alone 

in T2D patients is yet to be shown to prevent the long term deterioration of pancreatic β-cell 

function (Wiernsperger and Bailey, 2009). 

 

Recently, newer therapeutic approaches, including incretin mimetics and dipeptidyl 

peptidase-4 (DPP-IV) inhibitors, have been introduced either exclusively in a few cases, or 

more commonly, in combination with current conventional clinical therapies, such as 

biguanides, sulfonylureas and TZDs (Vinik, 2007). The incretin hormone glucagon-like 

peptide-1 (GLP-1) increases insulin sensitivity in both α- and β-cells, thereby stimulating 

insulin secretion in a glucose dependent manner and concomitantly decreasing glucagon 

secretion (Toft-Nielsen et al., 2001). The role of DPP-IV inhibitors is to prevent degradation 

of GLP-1, thus prolonging the effect of the hormone. Together, incretin mimetics and DPP-

IV inhibitors have been shown to exert both pancreatic and extrapancreatic glucoregulatory 

effects; i.e. increase in β-cell mass and insulin gene expression, inhibition of acid secretion 

in and slowing of gastric emptying from the stomach, decreasing food intake by increasing 

satiety in the brain and promoting insulin sensitivity (Bosi et al., 2008; Tibaldi, 2014). Safety 

in the long term and high cost implications are still major concerns facing the use of incretin 

based therapies (Tibaldi, 2014).  
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3.2. Less conventional antidiabetic therapeutics 

Less conventional antidiabetic therapies include α-glucosidase inhibitors and sodium-

glucose co-transporter-2 (SGLT-2) inhibitors (Stumvoll et al., 2005; Kahn et al., 2014; 

McLellan et al., 2014). The inhibition of α-glucosidase in the gastrointestinal tract delays the 

breakdown of complex carbohydrates, thereby reducing glucose absorption and 

postprandial hyperglycaemia (Kahn et al., 2014; McLellan et al., 2014). Another antidiabetic 

therapeutic dependent on the gastrointestinal tract is pramlintide, an amylin agonist, which 

slows gastric emptying and inhibits glucagon secretion (Schmitz et al., 2004; Younk et al., 

2011). Specific inhibitors of SGLT-2, such as dapagliflozin, increase urinary excretion of 

glucose by blocking glucose reabsorption in the proximal convoluted tubules of the kidneys 

without affecting glucose uptake (i.e. SGLT-1 transporters) in the gut (Liu et al., 2012).  

 

Bromocriptine is a dopamine receptor agonist that is conventionally used in the treatment of 

pituitary tumours, Parkinson's disease, hyperprolactinaemia, neuroleptic malignant 

syndrome, and since 2009, T2D (Holt et al., 2010). Bromocriptine is the only approved 

antidiabetic therapy that acts via the central nervous system, by restoring circadian rhythm, 

thereby improving insulin resistance (Pijl et al., 2000; Holt et al., 2010). Inhibition of glucose 

stimulated insulin secretion in INS-1E β-cells and in C57Bl6/J mice by bromocriptine has 

been proposed to promote β-cell rest by reducing insulin hypersecretion which is 

characteristic of early or pre-T2D (De Leeuw van Weenen et al., 2010). 
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4. Plant polyphenols and human diseases 

Polyphenols are secondary plant metabolites, which have unique physical and chemical 

behaviours, including antioxidative properties (Scalbert et al., 2005). They are derived from 

a variety of dietary sources, including fruit, such as apples, grapes and berries, beverages, 

such as tea, coffee and wine, and vegetables, such as red onion and spinach (Scalbert et 

al., 2000). Edible plants provide the human diet with more than 8000 different polyphenols 

(Fraga et al., 2010). Chemically, polyphenols are characterised as having one or more 

hydroxyl groups attached to a benzene ring; compounds with diverse chemical structures 

are categorised as polyphenols (Fraga et al., 2010). Well known bioactive polyphenols 

include the flavonoids quercetin, catechin, hesperetin, cyanidin and proanthocyanidins, and 

phenolic acids, caffeic acid, chlorogenic acid and ferulic acid (Scalbert et al., 2005). The 

antioxidative properties of polyphenols may limit the risk of degenerative diseases such as 

cancer, cardiovascular disease, T2D and neurodegenerative disease, which are 

characterised by oxidative stress (Pandey and Rizvi, 2009). Polyphenols may increase 

antioxidant capacity in humans by directly scavenging free radicals, by acting in synergy 

with other antioxidants, by having a sparing effect on endogenous antioxidants or by limiting 

the absorption of pro-oxidative components (Rice-Evans et al., 1995; Scalbert et al., 2005; 

Pandey and Rizvi, 2009). Polyphenols have been shown to decrease plasma phospholipid 

peroxides and plasma concentrations of malondialdehyde in humans (Nakagawa et al., 

1999; Young et al., 1999). Consumption of polyphenol rich food and beverages has been 

associated with reduced oxidative damage to lymphocyte DNA and pronounced reduction 

in oxidised DNA bases (Lampe, 1999; Leighton et al., 1999). 

 

4.1. Plant polyphenols and type 2 diabetes 

The protective role of dietary antioxidants in degenerative and age related diseases is under 

scrutiny in order to find candidates that could ameliorate T2D and the associated β-cell 

dysfunction (Frei, 2004, Scalbert et al., 2005; Lee et al., 2011). Plant polyphenols have been 

shown to influence glycaemia in experimental animal models of T2D and, in conjunction with 

in vitro data, have been shown to decrease digestion and absorption of dietary 

carbohydrates, regulate metabolism of carbohydrates, improve glucose uptake and disposal 

in muscle and fat, as well as improve β-cell function and insulin action (Tiwari and Rao, 

2002; Scalbert et al., 2005; Bahadoran et al., 2013). Caffeic and isoferulic acids, both found 

in tea and coffee, improved intravenous glucose tolerance tests (IVGTTs) in STZ induced 

diabetic and insulin resistant rats (Hsu et al., 2000; Liu et al., 2000). Diacetylated 
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anthocyanins, present in grapes and pomegranates, have been shown to have 

hypoglycaemic effects in rats by inhibiting α-glucosidase, thereby inhibiting glucose 

absorption in the gut (Preedy, 2013). The inhibition of intestinal glucose transporters (SGLT-

1 and 2) by green tea catechins and epicatechins, chlorogenic acids, ferulic acids, caffeic 

and tannic acids, quercetin and naringenin decrease intestinal absorption of glucose, thus 

regulating postprandial hyperglycaemia (Bahadoran et al., 2013). Some polyphenols, such 

as phlorizin from the bark of fruit trees including pear, apple and cherry, exert hypoglycaemic 

effects by limiting glucose reabsorption in the kidney, typically by SGLT-2 inhibition (Rossetti 

et al., 1987; Dimitrakoudis et al., 1992). Polyphenols have also been shown to regulate 

carbohydrate metabolism in the liver by inhibiting HGP, as in the case of the tea catechin 

epigallocatechin gallate (EGCG) (Waltner-Law et al., 2002), which may also activate AMPK 

thereby inhibiting hepatic gluconeogenic enzymes (Collins et al., 2007). Other green tea 

catechins have also been shown to down regulate the expression of liver glucokinase and 

up regulate phosphoenolpyruvate carboxykinase (PEPCK), thus providing an additional 

mechanism by which HGP can be lowered (Waltner-Law et al., 2002). The flavanones 

hesperidin and naringenin, improved glycaemic control in diabetic mice by increasing 

hepatic glycogen content and reducing HGP; an improvement in hyperlipidaemia was also 

observed (Jung et al., 2004; Mahmoud et al., 2012). Peripheral uptake and metabolism of 

glucose were observed in skeletal muscle and adipose tissue, where caffeic acid stimulated 

in vitro glucose uptake in an insulin mimetic and/or insulin sensitising manner (Cheng et al., 

2000). Other polyphenolic compounds, such as quercetin, EGCG and resveratrol, were also 

reported to stimulate peripheral glucose uptake in muscle and fat in vitro via activation of 

AMPK and GLUT-4 translocation. Direct benefits to pancreatic β-cells were observed in the 

ability of genistein, an isoflavone found in soy beans and coffee, to stimulate insulin 

secretion in vitro in MIN6 β-cells (Ohno et al., 1993). Enhanced secretion of GLP-1 in 

humans by chlorogenic acid, found in coffee, has also been demonstrated (Johnston et al., 

2003). Increased GLP-1 secretion infers benefits to β-cells as well as plays a role in delaying 

glucose absorption (Park et al., 2007; Zhang et al., 2011). Resveratrol was shown to reduce 

pancreatic β-cell loss by reducing islet oxidative stress (Szkudelski and Szkudelsk, 2011). It 

has also been proposed that resveratrol preserves β-cell mass by reducing chronic 

overstimulation of the β-cells (Bahadoran et al., 2013). 

 

Polyphenols from a herbal tea brewed from Aspalathus linearis (Rooibos), which is endemic 

to South Africa, were demonstrated to stimulate glucose uptake and improve insulin 
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resistance in vitro in cultured myocytes (Kawano et al., 2009; Mazibuko et al., 2013), with 

the phenylpropenoic glucoside, enolic phenylpyruvic acid-2-O-glucoside, demonstrating 

improved glucose tolerance in vivo in obese insulin-resistant rats (Muller et al., 2013). In 

vivo studies in leptin deficient ob/ob mice demonstrated that the rooibos dihydrochalcone C-

glucoside, aspalathin, improved glucose tolerance by mechanisms including reductions in 

serum thiobarbituric acid reactive substances (TBARS), serum triglycerides and HGP (Son 

et al., 2013). Aspalathin, which is unique to Rooibos, has been shown to inhibit α-

glucosidase in vitro (Muller et al., 2013). In in vitro studies in RIN-5F pancreatic β-cells, 

aspalathin has been shown to stimulate insulin secretion (Kawano et al., 2009), as well as 

to protect against AGEs (Son et al., 2013).  

 

The beneficial effects of plant derived polyphenols, including gallic, ferulic and chlorogenic 

acids, in T2D were summarised by Joubert et al. (2012) (Fig. 10). In addition to antioxidative 

properties, such as the up regulation of antioxidant enzymes and scavenging of free 

radicals, these phenolic acids have been shown to increase glucose uptake in peripheral 

tissues such as adipose and skeletal muscle, decrease HGP and reduce glucose absorption 

in the gut. Gallic acid offered substantial benefit in not only demonstrating the ability to 

increase insulin secretion from β-cells, but also by decreasing apoptosis and up regulating 

cellular antioxidant enzymes (Joubert et al., 2012). With plant polyphenols having the 

potential to ameliorate T2D by a large variety of mechanisms, a prodigious opportunity 

presents itself for further research into the ability of specific polyphenols in the protection 

and preservation of functional β-cell mass in addition to the amelioration of peripheral insulin 

insensitivity and glucose intolerance. 
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Figure 10. Summary of the effects of phenolic acids on T2D associated aberrations.  

The ameliorative effects of phenolic acids (green) on T2D are multifaceted and act in a variety of tissues, including metabolic aberrations (red) in the liver, pancreas, 

skeletal muscle, gastro-intestinal tract and in blood vessels (adapted from Kahn et al., 2006; Joubert et al., 2012, Kahn et al., 2014). (FA – fatty acid; FAS – fatty acid 

synthase; GK – glucokinase; GLUT4 – glucose transporter-4; G6Pase – glucose-6-phosphatase; INS – insulin gene; PDX-1 – pancreatic duodenal homeobox-1; 

PEPCK – phosphoenolpyruvate carboxykinase; PI3K – phosphatidylinositol-3-kinase; PPAR – peroxisomal proliferator-activated receptor; TBARS – thiobarbituric acid 

reactive substances; TG – triglycerides).
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4.2. Cyclopia spp. 

Cyclopia species are members of the leguminous Fabaceae family, and are endemic to  

South Africa, growing exclusively in the Cape Floristic region (fynbos area) (Fig. 12). The 

deep yellow flowers (Fig. 13 B), with an indented calyx, and leaves that are trifoliate (Fig. 

11) are characteristic of Cyclopia spp. A number of species, i.e. C. genistoides, C. 

sessiliflora, C. intermedia and C.subternata have been commercialised in recent years to 

meet the local and global demand for production of herbal tea, well known as honeybush. 

Commercialisation of other species are also presently under investigation. These include C. 

longifolia and C. maculata. Most of the annual harvest is processed to produce the 

“fermented” product, but a demand also exists for “unfermented” plant material (Joubert et 

al., 2011). “Fermentation”, a high temperature oxidation process, which is required for the 

formation of the characteristic sweet flavour and brown colour of the infusion, decreases the 

polyphenolic content of extracts, including that of the antidiabetic xanthone, mangiferin 

(Joubert et al., 2008). 

 

 

Figure 11. Leaves of C. genistoides (A), C. intermedia (B), C. maculata (C) and C. 

subternata (D).  

Cyclopia spp. plants have characteristic trifoliate leaves (from Joubert et al., 2011).
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Figure 12. Natural distribution of Cyclopia spp. of commercial importance.  

Cyclopia spp. occur naturally in the mountainous and coastal regions of the Eastern and Western Cape Provinces of South Africa  (from Joubert et al., 2011).
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Phenolic composition and biological properties of honeybush tea have gained the interest 

of medical research as potential therapeutic agents for several degenerative and lifestyle 

diseases (Joubert et al., 2008; Dudhia et al., 2013; Louw et al., 2013; Pheiffer et al., 2013). 

Bioactive and antioxidative polyphenols characteristically present in Cyclopia spp. include 

the xanthones mangiferin and isomangiferin (the 4-C-glucoside isomer of mangiferin) and 

the flavanone, hesperidin (an O-rutinoside of hesperetin) (De Beer and Jourbert, 2010). To 

date the research focus was largely on antioxidant, anticancer and phytoestrogenic 

properties of C. intermedia, C. genistoides and/or C. subternata, as reviewed by Joubert et 

al. (2008) and Louw et al. (2013). Additional therapeutic potential for Cyclopia spp. was 

demonstrated by Muller et al. (2011) when an aqueous extract of the unfermented plant 

material of C. intermedia showed antidiabetic potential in both STZ and obese, insulin 

resistant rats. Furthermore, an aqueous extract of unfermented C. maculata (Fig. 13) was 

shown to have inhibitory effects on adipogenesis in vitro in 3T3-L1 adipocytes (Dudhia et 

al., 2013), as well as lipolytic effects in the same cell line (Pheiffer et al., 2013).  As far as 

we are aware, no other significant scientific research has been conducted using C. maculata 

in relation to lifestyle diseases, specifically T2D, despite this plant having a relatively high 

polyphenolic content and in particular, a high mangiferin content (Dudhia et al., 2013).  

 

  

Figure 13. Non-flowering (A) and flowering (B) mature C. maculata bushes. 

Naturally occurring C. maculata bushes grow to approximately 2 m in height and have characteristic yellow 

flowers during Spring (September–October) (courtesy of the Agricultural Research Council of South Africa, 

Infruitec-Nietvoorbij and the South African Honeybush Tea Association, 2012, respectively) 
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The unfermented aqueous extract of C. maculata used by Dudhia et al. (2013) and Pheiffer 

et al. (2013) was characterised by high performance liquid chromatography with diode-array 

detection (HPLC-DAD) and was used in this PhD study (Fig. 14). The major polyphenols in 

this unfermented C. maculata extract included mangiferin (6.19 %), isomangiferin (2.08 %), 

the benzophenone, iriflophenone-3-C-glucoside (1.13 %), the dihydrochalcone, phloretin-

3',5'-di-C-glucoside (0.17 %) and the flavanones, hesperidin (0.80 %) and eriocitrin (0.42 %) 

(Dudhia et al., 2013). 

 

 

Figure 14. High performance liquid chromatography with diode-array detection 

chromatogram of the aqueous extract of unfermented C. maculata.  

This unfermented extract contains high concentrations of polyphenols, with mangiferin (peak 2) being the most 

abundant. This extract was used by Dudhia et al. (2013), Pheiffer et al. (2013) and in this PhD study (adapted 

from Dudhia et al., 2013). (1- iriflophenone-3-C-glucoside; 2- mangiferin; 3- isomangiferin; 4- eriocitrin; 5- 

phloretin-3’,5’-di-C-glucoside; 6- hesperidin). 

 

Further insight into minor phenolic constituents present in aqueous extract of C. maculata 

was recently provided by Schulze (2013).  The flavones, scolymoside and apigenin-6,8-di-

C-glucoside (vicenin-2), and the benzophenone, maclurin-3-C-glucoside, have been 

positively identified, while hydroxy derivatives of mangiferin and isomangiferin have been 

tentatively identified, amongst others (Schulze, 2013). 
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Plant polyphenols with antioxidant activity, as detected in this extract, could either scavenge 

free radicals or inhibit their generation, and thus be beneficial in pancreatic β-cell protection 

prior to and/or during hyperglycaemia and β-cell stress. Of particular interest is the presence 

of mangiferin and its high levels in the extract, since this xanthone is a strong antioxidant 

(Sanchez et al., 2000; Leiro et al., 2003) and has also been shown to have antidiabetic 

properties, which include reduced plasma glucose and insulin levels in diabetic rats and 

mice, as well as suppresed HGP (Ichiki et al., 1998; Miura et al., 2001; Muruganandan et 

al., 2002; Anitha and Rose 2013; Wan et al. 2013). The catechol moiety on mangiferin 

enables it to form stable mangiferin-Fe2+/Fe3+ complexes, thus preventing lipid peroxidation 

in addition to itself scavenging ROS (Leiro et al., 2003; Andreu et al., 2005). Recently, the 

peroxyl radical scavenging activity of mangiferin was compared with that of two other major 

polyphenols found in this extract of unfermented C. maculata and the relative order of activity 

was isomangiferin > mangiferin > iriflophenone-3-C-glucoside (Malherbe et al., 2014). 

Immunoregulatory capabilities of mangiferin have been demonstrated, via the reduction of 

TNF-α, the inhibition of NF-κB, which is mainly due to its antioxidant ability and the 

preservation of glutathione (GSH), as well as the suppression of other downstream pro-

inflammatory cytokines in macrophages (Leiro et al., 2004; Sarker et al., 2004). An aglycone 

of mangiferin, norathyriol, improved glucose homeostasis and insulin sensitivity in obese 

C57BL/6J ob/ob mice (Ding et al., 2014). A recent study proposes that the antioxidative 

properties of mangiferin could protect β-cells in STZ induced diabetic rats (Sellamuthu et al., 

2013). Thus, due to the high polyphenolic and, specifically, mangiferin content of this 

unfermented C. maculata extract, there is immense potential for this extract to not only 

ameliorate peripheral factors involved in T2D, but also offer protection to pancreatic β-cells, 

thus meriting its investigation.  

 

With an increasing trend towards the use of natural products in the treatment of chronic 

diseases, either as a primary or as an adjunctive therapy with conventional therapeutics, 

(Frei, 2004, Scalbert et al., 2005; Lee et al., 2011), verification of the potential efficacy and 

safety using appropriate research methodology to provide adequate evidence based data is 

needed. Since β-cell failure is a putative and crucial step in the onset and deterioration of 

T2D, natural supplementation of current T2D therapy could potentially protect vulnerable 

pancreatic β-cells and thus improve and prolong quality of life in T2D patients, with a 

reduction in long-term associated disease complications. 
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5. Study objectives 

 

I. Establish an oxidative stress model in vitro in RIN-5F insulinoma cells that mimics 

pancreatic β-cell stress in T2D. 

 

II. Assess the potential protective function of an aqueous, unfermented C. maculata 

extract and its major polyphenol, mangiferin, in RIN-5F cells. 

 

III. Demonstrate the effect of the C. maculata extract and mangiferin on cell viability, 

glucose stimulated insulin secretion and oxidative stress in pancreatic islets isolated 

from Wistar rats. 

 

IV. Assess the effect of the C. maculata extract in vivo on glucose metabolism, islet 

morphology and oxidative stress in the pancreata of STZ-induced diabetic Wistar 

rats. 
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In this study, we assessed the potential protective effect of an aqueous extract from 

unfermented C. maculata in protecting pancreatic β-cells exposed to conditions mimicking 

that of T2D. Both in vitro (in RIN-5F cells; section 1) and ex vivo (in isolated rat islets; section 

2) experimentation were used to assess the effect(s) on β-cell viability function and oxidative 

stress. A model of STZ induced diabetes in Wistar rats was used to determine the in vivo 

effect (section 3). The aqueous extract of unfermented C. maculata used in this study was 

produced and kindly supplied by Prof E. Joubert of the Post-Harvest and Wine Technology 

Division at the Agricultural Research Council, Infruitec Nietvoorbij, Stellenbosch. The 

preparation and analysis of this extract was previously described by Dudhia et al. (2013). 

Briefly, unfermented C. maculata plant material was extracted with purified water at a ratio 

of 1:10 (m/v) at 93 °C for 30 minutes. The extraction was then filtered, allowed to cool to 

room temperature and freeze-dried. Upon receipt, the extract was stored under silica gel 

desiccation at room temperature, in the dark. The HPLC chromatogram of the extract is 

depicted in Fig. 14, in Chapter 2. The normal control referred to in this study represents 

cells/islets/rats exposed to the same reagents and conditions as the experimental 

conditions, with the exception of the specific agent(s) (either stressor or treatment) being 

tested. All reagents and equipment used in this study are listed in Addendum 3.   

 

1. In vitro experimental design 

The RIN-5F rat islet tumour cell line was used in this in vitro component of the study to 

assess the potential protective effect of the unfermented C. maculata extract, as well as 

mangiferin on this pancreatic β-cell line exposed to conditions characteristic of T2D (i.e. 

glucotoxicity, lipotoxicity, inflammation and oxidative stress). The protective effect on β-cells 

of a known antioxidant, N-acetyl cysteine (NAC) was also assessed as a positive control. 

This cell line has previously been used by several researchers to study the effects of T2D 

associated stress on β-cells (Tabatabaie et al., 2000; Wang et al., 2010; Son et al., 2012 

and 2014; Hu et al., 2014). In our study, RIN-5F cells were cultured under standard 

conditions (section 1.1. below) and were seeded into multi-well plates for assay purposes 

(Fig. 15). The initial step was to optimise the concentration of each of the T2D associated 

stressors needed to result in approximately 50 % cell death (LC50). Following 24 hours 

exposure to a range of concentrations of each stressor (glucotoxicity, lipotoxicity, 

inflammation and oxidative stress) cell viability was assessed using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) reduction assay 

(section 1.3.1.). After exposure to the optimised stressor concentrations, RIN-5F cells were 
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treated with a concentration range of C. maculata extract, mangiferin and NAC for 24 hours 

to ascertain the optimal effective concentration of each of these treatments; this was 

assessed using both the MTT (section 1.3.1.) and ATP (section 1.3.2.) assays. Both the 

MTT and ATP assays were used since plant polyphenols have previously been reported to 

interact with the MTT assay (Maioli et al., 2009; Wang et al., 2010). In addition, 

measurement of cellular ATP has been shown to be more than ten times more sensitive 

than the MTT assay (Petty et al., 2005). Thus the MTT was a first line of screening, verified 

using the ATP assay. The efficacy of the optimised concentrations of each of the treatments 

against stressor induced β-cell dysfunction and death were then assessed in terms of cell 

viability (section 1.3.1.), cell function (section 1.4.) and oxidative stress (section 1.5.). 

Western blot analysis (section 1.7.) was also performed in order to determine the treatment 

effects on proteins involved in β-cell function and apoptosis. Treatment of cells with the 

extract, mangiferin and NAC for 24 hours was subsequent to exposure of these cells to the 

stressors for 24 hours, and said treatment period did not include the stressor. Stressors 

were omitted from the treatment period in order to negate the potential direct effect of any 

of the treatments on the stressor(s) itself or vice versa i.e. the stressor interacting directly 

with the treatment. It is important to note that the deleterious effect(s) of each of the stressors 

was still evident when each of the assays was performed. Standard aseptic conditions were 

maintained. 
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Figure 15. In vitro experimental design overview. 

RIN-5F cells were cultured under standard conditions and were assayed in terms of cell viability, cell function and oxidative stress following exposure to T2D associated 

stressors and subsequent treatment with C. maculata extract, mangiferin and NAC. (ATP – adenosine triphosphate; CM – cytokine mixture; DAF - diaminofluorescein-

FM diacetate; DHE – dihydroethidium; GSIS – glucose stimulated insulin secretion; MS – multi-stressor; MTT -  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide tetrazolium; NAC – N-acetyl cysteine; PA – palmitic acid; SOD – superoxide dismutase STZ – streptozotocin).
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1.1. Cell culture and maintenance 

1.1.1. Thawing of RIN-5F cells 

One 2 mL cryogenic vial containing 1 mL of Roswell Park Memorial Institute 1640 media 

(RPMI1640) supplemented with 10 % fetal bovine serum (FBS) and 7 % dimethyl sulphoxide 

(DMSO) containing 2 x 106 RIN-5F cells, stored in a Dewer cryogenic liquid nitrogen 

container in the vapour phase, was retrieved and placed in a pre-warmed water bath at 

37°C. When 80 % of the cell suspension was liquid, the vial was transferred to a biohazard 

safety cabinet, where the 1 mL cell suspension was transferred into a 75 cm2 cell culture 

flask containing 18 mL pre-warmed (37°C) RPMI1640 supplemented with 10 % FBS. One 

millilitre of the cell suspension was removed into a 2 mL tube in order to determine the 

number of viable cells, as described in section 1.1.3. The flask of cells (Fig. 16) was 

incubated at 37 °C in humidified air containing 5 % carbon dioxide (CO2) for two days, 

whereafter media was refreshed. Following an additional three days of incubation at 37 °C 

in humidified air containing 5 % CO2, the RIN-5F cell clusters at approximately 80 % 

confluence, were sub-cultured as described in section 1.1.2. If the number of viable cells, 

as determined by the trypan blue exclusion assay, was less than 70 %, the cells were 

considered to be compromised and were discarded, and a new vial of cells was thawed. 

 

 

Figure 16. RIN-5F cell cluster in culture. 

RIN-5F cells were incubated at 37 °C in humidified air containing 5 % CO2 in RPMI1640 media supplemented 

with 10 % FBS. (x 400 magnification). 
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1.1.2. Sub-culture of RIN-5F cells 

Sub-cultures of RIN-5F cells were produced by aspirating the RPMI1640 media off the semi-

confluent (approximately 80 %) cells in the 75 cm2 cell culture flasks and washing the cells 

with Dulbecco’s phosphate buffered saline (DPBS) by adding 8 mL pre-warmed (37°C) 

DPBS, gently agitating the flask three times and then aspirating the DPBS. Cells were 

detached from the cell culture flask by incubating the cells at 37 °C in humidified air 

containing 5 % CO2 with 2 mL of trypsin-versene for a minimum of seven minutes. After 

seven minutes, cells were observed under an inverted microscope at 30 second intervals to 

ensure adequate detachment had occurred. To inhibit the action of the trypsin-versene, 8 

mL of pre-warmed (37°C) RPMI1640 supplemented with 10 % FBS was added to the 

detached cells and a 10 mL serological pipette was used to further dissociate and disperse 

the cells. Thereafter, the number of viable cells were counted as described in section 1.1.3., 

and new cell culture dishes were seeded. Cell culture flasks (75 cm2) were seeded at 9 x 

105 cells per flask in 18 mL pre-warmed (37°C) RPMI1640 supplemented with 10 % FBS 

and multi-well plates, for assay purposes, were seeded at 2.63 x 104 cells per cm2. Sub-

cultured cells were incubated at 37 °C in humidified air containing 5 % CO2 for two days, 

upon which media was refreshed. Following a total of five days of incubation, sub-cultured 

cells in multi-well plates were used for assay purposes. 

 

1.1.3. Trypan blue exclusion assay 

The trypan blue exclusion assay used in this study was based on the principle of viable cells, 

with intact cell membranes excluding the trypan blue dye, as described by Strober (2001). 

Equal volumes of the cell suspension and a 0.4 % solution of trypan blue in phosphate 

buffered saline (PBS) (Fig. 17 C) were mixed and 10 µL of the resultant trypan blue/cell 

solution was added to one of the chamber ports of the chamber slide (Fig. 17 B). The 

chamber slide was then inserted in to the CountessTM Automated Cell Counter (Fig. 17) and 

the total number of viable (live) and dead cells were counted as described by Malinouski et 

al. (2011). The total number of viable cells was then calculated as cells/mL and, in the case 

of sub-culturing, the required cell seeding densities were prepared. 
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Figure 17. The CountessTM Automated Cell Counter.  

