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ABSTRACT

THE EFFECT OF RUMEN INERT FAT SUPPLEMENTATION AND PROTEIN

DEGRADABILITY IN STARTER AND FINISHING DIETS ON VEAL CALF

PERFORMANCE AND THE FATTY ACID COMPOSITION OF THE MEAT.

by
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Supervisor: Dr. C.W. Cruywagen

Co-Supervisor: Dr. L.C. Hoffman
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Faculty: Agricultural Sciences

University of Stellenbosch

Degree: M.Sc. (Agric.)

Six groups each with six Friesian bull calves were used in this investigation and slaughtered

at 20 weeks of age. Calves received a low- (LD) or high (HD) degradable protein diet, each

with or without rumen inert fat supplementation. Two commercial fat sources were used,

Morlae (m) and Golden Flake (gf), included at 2.5% of the diet. A commercial milk replacer

(Denkavit) was fed at 4L for 42 days, followed by 2L until weaning at 49 days of age. The

starter diets were fed ad lib. from day 14 to 10 weeks of age and finishing diets ad lib. from

11 to 20 weeks of age. There were no significant differences in body mass gain or dry matter

intake over the entire 20 week period. The feed conversion ratio (FCR) was improved

significantly (P=0.0032) when fat was supplemented to LD, but not to HD diets. The FCR

(kg dry matter/ kg gain) ofLD, HD, LDm, HDm, LDgfand HDgfdiets were 3.45,3.44,3.07,

3.81, 3.02 and 3.43, respectively. All 36 calves were used in a digestibility trial, using

chromium oxide (Cr203) as a marker, during week 18 of the investigation. Digestibility

values (%) for the six diets (LD, HD, LDm, HDm, LDgfand HDgf) were 61.74, 65.91, 75.44,

69.00, 75.54 and 67.15 for dry matter, 61.44, 61.60, 71.33, 68.23, 75.44 and 66.12 for crude

protein and 58.56, 66.45, 75.98, 70.92, 78.43 and 70.79 for fat, respectively. The dry matter

(P=O.OOOl)and fat (P=O.OOOl) digestibilities were only significantly higher when fat was
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added to LD diets. The crude protein (CP) digestibilities were significantly higher when fat

was added to either the LD (P=0.0001) or the HD (P=0.0488) diets.

All the calves were slaughtered at 20 weeks of age and the fatty acid content of the meat (m.

longissimus) and subcutaneous fat layer adjacent to the 12th rib as well as the meat colour,

was determined. The fatty acid composition of the longissimus muscle was changed by

feeding the rumen inert fat sources. The three predominant fatty acids found were palmitic,

stearic and oleic acids. The palmitic acid (CI6:0) content of the muscle and diet was 24.44 &

20.47,25.97 & 22.57,31.06 & 33.23, 30.98 & 37.91, 34.94 & 31.77 and 29.71 & 32.88 of the

total fat for the LD, HD, LDm, HDm, LDgf and HDgf diets, respectively. The C16:0 content

was significantly higher in the muscle of the calves receiving the LD diets supplemented with

fat (P=0.0008). There was also a significant interaction between the two fat sources and

protein degradability (P=0.0065), but only in the LD diets. The stearic acid (CI8:0) content

of the muscle and diet was 14.35 & 5.22, 19.65 & 8.61, 17.29 & 4.68, 22.59 & 5.78, 22.27 &

15.54, and 26.48 & 20.15 of the total fat for the LD, HD, LDm, HDm, LDgfand HDgfdiets,

respectively. The C18:0 content was significantly higher in the muscle of calves receiving the

HD (P=O.OOOl)compared to LD diets. The stearic acid content was also significantly higher

when fat was added to LD (P=0.0042) or HD (P=0.0073) diets. The oleic acid (CI8:1)

content of the muscle and diet was 36.06 & 21.51,39.99 & 21.11,32.21 & 23.67, 29.13 &

24.59, 25.23 & 18.68 and 35.93 & 16.02 of the total fat for the LD, HD, LDm, HDm, LDgf

and HDgf diets, respectively. The linolenic acid (CI8:3) content of the muscle was

significantly higher (P=0.0038) when fat was added to LD diets compared to no fat

supplementation (0.87 vs. 0.15). The CIELAB values indicated that LD diets resulted in more

pink meat. Mean values ofL* =-32.61, 34.19; a* = 7.08, 7.91 and b* = 3.18 and 4.07 were

observed for the LD and HD diets, respectively. Meat from the LD diets had significantly

lower L*-(P=0.0252), a*-(P=0.0283) and b*-(P=0.0109) values compared to meat from the

HD diets. It was concluded that there was a positive response in CP digestibility when rumen

inert fats were supplemented to LD or HD diets, although a greater response was shown in the

LD diets. The FCR, dry matter and fat digestibility were only increased when fat was added

to the LD and not to the HD diets. Similarly, the fatty acid contents of the longissimus

muscle of veal calves can be manipulated with the supplementation of rumen inert fat sources,

but only when combined with a low protein degradable diet. The low degradable protein diets

also produce a more attractive meat colour for the potential veal consumer.
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SAMEVATTING

DIE EFFEK VAN RUMENINERTE VETSUPPLEMENTERING EN PROTEÏEN

DEGRADEERBAARHEID IN KALF-AANV ANGS EN -GROEIDIEËTE OP DIE

GROEI VAN KALWERS EN DIE VETSUURSAMESTELLING VAN DIE VLEIS.

deur

Eina Lategan

Studieleier: Dr. C.W. Cruywagen

Mede-studieleier: Dr. L.C. Hoffman

Departement: Veekundige Wetenskappe

Universiteit van Stellenbosch

Graad: M.Sc. (Agric.)

Ses behandelings, lae- (LD) of hoë (HD) degradeerbare diëte, elk met of sonder rumeninerte

vetsupplementering, is geëvalueer met ses kalwers in elke groep. Twee kommersiële

vetbronne is gebruik, nl. Morlae (m) en Golden Flake (gf) teen 'n 2.5% insluitingspeil. 'n

Kommersiële melksurrogaat (Denkavit) is aangebied teen 4L1dag tot 42 dae ouderdom,

gevolg deur 2L/dag tot speenouderdom op 49 dae. Aanvangsdiëte is ad lib. aangebied vanaf

14 dae tot 10 weke ouderdom en die groeidiëte ad lib. vanafweek 11 tot 20. Daar was geen

betekenisvolle verskille in die totale massatoename of die droëmateriaalinname nie. Die voer-

omsettingsverhouding is betekenisvol verbeter (P=0.0032) in die behandelings waarin

rumeninerte vette by LD diëte ingesluit is, maar nie by die HD diëte nie. Die voer-

omsettingsverhouding (kg droëmateriaalinname / kg massatoename) van die LD, HD, LDm,

HDm, LDgf en HDgf diëte was 3.45, 3.44, 3.07, 3.81, 3.02 en 3.43, onderskeidelik. Al 36

kalwers is in 'n verteringsproef gebruik gedurende week 18 van die proef. Chroomoksied

(Cr203) is as merker gebruik. Verteerbaarheidswaardes vir die ses diëte was 61.74, 65.91,

75.44,69.00,75.54 en 67.15 vir droëmateriaal, 61.44, 61.60, 71.33, 68.23, 75.44 en 66.12 vir

ruproteïen en 58.56, 66.45, 75.98, 70.92, 78.43 en 70.79 vir vet, onderskeilik. Die

droëmateriaal- (P=O.OOOl) en vetverteerbaarheid (P=O.OOOI) was slegs betekenisvol hoër

wanneer vet by LD diëte gevoeg is en nie by HD nie. Die ruproteïen (RP) verteerbaarheid
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was betekenisvol hoër (P=0.0002) by LD en HD (P=0.0488) diëte met vet supplementering,

teenoor geen vet insluiting.

Die kalwers is op 20 weke ouderdom geslag en die vetsuursamestelling van die vleis (m.

longissimus) en die subkutane vetlaag teenaan die 12de rib, asook en die vleiskleur, is bepaal.

Die vetsuursamestelling van die longissimus spier is deur die supplementering van

rumeninerte vet verander. Die drie primêre vetsure wat in die vleis voorgekom het, was

palmitiensuur, steariensuur en oleïensuur. Die palmitensuur (CI6:0) inhoud van die spier en

diëte was 24.44 & 20.47, 25.97 & 22.57, 31.06 & 33.23, 30.98 & 37.91, 34.94 & 31.77 en

29.71 & 32.88 van die totale vet van die LD, HD, LDm, HDm, LDgf en HDgf diëte,

onderskeilik. Die C16:0 was betekinisvol hoër in die spiere van kalwers wat die LD diëte met

vet supplementering (P=0.0008) ontvang het. Die steariensuur (CI8:0) inhoud van die spier

en diëte was 14.35 & 5.22, 19.65 & 8.61, 17.29 & 4.68, 22.59 & 5.78, 22.27 & 15.54, en

26.48 & 20.15 van die totale vet vir die LD, HD, LDm, HDm, LDgf en HDgf diëte,

onderskeidelik. Die C18:0 inhoud was betekinisvol hoër in die spiere van die kalwers wat die

HD (P=O.OOOI),teenoor LD diëte ontvang het. Die steariensuur inhoud was ook betekenisvol

hoër wanneer vet by LD (P=0.0042) of HD (P=0.0031) diëte gevoeg word. Die oleïensuur

(CI8:1) inhoud van die spier en diëte was 36.06 & 21.51, 39.99 & 21.11, 32.21 & 23.67,

29.13 & 24.59, 25.23 & 18.68 en 35.93 & 16.02 van die totale vet vir die LD, HD, LDm,

HDm, LDgf en HDgf diëte, onderskeidelik. Die linoleensuur (CI8:3) inhoud van die spier

was betekinisvol hoër (P=0.0038) in die LD diëte met vet teenoor LD met geen vet

supplementering (0.87 vs. 0.15). Die CIELAB waardes van die LD diëte dui op 'n pienker

vleiskleur. Gemiddelde waardes van L* = 32.61 & 34.19, a* = 7.08 & 7.91 en b* = 3.18 &

4.07 is vir die LD en HD diëte, onderskeidelik, waargeneem. Die vleis van die LD diëte het

'n betekenisvol laer L*-(P=0.0252), a*-(P=0.0283) en b*-(P=0.0109) waarde in vergelyking

met die HD diëte getoon. Die resultate dui daarop dat daar 'n positiewe respons in die

ruproteïenverteerbaarheid by die supplementering van rumeninerte vette by LD en HD diëte

voorkom, maar die response op die LD diëte is groter. Die voeromsettingsverhouding,

droëmateriaal- en vetverteerbaarheid is egter net bevoordeel in die LD met vet en nie in die

HD diëte nie. Die vetsuursamestelling van die longissimus spier in die kalf kan gemanipuleer

word met die supplementering van rumeninerte vetbronne, maar slegs wanneer dit

gekombineer word met lae degradeerbare proteïen diëte. Die lae degradeerbare proteïen diëte

produseer ook die mees aanloklike vleiskleur vir die potensiële kalfsvleisverbruiker.
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CHAPTERl

1 GENERAL INTRODUCTION

Traditionally, in the R.S.A. Friesian bull calves are culled at 2 days of age and many tons of

potensial veal goes to waste. Approximately 176 000 Friesian bull calves are born in the

R.S.A. annually (Cruywagen, 2000, personal communication). The theoretical potential for

veal production in the R.S.A., if the calves are slaughtered at 100 kg carcass mass, would

therefore be 17600 tons. Some farmers have realized the economical potential of producing

veal.

Although there is a market for pink veal in the R.S.A., it is far from its optimal potential, as the

South African consumer traditionally eats beef and not veal. There is a growing public

awareness of the potential harmful effects of consuming a diet containing excessive amounts of

fat, saturated fat and cholesterol. The consumer desires healthier meat, and veal potentially

offers the solution. Veal contains 4g of fat compared to the 8g in lamb and beef and the 9g in

pork, when a 85g cooked, trimmed loin steak is compared between the various animals.

Saturated fats are mainly in the depot fats and there are less of these in meats with low fat

levels. Leaner meats have more polyunsaturated structural fat and less saturated depot fat.

Therefore, veal is low in both total and saturated fats (Moran, 1990).

There are two types of veal, viz. white- and pink veal. For the production of white veal, calves

receive a special milk replacer for the entire rearing period of 41
/2 months. For the production

of pink veal, calves are at 4-6 weeks of age and fed high energy dry feeds until slaughtered (20

weeks of age). In Australia, once the permanent incisors (front) teeth have erupted in the live

animal, or it shows secondary sexual characteristics, or produces carcasses weighing more than

150 kg, it is no longer classified as veal (Moran, 1990). However, in the R.S.A., once the first

premolar erupts, at approximately 20-21 weeks of age, or the carcass mass is over 100 kg, it is

classified as beef and not veal.

In order to understand which protein and energy sources can be used for calves, the changes in

digestive abilities from the pre-ruminant to ruminant animal must be understood. The age of

the calf at which its digestive tract can manage with certain types of protein or energy sources

will depend on how soon the calf had access to a dry concentrate feed. When calves are
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weaned early, dry feed should be provided from the first week, to stimulate rumen

development. Calves can only ruminate at 2-3 weeks of age if they were provided with dry

feed from day 4 (Wilson & Brigstoche, 1981; Moran, 1990).

There is an increased interest amongst beef producers in how to increase energy density of

finishing rations, especially when feed intake may limit performance. One of the focus areas is

that of protected fats which are commonly used in lactating cow diets. Recent reports have

suggested that steers in the finishing stages need higher levels of fat in the diet than currently

recommended, to ensure good growth and condition.

2 ANATOMICAL DEVELOPMENT OF THE DIGESTIVE TRACT

The main anatomical changes in the young calf is found in the compound stomach. At first,

the reticulo-rumen is undeveloped, and the main functional chamber is the abomasum. The

young ruminant has a digestive system more like a 'monogastric' animal and is known as a

'pre-ruminant', since all four parts of the compound stomach are present, even though three

chambers (rumen, reticulum and omasum) are undeveloped (Wilson & Brigstocke, 1981).

Although the rumen and reticulum are relatively rudimentary at birth, their special pattern of

motility is already established. In Fig.1.1, the stomach of a newborn ruminant, and in Fig.1.2,

the stomach of a mature ruminant is illustrated. The most noticeable feature of a mature

stomach is that while the abomasum at birth is about the same size as the rumen and

reticulum, at maturity, the rumen 'and reticulum have a volume at least 10 times greater than

that of the abomasum (Orskov, 1992).

Figure 1.1 Schematic illustration of the rumen [R], oesophagus [0], and abomasum [A]

in a newborn ruminant. Note the size of the abomasum relative to the rumen (Orskov,

1992).
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Figure 1.2 Schematic illustration of the rumen [R], oesophagus [0], and abomasum [A]

in a mature ruminant. Note the size of the rumen relative to the abomasum (Orskov,

1992).

The rumen is relatively small and empty at birth. Only the abomasum, with a capacity of 60

to 70% of the total stomach volume, is functional. By contrast, in the adult ruminant, the

abomasum comprises only about 8 % of the total stomach capacity (Roy, 1958). A consistent

feature of prolonged and liberal milk feeding is suppressed rumen development, III SIze,

volume, capacity and the papillary structure of the epithelium (Tarnate et al., 1962). If solid

food is available and milk allowances are not too liberal, calves soon begin to eat and may be

ruminating at two weeks of age (Waugh et al., 1960).

While the unweaned animal is consuming a milk-based diet, a complicated by-pass

arrangement comes into operation. This enables the milk to pass down the oesophagus and

then through a temporary tube-like structure, known as the oesophageal groove - caused by

the folding of the wall of the reticulo-rumen, straight through to the abomasum (Wilson &

Brigstocke, 1981).

When the young ruminant eats small quantities of solid feed the oesophageal groove does not

close and the material enters the rumen. It is thought that the physical texture of solid feed,

especially fibrous feed like hay or straw, stimulates the development of the reticulo-rumen. In

addition, dry feed stimulates the muscular movement that is an essential part of the

fermentation process. The volatile fatty acids (VFA's) produced by the fermentation of this

solid material also assists the reticulo-rumen to develop its full function (Wilson &

Brigstocke, 1981). The normal development of rumen papillae has been attributed to the

presence of VFA's. The order of effectiveness in stimulating rumen mucosal growth was

found to be: butyrate, propionate and asetate (Huber, 1969). Following ingestion of dry food,
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fermentation is soon established in the fore-stomachs and a wide range of foods can be

utilised efficiently. For example, the digestibility of dried grass by three-week old, early-

weaned calves were similar to those of fully developed ruminants (Hodgson, 1971). Early

investigations showed that it was possible to have microflora in the rumen capable of

breaking down cellulose at three weeks of age (pounden & Hibbs, 1948 & 1949).

In the natural state, the very young ruminant suckles many times a day, so that many small

servings of milk enter the abomasum over a twenty-four hour period. In artificial rearing

systems, when the young animal is removed from its dam after the first day or so, a very

different situation exists. Milk is supplied to the animal only once or twice a day, so that the

process of clot formation (curd) and break-down in the abomasum is discontinuous (Wilson &

Brigstocke, 1981). Gorrill & Nicolson (1972) found that the formation of a firm abomasal

curd had a beneficial effect on nutrient digestibility and body mass gain, mainly due to a

slower release of nutrients from the abomasum. However, other authors found that the

absence of curd formation did not impair digestibility or calf performance (Bouchard et al.,

1973; Cruywagen et al., 1990 & 1991).

When young ruminants are reared in early weaning systems, it is important that they are not

moved onto a solid diet alone until two conditions are met. First, the calf must be consuming

at least lkg of solid feed per day. Secondly the animal must be actively ruminating, for which

the evidence required is seeing the calves 'chew the cud'. Until rumination has started, calves

are unable to digest solid food properly, because the fermentation activity of the reticulo-

rumen has not yet achieved its full activity (Wilson & Brigstocke, 1981).

3 PROTEIN AND ENERGY REQUIREMENTS OF THE CALF

The total amounts of energy and protein, and the protein-to-energy ratio required by the calf,

are affected by numerous factors applicable to the calf such as rate of gain, body size, age, as

well as the composition of the diet (Jacobson, 1969). Several factors could cause calves to

respond differently to protein supplementation. Among them are differences in growth rates,

methods of feeding (ad libitum vs. restricted), digestible energy content of the ration,

solubility of protein, palatability of the ration, balance of nutrients (e.g., sulphur), adaptation
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to urea and amount of milk: consumed (Morrill & Dayton, 1978). Early growth involves

primarily deposition of calcium, phosphorus, protein, and water. At high rates of gain, fat

deposition is accelerated; at low rates of gain, mineral and even protein deposition may occur

while fat is actually lost. In a young calf, nitrogen balance is usually positive at zero weight

gain (Jacobson, 1969).

3.1 PROTEIN REQUIREMENTS

Protein nutrition in the pre-ruminant calf parallels that of the non-ruminant and the amino acid

requirements can be met through milk: or milk: replacers (Roy & Stobo, 1983). After the

rumen becomes functional, the crude protein needs for two systems must be met - the need

for microbial fermentation in the reticulo-rumen and the need for post-ruminal amino acids

for tissue development of the host ruminant (Kaufmann & Lupping, 1982).