The CountessTM Automated Cell Counter was used to determine the number of viable RIN-5F cells using the 

trypan blue exclusion assay. This automated cell counter counts the equivalent of four 1 mm2 squares on a 

standard haemocytometer, which equates to a sample/trypan blue solution volume of 0.4 µL. (From Invitrogen, 

2009). 

 

1.2. RIN-5F toxicity models 

In order to assess the potential protective effect of the C. maculata extract and mangiferin 

against the deleterious conditions β-cells are exposed to in T2D, we developed toxic 

conditions to mimic glucotoxicity, lipotoxicity, inflammation and oxidative stress by exposing 

the cells to the following stressors for 24 hours, i.e. glucose, palmitic acid (PA), a cytokine 

mixture (CM) consisting of TNF-α, IL-1β and IFN-γ, and streptozotocin (STZ), respectively. 

In addition, a multi-stressor (MS) combination was derived, which included PA, CM and STZ. 

The approximate LC50 was determined by measuring mitochondrial dehydrogenase activity 

using the MTT assay (section 1.3.1.). Thereafter, the efficacy of the optimised 

concentrations of each of the treatments (i.e. C. maculata extract, mangiferin and NAC) 

against stressor induced β-cell dysfunction and death were assessed in terms of cell viability 

(section 1.3.1.), cell function (section 1.4.) and oxidative stress (section 1.5.). The stressors 

as well as the treatments were solubilised directly in the RPMI1640 cell culture media, with 

the exception of PA and NAC. In order to produce a 613 mM stock solution of NAC, 1 g of 

NAC was solubilised in 10 mL of cell culture tested water in a 37 °C water bath, dilutions of 

this filter-sterilised solution were used. Due to the hydrophobic nature of PA, we conjugated 
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this fatty acid to BSA to produce an aqueous-soluble reagent using a method modified from 

Schulz et al. (2013). A 50 mM stock solution of PA was prepared by dissolving 128.22 mg 

PA in 10 mL ethanol at 75 °C. The final concentrations of PA were prepared by adding the 

required amount of PA stock to a 2 % fatty acid-free bovine serum albumin (BSA) solution 

at 37 °C. To compensate for the potential cytotoxic effect of the ethanol, the normal control 

for all PA experiments contained the same amount of ethanol as the final concentration(s) 

of PA did. Although STZ is soluble in aqueous solutions up to a concentration of 50 mg/mL, 

it is unstable at neutral pH and rapidly degrades into its α- and β-anomers, therefore STZ 

was prepared immediately before use in all experiments. 

 

1.3. Cell viability 

1.3.1. The MTT assay 

The MTT assay used in this study is based on the original description by Mossman (1983).  

Following exposure to the respective stressors for 24 hours and/or consecutive treatments 

of the RIN-5F cells, the 96 well cell culture plate wells were aspirated and the cells washed 

with pre-warmed (37 °C) DPBS. Thereafter, 100 µL of pre-warmed (37 °C) MTT solution (2 

mg/mL DPBS) was added to each well and cells were incubated at 37 °C in humidified air 

containing 5 % CO2 for 30 minutes. The formazan crystals formed during this incubation 

period were then dissolved in 200 µL DMSO and 25 µL Sorensen’s glycine buffer (pH 10.5). 

The absorbance of the resulting purple formazan solution then measured on an absorbance 

BioTek microplate reader (ELX800) at 570 nm, controlled by Gen5 software. 

 

1.3.2. The ATP assay 

Cellular ATP, as a result of oxidative metabolism, was measured in RIN-5F cells using the 

ViaLightTM plus kit as described by Crouch et al. (1998). Following consecutive exposure of 

the RIN-5F cells to each of the stressors as well as a range of concentrations of either the 

extract, mangiferin or NAC, media from the cells in 96 well, flat bottomed, white walled cell 

culture plates were aspirated and the cells washed with pre-warmed (37 °C) DPBS. 

Thereafter, the cells were lysed by adding cell lysis reagent (provided in the ViaLightTM plus 

kit) to each well and incubating the cells at 37 °C in humidified air containing 5 % CO2 for 10 

minutes. Once lysed, a 10 µL sample of the lysate was transferred to a clean 96 well assay 

plate in order determine protein concentrations as described in section 1.3.2.1. To the cell 

lysate remaining in the culture plate, reconstituted ATP monitoring reagent (provided in the 

ViaLightTM plus kit) was added to the lysate in each well and the luminescence was 
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measured after two minutes on a fluorescent BioTek microplate reader (FLX800) controlled 

by Gen5 software. As described by the manufacturer, the cellular ATP was normalised to 

the protein content of each well. 

 

1.3.2.1. Bradford protein quantification assay 

Protein determinations were performed using the Bradford method (Bradford, 1976). A 10 

µL sample of cell lysate from each well, as well as BSA standards were added to wells of a 

96 well assay plate, followed by 250 µL of Bradford reagent. Plates were incubated in the 

dark for 10 minutes and absorbance was measured at 570 nm on a microplate reader 

(BioTek, ELX800). The actual protein concentration was determined by extrapolation from 

the BSA standard curve. 

 

1.3.3. Annexin-V and propidium iodide fluorescence 

In order to assess the effect of extract, mangiferin and NAC on stressor exposed RIN-5F 

cells, an adapted version of the annexin-V and propidium iodide fluorescent staining method 

described by Vermes et al. (1995) was used. As cellular apoptosis initiates, a 

phosphotidylserine switch from the inner leaflet to the outer leaflet of the cell membrane 

bilayer occurs, to which annexin-V binds due to its high affinity to said protein. The annexin-

V used in this study was conjugated to fluorescein isothiocyanate (FITC) allowing us to 

quantify its binding using fluorescent detection. The addition of the DNA stain propidium 

iodide allowed us to also quantify late apoptotic and necrotic cells since this membrane 

impermeable dye will only intercalate between DNA bases once the cell membrane has 

been disrupted. In our study, following consecutive exposure of the RIN-5F cells to each of 

the stressors as well as an optimised concentrations of either the extract, mangiferin or NAC, 

media from the cells in 96 well, flat bottomed, black walled cell culture plates were aspirated 

and the cells washed with pre-warmed (37 °C) DPBS. Thereafter, cells were incubated with 

2 µg/mL of annexin-V FITC conjugate and 1 µg/mL of propidium iodide in DPBS for 30 

minutes at 37 °C in humidified air containing 5 % CO2. Following incubation with the 

fluorescent markers, the cells were then washed with pre-warmed (37 °C) DPBS. After 

washing the cells, fresh pre-warmed (37 °C) DPBS was added to each well and annexin-V 

fluorescence was measured at excitation/emission (ex/em) of 488/530 nm (green) and 

propidium iodide at 540/608 nm (red) on a fluorescent microplate reader (BioTek, FLX800) 

controlled by Gen5 software.  
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1.4. Cell function 

1.4.1. Glucose stimulated insulin secretion 

The response of the RIN-5F cells to glucose stimulation was used to assess the function of 

these cells by means of a method adapted from Mabley et al. (2001) and Henningsson et 

al., (2002). Following consecutive exposure of the RIN-5F cells to each of the stressors as 

well as an optimised concentration of either the extract, mangiferin or NAC, media from the 

cells in 96 well, flat bottomed, clear walled cell culture plates was aspirated and the cells 

were washed with pre-warmed (37 °C) DPBS. The RIN-5F cells were then incubated at 37 

°C in humidified air containing 5 % CO2 for two hours in Krebs-Ringer bicarbonate-HEPES 

buffer (KRBH) containing 5.5 mM glucose. Basal insulin secretion was determined by 

incubating the cells in fresh KRBH containing 5.5 mM glucose for 90 minutes at 37 °C in 

humidified air containing 5 % CO2. The KRBH from each of the wells was carefully removed 

to a clean 96 well plate and frozen at -20 °C for enzyme-linked immunosorbent assay 

(ELISA) analysis. Subsequently, to determine the insulin secreted in response to glucose, 

fresh KRBH was added to the cells containing 35 mM glucose and cells were incubated for 

a further 90 minutes at 37 °C in humidified air containing 5 % CO2. After 90 minutes KRBH 

was collected from each of the wells and frozen at -20 °C for ELISA analysis. The cells 

remaining in the plate were lysed by adding 0.1 M sodium hydroxide (NaOH) (supplemented 

with 1 % sodium dodecyl sulphate (SDS)) to each well and incubating the cells at 37 °C for 

30 minutes. Protein concentration of the lysates were determined (as described in section 

1.3.2.1.) in order to normalise insulin secretion concentrations as determined by ELISA in 

section 1.4.1.1. 

 

1.4.1.1. Insulin concentration determination 

A rat/mouse insulin sandwich ELISA kit was used to quantify the amount of insulin secreted 

by the RIN-5F cells into the media (KRBH) according to the manufacturer’s instructions. 

Briefly, the media samples stored at -20 °C were brought to room temperature and were, 

along with insulin standards provided in the kit, added to the pre-coated ELISA plate. The 

pre-coating of the ELISA plate with monoclonal mouse anti-rat insulin antibodies allowed for 

the capture of insulin molecules from the samples and standards to the wells of the plate. 

Bound insulin was detected using biotinylated polyclonal antibody, horseradish peroxidase 

and 3,3’,5,5’-tetramethylbenzidine substrate detection by measuring absorbency at 450 nm 

on a microplate reader. Due to acidification of formed products the absorbency at 450 nm 

was corrected using the absorbency at 590 nm. Actual sample insulin concentrations were 
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extrapolated from the standard curve generated. The insulin concentrations used for the 

standard curve were 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 ng/mL. 

 

1.4.2. Cellular calcium determination 

Since cellular calcium is crucial to normal functioning of pancreatic β-cells, both in terms of 

insulin secretion as well as ER function, we modified the method described by Lee et al. 

(2010) in order measure cellular calcium in the RIN-5F cells, the cells were seeded into flat 

bottomed, black walled 96 well cell culture plates and cellular calcium was determined by 

incubating the cells with 5 µM of glycine, N-[4-[6-[(acetyloxy)methoxy]-2,7-dichloro-3-oxo-

3H-xanthen-9-yl]-2-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxyethyl]amino]-5-

methylphenoxy]ethoxy]phenyl]-N-[2-[(acetyloxy)methoxy]-2-oxyethyl]-,(acetyloxy)methyl 

ester (fluo3-AM) in DPBS at 37 °C in humidified air containing 5 % CO2 for 30 minutes 

Following the 30 minute incubation, the cells were washed with pre-warmed (37 °C) DPBS, 

fresh pre-warmed (37 °C) DPBS was added to each well and fluorescence was measured 

on a fluorescent microplate reader (BioTek, FLX800) controlled by Gen5 software at ex/em 

of 506/526 nm. 

 

1.4.3. Cell proliferation 

The incorporation of tritiated thymidine into the DNA of dividing RIN-5F cells was used to 

determine cell proliferation. The methods previously described by Harkonen et al. (1990) 

and Buteau et al. (2001) were modified in this study. Following exposure of the RIN-5F cells 

to each of the stressors, a final concentration of 1 µCi/mL of tritiated thymidine was added 

to each well (2 µL/well) during the last four hours of treatment with the optimised 

concentration of either the extract, mangiferin or NAC. Media from the cells in 24 well, flat 

bottomed, clear walled cell culture plates was then aspirated and the cells washed with pre-

warmed (37 °C) DPBS. The cells were then lysed by adding 0.1 M NaOH (supplemented 

with 1 % SDS) to each well and incubating the cells at 37 °C for 30 minutes. Lysate from 

each well was then transferred to scintillation vials containing distilled water and ULTIMA 

Gold scintillation fluid. After allowing the samples to equilibrate for one hour, radioactivity 

was measured on a scintillation counter. The remaining cell lysate was used to determine 

protein concentrations using the Bradford assay, as described in section 1.3.2.1. Data was 

normalised to protein concentrations as a measure of cell number per well. 
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1.5. Oxidative stress 

1.5.1. Diaminofluorescein-FM diacetate and dihydroethidium fluorescence 

The generation of RNS and ROS was detected using diaminofluorescein-FM diacetate 

(DAF) and dihydroethidium (DHE) fluorescent probes. The DAF fluorescent probe used in 

this study is transformed by intracellular esterases into a highly water-soluble fluorescent 

dye which traps nitric oxide produced in the cell. The DHE fluorescent probe reacts with 

superoxide anions and forms fluorescent ethidium, which intercalates with DNA. The 

methods described by Kojima et al. (1999) and Chen et al. (2013) were combined and 

modified in this study. A known inducer of ROS, 2,3-dimethoxy-1,4-naphthoquinone 

(DMNQ), was used as a positive control and was found to not only increase ROS (Fig. 18) 

in the RIN-5F cells, but also RNS (Fig. 19). RIN-5F cells seeded in 96 well flat bottomed, 

black walled cell culture plates were exposed to 100 µM DMNQ for 120 minutes, after which 

cells were washed with pre-warmed (37 °C) DPBS and incubated with 10 µM DAF and 5 µM 

DHE in DPBS at 37 °C in humidified air containing 5 % CO2 for 30 minutes. The cells were 

then washed with pre-warmed (37 °C) DPBS and fluorescent intensities for DAF and DHE 

were measured on a fluorescent microplate reader controlled by Gen5 software at ex/em 

495/515 nm and 518/605 nm, respectively.  

 

        

Figure 18. DMNQ induced increase of DAF fluorescence. 

Exposure of RIN-5F cells to 100 µM DMNQ for 120 minutes resulted in visual and measurable increases in 

DAF fluorescence (B) compared to the normal control (A). (x 400 magnification). 

 

A                 B 
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Figure 19. DMNQ induced increase of DHE fluorescence. 

Exposure of RIN-5F cells to 100 µM DMNQ for 120 minutes resulted in visual and measurable increases in 

DHE fluorescence (B) compared to the normal control (A). (x 400 magnification). 

 

1.5.2. Superoxide dismutase enzyme activity 

The superoxide dismutase (SOD) enzyme catalyses the dismutation of the superoxide anion 

into hydrogen peroxide and molecular oxygen. SOD activity was assessed using a SOD 

assay kit from BioVision® based on a method adapted from Kanter et al. (2004). Following 

consecutive exposure of the RIN-5F cells seeded in 96 well flat bottomed, clear walled cell 

culture plates to each of the stressors, as well as an optimised concentration of either the 

extract, mangiferin or NAC, cells were washed with pre-warmed (37 °C) DPBS and 0.1 M 

Tris/HCl (pH 7.4) buffer containing 0.5 % Triton X-100, 5 mM β-mercaptoethanol and 0.1 

mg/ml phenylmethanesulfonyl fluoride (PMSF) protease inhibitor was added to each well. 

Addition of the Tris/HCl buffer lysed the cells and simultaneously preserved cellular SOD. 

Three blanks were prepared in a 96 well assay plate; blank 1 contained all reagents except 

the sample, blank 2 contained all reagents except the enzyme working solution and blank 3 

contained all reagents except the both sample and enzyme working solution. Ten microliters 

of cell lysate was added to the assay plate. The addition of water soluble tetrazolium salt-1 

(WST-1; 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium 

monosodium salt) produced a water-soluble formazan dye upon reduction by superoxide 

anion, which was measured at 450 nm on a microplate reader (BioTek, ELX800) controlled 

by Gen5 software. 

The percentage inhibition of superoxide was calculated using the following formula: 

Percent inhibition (SOD activity) =  
(𝐴𝑏𝑙𝑎𝑛𝑘1− 𝐴𝑏𝑙𝑎𝑛𝑘3) – (𝐴𝑠𝑎𝑚𝑝𝑙𝑒 – 𝐴𝑏𝑙𝑎𝑛𝑘2)

(𝐴𝑏𝑙𝑎𝑛𝑘1 – 𝐴𝑏𝑙𝑎𝑛𝑘3)
  x 100 

 

A                 B 
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1.6. Extract mitogenicity determination 

The potential mitogenic effect of the C. maculata extract used in this study was determined 

by measuring the incorporation of tritiated thymidine into RIN-5F cells treated with a range 

of extract concentrations (0.01 µg/mL – 100 µg/mL) as described in section 1.4.3. In addition, 

the effect of the extract on normal proliferation of RIN-5F cells was verified using crystal 

violet staining as described by Yusta et al. (2006). The resultant absorbance due to crystal 

violet staining of cells was measured at 570 nm on a microplate reader (BioTek, ELX800) 

controlled by Gen5 software. 

 

1.7. Western blot analysis 

Western blot analysis was used to determine the effects on selected proteins involved in β-

cell function and apoptosis using a method modified from Mahmood and Yang (2012).  

 

1.7.1. Cell collection and protein extraction 

Following consecutive exposure of the RIN-5F cells seeded in 75 cm2 culture flasks to each 

of the stressors, as well as an optimised concentration of either the extract, mangiferin or 

NAC, cells were washed with pre-warmed (37 °C) DPBS and were then collected using a 

cell scraper in 5 mL cold (4 °C) DPBS that was added to each flask, on ice. The scraped 

cells in DPBS were then transferred to a clean 15 mL tube and were centrifuged at 600 x g 

for 5 minutes. The cell pellet was then resuspended in 300 µL of commercial cell lysis buffer 

and the suspension transferred to a clean 2 mL Eppendorf tube. The cell suspension was 

then mechanically lysed by adding a steel bead to each Eppendorf tube and homogenising 

the samples at 25 Hz for 1 minute, with a rest interval on ice for 1 minute; samples were 

homogenised five times. The cell lysate was then centrifuged at 13 000 rpm at 4 °C for 10 

minutes and the supernatant removed into a clean 2 mL Eppendorf tube. The reducing agent 

compatible and detergent compatible (RC/DC) protein concentration determination kit, 

based on the Lowry principle (Lowry et al., 1951), was used to quantify sample protein 

concentration. Five microliters each of a range of BSA standards as well as 5 µL of a 1:20 

dilution of each sample was transferred to a clean 96 well assay plate. Kit reagents A’ and 

B were consecutively added to each well and the plate was agitated for 10 seconds before 

measuring absorbance at 685 nm on a microplate reader (BioTek, ELX800) controlled by 

Gen5 software. Actual protein concentration of the samples was determined by extrapolating 

the values from the BSA standard curve generated. 

 

Stellenbosch University  http://scholar.sun.ac.za



77 

 

1.7.2. Separation of proteins by electrophoresis 

The protein samples were diluted 3:1 with sample buffer (four times concentrate) and were 

then heated at 95 ºC for 5 minutes on a heating block to denature proteins. Twenty 

micrograms of protein for each sample was loaded into a 10 % SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) precast gel, along with two molecular weight standard 

markers; one to monitor the progression of the protein movement through the gel 

(PageRuler marker) and the other for identifying proteins of interest following 

chemiluminescent detection (Cruz Marker). The gels were run for approximately 45 minutes 

(or until the protein front reached the bottom of the gel; Fig. 20) at 150 V in a mini protein 

tetra cell tank filled with running buffer. 

 

 

Figure 20. Sodium dodecyl sulphate polyacrylamide gel electrophoresis. 

Proteins extracted from RIN-5F cells were separated using SDS-PAGE. The arrow indicates the protein front. 

 

1.7.3. Protein sandwich transfer of gel to membrane 

Proteins separated in the SDS-PAGE gels were then transferred to polyvinylidene difluoride 

(PVDF) membranes. Briefly, Whatman filter paper and PVDF membranes were cut to size 

(8 x 6 cm) and the membranes were activated by gently shaking in 100 % methanol for 1 

minute. The filter paper and membranes, along with transfer fibre pads, were equilibrated in 

transfer buffer by gently shaking for 20 minutes. The transfer sandwich was then assembled 

as illustrated in Fig. 21 in the transfer cassette in the following order from cathode (negative 

terminal) to anode (positive terminal): fibre pad, filter paper, SDS-PAGE gel, PVDF 
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membrane, filter paper and fibre pad. Care was taken to eliminate air bubbles during transfer 

assembly. 

 
Figure 21. Western blot sandwich transfer assembly. 

The transfer sandwich was assembled from cathode to anode by placing a fibre pad down and consecutively 

layering filter paper, SDS-PAGE gel, PVDF membrane, filter paper and another fibre pad. 

 

The assembled cassette, along with an ice pack to regulate temperature, was placed 

between the electrodes in the transfer tank, with the respective terminals of the cassette 

corresponding with that of the tank (i.e. cathode to cathode, and anode to anode). The tank 

was filled with transfer buffer and proteins were transferred for 75 minutes at 160 V at 4 °C. 

To confirm transfer of proteins to the PVDF membrane, Ponceau S stain was applied to the 

membrane after transfer for 5 minutes, with gentle agitation. Once proteins were positively 

visualised, the membrane was washed with Tris buffered saline containing Tween®20 

detergent (TBST) to de-stain the membrane. 

 

1.7.4. Primary and secondary antibody incubations 

To minimise nonspecific antibody binding, the PVDF membrane was blocked in TBST 

containing 5 % non-fat milk powder for two hours with gentle agitation. Four millilitre primary 

antibody diluted in TBST (Table 1) was applied to each membrane and incubated for 16 

hours at 4 °C. Thereafter, the membrane was washed three times by gently agitation in 

TBST for 10 minutes. The membrane was then incubated with the secondary antibody (anti-

rabbit IgG) at a 1:4000 dilution in TBST containing 2.5 % non-fat milk powder for 90 minutes 
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with gentle agitation. The blot was again washed three times by gently agitation in TBST for 

10 minutes. 

 

Table 1. Primary antibody dilutions 

 

 

1.7.5. Chemiluminescent detection 

A chemiluminescent substrate detection kit was used to visualise proteins of interest by 

incubating the membrane in chemiluminescent substrate for 60 seconds in the dark. Excess 

substrate was drained off the membrane and images were captured using the ChemiDoc 

XRS imaging system, with 40 exposures for 0.1 seconds. Quantity One 1-D software was 

used to identify and quantify proteins of interest. 

 

1.7.6. Housekeeping protein detection 

In order to detect the housekeeping protein (i.e. β-tubulin), the respective membranes were 

stripped of the previously detected proteins by immersing the washed (in TBST for 10 

minutes) membrane in stripping buffer for 13 minutes with gentle agitation. Thereafter the 

membrane was blocked in TBST containing 5 % non-fat milk powder for two hours with 

gentle agitation. The β-tubulin antibody was diluted in TBST (1:1000) and each membrane 

was incubated with 4 mL thereof for 16 hours at 4 °C. Thereafter, β-tubulin labelling was 

detected as described in sections 1.7.4 and 1.7.5. Proteins of interest were normalised to β-

tubulin, which was used as a protein loading reference control, in order to determine the 

relative expression thereof. 

 

  

Primary antibody Dilution Catalogue No. Manufacturer

Glucose transporter-2 (GLUT-2) 1:500 ab54460 Abcam; Cambridge Incorporated, MA, USA

β-cell lymphoma-2 (BCL-2) 1:1000 2870 Cell Signalling Technology; Danvers, MA, USA

Nuclear factor-kappa β (NF-κB) 1:1000 3033L Cell Signalling Technology

Pancreatic duodenal homeobox-1 (PDX-1) 1:1000 5679S Cell Signalling Technology

Caspase-3 1:1000 9662S Cell Signalling Technology
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2. Ex vivo experimental design 

In order to verify the protective effects observed in vitro in RIN-5F cells exposed to STZ and 

PA, we isolated pancreatic islets from adult, male Wistar rats (section 2.1.1.) and replicated 

the experiments where the extract had the most marked beneficial effects (Fig. 22). The 

islets were seeded into multi-well culture plates and exposed to 10 mM STZ and 750 µM PA 

for 24 hours. Thereafter, the RPMI1640 media containing the stressor(s) was aspirated and 

fresh RPMI1640 containing either 10 µg/mL of the extract, 100 µg/mL of mangiferin or 0.01 

mM NAC was added and the islets incubated for a further 24 hours. The viability of the 

isolated islets was then assessed using the annexin-V and propidium iodide assay (section 

2.2.1.). Islet function was determined by measuring the insulin secretory response of the 

islets to glucose stimulation (section 2.3.1.), and oxidative stress in the islets was assessed 

using the DAF/DHE fluorescent assay (section 2.4.1.) and by measuring SOD enzyme 

activity (section 2.4.2.). All animal procedures were performed in accordance with the ethical 

code of conduct as prescribed by the latest South African Medical Research Council 

“Guidelines on ethics for medical research: use of animals in research” as well as The South 

African National Standard for the Care and Use of Animals for Scientific Purpose (SANS 

10386:2008). Ethical approval for this component of the study was obtained from the 

Research Ethics Committee: Animal Care and Use of Stellenbosch University (Approval no: 

11GK_CHE01). 
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Figure 22. Ex vivo experimental design overview. 

Pancreatic islets were cultured under standard conditions and were assayed in terms of cell viability, cell function and oxidative stress following exposure to T2D 

associated stressors and subsequent treatment with C. maculata extract, mangiferin and NAC. (ATP – adenosine triphosphate; CM – cytokine mixture; DAF - 

diaminofluorescein-FM diacetate; DHE – dihydroethidium; GSIS – glucose stimulated insulin secretion; MS – multi-stressor; MTT -  3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide tetrazolium; NAC – N-acetyl cysteine; PA – palmitic acid; SOD – superoxide; dismutase STZ – streptozotocin).   
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2.1. Pancreatic islet isolation, culture and maintenance 

A total of 54 age-matched adult (three month old) Wistar rats of similar body weight (250 g 

– 300 g) were housed and maintained under standard conditions (12 hour light/dark cycle 

at 22 ± 2 °C) at the Primate Unit and Delft Animal Centre (PUDAC) at the South African 

Medical Research Council. The modified methods of Takaki and Ono (1985) and 

Kinasiewicz et al. (2004) were used to isolate pancreatic islets from these Wistar rats. For 

each experiment a total of 18 rats were anaesthetised by intra-peritoneal injection with 35 

mg/kg sodium pentobarbitone. The main pancreatic duct was identified by making a mid-

line abdominal incision and by reflecting the duodenal loop, thereby exposing the main 

pancreatic duct and ampullae (Fig. 23). 

 

 

Figure 23. Cannulation of the main pancreatic duct. 

A neonatal cannula was used to intubate the main pancreatic duct in order to fully distend the organ with 

collagenase P solution. (D – duodenum; P – pancreas; C – cannula). 

 

Rat pancreata were fully distended by injecting 6 ml ice cold Hanks balanced salt solution 

(HBSS) containing 1 mg/mL collagenase P into the main pancreatic duct using a 26 gauge 

neonatal cannula under a stereo microscope. Special care was taken when excising the 

distended pancreata to avoid rupture of the digestive tract. The excised pancreata were 

transferred into a sterile 50 ml tube containing an additional 5 mL of collagenase P solution 

and was placed on ice. Rats were not allowed to recover from anaesthesia and were 

euthanised by exsanguation and cardiac snip. The pooled pancreata were digested at 37 
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ºC in a circulating water bath for 30 - 45 minutes with intermittent shaking. Once sufficient 

digestion was observed, the digestate was filtered through a 500 μm nylon mesh in a 

biohazard safety hood. Ten millilitres of cold (4 °C) HBSS containing 0.1 % BSA was added 

to the digestate to inhibit the collagenase P. The pancreatic tissue contained in the digestate 

was then pelleted by centrifugation at 600 x g for 5 minutes at 4 °C. The pellet was 

resuspended in cold (4 °C) HBSS/BSA and again centrifuged (600 x g for 5 minutes at 4 

°C). The pellet was then resuspended in 10 mL cold (4 °C) HBSS/BSA and a Histopaque 

gradient was produced in a 50 mL centrifuge tube as follows (Fig. 24): 10 mL of Histopaque 

1119 was transferred to the centrifuge tube, 10 mL of the HBSS/BSA containing the 

pancreas digestate was layered on the Histopaque 1119 and subsequently 10 mL each of 

Histopaque 1083 and 1077 Histopaque was layered on top. The Histopaque gradient was 

centrifuged at 2000 rpm for 20 minutes at 4 °C with the brake off.  The islets were then 

recovered from the interface between the HBSS/BSA layer and Histopaque 1077 (Fig. 24).  