Ruminal bacteria can use various sources of nitrogen viz, ammonia primarily and some amino

acids and peptides. Ammonia is derived from the degradation of protein or non-protein

nitrogen (NPN) in the rumen. Urea is the most common source of NPN fed to ruminants

(NRC, 1984). Urea can be used to replace a part of the nitrogen requirement for protein in

calf starter diets, especially when urea is added to starter diets containing less than 12% total

protein (Stobo et al., 1967). Nelson (1970) concluded that no problems should occur from

adding urea to starter diets if the urea did not supply more than 1% of the dry matter or one-

fourth of the protein equivalent. Utilisation of urea in the rumen is sometimes less efficient at

higher levels of crude protein' (Stobo et aI., 1967; Miron, et al., 1967). Sulphur

supplementation, as inorganic sulphur may be beneficial if rations fed to weaned calves

contain urea and not more then 0.2% sulphur. Whey may also help mcrease urea use,

especially under stress conditions (Morril & Dayton, 1978).

Despite numerous investigations, there is no complete agreement on the amount of protein

required in calf starter diets or the extent to which urea can be used by the young calf (Morrill

& Dayton, 1978). For example, in some trials calves fed rations containing only 12 to 13%

protein grew as well as calves fed higher protein diets (Brown et aI., 1958; Brown et aI.,

1960; Gardner, 1968; Gardner & Kunz, 1973; Morrill & Melton, 1973), but this was not

found in other trials (Stobo et al.,1967; Leibholtz & Kang, 1973). Bartley (1973) reported
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that calves fed rations containing 20% protein gained more than those recervmg 16%.

Leibholz & Kang (1973) found that calves fed rations containing 15% protein gained as much

as those fed 18% but that their nitrogen retention was lower. Schurman & Kesler (1974).
reported similar growth and feed efficiency for calves on rations containing 14.3 or 26%

protein, with a higher nitrogen balance for those on rations containing 26% protein. Akayezu

et al. (1994) found that when calves were fed on four starter diets with a CP content of 15,

16.8, 19.6, or 22.4% (DM basis) diets containing the lower protein contents of 15 or 16.8%

had only a moderate growth rate. The calves on the 19.6% CP diet showed maximum growth

and there was no advantage gained from the higher protein content of 22.4%.

The digestibility of feeds that might be included in the calfs diet varies greatly. Therefore,

digestible protein, is more meaningful, than total crude protein. The digestibility and

utilisation of milk components by calves is high. The same applies to milk products used in

milk replacers, if the processing procedures are such that the high quality is maintained. The

importance of processing has been amply demonstrated by the marked reduction in nutritional

value of dried skim. milk resulting from overheating (Shillam & Roy, 1963).

The recommended daily protein requirements of growing large-breed calves fed milk plus a

starter mix is 290 and 435 g for a 50 kg, with 500 g/day gain and 75 kg, with 800 g/day gain

live mass calf respectively (NRC, 1989). Klemesrud et al. (1998) estimated the average

metabolizable protein requirements for a growing calf as 3.8 g/kg wD,75/day for maintenance

and 305 g/kg of live mass gain.

Calves also have certain additional amino acid requirements: the methionine requirement

ranges between 3.9 and 4.5 g/day for calves weighing 50 to 60 kg and growing at 0.25 kg/day

(Foldager et al., 1977). Campbell et al. (1997) estimated the methionine requirements of

growing steers weighing 160 and 195 kg to be 7.9 and 8.4 g/day, respectively. The total

sulphur amino acid requirement was 0.21 to 0.27 g/kg WO,75/day. The estimated lysine

requirement is 12.6 g/day or 0.78 g/kg wD,75/day(Foldager et al., 1977).
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3.2 ENERGY REQUIREMENTS

The energy requirements of the calf can be met in the starter diets by using grain supplements,

but in the growing diet the energy demand for a fast growing calf is higher than what can

safely be provided by the use of grains alone. Thus alternative sources like fat supplements

are required. What is of particular value as an energy source, are fats that have been protected

(bypass or rumen inert fats) against rumen degradation.

The metabolizable energy (ME) available for the animal is primarily used to meet its

maintenance requirements. The metabolizable energy required for maintenance (MEm) is

used for sustaining primary life processes and is fully dissipated as heat (Schrama, 1995).

The daily recommended metabolizable energy requirements for a 50 kg and 75 kg calf

gaining 500 and 800 g live mass (LM) per day, respectively is 24.69 (493.7 kJ/kg) and 37.57

MJ (501.0 kJ/kg). The daily recommended digestible energy requirements for a 50 kg and 75

kg calf gaining 500 and 800 g LM respectively, is 26.86 (537 kJ/kg) and 40.92 MJ (545.6

kJ/kg) (NRC, 1989). During the 1st wk after transportation, MEm values in young, newly

purchased calves were found to vary between 502 kJ/kg vfJ·75 /day (Arieli et al, 1995) and

560 kJ/kg vfJ·75/day (Schrama et al., 1992). In older, growing pre-ruminant calves, the MEm

values range from 380 to 470 kJ/kg vfJ·75/day with an average of about 420 kJ/kg vfJ·75/day

(Schrama, 1995). When the feeding level is above maintenance, the surplus to the

maintanance requirements is used for growth (ME available for production = MEp). During

growth, part of the MEp is lost as heat. When the feeding level is low the energy reserves

from the body are mobilised to cover the deficit in energy for maintenance processes

(Schrama, 1995).

4 DIGESTION

4.1 DIGESTION IN THE PRE-RUMINANT CALF

The protein, carbohydrate and fat metabolism in the digestive tract (mouth, rumen, reticulum,

omasum, abomasum and small intestine) with the different digestive processes relevant to the

pre-ruminant calf are discussed below.
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4.1.1 PROTEIN DIGESTION

Abomasum

The physiology of the abomasum also differs between the young ruminant and the adult. One

of the major enzymes secreted in the abomasum in the young calf is rennin, which coagulates

milk protein (casein), forming a solid clot (curd) (Wilson & Brigstocke, 1981). This clot

remains in the abomasum for hours, during which period it is progressively broken down by

the action of both rennin and pepsin. Although the milk clot takes time to break down and

pass into the duodenum, the whey fraction moves through the abomasum very quickly. Some

whey has been found to be present in the duodenum five minutes after the calf has suckled

milk from its dam (Wilson & Brigstocke, 1981).

Some neonatal calves produce mainly rennin, while others secrete both rennin and pepsin, but

pepsin production predominates as the calves get older (Hill et al., 1970). The chief or peptic

cells secrete pepsinogen or pro-rennin (Hill, 1968), the same zymogen granulae may possibly

contain both enzymes (Hill, 1961 & 1965). For casein coagulation, the optimum pH is 6.5

for rennin and 5.25 for pepsin, whereas for proteolysis the optimum pH is 3.5 for rennin and

2.1 for pepsin (Roy & Stobo, 1983). As the calf develops, the parietal cells secrete more and

more HCI and the chief cells begin to secrete pepsinogen which is converted to pepsin in the

abomasum (Orskov, 1982).

Both pepsin and rennin break down the main protein, casein, inside the clot. The essential

difference between the two is that pepsin can break down most proteins whereas rennin is

specific to casein. Until the HCl/pepsin system of protein digestion has been developed,

casein from whole milk, or a milk replacer based on skimmed whole milk, is the only protein

that can be digested properly in the abomasum. Pepsin digestion, however, is quite efficient

by the time calves are 7 days old (Orskov, 1982).

Small Intestine

Pancreatic secretion contains the enzymes tripsin, chymotrypsin, protease, lipase, amylase and

ribonuclease (Roy & Stobo, 1983). Feeding of skimmed milk instead of a diet containing 17-

20% fat DM, reduced the total secretion of pancreatic juices (Ternouth et al., 1974). The

levels of pancreatic proteases were low in newborn calves and remained low up to 44 days of

age. Although the total volume secreted increases with age, it remains approximately
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constant in relation to the metabolic body weight at 25 ml/kg wD·75 in 12 hours (Huber et al.,

1961b).

4.1.2 CARBOHYDRATE DIGESTION

Small Intestine

During the first four weeks of life, the only carbohydrate that a pre-ruminant calf can utilize,

is lactose and its component monosaccarides: glucose and galactose (Okamoto et al., 1959).

Fructose is absorbed poorly or not at all (Velu et al., 1960) and sucrose is not utilised because

of the complete lack of intestinal sucrase activity (Dollar & Porter, 1957).

Though pancreatic amylase and intestinal maltase are present in the post-ruminal digestive

tract, the effective activities of these enzymes are very low. However, their activity increases

with age while that of lactase in the calf decreases (Huber et al., 1961a). The young calf,

therefore, appears to show some adaptation to starch, but growth (Flipse et al., 1950; Huber

et al., 1967) and glucose tolerance studies (Huber et al., 1967; Larsen et al., 1956) covering a

wide range of ages show that post-ruminal use of starch never equals that of lactose. Though

lactose and glucose are the preferable carbohydrates for inclusion in milk substitutes,

diarrhoea is caused by feeding calves excessive amounts of either (Flipse et al., 1950).

Hydrolysis of lactose occurs much more rapidly than the absorption of its constituent

monosaccharides. Absorption of galactose is depressed in the presence of glucose and is

therefore minimal in the proximal small intestine where the relative concentration of glucose

is high. However, galactose was absorbed efficiently some 2 to 4m caudal to the bile duct,

where the glucose concentration had fallen (Coombe & Smith, 1973).

Maltase and isomaltase activities increase during the first 1-4 weeks of life, but thereafter

their activity is similar to those in adult animals (Coombe & Smith, 1973). Amylase, maltase

and isomaltase activities appear to be balanced from 6 weeks of age (Coombe & Siddons,

1973).

lJ. s. •
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4.1.3 FAT DIGESTION

Some fat is essential in the diet as a source of the polyunsaturated fatty acids such as linoleic

and archidonic acids that the pre-ruminant calf is unable to synthesize (Lambert, et al., 1954).

The dietary fat is hydrolysed in the various organs as it moves down the alimentary canal as

follows:

Mouth

The initial hydrolysis of dietary fat in milk or milk substitutes occurs as a result of a lipase,

pregastric esterase (PGE), secreted from the palatine glands into the saliva. This PGE acts

preferentially on the triglycerides of butterfat that contain butyrate groups (C4:0) to release

butyric acid (Ramsey, 1962).

Abomasum

Immediately after feed there is some passage of fat through the pylorus, but most of the fat is

entrapped in the casein coagulum. Within 30 minutes of a feed, about 50% of the

triglycerides in the abomasum have been hydrolysed, presumably by salivary esterase

(Ramsey, 1962; Otterby, et al., 1964) at an optimum pH between 4.5 and 6.0 (Siewert, 1969

cit. Roy & Stobo, 1983).

Small Intestine

The pancreatic lipase is at its lowest concentration in the pancreas of a one day old calf: it has

increased threefold eight days after birth, with little further increase thereafter (Huber et al.,

1961a). Bile salts and pancreatic lipase are interdependent in the digestion of fat. Bile salts

along with pancreatic lipase are necessary for maximum digestion of fat (Wilson 1962).

4.2 DIGESTION IN RUMINANTS

In the sense of dry food intake, calves, at five months of age, may be regarded as fully

developed ruminants (Johnson & Elliott, 1969), because they consume 100 to 120 g dry

matterIkg W·75 /day, which is similar to that found for yearling and two-year old steers

(Elliott & Reed, 1968). From an anatomical point of view, Grossman (1949) concluded that

the forestomachs of young cattle approached adult proportions at four to six months of age,

though final proportions were not achieved until they were about 18 months of age. Church
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(1969) summarising other work, concluded that the reticulo-rumen reached its relative mature

size at 12 weeks of age.

4.2.1 PROTEIN DIGESTION

The various alimentary organs perform critical roles in protein digestion (mouth, rumen, small

intestine) .

Mouth

Saliva is characterised by the absence of ptyalin and by the abundance of phosphate and

bicarbonate with a pH of 8 to 8.5. Saliva supplies the micro-organisms with phosphates and

simple nitrogenous compounds like urea. Saliva also buffers the rumen content by means of

the phosphates and bicarbonates it contains thereby neutralising the acids formed during

fermentation (Craplet, 1963).

Rumen

The microbial population ferments the organic matter contained in the solid feed, converting

it into very simple chemical substances, such as ammonia and the various steam-volatile fatty

acids (VFA's), such as acetic, propionic and butyric (Wilson & Brigstocke, 1981).

Ruminants, like monogastrics, are dependant on essential amino acids provided indirectly by

their feed, although it is not necessary to feed the full requirement of these essential amino

acids intact in their diet as is the case with monogastrics. This is because amino acids are

provided from two radically different sources. The first is from the feed as offered to the

animal. Some of the protein in this feed will escape fermentation in the rumen and will arrive

in the mid-gut with its constituent amino acids intact (i.e. the undegraded protein fraction).

These amino acids can then be absorbed through the gut wall into the blood stream. The

second is from protein obtained from dead micro-organisms. This microbial protein is derived

from nitrogenous feed material that is fermented in the rumen (i.e. the rumen degradable

protein) and NPN by the same micro organisms which transform the carbohydrate fraction of

feed into volatile fatty acids. The end-products of the fermentation process are simple

nitrogenous compounds, especially ammonia, and various other protein break-down products

such as peptides and amino acids. Having reduced part of the feed protein to ammonia and

other chemicals, the micro-organisms proceed to use these simple materials as building blocks
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for their own body proteins. These micro-organisms are constantly being moved down the

gut with the rest of the digesta. The microbes are killed by the acids secreted in the

abomasum and the animal is able to absorb amino acids derived from the protein of the dead

micro-organisms in exactly the same way as the non-degraded protein obtained from the feed

itself (Wilson & Brigstocke, 1981).

Small Intestine

The dietary protein fraction, which escapes the rumen fermentation, is known as undegradable

protein (UDP). This fraction together with the microbial protein formed in the rumen are then

digested and absorbed in the small intestine.

4.2.2 CARBOHYDRA TE DIGESTION

The ruminant secretes no salivary amylase (Kay 1966). The absence of ptyalin in the saliva

of ruminants can be looked upon as fortunate, for the conversion of starch to sugar would

supply the bacteria with an easy substance to break down in preference to cellulose (Craplet,

1963).

Rumen

The fermentation process which occur in the rumen involve a wide range of carbohydrates

(both soluble and structural) and proteins and yield as end-products a number of short-chain

(C2-C5), volatile fatty acids. The importance of the short chain acids is in supplying the

energy needs of the ruminant animal (Noble, 1981).

The ability of the rumen to absorb the three major short-chain fatty acids appear to be

proportional to the chain length, i.e. butyric> propionic> acetic. Extensive metabolism of

butyric acid occurs within the rumen epithelium with the formation of ketone bodies. A

portion of propionate does not pass through the rumen unchanged and is metabolised to

lactate. Acetate passes through with little if any metabolism. Most of the short-chain fatty

acids absorbed are transported into the portal vein; minimal transport occurs within the

lymphatic system (Noble, 1981).
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Omasum

Short-chain fatty acids that escape from the rumen can be absorbed through the omasum

epithelium (contains carbonic anhydrase) which has a similar function as the rumen

epithelium (Noble, 1981).

Abomasum

The abomasum has the capacity to absorb short-chain fatty acids, although the amount

absorbed is quantitatively insignificant (Noble, 1981).

4.2.3 FAT DIGESTION

In the simple-stomached animal, the processes of digestion and absorption of dietary fat begin

essentially when they reach the small intestine (Fig. 2); any digestive and enzymatic

processes which occur anterior to the small intestine can virtually be ignored (Noble, 1981).

E t=
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Fig.2 Lipid digestion in the ruminant (Scott & Cook, 1975).

Rumen

Another important function carried out in the rumen is that fats and oils present in the feed are

modified in their chemical composition (Fig. 2). Most unsaturated fats entering the reticulo-

rumen are hydrogenated into saturated fat before they pass into the omasum. Some will be

used by the microbial organisms to form microbial lipid in their bodies. A few 'protected'
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unsaturated fats will escape hydrogenation and pass through unchanged (Wilson &

Brigstocke, 1981).

Lipids present in forages and grains are generally in the form of triacylglycerols, galactosyl

acylglycerols (Scott & Cooke, 1975) and phospholipids with C18:2 (linoleic) and C18:3

(linolenic) being the principal fatty acids (Jenkins, 1993). However, fat sources available as

supplemental energy sources for cattle markedly differ in their fatty acid composition and thus

the choice of lipid source can substantially alter the fatty acid profile of lipids presented to the

rumen. Dietary lipids are hydrolysed by microbial lipases, as are phospholipids, to their

constituent fatty acids prior to biohydrogenation of unsaturated fatty acids (Jenkins, 1993;

Scott & Cook, 1975). Biohydrogenation of C18:2 and C18:3 involves an isomerization

reaction which converts the cis-13 double bond to a trans -Ll isomer followed by reduction to

trans-ll C18:2 and ultimately to C18:0 (stearic acid) which is the principal end product of

microbial hydrogenation ofC18:1, C18:2 and C18:3 fatty acids (Jenkins,1993). A proportion

of the trans-isomers produced in the rumen (negligible absorption of long chain fatty acids

occurs across the rumen wall) escape further biohydrogenation (Jenkins, 1993) and are

absorbed from the small intestine and ultimately incorporated into the glycerides of adipose

tissues and milk fat (Scott & Cook, 1975).

The practical effect of hydrogenation in the rumen is to produce high yields of stearic acids

and smaller amounts of positional and geometric isomers from the unsaturated C18 plant fatty

acids in the feed. Hydrolysis of fatty acids from their esterified forms occurs before

hydrogenation. The net effects of hydrolysis and hydrogenation are that long-chain free fatty

acids constitute the major lipid class, in digesta, as they pass from the rumen to the lower

digestive tract - stearic acid is the major free fatty acid (Keeney, 1970).

The fatty acids of both the bacterial and protozoal lipids, in particular of the phospholipid

fractions, are characterized by high percentages of Cl3, C14, CIS, C16 and C17 branched-

chain fatty acids, together with several straight-chain fatty acids containing an odd number of

carbon atoms in addition to palmitic, stearic and C18 monoenoic fatty acids (Noble, 1981).

These odd and branched chain fatty acids (which are absent from the diet) are absorbed by the

host animal and are incorporated into tissue lipids (Noble, 1981; Kennelly, 1996). Branched

chain fatty acids arise from the substitution of isobutyrate, isovalerate and 2-methylbutyrate

for acetate in the microbial synthesis of fatty acids. Similarly, odd chain fatty acids are
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derived from microbial utilization of odd-chain fatty acids propionate and valetate, as

precursors for fatty acid synthesis (Kennelly, 1996).

The rumen has the ability to utilise both medium- and long chain fatty acids as substrates for

the production of ketone bodies (Noble, 1981).

Omasum

The omasum has the ability to utilise saturated and unsaturated medium- and long chain fatty

acids as substrates for the production of ketone bodies (Noble, 1981).

Abomasum

Although the role of the abomasum is similar to that of the stomach in the monogastric animal

in that it plays little part in lipid digestion, the abomasum does make an important if indirect

contribution by its action upon the bacteria and protozoa passing down from the rumen. In

the acid environment of the abomasum, the bacteria and protozoa disintegrate and the lipid

contents are released thereby facilitating subsequent digestion further down the

gastrointestinal tract (Noble, 1981).

Small Intestine

Like the rumen contents, the digesta passmg into the duodenum under normal dietary

conditions is mainly comprised ofunesterified fatty acids together with significantly, but very

much smaller amounts, of phospholipids (Noble, 1981). There are some esterified fatty acids

in the bacteria lipids (McDonald et al., 1995). Although some triglycerides can be detected,

the rate of lipolysis in the rumen is such that, under normal dietary conditions, little

unchanged dietary glyceride ever reaches the small intestine. However, when the levels of

esterified fatty acids within the diet were increased greatly, elevated concentrations of

triglyceride within the digesta passing into the duodenum were observed (Noble, 1981).

To cope with continuous passage of digesta into the duodenum, secretion of both bile and

pancreatic juices is also continuous and not subject to large cyclic changes in output (Noble,

1981).

Only limited hydrolysis of esterified fatty acids occur in the first 2m of the upper jejenum,

and 20% of the total fatty acids of the digesta entering the duodenum are absorbed, which
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consists almost entirely ofunesterified fatty acids. In the middle and upper jejunum, a further

60% of the total fatty acids in the digesta are absorbed and this includes fatty acids derived

from hydrolysis of neutral lipids. By the time the digesta reaches the ileum, assimilation of

unesterified fatty acids, together with hydrolysis and uptake of ester-bound fatty acids, is

almost complete. Although the major site of lipid absorption is clearly the middle and lower

jejenum, it is evident that, in spite of the conditions of very low pH that prevail, fatty acid

uptake does occur in the upper jejenum (Noble, 1981).

The overall rate of fatty acid uptake and incorporation into the lymph lipids is in the order

oleic > palmitic > stearic acid. Some discrimination in the rate of absorption of the

geometrical and positional isomers of C18:1 fatty acid occur; trans-18:1 fatty acids are

absorbed to a greater extent than cis-18:1 fatty acids. The efficiency of the absorption of

long-chain (C14-C18) fatty acids increases with the introduction of a double bond or with

reduction in chain length. The general rule is that there is an inverse relationship between the

efficiency of absorption and the melting point of the acid; this rule is not applicable outside

the range ofC14-C18 fatty acids (Noble, 1981).

4.2.3.1 Metabolic consequence offeeding protected lipids.

Rumen

The extensive biohydrogenation of unsaturated fatty acids in the rumen poses a challenge to

efforts targeted at altering the fatty acid composition of tissue or milk fat in cattle: in essence

the unsaturated fatty acids must be fed in a form which resists biohydrogenation in the rumen.

The most common approaches are to feed protected lipids which have been chemically (e.g.

formaldehyde treatment or calcium salts) or physically (e.g. heat) treated to resist microbial

saturation in the rumen (Palmquist & Jenkins, 1980; Ashes et al., 1992). Intact oilseeds also

provide a degree of protection from biohydrogenation by microbial enzymes (Smith et al.,

1981; Kennelly, 1996; Casper et al., 1988;).

Small Intestine

The normal process of fat digestion in ruminants allows only very small amounts of

unhydrolyzed lipids to pass from the rumen into the abomasum and small intestine. Most of

these free fatty acids are then absorbed from the small intestine. However, when dietary

lipids are protected from ruminal lipolysis and hydrogenation the amount of lipids reaching

the abomasum and small intestine is substantially increased. Despite this elevated intestinal
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load of triacyglycerols there is an efficient digestion and absorption of lipid (and protein)

from the small intestine. This indicates an adequate secretion of pancreatic lipase in

ruminants fed protected fats (Scott & Cook, 1975).

Chylomicrons contain large proportions of triacylglycerol and this is the form in which

absorbed lipids are transported from the intestine via the lymphatic system. Circulating

chylomicrons, are absorbed by the liver and the triacylglycerols hydrolysed. The fatty acids

so produced, along with the free fatty acids absorbed from the blood by the liver, may be

catabolized for energy production or used for synthesis of triacylglycerols (McDonald et al.,

1995). Protected dietary C18:2 is absorbed and incorporated into the triacyglycerols of

lymphatic chylomicrons (Scott & Cook, 1975). These then re-enter the blood supply in the

form of lipoprotein and are carried to various organs and tissues where they may be used for

lipid synthesis, for energy production and for fatty acid synthesis (McDonald et al., 1995).

They also serve as a source of serum lipids, which are present in association with proteins and

various lipoproteins. Thus, there is an increased proportion of C18:2 in the triacyglycerols of

lymphatic chylomicrons, triacylglycerols of serum lipoproteins and in other major serum

lipoprotein lipid fractions (Scott & Cook, 1975).

The high proportions of C18:2 in serum cholesterol esters of ruminants on conventional

rations indicate an efficient mechanism for the conservation of the polyenoic fatty acids that

escape rumen hydrogenation. The incorporation of polyenoic fatty acids into serum

cholesterol esters is probably mediated via the lecithin-cholesterol-acyl-transferase system.

Chylomicron and serum triacylglycerols serve as a source of fatty acids for utilisation by

organs and other tissues. The triacylglycerols are hydrolysed by lipoprotein lipase and the

liberated fatty acids are then available for subsequent uptake and/or metabolism by the

tissues. Protected polyunsaturated fats such as safflower oil tend to suppress the

incorporation of [1_14C] asetate into the fatty acids of subcutaneous tissue (Scott & Cook,

1975).

The extent to which absorbed triacylglycerol fatty acids are utilised for tissue lipid

biosynthesis will depend largely on the total caloric intake of the animal. If caloric intake is

insufficient for adequate growth or milk production, the absorbed fatty acids will be oxidised

to meet the energy demands rather than be deposited in the tissue lipids (Scott & Cook, 1975).
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4.2.3.2 Fat synthesis

The glycerides (triacylglycerols) of the depot fat are derived from glycerides, or may be

synthesized in the body from fattyacyl CoAs and L-glycerol-3-phosphate (McDonald, 1995).

Fatty acid synthesis

It is generally considered that there are three systems of fatty acid synthesis. The first, which

is highly active, is centered in the cytosol and results in the production of palmitate from

acetyl-coenzyme A (Fig. 3). Acetate is absorbed directly from the gut and is changed to

acetyl-CoA in the presence of acetyl-CoA synthetase. The system is active in the liver,

kidney, brain, lungs, mammary gland and adipose tissue. The acetyl-CoA is transformed to

malonyl-CoA, which then reacts with acyl-carrier protein (ACP), to give malonyl-ACP

complex. Acetyl-CoA is then coupled with ACP and this reacts with the malonyl-ACP, the

chain length being increased by two carbon atoms to give the butyryl-ACP complex. The

reactions involved are shown in Fig. 3. The butyryl-ACP complex then reacts with malonyl-

ACP complex, resulting in further elongation of the chain by two carbon atoms to give

caproyl-ACP. Chain elongation takes place by successive reactions of the fattyacyl-ACP

complexes with malonyl-CoA until the palmitonyl-ACP complex is produced, when it ceases

(Fig. 4). Palmitic acid is liberated by the action of a specific deacylase (McDonald, 1995).

Malonyl-ACP
COOH.CH2.COS.ACP

+ Acetyl-ACP
CH3COS.ACP

j3-Ketoacyl-ACP synthase

Acetoacetyl-ACP
CH3.CO.CH2·COS.ACP

NADPH(+H+) ~--i. j3-Ketoacyl-ACP reductase
NADP+ t

Il-Hydroxybutyryl-ACP
CH3.CHOH.CH2.COS.ACP

H,O ~ Crotonyl-A CP hydratase

Crotonyl-ACP
CH3.CH:CH.COS.ACP

NADPH(+H+) -----l Enoyl-ACP reductase
NADP+ +i

Butyryl-ACP
CH3.CH2.CH2.COS.ACP

Fig. 3 The Cytosolic synthesis of fatty acids from acetyl-CoA to a butyryl-ACP complex.
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CH3.COS.CoA + 7COOH.(CH2)COS.CoA + 14NADPH(+H)
Asetyl-CoA Malonyl-CoA

~
CH3 (CH2)14,COO' + 7C02 + 14NADP+ 6H20 + 8HS.CoA
Palmitate Coenzyme A

Fig. 4 The overall reaction of the production of Palmitate from Asetyl-CoA in the

cytosol.

The second system of fatty acid synthesis occurs chiefly in the endoplasmic reticulum and to a

minor extent in the mitochondria. It involves elongation of fatty acid chains by two-carbon

addition, with malonyl-CoA as donor. It involves the incorporation of two carbon units into

medium and long chain fatty acids. This system requires ATP and reduced NADP+. The

pathway is presented in Fig. 5. The products of the system, which is centered in the

micro somes, are saturated acids with 18, 20, 22, and 24 carbon atoms usually produced from

palmitic acid synthesised by the cytosolic system (McDonald, 1995).

FATTY ACID
R.CH2COO·

ATP -l
+PPi ..

Coenzyme A
Acyl-CoA ligase

Fatty acyl-coenzyme A
R.CH2.COS. CoA

Malonyl-CoA ~
CoenzymeA •

O-Ketoacyl-coenzyme A
R.CH2·CO.CH2.COS.CoA

NADPH( +H+) -l
NADP+ ...

O-Hydroxyacyl -coenzyme A
R.CH2.CHOH.CH2.COS.CoA

fi-Ketoacyl-CoA synthase

fi-Ketoacyl-CoA reducntase

Enoyl-CoA hydratase

Enoyl-coenzyme A
R.CH2.CH:CH.CH2.COS.CoA

NADPH(+H+) -l 2,3-Unsaturated acyl-CoA reductase
NADP+ ..

Fatty acyl-coenzyme A
R.CH2.CH2.CH2.COS.CoA

Fig. 5 Elongation of the fatty acid chain within the endoplasmic reticulum and the

mitochondria.
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The third system, confined to the endoplasmic reticulum, brings about desaturation of

preformed fatty acids. Double bonds may be introduced into fatty acid chains by the action of

fattyacyl-CoA desaturases present in the micro somes (Fig. 6). Thus palmitoleic and oleic

acids are produced from corresponding saturated acids, which introduces a double bond

between carbon 9 and 10 (McDonald, 1995).

O2 H20

CH3.(CH2kCH2.CH2.(CH2kCOO- -'-1 J.....1------rT-'t--.~
Palmitate ..

CH3.(CH2kCH:CH.(CH2kCOO-

Palmi tole ate

NADH NAD+

(+W)

Fig. 6 Desaturation of preformed fatty acids within the endoplasmic reticulum.

Synthesis of L-glycerol-3-phosphate

The precursor in the synthesis of L-glycerol-3-phosphate is usually dihydroxyacetone

phosphate produced by the aldolase reaction of the glycolytic pathway. This is reduced by the

NAD-linked glycerol-3-phosphate dehydrogenase. It may also be formed from free glycerol,

absorbed from the gut or arising from the catalysis of triacylglycerols, in the presence of

glycerol kinase (McDonald, 1995).

Synthesis of triacylglycerols

The synthesis of triacylglycerols, starts with the acylation of the free alcohol groups of the

glycerol-3-phosphate by two molecules of fattyacyl-CoA to yield a phosphatidic acid. The

reaction occurs preferentially with acids containing 16 and 18 carbon atoms. The

phosphatidic acid is then hydrolysed to give a diacylglycerol which reacts with a third

fattyacyl-CoA to give a triacylglycerol. Direct synthesis of triacylglycerols from

monoacylglycerols takes place in the intestinal mucosa of higher animals (McDonald, 1995).
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5 PROTEIN SOURCES

The nutritional quality of oilseed protein meals, or any other meal protein, will be affected by

the processing conditions to which it has been exposed. Three major factors affecting the

nutritional quality of protein are (a) the amino acid composition (b) the amino acid

availability or digestibility and (c) anti-nutritional qualities. While heat treatment during

processing may adversely affect the final quality for monogastric animals, it may have a

beneficial effect for ruminant animals by reducing the extent of rumen degradability of the

protein (Aherne & Kennelly, 1982).

Dietary protein sources can be divided into rumen degradable (RDP) and undegradable

proteins (UDP). The RDP can be subdivided into high degradable (HD) and low degradable

(LD) protein. The UDP can be naturally or artificially protected from rumen degradation.

The use of proteins with low degradability can be expected to improve performance in

growing animals, especially during the starting phase, when there is a relatively high rate of

protein deposition and the protein requirements are high. During the finishing phases the

deposition of fat becomes more dominant (Kaufmann & Liipping, 1982).

The search for efficient veal production is for proteins, which are naturally and consistently

low degradable, have a good protein quality (amino acid pattern) and are available in

sufficient amounts and at acceptable prices. Some protein-rich feeds, such as maize gluten,

brewer's grains, blood meal, feather meal, oil-seed cakes and fishmeal are claimed to have a

low degradability. However, in most cases this has only been tested by in vitro methods and

not by direct measurements of the flow of undegraded protein to the duodenum of cows

(Kaufmann & Liipping, 1982).

A better way to provide protein with consistently low degradability, suitable for feeding high

producing animals, is to protect the protein artificially. There are mainly three methods of

protecting a protein against rumen fermentation viz. heat treatment, with tannins and with

formaldehyde (Kaufmann & Liipping, 1982).

In the present investigation three sources of protein were used viz. an animal protein

(fishmeal), a plant protein (sunflower oil cake) and prime gluten. Fishmeal has a low

degradable protein fraction, while sunflower oil cake contains higher degradable protein.
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5.1 PROTEIN SOURCES USED IN THE PRESENT INVESTIGATION

Fishmeal contains 69.9-79.3% crude protein (CP), 14.6-17.8 MJ ME/kg and 6.0-7.5% ether

extract (EE). It contains a high level of all the essential amino acids (lysine, methionine and

tryptophan) as well as vitamins and minerals (McDonald et al., 1995). The NRC (1989)

values for fishmeal (DM basis) are 68.2%CP, 12.48 MJ ME/kg, 0.8% crude fibre (CF) and

5.1% EE. Erasmus & Prinsloo (1988) calculated the protein degradability values for local

fishmeal as 52.0, 40.3 and 36.4 at different fractional outflow rates (Kr) of 0.02, 0.05 and

0.08, respectively. The local fishmeal had a CP content of71.2%.

Sunflower oilcake contains (DM basis) 25.9% crude protein, 6.32 MJ ME/kg, 35.1% crude

fibre and 1.2% EE (NRC, 1989). Erasmus & Prinsloo (1988) calculated the protein

degradability values for sunflower oil cake as 93.5, 86.2 and 80.9 at different fractional

outflow rates (Kr) ofO.02, 0.05 and 0.08, respectively.

The crude protein content of prepress solvent sunflower meal (SFM) ranges between 36-44%.

The protein quality of SFM is regarded to be of lower value than that of soyabeen meal

(SBM), with especially lysine being deficient. The amino acid profile of the meal is strongly

affected by the heat treatment during processing. Prolonged heating severely depresses the

availability of aspartic acid, arginine, threonine, leucine, lysine and tryptophan while

increasing the content of glutamic acid, serine and ammonia. Limited amino acid availability

should, therefore, be carefully considered when processed SFM is fed to fast growing calves.

In contrast to some of the major oil seeds, SFM is not known to contain any growth

depressing or toxic substances.· Stake et al. (1973) compared SBM, SFM and high-

glucosinolate rapeseed meal (HGRSM) as protein sources in calf starter rations. Calves were

fed the test diets, to a maximum of 1.82kg per head daily, from week 0 to week 14. In

addition they received whole milk until weaned at 68.2kg body weight. Daily starter dry

matter intake was lower for HGRSM (0.67kg/calf) than for SFM (0.92kg) or SBM (0.99 kg)

rations. Average daily gain (kg) and feed efficiencies for calves fed HGRSM, SFM or SBM

rations were 0.58, 0.64, 0.65 and 3.10, 2.96 and 3.08, respectively. Similarly, no significant

differences were observed in crude protein digestibility coefficients for calves fed SBM or

SFM. These results indicate that SFM can effectively replace SBM as a protein supplement

in calf starter rations (Aherne & Kennelly, 1982).

Stellenbosch University http://scholar.sun.ac.za



23

Prime gluten is a by-product of the maize wet milling process and is sucessfully used in

animal feeds as a protein source. Prime gluten contains (DM basis) 67.2% crude protein,

14.70 MJ ME/kg, 2.2% crude fibre and 2.4% EE (NRC, 1989). Prime gluten is also a low

degradable protein source which is high in metionine. Erasmus & Prinsloo (1988) calculated

the protein degradability values for prime gluten as 48.6, 31.0 and 24.5 at different fractional

outflow rates (Kr) ofO.02, 0.05 and 0.08, respectively.

6 ENERGY SOURCES

6.1 GRAINS

The major grains used for ruminant diets include maize, sorghum, wheat, barley, oats and

triticale. The nutritional value of grains are influenced by the location and conditions where

they are grown. The choice of grains for inclusion in calf starter and finishing diets is

dependent on their energy content, protein (amino acid) content, wholesomeness and price

(Aherne & Kennelly, 1982).

6.2 FAT SUPPLEMENTATION

There are three main sources of fat used in animal feeds. Firstly granular fats (rumen inert

fat) are used. Secondly oilseeds viz. whole soyabeans, cottonseeds, sunflower seeds etc.

Lastly, rendered animal fats viz. tallow, poultry fats, choice white grease and yellow grease,

that may be blended with vegetable oils acidulated soapstocks from the oil refining industry

(Palmquist, 1984).

6.2.1 RUMEN INERT FAT

Ruminally inert fats are commonly referred to as rumen bypass, protected, escape or

speciality fats. Ruminally inert is the proper descriptive terminology since fatty acids are not

degraded in the rumen. These products undergo varying degrees of microbial hydrolysis and
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fatty acid hydrogenation in the rumen and were developed to minimise adverse effects of fats

on ruminal fermentation and fibre digestion (Palmquist, 1984).

A Rumen inert fat should be non reactive to the rumen micro-organisms, be readily absorbed

in the lower digestion tract, have an optimum fatty acid structure for metabolism and be

readily incorporated into the diet (Palmquist & Cummings, 1989).

Rumen inert refers only to the lack of inhibitory effects of certain fats on the metabolism of

sensitive protozoa and gram positive bacteria e.g. calcium salts have been shown to undergo

biohydrogenation (Jenkins & Palmquist, 1986) even though they have no influence on fibre

digestion (Jenkins & Palmquist, 1984; Chalupa et al., 1986).

Lipids can be either physically or chemically protected to achieve ruminal inertness.

6.2.1.1 Chemical protection of fat by the formation of calcium salts offatty acids

Calcium soaps are inert in the rumen (Palmquist & Jenkins, 1982; Jenkins & Palmquist, 1984;

Chalupa et al., 1984; Palmquist, 1984), digestible in the lower intestine (Jenkins & Palmquist,

1984; Palmquist, 1991) and have been shown to be used effectively in diet formulation for

milk production (Sklan et al., 1991).