 

 

Figure 24. Histopaque density gradient separation of isolated islets. 

Pancreatic digestate in HBSS/BSA was subject to Histopaque density separation in order to retrieve the islet 

fraction at the Histopaque 1077 and HBSS/BSA interface following centrifugation at 2000 rpm for 20 minutes 

at 4 °C. 
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The recovered islet fraction was washed with cold (4 °C) HBSS and pelleted by 

centrifugation (600 x g for 5 minutes at 4 °C). The pellet was resuspended in warm 

RPMI1640 supplemented with 10% FBS, 40 μg/mL geneticin, penicillin (100IU) and 

streptomycin (100 μg/mL) at 37 ºC in humidified air with 5% CO2. Following 16 hours 

incubation, islets were handpicked using a 1000 μL pipette under a stereo microscope and 

were seeded into black walled 96 well culture plates, with 30 - 50 islets per well (depending 

on the yield per isolation, islets were equally divided amongst the wells). The handpicked 

islets were incubated in fresh RPMI1640/FBS overnight, following which islet viability, 

function and oxidative assays were performed as described previously (sections 1.3.3., 

1.4.1., 1.5.1. and 1.5.2., respectively). 

 

2.1.1. Islet toxicity models 

The two islet toxicity models assessed in this study were based on the results observed in 

the RIN-5F experimentation. Since the extract was observed to be most effective in STZ 

and PA exposed RIN-5F cells, we sought to verify this effect ex vivo in pancreatic islets 

isolated from adult, male Wistar rats. As similarly described for the in vitro model, islets 

seeded in 96 well assay plates were exposed to either 10 mM STZ or 750 μM PA for 24 

hours at 37 ºC in humidified air with 5% CO2. Thereafter, media containing the stressor(s) 

was aspirated and fresh media containing either 10 µg/mL of the extract, 100 µg/mL of 

mangiferin or 0.01 mM NAC was added and the islets incubated for a further 24 hours at 37 

ºC in humidified air with 5% CO2. 

 

2.2. Islet viability 

2.2.1. Annexin-V and propidium iodide fluorescence in islets 

In order to assess the effect of extract, mangiferin and NAC on STZ and PA exposed islets, 

the annexin-V and propidium iodide fluorescent staining method described in section 1.3.3. 

was used.  

 

2.3. Islet β-cell function 

2.3.1. Glucose stimulated insulin secretion in islets 

The response of the isolated islets to glucose stimulation was used to assess the function 

of the islet β-cells as described for the RIN-5F cells in section 1.4.1. Protein concentration 

of the lysates was determined as described in section 1.3.2.1. 
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2.4. Islet oxidative stress 

2.4.1. Diaminofluorescein-FM diacetate and dihydroethidium fluorescence in islets 

Measurement of DAF and DHE fluorescence in the islets following consecutive exposure of 

the islets to STZ or PA, as well as the extract, mangiferin or NAC was used to determine 

RNS and ROS production as described in section 1.5.1.  

 

2.4.2. Superoxide dismutase enzyme quantification in islets 

The quantification of SOD enzyme activity, as described in section 1.5.2., was replicated in 

islets consecutively exposed to STZ or PA, as well as the extract, mangiferin or NAC.  
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3. In vivo experimental design 

The efficacy of the C. maculata extract on the deleterious effects of STZ on pancreatic β-

cells was assessed in Wistar rats (Fig. 25). In order to assess the therapeutic effect of the 

extract on established diabetes, adult, male Wistar rats were injected with STZ. Upon 

induction of diabetes (fasting plasma glucoses > 14 mmol/L) and recovery of the acute toxic 

effects of STZ five days thereafter, the rats were treated with either distilled water (STZ 

control), the extract (30 mg/kg/d and 300 mg/kg/d), metformin (125 mg/kg/d) or NAC (125 

mg/kg/d) for 21 days; this group is referred to as the “treated group”. 

 

In order to assess the protective effect of the extract against STZ induced β-cell destruction, 

rats were pretreated with either distilled water (STZ control), the extract (30 mg/kg/d and 

300 mg/kg/d), metformin (125 mg/kg/d) or NAC (125 mg/kg/d) for 15 days. At this point, the 

rats were injected with STZ and treatment (with either distilled water, the extract, metformin 

or NAC) continued for six days, totalling 21 days of treatment; this group is referred to as 

the “pretreated group”. 

 

A normal control group of rats, not injected with STZ, were concurrently administered 

distilled water for 21 days. This group served as a normal control for both the treated and 

pretreated groups. 

 

On day 21, an oral glucose tolerance test (OGTT) was performed and the rats were 

terminated the day after (day 22). Blood and tissue (pancreas and liver) were collected post-

mortem. Several parameters were assessed on blood collected, i.e. fasted glucose (section 

3.3.1.), insulin (section 3.4.1.) and triglyceride (section 3.4.2.) levels; liver enzymes (section 

3.4.3.); and antioxidant parameters (serum nitrites (section 3.5.1.), CAT (section 3.5.2.1.) 

and GSH levels (section 3.5.2.2.). To further explore the antioxidative effect of the extract, 

liver thiobarbituric acid reactive substances (TBARS) (section 3.5.3.) and nitrotyrosine 

(section 3.5.4.) was measured. Pancreata excised from the rats at termination were 

assessed using immunohistochemical labelling for MIB-5 (proliferation) (section 3.6.1.), as 

well as glucagon and insulin double-labelling (section 3.6.2.). 
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Figure 25. In vivo experimental design overview. 

Adult, male Wistar rats were randomised into normal, treated and pretreated groups in order to assess the efficacy of C. maculata extract on the deleterious effects of 

STZ on pancreatic β-cells in vivo. (NAC – N-acetyl cysteine; OGTT – oral glucose tolerance test; STZ – streptozotocin; TBARS - thiobarbituric acid reactive substances).
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3.1. Ethical aspects and animal observations 

All animal procedures were performed in accordance with the ethical code of conduct as 

prescribed by the latest South African Medical Research Council “Guidelines on ethics for 

medical research: use of animals in research” as well as The South African National 

Standard for the Care and Use of Animals for Scientific Purpose (SANS 10386:2008). 

Ethical approval for this component of the study was obtained from the Research Ethics 

Committee: Animal Care and Use of Stellenbosch University (Approval no: 11GK_CHE01). 

Eighty eight adult, male Wistar rats of similar body weight (250 g – 300 g) were obtained 

from and housed at PUDAC under standard conditions (12 hour light/dark cycle at 22 ± 2 

°C). The rats were randomised into groups (Table 2) and were individually caged (0.13 

m2/rat), with ad libitum access to fresh drinking water and a standard laboratory rodent diet 

(Pure Harvest rat/mouse pellets), except during stipulated periods of fasting. Routine cage 

side observations were performed daily as recommended by the US Food and Drug 

Administration, Centre for Food Safety and Applied Nutrition, Office of Food Additive Safety 

Redbook 2000 – Toxicological Principles for the Safety Assessment of Food Ingredients. 

Observations included any visible signs of changes in skin and fur condition, eyes and 

mucous membranes (secretions and excretions), autonomic activity (i.e. shivering, 

pilorection, breathing rate), changes in gait, posture, response to handling, the presence of 

clonic or tonic movements, stereotypic behaviour (i.e. excessive or lack of grooming, 

repetitive circling), severe dehydration, excessive weight loss (diabetes associated 

emaciation) or bizarre behaviour (i.e. self-mutilation or walking backwards). Food and water 

consumption was monitored throughout the study. These atypical behaviours would result 

in the respective animal(s) being excluded from the study. None of the animals in this study 

exhibited such behaviour and thus all groups were n = 8. 
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Table 2. Rat treatment groups (n = 8/group). 

 

 

3.2. Treatment and induction of diabetes 

As described in table 2, rats were treated with either distilled water, metformin, NAC or 

extract. All treatments were administered in gelatin jelly cubes, comprising 27 g jelly powder 

and 3 g gelatine powder per 100 mL, as reported in a previous study (Chellan et al., 2008). 

Each of the treatments were dissolved in 100 mL of gelatine jelly solution (metformin – 1042 

mg; NAC – 2085 mg; 30 mg/kg/d C. maculata – 250 mg; 300 mg/kg/d C. maculata – 2500 

mg), and the rats received 6 mL of gelatine jelly per kilogram of bodyweight twice daily, 

which equated to 125 mg/kg/d metformin, 125 mg/kg/d NAC, 30 mg/kg/d C. maculata and 

300 mg/kg/d C. maculata. Due to the palatability of the jelly cubes, the entire treatment dose 

was consumed by the rats within 10 minutes of administration, which was confirmed daily. 

The rats received their respective treatments in two doses at approximately 8h00 and 16h00 

daily. 

 

3.2.1. Streptozotocin induced diabetes 

In order to induce diabetes, 16 hour fasted rats were administered 35 mg/kg body weight 

STZ by intra-peritoneal injection immediately after dissolution of STZ in 0.05 M sterile filtered 

citric acid buffer (pH 4.5). 

 

3.3. Oral glucose tolerance test 

On Day 21 of this in vivo study, an oral glucose tolerance test was performed. Rats were 

fasted overnight for 16 hours (with access to fresh drinking water ad libitum) and fasting 

plasma glucoses were measured as described in section 3.3.1. Thereafter, rats received 

Group Injected with STZ Start treatment Treatment

Normal control N/A Day 0 1 mL distilled water/kg/d

Treated group Day -5 Day 0 -

STZ control 1 mL distilled water/kg/d

Metformin 125 mg/kg/d metformin

NAC 125 mg/kg/d NAC

30 mg/kg/d C. maculata 30 mg/kg/d C. maculata 

300 mg/kg/d C. maculata 300 mg/kg/d C. maculata 

Pre-treated group Day 16 Day 0 -

STZ control 1 mL distilled water/kg/d

Metformin 125 mg/kg/d metformin

NAC 125 mg/kg/d NAC

30 mg/kg/d C. maculata 30 mg/kg/d C. maculata 

300 mg/kg/d C. maculata 300 mg/kg/d C. maculata 
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their daily treatment in gelatine jelly cubes and two hours later were administered a glucose 

bolus of 2 g/kg as a 50 % dextrose solution by oral gavage.  Plasma glucose was measured 

as described in section 3.3.1 at the following time points: 0, 15, 30, 60, 120 and 240 minutes. 

 

3.3.1. Plasma glucose determination 

The tails of the rats were cleaned with damp piece of tissue paper and a drop of blood 

(approximately 10 µL) was obtained from a tail prick. The drop of blood was directly 

transferred into a capillary action glucose test strip and glucose concentration was quantified 

by a handheld glucometer. 

 

3.4. Blood and tissue collection at termination 

On day 22, following 21 days of treatment and the OGTT, rats were anaesthetised by sodium 

pentobarbital intraperitoneal injection (35 mg/kg).  A mid-line abdominal incision was made 

under anaesthesia and a total of 10 ml of blood was collected from each rat from the 

abdominal vena cava. Approximately 8 mL of blood collected per rat was transferred to a 

serum separating tube (SST) and the remaining 2 mL to a K2 ethylenediaminetetraacetic 

acid (EDTA) tube for serum and plasma collection, respectively. Blood samples were placed 

on ice and serum and plasma were later separated by centrifugation (2000 rpm for 15 

minutes at 4 °C) and stored at -20 °C in 2 mL cryogenic vials for future analysis. Pancreata 

and the liver were excised and dissected into two equal halves. One half of each tissue was 

fixed in 10 % buffered formalin for immunohistochemical analysis and the other half was 

snap frozen in liquid nitrogen. The snap frozen tissues were stored at -80 °C. Rats were not 

allowed to recover from anaesthesia and were euthanised by exsanguation and cardiac 

snip. 

 

3.4.1. Fasting plasma insulin determination 

Quantification of insulin in the plasma samples frozen at -20 °C was performed after bringing 

the samples to room temperature using an ELISA kit, as described in section 1.4.1.1. 

 

3.4.1.1. Glucose to insulin ratio 

The glucose to insulin ratio was calculated using fasted glucose and insulin values as 

described by McAuley et al. (2001), and was used to assess insulin sensitivity using arbitrary 

units. The following formula was used: 
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Glucose to insulin ratio = 
𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒

𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛
 

 

3.4.2. Serum triglyceride determination 

Serum triglyceride concentrations were determined by PathCare Medical Diagnostic 

Laboratories (N1 City, Cape Town, South Africa), using a modified method originally 

described by Lofland (1964).  

 

3.4.3. Liver function tests 

In order to assess liver function, serum levels of aspartate aminotransferase (AST), alanine 

transaminase (ALT) and alkaline phosphatase (AP) were quantified by PathCare Medical 

Diagnostic Laboratories. The enzymes were quantified using methods described by the 

International Federation of Clinical Chemistry (1977).  

 

3.5. Antioxidant status 

3.5.1. Serum nitrite quantification 

Nitrite concentrations in rat sera were measured using methods modified from Green et al. 

(1982) and Grisham et al. (1996). Equal amounts of serum and Griess reagent were 

incubated for 15 minutes in a 96 well clear walled assay plate and the absorbance was read 

at 540 nm on a microplate reader (BioTek, ELX800) controlled by Gen5 software. 

 

3.5.2. Serum antioxidant enzyme quantification 

Serum CAT enzyme and GSH quantification were determined using commercially available 

kits from BioVision®, according to the manufacturer’s instruction. 

 

3.5.2.1. Serum catalase determination 

Serum samples were diluted 1:2 with kit assay sample buffer in 96 well clear walled assay 

plates. Equal amounts of hydrogen peroxide were added to each well to react with catalase 

(CAT) present in the serum, producing water and oxygen. A hydrogen peroxide standard 

curve was also generated. A development mix included in the kit, which consists of a 

chromatic development probe as well as horseradish peroxidase, was used to detect the 

amount of hydrogen peroxide not converted (by CAT) to water and oxygen by measuring 

the absorbance at 570 nm on a microplate reader (BioTek, ELX800) controlled by Gen5 
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software. The actual CAT enzyme activity for each sample was calculated using the 

following equation: 

CAT activity (mU/mL) = 
𝐵

30 𝑥 𝑉
 x sample dilution factor 

Where B = decomposed amount of H2O2 (from standard curve) and V = sample volume. 

 

 3.5.2.2. Serum glutathione determination 

Serum samples were thawed on ice and proteins were precipitated using 6 N perchloric 

acid. Thereafter, 6 N potassium hydroxide was added to each sample in order to neutralise 

the perchloric acid. The neutralised samples were then transferred to a black walled 96 well 

plate, along with a GSH standard curve. The samples and standard curve were incubated 

with the dialdehyde probe, o-phthalaldehyde. The reaction of o-phthalaldehyde with GSH 

thiols was measured at ex/em 340/420 nm on a fluorescent microplate reader (BioTek, 

FLX800) controlled by Gen5 software. The actual GSH concentration for each sample was 

calculated by extrapolation from the standard curve generated. 

3.5.3. Hepatic thiobarbituric acid reactive substances 

TBARS in frozen liver tissue was measured to assess the formation of malondialdehyde as 

a result of lipid peroxidation. A weighed amount of frozen liver was homogenised in a 2 mL 

Eppendorf tube with a steel bead at 25 Hz for 1 minute five times, with 1 minute of cooling 

on ice between homogenisation. The tissue lysate was centrifuged (13 000 x g for 10 

minutes at 4 °C) and 150 µL of the supernatant from each sample was transferred to a clear 

walled 96 well assay plate. A standard curve was generated from a 500 µM stock of 1,1,3,3-

tetramethoxypropane. The absorbance of the resultant reaction between 2-thiobarbituric 

acid, which was added to samples and standards, and malondialdehyde was measured at 

532 nm on a microplate reader (BioTek, ELX800) controlled by Gen5 software. The sample 

TBARS concentration was extrapolated from the standard curve generated. 

 

3.5.4. Hepatic nitrotyrosine 

The remaining lysate supernatant from the TBARS assay (section 3.5.3.) was used for 

Western blot analysis of hepatic nitrotyrosine. Western blot analysis was performed as 

described in section 1.7.  
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3.6. Pancreatic islet staining and analysis 

Pancreata fixed in 10 % buffered formalin overnight, were processed in an automated tissue 

processer and were embedded in paraffin wax according to standard histological procedure. 

Sections of approximately 5 µm were cut on a rotary microtome and were attached to 

aminopropyltriethoxysilane coated glass slides. Sections were dewaxed through xylene and 

hydrated in decreasing concentrations of ethanol into distilled water before 

immunohistochemical labelling as described in sections 3.6.1. and 3.6.2 for the MIB-5 

antigen as well as insulin and glucagon double labelling, respectively. Stained sections of 

pancreata observed under the microscope were captured using Leica Qwin Professional 

software. For the MIB-5 labelled sections, brown MIB-5 positive β-cells were counted 

manually. To quantify insulin and glucagon double labelling, alternate fields were scanned 

and subjected to red/green/blue (RGB) colour segmentation in order to facilitate conversion 

to a binary image. The total area of the binary image of the insulin and glucagon double 

labelling was determined using the Leica software (total islet area), as were the specific 

areas of glucagon (brown) and insulin (red) positive islet cells. Insulin and glucagon positive 

cell counts were also determined. 

 

3.6.1. Beta-cell proliferation 

In order to assess proliferation of β-cells in rat pancreata, immunohistochemical labelling of 

the MIB-5 antibody was performed for demonstration of the Ki-67 antigen (Birner et al., 

2001). Endogenous peroxidases were blocked using 3 % hydrogen peroxide and non-

specific binding was blocked using a 1:20 dilution of normal goat serum. Pancreas sections 

were then labelled with MIB-5 monoclonal antibody at a 1:50 dilution. Thereafter, a 

biotinylated anti-mouse secondary link anti-body was applied and positive labelling was 

visualised by a streptavidin complex diaminobenidizine labelling kit. Sections were 

counterstained in haematoxylin and thereafter mounted and coverslipped. 

 

3.6.2. Insulin and glucagon double labelling 

In order to assess islet structure, the labelling method modified from Louw et al. (1997) was 

used in this study. Briefly, the dewaxed and hydrated pancreas sections were double 

labelled following the blocking of endogenous peroxidases and non-specific binding as 

described previously. Following 30 minutes of incubation with the glucagon primary 

antibody, a 1:1000 dilution of biotinylated anti-rabbit IgG and was visualised using the liquid 

diaminobenzidine tetrachloride (DAB) Plus Substrate Chromagen System. For insulin 
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labelling the sections were again blocked, using normal horse serum, after which the insulin 

antibody was applied overnight (16 hours) at 4 °C. The Envision permanent red chromogenic 

substrate kit was used to visualise the binding of insulin antibody to insulin antigen in the 

pancreas tissue section. The number of cells with brown DAB glucagon labelling or the 

permanent red precipitate of the insulin labelling were counted. 
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4. Statistical analysis 

Specific attention was given to correct sample size, appropriate controls and the avoidance 

of type-II errors during the experimental design phase, as per consultation with a 

biostatistician (Ms Ushma Galal, SA Medical Research Council). Results in the in vitro and 

ex vivo components of this study were expressed as the means of three independent 

experiments, with four intra-experimental repeats per experiment. Error bars reflect the 

standard error of the mean. All data were entered into Microsoft Excel spreadsheets to 

generate graphs and GraphPad Prism (version 5.0) was used for analysis. To determine 

significant differences between groups (i.e. p < 0.05), a one-way analysis of variance 

(ANOVA) test was performed, with a Tukey post hoc test. Linear regressions were used to 

extrapolate unknown sample values from standard curves generated. For Western blot 

analysis, biological fold change was additionally used to identify biologically significant 

changes in protein expression. Changes in biological fold were determined using a Student’s 

t-test. For the in vivo component of this study, results were expressed as the mean of eight 

values per group, with error bars reflecting the standard errors of the respective means. 

Differences between rat treatment groups were determined using a one-way ANOVA and 

Tukey post hoc test. The areas under the curve for the OGTTs were determined using a 

trapezoidal method. Again, linear regressions were used to extrapolate unknown sample 

values from standard curves generated when assessing blood parameters measured. 

 

Annotation: 

* = p < 0.05; ** = p < 0.01; *** = p < 0.001 compared to the respective normal control. 

 

† = p < 0.05; †† = p < 0.01; ††† = p < 0.001 compared to the respective stressor control (i.e. 

STZ, PA, CM or MS where appropriate). 
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1. In vitro results 

The efficacy of the aqueous extract of unfermented C. maculata as well as of its major 

xanthone, mangiferin, and NAC in ameliorating RIN-5F cell viability, restoring function and 

improving oxidative stress status was assessed in vitro. Following induction of cytotoxicity 

in RIN-5F cells, viability was assessed using the MTT and ATP assays, as well as annexin-

V and propidium iodide fluorescence. Insulin secretion, cellular calcium and RIN-5F cell 

proliferation were parameters used to assess cell function. The anti-oxidative status of these 

cells was determined by measuring DAF and DHE fluorescence as well as cellular SOD 

activity. For all in vitro experimentation data are expressed as the mean of three independent 

experiments, with four intra-experimental repeats each, ± the standard error of the mean. 

The normal controls refer to cells not exposed to stressors or treatments. 

 

1.1. Toxicity in RIN-5F cells 

The induction of toxicity in RIN-5F cells was based on conditions to which β-cells are 

exposed in T2D; i.e. glucotoxicity, lipotoxicity, inflammation and oxidative stress conditions. 

The response of RIN-5F cells to increasing concentrations of these toxic stressors was 

assessed by measuring cell viability using the MTT assay. The normal control was set at 

100 % for these toxicity data. 

 

In the glucotoxicity investigations, compared to cells exposed to normal glucose 

concentrations (5.5 mM glucose), RIN-5F cells exposed to both 17 mM and 25 mM glucose 

for 24 hours showed reduced MTT positivity, albeit not lower than 70 % and thus not meeting 

the LC50 requirement of cytotoxicity for this study (72.16 % ± 1.00 and 79.83 % ± 2.56, 

respectively) (Fig. 26 A). The glucose concentrations tested had no effect on cellular ATP 

(Fig. 26 B). No toxic effect was elicited by the 11 or 35 mM glucose concentrations. 

 

The effect of lipotoxicity was assessed by exposing RIN-5F cells to a range of PA 

concentrations. Compared to the normal control, a reduction in MTT positivity and thus cell 

viability was observed in cells exposed to 750 µM and 1000 µM PA for 24 hours (61.68 % ± 

3.18 and 48.84 % ± 2.25, respectively) (Fig. 27). 

 

As a known inducer of cellular ROS in β-cells, STZ was used to induce oxidative stress in 

the RIN-5F cells. Reduced MTT positivity of the RIN-5F cells following 24 hours exposure 
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to 5 mM, 10 mM, 20 mM and 40 mM STZ was observed compared to the normal control 

(81.44 % ± 2.69, 58.59 % ± 2.68, 36.60 % ± 1.85 and 31.32 % ± 1.23, respectively) (Fig. 

28). 

 

In order to induce an inflammatory state in the RIN-5F cells, IFN-γ, IL-1β and TNF-α pro-

inflammatory cytokines were used. Although exposure of RIN-5F cells to the cytokines 

individually at the concentrations tested for 24 hours had no effect on MTT positivity (Fig. 29 

A), in combination these cytokines (CM) reduced MTT positivity when compared to the 

normal control (73.42 % ± 2.00, 56.16 % ± 1.92 and 39.90 % ± 2.82, respectively) (Fig. 29 

B). 

 

A multi-factorial stress combination of PA, cytokines and STZ was also assessed. Compared 

to the normal control, all three MS concentrations reduced MTT positivity in RIN-5F cells 

(52.22 % ± 4.55, 23.69 % ± 0.44 and 0.57 % ± 0.04, respectively) (Fig. 30). 

 

Optimised concentrations of each of the stressors (i.e. STZ, PA, CM and MS) were selected, 

based on the consistent reduction of RIN-5F cell viability by approximately 50 % were 

selected (Table 3). Interestingly, glucose (at the concentrations and under the conditions 

tested) was not sufficiently cytotoxic in these RIN-5F cells (MTT positivity was not sufficiently 

and consistently reduced by elevated glucose concentrations) and was thus excluded from 

the rest of the study. Lack of a toxic response as observed in the MTT assay was confirmed 

by the ATP assay, which demonstrated no glucose induced cytotoxicity (Fig. 26 B). 
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A.  

B.  

Figure 26. The effect of increasing glucose concentrations on RIN-5F cell viability 

after 24 hours, as measured by MTT (A) and ATP (B) assays. 

RIN-5F cells were exposed to 5.5 (normal control), 11, 17, 25 and 35 mM glucose for 24 

hours. Thereafter, cell viability was assessed using the MTT and ATP assays. 

Where *** = p < 0.001 compared to the normal control. 
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Figure 27. The effect of increasing PA concentrations on RIN-5F cell viability after 24 

hours, as measured by the MTT assay. 

RIN-5F cells were exposed to 0 (normal control), 100, 250, 500, 750 and 1000 µM PA for 

24 hours. Thereafter, cell viability was assessed using the MTT assay. 

Where *** = p < 0.001 compared to the normal control. 
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Figure 28. The effect of increasing STZ concentrations on RIN-5F cell viability after 24 

hours, as measured by the MTT assay. 

RIN-5F cells were exposed to 0 (normal control), 1, 5, 10, 20 and 40 mM STZ for 24 hours. 

Thereafter, cell viability was assessed using the MTT assay. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control. 

  

Stellenbosch University  http://scholar.sun.ac.za



102 

 

A.  

B.  
Figure 29. The effect of cytokines individually (A) and in combination (B) on RIN-5F 

cell viability after 24 hours exposure. 

Cytokine combinations: 

A - 0.1 ng/mL IFN-γ + 0.01 ng/mL IL-1β + 0.11 ng/mL TNF-α. 

B - 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α. 

C - 10 ng/mL IFN-γ + 1 ng/mL IL-1β + 11 ng/mL TNF-α. 

RIN-5F cells were exposed to IFN-γ, IL-1β and TNF-α individually and in combination for 24 

hours, after which, cell viability was assessed using the MTT assay. 

Where *** = p < 0.001 compared to the normal control. 
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Figure 30. The effect of a combination of PA, STZ and cytokines on RIN-5F cell 

viability after 24 hours exposure. 

Multi-stress combinations: 

A – 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL IL-1β + 0.11 ng/mL TNF-α. 

B – 375 µM PA + 5 mM STZ + 0.5 ng/mL IFN-γ + 0.05 ng/mL IL-1β + 0.55 ng/mL TNF-α. 

C – 750 µM PA + 10 mM STZ + 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α. 

RIN-5F cells were exposed to combinations of the PA, STZ and cytokines for 24 hours. 

Thereafter, cell viability was assessed using the MTT assay. 

Where *** = p < 0.001 compared to the normal control. 

 

Table 3. Optimised concentrations of β-cell stressors

 

 

  

Cytotoxin Concentration

Streptozotocin 10 mM

Palmitic acid 750 µM

Cytokine mixture 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α

Multi-stress 75 µM PA + 1 mM STZ  + 0.1 ng/mL IFN-γ + 0.01 ng/mL IL-1β + 0.11 ng/mL TNF-α
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1.2. Cell viability 

Once an optimal toxic concentration was identified for each of the stressors (Table 3), the 

efficacy of a range of concentrations of the aqueous, unfermented C. maculata extract, 

mangiferin and NAC on RIN-5F cell viability was assessed by measuring MTT positivity, as 

well as by measuring cellular ATP. The normal controls refer to cells not exposed to 

stressors or treatments. 

 

1.2.1. The MTT and ATP assays 

In the MTT and ATP screening assays, the normal control was set at 100 %. 

 

1.2.1.1. Screening of Cyclopia maculata extract 

Compared to the normal control, RIN-5F cell viability was decreased following exposure to 

the STZ control (10 mM for 24 hours), as measured by the MTT (40.38 % ± 1.19) (Fig. 31 

A) and ATP (53.05 % ± 3.32) (Fig. 31 B) assays. Subsequent exposure of STZ exposed 

cells to 0.01 µg/mL, 1 µg/mL, 10 µg/mL and 100 µg/mL C. maculata extract for 24 hours 

increased RIN-5F cell MTT positivity compared to the STZ control (93.62 % ± 3.26, 110.52 

% ± 3.57, 107.60 % ± 4.86 and 145.25 % ± 7.74, respectively) (Fig. 31 A). The extract 

similarly improved cell viability compared to the STZ control as measured by the ATP assay 

at 0.001 µg/mL, 0.01 µg/mL, 1 µg/mL, 10 µg/mL and 100 µg/mL concentrations (113.53 % 

± 7.07, 108.80 % ± 8.20, 107.12 % ± 6.37, 115.76 % ± 10.92 and 113.14 % ± 5.62, 

respectively) (Fig. 31 B).  

 

RIN-5F cell viability was decreased following exposure to the PA control (750 µM for 24 

hours) as measured by the MTT (45.28 % ± 1.74) (Fig. 32 A) and ATP (42.13 % ± 4.24) (Fig. 

32 B) assays. PA treated cells exposed to 0.001 µg/mL, 0.01 µg/mL, 1 µg/mL, 10 µg/mL and 

100 µg/mL C. maculata extract for 24 hours showed improved RIN-5F cell viability compared 

to the PA control, as measured by the MTT assay (79.18 % ± 5.56, 133.58 % ± 5.31, 151.84 

% ± 5.04, 160.43 % ± 7.35 and 138.30 % ± 4.13, respectively) (Fig. 32 A) and the ATP assay 

(110.65 % ± 9.07, 102.00 % ± 9.65, 121.80 % ± 10.02, 128.05 % ± 9.26 and 119.64 % ± 

6.29, respectively) (Fig. 32 B). 

 

The CM control (comprising 1 ng/mL IFN-γ, 0.1 ng/mL IL-1β and 1.1 ng/mL TNF-α) reduced 

RIN-5F cell viability after 24 hours exposure, as measured by the MTT (39.53 % ± 1.75) 

(Fig.33 A) and ATP (58.49 % ± 3.90) (Fig. 33 B) assays. So too did the MS control 
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combination of STZ, PA and CM reduce RIN-5F cell viability as measured by the MTT (45.86 

% ± 3.22) (Fig. 34 A) and ATP (53.41 % ± 1.03) (Fig. 34 B) assays. The extract did not 

ameliorate either CM or MS induced reductions in MTT positivity and ATP content in RIN-

5F cells (Fig. 33 and 34, respectively).  

 

This component of the study demonstrated that the extract was able to ameliorate STZ (Fig. 

31) and PA (Fig. 32) induced cytotoxicity in RIN-5F cells, but not toxicity induced by CM 

(Fig. 33) and MS (Fig. 34). 
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A.  

B.  

Figure 31. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to STZ and C. maculata extract, respectively. 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to increasing 

concentrations of the extract in fresh media for 24 hours. Cell viability was then assessed 

using the MTT and ATP assays. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

and ††† = p < 0.001 compared to STZ. (Data from Fig. 31 B has been published in a peer-

reviewed journal; see addendum 1). 
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A.  

B.  

Figure 32. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to PA and C. maculata extract, respectively. 

RIN-5F cells were first exposed to 750 µM for 24 hours and then to increasing concentrations 

of the extract in fresh media for 24 hours. Cell viability was then assessed using the MTT 

and ATP assays. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † 

= p < 0.05, †† = p < 0.01 and ††† = p < 0.001 compared to PA. 
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A.  

B.  

Figure 33. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to CM and C. maculata extract, respectively. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to increasing concentrations of the extract in fresh media 

for 24 hours. Cell viability was then assessed using the MTT and ATP assays. 

Where *** = p < 0.001 compared to the normal control.
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A.  

B.  

Figure 34. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to MS and C. maculata extract, respectively. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to increasing concentrations 

of the extract in fresh media for 24 hours. Cell viability was then assessed using the MTT 

and ATP assays. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control. 
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1.2.1.2. Screening of mangiferin 

Compared to the normal control, RIN-5F cell viability was decreased following exposure to 

the STZ control, as measured by the MTT (41.49 % ± 1.01) (Fig. 35 A) and ATP (39.39 % ± 

2.46) (Fig. 35 B) assays. Compared to the STZ control in the MTT assay, all concentrations 

of mangiferin tested (i.e. 0.001 µg/mL, 0.01 µg/mL, 1 µg/mL, 10 µg/mL and 100 µg/mL) 

improved cell viability, but were still reduced when compared to the normal control (72.76 % 

± 1.95, 66.49 % ± 2.63, 63.92 % ± 2.01 and 65.12 % ± 1.63, respectively) (Fig. 35 A). Cellular 

ATP was not improved by the concentrations of mangiferin tested following exposure to STZ 

(Fig. 35 B).  

 

RIN-5F cell viability was also decreased following exposure to the PA control for 24 hours, 

as measured by the MTT (45.95 % ± 1.49) (Fig. 36 A) and ATP (28.61 % ± 2.03) (Fig. 36 B) 

assays. So too was cell viability reduced by exposure to the CM control as measured by the 

MTT (57.20 % ± 1.60) (Fig. 37 A) and ATP (42.52 % ± 1.33) (Fig. 37 B) assays. Mangiferin 

had no effect on the viability of PA and CM exposed RIN-5F cells, as measured by either 

the MTT or ATP assays (Fig. 36 and 37). 

 

The MS control reduced RIN-5F cell viability, as measured by the MTT (47.27 % ± 1.72) 

(Fig. 38 A) and ATP (57.93 % ± 3.25) (Fig. 38 B) assays. Compared to the MS control, 

subsequent exposure of MS treated cells to 100 µg/mL mangiferin for 24 hours improved 

RIN-5F cell viability as measured by the MTT assay (79.14 % ± 14.10) (Fig. 38 A). None of 

the concentrations of mangiferin tested ameliorated the reduction in ATP induced by MS 

(Fig. 38 B). 

 

Mangiferin was mostly ineffective in ameliorating stressor induced toxicity in the RIN-5F cells 

in this study. Some improvement in MTT positivity was, however, observed following 

mangiferin treatment in cells exposed to STZ (Fig. 35 A) and MS (Fig. 38 A), with no 

measurable effect on cellular ATP.  
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A.  

B.  

Figure 35. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to STZ and mangiferin, respectively. 

Where *** = p < 0.001 compared to the normal control; and ††† = p < 0.001 compared to 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to increasing 

concentrations of mangiferin in fresh media for 24 hours. Cell viability was then assessed 

using the MTT and ATP assays. 

STZ. (Data from Fig. 35 B has been published in a peer-reviewed journal; see addendum 

1). 
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A.  

B.  

Figure 36. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to PA and mangiferin, respectively.  

RIN-5F cells were first exposed to 750 µM for 24 hours and then to increasing concentrations 

of mangiferin in fresh media for 24 hours. Cell viability was then assessed using the MTT 

and ATP assays. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control. 
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A.  

B.  

Figure 37. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to CM and mangiferin, respectively. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to increasing concentrations of mangiferin in fresh media 

for 24 hours. Cell viability was then assessed using the MTT and ATP assays. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control. 
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A.  

B.  

Figure 38. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to MS and mangiferin, respectively. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to increasing concentrations 

of mangiferin in fresh media for 24 hours. Cell viability was then assessed using the MTT 

and ATP assays. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and †† = p < 0.01 

compared to MS. 
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1.2.1.3. Screening of N-acetyl cysteine 

Compared to the normal control, RIN-5F cell viability was decreased following exposure to 

the STZ control, as measured by the MTT (64.52 % ± 2.04) (Fig. 39 A) and ATP (49.79 % ± 

4.51) (Fig. 39 B) assays. Subsequent exposure of STZ treated cells to 0.01 mM, 0.1 mM, 1 

mM, 10 mM and 20 mM NAC for 24 hours improved RIN-5F cell viability as measured by 

the MTT assay (104.29 % ± 2.85, 138.65 % ± 3.68, 159.68 % ± 6.60, 165.16 % ± 5.20 and 

141.51 % ± 5.15, respectively). NAC also improved cell viability as measured by the ATP 

assay at 0.01 mM, 0.1 mM and 1 mM concentrations (103.47 % ± 6.42, 103.62 % ± 6.70 

and 95.77 % ± 4.94, respectively) (Fig. 39 B). Compared to the normal control, cellular ATP 

was still reduced in cells treated with the higher concentrations of 10 mM and 20 mM NAC 

(73.07 % ± 5.28 and 34.97 % ± 2.68, respectively) (Fig. 39 B). 

 

Similarly, RIN-5F cell viability was decreased following exposure to the PA control, as 

measured by the MTT (41.90 % ± 3.17) (Fig. 40 A) and ATP (52.11 % ± 2.82) (Fig. 40 B) 

assays. Subsequent exposure of PA treated cells to 0.1 mM, 1 mM, 10 mM and 20 mM NAC 

for 24 hours improved RIN-5F cell viability as measured by the MTT assay (120.69 % ± 6.49, 

126.94 % ± 6.78, 144.76 % ± 4.96 and 143.08 % ± 2.31, respectively) (Fig. 40 A). NAC 

improved cell viability as measured by the ATP assay at 0.01 mM, 0.1 mM and 1 mM 

concentrations compared to the PA control (115.18 % ± 7.06, 88.67 % ± 5.30 and 107.90 % 

± 4.91, respectively) (Fig. 40 B), however, there was no improvement in ATP at the 10 mM 

and 20 mM NAC concentrations (70.41 % ± 6.34 and 34.64 % ± 2.98, respectively) (Fig. 40 

B).  

 

RIN-5F cell viability was also decreased following exposure to the CM control, as measured 

by the MTT (36.58 % ± 1.23) (Fig. 41 A) and ATP (63.21 % ± 3.31) (Fig. 41 B) assays. No 

improvement in the CM induced reduction of MTT positivity was observed following NAC 

exposure (Fig. 41 A). NAC improved cell viability of cells exposed to CM, as measured by 

the ATP assay at 0.01 mM, 0.1 mM and 1 mM concentrations (109.07 % ± 7.39, 99.97 % ± 

6.37 and 94.19 % ± 5.89, respectively) (Fig. 41 B), normalising these values. The 10 mM 

and 20 mM concentrations of NAC had no ameliorative effect on cellular ATP in cells 

exposed to CM (63.09 % ± 3.41 and 40.42 % ± 2.31, respectively) (Fig. 41 B). 

 

Compared to the normal control, RIN-5F cell viability was decreased following exposure to 

the MS control, as measured by the MTT (45.81 % ± 2.27) (Fig. 42 A) and ATP (65.67 % ± 
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4.32) (Fig. 42 B) assays. All concentrations of NAC tested failed to ameliorate the MS 

induced reduction in MTT positivity and cellular ATP (Fig. 42 A and B, respectively). Both 

the 10 mM and 20 mM NAC concentrations reduced cellular ATP compared to both the 

normal and MS controls (35.57 % ± 2.48 and 20.93 % ± 1.61, respectively) (Fig. 42 B). 

 
Improved cell viability was observed in RIN-5F cells exposed to STZ (Fig. 39) and PA (Fig. 

40) when exposed to NAC, with some amelioration of CM induced reduction in cellular ATP 

(Fig. 41 B). 
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A.  

B.  

Figure 39. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to STZ and NAC, respectively. 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to increasing 

concentrations of NAC in fresh media for 24 hours. Cell viability was then assessed using 

the MTT and ATP assays. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and 

††† = p < 0.001 compared to STZ. 
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A.  

B.  

Figure 40. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to PA and NAC, respectively. 

RIN-5F cells were first exposed to 750 µM for 24 hours and then to increasing concentrations 

of NAC in fresh media for 24 hours. Cell viability was then assessed using the MTT and ATP 

assays. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

and ††† = p < 0.001 compared to PA. 
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A.  

B.  

Figure 41. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to CM and NAC, respectively. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to increasing concentrations of NAC in fresh media for 

24 hours. Cell viability was then assessed using the MTT and ATP assays. 

Where *** = p < 0.001 compared to the normal control; and †† = p < 0.01 and ††† = p < 

0.001 compared to CM. 

 

Stellenbosch University  http://scholar.sun.ac.za



120 

 

A.  

B.  

Figure 42. MTT (A) and ATP (B) RIN-5F cell viability following consecutive 24 hour 

exposures of cells to MS and NAC, respectively. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to increasing concentrations 

of NAC in fresh media for 24 hours. Cell viability was then assessed using the MTT and ATP 

assays. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and †† = p < 0.01 

and ††† = p < 0.001 compared to MS. 
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1.2.2. Annexin-V and propidium iodide fluorescence 

Optimised concentrations of the extract (10 µg/mL), mangiferin (100 µg/mL) and NAC (0.01 

mM) were then assessed to determine their effects on RIN-5F β-cell apoptosis (annexin-V 

fluorescence) as well as late apoptosis and necrosis (propidium iodide fluorescence). The 

treatment concentrations were selected based on the lowest, most effective concentrations 

in the MTT and ATP screening assays (section 1.2.1.). 

 

Compared to the normal control, both annexin-V (30.67 RFU ± 0.61 vs. 42.00 RFU ± 0.93) 

(Fig. 43 A) and propidium iodide (49.83 RFU ± 1.25 vs. 63.50 RFU ± 1.09) (Fig. 43 B) 

fluorescence were increased following exposure of RIN-5F cells to the STZ control. 

Exposure to C. maculata extract reduced annexin-V fluorescent intensity that was increased 

by STZ (30.83 RFU ± 1.22) (Fig. 43 A), while NAC reduced both annexin-V (31.33 RFU ± 

1.26) (Fig. 43 A) and propidium iodide (59.33 RFU ± 0.49) (Fig. 43 B) increases in 

fluorescence. Mangiferin failed to ameliorate the STZ induced increase in annexin-V (Fig. 

43 A), with the extract, mangiferin and NAC failing to reduce the STZ induced increase in 

propidium iodide fluorescence (Fig. 43 B). 

 

When compared to the normal control, the PA control increased both annexin-V (30.67 RFU 

± 0.61 vs. 42.00 RFU ± 1.55) (Fig. 44 A) and propidium iodide (49.83 RFU ± 1.25 vs. 56.17 

RFU ± 0.70) (Fig. 44 B) fluorescence. Exposure to C. maculata extract reduced the PA 

induced annexin-V fluorescent intensity (34.67 RFU ± 1.15) (Fig. 44 A), while NAC reduced 

both annexin-V (34.50 RFU ± 0.96) (Fig. 44 A) and propidium iodide (41.17 RFU ± 1.99) 

(Fig. 44 B) increases in fluorescence. Mangiferin failed to ameliorate increased annexin-V 

and propidium iodide fluorescence induced by PA (Fig. 44). 

 

Both annexin-V (30.67 RFU ± 0.61 vs. 45.33 RFU ± 0.84) (Fig. 45 A) and propidium iodide 

(49.83 RFU ± 1.25 vs. 54.50 RFU ± 0.76) (Fig. 45 B) fluorescence were increased compared 

to the normal control, following exposure of RIN-5F cells to the CM control. NAC reduced 

this increase in propidium iodide fluorescent intensity (47.17 RFU ± 0.48) (Fig. 45 B). Cells 

treated with the extract, mangiferin and NAC failed to ameliorate increased annexin-V 

fluorescence induced by CM (Fig. 45 A). 

 
Compared to the normal control, both annexin-V (30.67 RFU ± 0.61 vs. 44.67 RFU ± 1.23) 

(Fig. 46 A) and propidium iodide (49.83 RFU ± 1.25 vs. 58.00 RFU ± 1.06) (Fig. 46 B) 
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fluorescence were increased following exposure of RIN-5F cells to the MS control. Exposure 

to NAC reduced this increased propidium iodide fluorescent intensity (42.50 RFU ± 1.18) 

(Fig. 46 B). The extract, mangiferin and NAC failed to ameliorate the increased annexin-V 

fluorescence induced by MS (Fig. 46 A), while the extract and mangiferin had no effect on 

propidium iodide fluorescence in these cells (Fig. 46 B). 

 
The extract and NAC ameliorated STZ (Fig. 43 A) and PA induced (Fig. 44 A) apoptosis as 

observed in a reduction in annexin-V fluorescence, with NAC also reducing CM (Fig. 45 B) 

and MS induced (Fig. 46 B) increases in propidium iodide.  
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A.  

B.  

Figure 43. Annexin-V (A) and propidium iodide (B) fluorescence of RIN-5F cells 

exposed to STZ and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Cell viability was then 

assessed using the annexin-V and propidium iodide assay. 

Where *** = p < 0.001 compared to the normal control; and † = p < 0.05 and ††† = p < 0.001 

compared to STZ. 
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A.  

B.  

Figure 44. Annexin-V (A) and propidium iodide (B) fluorescence of RIN-5F cells 

exposed to PA and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Cell viability was then 

assessed using the annexin-V and propidium iodide assay. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and 

††† = p < 0.001 compared to PA. 
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A.  

B.  

Figure 45. Annexin-V (A) and propidium iodide (B) fluorescence of RIN-5F cells 

exposed to CM and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM 

NAC in fresh media for 24 hours. Cell viability was then assessed using the annexin-V and 

propidium iodide assay. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control; and ††† = p < 0.001 

compared to CM. 
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A.  

B.  
Figure 46. Annexin-V (A) and propidium iodide (B) fluorescence of RIN-5F cells 

exposed to MS and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to 10 µg/mL extract, 100 

µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Cell viability was then 

assessed using the annexin-V and propidium iodide assay. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control; and ††† = p < 0.001 

compared to MS. 
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1.2.3. Summary of the effect of treatment in vitro on RIN-5F cell viability 

As summarised in Table 4, treatment of RIN-5F cells exposed to STZ and PA with the C. 

maculata extract, as well as NAC improved viability by increasing cellular ATP and MTT 

positivity and decreasing apoptosis (as seen in a reduction in annexin-V fluorescence). Only 

NAC showed the ability to improve CM induced toxicity in RIN-5F cells, by increasing cellular 

ATP and decreasing apoptosis. NAC also ameliorated late stage apoptosis and necrosis (as 

seen in a reduction of propidium iodide fluorescence) in RIN-5F cells exposed to CM and 

MS. Mangiferin showed some amelioration of STZ and MS induced cytotoxicity by 

increasing MTT positivity. 

 

Table 4. In vitro RIN-5F cell viability summary 

 

 C. maculata Mangiferin NAC 

STZ 

MTT ↑ ↑ ↑ 

ATP ↑ - ↑ 

Annexin-V ↓ - ↓ 

PI - - ↓ 

PA 

MTT ↑ - ↑ 

ATP ↑ - ↑ 

Annexin-V ↓ - ↓ 

PI - - ↓ 

CM 

MTT - - - 

ATP - - ↑ 

Annexin-V - - ↓ 

PI - - - 

MS 

MTT - ↑ - 

ATP - - - 

Annexin-V - - - 

PI - - ↓ 
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1.3. Cell function 

The effect of optimised concentrations of C. maculata extract, mangiferin and NAC were 

also assessed in terms of RIN-5F cellular function by determining their effect on basal (5.5 

mM glucose) and glucose stimulated (35 mM glucose) insulin secretion, cellular calcium and 

proliferation. 

 

1.3.1. Insulin secretion assay 

Exposure of RIN-5F cells to STZ (Fig. 47 A) and PA (Fig. 48 A) and treatment with C. 

maculata, mangiferin and NAC did not affect basal insulin secretion when compared to the 

normal control, however, insulin secretion was increased in the STZ control compared to the 

normal control in glucose stimulated RIN-5F cells (21.96 ng/mL ± 0.58 vs. 18.31 ng/mL ± 

0.56) (Fig. 47 B). Elevated insulin secretion induced by STZ was reduced by treatment with 

C. maculata extract (17.51 ng/mL ± 0.35), while mangiferin and NAC had no effect (Fig. 47 

B). 

 

Compared to the elevated, albeit not significant, insulin concentration in cells exposed to the 

PA control, insulin secretion in glucose stimulated RIN-5F cells was reduced by treatment 

with C. maculata extract and mangiferin (24.78 ng/mL ± 0.30 vs. 18.55 ng/mL ± 0.57 and 

18.78 ng/mL ± 0.98, respectively), but not by NAC (Fig. 48 B). 

 

Exposure of RIN-5F cells to the CM control and treatment with C. maculata, mangiferin and 

NAC did not affect basal (Fig. 49 A) or glucose stimulated (Fig. 49 B) insulin secretion.  

 

Exposure of RIN-5F cells to MS and subsequent treatment with mangiferin increased basal 

insulin secretion in RIN-5F cells compared to the normal control (10.12 ng/mL ± 0.34 vs. 

8.46 ng/mL ± 0.31) (Fig. 50 A). Following a reduction in glucose stimulated insulin secretion 

by MS compared to the normal control (15.86 ng/mL ± 0.09 vs. 18.31 ng/mL ± 0.56) (Fig. 50 

B), mangiferin increased glucose stimulated insulin secretion compared to both the normal 

and MS controls (20.98 ng/mL ± 0.60) (Fig. 50 B). NAC increased glucose stimulated insulin 

secretion compared to the MS control (18.74 ng/mL ± 0.33) (Fig. 50 B), with no effect 

observed for the C. maculata extract. 

 

Basal insulin secretion of RIN-5F cells was not affected by the stressors used in this study. 

Glucose stimulated insulin secretion was, however, increased by STZ (Fig. 47 A) and to a 
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lesser extent, by PA (not significant) (Fig. 48 A). The extract normalised glucose stimulated 

insulin secretion in STZ (Fig. 47 B), PA (Fig. 48 B) and MS (Fig. 50 B) exposed cells. 

Mangiferin decreased the PA induced increase in glucose stimulated insulin secretion (Fig. 

48 B) and, along with NAC, increased glucose stimulated insulin secretion in MS exposed 

cells (Fig. 50 B). 
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A.  

B.  

Figure 47. Basal (A) and glucose stimulated (B) insulin secretion of RIN-5F cells 

exposed to STZ and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Basal and glucose 

stimulated insulin secretion was then determined. 

Where * = p < 0.05 compared to the normal control; and †† = p < 0.01 compared to STZ. 
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A.  

B.  

Figure 48. Basal (A) and glucose stimulated (B) insulin secretion of RIN-5F cells 

exposed to PA and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Basal and glucose 

stimulated insulin secretion was then determined. 

Where † = p < 0.05 compared to PA. 
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A.  

B.  

Figure 49. Basal (A) and glucose stimulated (B) insulin secretion of RIN-5F cells 

exposed to CM and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM 

NAC in fresh media for 24 hours. Basal and glucose stimulated insulin secretion was then 

determined. 

Stellenbosch University  http://scholar.sun.ac.za



133 

 

A.  

B.  

Figure 50. Basal (A) and glucose stimulated (B) insulin secretion of RIN-5F cells 

exposed to MS and subsequently treated with C. maculata (C. mac.), mangiferin and 

NAC. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to 10 µg/mL extract, 100 

µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Basal and glucose 

stimulated insulin secretion was then determined. 

Where * = p < 0.05 compared to the normal control; and † = p < 0.05 and ††† = p < 0.001 

compared to MS. 
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1.3.2. Cellular calcium fluorescent assay 

Compared to the normal control, cellular calcium was reduced following exposure of RIN-

5F cells to the STZ control (168.83 RFU ± 2.17 vs. 142.17 RFU ± 1.35) (Fig. 51) and the PA 

control (156.50 RFU ± 1.23 vs. 143.50 RFU ± 1.48) (Fig. 52). Cyclopia maculata extract 

increased the reduced cellular calcium content (161.67 RFU ± 5.15), while mangiferin failed 

to ameliorate the STZ induced reduction in cellular calcium (Fig. 51). The extract increased 

cellular calcium content when compared to the PA control (166.67 RFU ± 1.48) while 

mangiferin and NAC failed to ameliorate the PA induced reduction in cellular calcium (Fig. 

52). 

 
Exposure of RIN-5F cells to the CM control reduced cellular calcium content (154.00 RFU ± 

1.93 vs. 129.67 RFU ± 5.77) (Fig. 53), while NAC increased cellular calcium content (151.67 

RFU ± 3.68), with the extract and mangiferin treatment failing to ameliorate the CM induced 

reduction in calcium content (Fig. 53). 

 
Compared to the normal control, RIN-5F cells exposed to the MS control had reduced 

cellular calcium (165.50 RFU ± 0.99 vs. 153.67 RFU ± 1.56) (Fig. 54). The extract, 

mangiferin and NAC failed to ameliorate the reduction in calcium induced by MS (Fig. 54). 

 
The C. maculata extract and NAC ameliorated both STZ (Fig. 51) and PA (Fig. 52) induced 

reduction in cellular calcium, with NAC increasing cellular calcium in CM exposed cells (Fig. 

53).  
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Figure 51. Cellular calcium content of RIN-5F cells exposed to STZ and subsequently 

treated with C. maculata (C. mac.), mangiferin and NAC. 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Thereafter, cellular 

calcium was quantified. 

Where ** = p < 0.01 compared to the normal control; and † = p < 0.05 compared to STZ. 
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Figure 52. Cellular calcium content of RIN-5F cells exposed to PA and subsequently 

treated with C. maculata (C. mac.), mangiferin and NAC. 

RIN-5F cells were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Thereafter, cellular 

calcium was quantified. 

Where * = p < 0.05 and ** = p < 0.01 compared to the normal control; and ††† = p < 0.001 

compared to PA. 
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Figure 53. Cellular calcium content of RIN-5F cells exposed to CM and subsequently 

treated with C. maculata (C. mac.), mangiferin and NAC. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM 

NAC in fresh media for 24 hours. Thereafter, cellular calcium was quantified. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and †† = p < 0.01 

compared to CM. 
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Figure 54. Cellular calcium content of RIN-5F cells exposed to MS and subsequently 

treated with C. maculata (C. mac.), mangiferin and NAC. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to 10 µg/mL extract, 100 

µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Thereafter, cellular calcium 

was quantified. 

Where *** = p < 0.001 compared to the normal control; and † = p < 0.05 compared to MS. 
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1.3.3. Cell proliferation assay 

The STZ control induced a reduction in cell proliferation compared to the normal control 

(292.03 fmol ± 8.12 vs. 470.35 fmol ± 25.03) (Fig. 55). Compared to the STZ control after 

24 hours, both C. maculata extract and NAC increased cell proliferation, as measured by 

the incorporation of tritiated thymidine into RIN-5F cells (394.61 fmol ± 9.15 and 463.59 fmol 

± 20.92, respectively) (Fig. 55).  

 

Compared to the normal control, a decrease in tritiated thymidine incorporation into RIN-5F 

cells after 24 hours exposure to the PA control was observed (305.78 fmol ± 18.50 vs. 

165.79 fmol ± 4.94) (Fig. 56). Cyclopia maculata extract, mangiferin and NAC increased the 

reduction in cell proliferation (283.76 fmol ± 13.63, 336.66 fmol ± 27.43 and 336.79 fmol ± 

163.56, respectively) (Fig. 56). 

 

Following a decrease in tritiated thymidine incorporation into RIN-5F cells after 24 hours 

exposure to the CM control compared to the normal control (102.05 fmol ± 7.42 vs. 176.94 

fmol ± 7.89), C. maculata extract, mangiferin and NAC increased the cell proliferation 

(198.08 fmol ± 14.45, 191.33 fmol ± 3.74 and 168.89 fmol ± 6.67, respectively) (Fig. 57). 

 
Both C. maculata extract and NAC increased RIN-5F cell proliferation compared to the MS 

control (353.02 fmol ± 26.53 and 447.63 fmol ± 16.56 vs. 214.62 fmol ± 5.39, respectively) 

that was initially reduced from the normal control (353.82 fmol ± 8.11) by 24 hours exposure 

to MS (Fig. 58). 

 
The extract and NAC ameliorated the reduction of cell proliferation induced by STZ (Fig. 55), 

PA (Fig. 56), CM (Fig. 57) and MS (Fig. 58). Mangiferin was effective at improving cell 

proliferation in PA and CM exposed RIN-5F cells only.  
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Figure 55. The effect of C. maculata extract (C. mac.), NAC and mangiferin on cell 

proliferation following STZ-induced cytotoxicity. 

RIN-5F cell proliferation was measured following exposure first to 10 mM STZ for 24 hours 

and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 

24 hours.  

Where *** = p < 0.001 compared to the normal control; and †† = p < 0.01 and ††† = p < 

0.001 compared to STZ. 
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Figure 56. The effect of C. maculata extract (C. mac.), NAC and mangiferin on cell 

proliferation following PA-induced cytotoxicity. 