The calcium soap product is rumen inert as long as the fatty acids are maintained in the

calcium soap form. Calcium soaps are sensitive to pH and any tendency towards acidosis will

result in some breakdown of the soaps and the liberation of long chain fatty acids and will

have a negative influence on fibredigestion in the rumen (Chandler, 1988).

The pKa of calcium salts is 4 to 5 (Palmquist, 1985), therefore dietary buffers may be needed

with some feeding strategies to maintain rumen pH above 6 to prevent dissociation of the

salts. Estimated pKa values are 5.6, 4.6, 4.5 and 4.5 for calcium soaps of soy, palm fatty acid

distillate, tallow and stearic fatty acid respectively. In the abomasum, calcium soaps are

converted, by the acids present, to free fatty acids and calcium. These fatty acids are then

absorbed efficiently from the small intestine where the pH is lower (Sklan, et al., 1985).

Davison & Woods (1963) outlined the physiological processes required for ruminants to

effectively utilise calcium soaps i.e. dissociation of the soap in the acid abomasum, absorption
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of calcium in the acidic duodenum followed by absorption of fatty acids in the jejunum and

ileum. If the calcium is in excess or absorbed inadequately, insoluble soaps will reform in the

large intestine and be excreted in the faeces. The normal pH of the bovine duodenal contents

is 2 to 2.5 which is sufficiently low to dissociate more than 99% of the calcium soaps.

Properly prepared calcium soaps contain about 7% calcium. High calcium contents in the diet

can affect magnesium utilisation (Chico et al., 1973) in the ruminant.

Palm fatty acid distillate is very useful as a raw material for calcium soap manufacturers as it

produces a soap with stearate (C18:0)) levels less than 5%. Calcium soaps have been shown

to have digestibilities in excess of 90% when fed in either a pelleted or loose form (Sadler &

Miller, 1982 as quoted by Stevens, 1990). Morlae (Marine Oil Refiners, Dido Valley,

Simonstown, CT, RSA) is an example ofa calcium salt of palm oil fatty acids.

6.2.1.2 Physical protection offat

There are three methods in which a fat can be physically protected from rumen breakdown:

1) the formation of high melting point fats with high contents of saturated long chain fatty

acids also known as dairy fat prilIs, saturates or hydrogenated fats,

2) protein encapsulation of oil droplets and

3) mixing fat with a non nutritive carrier (vermiculite).

1) Fats with high melting points (dairy fat prills, saturates and hydrogenatedfats)

The physical and biological characteristics of saturated fatty acids in the rumen (high melting

point, low microbial inhibition) are the basis of these commercial hard fats which are both dry

and rumen inert. The high melting point refers to melting points above body temperature.

The same physical characteristics which contribute inertness to this type of fat may also lower

absorption from the small intestine (Palmquist, 1988). Saturated fatty acids have low

solubility levels. Fatty acids with high melting points, such as stearic acid, inhibit ruminal

fermentation and fibre digestion less than fatty acids with lower melting points like oleic acid

(Chalupa et al., 1984) and form the basis of many bypass fats. The latter has a high content of

saturated fatty acids with a low solubility so as to maintain normal digestion.

Triglycerides with high melting points are also inert in the rumen. Some commercially inert

fats are highly saturated triglycerides. Although these have little or no activity in the rumen

this same inertness is a liability for digestion and absorption. Before absorption of
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triglycerides can occur in the small intestine they must undergo emulsification (Noble, 1981).

MacLeod & Buchanan-Smith (1972) and Jenkins & Jenny (1989) demonstrated that highly

saturated triglycerides are at a disadvantage because of the relatively low triglycerides lipase

activity in the ruminants small intestine. Thus utilisation of highly saturated triglycerides is

lower than similarly saturated fatty acids in unesterified form.

Hydrogenation of fats increases the melting point, changing the fats' effect on rumen

fermentation, fatty acid digestion and feed intake (Jenkins & Jenny, 1989). Hydrogenation

does not greatly change the long chain fatty acid content but increases the melting point and

saturated fatty acid content. Total hydrogenation appeared to increase the melting point of

yellow grease beyond where reduced fat digestibility was compensated for by rumen inertness

(Jenkins & Jenny, 1989). Intermediate melting points from (partial) semi-hydrogenation may

provide a more acceptable balance between rumen inertness and fat digestibility.

Prilling fats involves liquefying a mixture of fatty acids high in saturated fatty acid content

and spraying the mixture of fatty acids under pressure into a cooled atmosphere resulting in

dried prilled fatty acid supplements that are inert in the rumen and do not alter rumen

fermentation (Grummer, 1988). The fatty acids are crystallised together in a matrix. The

overall effect is to produce tiny spherical beads, 0.01mm to 0.05mm in diameter.

2) Protein encapsulated fat

Two methods of protein encapsulation of fats exist:

(i) Formaldehyde protein protected fats and

(ii) Encapsulation of fats with sodium alginate.

3) Protection of fat by use of a carrier

Fats can be combined with a carrier e.g. vermiculite to prevent depression of digestibility of

the fibre in ruminants. Carriers range in absorptive capability from 40 to 65%. Some

nutritional carriers e.g. ground maize cobs and "bees wings" of maize cobs have been used

with moderate success. As with calcium soaps, availability of the fatty acids for absorption

would depend on their being dissociated from the verxite (carrier). It is not known if the

association of the fatty acids with the verxite is purely one of physical coating or an

interaction with the mineral structure. Detergency of bile acids is likely the major factor in

removing tallow from the verxite (Chaney & Marbath, 1962).
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6.3 RUMEN INERT FAT SOURCES USED IN THE PRESENT INVESTIGATION

There are various rumen inert fat sources in the R.S.A. of which Energy Booster, Booster fat,

Alifet, Dairy 80, Carolac, Morpalm II, Priplus 10 and Golden Flake are examples of fats

physically protected from rumen breakdown. Three examples of chemically protected fat

sources are Megalac, Ruminsol and Morlac. Golden Flake and Morlae were used as the two

rumen inert fat sources in the present trial. Morlae (Marine Oil Refiners, Dido Valley,

Simonstown, CT, RSA) is an example of a calcium salt of palm oil fatty acids. Golden flake

(Veekon, Silverton, Pretoria, RSA) is a flaked product manufactured from palm oil fatty

acids.

Morlae

Jesperson, (1993) tested Morlae in vitro and found that the calcium soaps are hydrogenated

immediately at the start of fermentation and reached a maximum plateau at approximately 12

hours. However no digestion of the calcium soaps took place. Inert fat supplements are not

excluded from being hydrolysed (if a triglyceride) or being hydrogenated (if unsaturated) in

the rumen. Thus, rumen inertness simply means that the fat, or fatty acid supplement, does

not get altered by rumen fermentation. Hydrolysis and hydrogenation no doubt occur in inert

fats but the rates at which these processes proceed are reduced as compared to rumen active

fat supplementation. Calcium soaps are known to undergo biohydrogenation (Jenkins &

Palmquist, 1986) even though they have no influence on fibre digestion in ruminants (Jenkins

& Palmquist, 1984). Wu et al. (1991) found that the net biohydrogenation of unsaturated

fatty acids of calcium salts of long chain fatty acids was ±50%. This suggested that calcium

soaps were only partially protected from biohydrogenation in the rumen. Supplemental

animal-vegetable fat was biohydrogenated extensively in the rumen of lactating dairy cows

and this was associated with a lower digestibility of total fatty acids in the intestine compared

with cows fed a control diet containing no fat (Wu et al., 1991). The fatty acid profile of

Morlae is presented in Table 1.
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Table 1. Typical Fatty acid profiles of Morlac (M) and Golden Flake (GF).

MORLAC GOLDEN FLAKE

Fat content 86.0 98.4

Energy value (MJ/kg) 24.0-33.0 36.8

FATTYACID%

CI2:0 (Lauric) 1.2 0.1

CI4:0 (Myristic) 1.5 1.6

CI6:0 (Palmitic) 48.0 48.6

CI8:0 (Stearic) 4.5 31.0

CI8:I (Oleic) 35.0 15.2

CI8:2 (Linoleic) 8.0

CI8:2 (Linoleic) +CI8:3 (Linolenic) 2.8

CALCULATED:

Saturated % 55.2 81.3

Unsaturated % 43.0 18.0

Golden Flake (GF)

The ADAS Feed Evaluation Unit at Stratford examined the solubility of Golden Flake in the

rumen of sheep with the dacron bag technique. The results show that only 9% of the product

was immediately soluble. The effective overall solubility, in the rumen of a high producing

dairy cow, was estimated at a maximum of 39%. With this small soluble fraction containing

approx. 80% long chain saturated fatty acids (C16-C18), the actual rumen protection is

correspondingly estimated at ±90% and the effects on cellulose digestion is minimal. These

results indicate that Golden Flake is a highly effective source of rumen protected fat (GF:

Tech. Bull. AI, 1988). Similar results were obtained from a trial conducted at Barcelona

University, Veterinary Division using adult heifers. The maximum solubility was found to be

24%. As 80% of this soluble fraction will be long chain fatty acids, nummum rumen

protection could be estimated at 95% (GF: Tech. Bull. Bl, 1989).

The ADAS Feed Evaluation Unit at Stratford examined the feeding of Golden Flake at 4.5%

total ration dry matter (DM) representing 11% of the compound. The effects on the

degradability of DM and neutral detergent fibre (NDF) of the forage were measured together

with changes in rumen pH, lactic and volatile fatty acids (VFA) against the levels from a

control ration. The results indicate that for the lactating dairy cow, there would be no

significant effect on the rate of NDF degradation, rumen pH or total VFA concentration and

molar percentage acetate and propionate, when GF is fed at levels up to 11% of the
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concentrate fraction. Therefore, when used in practice, GF will not adversely affect cell wall

digestibility, or alter rumen fermentation, even when fed at 2 to 3 times conventional feeding

levels. Most of the evidence in the literature (Van Soest, 1982) suggests that any effect of

dietary unsaturated fatty acids on rumen VFA production is mediated through suppression of

the methanogenic bacteria. Since methane production is reduced, the additional metabolic

hydrogen is diverted into propionate production, a process that is energetically more efficient

(GF: Tech. Bull. A2:1989).

The ADAS Feed Evaluation Unit at Stratford also examined the apparent digestibility of

Golden Flake and its effects on the cell wall digestibility of the rest of the diet. Three diets

comprising grass silage and compound feed, containing 0, 2.5 and 5% GF, were fed to adult

ruminants. The effective apparent digestibility of added GF was found to be 0.95 and 0.88,

when using the ether extract methods of faecal fat analysis respectively. True digestibility

will lie somewhere between these values. Even at a higher rate of inclusion (5% of

compound), the additional GF did not cause any significant reduction in cell wall digestibility.

In fact, the apparent digestibility of the whole diet fat content increased significantly, and in a

linear fashion, with increasing fat supplementation. The high digestibility seen in this trial

shows how well GF is emulsified in the intestine. In the ruminant, fats are absorbed almost

entirely as free fatty acids. The time duration in the duodenum and jejunum is short and

phospholipid emulsification is required for absorption. Therefore, it is very important that

added fat supplements (protected fats) enter the duodenum as free fatty acids as opposed to

triglycerides. This means that no enzyme exposure or acid dissociation is required before

absorption. The degree of absorption from the intestine is partially related to the melting

point but efficiency of absorption of C16:0 and C18:0 from the diet can be improved when

included in the diet in a finely divided form, or melted into a cube which will greatly improve

its emulsification properties (GF: Tech. Bull. A3, 1990). An independent trial conducted on

mature wether sheep at the Swiss Agricultural College, Zollikofen, looked at the digestibility

of GF in sheep and gave a Metabolizable Energy value of 36.96 MJlkg. GF was incorporated

into this diet at levels above 12.5% of DM (viz over five times the suggested feeding rate).

This very high level of GF inclusion had a small adverse effect on the apparent digestibility of

DM, OM, crude fibre, NFE, ADF and NDF, the effect ranging from 2-10% (GF: Tech. Bull.

B3, 1996).
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An important feature of palm oil fatty acid-based products is the high content of C16:0

(palmitic acid). Animal fats and other vegetable oils have a much higher content of C18 fatty

acids (stearic, oleic, linoleic, linolenic etc.). When hydrogenated, the "protected" products

have a high content ofC18:0 (stearic acid) which is known to have a much lower digestibility

than palmitic acid (Grummer & Carroll, 1988). However, when stearic acid is fed in

association with a high palmitic acid content, the digestibility is clearly enhanced as in GF.

Hardened palm oil fatty acid-based products such as GF have an ideal fatty acid profile for

rumen protection and subsequent digestibility in the small intestine (Grummer & Carroll,

1988; Sklan et al., 1990) (GF: Tech. Bull. A4, 1996).

An independent field trial was conducted by a Veterinary Surgeon on a farm in the Pyrenees.

This field trial looked at the effects of feeding two types of protected fat on the yields of adult

dairy cows. The results showed clear advantages to the use of palm oil based protected fats in

early lactation. All diets were the same apart from the fat treatments, which were fed in a

loose form, top dressed onto fresh cut grass. The control diet had no added fat whilst the

other two groups were fed 400 g Golden Flake or 400 g of a calcium salt of palm oil,

respectively. When compared with those on the control diet, the Ca soap supplemented cows

showed a 17% improvement in milk yield whilst the Golden Flake supplemented cows

showed a 30% advantage. Some of this advantage over the Ca salt treatment, could be

explained by the higher energy content of GF when fed on the same basis i.e. 400 g/day (GF:

Tech. Bull. C2, 1989).

Two separate farms, in Canada, were used in another field trial. The fats were offered free-

choice for 7 days in separate containers (cafeteria style). Containers were rotated daily to

reduce the chances of the cows forming a "geographical" preference. The ranking in terms of

palatability were as follows: Golden Flake> Booster Fat> Megalac > Energy Booster 100 >

Alifet. Golden Flake was shown to be highly palatable when tested on farm (GF: Tech. Bull.

Cl, 1991).

A trial was conducted by the Commercial Research Unit on the effects of supplementing a

major commercial beef finishing ration with Golden Flake. Three diets containing 0, 2.5 and

5.0% GF were fed to Hereford x Friesian bulls during the last 12 weeks prior to slaughter. A

fourth treatment looked at feeding 2.5% GF for 28 days followed by 5.0% through until

slaughter. GF improved food conversion over the control diet at higher fat inclusion, such
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that a benefit would be seen on farm. This was most significant in the first 42 days, when the

GF fed bulls showed a 15% improvement in FCR over the control diet, regardless of oil level.

One query that these studies have raised is that of the most effective time period over which

this extra energy is required. It appears that if extra energy is given too soon, feed intake can

be reduced and consequently performance will suffer. Even if performance then improves,

the initial reduction in performance may delay finishing of the animal. Bulls showed a

significant improvement in FCR (approx. 15%) over the control group regardless of oil level.

It is possible that the metabolism adapts to the additional energy after 6-8 weeks, which is

why the response in terms of growth decreases after this time. This seems to agree with

previous studies, suggesting that this 'energy boost' is most successful in the final 60 days of

finishing. The highest oil level did not adversely affect carcass quality in terms of fat content.

In fact, carcasses from GF diets were leaner than the control (GF: Tech. Bull. C6, 1990).
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7 CONCLUSION

The major objective for the veal producer is to produce healthy animals, with optimum

growth rates and feed efficiency, that will yield pink veal of acceptable carcass, meat and

eating quality. Inorder to produce the optimum growth rates, beef producers have to increase

the energy density of the finishing rations, especially when feed intake may limit growth

performance. One of the areas that have enjoyed research is that of protected fats which are

commonly used in lactating cow diets. Recent reports have suggested that steers in the

finishing stages need higher levels of fat in the diet than that currently recommended, so as to

ensure good growth and condition.

There is a great need to investigate the effect of supplementing calf starter- and finishing diets

with rumen inert fat sources, for example Morlae or Golden Flake. These protected fat

sources do not have a negative effect on fibre digestion in the rumen as do unprotected fat

sources. This way the fat structure does not get altered in the rumen, via hydrolyses and

hydrogenation, and provide the animal directly, with a high energy source. The same

principal applies for the protein degradability of the diet. In the high degradable protein diets,

the protein is altered by the rumen micro-organisms and microbial protein, resulting in a

totally different protein structure reaching the small intestine. It is therefore difficult to

predict the performance of an animal when the microbes change the protein and fat structure

before it reaches the lower intestines. However, when the protein and fat is protected from

rumen fermentation, a more accurate estimate of the expected performance can be calculated.

The most important factor in veal production is the end product, which the consumer wants to

purchase. Thus, the fatty acid content of the muscle is an important aspect for research as

customers buy for leanness (health) and the cut presented for sale (colour). Customers often

first look at the colour and brightness of the meat before considering the health aspects.

One problem facing future South African veal markets is the general lack of knowledge

among consumers about how to buy veal and how to cook it. Veal sales could be improved

by an advertising campaign firstly, promoting its health (low fat) and quality aspects

(tenderness, juiciness) and secondly, recommending better ways of cooking and presenting

veal.
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CHAPTER2

THE EFFECT OF RUMEN INERT FAT SUPPLEMENTATION AND PROTEIN

DEGRADABILITY IN STARTER AND FINISHING DIETS ON VEAL CALF

PERFORMANCE.

E.L. Lategan, C.W. Cruywagen & L.C. Hoffman

Department of Animal Sciences, University of Stell enbosch, STELLENBOSCH 7600, South Africa.

ABSTRACT

Six groups each with six Friesian bull calves were used in this investigation and slaughtered

at 20 weeks of age. Calves received a low- (LD) or high (RD) degradable protein diet, each

with or without rumen inert fat supplementation. Two commercial fat sources were used,

Morlae (m) and Golden Flake (gf), included at 2.5% of the diet. A commercial milk replacer

(Denkavit) was fed at 4L for 42 days, followed by 2L until weaning at 49 days of age. The

starter diets were fed ad lib. from day 14 to 10 weeks of age and finishing diets ad lib. from

Il to 20 weeks of age. There were no significant differences in body mass gain or dry matter

intake over the entire 20 week period. The feed conversion ratio (FCR) was improved

significantly (P=0.0032) when fat was supplemented to LD, but not to HD diets. The FCR

(kg dry matter/ kg gain) ofLD, HD, LDm, HDm, LDgf and HDgf diets were 3.45, 3.44, 3.07,

3.81, 3.02 and 3.43, respectively. All 36 calves were used in a digestibility trial, using

chromium oxide (Cr203) as a marker, during week 18 of the investigation. Digestibility

values (%) for the six diets (LD, HD, LDm, HDm, LDgfand RDgf) were 61.74, 65.91, 75.44,

69.00,75.54 and 67.15 for dry matter, 61.44, 61.60, 71.33, 68.23, 75.44 and 66.12 for crude

protein and 58.56, 66.45, 75.98, 70.92, 78.43 and 70.79 for fat, respectively. The dry matter

(P=O.OOOl) and fat (P=O.OOOl) digestibilities were only significantly higher when fat was

added to LD diets. The crude protein (CP) digestibilities were significantly higher when fat

was added to either the LD (P=O.OOOl) or the HD (P=0.0488) diets. It was concluded that

there was a positive response in CP digestibility when rumen inert fats were supplemented to

LD or HD diets, although a greater response was shown in the LD diets. The FCR, dry matter

and fat digestibility were only increased when fat was added to the LD and not to the RD

diets.
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INTRODUCTION

The total crude protein content required in calf starter- and finishing diets (Lee & McCoy;

Stiles et al.; 1974) and different protein sources utilised therein, have been well documented

(Morrill & Dayton, 1978; Fluharty & Loerch, 1995). However, researchers are not able to

reach consensus on what the crude protein levels should be. For example, in some trials

calves fed diets containing only 12 to 13% protein grew as well as calves fed higher protein

diets (Gardner & Kunz; Morrill & Melton, 1973). Leibholz & Kang (1973) found that calves

fed diets containing 15% protein gained as much as those fed 18% but that their nitrogen

retention was lower. Schurman & Kesler (1974) reported similar growth and feed efficiency

for calves on diets containing 14,3 or 26% protein, with a higher nitrogen balance for those on

diets containing 26% protein. However, in other trials the calves gained more when the CP

content was higher (Stobo et al.,1967; Leibholtz & Kang, 1973). Bartley (1973) reported

that calves fed diets containing 20% protein gained more than those receiving 16%. Akayezu

et al., (1994) found that when calves were fed starter diets which contained lower protein

contents of 15 or 16.8% only a moderate growth rate was observed. Whereas the calves on

the 19.6%CP diet showed maximum growth and there was no advantage gained from a higher

protein content (22.4%).