RIN-5F cell proliferation was measured following exposure first to 750 µM PA for 24 hours 

and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 

24 hours.  

Where *** = p < 0.001 compared to the normal control; and ††† = p < 0.001 compared to 

PA. 
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Figure 57. The effect of C. maculata extract (C. mac.), NAC and mangiferin on cell 

proliferation following CM-induced cytotoxicity. 

RIN-5F cell proliferation was measured following exposure first to 1 ng/mL IFN-γ + 0.1 ng/mL 

IL-1β + 1.1 ng/mL TNF-α in combination for 24 hours and then to 10 µg/mL extract, 100 

µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. 

Where *** = p < 0.001 compared to the normal control; and ††† = p < 0.001 compared to 

CM. 

 

  

Stellenbosch University  http://scholar.sun.ac.za



143 

 

 

Figure 58. The effect of C. maculata extract (C. mac.), NAC and mangiferin on cell 

proliferation following MS-induced cytotoxicity. 

RIN-5F cell proliferation was measured following exposure first to 75 µM PA + 1 mM STZ + 

0.1 ng/mL IFN-γ + 0.01 ng/mL IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and 

then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 

hours. 

Where *** = p < 0.001 compared to the normal control; and †† = p < 0.01 and ††† = p < 

0.001 compared to MS. 
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1.3.4. Summary of the effect of treatment in vitro on RIN-5F cell function 

As summarised in Table 5, the extract and NAC significantly improved RIN-5F cell function 

under all four cytotoxic conditions. Mangiferin improved cell function, in terms of cell 

proliferation, in RIN-5F cells exposed to PA and CM only. 

 

Table 5. In vitro RIN-5F cell function summary. 

 

 C. maculata Mangiferin NAC 

STZ 

Insulin secretion ↓ - - 

Calcium ↑ - ↑ 

Proliferation ↑ - ↑ 

PA 

Insulin secretion ↓ ↓ - 

Calcium ↑ - ↑ 

Proliferation ↑ ↑ ↑ 

CM 

Insulin secretion - - - 

Calcium - - ↑ 

Proliferation ↑ ↑ ↑ 

MS 

Insulin secretion ↑ ↑ ↑ 

Calcium - - - 

Proliferation ↑ - ↑ 
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1.4. Oxidative stress status 

In order to elucidate the antioxidative effects of the extract, mangiferin and NAC in β-cells, 

the effects on cellular RNS (DAF fluorescence) and ROS (DHE fluorescence) were 

measured. Furthermore, the concentrations of naturally occurring cellular antioxidant 

enzymes were to be determined. The detection kits used for CAT and GSH levels in RIN-

5F cells were unable to detect low amounts of these enzymes, thus only data for the SOD 

enzyme are presented. 

 

1.4.1. Diaminofluorescein-FM and dihydroethidium fluorescence 

Known to induce oxidative stress, DMNQ was used to validate the fluorescent detection 

method used in this study. Compared to the respective normal controls, DMNQ increased 

DAF (21.83 RFU ± 1.60 vs. 36.17 RFU ± 2.48) and DHE (20.00 RFU ± 0.68 vs. 22.33 RFU 

± 0.21) fluorescence in RIN-5F cells over one hour (Fig. 59). 

 

The STZ control increased both DAF (31.00 RFU ± 1.67 vs. 23.17 RFU ± 1.11) (Fig. 60 A) 

and DHE (34.33 RFU ± 0.42 vs. 23.50 RFU ± 0.24) (Fig. 60 B) fluorescence compared to 

the normal control. The extract reduced both DAF (24.17 RFU ± 0.79) (Fig. 60 A) and DHE 

(25.50 RFU ± 0.34) (Fig. 60 B) increases in fluorescence, whereas NAC was observed to 

reduce DAF fluorescence only (23.83 RFU ± 0.60) (Fig. 60 B). Mangiferin had no 

measurable effect on either DAF or DHE fluorescence (Fig. 60). 

 

Compared to the normal control, the PA control increased both DAF (23.17 RFU ± 1.11 vs. 

28.17 RFU ± 0.91) (Fig. 61 A) and DHE (23.50 RFU ± 0.24 vs. 27.33 RFU ± 0.49) (Fig. 61 

B) fluorescence. The C. maculata extract and NAC reduced the increased DHE fluorescence 

(22.17 RFU ± 0.48 and 22.33 RFU ± 0.42, respectively) (Fig. 61 B). Mangiferin and NAC 

failed to ameliorate the PA induced increase in DAF fluorescence (Fig. 61 A). 

 

An increase in both DAF (23.17 RFU ± 1.11 vs. 38.67 RFU ± 0.71) (Fig. 62 A) and DHE 

(23.50 RFU ± 0.24 vs. 36.67 RFU ± 0.61) (Fig. 62 B) fluorescence compared to the normal 

control was observed in cell exposed to the CM control. The extract, mangiferin and NAC 

failed to reduce these increases (Fig. 62). 

 

Compared to the normal control, the MS control increased both DAF (23.17 RFU ± 1.11 vs. 

39.67 RFU ± 0.42) (Fig. 63 A) and DHE (23.50 RFU ± 0.24 vs. 37.33 RFU ± 0.49) (Fig. 63 
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B) fluorescence. NAC reduced the increase in DHE fluorescence (34.33 RFU ± 0.42) (Fig. 

63 B) but failed to reduce DAF fluorescence (Fig. 63 A). Both the extract and mangiferin had 

no effect (Fig. 63).  

 

The C. maculata extract ameliorated increased DAF and DHE fluorescence in STZ (Fig. 60) 

and PA (Fig. 61) exposed RIN-5F cells. NAC ameliorated both DAF and DHE increases in 

fluorescence in STZ exposed cells (Fig. 60), as well as increases in DHE induced by PA 

(Fig. 61) and MS (Fig. 63). Mangiferin had no measurable effect on either DAF or DHE 

fluorescence (Fig. 60-63). 
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Figure 59. The effect of DMNQ on DAF and DHE fluorescent intensity in RIN-5F cells 

over one hour. 

DAF and DHE fluorescence was measured following 120 minute exposure to 100 µM 

DMNQ. Where ** = p < 0.01 and *** = p < 0.001 compared to the respective normal control. 
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A.  

B.  

Figure 60. The effect of C. maculata extract (C. mac.), mangiferin and NAC on DAF (A) 

and DHE (B) fluorescence in RIN-5F cells exposed to STZ for 24 hours. 

RIN-5F cells were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. DAF and DHE 

fluorescence was then determined. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

and ††† = p < 0.001 compared to STZ. 
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A.  

B.  

Figure 61. The effect of C. maculata extract (C. mac.), mangiferin and NAC on DAF (A) 

and DHE (B) fluorescence in RIN-5F cells exposed to PA for 24 hours. 

RIN-5F cells were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. DAF and DHE 

fluorescence was then determined. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control; and ††† = p < 0.001 

compared to PA. 
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A.  

B.  

Figure 62. The effect of C. maculata extract (C. mac.), mangiferin and NAC on DAF (A) 

and DHE (B) fluorescence in RIN-5F cells exposed to CM for 24 hours. 

RIN-5F cells were first exposed to 1 ng/mL IFN-γ + 0.1 ng/mL IL-1β + 1.1 ng/mL TNF-α in 

combination for 24 hours and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM 

NAC in fresh media for 24 hours. DAF and DHE fluorescence was then determined. 

Where *** = p < 0.001 compared to the normal control. 
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A.  

B.  

Figure 63. The effect of C. maculata extract (C. mac.), mangiferin and NAC on DAF (A) 

and DHE (B) fluorescence in RIN-5F cells exposed to MS for 24 hours. 

RIN-5F cells were first exposed to 75 µM PA + 1 mM STZ + 0.1 ng/mL IFN-γ + 0.01 ng/mL 

IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and then to 10 µg/mL extract, 100 

µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. DAF and DHE 

fluorescence was then determined. 

Where *** = p < 0.001 compared to the normal control; and †† = p < 0.01 compared to MS. 
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1.4.2. Superoxide dismutase enzyme activity 

Superoxide dismutase activity was assessed as the percentage inhibition of superoxide 

radicals. Compared to the normal control, SOD activity was reduced following exposure to 

the STZ (20.46 % ± 0.29 vs. 9.26 % ± 2.19) (Fig. 64) and PA (20.46 % ± 0.29 vs. 7.65 % ± 

3.07) (Fig. 65) controls. Both C. maculata extract and mangiferin increased the reduced 

SOD activity (16.45 % ± 0.90 and 17.74 % ± 0.55, respectively) (Fig. 64), while NAC was 

not observed to be effective. The extract, mangiferin and NAC failed to ameliorate the PA 

induced reduction of SOD activity (Fig. 65). 

 
Compared to the normal control, the CM (20.46 % ± 0.29 vs. 12.58 % ± 0.97) and MS 

controls (20.46 % ± 0.29 vs. 2.00 % ± 0.41) reduced SOD activity (Fig. 66), which was not 

ameliorated by the extract or NAC. Mangiferin increased SOD activity in the RIN-5F cells 

compared to the MS control (8.32 % ± 1.88), albeit still significantly lower than the normal 

control (Fig. 67). 

 
The extract and mangiferin ameliorated the STZ induced reduction in SOD activity (Fig. 64), 

with mangiferin showing some improvement in MS exposed cells (Fig. 67).  
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Figure 64. The effect of C. maculata extract (C. mac.), mangiferin and NAC on SOD 

activity in RIN-5F cells exposed to STZ for 24 hours. 

SOD enzyme activity was measured in RIN-5F cells first exposed to 10 mM STZ for 24 hours 

and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 

24 hours.  

Where *** = p < 0.001 compared to the normal control; and † = p < 0.05 and †† = p < 0.01 

compared to STZ. 
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Figure 65. The effect of C. maculata extract (C. mac.), mangiferin and NAC on SOD 

activity in RIN-5F cells exposed to PA for 24 hours. 

SOD enzyme activity was measured in RIN-5F cells first exposed to 750 µM PA for 24 hours 

and then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 

24 hours.  

Where * = p < 0.05 and ** = p < 0.01 compared to the normal control. 
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Figure 66. The effect of C. maculata extract (C. mac.), mangiferin and NAC on SOD 

activity in RIN-5F cells exposed to CM for 24 hours. 

SOD enzyme activity was measured in RIN-5F cells first exposed to 1 ng/mL IFN-γ + 0.1 

ng/mL IL-1β + 1.1 ng/mL TNF-α in combination for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control. 
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Figure 67. The effect of C. maculata extract (C. mac.), mangiferin and NAC on SOD 

activity in RIN-5F cells exposed to MS for 24 hours. 

SOD enzyme activity was measured in RIN-5F cells first exposed to 75 µM PA + 1 mM STZ 

+ 0.1 ng/mL IFN-γ + 0.01 ng/mL IL-1β + 0.11 ng/mL TNF-α in combination for 24 hours and 

then to 10 µg/mL extract, 100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 

hours.  

Where *** = p < 0.001 compared to the normal control; and † = p < 0.05 compared to MS. 
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1.4.3. Summary of the effect of treatment in vitro on RIN-5F cell oxidative stress 

As summarised in Table 6, the C. maculata extract improved all oxidative stress parameters 

tested in RIN-5F cells exposed to STZ; i.e. reduced RNS (DAF fluorescence) and ROS (DHE 

fluorescence), as well as increased SOD activity. Mangiferin also increased SOD activity in 

cells exposed to STZ, with NAC decreasing STZ associated ROS. Both the extract and NAC 

reduced PA induced ROS. Mangiferin increased SOD activity in MS exposed RIN-5F cells, 

with NAC reducing MS associated ROS. 

 

Table 6. Summary of in vitro oxidative stress status. 

 

  C. maculata Mangiferin NAC 

STZ 

DAF ↓ - ↓ 

DHE ↓ - ↓ 

SOD ↑ ↑ - 

PA 

DAF ↓ - - 

DHE ↓ - ↓ 

SOD - - - 

CM 

DAF - - - 

DHE - - - 

SOD - - - 

MS 

DAF - - - 

DHE - - ↓ 

SOD - ↑ - 
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1.5. Extract mitogenicity 

To eliminate the potential mitogenic effect of the C. maculata extract on β-cells, its effect on 

RIN-5F cell proliferation was determined using tritiated thymidine incorporation and crystal 

violet assays. The response of these cells to known inducers of β-cell proliferation, i.e. high 

glucose concentration (25 mM) and the GLP-1 agonist, liraglutide, was first assessed in 

order to validate use of this assay. Compared to the normal control, high glucose (25 mM), 

as a positive control, increased tritiated thymidine incorporation into RIN-5F cells (813.85 

fmol ± 66.55 vs. 1184.51 fmol ± 59.16), as did liraglutide, as a positive control,  at 

concentrations of 1 nM, 10 nM and 1000 nM (813.85 fmol ± 66.55 vs.1142.91 fmol ± 16.30, 

1170.31 fmol ± 27.99 and 1397.46 fmol ± 78.39, respectively) (Fig. 68). 

 

At the concentrations tested, C. maculata extract was not seen to be mitogenic in RIN-5F 

cells, since proliferation was not increased compared to the normal control as measured by 

either crystal violet (Fig. 69 A) or tritiated thymidine (Fig. 69 B) incorporation. Compared to 

the normal control, the 100 µg/mL concentration in fact reduced RIN-5F cell proliferation in 

the crystal violet assay (100.00 % ± 2.27 vs. 72.64 % ± 1.31) (Fig. 69 A) as well as the 

tritiated thymidine assay (271.36 fmol ± 10.86 vs. 190.51 fmol ± 1.97) (Fig. 69 B).  
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Figure 68. The effect of liraglutide and glucose stimulation on RIN-5F cell proliferation 

after 24 hours. 

RIN-5F cells were exposed to 25 mM glucose and increasing concentrations of liraglutide 

for 24 hours, after which, cell proliferation was assessed using the tritiated thymidine assay. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control. 

  

Stellenbosch University  http://scholar.sun.ac.za



160 

 

A.  

B.  

Figure 69. The effect of C. maculata extract on RIN-5F cell proliferation after 24 hours 

as determined by tritiated thymidine incorporation (A) and crystal violet (B). 

RIN-5F cell proliferation was assessed following exposure to increasing concentrations of 

extract using tritiated thymidine incorporation and crystal violet assays. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control. (Data from Fig. 69 

has been published in a peer-reviewed journal; see addendum 1).  
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1.6. Western blot analysis 

Proteins involved in β-cell function and apoptosis were assessed using Western blot 

analysis in RIN-5F cells treated with the extract, mangiferin and NAC. Data are expressed 

as fold change compared to the normal control and normalised to the β-tubulin 

housekeeping protein. The C. maculata extract, mangiferin and NAC had no measurable 

effect on BCL-2 (Fig. 70), NF-κB (Fig. 71) or caspase-3 (Fig. 72) protein expression in RIN-

5F cells first exposed to either STZ or PA for 24 hours. The C. maculata extract, mangiferin 

and NAC had no measurable effect on cleaved caspase-3 protein expression in RIN-5F cells 

first exposed to PA for 24 hours (Fig. 73 B). However, treatment of STZ exposed cells with 

NAC increased cleaved caspase-3 protein expression in RIN-5F cells compared to the STZ 

control (1.77 ± 0.36 vs. 0.35 ± 0.03) (Fig. 73 A). 

 

RIN-5F cells exposed to the STZ control showed reduced PDX-1 protein expression 

compared to the normal control (1.00 ± 0.11 vs. 0.17 ± 0.02) with treatment with C. maculata 

extract, mangiferin and NAC failing to increase the expression (Fig. 74 A). Exposure of RIN-

5F cells to PA increased PDX-1 expression, albeit not significantly. The C. maculata extract, 

mangiferin and NAC had no effect on the PA induced increase in PDX-1 expression (Fig. 74 

B). The C. maculata extract, mangiferin and NAC had no measurable effect on GLUT-2 

protein expression in RIN-5F cells first exposed to STZ for 24 hours (Fig. 75 A) however, 

NAC increased GLUT-2 expression in cells first exposed to PA compared to both the normal 

(2.69 ± 0.31 vs. 1.00 ± 0.21) and PA (2.69 ± 0.31 vs. 1.35 ± 0.18) controls (Fig. 75 B). 
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BCL-2 A  

BCL-2 B  

β-tubulin  

A.  

B.  

Figure 70. The effect of C. maculata extract (C. mac.), mangiferin and NAC on BCL-2 

protein expression in RIN-5F cells exposed to STZ (A) and (PA) for 24 hours. 

BCL-2 protein expression was assessed by Western blot analysis in RIN-5F cells first 

exposed to 10 mM STZ or 750 µM PA for 24 hours and then to 10 µg/mL extract, 100 µg/mL 

mangiferin and 0.01 mM NAC in fresh media for 24 hours. The representative results are 

shown in the Western blot images above. 
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NF-κB A  

NF-κB B  

β-tubulin  

A.  

B.  

Figure 71. The effect of C. maculata extract (C. mac.), mangiferin and NAC on NF-κB 

protein expression in RIN-5F cells exposed to STZ (A) or PA (B) for 24 hours. 

NF-κB protein expression was assessed by Western blot analysis in RIN-5F cells first 

exposed to 10 mM STZ or 750 µM PA for 24 hours and then to 10 µg/mL extract, 100 µg/mL 

mangiferin and 0.01 mM NAC in fresh media for 24 hours. The representative results are 

shown in the Western blot images above. 
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Caspase-3 A  

Caspase-3 B  

       β-tubulin  

      A.  

      B.  

Figure 72. The effect of C. maculata extract (C. mac.), mangiferin and NAC on caspase-

3 protein expression in RIN-5F cells exposed to STZ (A) or PA (B) for 24 hours. 

Caspase-3 protein expression was assessed by Western blot analysis in RIN-5F cells first 

exposed to 10 mM STZ or 750 µM PA for 24 hours and then to 10 µg/mL extract, 100 µg/mL 

mangiferin and 0.01 mM NAC in fresh media for 24 hours. The representative results are 

shown in the Western blot images above. 
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Cleaved caspase-3 A  
 

Cleaved caspase-3 B  
 

           β-tubulin     

              A.  

             B.  

Figure 73. The effect of C. maculata extract (C. mac.), mangiferin and NAC on cleaved 

caspase-3 expression in RIN-5F cells exposed to STZ (A) or PA (B) for 24 hours. 

Cleaved caspase-3 protein expression was assessed by Western blot analysis in RIN-5F 

cells first exposed to 10 mM STZ or 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. The representative 

results are shown in the Western blot images above. Where † = p < 0.05 compared to PA. 
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PDX-1 A  

PDX-1 B  

β-tubulin  

A.  

B.  

Figure 74. The effect of C. maculata extract (C. mac.), mangiferin and NAC on PDX-1 

protein expression in RIN-5F cells exposed to STZ (A) and PA (B) for 24 hours. 

PDX-1 protein expression was assessed by Western blot analysis in RIN-5F cells first 

exposed to 10 mM STZ or 750 µM PA for 24 hours and then to 10 µg/mL extract, 100 µg/mL 

mangiferin and 0.01 mM NAC in fresh media for 24 hours. The representative results are 

shown in the Western blot images above. Where * = p < 0.05 and *** = p < 0.001 compared 

to the normal control. 
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GLUT-2 A   

GLUT-2 B   

β-tubulin      

   A.  

   B.  

Figure 75. The effect of C. maculata extract (C. mac.), mangiferin and NAC on GLUT-

2 protein expression in RIN-5F cells exposed to STZ (A) and PA (B) for 24 hours. 

GLUT-2 protein expression was assessed by Western blot analysis in RIN-5F cells first 

exposed to 10 mM STZ or 750 µM PA for 24 hours and then to 10 µg/mL extract, 100 µg/mL 

mangiferin and 0.01 mM NAC in fresh media for 24 hours. The representative results are 

shown in the Western blot images above. Where *** = p < 0.001 compared to the normal 

control; and †† = p < 0.01 compared to PA. 
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2. Ex vivo results 

The effects of the C. maculata extract, mangiferin and NAC observed in RIN-5F cells 

exposed to STZ and PA were then verified ex vivo in pancreatic islets isolated from adult 

Wistar rats. Islet cell viability was assessed using the annexin-V and propidium iodide 

fluorescent assay and cell function was assessed by measuring basal and glucose 

stimulated insulin secretion. The effect of the extract, mangiferin and NAC on islet oxidative 

status was determined by measuring DAF and DHE fluorescence, as well as SOD enzyme 

activity. For all ex vivo experimentation, data are expressed as the mean of three 

independent experiments, each with four replicates ± the standard errors of the mean. The 

normal controls refer to islets not exposed to stressors or treatments. 

 

2.1. Cell viability – Annexin-V and propidium iodide fluorescence 

Compared to the normal control, exposure of pancreatic islets isolated from adult Wistar rats 

to the STZ control for 24 hours increased propidium iodide fluorescence (42.25 RFU ± 0.20 

vs. 48.00 RFU ± 0.33) (Fig. 76 B). The extract, mangiferin and NAC failed to ameliorate the 

STZ induced increase in propidium iodide fluorescence (Fig. 76 B). In this study, STZ did 

not affect annexin-V fluorescence in isolated islets (Fig. 76 A). 

 
Exposure of isolated islets to the PA control for 24 hours increased both annexin-V (50.50 

RFU ± 0.96 vs. 36.75 RFU ± 0.48) (Fig. 77 A) and propidium iodide (52.25 RFU ± 1.31 vs. 

42.25 RFU ± 0.20) (Fig. 77 B) fluorescence compared to the normal control. Both C. 

maculata extract and NAC reduced the increased annexin-V fluorescence (42.50 RFU ± 

1.50 and 42.00 RFU ± 0.58, respectively) (Fig. 77 A). Mangiferin failed to improve the PA 

induced increase in annexin-V and propidium iodide fluorescence (Fig. 77). The extract and 

NAC also failed to ameliorate the increase in propidium iodide induced by PA (Fig. 77 B). 

 
The extract, mangiferin and NAC failed to ameliorate the increase in propidium iodide 

fluorescence induced by STZ (Fig. 76 B) and PA (Fig. 77 B), however, extract and NAC 

reduced increased annexin-V fluorescence induced by PA (Fig. 77 A).  
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A.  

B.  

Figure 76. Annexin-V (A) and propidium iodide (B) fluorescence of pancreatic islets 

exposed to STZ and treated with C. maculata (C. mac.), mangiferin and NAC. 

Isolated islets were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Cell viability was then 

assessed using the annexin-V and propidium iodide assay. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control. 

 

Stellenbosch University  http://scholar.sun.ac.za



170 

 

A.  

B.  

Figure 77. Annexin-V (A) and propidium iodide (B) fluorescence of pancreatic islets 

exposed to PA and treated with C. maculata (C. mac.), mangiferin and NAC. 

Isolated islets were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Cell viability was then 

assessed using the annexin-V and propidium iodide assay. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

and †† = p < 0.01 compared to PA. 
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2.2. Cell function – Insulin secretion 

No changes in basal insulin secretion was observed in islets exposed to STZ (Fig. 78 A). 

Compared to the normal control, the STZ control increased glucose stimulated insulin 

secretion (5.96 ng/mL ± 0.40 vs. 9.36 ng/mL ± 0.21) (Fig. 78 B). The extract and mangiferin 

reduced the STZ induced increase in glucose stimulated insulin secretion (5.53 ng/mL ± 

0.68 and 5.97 ng/mL ± 0.59, respectively), while NAC had no effect (Fig. 78 B). 

 

Exposure to the PA control increased both basal (6.66 ng/mL ± 0.62 vs. 3.57 ng/mL ± 0.11) 

(Fig. 79 A) and glucose stimulated (9.94 ng/mL ± 0.46 vs. 5.96 ng/mL ± 0.40) (Fig. 79 B) 

insulin secretion from isolated islets compared to the normal control. The extract decreased 

glucose stimulated insulin secretion compared to the PA control (6.23 ng/mL ± 0.30) (Fig. 

79 B). 

 

The extract and mangiferin normalised glucose stimulated insulin secretion in STZ exposed 

islets (Fig. 78 B), while only the extract reduced the increase in glucose stimulated insulin 

secretion induced by PA (Fig. 79 B).  
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A.  

B.  

Figure 78. Basal (A) and glucose stimulated (B) insulin secretion of isolated islets 

exposed to STZ and treated with C. maculata (C. mac.), mangiferin and NAC. 

Isolated islets were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Basal and glucose 

stimulated insulin secretion was then determined. 

Where * = p < 0.05 compared to the normal control; and †† = p < 0.01 compared to STZ. 
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A.  

B.  

Figure 79. Basal (A) and glucose stimulated (B) insulin secretion of isolated islets 

exposed to STZ and treated with C. maculata (C. mac.), mangiferin and NAC. 

Isolated islets were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Basal and glucose 

stimulated insulin secretion was then determined. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and 

†† = p < 0.01 compared to PA. 
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2.3. Oxidative stress status 

2.3.1. Diaminofluorescein-FM and dihydroethidium fluorescence 

Compared to the normal control, exposure of isolated islets to the STZ control increased 

both DAF (508.25 RFU ± 3.84 vs. 569.00 RFU ± 7.87) (Fig. 80 A) and DHE fluorescence 

(122.00 RFU ± 0.58 vs. 134.75 RFU ± 0.70) (Fig. 80 B). Both C. maculata extract and NAC 

treatment reduced the increased DAF fluorescence (449.50 RFU ± 18.19 and 507.13 RFU 

± 7.37, respectively) (Fig. 80 A), as well as DHE fluorescence (108.00 RFU ± 2.03 and 

120.88 RFU ± 1.59, respectively) to levels below even that of the normal control (Fig. 80 B). 

Mangiferin did not ameliorate STZ induced increases in DAF nor DHE fluorescence (Fig. 

80). 

 

An increase in both DAF (456.00 RFU ± 7.84 vs. 502.50 RFU ± 7.41) (Fig. 81 A) and DHE 

(115.25 RFU ± 0.91 vs. 126.75 RFU ± 0.51) (Fig. 81 B) fluorescence compared to the normal 

control was observed following exposure of isolated islets to the PA control. All three 

treatments, namely C. maculata extract, mangiferin and NAC, reduced the increased DAF 

fluorescence (442.75 RFU ± 1.65, 475.00 RFU ± 5.43 and 458.88 RFU ± 3.29, respectively) 

(Fig. 81 A), as well as DHE fluorescence (110.50 RFU ± 1.03, 107.50 RFU ± 2.70 and 109.00 

RFU ± 1.44, respectively) (Fig. 81 B). 

 

The extract and NAC ameliorated STZ induced oxidative stress in rat islets as observed in 

reductions in both DAF (Fig. 80 A) and DHE (Fig. 80 B) fluorescence. All three treatments 

ameliorated PA induced oxidative stress in isolated islets (Fig. 81).  
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A.  

B.  

Figure 80. DAF (A) and DHE (B) fluorescence of pancreatic islets exposed to STZ and 

treated with C. maculata (C. mac.), mangiferin and NAC. 

Isolated islets were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. DAF and DHE 

fluorescence was then measured. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † 

= p < 0.05 and ††† = p < 0.001 compared to STZ. 
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A.  

B.  

Figure 81. DAF (A) and DHE (B) fluorescence of pancreatic islets exposed to PA and 

treated with C. maculata (C. mac.), mangiferin and NAC. 

Isolated islets were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. DAF and DHE 

fluorescence was then measured. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

and ††† = p < 0.001 compared to PA. 
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2.3.2. Superoxide dismutase enzyme activity 

Exposure of isolated pancreatic islets to the STZ control reduced SOD activity compared to 

the normal control (2.59 % ± 0.20 vs. 0.90 % ± 0.10) (Fig. 82). Treatment with mangiferin 

and NAC increased SOD activity compared to the STZ control, as well as to that of the 

normal control (13.35 % ± 1.04 and 7.10 % ± 1.75, respectively) (Fig. 82). 

 

The PA control reduced SOD activity compared to the normal control (1.0 % ± 0.27 vs. 2.59 

% ± 0.20) (Fig. 83). Treatment with mangiferin and NAC increased SOD activity compared 

to the PA control, as well as to that of the normal control (15.61 % ± 1.06 and 9.13 % ± 2.40, 

respectively) (Fig. 83). 

 

Mangiferin and NAC increased SOD activity that was reduced by both STZ (Fig. 82) and PA 

in isolated islets (Fig. 83). 
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Figure 82. The effect of C. maculata extract (C. mac.), mangiferin and NAC on SOD 

activity in isolated islets exposed to STZ for 24 hours. 

Isolated islets were first exposed to 10 mM STZ for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Thereafter, SOD 

enzyme activity was determined. 

Where * = p < 0.05 and ** = p < 0.01 compared to the normal control; and †† = p < 0.01 

compared to STZ. 
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Figure 83. The effect of C. maculata extract (C. mac.), mangiferin and NAC on SOD 

activity in isolated islets exposed to PA for 24 hours. 

Isolated islets were first exposed to 750 µM PA for 24 hours and then to 10 µg/mL extract, 

100 µg/mL mangiferin and 0.01 mM NAC in fresh media for 24 hours. Thereafter, SOD 

enzyme activity was determined. 

Where * = p < 0.05 and *** = p < 0.001 compared to the normal control; and †† = p < 0.01 

and ††† = p < 0.001 compared to PA. 
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2.4. Summary of treatment effects in isolated pancreatic islets 

None of the treatments, at the concentrations tested, had an effect on viability of isolated 

pancreatic islets exposed to STZ, in terms of annexin-V and propidium iodide fluorescence 

(Table 7 A). The extract and NAC, however, did reduce RNS and ROS induced by STZ, with 

NAC and mangiferin increasing SOD activity in these islets (Table 7 A). Elevated insulin 

secretion induced by STZ was reduced by treatment with mangiferin and the extract (Table 

7 A). 

 

In PA exposed islets, the extract and NAC appeared to decrease early stage apoptosis as 

measured by annexin-V fluorescence, and reduce both RNS and ROS. The PA induced 

elevation of insulin secretion was reduced in extract treated islets and an increase in SOD 

activity in NAC treated islets was observed (Table 7 B). Mangiferin improved the oxidative 

stress status of the PA exposed islets, with decreased RNS and ROS, as well as increased 

SOD activity (Table 7 B). 

 

Table 7. Summary of the effects of C. maculata, mangiferin and NAC on STZ (A) and 

PA (B) exposed pancreatic islets. 

 

A.  

 C. maculata Mangiferin NAC 

Cell viability 
Annexin-V - - - 

Propidium iodide - - - 

Oxidative 
stress 

DAF ↓ - ↓ 

DHE ↓ - ↓ 

SOD - ↑ ↑ 

Cell function Insulin secretion ↓ ↓ - 

 

B.  

  C. maculata Mangiferin NAC 

Cell viability 
Annexin-V ↓ - ↓ 

Propidium iodide - - - 

Oxidative 
stress 

DAF ↓ ↓ ↓ 

DHE ↓ ↓ ↓ 

SOD - ↑ ↑ 

Cell function Insulin secretion ↓ - - 
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3. In vivo results 

The efficacy of the C. maculata extract and NAC was assessed in STZ induced diabetic 

Wistar rats. The hypoglycaemic drug, metformin, was used as a treatment control. The 

efficacy of the extract and NAC were assessed both as therapeutic as well as preventative 

agents in T2D. As potential therapeutic agents, the extract and NAC (as well as metformin) 

were administered to rats five days after injection with STZ (the respective control rats were 

injected with STZ simultaneously and treated with water vehicle); this group of rats is 

referred to hereafter as the treated group (N = 6). As potential preventative agents, extract, 

NAC and metformin were administered to rats for 15 days prior to STZ injection and for five 

days post injection (with their respective STZ control rats injected with STZ simultaneously) 

and are referred to as the pretreated group (N = 8). Extract, NAC and metformin were 

administered to treated and pretreated rats for a total of 21 days. 

 

3.1. Metabolic parameters 

Metabolic parameters assessed in this component of the study were glucose tolerance, 

fasting serum insulin and serum triglycerides following 21 days of treatment. Compared to 

the normal control, in the treated group, the diabetic STZ control rats, and diabetic rats 

treated with metformin, NAC, as well as 30 and 300 mg/kg/d extract after STZ injection had 

elevated fasting plasma glucoses (5.76 mmol/L ± 0.20 vs. 16.92 mmol/L ± 3.00, 21.68 

mmol/L ± 3.18, 23.58 mmol/L ± 2.19, 20.74 mmol/L ± 2.70 and 19.99 mmol/L ± 2.37, 

respectively) (Fig. 85 A). OGTT areas under the curve (AUCs) of these rats treated with 

metformin, NAC, 30 mg/kg/d extract and 300 mg/kg/d extract after STZ injection were not 

improved compared to the STZ control rats (Fig. 86 A), nor were the fasting serum insulin 

levels (Fig. 87 A). 

 

The STZ control rats in the pretreated group also had elevated fasting plasma glucose levels 

compared to the normal control rats (16.21 mmol/L ± 1.93 vs. 5.76 mmol/L ± 0.20) (Fig. 85 

B). In this pretreated group, rats pretreated with metformin and 300 mg/kg/d of extract 

showed reduced fasting plasma glucose compared to the STZ control rats (6.29 mmol/L ± 

0.66 and 6.7 mmol/L ± 1.17 vs. 16.21 mmol/L ± 1.93, respectively) (Fig. 85 B). Compared 

to the normal control rats, an increase in the AUC of OGTTs of STZ control rats in the 

pretreated group was observed (1461.25 ± 12.70 vs. 5264.38 ± 396.14) (Fig. 86 B), which 

was reduced by pretreatment with metformin and both concentrations of C. maculata extract 

(i.e. 30 and 300 mg/kg/d) (2677.25 ± 483.80, 3114.13 ± 752.23 and 2824.38 ± 536.00, 
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respectively) (Fig. 86 B). Pretreatment of rats with metformin and NAC failed to significantly 

ameliorate the STZ induced reduction in fasting serum insulin (Fig. 87 B). When compared 

with the normal rats, injection with STZ increased the G:I ratio of STZ control rats in the 

pretreated group (1.49 ± 0.56 vs. 12.69 ± 2.34) (Fig. 88). Pretreatment with metformin and 

the 300 mg/kg/d concentration of C. maculata extract reduced the STZ induced increase in 

G:I ratio (3.27 ± 0.77 and 2.89 ± 0.67, respectively) (Fig. 88 B). Fasting serum triglycerides 

were increased in the STZ control rats in the pretreated group, when compared to the normal 

control rats (1.48 mmol/L ± 0.48 vs. 0.30 mmol/L ± 0.03) (Fig. 89 B). Pretreatment with the 

300 mg/kg/d concentration of C. maculata extract reduced this increase in serum 

triglycerides (0.40 mmol/L ± 0.04 vs. 1.48 mmol/L ± 0.48) (Fig. 89 B). 

 

No effect on serum levels of AP, AST or ALT were observed in this study (Table 9 A and B, 

addendum 4). 

 

Overall, pretreatment of rats with the extract improved glucose tolerance, as seen in reduced 

fasting plasma glucose levels (Fig. 85 B), OGTT AUCs (Fig. 86 B) and G:I ratios (Fig. 88 B) 

(all of which were comparable with metformin). An improvement in fasting serum 

triglycerides was also observed in rats pretreated with C. maculata extract (Fig. 89 B), with 

some amelioration, albeit not significant, of fasting serum insulin levels compared to the STZ 

control (Fig. 87 B). 
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A.  

B.  

Figure 84. OGTTs of rats injected with STZ and treated (A) and rats pretreated (B) with 

metformin, NAC and C. maculata extract (C. mac.) and then injected with STZ. 

Following a total of 21 days treatment and a 16 hour overnight fast, STZ induced diabetic 

Wistar rats were subjected to an OGTT over four hours. 
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A.  

B.  

Figure 85. Fasting plasma glucoses of OGTTs of rats injected with STZ and treated 

(A) and rats pretreated (B) with metformin, NAC and C. maculata extract (C. mac.) and 

then injected with STZ. 

Fasting plasma glucose of rats was determined at 0 minutes of the OGTT, prior to glucose 

administration. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † 

= p < 0.05 compared to the STZ control. (Data from Fig. 85 B has been published in a peer-

reviewed journal; see addendum 1). 
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A.  

B.  

Figure 86. AUC of OGTTs of rats injected with STZ and treated (A) and rats pretreated 

(B) with metformin, NAC and C. maculata extract (C. mac.) and then injected with STZ. 

AUC of the glucose levels over four hours in the OGTT were calculated. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

and †† = p < 0.01 compared to the STZ control. (Data from Fig. 86 B has been published in 

a peer-reviewed journal; see addendum 1). 
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A.  

B.  

Figure 87. Fasting serum insulin concentration of rats injected with STZ and treated 

(A) and rats pretreated (B) with metformin, NAC and C. maculata extract (C. mac.) and 

then injected with STZ. 

Fasted serum insulin levels were determined from blood collected at termination, following 

a 16 hour overnight fast. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control. (Data 

from Fig. 87 B has been published in a peer-reviewed journal; see addendum 1). 
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A.  

B.  

Figure 88. G:I of rats injected with STZ and treated (A) and rats pretreated (B) with 

metformin, NAC and C. maculata extract (C. mac.) and then injected with STZ. 

The glucose to insulin ratio was calculated using fasted glucose and insulin values. 

Where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † 

= p < 0.05 compared to the STZ control. (Data from Fig. 88 B has been published in a peer-

reviewed journal; see addendum 1).  
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A.  

B.  

Figure 89. Fasting serum triglycerides of rats injected with STZ and treated (A) and 

rats pretreated (B) with metformin, NAC and C. maculata (C. mac.) extract and then 

injected with STZ. 

Fasted serum triglyceride levels were determined from blood collected at termination, 

following a 16 hour overnight fast. 

Where * = p < 0.05 compared to the normal control; and † = p < 0.05 compared to the STZ 

control. (Data from Fig. 89 B has been published in a peer-reviewed journal; see addendum 

1). 
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3.2. Antioxidative effects 

The potential antioxidative effects of the extract were assessed by the following methods, 

serum nitrite and antioxidant enzyme levels, as well as hepatic TBARS levels and 

nitrotyrosine expression. Compared to the normal control rats, injection with STZ increased 

fasting serum nitrites of control rats in the pretreated group (0.40 µM ± 0.03 vs. 0.56 µM ± 

0.08) (Fig. 90 B). Pretreatment with metformin and the 30 mg/kg/d and 300 mg/kg/d 

concentrations of C. maculata extract reduced the STZ induced increase in serum nitrites 

(0.43 µM ± 0.01, 0.42 µM ± 0.01 and 0.42 µM ± 0.02, respectively) (Fig. 90 B). Since an 

effect on serum nitrites was only observed in rats pretreated with extract, NAC and 

metformin, the remaining antioxidant assays were only performed on this group. No effect 

was observed on hepatic TBARS levels (Fig. 91), serum levels of CAT (Fig. 92) or GSH 

(Fig. 93), nor on hepatic nitrotyrosine expression (Fig. 94) in rats pretreated with extract, 

NAC and metformin. 
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A.  

B.  

Figure 90. Fasting serum nitrites of rats injected with STZ and treated (A) and rats 

pretreated (B) with metformin, NAC and C. maculata extract (C. mac.) and then 

injected with STZ. 

Fasted serum nitrite levels were determined from blood collected at termination, following a 

16 hour overnight fast. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

compared to the STZ control. (Data from Fig. 90 B has been published as supplementary 

data in a peer-reviewed journal; see addendum 1). 
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Figure 91. Hepatic TBARS of rats pretreated with metformin, NAC and C. maculata 

extract (C. mac.) and then injected with STZ. 

TBARS in rat liver collected at termination was determined in homogenised tissue from 

pretreated rats only. 
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Figure 92. Serum CAT of rats pretreated with metformin, NAC and C. maculata extract 

(C. mac.) and then injected with STZ. 

Serum CAT levels were determined from blood collected at termination in pretreated rats 

only, following a 16 hour overnight fast. 
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Figure 93. Serum total GSH of rats pretreated with metformin, NAC and C. maculata 

extract (C. mac.) and then injected with STZ. 

Serum GSH levels were determined from blood collected at termination in pretreated rats 

only, following a 16 hour overnight fast. 
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Nitrotyrosine  

      β-tubulin  

           

Figure 94. Hepatic nitrotyrosine expression of rats pretreated with metformin, NAC 

and C. maculata extract (C. mac.) and then injected with STZ. 

Nitrotyrosine expression termination, in pretreated rats only, was assessed in liver 

homogenate (from liver tissue collected at termination).  
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3.3. Pancreatic islet morphometry 

Since pretreatment with the extract, NAC and metformin improved glucose tolerance in STZ 

induced diabetic Wistar rats, their effect/s on the pancreatic islets of these rats was assessed 

by immunohistochemical labelling of islets for insulin, glucagon and MIB-5. Morphometric 

analysis of the immunohistochemical labelling provided insight into islet area, cell numbers, 

as well as cell proliferation. Compared to the normal control rats, a decrease in pancreatic 

β-cell area to total islet area in the STZ control rats was observed (81.30 ± 1.65 vs. 36.34 ± 

5.01) (Fig. 95 A), with a concomitant increase in α-cell area to total islet area (0.08 ± 0.01 

vs. 0.19 ± 0.01) (Fig. 95 B). Compared to the STZ control rats, both 30 and 300 mg/kg/d C. 

maculata extract pretreatment increased β-cell area to total islet area (59.38 ± 7.17 and 

59.15 ± 3.56, respectively) (Fig. 95 A), as well as decreased α-cell area to total islet area 

(0.12 ± 0.02 and 0.12 ± 0.01, respectively) (Fig. 95 B). Metformin pretreatment also 

increased β-cell area to total islet area compared to the STZ control (59.22 ± 5.08) (Fig. 95 

A), however, NAC failed to increase the β-cell area to total islet area (Fig. 95 A). The STZ 

control group also showed a reduction in ratio of the total number of β-cells to total number 

of α-cells, which was somewhat ameliorated (albeit not significantly) by the pretreatments, 

particularly by the two concentrations of extract tested (Fig. 96). The images in Fig. 97 

demonstrate changes in pancreatic architecture from normal control rats (Fig. 97 A), in STZ 

control (B), metformin (Fig. 97 C), NAC (Fig. 97 D), 30 mg/kg/d extract (Fig. 97 E) and 300 

mg/kg/d extract (Fig. 97 F) pretreated rats. No changes were observed in the ratio of total 

islet to total pancreatic tissue area (Table 10 A, addendum 4), as well as the ratio of β-cell 

area to the total number of β-cells (Table 10 B, addendum 4). 

 

The 300 mg/kg/d C. maculata extract pretreated group showed an increased number of MIB-

5 positive β-cells to total β-cells compared to both the normal and STZ control rats (3.64 ± 

0.42 vs. 1.78 ± 0.40 and 1.63 ± 0.43, respectively) (Fig. 98). The representative images in 

Fig. 99 are of pancreata from normal control (Fig. 99 A) and 300 mg/kg/d extract pretreated 

(Fig. 99 B) rats.  

 

Pretreatment with the C. maculata extract showed improved β- to α-cell area in pancreatic 

islets, which was distorted by STZ (Fig. 95), which may, in part, be due to increased β-cell 

proliferation (Fig. 97). 
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A.  

B.  

Figure 95. Pancreatic β-cell (A) and α-cell (B) area to total islet area of rats pretreated 

with metformin, NAC and C. maculata extract (C. mac.) and then injected with STZ. 

Pancreata collected at termination were fixed and processed histologically for 

immunohistochemical detection of insulin (β-cells) and glucagon (α-cells) positive cells. The 

α- and β-cell areas were measured and a ratio thereof was calculated. 

Where ** = p < 0.01 and *** = p < 0.001 compared to the normal control; and † = p < 0.05 

compared to the STZ control. (Data from Fig. 95 A has been published in a peer-reviewed 

journal; see addendum 1). 
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Figure 96. Total number of β-cells to total number of α-cells of rats pretreated with 

metformin, NAC and C. maculata extract (C. mac.) and then injected with STZ.  

The total number of insulin positive β-cells following immunohistochemical labelling of insulin 

and glucagon in fixed rat pancreata were counted. 

Where * = p < 0.05 compared to the normal control. 
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Figure 97. Representative images of insulin and glucagon immunohistochemical 

labelling of rat islets. 

Representative images of islets in normal control rats (A),  STZ control rats (B), metformin 

pretreated (C), NAC pretreated (D), 30 mg/kg/d extract pretreated (E) and 300 mg/kg/d 

extract pretreated (F) rats at 200 x magnification. Red/pink labelling demonstrates insulin 

positive β-cells and brown labelling glucagon positive α-cells.  

  

Stellenbosch University  http://scholar.sun.ac.za



199 

 

 

Figure 98. Percentage MIB-5 positive β-cells in pancreatic islets of rats pretreated with 

metformin, NAC and C. maculata extract (C. mac.) and then injected with STZ. 

Pancreata collected at termination were fixed and processed histologically for 

immunohistochemical detection of MIB-5 positive β-cells. 

Where * = p < 0.05 compared to the normal control; and †† = p < 0.01 compared to the STZ 

control. (Data from Fig. 98 has been published in a peer-reviewed journal; see addendum 

1). 

 

 
Figure 99. Representative images if islets from MIB-5 immunohistochemical labelling 

of rat pancreata. 

Representative images of islets from normal control (A) and 300 mg/kg/d extract pretreated 

(B) rats at 200 x magnification. The arrows demonstrate intra-islet proliferating (MIB-5 

positive) β-cells.   
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4. Summary of the effects of the treatments used in this study 

As summarised in Table 8 below, the C. maculata extract used in this study improved β-cell 

viability, function and oxidative stress in STZ and PA toxicity models both in vitro (in RIN-5F 

cells) and ex vivo (in isolated pancreatic islets from Wistar rats). Mangiferin showed some 

improvement in RIN-5F cell function by increasing cell proliferation, as well as marginally 

improving RIN-5F oxidative status by increasing SOD activity. Mangiferin also improved STZ 

induced dysfunction in insulin secretion in isolated islets and reduced PA induced oxidative 

stress. In RIN-5F cells only, NAC improved cell viability and function, however, a reduction 

in oxidative stress both in vitro and ex vivo by NAC was also observed. In Wistar rats, 

pretreatment with the extract was as effective as, if not better than, metformin in improving 

glucose tolerance and pancreatic islet parameters associated with β-cell function. 

Pretreatment with the extract also showed hypotriglyceridaemic effects in these STZ 

induced diabetic rats. 

 

Table 8. Summary of the effects of C. maculata extract, mangiferin, NAC and 

metformin in vitro, ex vivo and in vivo (where applicable). 

 

 C. maculata Mangiferin NAC Metformin 

In vitro 

Cell viability* ↑↑ - ↑↑ N/A 

Cell function ↑↑ ↑ ↑↑ N/A 

Oxidative stress ↓↓ ↓ ↓↓ N/A 

Ex vivo* 

Cell viability ↑ - ↑ N/A 

Cell function ↑↑ ↑ - N/A 

Oxidative stress ↓↓ ↓ ↓↓ N/A 

In vivo 

Glucose tolerance ↑ N/A - ↑ 

Triglyceridaemia ↓ N/A - - 

Islet parameters ↑↑ N/A - ↑ 

* In PA and STZ exposed β-cells only. 
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The pancreatic β-cell has been shown to be exceedingly vulnerable in T2D patients, both in 

terms of cell function as well as viability (Meier and Bonadonna, 2013). Pancreatic β-cell 

dysfunction has been shown to be initiated in the very early stages of T2D, with patients  

eventually requiring oral anti-diabetic medication and even insulin therapy (Turner, 1998; 

Meier and Bonadonna, 2013). Decreased β-cell mass associated with the progression of 

T2D has been reported to be as a result of an imbalance in loss of β-cells, by cell death 

mechanisms including apoptosis and necrosis, and renewal of β-cells, by either proliferation 

of existing β-cells or neogenesis (Butler et al., 2003; Bonner-Weir and O’Brien, 2008 and 

Meier and Bonadonna, 2013). Glucotoxicity, lipotoxicity and inflammation are all associated 

with an increase in oxidative stress, mitochondrial dysfunction and ER stress, and have been 

found to be causative features in β-cell dysfunction in T2D (Stumvoll et al., 2005; Maedler, 

2008 and Biden et al., 2014). Elevated levels of oxidative stress are characteristic of T2D 

patients (Johansen et al., 2005; Houstis et al., 2006), which is particularly detrimental to the 

β-cells, due to their naturally low amounts of cellular antioxidants (Sakuraba et al., 2002; 

Tanaka et al., 2002; Abdollahi et al., 2004). 

 

Introducing a β-cell protective agent, in combination with current anti-diabetic therapies, may 

reduce long term complications associated with T2D, as well as slow disease progression, 

particularly in terms of β-cell mass preservation. Much attention has been given to the 

potential role of plant-derived extracts and polyphenols in treating diseases such as T2D, 

predominantly due to their antioxidative and anti-inflammatory properties which contribute 

to their broad spectrum therapeutic potential (Hanhineva et al., 2010; Ding et al., 2013). 

South African herbal teas, in particular rooibos and honeybush (Cyclopia spp.), are 

renowned for their antioxidant properties, associated with their phenolic constituents 

(Joubert et al., 2008) and recently, their anti-diabetic effects (Kawano et al., 2009; Muller et 

al., 2011; Muller et al., 2012). Thus, for this study, an unfermented, aqueous extract of 

polyphenol-rich C. maculata was considered as a potential agent/therapeutic to protect β-

cells in T2D. Aqueous extract was selected as this type of extract is produced by extract 

manufacturers for use in food and beverages or supplements. 

 

5.1. Toxicity in RIN-5F cells 

In order to assess the therapeutic potential of this extract, and its major polyphenol, 

mangiferin, in β-cells, in vitro toxicity models were designed to mimic conditions 

characteristic of T2D in RIN-5F cells; i.e. the induction of glucotoxicity, lipotoxicity and 
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inflammation, as well as oxidative stress. The MTT assay was used to assess cell viability 

following exposure to the aforementioned conditions. 

 

5.1.1. Glucotoxicity in RIN-5F cells 

The MTT data showed minimally reduced cell viability induced by 17 mM and 25 mM 

glucose, with no effect on MTT positivity induced by 35 mM glucose (Fig. 26 A). Since the 

reductions in MTT positivity were less than 30 %, we also measured cellular ATP to 

determine if high glucose concentrations were in fact cytotoxic and found no changes (Fig. 

26 B). Despite glucotoxicity being a contributing factor in β-cell dysfunction and death, RIN-

5F cells in this study showed no changes in cell viability in terms of cellular ATP when 

exposed to elevated glucose concentrations (up to 35 mM) for 24 hours (Fig. 26 B). It is 

plausible that these RIN-5F cells have a high tolerance to chronically elevated glucose due 

to desensitisation (Purrello et al., 1996). Historically, RIN-5F cells, as well as their original 

clone RIN-m5F, have been reported to exhibit altered glucose metabolism (despite being 

able to secrete insulin in response to glucose) when compared to isolated islets (Gylfe et 

al., 1983; Nielsen et al., 1985). It was proposed that glucose induces a net uptake of calcium 

ions into the RIN cells, in addition to the passive inflow of calcium following glucose 

stimulation. This means that the additional uptake of calcium is independent of membrane 

depolarization (Gylfe et al., 1983). The link between the depolarization independent net 

uptake of calcium in RIN cells and the relative ineffectiveness of hyperglycaemia to induce 

cytotoxicity under the conditions tested in these cells has yet to be elucidated. It has been 

shown that increased mitochondrial stimulation by elevated glucose levels alters β-cell 

calcium flux and decreases insulin secretion (Tordjman et al., 2002). The ensuing reduction 

in insulin secretion is indicative of mild β-cell dysfunction, and it occurs despite the normal 

generation of ATP (Maechler et al., 1998). Therefore, moderate cellular dysfunction may be 

present after 24 hours of glucotoxic conditions in our RIN-5F cells, however, we were unable 

to detect this since the cytotoxic effects of glucotoxicity in this study were measured in terms 

of mitochondrial function (MTT positivity and cellular ATP). 

 

Recent studies in RIN-5F cells by Son et al. (2012 and 2014) in which the toxic effects of 

chronic hyperglycemia were investigated, showed that exogenously added AGEs, which are 

normally formed by glucose directly reacting with free amine groups on proteins and lipids, 

successfully elicited oxidative stress in these cells. Contrary to our study, Hu et al. (2014) 

demonstrated a low level of glucotoxicity in RIN-5F cells when exposed to 33 mM glucose 

Stellenbosch University  http://scholar.sun.ac.za



204 

 

over 48 hours, as measured by cell dysfunction. Since we were not able to adequately 

demonstrate glucotoxic effects in the RIN-5F cells over 24 hours, the use of high glucose as 

a model to induce cytotoxicity was excluded from the rest of the study. 

 

Lipotoxicity (induced by PA) and toxicity caused by STZ, cytokine and MS were successfully 

induced, resulting in approximately 50 % cell death following 24 hours exposure to 750 µM 

PA (Fig. 27), 10 mM STZ (Fig. 28) and a cytokine combination of 1 ng/mL IFN-γ, 0.1 ng/mL 

IL-1β and 1.1 ng/mL TNF-α (Fig. 29 B), as well as the MS combination of 375 µM PA, 5 mM 

STZ, 0.5 ng/mL IFN-γ, 0.05 ng/mL IL-1β and 0.55 ng/mL TNF-α (Fig. 30), respectively.  

 

5.1.2. Lipotoxicity in RIN-5F cells 

Similar findings for PA induced β-cell toxicity were reported by several researchers for RIN-

5F cells (Beeharry et al., 2004), as well as MIN6 (Meidute Abaraviciene et al., 2008; 

Sargsyan et al., 2008) and INS1E (Sargsyan et al., 2008) β-cell lines. The mechanism(s) of 

PA induced β-cell toxicity are mediated by lipid metabolites, such as acetyl CoA and 

ceramide, and result in apoptosis via NF-κB independent pathways (Maedler et al., 2001; 

Kharroubi et al., 2004).  

 

5.1.3. Streptozotocin toxicity in RIN-5F cells 

More than 70 % cell death was observed in INS1 cells exposed to 10 mM STZ for 30 minutes 

(Pospisilik et al., 2003) and MIN6 cells exposed to 5 mM STZ for 8 hours (Gao et al., 2000), 

demonstrating increased susceptibility in the INS1 and MIN6 cells to STZ induced cytoxicity 

compared to the RIN-5F cells used in this study. Approximate LC50 levels were achieved at 

24 hours of RIN-5F cell exposure to 10 mM STZ. A study by Kweon et al. (2011) found the 

optimal toxic concentration of STZ in RIN-5F cells to be half that of ours (i.e. 5 mM) over 

double the incubation time (i.e. 48 hours). The discrepancy between the concentrations used 

in this study could be related to the stability of STZ, particularly at neutral concentrations, 

such as in culture media. Although similar culture medium was used (RPMI1640 

supplemented with 10 % FBS) in the aforementioned and the present study, antibiotics were 

not included for assay purposes in the present study. This, and other environmental culture 

conditions, could account for the difference in optimal toxic concentrations used in each 

study. 
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5.1.4. Cytokine toxicity in RIN-5F cells 

Similar to the present study, a cytokine combination as described above was used by others 

to induce RIN-5F cell dysfunction and oxidative stress (Tabatabaie et al., 2000), as well as 

induce mitochondrial membrane depolarization in RIN-m5F cells (Barbu et al., 2002). The 

cytokine combination used in the present study has been shown to initiate β-cell death by 

several mechanisms, thus bypassing normally adequate cell defence mechanisms; both IL-

1β and TNF-α directly induce NF-κB activation, with IL-1β also secondarily activating NF-κB 

via ERK 1/2, and IFN-γ stimulates the JAK/STAT-1 pathway (Vincenz et al., 2011; Vetere et 

al. 2014). The combination of these cytokines also stimulate both ROS and RNS (nitric oxide 

specifically) production in RIN-m5F cells, associated with a nitric oxide dependent loss of 

mitochondrial membrane potential and resultant cell death by apoptosis and necrosis (Barbu 

et al., 2002). Increased NF-κB induced inducible nitric oxide synthase activity is responsible 

for the cytokine induced increase in production of nitric oxide (Kharroubi et al., 2004). 