There is however a need for research on the effect of dietary protein degradability in the

rumen on veal calf performance. Likewise, using fat supplementation to increase the energy

density in diets for feedlot steers and dairy cows have been widely documented (Fluharty &

Loerch, 1997), but a lack of information exists regarding rumen inert fat supplementation in

calf starter and finishing diets. The current study was designed to investigate the effect of

rumen inert fat supplementation and the degradability of the protein on veal calf performance.

MATERIALS AND METHODS

Animals

Thirty-six Friesian bull calves, 2-5 days of age, were stratified according to initial mass and

entered into six blocks. Calves in each block were randomly allocated to six treatments.

Individual housing was provided in pens with wooden slatted floors and straw bedding. The

calves were weighed weekly, during the starter and fortnightly during the finishing period,

after fasting for 12 hours. The calves were slaughtered at 20 weeks of age and the carcass
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mass (body without the head, feet skin and stomach) and dressing percentage (carcass mass

(kg)/live mass (kg» was determined (Table 4).

Diets

All calves received 4L of a commercial milk replacer (Denkavit, Johannesberg, RSA) until 42

days of age, and then 2L until weaning at 49 days. Starter diets were offered ad lib. from 14

days until 10 weeks of age, and finishing diets ad lib. from 11 to 20 weeks of age. Starter-

and finishing diets were formulated to be iso-nitrogenous, but differed in crude protein (CP)

degradability and energy content. The CP content was 18% and 14% for the starter- and

finishing diets, respectively. Treatments were LD (low degradable protein) and HD (high

degradable protein) each with, or without, rumen inert fat supplementation. Two rumen inert

fat sources were used, viz. Morlae (Marine Oil Refiners, Dido Valley, Simon's Town, RSA)

and Golden Flake (Veekon, Silverton, Pretoria, RSA). The total mixed diets were pelleted

and their physical composition is presented in Table 1.

Table 1. Physical composition (% of ingredients) of calf starter diets to determine the

effect of rumen inert fat supplementation and protein degradability on calf

performance.

Item STARTER DIETS FINISHING DIETS

LD HD LD HD LD HD LD HD LD HD LD HD

+m +m +gC +gC +m +m +gC +gC
Maize meal 60 50 57.5 47.5 57.5 47.5 63.0 60.0 60.5 57.5 60.5 57.5

Fish meal 6 0 6 0 6 0 6 0 6 0 6 0

Prime gluten(60) 7 0 7 0 7 0 4 0 4 0 4 0

Sunflower oil cake 0 23 0 23 0 23 0 13 0 13 0 13

Molasses 5 5 5 5 5 5 5 5 5 5 5 5

Lucerne hay 15 20 15 20 15 20 0 14 0 14 0 14

Oat hulls 5 0 5 0 5 0 0 0 0 0 0 0

NaOH-wheat straw 0 0 0 0 0 0 20 6 20 6 20 6

Salt 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Mineral premix 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Romensin 0 0 0 0 0 0 0.01 0.01 0.01 0.01 0.01 0.01

Morlac 0 0 2.5 2.5 0 0 0 0 2.5 2.5 0 0

Golden flake 0 0 0 0 2.5 2.5 0 0 0 0 2.5 2.5

CALCULATED

Energy (MJ/kg) 12.0 11.9 12.4 12.3 12.6 12.5 11.9 12.0 12.3 12.4 12.5 12.6

LD = Low degradable protem HD = HIgh degradable protem m = Morlae gf = Golden Flake
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Crude Protein Degradability

The dry matter content and the crude protein degradability of the six starter- and finishing

diets were determined in situ by 24h rumen incubation in three ruminally cannulated non-

lactating Friesian cows (Table 3). All the feeds were milled through a 4mm screen. Five

grams (as is) of each feed were weighed into dacron bags (pore size 53!l) and the DM of each

feed determined separately. Two bags per diet were placed into a netted nylon bag and then

into the rumens of the three cows. To ensure that the dacron bags did not clog together in the

nylon bags, each nylon bag was divided into three compartments, with only four bags in each

compartment. At the end of the incubation period, the bags were removed and washed

thoroughly by hand under running water. The bags were dried at 50°C for 24h and then

weighed.

Digestibility Trial

All the calves were used in a digestibility trial at 18 weeks of age. Gelatine capsules

containing 2.5g of Chromic III Oxide were administered twice daily, at 8:00am and 16:00pm,

with the aid of a balling gun. The administration of the Chromic III Oxide started 9 days

prior to the collection period to ensure uniform excretion of the Chromic III Oxide in the

faeces, and continued until the end of the faecal collection period. Faecal grab samples were

collected twice daily for 7 days. Total feed intake was also determined over this period. The

faecal samples were frozen directly after collection and compo sited at the end of the

collection period. These samples were dried at 55°C in a forced draught oven, ground through

a hammer mill (Irnm screen) and stored in sample bottles for chemical analysis.

Chemical Analysis

Chemical analysis was performed on feed and faecal samples after passing samples through a

hammer mill with a lmm sieve. Feed and faecal samples were analysed for dry matter,

organic matter, Kjeldahl nitrogen (N), crude fibre (AOAC, 1990) and lipid extraction by the

acid hydrolysis procedure (AOAC No 922.06, 1996). The chemical composition of the diets

is presented in Table 2.
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Table 2. The chemical composition of the starter and finishing diets fed to calves.

Analysis STARTER DIETS FINISHING DIETS

LD HD LD HD LD HD LD HD LD HD LD HD

+m +m +gf +gf +m +m +gf +gf

DM 90.34 90.87 90.66 90.10 87.94 88.95 91.95 91.99 92.28 92.74 91.53 92.96

OM 94.69 94.53 94.03 94.06 94.74 94.54 95.74 95.63 95.26 95.40 95.35 95.54

CP 17.28 18.20 17.15 17.06 17.63 17.91 14.08 12.42 14.40 12.70 14.76 11.82

CF 7.50 11.64 8.12 13.03 8.05 13.91 11.07 12.70 10.49 12.83 9.58 12.51

LP 4.71 4.17 6.60 4.81 6.59 5.43 3.68 3.52 4.79 4.58 5.62 4.71

LD - Low degradable protem

HD = High degradable protein

m- Morlae

gf =Golden Flake

DM = Dry matter

OM = Organic matter

CP - Crude protem

CF = Crude fibre

LP = Lipid

In addition to the pelleted diets, all calves received lucerne hay from week 5 to1O. The

lucerne had the following chemical composition (%): DM=88.75, OM=87.79, CP=18.73,

CF=27.89.

Determination of chromium concentration in faeces

A wet digestion using concentrated sulphuric acid, nitric acid and perchloric acid was

executed, followed by a suitable dilution of 8-hydroxyquinoline to suppress the interference

of iron and reduce all chrome to the trivalent form. The chromium concentration was

determined by atomic absorption spectrophotometry, using calibration standards prepared

similar to that for the samples. Either air/acetylene or nitrous oxide/acetylene flame can be

used, but in the present data the air/acetylene flame was used (Johnson, 1999).

Statistical Analysis

The data was analysed by ANOVA using the GLM procedure of SAS (1988). Different

contrasts were used to indicate the differences between treatments. These contrasts are

presented in the ANOVA tables to follow. Three main contrasts were used viz. FAT,

PROTEIN DEGRADABILITY and the interaction between fat and protein degradability

(FAT*PROT.DEG.). FAT was further subdivided into two contrasts viz. (1) none vs. rest, i.e.

no fat supplementation was compared to fat supplementation, and the protein degradability

and different fat sources were ignored, and (ii) Morlae vs. Golden flake, i.e. the two fat

sources, were compared and protein degradability ignored. In the second contrast, PROTEIN

DEGRADABILITY, the low degradable treatments were compared to the high degradable

treatments, ignoring fat supplementation. The interaction between fat and protein
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degradability (FAT* PROTEIN DEGRAD ABILITY) was further subdivided into firstly

(none vs. rest)*protein degradability, i.e. the interaction of protein degradability with no fat

supplementation vs. the interaction of protein degradability with fat supplementation. The

second subdivision (Morlac vs. Golden Flake)*protein degradability i.e. the interaction of

each fat source with protein degradability was also compared.

RESULTS & DISCUSSION

Crude Protein Degradability

Mean CP degradability values in the starter diets were 31.3 and 73.2 % for low- and high

degradable diets, respectively. Mean CP degradability values in the finishing diets were

22.47 and 56.0 % for LD and HD, respectively. The expected RDP fraction was calculated

before the trial and compared to the RDP protein fraction determined in situ in the present

investigation (Table 3). The average RDP calculated for LD starter was 8.79 and finishing

diets 6.21 and the determined values 5.44 and 3.24, respectively. The average RDP calculated

for HD starter diets was 12.32 and finishing diets 9.20 and the determined values 13.00 and

6.93, respectively. The RDP fraction was thus overestimated for the LD diets as well as for

the HD finishing diets.

Table 3: The dry matter content and the crude protein degradability of the six starter-

and finishing diets as determined in situ by 24h rumen incubation using

non lactating Friesian cows.

Item STARTER DIETS FINISHING DIETS

LD HD LD HD LD HD LD HD LD HD LD HD

+m +m +gf +gf +m +m +gf +gf
DMD 71.29 75.64 64.57 70.42 72.00 75.76 59.62 66.34 65.82 69.30 65.36 66.22

CPD 31.62 70.68 26.42 63.06 35.82 85.86 23.02 48.02 18.48 73.88 25.91 46.14

CP 17.28 18.20 17.15 17.06 17.63 17.91 14.08 12.42 14.40 12.70 14.76 11.82

RDpl 5.46 12.86 4.53 10.76 6.32 15.38 3.24 5.96 2.66 9.38 3.82 5.45

RDp2 8.88 12.42 8.75 12.27 8.75 12.27 6.30 9.29 6.17 9.15 6.17 9.15
..

gf = Golden Flake

DMD =Dry matter degradability

CPD = Crude protein degradability

RDpl =Degradable protein content as determined in situ

RDp2 = Degradable protein as calculated

LD = Low degradable protem

HD = High degradable protein

ID = Morlae
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Calf performance

The results on body mass gam, feed intake, feed conversion ratios and carcass data are

presented in Table 4. The data was divided into three periods: the starter period from week 0

to 10 (WO-lO), the finishing period from week 11 to 20 (Wll-20) and the entire trial period

from week 0 to 20 (WO-20) during the investigation. Zero calf mortalities were encountered.

Table 4. Body mass gain, dry matter intake and feed conversion ratio for the different

experimental periods and the carcass data for calves receiving diets differing

in fat content and crude protein degradability.

Item TREATMENTS

LD lID LD lID LD lID SEM

+m +m +gf +gf

STARTER DIET

WO-lO

Body mass gain (kg) 47.55 45.35 44.60 40.00 48.30 46.18 2.45

Total DMI (kg) 114.21 108.18 102.67 98.76 111.88 110.90 4.80

FCR (DMI/kg gain) 2.43 2.38 2.31 2.49 2.32 2.43 0.07

FINISHING DIET

W 11-20

Body mass gain (kg) 90.85 96.22 97.92 82.40 97.17 94.56 5.05

Total DMI (kg) 311.02 328.33 300.38 313.93 292.82 323.66 14.95

FCR (DMI/kg gain) 3.45 3.44 3.07 3.81 3.02 3.43 0.10

TOTAL PERIOD

WO-20

Body mass gain (kg) 138.40 141.57 142.52 122.40 145.47 140.74 6.12

Total DMI (kg) 425.23 436.51 403.05 412.69 404.70 434.56 17.96

FCR (DMI/kg gain) 3.09 3.09 2.83 3.38 2.79 3.08 0.07

Carcass mass (kg) 88.42 92.75 92.25 80.80 90.33 91.00 2.88

Dressing % 49.44 50.98 50.53 48.98 48.13 49.62 0.63

Starter Diet (WO-lO)

Statistical parameters for starter intake during week 0-10 are presented in Tables 5 & 6. No

significant differences between the treatments were observed in total body mass gain (Table

5).

There was, however, a significant difference in the total DMI of calves on the diets containing

different rumen inert fat sources (Tables 5 & 6). The calves receiving Morlae had a

Stellenbosch University http://scholar.sun.ac.za



51

significantly lower total DMI than those receiving Golden Flake (P=O.0354) irrespective of

the protein degradability. The calves receiving no fat supplementation had similar intakes

than those receiving Golden Flake. The protein degradability of the diets had no significant

effect on the total DM!.

Table 5. ANOVA table for the calves during the starter period (WO-lO).

Source of variation df Mass Gain Total DMI F.C.R.

MS P MS P MS P

Block 5 94.50 0.0485 366.17 0.0471 0.0775 0.0597

FAT 2 84.58 0.1160 447.62 0.0562 0.0022 0.9339

None vs. Rest 1 22.53 0.4362 211.29 0.2279 0.0017 0.8178

Mori vs. Gold 1 146.62 0.0544 683.95 0.0354 0.0026 0.7757

PROTEIN DEGRAD. 1 79.36 0.1500 119.36 0.3618 0.0600 0.1789

FAT*PROTDEG. 2 5.98 0.8479 19.33 0.8702 0.0387 0.3089

(None vs. Rest)*prot.deg. 1 2.70 0.7864 25.78 0.6696 0.0703 0.1470

(Mori vs. Gold)*prot.deg. 1 9.25 0.6166 12.88 0.7628 0.0070 0.6407

Error 25 35.98 138.29 0.0314

Table 6. Mean DMI of calves receiving the different starter diets.

Protein FAT SOURCE

Degradability Morlac Golden Flake Mori vs. Gold

Low 102.67 111.88

High 98.76 110.90

AVG 100.72 111.39 P = 0.0354

Fat supplementation has been known to have a negative effect on fibre digestion in the rumen

which would result in a decrease in DMI (Palmquist, 1991). The inclusion of rumen inert fat,

rather than rumen degradable fat, was intended to counteract this effect. Morlae diets showed

a much lower DMI than the Golden Flake diets. An explanation could be that the calcium

soaps (Morlac) have a negative effect on digestion. Jesperson (1993) tested Morlae in vitro

and found that the calcium soups are hydrogenated immediately at the start of fermentation

and reached a maximum plateau at approximately 12 hours. However, no digestion of the

calcium soaps occurred. Inert fat supplements are not excluded from being hydrolysed (if a

triglyceride) or being hydrogenated (if unsaturated) in the rumen. Thus, rumen inertness

simply means that the fat or fatty acid supplement does not alter or affect rumen fermentation.
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Calcium soaps are known to undergo biohydrogenation (Jenkins & Palmquist, 1986) even

though they have no influence on fibre digestion in ruminants (Jenkins & Palmquist, 1984).

Wu et al. (1991) found that the net biohydrogenation of unsaturated fatty acids of calcium

salts of long chain fatty acids, was ±50% and they suggested that calcium soaps were only

partially protected from biohydrogenation in the rumen. When animal-vegetable fat was

added to the diets of lactating dairy cows, extensive biohydrogenation took place in the rumen

and this was associated with a lower digestibility of total fatty acids in the intestine compared

with cows fed diets containing no fat (Wu et aI., 1991).

Palatability could be another explanation for the difference in DM!. Golden Flake proved to

be very palatable to young calves. Two separate farms in Canada were used in a field trial

where fats were offered free-choice for 7 days in separate containers (cafeteria style).

Containers were rotated daily to reduce the chances of the cows forming a "geographical"

preference. The ranking in terms of palatability was as follows: Golden Flake> Booster Fat>

Megalac > Energy Booster 100> Alifet. (GF: Tech. Bull. Cl, 1991).

Fisher (1980) found that starter intake was similar for the two protein sources, but

significantly less for the ration containing 10% protected lipid compared to either the 0 or

20% levels. Body mass gain was greater for calves fed the starter containing 20% protected

lipid compared to those fed the 10% level. Efficiency of feed conversion was better for calves

receiving a protected lipid. It was concluded that the inclusion of protected lipid improved

feed conversion of calves from 43 to 70 days of age. Since the protein level was 22%, it was

concluded that growth rate was being limited by the energy density of the starter ration and/or

level of intake rather than the protein content of the diet. The efficiency of conversion,

although not influenced by source of protein, was notably improved with increasing levels of

protected lipid in the ration (Fisher, 1980). Waldem & Fisher (1978) added unprotected

tallow to calf diets and found a lack of improvement in feed conversion. These contrasting

results would indicate that the protected tallow was used more efficiently than unprotected

tallow for calves (Fisher, 1980).

Doppenberg & Palmquist (1991) found that a higher dietary fat content resulted in a lowered

ADG of ruminating calves and an increased ADG of liquid-fed calves. Calves fed higher fat

dry diets adapted slowly to weaning, with frequent bloating. The higher fat content probably

interfered with normal rumen microbial development (Palmquist & Jenkins, 1980).
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In this investigation, lucerne was fed ad. lib. to all six groups from W5-1 0 (Table 7). Lucerne

was fed to counteract bloat in one LD Golden Flake calf and one LD Morlae calf. The

analysis of variance (Table 7) shows that for lucerne intake, there was an interaction between

rumen inert fat supplementation and the degradability of the protein (FAT*PROT.DEG.) in

the diets (P=O.0046). The contrast (none vs. rest*prot.deg.) shows that there was no

interaction between no fat supplementation and fat supplementation with protein degradability

(P=O.0982).

Table 7. ANOVA table for the lucerne intake from WO-lO.