Interestingly, the cytokines on their own did not affect RIN-5F cell viability at the 

concentrations tested in this study (Fig. 29 A). As reported by Wang et al. (2010), TNF-α 

and IFN-γ were also unable to induce β-cell apoptosis on their own. 

 

5.1.5. Multiple stress toxicity in RIN-5F cells 

According to current literature at our disposal, no studies have been performed on RIN-5F 

cells, specifically, which assess the effect of a multiple stressor combination which includes 

STZ, lipotoxicity (PA) and inflammation (TNF-α/IL-1β/IFN-γ cytokine combination). Such a 

stressor combination activates multiple, distinct pathways involved in β-cell dysfunction and 

death that are characteristic of T2D.  

 

In the present study, the use of a combination of stressors (MS), as well as the individual 

stressors themselves (PA, STZ, CM) to induce toxicity in RIN-5F cells presents an adaptive 

cell model that represents the conditions in which pancreatic β-cells are found in T2D. The 

model affords the opportunity to test the effectivity of potential therapeutic agents, including 

plant extracts, plant polyphenols and other compounds, that may protect β-cells. In this 

model we are able to assess the ameliorative effect of potential therapeutic agents as well 

as elucidate their specific protective effect against each of the stressors used in this study. 

This would provide some insight into the potential mechanism of action of the therapeutic 

agents in β-cell protection. 
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5.2. The effect of C. maculata extract, mangiferin and NAC on RIN-5F cell and 

pancreatic islet viability 

In order to select an optimal, effective concentration of the C. maculata extract, mangiferin 

and NAC treatments, RIN-5F cell viability was assessed using the MTT and ATP assays 

following 24 hours exposure to each of the optimised toxic stressors (i.e. PA, STZ, CM and 

MS) and subsequent exposure to a range of concentrations of extract, mangiferin and NAC. 

Direct interactions between the treatments (i.e. extract, mangiferin and NAC) and the 

stressors were eliminated by incubating the cells first with the respective stressors and then 

incubating with each of the treatments (without stressors present). We were able to 

demonstrate that even after removal of the stressor(s) 24 hours prior to the assay, cell 

viability and function remained reduced, indicating that the deleterious effects of the 

stressors persisted during and after the subsequent treatment period. 

 

The effect on annexin-V and propidium iodide fluorescence of the optimised concentrations 

of the treatments were then assessed in RIN-5F cells, as well as pancreatic islets isolated 

from Wistar rats. Decreased cellular ATP and MTT positivity are indicative of reduced 

mitochondrial function (Brand and Nicholls, 2011) and thus a measure of β-cell viability. 

Increased annexin-V and propidium iodide fluorescence was used to measure cell death; 

i.e. apoptosis and necrosis, respectively (Oh et al., 2011). The treatment of RIN-5F cells 

with C. maculata extract and NAC was effective in improving the viability of these cells 

exposed to STZ (Fig. 41) and PA (Fig. 42) by increasing cellular ATP and MTT positivity, 

and reducing cellular apoptosis (as seen in a reduction in annexin-V fluorescence) (Fig. 43 

A and Fig. 44 A, respectively). The improvement in cellular ATP may potentially be 

associated with mitochondrial biogenesis and stabilisation of mitochondrial membrane 

potential, since both STZ and PA are negatively associated with these parameters (Jeng et 

al. 2009). 

 

Since the efficacy of the extract was most pronounced in STZ and PA exposed cells, we 

attempted to validate this effect in isolated pancreatic islets. In PA exposed islets, the extract 

and NAC also appeared to decrease early stage apoptosis in terms of annexin-V 

fluorescence (Fig. 77 A), which validates the effect observed in RIN-5F cells; no effect was, 

however, observed in STZ exposed islets (Fig. 76 A). The lack of effect of STZ on early 

apoptosis in isolated islets is an unexpected finding and difficult to explain, but may infer 

that cell death is predominantly by necrosis. The variance between in vitro and ex vivo 
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results in STZ exposed RIN-5F cells and islets, respectively, could also be explained by the 

fact that β-cells in an islet structure react differently to stimuli compared to conventional, flat 

cultured insulinoma β-cells. The paracrine effect of other islet cells, such as endothelial cells 

and α-cells, as well as β-cell to β-cell interactions may be responsible for the different 

responses (Kelly et al., 2010; Chowdhury et al., 2013). Furthermore, it has been 

demonstrated that β-cell death in mouse islets occurred via mechanisms that did not involve 

characteristic changes associated with apoptosis, referred to as necroptosis (Yang and 

Johnson, 2013). One of the anomalies was that mouse islet β-cells underwent partial 

apoptosis with no incorporation of annexin-V, whereas MIN6 β-cells underwent classic 

apoptosis in response to hyperglycaemia, a pro-inflammatory cytokine mix (25 ng/mL TNF-

α, 10 ng/mL IL-1β and 10 ng/mL IFN-γ) and an inducer of ER stress (thapsigargin) (Yang 

and Johnson, 2013). Thus the β-cells in islets isolated from Wistar rats in the present study 

may also display this altered method of partial apoptotic cell death when exposed to STZ. 

 

The extract, NAC and mangiferin failed to ameliorate the increase in propidium iodide 

fluorescence induced by STZ (Fig. 76 B) and PA (Fig. 77 B) in isolated islets, indicating that 

the protective effect is observed in earlier, rather than later stages of apoptosis or necrosis. 

This infers that cells terminally damaged during exposure to STZ and PA (i.e. propidium 

iodide positive cells) could not be rescued by subsequent treatment. NAC also showed the 

ability to improve CM induced toxicity in RIN-5F cells, by increasing cellular ATP (Fig. 41 B). 

NAC ameliorated late stage apoptosis and necrosis (as measured by propidium iodide 

fluorescence) in RIN-5F cells exposed to STZ (Fig. 43 B), PA (Fig. 44 B), CM (Fig. 45 B) 

and MS (Fig. 46 B). These data are consistent with previously reported effects of NAC in β-

cells (Kaneto et al., 1999; Hou et al., 2008; Jin et al., 2013). Mangiferin showed some 

amelioration of STZ (Fig. 35 A) and MS (Fig. 38 A) induced cytotoxicity by increasing MTT 

positivity. Overall, NAC treatment of the RIN-5F cells, at concentrations ranging from 0.01 

mM – 1 mM, showed the largest improvement in cell viability under all cytotoxic conditions 

except MS (Fig. 39 - 41 and 43 - 45); at the higher concentrations of 10 mM and 20 mM, the 

efficacy was lost, possibly due to the ability of thiolic compounds (such as NAC) to act as 

pro-oxidants at high concentrations (Sagrista et al., 2002). The extract improved STZ (Fig. 

31 and 43) and PA (Fig. 32 and 44) induced cytotoxicity. The hypolipidaemic effect of the 

extract, as well as the ability of the extract to blunt the deleterious effects of STZ in rodents 

will be discussed later (section 5.7.1.). The reduced efficacy of the extract against the effects 

of inflammation (induced by CM) on RIN-5F cell viability is likely to be the reason that the 
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extract was also observed to be ineffective against MS induced toxicity. Furthermore, the 

extent of multifactorial cellular damage induced by MS (even though STZ, PA and CM were 

diluted ten times in this combination) in the RIN-5F cells may be too severe for amelioration 

by the extract alone. However, the ability of the extract to reduce any one of these stressors 

in this MS combination could decrease the potency of the assault on β-cells. 

 

5.3. The effect of C. maculata extract, mangiferin and NAC on RIN-5F cell and 

pancreatic islet function 

Cell function in RIN-5F cells was assessed by measuring glucose stimulated insulin 

secretion, cellular calcium and cell proliferation; in isolated islets, glucose stimulated insulin 

secretion was used to assess β-cell function. The extract and NAC significantly improved 

RIN-5F cell function under all four cytotoxic conditions, with mangiferin improving cell 

function in terms of cell proliferation, only in cells exposed to PA and CM. Similar results 

were observed in isolated islets, with the extract and mangiferin normalising glucose 

stimulated insulin secretion in STZ exposed islets (Fig. 78 B), while only the extract reduced 

the increase in glucose stimulated insulin secretion induced by PA (Fig. 79 B). Interestingly, 

basal insulin secretion of RIN-5F cells was not affected by the stressors used in this study. 

This concurs with previous data suggesting that β-cell dysfunction is only truly evident when 

the cell is challenged, as in this case, by glucose stimulation; this has been described as the 

second stage of β-cell dysfunction in T2D (Weir and Bonner-Weir, 2004). However, PA was 

able to increase basal insulin secretion in isolated islets and none of the three treatments 

were able to ameliorate this increase (Fig. 79 A). Glucose stimulated insulin secretion was 

increased by STZ (Fig. 47 A) and to a lesser extent, by PA (not significant) (Fig. 48 A) in 

RIN-5F cells; a similar effect was also observed in the isolated pancreatic islets (Fig. 78 B 

and 79 B, respectively). The mechanism(s) by which STZ (Fig. 47 B) increases glucose 

stimulated insulin secretion is unknown, but we postulate that STZ induced alterations in 

glucose response in the RIN-5F cells may be responsible for the unexpected STZ induced 

increase in glucose stimulated insulin secretion.  It has been demonstrated that STZ alters 

β-cell responsiveness to glucose; where, initial acute hyperglycaemia and concomitant 

hypoinsulinaemia two hours post STZ injection in rats is followed by transiently increased 

levels of circulating insulin (hyperinsulinaemia) and hypoglycaemia (West et al., 1996). The 

reduction in glucose stimulated insulin secretion induced by the extract in STZ exposed RIN-

5F cells and islets could therefore be related to extract induced improvement in cell viability 

and protection against STZ induced alteration in glucose response (Fig. 47 B and Fig. 78 
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B). PA is a known stimulus of insulin secretion (Warnotte et al., 1994). The increased insulin 

secretion in response to direct exposure to exogenous PA may have promoted β-cell 

adaptations that resulted in increased insulin synthesis and secretion capabilities of these 

cells, since fatty acids are known to have a large capacity to augment glucose stimulated 

insulin secretion (Nolan et al., 2006). Such “priming” of the PA exposed cells could cause 

increased insulin secretion in response to glucose stimulation as a result of increased insulin 

synthesis (and secretion) capacity. The ability of the extract to normalise the elevated 

glucose stimulated insulin secretion induced by PA in both RIN-5F cells (Fig. 48 B) and 

isolated islets (Fig. 79 B) may act as a protective mechanism by promoting β-cell rest by 

means of a reduction in insulin hypersecretion, similar to the effect of bromocriptine in β-

cells (De Leeuw van Weenen et al., 2010). Mangiferin similarly decreased the PA induced 

increase in glucose stimulated insulin secretion (Fig. 48 B) and, along with NAC, increased 

glucose stimulated insulin secretion in MS exposed RIN-5F cells (Fig. 50 B). The 

improvement in glucose stimulated insulin secretion induced by mangiferin was independent 

of calcium influx since this parameter was in fact reduced in these cells (Fig. 54), and may 

be due to direct stimulatory effects of cyclic adenosine monophosphate (cAMP) (Ammala et 

al., 1993). The improved insulin secretion mediated by cAMP may be associated with a 

stabilising effect on insulin messenger ribonucleic acid (mRNA), as described by Welsh et 

al. (1985), induced by mangiferin in RIN-5F cells and isolated islets. 

 

The C. maculata extract ameliorated both the STZ (Fig. 51) and PA (Fig. 52) induced 

reduction in cellular calcium, with NAC increasing cellular calcium in CM exposed cells (Fig. 

53). Normalisation of cellular calcium is crucial to normal functioning of the ER within β-cells, 

as well as overall β-cell function, particularly in terms of insulin secretion and cell 

proliferation, often with accompanied regulation of the ERK1/2 pathway (Lipson et al., 2006; 

Maedler, 2008; Rorsman et al., 2012; Biden et al., 2014). We also cannot exclude that 

reactive species generated in the β-cells caused degradation of the fluorescent calcium ion 

probe used in this assay (Sarvazyan and Martinez-Zaguilan, 1998). 

 

The extract and NAC ameliorated the reduction of cell proliferation in RIN-5F cells induced 

by STZ (Fig. 55), PA (Fig. 56), CM (Fig. 57) and MS (Fig. 58), thereby indicating improved 

β-cell survival, since proliferation has been shown to be directly inhibited in dysfunctional β-

cells (Sharma and Alonso, 2014). A concomitant increase in cellular calcium was observed 

in cells treated with the extract following exposure to STZ (Fig. 51) and PA (Fig. 52), which 
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may be a contributing factor to the increased proliferation seen in these cells, which could 

have implications for β-cell regeneration in the T2D pancreas (Herchuelz et al., 2012). 

Mangiferin only increased PA (Fig. 56) and CM (Fig. 57) induced reductions in proliferation. 

This protective function, of the extract in particular, in terms of increased proliferation was 

also observed in the in vivo component of this study where increased β-cell proliferation was 

observed in islets of STZ induced diabetic Wistar rats pretreated with 300 mg/kg/d of the 

extract (Fig. 98). A concomitant increase in the β-cell area in the islets of extract pretreated 

rats was also observed, and was comparable to the effect elicited by the reference drug 

metformin (Fig. 95 A). 

 

Similar improvements in islet structure were observed in STZ induced diabetic rats following 

treatment with 40 mg/kg/d of mangiferin for 30 days (Sellamuthu et al., 2013). The changes 

in islet architecture in our study may indicate a progression towards characteristics of a less 

diseased state, since decreased β-cell mass is a distinguishing factor in T2D patients (Butler 

et al., 2003; Bonner-Weir and O’Brien, 2008 and Meier and Bonadonna, 2013). 

 

5.4. The effect of C. maculata extract, mangiferin and NAC on RIN-5F cell and 

pancreatic islet oxidative stress 

In order to fully understand the effect of the stressors and treatments on total free radicals 

in this study, we measured both RNS and ROS production, using DAF and DHE fluorescent 

probes, respectively. We were able to demonstrate that changes in RNS and ROS 

fluorescence as induced by DMNQ, a known inducer of ROS (Fig. 59), were measurable in 

the RIN-5F cells. Although RNS is cytotoxic at elevated levels, physiological levels of RNS 

(i.e. constitutive nitric oxide synthase generated nitric oxide) play an important role in 

activation of glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation to 

produce ATP, as well as the regulation of insulin release in β-cells (Smukler et al., 2002; 

Newsholme et al., 2012). It is elevated nitric oxide levels, as a result of inducible nitric oxide 

synthase, that contributes to cellular oxidative stress and is harmful to cells, including β-cells 

(Kacheva et al., 2011). In the present study, we were unable to differentiate between 

constitutive and inducible nitric oxide synthase generated nitric oxide and thus confirmed 

induction of oxidative stress by also measuring cellular ROS. We found that the stressors 

used in this study elevated both DAF and DHE, which, as discussed above, resulted in 

reduced cell viability and function. 
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The C. maculata extract was able to ameliorate both increased DAF and DHE fluorescence 

in STZ (Fig. 60) and PA (Fig. 61) exposed RIN-5F cells, albeit that the reduction induced by 

the extract in PA exposed cells was not significant. While NAC ameliorated both increased 

DAF and DHE fluorescence in STZ exposed cells only (Fig. 60), as well as increased DHE 

fluorescence induced by PA (Fig. 61) and MS (Fig. 63). Similarly, the extract and NAC 

ameliorated STZ induced oxidative stress in isolated rat islets as seen in reductions in both 

DAF (Fig. 80 A) and DHE (Fig. 80 B) fluorescence. As observed in the RIN-5F cells, the 

extract and NAC ameliorated PA induced increases in DAF (Fig. 81 A) and DHE (Fig. 81 B) 

fluorescence in the islets. In the PA exposed islets, mangiferin also reduced both DAF (Fig. 

81 A) and DHE (Fig. 81 B) fluorescence. 

 

Knowing that β-cells have naturally low levels of antioxidants (Sakuraba et al., 2002; Tanaka 

et al., 2002; Abdollahi et al., 2004), we were not surprised when we were unable to detect 

CAT and GSH in the RIN-5F and islet cell lysates. However, total SOD enzyme activity was 

detected and was in fact altered by the treatments used in this study. The extract, mangiferin 

and NAC ameliorated the STZ induced reduction in SOD activity in RIN-5F cells (Fig. 64). 

Similarly, mangiferin and NAC increased SOD activity that was reduced by both STZ (Fig. 

82) and PA (Fig. 83) in isolated islets. In the RIN-5F cells, NAC showed some improvement 

in SOD activity in PA exposed cells (Fig. 65) and mangiferin in MS exposed cells (Fig. 67). 

Improved SOD enzyme activity could be beneficial to β-cells by reducing the amount of free 

ROS in the cell (Robertson et al., 2003). However, we have yet to determine the fate of 

increased hydrogen peroxide produced as a result of SOD conversion of ROS; this is 

important since, in the presence of heavy metals, hydrogen peroxide forms the highly toxic 

hydroxyl radical (˙OH) (Hunt et al., 1988; Newsholme et al., 2012). Overall, we found that 

the extract and NAC had ameliorative antioxidative activity in the RIN-5F cells and isolated 

islets. 

 

5.5. The effect of C. maculata extract, mangiferin and NAC on protein expression in 

RIN-5F cells 

Although not deemed statistically significant, using a one-way ANOVA, differential 

expression of proteins can be biologically meaningful if fold change (compared to the normal 

control) is greater than 1.5 (McCarthy and Smyth, 2009). Both the extract and NAC 

increased NF-κB expression in RIN-5F cells exposed to STZ by 1.56 fold and 1.58 fold, 

respectively (Fig. 71 A). The increase may be an adaptive protective mechanism since 
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relatively small increases in NF-κB may regulate the expression of genes that play important 

roles in cellular stress responses, cell growth and cell survival (Karin and Lin, 2002). NAC 

treated cells showed increased cleaved caspase-3 expression in STZ exposed RIN-5F cells 

(1.77 fold) (Fig. 73 A) and GLUT-2 expression in both STZ (5.15 fold) (Fig. 75 A) and PA 

(2.70 fold) (Fig. 75 B) exposed cells. The increase in cleaved caspase-3 may indicate that 

the mechanism of cell death favoured is apoptosis, which is strongly favoured in β-cells 

rather than the highly inflammatory necrotic process (Augstein et al., 1998). The pro-

oncogenic protein BCL-2, known to suppress the intrinsic apoptotic pathway, was 

unchanged in RIN-5F cells in this study (Fig. 70), indicating that cell protection by the extract 

or NAC is not regulated by inhibition of apoptosis via the BCL-2 pathway, since BCL-2 

expression was not reduced by PA nor STZ. It has been previously demonstrated that STZ 

has no effect on BCL-2 expression in isolated rat islets (Mellado-Gil and Aguilar-Diosdado, 

2004). The increase in GLUT-2 expression induced by NAC may indicate a level of functional 

restoration of the RIN-5F cells since this constitutive β-cell protein is important in glucose 

sensing (Schuit, 1997). The decrease in PDX-1 expression in RIN-5F cells exposed to STZ 

was not ameliorated by any of the three treatments (Fig. 74 A) indicating that STZ induced 

dysfunction remained present in the RIN-5F cells.  

 

5.6. The variance in efficacy of C. maculata extract and mangiferin 

Our in vitro and ex vivo findings suggest that the extract, not exclusively dependent on 

mangiferin activity, had ameliorative effects on β-cell viability and function with a 

concomitant reduction in oxidative stress. Mangiferin was not as effective as the whole 

extract; a similar effect was observed in HepG2 liver cells exposed to tert-butyl 

hydroperoxide or amiodarone to induce oxidative stress, where Mangifera indica L. stem 

bark aqueous extract induced greater hepatoprotective effects compared to the equivalent 

mangiferin content concentration on its own (i.e. 20 µg/mL mangiferin) (Tolosa et al., 2013). 

This was also observed for other polyphenolic extracts and compounds, such as the 

ameliorative effect of Olea europea L. (olive) leaf and fruit extract in INS-1 β-cells, which 

was also observed to be greater than that of its predominant phenolic compound, oleuropein 

(Cumaoglu et al., 2011). A study by Muller et al. (2012) demonstrated that an aspalathin-

enriched extract of unfermented Rooibos, containing 18.44 % aspalathin, was more effective 

than pure aspalathin at increasing glucose uptake in C2C12 myotubules. The beneficial 

effects of the C. maculata extract may therefore be as a result of synergistic and/or additive 

effects between the major polyphenolic constituent, mangiferin, and other polyphenols or 
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constituents (such as polysaccharides; the content of which was not determined) found in 

the extract. Hesperidin, present at 0.80 % in the extract, has previously been demonstrated 

to improve glycaemic control in diabetic mice (Jung et al., 2004; Mahmoud et al., 2012), with 

norathyriol (an aglycone of mangiferin) treatment improving glucose homeostasis and insulin 

sensitivity in obese C57BL/6J ob/ob mice (Ding et al., 2014). Isomangiferin, present at 2.08 

% in the extract, has been shown to have a higher peroxyl radical scavenging activity than 

mangiferin (Malherbe et al., 2014) and may thus significantly contribute to the antioxidant 

properties of the extract.  The role of other minor polyphenolic compounds may also play a 

significant role that could be as effective as or even more effective than mangiferin due to 

higher bioavailability. Work on rosmarinic acid has demonstrated that extracts with a high 

content of different compounds, such as luteolin and apigenin, increases the bioavailability 

of rosmarinic acid (Fale et al., 2013). Luteolin has also been shown to be present in the 

extract used in the present study (Schulze, 2013). The complexity of polyphenolic 

interactions in extracts was further demonstrated when fractionation of an enriched hibiscus 

extract was shown to be less effective at suppressing adipogenesis than the whole extract 

(Herranz-Lopez et al., 2012). Similarly, Qin et al. (2012) suggested that the correct 

proportion of specific natural products at sub-potent drug levels could enhance intracellular 

bioavailability and activity to clinically relevant levels. 

 

5.7. The effect of C. maculata extract, metformin and NAC in diabetic Wistar rats 

In order to test if the beneficial effects of the extract demonstrated in vitro and ex vivo have 

merit, we investigated the in vivo effect of the extract in STZ induced diabetic rats following 

a two-fold approach; i.e. (i) by treating STZ induced diabetic rats, as well as by (ii) pretreating 

rats prior to STZ induced diabetes. As a potential therapeutic agent in the amelioration of a 

pre-existing diseased state, the extract and NAC (as well as the reference drug, metformin) 

were administered to rats five days after injection with STZ; this group of rats is referred to 

as the treated group and is similar to the approach used in vitro. As potential agents that will 

either prevent or reduce the deleterious effects of STZ in these Wistar rats, extract, NAC 

and metformin were administered to rats for 15 days prior to STZ injection and for five days 

post injection and are referred to as the pretreated group. 
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5.7.1. The effect of C. maculata extract, metformin and NAC on metabolic parameters 

in diabetic Wistar rats 

Treating STZ induced diabetic rats with the extract, as well as NAC and metformin, five days 

after STZ injection did not ameliorate the toxic effects of STZ on glucose metabolism (Fig. 

84 A – 89 A). However, pretreatment of the rats with extract resulted in improved glucose 

tolerance, as observed in reduced AUC of the OGTT (Fig. 86 B) and fasting glucose levels 

(Fig. 85 B), as well as having a hypotriglyceridaemic effect (Fig. 89 B). The reduction in 

serum triglycerides by the extract may infer some benefit to hepatic function in these rats 

(Mahmoud et al., 2012), which may potentially reduce the effects of long-term complications 

associated with hyperglycaemia and hypertriglyceridaemia, such as cardiovascular disease. 

Liver function tests on all rats (see addendum 4) revealed no measurable liver toxicity. A 

study using mangiferin, which is the predominant polyphenol in our extract, demonstrated 

hypolipidaemic and hypoglycaemic effects in STZ-induced diabetic rats (Muruganandan et 

al., 2005), which may be as a result of suppression of pancreatic lipase activity by mangiferin 

(Yoshikawa et al., 2002; Guo et al., 2011). Furthermore, the hypolipidaemic effects of 

hesperidin, another phenolic constituent of the extract, have also been described in rodent 

models of T2D (Mahmoud et al., 2012), which may in part be due to the ability of hesperidin 

to decrease pancreatic lipase activity (Kawaguchi et al., 1997). Hesperidin has also been 

shown to have direct hepatic effects in C57BL/KsJ-db/db mice by increasing hepatic 

glycolysis and lowering HGP (Jung et al., 2004). The high mangiferin content, as well as the 

presence of other bio-active and antioxidative compounds in our extract (Dudhia et al., 2013; 

Malherbe et al., 2014) may be responsible for the amelioration of STZ induced toxicity in the 

Wistar rats. Although mangiferin on its own was not as effective as the extract in improving 

cell viability and function in RIN-5F cells and isolated islets, as discussed previously in 

section 5.6., a synergistic effect between the polyphenols found in our extract should be 

considered, whereby modulation of hepatic and intestinal enzymes and transporters occurs 

to improve oral bioavailability (Efferth and Koch, 2011; Yang et al., 2014). 

 

Despite not seeing significant changes in fasting serum insulin values, we found that 

pretreatment with extract improved insulin sensitivity as determined by the glucose to insulin 

ratios of the rats (Fig. 88 B), comparable with that of metformin. The glucose to insulin ratio 

is a more applicable measure of insulin sensitivity than the homeostatic model of 

assessment of insulin resistance (HOMA-IR) in this study since STZ induced changes are 
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not readily demonstrated by the latter (McAuley et al., 2001).  An interesting observation in 

the fasting serum insulin levels of pretreated rats was that the values of extract pretreated 

rats were increased by more than double compared to STZ control (Fig. 87 B). Although the 

increase in fasting serum insulin induced by extract pretreatment was not significant, the 

more than two-fold increase in circulating insulin could infer substantial improvement in 

glucose metabolism. Several postulations regarding the mechanism of action of the extract 

could be derived from the in vivo data, in addition to the observed increased fasting insulin, 

enhancement of insulin action, stimulation of glucose uptake independent of insulin, or 

reduction of blood glucose in an insulin mimetic manner; thereby suggesting both pancreatic 

and extra-pancreatic extract effects. 

 

5.7.2. The effect of C. maculata extract, metformin and NAC on oxidative stress in 

diabetic Wistar rats 

Interestingly, the in vitro and ex vivo antioxidative effect was not observed in the overall 

oxidative status of Wistar rats pretreated with the extract. In fact, no measurable changes 

were observed in serum levels of CAT (Fig. 92) and GSH (Fig. 93), liver lipid peroxidation 

(Fig. 91) and liver nitrotyrosine (Fig. 94). We cannot, however, exclude that the extract could 

have had a pronounced antioxidant effect closer to the induction of diabetes by STZ and 

that the parameters measured had returned to homeostatic levels by the time blood was 

collected; this effect may be further substantiated by serum nitrite data of diabetic rats 

treated post STZ injection being unchanged, even in the STZ control group 28 days after 

injection. A small reduction in serum nitrites in rats pretreated with extract compared to the 

increased levels in the STZ control rats was observed, but, given that no other measurable 

changes were observed in antioxidative measures in this component of the study, it is 

possible that the changes in serum nitrites are not physiologically significant (Sun et al., 

2003). The elevated serum nitrites in the STZ control rats in the latter pretreated group (Fig. 

90 B) may have been measurable since these rats were injected with STZ only five days 

before blood collection. Furthermore, several endogenous and exogenous compounds can 

interfere with the Griess assay used to measure nitrites in this study, including compounds 

such as ascorbate, reduced thiols and heparin (Cortas and Wakid, 1990; Ishibashi et al., 

2000). We consider the finding of high levels of serum nitrites in rats treated with metformin 

after STZ injection as aberrant, since this effect was not observed in the pretreated group.  
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5.7.3. The effect of C. maculata extract, metformin and NAC on pancreatic islet 

morphometry in diabetic Wistar rats 

As previously mentioned, an increase in β-cell area and proliferation was induced by the 

extract (Fig. 98), indicating that pretreatment with the extract offered some protection to the 

β-cells against the cytotoxicity of STZ. The increased proliferation of β-cells in extract 

pretreated rats may be an indirect adaptive response due to improved physiological status 

in these animals (i.e. improved hyperglycaemia, hypertriglyceridaemia and reduced 

oxidative stress). Since increased β-cell proliferation in the extract pretreated rats was such 

a significant and unexpected finding, we assessed the incorporation of tritiated thymidine, 

as well as crystal violet (Fig. 69) into RIN-5F cells exposed to a range of extract 

concentrations, in order to eliminate the potential mitogenic effect of the extract on β-cells. 