Source of variation df MS P-value

Block 5 5.81 0.0650

FAT 2 14.86 0.0067

None vs. Rest 1 24.31 0.0040

Morlac vs. Golden flake 1 5.42 0.1466

PROTEIN DEGRADABILITY 1 35.20 0.0008

FAT*PROT.DEG. 2 16.25 0.0046

(None vs. Rest) * prot.deg. 1 7.12 0.0982

(Mori vs. Gold) * prot.deg. 1 25.38 0.0033

Error 25 2.41

The contrast (morl vs. gold*prot.deg.) shows that there was a significant interaction between

the two fat sources and protein degradability (P=O.0033) (Table 8). There was a significant

difference between Morlae and Golden Flake when the protein degradability was low, but not

when it was high. The LD Golden Flake resulted in significantly higher lucerne intakes.

Table 8. Mean Lucerne intake of calves receiving the different treatments.

Protein FAT SOURCE (Mori vs. Gold)

Degradability None Morlac Golden Flake *prot.deg.

Low 1.83 3.01 6.02 P=0.0033

High 1.11 2.46 1.35

The chemical analysis of the feed indicated a lower average crude fibre content for the LD

diets (Table 2). The high DMI of the GF suggested a high passage rate through the rumen,

which could have lead to lower fibre digestion. The lower fibre digestibility actually

observed and the low fibre content of the LD diets, could explain the stimulus for higher

lucerne intake. The added fat showed an even higher lucerne intake, but only in the LD diets.
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The fatty acids in the LD diets, which are mostly derived from sunflower oil cake meal, are

available for normal rumen fermentation. This could have a negative effect on fibre

digestion. Another observation, which might explain the higher lucerne intake by the Golden

Flake treatments, was that the feed pellet quality was lower. The high fat content of these

diets was responsible for the poor pill quality; these diets crumbled into a powder much faster

than the other diets. According to Brooks, et al. (1954) the addition of com oil or lard has a

depressing effect on cellulose and crude protein digestion. This effect was partially overcome

by the addition of alfalfa ash in their study.

Finishing Diets (Wll-20)

There were no significant differences in total body mass gain or total DMI between the

treatments during the last growth phase (Wll-20) of this investigation. There was, however,

a significant difference in the feed conversion ratio between the treatments. The analysis of

variance (Table 9) showed that there was an interaction for FeR between rumen inert fat

supplementation and the degradability of the protein (FAT*PROT.DEG.) in the diets

(P=0.0040). The contrast (none vs. rest*prot.deg.) further showed that there was an

interaction between no fat supplementation and fat supplementation with protein degradability

(P=0.0026). The contrast (mori vs. gold*prot.deg.) indicated no significant differences

between the two fat sources and protein degradability (P=0.1141).

Table 9. ANOVA table for the calves receiving finishing diets (W1l-20).

Source of variation df Mass Gain Total DM! F.C.R.

MS P MS P MS P

Block 5 80.20 0.7563 1251.60 0.4765 0.0371 0.6894

FAT 2 98.54 0.5342 577.26 0.6550 0.1973 0.0547

None vs. Rest 1 2.20 0.9056 1147.40 0.3639 0.0975 0.2152

Mori vs. Gold 1 194.88 0.2701 7.07 0.9427 0.2970 0.0358

PROTEIN DEGRAD. 1 162.78 0.3126 3807.90 0.1045 1.3148 0.0001

FAT*PROT.DEG. 2 333.23 0.1347 247.93 0.8324 0.4182 0.0040

(None vs. Rest)*prot.deg. 1 416.40 0.1118 47.71 0.8519 0.6747 0.0026

(Mori vs. Gold)*prot.deg. 1 250.07 0.2132 448.16 0.5684 0.1617 0.1141

Error 25 153.24 1341.4 0.0603

A further analysis of variance was done to determine whether fat supplementation was

significant for both the low and high degradable protein diets (Table 10). It was found that
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there was no significant differences when the protein degradability was high (P=O.1552).

There was, however a significant improvement in FeR when fat was added to the low

degradable diets (P=O.0032). It appears that an increase in energy density by means of rumen

inert fat supplementation, as well as a high quality protein inclusion in the diet, can be

expected to result in the more favourable feed conversion ratios. This was not observed in the

first 10weeks of age and it can be speculated that rumen development was responsible for

manifesting the difference observed between the HD and LD diets in the growth period. It

therefore appears that by-pass protein only becomes important in calf diets after 10weeks of

age, when the rumen has become functional.

Table 10. Mean Feed Conversion Ratio for the different finishing diets.

Protein FAT SOURCE REST (m&g) None vs. Rest

Degradability None Morlae Golden Flake AVG

Low 3.45 3.07 3.02 3.05 P-0.0032

High 3.44 3.81 3.43 3.62 P=0.1552

Total Trial Period (WO-lO)

There were no significant differences in the total body mass gain or total DMI between the

treatments for the contrasts tested) over the whole investigation period. However, the feed

conversion ratio showed significant differences between treatments (within the tested

contrasts). The analysis of variance (Table 11) shows the same tendency as was observed

during the finishing period, viz. an interaction between fat supplementation and protein

degradability. Again, there were no significant differences in protein degradability when

there was no fat supplementation; and the effect of fat was only observed when added to the

low degradable protein diets. There was therefore a statistically significant interaction

(FAT*PROT.DEG.) between fat supplementation and protein degradability (P=O.0043). The

contrast (none vs. rest*prot.deg.) further indicated that there was an interaction between no fat

supplementation and fat supplementation with protein degradability (P=O.0028). Fat source

(morl vs. gold*prot.deg.) had no effect (P=O.1013).
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Table 11. ANOVA table for the TOTAL TRIAL period (WO-20).

Source of variation df Mass Gain Total DMI F.C.R.

MS P MS P MS P

Block 5 274.89 0.3271 2786.0 0.2269 0.0294 0.4924

FAT 2 359.25 0.2219 1586.8 0.4387 0.1107 0.0488

None vs. Rest 1 38.81 0.6812 2343.5 0.2727 0.0411 0.2708

Mori vs. Gold 1 679.68 0.0942 830.1 0.5105 0.1803 0.0265

PROT.DEGRAD. 1 469.37 0.1607 2579.0 0.2504 0.7028 0.0001

FAT*PROT.DEG. 2 420.77 0.1745 378.3 0.8176 0.2247 0.0040

(None vs. Rest)*prot.deg. 1 486.41 0.1536 143.6 0.7836 0.3556 0.0028

(Mori vs. Gold)*prot.deg. 1 355.12 0.2202 613.0 0.5714 0.0938 0.1013

Error 25 224.54 1862.9 0.0324

A further analysis of variance was done to determine whether fat supplementation was

significant for both the low and high degradable protein diets (Table 12). When rumen inert

fat was added to low degradable protein diets, a significantly lower FCR was observed

(P=0.0043).

Table 12. Mean feed conversion ratio for the different diets over the total trial

period (total DMI (kg)/total body mass gain (kg)).

Protein FAT SOURCE REST (m&g)

Degradability None Morlac Golden flake AVG None vs. Rest

Low 3.09 2.83 2.79 2.81 P=0.0043

High 3.09 3.38 3.08 3.23 P=0.1346

Fallon et al., (1986) found that the inclusion of low levels of calcium soaps of fat in calf diets

may be beneficial in allowing an increase in fibre digestibility without reducing energy intake.

No data could be found in the literature where Golden Flake was included in calf diets. A

trial was conducted by the Golden Flake Commercial Research Unit to determine the effect of

supplementing a major commercial beef finishing ration with Golden Flake. Three diets,

containing 0, 2.5 and 5.0% GF, were fed to Hereford x Friesian bulls during the last 12 weeks

prior to slaughter. A fourth treatment looked at feeding 2.5% GF for 28 days, followed by

5.0% until slaughter. Golden Flake improved feed conversion ratio over the control diet at

higher fat inclusion, such that a benefit would be seen on farm (GF: tech. bull. C6, 1990).
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However, when the proportion of calcium soap in the concentrate was 0.10 or greater, intake

was reduced and nitrogen (N) retention decreased.

Three experiments were conducted by Fluharty and Loerch (1997) to determine the effects of

supplemental fat [Megalac, a calcium soap of palm fatty acids (0 vs. 2%)] and CP

concentration (12 vs. 14%) and CP source [spray-dried blood meal vs. soybean meal] in diets

of newly received steers. They concluded that there was no benefit in increasing the energy

density of a receiving diet by the addition of calcium soaps. Also, with high crude protein

concentration, or diets containing supplemental ruminal escape protein, there may be

detrimental effects of calcium soaps, due to decreased dry matter intake. In feedlot steers,

Brandt & Anderson (1990) found that feeding fat increased daily gain, feed efficiency and

estimated diet metabolizable energy concentration.

Digestibility Trial

In the determination of the digestibility of the diets using a chromium marker, all 36 animals

were fed their respective experimental diets over a 16 day period. The mean digestibilities of

the dry matter- (DM), crude protein- (CP), crude fibre- (CF) and fat are presented in Table 13

and the statistical parameters calculated in Table 14.

Table 13. Mean digestibility percentages calculated from the inert marker (Chrome

Oxide) used in the digestibility trial.

Digestibility FAT SOURCE (REST)

NONE MORLAC GOLDEN FLAKE

LD HD LD HD LD HD SEM

DM 61.74 65.91 75.44 69.00 75.54 67.15 2.48

CP 61.44 61.60 71.33 68.23 75.44 66.12 2.20

CF 33.66 37.43 53.87 42.51 32.91 24.92 4.04

FAT 58.56 66.45 75.98 70.92 78.43 70.79 2.36
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Table 14. ANOVA table for percentages DM-, CP-, CF- and FAT digestibility.

Source of variation df %Dmdigest. %CP digest. %CF digest. %F AT digest.

MS P MS P MS P MS P

Block 5 38.60 0.4135 58.76 0.1090 81.59 0.5379 104.75 0.0252

FAT 2 255.36 0.0041 309.88 0.0004 1151.3 0.0003 535.43 0.0001

None vs. Rest 1 506.15 0.0011 613.78 0.0001 72.42 0.3977 1062.8 0.0001

MorI vs. Gold 1 4.58 0.7278 5.98 0.6534 2230.1 0.0001 8.10 0.6274

PROTEIN DEGRAD. 1 113.74 0.0915 150.47 0.0314 242.63 0.1278 23.20 0.4134

FAT*PROT.DEG. 2 137.18 0.0387 69.57 0.1110 189.07 0.1658 208.02 0.0065

(None vs. Rest)*prot.deg. 1 268.66 0.0123 81.24 0.1064 361.04 0.0662 406.03 0.0019

(Mori vs. Gold)*prot.deg. 1 5.70 0.6977 57.91 0.1696 17.09 0.6796 10.01 0.5896

Error 25 36.93 28.95 97.82 33.53

Dry Matter (DM) Digestibility

There was an interaction (FAT*PROT) between rumen inert fat supplementation and protein

degradability (P=O.0387) (Table 14). The contrast (none vs. rest*prot.deg.) showed that there

was an interaction between no fat supplementation and fat supplementation with protein

degradability (P=O.OI23). There was no significant difference between the fat sources (morl

vs. gold*prot.deg.) (P=O.6977).

A further analysis of vanance was done to determine whether the rumen inert fat

supplementation was significant for both the low and high degradable protein diets (Table

15). A significantly higher DM digestibility was found when rumen inert fat was added to the

low degradable protein diets (P=O.OOOI). When fat was added to the high degradable diets

there was no significant effect on the %DM digestibility (P=0.4839). The reason why fat

supplementation had an effect on low protein degradable diets is not apparent.

Table 15. Dry Matter Digestibilities calculated for calves receiving different

treatments.

Protein FAT SOURCE REST (m&g

Degradability None Morlac Golden flake AVG None vs. Rest

Low 61.74 75.44 75.54 75.49 P=O.OOOI

High 65.91 69.00 67.15 68.07 P=0.4839
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Crude Protein (CP) Digestibility

Diets containing the low degradable protein had a significantly higher crude protein

digestibility than the high degradable protein diets (P=O.0314) (Tables 14 & 16). A significant

amount of the protein in the LD protein diets may be expected to have escaped rumen

fermentation and would presumably have arrived in the mid-gut, containing more essential

amino acids than the HD diets. This could explain the higher CP digestibility of the LD diets

compared to the HD diets.

Table 16. The Crude Protein digestibility (percentage) calculated for calves receiving

different treatments.

Protein FAT SOURCE (Rest) NONE NONE+REST REST NONE

Degradability +REST (mori + gold) (m&g) vs. REST

None Morlae Gold.Flake AVG AVG

Low 61.44 71.33 75.44 69.40 P=O.0314 73.39 P=O.OOO2

High 61.60 68.23 66.12 65.31 67.18 P=O.0488

The diets containing rumen inert fat supplementation had significantly higher CP

digestibilities (FAT) (P=O.0004) (Tables 14 & 16). There was a significant difference

between no fat supplementation and diets with fat supplementation (P=O.OOOl). There was a

significantly higher CP digestibility in both low (P=O.0002) and high (P=O.0488) degradable

protein diets when fat was added (Table 16). There was no significant difference between the

fat sources (MorI. vs. Gold.) (P=O.6534). The reason for the higher apparent CP digestibility

of the high fat diets was not readily apparent. Fat inclusion resulted in increased energy

density of the diets. It is possible that the higher energy: protein ratio had a beneficial effect

on protein digestibility.

Crude Fibre (CF) Digestibility

A significant difference was found between the two fat sources (morl vs. gold) (P=O.OOOl),

where Morlae resulted in a higher CF digestibility than Golden Flake. (Tables 14 & 17)
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Table 17. Crude Fibre digestibility (percentage) calculated for calves receiving

different treatments.

Protein FAT SOURCE

Degradability None Morlae Golden flake Mori vs. Gold

Low 33.66 53.87 32.91

High 37.43 42.51 24.92

AVG 35.55 48.19 28.92 P=O.OOOI

Calves that received Morlae had a significantly lower DMI in the starter diets (Table 4). In

the finishing diets, the LD Morlae group had a lower DMI than GF or the control (Table 4).

The lower DMI suggested a slow passage rate through the rumen, thus the fibre was exposed

to digestion for a longer period of time. This could explain the higher fibre digestion in the

Morlae diets.

Fat Digestibility

There was an interaction (FAT*PROT.DEG.) between rumen inert fat supplementation and

protein degradability (P=O.0065) (Table 14). The contrast (none vs. rest*prot.deg.) shows

that there was an interaction between no fat supplementation and fat supplementation with

protein degradability (P=O.0019). There was no significant difference between the fat sources

(morl vs. gold*prot.deg.) (P=O.5896).

A further analysis of vananee was done to determine whether the rumen inert fat

supplementation was significant for both the low and high degradable protein diets (Table

18). A significantly higher %FAT digestibility was found when rumen inert fat was added to

low degradable protein diets (P=O.OOOl),but no effect was observed when fat was added to

high degradable diets. The effect of protein degradability on fat digestibility could not be

explained.

Table 18. Fat digestibility (percentage) calculated for calves receiving different

treatments

Protein FAT SOURCE REST (m&g) None vs. Rest

Degradability None Morlae Golden Flake AVG

Low 58.56 75.98 78.43 77.21 P=O.OOOI

High 66.45 70.92 70.79 70.86 P=0.1410
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The LD protein diets with supplemented rumen inert fat resulted in significantly higher DM-,

CP- and Fat digestibilities. There appears to be a favourable interaction between the LD

protein and the added fat in the diets.

Carcass mass

The mean carcass masses of the calves are presented in Table 4. The analysis of variance

(Table 19) shows that there was an interaction between rumen inert fat supplementation and

the degradability of the protein (FAT*PROT.DEG.) in the diets (P=0.0285). The contrast

(none vs. rest*prot.deg.) shows that there was no interaction between no fat supplementation

and fat supplementation with protein degradability (P=0.0624).

Table 19. The ANOV A table for the carcass masses of calves on different treatments.

Source of variation df MS P-value

Block 5 89.96 0.1476

FAT 2 67.26 0.2769

None vs. Rest 1 31.60 0.4329

Morlac vs. Golden flake 1 102.92 0.1627

PROTEIN DEGRADABILITY 1 41.60 0.3691

FAT*PROT.DEG. 2 204.69 0.0285

(None vs. Rest) * prot.deg. 1 189.15 0.0624

(Mori vs. Gold) * prot.deg. 1 220.22 0.0456

Error 25 49.73

The contrast (mod vs. gold*prot.deg.) indicated a significant interaction between the two fat

sources and protein degradability (P=0.0456). The difference between the fat sources was

significant in the high degradable protein diets, but not in the low (Table 20). There was a

significantly lower carcass mass in the treatment containing Morlae with high protein

degradability. These calves also had the lowest total body mass gain over the trial period, but

this could not be explained by DMI, because their total DMI was not the lowest.

Table 20. Mean carcass masses of calves on different treatments with the

dressing percentage in parentheses.

Protein FAT SOURCE (REST) (Mori vs. Gold

Degradability None Morlac Golden flake *prot.deg.

Low 88.42 [49.44] 92.25 [50.53] 90.33 [48.13]

High 92.75 [50.98] 80.80 [48.98] 91.00 [49.62] P=0.0456
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Fat supplementation did not increase the dressing percentage in the present trial. Gardner and

Wallentine (1972) found that tallow added to the diet had not improved dressing percentage, a

conclusion also supported by the observations made in a study by Fisher (1980). In contrast

to these results, Brandt & Anderson (1990) found that supplemental fats increased the carcass

masses and dressing percentages of steers. In a trial previously conducted on Golden Flake

diets, the highest oil levels tested did not adversely affect carcass quality. In fact, carcasses

from GF diets were leaner than the control (GF: Tech. Bull. C6, 1990).

CONCLUSION

Rumen inert fat supplementation and crude protein degradability in starter- and finishing diets

for veal calves appear to have no effect on body mass gain. Results from the current study

would suggest a favourable effect of rumen inert fat supplementation on FCR, but only when

included in diets with low protein degradability. The effect appears to manifest only after 10

weeks of age, indicating the role of rumen activity. In LD diets, the UDP fraction of the

protein provides the animal with essential amino acids, by by-passing rumen fermentation and

the lipids are also protected from rumen microbiallipases. With fat addition to LD diets the

protein to energy ratio is probably more ideal. Either of these two systems individually had

no significant effect, but together had a positive effect on FCR and the digestibilities of these

diets. These results would suggest that it should be economically viable to supplement starter

and finishing diets with rumen inert fats. It appears as if the starter diet may contain higher

degradable protein sources that are relatively inexpensive, but that low degradable protein

becomes more important in the finishing period, after 10weeks of age. There is a need for

further research into the fatty acid content of the meat of these calves fed LD diets with rumen

inert fat supplementation so as to determine whether the carcass lipid composition can be

manipulated by feeding theses diets.
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CHAPTER3

THE EFFECT OF RUMEN INERT FAT SUPPLEMENTATION AND PROTEIN

DEGRADABILITY ON THE FATTY ACID COMPOSITION OF VEAL.

E.L. Lategan, L.C. Hoffman & C.W. Cruywagen

Department of Animal Sciences, University of Stellenbosch, STELLENBOSCH 7600, South Africa.

ABSTRACT

Six groups of six Friesian bull calves were used in this investigation. Calves received a low- (LD)

and high (RD) degradable protein diets each with or without rumen inert fat supplementation.