Crystal violet incorporation was measured in addition to tritiated thymidine incorporation, 

since we could not exclude the possibility that the extract could affect the intracellular pool 

of thymidine, inferring that we would not only be measuring thymidine incorporated into DNA, 

and thus not truly measuring proliferation. We first demonstrated that these RIN-5F cells 

respond to stimulation of proliferation by exposing them to 25 mM glucose, as well as 

increasing concentrations of the GLP-1 analogue liraglutide (Fig. 68). These combined data 

revealed no detectable increase in proliferation induced by the extract and thus no 

measurable mitogenic effect. A direct extract induced mitogenic effect is even more unlikely, 

since mangiferin has been shown to inhibit MAPKs both in vitro and in vivo (Pal et al., 2013). 

In fact, the highest concentration of extract tested (i.e. 100 µg/mL) showed a reduction in 

RIN-5F proliferation as measured by both crystal violet and tritiated thymidine incorporation 

(Fig. 69). The role of the extract in ameliorating inflammation induced by hyperglycaemia 

has yet to be elucidated, and may in fact play a significant role since mangiferin is seen to 

reduce TNF-α induced activation of NF-κB in human histiocytic lymphoma cells, as well as 

inhibit NF-κB and downstream pro-inflammatory cytokines in macrophages (Leiro et al., 

2004; Sarkar et al., 2004). 

 

5.8. Potential mechanism(s) of β-cell protection by C. maculata extract 

We propose that the C. maculata extract used in this study ameliorates the deleterious 

effects of T2D on pancreatic β-cells by reducing oxidative stress, improving mitochondrial 

and ER function, as well as by improving exogenous factors deleteriously affecting the β-

cells (i.e. hyperglycaemia, hypertriglyceridaemia and potentially systemic inflammation) 
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(Fig. 100). These effects were independent of PDX-1 regulation, with reductions in β-cell 

apoptosis independent of BCL-2 and caspase-3. Potential systemic anti-inflammatory 

properties of the extract in rodents may be associated with the high mangiferin content, as 

previously mentioned (Leiro et al., 2004; Sarkar et al., 2004). 

 

Evidence of reduced oxidative stress in RIN-5F cells and isolated islets included reductions 

in both ROS and RNS. We found that SOD activity was increased and may thus be 

responsible for the reduction in ROS observed. Other mechanisms may also ameliorate 

oxidative stress in β-cells, including improved mitochondrial function (as evident in extract 

induced increases in cellular ATP and MTT positivity), decreased ER stress, as well as a 

potential direct radical scavenging effect of the extract. A previous study on the effect(s) of 

andrographolide, the primary component of Andrographis paniculata, in alloxan induced 

diabetic BALB/c mice and RIN-m cells showed the free radical scavenging effect of the plant 

derived compound to have β-cell protective effects (Zhang et al., 2009). The study also 

showed that reduction of NF-κB activation, induced by inflammation, caused a reduction in 

ROS. In our study we not only observed reduced cell death, in terms of both apoptosis and 

necrosis, but some β-cell regeneration was evident in terms of increased cell proliferation, 

both in vitro and in vivo. The isoflavone, genistein, was shown to enhance both INS1 and 

human islet β-cell proliferation, as well as β-cell proliferation in the pancreata of STZ induced 

diabetic mice (Fu et al., 2010). Genistein was thought to modulate this effect via cAMP and 

protein kinase-A signalling. Furthermore, one of the main green tea catechins, EGCG, has 

been shown to reduce β-cell apoptosis by decreasing DNA and oxidative damage, and 

directly scavenging hypoxia induced ROS in rat islets (Hara et al., 2007). 

 

A combination of decreased oxidative stress, improved mitochondrial and cell function, and 

increased functional β-cell mass as a result of treatment with the C. maculata extract used 

in this study provides some evidence for direct protective effects of the extract on T2D 

damaged pancreatic β-cells. In addition, pretreatment with the extract blunts and/or 

ameliorates extra-pancreatic metabolic aberrations, as well as β-cell specific deleterious 

effects of STZ in Wistar rats. 

 

One of the shortcomings of current T2D treatment is that anti-diabetic medication is only 

prescribed once hyperglycemia appears. Leading trends in T2D promote proactive 

treatment of early stages of dysfunctional glucose metabolism, before actual β-cell 
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destruction occurs (Seufert et al., 2004). Such a therapeutic approach is supported by the 

in vivo component of our study, whereby the C. maculata extract assessed demonstrated 

the ability to protect β-cells prior to the induction of diabetes by STZ in Wistar rats. However, 

the extract, on its own, was ineffective at restoring β-cell function following destruction of β-

cells induced by STZ. It may be possible that this extract, prepared from unfermented C. 

maculata, in combination with current hypoglycaemic drugs, will enhance T2D therapy by 

protecting the functional β-cell mass.  
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Figure 100. Potential mechanism(s) of β-cell protection by unfermented, aqueous C. 

maculata extract. 

Cyclopia maculata extract ameliorates the deleterious effects of T2D on pancreatic β-cells by improving STZ 

induced hyperglycaemia, hypertriglyceridaemia and potentially resultant systemic inflammation, as well as by 

reducing oxidative stress and improving β-cell mitochondrial and ER function. The resultant effect is improved 

β-cell function and reduced β-cell death. Type 2 diabetes associated hypertriglyceridaemia, inflammation and 

oxidative stress were mimicked in vitro in this study using PA, CM and STZ (ER – endoplasmic reticulum; RNS 

– reactive nitrogen species; ROS – reactive oxygen species). 
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Several conclusions arise from this study, with the most prominent and promising being that 

the aqueous extract of unfermented C. maculata does in fact offer protection to pancreatic 

β-cells exposed to conditions characteristic of T2D. In particular, the extract was observed 

to protect RIN-5F cells and isolated rat pancreatic islets from the deleterious effects of STZ 

and lipotoxicity, induced by PA, by reducing oxidative stress and improving mitochondrial 

function. Concomitantly, β-cell function was improved in the RIN-5F cells and islets. 

 

The extract was observed to be substantially more effective than its most abundant 

polyphenol, mangiferin, while showing similar effectivity to NAC in vitro and ex vivo. 

 

In vivo, pretreatment of STZ induced diabetic Wistar rats with the extract improved glucose 

metabolism similar to that of metformin, with a reduction in hypertriglyceridaemia. 

Improvements in pancreatic islet morphology were also observed in the pretreated Wistar 

rats, with increased β-cell proliferation and a concomitant increase in the β-cell to total islet 

area. However, treating already diabetic Wistar rats had no restorative effects on pancreatic 

β-cells. 

 

In RIN-5F cells, β-cell proliferation was also enhanced by the extract in a non-mitogenic 

manner. This finding is important since depletion of β-cell mass, as a result of reduced β-

cell replenishment following increased apoptosis, is characteristic of T2D. Not only was 

proliferation increased both in vitro and in vivo, but the ability of the extract to reduce 

apoptosis was also observed in the RIN-5F cells and isolated islets. 

 

In combination with current T2D therapies, a formulation of the aqueous extract of 

unfermented C. maculata may slow disease progression and reduce long term 

complications associated with T2D by protecting pancreatic β-cells. 
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Shortcomings and future work arising from this study 

 

The inability to induce glucotoxicity in the RIN-5F cells was a shortcoming of this study that 

requires further investigation, particularly since the role of glucolipotoxicity is so prominent 

in T2D. The predefined conditions of cytotoxicity in the RIN-5F cells in this study (i.e. LC50, 

as determined by reduction of mitochondrial function and ATP production) limited the 

assessment of glucotoxicity as an effective stressor in these cells. Future studies into the 

glucotoxic effects in RIN-5F cells will require additional measurements of cell viability and 

function in order to determine an effective glucotoxic concentration; the use of the MTT and 

ATP assays have their limitations, since these cells are able to maintain mitochondrial 

function despite defective insulin synthesis and secretion induced by glucotoxic conditions 

(Maechler et al., 1998). 

 

The role of IRS-2 overexpression in reducing the toxic effect of elevated glucose has been 

previously reported (Maedler et al., 2007) and should be assessed in the RIN-5F cells used 

in this study, either by immunohistochemical labelling or Western blot analysis. A longer 

incubation period should also be considered, since a previous study reported that 48 hours 

of glucotoxicity induced β-cell dysfunction in RIN-5F cells (Hu et al., 2014). The use of 

exogenously added AGEs to induce glucotoxicity could also be considered, since they are 

derived from the direct reaction of glucose with free amine groups on proteins and lipids.  

 

In this study apoptosis and necrosis were measured using the annexin-V and propidium 

iodide assay in order to determine changes in β-cell viability in RIN-5F cells and isolated 

islets. In order to extract further information regarding changes in apoptosis and necrosis, 

flow cytometric analysis of single cell suspensions could be used to measure the co-

expression of annexin-V and propidium iodide cell populations, thereby further 

distinguishing the apoptotic stages. To further elucidate the effect on apoptosis in this study, 

particularly in light of no measurable changes in BCL-2 protein expression, other proteins 

involved in intrinsic and extrinsic apoptotic pathways should be investigated. These include 

Fas, BAX, BCL-XL, p53 and cytochrome C. 

 

The source of the increased RNS production observed in vitro and ex vivo requires further 

investigation since we were unable to determine if the increased levels of nitric oxide was 

as a result of increased stimulation of inducible or constitutive nitric oxide synthase. The use 
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of specific inducible nitric oxide synthase inhibitors (e.g. lentiviral vector gene silencing or 

the 1400W molecule) (Hynes et al., 2011; Quintana-Lopez et al., 2013) or Western blot 

analysis of inducible nitric oxide synthase protein expression should thus be considered. 

 

In order to further assess the antioxidative effect(s) of the extract, the fate of hydrogen 

peroxide produced as a result of elevated SOD activity should be investigated. In this study, 

the commercial kits used to detect GSH and CAT (which are responsible for decomposing 

hydrogen peroxide) in RIN-5F cells and isolated islets were unable to detect the substantially 

low levels of the respective antioxidant molecules. More sensitive detection kits could be 

considered and Western blot detection of the protein expression or changes in mRNA 

expression ought to be assessed.  

 

Another limitation in this study was the lack of measurable changes in antioxidant 

parameters measured in the Wistar rats. The measurement of serum antioxidant parameters 

should be constantly monitored over time from STZ induction of diabetes (and not just at the 

end of the treatment period) in order to determine the precise antioxidative effect, if any, of 

the extract in vivo. 

 

The in vivo anti-inflammatory effect(s) of the extract require further elucidation, particularly 

since mangiferin has been reported to have anti-inflammatory effects in diabetic models 

(Leiro et al., 2004; Sarkar et al., 2004). Inflammatory markers in stored serum and tissue 

(liver and pancreas) could be determined. 

 

The interesting finding in this study, that both STZ and lipotoxicity induced increases in 

glucose stimulated insulin secretion, warrants further investigation into the regulation of 

insulin secretion by both the stressors (STZ and PA), as well as the effect of the extract. 

Current literature is severely limited in reporting on this aspect of insulin secretion, with 

mechanisms of stress induced increases in insulin secretion being near absent. Determining 

total insulin synthesised (not just secreted) by the β-cells, by also quantifying intracellular 

insulin per se, should be considered in future studies.  

 

Since we propose that a formulation of the C. maculata extract may be beneficial as an 

adjunctive therapy in T2D, further investigation is needed to validate the effects of co-

therapeutics, both with current antidiabetic drugs (e.g. metformin, TZDs or liraglutide), as 
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well as different combination effects of the polyphenolic constituents of the extract (e.g. 

hesperidin in combination with mangiferin). 

 

“There will come a time when you believe everything is finished; that will be the beginning.” 

Louis L'Amour 
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ADDENDUM 1 - Outputs arising from this study 

 

Peer-reviewed journal publication: Chellan N, Joubert E, Strijdom H, Roux C, Louw J and  

Muller CJF. Aqueous extract of unfermented Honeybush (Cyclopia maculata) attenuates 

STZ-induced diabetes and β-cell cytotoxicity. Planta Medica 2014; 80: 622-629 (appended; 

pages 245-252). 

 

Peer-reviewed abstract publication: Chellan N, Muller CJF, Joubert E, Strijdom H and 

Louw J. Unfermented aqueous Honeybush extract (Cyclopia maculata) attenuates STZ-

induced β-cell cytotoxicity. Diabetologia 2013; 56(1): S217-S218. 

 

Conference/symposium presentations: Chellan N, Muller CJF, Joubert E, Strijdom H and 

Louw J. An in vitro model for the assessment of hyperglycemia-induced oxidative stress in 

RIN-5F pancreatic β-cells. Medical Research Council Early Career Scientists Conference, 

October 2012 (poster presentation). 

 

Chellan N, Muller CJF, Joubert E, Strijdom H and Louw J. The effect of Cyclopia maculata 

extract on β-cell function, protection against oxidative stress and cell survival. Research 

Symposium, Diabetes Discovery Platform, Medical Research Council, March 2012 (oral 

presentation). 

 

Chellan N, Muller CJF, Joubert E, Strijdom H and Louw J. An in vitro model for the 

assessment of hyperglycemia-induced oxidative stress in RIN-5F pancreatic β-cells. 

Physiology Society of Southern Africa (PSSA) Conference, September 2012 (oral 

presentation; second place in Wyndham competition). 

 

Chellan N, Muller CJF, Joubert E, Strijdom H and Louw J. Unfermented aqueous honeybush 

extract (Cyclopia maculata) attenuates STZ-induced β-cell cytotoxicity. European 

Association for the Study of Diabetes Conference, September 2013 (poster presentation). 

 

Chellan N, Joubert E, Strijdom H, Louw J and Muller CJF. The protective effect of an 

unfermented, aqueous Cyclopia maculata extract in pancreatic islets. Islet Society Meeting, 

July 2014 and Physiology Society of Southern Africa (PSSA) Conference, September 2014 

(oral presentations). 
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ADDENDUM 3 - Reagents and equipment 

 

1. Citrate buffer 

588 mg sodium citrate (Cat no. W302600, Sigma-Aldrich) + 20 ml distilled water (pH to 4.5 

with concentrated HCl). 

 

2. Gelatine jelly cubes 

Pick ‘n Pay® brand raspberry flavoured jelly (Pick ‘n Pay Retailers Pty Ltd., Gauteng, South 

Africa) was used. Ingredients listed on the package were: sugar, bovine gelatine, acidity 

regulators, artificial flavourant (raspberry) and colourant (No added vitamin C). Eighty grams 

of Pick ‘n Pay® brand raspberry flavoured jelly was supplemented with 7 g of bovine gelatine 

(Sheridans Gelatine, Libstar Manufacturing Solutions Pty Ltd, Gauteng, South Africa). 

Gelatine jelly powder was dissolved in 300 ml of distilled water. 

 

3. Krebs’s-Ringer bicarbonate HEPES buffer (all reagents from Sigma-Aldrich) 

Component       mmol/L 

NaCl (Cat No. S5886)     115 

NaHCO3 (Cat No. S3817)     24 

KCl (Cat No. P5405)     5 

MgCl2 (Cat No. M4880)     1 

CaCl2 (Cat No. C5670)     2.5 

2% BSA (Cat No. A4919) 

10 mM HEPES Buffer (Cat No. H3375) 

 

4. Sorensen’s glycine buffer 

0.751 g glycine (0.1M) (Cat no. 2139410, AnalaR Laboratories, Poole, England) + 0.584 g 

NaCl (0.1M) (Cat no. AB006404.500, Merck Millipore) in 100 ml cell culture tested water. 

 

4 g NaOH (1M) (Cat no. 10252, AnalaR Laboratories) in 100 ml cell culture tested water (to 

equilibrate buffer to pH 10.5). 

 

5. Transfer buffer 

25 mM Tris (Cat no. 93352, Sigma-Aldrich) + 192 mM glycine (Cat no. 50046, Sigma-

Aldrich) + 200 mL made up to 1 L in distilled water. 
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6. Tris buffered saline Tween 

20 mM Tris (Cat no. 93352, Sigma-Aldrich) + 137 mM NaCl (Cat no. S3014, Sigma-Aldrich) 

+ 1 mL Tween20 made up to 1 L in distilled water. 

 

List of equipment 

 

Description Manufacturer

Absorbance microplate reader (ELX800) Bio-Tek Instruments; Friedrichshall, Germany

Automated tissue processer (TP1020) Leica Biosystems; Nussloch, Germany

Benchtop centrifuge (SL 16R) Thermo Fisher Scientific

Benchtop microfuge (5415 R) Eppendorf

Benchtop microfuge (5810 R) Eppendorf

Biohazard safety cabinet, class II Airvolution; Johannesburg, South Africa

Bio-Rad ChemiDoc imaging device (170-8265) Bio-Rad 

Cell/tissue homogeniser (85600) Retsch Technology; Haan, Germany

Countess
TM

 automated cell counter (C10227) Invitrogen

Fluorometric microplate reader (FLX800) Bio-Tek Instruments

Heating block Labnet International Inc.; NJ, USA

Incubator (Galaxy R) RS Biotech; West Lothian, United Kingdom

Inverted fluorescent microscope (Eclipse Ti) Nikon; NY, USA

Inverted microscope (CKX 41) Olympus; NY, USA

Liquid scintillation analyser (ParkardTricarb series 2810 TR) Perkin Elmer

PowerPac™ HC Bio-Rad 

Quantity One Software Bio-Rad 

Rotary microtome (Leica RM 2125RT) Leica Biosystems

Stereo microscope (Wild) Wild, Heerbrugg, Johannesburg, South Africa

Waterbath Memmert; Heilbronn, Germany

Software Manufacturer

Gen5 software (version 1.05) Bio-Tek Instruments

Graphpad Prism® (version 5.0) Graphpad Software; CA, USA

Leica Qwin Software Leica Microsystems; Nussloch, Germany

Microsoft Excel 2013 Microsoft Corporation; WA, USA

Quantity One 1-D software (version 1.02) Bio-Rad 
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List of reagents 

 

Description Catalogue No. Manufacturer

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) M5655 Sigma-Aldrich; St Louis, MO, USA

Annexin-v  conjugate A9210 Sigma-Aldrich

Anti-rabbit IgG sc-2317 Santa Cruz Biotechnology; CA, USA

Assay plate (96 well, clear) 655101 Greiner Bio-One; Frickenhausen, Germany

Beta-mercaptoethanol 60-24-2 Sigma-Aldrich

Beta-tubulin antibody 2146 Cell Signalling Technology; Danvers, MA, USA

Bovine serum albumin (BSA) A4919 Sigma-Aldrich

Bovine serum albumin (BSA) - free fatty acid free A1302-25G Sigma-Aldrich

Bradford protein assay kit 500-0203 Bio-Rad; CA, USA

Buffered formalin (10 %) - KIMIX Chemicals; South Africa

Carbon dioxide (CO2) K239C Air Products; Centurion, Cape Town, South Africa

Cell culture 24 well plate (clear) 662160 Greiner Bio-One

Cell culture 96 well plate (black) 655077 Greiner Bio-One

Cell culture 96 well plate (clear) 655160 Greiner Bio-One

Cell culture 96 well plate (white) 22915 Porvair; Leatherhead, UK

Cell culture flask (75 cm
2
) 658975 Greiner Bio-One

Cell scrapers P0500 Sigma-Aldrich

Collagenase P type I from Clostridium histolyticum  C0130 Sigma-Aldrich

Commercial cell lysis buffer FNN0011 Life Technologies; CA, USA

Countess
TM

 chamber slides C10228 Invitrogen; CA, USA

Cruz marker sc-2035 Santa Cruz Biotechnology

Cryogenic vial (2 mL) 122279 Greiner Bio-One

Crystal violet C3886 Sigma-Aldrich

Diaminobenzidine Plus kit K3468 DAKO; Glostrupt, Denmark

Dextrose-Fresenius 50% solution - Intramed; Port Elizabeth, South Africa

Diaminofluorescein-FM diacetate  (DAF) 292648 Sigma-Aldrich

Dihydroethidium 37291 Sigma-Aldrich

Dimethyl sulfoxide (DMSO) D4540 Sigma-Aldrich

Dulbecco's phosphate buffered saline (DPBS) 17-513 Lonza; MD, USA
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Description Catalogue No. Manufacturer

Envision kit K5355 DAKO

Eppendforf tube (2 mL) 22363344 Eppendorf, Hamburg, Germany

Ethanol E7023 Sigma-Aldrich

Fermentas PageRuler prestained marker 26616 Thermo Fisher Scientific; MA, USA 

Fetal bovine serum (FBS) SH3007903HI Thermo Fisher Scientific

Fluo-3AM F14218 Invitrogen

Geneticin 11464990 Roche Diagnostics; IN, USA

Glucometer (OneTouch Select) - Johnson and Johnson Medical; Johannesburg, South Africa

Glucose (cell culture tested) G7021 Sigma-Aldrich

Griess reagent G4410 Sigma-Aldrich

Haematoxylin MHS1 Sigma-Aldrich

Hank's balanced salt solution (HBSS) 14025 Invitrogen

Histopaque 1077 10771 Sigma-Aldrich

Histopaque 1083 10831 Sigma-Aldrich

Histopaque 1119 1191 Sigma-Aldrich

Homogenising beads (steel) 69989 Qiagen; Hilden, Germany

Hydrochloric acid 320331 Sigma-Aldrich

Hydrogen peroxide 107209 Merck Millipore; MA, USA

Immobilon-P polyvinylidene difluoride  (PVDF) membrane IPVH00010 Merck Millipore

Insulin ELISA kit EZRMI-13K Merck Millipore

Interferon gamma (IFN-γ) I3275 Sigma-Aldrich

Interleukin-1 beta (IL-1β) I2393 Sigma-Aldrich

K2 ethylenediaminetetraacetic acid (EDTA) tube 368861 BD Biosciences; Woodmead, South Africa

Laemmli sample buffer (4 x concentrate) 161-0747 Bio-Rad

LumiGLO® chemiluminescent substrate 54-71-01 Kirkegaard & Perry Laboratories (KPL); MD, USA

Mangiferin M3547 Sigma-Aldrich

Metformin D150959 Sigma-Aldrich

Methanol 67-56-1 Sigma-Aldrich

MIB-5 antibody M7248 DAKO

Milk powder (non-fat) 2082054 Clover; Johannesburg, South Africa

N-acetyl cysteine (NAC) A9165 Sigma-Aldrich
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Description Catalogue No. Manufacturer

Neonatal 26 G canula NM126 Neotec Medical Industries; Jalan Bukit Merah, Singapore

Palmitic acid (PA) P0500 Sigma-Aldrich

Penicillin and streptomycin 17602 Lonza

Phenylmethanesulfonyl fluoride (PMSF) 78830 Sigma-Aldrich

Ponceau S stain P23295 Sigma-Aldrich

Pre-cast sodium dodecyl sulphate polyacrylamide gels 161-0993 Bio-Rad

Propidium iodide P4170 Sigma-Aldrich

Protease inhibitors 11206893001 Roche Diagnostics

Pure Harvest rat/mouse pellets - Afresh Vention (PTY) LTD; Durbanville, South Africa

RC DC protein kit 500-0119 Bio-Rad

RIN-5F rat insulinoma cells 95090402 European Collection of Cell Cultures; Salisbury, UK

Roswell Park Memorial Institute 1640 (RPMI1460) 12-702F Lonza

Running buffer (electrophoresis) 161-0772 Bio-Rad

Scintillation fluid (Ultima Gold) 6013329 Perkin Elmer; CA, USA

Serum separating tube (SST) 367955 BD Biosciences

Sodium dodecyl sulfate L3771 Sigma-Aldrich

Sodium hydroxide S5881 Sigma-Aldrich

Sodium pentobarbital euthanase - Bayer Pty. Ltd., Animal Health Division; Isando, South Africa

Sterile tube (15 mL) 188261 Greiner Bio-One

Sterile tube (50 mL) 227261 Greiner Bio-One

Strepavidin ABC SA-5704 Vector Labs; CA, USA

Streptozotocin (STZ) S0130 Sigma-Aldrich

Stripping buffer 46430 Thermo Fisher Scientific

Syringe-driven sterile filter SLGP033RS Merck Millipore

Tris 93352 Sigma-Aldrich

Triton X-100 648465 Merck Millipore

Trypan blue T10282 Invitrogen;

Trypsin-versene 17-161F Lonza

Tumour necrosis factor alpha (TNF-α) PMC3014 Invitrogen

Tween20 58980C Sigma-Aldrich

ViaLight
TM

 plus ATP kit LT07-321 Lonza

Water (cell culture tested) W3500 Sigma-Aldrich
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ADDENDUM 4 - Supplementary data 

 

Table 9. Liver enzyme levels of treated (A) and pretreated (B) diabetic Wistar rats. 

 

A. 

 

 

B. 

 

Normal Control 86.00 ± 15.36 48.38 ± 2.24 110.25 ± 5.65

STZ Control 240.00 ± 58.03 87.00 ± 13.70 157.38 ± 37.34

Metformin 467.67 ± 124.43 93.50 ± 11.49 181.00 ± 11.31

NAC 238.86 ± 97.19 70.00 ± 14.76 192.29 ± 23.63

30 mg/kg/d C. mac. 482.86 ± 171.73 86.29 ± 13.86 218.29 ± 22.46

300 mg/kg/d C. mac. 330.86 ± 84.10 64.14 ± 8.15 167.29 ± 14.29

S-AST (u/L) S-ALT  (u/L)S-AP (u/L)

Normal Control 86.00 ± 15.36 48.38 ± 2.24 110.25 ± 5.65

STZ Control 125.91 ± 22.86 65.63 ± 10.07 127.75 ± 14.99

Metformin 85.25 ± 23.82 52.00 ± 6.34 130.25 ± 7.44

NAC 137.57 ± 35.96 85.43 ± 26.78 172.43 ± 37.78

30 mg/kg/d C. mac. 143.88 ± 56.18 57.63 ± 10.13 141.13 ± 15.01

300 mg/kg/d C. mac. 71.75 ± 7.57 46.38 ± 5.42 127.13 ± 11.08

S-AP (u/L) S-AST (u/L) S-ALT  (u/L)
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Table 10. Pancreas and islet area measurements (A) and β- and α-cell counts (B). 

 

A. 

 

 

B. 

 

  

Normal Control 62520715.70 ± 6092136.21 546541.19 ± 67240.48 74250.94 ± 8903.44 447078.83 ± 61441.42 0.91 ± 0.15

STZ Control 58245134.43 ± 8338433.03 241945.74 ± 64012.38 92403.34 ± 22426.53 100056.91 ± 34244.34 0.40 ± 0.06

Metformin 64881248.73 ± 4599052.32 396617.75 ± 49964.07 96116.29 ± 13674.33 246239.47 ± 49034.11 0.64 ± 0.10

NAC 68275082.58 ± 13433310.98 322881.19 ± 100407.09 91416.21 ± 28913.93 163050.88 ± 68016.94 0.46 ± 0.12

30 mg/kg C.mac. 53295925.94 ± 6712864.26 361136.25 ± 84212.37 72078.30 ± 11871.57 240458.52 ± 75524.90 0.72 ± 0.13

300 mg/kg C.mac. 64202644.21 ± 5560970.04 289844.49 ± 67671.21 71589.56 ± 23542.55 170353.20 ± 37193.37 0.45 ± 0.09

Total tissue area
Total tissue area Total islet area Total α-cell area Total β-cell area

Total islet:

Normal Control 435.50 ± 36.38 1156.25 ± 115.65 381.71 ± 18.64

STZ Control 457.63 ± 122.01 240.25 ± 71.74 374.45 ± 38.10

Metformin 530.29 ± 67.02 598.71 ± 163.96 458.71 ± 42.76

NAC 290.00 ± 23.10 336.38 ± 187.72 640.66 ± 155.98

30 mg/kg C.mac. 373.50 ± 67.01 550.38 ± 169.53 728.72 ± 246.42

300 mg/kg C.mac. 348.29 ± 98.99 388.14 ± 74.76 433.08 ± 29.73

Total no. β-cells
Total no. α-cells Total no. β-cells

Total β-cell area: 
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