Two commercial fat sources were used Morlae (m) and Golden Flake (gt) at 2.5% of the total

diets. A commercial milk replacer (Denkavit) was fed at 4L for 42 days and 2L until weaning at

49 days. An early weaning system was used, where the starter diet was fed ad lib. from day 14 to

10 weeks of age arid finishing diets ad lib. from 11 to 20 weeks of age. All the calves were

slaughtered at 20 weeks of age and the fatty acid content of the meat (m. longissimus) and

subcutaneous fat layer adjacent to the 12th rib as well as the meat colour, was determined.

The fatty acid composition of the longissimus muscle was changed by feeding the rumen inert

fat sources. The three predominant fatty acids found were palmitic, stearic and oleic acids.

The palmitic acid (C16:0) content of the muscle and diet was 24.44 & 20.47, 25.97 & 22.57,

31.06 & 33.23, 30.98 & 37.91, 34.94 & 31.77 and 29.71 & 32.88 of the total fat for the LD,

lID, LDm, HDm, LDgf and Hlrgf diets, respectively. The C16:0 content was significantly

higher in the muscle of the calves receiving the LD diets supplemented with fat (P=0.0008).

There was also a significant interaction between the two fat sources and protein degradability

(P=0.0065), but only in the LD diets. The stearic acid (C18:0) content of the muscle and diet

was 14.35 & 5.22, 19.65 & 8.61, 17.29 & 4.68, 22.59 & 5.78, 22.27 & 15.54, and 26.48 &

20.15 of the total fat for the LD, HD, LDm, HDm, LDgf and HDgf diets, respectively. The

C18:0 content was significantly higher in the muscle of calves receiving the HD (P=O.OOOI)

compared to LD diets. The stearic acid content was also significantly higher when fat was

added to LD (P=0.0042) or HD (P=0.0073) diets. The oleic acid (C18:1) content of the

muscle and diet was 36.06 & 21.51, 39.99 & 21.11, 32.21 & 23.67,29.13 & 24.59, 25.23 &

18.68 and 35.93 & 16.02 of the total fat for the LD, HD, LDm, HDm, LDgf and lIDgf diets,

respectively. The linolenic acid (CI8:3) content of the muscle was significantly higher

Stellenbosch University http://scholar.sun.ac.za



67

(P=0.0038) when fat was added to LD diets compared to no fat supplementation (0.87 vs.

0.15). The CIELAB values indicated that LD diets resulted in more pink meat. Mean values

ofL* = 32.61,34.19; a* = 7.08, 7.91 and b* = 3.18 and 4.07 were observed for the LD and

lID diets, respectively. Meat from the LD diets had significantly lower L*-(P=0.0252), a*-

(P=0.0283) and b*-(P=0.0109) values compared to meat from the lID diets. In conclusion,

-the fatty acid contents of the longissimus muscle of veal calves can be manipulated with the

supplementation of rumen inert fat sources, but only when combined with a low protein

degradable diet. The low degradable protein diets also produce a more attractive meat colour

for the potential veal consumer.

INTRODUCTION

The general public has become increasingly aware of the potential health risks involved in

eating fatty red meat because of its high saturate lipid content and the correlation thereof with

cardio-vascular diseases. Conversely, monounsaturated fatty acids decrease the amount of

plasma LDL-cholesterol in man without affecting the lIDL-cholesterol. lIDL-cholesterol is

the only lipoprotein capable of removing cholesterol from the body (St. John et al., 1987).

The 1990 Dietary Guidelines recommend that individuals avoid consuming excessive fat,

saturated fat, and cholesterol, just as excessive sugar or salt must be avoided. Adequate

amounts of fat are essential for health since fat supplies energy, essential fatty acids and fat-

soluble vitamins (Pensel, 1997).

Researchers have attempted to change the fatty acid composition of beef. St. John et ai,

(1987) found a substantial change in the fatty acid composition of both the adipose and the

muscle of swine, but not in beef. These results showed very little or no alteration in beef

composition, because of the hydrogenation of unsaturated fatty acids by the rumen microbes.

There were however some researchers that had positive results. Rule, et al., (1994) found that

dietary full-fat canola altered the fatty acid composition of the lipids in adipose tissue, muscle,

kidney, and liver such as that C16:0 and C16:1 were decreased and C18:0, CI8:1, C18:2,

C20:1 were increased. In muscle, kidney, and liver, long-chain polyunsaturated fatty acids

were also affected. Brandt & Anderson, (1990) found that the portions of palmitic, stearic,

oleic, linoleic and linolenic acid in longissimus muscle of steers were altered by the source of

supplemental fat. Feeding protected lipids caused an increase in kidney fat (Fisher, 1980), a
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result further supported by observations of Gardner and Wallentine (1972) who noted that

increased consumption of protected tallow increased the percent internal fat in the body.

The purpose of this investigation was to determine the effects of supplementing rumen inert

fats (to escape rumen microbial lipase action and make the fatty acids directly available) on

the muscle composition of the veal. The interaction between these fats, if any, with the

degradability of the protein in the diet was also measured. The meat colour was also

determined as it plays a vital role in the selection of meat cuts by the consumer (Jeremiah et

al., 1972).

MATERIALS AND METHODS

Animals

Thirty-six Friesian bull calves, 2-5 days of age, were stratified according to initial mass and

entered into six blocks. Calves in each block were then randomly allocated to six treatments.

Individual housing was provided in pens with wooden slatted floors and straw bedding. All

the animals were slaughtered at 20 weeks of age. Meat samples were taken from 35 of the 36

calves. Meat samples were taken from the longissimus muscle and subcutaneous fat adjacent

to the 12th rib. The meat and the adjacent subcutaneous fat layer were minced together.

These samples were further homogenized in a blender to ensure even fat distribution.

Diets

All calves received 4L of a commercial milk replacer (Denkavit, Johannesburg, RSA) until 42

days of age, and then 2L until weaning at 49 days. Starter diets were offered ad lib. from 14

days until 10weeks of age, and finishing diets ad lib. from 11 to 20 weeks of age. Starter-

and finishing diets were formulated to be iso-nitrogenous, but differed in crude protein (CP)

degradability and energy content. The crude protein was 18% and 14% for the starter- and

finishing diets respectively. Treatments were LD (low degradable protein) and HD (high

degradable protein) each with, or without, rumen inert fat supplementation. Two rumen inert

fat sources were used, viz. Morlae (Marine Oil Refiners, Dido Valley, Simon's Town) and

Golden Flake (Veekon, Silverton, Pretoria, RSA). The total mixed diets were pelleted and the

composition thereof is presented in Table 1.
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Chemical Analysis

Chemical analysis was performed on feed samples after passing samples through a hammer

mill with a lmm sieve. Feed and meat samples were analyzed for dry matter, organic matter,

Kjeldahl nitrogen (N) and the crude fibre content of the feed (AOAC, 1990). The acid

hydrolysis procedure (AOAC No 922.06, 1996) was used for the lipid extraction from the

feed and the meat samples (AOAC No 948.15, 1996). The Sodium Methoxide trans

esterfication method was used for preparing fatty acid methyl esters (FAME). The Fatty Acid

Methyl Esters (AOAC 963.22, 1996) method was used to determine the fatty acid profile.

The chemical composition of the feeds used are presented in Table 2 and the fatty acid profile

of the feeds are presented in Table 3. Meat colour was determined by using a Colorguard

System 2000 colorimeter (Pacific Scientific, Silver Spring, MD, USA) to determine CIELAB

values (Commission International de l' Elc1airage, 1976), with L* indicating brightness, a*

the red-green range and b* the blue-yellow range.

Table 1. Composition (% of ingredients) of finishing diets for calves to determine the

effect of rumen inert fat supplementation and protein degradability on veal

calf performance.

Item FINISHING DIETS

LD HD LD HD LD HD

+m +m +gC +gC

Maize meal 63 60 60.5 57.5 60.5 57.5

Fish meal 6 0 6 0 6 0

Prime gluten(60) 4 0 0 4 0

Sunflower oil cake 0 13 0 13 0 13

Molasses 5 5 5 5 5 5

Lucerne hay 0 14 0 14 0 14

Oat hulls 0 0 0 0 0 0

NaOH-wheat straw 20 6 20 6 20 6

Salt 0.5 0.5 0.5 0.5 0.5 0.5

Mineral premix 1.5 1.5 1.5 1.5 1.5 1.5

Morlae 0 0 2.5 2.5 0 0

Golden Flake 0 0 0 0 2.5 2.5

Romensin 0.01 0.01 0.01 0.01 0.01 0.01

LD - Low degradable protem

HD = High degradable protein

m =Morlac

gf =Golden Flake
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Table 2. The chemical composition of calf finishing diets containing two levels of protein

degradability and two different rumen inert fat sources.

Analysis FINISHING DIETS

LD HD LD HD LD HD

+m +m +gf +gf

Dry Matter 91.95 91.99 92.28 92.74 91.53 92.96

Organic Matter 95.74 95.63 95.26 95.40 95.35 95.54

Crude Protein 14.08 12.42 14.40 12.70 14.76 11.82

Crude Fibre 11.07 12.70 10.49 12.83 9.58 12.51

Lipid 3.68 3.52 4.79 4.58 5.62 4.71

LD - Low degradable protem

HD = High degradable protein

m =Morlac

gf = Golden Flake

Table 3. The fatty acid profiles of the low and high degradable protein diets each with,

or without, rumen inert fat supplementation.

LIPID SOURCES DIETS

Fatty Acids Morlae G.F LD HD LDm HDm LDg HDg

C12:0 0.10 0.22 0.27 0.35 0.40 0.48

C14:0 1.5 1.6 1.26 0.60 1.69 0.91 1.35 0.85

C16:0 48.0 48.6 20.47 22.57 33.23 37.91 31.77 32.88

C16:1 1.63 0.71 2.69 1.42 1.00 0.43

C17:0 0.31 0.22 0.41 0.32 0.25 0.20

C17:1 1.08 1.07 9.48 7.43 0.90 0.55

C18:0 4.5 31.0 5.22 8.61 4.68 5.78 15.54 20.15

C18:1 35.0 15.2 21.51 21.11 23.67 24.59 18.68 16.02

C18:2 8.0 2.8 38.33 37.14 16.71 13.29 22.47 23.89

C18:3 1.59 1.84 0.62 0.92 0.91 1.35

C20:0 0.39 0.46 0.36 0.45 0.44 0.38

C20:1 0.83 0.97 0.66 0.61 0.15

C22:0 0.88 0.38 0.74 0.38 0.46

C22:6 1.97 0.76 1.36

C24:0 1.3 1.01 0.46 1.79 0.80 0.11

Calculiltgd

Saturated 55.2 81.0 29.05 34.57 41.48 48.25 50.93 55.51

Unsaturated 43.0 18.0 66.94 61.87 54.90 48.31 45.93 42.39

Energy (MJ/kg) 28.5 36.6 11.93 12.03 12.18 12.36 12.49 12.56

LD = Low degradable protem

HD = High degradable protein

m =Morlac

gf = Golden Flake
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Statistical Analysis

The experimental data was analyzed by ANOV A using the GLM procedures of SAS

(Statistical Analysis System, 1988). Different contrasts were used to indicate the differences

between treatments. These contrasts are presented in the ANOVA tables to follow. Three

main contrasts were used viz. FAT, PROTEIN DEGRADABILITY and the interaction

between fat and protein degradability (FAT*PROT.DEG.). FAT was further subdivided into

two contrasts viz. none vs. rest i.e. no fat supplementation was compared to fat

supplementation and the protein degradability and different fat sources were ignored and

Morlae vs. Golden Flake, i.e. the two fat sources, were compared and the protein

degradability ignored. In the second contrast, PROTEIN DEGRADABILITY, the low

degradable treatments were compared to the high degradable treatments, ignoring fat

supplementation. The interaction between fat and protein degradability (FAT* PROTEIN

DEGRADABILITY) was further subdivided into firstly (none vs. rest)*protein degradability

i.e. the interaction of protein degradability with no fat supplementation vs. the interaction of

protein degradability with fat supplementation. The second subdivision, (Morlac vs. Golden

Flake)*protein degradability, i.e. the interaction of each fat source with protein degradability,

was also compared.

The percentage of a specific fatty acid in a diet does not reveal the true amount received by

the individuals. The total dry matter intake of each calf varies within a treatment. To ensure

that the true amount of a specific fatty acid received by a specific calf is taken into account,

the total fatty acid intake was calculated and used as a covariance. The total fatty acid intake

was derived from the percentage fat in the feed, the specific fatty acid percentage and the feed

intake in kg over the ten weeks firiishing period.
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RESULTS AND DISCUSSION

FATTY ACID PROFILE IN MEAT

The mean fatty acid percentages of the meat samples derived from the investigation are

presented in Table 4.

Table 4. The mean fatty acid percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation.

LD HD LDm HDm LDg HDg

C12:0 0.13 0.07 0.09 0.06 0.09 0.06

C14:0 2.68 3.19 3.41 3.41 3.69 3.09

C16:0 24.44 25.94 31.06 30.98 34.94 29.71

C16:1 2.94 4.02 3.52 3.42 3.87 3.48

C17:0 1.39 1.54 1.54 1.51 1.30 1.52

C17:1 0.85 0.82 0.59 0.57 0.46 0.67

C18:0 16.10 20.61 18.89 23.55 20.10 23.28

C18:1 34.44 38.28 34.29 31.69 26.01 34.23

C18:2 8.08 1.75 3.61 2.01 2.39 1.94

C18:3 0.22 0.61 0.73 0.37 0.68 0.40

C20:0 0.10 1.22 0.24 0.20 0.14 0.13

C20;1 0.65 0.28 0.10 0.08 0.03 0.03

Calculat!:d

Saturated 44.82 52.58 55.21 59.71 60.25 57.79

Unsaturated 47.17 45.76 42.84 38.15 33.43 40.75

The fatty acids in the two rumen inert fat sources were identified (Table 4) and only those

fatty acids present were statistically analyzed in the meat. The mean values of the fatty acids

have been adjusted according to the covariance (the total fatty acid intake) and are presented

in Table 5.
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Table 5. The mean fatty acid percentages of the meat which were tested for statistical

significance. Mean values for mean fatty acids percentages was adjusted for

covariance (total fatty acid intake).

The C14:0 (Myristic acid) and C16:0 (Palmitic acid) composition of the meat

LD HD LDm HDm LDg HDg

C14:0 2.84 ± 0.15 4.22 ± 0.35 2.4 ± 0.34 3.71 ± 0.18 2.92 ± 0.27 3.43 ± 0.17

C16:0 24.44 ± 1.35 25.97 ± 1.21 31.06 ± 0.78 30.98 ± 1.12 34.94 ± 0.94 29.71 ± 0.86

C18:0 14.35 ± 1.45 19.65 ± 1.00 17.29 ± 1.36 22.59 ± 1.21 22.27 ± 1.72 26.48 ± 2.41

CI8:I 36.06 ± 2.32 39.99 ± 2.35 32.21 ± 2.51 29.13 ± 2.98 25.23 ± 2.07 35.93 ± 2.35

C18:2 8.35 ± 0.61 2.00 ± 0.58 3.31 ± 0.64 1.43 ± 0.84 2.47 ± 0.42 2.00 ± 0.41

C18:3 0.15 ± 0.13 0.42 ± 0.18 1.01 ± 0.23 0.46 ± 0.15 0.73 ± 0.12 0.24 ± 0.17

The analysis of variance of C14:0 (Table 6) shows that there was an interaction between

rumen inert fat supplementation and the degradability of the protein (FAT*PROT.DEG.) in

the diets (P=O.0085). The contrast (none vs. rest*prot.deg.) shows that there was no

interaction between no fat supplementation and fat supplementation with protein degradability

(P=O.0830). The contrast (mori vs. gold*prot.deg.) indicates that there was a significant

difference between the two fat sources and protein degradability (P=O.Ol19) (Table 7).

Table 6. The ANOVA table for fatty acid analysis of the C14:0 and C16:0 percentages in

the meat.

Source of variation df C14:0 C16:0

MS P MS P

Tot.F.A.intake(COV AR) 1 1.60 0.0011 299.46 0.0001

Block 5 0.16 0.2529 10.59 0.0134

FAT 2 0.28 0.1126 14.24 0.0162

None vs. Rest 1 0.22 0.1804 23.57 0.0087

Mori vs. Gold 1 0.07 0.4445 10.28 0.0711

PROTEIN DEGRAD. 1 1.44 0.0018 21.64 0.0115

FAT*PROT.DEG. 2 0.68 0.0085 31.10 0.0005

(None vs. Rest)*prot.deg. 1 0.38 0.0830 34.81 0.0020

(Mor vs. Gold)*prot.deg. 1 0.86 0.0119 25.66 0.0065

Error 25 0.12 2.87
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The C14:0 content of the feed was higher in the low degradable diets. Fish meal and sunflower

oil cake were used as LD and HD protein sources respectively. Although the high degradable

diets had lower C14:0 contents than lower degradable diets, there were higher contents in the

calf meat of the calves receiving the high degradable diets. The fat sources made a small

contribution the total dietary C14:0 (Table 3) which could by-pass the rumen which therefore

indicates that the higher C14:0 of the meat of the calves receiving the high protein degradable

diets could only come from long chained (possibly unsaturated) fatty acids that were

hydrogenated and broken down by rumen micro-organism lipase.

Table 7. Mean C14:0 percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation. The C14:0 percentage in the different feeds are presented

in brackets.

Protein FAT SOURCE (REST) (Mori vs. Gold)

Degradability None Morlae Golden Flake *Prot. Deg.

Low 2.84 [1.26] 2.40 [1.69] 2.92 [1.35]

High 4.22 [0.60] 3.71 [0.91] 3.43 [0.85] P = 0.0119

The analysis of variance of C16:0 (Table 6) shows that there was an interaction between

rumen inert fat supplementation and the degradability of the protein (FAT*PROT.DEG.) in

the diets (P=O.0005). The contrast (none vs. rest*prot.deg.) shows that there was also an

interaction between no fat supplementation and fat supplementation with protein degradability

(P=O.0020).

A further analysis of variance was therefore done to determine whether fat supplementation

was significant for both the low and high degradable protein diets (Table 8). It was found that

there was no significant differences between the control diet (none) and the mean of the diets

receiving fat supplementation (rest) when the protein degradability was high (P=O.1267).

However the meat had a significantly higher C16:0 content when fat was added to the low

degradable diets (P=O.0008).

The C16:0 content of the muscle (both diets) was raised by the addition of the two fat sources

in the diet (Table 8). This additional C16:0 by-passes the rumen and absorption takes place in

the small intestine. The low degradable protein diets with fat supplementation had a

significantly higher C16:0 content in the meat than the high degradable diets.
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Table 8. Mean C16:0 percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation. The C16:0 percentage in the different feeds are presented

in brackets.

Protein FAT SOURCE (REST) REST(m+g None vs. (Mori vs. Gold

Degradabilttj None Morlae Golden Flake AVG Rest *prot.deg.

Low 24.44 [20.47] 31.06 [33.23] 34.94 [31.77] 33.00 P - 0.0008

High 25.97 [22.57] 30.98 [37.91] 29.71 [32.88] 30.35 P=0.1267 P = 0.0065

The contrast (morl vs. gold*prot.deg.) shows that there was a significant interaction between

the two fat sources and protein degradability (P=O.0065). There was a significant difference

between the two fat sources with low degradable protein diets, but not in the high. Both fat

sources had similar C16:0 concentrations viz. 48% and 48.6% for Morlae and Golden Flake

respectively (Table 3). Although for the complete feed consumed, HDm had the highest

concentration CI6:0, there was not a significantly higher C16:0 in the meat. There was a

significantly higher C16:0 in the meat of the LDgf treatment which cannot be explained by

the levels in the diet.

The C18:0 (Stearic acid), C18:1(Oleic acid), C18:2(Linoleic acid) and C18:3 (Linolenic acid)

composition of the meat.

The analysed mean fatty acid values of the meat lipid are presented in Table 4. The analysis

of variance (Table 9) shows that there was a significantly higher C18:0 in the high degradable

protein diets (P=O.OOOI). Stearic acid (CI8:0) is also the product of the hydrogenation of the

following acids in the rumen: Oleic (C18:1) and/or linoleic (C18:2) and/or linolenic (CI8:3)

(McDonald, 1995). Not all the fatty acids in the sunflower oil cake diets (HD) are protected

from hydrogenation in the rumen. The LD diets contained fish meal and thus more fatty acids

were protected from rumen hydrogenation. Stearic acid could also be the product of

elongation of palmitate acid (McDonald, 1995).
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Table 9. The ANOVA table for the CI8:0, CIS:I C18:2 CIS:3 composition of the meat.

Source of variation df C18:0 C18:1 C18:2 C18:3

MS P MS P MS P MS P

Tot.F.A. intake(COV AR) 5 48.34 0.0007 10.17 0.5189 14.63 0.0007 0.082 0.3267

Block 2 3.06 0.4609 35.77 0.2260 2.34 0.0655 0.070 0.5264

FAT 1 29.27 0.0011 106.29 0.0227 16.70 0.0001 0.037 0.6439

None vs. Rest 1 34.71 0.0031 191.47 0.0092 13.48 0.0011 0.268 0.0836

Mori vs. Gold 1 6.76 0.1580 0.026 0.9740 0.026 0.8700 0.106 0.2675

PROTEIN DEGRAD. 2 129.51 0.0001 93.26 0.0594 71.28 0.0001 0.070 0.3666

FAT*PROT.DEG. 1 1.10 0.7103 102.75 0.0253 28.19 0.0001 0.581 0.0040

(None vs. Rest)*prot.deg. 1 0.58 0.6721 0.026 0.9739 52.16 0.0001 1.156 0.0010

(Mori vs. Gold)*prot.deg. 25 1.52 0.4956 204.56 0.0074 2.69 0.1084 0.005 0.8127

Error 3.18 23.71 0.96 0.082

The contrast FAT shows that there was a significant difference in muscle lipid stearic acid

content when fat was added to the diet (P=O.OOll). There was a significantly lower muscle

C18:0 when no fat supplementation was provided (None vs. Rest) (P=0.0031) than when fat

was supplemented (Table 10).

A further analysis of variance was done to determine whether muscle lipid content differs

statistically for both the low and high degradable protein diets when fat was supplemented

(Table 10). It was found that there were significant differences when dietary protein

degradability was low (P=0.0042) and also when it was high (P=0.0073). Fat supplementation

to low or high degradable protein diets therefore resulted in significantly higher meat C18:0

content. The two fat sources both contain protected C18:0 , which escapes rumen fermentation

and is therefore available for absorption in the small intestine. This result would suggest that

by the addition of rumen inert C18:0 in the diet, the C18:0 content in the meat can be increased.
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Table 10. Mean C18:0 percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation. The C18:0 percentage in the different feeds are presented

in brackets.

Protein FAT SOURCE (REST) None Prot.Deg. REST None vs.

Degradabtlitg +Rest Rest

None Morlae Golden Flake AVG AVG

Low 14.35 [5.22] 17.29 [4.68] 22.27 [15.54] 17.97 P = 0.0001 19.78 P = 0.0042

High 19.65 [8.61] 22.59 [5.78] 26.48 [20.15] 22.91 24.54 P = 0.0073

However, it is expected that there would be a difference in the stearic acid content of the meat

from the calves between receiving the two fat sources as Golden Flake has a higher C18:0

(31.0%) compared to the Morlae (4.5%). This was reflected in the complete diets, where the

average percentage C18:0 in the Morlae and Golden Flake diets were 5.23% and 17.85%

respectively. However, Morlae did not show any significantly lower deposition of C18:0 in the

muscle (Table 10).

Due to the possible hydrogenation of the unsaturated Cl8 fatty acids in the rumen, stearate is the

primary fatty acid available for absorption in the digestive tract. However, oleate, rather than

stearate, is the predominant fatty acid derivative in bovine muscle and adipose tissue, indicating

that absorbed stearate is modified before being (Table 3) deposited in ruminant tissues.

Ruminants are unique in the amount of stearate presented to the small intestine for absorption;

thus the contribution of stearoyl-CoA desaturase regulating the fatty acid composition of

ruminant tissues is especially important. The stearoyl- CoA desaturase activities in tissues of

steers fed high oleate sunflower seed, was measured by Chang (1992). Dieatary sunflower

decreased the concentration of stearate in the liver. The high oleate diet significantly increased

the activity of stearoyl- CoA desaturase activity in muscle, and numerical increases in desaturase

activity were observed in liver, adipose and small intestine samples. The elevated oleate in the

plasma and the depressed stearate in the liver of cattle fed sunflower seed may have reflected an

adaptive response of stearoyl-Co A desaturase in their tissues (Chang, 1992).

The analysis of variance of muscular oleic acid content (C 18:1) (Table 9) shows that there

was an interaction between rumen inert fat supplementation and the degradability of the

protein (FAT*PROT.DEG.) in the diets (P=0.0253). The contrast (none vs. rest*prot.deg.)

indicates that there was no interaction between no fat supplementation and fat
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supplementation with protein degradability (P=0.9739). However, the contrast (morI vs.

gold*prot.deg.) indicates that there was a significant interaction between the two fat sources

and protein degradability (P=0.0074) (Table 11). The fat source Morlae had a higher

percentage C18:1 (35.0%) than the Golden Flake (15.2%) as raw materials (Table 3). This

was reflected in the composition of the complete diets, where the average percentage C18:1 in

the MorIac and Golden Flake diets were 24.13% and 17.35% respectively. Itwould therefore

be expected that the Morlae diets have a higher deposition of C18:1 in the meat. However,

the results are not so clear. In the low protein degradable diet, the Morlae does result in

higher Oleic acid deposition (32 vs. 25%), but the opposite occurs in the high protein

degradable diet where the Golden Flake results in the higher meat oleic acid content. This

oleic acid could have been the result of the hydrogenation of linoleic acid (Table 12) where

the Golden Flake with high protein degradability contains a much higher concentrations of

this acid, when compared to the other diets. Oleic acid (C18:1) could also have been formed

from the desaturation of stearic acid (C18:0). This reaction takes place in the micro somes by

the action of fattyacyl-CoA desaturases which introduces a double bond between carbon

atoms 9 and 100f stearic acid (McDonald, 1995).

Table 11. Mean C1S:1 percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation. The C1S:1 percentage in the different feeds are presented

in brackets.

Protein FAT SOURCE (REST) (Mori vs. Gold)

Degradability None Morlae Golden Flake *Prot. Deg.

Low 36.06 [21.51] 32.21 [23.67] 25.23 [18.68]

High 39.99 [21.11] 29.13 [24.59] 35.93 [16.02] P = 0.0074

Bovine adipose tissue is a major site of fatty acid elongation and desaturation, however

bovine liver has an extremely limited ability to desaturase fatty acids. Further, St. John et al.,

(1991) found that the fatty acid elongase activity was substantially higher than the desaturase

activity in the adipose tissue. This suggests that, for the conversion of palmitate to oleate, the

desaturation of stearate to form oleate is the limiting process, and not the elongation of

palmitate to form stearate. Most of the dietary C18 is converted to stearate via

biohydrogenation in the rumen. The low activity of hepatic desaturase in the liver suggests

little processing of the fatty acids occur in the liver. The role of desaturating dietary fatty

acids has been regulated to the target tissues. Therefore, attempts to modify the fatty acid
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composition of beef should target the fatty acid elongation and/or desaturation systems of the

tissues that compose beef i.e. muscle and interfascicular adipose tissue. Another option is to

identify animals that exhibit hepatic desaturase activity (St. John et al., 1991).

Ekeren et al., (1992) fed a high-oleate sunflower seed, encapsulated by calcium alginate, to

cattle and found an increase in the amount of stearate and oleate in the faeces. This suggested

that greater amounts of these fatty acids were available for absorption and deposition in the

muscle and adipose tissues. This data by Ekeren et al., (1992) indicated that, in spite of a

greater availability of stearate and oleate in the small intestine, other mechanisms influence

the ultimate composition of the tissue.

Enser et al (1999) fed four sources of fat supplement viz Megalac (saturated) linseed (high

18:3), fish oil (high 20:5 n-3, eicosapentenoic acid and 22:6 n-3, docosahexaenoic acid) or

linseed plus fish oil. They found that the increased deposition of conjugated linoleic acid

(CLA) was similar for both linseed and fish oil supplements although the concentrations of

total n-3 polyunsaturated fatty acids in the fish oil diet were much less than in the linseed diet.

High levels of CLA and trans-18: 1 fatty acids indicates inhibition of rectase enzymes which

convert CLA to trans vaccenic acid and the latter to stearic acid. The increased levels of both

trans-18:l and CLA could result from similar proportional inhibition of both enzymes by the

diet n-3 PUFA or feedback inhibition of CLA reductase by increased concentrations of trans-

18:1 in the rumen.

The analysis of variance for muscular linoleic acid (C18:2) (Table 10) shows that there was an

interaction between rumen inert fat supplementation and the degradability of the protein

(FAT*PROT.DEG.) in the diets (P=O.OOOl). The contrast (none vs. rest*prot.deg.) shows

that there was also an interaction between no fat supplementation and fat supplementation

with protein degradability (P=0.0001) (Table 12).

A further analysis of variance was done to determine whether fat supplementation was

significant for both the low and high degradable protein diets (Table 12). It was found that

there was no significant differences when the protein degradability was high (P=0.7558).

There was, however a significantly higher C18:2 when no fat was added to the low

degradable diets (P=O.OOOl).
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The diets containing the two fat sources have a higher percentage of saturated fatty acids

compared to the two control groups which are high in unsaturated fatty acids (Table 3). The

HD groups were subject to rumen lipases and hydrogenation and thus these fatty acids may be

altered. In the LD control the CI8:2 was protected from rumen hydrogenation and could stay

intact to be deposited in the meat. Mammalian cells are not capable of introducing double

bonds beyond carbon atom 9. As a result it is not possible for mammalian tissues to

synthesize either linoleic acid (CI8:2) or linolenic acid (CI8:3) and these fatty acids have to

be provided in the diet.

Feeding high levels of soyabean oil, which is high in linoleic acid, to cows resulted in limited

deposition of linoleic acid in either the milk fat or adipose tissue, but that stearic acid was

found to dramatically increases in both. These results are indicative of the efficiency and

completeness of hydrogenation by the rumen microflora (Tove & Mochrie, 1963).

Table 12. Mean C18:2 percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation. The C18:2 percentage in the different feeds are presented

in brackets.

A further analysis of variance was done to determine whether fat supplementation was

significant for both the low and high degradable protein diets (Table 13). It was found that

there was no significant differences when the protein degradability was high (P=0.6955).

There was, however a significantly (P=0.0038) higher CI8:3 when fat was added to the low

Protein FAT SOURCE (REST) REST None vs. Rest

Degradabilitg None Morlae Golden Flake AVG

Low 8.35 [38.33] 3.31 [16.71] 2.47 [22.47] 2.89 P - 0.0001

High 2.00 [37.14] 1.43 [13.29] 2.00 [23.89] 1.72 P = 0.7558

The analysis of variance of muscular linolenic acid (CI8:3) (Table 10) shows that there was

an interaction between rumen inert fat supplementation and the degradability of the protein

(FAT*PROT.DEG.) in the diets (P=0.0040). The contrast (none vs. rest*prot.deg.) indicatess

that there was an interaction between no fat supplementation and fat supplementation with

protein degradability (P=O.OOIO)(Table 13). However, the contrast (morI vs. gold*prot.deg.)

shows that there was no significant difference between the two fat sources and protein

degradability (P=O.8I27).
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degradable diets compared to no fat supplementation (0.87 vs. 0.15). The fatty acid

composition of the meat can thus be altered, when LD protein diets are combined with rumen

inert fat sources. In the LD diets the linolenic acid was protected from rumen hydrogenation

and could stay intact to be deposited in the meat, but it can't be explained why the HD had a

significantly higher C18:3 deposition than the LD diet with no fat was added. The only

possible explanation is that the results are based on relative percentages and that this value is

not a reflection of the true amount ofC18:3. LD control was relatively high in C18:2 and low

in C18:3 which could also be because of the proximity of their peak during the FAME

analysis process.

Table 13. Mean C1S:3 percentages of the meat samples of calves fed low and high

degradable protein diets each with, or without, rumen inert fat

supplementation. The C1S:3 percentage in the different feeds are presented

in brackets.

Protein FAT SOURCE (REST) REST None vs.

Degradabilltg None Morlae Golden Flake AVG Rest

Low 0.15 [1.59] 1.01 [0.62] 0.73 [0.91] 0.87 P = 0.0038

High 0.42 [1.84] 0.46 [0.92] 0.24 [1.35] 0.35 P = 0.6955

Meat colour

Consumers select meat cuts for leanness and then for appearance and freshness, with the

judgements for the latter primarily being on the brightness of colour (Jeremiah et al., 1972)

the ANOVA of the CIELAB variables of the longissimus muscles of the claves receiving the

various diets are depicted in Table 14.
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Table 14. ANOVA table for the differences in meat colour of calves receiving

different diets.

L* a* b*
Source of variation df MS P MS P MS P

Block 5 1.266 0.8956 1.324 0.3406 0.226 0.9374

FAT 2 0.313 0.9241 2.232 0.1550 2.375 0.0956

None vs. Rest 1 0.139 0.8528 2.617 0.1372 2.771 0.0948

Mori vs. Gold 1 0.379 0.7593 1.571 0.2451 1.674 0.1890

PROT.DEGRAD. 1 22.51 0.0252 6.027 0.0283 6.970 0.0109

FAT*PROT.DEG. 2 1.38 0.7080 0.143 0.8791 0.108 0.8892

(None vs. Rest)*prot.deg. 1 0.676 0.6827 0.045 0.8419 0.005 0.9428

(Mori vs. Gold)*prot.deg. 1 2.168 0.4659 0.235 0.6494 0.209 0.6372

Error 25 3.950 1.107 0.916

The longissimus muscles of the calves receiving the low degradable protein diets had

significantly lower L* (lightness), a* (redness) and b* (yellowness) values than those

receiving HD diets (Table 15).

The lower a* and b* values are indicative of a lighter colour of the meat (less red, more green;

less blue, more yellow) (Denoyelle &Bemy, 1999). The L* (lightness or reflection) in the LD

diets were lower, indicating less reflection which could be a result of water holding capacity

of the meat. In pink veal production, a light pink colour rather than a dark red is in greater

demand. Thus, low degradable protein diets would be more sort after by the consumer and

possibly the first to be purchased. The intensity of the meat colour is very important in

triggering the purchase. The aim in white veal production is to obtain a light coloured meat as

this character is associated with an image of freshness and exclusively milk-based feed. The

Table 15. The CIELAB values (L*, a* and b*) to determine the colour of the

longissimus muscle of the calves on the six different diets ..

Protein FAT SOURCE (REST) None+ Rest Prot. Deg.

Degradabilitg None Morlac Golden Flake AVG

L* Low 32.33 32.93 32.57 32.61 P - 0.0252

High 34.30 33.70 34.58 34.19

a* Low 7.52 6.70 7.03 7.08 P =0.0283

High 8.25 7.38 8.11 7.91

b* Low 3.60 2.80 3.15 3.18 P = 0.0109

High 4.45 3.52 4.25 4.07
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consumer of the 1990's, prefer a "light pink" meat as this is synonymous with a more

"natural" rearing. The pink veal production is therefore more sort after in satisfying the

current trend (Quilichini, 1995).

CONCLUSION

The fatty acid composition of veal can be altered by rumen inert fat supplementation,

particularly when combined with low degradable protein diets. These low degradable protein

diets combined with rumen inert fat sources also resulted in a higher feed conversion ratio,

crude protein-and fat digestibility, as measured in another aspect of this trial. The a* and b*

values of the meat were 7.52,8.25,6.70,7.38,7.03 and 8.11 and 3.60, 4.45, 2.80, 3.52, 3.15 and

4.25 for calves on LD, HD, LDm, HDm, LDgf and HDgf diets, respectively. The meat from the

LD diets have a significantly lower L* (P=0.0252), a* (P=0.0283) and b* (P=0.OI09) values

compared to the meat from the HD diets. The LD diets with the supplementary rumen inert fat

sources had a lighter pink colour and would encourage the consumer to purchase this product

rather than the dark red veal, which was obtained from feeding HD diets. The consumers first

have to see the meat as being appetizing before they will look at the chemical composition

(health aspects). The results from the present study indicate that the fatty acid composition of

veal can be changed by the supplementation of rumen inert fats. The leanness of the meat cut

is very important as this product is perceived to be more heathful by the consumer and thus

changing the unsaturated fatty acid composition of red meat, could have great economical

value for red meat consumption.
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GENERAL CONCLUSION

Rumen inert fat supplementation can be used with great success in veal calf production. The

results from the current investigation indicated that there was no advantage in including

protected fat sources in the starter diets or in using protein sources with different

degradabilities. This could be due to incomplete rumen development and sub-optimal rumen

fermentation. The calcium soap (Morlac) fat supplement also seemed to have a negative

influence on the total dry matter intake during the first ten weeks. Itwas therefore concluded

that it was of no economical value to include rumen inert fat sources or different protein

degradable sources in the starter period. There was however, an advantage to rumen inert fat

supplementation and low degradable protein sources when used in the finishing diets. There

was a significantly lower feed conversion ratio (FeR) when rumen inert fat was supplemented

to low degradable protein diets. The crude protein and fat digestibilities, of the LD diets with

added fat, were also significantly increased. There was an interaction between the by-pass

protein and the protected fat, which reached the small intestine of the calf. There appears to

be an optimum energy to protein ratio. There is a need for investigation into the interaction of

the rumen inert fat supplementation to low degradable diets.

The fatty acid composition of the longissimus muscle can be manipulated with the

supplementation of rumen inert fat sources. The low protein degradable diets also had a

lighter pink colour, which is a colour more favoured by the consumer. Although this

investigation proved that the fatty acid composition of veal can be changed, there is a need for

further studies to investigate whether or not this would be healthier for the consumer. There

is also a need to investigate the site of fatty acid deposition in the body.
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